metadata
dict
text
stringlengths
60
3.49M
{ "source": "jgough/opensearch-curator", "score": 2 }
#### File: test/integration/test_cli.py ```python import opensearchpy import curator import os import json import string, random, tempfile import click from click import testing as clicktest from mock import patch, Mock from . import CuratorTestCase from . import testvars as testvars import logging logger = logging.getLogger(__name__) host, port = os.environ.get('TEST_ES_SERVER', 'localhost:9200').split(':') port = int(port) if port else 9200 class TestCLIMethods(CuratorTestCase): def test_bad_client_config(self): self.create_indices(10) self.write_config( self.args['configfile'], testvars.bad_client_config.format(host, port) ) self.write_config(self.args['actionfile'], testvars.disabled_proto.format('close', 'delete_indices')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], '--dry-run', self.args['actionfile'] ], ) self.assertEqual(1, result.exit_code) def test_no_config(self): # This test checks whether localhost:9200 is provided if no hosts or # port are in the configuration. But in testing, sometimes # TEST_ES_SERVER is set to something other than localhost:9200. In this # case, the test here would fail. The if statement at the end now # compensates. See https://github.com/elastic/curator/issues/843 localtest = False if (host == 'localhost' or host == '127.0.0.1') and \ port == 9200: localtest = True self.create_indices(10) self.write_config( self.args['configfile'], ' \n' ) self.write_config(self.args['actionfile'], testvars.disabled_proto.format('close', 'delete_indices')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], '--dry-run', self.args['actionfile'] ], ) if localtest: self.assertEqual(0, result.exit_code) else: self.assertEqual(-1, result.exit_code) def test_no_logging_config(self): self.create_indices(10) self.write_config( self.args['configfile'], testvars.no_logging_config.format(host, port) ) self.write_config(self.args['actionfile'], testvars.disabled_proto.format('close', 'delete_indices')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], '--dry-run', self.args['actionfile'] ], ) self.assertEqual(0, result.exit_code) def test_logging_none(self): self.create_indices(10) self.write_config( self.args['configfile'], testvars.none_logging_config.format(host, port) ) self.write_config(self.args['actionfile'], testvars.disabled_proto.format('close', 'delete_indices')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], '--dry-run', self.args['actionfile'] ], ) self.assertEqual(0, result.exit_code) def test_invalid_action(self): self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.optionless_proto.format('invalid_action')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEqual(1, result.exit_code) def test_action_is_None(self): self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.optionless_proto.format(' ')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEqual( type(curator.ConfigurationError()), type(result.exception)) def test_no_action(self): self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.actionless_proto) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEqual( type(curator.ConfigurationError()), type(result.exception)) def test_dry_run(self): self.create_indices(10) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.delete_proto.format( 'age', 'name', 'older', '\'%Y.%m.%d\'', 'days', 5, ' ', ' ', ' ' ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], '--dry-run', self.args['actionfile'] ], ) self.assertEquals(10, len(curator.get_indices(self.client))) def test_action_disabled(self): self.create_indices(10) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.disabled_proto.format('close', 'delete_indices')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEquals(0, len(curator.get_indices(self.client))) self.assertEqual(0, result.exit_code) # I'll have to think up another way to create an exception. # The exception that using "alias" created, a missing argument, # is caught too early for this to actually run the test now :/ # def test_continue_if_exception(self): name = 'log1' self.create_index(name) self.create_index('log2') self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.continue_proto.format( name, True, 'delete_indices', False ) ) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEquals(0, len(curator.get_indices(self.client))) self.assertEqual(0, result.exit_code) def test_continue_if_exception_False(self): name = 'log1' self.create_index(name) self.create_index('log2') self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.continue_proto.format( name, False, 'delete_indices', False ) ) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEquals(2, len(curator.get_indices(self.client))) self.assertEqual(1, result.exit_code) def test_no_options_in_action(self): self.create_indices(10) self.create_index('my_index') # Added for the ILM filter's sake self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.no_options_proto.format('delete_indices')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], '--dry-run', self.args['actionfile'] ], ) self.assertEqual(0, result.exit_code) ``` #### File: test/integration/test_forcemerge.py ```python import opensearchpy import curator import os import json import string import random import tempfile from time import sleep import click from click import testing as clicktest from mock import patch, Mock from . import CuratorTestCase from . import testvars as testvars import logging logger = logging.getLogger(__name__) host, port = os.environ.get('TEST_ES_SERVER', 'localhost:9200').split(':') port = int(port) if port else 9200 class TestActionFileforceMerge(CuratorTestCase): def test_merge(self): count = 1 idx = 'my_index' self.create_index(idx) self.add_docs(idx) ilo1 = curator.IndexList(self.client) ilo1._get_segment_counts() self.assertEqual(3, ilo1.index_info[idx]['segments']) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.forcemerge_test.format(count, 0.9)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) ilo2 = curator.IndexList(self.client) # This stupid block is only for the benefit of Travis CI # With Python 2.7 and ES 7.0, it apparently can finish testing before # the segments have _reported_ as fully merged. This is forcing # 3 checks before giving up and reporting the result. for _ in range(0, 3): self.client.indices.refresh(index=idx) ilo2._get_segment_counts() if ilo2.index_info[idx]['segments'] == count: break else: sleep(1) self.assertEqual(count, ilo2.index_info[idx]['segments']) def test_extra_option(self): self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.bad_option_proto_test.format('forcemerge')) test = clicktest.CliRunner() result = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEqual(1, result.exit_code) class TestCLIforceMerge(CuratorTestCase): def test_merge(self): count = 1 idx = 'my_index' self.create_index(idx) self.add_docs(idx) ilo1 = curator.IndexList(self.client) ilo1._get_segment_counts() self.assertEqual(3, ilo1.index_info[idx]['segments']) args = self.get_runner_args() args += [ '--config', self.args['configfile'], 'forcemerge', '--max_num_segments', str(count), '--delay', '0.9', '--filter_list', '{"filtertype":"pattern","kind":"prefix","value":"my"}', ] self.assertEqual(0, self.run_subprocess(args, logname='TestCLIforceMerge.test_merge')) ilo2 = curator.IndexList(self.client) # This stupid block is only for the benefit of Travis CI # With Python 2.7 and ES 7.0, it apparently can finish testing before # the segments have _reported_ as fully merged. This is forcing # 3 checks before giving up and reporting the result. for _ in range(0, 3): self.client.indices.refresh(index=idx) ilo2._get_segment_counts() if ilo2.index_info[idx]['segments'] == count: break else: sleep(1) self.assertEqual(count, ilo2.index_info[idx]['segments']) ``` #### File: test/integration/test_reindex.py ```python import opensearchpy import curator import os import json import string import random import tempfile import click from click import testing as clicktest import time from . import CuratorTestCase from unittest.case import SkipTest from . import testvars as testvars import logging logger = logging.getLogger(__name__) host, port = os.environ.get('TEST_ES_SERVER', 'localhost:9200').split(':') rhost, rport = os.environ.get('REMOTE_ES_SERVER', 'localhost:9201').split(':') port = int(port) if port else 9200 rport = int(rport) if rport else 9201 class TestActionFileReindex(CuratorTestCase): def test_reindex_manual(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 3 self.create_index(source) self.add_docs(source) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_selected(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 3 self.create_index(source) self.add_docs(source) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, 'REINDEX_SELECTION', dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_empty_list(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = '.tasks' self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, curator.get_indices(self.client)[0]) def test_reindex_selected_many_to_one(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' dest = 'my_dest' expected = 6 self.create_index(source1) self.add_docs(source1) self.create_index(source2) for i in ["4", "5", "6"]: ver = curator.get_version(self.client) if ver >= (7, 0, 0): self.client.create( index=source2, doc_type='doc', id=i, body={"doc" + i :'TEST DOCUMENT'}) else: self.client.create( index=source2, doc_type='doc', id=i, body={"doc" + i :'TEST DOCUMENT'}) # Decorators make this pylint exception necessary # pylint: disable=E1123 self.client.indices.flush(index=source2, force=True) self.client.indices.refresh(index=source2) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, 'REINDEX_SELECTION', dest) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.client.indices.refresh(index=dest) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_selected_empty_list_fail(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' dest = 'my_dest' expected = 6 self.create_index(source1) self.add_docs(source1) self.create_index(source2) for i in ["4", "5", "6"]: self.client.create( index=source2, doc_type='log', id=i, body={"doc" + i :'TEST DOCUMENT'}, ) # Decorators make this pylint exception necessary # pylint: disable=E1123 self.client.indices.flush(index=source2, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex_empty_list.format('false', wait_interval, max_wait, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(_.exit_code, 1) def test_reindex_selected_empty_list_pass(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' dest = 'my_dest' expected = 6 self.create_index(source1) self.add_docs(source1) self.create_index(source2) for i in ["4", "5", "6"]: self.client.create( index=source2, doc_type='log', id=i, body={"doc" + i :'TEST DOCUMENT'}, ) # Decorators make this pylint exception necessary # pylint: disable=E1123 self.client.indices.flush(index=source2, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex_empty_list.format('true', wait_interval, max_wait, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(_.exit_code, 0) def test_reindex_from_remote(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' prefix = 'my_' dest = 'my_dest' expected = 6 # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_migrate_from_remote(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' prefix = 'my_' dest = 'MIGRATION' expected = 3 # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) # And now the neat trick of verifying that the reindex worked to both # indices, and they preserved their names self.assertEqual(expected, self.client.count(index=source1)['count']) self.assertEqual(expected, self.client.count(index=source2)['count']) def test_reindex_migrate_from_remote_with_pre_suf_fixes(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' prefix = 'my_' dest = 'MIGRATION' expected = 3 mpfx = 'pre-' msfx = '-fix' # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.migration_reindex.format( wait_interval, max_wait, mpfx, msfx, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) # And now the neat trick of verifying that the reindex worked to both # indices, and they preserved their names self.assertEqual(expected, self.client.count(index='{0}{1}{2}'.format(mpfx,source1,msfx))['count']) self.assertEqual(expected, self.client.count(index='{0}{1}{2}'.format(mpfx,source1,msfx))['count']) def test_reindex_from_remote_no_connection(self): wait_interval = 1 max_wait = 3 bad_port = 70000 dest = 'my_dest' expected = 1 self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, bad_port), 'REINDEX_SELECTION', dest, 'my_' ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, _.exit_code) def test_reindex_from_remote_no_indices(self): wait_interval = 1 max_wait = 3 source1 = 'wrong1' source2 = 'wrong2' prefix = 'my_' dest = 'my_dest' expected = 1 # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) self.assertEqual(expected, _.exit_code) def test_reindex_into_alias(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 3 alias_body = {'aliases' : {dest : {}}} self.client.indices.create(index='dummy', body=alias_body) self.add_docs(source) self.write_config(self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_manual_date_math(self): wait_interval = 1 max_wait = 3 source = '<source-{now/d}>' dest = '<target-{now/d}>' expected = 3 self.create_index(source) self.add_docs(source) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_bad_mapping(self): # This test addresses GitHub issue #1260 wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 1 ver = curator.get_version(self.client) if ver < (7, 0, 0): request_body = { "settings": { "number_of_shards": 1, "number_of_replicas": 0}, "mappings": { "doc": { "properties": { "doc1": { "type": "keyword" }}}} } else: request_body = { "settings": { "number_of_shards": 1, "number_of_replicas": 0}, "mappings": { "properties": { "doc1": { "type": "keyword" }}} } self.client.indices.create(index=source, body=request_body) self.add_docs(source) # Create the dest index with a different mapping. if ver < (7, 0, 0): request_body['mappings']['doc']['properties']['doc1']['type'] = 'integer' else: request_body['mappings']['properties']['doc1']['type'] = 'integer' self.client.indices.create(index=dest, body=request_body) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, _.exit_code) ``` #### File: test/unit/test_action_delete_indices.py ```python from unittest import TestCase from mock import Mock, patch import opensearchpy import curator # Get test variables and constants from a single source from . import testvars as testvars class TestActionDeleteIndices(TestCase): def test_init_raise(self): self.assertRaises(TypeError, curator.DeleteIndices, 'invalid') def test_init_raise_bad_master_timeout(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_one client.cluster.state.return_value = testvars.clu_state_one client.indices.stats.return_value = testvars.stats_one ilo = curator.IndexList(client) self.assertRaises(TypeError, curator.DeleteIndices, ilo, 'invalid') def test_init(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_one client.cluster.state.return_value = testvars.clu_state_one client.indices.stats.return_value = testvars.stats_one ilo = curator.IndexList(client) do = curator.DeleteIndices(ilo) self.assertEqual(ilo, do.index_list) self.assertEqual(client, do.client) def test_do_dry_run(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_four client.cluster.state.return_value = testvars.clu_state_four client.indices.stats.return_value = testvars.stats_four client.indices.delete.return_value = None ilo = curator.IndexList(client) do = curator.DeleteIndices(ilo) self.assertIsNone(do.do_dry_run()) def test_do_action(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_four client.cluster.state.return_value = testvars.clu_state_four client.indices.stats.return_value = testvars.stats_four client.indices.delete.return_value = None ilo = curator.IndexList(client) do = curator.DeleteIndices(ilo) self.assertIsNone(do.do_action()) def test_do_action_not_successful(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_four client.cluster.state.return_value = testvars.clu_state_four client.indices.stats.return_value = testvars.stats_four client.indices.delete.return_value = None ilo = curator.IndexList(client) do = curator.DeleteIndices(ilo) self.assertIsNone(do.do_action()) def test_do_action_raises_exception(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_four client.cluster.state.return_value = testvars.clu_state_four client.indices.stats.return_value = testvars.stats_four client.indices.delete.return_value = None client.indices.delete.side_effect = testvars.fake_fail ilo = curator.IndexList(client) do = curator.DeleteIndices(ilo) self.assertRaises(curator.FailedExecution, do.do_action) def test_verify_result_positive(self): client = Mock() client.info.return_value = {'version': {'number': '5.0.0'} } client.indices.get_settings.return_value = testvars.settings_four client.cluster.state.return_value = testvars.clu_state_four client.indices.stats.return_value = testvars.stats_four client.indices.delete.return_value = None ilo = curator.IndexList(client) do = curator.DeleteIndices(ilo) self.assertTrue(do._verify_result([],2)) ```
{ "source": "jgourmelen/django-comments-xtd", "score": 2 }
#### File: django-comments-xtd/django_comments_xtd/utils.py ```python from copy import copy import hashlib try: import Queue as queue # python2 except ImportError: import queue as queue # python3 import threading try: from urllib.parse import urlencode except ImportError: from urllib import urlencode from django.core.mail import EmailMultiAlternatives from django.contrib.contenttypes.models import ContentType from django.contrib.sites.shortcuts import get_current_site from django.utils.crypto import salted_hmac from django_comments_xtd.conf import settings mail_sent_queue = queue.Queue() class EmailThread(threading.Thread): def __init__(self, subject, body, from_email, recipient_list, fail_silently, html): self.subject = subject self.body = body self.recipient_list = recipient_list self.from_email = from_email self.fail_silently = fail_silently self.html = html threading.Thread.__init__(self) def run(self): _send_mail(self.subject, self.body, self.from_email, self.recipient_list, self.fail_silently, self.html) mail_sent_queue.put(True) def _send_mail(subject, body, from_email, recipient_list, fail_silently=False, html=None): msg = EmailMultiAlternatives(subject, body, from_email, recipient_list) if html: msg.attach_alternative(html, "text/html") msg.send(fail_silently) def send_mail(subject, body, from_email, recipient_list, fail_silently=False, html=None): if settings.COMMENTS_XTD_THREADED_EMAILS: EmailThread(subject, body, from_email, recipient_list, fail_silently, html).start() else: _send_mail(subject, body, from_email, recipient_list, fail_silently, html) def get_app_model_options(comment=None, content_type=None): """ Get the app_model_option from COMMENTS_XTD_APP_MODEL_OPTIONS. If a comment is given, the content_type is extracted from it. Otherwise, the content_type kwarg has to be provided. The funcion checks whether there is a matching dictionary for the app_label.model of the content_type, and returns it. It returns the default otherwise: { 'who_can_post': 'all', 'allow_flagging': False, 'allow_feedback': False, 'show_feedback': False }. """ default = { 'who_can_post': 'all', # Valid values: "users", "all" 'allow_flagging': False, 'allow_feedback': False, 'show_feedback': False, } if 'default' in settings.COMMENTS_XTD_APP_MODEL_OPTIONS: # The developer overwrite the default settings. Check whether # the developer added all the expected keys in the dictionary. has_missing_key = False for k in default.keys(): if k not in settings.COMMENTS_XTD_APP_MODEL_OPTIONS['default']: has_missing_key = True if not has_missing_key: default = copy(settings.COMMENTS_XTD_APP_MODEL_OPTIONS['default']) if comment: content_type = ContentType.objects.get_for_model(comment.content_object) key = "%s.%s" % (content_type.app_label, content_type.model) elif content_type: key = content_type else: return default try: default.update(settings.COMMENTS_XTD_APP_MODEL_OPTIONS[key]) return default except Exception: return default def get_current_site_id(request=None): """ it's a shortcut """ return getattr(get_current_site(request), 'pk', 1) # fallback value def get_html_id_suffix(object): value = "%s" % object.__hash__() suffix = salted_hmac(settings.COMMENTS_XTD_SALT, value).hexdigest() return suffix def get_user_avatar(comment): path = hashlib.md5(comment.user_email.lower().encode('utf-8')).hexdigest() param = urlencode({'s': 48}) return "//www.gravatar.com/avatar/%s?%s&d=identicon" % (path, param) ```
{ "source": "J-Goutham/python_scripts", "score": 3 }
#### File: J-Goutham/python_scripts/banner.py ```python import socket, sys def retban(): try: ip = sys.argv[1] port = sys.argv[2] s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, port)) print (s.recv(1024)) except: pass retban() ```
{ "source": "JGoutin/compilertools", "score": 2 }
#### File: compilertools/compilers/llvm.py ```python from compilertools.compilers import CompilerBase as _CompilerBase from compilertools._utils import ( dump_version as _dump_version, python_version as _python_version, ) __all__ = ["Compiler"] class Compiler(_CompilerBase): """LLVM Clang""" @_CompilerBase._memoized_property def option(self): """Compatibles Options Returns ------- dict Keys are options names, values are dict of arguments with keys in {'link', 'compile'}.""" return {"fast_fpmath": {"compile": "-Ofast"}} @_CompilerBase._memoized_property def api(self): """Compatibles API Returns ------- dict Keys are API names, values are dict of arguments with keys in {'link', 'compile'}.""" api = {} if self.version >= 3.7: api["openmp"] = {"compile": "-fopenmp", "link": "-fopenmp=libomp"} return api @_CompilerBase._memoized_property def version(self): """Compiler version used. Returns ------- float Version.""" if not self.current_compiler: return return _dump_version("clang") @_CompilerBase._memoized_property def python_build_version(self): """Compiler version that was used to build Python. Returns ------- float Version.""" return _python_version("clang") def _compile_args_matrix(self, arch, cpu): """Returns available Clang compiler options for the specified CPU architecture. Parameters ---------- arch : str CPU Architecture. cpu : compilertools.processors.ProcessorBase subclass Processor instance Returns ------- list of CompilerBase.Arg Arguments matrix.""" # Generic optimisation args = [[self.Arg(args=["-flto", "-O3"])]] # Architecture specific optimisations if arch == "x86_64": args += [ # CPU Generic optimisations [self.Arg(args="-m64")], # CPU Instructions sets [ self.Arg( args=["-mavx512cd", "-mavx512f"], suffix="avx512", import_if=( "AVX512F" in cpu.features and "AVX512CD" in cpu.features and cpu.os_supports_xsave ), build_if=self.version >= 3.9, ), self.Arg( args="-mavx2", suffix="avx2", import_if=("AVX2" in cpu.features and cpu.os_supports_xsave), ), self.Arg( args="-mavx", suffix="avx", import_if=("AVX" in cpu.features and cpu.os_supports_xsave), ), self.Arg(), ], ] elif arch == "x86_32": args += [ # CPU Generic optimisations [self.Arg(args="-m32")], # CPU Instructions sets [ self.Arg( args=["-mfpmath=sse", "-mavx2"], suffix="avx2", import_if=("AVX2" in cpu.features and cpu.os_supports_xsave), ), self.Arg( args=["-mfpmath=sse", "-mavx"], suffix="avx", import_if=("AVX" in cpu.features and cpu.os_supports_xsave), ), self.Arg( args=["-mfpmath=sse", "-msse4"], suffix="sse4", import_if=( "SSE4_1" in cpu.features and "SSE4_2" in cpu.features ), ), self.Arg( args=["-mfpmath=sse", "-msse4.2"], suffix="sse4_2", import_if="SSE4_2" in cpu.features, ), self.Arg( args=["-mfpmath=sse", "-msse4.1"], suffix="sse4_1", import_if="SSE4_1" in cpu.features, ), self.Arg( args=["-mfpmath=sse", "-msse4a"], suffix="sse4a", import_if=( "SSE4A" in cpu.features and cpu.vendor == "AuthenticAMD" ), ), self.Arg( args=["-mfpmath=sse", "-mssse3"], suffix="ssse3", import_if="SSSE3" in cpu.features, ), self.Arg( args=["-mfpmath=sse", "-msse2"], suffix="sse2", import_if="SSE2" in cpu.features, ), self.Arg( args=["-mfpmath=sse", "-msse"], suffix="sse", import_if="SSE" in cpu.features, ), self.Arg(), ], ] return args def _compile_args_current_machine(self, arch, cpu): """Return auto-optimised Clang arguments for current machine. Parameters ---------- arch : str CPU Architecture. cpu : compilertools.processors.ProcessorBase subclass Processor instance. Returns ------- str Best compiler arguments for current machine.""" args = ["-O3 -march=native -flto"] if arch == "x86_32": args.append("-m32") if "SSE" in cpu.features: args.append("-mfpmath=sse") elif arch == "x86_64": args.append("-m64") return " ".join(args) ``` #### File: compilertools/compilertools/_core.py ```python from compilertools.compilers import get_compiler from compilertools._utils import always_str_list __all__ = ["get_compile_args", "get_compiler", "suffix_from_args", "log_exception"] def get_compile_args( compiler=None, arch=None, current_machine=False, current_compiler=False ): """Gets compiler args OrderedDict for a specific compiler and architecture combination. Parameters ---------- compiler : str or compilertools.compilers.CompilerBase subclass Compiler name or instance. arch : str Target architecture name. current_machine : bool Only compatibles with current machine CPU current_compiler : bool If True, return only arguments compatibles with current compiler. Returns ------- collections.OrderedDict Arguments """ return get_compiler(compiler, current_compiler).compile_args(arch, current_machine) def suffix_from_args(args, extension="", return_empty_suffixes=False): """Returns suffixes from args. Parameters ---------- args : collections.OrderedDict Arguments. extension : str or list of str File extensions. return_empty_suffixes : bool If True, return '' suffixes. Returns ------- list of str Suffixes""" suffixes = [] for suffix in args: if extension: if suffix: for ext in always_str_list(extension): suffixes.append(f".{suffix}{ext}") elif return_empty_suffixes: for ext in always_str_list(extension): suffixes.append(ext) elif suffix: suffixes.append(f".{suffix}") elif return_empty_suffixes: suffixes.append("") return suffixes def log_exception(): """ Log exception with system info. Must be called in exception handler. """ from compilertools._config import CONFIG if CONFIG.get("logging", True): from logging import getLogger import platform getLogger("compilertools").exception( "\n".join( ( "Compilertools: Exception when trying to enable optimization, " "Back to compatible mode.", f" OS: {platform.platform()}", f" CPU: {platform.processor()}", f" Python: {platform.python_version()} " f"[{platform.python_compiler()}]", ) ) ) ``` #### File: compilertools/processors/x86_32.py ```python from compilertools.processors import ProcessorBase as _ProcessorBase __all__ = ["Processor", "Cpuid"] class Processor(_ProcessorBase): """x86-32 CPU""" def __init__(self, current_machine=False): _ProcessorBase.__init__(self, current_machine) self._default["os_supports_xsave"] = False self._default["cpuid_highest_extended_function"] = 0 @_ProcessorBase._memoized_property def cpuid_highest_extended_function(self): """CPUID highest extended function. Returns ------- int Related EAX value for CPUID.""" if not self.current_machine: return return Cpuid(0x80000000).eax @_ProcessorBase._memoized_property def vendor(self): """CPU's manufacturer ID from CPUID. Returns ------- str Manufacturer ID.""" if not self.current_machine: return reg = Cpuid() return Cpuid.registers_to_str(reg.ebx, reg.edx, reg.ecx) @_ProcessorBase._memoized_property def brand(self): """CPU's brand from CPUID Returns ------- str Brand.""" if not self.current_machine: return if self.cpuid_highest_extended_function < 0x80000004: return brand_list = [] for eax in (0x80000002, 0x80000003, 0x80000004): reg = Cpuid(eax) brand_list += [reg.eax, reg.ebx, reg.ecx, reg.edx] return Cpuid.registers_to_str(*brand_list) @_ProcessorBase._memoized_property def features(self): """CPU's features flags from CPUID Returns ------- list of str Flags names. References ---------- Reference: Linux kernel "arch/x86/include/asm/cpufeatures.h" Feature naming convention: Use "cpufeatures.h" quoted names in comments in priority, then use name from "cpufeatures.h" constants. Exceptions in names: PNI called SSE3 (like other SSE feature flags)""" if not self.current_machine: return # Feature bits description # feature_bits_desc: {(eax, ecx): registers_dict} # registers_dict: {register_name: feature_dict} # feature_dict: {bit: feature} feature_bits_desc = { # Intel (1, 0): { "edx": { 0: "FPU", 1: "VME", 2: "DE", 3: "PSE", 4: "TSC", 5: "MSR", 6: "PAE", 7: "MCE", 8: "CX8", 9: "APIC", 11: "SEP", 12: "MTRR", 13: "PGE", 14: "MCA", 15: "CMOV", 16: "PAT", 17: "PSE36", 18: "PN", 19: "CLFLUSH", 21: "DS", 22: "ACPI", 23: "MMX", 24: "FXSR", 25: "SSE", 26: "SSE2", 27: "SS", 28: "HT", 29: "TM", 30: "IA64", 31: "PBE", }, "ecx": { 0: "SSE3", 1: "PCLMULQDQ", 2: "DTES64", 3: "MONITOR", 4: "DS_CPL", 5: "VMX", 6: "SMX", 7: "EST", 8: "TM2", 9: "SSSE3", 10: "CID", 11: "SDBG", 12: "FMA", 13: "CX16", 14: "XTPR", 15: "PDCM", 17: "PCID", 18: "DCA", 19: "SSE4_1", 20: "SSE4_2", 21: "X2APIC", 22: "MOVBE", 23: "POPCNT", 24: "TSC_DEADLINE_TIMER", 25: "AES", 26: "XSAVE", 27: "OSXSAVE", 28: "AVX", 29: "F16C", 30: "RDRAND", 31: "HYPERVISOR", }, }, # Intel structured extended (7, 0): { "ebx": { 0: "FSGSBASE", 1: "TSC_ADJUST", 3: "BMI1", 4: "HLE", 5: "AVX2", 7: "SMEP", 8: "BMI2", 9: "ERMS", 10: "INVPCID", 11: "RTM", 12: "CQM", 14: "MPX", 15: "RDT_A", 16: "AVX512F", 17: "AVX512DQ", 18: "RDSEED", 19: "ADX", 20: "SMAP", 21: "AVX512IFMA", 23: "CLFLUSHOPT", 24: "CLWB", 26: "AVX512PF", 27: "AVX512ER", 28: "AVX512CD", 29: "SHA_NI", 30: "AVX512BW", 31: "AVX512VL", }, "ecx": { 0: "PREFETCHWT1", 1: "AVX512VBMI", 2: "UMIP", 3: "PKU", 4: "OSPKE", 6: "AVX512_VBMI2", 8: "GFNI", 9: "VAES", 10: "VPCLMULQDQ", 11: "AVX512_VNNI", 12: "AVX512_BITALG", 14: "AVX512_VPOPCNTDQ", 16: "LA57", 22: "RDPID", }, "edx": {2: "AVX512_4VNNIW", 3: "AVX512_4FMAPS"}, }, } if self.cpuid_highest_extended_function >= 0x80000001: # AMD feature_bits_desc[(0x80000001, 0)] = { "edx": { 11: "SYSCALL", 19: "MP", 20: "NX", 22: "MMXEXT", 25: "FXSR_OPT", 26: "PDPE1GB", 27: "RDTSCP", 29: "LM", 30: "3DNOWEXT", 31: "3DNOW", }, "ecx": { 0: "LAHF_LM", 1: "CMP_LEGACY", 2: "SVM", 3: "EXTAPIC", 4: "CR8_LEGACY", 5: "ABM", 6: "SSE4A", 7: "MISALIGNSSE", 8: "3DNOWPREFETCH", 9: "OSVW", 10: "IBS", 11: "XOP", 12: "SKINIT", 13: "WDT", 15: "LWP", 16: "FMA4", 17: "TCE", 19: "NODEID_MSR", 21: "TBM", 22: "TOPOEXT", 23: "PERFCTR_CORE", 24: "PERFCTR_NB", 26: "BPEXT", 27: "PTSC", 28: "PERFCTR_LLC", 29: "MWAITX", }, } flags = set() add_flag = flags.add for eax, ecx in feature_bits_desc: reg = Cpuid(eax, ecx) reg_desc = feature_bits_desc[(eax, ecx)] for exx in reg_desc: bits = getattr(reg, exx) reg_exx = reg_desc[exx] for bit in reg_exx: if ((1 << bit) & bits) != 0: add_flag(reg_exx[bit]) return flags @_ProcessorBase._memoized_property def os_supports_xsave(self): """OS and CPU supports XSAVE instruction. Returns ------- bool Supports if True.""" if not self.current_machine: return return "XSAVE" in self["features"] and "OSXSAVE" in self["features"] class Cpuid: """Gets Processor CPUID. Parameters ---------- eax_value : int EAX register value ecx_value : int ECX register value""" def __init__(self, eax_value=0, ecx_value=0): bytecode = [] for reg, value in ((0x0, eax_value), (0x1, ecx_value)): if value == 0: # Sets to 0 (XOR reg, reg) bytecode += ( # XOR b"\x31", # reg, reg (0b11000000 | reg | (reg << 3)).to_bytes(1, "little"), ) else: # Sets other value (MOV reg, value) bytecode += ( # MOV reg, (0b10111000 | reg).to_bytes(1, "little"), # Value value.to_bytes(4, "little"), ) self._bytecode_base = b"".join( bytecode + # CPUID [b"\x0F\xA2"] ) def _get_cpuid(self, reg): """Gets specified register CPUID result. Parameters ---------- reg : int Register address. Returns ------- int Raw CPUID Result as unsigned integer.""" from platform import system from ctypes import ( c_void_p, c_size_t, c_ulong, c_uint32, c_int, CFUNCTYPE, memmove, ) bytecode = [self._bytecode_base] if reg != 0x0: # MOV EAX, reg bytecode += [ # MOV b"\x89", # EAX, reg (0b11000000 | (reg << 3)).to_bytes(1, "little"), ] bytecode = b"".join( bytecode + # RET [b"\xC3"] ) is_windows = system() == "Windows" size = len(bytecode) if size < 0x1000: size = 0x1000 try: if is_windows: from ctypes import windll lib = windll.kernel32 valloc = lib.VirtualAlloc valloc.argtypes = [c_void_p, c_size_t, c_ulong, c_ulong] args = (None, size, 0x1000, 0x40) else: from ctypes import cdll lib = cdll.LoadLibrary(None) mprotect = lib.mprotect valloc = lib.valloc valloc.argtypes = [c_size_t] args = (c_size_t(size),) valloc.restype = c_void_p address = valloc(*args) if address == 0: raise RuntimeError("Failed to allocate memory") if not is_windows: mprotect.restype = c_int mprotect.argtypes = [c_void_p, c_size_t, c_int] if mprotect(address, size, 1 | 2 | 4) != 0: raise RuntimeError("Failed to memory protect") memmove(address, bytecode, size) result = CFUNCTYPE(c_uint32)(address)() finally: if is_windows: lib.VirtualFree(c_ulong(address), 0, 0x8000) else: mprotect(address, size, 1 | 2) lib.free(c_void_p(address)) return result @property def eax(self): """Get EAX register CPUID result. Returns ------- int Raw EAX register value.""" return self._get_cpuid(0x0) @property def ebx(self): """Get EBX register CPUID result. Returns ------- int Raw EAX register value.""" return self._get_cpuid(0x3) @property def ecx(self): """Get ECX register CPUID result. Returns ------- int Raw EAX register value.""" return self._get_cpuid(0x1) @property def edx(self): """Get EDX register CPUID result. Returns ------- int Raw EAX register value.""" return self._get_cpuid(0x2) @staticmethod def registers_to_str(*uints): """Converts unsigned integers from CPUID register to ASCII string. Parameters ---------- uints : int Unsigned integers to concatenate and convert to string. Returns ------- str Result.""" from struct import pack return pack(f"<{'I' * len(uints)}", *uints).decode("ASCII").strip("\x00 ") ``` #### File: compilertools/compilertools/_utils.py ```python import sys from importlib import import_module from collections.abc import MutableMapping from functools import wraps __all__ = ["always_str_list", "import_class", "BaseClass"] def always_str_list(list_or_str): """Makes sure list_or_str is always a tuple or list Parameters ---------- list_or_str: str or str iterable (tuple, list, ...) Parameter to set as iterable if single str. Returns ------- Iterable Iterable equivalent to list_or_str.""" if isinstance(list_or_str, str): return (list_or_str,) return list_or_str def import_class(package_name, module_name, class_name, default_class): """Imports a sub module by name Parameters ---------- package_name : str Package name in compilertools. module_name : str Module name in package. class_name : str Class name in module. default_class : class Default class to return if import or attribute error Returns ------- class Imported class.""" path = f"compilertools.{package_name}.{module_name}" try: import_module(path) except ImportError: return default_class try: return getattr(sys.modules[path], class_name) except AttributeError: return default_class class BaseClass(MutableMapping): """Base class for data storage classes with default values, attribute/item access and memoization""" def __init__(self): self._items = {} self._default = {} @staticmethod def _memoized_property(class_property): """Property decorator with memoization""" @property @wraps(class_property) def _property(self): key = class_property.__name__ try: return self._items.__getitem__(key) except KeyError: pass value = class_property(self) if value is None: try: value = self._default.__getitem__(key) except KeyError: pass self._items[key] = value return value return _property def __getitem__(self, key): try: return self._items.__getitem__(key) except KeyError: pass if hasattr(self, key): return getattr(self, key) return self._default.__getitem__(key) def __getattr__(self, name): try: return self._items.__getitem__(name) except KeyError: pass try: return self._default.__getitem__(name) except KeyError: raise AttributeError def __setitem__(self, key, value): return self._items.__setitem__(key, value) def __delitem__(self, key): return self._items.__delitem__(key) def __len__(self): return self._items.__len__() def __iter__(self): return self._items.__iter__() def dump_version(command): """ Dump version for GCC/Clang compilers Parameters ---------- command : str Compiler command. Returns ------- float or None: version if found else None """ from subprocess import run, PIPE, CalledProcessError try: if ( command not in run( [command, "--version"], stdout=PIPE, stderr=PIPE, universal_newlines=True, check=True, ).stdout ): # Command is linked to another compiler return except (FileNotFoundError, CalledProcessError): return for method in ("-dumpversion", "-dumpfullversion"): process = run( [command, method], stdout=PIPE, stderr=PIPE, universal_newlines=True ) if not process.returncode and "." in process.stdout: return float(".".join(process.stdout.split(".", 2)[:2])) def python_version(name): """ Get compiler version used in Python. Parameters ---------- name : str Compiler name. Returns ------- float: version """ from platform import python_compiler version_str = python_compiler() if name not in version_str.lower(): return 0.0 return float(version_str.split(" ", 2)[1].rsplit(".", 1)[0]) ``` #### File: compilertools/tests/test_build.py ```python from distutils.command.build_ext import build_ext BUILD_EXTENSION = build_ext.build_extension GET_EXT_FILENAME = build_ext.get_ext_filename GET_EXT_FULLNAME = build_ext.get_ext_fullname GET_OUTPUTS = build_ext.get_outputs BUILD_EXT_NEW = build_ext.__new__ def tests_get_build_compile_args(): """Test get_build_compile_args""" from distutils.sysconfig import get_config_var from compilertools.compilers import CompilerBase from compilertools.build import get_build_compile_args from compilertools._config_build import ConfigBuild ext_suffix = get_config_var("EXT_SUFFIX") raise_exception = False class Compiler(CompilerBase): """Dummy Compiler""" def __init__(self, current_compiler=False): CompilerBase.__init__(self, current_compiler=current_compiler) self["api"]["api_name"] = {"compile": "--api-compile", "link": "--api-link"} self["option"]["option_name"] = { "compile": "--option-compile", "link": "--option-link", } def _compile_args_matrix(self, arch, cpu): """Return test args matrix""" return [ [ self.Arg( args="--arch1", suffix="arch1", build_if=(arch == "arch1") ), self.Arg( args="--arch2", suffix="arch2", build_if=(arch == "arch2") ), self.Arg( args="--arch2_opt", suffix="arch2_opt", build_if=(arch == "arch2"), ), ] ] def _compile_args_current_machine(self, arch, cpu): """return current machine args""" if raise_exception: raise OSError return "--native" compiler = Compiler(current_compiler=True) # Test default values assert get_build_compile_args(compiler, "arch1") == { f".arch1{ext_suffix}": ["--arch1"] } # Test current_machine assert get_build_compile_args(compiler, current_machine=True) == { ext_suffix: ["--native"] } # Test current_machine, no exception in case of error raise_exception = True assert get_build_compile_args(compiler, current_machine=True) == {ext_suffix: []} raise_exception = False # Test current_machine from CONFIG_BUILD ConfigBuild.current_machine = True assert get_build_compile_args(compiler) == {ext_suffix: ["--native"]} ConfigBuild.current_machine = False # Test ext_suffix assert get_build_compile_args(compiler, "arch1", ext_suffix=".ext") == { ".arch1.ext": ["--arch1"] } # Test use_api assert get_build_compile_args(compiler, "arch1", use_api=["api_name"]) == { f".arch1{ext_suffix}": ["--arch1", "--api-compile"] } # Test use_option assert get_build_compile_args(compiler, "arch1", use_option=["option_name"]) == { f".arch1{ext_suffix}": ["--arch1", "--option-compile"] } # Test filtering suffixes assert get_build_compile_args(compiler, "arch2") == { f".arch2{ext_suffix}": ["--arch2"], f".arch2_opt{ext_suffix}": ["--arch2_opt"], } ConfigBuild.suffixes_excludes.add("arch2_opt") assert get_build_compile_args(compiler, "arch2") == { f".arch2{ext_suffix}": ["--arch2"] } ConfigBuild.suffixes_excludes.remove("arch2_opt") ConfigBuild.suffixes_includes.add("arch2") assert get_build_compile_args(compiler, "arch2") == { f".arch2{ext_suffix}": ["--arch2"] } ConfigBuild.suffixes_includes.remove("arch2") def tests_get_build_link_args(): """Test get_build_link_args""" from compilertools.compilers import CompilerBase from compilertools.build import get_build_link_args class Compiler(CompilerBase): """Dummy Compiler""" def __init__(self): CompilerBase.__init__(self) self["api"]["api_name"] = {"compile": "--api-compile", "link": "--api-link"} self["option"]["option_name"] = { "compile": "--option-compile", "link": "--option-link", } compiler = Compiler() # Test default values assert get_build_link_args(compiler) == [] # Test use_api assert get_build_link_args(compiler, use_api=["api_name"]) == ["--api-link"] # Test use_option assert get_build_link_args(compiler, use_option=["option_name"]) == [ "--option-link" ] def tests_find_if_current_machine(): """Test _find_if_current_machine""" import os from compilertools.build import _find_if_current_machine from compilertools._config_build import ConfigBuild w_dir = os.getcwd() def dummy_getcwd(): """Dummy os.getcwd""" return w_dir os_getcwd = os.getcwd os.getcwd = dummy_getcwd try: # Set by configuration ConfigBuild.current_machine = False assert _find_if_current_machine() is False ConfigBuild.current_machine = True assert _find_if_current_machine() is True # Pip detection ConfigBuild.current_machine = "autodetect" w_dir = "dir/not_current_machine" assert _find_if_current_machine() is False w_dir = "dir/pip-‌​current_machine" assert _find_if_current_machine() is True finally: os.getcwd = os_getcwd ConfigBuild.current_machine = False def tests_add_args(): """Test _add_args""" from compilertools.compilers import CompilerBase from compilertools.build import _add_args class Compiler(CompilerBase): """Dummy Compiler""" def __init__(self): CompilerBase.__init__(self) self["api"]["api_name"] = {"compile": "--api-compile"} compiler = Compiler() # API & category exists args = [] _add_args(compiler, args, "api", "compile", ["api_name"]) assert args == ["--api-compile"] # API exists, category not exists args = [] _add_args(compiler, args, "api", "link", ["api_name"]) assert args == [] # API not exists, category exists args = [] _add_args(compiler, args, "api", "compile", ["not_exist"]) assert args == [] def tests_update_extension(): """Test _update_extension, _patch_build_extension.patched and _patch_get_ext_filename.patched""" from os.path import join from os import makedirs from tempfile import TemporaryDirectory from distutils.sysconfig import get_config_var from compilertools.compilers import CompilerBase from compilertools._config_build import ConfigBuild from compilertools.build import ( _update_extension, _patch_build_extension, _patch_get_ext_filename, _patch_get_ext_fullname, _patch_get_outputs, _String, ) ext_suffix = get_config_var("EXT_SUFFIX") class Compiler(CompilerBase): """Dummy Compiler""" def __init__(self): CompilerBase.__init__(self) self["api"]["api_name"] = {"compile": "--api-compile", "link": "--api-link"} self["option"]["option_name"] = { "compile": "--option-compile", "link": "--option-link", } def _compile_args_matrix(self, arch, cpu): """Return test args matrix""" return [ [self.Arg(args="--inst", suffix="inst"), self.Arg()], [self.Arg(args="--arch", suffix="arch"), self.Arg()], ] compiler = Compiler() # Create dummy distutils classes class DummyCompiler: """Dummy distutils.ccompiler.CCompiler""" def __init__(self): # Replace compiler type str by Compiler instance # This force the use of the testing compiler self.compiler_type = compiler class DummyExtension: """Dummy distutils.extension.Extension""" def __init__(self): self.sources = [] self.extra_compile_args = ["--extra_compile"] self.extra_link_args = ["--extra_link"] self.name = "package.module" class DummyBuildExt: """Dummy distutils.command.build_ext.build_ext""" def __init__(self): self.package = None self.extensions = [] self.compiler = DummyCompiler() self.plat_name = "arch" self.inplace = False # Use build_ext.get_ext_filename directly get_ext_filename = GET_EXT_FILENAME get_ext_fullname = GET_EXT_FULLNAME def get_outputs(self): """Dummy get_outputs""" return [] def build_extension(self, _): """Dummy build_extension""" # Patch dummy build_ext DummyBuildExt.build_extension = _patch_build_extension( DummyBuildExt.build_extension ) DummyBuildExt.get_ext_filename = _patch_get_ext_filename( DummyBuildExt.get_ext_filename ) DummyBuildExt.build_extension = _patch_build_extension( DummyBuildExt.build_extension ) DummyBuildExt.get_ext_fullname = _patch_get_ext_fullname( DummyBuildExt.get_ext_fullname ) DummyBuildExt.get_outputs = _patch_get_outputs(DummyBuildExt.get_outputs) # Test with patched build_extension dummy_build_ext = DummyBuildExt() dummy_ext = DummyExtension() dummy_build_ext.build_extension(dummy_ext) results = dummy_build_ext.extensions # Check result count excepted_args = compiler.compile_args() assert len(excepted_args) != 0 assert len(results) == len(excepted_args) # Check results details results.sort( key=lambda x: getattr(x, "compilertools_extended_suffix") if hasattr(x, "compilertools_extended_suffix") else "" ) for index, result in enumerate(results): # Get suffix (not for the legacy extension) if index == 0: assert not hasattr(result, "compilertools_extended_suffix") suffix = "" else: suffix = result.compilertools_extended_suffix # Check compile args assert result.extra_compile_args == excepted_args[suffix.strip(".")] + [ "--extra_compile" ] # Check link args assert result.extra_link_args == ["--extra_link"] # Check get_ext_filename assert dummy_build_ext.get_ext_filename(result.name) == "".join( ( join("package", "module"), suffix, ext_suffix, ) ) # Check no duplicates if run a second time dummy_build_ext.build_extension(dummy_ext) results = dummy_build_ext.extensions assert len(results) == len(excepted_args) # Test "compilertools_extra_ouputs" presence # Cause, not use default compiler for current platform assert dummy_build_ext.compilertools_compiler_name assert dummy_build_ext.compilertools_extra_ouputs == [ "".join((join("package", "module"), ".compilertools")) ] # Test get_output with TemporaryDirectory() as tmp: dummy_build_ext.build_lib = join(tmp, "build") makedirs(join(dummy_build_ext.build_lib, "package"), exist_ok=True) excepted_file = join( dummy_build_ext.build_lib, "package", "module.compilertools" ) assert dummy_build_ext.get_outputs() == [excepted_file] with open(excepted_file, "rt") as file: assert file.read() == dummy_build_ext.compilertools_compiler_name # Test after disabling optimization with CONFIG_BUILD ConfigBuild.disabled = True dummy_ext = DummyExtension() assert _update_extension(DummyBuildExt(), dummy_ext) == [dummy_ext] ConfigBuild.disabled = False # Test options activation ConfigBuild.option["option_name"] = True results = _update_extension(DummyBuildExt(), DummyExtension()) for result in results: # Check option arguments presence assert result.extra_compile_args[-2] == "--option-compile" assert result.extra_link_args[-2] == "--option-link" del ConfigBuild.option["option_name"] # Test API activation with file analysis ConfigBuild.api["api_name"] = {"c": "#pragma api "} with TemporaryDirectory() as tmp: # Create dummy source file source = join(tmp, "source.c") with open(source, "wt") as file: file.write("#pragma api operation") # Reset extension and add file as source dummy_ext = DummyExtension() dummy_ext.sources.append(source) # Compute results results = _update_extension(DummyBuildExt(), dummy_ext) for result in results: # Check API arguments presence assert result.extra_compile_args[-2] == "--api-compile" assert result.extra_link_args[-2] == "--api-link" del ConfigBuild.api["api_name"] # Check type conservation with "get_ext_fullname" assert isinstance(DummyBuildExt().get_ext_fullname(_String("module")), _String) dummy_build_ext = DummyBuildExt() dummy_build_ext.package = "package" assert isinstance(dummy_build_ext.get_ext_fullname(_String("module")), _String) def tests_string(): """Test _String""" from compilertools.build import _String string = _String("a.b") # Test parent_extension parent_extension = "parent_extension" assert string.parent_extension is None string.parent_extension = parent_extension assert string.parent_extension == parent_extension # Test split splited = string.split(".") assert isinstance(splited[0], _String) assert isinstance(splited[1], _String) assert splited[0].parent_extension == parent_extension assert splited[1].parent_extension == parent_extension def tests_patch_build_extension(): """Test _patch_build_extension""" from compilertools.build import _patch_build_extension # Check if patched assert BUILD_EXTENSION is not build_ext.build_extension # Check wrap assert ( build_ext.build_extension.__module__ == f"compilertools.{BUILD_EXTENSION.__module__}" ) assert build_ext.build_extension.__name__ == BUILD_EXTENSION.__name__ # Test re-patch previous = build_ext.build_extension build_ext.build_extension = _patch_build_extension(build_ext.build_extension) assert build_ext.build_extension is previous def tests_patch_get_ext_filename(): """Test _patch_get_ext_filename""" from compilertools.build import _patch_get_ext_filename # Check if patched assert GET_EXT_FILENAME is not build_ext.get_ext_filename # Check wrap assert ( build_ext.get_ext_filename.__module__ == f"compilertools.{GET_EXT_FILENAME.__module__}" ) assert build_ext.get_ext_filename.__name__ == GET_EXT_FILENAME.__name__ # Test re-patch previous = build_ext.get_ext_filename build_ext.get_ext_filename = _patch_get_ext_filename(build_ext.get_ext_filename) assert build_ext.get_ext_filename is previous def tests_patch_get_ext_fullname(): """Test _patch_get_ext_filename""" from compilertools.build import _patch_get_ext_fullname # Check if patched assert GET_EXT_FULLNAME is not build_ext.get_ext_fullname # Check wrap assert ( build_ext.get_ext_fullname.__module__ == f"compilertools.{GET_EXT_FULLNAME.__module__}" ) assert build_ext.get_ext_fullname.__name__ == GET_EXT_FULLNAME.__name__ # Test re-patch previous = build_ext.get_ext_fullname build_ext.get_ext_fullname = _patch_get_ext_fullname(build_ext.get_ext_fullname) assert build_ext.get_ext_fullname is previous def tests_patch_get_outputs(): """Test _patch_get_outputs""" from compilertools.build import _patch_get_outputs # Check if patched assert GET_OUTPUTS is not build_ext.get_outputs # Check wrap assert build_ext.get_outputs.__module__ == f"compilertools.{GET_OUTPUTS.__module__}" assert build_ext.get_outputs.__name__ == GET_OUTPUTS.__name__ # Test re-patch previous = build_ext.get_outputs build_ext.get_outputs = _patch_get_outputs(build_ext.get_outputs) assert build_ext.get_outputs is previous def tests_patch___new__(): """Test _patch___new__""" # Check if patched assert BUILD_EXT_NEW is not build_ext.__new__ # Check build_ext instantiation from distutils.dist import Distribution build_ext(Distribution()) assert GET_EXT_FULLNAME is not build_ext.get_ext_fullname assert GET_EXT_FILENAME is not build_ext.get_ext_filename assert BUILD_EXTENSION is not build_ext.build_extension assert GET_OUTPUTS is not build_ext.get_outputs ``` #### File: compilertools/tests/test_compilers_llvm.py ```python def tests_compiler(): """Test Compiler""" import platform import subprocess from compilertools.compilers._core import _get_arch_and_cpu from compilertools.compilers.llvm import Compiler cmd = { "python": "", "--version": "", "-dumpversion": "", "not_found": False, } def dummy_compiler(): """Force version""" return cmd["python"] def run(*popenargs, check=False, **_): """Mocked subprocess.run""" args = popenargs[0] if cmd["not_found"]: raise FileNotFoundError try: stdout = cmd[args[1]] return_code = 0 except KeyError: stdout = "" return_code = 1 if check: raise subprocess.CalledProcessError(return_code, args) return subprocess.CompletedProcess(args, return_code, stdout) platform_python_compiler = platform.python_compiler platform.python_compiler = dummy_compiler subprocess_run = subprocess.run subprocess.run = run try: compiler = Compiler(current_compiler=True) # Check not existing version assert compiler.python_build_version == 0.0 assert compiler.version == 0.0 # Check existing version cmd["python"] = "Clang 6.0 (clang-600.0.57)" cmd["--version"] = "clang version 7.0.0 (Fedora 7.0.0-2.fc29)\n..." cmd["-dumpversion"] = "7.0.0" del compiler["python_build_version"] del compiler["version"] assert compiler.python_build_version == 6.0 assert compiler.version == 7.0 cmd["--version"] = "Apple LLVM version 9.1.0 (clang-902.0.39.2)\n..." cmd["-dumpversion"] = "9.1.0" del compiler["version"] assert compiler.version == 9.1 # Not current compiler assert Compiler().version == 0.0 # Test Error del compiler["version"] cmd["not_found"] = True assert compiler.version == 0.0 # Initialize system configurations compiler["version"] = 7.0 arch_x86, cpu_x86 = _get_arch_and_cpu("x86_32") arch_amd64, cpu_amd64 = _get_arch_and_cpu("x86_64") # Test API/Options assert len(compiler.api) > 0 assert len(compiler.option) > 0 # Test _compile_args_matrix assert compiler._compile_args_matrix(arch_x86, cpu_x86) assert compiler._compile_args_matrix(arch_amd64, cpu_amd64) # Test _compile_args_current_machine with x86 args = compiler._compile_args_current_machine(arch_x86, cpu_x86) assert args assert "-march=native" in args # Check return a result also with amd64 assert compiler._compile_args_current_machine(arch_amd64, cpu_amd64) # Check -mfpmath with or without SSE cpu_x86["features"] = ["SSE"] args = compiler._compile_args_current_machine(arch_x86, cpu_x86) assert "-mfpmath=sse" in args cpu_x86["features"] = [] args = compiler._compile_args_current_machine(arch_x86, cpu_x86) assert "-mfpmath=sse" not in args finally: platform.python_compiler = platform_python_compiler subprocess.run = subprocess_run def tests_compiler_clang_command(): """Test Compiler if CC/Clang command available""" from subprocess import Popen, PIPE try: version_str = ( Popen(["clang", "--version"], stdout=PIPE, universal_newlines=True) .stdout.read() .lower() ) except OSError: from pytest import skip version_str = "" skip("Clang not available") from compilertools.compilers.llvm import Compiler assert Compiler(current_compiler=True).version != 0.0 or "clang" not in version_str ``` #### File: compilertools/tests/test_compilers_msvc.py ```python def tests_compiler(): """Test Compiler""" import platform from compilertools.compilers._core import _get_arch_and_cpu from compilertools.compilers.msvc import Compiler version = "" def dummy_compiler(): """platform.python_compiler""" return version platform_python_compiler = platform.python_compiler platform.python_compiler = dummy_compiler try: compiler = Compiler(current_compiler=True) # Check not existing version assert compiler.version == 0.0 # Check existing version version = "MSC v.1800 64 bit" del compiler["version"] assert compiler.version == 12.0 # Check 13.0 skipped version = "MSC v.1900 64 bit" del compiler["version"] assert compiler.version == 14.0 # Not current compiler assert Compiler().version == 0.0 finally: platform.python_compiler = platform_python_compiler # Test API/Options assert len(compiler.api) > 0 assert len(compiler.option) > 0 # Test _compile_args_matrix arch, cpu = _get_arch_and_cpu("x86_32") assert compiler._compile_args_matrix(arch, cpu) ``` #### File: compilertools/tests/test_imports.py ```python def tests_update_ext_suffixes(): """Test update_extensions_suffixes & ARCH_SUFFIXES""" from collections import OrderedDict from importlib.machinery import EXTENSION_SUFFIXES import compilertools._core as core from compilertools._core import suffix_from_args from compilertools.imports import ARCH_SUFFIXES, update_extensions_suffixes # Create fake compiler and extensions on environments without ARCH_SUFFIXES if not ARCH_SUFFIXES: ARCH_SUFFIXES += [".fake1", ".fake2"] def get_compile_args(*_, **__): """Mocker function""" return OrderedDict( [ ("inst1-arch1", ["--generic", "--inst1", "--arch1"]), ("inst1-arch2", ["--generic", "--inst1", "--arch2"]), ("arch1", ["--generic", "--arch1"]), ("arch2", ["--generic", "--arch2"]), ] ) core_get_compile_args = core.get_compile_args core.get_compile_args = get_compile_args else: get_compile_args = core.get_compile_args core_get_compile_args = None # Test try: # Test update update_extensions_suffixes("gcc") get_compile_args("gcc", current_machine=True) suffixes = suffix_from_args( get_compile_args("gcc", current_machine=True), EXTENSION_SUFFIXES ) for suffixe in suffixes: assert suffixe in ARCH_SUFFIXES # Test extensions presence result = [] for ext in EXTENSION_SUFFIXES: result.append(False) for arch_ext in ARCH_SUFFIXES: if ext in arch_ext: result[-1] = True break assert all(result) # Tests not crash on exception update_extensions_suffixes("fake_compiler") finally: if core_get_compile_args: ARCH_SUFFIXES.clear() core.get_compile_args = core_get_compile_args def tests_extension_file_finder(): """Test _ExtensionFileFinder""" import sys from os.path import join from tempfile import TemporaryDirectory import importlib.machinery as machinery import compilertools.imports as imports from compilertools.imports import ( _ExtensionFileFinder, ARCH_SUFFIXES, _PROCESSED_COMPILERS, ) # Create fake compiler and extensions on environments without ARCH_SUFFIXES if not ARCH_SUFFIXES: ARCH_SUFFIXES += [".fake1", ".fake2"] _PROCESSED_COMPILERS.add("fake_compiler") def update_extensions_suffixes(compiler): """Mocker function""" _PROCESSED_COMPILERS.add(compiler) imports_update_extensions_suffixes = imports.update_extensions_suffixes imports.update_extensions_suffixes = update_extensions_suffixes else: imports_update_extensions_suffixes = None # Check presence in sys.meta_path assert isinstance(sys.meta_path[0], _ExtensionFileFinder) # Test find_spec # Monkey patch importlib machinery for don't need to import unexisting file. module_spec = machinery.ModuleSpec extension_file_loader = machinery.ExtensionFileLoader def dummy_spec(_, loader, *, origin=None): """Dummy ModuleSpec""" assert loader == origin return origin def dummy_fileloader(_, path): """Dummy ExtensionFileLoader""" return path machinery.ModuleSpec = dummy_spec machinery.ExtensionFileLoader = dummy_fileloader try: for use_compiler_file in (False, True): with TemporaryDirectory() as tmp: sys.path.insert(0, tmp) name = "compilertools_dummy_file" ext = ARCH_SUFFIXES[0] file_path = join(tmp, "".join([name, ext])) with open(file_path, "wt") as file: file.write("") if use_compiler_file: compiler = _PROCESSED_COMPILERS.pop() assert compiler not in _PROCESSED_COMPILERS path_compiler = join(tmp, "".join([name, ".compilertools"])) with open(path_compiler, "wt") as file: file.write(compiler) file_finder = _ExtensionFileFinder() # Existing file assert file_finder.find_spec(name, "") == file_path if use_compiler_file: assert compiler in _PROCESSED_COMPILERS # Checks called twice assert file_finder.find_spec(name, "") == file_path # non-existing file assert file_finder.find_spec("compilertools_notexists_file", "") is None sys.path.remove(tmp) finally: machinery.ModuleSpec = module_spec machinery.ExtensionFileLoader = extension_file_loader if imports_update_extensions_suffixes: ARCH_SUFFIXES.clear() _PROCESSED_COMPILERS.discard("fake_compiler") imports.update_extensions_suffixes = imports_update_extensions_suffixes ``` #### File: compilertools/tests/test_processors__core.py ```python def tests_get_arch(): """Test get_arch""" from platform import machine from compilertools._config import CONFIG from compilertools.processors._core import get_arch # Test lower case assert get_arch("ARCH") == "arch" # Current arch arch = machine().lower() assert get_arch() == CONFIG["architectures"].get(arch, arch) # Test aliases for arch in CONFIG["architectures"]: assert get_arch(arch) == CONFIG["architectures"][arch] # Test cross compilation assert get_arch("x86_amd64") == "x86_64" # Test prefixed architecture assert get_arch("linux-x86_64") == "x86_64" def tests_get_processor(): """Test get_processor""" from os import listdir from os.path import splitext, dirname from compilertools.processors import _core from compilertools.processors._core import get_processor from itertools import product # Return processor by name with all file in "compilertools.processors" for file, current_machine in product( listdir(dirname(_core.__file__)), (True, False) ): if file.startswith("_"): continue name = splitext(file)[0] processor = get_processor(name, current_machine=current_machine) assert processor.__class__.__module__ == f"compilertools.processors.{name}" assert processor.current_machine is current_machine def tests_processor_base(): """Test ProcessorBase""" from compilertools.processors import ProcessorBase # Test current machine processor = ProcessorBase() assert processor.current_machine is False processor = ProcessorBase(current_machine=True) assert processor.current_machine is True # Test properties assert processor.vendor == "" processor["vendor"] = "vendor" assert processor.vendor == "vendor" assert processor.brand == "" processor["brand"] = "brand" assert processor.brand == "brand" assert processor.features == [] processor["features"] = ["feature1", "feature2"] assert processor.features == ["feature1", "feature2"] # Test arch assert processor.arch == "_core" ```
{ "source": "JGoutin/rfs", "score": 3 }
#### File: rfs/airfs/config.py ```python from json import dump as _dump from os import chmod from airfs._core.config import CONFIG_FILE as _CONFIG_FILE, read_config as _read_config def get_mount(storage, config_name=None): """ Get the mount configuration. .. versionadded:: 1.5.0 Args: storage (str): Storage name. config_name (str): If specified, load the configuration as a specific storage configuration. "See airfs.config.set_mount". Returns: dict or None: Storage configuration, None if not configured. """ if config_name: storage = f"{storage}.{config_name}" try: return _read_config()[storage] except (KeyError, TypeError): return None def set_mount( storage, config_name=None, storage_parameters=None, unsecure=None, extra_root=None ): """ Set a mount configuration. Most arguments are identical to "airfs.mount". .. versionadded:: 1.5.0 Args: storage (str): Storage name. config_name (str): If specified, save the configuration as a specific storage configuration. This allow to save multiple configurations for a same "storage". storage_parameters (dict): Storage configuration parameters. Generally, client configuration and credentials. unsecure (bool): If True, disables TLS/SSL to improves transfer performance. But makes connection unsecure. Default to False. extra_root (str): Extra root that can be used in replacement of root in path. This can be used to provides support for shorter URLS. Example: with root "https://www.my_storage.com/user" and extra_root "mystorage://" it is possible to access object using "mystorage://container/object" instead of "https://www.my_storage.com/user/container/object". """ if config_name: storage = f"{storage}.{config_name}" config = _read_config() or dict() config[storage] = { key: value for key, value in dict( unsecure=unsecure, extra_root=extra_root, storage_parameters=storage_parameters, ).items() if value } with open(_CONFIG_FILE, "wt") as config_file: _dump(config, config_file) chmod(_CONFIG_FILE, 0o600) ``` #### File: airfs/_core/cache.py ```python from gzip import open as open_archive from hashlib import blake2b from json import load, dump from os import listdir, utime, remove, makedirs, chmod from os.path import join, getmtime from time import time from airfs._core.config import CACHE_DIR class NoCacheException(Exception): """No cache available""" #: Long cache default expiry CACHE_LONG_EXPIRY = 172800 #: Short cache default expiry CACHE_SHORT_EXPIRY = 60 #: To initialize cache directories only once _CACHE_INITIALIZED = False def _hash_name(name): """ Convert name to hashed name. Args: name (str): name. Returns: str: Hashed name. """ return blake2b(name.encode(), digest_size=32).hexdigest() def clear_cache(): """ Clear expired cache files. """ expiry = _get_expiry() for cached_name in listdir(CACHE_DIR): path = join(CACHE_DIR, cached_name) if getmtime(path) < expiry[cached_name[-1]]: remove(path) continue def _get_expiry(): """ Get expiry timestamps. Returns: dict: Expiry for both short and long modes. """ current_time = time() return { "s": current_time - CACHE_SHORT_EXPIRY, "l": current_time - CACHE_LONG_EXPIRY, } def get_cache(name): """ Get an object from disk cache. Args: name (str): Cache name. Returns: dict or list or None: object, None if object is not cached. """ expiry = _get_expiry() hashed_name = _hash_name(name) for mode in ("s", "l"): path = join(CACHE_DIR, hashed_name + mode) try: timestamp = getmtime(path) except FileNotFoundError: continue if timestamp < expiry[mode]: remove(path) continue if mode == "l": # In long cache mode, reset expiry delay utime(path) with open_archive(path, "rt") as file: return load(file) raise NoCacheException() def set_cache(name, obj, long=False): """ Add an object to disk cache. Args: name (str): Cache name. obj (dict or list): Object to cache. long (bool): If true, enable "long cache". """ path = join(CACHE_DIR, _hash_name(name) + ("l" if long else "s")) global _CACHE_INITIALIZED if not _CACHE_INITIALIZED: makedirs(CACHE_DIR, exist_ok=True) chmod(CACHE_DIR, 0o700) _CACHE_INITIALIZED = True with open_archive(path, "wt") as file: dump(obj, file) ``` #### File: airfs/_core/config.py ```python from json import load import os from os import getenv from os.path import join, expandvars, expanduser def _init_paths(): """ Initialize application directories. Returns: tuple of str: Configuration directory, cache directory """ if os.name == "nt": config_dir = join(expandvars("%APPDATA%"), "airfs") cache_dir = join(expandvars("%LOCALAPPDATA%"), r"airfs\cache") elif os.getuid() != 0: config_dir = join(getenv("XDG_CONFIG_HOME", expanduser("~/.config")), "airfs") cache_dir = join(getenv("XDG_CACHE_HOME", expanduser("~/.cache")), "airfs") else: config_dir = "/etc/airfs" cache_dir = "/var/cache/airfs" return config_dir, cache_dir CONFIG_DIR, CACHE_DIR = _init_paths() CONFIG_FILE = join(CONFIG_DIR, "config.json") def read_config(): """ Read the configuration. Returns: dict or None: Configuration. None if no configuration. """ try: with open(CONFIG_FILE, "rt") as config_file: return load(config_file) except FileNotFoundError: return ``` #### File: airfs/_core/functions_core.py ```python from contextlib import contextmanager from functools import wraps from os import fsdecode, fsencode from airfs._core.exceptions import handle_os_exceptions, ObjectNotImplementedError def is_storage(file, storage=None): """ Check if file is a local file or a storage file. Args: file (str or int): file path, URL or file descriptor. storage (str): Storage name. Returns: bool: return True if file is not local. """ if storage: return True elif isinstance(file, int): return False split_url = file.split("://", 1) if len(split_url) == 2 and split_url[0].lower() != "file": return True return False def format_and_is_storage(path, file_obj_as_storage=False, storage=None): """ Checks if path is storage and format it. If path is an opened file-like object, returns is storage as True. Args: path (path-like object or file-like object or int): Path, opened file or file descriptor. file_obj_as_storage (bool): If True, count file-like objects as storages. Useful if standard functions are not intended to support them. storage (str): Storage name. Returns: tuple: str or file-like object or int (Updated path), bool (True if is storage). """ readable = hasattr(path, "read") if isinstance(path, int) or readable: return path, readable and file_obj_as_storage path = fsdecode(path).replace("\\", "/") return path, is_storage(path, storage) def equivalent_to(std_function, keep_path_type=False): """ Decorates an airfs object compatible function to provides fall back to standard function if used on local files. Args: std_function: standard function to use with local files. keep_path_type (bool): Convert returned result to bytes if path argument was bytes. Returns: function: new function """ def decorate(cos_function): """Decorator argument handler Args: cos_function (function): Storage function to use with storage files. """ @wraps(cos_function) def decorated(path, *args, **kwargs): """ Decorated function. Args: path (path-like object or int): Path, URL or file descriptor. """ if not isinstance(path, int): path_str = fsdecode(path).replace("\\", "/") if is_storage(path_str): with handle_os_exceptions(): result = cos_function(path_str, *args, **kwargs) if keep_path_type and isinstance(path, bytes): result = fsencode(result) return result return std_function(path, *args, **kwargs) return decorated return decorate def raises_on_dir_fd(dir_fd): """ Raise on use of dir_fd Args: dir_fd: Checks if None Raises: NotImplementedError: dir_fd is not None. """ if dir_fd is not None: raise ObjectNotImplementedError(feature="dir_fd") class SeatsCounter: """ A simple counter keeping track of available seats. Args: max_seats (int or None): Maximum available seats. None if no maximum. """ __slots__ = ("_seats",) def __init__(self, max_seats): self._seats = max_seats def take_seat(self): """ Take a seat. """ if self._seats: self._seats -= 1 @property def seats_left(self): """ Remaining seats. Returns: int or None: Remaining seats. None if no maximum. """ if self._seats: return self._seats @property def full(self): """ Check if seats are full. Returns: bool: True if no more seat available. """ return self._seats == 0 @contextmanager def ignore_exception(exception): """ Convenient shorter method to ignore exception. """ try: yield except exception: return ``` #### File: airfs/_core/functions_os.py ```python import os from os import scandir as os_scandir, fsdecode, fsencode, fspath from os.path import dirname from stat import S_ISLNK, S_ISDIR from airfs._core.storage_manager import get_instance from airfs._core.functions_core import ( equivalent_to, is_storage, raises_on_dir_fd, format_and_is_storage, ) from airfs._core.exceptions import ( ObjectExistsError, ObjectNotFoundError, handle_os_exceptions, ObjectPermissionError, ObjectIsADirectoryError, ObjectSameFileError, ObjectNotImplementedError, ) from airfs._core.io_base import memoizedmethod @equivalent_to(os.listdir) def listdir(path="."): """ Return a list containing the names of the entries in the directory given by path. Follow symlinks if any. Equivalent to "os.listdir". .. versionadded:: 1.2.0 Args: path (path-like object): Path or URL. Returns: list of str: Entries names. """ system = get_instance(path) path = system.resolve(path, follow_symlinks=True)[0] return [name.rstrip("/") for name, _ in system.list_objects(path, first_level=True)] @equivalent_to(os.makedirs) def makedirs(name, mode=0o777, exist_ok=False): """ Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. Equivalent to "os.makedirs". .. versionadded:: 1.1.0 Args: name (path-like object): Path or URL. mode (int): The mode parameter is passed to os.mkdir(); see the os.mkdir() description for how it is interpreted. Not supported on storage objects. exist_ok (bool): Don't raises error if target directory already exists. Raises: FileExistsError: if exist_ok is False and if the target directory already exists. """ system = get_instance(name) if not exist_ok and system.isdir(system.ensure_dir_path(name)): raise ObjectExistsError(path=name) system.make_dir(name) @equivalent_to(os.mkdir) def mkdir(path, mode=0o777, *, dir_fd=None): """ Create a directory named path with numeric mode mode. Equivalent to "os.mkdir". .. versionadded:: 1.1.0 Args: path (path-like object): Path or URL. mode (int): The mode parameter is passed to os.mkdir(); see the os.mkdir() description for how it is interpreted. Not supported on storage objects. dir_fd (int): directory descriptors; see the os.remove() description for how it is interpreted. Not supported on storage objects. Raises: FileExistsError : Directory already exists. FileNotFoundError: Parent directory not exists. """ raises_on_dir_fd(dir_fd) system = get_instance(path) relative = system.relpath(path) parent_dir = dirname(relative.rstrip("/")) if parent_dir: parent = "{}{}/".format(path.rsplit(relative, 1)[0], parent_dir) if not system.isdir(parent): raise ObjectNotFoundError(path=parent) if system.isdir(system.ensure_dir_path(path)): raise ObjectExistsError(path=path) system.make_dir(relative, relative=True) @equivalent_to(os.readlink, keep_path_type=True) def readlink(path, *, dir_fd=None): """ Return a string representing the path to which the symbolic link points. The result may be either an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using os.path.join(os.path.dirname(path), result). If the path is a string object (directly or indirectly through a PathLike interface), the result will also be a string object, and the call may raise a UnicodeDecodeError. If the path is a bytes object (direct or indirectly), the result will be a bytes object. Equivalent to "os.readlink". .. versionadded:: 1.5.0 Args: path (path-like object): Path or URL. dir_fd (int): directory descriptors; see the os.readlink() description for how it is interpreted. Not supported on storage objects. """ raises_on_dir_fd(dir_fd) return get_instance(path).read_link(path) @equivalent_to(os.remove) def remove(path, *, dir_fd=None): """ Remove a file. Equivalent to "os.remove" and "os.unlink". .. versionadded:: 1.2.0 Args: path (path-like object): Path or URL. dir_fd (int): directory descriptors; see the os.remove() description for how it is interpreted. Not supported on storage objects. """ raises_on_dir_fd(dir_fd) system = get_instance(path) if system.is_locator(path) or path[-1] == "/": raise ObjectIsADirectoryError(path=path) system.remove(path) unlink = remove @equivalent_to(os.rmdir) def rmdir(path, *, dir_fd=None): """ Remove a directory. Equivalent to "os.rmdir". .. versionadded:: 1.2.0 Args: path (path-like object): Path or URL. dir_fd (int): directory descriptors; see the os.rmdir() description for how it is interpreted. Not supported on storage objects. """ raises_on_dir_fd(dir_fd) system = get_instance(path) system.remove(system.ensure_dir_path(path)) @equivalent_to(os.lstat) def lstat(path, *, dir_fd=None): """ Get the status of a file or a file descriptor. Perform the equivalent of a "lstat()" system call on the given path. Equivalent to "os.lstat". On storage object, may return extra storage specific attributes in "os.stat_result". .. versionadded:: 1.2.0 Args: path (path-like object): Path or URL. dir_fd (int): directory descriptors; see the os.rmdir() description for how it is interpreted. Not supported on storage objects. Returns: os.stat_result: stat result. """ raises_on_dir_fd(dir_fd) return get_instance(path).stat(path) @equivalent_to(os.stat) def stat(path, *, dir_fd=None, follow_symlinks=True): """ Get the status of a file or a file descriptor. Perform the equivalent of a "stat()" system call on the given path. Equivalent to "os.stat". On storage object, may return extra storage specific attributes in "os.stat_result". .. versionadded:: 1.2.0 Args: path (path-like object): Path or URL. dir_fd (int): directory descriptors; see the os.rmdir() description for how it is interpreted. Not supported on storage objects. follow_symlinks (bool): Follow symlinks. Returns: os.stat_result: stat result. """ raises_on_dir_fd(dir_fd) return get_instance(path).stat(path, follow_symlinks=follow_symlinks) class DirEntry: """ Object yielded by scandir() to expose the file path and other file attributes of a directory entry. Equivalent to "os.DirEntry". Not intended to be instantiated directly. .. versionadded:: 1.2.0 """ __slots__ = ("_cache", "_system", "_name", "_header", "_path", "_bytes_path") def __init__(self, scandir_path, system, name, header, bytes_path): """ Should only be instantiated by "scandir". Args: scandir_path (str): scandir path argument. system (airfs._core.io_system.SystemBase subclass): Storage system. name (str): Name of the object relative to "scandir_path". header (dict): Object header bytes_path (bool): True if path must be returned as bytes. """ self._cache = dict() self._system = system self._name = name self._header = header self._path = "".join( (scandir_path if scandir_path[-1] == "/" else (scandir_path + "/"), name) ) self._bytes_path = bytes_path @memoizedmethod def __str__(self): return f"<DirEntry '{self._name.rstrip('/')}'>" __repr__ = __str__ @property # type: ignore @memoizedmethod def _client_kwargs(self): """ Get base keyword arguments for client Returns: dict: keyword arguments """ return self._system.get_client_kwargs(self._path) @property # type: ignore @memoizedmethod def name(self): """ The entry’s base filename, relative to the scandir() path argument. Returns: str: name. """ name = self._name.rstrip("/") if self._bytes_path: name = fsencode(name) return name @property # type: ignore @memoizedmethod def path(self): """ The entry’s full path name: equivalent to os.path.join(scandir_path, entry.name) where scandir_path is the scandir() path argument. The path is only absolute if the scandir() path argument was absolute. Returns: str: name. """ path = self._path.rstrip("/") if self._bytes_path: path = fsencode(path) return path @memoizedmethod def inode(self): """ Return the inode number of the entry. The result is cached on the os.DirEntry object. Returns: int: inode. """ return self.stat().st_ino @memoizedmethod def is_dir(self, *, follow_symlinks=True): """ Return True if this entry is a directory or a symbolic link pointing to a directory; return False if the entry is or points to any other kind of file, or if it doesn’t exist anymore. The result is cached on the os.DirEntry object. Args: follow_symlinks (bool): Follow symlinks. Returns: bool: True if directory exists. """ with handle_os_exceptions(): try: return self._system.isdir( path=self._path, client_kwargs=self._client_kwargs, virtual_dir=False, follow_symlinks=follow_symlinks, ) or bool( # Some directories only exists virtually in object path and don't # have headers. S_ISDIR(self.stat().st_mode) ) except ObjectPermissionError: return True @memoizedmethod def is_file(self, *, follow_symlinks=True): """ Return True if this entry is a file or a symbolic link pointing to a file; return False if the entry is or points to a directory or other non-file entry, or if it doesn’t exist anymore. The result is cached on the os.DirEntry object. Args: follow_symlinks (bool): Follow symlinks. Returns: bool: True if directory exists. """ with handle_os_exceptions(): return self._system.isfile( path=self._path, client_kwargs=self._client_kwargs, follow_symlinks=follow_symlinks, ) @memoizedmethod def is_symlink(self): """ Return True if this entry is a symbolic link The result is cached on the os.DirEntry object. Returns: bool: True if symbolic link. """ return bool(S_ISLNK(self.stat().st_mode)) @memoizedmethod def stat(self, *, follow_symlinks=True): """ Return a stat_result object for this entry. The result is cached on the os.DirEntry object. Args: follow_symlinks (bool): Follow symlinks. Returns: os.stat_result: Stat result object """ with handle_os_exceptions(): return self._system.stat( path=self._path, client_kwargs=self._client_kwargs, header=self._header, follow_symlinks=follow_symlinks, ) DirEntry.__module__ = "airfs" def scandir(path="."): """ Return an iterator of os.DirEntry objects corresponding to the entries in the directory given by path. The entries are yielded in arbitrary order, and the special entries '.' and '..' are not included. Equivalent to "os.scandir". .. versionadded:: 1.2.0 Args: path (path-like object): Path or URL. If path is of type bytes (directly or indirectly through the PathLike interface), the type of the name and path attributes of each os.DirEntry will be bytes; in all other circumstances, they will be of type str. Returns: Generator of os.DirEntry: Entries information. """ scandir_path = fsdecode(path).replace("\\", "/") if not is_storage(scandir_path): return os_scandir(scandir_path) system = get_instance(scandir_path) return _scandir_generator( is_bytes=isinstance(fspath(path), (bytes, bytearray)), scandir_path=system.resolve(scandir_path, follow_symlinks=True)[0], system=system, ) def _scandir_generator(is_bytes, scandir_path, system): """ scandir generator Args: is_bytes (bool): True if DirEntry must handle path as bytes. scandir_path (str): Path. system (airfs._core.io_system.SystemBase subclass): Storage system. Yields: DirEntry: Directory entries """ with handle_os_exceptions(): for name, header in system.list_objects(scandir_path, first_level=True): yield DirEntry( scandir_path=scandir_path, system=system, name=name, header=header, bytes_path=is_bytes, ) def symlink(src, dst, target_is_directory=False, *, dir_fd=None): """ Create a symbolic link pointing to src named dst. Equivalent to "os.symlink". .. versionadded:: 1.5.0 Args: src (path-like object): Path or URL to the symbolic link. dst (path-like object): Path or URL to the target. target_is_directory (bool): On Windows, define if symlink represents either a file or a directory. Not supported on storage objects and non-Windows platforms. dir_fd (int): directory descriptors; see the os.symlink() description for how it is interpreted. Not supported on storage objects. """ src, src_is_storage = format_and_is_storage(src) dst, dst_is_storage = format_and_is_storage(dst) if not src_is_storage and not dst_is_storage: return os.symlink( src, dst, target_is_directory=target_is_directory, dir_fd=dir_fd ) with handle_os_exceptions(): if not src_is_storage or not dst_is_storage: ObjectNotImplementedError("Cross storage symlinks are not supported") raises_on_dir_fd(dir_fd) system_src = get_instance(src) system_dst = get_instance(dst) if system_src is not system_dst: ObjectNotImplementedError("Cross storage symlinks are not supported") elif system_src.relpath(src) == system_dst.relpath(dst): raise ObjectSameFileError(path1=src, path2=dst) return get_instance(src).symlink(src, dst) ``` #### File: airfs/_core/functions_shutil.py ```python from os.path import join, basename from shutil import ( copy as shutil_copy, copyfileobj, copyfile as shutil_copyfile, ) from airfs._core.compat import COPY_BUFSIZE from airfs._core.functions_io import cos_open from airfs._core.functions_os_path import isdir from airfs._core.functions_core import format_and_is_storage, ignore_exception from airfs._core.exceptions import ( AirfsInternalException, handle_os_exceptions, ObjectSameFileError, ) from airfs._core.storage_manager import get_instance def _copy(src, dst, src_is_storage, dst_is_storage, follow_symlinks): """ Copies file from source to destination Args: src (str or file-like object): Source file. dst (str or file-like object): Destination file. src_is_storage (bool): Source is storage. dst_is_storage (bool): Destination is storage. follow_symlinks (bool): If True, follow symlinks. """ with handle_os_exceptions(): if src_is_storage and dst_is_storage: system_src = get_instance(src) system_dst = get_instance(dst) if system_src is system_dst: if system_src.relpath(src) == system_dst.relpath(dst): raise ObjectSameFileError(path1=src, path2=dst) try: return system_dst.copy(src, dst) except AirfsInternalException: pass for caller, called, method in ( (system_dst, system_src, "copy_from_%s"), (system_src, system_dst, "copy_to_%s"), ): if hasattr(caller, method % called.storage): try: return getattr(caller, method % called.storage)( src, dst, called, follow_symlinks ) except AirfsInternalException: continue _copy_stream(dst, src) def _copy_stream(dst, src): """ Copy files by streaming content from source to destination. Args: src (str or file-like object): Source file. dst (str or file-like object): Destination file. """ with cos_open(src, "rb") as fsrc: with cos_open(dst, "wb") as fdst: for stream in (fsrc, fdst): try: buffer_size = getattr(stream, "_buffer_size") break except AttributeError: continue else: buffer_size = COPY_BUFSIZE copyfileobj(fsrc, fdst, buffer_size) def copy(src, dst, *, follow_symlinks=True): """ Copies a source file to a destination file or directory. Equivalent to "shutil.copy". Source and destination can also be binary opened file-like objects. .. versionadded:: 1.0.0 Args: src (path-like object or file-like object): Source file. dst (path-like object or file-like object): Destination file or directory. follow_symlinks (bool): If True, follow symlinks. Raises: FileNotFoundError: Destination directory not found. """ src, src_is_storage = format_and_is_storage(src, True) dst, dst_is_storage = format_and_is_storage(dst, True) if not src_is_storage and not dst_is_storage: return shutil_copy(src, dst, follow_symlinks=follow_symlinks) if not hasattr(dst, "read"): with ignore_exception(PermissionError): # Tries to write if not enough permission to check if destination is a # directory if isdir(dst): dst = join(dst, basename(src)) _copy(src, dst, src_is_storage, dst_is_storage, follow_symlinks) def copyfile(src, dst, *, follow_symlinks=True): """ Copies a source file to a destination file. Equivalent to "shutil.copyfile". Source and destination can also be binary opened file-like objects. .. versionadded:: 1.2.0 Args: src (path-like object or file-like object): Source file. dst (path-like object or file-like object): Destination file. follow_symlinks (bool): Follow symlinks. Raises: FileNotFoundError: Destination directory not found. """ src, src_is_storage = format_and_is_storage(src, True) dst, dst_is_storage = format_and_is_storage(dst, True) if not src_is_storage and not dst_is_storage: return shutil_copyfile(src, dst, follow_symlinks=follow_symlinks) _copy(src, dst, src_is_storage, dst_is_storage, follow_symlinks) ``` #### File: airfs/_core/io_base_system.py ```python from abc import abstractmethod, ABC from collections import OrderedDict, namedtuple from re import compile from stat import S_IFDIR, S_IFREG, S_IFLNK from posixpath import join, normpath, dirname from dateutil.parser import parse from airfs._core.io_base import WorkerPoolBase from airfs._core.compat import Pattern, getgid, getuid from airfs._core.exceptions import ( ObjectNotFoundError, ObjectPermissionError, ObjectNotImplementedError, ObjectUnsupportedOperation, ) from airfs._core.functions_core import SeatsCounter class SystemBase(ABC, WorkerPoolBase): """ Cloud storage system handler. This class subclasses are not intended to be public and are implementation details. This base system is for Object storage that does not handles files with a true hierarchy like file systems. Directories are virtual with this kind of storage. Args: storage_parameters (dict): Storage configuration parameters. Generally, client configuration and credentials. unsecure (bool): If True, disables TLS/SSL to improves transfer performance. But makes connection unsecure. roots (tuple): Tuple of roots to force use. """ __slots__ = ( "_storage_parameters", "_unsecure", "_storage", "_client", "_cache", "_roots", ) #: If True, storage support symlinks SUPPORTS_SYMLINKS = False # By default, assumes that information are in a standard HTTP header _SIZE_KEYS = ("Content-Length",) _CTIME_KEYS = () _MTIME_KEYS = ("Last-Modified",) _CHAR_FILTER = compile(r"[^a-z0-9_]*") def __init__(self, storage_parameters=None, unsecure=False, roots=None, **_): WorkerPoolBase.__init__(self) if storage_parameters: storage_parameters = storage_parameters.copy() for key in tuple(storage_parameters): if key.startswith("airfs."): del storage_parameters[key] else: storage_parameters = dict() self._storage_parameters = storage_parameters self._unsecure = unsecure self._storage = self.__module__.rsplit(".", 1)[1] self._client = None self._cache = {} if roots: self._roots = roots else: self._roots = self._get_roots() @property def storage(self): """ Storage name Returns: str: Storage """ return self._storage @property def client(self): """ Storage client Returns: client """ if self._client is None: self._client = self._get_client() return self._client def copy(self, src, dst, other_system=None): """ Copy object of the same storage. Args: src (str): Path or URL. dst (str): Path or URL. other_system (airfs._core.io_system.SystemBase subclass): Other storage system. May be required for some storage. """ # This method is intended to copy objects to and from a same storage # It is possible to define methods to copy from a different storage by creating # a "copy_from_<src_storage>" method for the target storage and, vice versa, to # copy to a different storage by creating a "copy_to_<dst_storage>" method. # Theses methods must have the same signature as "copy". # "other_system" is optional and will be: # - The destination storage system with "copy_to_<src_storage>" method. # - The source storage system with "copy_from_<src_storage>" method. # - None elsewhere. # Note that if no "copy_from"/'copy_to" methods are defined, copy are performed # over the current machine with "shutil.copyfileobj". raise ObjectUnsupportedOperation def exists( self, path=None, client_kwargs=None, assume_exists=None, header=None, follow_symlinks=None, ): """ Return True if path refers to an existing path. Args: path (str): Path or URL. client_kwargs (dict): Client arguments. assume_exists (bool or None): This value define the value to return in the case there is no enough permission to determinate the existing status of the file. If set to None, the permission exception is reraised (Default behavior). if set to True or False, return this value. header (dict): Object header. follow_symlinks (bool): Follow symlinks. Returns: bool: True if exists. """ try: path, client_kwargs, header = self.resolve( path, client_kwargs, header, follow_symlinks ) self.head(path, client_kwargs, header) except ObjectNotFoundError: return False except ObjectPermissionError: if assume_exists is None: raise return assume_exists return True @abstractmethod def _get_client(self): """ Storage client Returns: client """ @abstractmethod def get_client_kwargs(self, path): """ Get base keyword arguments for client for a specific path. Args: path (str): Absolute path or URL. Returns: dict: client args """ def getctime(self, path=None, client_kwargs=None, header=None): """ Return the creation time of path. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: float: The number of seconds since the epoch (see the time module). """ return self._getctime_from_header(self.head(path, client_kwargs, header)) def _getctime_from_header(self, header): """ Return the time from header Args: header (dict): Object header. Returns: float: The number of seconds since the epoch """ return self._get_time(header, self._CTIME_KEYS, "getctime") def getmtime(self, path=None, client_kwargs=None, header=None): """ Return the time of last access of path. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: float: The number of seconds since the epoch (see the time module). """ return self._getmtime_from_header(self.head(path, client_kwargs, header)) def _getmtime_from_header(self, header): """ Return the time from header Args: header (dict): Object header. Returns: float: The number of seconds since the epoch """ return self._get_time(header, self._MTIME_KEYS, "getmtime") @staticmethod def _get_time(header, keys, name): """ Get time from header Args: header (dict): Object header. keys (tuple of str): Header keys. name (str): Method name. Returns: float: The number of seconds since the epoch """ for key in keys: try: date_value = header[key] except KeyError: continue try: return parse(date_value).timestamp() except TypeError: return float(date_value) raise ObjectUnsupportedOperation(name) @abstractmethod def _get_roots(self): """ Return URL roots for this storage. Returns: tuple of str or re.Pattern: URL roots """ def getsize(self, path=None, client_kwargs=None, header=None): """ Return the size, in bytes, of path. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: int: Size in bytes. """ return self._getsize_from_header(self.head(path, client_kwargs, header)) def _getsize_from_header(self, header): """ Return the size from header Args: header (dict): Object header. Returns: int: Size in bytes. """ for key in self._SIZE_KEYS: try: return int(header[key]) except KeyError: continue else: raise ObjectUnsupportedOperation("getsize") def isdir( self, path=None, client_kwargs=None, virtual_dir=True, assume_exists=None, header=None, follow_symlinks=None, ): """ Return True if path is an existing directory. Args: path (str): Path or URL. client_kwargs (dict): Client arguments. virtual_dir (bool): If True, checks if directory exists virtually if an object path if not exists as a specific object. assume_exists (bool or None): This value define the value to return in the case there is no enough permission to determinate the existing status of the file. If set to None, the permission exception is reraised (Default behavior). if set to True or False, return this value. header (dict): Object header. follow_symlinks (bool): Follow symlinks. Returns: bool: True if directory exists. """ relative = self.relpath(path) if not relative: # Root always exists and is a directory return True if path[-1] == "/" or self.is_locator(relative, relative=True): exists = self.exists( path, client_kwargs, assume_exists, header, follow_symlinks ) if exists: return True elif virtual_dir: try: next(self.list_objects(relative, relative=True, max_results=1)) return True except (StopIteration, ObjectNotFoundError, ObjectUnsupportedOperation): return False return False def isfile( self, path=None, client_kwargs=None, assume_exists=None, header=None, follow_symlinks=None, ): """ Return True if path is an existing regular file. Args: path (str): Path or URL. client_kwargs (dict): Client arguments. assume_exists (bool or None): This value define the value to return in the case there is no enough permission to determinate the existing status of the file. If set to None, the permission exception is reraised (Default behavior). if set to True or False, return this value. header (dict): Object header. follow_symlinks (bool): Follow symlinks. Returns: bool: True if file exists. """ relative = self.relpath(path) if not relative: # Root always exists and is a directory return False if path[-1] != "/" and not self.is_locator(path, relative=True): return self.exists( path, client_kwargs, assume_exists, header, follow_symlinks ) return False @property def storage_parameters(self): """ Storage parameters Returns: dict: Storage parameters """ return self._storage_parameters @abstractmethod def _head(self, client_kwargs): """ Returns object HTTP header. Args: client_kwargs (dict): Client arguments. Returns: dict: HTTP header. """ def head(self, path=None, client_kwargs=None, header=None): """ Returns object HTTP header. Args: path (str): Path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: dict: HTTP header. """ if header is not None: return header elif client_kwargs is None: client_kwargs = self.get_client_kwargs(path) return self._head(client_kwargs) @property def roots(self): """ Return URL roots for this storage. Returns: tuple of str: URL roots """ return self._roots @roots.setter def roots(self, roots): """ Set URL roots for this storage. Args: roots (tuple of str): URL roots """ self._roots = roots def relpath(self, path): """ Get path relative to storage. args: path (str): Absolute path or URL. Returns: str: relative path. """ for root in self.roots: if isinstance(root, Pattern): match = root.match(path) if not match: continue root = match.group(0) try: relative = path.split(root, 1)[1] return relative.lstrip("/") except IndexError: continue return path def is_abs(self, path): """ Return True if path is absolute in this storage. args: path (str): Path or URL. Returns: bool: True if absolute path. """ for root in self.roots: if isinstance(root, Pattern): if root.match(path): return True elif path.startswith(root): return True return False def is_locator(self, path, relative=False): """ Returns True if path refer to a locator. Depending the storage, locator may be a bucket or container name, a hostname,... args: path (str): path or URL. relative (bool): Path is relative to current root. Returns: bool: True if locator. """ if not relative: path = self.relpath(path) return path and "/" not in path.rstrip("/") def split_locator(self, path): """ Split the path into a pair (locator, path). args: path (str): Absolute path or URL. Returns: tuple of str: locator, path. """ relative = self.relpath(path) try: locator, tail = relative.split("/", 1) except ValueError: locator = relative tail = "" return locator, tail def make_dir(self, path, relative=False): """ Make a directory. Args: path (str): Path or URL. relative (bool): Path is relative to current root. """ if not relative: path = self.relpath(path) self._make_dir( self.get_client_kwargs(self.ensure_dir_path(path, relative=True)) ) def _make_dir(self, client_kwargs): """ Make a directory. args: client_kwargs (dict): Client arguments. """ raise ObjectUnsupportedOperation("mkdir") def remove(self, path, relative=False): """ Remove an object. Args: path (str): Path or URL. relative (bool): Path is relative to current root. """ if not relative: path = self.relpath(path) self._remove(self.get_client_kwargs(path)) def _remove(self, client_kwargs): """ Remove an object. args: client_kwargs (dict): Client arguments. """ raise ObjectUnsupportedOperation("remove") def ensure_dir_path(self, path, relative=False): """ Ensure the path is a dir path. Should end with '/' except for schemes and locators. Args: path (str): Path or URL. relative (bool): Path is relative to current root. Returns: path: dir path """ if not relative: rel_path = self.relpath(path) else: rel_path = path if self.is_locator(rel_path, relative=True): path = path.rstrip("/") elif rel_path: path = path.rstrip("/") + "/" return path def list_objects( self, path="", relative=False, first_level=False, max_results=None ): """ List objects. Returns object path (relative to input "path") and object headers. Args: path (str): Path or URL. relative (bool): Path is relative to current root. first_level (bool): It True, returns only first level objects. Else, returns full tree. max_results (int): If specified, the maximum result count returned. Yields: tuple: object path str, object header dict """ seats = SeatsCounter(max_results) if not relative: path = self.relpath(path) if path == "": generator = self._list_locators(max_results) else: generator = self._list_objects( self.get_client_kwargs(path), path, max_results, first_level ) if first_level: generator = self._list_first_level_only(generator) else: generator = self._list_all_levels(generator, path, seats) take_seat = seats.take_seat for item in generator: yield item take_seat() if seats.full: return def _list_all_levels(self, generator, path, seats): """ Recursively yields all level entries. Args: generator (iterable of tuple): path str, header dict, directory bool path (str): Path being listed. seats (airfs._core.functions_core.SeatsCounter): Seats counter. Yields: tuple: object path str, object header dict """ dirs = list() add_dir = dirs.append for obj_path, header, is_dir in generator: if not obj_path: # Do not yield itself continue if is_dir: add_dir(obj_path) obj_path = obj_path.rstrip("/") + "/" yield obj_path, header if dirs: path = path.rstrip("/") for sub_path in dirs: if path: full_path = "/".join((path, sub_path)) else: full_path = sub_path max_results = seats.seats_left if max_results: # Add an extra seat to ensure the good count when yielding itself max_results += 1 for obj_path, header in self._list_all_levels( self._list_objects( self.get_client_kwargs(full_path), full_path, max_results, False, ), full_path, seats, ): yield "/".join((sub_path.rstrip("/"), obj_path)), header @staticmethod def _list_first_level_only(generator): """ Yield the first level entries only. Args: generator (iterable of tuple): path str, header dict, has content bool Yields: tuple: object path str, object header dict """ dirs = set() virtual_dirs = set() add_virtual_dir = virtual_dirs.add add_dir = dirs.add for obj_path, header, is_dir in generator: obj_path = obj_path.rstrip("/") try: obj_path, _ = obj_path.split("/", 1) except ValueError: if is_dir: add_dir(obj_path) obj_path += "/" yield obj_path, header else: add_virtual_dir(obj_path) for obj_path in virtual_dirs - dirs: yield obj_path + "/", dict() def _list_locators(self, max_results): """ Lists locators. args: max_results (int): The maximum results that should return the method. Yields: tuple: locator name str, locator header dict, has content bool """ # Implementation note: See "_list_objects" method. raise ObjectUnsupportedOperation("listdir") def _list_objects(self, client_kwargs, path, max_results, first_level): """ Lists objects. args: client_kwargs (dict): Client arguments. path (str): Path to list. max_results (int): The maximum results that should return the method. None if no limit. first_level (bool): It True, may only first level objects. Yields: tuple: object path str, object header dict, has content bool """ # Implementation note: # # Should return a tuple of the following values # - The object path (relative to the "path" argument) # - The object headers # - The "had content" bool that must be True if the object has sub-content that # should be listed recursively by the function. For instance, it should be # False for files, True for directories that are list without there content # and False for directories that are list with their content. # # Returning only first level entries with "first_level" or only the maximum # entries with "max_results" are optional, these parameters are mainly # intended to help to reduce result size from requests against the storage and # improve the performance. raise ObjectUnsupportedOperation("listdir") def islink(self, path=None, client_kwargs=None, header=None): """ Returns True if object is a symbolic link. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: bool: True if object is Symlink. """ return False def _getuid(self, path=None, client_kwargs=None, header=None): """ Get object user ID. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: int: User ID. """ # Default to current process UID return getuid() def _getgid(self, path=None, client_kwargs=None, header=None): """ Get object group ID. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: int: Group ID. """ # Default to current process GID return getgid() def _getmode(self, path=None, client_kwargs=None, header=None): """ Get object permission mode in Unix format. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: int: Group ID. """ # Default to an arbitrary common value return 0o644 def stat(self, path=None, client_kwargs=None, header=None, follow_symlinks=None): """ Get the status of an object. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. follow_symlinks (bool): Follow symlinks. Returns: namedtuple: Stat result object. Follow the "os.stat_result" specification and may contain storage dependent extra entries. """ path, client_kwargs, header = self.resolve( path, client_kwargs, header, follow_symlinks ) stat = OrderedDict( ( ("st_mode", self._getmode(path, client_kwargs, header)), ("st_ino", 0), ("st_dev", 0), ("st_nlink", 0), ("st_uid", self._getuid()), ("st_gid", self._getgid()), ("st_size", 0), ("st_atime", 0), ("st_mtime", 0), ("st_ctime", 0), ("st_atime_ns", 0), ("st_mtime_ns", 0), ("st_ctime_ns", 0), ) ) header = self.head(path, client_kwargs, header) try: stat["st_size"] = int(self._getsize_from_header(header)) except ObjectUnsupportedOperation: pass for st_time, st_time_ns, method in ( ("st_mtime", "st_mtime_ns", self._getmtime_from_header), ("st_ctime", "st_ctime_ns", self._getctime_from_header), ): try: time_value = method(header) except ObjectUnsupportedOperation: continue stat[st_time] = int(time_value) stat[st_time_ns] = int(time_value * 1000000000) if self.islink(path=path, header=header): stat["st_mode"] += S_IFLNK elif self.isdir(path=path, client_kwargs=client_kwargs, header=header): stat["st_mode"] += S_IFDIR else: stat["st_mode"] += S_IFREG sub = self._CHAR_FILTER.sub for key, value in tuple(header.items()): stat[sub("", key.lower().replace("-", "_"))] = value stat_result = namedtuple("stat_result", tuple(stat)) stat_result.__name__ = "os.stat_result" stat_result.__module__ = "airfs" return stat_result(**stat) def read_link(self, path=None, client_kwargs=None, header=None): """ Return the path linked by the symbolic link. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: str: Path. """ raise ObjectUnsupportedOperation("symlink") def symlink(self, target, path=None, client_kwargs=None): """ Creates a symbolic link to target. Args: target (str): Target path or URL. path (str): File path or URL. client_kwargs (dict): Client arguments. """ raise ObjectUnsupportedOperation("symlink") def resolve(self, path=None, client_kwargs=None, header=None, follow_symlinks=None): """ Follow symlinks and return input arguments updated for target. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. follow_symlinks (bool): If True, follow symlink if any. If False, return input directly if symlink are supported by storage, else raise NotImplementedError. If None, same as False but returns input instead of raising exception. Returns: tuple: path, client_kwargs, headers of the target. Raises: ObjectNotImplementedError: follow_symlink is False on storage that do not support symlink. """ if not self.SUPPORTS_SYMLINKS and follow_symlinks is False: raise ObjectNotImplementedError(feature="follow_symlink=False") elif not follow_symlinks or not self.SUPPORTS_SYMLINKS: return path, client_kwargs, header return self._resolve(path, client_kwargs, header) def _resolve(self, path=None, client_kwargs=None, header=None): """ Resolve core function. Args: path (str): File path or URL. client_kwargs (dict): Client arguments. header (dict): Object header. Returns: tuple: path, client_kwargs, headers of the target. """ is_link = self.islink(path, client_kwargs, header) if is_link: target = self.read_link(path, client_kwargs, header) if not self.is_abs(target): rel_path = self.relpath(path) target = path[: -len(rel_path)] + normpath( join(dirname(rel_path), target) ) return self._resolve(target) if not is_link and self.exists(path, client_kwargs, header=header): return path, client_kwargs, header try: parent, name = path.rstrip("/").rsplit("/", 1) except ValueError: return path, client_kwargs, header parent_target = self._resolve(parent + "/")[0] path = "/".join((parent_target, name)) + ("/" if path.endswith("/") else "") return path, None, None def shareable_url(self, path, expires_in): """ Get a shareable URL for the specified path. Args: path (str): Path or URL. expires_in (int): Expiration in seconds. Returns: str: Shareable URL. """ return self._shareable_url( self.get_client_kwargs(self.relpath(path)), expires_in ) def _shareable_url(self, client_kwargs, expires_in): """ Get a shareable URL for the specified path. Args: client_kwargs (dict): Client arguments. expires_in (int): Expiration in seconds. Returns: str: Shareable URL. """ raise ObjectNotImplementedError("shareable_url") ``` #### File: storage/github/_client.py ```python from datetime import datetime, timedelta from json import dumps from time import sleep from urllib.parse import urlparse, parse_qs from dateutil.parser import parse from requests import Session from airfs.storage.http import _handle_http_errors from airfs._core.exceptions import ( AirfsWarning, AirfsException, ObjectNotFoundError, ObjectPermissionError, ) from airfs._core.cache import get_cache, set_cache, CACHE_SHORT_EXPIRY, NoCacheException GITHUB_API = "https://api.github.com" _CACHE_SHORT_DELTA = timedelta(seconds=CACHE_SHORT_EXPIRY) _CODES_CONVERSION = { 403: ObjectPermissionError, 404: ObjectNotFoundError, # The API sometime returns this code when a commit hash is not found instead of # returning 404 422: ObjectNotFoundError, } class GithubRateLimitException(AirfsException): """Exception if rate limit reached""" class GithubRateLimitWarning(AirfsWarning): """Warning if rate limit reached and waiting""" class Client: """ GitHub REST API client. Args: token (str): GitHub API authentication token. wait_rate_limit (bool): If True, wait if API rate limit is reached, else raise "airfs.storage.github.GithubRateLimitException" exception. wait_warn (bool): If True and "wait_rate_limit" is True, warn using "airfs.storage.github.GithubRateLimitWarning" when waiting for rate limit reset for the first time. wait_retry_delay (int or float): Delay in seconds between two API get attempt when waiting for rate limit reset. """ _RATE_LIMIT_WARNED = False __slots__ = ( "_request", "session", "_token", "_headers", "_wait_rate_limit", "_wait_warn", "_wait_retry_delay", ) def __init__( self, token=None, wait_rate_limit=True, wait_warn=True, wait_retry_delay=60 ): self._wait_rate_limit = wait_rate_limit self._wait_warn = wait_warn self._wait_retry_delay = wait_retry_delay self._headers = None self._token = token self.session = Session() self._request = self.session.request def _api_headers(self, previous_headers=None): """ Return headers to use to make requests to GitHub API. Args: previous_headers (dict): Headers from a previous cached identical request. Used to perform a conditional request to check if data was updated without consume the rate limit. Returns: dict or None: API request headers. """ if self._headers is None: auth_headers = {} token = self._token if token: auth_headers["Authorization"] = f"token {token}" self._headers = auth_headers if previous_headers is not None: headers = self._headers.copy() for condition, key in ( ("If-Modified-Since", "Last-Modified"), ("If-None-Match", "ETag"), ): try: headers[condition] = previous_headers[key] except KeyError: continue return headers return self._headers def request(self, path, method="GET", **kwargs): """ Perform an HTTP request over the GitHub API and other GitHub domains. Handle the case where the API rate-limit is reached. Args: path (str): GitHub API relative path or GitHub non API full URL. method (str): HTTP method. Default to "GET". kwargs: requests.request keyword arguments. Returns: requests.Response: Response. """ if path.startswith("https://"): response = self._request(method, path, **kwargs) _handle_http_errors(response, _CODES_CONVERSION) return response while True: response = self._request(method, GITHUB_API + path, **kwargs) if ( response.status_code == 403 and int(response.headers.get("X-RateLimit-Remaining", "-1")) == 0 ): self._handle_rate_limit() continue return response def get(self, path, params=None, never_expire=False): """ Get result from the GitHub API. Also handle caching of result to speed up futures requests and improve rate-limit consumption. Args: path (str): GitHub API path. params (dict): Request parameters. never_expire (bool): Indicate that the request result should never expire and can be cached indefinitely. Returns: tuple: result dict, headers dict. """ cache_name = path if params: cache_name += dumps(params) try: result, headers = get_cache(cache_name) except NoCacheException: result = headers = None else: if never_expire: return result, headers dt_date = parse(headers["Date"]) if dt_date > datetime.now(dt_date.tzinfo) - _CACHE_SHORT_DELTA: return result, headers response = self.request( path, params=params, headers=self._api_headers(previous_headers=headers) ) if response.status_code == 304: return result, headers _handle_http_errors(response, _CODES_CONVERSION) result = response.json() headers = dict(response.headers) set_cache(cache_name, [result, headers], long=True) return result, headers def get_paged(self, path, params=None): """ Get a multiple paged result from the GitHub API. Args: path (str): GitHub API path. params (dict): Request parameters. Returns: generator of dict: results. """ if params: params = params.copy() else: params = dict() max_page = 0 page = 1 while page <= max_page or not max_page: results, headers = self.get(path, params=params) for result in results: yield result page += 1 params["page"] = page if max_page == 0: try: links = headers["Link"] except KeyError: # If not present, there is only one page. break max_page = self._parse_link_header(links) @staticmethod def _parse_link_header(links): """ Get number of the last page from the "Link" header. Args: links (str): "Links" header value. Returns: int: Number of the last page. """ for link in links.split(","): url, rel = link.split(";", 1) if rel.strip() == 'rel="last"': return int(parse_qs(urlparse(url.strip("<>")).query)["page"][0]) raise RuntimeError('Last page not found in "Link" header: ' + links) def _handle_rate_limit(self): """ Wait until remaining rate limit is greater than 0, or raise exception. """ if not self._wait_rate_limit: raise GithubRateLimitException(self._rate_limit_reached()) url = GITHUB_API + "/rate_limit" headers = self._api_headers() remaining = 0 while remaining == 0: if self._wait_warn and not Client._RATE_LIMIT_WARNED: from warnings import warn warn(self._rate_limit_reached(True), GithubRateLimitWarning) Client._RATE_LIMIT_WARNED |= True sleep(self._wait_retry_delay) resp = self._request("GET", url, headers=headers) remaining = int((resp.json())["resources"]["core"]["remaining"]) def _rate_limit_reached(self, waiting=False): """ Rate limit message for exception or warning. Args: waiting (bool): True if waiting for reset. Returns: str: exception/Warning message """ msg = ["GitHub rate limit reached."] if waiting: msg.append("Waiting for limit reset...") if "Authorization" not in self._api_headers(): msg.append("Authenticate to GitHub to increase the limit.") return " ".join(msg) ``` #### File: storage/github/_model_archive.py ```python from airfs.storage.github._model_base import GithubObject from airfs.storage.github._model_git import Branch, Tag from airfs.storage.github._model_reference import Reference class Archive(GithubObject): """Git tree archive""" KEY = "archive" GET = "https://github.com/{owner}/{repo}/archive/{archive}" HEAD_KEYS = {"Content-Type", "Content-Length"} HEAD_FROM = {"pushed_at": Reference, "sha": Reference} @classmethod def list(cls, client, spec, first_level=False): """ List archives for all branches and tags. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. first_level (bool): It True, returns only first level objects. Returns: generator of tuple: object name str, object header dict, has content bool """ cls._raise_if_not_dir(not spec.get("archive"), spec, client) for parent in (Tag, Branch): response = client.get(parent.LIST.format(**spec))[0] key = parent.LIST_KEY parent_key = parent.KEY for ref in response: ref_spec = spec.copy() ref_spec[parent_key] = ref_name = ref[key] ref_head = parent.set_header(ref) for ext in (".tar.gz", ".zip"): name = ref_name + ext yield name, cls(client, ref_spec, ref_head, name), False @classmethod def head_obj(cls, client, spec): """ Get archive headers. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: dict: Object headers. """ url = cls.GET.format(**spec) headers = "" # Sometime, Content-Length is missing from response, so retry until success while "Content-Length" not in headers: headers = client.request(url, method="HEAD").headers return cls.set_header(headers) def _update_spec_parent_ref(self, parent_key): """ Update the spec with the parent reference. Args: parent_key (str): The parent key (parent_class.KEY). """ name = self._spec["archive"] self._spec[parent_key] = name.rsplit( ".", 2 if name.lower().endswith(".tar.gz") else 1 )[0] ``` #### File: storage/github/_model_base.py ```python from collections import ChainMap from collections.abc import Mapping from itertools import chain from airfs._core.exceptions import ( ObjectIsADirectoryError, ObjectNotASymlinkError, ObjectNotADirectoryError, ObjectNotFoundError, ) class GithubObject(Mapping): """ Github Object base class. Instances represent headers of an object this a specific spec. Instance are only generated by the "head" class-method that act as factory. Classes also allow navigating in the virtual file-system tree that represent the GitHub repositories. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Object spec. headers (dict): Known header values. Missing values will be get lazily from parents. name (str): Object name, if not already in spec. """ #: Virtual file-system structure starting from this object class #: Contains dicts representing virtual folders and other _GithubObject subclasses #: that represent objects inside. STRUCT = None #: The specification "key" that represent this object KEY = None #: If specified, is a Git reference. True to use KEY value, str value to use a #: specific hardcoded value. REF = None #: API path to get objects of this GitHub class GET = None #: API path to get objects headers of this GitHub class HEAD = None #: Head result keys to keep HEAD_KEYS = set() #: Head result keys to move to dict root. #: dict key is key name, dict value is tuple of key path to follow HEAD_EXTRA = () #: Keys to head from a parent class, key is key name, value is parent class HEAD_FROM = {} #: API path to list objects of this GitHub class LIST = None #: API key of objects names to list LIST_KEY = "name" #: Symlink like object pointing to the specified absolute path SYMLINK = None __slots__ = ("_client", "_spec", "_headers", "_header_updated") def __init__(self, client, spec, headers=None, name=None): self._client = client if name is not None: spec = spec.copy() spec[self.KEY] = name self._spec = spec if headers is None: self._headers = self.head_obj(self._client, self._spec) self._header_updated = True else: self._headers = headers self._header_updated = False def __getitem__(self, key): """ Get a value from the object header. Args: key (str): Header key. Returns: object: Header value matching the key. """ try: return self._headers[key] except KeyError: pass try: parent = self.HEAD_FROM[key] except KeyError: self._update_headers() else: self._update_headers_from_parent(parent) return self._headers[key] def __iter__(self): """ Iterate over object header keys. Yields: str: keys """ for key in chain( self.HEAD_KEYS, (key for key, _ in self.HEAD_EXTRA), self.HEAD_FROM ): yield key def __len__(self): """ Header length. Returns: int: Length """ return len(self.HEAD_KEYS) + len(self.HEAD_EXTRA) + len(self.HEAD_FROM) def __repr__(self): """ Headers representation. Values that are lazily evaluated and are not yet evaluated are replaced by the "<Not evaluated yet>" string. Returns: str: repr value. """ content = self._headers.copy() for key in self: content.setdefault(key, "<Not evaluated yet>") return repr(content) __str__ = __repr__ def _update_spec_parent_ref(self, parent_key): """ Update the spec with the parent reference. Args: parent_key (str): The parent key (parent_class.KEY). """ self._update_headers() self._spec[parent_key] = self._headers[parent_key] def _update_headers(self): """ Ensure current object headers are updated. """ if not self._header_updated: headers = self.head_obj(self._client, self._spec) self._headers.update(headers) self._header_updated = True def _update_headers_from_parent(self, parent): """ Ensure current object headers are updated with parent headers. Args: parent (airfs.storage.github._model_base.GithubObject subclass instance): Parent. """ if parent.KEY not in self._spec and parent.KEY is not None: self._update_spec_parent_ref(parent.KEY) parent_headers = parent.head(self._client, self._spec) headers = self._headers for key, obj_cls in self.HEAD_FROM.items(): if obj_cls == parent: headers[key] = parent_headers[key] @classmethod def next_model(cls, client, spec): """ Get next model in the structure. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Partial object spec. Returns: _Model subclass: model. """ cls = cls._get_cls(client, spec) # noqa if cls.STRUCT is None: cls._set_key(spec, "/".join(spec["keys"])) spec["keys"].clear() spec["object"] = cls spec["content"] = cls return cls cls._update_key(spec) try: key = spec["keys"].popleft() except IndexError: spec["object"] = cls spec["content"] = cls.STRUCT return cls model = cls.STRUCT while isinstance(model, dict): model = cls._get_dict_model(key, model, spec) try: key = spec["keys"].popleft() except IndexError: return cls._get_latest_model(model, spec) spec["keys"].appendleft(key) spec["parent"] = cls return model.next_model(client, spec) @classmethod def _get_dict_model(cls, key, model, spec): """ Get submodel of a dict. Args: key (str): Model key. model (dict): Current model. spec (dict): Partial object spec. Returns: _Model subclass or dict: Next model. """ try: return model[key] except KeyError: raise ObjectNotFoundError(path=spec["full_path"]) @classmethod def _update_key(cls, spec): """ Update key in spec with current model. Args: spec (dict): Partial object spec. """ if cls.KEY is not None: cls._set_key(spec, spec["keys"].popleft()) elif cls.REF is not None: spec["ref"] = cls.REF @classmethod def _get_latest_model(cls, model, spec): """ Get latest model when no more keys to evaluate. Args: model (_Model subclass): Current model spec (dict): Partial object spec. Returns: _Model subclass: Latest model. """ if hasattr(model, "KEY") and model.KEY is not None: spec["content"] = model model = cls elif hasattr(model, "STRUCT"): spec["content"] = model.STRUCT else: # Is a dict spec["content"] = model spec["object"] = model return model @classmethod def _get_cls(cls, client, spec): """ Get object class. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Partial object spec. Returns: _Model subclass: model. """ return cls @classmethod def _set_key(cls, spec, value): """ Set "KEY" value, and eventually "ref" value. Args: spec (dict): Partial object spec. value (str): Key value """ spec[cls.KEY] = value if cls.REF: spec["ref"] = value @classmethod def list(cls, client, spec, first_level=False): """ List objects of this GitHub class matching the spec. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. first_level (bool): It True, returns only first level objects. Yields: tuple: object name str, object header dict, has content bool """ response = client.get_paged(cls.LIST.format(**spec)) key = cls.LIST_KEY set_header = cls.set_header is_dir = cls.STRUCT is not None for headers in response: name = headers[key] yield name, cls(client, spec, set_header(headers), name), is_dir @classmethod def head_obj(cls, client, spec): """ Head the object of this GitHub class matching the spec. Only return result directly from current object response as dict. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: dict: Object headers. """ return cls.set_header(client.get(cls.HEAD.format(**spec))[0]) @classmethod def head(cls, client, spec, headers=None): """ Head the object of this GitHub class matching the spec. Returns a dict like object that can retrieve keys from this object response or its parents. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. headers (dict): Known header values. Missing values will be get lazily from parents. Returns: _GithubObject subclass instance: Object headers. """ return cls(client, spec, headers) @classmethod def get_url(cls, client, spec): """ Get the URL of the object of this GitHub class matching the spec. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: str: Object URL. """ if cls.GET is None: raise ObjectIsADirectoryError(spec["full_path"]) return cls.GET.format(**spec) @classmethod def set_header(cls, response): """ Set object header from raw API response. Args: response (dict): Raw API response. Returns: dict: Object header. """ head = {key: response[key] for key in (response.keys() & cls.HEAD_KEYS)} for key_name, key_path in cls.HEAD_EXTRA: value = response try: for key in key_path: value = value[key] except KeyError: continue head[key_name] = value return head @classmethod def read_link(cls, client, spec): """ Return the path linked by the symbolic link. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: str: Path. """ if cls.SYMLINK is None: raise ObjectNotASymlinkError(path=spec["full_path"]) target = cls.SYMLINK.format(**ChainMap(spec, cls.head(client, spec))) content = spec.get("content") if isinstance(cls.STRUCT, dict) and not isinstance(content, dict): for key, obj_cls in cls.STRUCT.items(): if content == obj_cls: return f"{target}/{key}" return target @classmethod def _raise_if_not_dir(cls, isdir, spec, client=None): """ Raise exception if not a directory. Args: isdir (bool): True is a directory. spec (dict): Item spec. client (airfs.storage.github._api.ApiV3): Client. If present, also checks if exists if not a directory. Raises: airfs._core.exceptions.ObjectNotADirectoryError: Not a directory. """ if not isdir: if client: # Check if exists cls.head_obj(client, spec) raise ObjectNotADirectoryError(path=spec["full_path"]) ``` #### File: storage/github/_model_release.py ```python from airfs._core.exceptions import ObjectNotFoundError from airfs.storage.github._model_archive import Archive from airfs.storage.github._model_git import Commit, Tag, Tree from airfs.storage.github._model_base import GithubObject class ReleaseAsset(GithubObject): """GitHub release asset""" KEY = "asset" GET = "https://github.com/{owner}/{repo}/releases/download/{tag}/{asset}" HEAD_KEYS = {"size", "download_count", "created_at", "updated_at", "content_type"} HEAD_FROM = {"sha": Tag} @classmethod def list(cls, client, spec, first_level=False): """ List assets of a release. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. first_level (bool): It True, returns only first level objects. Returns: generator of tuple: object name str, object header dict, has content bool """ cls._raise_if_not_dir(not spec.get("asset"), spec, client) for asset in cls._parent_release(client, spec)["assets"]: name = asset["name"] yield name, cls(client, spec, cls.set_header(asset), name), False @classmethod def head_obj(cls, client, spec): """ Get asset headers. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: dict: Object headers. """ name = spec["asset"] for asset in cls._parent_release(client, spec)["assets"]: if asset["name"] == name: return cls.set_header(asset) raise ObjectNotFoundError(path=spec["full_path"]) @classmethod def get_url(cls, client, spec): """ Get asset URL. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: str: Object headers. """ if "tag" not in spec: spec["tag"] = cls._parent_release(client, spec)["tag_name"] return cls.GET.format(**spec) @classmethod def _parent_release(cls, client, spec): """ Get the parent release Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: dict: Release raw headers. """ return client.get(Release.HEAD.format(**spec))[0] class ReleaseArchive(Archive): """GitHub release archive""" HEAD_FROM = {"pushed_at": Tag, "sha": Tag} # type: ignore @classmethod def list(cls, client, spec, first_level=False): """ List archives for all releases. Uses generic unversioned archive name to avoid have to know the "latest" tag to get its archive. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. first_level (bool): It True, returns only first level objects. Returns: generator of tuple: object name str, object header dict, has content bool """ cls._raise_if_not_dir(not spec.get("archive"), spec, client) for ext in (".tar.gz", ".zip"): name = f"source_code{ext}" yield name, cls(client, spec, name=name), False @classmethod def head_obj(cls, client, spec): """ Get archive headers. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: dict: Object headers. """ cls._set_archive_tag(client, spec) return Archive.head_obj(client, spec) def _update_spec_parent_ref(self, parent_key): """ Update the spec with the parent reference. Args: parent_key (str): The parent key (parent_class.KEY). """ self._set_archive_tag(self._client, self._spec) @staticmethod def _set_archive_tag(client, spec): """ Get the tag and archive exact name. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. """ if "tag" not in spec: spec["tag"] = LatestRelease.get_tag(client, spec) if spec["archive"].startswith("source_code"): spec["archive"] = spec["archive"].replace("source_code", spec["tag"]) class Release(GithubObject): """GitHub release""" KEY = "tag" CTIME = "created_at" LIST = "/repos/{owner}/{repo}/releases" LIST_KEY = "tag_name" HEAD = "/repos/{owner}/{repo}/releases/tags/{tag}" HEAD_KEYS = {"prerelease", "created_at", "published_at", "name"} HEAD_FROM = {"sha": Tag, "tree_sha": Commit} HEAD_EXTRA = (("tag", ("tag_name",)),) STRUCT = { "assets": ReleaseAsset, "tree": Tree, "archive": ReleaseArchive, } class LatestRelease(Release): """Latest GitHub release, with fallback to HEAD""" KEY = None # type: ignore HEAD = "/repos/{owner}/{repo}/releases/latest" SYMLINK = "https://github.com/{owner}/{repo}/releases/tag/{tag}" @classmethod def get_tag(cls, client, spec): """ Get the tag matching the latest release. Args: client (airfs.storage.github._api.ApiV3): Client. spec (dict): Item spec. Returns: str: Tag. """ return client.get(cls.HEAD.format(**spec))[0]["tag_name"] class ReleaseDownload(GithubObject): """ GitHub release downloads only To handle "https://github.com/:owner/:repo/releases/download/:tag/:asset_name" """ KEY = "tag" CTIME = "created_at" LIST = "/repos/{owner}/{repo}/releases" LIST_KEY = "tag_name" HEAD = "/repos/{owner}/{repo}/releases/tags/{tag}" HEAD_KEYS = {"prerelease", "created_at", "published_at", "name"} HEAD_FROM = {"sha": Tag, "tree_sha": Commit} STRUCT = ReleaseAsset ``` #### File: rfs/tests/test_core_exceptions.py ```python import pytest def test_handle_os_exceptions(): """Tests airfs._core.exceptions.handle_os_exceptions""" from airfs._core.exceptions import ( handle_os_exceptions, ObjectNotFoundError, ObjectPermissionError, ObjectNotADirectoryError, ObjectExistsError, ) with pytest.raises(FileNotFoundError): with handle_os_exceptions(): raise ObjectNotFoundError with pytest.raises(PermissionError): with handle_os_exceptions(): raise ObjectPermissionError with pytest.raises(FileExistsError): with handle_os_exceptions(): raise ObjectExistsError with pytest.raises(NotADirectoryError): with handle_os_exceptions(): raise ObjectNotADirectoryError with pytest.raises(FileExistsError): with handle_os_exceptions(): raise FileExistsError() def test_full_traceback(): """Ensure full traceback mode is enabled in tests""" from airfs._core.exceptions import _FULLTRACEBACK assert _FULLTRACEBACK ``` #### File: rfs/tests/test_core_io_base.py ```python import pytest def test_object_base_io(): """Tests airfs._core.io_base.ObjectIOBase""" from airfs._core.io_base import ObjectIOBase name = "name" object_io = ObjectIOBase(name) assert object_io.name == name assert object_io.mode == "r" assert object_io.readable() assert object_io.seekable() assert not object_io.writable() assert name in str(object_io) object_io = ObjectIOBase(name, mode="w") assert object_io.mode == "w" assert not object_io.readable() assert object_io.seekable() assert object_io.writable() object_io = ObjectIOBase(name, mode="a") assert object_io.mode == "a" assert not object_io.readable() assert object_io.seekable() assert object_io.writable() with pytest.raises(ValueError): ObjectIOBase(name, mode="z") def test_memoizedmethod(): """Tests airfs._core.utilities.memoizedmethod""" from airfs._core.io_base import memoizedmethod class Dummy: """Dummy class""" def __init__(self): self._cache = {} @memoizedmethod def to_memoize(self, arg): """Fake method""" return arg dummy = Dummy() assert not dummy._cache value = "value" assert dummy.to_memoize(value) == value assert dummy._cache == {"to_memoize": value} assert dummy.to_memoize(value) == value ``` #### File: rfs/tests/test_core_io_buffered.py ```python import os import time def test_object_buffered_base_io(): """Tests airfs._core.io_buffered.ObjectBufferedIOBase""" from airfs._core.io_base_raw import ObjectRawIOBase from airfs._core.io_base_buffered import ObjectBufferedIOBase from airfs._core.io_random_write import ( ObjectRawIORandomWriteBase, ObjectBufferedIORandomWriteBase, ) # Mock sub class name = "name" size = 10000 flushed = bytearray() raw_flushed = bytearray() buffer_size = 100 flush_sleep = 0 def flush(data): """Dummy flush""" flushed.extend(data) time.sleep(flush_sleep) class DummySystem: """Dummy system""" client = None def __init__(self, **_): """Do nothing""" @staticmethod def getsize(*_, **__): """Returns fake result""" return size @staticmethod def head(*_, **__): """Returns fake result""" return {} @staticmethod def relpath(path): """Returns fake result""" return path @staticmethod def get_client_kwargs(*_, **__): """Returns fake result""" return {} class DummyRawIO(ObjectRawIOBase): """Dummy IO""" _SYSTEM_CLASS = DummySystem def _flush(self, buffer): """Do nothing""" raw_flushed.extend(buffer) def _read_range(self, start, end=0): """Read fake bytes""" return ((size if end > size else end) - start) * b"0" class DummyBufferedIO(ObjectBufferedIOBase): """Dummy buffered IO""" _RAW_CLASS = DummyRawIO DEFAULT_BUFFER_SIZE = buffer_size MINIMUM_BUFFER_SIZE = 10 MAXIMUM_BUFFER_SIZE = 10000 def ensure_ready(self): """Ensure flush is complete""" while any(1 for future in self._write_futures if not future.done()): time.sleep(0.01) def __init(self, *arg, **kwargs): ObjectBufferedIOBase.__init__(self, *arg, **kwargs) self.close_called = False def _close_writable(self): """Checks called""" self.close_called = True self.ensure_ready() def _flush(self): """Flush""" self._write_futures.append( self._workers.submit(flush, self._write_buffer[: self._buffer_seek]) ) class DummyRawIOPartFlush(DummyRawIO, ObjectRawIORandomWriteBase): """Dummy IO with part flush support""" _size = 20 def _flush(self, buffer, start, *_): """Do nothing""" if start == 50: # Simulate buffer that need to wait previous one time.sleep(0.1) raw_flushed.extend(buffer) class DummyBufferedIOPartFlush(ObjectBufferedIORandomWriteBase): """Dummy buffered IO with part flush support""" _RAW_CLASS = DummyRawIOPartFlush # Tests: Read until end object_io = DummyBufferedIO(name) assert object_io.read() == size * b"0" # Tests: Read when already at end assert object_io.read() == b"" # Tests: Read, max buffer object_io = DummyBufferedIO(name) assert object_io._max_buffers == size // buffer_size object_io = DummyBufferedIO(name, max_buffers=5) assert object_io.read(100) == 100 * b"0" # Tests: Read by parts assert sorted(object_io._read_queue) == list( range(100, 100 + buffer_size * 5, buffer_size) ) assert object_io._seek == 100 assert object_io.read(150) == 150 * b"0" assert sorted(object_io._read_queue) == list( range(200, 200 + buffer_size * 5, buffer_size) ) assert object_io._seek == 250 assert object_io.read(50) == 50 * b"0" assert sorted(object_io._read_queue) == list( range(300, 300 + buffer_size * 5, buffer_size) ) assert object_io._seek == 300 assert object_io.read() == (size - 300) * b"0" assert not object_io._read_queue # Tests: Read small parts part = buffer_size // 10 object_io.seek(0) for index in range(1, 15): assert object_io.read(part) == part * b"0" assert object_io._seek == part * index # Tests: Read, change seek object_io.seek(450) assert sorted(object_io._read_queue) == list( range(450, 450 + buffer_size * 5, buffer_size) ) object_io.seek(700) assert sorted(object_io._read_queue) == list( range(700, 700 + buffer_size * 5, buffer_size) ) # Tests: Read buffer size (No copy mode) object_io.seek(0) assert object_io.read(buffer_size) == buffer_size * b"0" object_io.seek(size - buffer_size // 2) assert object_io.read(buffer_size) == b"0" * (buffer_size // 2) object_io._seek = size # Tests: Read, EOF before theoretical EOF def read_range(*_, **__): """Returns empty bytes""" return b"" object_io = DummyBufferedIO(name, max_buffers=5) object_io._read_range = read_range assert object_io.read() == b"" # Tests write (with auto flush) assert bytes(flushed) == b"" object_io = DummyBufferedIO(name, mode="w") assert object_io.write(250 * b"0") == 250 object_io.ensure_ready() assert object_io._buffer_seek == 50 assert bytes(object_io._write_buffer) == 50 * b"0" + 50 * b"\0" assert object_io._get_buffer().tobytes() == 50 * b"0" assert object_io._seek == 2 assert len(flushed) == 200 assert bytes(flushed) == 200 * b"0" # Tests manual flush object_io.flush() object_io.ensure_ready() assert object_io._seek == 3 assert bytes(flushed) == 250 * b"0" assert object_io._buffer_seek == 0 # Tests write, only buffered should flush flushed = bytearray() raw_flushed = bytearray() assert bytes(flushed) == b"" assert bytes(raw_flushed) == b"" with DummyBufferedIO(name, mode="w") as object_io: assert object_io.write(150 * b"0") == 150 object_io.ensure_ready() assert len(flushed) == 100 assert object_io._buffer_seek == 50 assert len(object_io._get_buffer()) == 50 object_io.raw._write_buffer = object_io._get_buffer() assert len(object_io.raw._get_buffer()) == 50 assert len(flushed) == 150 assert not len(raw_flushed) # Tests write small data flushed by raw object_io = DummyBufferedIO(name, mode="w") assert object_io.write(10 * b"0") == 10 object_io.close() assert bytes(raw_flushed) == 10 * b"0" # Test max buffer object_io = DummyBufferedIO(name, mode="w", max_buffers=2) flush_sleep = object_io._FLUSH_WAIT assert object_io.write(1000 * b"0") == 1000 flush_sleep = 0 # Test default implementation with part flush support raw_flushed[:] = b"" content = os.urandom(100) with DummyBufferedIOPartFlush(name, mode="w", buffer_size=10) as object_io: object_io.write(content) assert raw_flushed == content ``` #### File: rfs/tests/test_core_io_raw.py ```python def test_object_raw_base_io_http_range(): """Tests airfs._core.io_raw.ObjectRawIOBase._http_range""" from airfs._core.io_base_raw import ObjectRawIOBase assert ObjectRawIOBase._http_range(10, 50) == "bytes=10-49" assert ObjectRawIOBase._http_range(10) == "bytes=10-" ``` #### File: rfs/tests/test_storage_azure.py ```python from datetime import datetime from time import time import pytest pytest.importorskip("azure.storage.blob") pytest.importorskip("azure.storage.file") def test_handle_azure_exception(): """Test airfs.storage.azure._handle_azure_exception""" from airfs.storage.azure import _handle_azure_exception from azure.common import AzureHttpError # type: ignore from airfs._core.exceptions import ObjectNotFoundError, ObjectPermissionError # Any error with pytest.raises(AzureHttpError): with _handle_azure_exception(): raise AzureHttpError(message="", status_code=400) # 404 error with pytest.raises(ObjectNotFoundError): with _handle_azure_exception(): raise AzureHttpError(message="", status_code=404) # 403 error with pytest.raises(ObjectPermissionError): with _handle_azure_exception(): raise AzureHttpError(message="", status_code=403) def test_mount_redirect(): """Test airfs.storage.azure.MOUNT_REDIRECT""" from collections import OrderedDict import airfs._core.storage_manager as manager from airfs import MountException # Mocks mounted manager_mounted = manager.MOUNTED manager.MOUNTED = OrderedDict() account_name = "account_name" endpoint_suffix = "endpoint_suffix" # Tests try: # Auto mount of all Azure services result = manager.mount( storage="azure", storage_parameters=dict( account_name=account_name, endpoint_suffix=endpoint_suffix ), ) assert "azure_blob" in result assert "azure_file" in result # Incompatible extra root argument with pytest.raises(MountException): manager.mount( storage="azure", extra_root="azure://", storage_parameters=dict( account_name=account_name, endpoint_suffix=endpoint_suffix ), ) # Mandatory arguments manager.MOUNTED = OrderedDict() with pytest.raises(ValueError): manager.mount(storage="azure_blob") # Restore Mounted finally: manager.MOUNTED = manager_mounted def test_update_listing_client_kwargs(): """ Test airfs.storage.azure._AzureBaseSystem._update_listing_client_kwargs """ from airfs.storage.azure import _AzureBaseSystem params = dict(arg=1) assert _AzureBaseSystem._update_listing_client_kwargs(params, 10) == dict( num_results=10, arg=1 ) assert _AzureBaseSystem._update_listing_client_kwargs(params, 0) == dict(arg=1) def test_model_to_dict(): """Test airfs.storage.azure._AzureBaseSystem._model_to_dict""" from airfs.storage.azure import _AzureBaseSystem from azure.storage.file import models # type: ignore last_modified = datetime.now() props = models.FileProperties() props.etag = "etag" props.last_modified = last_modified file = models.File(props=props, metadata=dict(metadata1=0)) assert _AzureBaseSystem._model_to_dict(file) == dict( etag="etag", last_modified=last_modified, metadata=dict(metadata1=0) ) def test_get_time(): """Test airfs.storage.azure._AzureBaseSystem._get_time""" from airfs.storage.azure import _AzureBaseSystem from airfs._core.exceptions import ObjectUnsupportedOperation m_time = time() last_modified = datetime.fromtimestamp(m_time) assert _AzureBaseSystem._get_time( {"last_modified": last_modified}, ("last_modified",), "gettime" ) == pytest.approx(m_time, 1) with pytest.raises(ObjectUnsupportedOperation): _AzureBaseSystem._get_time({}, ("last_modified",), "gettime") def get_storage_mock(): """ Return storage mock configured for Azure. Returns: tests.storage_mock.ObjectStorageMock: Mocked storage """ from azure.common import AzureHttpError from tests.storage_mock import ObjectStorageMock def raise_404(): """Raise 404 error""" raise AzureHttpError(message="", status_code=404) def raise_416(): """Raise 416 error""" raise AzureHttpError(message="", status_code=416) def raise_500(): """Raise 500 error""" raise AzureHttpError(message="", status_code=500) return ObjectStorageMock( raise_404, raise_416, raise_500, format_date=datetime.fromtimestamp ) ``` #### File: rfs/tests/test_storage_github.py ```python import json import pickle from os.path import realpath, join import requests import pytest UNSUPPORTED_OPERATIONS = ( "copy", "mkdir", "remove", "write", "shareable_url", "list_locator", ) #: Set to True and run tests to update mock test responses with real test responses UPDATE_MOCK = False #: Directory where are saved cached responses from GitHub API to use with mock MOCK_DIR = realpath(join(__file__, "../resources/github_mock_responses")) class MockResponse: """Mocked request.Response""" def __init__(self, url, headers, status_code, content, reason): self.headers = headers self.status_code = status_code self.content = content self.url = url self.reason = reason def json(self): """Mocked Json result""" return json.loads(self.content) @property def text(self): """Mocked Text result""" return self.content.decode() def raise_for_status(self): """Mocked exception""" if self.status_code >= 400: raise requests.HTTPError( f"{self.status_code} Error: {self.reason} for: {self.url}", response=self, ) def test_mocked_storage(): """Tests airfs.github with a mock""" pytest.skip( "Unable to test using the generic test scenario due to " "fixed virtual filesystem tree." ) def test_github_storage(tmpdir): """Tests airfs.github specificities""" from airfs._core.storage_manager import _DEFAULTS try: assert _DEFAULTS["github"]["storage_parameters"]["token"] except (KeyError, AssertionError): pytest.skip("GitHub test with real API require a configured API token.") if UPDATE_MOCK: # Save all requests response to use them with mock from os import remove, listdir from airfs._core import cache from airfs._core.storage_manager import get_instance for file in listdir(MOCK_DIR): remove(join(MOCK_DIR, file)) system = get_instance("https://github.com") request = system.client._request def request_save(method, url, *args, params=None, **kwargs): """Performs requests and save result""" resp = request(method, url, *args, params=params, **kwargs) resp_dict = dict( url=resp.url, headers=resp.headers, status_code=resp.status_code, content=resp.content, reason=resp.reason, ) with open( join(MOCK_DIR, cache._hash_name(url + json.dumps(params or dict()))), "wb", ) as resp_cache: pickle.dump(resp_dict, resp_cache) return MockResponse(**resp_dict) cache_dir = cache.CACHE_DIR cache.CACHE_DIR = str(tmpdir.ensure_dir("cache")) system.client._request = request_save system.client.session.request = request_save try: github_storage_scenario() finally: if UPDATE_MOCK: system.client.session.request = request system.client._request = request cache.CACHE_DIR = cache_dir def test_github_mocked_storage(tmpdir): """Tests airfs.github specificities with a mock""" if UPDATE_MOCK: pytest.skip("Mock is updating...") from collections import OrderedDict import airfs._core.storage_manager as storage_manager from airfs._core import cache cache_dir = cache.CACHE_DIR cache.CACHE_DIR = str(tmpdir.ensure_dir("cache")) mounted = storage_manager.MOUNTED storage_manager.MOUNTED = OrderedDict() def request_load(_, url, *__, params=None, **___): """Loads request result""" try: with open( join(MOCK_DIR, cache._hash_name(url + json.dumps(params or dict()))), "rb", ) as resp_cache: return MockResponse(**pickle.load(resp_cache)) except FileNotFoundError: pytest.fail("Please, update mock responses (see UPDATE_MOCK)") try: # Loads requests responses from previously cached responses storage = storage_manager.mount(storage="github", name="github_test") client = storage["github"]["system_cached"].client client._request = request_load client.session.request = request_load # Tests github_storage_scenario() finally: storage_manager.MOUNTED = mounted cache.CACHE_DIR = cache_dir def github_storage_scenario(): """ Test scenario. Called from both mocked and non-mocked tests. """ exists_scenario() listdir_scenario() stat_scenario() symlink_scenario() get_scenario() def listdir_scenario(): """ Tests listing """ from io import UnsupportedOperation import airfs # Users with pytest.raises(UnsupportedOperation): airfs.listdir("https://github.com/") # Repos assert "airfs" in airfs.listdir("https://github.com/jgoutin"), "List repos" assert sorted(airfs.listdir("https://github.com/jgoutin/airfs")) == [ "HEAD", "archive", "blob", "branches", "commits", "refs", "releases", "tags", "tree", ], "List repo content" with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/not_exists") with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/not_exists") assert sorted(airfs.listdir("https://github.com/jgoutin/airfs/refs")) == [ "heads", "tags", ], "List refs" with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/refs/not_exists") # HEAD assert "LICENSE" in airfs.listdir( "https://github.com/jgoutin/airfs/HEAD" ), "List HEAD" with pytest.raises(NotADirectoryError): airfs.listdir("https://github.com/jgoutin/airfs/HEAD/LICENSE") with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/HEAD/not_exists") assert "_core" in airfs.listdir( "https://github.com/jgoutin/airfs/HEAD/airfs" ), "List HEAD subdirectory" # Branches assert "master" in airfs.listdir( "https://github.com/jgoutin/airfs/branches" ), "List branches" assert "master" in airfs.listdir( "https://github.com/jgoutin/airfs/refs/heads" ), "List branches in refs" assert "LICENSE" in airfs.listdir( "https://github.com/jgoutin/airfs/branches/master" ), "List branch content" with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/branches/not_exists") # Commits commit_id = airfs.listdir("https://github.com/jgoutin/airfs/commits")[0] assert len(commit_id) == 40, "List commits" assert "LICENSE" in airfs.listdir( f"https://github.com/jgoutin/airfs/commits/{commit_id}" ), "List commit content" with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/commits/not_exists") # Tags assert "1.4.0" in airfs.listdir( "https://github.com/jgoutin/airfs/tags" ), "List tags" assert "1.4.0" in airfs.listdir( "https://github.com/jgoutin/airfs/refs/tags" ), "List tags in refs" assert "LICENSE" in airfs.listdir( "https://github.com/jgoutin/airfs/tags/1.4.0" ), "List tag content" with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/tags/not_exists") # Archives assert "1.4.0.tar.gz" in airfs.listdir( "https://github.com/jgoutin/airfs/archive" ), "List tar.gz archives" assert "1.4.0.zip" in airfs.listdir( "https://github.com/jgoutin/airfs/archive" ), "List zip archives" with pytest.raises(NotADirectoryError): airfs.listdir("https://github.com/jgoutin/airfs/archive/1.4.0.tar.gz") with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/archive/1.4.0.tar.xz") # Releases assert "latest" in airfs.listdir( "https://github.com/jgoutin/airfs/releases" ), "List releases" assert "1.4.0" in airfs.listdir( "https://github.com/jgoutin/airfs/releases/tag" ), "List release tags" assert sorted( airfs.listdir("https://github.com/jgoutin/airfs/releases/tag/1.4.0") ) == ["archive", "assets", "tree"], "List release content" with pytest.raises(FileNotFoundError): airfs.listdir("https://github.com/jgoutin/airfs/releases/tag/not_exists") assert sorted( airfs.listdir("https://github.com/jgoutin/airfs/releases/latest") ) == ["archive", "assets", "tree"], "List latest release content" assert sorted( airfs.listdir("https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive") ) == ["source_code.tar.gz", "source_code.zip"], "List release archive" with pytest.raises(FileNotFoundError): airfs.listdir( "https://github.com/jgoutin/airfs/releases/tag/not_exists/archive" ) with pytest.raises(NotADirectoryError): airfs.listdir( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive/" "source_code.tar.gz" ) assert sorted( airfs.listdir("https://github.com/jgoutin/airfs/releases/latest/archive") ) == ["source_code.tar.gz", "source_code.zip"], "List latest release archive" with pytest.raises(NotADirectoryError): airfs.listdir( "https://github.com/jgoutin/airfs/releases/latest/archive/" "source_code.tar.gz" ) assert sorted( airfs.listdir("https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets") ) == ["airfs-1.4.0-py3-none-any.whl"], "List release assets" with pytest.raises(NotADirectoryError): airfs.listdir( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/" "airfs-1.4.0-py3-none-any.whl" ) with pytest.raises(FileNotFoundError): airfs.listdir( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/not_exists" ) def symlink_scenario(): """ Tests symbolic links """ from io import UnsupportedOperation import airfs # Git tree assert airfs.islink("https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink") assert airfs.exists("https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink") assert airfs.lexists( "https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink" ) assert not airfs.isdir( "https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink" ) assert airfs.isfile("https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink") assert not airfs.islink("https://github.com/jgoutin/airfs/HEAD/LICENSE") assert not airfs.islink("https://github.com/jgoutin/airfs/HEAD/tests") assert ( airfs.readlink("https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink") == "../../airfs/_core/exceptions.py" ) assert ( airfs.realpath("https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink") == "https://github.com/jgoutin/airfs/HEAD/airfs/_core/exceptions.py" ) assert ( airfs.realpath( "https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink_to_symlink" ) == "https://github.com/jgoutin/airfs/HEAD/airfs/_core/exceptions.py" ) with pytest.raises(UnsupportedOperation): airfs.symlink( "https://github.com/jgoutin/airfs/HEAD/airfs/_core/exceptions.py", "https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink_2", ) with pytest.raises(OSError): airfs.readlink("https://github.com/jgoutin/airfs/HEAD/LICENSE") # HEAD assert airfs.islink("https://github.com/jgoutin/airfs/HEAD") assert ( airfs.readlink("https://github.com/jgoutin/airfs/HEAD") == "https://github.com/jgoutin/airfs/branches/master" ) assert airfs.realpath("https://github.com/jgoutin/airfs/HEAD").startswith( "https://github.com/jgoutin/airfs/commits/" ) # Branches assert airfs.readlink( "https://github.com/jgoutin/airfs/branches/master" ).startswith("https://github.com/jgoutin/airfs/commits/") assert airfs.realpath( "https://github.com/jgoutin/airfs/branches/master" ).startswith("https://github.com/jgoutin/airfs/commits/") assert airfs.readlink( "https://github.com/jgoutin/airfs/refs/heads/master" ).startswith("https://github.com/jgoutin/airfs/commits/") assert airfs.readlink("https://github.com/jgoutin/airfs/blob/master").startswith( "https://github.com/jgoutin/airfs/commits/" ) assert airfs.readlink("https://github.com/jgoutin/airfs/tree/master").startswith( "https://github.com/jgoutin/airfs/commits/" ) # Tags assert airfs.readlink("https://github.com/jgoutin/airfs/tags/1.4.0").startswith( "https://github.com/jgoutin/airfs/commits/" ) assert airfs.realpath("https://github.com/jgoutin/airfs/tags/1.4.0").startswith( "https://github.com/jgoutin/airfs/commits/" ) assert airfs.readlink( "https://github.com/jgoutin/airfs/refs/tags/1.4.0" ).startswith("https://github.com/jgoutin/airfs/commits/") assert airfs.readlink("https://github.com/jgoutin/airfs/blob/1.4.0").startswith( "https://github.com/jgoutin/airfs/commits/" ) assert airfs.readlink("https://github.com/jgoutin/airfs/tree/1.4.0").startswith( "https://github.com/jgoutin/airfs/commits/" ) # Releases assert airfs.readlink( "https://github.com/jgoutin/airfs/releases/latest" ).startswith("https://github.com/jgoutin/airfs/releases/tag/") def exists_scenario(): """ Tests exists, isdir, isfile """ import airfs # Root assert airfs.exists("https://github.com") assert airfs.isdir("https://github.com") assert not airfs.isfile("https://github.com") # User assert airfs.exists("https://github.com/jgoutin") assert airfs.isdir("https://github.com/jgoutin") assert not airfs.isfile("https://github.com/jgoutin") # Repos assert airfs.exists("https://github.com/jgoutin/airfs") assert airfs.isdir("https://github.com/jgoutin/airfs") assert not airfs.isfile("https://github.com/jgoutin/airfs") assert not airfs.exists("https://github.com/jgoutin/not_exists") assert not airfs.isdir("https://github.com/jgoutin/not_exists") assert not airfs.isfile("https://github.com/jgoutin/not_exists") assert not airfs.exists("https://github.com/jgoutin/airfs/refs/not_exists") assert not airfs.isdir("https://github.com/jgoutin/airfs/refs/not_exists") assert not airfs.isfile("https://github.com/jgoutin/airfs/refs/not_exists") assert airfs.exists("https://raw.githubusercontent.com/jgoutin/airfs") assert airfs.isdir("https://raw.githubusercontent.com/jgoutin/airfs") assert not airfs.isfile("https://raw.githubusercontent.com/jgoutin/airfs") # HEAD assert airfs.exists("https://github.com/jgoutin/airfs/HEAD") assert airfs.isdir("https://github.com/jgoutin/airfs/HEAD") assert not airfs.isfile("https://github.com/jgoutin/airfs/HEAD") assert airfs.exists("https://github.com/jgoutin/airfs/tree/HEAD") assert airfs.isdir("https://github.com/jgoutin/airfs/tree/HEAD") assert not airfs.isfile("https://github.com/jgoutin/tree/HEAD") assert airfs.exists("https://github.com/jgoutin/airfs/blob/HEAD") assert airfs.isdir("https://github.com/jgoutin/airfs/blob/HEAD") assert not airfs.isfile("https://github.com/jgoutin/blob/HEAD") assert airfs.exists("https://raw.githubusercontent.com/jgoutin/airfs/HEAD") assert airfs.isdir("https://raw.githubusercontent.com/jgoutin/airfs/HEAD") assert not airfs.isfile("https://raw.githubusercontent.com/jgoutin/airfs/HEAD") # Branches assert airfs.exists("https://github.com/jgoutin/airfs/branches") assert airfs.isdir("https://github.com/jgoutin/airfs/branches") assert not airfs.isfile("https://github.com/jgoutin/airfs/branches") assert airfs.exists("https://github.com/jgoutin/airfs/branches/master") assert airfs.isdir("https://github.com/jgoutin/airfs/branches/master") assert not airfs.isfile("https://github.com/jgoutin/airfs/branches/master") assert airfs.exists("https://github.com/jgoutin/airfs/refs/heads/master") assert airfs.isdir("https://github.com/jgoutin/airfs/refs/heads/master") assert not airfs.isfile("https://github.com/jgoutin/airfs/refs/heads/master") assert airfs.exists("https://github.com/jgoutin/airfs/tree/master") assert airfs.isdir("https://github.com/jgoutin/airfs/tree/master") assert not airfs.isfile("https://github.com/jgoutin/tree/master") assert airfs.exists("https://github.com/jgoutin/airfs/blob/master") assert airfs.isdir("https://github.com/jgoutin/airfs/blob/master") assert not airfs.isfile("https://github.com/jgoutin/blob/master") assert airfs.exists("https://raw.githubusercontent.com/jgoutin/airfs/master") assert airfs.isdir("https://raw.githubusercontent.com/jgoutin/airfs/master") assert not airfs.isfile("https://raw.githubusercontent.com/jgoutin/airfs/master") assert not airfs.exists("https://github.com/jgoutin/airfs/branches/not_exists") assert not airfs.isdir("https://github.com/jgoutin/airfs/branches/not_exists") assert not airfs.isfile("https://github.com/jgoutin/airfs/branches/not_exists") # Tags assert airfs.exists("https://github.com/jgoutin/airfs/tags") assert airfs.isdir("https://github.com/jgoutin/airfs/tags") assert not airfs.isfile("https://github.com/jgoutin/airfs/tags") assert airfs.exists("https://github.com/jgoutin/airfs/tags/1.4.0") assert airfs.isdir("https://github.com/jgoutin/airfs/tags/1.4.0") assert not airfs.isfile("https://github.com/jgoutin/airfs/tags/1.4.0") assert airfs.exists("https://github.com/jgoutin/airfs/refs/tags/1.4.0") assert airfs.isdir("https://github.com/jgoutin/airfs/refs/tags/1.4.0") assert not airfs.isfile("https://github.com/jgoutin/airfs/refs/tags/1.4.0") assert airfs.exists("https://github.com/jgoutin/airfs/tree/1.4.0") assert airfs.isdir("https://github.com/jgoutin/airfs/tree/1.4.0") assert not airfs.isfile("https://github.com/jgoutin/tree/1.4.0") assert airfs.exists("https://github.com/jgoutin/airfs/blob/1.4.0") assert airfs.isdir("https://github.com/jgoutin/airfs/blob/1.4.0") assert not airfs.isfile("https://github.com/jgoutin/blob/1.4.0") assert airfs.exists("https://raw.githubusercontent.com/jgoutin/airfs/1.4.0") assert airfs.isdir("https://raw.githubusercontent.com/jgoutin/airfs/1.4.0") assert not airfs.isfile("https://raw.githubusercontent.com/jgoutin/airfs/1.4.0") assert not airfs.exists("https://github.com/jgoutin/airfs/tags/not_exists") assert not airfs.isdir("https://github.com/jgoutin/airfs/tags/not_exists") assert not airfs.isfile("https://github.com/jgoutin/airfs/tags/not_exists") # Commits assert airfs.exists("https://github.com/jgoutin/airfs/commits") assert airfs.isdir("https://github.com/jgoutin/airfs/commits") assert not airfs.isfile("https://github.com/jgoutin/airfs/commits") commit_id = airfs.listdir("https://github.com/jgoutin/airfs/commits")[0] assert airfs.exists(f"https://github.com/jgoutin/airfs/commits/{commit_id}") assert airfs.isdir(f"https://github.com/jgoutin/airfs/commits/{commit_id}") assert not airfs.isfile(f"https://github.com/jgoutin/airfs/commits/{commit_id}") assert airfs.exists(f"https://github.com/jgoutin/airfs/tree/{commit_id}") assert airfs.isdir(f"https://github.com/jgoutin/airfs/tree/{commit_id}") assert not airfs.isfile(f"https://github.com/jgoutin/tree/{commit_id}") assert airfs.exists(f"https://github.com/jgoutin/airfs/blob/{commit_id}") assert airfs.isdir(f"https://github.com/jgoutin/airfs/blob/{commit_id}") assert not airfs.isfile(f"https://github.com/jgoutin/blob/{commit_id}") assert airfs.exists(f"https://raw.githubusercontent.com/jgoutin/airfs/{commit_id}") assert airfs.isdir(f"https://raw.githubusercontent.com/jgoutin/airfs/{commit_id}") assert not airfs.isfile( f"https://raw.githubusercontent.com/jgoutin/airfs/{commit_id}" ) assert not airfs.exists("https://github.com/jgoutin/airfs/commits/not_exists") assert not airfs.isdir("https://github.com/jgoutin/airfs/commits/not_exists") assert not airfs.isfile("https://github.com/jgoutin/airfs/commits/not_exists") # Git Tree assert airfs.exists("https://github.com/jgoutin/airfs/HEAD/tests") assert airfs.isdir("https://github.com/jgoutin/airfs/HEAD/tests") assert not airfs.isfile("https://github.com/jgoutin/airfs/HEAD/tests") assert airfs.exists("https://github.com/jgoutin/airfs/HEAD/LICENSE") assert not airfs.isdir("https://github.com/jgoutin/airfs/HEAD/LICENSE") assert airfs.isfile("https://github.com/jgoutin/airfs/HEAD/LICENSE") assert airfs.exists("https://raw.githubusercontent.com/jgoutin/airfs/HEAD/LICENSE") assert not airfs.isdir( "https://raw.githubusercontent.com/jgoutin/airfs/HEAD/LICENSE" ) assert airfs.isfile("https://raw.githubusercontent.com/jgoutin/airfs/HEAD/LICENSE") assert not airfs.exists("https://github.com/jgoutin/airfs/HEAD/not_exists") assert not airfs.isdir("https://github.com/jgoutin/airfs/HEAD/not_exists") assert not airfs.isfile("https://github.com/jgoutin/airfs/HEAD/not_exists") # Archives assert airfs.exists("https://github.com/jgoutin/airfs/archive") assert airfs.isdir("https://github.com/jgoutin/airfs/archive") assert not airfs.isfile("https://github.com/jgoutin/airfs/archive") assert airfs.exists("https://github.com/jgoutin/airfs/archive/1.4.0.tar.gz") assert not airfs.isdir("https://github.com/jgoutin/airfs/archive/1.4.0.tar.gz") assert airfs.isfile("https://github.com/jgoutin/airfs/archive/1.4.0.tar.gz") assert not airfs.exists("https://github.com/jgoutin/airfs/archive/not_exists") assert not airfs.isdir("https://github.com/jgoutin/airfs/archive/not_exists") assert not airfs.isfile("https://github.com/jgoutin/airfs/archive/not_exists") # Releases assert airfs.exists("https://github.com/jgoutin/airfs/releases") assert airfs.isdir("https://github.com/jgoutin/airfs/releases") assert not airfs.isfile("https://github.com/jgoutin/airfs/releases") assert airfs.exists("https://github.com/jgoutin/airfs/releases/tag") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/tag") assert not airfs.isfile("https://github.com/jgoutin/airfs/releases/tag") assert airfs.exists("https://github.com/jgoutin/airfs/releases/tag/1.4.0") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/tag/1.4.0") assert not airfs.isfile("https://github.com/jgoutin/airfs/releases/tag/1.4.0") assert airfs.exists("https://github.com/jgoutin/airfs/releases/latest") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/latest") assert not airfs.isfile("https://github.com/jgoutin/airfs/releases/latest") assert airfs.exists("https://github.com/jgoutin/airfs/releases/latest/assets") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/latest/assets") assert not airfs.isfile("https://github.com/jgoutin/airfs/releases/latest/assets") assert airfs.exists("https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets") assert not airfs.isfile( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets" ) assert airfs.exists( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/" "airfs-1.4.0-py3-none-any.whl" ) assert not airfs.isdir( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/" "airfs-1.4.0-py3-none-any.whl" ) assert airfs.isfile( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/" "airfs-1.4.0-py3-none-any.whl" ) assert airfs.exists("https://github.com/jgoutin/airfs/releases/latest/archive") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/latest/archive") assert not airfs.isfile("https://github.com/jgoutin/airfs/releases/latest/archive") assert airfs.exists("https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive") assert airfs.isdir("https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive") assert not airfs.isfile( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive" ) assert airfs.exists( "https://github.com/jgoutin/airfs/releases/latest/archive/source_code.tar.gz" ) assert not airfs.isdir( "https://github.com/jgoutin/airfs/releases/latest/archive/source_code.tar.gz" ) assert airfs.isfile( "https://github.com/jgoutin/airfs/releases/latest/archive/source_code.tar.gz" ) assert airfs.exists( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive/source_code.tar.gz" ) assert not airfs.isdir( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive/source_code.tar.gz" ) assert airfs.isfile( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive/source_code.tar.gz" ) def stat_scenario(): """ Test stat. """ import airfs from stat import S_IFDIR, S_IFREG, S_IFLNK file = S_IFREG + 0o644 file_exec = S_IFREG + 0o755 directory = S_IFDIR + 0o644 link = S_IFLNK + 0o644 # User stat = airfs.stat("https://github.com/jgoutin") assert stat.st_mode == directory assert stat.st_mtime > 0 assert stat.st_ctime > 0 # Repos stat = airfs.stat("https://github.com/jgoutin/airfs") assert stat.st_mode == directory assert stat.st_mtime > 0 assert stat.st_ctime > 0 stat = airfs.stat("https://github.com/jgoutin/airfs/refs") assert stat.st_mode == directory stat = airfs.stat("https://github.com/jgoutin/airfs/refs/heads") assert stat.st_mode == directory stat = airfs.stat("https://github.com/jgoutin/airfs/refs/tags") assert stat.st_mode == directory with pytest.raises(FileNotFoundError): airfs.stat("https://github.com/jgoutin/not_exists") with pytest.raises(FileNotFoundError): airfs.stat("https://github.com/jgoutin/airfs/refs/not_exists") # HEAD stat = airfs.lstat("https://github.com/jgoutin/airfs/HEAD") assert stat.st_mode == link assert stat.st_mtime > 0 assert stat.sha # noqa # Branches stat = airfs.stat("https://github.com/jgoutin/airfs/branches") assert stat.st_mode == directory stat = airfs.lstat("https://github.com/jgoutin/airfs/branches/master") assert stat.st_mode == link assert stat.st_mtime > 0 assert stat.sha # noqa stat = airfs.stat("https://github.com/jgoutin/airfs/branches/master") assert stat.st_mode == directory assert stat.st_mtime > 0 assert stat.sha # noqa stat = airfs.lstat("https://github.com/jgoutin/airfs/refs/heads/master") assert stat.st_mode == link assert stat.st_mtime > 0 assert stat.sha # noqa # Tags stat = airfs.stat("https://github.com/jgoutin/airfs/tags") assert stat.st_mode == directory stat = airfs.lstat("https://github.com/jgoutin/airfs/tags/1.4.0") assert stat.st_mode == link assert stat.st_mtime > 0 assert stat.sha # noqa stat = airfs.lstat("https://github.com/jgoutin/airfs/refs/tags/1.4.0") assert stat.st_mode == link assert stat.st_mtime > 0 assert stat.sha # noqa # Commits stat = airfs.stat("https://github.com/jgoutin/airfs/commits") assert stat.st_mode == directory commit_id = airfs.listdir("https://github.com/jgoutin/airfs/commits")[0] stat = airfs.stat(f"https://github.com/jgoutin/airfs/commits/{commit_id}") assert stat.st_mode == directory assert stat.st_mtime > 0 assert stat.sha # noqa # Git Tree stat = airfs.stat("https://github.com/jgoutin/airfs/HEAD/tests") assert stat.st_mode == directory assert stat.st_mtime > 0 assert stat.st_size == 0 assert stat.sha # noqa stat = airfs.stat("https://github.com/jgoutin/airfs/HEAD/LICENSE") assert stat.st_mode == file assert stat.st_mtime > 0 assert stat.st_size > 0 assert stat.sha # noqa stat = airfs.stat("https://github.com/jgoutin/airfs/HEAD/setup.py") assert stat.st_mode == file_exec assert stat.st_mtime > 0 assert stat.st_size > 0 assert stat.sha # noqa symlink_stat = airfs.lstat( "https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink" ) assert symlink_stat.st_mode == link assert symlink_stat.st_mtime > 0 assert symlink_stat.st_size > 0 assert symlink_stat.sha # noqa stat = airfs.stat("https://github.com/jgoutin/airfs/HEAD/tests/resources/symlink") assert stat.st_mode == file assert stat.st_mtime > 0 assert stat.st_size > 0 assert stat.st_size > symlink_stat.st_size assert stat.sha # noqa with pytest.raises(FileNotFoundError): airfs.stat("https://github.com/jgoutin/airfs/HEAD/not_exists") # Releases stat = airfs.stat( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive/source_code.tar.gz" ) assert stat.st_mode == file assert stat.st_size > 0 assert stat.st_mtime > 0 assert stat.sha # noqa stat = airfs.stat( "https://github.com/jgoutin/airfs/releases/latest/archive/source_code.tar.gz" ) assert stat.st_mode == file assert stat.st_size > 0 assert stat.st_mtime > 0 assert stat.sha # noqa stat = airfs.stat( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/" "airfs-1.4.0-py3-none-any.whl" ) assert stat.st_mode == file assert stat.st_size > 0 assert stat.st_mtime > 0 assert stat.sha # noqa def get_scenario(): """ Test get files. """ import airfs from airfs.storage.github import GithubBufferedIO, GithubRawIO with airfs.open( "https://github.com/jgoutin/airfs/releases/latest/archive/source_code.tar.gz", buffering=0, ) as file: assert isinstance(file, GithubRawIO) assert file.read() with airfs.open( "https://github.com/jgoutin/airfs/releases/latest/archive/source_code.tar.gz" ) as file: assert isinstance(file, GithubBufferedIO) assert file.read() with airfs.open( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/archive/" "source_code.tar.gz", buffering=0, ) as file: assert file.read() with airfs.open( "https://github.com/jgoutin/airfs/releases/tag/1.4.0/assets/" "airfs-1.4.0-py3-none-any.whl", buffering=0, ) as file: assert file.read() with airfs.open( "https://github.com/jgoutin/airfs/HEAD/LICENSE", buffering=0, ) as file: assert file.read() with airfs.open( "https://raw.githubusercontent.com/jgoutin/airfs/HEAD/LICENSE", buffering=0, ) as file: assert file.read() ``` #### File: rfs/tests/test_storage_s3.py ```python import pytest pytest.importorskip("boto3") UNSUPPORTED_OPERATIONS = ( "symlink", # Not supported on some objects "getctime", ) def test_handle_client_error(): """Test airfs.s3._handle_client_error""" from airfs.storage.s3 import _handle_client_error from botocore.exceptions import ClientError # type: ignore from airfs._core.exceptions import ObjectNotFoundError, ObjectPermissionError response = {"Error": {"Code": "ErrorCode", "Message": "Error"}} # Any error with pytest.raises(ClientError): with _handle_client_error(): raise ClientError(response, "testing") # 404 error response["Error"]["Code"] = "404" with pytest.raises(ObjectNotFoundError): with _handle_client_error(): raise ClientError(response, "testing") # 403 error response["Error"]["Code"] = "403" with pytest.raises(ObjectPermissionError): with _handle_client_error(): raise ClientError(response, "testing") def test_mocked_storage(): """Tests airfs.s3 with a mock""" from datetime import datetime from io import BytesIO, UnsupportedOperation from airfs.storage.s3 import S3RawIO, _S3System, S3BufferedIO from botocore.exceptions import ClientError # type: ignore import boto3 # type: ignore from tests.test_storage import StorageTester from tests.storage_mock import ObjectStorageMock # Mocks client def raise_404(): """Raise 404 error""" raise ClientError({"Error": {"Code": "404", "Message": "Error"}}, "Error") def raise_416(): """Raise 416 error""" raise ClientError( {"Error": {"Code": "InvalidRange", "Message": "Error"}}, "Error" ) def raise_500(): """Raise 500 error""" raise ClientError({"Error": {"Code": "Error", "Message": "Error"}}, "Error") storage_mock = ObjectStorageMock( raise_404, raise_416, raise_500, format_date=datetime.fromtimestamp ) no_head = False class Client: """boto3.client""" def __init__(self, *_, **kwargs): """boto3.client.__init__""" self.kwargs = kwargs @staticmethod def get_object(Bucket=None, Key=None, Range=None, **_): """boto3.client.get_object""" return dict( Body=BytesIO( storage_mock.get_object(Bucket, Key, header=dict(Range=Range)) ) ) @staticmethod def head_object(Bucket=None, Key=None, **_): """boto3.client.head_object""" if no_head: return dict() return storage_mock.head_object(Bucket, Key) @staticmethod def put_object(Bucket=None, Key=None, Body=None, **_): """boto3.client.put_object""" storage_mock.put_object(Bucket, Key, Body, new_file=True) @staticmethod def delete_object(Bucket=None, Key=None, **_): """boto3.client.delete_object""" storage_mock.delete_object(Bucket, Key) @staticmethod def head_bucket(Bucket=None, **_): """boto3.client.head_bucket""" return storage_mock.head_locator(Bucket) @staticmethod def create_bucket(Bucket=None, **_): """boto3.client.create_bucket""" storage_mock.put_locator(Bucket) @staticmethod def copy_object(Bucket=None, Key=None, CopySource=None, **_): """boto3.client.copy_object""" storage_mock.copy_object( CopySource["Key"], Key, dst_locator=Bucket, src_locator=CopySource["Bucket"], ) @staticmethod def delete_bucket(Bucket=None, **_): """boto3.client.delete_bucket""" storage_mock.delete_locator(Bucket) @staticmethod def list_objects_v2(Bucket=None, Prefix=None, MaxKeys=None, **_): """boto3.client.list_objects_v2""" objects = [] for name, header in storage_mock.get_locator( Bucket, prefix=Prefix, limit=MaxKeys, raise_404_if_empty=False ).items(): header["Key"] = name objects.append(header) if not objects: return dict() return dict(Contents=objects) @staticmethod def list_buckets(**__): """boto3.client.list_buckets""" objects = [] for name, header in storage_mock.get_locators().items(): header["Name"] = name objects.append(header) return dict(Buckets=objects) @staticmethod def create_multipart_upload(**_): """boto3.client.create_multipart_upload""" return dict(UploadId=123) @staticmethod def complete_multipart_upload( Bucket=None, Key=None, MultipartUpload=None, UploadId=None, **_ ): """boto3.client.complete_multipart_upload""" uploaded_parts = MultipartUpload["Parts"] assert UploadId == 123 parts = [] for part in uploaded_parts: parts.append(Key + str(part["PartNumber"])) assert part["ETag"] storage_mock.concat_objects(Bucket, Key, parts) @staticmethod def upload_part( Bucket=None, Key=None, PartNumber=None, Body=None, UploadId=None, **_ ): """boto3.client.upload_part""" assert UploadId == 123 return storage_mock.put_object(Bucket, Key + str(PartNumber), Body) @staticmethod def generate_presigned_url(ClientMethod, Params=None, **_): """boto3.client.generate_presigned_url""" assert ClientMethod == "get_object", "get_object Client method" return f"https://{Params['Bucket']}/{Params['Key']}#token=123456" class Session: """boto3.session.Session""" client = Client region_name = "" def __init__(self, *_, **__): """boto3.session.Session.__init__""" boto3_client = boto3.client boto3_session_session = boto3.session.Session boto3.client = Client boto3.session.Session = Session # Tests try: # Init mocked system system = _S3System() storage_mock.attach_io_system(system) # Tests with StorageTester( system, S3RawIO, S3BufferedIO, storage_mock, unsupported_operations=UNSUPPORTED_OPERATIONS, ) as tester: # Common tests tester.test_common() # Test: Unsecure mode file_path = tester.base_dir_path + "file0.dat" with S3RawIO(file_path, unsecure=True) as file: assert file._client.kwargs["use_ssl"] is False # Test: Header values may be missing no_head = True with pytest.raises(UnsupportedOperation): system.getctime(file_path) with pytest.raises(UnsupportedOperation): system.getmtime(file_path) with pytest.raises(UnsupportedOperation): system.getsize(file_path) no_head = False # Restore mocked functions finally: boto3.client = boto3_client boto3.session.Session = boto3_session_session ```
{ "source": "JGoutin/skio", "score": 4 }
#### File: skio/skio/system.py ```python import os.path import re def validfilename(filename, fullpath=False, posixchars=False, iso9660=False, posixlenght=False, msdoslenght=False, lenghterror=False): r""" Remove all invalid characters from a file or folder name and check its validity on Linux, Microsoft Windows, Microsoft MS-DOS and Apple Macintosh. Remove: - All characters <= 31 on ASCII table (Linux, Windows, Macintosh).\n - Following special characters: "\", "/", ":", "*", "?", '"', ">", "<" and "|" (Windows). - " " on start and end of names. - "." on end of names (Windows). - "-" on start of names (Linux). Check also for Windows/MS-DOS reserved names: "CON", "PRN", "AUX", "NUL", "COM1", "COM2", "COM3", "COM4","COM5", "COM6", "COM7", "COM8", "COM9", "LPT1", "LPT2", "LPT3", "LPT4", "LPT5", "LPT6", "LPT7", "LPT8", "LPT9". Parameters ---------- filename : str File or folder name or path (see "fullpath" parameter). fullpath : bool, optional Set to "True" if "filename" contain full path. Set to "False" if "filename" contain only file or folder name to check. posixchars : bool, optional If "True", remove all unauthorized characters with POSIX specification. With this, only alphanumeric, ".", "-" and "_" are authorized. iso9660 : bool, optional If "True", remove all "-" that are incompatible with ISO9660 level 1 optic disk formatting. posixlenght : bool, optional If "True", check if length is greater than 14. msdoslenght : bool, optional If "True", check if length is greater than 8 for name and 3 for extension. lenghterror : bool, optional If "True", raise error if length is invalid, else, truncate filename. Return ------- out : str Fixed filename. """ # Split directory and name if fullpath: directory, filename = os.path.split(filename) else: directory = "" # Remove invalid characters if posixchars: # Remove POSIX invalid characters validname = re.sub("[^a-zA-Z0-9_.-]", "", filename) else: # Remove Windows and ASCII<31 invalid characters validname = "" for char in filename: if not (char in '\/:*?"><|') and ord(char) > 31: validname += char if iso9660: # Remove '-' for ISO9660 validname = re.sub("[-]", "", validname) # Remove ending and starting characters that can generate OS errors def checkendstart(string): """- ' ', '.' on end, '-' on start""" prevlen = 0 while len(string) != prevlen: prevlen = len(string) # Remove spaces on start and end string = string.strip() # Remove '.' on end string = string.rstrip('.') # Remove '-' on start string = string.lstrip('-') return string validname = checkendstart(validname) # Check if filename is not empty if not validname: raise ValueError('All characters in filename are invalid') # Check MS-DOS length if msdoslenght: base, ext = os.path.splitext(validname) if len(base) > 8: if lenghterror: raise ValueError('Filename too long for MS-DOS (8 characters)') else: # Truncate basename validname = base[:8] if len(ext) > 4: if lenghterror: raise ValueError('Extension too long for MS-DOS ' '(3 characters)') else: # Truncate extension validname += ext[:4] validname = checkendstart(validname) # Check POSIX length if posixlenght and len(validname) > 14: if lenghterror: # Raise error raise ValueError('Filename too long for POSIX (14 characters)') else: # Truncate name validname = checkendstart(validname[:14]) # Check Windows/MS-DOS reserved name: if validname in ('CON', 'PRN', 'AUX', 'NUL', 'COM1', 'COM2', 'COM3', 'COM4', 'COM5', 'COM6', 'COM7', 'COM8', 'COM9', 'LPT1', 'LPT2', 'LPT3', 'LPT4', 'LPT5', 'LPT6', 'LPT7', 'LPT8', 'LPT9'): raise ValueError("Filename is a Windows/MS-DOS reserved name") # Return valid filename if directory: validname = os.path.join(directory, validname) return validname ``` #### File: skio/tests/test_codec.py ```python from skio import intdecode, intencode import pytest import numpy as np from numpy.testing import assert_equal, assert_almost_equal IDAT = np.array(((0, 1, 2), (3, 4, 5))) # Integer data FDAT = np.array(((0.0, 0.5, 1.0), (1.5, 2.0, 2.5))) # Float data FDAT_NEG = np.array(((-2.0, -1.0, 0.0), (1.0, 2.0, 3.0))) # Data with value <0 FDAT_NAN = np.array(((0.0, 0.5, 1.0), (np.nan, 2.0, 2.5))) # Data with nan MDAT = np.array(((False, False, False), (True, False, False))) # Nan Mask def test_intdecode_invalid(): """'intdecode' function: 'invalid' argument""" # None assert_equal(intdecode(IDAT, 0.5, invalid=None), FDAT) # None: Test mask assert not intdecode(IDAT, 0.5, invalid=None, masked=True).mask.any() # Single assert_equal(intdecode(IDAT, 0.5, invalid=3), FDAT_NAN) # Single: Test mask assert_equal(intdecode(IDAT, 0.5, invalid=3, masked=True).mask, MDAT) # Tuple assert_equal(intdecode(IDAT, 0.5, invalid=(1, 4)), np.array(((np.nan, np.nan, 1.0), (1.5, np.nan, np.nan)))) # Tuple: Test mask assert_equal(intdecode(IDAT, 0.5, invalid=(1, 4), masked=True).mask, np.array(((True, True, False), (False, True, True)))) def test_intdecode_dtype(): """'intdecode' function: 'dtype' argument""" # set dtype assert intdecode(IDAT, 0.5, dtype=np.float32).dtype == np.float32 # Not a floating type with pytest.raises(ValueError) as excinfo: intdecode(IDAT, 0.5, dtype=np.int32) assert 'dtype must be a floating data type' in str(excinfo.value) def test_intencode_invalidvalue(): """'intencode' function: 'invalidvalue' argument""" # False : With no invalid data data, factor = intencode(FDAT, np.int16, invalidvalue=False) assert_equal(data, np.array(((0, 6553, 13107), (19660, 26214, 32767)))) assert_almost_equal(factor, 7.6296273689992981e-05) # False : With invalid data data = intencode(FDAT_NAN, np.int16, invalidvalue=False)[0] assert_equal(data.mask, MDAT) assert_equal(data.data, np.array(((0, 6553, 13107), (0, 26214, 32767)))) # None : With signed int assert_equal(intencode(FDAT_NAN, np.int16, invalidvalue=None)[0], np.array(((0, 6553, 13107), (-32768, 26214, 32767)))) # None : With unsigned int assert_equal(intencode(FDAT_NAN, np.uint16, invalidvalue=None)[0], np.array(((0, 13107, 26214), (65535, 52427, 65534)))) # Specified value assert_equal(intencode(FDAT_NAN, np.int16, invalidvalue=-1)[0], np.array(((0, 6553, 13107), (-1, 26214, 32767)))) def test_intencode_rangeminmax(): """'intencode' function: 'rangemin' & 'rangemax' arguments""" # Negative and positive min and max assert_equal(intencode(FDAT_NEG, np.int16, rangemin=-100, rangemax=100)[0], np.array(((-67, -33, 0), (33, 67, 100)))) # Negative and positive min and max with inverted data assert_equal(intencode(FDAT_NEG * -1, np.int16, rangemin=-100, rangemax=100)[0], np.array(((67, 33, 0), (-33, -67, -100)))) # Positive min and max assert_equal(intencode(FDAT_NEG, np.int16, rangemin=100, rangemax=200)[0], np.array(((100, 120, 140), (160, 180, 200)))) # Negative min and max assert_equal(intencode(FDAT_NEG, np.int16, rangemin=-200, rangemax=-100)[0], np.array(((-200, -180, -160), (-140, -120, -100)))) # Too larges values assert_equal(intencode(FDAT_NEG, np.int8, rangemin=-256, rangemax=256)[0], np.array(((-85, -42, 0), (42, 85, 127)))) def test_intencode_keepsign(): """'intencode' function: 'keepsign' argument""" # Keep assert_equal(intencode(FDAT_NEG, np.int16, keepsign=True)[0], np.array(((-21845, -10922, 0), (10922, 21845, 32767)))) # Don't keep assert_equal(intencode(FDAT_NEG, np.int16, keepsign=False)[0], np.array(((0, 6553, 13107), (19660, 26214, 32767)))) # Keep but unsigned assert_equal(intencode(FDAT_NEG, np.uint16, keepsign=True)[0], np.array(((0, 13107, 26214), (39321, 52428, 65535)))) def test_intencode_int_inv_max(): """'intencode' function: 'intfactor', 'maxfactor', 'invfactor' arguments""" # Float assert intencode(FDAT, np.uint8, rangemax=1, intfactor=False)[1] == 2.5 # Float inverted assert_almost_equal(intencode(FDAT, np.uint8, rangemax=1, invfactor=True, intfactor=False)[1], 0.4) # Float inverted maxed assert intencode(FDAT, np.uint8, maxfactor=10, invfactor=True, intfactor=False)[1] == 10 # Float inverted maxed with max = int max assert intencode(FDAT * 1e-5, np.uint8, maxfactor=-1, invfactor=True, intfactor=False)[1] == 255 # Float maxed assert_almost_equal(intencode(FDAT, np.uint8, maxfactor=1e-5, intfactor=False)[1], 1e-5) # Integer assert intencode(FDAT, np.uint8, rangemax=1, intfactor=True)[1] == 3 # Integer inverted assert intencode(FDAT, np.uint8, rangemax=1, invfactor=True, intfactor=True)[1] == 1 # Integer inverted maxed assert intencode(FDAT, np.uint8, maxfactor=10, invfactor=True, intfactor=True)[1] == 10 # Integer maxed assert intencode(FDAT, np.uint8, maxfactor=1, intfactor=True)[1] == 1 def test_intencode_forcefactor(): """'intencode' function: 'forcefactor' argument""" assert intencode(FDAT, np.uint8, forcefactor=42)[1] == 42 def test_intencode_intround(): """'intencode' function: 'intround' argument""" # Round assert_equal(intencode(FDAT_NEG, np.int16, intround=True)[0], np.array(((-21845, -10922, 0), (10922, 21845, 32767)))) # Don't round assert_equal(intencode(FDAT_NEG, np.int16, intround=False)[0], np.array(((-21844, -10922, 0), (10922, 21844, 32767)))) def test_intencode_inttype(): """'intencode' function: character code as int dtype""" # Character code assert_equal(intencode(FDAT, 'h')[0], np.array(((0, 6553, 13107), (19660, 26214, 32767)))) ```
{ "source": "jgp0000/atlas-subnational-api", "score": 3 }
#### File: atlas-subnational-api/colombia/datasets.py ```python import pandas as pd import copy import os.path import re from flask import current_app from linnaeus import classification product_classification = classification.load("product/HS/Colombia_Prospedia/out/products_colombia_prospedia.csv") location_classification = classification.load("location/Colombia/Prospedia/out/locations_colombia_prosperia.csv") industry_classification = classification.load("industry/ISIC/Colombia_Prosperia/out/industries_colombia_isic_prosperia.csv") country_classification = classification.load("location/International/DANE/out/locations_international_dane.csv") occupation_classification = classification.load("occupation/SOC/Colombia/out/occupations_soc_2010.csv") livestock_classification = classification.load("product/Datlas/Rural/out/livestock.csv") agproduct_classification = classification.load("product/Datlas/Rural/out/agricultural_products_expanded.csv") nonagric_classification = classification.load("product/Datlas/Rural/out/nonagricultural_activities.csv") land_use_classification = classification.load("product/Datlas/Rural/out/land_use.csv") farmtype_classification = classification.load("product/Datlas/Rural/out/farm_type.csv") farmsize_classification = classification.load("product/Datlas/Rural/out/farm_size.csv") country_classification.table.code = country_classification.table.code.astype(str).str.zfill(3) def first(x): """Return first element of a group in a pandas GroupBy object""" return x.nth(0) def sum_group(x): """Get the sum for a pandas group by""" return x.sum() def null(x): sample = x.first() return pd.DataFrame(index=sample.index, columns=sample.columns) def slugify(s): """Get a string like 'Foo Bar' and convert to foo_bar. Usually good for creating codes from names, especially for languages with special characters.""" return re.sub(r'[^a-zA-Z0-9\_]', '', s.replace(" ", "_").lower()) DATASET_ROOT = current_app.config["DATASET_ROOT"] YEAR_MIN_TRADE = current_app.config["YEAR_MIN_TRADE"] YEAR_MAX_TRADE = current_app.config["YEAR_MAX_TRADE"] YEAR_MIN_INDUSTRY = current_app.config["YEAR_MIN_INDUSTRY"] YEAR_MAX_INDUSTRY = current_app.config["YEAR_MAX_INDUSTRY"] YEAR_MIN_AGPRODUCT = current_app.config["YEAR_MIN_AGPRODUCT"] YEAR_MAX_AGPRODUCT = current_app.config["YEAR_MAX_AGPRODUCT"] # These are MSAs (Metropolitan Statistical Area) that have a single # municipality associated with them - they're mostly "cities" which are munis # that have population greater than a certain number (100k?). Alternatively it # could have been that the way we generated MSAs (looking at commute patterns # between cities) could have generated a MSA that has only one city, but I # don't think this is the case. These values are from Moncho's Trade dataset, # in Keys/Colombia_cities_of_onemuni_key.dta SINGLE_MUNI_MSAS = ['73001', '47001', '23001', '20001', '76109', '41001', '76520', '19001', '70001', '44001', '68081', '52835', '18001', '05045', '44430', '05837', '76147', '85001', '13430', '25290', '76111', '27001', '23417', '41551', '47189', '05154', '54498', '20011', '23162', '19698', '81001', '73268', '17380', '23466', '13244', '88001', '05172', '50006', '15176', '70215', '47288', '50313', '54518'] def prefix_path(to_prefix): return os.path.join(DATASET_ROOT, to_prefix) def load_trade4digit_country(): prescriptives = pd.read_stata(prefix_path("Trade/exp_ecomplexity_rc.dta")) exports = pd.read_stata(prefix_path("Trade/exp_rpy_rc_p4.dta")) exports = exports.rename(columns={"X_rpy_d": "export_value", "NP_rpy": "export_num_plants"}) imports = pd.read_stata(prefix_path("Trade/imp_rpy_rc_p4.dta")) imports = imports.rename(columns={"X_rpy_d": "import_value", "NP_rpy": "import_num_plants"}) descriptives = exports.merge(imports, on=["yr", "r", "p"], how="outer") descriptives = descriptives.fillna({ "export_value": 0, "export_num_plants": 0, "import_value": 0, "import_num_plants": 0, }) combo = prescriptives.merge(descriptives, left_on=["yr", "r", "p4"], right_on=["yr", "r", "p"]) combo = combo[combo.yr.between(YEAR_MIN_TRADE, YEAR_MAX_TRADE)] combo["r"] = "COL" return combo trade4digit_country = { "read_function": load_trade4digit_country, "field_mapping": { "r": "location", "p4": "product", "yr": "year", "export_value": "export_value", "export_num_plants": "export_num_plants", "import_value": "import_value", "import_num_plants": "import_num_plants", "density_intl": "density", "eci_intl": "eci", "pci": "pci", "coi_intl": "coi", "cog_intl": "cog", "RCA_intl": "export_rca" }, "classification_fields": { "location": { "classification": location_classification, "level": "country" }, "product": { "classification": product_classification, "level": "4digit" }, }, "digit_padding": { "location": 1, "product": 4 }, "facet_fields": ["location", "product", "year"], "facets": { ("location_id", "year"): { "eci": first, "coi": first, }, ("product_id", "year"): { "pci": first, }, ("location_id", "product_id", "year"): { "export_value": first, "import_value": first, "export_num_plants": first, "import_num_plants": first, "export_rca": first, "density": first, "cog": first, } } } def load_trade4digit_department(): prescriptives = pd.read_stata(prefix_path("Trade/exp_ecomplexity_r2.dta")) exports = pd.read_stata(prefix_path("Trade/exp_rpy_r2_p4.dta")) exports = exports.rename(columns={"X_rpy_d": "export_value", "NP_rpy": "export_num_plants"}) imports = pd.read_stata(prefix_path("Trade/imp_rpy_r2_p4.dta")) imports = imports.rename(columns={"X_rpy_d": "import_value", "NP_rpy": "import_num_plants"}) descriptives = exports.merge(imports, on=["yr", "r", "p"], how="outer") descriptives = descriptives.fillna({ "export_value": 0, "export_num_plants": 0, "import_value": 0, "import_num_plants": 0, }) combo = prescriptives.merge(descriptives, left_on=["yr", "r", "p4"], right_on=["yr", "r", "p"]) combo = combo[combo.yr.between(YEAR_MIN_TRADE, YEAR_MAX_TRADE)] return combo trade4digit_department = { "read_function": load_trade4digit_department, "field_mapping": { "r": "location", "p4": "product", "yr": "year", "export_value": "export_value", "export_num_plants": "export_num_plants", "import_value": "import_value", "import_num_plants": "import_num_plants", "density_intl": "density", "eci_intl": "eci", "pci": "pci", "coi_intl": "coi", "cog_intl": "cog", "RCA_intl": "export_rca" }, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, "product": { "classification": product_classification, "level": "4digit" }, }, "digit_padding": { "location": 2, "product": 4 }, "facet_fields": ["location", "product", "year"], "facets": { ("location_id", "year"): { "eci": first, "coi": first, }, ("product_id", "year"): { "pci": first, "export_value": sum_group, "import_value": sum_group, "export_num_plants": sum_group, "import_num_plants": sum_group }, ("location_id", "product_id", "year"): { "export_value": first, "import_value": first, "export_num_plants": first, "import_num_plants": first, "export_rca": first, "density": first, "cog": first, } } } def load_trade4digit_msa(): prescriptives = pd.read_stata(prefix_path("Trade/exp_ecomplexity_rcity.dta")) # Fix certain muni codes to msa codes, see MEX-148 is_single_muni_msa = prescriptives.r.isin(SINGLE_MUNI_MSAS) prescriptives.loc[is_single_muni_msa, "r"] = prescriptives.loc[is_single_muni_msa, "r"].map(lambda x: x + "0") exports = pd.read_stata(prefix_path("Trade/exp_rpy_ra_p4.dta")) # Add missing exports from single muni MSAs. See MEX-148 muni_exports = pd.read_stata(prefix_path("Trade/exp_rpy_r5_p4.dta")) muni_exports = muni_exports[muni_exports.r.isin(SINGLE_MUNI_MSAS)] muni_exports.r = muni_exports.r.map(lambda x: x + "0") exports = pd.concat([exports, muni_exports]).reset_index(drop=True) exports = exports.rename(columns={"X_rpy_d": "export_value", "NP_rpy": "export_num_plants"}) imports = pd.read_stata(prefix_path("Trade/imp_rpy_ra_p4.dta")) # Add missing imports from single muni MSAs. See MEX-148 muni_imports = pd.read_stata(prefix_path("Trade/imp_rpy_r5_p4.dta")) muni_imports = muni_imports[muni_imports.r.isin(SINGLE_MUNI_MSAS)] muni_imports.r = muni_imports.r.map(lambda x: x + "0") imports = pd.concat([imports, muni_imports]).reset_index(drop=True) imports = imports.rename(columns={"X_rpy_d": "import_value", "NP_rpy": "import_num_plants"}) descriptives = exports.merge(imports, on=["yr", "r", "p"], how="outer") descriptives = descriptives.fillna({ "export_value": 0, "export_num_plants": 0, "import_value": 0, "import_num_plants": 0, }) combo = prescriptives.merge(descriptives, left_on=["yr", "r", "p4"], right_on=["yr", "r", "p"]) combo = combo[combo.yr.between(YEAR_MIN_TRADE, YEAR_MAX_TRADE)] return combo trade4digit_msa = { "read_function": load_trade4digit_msa, "field_mapping": { "r": "location", "p": "product", "yr": "year", "export_value": "export_value", "export_num_plants": "export_num_plants", "import_value": "import_value", "import_num_plants": "import_num_plants", "density_intl": "density", "eci_intl": "eci", "pci": "pci", "coi_intl": "coi", "cog_intl": "cog", "RCA_intl": "export_rca" }, "classification_fields": { "location": { "classification": location_classification, "level": "msa" }, "product": { "classification": product_classification, "level": "4digit" }, }, "digit_padding": { "product": 4 }, "facet_fields": ["location", "product", "year"], "facets": { ("location_id", "year"): { "eci": first, "coi": first }, ("product_id", "year"): { "pci": first, }, ("location_id", "product_id", "year"): { "export_value": first, "import_value": first, "export_num_plants": first, "import_num_plants": first, "export_rca": first, "density": first, "cog": first, } } } def load_trade4digit_municipality(): exports = pd.read_stata(prefix_path("Trade/exp_rpy_r5_p4.dta")) exports = exports.rename(columns={"X_rpy_d": "export_value", "NP_rpy": "export_num_plants"}) imports = pd.read_stata(prefix_path("Trade/imp_rpy_r5_p4.dta")) imports = imports.rename(columns={"X_rpy_d": "import_value", "NP_rpy": "import_num_plants"}) descriptives = exports.merge(imports, on=["yr", "r", "p"], how="outer") descriptives = descriptives.fillna({ "export_value": 0, "export_num_plants": 0, "import_value": 0, "import_num_plants": 0, }) descriptives = descriptives[descriptives.yr.between(YEAR_MIN_TRADE, YEAR_MAX_TRADE)] return descriptives trade4digit_municipality = { "read_function": load_trade4digit_municipality, "field_mapping": { "r": "location", "p": "product", "yr": "year", "export_value": "export_value", "export_num_plants": "export_num_plants", "import_value": "import_value", "import_num_plants": "import_num_plants", }, "classification_fields": { "location": { "classification": location_classification, "level": "municipality" }, "product": { "classification": product_classification, "level": "4digit" }, }, "digit_padding": { "location": 5, "product": 4 }, "facet_fields": ["location", "product", "year"], "facets": { ("location_id", "product_id", "year"): { "export_value": first, "export_num_plants": first, "import_value": first, "import_num_plants": first } } } trade4digit_rcpy_fields_export = { "r": "location", "country": "country", "p": "product", "yr": "year", "X_rcpy_d_export": "export_value", "NP_rcpy_export": "export_num_plants", "X_rcpy_d_import": "import_value", "NP_rcpy_import": "import_num_plants" } def read_trade4digit_rcpy(suffix="rc_p4"): e = pd\ .read_stata(prefix_path("Trade/exp_rcpy_{}.dta".format(suffix)))\ .rename(columns={"ctry_dest": "country"}) i = pd\ .read_stata(prefix_path("Trade/imp_rcpy_{}.dta".format(suffix)))\ .rename(columns={"ctry_orig": "country"}) df = e.merge(i, on=['r', 'p', 'country', 'yr'], how='outer', suffixes=('_export', '_import')) df = df[df.yr.between(YEAR_MIN_TRADE, YEAR_MAX_TRADE)] return df.fillna(0) def replace_country(df): df["r"] = "COL" return df trade4digit_rcpy_country = { "read_function": lambda: replace_country(read_trade4digit_rcpy(suffix="rc_p4")), "field_mapping": trade4digit_rcpy_fields_export, "classification_fields": { "location": { "classification": location_classification, "level": "country" }, "product": { "classification": product_classification, "level": "4digit" }, "country": { "classification": country_classification, "level": "country" }, }, "digit_padding": { "country": 3, "product": 4 }, "facet_fields": ["location", "country", "product", "year"], "facets": { ("country_id", "location_id", "year"): { "export_value": sum_group, "export_num_plants": sum_group, "import_value": sum_group, "import_num_plants": sum_group, }, ("product_id", "country_id", "year"): { "export_value": sum_group, "export_num_plants": sum_group, "import_value": sum_group, "import_num_plants": sum_group, }, ("country_id", "location_id", "product_id", "year"): { "export_value": first, "export_num_plants": first, "import_value": first, "import_num_plants": first, } } } trade4digit_rcpy_department = { "read_function": lambda: read_trade4digit_rcpy(suffix="r2_p4"), "field_mapping": trade4digit_rcpy_fields_export, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, "product": { "classification": product_classification, "level": "4digit" }, "country": { "classification": country_classification, "level": "country" }, }, "digit_padding": { "location": 2, "country": 3, "product": 4 }, "facet_fields": ["location", "country", "product", "year"], "facets": { ("country_id", "location_id", "year"): { "export_value": sum_group, "export_num_plants": sum_group, "import_value": sum_group, "import_num_plants": sum_group, }, ("country_id", "location_id", "product_id", "year"): { "export_value": first, "export_num_plants": first, "import_value": first, "import_num_plants": first, } } } def load_trade4digit_rcpy_msa(): df = read_trade4digit_rcpy(suffix="ra_p4") # Add missing exports from single muni MSAs. See MEX-148 COL-959 muni = read_trade4digit_rcpy(suffix="r5_p4") muni = muni[muni.r.isin(SINGLE_MUNI_MSAS)] muni.r = muni.r.map(lambda x: x + "0") return pd.concat([df, muni]).reset_index(drop=True) trade4digit_rcpy_msa = { "read_function": load_trade4digit_rcpy_msa, "field_mapping": trade4digit_rcpy_fields_export, "classification_fields": { "location": { "classification": location_classification, "level": "msa" }, "product": { "classification": product_classification, "level": "4digit" }, "country": { "classification": country_classification, "level": "country" }, }, "digit_padding": { "country": 3, "product": 4 }, "facet_fields": ["location", "country", "product", "year"], "facets": { ("country_id", "location_id", "year"): { "export_value": sum_group, "export_num_plants": sum_group, "import_value": sum_group, "import_num_plants": sum_group, }, ("country_id", "location_id", "product_id", "year"): { "export_value": first, "export_num_plants": first, "import_value": first, "import_num_plants": first, } } } trade4digit_rcpy_municipality = { "read_function": lambda: read_trade4digit_rcpy(suffix="r5_p4"), "field_mapping": trade4digit_rcpy_fields_export, "classification_fields": { "location": { "classification": location_classification, "level": "municipality" }, "product": { "classification": product_classification, "level": "4digit" }, "country": { "classification": country_classification, "level": "country" }, }, "digit_padding": { "location": 5, "country": 3, "product": 4 }, "facet_fields": ["location", "country", "product", "year"], "facets": { ("country_id", "location_id", "product_id", "year"): { "export_value": first, "export_num_plants": first, "import_value": first, "import_num_plants": first, }, ("country_id", "location_id", "year"): { "export_value": sum_group, "export_num_plants": sum_group, "import_value": sum_group, "import_num_plants": sum_group, } } } def hook_industry(df): df = df.drop_duplicates(["location", "industry", "year"]) df = df[df.location.notnull()] df = df[df.year.between(YEAR_MIN_INDUSTRY, YEAR_MAX_INDUSTRY)] return df def industry4digit_country_read(): df = pd.read_hdf(prefix_path("Industries/industries_all.hdf"), "data") df["country_code"] = "COL" return df industry4digit_country = { "read_function": industry4digit_country_read, "field_mapping": { "country_code": "location", "p_code": "industry", "year": "year", "all_p_emp": "employment", "all_p_wage": "wages", "all_p_wagemonth": "monthly_wages", "all_p_est": "num_establishments", "all_p_pci": "complexity" }, "hook_pre_merge": hook_industry, "classification_fields": { "location": { "classification": location_classification, "level": "country" }, "industry": { "classification": industry_classification, "level": "class" }, }, "digit_padding": { "location": 1, "industry": 4 }, "facet_fields": ["location", "industry", "year"], "facets": { ("industry_id", "year"): { "complexity": first }, ("location_id", "industry_id", "year"): { "employment": first, "wages": first, "monthly_wages": first, "num_establishments": first, } } } industry4digit_department = { "read_function": lambda: pd.read_hdf(prefix_path("Industries/industries_state.hdf"), "data"), "field_mapping": { "state_code": "location", "p_code": "industry", "year": "year", "state_p_emp": "employment", "state_p_wage": "wages", "state_p_wagemonth": "monthly_wages", "state_p_est": "num_establishments", "state_p_rca": "rca", "state_p_distance_flow": "distance", "state_p_cog_flow_pred": "cog", "state_all_coi_flow_pred": "industry_coi", "all_p_pci": "complexity", "state_all_eci": "industry_eci" }, "hook_pre_merge": hook_industry, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, "industry": { "classification": industry_classification, "level": "class" }, }, "digit_padding": { "location": 2, "industry": 4 }, "facet_fields": ["location", "industry", "year"], "facets": { ("location_id", "year"): { "employment": sum_group, "wages": sum_group, "monthly_wages": first, "num_establishments": sum_group, "industry_eci": first, "industry_coi":first, }, ("industry_id", "year"): { "employment": sum_group, "wages": sum_group, "monthly_wages": sum_group, "num_establishments": sum_group, "complexity": first }, ("location_id", "industry_id", "year"): { "employment": first, "wages": first, "monthly_wages": first, "num_establishments": first, "distance": first, "cog": first, "rca": first } } } def hook_industry4digit_msa(df): df = hook_industry(df) df.location = df.location.astype(int).astype(str).str.zfill(5) + "0" return df industry4digit_msa = { "read_function": lambda: pd.read_hdf(prefix_path("Industries/industries_msa.hdf"), "data"), "hook_pre_merge": hook_industry4digit_msa, "field_mapping": { "msa_code": "location", "p_code": "industry", "year": "year", "msa_p_emp": "employment", "msa_p_wage": "wages", "msa_p_wagemonth": "monthly_wages", "msa_p_est": "num_establishments", "msa_p_rca": "rca", "msa_p_distance_flow": "distance", "msa_p_cog_flow_pred": "cog", "msa_all_coi_flow_pred": "industry_coi", "all_p_pci": "complexity", "msa_all_eci": "industry_eci" }, "classification_fields": { "location": { "classification": location_classification, "level": "msa" }, "industry": { "classification": industry_classification, "level": "class" }, }, "digit_padding": { "industry": 4 }, "facet_fields": ["location", "industry", "year"], "facets": { ("location_id", "year"): { "employment": sum_group, "wages": sum_group, "monthly_wages": first, "num_establishments": sum_group, "industry_eci": first, "industry_coi": first, }, ("industry_id", "year"): { "employment": sum_group, "wages": sum_group, "complexity": first }, ("location_id", "industry_id", "year"): { "employment": first, "wages": first, "monthly_wages": first, "num_establishments": first, "distance": first, "cog": first, "rca": first } } } industry4digit_municipality = { "read_function": lambda: pd.read_hdf(prefix_path("Industries/industries_muni.hdf"), "data"), "hook_pre_merge": hook_industry, "field_mapping": { "muni_code": "location", "p_code": "industry", "year": "year", "muni_p_emp": "employment", "muni_p_wage": "wages", "muni_p_wagemonth": "monthly_wages", "muni_p_est": "num_establishments", }, "classification_fields": { "location": { "classification": location_classification, "level": "municipality" }, "industry": { "classification": industry_classification, "level": "class" }, }, "digit_padding": { "location": 5, "industry": 4 }, "facet_fields": ["location", "industry", "year"], "facets": { ("location_id", "industry_id", "year"): { "employment": first, "wages": first, "monthly_wages": first, "num_establishments": first, } } } population = { "read_function": lambda: pd.read_stata(prefix_path("Final_Metadata/col_pop_muni_dept_natl.dta")), "hook_pre_merge": lambda df: df[~df[["location", "year", "population"]].duplicated()], "field_mapping": { "year": "year", "dept_code": "location", "dept_pop": "population" }, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, }, "digit_padding": { "location": 2 }, "facet_fields": ["location", "year"], "facets": { ("location_id", "year"): { "population": first } } } gdp_nominal_department = { "read_function": lambda: pd.read_stata(prefix_path("Final_Metadata/col_nomgdp_muni_dept_natl.dta")), "hook_pre_merge": lambda df: df.drop_duplicates(["location", "year"]), "field_mapping": { "dept_code": "location", "dept_gdp": "gdp_nominal", "year": "year" }, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, }, "digit_padding": { "location": 2 }, "facet_fields": ["location", "year"], "facets": { ("location_id", "year"): { "gdp_nominal": first, } } } gdp_real_department = { "read_function": lambda: pd.read_stata(prefix_path("Final_Metadata/col_realgdp_dept_natl.dta")), "field_mapping": { "dept_code": "location", "real_gdp": "gdp_real", "year": "year" }, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, }, "digit_padding": { "location": 2 }, "facet_fields": ["location", "year"], "facets": { ("location_id", "year"): { "gdp_real": first, } } } def industry2digit_country_read(): df = pd.read_hdf(prefix_path("Industries/industries_all.hdf"), "data") df["country_code"] = "COL" return df industry2digit_country = { "read_function": industry2digit_country_read, "hook_pre_merge": hook_industry, "field_mapping": { "country_code": "location", "d3_code": "industry", "year": "year", "all_d3_wage": "wages", "all_d3_wagemonth": "monthly_wages", "all_d3_emp": "employment", "all_d3_est": "num_establishments", "all_d3_pci": "complexity" }, "classification_fields": { "location": { "classification": location_classification, "level": "country" }, "industry": { "classification": industry_classification, "level": "division" }, }, "digit_padding": { "location": 1, "industry": 2 }, "facet_fields": ["location", "industry", "year"], "facets": { ("industry_id", "year"): { "wages": first, "monthly_wages": first, "employment": first, "num_establishments": first, "complexity": first } } } industry2digit_department = { "read_function": lambda: pd.read_hdf(prefix_path("Industries/industries_state.hdf"), "data"), "hook_pre_merge": hook_industry, "field_mapping": { "state_code": "location", "d3_code": "industry", "year": "year", "state_d3_est": "num_establishments", "state_d3_wage": "wages", "state_d3_wagemonth": "monthly_wages", "state_d3_emp": "employment", "state_d3_rca": "rca", "state_d3_distance_flow_pred": "distance", "state_d3_cog_flow_pred": "cog", "all_d3_pci": "complexity" }, "classification_fields": { "location": { "classification": location_classification, "level": "department" }, "industry": { "classification": industry_classification, "level": "division" }, }, "digit_padding": { "location": 2, "industry": 2 }, "facet_fields": ["location", "industry", "year"], "facets": { ("location_id", "industry_id", "year"): { "wages": first, "monthly_wages": first, "employment": first, "num_establishments": first, "distance": first, "cog": first, "rca": first } } } def hook_industry2digit_msa(df): df = hook_industry(df) df.location = df.location.astype(int).astype(str).str.zfill(5) + "0" return df industry2digit_msa = { "read_function": lambda: pd.read_hdf(prefix_path("Industries/industries_msa.hdf"), "data"), "hook_pre_merge": hook_industry2digit_msa, "field_mapping": { "msa_code": "location", "d3_code": "industry", "year": "year", "msa_d3_est": "num_establishments", "msa_d3_wage": "wages", "msa_d3_wagemonth": "monthly_wages", "msa_d3_emp": "employment", "msa_d3_rca": "rca", "msa_d3_distance_flow_pred": "distance", "msa_d3_cog_flow_pred": "cog", "all_d3_pci": "complexity" }, "classification_fields": { "location": { "classification": location_classification, "level": "msa" }, "industry": { "classification": industry_classification, "level": "division" }, }, "digit_padding": { "industry": 2, "location": 5 }, "facet_fields": ["location", "industry", "year"], "facets": { ("industry_id", "year"): { "wages": sum_group, "monthly_wages": sum_group, "employment": sum_group, "num_establishments": sum_group, "complexity": first }, ("location_id", "industry_id", "year"): { "wages": first, "monthly_wages": first, "employment": first, "num_establishments": first, "distance": first, "cog": first, "rca": first } } } occupation2digit_industry2digit = { "read_function": lambda: pd.read_stata(prefix_path("Vacancies/Vacancies_do130_2d-Ind_X_4d-Occ.dta")), "field_mapping": { "onet_4dig": "occupation", "ciiu_2dig": "industry", "num_vacantes": "num_vacancies", "wage_mean": "average_wages" }, "classification_fields": { "occupation": { "classification": occupation_classification, "level": "minor_group" }, "industry": { "classification": industry_classification, "level": "division" }, }, "digit_padding": { "occupation": 7, "industry": 4 }, "facet_fields": ["occupation", "industry"], "facets": { ("occupation_id", "industry_id"): { "average_wages": first, "num_vacancies": first, } } } occupation2digit = { "read_function": lambda: pd.read_stata(prefix_path("Vacancies/Vacancies_do140_4d-Occ.dta")), "field_mapping": { "onet_4dig": "occupation", "num_vacantes": "num_vacancies", "wage_mean": "average_wages" }, "classification_fields": { "occupation": { "classification": occupation_classification, "level": "minor_group" }, }, "digit_padding": { "occupation": 7, }, "facet_fields": ["occupation"], "facets": { ("occupation_id"): { "average_wages": first, "num_vacancies": first, } } } livestock_template = { "read_function": None, "field_mapping": { "livestock": "livestock", "location_id": "location", "livestock_level": "livestock_level", "livestock_number": "num_livestock", "livestock_farms_number": "num_farms", "average_livestock_load": "average_livestock_load", }, "classification_fields": { "livestock": { "classification": livestock_classification, "level": "level1", }, "location": { "classification": location_classification, "level": None, }, }, "digit_padding": { "location": None, }, "facet_fields": ["location", "livestock"], "facets": { ("location_id", "livestock_id"): { "num_livestock": first, "num_farms": first, "average_livestock_load": first, }, ("location_id",): { "num_livestock": sum_group, "num_farms": sum_group, "average_livestock_load": null, } } } def read_livestock_level1_country(): df = pd.read_stata(prefix_path("Rural/livestock_Col_2.dta")) df["location_id"] = "COL" return df def hook_livestock(df): df["livestock"] = df["livestock"].str.lower() df = df[df.livestock_level == "level1"] return df livestock_level1_country = copy.deepcopy(livestock_template) livestock_level1_country["read_function"] = read_livestock_level1_country livestock_level1_country["hook_pre_merge"] = hook_livestock livestock_level1_country["classification_fields"]["location"]["level"] = "country" livestock_level1_country["digit_padding"]["location"] = 3 livestock_level1_department = copy.deepcopy(livestock_template) livestock_level1_department["read_function"] = lambda: pd.read_stata(prefix_path("Rural/livestock_dept_2.dta")) livestock_level1_department["hook_pre_merge"] = hook_livestock livestock_level1_department["classification_fields"]["location"]["level"] = "department" livestock_level1_department["digit_padding"]["location"] = 2 livestock_level1_municipality = copy.deepcopy(livestock_template) livestock_level1_municipality["read_function"] = lambda: pd.read_stata(prefix_path("Rural/livestock_muni_2.dta")) livestock_level1_municipality["hook_pre_merge"] = hook_livestock livestock_level1_municipality["classification_fields"]["location"]["level"] = "municipality" livestock_level1_municipality["digit_padding"]["location"] = 5 agproduct_template = { "read_function": None, "field_mapping": { "location_id": "location", "product_name_sp": "agproduct", "product_level": "agproduct_level", "year": "year", "land_sown_has": "land_sown", "land_harv_has": "land_harvested", "production_tons": "production_tons", "yieldtonsperha": "yield_ratio", "indexyield": "yield_index", }, "classification_fields": { "agproduct": { "classification": agproduct_classification, "level": "level3", }, "location": { "classification": location_classification, "level": None, }, }, "digit_padding": { "location": None, }, "facet_fields": ["location", "agproduct", "year"], "facets": { ("location_id", "agproduct_id", "year"): { "land_sown": first, "land_harvested": first, "production_tons": first, "yield_ratio": first, "yield_index": first, } } } def read_agproduct_level3_country(): df = pd.read_stata(prefix_path("Rural/agric_2007_2015_Col_final_2.dta")) df["location_id"] = "COL" return df def hook_agproduct(df): df["agproduct"] = df["agproduct"].map(slugify) df = df[df.agproduct_level == "level3"] df = df[df.year != ""] df.year = df.year.astype(int) df = df[df.year.between(YEAR_MIN_AGPRODUCT, YEAR_MAX_AGPRODUCT)] return df agproduct_level3_country = copy.deepcopy(agproduct_template) agproduct_level3_country["read_function"] = read_agproduct_level3_country agproduct_level3_country["hook_pre_merge"] = hook_agproduct agproduct_level3_country["classification_fields"]["location"]["level"] = "country" agproduct_level3_country["digit_padding"]["location"] = 3 agproduct_level3_department = copy.deepcopy(agproduct_template) agproduct_level3_department["read_function"] = lambda: pd.read_stata(prefix_path("Rural/agric_2007_2015_dept_final_2.dta")) agproduct_level3_department["hook_pre_merge"] = hook_agproduct agproduct_level3_department["classification_fields"]["location"]["level"] = "department" agproduct_level3_department["digit_padding"]["location"] = 2 agproduct_level3_municipality = copy.deepcopy(agproduct_template) agproduct_level3_municipality["read_function"] = lambda: pd.read_stata(prefix_path("Rural/agric_2007_2015_muni_final_2.dta")) agproduct_level3_municipality["hook_pre_merge"] = hook_agproduct agproduct_level3_municipality["classification_fields"]["location"]["level"] = "municipality" agproduct_level3_municipality["digit_padding"]["location"] = 3 def hook_land_use(df): df = df[df.land_use_level == "level2"] df["land_use"] = df["land_use"].str.replace('\x92', 'Â’') return df land_use_template = { "read_function": None, "hook_pre_merge": hook_land_use, "field_mapping": { "location_id": "location", "land_use_type_name_sp": "land_use", "land_use_level": "land_use_level", "land_use_ha": "area", }, "classification_fields": { "land_use": { "classification": land_use_classification, "level": "level2", }, "location": { "classification": location_classification, "level": None, }, }, "digit_padding": { "location": None, }, "facet_fields": ["location", "land_use"], "facets": { ("location_id", "land_use_id"): { "area": first, } } } def read_land_use_level2_country(): df = pd.read_stata(prefix_path("Rural/land_use_Col_c.dta")) df["location_id"] = "COL" return df land_use_level2_country = copy.deepcopy(land_use_template) land_use_level2_country["read_function"] = read_land_use_level2_country land_use_level2_country["classification_fields"]["location"]["level"] = "country" land_use_level2_country["digit_padding"]["location"] = 3 land_use_level2_department = copy.deepcopy(land_use_template) land_use_level2_department["read_function"] = lambda: pd.read_stata(prefix_path("Rural/land_use_dept_c.dta")) land_use_level2_department["classification_fields"]["location"]["level"] = "department" land_use_level2_department["digit_padding"]["location"] = 2 land_use_level2_municipality = copy.deepcopy(land_use_template) land_use_level2_municipality["read_function"] = lambda: pd.read_stata(prefix_path("Rural/land_use_muni_c.dta")) land_use_level2_municipality["hook_pre_merge"] = hook_land_use land_use_level2_municipality["classification_fields"]["location"]["level"] = "municipality" land_use_level2_municipality["digit_padding"]["location"] = 5 def hook_farmtype(df): df = df[df.farmtype_level == "level2"] return df farmtype_template = { "read_function": None, "hook_pre_merge": hook_farmtype, "field_mapping": { "location_id": "location", "farms_types_name": "farmtype", "farms_level": "farmtype_level", "farms_number": "num_farms", }, "classification_fields": { "farmtype": { "classification": farmtype_classification, "level": "level2", }, "location": { "classification": location_classification, "level": None, }, }, "digit_padding": { "location": None, }, "facet_fields": ["location", "farmtype"], "facets": { ("location_id", "farmtype_id"): { "num_farms": first, } } } def read_farmtype_level2_country(): df = pd.read_stata(prefix_path("Rural/farms_Col_c.dta")) df["location_id"] = "COL" return df farmtype_level2_country = copy.deepcopy(farmtype_template) farmtype_level2_country["read_function"] = read_farmtype_level2_country farmtype_level2_country["classification_fields"]["location"]["level"] = "country" farmtype_level2_country["digit_padding"]["location"] = 3 farmtype_level2_department = copy.deepcopy(farmtype_template) farmtype_level2_department["read_function"] = lambda: pd.read_stata(prefix_path("Rural/farms_dept_c.dta")) farmtype_level2_department["classification_fields"]["location"]["level"] = "department" farmtype_level2_department["digit_padding"]["location"] = 2 farmtype_level2_municipality = copy.deepcopy(farmtype_template) farmtype_level2_municipality["read_function"] = lambda: pd.read_stata(prefix_path("Rural/farms_muni_c.dta")) farmtype_level2_municipality["hook_pre_merge"] = hook_farmtype farmtype_level2_municipality["classification_fields"]["location"]["level"] = "municipality" farmtype_level2_municipality["digit_padding"]["location"] = 5 def hook_farmsize(df): df = df[df.farmsize_level == "level1"] return df farmsize_template = { "read_function": None, "hook_pre_merge": hook_farmsize, "field_mapping": { "location_id": "location", "landuse_type_sp": "farmsize", "landuse_type_level": "farmsize_level", "av_farms_size_ha": "avg_farmsize", }, "classification_fields": { "farmsize": { "classification": farmsize_classification, "level": "level1", }, "location": { "classification": location_classification, "level": None, }, }, "digit_padding": { "location": None, }, "facet_fields": ["location", "farmsize"], "facets": { ("location_id", "farmsize_id"): { "avg_farmsize": first, } } } def read_farmsize_level1_country(): df = pd.read_stata(prefix_path("Rural/average_farms_size_Col.dta")) df["location_id"] = "COL" return df farmsize_level1_country = copy.deepcopy(farmsize_template) farmsize_level1_country["read_function"] = read_farmsize_level1_country farmsize_level1_country["classification_fields"]["location"]["level"] = "country" farmsize_level1_country["digit_padding"]["location"] = 3 farmsize_level1_department = copy.deepcopy(farmsize_template) farmsize_level1_department["read_function"] = lambda: pd.read_stata(prefix_path("Rural/average_farms_size_dept.dta")) farmsize_level1_department["classification_fields"]["location"]["level"] = "department" farmsize_level1_department["digit_padding"]["location"] = 2 farmsize_level1_municipality = copy.deepcopy(farmsize_template) farmsize_level1_municipality["read_function"] = lambda: pd.read_stata(prefix_path("Rural/average_farms_size_muni.dta")) farmsize_level1_municipality["hook_pre_merge"] = hook_farmsize farmsize_level1_municipality["classification_fields"]["location"]["level"] = "municipality" farmsize_level1_municipality["digit_padding"]["location"] = 5 nonagric_template = { "read_function": None, "field_mapping": { "location_id": "location", "activity_name": "nonag", "activities_level": "nonag_level", "farms_number_agric": "num_farms_ag", "farms_number_nonagric": "num_farms_nonag", "farms_number": "num_farms", }, "classification_fields": { "nonag": { "classification": nonagric_classification, "level": "level3", }, "location": { "classification": location_classification, "level": None, }, }, "digit_padding": { "location": None, }, "facet_fields": ["location", "nonag"], "facets": { ("location_id", "nonag_id"): { "num_farms": first, "num_farms_ag": first, "num_farms_nonag": first, } } } def fix_nonagric(df): df = df[df.activities_level == "level3"] df = df.drop("activity_name_sp", axis=1) agric = df[df.activities_group == "agric_nonagric"].drop("activities_group", axis=1) nonagric = df[df.activities_group == "nonagric_nonagric"].drop("activities_group", axis=1) assert agric.size == nonagric.size, "the agric_agric and nonagric_nonagric categories should have the same number of items" df = agric.merge(nonagric, on=["activities_level", "location_id", "activities_subgroup", "activity_name"], how="outer", suffixes=("_agric", "_nonagric")) df["farms_number"] = df["farms_number_agric"] + df["farms_number_nonagric"] return df def read_nonagric_level3_country(): df = pd.read_stata(prefix_path("Rural/non_agri_activities_Col.dta")) df["location_id"] = "COL" df["activity_name"] = df["activities"].str.strip() df = df.drop("activities", axis=1) df["activity_name_sp"] = pd.np.nan df = fix_nonagric(df) return df def read_nonagric_level3_department(): df = pd.read_stata(prefix_path("Rural/non_agri_activities_dept.dta")) df = fix_nonagric(df) return df def read_nonagric_level3_municipality(): df = pd.read_stata(prefix_path("Rural/non_agri_activities_muni.dta")) df = fix_nonagric(df) return df def hook_nonagric(df): df["nonag"] = df["nonag"].map(slugify) df = df[df.nonag_level == "level3"] return df nonagric_level3_country = copy.deepcopy(nonagric_template) nonagric_level3_country["read_function"] = read_nonagric_level3_country nonagric_level3_country["hook_pre_merge"] = hook_nonagric nonagric_level3_country["classification_fields"]["location"]["level"] = "country" nonagric_level3_country["digit_padding"]["location"] = 3 nonagric_level3_department = copy.deepcopy(nonagric_template) nonagric_level3_department["read_function"] = read_nonagric_level3_department nonagric_level3_department["hook_pre_merge"] = hook_nonagric nonagric_level3_department["classification_fields"]["location"]["level"] = "department" nonagric_level3_department["digit_padding"]["location"] = 2 nonagric_level3_municipality = copy.deepcopy(nonagric_template) nonagric_level3_municipality["read_function"] = read_nonagric_level3_municipality nonagric_level3_municipality["hook_pre_merge"] = hook_nonagric nonagric_level3_municipality["classification_fields"]["location"]["level"] = "municipality" nonagric_level3_municipality["digit_padding"]["location"] = 3 ``` #### File: atlas-subnational-api/tests/__init__.py ```python from colombia import create_app from atlas_core.testing import BaseTestCase as CoreBaseTestCase class BaseTestCase(CoreBaseTestCase): SQLALCHEMY_DATABASE_URI = "sqlite://" def create_app(self): return create_app({"SQLALCHEMY_DATABASE_URI": self.SQLALCHEMY_DATABASE_URI, "TESTING": True}) ```
{ "source": "jgp505/PerovGen", "score": 2 }
#### File: pygmd/autocal/inputset.py ```python import os import sys import time import subprocess import glob from shutil import copyfile import ast import yaml import numpy as np import pandas as pd from collections import defaultdict from pymatgen.io.vasp.sets import MPRelaxSet from pymatgen.symmetry.bandstructure import HighSymmKpath from pymatgen.io.vasp.inputs import Kpoints, Incar, Kpoints_supported_modes from perovgen.pygmd.shell import ShellPath from perovgen.pygmd.input_structure import load_structure, GMDStructure def CopyCHGCAR(path): b = os.path.abspath(path) if os.path.isfile(b): ops = os.path.split(b)[0] if "CHGCAR" in os.listdir(ops) : chg_path = "{}/CHGCAR".format(ops) else : print("It isn't have CHGCAR file") sys.exit(0) else : if "CHGCAR" in os.listdir(b) : chg_path = "{}/CHGCAR".format(path) else : print("It isn't have CHGCAR file") sys.exit(0) return chg_path def MakingInpcar(structure, path, nelect, kpoints): with open(path,'w') as fi : for i in kpoints : fi.write("%.3f "%(i)) fi.write("\n0.01\n%i\nV\n"%(nelect)) for i in structure.lattice.matrix : fi.write("%.5f %.5f %.5f\n"%(i[0],i[1],i[2])) fi.close() class inputgmd : def GMDKpoints(self,kpoints) : kpoint={"POINT":list(kpoints[0])[0]} for k in kpoints[1:] : n,v = k.split("=") n = n.replace(" ","") v = v.replace(" ","") if n == 'CONSTK': kpoint[n]=int(v) elif n == 'KPTS' : kpoint[n]=ast.literal_eval(v) if not "CONSTK" in [*kpoint] and "KPTS" in [*kpoint] : kpoint['CONSTK']=False elif "CONSTK" in [*kpoint] and not "KPTS" in [*kpoint]: kpoint['KPTS']=False return kpoint def string_to_dict(self,incars) : incar = {} for inc in incars : n,v = inc.split("=") n = n.replace(" ","") v = v.replace(" ","") try : if type(int(v)) == int : v = int(v) elif type(float(v)) == float : v = float(v) incar[n]=v except : if n == "MAGMOM" : # list type incar['MAGMOM']=ast.literal_eval(v) else : incar[n]=v return incar def GMDIncar(self,incar) : if incar[0] == "MPJ" : incars = {"ISMEAR":1} else : stream = open("%s/GMDincar.yaml"%(os.path.dirname(__file__)),'r') incars = yaml.load(stream) if incar[0] == "PBE" : pass elif incar[0] == "PBESol" : incars["GGA"]='Ps' elif incar[0] == "VDW" : incars["IVDW"]=21 elif incar[0] == "SCAN" : incars["METAGGA"] = "SCAN" incars["LUSE_VDW"] = True incars["BPARAM"]=15.7 incars["LASPH"]=True if len(incar[1:]) != 0 : incar1 = self.string_to_dict(incar[1:]) for k,v in incar1.items() : incars[k]=v return incars def __init__(self, path) : self.path = path f = open(path,'r') ff = f.readlines() self.inputgmd = defaultdict(list) self.class_type_list = ['KPOINTS','INCAR','SHELL','CALMODE'] self.modecheck = ["M","R","C","B","D","A","U","E",'G', # one mode "RC","CB","CD","DB","BD","BE","EU","CA",'CG','RG', # two mode "RCB","RCD","CBD","CDB","DBE","CBE","BEU","RCA",'CBG', # THREE MODE "RCBD","RCDB","CBEU","DBEU","RCBE","CDBE",'RCBG', # four mode "RCBEU","RCDBE","CDBEU","RCBGE", # FIVE MODE "RCDBEU",'RCDBGE','RGCDBE',# SIX MODE "RCADBEU"] # SEVEN MODE for i in ff : line = i.split("\n")[0] if not '#' in line : if len(line.split(":")) == 2 : if line.split(":")[0] in self.class_type_list : classname = line.split(":")[0] else : print(line.split(":")[0],"doesn't exist class in the input.gmd") sys.exit(1) else : if not line == '' : self.inputgmd[classname].append(line) # Check the KPOINTS class if not list(self.inputgmd['KPOINTS'][0])[0] in ["A", "G", "M"] : print("KPOINTS first line have to type A(Auto) or G(Gamma) or M(Monkhorst)!") sys.exit(1) elif len(self.inputgmd['KPOINTS']) > 4 : print("KPOINTS class can only have 3 or less values.") sys.exit(1) else : self.kpoints = self.GMDKpoints(self.inputgmd['KPOINTS']) # Check the SHELL class if len(self.inputgmd['SHELL']) != 1: print("SHELL class must have only one value!") sys.exit(1) else : self.shell = self.inputgmd['SHELL'][0] # Check the CALMODE class if not self.inputgmd['CALMODE'][0] in self.modecheck : print("CALMODE calss is wrong mode!") sys.exit(1) else : self.calmode = list(self.inputgmd['CALMODE'][0]) # Check the INCAR class if not self.inputgmd['INCAR'][0] in ['PBE','PBESol','VDW','SCAN','MPJ'] : print("INCAR first line have to type PBE or PBESol or VDW or SCAN or MPJ") sys.exit(1) else : self.exchange_corr = self.inputgmd['INCAR'][0] self.incar = self.GMDIncar(self.inputgmd['INCAR']) self.inputgmd['KPOINTS'] = self.kpoints self.inputgmd['INCAR'] = self.incar self.inputgmd['SHELL'] = self.shell self.inputgmd['CALMODE'] = self.calmode class PerovInputs : def __init__(self, structure, is_selective=False): self.is_selective=is_selective for i in range(structure.num_sites): try : structure.replace(i, structure.species[i].element) except : structure.replace(i, structure.species[i]) self.poscar = structure if self.is_selective : for i in range(self.poscar.num_sites): try : self.poscar.replace(i,self.poscar.species[i].element, properties=None) except : self.poscar.replace(i,self.poscar.species[i],properties=None) full_formula = GMDStructure(self.poscar).formula(reduced=False) try : symmetry, groupnumber = self.poscar.get_space_group_info() except : groupnumber = 0 self.naming = "{0}_{1:03d}".format(full_formula, groupnumber) def incarmode(self,incar, method): if method == "R" : pass elif method == "C": incar["NSW"] = 0 incar["LCHARG"] = True incar["EDIFF"] = 1E-6 elif method == "B" or method == "E" or method == "D": incar["NSW"] = 0 incar["EDIFF"]=1E-6 incar["LCHARG"] = False incar["ICHARG"] = 11 incar["SIGMA"]=0.01 incar["ISMEAR"] = 0 if method == "D" : incar["SIGMA"]=0.01 incar["ISMEAR"] = -5 elif method == "U" : incar["LREAL"] = False incar["NSW"] = 0 incar["EDIFF"]=1E-8 incar["ISMEAR"]=0 incar["IBRION"]=8 incar["LEPSILON"]=True incar["SIGMA"]=0.01 elif method == "A" : incar["EDIFF"]=1E-8 incar["LPEAD"]=True incar["NEDPS"]=2000 incar["LOPTICS"]=True incar["CSHIFT"]=0.100 incar["SIGMA"]=0.01 incar["LSORBIT"]=True elif method == 'G' : incar['NKRED']=2 incar['LHFCALC']=True incar['ALGO']='D' # ver 3.6.8 incar['NSW']=1 # one-shot hybrid incar['ISYM']=0 incar['SYMPREC']=1E-8 incar['AEXX']=0.25 incar['HFSCREEN']=0.2 incar['TIME']=0.4 incar['PRECFOCK']='FAST' ''' elif method == "M" : incar["EDIFF"]=1E-5 incar["ENCUT"]=400 ''' return incar def inputfolder(self, inputs, method, soc=False): incar = self.incarmode(incar=inputs.incar,method=method) ; kpoints = inputs.kpoints mpr = MPRelaxSet(self.poscar, user_incar_settings=incar,user_potcar_functional=None) #"PBE_52") vi = mpr.get_vasp_input() if soc : del vi['INCAR']['MAGMOM'] vi['INCAR']['LSORBIT'] = True vi['KPOINTS'].comment = "{0}_{1}".format(method, self.naming) if inputs.exchange_corr != 'MPJ' : warning = ''' [Warning] both CONSTK and KPTS exist in KPOINTS class in input.gmd.\n It is reflected as CONSTK. ''' if kpoints['CONSTK'] and kpoints['KPTS'] : print(warning) # KPOINTS mode if kpoints['POINT'] == 'G' : vi['KPOINTS'].style = Kpoints_supported_modes.Gamma elif kpoints['POINT'] == 'M' : vi['KPOINTS'].style = Kpoints_supported_modes.Monkhorst elif kpoints['POINT'] == 'A' : pass # HSE06 and DOS calculation setting Gamma and kpoints if method == "G" : vi['KPOINTS'].style = Kpoints_supported_modes.Gamma # CONSTK = 25 and even number lattice = [] for l in ['a','b','c'] : kl = self.poscar.as_dict()['lattice'][l] if kl < 25 : if round(25/kl)%2 == 0 : lattice.append(round(25/kl)) else : lattice.append(round(25/kl)+1) else : lattice.append(1) vi['INCAR']['NKREDX']=2 vi['INCAR']['NKREDY']=2 vi["KPOINTS"].kpts[0] = lattice elif method == 'D' : vi['KPOINTS'].style = Kpoints_supported_modes.Gamma if (kpoints['CONSTK'] and kpoints['KPTS']) or kpoints['CONSTK']: number = kpoints['CONSTK']*2 lattice = [self.poscar.as_dict()['lattice'][l] for l in ['a','b','c']] a,b,c = [i if i < number else number for i in lattice] vi["KPOINTS"].kpts[0] = [round(number/a),round(number/b),round(number/c)] elif kpoints['KPTS'] : vi['KPOINTS'].kpts[0] = np.array(kpoints['KPTS'])*2 elif method == 'B' : bandinfo = HighSymmKpath(self.poscar) vi['KPOINTS']=vi['KPOINTS'].automatic_linemode(divisions=21,ibz=bandinfo) else : if (kpoints['CONSTK'] and kpoints['KPTS']) or kpoints['CONSTK']: number = kpoints['CONSTK'] lattice = [self.poscar.as_dict()['lattice'][l] for l in ['a','b','c']] a,b,c = [i if i < number else number for i in lattice] vi["KPOINTS"].kpts[0] = [round(number/a),round(number/b),round(number/c)] elif kpoints['KPTS'] : vi['KPOINTS'].kpts[0] = kpoints['KPTS'] else : # HSE06 and DOS calculation setting Gamma and kpoints if method == "G" : vi['KPOINTS'].style = Kpoints_supported_modes.Gamma # CONSTK = 25 and even number lattice = [] for l in ['a','b','c'] : kl = self.poscar.as_dict()['lattice'][l] if kl < 25 : if round(25/kl)%2 == 0 : lattice.append(round(25/kl)) else : lattice.append(round(25/kl)+1) else : lattice.append(1) vi['INCAR']['NKREDX']=2 vi['INCAR']['NKREDY']=2 vi["KPOINTS"].kpts[0] = lattice elif method == 'D' : vi['KPOINTS'].style = Kpoints_supported_modes.Gamma elif method == 'B' : bandinfo = HighSymmKpath(self.poscar) vi['KPOINTS']=vi['KPOINTS'].automatic_linemode(divisions=21,ibz=bandinfo) return vi class RunningShell : def __init__(self, shell, name, path): self.shell_path = ShellPath().shellpath try : vaspsh = open("{}/{}".format(self.shell_path,shell),"r") except : print("There isn't {} file".format(shell)) sys.exit(1) self.vaspsh_list = vaspsh.readlines() for i in self.vaspsh_list : if "-N" in i : nameline = i.split() name_index = self.vaspsh_list.index(i) del self.vaspsh_list[name_index] del nameline[-1] lines2='' for i in nameline : lines2 += i+" " lines2 += name + '\n' self.vaspsh_list.insert(name_index,lines2) self.path = path def write_vaspsh(self): with open("{}/vasp.sh".format(self.path),"w") as fi : for i in self.vaspsh_list : fi.write(i) fi.close() def SOC_read_vaspsh(self): for i in range(len(self.vaspsh_list)): if 'std' in self.vaspsh_list[i] : std_line = self.vaspsh_list[i].split("#") if len(std_line) == 1 : a = list(std_line[0]) a.insert(0,"#") aa="" for j in a : aa += j self.vaspsh_list[i] = aa else : pass elif 'ncl' in self.vaspsh_list[i] : ncl_line = self.vaspsh_list[i].split("#") if len(ncl_line) == 1 : a = list(std_line[0]) a.insert(0,"#") aa="" for j in a : aa += j self.vaspsh_list[i] = aa else : self.vaspsh_list[i] = ncl_line[-1] if 'gam' in self.vaspsh_list[i] : std_line = self.vaspsh_list[i].split("#") if len(std_line) == 1 : a = list(std_line[0]) a.insert(0,"#") aa="" for j in a : aa += j self.vaspsh_list[i] = aa else : pass with open("{}/vasp.sh".format(self.path),"w") as fi : for i in self.vaspsh_list : fi.write(i) fi.close() def running_mode(self,soc=False, run=True): pwd = os.getcwd() if soc : self.SOC_read_vaspsh() else : self.write_vaspsh() if run : os.chdir(self.path) subprocess.check_call(['qsub','vasp.sh']) #os.system("qsub < vasp.sh") os.chdir(pwd) ``` #### File: pygmd/cli/gmd_analysis.py ```python import os import sys import numpy as np import pandas as pd import yaml from collections import defaultdict from shutil import copy from pymatgen.io.vasp.outputs import Vasprun from perovgen.pygmd.shell import ShellPath from perovgen.pygmd.input_structure import load_structure,GMDStructure from perovgen.pygmd.analysis.energy import GMDPhaseDiagram def graphyaml(string) : path = os.path.abspath(__file__).split(os.sep)[:-2] path.append("analysis") path.append("graph.yaml") path = os.sep.join(path) with open(path) as fi : graph = yaml.load(fi,Loader=yaml.FullLoader) return graph[string] def pdospath() : path = os.path.abspath(__file__).split(os.sep)[:-3] path.append("pdos") path.append("pdos") path = os.sep.join(path) return path def analysis(args) : if args.graph : dic = graphyaml(args.graph) with open('graph.yaml','w') as fi : yaml.dump(dic,fi,default_flow_style=False) print("%s generate the graph.yaml file"%(os.getcwd())) elif args.input : shell, numberlist = ShellPath().check() while True : number = int(input("Please enter the number >> ")) if number in numberlist : break mn = str(input("Please enter the mode ex) RCDB >> ")) with open("input.gmd",'w') as fi : fi.write("### Perovgen input.gmd\n") fi.write("KPOINTS:\nA\nCONSTK=30\n\n") fi.write("INCAR:\nMPJ\n\n") fi.write("SHELL:\n%s\n\n"%(shell[number-1][-1])) fi.write("CALMODE:\n%s\n"%(mn)) fi.close() elif args.pdos : path = pdospath() s = load_structure(os.getcwd())[0][0] if not s : print("Structure file doesn't exist!\n") sys.exit(1) # Total DOS print("Total DOS") os.system("%s dos width=0.03"%(path)) # partial DOS dic = defaultdict(list) print("pDOS") for e,i in enumerate(s.species): dic[i.symbol].append(e+1) for k,v in dic.items(): for s in ['tot','s','p'] : with open("LIST",'w') as fi : fi.write("{}_{}\n".format(k,s)) for i in v : if s == "tot" : fi.write("%i tot tot\n"%(i)) elif s == "s" : fi.write("%i s tot\n"%(i)) elif s == "p" : fi.write("%i px tot\n"%(i)) fi.write("%i py tot\n"%(i)) fi.write("%i pz tot\n"%(i)) os.system("{} pdos width=0.03".format(path)) elif args.convert: files = load_structure(args.convert)[0] for e,f in enumerate(files) : GMDStructure(f).convert_to_cif() ``` #### File: pygmd/cli/gmd_auto.py ```python import os import sys import time import subprocess from shutil import copyfile from pymatgen.io.vasp.sets import MPRelaxSet from pymatgen.io.vasp.outputs import Vasprun from perovgen.pygmd.input_structure import load_structure, GMDStructure from perovgen.pygmd.autocal.inputset import * from perovgen.pygmd.autocal.algorithm import openingphrase from perovgen.pygmd.analysis.electronic import BSPlotting, DOSPlotting, GMDAnalysis from perovgen.pygmd.analysis.energy import GMDExcitonbinding def analyze_calculation(args): pwd = os.getcwd() if args.inputpath : inputs = inputgmd(args.inputpath) else : print("\nUserError : gmd3 auto [path of input.gmd] [path of structure] [optional]\n") sys.exit(1) if not args.strucpath : print("\nUserError : gmd3 auto [path of input.gmd] [path of structure] [optional]\n") sys.exit(1) else : if not load_structure(args.strucpath) : print("\n[Warning] the structure file does not exist.\n") sys.exit(1) else : strucpath = load_structure(args.strucpath) openingphrase(inputs,strucpath[-1]) if args.directory : for struc, filename in zip(strucpath[0], strucpath[-1]) : fn = os.path.basename(filename).split(".")[0] for mt in inputs.calmode: runfolder = [] p = PerovInputs(structure=struc, is_selective=args.deleteselect) try : symmetry, groupnumber = struc.get_space_group_info() except : groupnumber = 0 # Revised INPUT FILES vi = p.inputfolder(inputs=inputs, method=mt,soc=args.soc) inputs = inputgmd(args.inputpath) # Writing the Input directory full_formula = GMDStructure(struc).formula(reduced=False) pretty_formula = GMDStructure(struc).formula() root_dir = "{0}/{1}_{2:03d}".format(pwd, pretty_formula, groupnumber) folder_name = "{0}/{1}_{2}_{3}".format(root_dir,mt,full_formula,fn) vi.write_input(output_dir=folder_name) ; runfolder.append(folder_name) if mt == "E" : folder_name_H = "{0}/H_{1}_{2}".format(root_dir,full_formula,fn) vi.write_input(output_dir=folder_name_H); runfolder.append(folder_name_H) for runf in runfolder : naming = os.path.basename(runf) rs = RunningShell(shell=inputs.shell, name=naming, path=runf) rs.running_mode(soc=args.soc, run=False) else : for struc, filename in zip(strucpath[0], strucpath[-1]) : fn = os.path.basename(filename).split(".")[0] # directory f = open("{}/calnohup.py".format(os.path.dirname(__file__)),"r") ff = f.readlines() ff.insert(0,"inputpath='{}'\n".format(os.path.abspath(args.inputpath))) ff.insert(1,"strucpath='{}'\n".format(filename)) if args.deleteselect : ff.insert(2,"ds=True\n") else : ff.insert(2,"ds=False\n") if args.soc : ff.insert(3,"orbit=True\n") else : ff.insert(3,"orbit=False\n") ff.insert(4,"mole=False\n") ff.insert(5,"\n") # directory name try : symmetry, groupnumber = struc.get_space_group_info() except : groupnumber = 0 pretty_formula = GMDStructure(struc).formula() root_dir = "{0}/{1}_{2:03d}".format(pwd, pretty_formula, groupnumber) os.makedirs(root_dir,exist_ok=True) with open("{}/run_{}.py".format(root_dir,fn),"w") as fi : for i in ff : fi.write(i) fi.close() #os.system("python {}/run_{}.py".format(root_dir,fn)) os.system("nohup python -u {}/run_{}.py > {}/gmd_{}.out &".format(root_dir,fn,root_dir,fn)) ``` #### File: pygmd/cli/gmd_replace.py ```python import os import sys from pymatgen.core import Structure from pymatgen.io.vasp.outputs import Vasprun from perovgen.pygmd.input_structure import GMDStructure, load_structure from perovgen.pygmd.shell import ShellPath from perovgen.pygmd.autocal.substitute import RandomMolecule, InputInform, RandomAtom from perovgen.pygmd.autocal.algorithm import openingphrase from perovgen.pygmd.autocal.inputset import * import time import subprocess def molecule(args) : if args.ma : mafa = "MA" elif args.fa : mafa = "FA" elif args.gua : mafa = "GUA" elif args.dima : mafa = "diMA" elif args.trima : mafa = "triMA" elif args.tetrama : mafa = "tetraMA" elif args.zolium : mafa = "Zolium" ms = RandomMolecule._loadmolecule(mafa) inputatom, changenum, fixcalc, multiple = InputInform(random_coord=args.position, random_degree=args.degree).molecule_input() mole = RandomMolecule(random_coord=args.position, random_degree=args.degree) # Input strucpath = [] structure = load_structure(args.path)[0] e = 0 for s in structure : for i in range(multiple) : molestruc, csv = mole.tiltingmolecule(s, ms, inputatom=inputatom, changenum=changenum,fixcalc = fixcalc) vaspname = GMDStructure(molestruc).formula(reduced=False) if not os.path.exists(vaspname): os.makedirs(vaspname) molestruc.to(filename="{0}/POSCAR_{1}_{2:04d}".format(vaspname,vaspname,e+1)) strucpath.append("{0}/POSCAR_{1}_{2:04d}".format(vaspname,vaspname,e+1)) if args.csv : if not os.path.exists("{}/CSV".format(vaspname)): os.makedirs("{}/CSV".format(vaspname)) csv.to_csv("{0}/CSV/{1}_{2:04d}.csv".format(vaspname,vaspname,e+1)) e+=1 return strucpath def element(args): r_atom = RandomAtom(random_coord=args.position, random_degree=args.degree) atom1, atom2, change, multiple = InputInform(random_coord=args.position, random_degree=args.degree).atom_input() #Input strucpath = [] structure = load_structure(args.path)[0] e = 0 for s in structure : for i in range(multiple) : s1, s = r_atom.substitution(structure=s,atom1=atom1, atom2=atom2, ratio=change) vaspname = GMDStructure(s1).formula(reduced=False) if not os.path.exists(vaspname) : os.makedirs(vaspname) s1.to(filename="{0}/POSCAR_{1}_{2:04d}".format(vaspname,vaspname,e+1)) strucpath.append("{0}/POSCAR_{1}_{2:04d}".format(vaspname,vaspname,e+1)) e+=1 return strucpath def randomreplace(args) : if args.sub : strucpath=element(args) else : strucpath=molecule(args) if args.input : inputs = inputgmd(args.input[0]) if inputs.calmode[0] == 'M' : print(strucpath, inputs.calmode) else : print("If you want to calculate the molecule relaxed, please enter the M mode in CALMODE class") sys.exit(1) strucpath = load_structure(strucpath) print(inputs.inputgmd) for struc, filename in zip(strucpath[0], strucpath[-1]) : for isif in ['ISIF7','ISIF2', 'ISIF3']: if isif == 'ISIF7' : os.makedirs("ISIF7") elif isif == 'ISIF2' : os.makedirs("ISIF2") ``` #### File: PerovGen/pygmd/input_structure.py ```python import os import sys import numpy as np import pandas as pd from collections import defaultdict from pymatgen.core import Structure def load_structure(path): ''' The structure file that exists in the PATH is read and return in the form of a list Args : path(str) : OS.PATH ''' struclist=[] ; spath=[] if type(path) == str : path = [path] if path : for p in path : path1 = os.path.abspath(p) if os.path.isfile(path1): try : s = Structure.from_file(path1) for i in range(s.num_sites) : try : s.replace(i, s.species[i].element) except : s.replace(i, s.species[i]) struclist.append(s) spath.append(path1) except : pass else : for j in os.listdir(path1): try : s = Structure.from_file("%s/%s"%(p,j)) for i in range(s.num_sites) : try : s.replace(i, s.species[i].element) except : s.replace(i, s.species[i]) struclist.append(s) spath.append(j) except : pass return struclist, spath class GMDStructure : ''' This module provides structural files(ex. cif, POSCAR) needed for automatic calculation ''' def __init__(self, structure): structure.sort() self.structure = structure self.coords = np.dot(self.structure.frac_coords, self.structure.lattice.matrix) self.species = self.structure.species def _split_molecule(self): d = self.structure.distance_matrix hcn_coords = defaultdict(list) for i in range(len(self.coords)) : if self.species[i].symbol == "C" : hcn_coords["C"].append(i) elif self.species[i].symbol == "H": hcn_coords["H"].append(i) elif self.species[i].symbol == "N" : hcn_coords['N'].append(i) # the number H and N of the round C molecule = defaultdict(list) for c in hcn_coords['C'] : chbonding = np.where(d[c,hcn_coords['H'][0]:hcn_coords['H'][-1]+1] < 1.5)[0] cnbonding = np.where(d[c,hcn_coords['N'][0]:hcn_coords['N'][-1]+1] < 1.5)[0] if len(chbonding) == 0 and len(cnbonding) == 3 : molecule["GUA"].append(1) elif len(chbonding) == 1 and len(cnbonding) == 2 : nhbonding = np.where(d[hcn_coords['N'][0]+cnbonding[0],hcn_coords['H'][0]:hcn_coords['H'][-1]+1]<1.5)[0] if len(nhbonding) == 2 : molecule["FA"].append(1) else : molecule['Zolium'].append(1) elif len(chbonding) == 3 and len(cnbonding) == 1: nhbonding = np.where(d[hcn_coords['N'][0]+cnbonding[0],hcn_coords['H'][0]:hcn_coords['H'][-1]+1]<1.5)[0] if len(nhbonding) == 3 : molecule["MA"].append(1) elif len(nhbonding) == 2 : molecule['DMA'].append(1) elif len(nhbonding) == 1 : molecule['triMA'].append(1) elif len(nhbonding) == 0 : molecule['tetraMA'].append(1) else : molecule['H'].append(1) molecule['C'].append(1) molecule['N'].append(1) for k,v in molecule.items() : if k == "DMA" : molecule['DMA']=int(len(v)/2) elif k == 'triMA' : molecule['triMA']=int(len(v)/3) elif k == 'tetraMA': molecule['tetraMA']=int(len(v)/4) else : molecule[k]=len(v) return molecule def formula_dict(self) : sn = self.structure.composition.get_el_amt_dict() sn_dict = dict() if 'C' in sn and 'H' in sn and 'N' in sn : mole=self._split_molecule() for k,v in mole.items() : if k == 'FA' : sn['C']-=v sn['H']-=v*5 sn['N']-=v*2 elif k == 'MA' : sn['C']-=v sn['N']-=v sn['H']-=v*6 elif k == 'GUA' : sn['C']-=v sn['N']-=v*3 sn['H']-=v*6 elif k == 'DMA' : sn['C']-=v*2 sn['N']-=v sn['H']-=v*8 elif k == 'triMA' : sn['C']-=v*3 sn['N']-=v sn['H']-=v*10 elif k == 'tetraMA': sn['C']-=v*4 sn['N']-=v sn['H']-=v*12 elif k == 'Zolium' : sn['C']-=v*3 sn['N']-=v*2 sn['H']-=v*5 sn_dict[k]=v if sn['C'] == 0 : del sn['C'] else : sn_dict['C'] = sn['C'] if sn['H'] == 0 : del sn['H'] else : sn_dict['H'] = sn['H'] if sn['N'] == 0 : del sn['N'] else : sn_dict['N'] = sn['N'] for k,v in sn.items(): sn_dict[k]=v return sn_dict def formula(self, reduced=True): if reduced : sn = self.structure.composition.to_reduced_dict else : sn = self.structure.composition.get_el_amt_dict() vaspname='' if 'C' in sn and 'H' in sn and 'N' in sn : mole=self._split_molecule() for k,v in mole.items() : if v == 1 : vaspname += k else : vaspname += "%s%i"%(k,v) if k == 'FA' : sn['C']-=v sn['H']-=v*5 sn['N']-=v*2 elif k == 'MA' : sn['C']-=v sn['N']-=v sn['H']-=v*6 elif k == 'GUA' : sn['C']-=v sn['N']-=v*3 sn['H']-=v*6 elif k == 'DMA' : sn['C']-=v*2 sn['N']-=v sn['H']-=v*8 elif k == 'triMA' : sn['C']-=v*3 sn['N']-=v sn['H']-=v*10 elif k == 'tetraMA': sn['C']-=v*4 sn['N']-=v sn['H']-=v*12 elif k == 'Zolium' : sn['C']-=v*3 sn['N']-=v*2 sn['H']-=v*5 for k,v in sn.items() : if int(v) == 1 : vaspname += "%s"%(k) elif int(v) <= 0 : pass else : vaspname += "%s%i"%(k,v) return vaspname def convert_to_cif(self, name=False) : ''' convert POSCAR to cif. if name is false, file name is [formula]_[symmetry number].cif. name (str) = designate the name ''' if not name : try : symmetry, groupnumber = self.structure.get_space_group_info() except : groupnumber = 0 formula = self.formula(reduced=True) name = "{0}_{1:03d}".format(formula, groupnumber) return self.structure.to(filename="{}.cif".format(name)) ```
{ "source": "jgpattis/Desres-sars-cov-2-apo-mpro", "score": 2 }
#### File: Desres-sars-cov-2-apo-mpro/cryptic_pockets/plot_exposons.py ```python import numpy as np import pickle import matplotlib.pyplot as plt import sys sys.path.append("..") from util.util import backup mi_name = 'sasa_mi.npy' exp_name = 'exposons.npy' out_name = 'plots/exposons_try1' o_type = 'pdf' mi = np.load(open(mi_name,"rb")) exp = np.load(open(exp_name,"rb")) #out000 -= out000.diagonal() * np.eye(*out000.shape) #lab_arr = obj1.labels + 1 #lab_list = lab_arr.tolist() mi[mi < 0.005] = np.nan #minr = lab_arr.min() #maxr = lab_arr.max() plt.imshow(mi, origin='lower', interpolation='none', cmap='viridis_r') #extent=[minr, maxr, minr, maxr]) cb = plt.colorbar() plt.xlabel('Residue Number', fontsize=16) plt.ylabel('Residue Number', fontsize=16) cb.set_label('Log(MI)', fontsize=16) plt.tight_layout() plt.savefig(out_name + '_matrix.' + o_type) plt.clf() plt.plot(exp) plt.xlabel('Residue Number', fontsize=16) plt.ylabel('exposon', fontsize=16) plt.tight_layout() plt.savefig(out_name + '_exposon.' + o_type) plt.clf() def print_vmd_string(inds): string = f'(residue {inds[0]}' for i in range(1, len(inds)): string = string + f' or residue {inds[i]}' return string + ') and (sidechain or type CA)' unique, un_inds, un_counts = np.unique(exp, return_index=True, return_counts=True) order = np.argsort(un_counts) name = out_name + '_VMD_selection.txt' backup(name) f = open(name,'w') f.write('#selection strings to highlight exposons in VMD\n') f.write('\n') for i in range(2,12): inds = np.where(exp == unique[order][-i])[0] new_inds = print_vmd_string(inds) f.write(new_inds + '\n') f.write('\n') ``` #### File: jgpattis/Desres-sars-cov-2-apo-mpro/featurize_02.py ```python import mdtraj as md import pyemma.coordinates as coor import numpy as np import pickle import pyemma import os #traj_num = [ '0000', '0020', '0040', '0060', '0080'] traj_num = [f'{i:04d}' for i in range(100)] traj_path = '../DESRES-Trajectory_sarscov2-10880334-no-water-no-ion-glueCA/sarscov2-10880334-no-water-no-ion-glueCA/sarscov2-10880334-no-water-no-ion-glueCA-' traj_list = [ traj_path + str(i) + '.dcd' for i in traj_num] pdb = '../DESRES_protease_chainid.pdb' # Define features def filtered_ca_distances(chain=0): ''' Pairwize filtered carbon alpha distances defined in filter_distances_01.py''' dist_indsA = np.load(open("filtered_distance_featurization_01/filtered_dis_ind_10_035_morechainA.npy","rb")) dist_indsB = np.load(open("filtered_distance_featurization_01/filtered_dis_ind_10_035_morechainB.npy","rb")) featurizer = coor.featurizer(pdb) if chain == 0: featurizer.add_distances(dist_indsA) elif chain == 1: featurizer.add_distances(dist_indsB) else: raise ValueError("chain must be 0 or 1") return featurizer def filtered_ca_distances_larger(chain=0): ''' Pairwize filtered carbon alpha distances defined in filter_distances_01.py''' dist_indsA = np.load(open("filtered_distance_featurization_01/filtered_dis_ind_12_03chainA.npy","rb")) dist_indsB = np.load(open("filtered_distance_featurization_01/filtered_dis_ind_12_03chainA.npy","rb")) featurizer = coor.featurizer(pdb) if chain == 0: featurizer.add_distances(dist_indsA) elif chain == 1: featurizer.add_distances(dist_indsB) else: raise ValueError("chain must be 0 or 1") return featurizer def ca_distances_skip5(chain=0): ''' Pairwise distances between every 5th carbon alpha ''' featurizer = coor.featurizer(pdb) skip5 = featurizer.select(f'name == CA and chainid == {chain}')[::5] featurizer.add_distances(skip5) return featurizer def backbone(chain=0): ''' Bachbone Phi and Psi torsion angles ''' featurizer = coor.featurizer(pdb) featurizer.add_backbone_torsions(cossin=True, selstr=f'chainid == {chain}') return featurizer def backbone_chi1(chain=0): ''' Bachbone Phi and Psi as well as sidechain chi 1 torsion angles ''' featurizer = coor.featurizer(pdb) featurizer.add_backbone_torsions(cossin=True, selstr=f'chainid == {chain}') featurizer.add_sidechain_torsions(which='chi1', cossin=True, selstr=f'chainid == {chain}') return featurizer def backbone_chi1_2(chain=0): ''' Bachbone Phi and Psi as well as sidechain chi 1 and chi 2 torsion angles ''' featurizer = coor.featurizer(pdb) featurizer.add_backbone_torsions(cossin=True, selstr=f'chainid == {chain}') featurizer.add_sidechain_torsions(which=['chi1','chi2'], cossin=True, selstr=f'chainid == {chain}') return featurizer def sasa_per_res(chain=0): ''' Salvent acessable surfase area per residue ''' def calc_sasa(traj, chain=0, featurizer=None): small_traj = traj.atom_slice(atom_indices=featurizer.select(f'chainid == {chain}')) res = md.shrake_rupley(small_traj, probe_radius=0.14, n_sphere_points=960, mode='residue') return res featurizer = coor.featurizer(pdb) featurizer.add_custom_func(calc_sasa, dim= int(featurizer.topology.n_residues/2), chain=0, featurizer=featurizer) return featurizer # Add new feature options to feature list and give a 5 character label in feture_short_label feature_list = (filtered_ca_distances, filtered_ca_distances_larger, ca_distances_skip5, backbone, backbone_chi1, backbone_chi1_2, sasa_per_res) feature_short_label = ('fil dis', 'm fdis', 'skip5', 'BB Tor', 'BB+C1', 'C1+C2', 'sasa') chain_list = (0, 1) label = [] label_file_name = 'feature_list_1.pickl' stride = 1 # Featurize for i,j in enumerate(feature_list): for k in chain_list: file_name = f"feature_data_02/{j.__name__}_chain_{k}.h5" feat = j(chain=k) if k == 1: label.append({ 'long_label': j.__name__, 'short_label': feature_short_label[i], 'path_a': f'feature_data_02/{j.__name__}_chain_0.h5', 'path_b': f'feature_data_02/{j.__name__}_chain_1.h5', 'num_features': feat.dimension() }) if os.path.exists(file_name): print(f'{j.__name__} exists') continue reader = coor.source(traj_list, features=feat, stride=stride) reader.write_to_hdf5(file_name) # Save as pandas dataframe import pandas as pd results = pd.DataFrame(label) print(results.head()) results.to_pickle(label_file_name) ``` #### File: jgpattis/Desres-sars-cov-2-apo-mpro/pull_out_structure_08.py ```python import numpy as np import mdtraj as md import pyemma.coordinates as coor import pyemma.plots as pyemma_plots import pyemma from util.util import check_iter_of_sequences, KDTree import matplotlib.pyplot as plt def heatmap_label(tica_data_cat=None, cl=None, cl_list=None, ic2=1): fig, ax = plt.subplots() fig, ax, cb = pyemma_plots.plot_density(tica_data_cat[:,0], tica_data_cat[:,ic2], ax=ax, logscale=True) ax.scatter(tica_data_cat[0,0], tica_data_cat[0,ic2], marker='x', s=200, c='k') if cl_list == None: cl_list = list(range(cl.n_clusters)) ax.scatter(cl.cluster_centers_[cl_list, 0],cl.cluster_centers_[cl_list, ic2], c='k') for i in cl_list: ax.annotate(f'{i}', (cl.cluster_centers_[i,0], cl.cluster_centers_[i,ic2]), fontsize=16, weight='bold', textcoords="offset points", xytext=(0,10), ha='center') ax.set_xlabel(f'IC 1', fontsize=16) ax.set_ylabel(f'IC {ic2 + 1}', fontsize=16) cb['cbar'].set_label('Density', fontsize=16) fig.tight_layout() return fig, ax def colorTIME_label(tica_data_cat=None, cl=None, cl_list=None, ic2=1, stride=2): fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True, sharey=True, figsize=[12.8, 4.8]) time = list(range(100000)) time_us = [i/1000 for i in time] mid = int(len(tica_data_cat)/2) print(mid) cbb = ax1.scatter(tica_data_cat[:mid:stride,0], tica_data_cat[:mid:stride,ic2], c=time_us[::stride]) ax1.scatter(tica_data_cat[0,0], tica_data_cat[0,ic2], marker='x', s=200, c='k') if cl_list == None: cl_list = list(range(cl.n_clusters)) ax1.scatter(cl.cluster_centers_[cl_list, 0],cl.cluster_centers_[cl_list, ic2], c='k') for i in cl_list: ax1.annotate(f'{i}', (cl.cluster_centers_[i,0], cl.cluster_centers_[i,ic2]), fontsize=16, weight='bold', textcoords="offset points", xytext=(0,10), ha='center') ax1.set_xlabel(f'IC 1', fontsize=16) ax1.set_ylabel(f'IC {ic2 + 1}', fontsize=16) ax1.set_title('Chain A', fontsize=18) cb = ax2.scatter(tica_data_cat[mid::stride,0], tica_data_cat[mid::stride,ic2], c=time_us[::stride]) ax2.scatter(tica_data_cat[0,0], tica_data_cat[0,ic2], marker='x', s=200, c='k') ax2.scatter(cl.cluster_centers_[cl_list, 0],cl.cluster_centers_[cl_list, ic2], c='k') for i in cl_list: ax2.annotate(f'{i}', (cl.cluster_centers_[i,0], cl.cluster_centers_[i,ic2]), fontsize=16, weight='bold', textcoords="offset points", xytext=(0,10), ha='center') ax2.set_xlabel(f'IC 1', fontsize=16) ax2.set_title('Chain B', fontsize=18) cb2 = fig.colorbar(cbb, ax=ax1) cb2.set_label(f'Time (\u03BCs)', fontsize=16) cb1 = fig.colorbar(cb, ax=ax2) cb1.set_label(f'Time (\u03BCs)', fontsize=16) fig.tight_layout() return fig, (ax1, ax2) sys = 'fdis' n_clusters = 50 tica_data = coor.load('tica_data_05/fdis_tica_data.h5') tica_data_cat = np.concatenate(tica_data) cl = pyemma.load(f'{sys}_{n_clusters}_mini_cluster_object.h5') #label_list = [12, 41, 46] label_list = [19, 48] pull_structure = True fig1, ax1 = heatmap_label(tica_data_cat=tica_data_cat, ic2=2, cl=cl, cl_list=label_list) fig1.savefig(f'structure_08/{sys}_heatmap_label_IC3_two.pdf') fig2, ax2 = colorTIME_label(tica_data_cat=tica_data_cat, ic2=2, cl=cl, cl_list=label_list) fig2.savefig(f'structure_08/{sys}_color_label_ic3_two.pdf') if pull_structure == True: traj_num = [f'{i:04d}' for i in range(100)] traj_path = '../DESRES-Trajectory_sarscov2-10880334-no-water-no-ion-glueCA/sarscov2-10880334-no-water-no-ion-glueCA/sarscov2-10880334-no-water-no-ion-glueCA-' traj_list = [ traj_path + str(i) + '.dcd' for i in traj_num] pdb = '../DESRES_protease_chainid.pdb' tree = KDTree(tica_data) dist, index_list = tree.query(cl.cluster_centers_[label_list], k=1) chain_check = [] for i,j in zip(index_list, label_list): if i[0] >= 100: chain_check.append('b') chain_b = i[0] - 100 new_pdb = md.load_frame(traj_list[chain_b], index=i[1], top=pdb) # if using a stride multiply index by stride new_pdb_chain = new_pdb.atom_slice(new_pdb.topology.select('chainid == 1')) new_pdb_chain.save_pdb(f'structure_08/structure_ic3_chainB_index_{j}.pdb') else: chain_check.append('a') new_pdb = md.load_frame(traj_list[i[0]], index=i[1], top=pdb) # if using a stride multiply index by stride new_pdb_chain = new_pdb.atom_slice(new_pdb.topology.select('chainid == 0')) new_pdb_chain.save_pdb(f'structure_08/structure_ic3_chainA_index_{j}.pdb') if len(set(chain_check)) == 1: print(f'All structures are from chain {chain_check[0]}') else: print('WARNING: structures are from different chains') print('indexes are ', index_list) print('distances from center are ', dist) ``` #### File: Desres-sars-cov-2-apo-mpro/util/plot_structure_util.py ```python import numpy as np import mdtraj as md def plot_vmd_cylinder_from_inds(structure_file, inds, outname, residue=False, color='blue', width=3): '''writes a tcl file which can draw cylinders in vmd structure file should be pdb inds should be 0 indexed atom indicies or if residue = True 0 indexed residue indicie color should be string of VMD color instructuns: 1. open structure_file in vmd 2. open tk consol: extentions > tk consol 3. default color is dark blue for other colors type: set color 3 number is vmd color code 4. source outname.tcl''' t = md.load(structure_file) top = t.topology first_frame = t.xyz if outname.endswith('.tcl'): f = open(outname,'w') else: f = open(outname + '.tcl','w') start = '{' end = '}' bk = '\n' f.write('set center {0 0 0}\n') f.write(f'draw color {color} {bk}') for i in range(len(inds)): j = inds[i,0] k = inds[i,1] if residue == True: l = top.select('resid ' + str(j) + ' and name CA') m = top.select('resid ' + str(k) + ' and name CA') n1 = first_frame[0,l,:] * 10 o1 = first_frame[0,m,:] * 10 n = n1[0] o = o1[0] else: n = first_frame[0,j,:] * 10 o = first_frame[0,k,:] * 10 f.write(f'graphics top line {start} {n[0]:.4f} {n[1]:.4f} {n[2]:.4f} {end} {start} {o[0]:.4f} {o[1]:.4f} {o[2]:.4f} {end} width {width} style solid {bk}' ) f.close() def plot_pymol_cylinder_from_inds(structure_file, inds, outname, residue=False): '''writes a python file which can draw cylinders in pymol structure file should be pdb inds should be 0 indexed atom indicies or if residue = True 0 indexed residue indicie instructuns: 1. open pymol 2. go to command line 3. run outname.py''' t = md.load(structure_file) top = t.topology first_frame = t.xyz if outname.endswith('.py'): f = open(outname,'w') else: f = open(outname + '.py','w') f.write('from pymol import cmd\n') f.write('from pymol.cgo import *\n') f.write("cmd.load('" + str(structure_file) + "', 'prot')\n") f.write("cmd.show('cartoon')\n") f.write('obj=[]\n') for i in range(len(inds)): j = inds[i,0] k = inds[i,1] if residue == True: l = top.select('resid ' + str(j) + ' and name CA') m = top.select('resid ' + str(k) + ' and name CA') n1 = first_frame[0,l,:] * 10 o1 = first_frame[0,m,:] * 10 n = n1[0] o = o1[0] else: n = first_frame[0,j,:] * 10 o = first_frame[0,k,:] * 10 bk = '\n' f.write(f'obj.extend([CYLINDER, {n[0]:.4f}, {n[1]:.4f}, {n[2]:.4f}, {o[0]:.4f}, {o[1]:.4f}, {o[2]:.4f}, 0.15, 0.3917, 0.3917, 0.9961, 0.3917, 0.3917, 0.9961, ]){bk}' ) f.write("cmd.load_cgo(obj, 'contacts')") f.close() ```
{ "source": "jgperrin/net.jgp.books.spark.ch13", "score": 3 }
#### File: python/lab100_json_shipment/jsonShipmentDisplayApp.py ```python import os from pyspark.sql import SparkSession def get_absolute_file_path(path, filename): # To get absolute path for a given filename current_dir = os.path.dirname(__file__) relative_path = "{}{}".format(path, filename) absolute_file_path = os.path.join(current_dir, relative_path) return absolute_file_path def main(spark): # The processing code. filename = 'shipment.json' path = '../../../../data/json/' absolute_file_path = get_absolute_file_path(path, filename) # Reads a JSON, stores it in a dataframe df = spark.read.format("json") \ .option("multiline", True) \ .load(absolute_file_path) # Shows at most 5 rows from the dataframe (there's only one anyway) df.show(5, 16) df.printSchema() if __name__ == '__main__': # Creates a session on a local master spark = SparkSession.builder.appName("Display of shipment") \ .master("local[*]").getOrCreate() # Comment this line to see full log spark.sparkContext.setLogLevel('error') main(spark) spark.stop() ```
{ "source": "jgphilpott/blackbox", "score": 2 }
#### File: blackbox/app/root.py ```python from flask import Flask, render_template from flask_socketio import SocketIO, emit from sense_hat import SenseHat from sensors import get_readings from os import urandom app = Flask("blackbox", template_folder="app", static_folder="app") app.config["SECRET_KEY"] = urandom(42).hex() app.jinja_env.auto_reload = True sense_hat = SenseHat() sense_hat.clear() socketio = SocketIO(app) @app.route("/") def home(): return render_template("html/home.html") @socketio.on("request_reading") def request_reading(): try: socketio.emit("new_reading", get_readings(sense_hat), broadcast=True) except: print("Reading Error!") @socketio.on("new_comms") def new_comms(message): sense_hat.show_message(message) if __name__ == "__main__": socketio.run(app, host="0.0.0.0", port=5000, debug=True) ```
{ "source": "jgphilpott/dream_net", "score": 3 }
#### File: jgphilpott/dream_net/dream_net.py ```python import os import numpy as np from PIL import Image import tensorflow as tf import tensorflow_hub as hub os.environ["TFHUB_MODEL_LOAD_FORMAT"] = "COMPRESSED" hub_model_one = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/1") hub_model_two = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2") content_image = "" style_image = "" print("\nPlease provide the path to the desired content image (including the extension).\n") while not os.path.isfile(content_image): content_image = input() if not os.path.isfile(content_image): print("\nThe path you provided does not exist, please try again.\n") print("\nPlease provide the path to the desired style image (including the extension).\n") while not os.path.isfile(style_image): style_image = input() if not os.path.isfile(style_image): print("\nThe path you provided does not exist, please try again.\n") max_size = None print("\nPlease provide the desired size of the output image (about 500px is recommended).\n") while not type(max_size) == int: try: max_size = int(input()) except: print("\nThe input you provided is not an integer, please try again.\n") def load_image(path_to_image): def resize_image(image): shape = tf.cast(tf.shape(image)[:-1], tf.float32) scale = max_size / max(shape) new_shape = tf.cast(shape * scale, tf.int32) return tf.image.resize(image, new_shape)[tf.newaxis, :] image = tf.io.read_file(path_to_image) image = tf.image.decode_image(image, channels=3) image = tf.image.convert_image_dtype(image, tf.float32) return resize_image(image) stylized_image_one = hub_model_one(tf.constant(load_image(content_image)), tf.constant(load_image(style_image)))[0] stylized_image_two = hub_model_two(tf.constant(load_image(content_image)), tf.constant(load_image(style_image)))[0] Image.fromarray(np.array(stylized_image_one * 255, dtype=np.uint8)[0]).save("stylized_image_one.jpg") Image.fromarray(np.array(stylized_image_two * 255, dtype=np.uint8)[0]).save("stylized_image_two.jpg") print("\nDone!\n") ```
{ "source": "jgphilpott/iGraph", "score": 2 }
#### File: mongo/backups/loader.py ```python from back.mongo.backups.js import load_js from back.mongo.backups.json import load_json from back.mongo.backups.sass import load_sass def load_data(path): load_js(path) load_json(path) load_sass(path) # Thread(target=load_json, args=(path,)).start() ```
{ "source": "jgphilpott/polyMaker", "score": 2 }
#### File: mongo/data/base.py ```python from mongo.client import mongo_client client = mongo_client() database = client.polymorph def mongo_database(): return database ``` #### File: collect/images/mongo.py ```python from mongo.data.collect.ions import mongo_collection collection = mongo_collection("images") def new_image(image): return str(collection.insert_one(image).inserted_id) def new_images(images): return str(collection.insert_many(images).inserted_ids) def find_image(query={}, filter={"_id": 0}): return dict(collection.find_one(query, filter)) def find_images(query={}, filter={"_id": 0}, sort=[("id", 1)], limit=0): collection.create_index(sort) return list(collection.find(query, filter).sort(sort).limit(limit)) def update_image(image): return collection.update_one({"id": image["id"]}, {"$set": image}) def update_images(images): for image in images: update_image(image) def delete_image(image): return collection.delete_one({"id": image["id"]}) def delete_images(images): for image in images: delete_image(image) ``` #### File: data/collect/ions.py ```python from mongo.data.base import mongo_database database = mongo_database() def mongo_collection(collection): return database[collection] def mongo_collections(): return database.list_collection_names() ``` #### File: collect/models/mongo.py ```python from mongo.data.collect.ions import mongo_collection collection = mongo_collection("models") def new_model(model): return str(collection.insert_one(model).inserted_id) def new_models(models): return str(collection.insert_many(models).inserted_ids) def find_model(query={}, filter={"_id": 0}): return dict(collection.find_one(query, filter)) def find_models(query={}, filter={"_id": 0}, sort=[("id", 1)], limit=0): collection.create_index(sort) return list(collection.find(query, filter).sort(sort).limit(limit)) def update_model(model): return collection.update_one({"id": model["id"]}, {"$set": model}) def update_models(models): for model in models: update_model(model) def delete_model(model): return collection.delete_one({"id": model["id"]}) def delete_models(models): for model in models: delete_image(model) ```
{ "source": "jgphilpott/polyplot", "score": 3 }
#### File: backups/js/__init__.py ```python from os import makedirs from os.path import exists from requests import get from urllib.request import urlretrieve def load_js(path): path += "/libs/mjs/vendor" if not exists(path): makedirs(path) urlretrieve("https://cdnjs.cloudflare.com/ajax/libs/js-sha256/0.9.0/sha256.min.js", path + "/sha256.js") urlretrieve("https://cdnjs.cloudflare.com/ajax/libs/socket.io/2.4.0/socket.io.min.js", path + "/socket.js") urlretrieve("https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.0/jquery.min.js", path + "/jQuery.js") urlretrieve("https://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.12.1/jquery-ui.min.js", path + "/jQueryUI.js") urlretrieve("https://cdnjs.cloudflare.com/ajax/libs/d3/5.16.0/d3.min.js", path + "/d3.js") urlretrieve("https://cdnjs.cloudflare.com/ajax/libs/three.js/110/three.min.js", path + "/three.js") urlretrieve("https://raw.githubusercontent.com/jeromeetienne/threex.domevents/1100828c40df668a82a97c811895918088cc607f/threex.domevents.js", path + "/threeX.js") with open(path + "/math.js", "w") as file: numeric = get("https://raw.githubusercontent.com/sloisel/numeric/656fa1254be540f428710738ca9c1539625777f1/src/numeric.js").content.decode("utf-8") calc = get("https://gist.githubusercontent.com/jgphilpott/4276345a5b7c96fc010afa28cc5d38b6/raw/26c8d0b1217c0e6dbf771fc80fd22dd3a35cb963/calculus.js").content.decode("utf-8") regr = get("https://gist.githubusercontent.com/jgphilpott/d38279e8fac9af31054e10b7363bf17e/raw/3684fcc69634970a75b1fa454b1a0f7b3c2c1a03/regression.js").content.decode("utf-8") trig = get("https://gist.githubusercontent.com/jgphilpott/1378cc2cccde6d65c5fb2b6111b5a98f/raw/587408f905ba1da6fcc970cb095bdf129ffa308b/trigonometry.js").content.decode("utf-8") angles = get("https://gist.githubusercontent.com/jgphilpott/092c0f3e1bcfa75f543e8485b9b23e7d/raw/813b2b7ac4c3cbcfc5caec5eec3600bba3bf5edc/angleConverter.js").content.decode("utf-8") scaling = get("https://gist.githubusercontent.com/jgphilpott/6332dc7f5636db9ba455e1575407c496/raw/b72589532af0b7c63e321b15254acbb848248209/scaling.js").content.decode("utf-8") roots = get("https://gist.githubusercontent.com/jgphilpott/e483b5fbe52a7233c292f35737e5a682/raw/d85ccaecf7d6b606809764b39f841a063c9a1fdc/roots.js").content.decode("utf-8") math = numeric + "\n" + calc + "\n" + regr + "\n" + trig + "\n" + angles + "\n" + scaling + "\n" + roots file.write(math) with open(path + "/tools.js", "w") as file: particleWeb = get("https://raw.githubusercontent.com/jgphilpott/particleWeb/bd00fb4eaf1b8abeb0f3f720f3f938f9d5b5c772/particleWeb.js").content.decode("utf-8") camalize = get("https://gist.githubusercontent.com/jgphilpott/19e7a94cdf6d6d4cd868cc18e628026c/raw/2c5d68bb84f0d4e14478bcac359a77137f6a25f5/camalize.js").content.decode("utf-8") rotation = get("https://gist.githubusercontent.com/jgphilpott/1bc17b82063f14fabb8f3e38825f6f10/raw/b5ddf5f386213f47ac4fd4b9f41bc116b37f29a3/rotation.js").content.decode("utf-8") d3Sorting = get("https://gist.githubusercontent.com/jgphilpott/cf12c05f7c30844a4d7fa70ec9a7945a/raw/14fbbe992d10c07a467afb4dad2647356238ab3c/d3Sorting.js").content.decode("utf-8") cookieFuncs = get("https://gist.githubusercontent.com/jgphilpott/b9ce64b9ef8b04c5ac58902b133b1a28/raw/8931a5cd26c48945e932a7399f853b593687f557/cookieFunctions.js").content.decode("utf-8") validEmail = get("https://gist.githubusercontent.com/jgphilpott/a1ffedea1d1a70320b8075597df1943a/raw/29b8f25b2a439a117783523f209ba42ef5e9cf9d/validEmail.js").content.decode("utf-8") localStorage = get("https://gist.githubusercontent.com/jgphilpott/e26b92eb41b64e9565032d5c4d3c2878/raw/593ae1721ca986210862da158db663f21dec42af/localStorage.js").content.decode("utf-8") format = get("https://gist.githubusercontent.com/jgphilpott/787659ac4ea57a9971da58a76191079b/raw/d87c450947083ab134999408cec38fb70756593a/numberFormater.js").content.decode("utf-8") subset = get("https://gist.githubusercontent.com/jgphilpott/a1367ca419ac2807ed4340d69356b7f1/raw/48ad3970a6a370853d18157142421ab02b1e2398/subset.js").content.decode("utf-8") background = get("https://gist.githubusercontent.com/jgphilpott/bfae397ee7d483b49754291b29db87e0/raw/62abb7a1736f78c1c0800b68f9d45beeddb90020/panelBackground.js").content.decode("utf-8") tools = particleWeb + "\n" + camalize + "\n" + rotation + "\n" + d3Sorting + "\n" + cookieFuncs + "\n" + validEmail + "\n" + localStorage + "\n" + format + "\n" + subset + "\n" + background file.write(tools) ``` #### File: back/mongo/client.py ```python from os import environ from pymongo import MongoClient def mongo_client(): return MongoClient(environ["MONGO_PORT_27017_TCP_ADDR"], 27017) ``` #### File: collect/maps/mongo.py ```python from back.mongo.data.collect.ions import find_collection from back.mongo.data.collect.maps.model import Map def find_map(query={}, filter={"_id": 0}, detail="micro"): collection = find_collection("maps_" + detail) return dict(collection.find_one(query, filter)) def find_maps(query={}, filter={"_id": 0}, sort=[("properties.code", 1)], limit=0, detail="micro"): collection = find_collection("maps_" + detail) collection.create_index(sort) return list(collection.find(query, filter).sort(sort).limit(limit)) ``` #### File: collect/metas/model.py ```python class Meta(): def __init__(self, meta): self.code = meta["code"] self.value = meta["value"] ``` #### File: collect/ports/mongo.py ```python from back.mongo.data.collect.ions import find_collection from back.mongo.data.collect.ports.model import Port collection = find_collection("ports") def find_port(query={}, filter={"_id": 0}): return dict(collection.find_one(query, filter)) def find_ports(query={}, filter={"_id": 0}, sort=[("properties.flow", -1), ("properties.code", 1)], limit=0): collection.create_index(sort) return list(collection.find(query, filter).sort(sort).limit(limit)) ``` #### File: collect/railroads/model.py ```python class Railroad(): def __init__(self, railroad): self.geometry = railroad["geometry"] self.properties = railroad["properties"] self.type = railroad["type"] ``` #### File: sked/tasks/indicators.py ```python from time import sleep from back.mongo.data.collect.indicators.mongo import Indicator, find_indicator, find_indicators, update_indicator def update_indicators(): for indicator in find_indicators({}, {"_id": 0, "code": 1}): update_indicator(Indicator(find_indicator({"code": indicator["code"]})).update().__dict__) sleep(60) ``` #### File: socket/airports/__init__.py ```python from flask_socketio import emit from back.mongo.data.collect.airports.mongo import find_airport, find_airports def connect_airports(app): @app.on("get_airport") def get_airport(query={}, filter={"_id": 0}): emit("new_airport", find_airport(query, filter)) @app.on("get_airports") def get_airports(query={}, filter={"_id": 0}, sort=[("properties.flow", -1), ("properties.code", 1)], limit=0): emit("new_airports", find_airports(query, filter, [tuple(item) for item in sort], limit)) ``` #### File: socket/graticules/__init__.py ```python from flask_socketio import emit from back.mongo.data.collect.graticules.mongo import find_graticule, find_graticules def connect_graticules(app): @app.on("get_graticule") def get_graticule(query={}, filter={"_id": 0}): emit("new_graticule", find_graticule(query, filter)) @app.on("get_graticules") def get_graticules(query={}, filter={"_id": 0}, sort=[("step", -1)], limit=0): emit("new_graticules", find_graticules(query, filter, [tuple(item) for item in sort], limit)) ``` #### File: socket/maps/__init__.py ```python from flask_socketio import emit from back.mongo.data.collect.maps.mongo import find_map, find_maps def connect_maps(app): @app.on("get_map") def get_map(query={}, filter={"_id": 0}, detail="micro"): emit("new_map", find_map(query, filter, detail)) @app.on("get_maps") def get_maps(query={}, filter={"_id": 0}, sort=[("properties.code", 1)], limit=0, detail="micro"): emit("new_maps", find_maps(query, filter, [tuple(item) for item in sort], limit, detail)) ``` #### File: socket/ports/__init__.py ```python from flask_socketio import emit from back.mongo.data.collect.ports.mongo import find_port, find_ports def connect_ports(app): @app.on("get_port") def get_port(query={}, filter={"_id": 0}): emit("new_port", find_port(query, filter)) @app.on("get_ports") def get_ports(query={}, filter={"_id": 0}, sort=[("properties.flow", -1), ("properties.code", 1)], limit=0): emit("new_ports", find_ports(query, filter, [tuple(item) for item in sort], limit)) ``` #### File: socket/rivers/__init__.py ```python from flask_socketio import emit from back.mongo.data.collect.rivers.mongo import find_river, find_rivers def connect_rivers(app): @app.on("get_river") def get_river(query={}, filter={"_id": 0}, detail="micro"): emit("new_river", find_river(query, filter, detail)) @app.on("get_rivers") def get_rivers(query={}, filter={"_id": 0}, sort=[("properties.id", 1)], limit=0, detail="micro"): emit("new_rivers", find_rivers(query, filter, [tuple(item) for item in sort], limit, detail)) ``` #### File: errors/_500_/route.py ```python from flask import render_template, request from back.mongo.data.collect.clients import valid_client def register_500_error_route(app): @app.errorhandler(500) def internal_server_error(error): data = {"plot": {"type": "500"}, "code": 500, "message": "Internal Server Error"} if "id" in request.cookies: data["client"] = valid_client(request.cookies.get("id")) return render_template("tree/errors/_500_/page.html", data=data) ``` #### File: api/graticules/route.py ```python from ast import literal_eval from flask import jsonify, request from back.mongo.data.collect.graticules.mongo import find_graticules def register_api_graticules_route(app): @app.route("/api/graticules") def api_graticules(): query = literal_eval(request.args.get("query")) if "query" in request.args else {"step": {"$in": [10, 20, 30]}} filter = literal_eval(request.args.get("filter")) if "filter" in request.args else {} sort = literal_eval(request.args.get("sort")) if "sort" in request.args else [("step", -1)] limit = literal_eval(request.args.get("limit")) if "limit" in request.args else 0 filter["_id"] = 0 data = find_graticules(query, filter, sort, limit) return jsonify(data) ``` #### File: api/maps/route.py ```python from ast import literal_eval from flask import jsonify, request from back.mongo.data.collect.maps.mongo import find_maps def register_api_maps_route(app): @app.route("/api/maps") def api_maps(): query = literal_eval(request.args.get("query")) if "query" in request.args else {} filter = literal_eval(request.args.get("filter")) if "filter" in request.args else {} sort = literal_eval(request.args.get("sort")) if "sort" in request.args else [("properties.name", 1)] limit = literal_eval(request.args.get("limit")) if "limit" in request.args else 0 detail = literal_eval(request.args.get("detail")) if "detail" in request.args else "micro" filter["_id"] = 0 data = find_maps(query, filter, sort, limit, detail) return jsonify(data) ``` #### File: rivers/river/route.py ```python from ast import literal_eval from flask import jsonify, request from back.mongo.data.collect.rivers.mongo import find_river def register_api_river_route(app): @app.route("/api/river") def api_river(): query = literal_eval(request.args.get("query")) if "query" in request.args else {} filter = literal_eval(request.args.get("filter")) if "filter" in request.args else {} detail = literal_eval(request.args.get("detail")) if "detail" in request.args else "micro" filter["_id"] = 0 data = find_river(query, filter, detail) return jsonify(data) ``` #### File: home/indicators/route.py ```python from flask import request, make_response, render_template from back.mongo.data.collect.clients import valid_client from back.mongo.data.collect.indicators import find_indicators def register_indicators_route(app): @app.route("/indicators") def indicators(): data = {"plot": {"plots": find_indicators({"countries": {"$exists": True, "$ne": []}, "completeness": {"$gt": 0}}, {"_id": 0, "code": 1, "name": 1, "categories": 1, "completeness": 1, "size": 1}, [("name", 1)]), "type": "Indicators"}} if "id" in request.cookies: data["client"] = valid_client(request.cookies.get("id")) r_code = request.cookies.get("r") if "r" in request.cookies else "SP.POP.TOTL" x_code = request.cookies.get("x") if "x" in request.cookies else "SP.DYN.LE00.IN" y_code = request.cookies.get("y") if "y" in request.cookies else "SP.DYN.TFRT.IN" z_code = request.cookies.get("z") if "z" in request.cookies else "NY.GDP.PCAP.KD.ZG" response = make_response(render_template("tree/home/indicators/page.html", data=data)) response.set_cookie("r", r_code) response.set_cookie("x", x_code) response.set_cookie("y", y_code) response.set_cookie("z", z_code) return response ``` #### File: home/poly3/route.py ```python from flask import request, make_response, render_template from back.mongo.data.collect.clients import valid_client from back.mongo.data.collect.countries import find_countries def register_poly3_route(app): @app.route("/poly3") def poly3(): data = {"plot": {"title": "World Bank Development Indicators", "type": "Poly3"}} if "id" in request.cookies: data["client"] = valid_client(request.cookies.get("id")) r_code = request.args.get("r") if "r" in request.args else request.cookies.get("r") if "r" in request.cookies else "SP.POP.TOTL" x_code = request.args.get("x") if "x" in request.args else request.cookies.get("x") if "x" in request.cookies else "SP.DYN.LE00.IN" y_code = request.args.get("y") if "y" in request.args else request.cookies.get("y") if "y" in request.cookies else "SP.DYN.TFRT.IN" z_code = request.args.get("z") if "z" in request.args else request.cookies.get("z") if "z" in request.cookies else "NY.GDP.PCAP.KD.ZG" r_dash_code = r_code.replace(".", "-") x_dash_code = x_code.replace(".", "-") y_dash_code = y_code.replace(".", "-") z_dash_code = z_code.replace(".", "-") countries = find_countries({}, {"_id": 0, "code": 1, "name": 1, "formal_name": 1, "region": 1, "indicators." + r_dash_code: 1, "indicators." + x_dash_code: 1, "indicators." + y_dash_code: 1, "indicators." + z_dash_code: 1, "centroid": 1, "factbook": 1, "wiki": 1, "min_year": 1, "max_year": 1}) min_cap = request.args.get("minCap") if "minCap" in request.args else request.cookies.get("minCap") if "minCap" in request.cookies else countries[0]["min_year"] year = request.args.get("year") if "year" in request.args else request.cookies.get("year") if "year" in request.cookies else round((countries[0]["min_year"] + countries[0]["max_year"]) / 2) max_cap = request.args.get("maxCap") if "maxCap" in request.args else request.cookies.get("maxCap") if "maxCap" in request.cookies else countries[0]["max_year"] data["plot"]["r"] = {"code": r_code, "name": countries[0]["indicators"][r_dash_code]["name"], "categories": countries[0]["indicators"][r_dash_code]["categories"]} data["plot"]["x"] = {"code": x_code, "name": countries[0]["indicators"][x_dash_code]["name"], "categories": countries[0]["indicators"][x_dash_code]["categories"]} data["plot"]["y"] = {"code": y_code, "name": countries[0]["indicators"][y_dash_code]["name"], "categories": countries[0]["indicators"][y_dash_code]["categories"]} data["plot"]["z"] = {"code": z_code, "name": countries[0]["indicators"][z_dash_code]["name"], "categories": countries[0]["indicators"][z_dash_code]["categories"]} data["plot"]["t"] = {"minCap": int(min_cap), "year": int(year), "maxCap": int(max_cap)} for country in countries: country["r"] = country["indicators"][r_dash_code]["history"] country["x"] = country["indicators"][x_dash_code]["history"] country["y"] = country["indicators"][y_dash_code]["history"] country["z"] = country["indicators"][z_dash_code]["history"] del country["indicators"] data["plot"]["plots"] = countries response = make_response(render_template("tree/home/poly3/page.html", data=data)) response.set_cookie("r", r_code) response.set_cookie("x", x_code) response.set_cookie("y", y_code) response.set_cookie("z", z_code) response.set_cookie("minCap", str(min_cap)) response.set_cookie("year", str(year)) response.set_cookie("maxCap", str(max_cap)) return response ```
{ "source": "jgphilpott/sensors", "score": 3 }
#### File: Biometrics/Pulse/MCP3008.py ```python from spidev import SpiDev class MCP3008: def __init__(self, bus = 0, device = 0): self.bus, self.device = bus, device self.spi = SpiDev() self.open() self.spi.max_speed_hz = 1000000 # 1MHz def open(self): self.spi.open(self.bus, self.device) self.spi.max_speed_hz = 1000000 # 1MHz def read(self, channel = 0): cmd1 = 4 | 2 | (( channel & 4) >> 2) cmd2 = (channel & 3) << 6 adc = self.spi.xfer2([cmd1, cmd2, 0]) data = ((adc[1] & 15) << 8) + adc[2] return data def close(self): self.spi.close() ``` #### File: Lasers/SunFounder_Laser/laser.py ```python import sys import time import RPi.GPIO as GPIO LedPin = 11 GPIO.setmode(GPIO.BOARD) GPIO.setup(LedPin, GPIO.OUT) GPIO.output(LedPin, GPIO.HIGH) on_time = int(sys.argv[1]) / 1000 if len(sys.argv) > 1 else 1 off_time = int(sys.argv[2]) / 1000 if len(sys.argv) > 2 else 1 def loop(): while True: GPIO.output(LedPin, GPIO.LOW) # ON time.sleep(on_time) GPIO.output(LedPin, GPIO.HIGH) # OFF time.sleep(off_time) def stop(): GPIO.output(LedPin, GPIO.HIGH) GPIO.cleanup() try: loop() except KeyboardInterrupt: stop() ``` #### File: Motion/PIR_Motion_Sensor/move.py ```python import time import RPi.GPIO as GPIO SENSOR_PIN = 23 GPIO.setmode(GPIO.BCM) GPIO.setup(SENSOR_PIN, GPIO.IN) def action(event): print("There was a movement!") try: GPIO.add_event_detect(SENSOR_PIN, GPIO.RISING, callback=action) while True: time.sleep(100) except KeyboardInterrupt: print("Keyboard Interrupt!") GPIO.cleanup() ```
{ "source": "jgpstuart/pica-bot", "score": 3 }
#### File: jgpstuart/pica-bot/bot.py ```python import os import discord from discord import message from dotenv import dotenv_values from discord.ext import commands import sqlite3 import re import random import ssl import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart ############################################################################### # SQL queries ############################################################################### """ check to see if user exists in the database """ def check_user(userID): c.execute("SELECT * FROM users WHERE userid=?", (userID,)) return c.fetchone() """ add a user, code, and email address to the database """ def add_user(userID): c.execute("INSERT INTO users VALUES (?, ?, ?, ?)", (userID, None, None, 0)) conn.commit() """ remove the user from the database if they leave the server """ def remove_user(userID): c.execute("DELETE FROM users WHERE userID=?", (userID,)) """ update email address """ def update_email(userID, email): c.execute("UPDATE users SET email=? WHERE userid=?", (email, userID)) conn.commit() """ update code """ def update_code(userID, code): c.execute("UPDATE users SET code=? WHERE userid=?", (code, userID)) conn.commit() """ verify user """ def verify_user(userID): c.execute("UPDATE users SET verified=1 WHERE userid=?", (userID,)) conn.commit() ############################################################################### # Various functions ############################################################################### """ check if an email address...is an email address """ def email_check(email): regex = "(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|\"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*\")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])" if re.search(regex,email): return True else: return False """ check if the user has been verified yet """ def check_if_verified(userID): record = check_user(userID) verified = record[3] if verified == 0: return False elif verified == 1: return True """ check if user has been sent a verification code """ def check_if_email(userID): record = check_user(userID) email = record[1] if email == None: return False else: return True """ get the absolute path for a file """ def abs_path(path): return os.path.abspath(path) ############################################################################### # Get the Discord token and Gmail password from the .env file so pica can login ############################################################################### token_values = dotenv_values(abs_path(".env")) TOKEN = token_values['PICA_TOKEN'] GMAIL_PASSWORD = token_values['GMAIL_PASSWORD'] GUILD_ID = token_values['GUILD_ID'] ############################################################################### # Setup the users database ############################################################################### conn = sqlite3.connect(abs_path("magpies.db")) c = conn.cursor() c.execute("""CREATE TABLE IF NOT EXISTS users( userid INT, email TEXT, code INT, verified INT); """) ############################################################################### # Log in the bot and start it up! ############################################################################### intents = discord.Intents.default() intents.members = True bot = commands.Bot(command_prefix="P;!", intents=intents, help_command=None) ############################################################################### # Event handler for connecting to discord ############################################################################### @bot.event async def on_ready(): print('pica has connected to Discord') await bot.change_presence(activity=discord.Game("https://github.com/jgpstuart/pica-bot")) ############################################################################### # Print message when they join the server ############################################################################### @bot.event async def on_member_join(member): add_user(member.id) await member.send("Welcome to the Manzara's Magpies CTF team Discord server!\n\n" \ "To confirm you are a member of the team, please reply to this " \ "message with your @magpie.com email address and we will send " \ "you a email with your verification code.") ############################################################################### # When someone leaves the server ############################################################################### @bot.event async def on_member_remove(member): # remove the user from the database remove_user(member.id) ############################################################################### # Main message loop ############################################################################### @bot.event async def on_message(message): # check to see if the bot is talking to itself! if message.author == bot.user: return # strip the message of whitespace message_content = message.content.strip() # Only reply to direct messages if isinstance(message.channel, discord.DMChannel): # the message is an email address if email_check(message_content): # if they have not been verified if not check_if_verified(message.author.id): # If it is a valid @magpie.com email address: if "@magpie.com" in message_content: # generate verification code verification_code = random.randint(100000, 999999) # add their email address and verification code to the database update_email(message.author.id, message_content) update_code(message.author.id, verification_code) # setup the email message to send them port = 465 email_message = MIMEMultipart("alternative") email_message["Subject"] = "Manzara's Magpies Verification Code" email_message["From"] = "<EMAIL>" email_message["To"] = message_content text = str(verification_code) compiled = MIMEText(text, "plain") email_message.attach(compiled) # Create a secure SSL context for the gmail account to send the email context = ssl.create_default_context() # send the verification email from the gmail account with smtplib.SMTP_SSL("smtp.gmail.com", port, context=context) as server: server.login("<EMAIL>", GMAIL_PASSWORD) server.sendmail("<EMAIL>", message_content, email_message.as_string()) await message.channel.send("A verification code has been emailed to you. **Please reply to me with the " \ "verficiation code to be added to the Manzara's Magpies server.** If you haven't received it, check your spam folder.") else: await message.channel.send("That is not a valid email address. If you do not yet have a valid @magpie.com " \ "email address, please contact The University of Calgary Bureaucracy Club.") else: # If they're already verified, tell them to smarten up! await message.channel.send("You have already been verified. Cut it out!") # check if this is a verification code elif (len(message_content) == 6) and message_content.isdigit(): # check if they've submitted a valid @magpie.com email address yet if not check_if_email(message.author.id): await message.channel.send("You have not submitted a valid @magpie.com email address yet. " \ "You must submit a valid email address before you can submit a " \ "verification code.") # check if they're verified, and if not check their verification code elif not check_if_verified(message.author.id): # get their verification code from the database user_records = check_user(message.author.id) verification_code = user_records[2] # check the verification code in the database against the message they sent if verification_code == int(message_content): # assign them the magpie role server = bot.get_guild(int(GUILD_ID)) role = discord.utils.get(server.roles, name="magpie") member = server.get_member(message.author.id) await member.add_roles(role) # announce that they're in to the server! channel = discord.utils.get(server.text_channels, name='general') if channel is not None: new_user = message.author await channel.send(f"A new magpie has landed! Everyone welcome {new_user}!!!\n" \ "https://c.tenor.com/EdyX5M8Vi7wAAAAC/magpie.gif") # add them as verified in the database verify_user(message.author.id) await message.channel.send("Verification code match! Welcome to Manzara's Magpies!") else: await message.channel.send("Verification code does not match.") else: await message.channel.send("You have already been verified. Cut it out!") await bot.process_commands(message) ############################################################################### # Help message for interacting with pica ############################################################################### @bot.command(name="help") async def help_command(ctx): # Display help message response = "Hello, I am pica.\n\nThese are my user commands, remember to prefix them with \"P;!\" :\n" \ " help: Display this message\n" \ " addrole: Give yourself a specialization role\n" \ embed = discord.Embed(description=response, color=0x4c4fb1) await ctx.send(embed=embed) ############################################################################### # Command to give a user a requested specialization role. The desired role # should be listed in the command ############################################################################### @bot.command(name="addrole") async def addrole(ctx, *, role=''): channel = ctx.message.channel if not isinstance(channel, discord.DMChannel): try: if "cryptography" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="Cryptography")) await ctx.send("You have been given the Cryptography role.") elif "forensics" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="Forensics")) await ctx.send("You have been given the Forensics role.") elif "binary exploitation" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="Binary Exploitation")) await ctx.send("You have been given the Binary Exploitation role.") elif "web exploitation" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="Web Exploitation")) await ctx.send("You have been given the Web Exploitation role.") elif "reverse engineering" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="Reverse Engineering")) await ctx.send("You have been given the Reverse Engineering role.") elif "networks" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="Networks")) await ctx.send("You have been given the Networks role.") elif "osint" in role.lower(): await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name="OSINT")) await ctx.send("You have been given the OSINT role.") else: response = "Please use this command followed immediately by a desired role selected from cryptography, forensics, binary exploitation, web exploitation," \ "osint, or reverse engineering.\nExample usage: P;!addrole binary exploitation" await ctx.send(response) except: await ctx.send("There was an error using this command. Make sure you are using it in an appropriate server.") else: await ctx.send("I cannot add roles from direct messages. Please run this command in the server!") bot.run(TOKEN) ```
{ "source": "jgraber/PythonFriday", "score": 4 }
#### File: PythonFriday/JSON/json_example.py ```python import json def example(): # You collect and combine data in an # arbitrarily nested data structure: data = [ { 'name': "<NAME>", 'phone': "(154) 221-8558", 'zipCode': "900185", 'country': "South Korea", 'options': ['a','b','c'], 'total': "$74.79" }, { 'name': "<NAME>", 'phone': "1-762-301-2264", 'zipCode': "25566", 'country': "Russian Federation", 'options': { 'a': 'full', 'f': 'partial', 'c': {'k1': 1, 'k2': 3} }, 'total': "$21.78" } ] return data def save(): data = example() data_json = json.dumps(data, indent=4) with open("data.json", "w") as f: f.write(data_json) def load(): with open("data.json", "r") as f: data_json = f.read() data = json.loads(data_json) print(data) if __name__ == '__main__': save() load() ``` #### File: SQLAlchemy/Core/sqlalchemy_core_crud.py ```python from sqlalchemy import MetaData, Table, Column, String, Integer, Text, DateTime, Boolean, create_engine, select, insert, update, delete metadata = MetaData() employees = Table('Employee', metadata, Column('Id', Integer(), primary_key=True), Column('LastName', String(8000)), Column('FirstName', String(8000)), Column('BirthDate', String(8000)) ) def show_metadata(): for t in metadata.sorted_tables: print(f"Table {t.name}:") for c in t.columns: print(f"{c} ({c.type})") def do_insert(): stmt = insert(employees).values( LastName='Collins', FirstName='Arnold', BirthDate='2000-01-31') new_id = 0 connection_string = "sqlite:///Northwind_small.sqlite" engine = create_engine(connection_string, echo=False) with engine.begin() as con: result = con.execute(stmt) new_id = result.inserted_primary_key['Id'] print(f"New Id: {new_id}") return new_id def select_by_id(id): stmt = select(employees).where(employees.c.Id == id) connection_string = "sqlite:///Northwind_small.sqlite" engine = create_engine(connection_string, echo=False) with engine.begin() as con: result = con.execute(stmt).first() if result: print(result) else: print(f"no rows found with Id == {id}") def do_update(id): stmt = update(employees).values( FirstName="Michael" ).where(employees.c.Id == id) connection_string = "sqlite:///Northwind_small.sqlite" engine = create_engine(connection_string, echo=False) with engine.begin() as con: con.execute(stmt) def do_delete(id): stmt = delete(employees).where(employees.c.Id == id) connection_string = "sqlite:///Northwind_small.sqlite" engine = create_engine(connection_string, echo=False) with engine.begin() as con: con.execute(stmt) def statement_infos(): stmt = select(employees.c.LastName, employees.c.FirstName).where(employees.c.Id == 30) print(f"statement with placeholder: \n{str(stmt)}") print(f"\nparams: \n{str(stmt.compile().params)}") if __name__ == '__main__': print("---- show_metadata() ----") show_metadata() print("---- do_insert() ----") id = do_insert() print("---- select_by_id() ----") select_by_id(id) print("---- do_update() ----") do_update(id) select_by_id(id) print("---- do_delete() ----") do_delete(id) select_by_id(id) print("---- end ----") # https://overiq.com/sqlalchemy-101/crud-using-sqlalchemy-core/ ``` #### File: SQLAlchemy/ORM/app_with_db.py ```python import os from datetime import datetime import data.db_session as db_session from data.employee import Employee def setup_db(): db_file = os.path.join( os.path.dirname(__file__), 'db', 'Northwind_small.sqlite') db_session.global_init(db_file) def add_employee(): employee = Employee() employee.last_name = "King" employee.first_name = "Robert" employee.birth_date = '1990-05-29' print(employee) session = db_session.factory() session.add(employee) session.commit() print(employee) return employee.id if __name__ == '__main__': print("--- setup_db() ---") setup_db() print("--- add_employee() ---") id = add_employee() ``` #### File: ORM/data/book.py ```python import sqlalchemy as sa from sqlalchemy.sql.schema import UniqueConstraint from data.modelbase import ModelBase class Book(ModelBase): __tablename__ = 'Book' id = sa.Column('Id', sa.Integer, primary_key=True, autoincrement=True) title = sa.Column('Title', sa.String, nullable=False) #isbn = sa.Column('ISBN', sa.String(13), nullable=False, index=True, unique=True) isbn = sa.Column('ISBN', sa.String(13), nullable=False) pages = sa.Column('Pages', sa.Integer) published_by = sa.Column('PublishedBy', sa.Integer, sa.ForeignKey('Publisher.Id'), nullable=False) publisher = sa.orm.relation("Publisher", back_populates="books") details = sa.orm.relation("BookDetails", uselist=False, back_populates="book") authors = sa.orm.relation("Author", secondary='BookAuthor', back_populates="books") def __repr__(self): return f'<Book {self.id} ({self.title} {self.isbn}) {self.pages}>' ``` #### File: ORM/data/publisher.py ```python import sqlalchemy as sa from data.modelbase import ModelBase class Publisher(ModelBase): __tablename__ = 'Publisher' id = sa.Column('Id', sa.Integer, primary_key=True, autoincrement=True) name = sa.Column('Name', sa.String, nullable=False, index=True) books = sa.orm.relationship("Book", back_populates="publisher") def __repr__(self): return f'<Publisher {self.id} ({self.name})>' ```
{ "source": "jgraber/Python_Scripts", "score": 3 }
#### File: Python_Scripts/GPSInfo/stuff2.py ```python import click @click.group() @click.version_option(version='1.0.0') def greet(): pass @greet.command() @click.argument('name') # add the name argument def hello(**kwargs): print('Hello, {0}!'.format(kwargs['name'])) @greet.command() @click.argument('name') def goodbye(**kwargs): print('Goodbye, {0}!'.format(kwargs['name'])) if __name__ == '__main__': greet() ``` #### File: Python_Scripts/GPSInfo/stuff.py ```python import click @click.command(context_settings={"ignore_unknown_options": True}) @click.argument('files', nargs=-1, type=click.Path(exists=True, file_okay=True, dir_okay=True, resolve_path=True)) def hello(files): """Print all FILES file names.""" for filename in files: click.echo(filename) @click.version_option(version='2.0.0', prog_name='abc') @click.group() def cli(): pass if __name__ == '__main__': hello() ```
{ "source": "jgradio64/birthday_bot", "score": 3 }
#### File: jgradio64/birthday_bot/bot_functions.py ```python from my_imports import * import re # Bot help function, sends a short explanation of how to use the bot to the server async def bot_help(msg): await msg.channel.send('To check if any one has a birthday today just type "$check_bdays"\n') await msg.channel.send('To add your birthday use "$add_my_bday: Month-Day".\n' 'Use digits for the month and day.\n' '\tExample: "$add_my_bday: 11-4"\n') await msg.channel.send('To remove your birthday from the server use "$remove_my_bday"\n' '\tExample: "$remove_my_bday"\n') # Function to check if there are birthdays on the date that this is called. async def check_birthdays(msg): # Set values to check for in the database my_query = {"guild_id": msg.guild.id, "month": today.month, "day": today.day} # check the number of birthdays recorded in the database number_of_birthdays = collection.count_documents(my_query) # if there are no birthdays if number_of_birthdays == 0: await msg.channel.send('There are no birthdays today. :weary:') # If birthdays were found if number_of_birthdays != 0: # Get the birthdays from the database. list_of_birthdays = collection.find(my_query) # Alert the channel to how many borthdays are occuring that day. if number_of_birthdays == 1: await msg.channel.send(f'There is {number_of_birthdays} birthday today!') else: await msg.channel.send(f'There are {number_of_birthdays} birthdays today!') # Loop through the birthdays wishing happy birthday to everyone! for birthday in list_of_birthdays: await msg.channel.send("Happy birthday " + birthday['user'] + "!!!\t") # Function to handle adding a user's birthday to the database async def add_birthday(msg): my_query = {"guild_id": msg.guild.id, "_id": msg.author.id} # if there is not a preexisting result in the database by that user if collection.count_documents(my_query) == 0: date = re.findall("([0-9]+)", msg.content) # get month value, convert from str to int birthday_month = int(date[0]) # get date value, convert from str to int birthday_date = int(date[1]) # If the month is an acceptable month if check_month(birthday_month): # If the date is an acceptable value based upon the month if check_date(birthday_month, birthday_date): # Create Schema for the users birthday birthday = create_birthday(msg.author.id, msg.guild.id, msg.author.name, birthday_month, birthday_date) # Alert the user that their birthday has been added. await msg.channel.send(f'Adding your birthday, {msg.author.name}!') # Insert the data into the Database collection.insert_one(birthday) await msg.channel.send(f'I\'ll send you a birthday wish on {birthday_month}-{birthday_date}!') else: # If the date is not an acceptable value based upon the month await msg.channel.send('Please enter a DATE within the MONTH that you chose.') else: # If the month the user entered is not an acceptable month await msg.channel.send('Please enter a number corresponding to a month from 1 to 12.') else: # if there is a preexisting result in the database by that user. await msg.channel.send("Your birthday is already recorded.") # Function to remove a user's birthday async def remove_birthday(msg): my_query = {"guild_id": msg.guild.id, "_id": msg.author.id} # if there is not a preexisting result in the database by that user if collection.count_documents(my_query) == 0: await msg.channel.send(f'No birthday was previously recorded for {msg.author.name}.') # if there is a preexisting result in the database by that user. if collection.count_documents(my_query) > 0: # Find in the database and delete collection.find_one_and_delete({"_id": msg.author.id}) await msg.channel.send(f'{msg.author.name}\'s birthday has been removed from the database.') # Checks to see if the month is within the range of possible selections def check_month(month): month_range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] return month in month_range # Build a birthday schema based upon input. def create_birthday(user_id, guild_id, user_name, month, date): return { "_id": user_id, "guild_id": guild_id, "user": user_name, "month": month, "day": date } # Check if the date giving is in the date range, depending on the month. def check_date(month, day): # January, March, May, July, August, October, December if month in [1, 3, 5, 7, 8, 10, 12]: if day in range(1, 31): return True else: return False # April, June, September, November elif month in [4, 6, 9, 11]: if day in range(1, 30): return True else: return False # February elif month == 2: if day in range(1, 28): return True else: return False # Function to update a user's birthday. async def update_birthday(msg): my_query = {"guild_id": msg.guild.id, "_id": msg.author.id} # if there is not a preexisting result in the database by that user if collection.count_documents(my_query) == 0: await msg.channel.send(f'No birthday was previously recorded for {msg.author.name}.') # if there is a preexisting result in the database by that user. elif collection.count_documents(my_query) > 0: date = re.findall("([0-9]+)", msg.content) # get month value, convert from str to int birthday_month = int(date[0]) # get date value, convert from str to int birthday_date = int(date[1]) # If the month is an acceptable month if check_month(birthday_month): # If the date is an acceptable value based upon the month if check_date(birthday_month, birthday_date): await msg.channel.send(f'Updating your birthday, {msg.author.name}!') # Insert the data into the Database collection.find_one_and_update(my_query, {"$set": {"month": birthday_month, "day": birthday_date}}) await msg.channel.send(f'I will now send you a birthday wish on {birthday_month}-{birthday_date}!') else: # If the date is not an acceptable value based upon the month await msg.channel.send('Please enter a DATE within the MONTH that you chose.') else: # If the month the user entered is not an acceptable month await msg.channel.send('Please enter a number corresponding to a month from 1 to 12.') ```
{ "source": "jgradio64/menu-ordering-system", "score": 4 }
#### File: menu-ordering-system/tests/test.py ```python import unittest from src.order import Order class TestOrder(unittest.TestCase): def test_order_output(self): test_cases = { "1": ["Breakfast 1,2,3", "Eggs, Toast, Coffee"], "2": ["Breakfast 2,3,1", "Eggs, Toast, Coffee"], "3": ["Breakfast 1,2,3,3,3", "Eggs, Toast, Coffee(3)"], "4": ["Breakfast 1", "Unable to process: Side is missing"], "5": ["Lunch 1,2,3", "Sandwich, Chips, Soda"], "6": ["Lunch 1,2", "Sandwich, Chips, Water"], "7": ["Lunch 1,1,2,3", "Unable to process: Sandwich cannot be ordered more than once"], "8": ["Lunch 1,2,2", "Sandwich, Chips(2), Water"], "9": ["Lunch", "Unable to process: Main is missing, side is missing"], "10": ["Dinner 1,2,3,4", "Steak, Potatoes, Wine, Water, Cake"], "11": ["Dinner 1,2,3", "Unable to process: Dessert is missing"], } for key in test_cases: new_order = Order() print(test_cases[key]) result = new_order.build_order(test_cases[key][0]) self.assertEqual(result, test_cases[key][1]) print("works") if __name__ == '__main__': unittest.main() ```
{ "source": "jgraef/python3-pb2nano", "score": 3 }
#### File: python3-pb2nano/examples/write_read.py ```python import pickle from io import BytesIO from pprint import pprint from pb2nano.protocol import * from pb2nano.reader import * from pb2nano.writer import * # A totally random example on how to use pb2nano # Specify the protocol like this: Object = Pb2Message("Object")\ .field("required", "uint64", "id", 1)\ .field("optional", "uint32", "some_val", 2)\ .field("required", "bool", "is_important", 3)\ .field("optional", "string", "name", 4)\ .field("optional", "bytes", "object", 5, filter = (pickle.loads, pickle.dumps)) Type = Pb2Enum("Type")\ .define("DO_THAT", 1)\ .define("DO_THIS", 2) Command = Pb2Message("Command")\ .field("required", "Type", "type", 1)\ .field("repeated", "Object", "arg", 2) TestProtocol = Pb2Protocol()\ .enum(Type)\ .message(Object)\ .message(Command) # Some test data: class AnyPickableClass: def __init__(self, a, b): self.a = a self.b = b def xor(self): return self.a ^ self.b def __eq__(self, other): return self.a == other.a and self.b == other.b my_python_object = AnyPickableClass(42, 1337) obj = { "type": "DO_THAT", "arg": [{ # <-- arg is repeated, therefore it must be an iterable "id": 12345, "is_important": False, "name": "awesome_name", "object": my_python_object }, { "id": 54321, "is_important": True, }] } # Let's serialize that: buf = BytesIO() w = Pb2Writer(Pb2WireWriter(buf), TestProtocol, Command) w.write(obj) print("Serialized data:") print(buf.getvalue()) print() # And now unserialize it again buf.seek(0) r = Pb2Reader(Pb2WireReader(buf), TestProtocol, Command) obj2 = r.read() # Let's see assert obj == obj2 print("Read object:") pprint(obj2) print() print("xor:", obj2["arg"][0]["object"].xor()) ``` #### File: python3-pb2nano/pb2nano/reader.py ```python from io import BytesIO from .error import Pb2ReaderException class Pb2WireReader: def __init__(self, f): self.f = f self._read_wire_type = { 0: self.read_varint, 1: self.read_fixed64, 2: self.read_bytes, 5: self.read_fixed32 } def read(self): field_number, wire_type = self.read_key() wire_val = self.read_wire_type(wire_type) return field_number, wire_type, wire_val def read_key(self): vi = self.read_varint() return (vi >> 3), (vi & 7) def read_wire_type(self, wire_type): return self._read_wire_type[wire_type]() def read_varint(self): x = 0 i = 0 while (True): b = self.f.read(1) if (not b): raise EOFError b = b[0] x |= (b & 0x7F) << i if (b & 0x80 == 0): return x i += 7 def read_fixed32(self): return int.from_bytes(self.f.read(4), "little") def read_fixed64(self): return int.from_bytes(self.f.read(8), "little") def read_bytes(self): n = self.read_varint() return self.f.read(n) class Pb2Reader: def __init__(self, wire, protocol, message): self.wire = wire self.protocol = protocol self.message = message self._read_field_type = { #"double": self.interpret_double, #"float": self.interpret_float, #"int32": self.interpret_int, #"int64": self.interpret_int, "uint32": self.read_asis, "uint64": self.read_asis, #"sint32": self.interpret_sint, #"sint64": self.interpret_sint, "bool": self.read_bool, "string": self.read_string, "bytes": self.read_asis # TODO } def read(self): obj = {} try: while (True): field_number, wire_type, wire_val = self.wire.read() # parse value according to protocol try: field = self.message.fields_by_number[field_number] except KeyError: continue val = self.read_field(field, wire_val) # add value to object if (field.label == "repeated"): try: l = obj[field.name] except KeyError: obj[field.name] = l = [] l.append(val) else: obj[field.name] = val except EOFError: pass # check if all required fields are present and put empty lists for # non-present repeated fields. for field in self.message.fields_by_name.values(): if (field.name not in obj and field.label == "required"): raise Pb2ReaderException("Required field {} not present in {}".format(field.name, self.message.name)) return obj def read_field(self, field, wire_val): reader = self._read_field_type.get(field.type) if (reader): val = reader(wire_val) else: message = self.protocol.messages.get(field.type) if (message): val = self.read_message(wire_val, message) else: enum = self.protocol.enums.get(field.type) if (enum): val = self.read_enum(wire_val, enum) else: raise Pb2ReaderException("Unknown field type {}".format(field.type)) if (field.filter): val = field.filter[0](val) return val def read_asis(self, wire_val): return wire_val def read_bool(self, wire_val): assert type(wire_val) == int return bool(wire_val) def read_string(self, wire_val): assert type(wire_val) == bytes return wire_val.decode() def read_message(self, wire_val, message): wire = Pb2WireReader(BytesIO(wire_val)) reader = Pb2Reader(wire, self.protocol, message) return reader.read() def read_enum(self, wire_val, enum): try: return enum.defs_by_number[wire_val] except KeyError: raise Pb2ReaderException("Value {:d} doesn't match any enum value in {}".format(wire_val, enum.name)) __all__ = [ "Pb2WireReader", "Pb2Reader" ] ```
{ "source": "Jgraf42507/Portfolio-Code", "score": 4 }
#### File: Jgraf42507/Portfolio-Code/Robot.py ```python import turtle as t def rectangle(horizontal, vertical, color): t.pendown() t.pensize(1) t.color(color) t.begin_fill() for counter in range(1, 3): t.forward(horizontal) t.right(90) t.forward(vertical) t.right(90) t.end_fill() t.penup() t.penup() t.speed('slow') t.bgcolor('Dodger blue') # feet t.goto(-100, -150) rectangle(50, 20, 'blue') t.goto(-30, -150) rectangle(50, 20, 'blue') # legs t.goto(-25, -50) rectangle(15, 100, 'grey') t.goto(-55, -50) rectangle(-15, 100, 'grey') # body t.goto(-90, 100) rectangle(100, 150, 'red') # arms t.goto(-150, 70) rectangle(60, 15, 'grey') t.goto(-150, 110) rectangle(15, 40, 'grey') t.goto(10, 70) rectangle(60, 15, 'grey') t.goto(55, 110) rectangle(15, 40, 'grey') # neck t.goto(-50, 120) rectangle(15, 20, 'grey') # head t.goto(-85, 170) rectangle(80, 50, 'red') # eyes t.goto(-60, 160) rectangle(30, 10, 'white') t.goto(-55, 155) rectangle(5, 5, 'black') t.goto(-40, 155) rectangle(5, 5, 'black') ```
{ "source": "jgrahamc/bluelight", "score": 2 }
#### File: bluelight/luatool/luatool.py ```python import sys import serial from time import sleep import socket import argparse from os.path import basename tqdm_installed = True try: from tqdm import tqdm except ImportError, e: if e.message == 'No module named tqdm': tqdm_installed = False else: raise version = "0.6.4" class TransportError(Exception): """Custom exception to represent errors with a transport """ def __init__(self, message): self.message = message def __str__(self): return self.message class AbstractTransport: def __init__(self): raise NotImplementedError('abstract transports cannot be instantiated.') def close(self): raise NotImplementedError('Function not implemented') def read(self, length): raise NotImplementedError('Function not implemented') def writeln(self, data, check=1): raise NotImplementedError('Function not implemented') def writer(self, data): self.writeln("file.writeline([==[" + data + "]==])\r") def performcheck(self, expected): line = '' char = '' i = -1 while char != chr(62): # '>' char = self.read(1) if char == '': raise Exception('No proper answer from MCU') if char == chr(13) or char == chr(10): # LF or CR if line != '': line = line.strip() if line+'\r' == expected and not args.bar: sys.stdout.write(" -> ok") elif line+'\r' != expected: if line[:4] == "lua:": sys.stdout.write("\r\n\r\nLua ERROR: %s" % line) raise Exception('ERROR from Lua interpreter\r\n\r\n') else: expected = expected.split("\r")[0] sys.stdout.write("\r\n\r\nERROR") sys.stdout.write("\r\n send string : '%s'" % expected) sys.stdout.write("\r\n expected echo : '%s'" % expected) sys.stdout.write("\r\n but got answer : '%s'" % line) sys.stdout.write("\r\n\r\n") raise Exception('Error sending data to MCU\r\n\r\n') line = '' else: line += char if char == chr(62) and expected[i] == char: char = '' i += 1 class SerialTransport(AbstractTransport): def __init__(self, port, baud, delay): self.port = port self.baud = baud self.serial = None self.delay = delay try: self.serial = serial.Serial(port, baud) except serial.SerialException as e: raise TransportError(e.strerror) self.serial.timeout = 3 self.serial.interCharTimeout = 3 def writeln(self, data, check=1): if self.serial.inWaiting() > 0: self.serial.flushInput() if len(data) > 0 and not args.bar: sys.stdout.write("\r\n->") sys.stdout.write(data.split("\r")[0]) self.serial.write(data) sleep(self.delay) if check > 0: self.performcheck(data) elif not args.bar: sys.stdout.write(" -> send without check") def read(self, length): return self.serial.read(length) def close(self): self.serial.flush() self.serial.close() class TcpSocketTransport(AbstractTransport): def __init__(self, host, port): self.host = host self.port = port self.socket = None try: self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) except socket.error as e: raise TransportError(e.strerror) try: self.socket.connect((host, port)) except socket.error as e: raise TransportError(e.strerror) # read intro from telnet server (see telnet_srv.lua) self.socket.recv(50) def writeln(self, data, check=1): if len(data) > 0 and not args.bar: sys.stdout.write("\r\n->") sys.stdout.write(data.split("\r")[0]) self.socket.sendall(data) if check > 0: self.performcheck(data) elif not args.bar: sys.stdout.write(" -> send without check") def read(self, length): return self.socket.recv(length) def close(self): self.socket.close() def decidetransport(cliargs): if cliargs.ip: data = cliargs.ip.split(':') host = data[0] if len(data) == 2: port = int(data[1]) else: port = 23 return TcpSocketTransport(host, port) else: return SerialTransport(cliargs.port, cliargs.baud, cliargs.delay) if __name__ == '__main__': # parse arguments or use defaults parser = argparse.ArgumentParser(description='ESP8266 Lua script uploader.') parser.add_argument('-p', '--port', default='/dev/ttyUSB0', help='Device name, default /dev/ttyUSB0') parser.add_argument('-b', '--baud', default=9600, help='Baudrate, default 9600') parser.add_argument('-f', '--src', default='main.lua', help='Source file on computer, default main.lua') parser.add_argument('-t', '--dest', default=None, help='Destination file on MCU, default to source file name') parser.add_argument('-c', '--compile', action='store_true', help='Compile lua to lc after upload') parser.add_argument('-r', '--restart', action='store_true', help='Restart MCU after upload') parser.add_argument('-d', '--dofile', action='store_true', help='Run the Lua script after upload') parser.add_argument('-v', '--verbose', action='store_true', help="Show progress messages.") parser.add_argument('-a', '--append', action='store_true', help='Append source file to destination file.') parser.add_argument('-l', '--list', action='store_true', help='List files on device') parser.add_argument('-w', '--wipe', action='store_true', help='Delete all lua/lc files on device.') parser.add_argument('-i', '--id', action='store_true', help='Query the modules chip id.') parser.add_argument('-e', '--echo', action='store_true', help='Echo output of MCU until script is terminated.') parser.add_argument('--bar', action='store_true', help='Show a progress bar for uploads instead of printing each line') parser.add_argument('--delay', default=0.3, help='Delay in seconds between each write.', type=float) parser.add_argument('--delete', default=None, help='Delete a lua/lc file from device.') parser.add_argument('--ip', default=None, help='Connect to a telnet server on the device (--ip IP[:port])') args = parser.parse_args() transport = decidetransport(args) if args.bar and not tqdm_installed: sys.stdout.write("You must install the tqdm library to use the bar feature\n") sys.stdout.write("To install, at the prompt type: \"pip install tqdm\"\n") sys.exit(0) if args.list: transport.writeln("local l = file.list();for k,v in pairs(l) do print('name:'..k..', size:'..v)end\r", 0) while True: char = transport.read(1) if char == '' or char == chr(62): break sys.stdout.write(char) sys.exit(0) if args.id: transport.writeln("=node.chipid()\r", 0) id="" while True: char = transport.read(1) if char == '' or char == chr(62): break if char.isdigit(): id += char print("\n"+id) sys.exit(0) if args.wipe: transport.writeln("local l = file.list();for k,v in pairs(l) do print(k)end\r", 0) file_list = [] fn = "" while True: char = transport.read(1) if char == '' or char == chr(62): break if char not in ['\r', '\n']: fn += char else: if fn: file_list.append(fn.strip()) fn = '' for fn in file_list[1:]: # first line is the list command sent to device if args.verbose: sys.stderr.write("Delete file {} from device.\r\n".format(fn)) transport.writeln("file.remove(\"" + fn + "\")\r") sys.exit(0) if args.delete: transport.writeln("file.remove(\"" + args.delete + "\")\r") sys.exit(0) if args.dest is None: args.dest = basename(args.src) # open source file for reading try: try: f = open(args.src, "rt") except: import os base_dir = os.path.dirname(os.path.realpath(__file__)) f = open(os.path.join(base_dir, args.src), "rt") os.chdir(base_dir) except: sys.stderr.write("Could not open input file \"%s\"\n" % args.src) sys.exit(1) # Verify the selected file will not exceed the size of the serial buffer. # The size of the buffer is 256. This script does not accept files with # lines longer than 230 characters to have some room for command overhead. num_lines = 0 for ln in f: if len(ln) > 230: sys.stderr.write("File \"%s\" contains a line with more than 240 " "characters. This exceeds the size of the serial buffer.\n" % args.src) f.close() sys.exit(1) num_lines += 1 # Go back to the beginning of the file after verifying it has the correct # line length f.seek(0) # set serial timeout if args.verbose: sys.stderr.write("Upload starting\r\n") # remove existing file on device if args.append==False: if args.verbose: sys.stderr.write("Stage 1. Deleting old file from flash memory") transport.writeln("file.open(\"" + args.dest + "\", \"w\")\r") transport.writeln("file.close()\r") transport.writeln("file.remove(\"" + args.dest + "\")\r") else: if args.verbose: sys.stderr.write("[SKIPPED] Stage 1. Deleting old file from flash memory [SKIPPED]") # read source file line by line and write to device if args.verbose: sys.stderr.write("\r\nStage 2. Creating file in flash memory and write first line") if args.append: transport.writeln("file.open(\"" + args.dest + "\", \"a+\")\r") else: transport.writeln("file.open(\"" + args.dest + "\", \"w+\")\r") line = f.readline() if args.verbose: sys.stderr.write("\r\nStage 3. Start writing data to flash memory...") if args.bar: for i in tqdm(range(0, num_lines)): transport.writer(line.strip()) line = f.readline() else: while line != '': transport.writer(line.strip()) line = f.readline() # close both files f.close() if args.verbose: sys.stderr.write("\r\nStage 4. Flush data and closing file") transport.writeln("file.flush()\r") transport.writeln("file.close()\r") # compile? if args.compile: if args.verbose: sys.stderr.write("\r\nStage 5. Compiling") transport.writeln("node.compile(\"" + args.dest + "\")\r") transport.writeln("file.remove(\"" + args.dest + "\")\r") # restart or dofile if args.restart: transport.writeln("node.restart()\r") if args.dofile: # never exec if restart=1 transport.writeln("dofile(\"" + args.dest + "\")\r", 0) if args.echo: if args.verbose: sys.stderr.write("\r\nEchoing MCU output, press Ctrl-C to exit") while True: sys.stdout.write(transport.read(1)) # close serial port transport.close() # flush screen sys.stdout.flush() sys.stderr.flush() if not args.bar: sys.stderr.write("\r\n--->>> All done <<<---\r\n") ```
{ "source": "jgraichen/codeocean", "score": 3 }
#### File: seeds/even_odd/exercise_tests.py ```python from exercise import * import unittest class ExerciseTests(unittest.TestCase): def test_even(self): for x in [1, 3, 5, 7, 9]: self.assertFalse(even(x)) for x in [2, 4, 6, 8, 10]: self.assertTrue(even(x)) def test_odd(self): for x in [1, 3, 5, 7, 9]: self.assertTrue(odd(x)) for x in [2, 4, 6, 8, 10]: self.assertFalse(odd(x)) ```
{ "source": "jgraichen/salt-acme", "score": 2 }
#### File: salt-acme/_modules/acme_dns.py ```python import ipaddress import logging import time from contextlib import contextmanager try: import dns import dns.tsigkeyring from dns.update import Update from dns.rdataclass import IN from dns.rdatatype import TXT from dns.rcode import NOERROR _HAS_DNS = True except ImportError: _HAS_DNS = False from salt.exceptions import ( CommandExecutionError, SaltConfigurationError, TimeoutError as SaltTimeoutError, ) _LOG = logging.getLogger(__name__) def __virtual__(): if not _HAS_DNS: return False, "dnspython missing" return True def _make_record(token, alias=None, **_kwargs): if alias: name = dns.name.from_unicode(alias) else: name = dns.name.from_unicode(f"_acme-challenge.{token['name']}") rdata = dns.rdata.from_text(IN, TXT, str(token["token"])) return (name, rdata) def _query_addresses(name, resolver=None): if resolver is None: resolver = dns.resolver addresses = [] for rdtype in ("A", "AAAA"): try: addresses.extend([r.to_text() for r in resolver.query(name, rdtype)]) except (dns.resolver.NoAnswer, dns.resolver.NXDOMAIN): pass return addresses def _verify(nameserver, port, zone, verify_timeout=120, **_kwargs): """ Verify all nameservers listed as NS in `zone` serve the current or a newer SOA serial. """ # Use primary nameserver for NS lookup and as first resolver # to handle local or split-horizon scenarios resolver = dns.resolver.Resolver(configure=False) try: ipaddress.ip_address(nameserver) resolver.nameservers = [nameserver] except ValueError as e: resolver.nameservers = _query_addresses(nameserver) if not resolver.nameservers: raise SaltConfigurationError(f"Nameserver not found: {nameserver}") from e # All resolved address of the primary NS must use the configured port resolver.nameserver_ports.update({ns: port for ns in resolver.nameservers}) # The public resolver first tries the primary NS first, otherwise falls # back to the system resolver. This is used to lookup e.g. other NS names # which might not be served by the primary. public = dns.resolver.Resolver() public.nameservers = resolver.nameservers + public.nameservers public.nameserver_ports.update(resolver.nameserver_ports) # Verify SOA serial propagation to all nameserver serial = resolver.query(zone, "SOA")[0].serial deadline = time.monotonic() + verify_timeout # Collect all NS records of the zone. We explicitly use the primary NS # as the system resolver might serve internal NS in a split-horizon setup. nameservers = [] resolvers = {} for rdata in resolver.query(zone, "NS", raise_on_no_answer=False): name = rdata.target.to_unicode() resolvers[name] = dns.resolver.Resolver(configure=False) resolvers[name].nameservers = _query_addresses(name, resolver=public) nameservers.append(name) if not nameservers: _LOG.warning("Skip DNS record verify: No nameservers found for %s", zone) return _LOG.info("Verify SOA serial %d for %d nameservers...", serial, len(nameservers)) while deadline > time.monotonic(): for ns in nameservers[:]: ns_serial = resolvers[ns].query(zone, "SOA")[0].serial if ns_serial < serial: _LOG.debug("Nameserver %s still at %d...", ns, ns_serial) else: nameservers.remove(ns) if nameservers: _LOG.debug("%d nameservers still pending...", len(nameservers)) time.sleep(0.5) else: _LOG.debug("All nameservers up-to-date!") break if nameservers: _LOG.error("Nameserver failed to update: %s", nameservers) raise SaltTimeoutError("Some nameserver failed to receive DNS updates") @contextmanager def _update(zone, nameserver, port=53, timeout=10, tsig=None, verify=True, **kwargs): update = Update(zone) if tsig: algorithm, keyname, secret = str(tsig).split(":", 3) keyring = dns.tsigkeyring.from_text({keyname: secret}) update.use_tsig(keyring, keyname=keyname, algorithm=algorithm) yield update answer = dns.query.tcp(update, nameserver, timeout, port) rcode = answer.rcode() if rcode != NOERROR: raise CommandExecutionError( f"DNS update for {zone} failed: {dns.rcode.to_text(rcode)}" ) if verify: _verify(nameserver, port, zone, **kwargs) def install(name, tokens, ttl=120, **kwargs): if "zone" not in kwargs: kwargs["zone"] = name with _update(**kwargs) as update: for token in tokens: name, rdata = _make_record(token, **kwargs) update.add(name, ttl, rdata) def remove(name, tokens, **kwargs): if "zone" not in kwargs: kwargs["zone"] = name # No need to verify propagation when removing challenges kwargs["verify"] = False with _update(**kwargs) as update: for token in tokens: name, rdata = _make_record(token, **kwargs) update.delete(name, rdata) ``` #### File: test/runners/test_acme.py ```python import os from unittest.mock import patch import pytest import yaml from cryptography import x509 from cryptography.hazmat.backends import default_backend import salt.version from salt.exceptions import AuthorizationError @pytest.fixture def runner(master): return master.runner def read_fixture(file, mode="r"): with open(os.path.join("test/fixtures", file), mode) as f: return f.read() def _patch_cmd(runner, fn): # Salt 3003+ changed how the __salt__ global is handled inside the loader. # To patch that in tests, we need to target the loader directly instead of a # pack as in previous versions. if salt.version.__version__ > '3003': return patch.dict(runner, {"salt.cmd": fn}) else: return patch.dict(runner.pack["__salt__"], {"salt.cmd": fn}) def test_sign(runner): """ One full roundtrip test. The CSR is passed to the `acme.sign` execution module and a dict with {"text": "<certificate>"} is returned. """ csr = read_fixture("example.csr") result = runner["acme.sign"](csr) assert "text" in result crt = x509.load_pem_x509_certificate( result["text"].encode(), backend=default_backend() ) assert isinstance(crt, x509.Certificate) def test_sign_broken_pem(runner): """ When a minion invokes a runner using `publish.runner`, the arguments can get scrambled. Newlines might be replaced with single spaces. The runner must fix these missing newlines in the PEM-encoded csr and pass a correct string to the execution module. """ csr = read_fixture("example.csr") def check_fn(cmd, pem): assert cmd == "acme.sign" assert pem == csr.strip() with _patch_cmd(runner, check_fn): runner["acme.sign"](csr.replace("\n", " ")) def test_sign_authorize(runner, tmpdir): auth_file = os.path.join(tmpdir, "auth.yml") with open(auth_file, "w") as f: yaml.safe_dump( {"*": ["example.org", "*.example.org", "example.com", "*.example.com"]}, f ) def fxcmd(*_args): return True with patch.dict( runner.opts, {"id": "minion", "acme": {"runner": {"auth_file": auth_file}}}, ): with _patch_cmd(runner, fxcmd): assert runner["acme.sign"](read_fixture("example.csr")) def test_sign_authorize_multiple_rules(runner, tmpdir): """ Test that all matching rules are applied. """ auth_file = os.path.join(tmpdir, "auth.yml") with open(auth_file, "w") as f: yaml.safe_dump( { "minion": ["example.org"], "minion*": ["*.example.org"], "*": ["example.com", "*.example.com"], }, f, ) def fxcmd(*_args): return True with patch.dict( runner.opts, {"id": "minion", "acme": {"runner": {"auth_file": auth_file}}}, ): with _patch_cmd(runner, fxcmd): assert runner["acme.sign"](read_fixture("example.csr")) def test_sign_reject_unauthorized(runner, tmpdir): auth_file = os.path.join(tmpdir, "auth.yml") csr = read_fixture("example.csr") with open(auth_file, "w") as f: yaml.safe_dump({"minion": ["example.org", "*.example.org"]}, f) with patch.dict( runner.opts, {"id": "minion", "acme": {"runner": {"auth_file": auth_file}}}, ): with pytest.raises(AuthorizationError) as e: runner["acme.sign"](csr) assert str(e.value) == "Unauthorized domains: example.com, www.example.com" ```
{ "source": "jgraichen/salt-pki", "score": 2 }
#### File: fixtures/_modules/test.py ```python import datetime from cryptography import x509 from cryptography.hazmat.backends import default_backend as _default_backend from cryptography.hazmat.primitives import hashes, serialization def sign(csr): """ Minimal execution module to test signing with a CA. """ with open("test/fixtures/ca.crt", "rb") as f: ca_cert = x509.load_pem_x509_certificate(f.read(), backend=_default_backend()) with open("test/fixtures/ca.key", "rb") as f: ca_pkey = serialization.load_pem_private_key( f.read(), password=None, backend=_default_backend() ) obj = x509.load_pem_x509_csr(csr.encode(), backend=_default_backend()) crt = x509.CertificateBuilder( issuer_name=ca_cert.subject, subject_name=obj.subject, public_key=obj.public_key(), serial_number=x509.random_serial_number(), not_valid_after=datetime.datetime.utcnow() + datetime.timedelta(days=90), not_valid_before=datetime.datetime.utcnow(), extensions=obj.extensions, ).sign(ca_pkey, algorithm=hashes.SHA384(), backend=_default_backend()) return {"text": crt.public_bytes(serialization.Encoding.PEM).decode()} ```
{ "source": "jgraichen/salt-template", "score": 3 }
#### File: salt-template/_templates/systemd.py ```python from typing import TYPE_CHECKING, Callable, Dict if TYPE_CHECKING: __salt__: Dict[str, Callable] def _escape(string: str): return "\\\n ".join(string.splitlines()) def _value(value): if value is None: return "" if isinstance(value, bool): return "yes" if value else "no" if isinstance(value, str): return _escape(value) if isinstance(value, (int, float)): return str(value) raise ValueError(f"Unsupport value: {value!r}") def _render_section(name, values): lines = [f"[{name}]"] for key, value in values.items(): if isinstance(value, list): for val in value: lines.append(f"{key}={_value(val)}") else: lines.append(f"{key}={_value(value)}") lines.append("") return lines def run(): """ Renders data into a systemd syntax file. See `template.prepare` for context arguments on loading data, and `template.managed` for additional arguments when rendering the output. Arguments: section (str): Render key value pairs from data into this section instead of using the top dict for sections. Nested dicts are not supported. Example: /etc/systemd/system/unit.service: file.managed: - template: py - source: salt://_files/serialize/systemd.py - context: default: Unit: Description: "A Unit Description" Service: ExecStart: - command - command Output: # Preamble [Unit] Description=A Unit Description [Service] ExecStart=command ExecStart=command """ args = globals().get("context", {}) data = __salt__["template.prepare"](**args) if "section" in args: data = {args["section"]: data} lines = [] for name, values in data.items(): if isinstance(values, list): for items in values: lines.extend(_render_section(name, items)) else: lines.extend(_render_section(name, values)) return __salt__["template.managed"](lines, **args) ```
{ "source": "jgraille/CtCy-6th-Edition-Python-", "score": 3 }
#### File: CtCy-6th-Edition-Python-/ch-01-ArrayString/oneaway.py ```python import difflib import re import unittest import datetime import random import string random.seed(9001) def one_edit_replace(s1, s2): edited = False for c1, c2 in zip(s1, s2): if c1 != c2: if edited: return False edited = True return True def one_edit_insert(s1, s2): edited = False i, j = 0, 0 while i < len(s1) and j < len(s2): if s1[i] != s2[j]: if edited: return False edited = True j += 1 else: i += 1 j += 1 return True def one_away(s1, s2): if len(s1) == len(s2): return one_edit_replace(s1, s2) elif len(s1) + 1 == len(s2): return one_edit_insert(s1, s2) elif len(s1) - 1 == len(s2): return one_edit_insert(s2, s1) return False def find(val): res = re.search(r"(-|\+)", val) if res != None: return res.group(0) else: return None def OneAway(string1,string2): d = difflib.Differ() resMatch = list(filter(lambda x: x != None, list(map(find,list(d.compare(string1,string2)))))) dic = {'-':resMatch.count('-'), '+':resMatch.count('+')} if abs(dic['-'] - dic['+']) > 1 or (dic['-'] == dic['+'] and dic['-'] > 1) or (abs(dic['-'] - dic['+']) == 1 and dic['-'] != 0 and dic['+'] != 0): return False else: return True class Gen: def __init__(self): self.size = random.randint(50,100) self.string = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase) for _ in range(self.size)) # https://github.com/careercup/CtCI-6th-Edition-Python/blob/master/Chapter1/5_One%20Away/OneAway.py class Test(unittest.TestCase): '''Test Cases''' a = Gen().string b = Gen().string print(a) print(b) data = [ ('pale', 'ple', True), ('pales', 'pale', True), ('pale', 'bale', True), ('paleabc', 'pleabc', True), ('pale', 'ble', False), ('a', 'b', True), ('', 'd', True), ('d', 'de', True), ('pale', 'pale', True), ('pale', 'ple', True), ('ple', 'pale', True), ('pale', 'bale', True), ('pale', 'bake', False), ('pale', 'pse', False), ('ples', 'pales', True), ('pale', 'pas', False), ('pas', 'pale', False), ('pale', 'pkle', True), ('pkle', 'pable', False), ('pal', 'palks', False), ('palks', 'pal', False), (a,b,False), ] def test_one_away1(self): start = datetime.datetime.now() for [test_s1, test_s2, expected] in self.data: actual = one_away(test_s1, test_s2) self.assertEqual(actual, expected) time = datetime.datetime.now() - start print(time) def test_one_away2(self): start = datetime.datetime.now() for [test_s1, test_s2, expected] in self.data: actual = OneAway(test_s1, test_s2) self.assertEqual(actual, expected) time = datetime.datetime.now() - start print(time) def main(): unittest.main() ''' a = 'doretdeplatine' # remove case deletionOne = 'doretdeplatin' deletionSeveral = 'doretdeplati' # insert case insertOne = 'doretdeplatine1' insertSeveral = 'doreetdeplatine12' # repalce case replaceOne = 'boretdeplatine' replaceSeveral = 'boretdeplat1ne' print(a,deletionOne,'->',OneAway(a,deletionOne)) print(a,deletionSeveral,'->',OneAway(a,deletionSeveral)) print(a,insertOne,'->',OneAway(a,insertOne)) print(a,insertSeveral,'->',OneAway(a,insertSeveral)) print(a,replaceOne,'->',OneAway(a,replaceOne)) print(a,replaceSeveral,'->',OneAway(a,replaceSeveral)) print(a,a,'->',OneAway(a,a)) ''' if __name__ == '__main__': main() ``` #### File: CtCy-6th-Edition-Python-/ch-02-LinkedLists/kthTolast.py ```python class Node: def __init__(self,value,following): self.value = value self.following = following def display(l): print(l.value) while l.following is not None: l.value = l.following.value print(l.value) l.following = l.following.following def size(l): size = 1 while l.following is not None: size += 1 l.following = l.following.following return size def kthtolast(l, k): si = size(l) i = 0 head1 = l.value head2 - l.following.value print(head1) print(head2) def main(): linkedlist = Node(3,(Node(2,Node(1,Node(9,None))))) # kthtolast(linkedlist,5) print(size(linkedlist)) if __name__ == '__main__': main() ``` #### File: CtCy-6th-Edition-Python-/ch-04-TreesGraphs/routebtwNodes.py ```python import unittest class Node: def __init__(self,val,adjacent=None): self.val = val self.adjacent = adjacent self._marked = False @property def marked(self): return self._marked @marked.setter def marked(self,value): if isinstance(value,bool): self._marked = value else: raise TypeError("Value is not a boolean") def addEdge(self,node): self.adjacent += [node] class Queue: def __init__(self,listQueue=None): self.listQueue = listQueue def addElement(self,val): self.listQueue.append(val) return self.listQueue def removeElement(self): if self.listQueue: return self.listQueue.pop(0) def routebtwNodes(start,end): if start == end: return True thequeue = Queue([]) node_s = start node_s.marked = True thequeue.addElement(node_s) while thequeue.listQueue: node_r = thequeue.removeElement() if node_r.adjacent != None: for r in node_r.adjacent: if r.marked == False: if r.val == end.val: return True else: thequeue.addElement(r) r.marked = True return False def resetMarked(nodes): for i in nodes: i.marked = False class Test(unittest.TestCase): def test_routebtwNodes(self): node_c = Node('C') node_d = Node('D') node_b = Node('B', [node_c]) node_a = Node('A',[node_d,node_b]) node_e = Node('E',[node_a]) node_b.addEdge(node_a) nodes = [node_a,node_b,node_c,node_d,node_e] testCases = [[node_e,node_e,True], [node_a,node_b,True], [node_b,node_a,True], [node_e,node_c,True], [node_d,node_c,False] ] for case in testCases: print('(node_' + case[0].val + ',node_' + case[1].val + ')' + ' ' + str(case[2])) self.assertEqual(routebtwNodes(case[0],case[1]),case[2]) resetMarked(nodes) if __name__ == '__main__': unittest.main() ``` #### File: CtCy-6th-Edition-Python-/HackerRank/compareTriplets.py ```python import math import os import random import re def compareTriplets(a, b): i = 0 res = [0, 0] while (i < 3): if a[i] < b[i]: res[1] += 1 elif a[i] > b[i]: res[0] += 1 else: pass i += 1 return (res) if __name__ == '__main__': a = [17, 28, 30] b = [99, 16, 8] result = compareTriplets(a , b) print(result) ``` #### File: CtCy-6th-Edition-Python-/StrategicSingletonPattern/benchmark.py ```python class BenchMark: # https://python-3-patterns-idioms-test.readthedocs.io/en/latest/Singleton.html class __BenchMark: def __init__(self,arg): self.val = arg def __str__(self): return repr(self) instance = None def __init__(self,arg): if not BenchMark.instance: BenchMark.instance = BenchMark.__BenchMark(arg) else: BenchMark.instance.val = arg ``` #### File: CtCy-6th-Edition-Python-/StrategicSingletonPattern/employee.py ```python from abc import ABC,abstractmethod # Another exemple of subclasses class Employee(ABC): def __init__(self,rank=None): self.currentcall = None self._rank = rank def isfree(self): return self.currentcall == None class Director(Employee): def rankdirector(self): self._rank = 2 class Manager(Employee): def rankmanager(self): self._rank = 1 class Respondent(Employee): def rankrespondent(self): self._rank = 0 ```
{ "source": "jgraille/reveng", "score": 2 }
#### File: jgraille/reveng/__main__.py ```python from cmd import Cmd from pyfiglet import Figlet from utils.utils import init_params from __init__ import Database from src.automl import AutoMl from src.explainautoml import ExplainModel from src.preprocessing import PreProcessing from src.geneticlearn import GeneticProgramming from src.preclustering import PreClustering import pandas import numpy pandas.set_option('display.max_columns', 500) pandas.set_option('display.width', 1000) class Menu(Cmd): f = Figlet(font='slant') print(f.renderText(' Rev Eng\n')) print('----------------------------------------------') print('---------------------Menu---------------------') print('----------------------------------------------\n') print('* Computing preclustering / outliers enter--> cl\n') print('* Computing genetic programming enter--> gp\n') print('* Running an autml instance enter--> automl\n') print('* Press q to exit at anytime \n') prompt = 'reveng> ' def __init__(self): config_db, config_automl, config_file1, config_file2, config_file3 = init_params() super(Menu, self).__init__() self.config_db = config_db self.config_automl = config_automl self.config_file = config_file1 self.preprocessing = PreProcessing(config_file=self.config_file) def do_q(self, args=True): print('\n Closed RevEng') raise SystemExit def do_codb(self, args=True): print('\nConnecting to a database...') try: db = Database(config=self.config_db) except Exception as e: print('\nFailed to connect to the database:', e.__repr__()) return 1 print('Connection ok\n') def do_cl(self, args=True): try: outliers, data = self.preprocessing.outliers() print('\nOutliers done... ') if outliers: print('\nFound {} outliers'.format(len(outliers))) else: print('\nNo outliers found') scaled_data = self.preprocessing.frequency_and_scale() print('\nFrequency and scale done... ') clusters = PreClustering(data=scaled_data) labels_clusters = clusters.running() print('\nDbscan done... ') print('\nClusters labels: \n', numpy.unique(labels_clusters)) clusters.display_clusters_outliers(outliers=outliers, data=data, labels_clusters=labels_clusters) except Exception as e: print('\nFailed to compute dbscan...', e.__repr__()) def do_gp(self, args=True): try: train_test_split, feature_names = self.preprocessing.encoding_and_split() res = GeneticProgramming(x_train=train_test_split[0], y_train=train_test_split[2], excludes=self.preprocessing.excludes, header=self.preprocessing.header, config_file=self.config_file) pop, log, hof = res.calculate() print(pop[50]) except Exception as e: print('\nFailed to compute gp...', e.__repr__()) def do_automl(self, args=True): try: train_test_split, feature_names = self.preprocessing.encoding_and_split() reveng_model = AutoMl(train=train_test_split[0], test=train_test_split[1], labels_train=train_test_split[2], labels_test=train_test_split[3], feature_names=feature_names, categforical_features=self.preprocessing.categorical_features) reveng_model.running(config_automl=self.config_automl) reveng_model.h2oshellinformations(model=reveng_model.model, test_h2o_df=reveng_model.test_h2o_df, automl=True) exp = ExplainModel(train_test_split=train_test_split, feature_names=feature_names, class_names=self.preprocessing.class_names, categorical_features=self.preprocessing.categorical_features, categorical_names=self.preprocessing.categorical_names, row=3).explainer(model=reveng_model.model) print(exp.as_list()) reveng_model.close() except Exception as e: print('\nFailed to connect to h2o / process the file...', e.__repr__()) def main(): menu = Menu().cmdloop() if __name__ == '__main__': main() ``` #### File: reveng/src/h2owrapper.py ```python import numpy import pandas import h2o class H2oWrapper: # from https://marcotcr.github.io/lime/tutorials/Tutorial_H2O_continuous_and_cat.html def __init__(self, model, column_names): self.model = model self.column_names = column_names def predict_proba(self, this_array): # If we have just 1 row of data we need to reshape it shape_tuple = numpy.shape(this_array) if len(shape_tuple) == 1: this_array = this_array.reshape(1, -1) # We convert the numpy array that Lime sends to a pandas dataframe and # convert the pandas dataframe to an h2o frame self.pandas_df = pandas.DataFrame(data=this_array, columns=self.column_names) self.h2o_df = h2o.H2OFrame(self.pandas_df) # Predict with the h2o drf self.predictions = self.model.predict(self.h2o_df).as_data_frame() # the first column is the class labels, the rest are probabilities for # each class #self.predictions = self.predictions.iloc[:, 1:].values self.predictions = self.predictions.iloc[:, 0:].values return self.predictions ``` #### File: reveng/src/preclustering.py ```python from sklearn.neighbors import NearestNeighbors from sklearn.cluster import DBSCAN import numpy from matplotlib import pyplot as plt import os class PreClustering: def __init__(self, data): self.data = data def plot_distances_neighbors(self): try: neigh = NearestNeighbors(n_neighbors=2) neigh.fit(self.data) distances, indices = neigh.kneighbors(self.data, return_distance=True) distances = numpy.sort(distances, axis=0) distances = distances[:, 1] plt.clf() plt.ylabel('Distances') plt.xlabel('N points') plt.title('Nearest neighbors distances per point\n choose epsilon (maximum curvature)') plt.plot(distances) plt.show() except Exception as e: print('\nProcedure PreClustering.plot_distances_neighbors did not work', e.__repr__()) def epsilon(self): try: self.plot_distances_neighbors() epsilon = input('Enter epsilon: ') #epsilon = 0.27 return epsilon except Exception as e: print('\nMethod PreClustering.epsilon did not work', e.__repr__()) def running(self): try: print('\nStarting dbscan...') epsilon = float(self.epsilon()) clusters = DBSCAN(eps=epsilon, min_samples=2, metric='euclidean', n_jobs=(os.cpu_count() - 1)).fit_predict(self.data) return clusters except Exception as e: print('\nMethod PreClustering.running did not work', e.__repr__()) def display_clusters_outliers(self, outliers, data, labels_clusters): try: if outliers: data['cluster'] = labels_clusters print('\nOutliers rows:\n', data.iloc[outliers]) except Exception as e: print('\nMethod PreClustering.display_clusters_outliers did not work', e.__repr__()) ```
{ "source": "jgranley/CS291a", "score": 2 }
#### File: CS291a/cs291a/dataset_gen.py ```python import numpy as np import random import h5py import os import json from datetime import datetime import argparse import pulse2percept as p2p def rand_stim(implant, n_electrodes=1): maxamp = 10 maxfreq = 200 # randomly pick UP TO n_electrodes sample_elecs = random.randint(1, n_electrodes) elecs = random.sample([i for i in range(len(implant.electrodes))], sample_elecs) stim = np.zeros((len(implant.electrodes), 3), dtype='float32') for elec in elecs: amp = random.random() * (maxamp - 1) + 1 freq = random.random() * (maxfreq - 1) + 1 pdur = random.expovariate(1) while pdur > 1000 / freq / 2 or pdur < 0.01 or pdur > 100: pdur = random.expovariate(1) stim[elec] = np.array([freq, amp, pdur]) return stim def rand_percepts(model, implant, n_elecs=1, n_samples=10000): model.build() x = np.array([implant[e].x for e in implant.electrodes], dtype='float32') y = np.array([implant[e].y for e in implant.electrodes], dtype='float32') percepts = [] stims = [] for i in range(n_samples): stim = rand_stim(implant, n_electrodes=n_elecs) percept = model._predict_spatial_jax(stim, x, y).reshape(model.grid.shape) stims.append(stim) percepts.append(percept) percepts = np.array(percepts) stims = np.array(stims) return percepts, stims def write_h5(percepts, stims, path): if os.path.exists(path): print("h5 exists, overwriting") percepts = np.array(percepts, dtype='float32') stims = np.array(stims, dtype='float32') hf = h5py.File(path, 'w') hf.create_dataset('stims', data=stims) hf.create_dataset('percepts', data=percepts) hf.close() def read_h5(path): if not os.path.exists(path): raise ValueError("Provided path does not exist") hf = h5py.File(path, 'r') if 'stims' not in hf.keys() or 'percepts' not in hf.keys(): raise ValueError("H5 formatted incorrectly") stims = np.array(hf.get('stims'), dtype='float32') percepts = np.array(hf.get('percepts'), dtype='float32') hf.close() return percepts, stims def get_path(model, implant, n_electrodes): path = (f'percepts' f'_{str(type(implant)).lower().split(".")[-1][:-2]}' f'_{n_electrodes}elec' f'_rho{model.rho}lam{model.axlambda}' f'_{datetime.now().strftime("%m%d%H%M")}' f'.h5') return path def save_h5(dirname, model, implant, percepts, stims, n_electrodes): info_json = os.path.join(dirname, "info.json") if os.path.exists(info_json): info = json.load(open(info_json)) else: info = {} path = get_path(model, implant, n_electrodes) info[path] = {} info[path]['model'] = str(type(model)) info[path]['implant'] = str(type(implant)) info[path]['n_elecs'] = n_electrodes info[path]['rho'] = model.rho info[path]['axlambda'] = model.axlambda info[path]['xystep'] = model.xystep info[path]['xrange'] = str(model.xrange) info[path]['yrange'] = str(model.yrange) info[path]['size'] = len(stims) info[path]['subject'] = '' info[path]['min_ax_sensitivity'] = model.min_ax_sensitivity for p in ['a' + str(i) for i in range(10)]: info[path][p] = getattr(model, p) json.dump(info, open(info_json, 'w')) write_h5(percepts, stims, os.path.join(dirname, path)) if __name__ == '__main__': n_electrodes = 15 n_samples = 6000 model = p2p.models.BiphasicAxonMapModel(engine='jax', a4=0, rho=200, xrange=(-14, 12), yrange=(-12, 12), xystep=0.5, axlambda=800) model.build() implant = p2p.implants.ArgusII(rot=-30) percepts, stims = rand_percepts(model, implant, n_elecs = n_electrodes, n_samples = n_samples) save_h5('/home/jgranley/cs291a/data/percepts', model, implant, percepts, stims, n_electrodes) ``` #### File: CS291a/cs291a/models.py ```python from matplotlib.colors import Normalize import tensorflow as tf from keras import backend as K from keras import layers import keras import numpy as np from skimage.transform import resize import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import datetime import json import h5py import imageio import pulse2percept as p2p from pulse2percept.models import BiphasicAxonMapModel from pulse2percept.stimuli import BiphasicPulseTrain from pulse2percept.utils import center_image from pulse2percept.implants import ArgusII # import dataset_gen # physical_devices = tf.config.list_physical_devices('GPU') # tf.config.experimental.set_memory_growth(physical_devices[0], True) def get_loss(model, implant, regularize=None, reg_coef=0.05, size_norm=False, loss_fn='mse'): bundles = model.grow_axon_bundles() axons = model.find_closest_axon(bundles) axon_contrib = model.calc_axon_sensitivity(axons, pad=True).astype(np.float32) axon_contrib = tf.constant(axon_contrib, dtype='float32') x = tf.constant([implant[e].x for e in implant.electrodes], dtype='float32') y = tf.constant([implant[e].y for e in implant.electrodes], dtype='float32') rho = model.rho # get effect models. Need to reimplement them in tensorflow fashion def scale_threshold(pdur): return model.a1 + model.a0*pdur def predict_freq_amp(amp, freq): return model.a2*amp + model.a3*freq def bright(freq, amp, pdur): F_bright = predict_freq_amp(amp * scale_threshold(pdur), freq) return F_bright def size(freq, amp, pdur): min_f_size = 10**2 / (model.rho**2) F_size = model.a5 * amp * model.scale_threshold(pdur) + model.a6 return tf.maximum(F_size, min_f_size) def streak(freq, amp, pdur): min_f_streak = 10**2 / (model.axlambda ** 2) F_streak = model.a9 - model.a7 * pdur ** model.a8 return tf.maximum(F_streak, min_f_streak) def reg_none(y_pred): return tf.zeros_like(y_pred[:, 0, 0]) def reg_l1(y_pred): return tf.reduce_sum(tf.abs(y_pred[:, :, 1]), axis=-1) def reg_l1_ampfreq(y_pred): return tf.reduce_sum(tf.abs(y_pred[:, :, 1]), axis=-1) + tf.reduce_sum(tf.abs(y_pred[:, :, 0]), axis=-1) def reg_l2(y_pred): return tf.reduce_sum(y_pred[:, :, 1]**2, axis=-1) def reg_elecs(y_pred): return tf.math.count_nonzero((y_pred[:, :, 1] > 0.5), axis=-1, dtype='float32') if regularize is None: regfn = reg_none elif regularize == 'l1': regfn = reg_l1 elif regularize == 'l1_ampfreq': regfn = reg_l1_ampfreq elif regularize == 'l2': regfn = reg_l2 elif regularize == 'elecs': regfn = reg_elecs else: regfn = reg_none def biphasic_axon_map_batched(ypred): bright_effects = bright(ypred[:, :, 0], ypred[:, :, 1], ypred[:, :, 2]) # make bright effects 0 if amp is 0 # mask = tf.cast(ypred[:, :, 0] > 0.5, 'float32') # bright_effects = bright_effects * mask size_effects = size(ypred[:, :, 0], ypred[:, :, 1], ypred[:, :, 2]) streak_effects = streak(ypred[:, :, 0], ypred[:, :, 1], ypred[:, :, 2]) eparams = tf.stack([bright_effects, size_effects, streak_effects], axis=2) d2_el = (axon_contrib[:, :, 0, None] - x)**2 + (axon_contrib[:, :, 1, None] - y)**2 intensities = eparams[:, None, None, :, 0] * tf.math.exp(-d2_el[None, :, :, :] / (2. * rho**2 * eparams[:, :, 1])[:, None, None, :]) * (axon_contrib[None, :, :, 2, None] ** (1./eparams[:, None, None, :, 2])) return tf.reduce_max(tf.reduce_sum(intensities, axis=-1), axis=-1) # assumes model outputs same shape as ytrue def mse(ytrue, ypred): pred_imgs = biphasic_axon_map_batched(ypred) yt = tf.reshape(ytrue, (-1, model.grid.shape[0] * model.grid.shape[1])) loss = tf.reduce_mean((pred_imgs - yt)**2, axis=-1) if size_norm: # normalize by total number of pixels loss /= tf.math.count_nonzero(yt, axis=-1, dtype='float32') loss *= tf.cast(model.grid.shape[0] * model.grid.shape[1], 'float32') loss += reg_coef * regfn(ypred) return loss def ms_ssim(ytrue, ypred): pred_imgs = biphasic_axon_map_batched(ypred) pred_imgs = tf.reshape(pred_imgs, (-1, model.grid.shape[0], model.grid.shape[1], 1)) ytrue = tf.reshape(ytrue, (-1, model.grid.shape[0], model.grid.shape[1], 1)) loss = 1 - tf.image.ssim_multiscale(ytrue, pred_imgs, 3, power_factors = (0.0448, 0.2856, 0.3001, 0.2363), filter_size=7) loss += reg_coef * regfn(ypred) return loss if loss_fn == 'mse': fn = mse fn.__name__ = 'mse_' + str(regularize) return tf.function(fn, jit_compile=True) elif loss_fn == 'msssim': fn = ms_ssim fn.__name__ = 'msssim_' + str(regularize) # cant jit msssim return tf.function(fn) def get_model(implant, input_shape, num_dense=0, force_zero=False, sigmoid=False, clip=False): """ Makes a keras model for the model """ inputs = layers.Input(shape=input_shape, dtype='float32') x = tf.image.flip_up_down(inputs) # fully convolutional num_filters = [100, 1000, 100] kernel_sizes = [5, 5, 5] # for idx_conv in range(3): # x = layers.Conv2D(num_filters[idx_conv], kernel_sizes[idx_conv], padding='same')(x) # if idx_conv <2: # x = layers.MaxPool2D()(x) # x = layers.Activation('relu')(x) x = layers.Flatten()(x) for i in range(num_dense): x = layers.Dense(500, activation='relu')(x) amps = layers.Dense(len(implant.electrodes))(x) if clip == 'relu': amps = layers.ReLU(max_value=10)(amps) elif clip == 'sigmoid': amps = layers.Activation('sigmoid')(amps) * 10. else: amps = layers.ReLU()(amps) if force_zero: amps = tf.where(amps >= 0.5, amps, tf.zeros_like(amps)) freqs = layers.Dense(len(implant.electrodes))(x) if clip == 'relu': freqs = layers.ReLU(max_value=200)(freqs) elif clip == 'sigmoid': freqs = layers.Activation('sigmoid')(freqs) * 200. else: freqs = layers.ReLU()(freqs) if force_zero: freqs = tf.where(amps >= 0.5, freqs, tf.zeros_like(freqs)) pdurs = layers.Dense(len(implant.electrodes))(x) if clip == 'relu': pdurs = layers.ReLU(max_value=100)(pdurs) + 1e-3 elif clip == 'sigmoid': pdurs = layers.Activation('sigmoid')(pdurs) * 100. + 1e-3 else: pdurs = layers.ReLU()(pdurs) + 1e-3 if force_zero: pdurs = tf.where(amps >= 0.5, pdurs, tf.zeros_like(pdurs)) outputs = tf.stack([freqs, amps, pdurs], axis=-1) if sigmoid: mask = layers.Dense(len(implant.electrodes), activation='sigmoid')(x) outputs = outputs * mask[:, :, None] model = keras.Model(inputs=inputs, outputs=outputs) return model def train_model(nn, model, implant, reg, targets, stims, reg_coef, datatype, opt, learning_rate, clip=False, batch_size=32, num_dense=0, force_zero=False, sigmoid=False, size_norm=False, fonts='all', loss_str='mse'): data_dir = "../data" results_folder = os.path.join("../results", datatype) if not os.path.exists(results_folder): os.mkdir(results_folder) ex = np.array([implant[e].x for e in implant.electrodes], dtype='float32') ey = np.array([implant[e].y for e in implant.electrodes], dtype='float32') targets_train, targets_test, stims_train, stims_test = train_test_split(targets, stims, test_size=0.2) if opt == 'sgd': optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate) elif opt == 'adam': optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) else: # can pass in custom optimizer optimizer = opt lossfn = get_loss(model, implant, regularize=reg, reg_coef=reg_coef, size_norm=size_norm, loss_fn=loss_str) loss_noreg = get_loss(model, implant, size_norm=size_norm, loss_fn=loss_str) def loss_reg(y_true, y_pred): return lossfn(y_true, y_pred) - loss_noreg(y_true, y_pred) loss_reg.__name__ = str(reg) dt = datetime.datetime.now().strftime("%m%d-%H%M%S") modelname = (f"nn_{loss_str}" f"_{len(implant.electrodes)}elecs" f"_{opt}_lr{learning_rate}" f"_{str(reg)}_coef{str(reg_coef)}" + dt) log_dir = os.path.join("../results/tensorboard/", datatype, modelname) modelpath = os.path.join(results_folder, modelname) tb = tf.keras.callbacks.TensorBoard(log_dir=log_dir) cp = tf.keras.callbacks.ModelCheckpoint(modelpath, save_best_only=False) es = tf.keras.callbacks.EarlyStopping(patience=250, monitor='loss', restore_best_weights=True) nn.compile(optimizer=optimizer, loss=lossfn, metrics=[loss_noreg, loss_reg]) hist = nn.fit(x=targets_train, y=targets_train, batch_size=batch_size, epochs=1000, callbacks=[ es], validation_data=(targets_test, targets_test), validation_batch_size=batch_size) hist = hist.history # save_model print(f"done training {modelname}") nn.save(modelpath) json_path = os.path.join(results_folder, "info.json") if os.path.exists(json_path): info = json.load(open(json_path)) else: info = {} info['1elec'] = {} info['msssim'] = {} if loss_str == 'mse': dict_name = '1elec' # compatibility elif loss_str == 'msssim': dict_name = 'msssim' info[dict_name][modelname] = {} info[dict_name][modelname]['test_loss'] = np.min(hist['val_loss']) info[dict_name][modelname]['train_loss'] = np.min(hist['loss']) info[dict_name][modelname]['epochs'] = len(hist['val_loss']) info[dict_name][modelname]['opt'] = opt info[dict_name][modelname]['lr'] = learning_rate info[dict_name][modelname]['reg'] = reg info[dict_name][modelname]['reg_coef'] = reg_coef info[dict_name][modelname]['batch_size'] = batch_size info[dict_name][modelname]['dense_layers'] = num_dense info[dict_name][modelname]['tensorboard_logdir'] = log_dir info[dict_name][modelname]['rho'] = model.rho info[dict_name][modelname]['lambda'] = model.axlambda info[dict_name][modelname]['n_elecs'] = 1 info[dict_name][modelname]['shape'] = str(model.grid.shape) info[dict_name][modelname]['force_good_stims'] = str(force_zero) info[dict_name][modelname]['sigmoid'] = str(sigmoid) info[dict_name][modelname]['size_norm'] = str(size_norm) info[dict_name][modelname]['clip'] = clip info[dict_name][modelname]['fonts'] = fonts json.dump(info, open(json_path, 'w')) # plot some images if data_type == 'percepts' or data_type == 'alphabet': if not os.path.exists(os.path.join(results_folder, 'predicted_images')): os.mkdir(os.path.join(results_folder, 'predicted_images')) ims_per_row = 15 rows = 2 fig, axes = plt.subplots(nrows = rows*2, ncols=ims_per_row, figsize=(20, 20)) fig.subplots_adjust(wspace=0, hspace=-0.75) # predicted first for i in range(rows): for j in range(ims_per_row): if j == 1: plt.ylabel("Preds", fontweight="bold", fontsize=20) plt.sca(axes[2*i][j]) idx = i * ims_per_row + j pred = nn(targets_test[idx:idx+1]).numpy() score = float(lossfn(targets_test[idx:idx+1], pred).numpy()) pred_img = model._predict_spatial_jax(pred[0], ex, ey) plt.imshow(pred_img.reshape(model.grid.shape), cmap='gray') plt.annotate(f"{str(round(score, 3))}", (1, 6), color='white') plt.yticks([]) plt.xticks([]) axes[2*i][j].spines['bottom'].set_color('gray') axes[2*i][j].spines['top'].set_color('gray') axes[2*i][j].spines['right'].set_color('gray') axes[2*i][j].spines['left'].set_color('gray') axes[2*i][j].spines['bottom'].set_linewidth(2) axes[2*i][j].spines['top'].set_linewidth(1) axes[2*i][j].spines['right'].set_linewidth(2) axes[2*i][j].spines['left'].set_linewidth(2) # plt.axis(False) for i in range(rows): for j in range(ims_per_row): if j == 1: plt.ylabel("True", fontweight="bold", fontsize=20) plt.sca(axes[2*i+1][j]) idx = i * ims_per_row + j plt.imshow(targets_train[idx], cmap='gray') # plt.axis(False) plt.yticks([]) plt.xticks([]) axes[2*i+1][j].spines['bottom'].set_color('gray') axes[2*i+1][j].spines['top'].set_color('gray') axes[2*i+1][j].spines['right'].set_color('gray') axes[2*i+1][j].spines['left'].set_color('gray') axes[2*i+1][j].spines['bottom'].set_linewidth(2) axes[2*i+1][j].spines['top'].set_linewidth(1) axes[2*i+1][j].spines['right'].set_linewidth(2) axes[2*i+1][j].spines['left'].set_linewidth(2) elif data_type =='alphabet': pass plt.savefig(os.path.join(results_folder, 'predicted_images', modelname + "_" + str(round(np.min(hist['val_loss']), 3)) +".png"), bbox_inches="tight") return round(np.min(hist['val_loss']), 4) def read_h5(path): if not os.path.exists(path): raise ValueError("Provided path does not exist") hf = h5py.File(path, 'r') if 'stims' not in hf.keys() or 'percepts' not in hf.keys(): raise ValueError("H5 formatted incorrectly") stims = np.array(hf.get('stims'), dtype='float32') percepts = np.array(hf.get('percepts'), dtype='float32') hf.close() return percepts, stims def load_alphabet(path, model, fonts=[i for i in range(31)]): folders = os.listdir(path) folders = [f for f in folders if f.isnumeric()] targets = [] labels = [] for folder in folders: letters = os.listdir(os.path.join(path, folder)) for font in fonts: if str(font) + ".png" not in letters: continue img = imageio.imread(os.path.join(path, folder, str(font) + ".png")) img = resize(img, model.grid.shape, anti_aliasing=True) img = 1 - img # invert img = 2 * img # rescale targets.append(np.array(img, dtype='float32')) labels.append(int(folder)) targets = np.array(targets, dtype='float32') labels = np.array(labels) return targets, labels def encode(target, implant, model, mode='amp', stimrange=(0, 2), maxval=None): stim = [] if maxval is None: maxval = np.max(target) for elec in implant.electrodes: # find location to sample x_dva, y_dva = model.retinotopy.ret2dva(implant.electrodes[elec].x, implant.electrodes[elec].y) # interpolate? # print(x_dva, y_dva) x_img = (x_dva - model.xrange[0]) / model.xystep y_img = (y_dva - model.yrange[0]) / model.xystep x_img = int(round(x_img, ndigits=0)) y_img = int(round(y_img, ndigits=0)) # image is centered differently # print(x_img, y_img) # print() px_intensity = target[y_img, x_img, 0] stim_intensity = px_intensity / maxval * (stimrange[1] - stimrange[0]) + stimrange[0] if stim_intensity < 0.5: stim_intensity = 0 freq = 0 else: freq = 20 pulse = np.array([freq, stim_intensity, 0.45], dtype='float32') stim.append(pulse) return np.array(stim, dtype='float32') if __name__ == "__main__": model = BiphasicAxonMapModel(axlambda=800, rho=200, a4=0, engine="jax", xystep=0.5, xrange=(-14, 12), yrange=(-12, 12)) model.build() implant = ArgusII(rot=-30) ##################################################################### # PERCEPTS # ##################################################################### data_type = 'percepts' h5_file = 'percepts_argusii_1elec_rho200lam800_12031654.h5' targets, stims = read_h5(os.path.join("../data", data_type, h5_file)) targets = targets.reshape((-1, 49, 53, 1)) # print(targets) # print(targets.dtype) # print(targets.shape) # test opts / learning rates # best_loss = 99999 # best_opt = "" # best_lr = 999 # for opt in ['sgd', 'adam']: # for lr in [0.00001, 0.00005, 0.0001, 0.001]: # nn = get_model(implant, targets[0].shape) # loss = train_model(nn, model, implant, None, targets, stims, 0.005, data_type, opt, lr) # if loss < best_loss: # best_loss = loss # best_opt = opt # best_lr = lr # test architectures # best_loss = 9999 # best_ndense = 0 # best_force = False # for n_dense in [0, 1, 3]: # for force_zero in [True, False]: # nn = get_model(implant, targets[0].shape, num_dense=n_dense, force_zero=force_zero) # loss = train_model(nn, model, implant, None, targets, stims, 0.005, data_type, best_opt, best_lr, num_dense=n_dense, force_zero=force_zero) # if loss < best_loss: # best_loss = loss # best_ndense = n_dense # best_force = force_zero # test regularization / coef # best_loss = 9999 # for reg in ['l1', 'l2', 'l1_ampfreq', 'elecs']: # for coef in [0.005, 0.01]: # for lr, opt in zip([0.0001, 0.00005], ['adam', 'adam']): # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False) # loss = train_model(nn, model, implant, reg, targets, stims, coef, data_type, opt, lr, num_dense=1, force_zero=False) # if loss < best_loss: # best_loss = loss # sig = False # for lr, opt in zip([ 0.00001], ['adam']): # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, sigmoid=True) # loss = train_model(nn, model, implant, None, targets, stims, 0.0, data_type, opt, lr, num_dense=1, force_zero=False, sigmoid=True) # if loss < 0.07: # sig = True # for lr, opt in zip([0.00001], ['adam']): # for sig in [True, False]: # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, sigmoid=sig) # loss = train_model(nn, model, implant, 'elecs', targets, stims, 0.005 * 7.5, data_type, opt, lr, num_dense=1, force_zero=False, sigmoid=sig, size_norm=True) # print(best_loss) ##################################################################### # ALPHABET # ##################################################################### # data_type = 'alphabet' # letters, labels = load_alphabet("../data/alphabet", model) # targets = letters.reshape((-1, 49, 53, 1)) # test opts / learning rates # for opt in ['sgd', 'adam']: # for lr in [0.00001, 0.0001, 0.001]: # nn = get_model(implant, targets[0].shape, num_dense=1) # loss = train_model(nn, model, implant, None, targets, labels, 0.005, data_type, opt, lr) # if loss < best_loss: # best_loss = loss # best_opt = opt # best_lr = lr # for n_dense in [0, 1, 3]: # nn = get_model(implant, targets[0].shape, num_dense=n_dense, force_zero=False) # loss = train_model(nn, model, implant, None, targets, labels, 0.005, data_type, best_opt, best_lr, num_dense=n_dense, force_zero=False) # if loss < best_loss: # best_loss = loss # best_ndense = n_dense # test regularization / coef # # best_loss = 9999 # for reg in ['l1', 'l2', 'l1_ampfreq', 'elecs']: # for coef in [0.05]: # for lr, opt in zip([0.0001], ['adam']): # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False) # loss = train_model(nn, model, implant, reg, targets, labels, coef, data_type, opt, lr, num_dense=1, force_zero=False) # if loss < best_loss: # best_loss = loss # sig = False # # sigmoid # for lr, opt in zip([ 0.00001, 0.0001], ['adam', 'adam']): # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, sigmoid=True) # loss = train_model(nn, model, implant, None, targets, labels, 0.0, data_type, opt, lr, num_dense=1, force_zero=False, sigmoid=True) # if loss < 0.07: # sig = True # for lr, opt in zip([0.00001], ['adam']): # for sig in [True, False]: # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, sigmoid=False) # loss = train_model(nn, model, implant, 'elecs', targets, labels, 0.005 * 7.5, data_type, opt, lr, num_dense=1, force_zero=False, sigmoid=False, size_norm=True) # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False) # loss = train_model(nn, model, implant, None, targets, labels, 0.0, data_type, 'adam', 0.0002, num_dense=1, force_zero=False) # for clip in ['relu', 'sigmoid']: # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, clip=clip) # loss = train_model(nn, model, implant, None, targets, labels, 0.05, data_type, 'adam', 0.0001, num_dense=1, force_zero=False, clip=clip) # for font in range(1, 31): # data_type = 'alphabet' # letters, labels = load_alphabet("../data/alphabet", model, fonts=[font]) # targets = letters.reshape((-1, 49, 53, 1)) # if len(targets) == 0: # continue # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, clip='relu') # loss = train_model(nn, model, implant, None, targets, labels, 0.0, data_type, 'adam', 0.0001, num_dense=1, force_zero=False, fonts=font, clip='relu', batch_size=16) # for font in [28, 27, 26, 25, 21, 20, 10]: # data_type = 'alphabet' # letters, labels = load_alphabet("../data/alphabet", model, fonts=[font]) # targets = letters.reshape((-1, 49, 53, 1)) # if len(targets) == 0: # continue # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False, clip='relu') # loss = train_model(nn, model, implant, 'l1', targets, labels, 0.0001, data_type, 'adam', 0.0001, num_dense=1, force_zero=False, fonts=font, clip='relu', batch_size=16) # ms-ssim # data_type = 'alphabet' # letters, labels = load_alphabet("../data/alphabet", model) # targets = letters.reshape((-1, 49, 53, 1)) # lossfn = 'msssim' # for opt in ['sgd', 'adam']: # for lr in [0.00001, 0.0001, 0.001]: # nn = get_model(implant, targets[0].shape, num_dense=1) # loss = train_model(nn, model, implant, None, targets, labels, 0.005, data_type, opt, lr, loss_str=lossfn) # new model # model = BiphasicAxonMapModel(axlambda=1400, rho=80, a4=0, engine="jax", xystep=0.5, xrange=(-14, 12), yrange=(-12, 12)) # model.build() # implant = ArgusII(rot=-30) # data_type = 'alphabet' # letters, labels = load_alphabet("../data/alphabet", model) # targets = letters.reshape((-1, 49, 53, 1)) # nn = get_model(implant, targets[0].shape, num_dense=1, force_zero=False) # loss = train_model(nn, model, implant, None, targets, labels, 0.0, data_type, 'adam', 0.0002, num_dense=1, force_zero=False) ```
{ "source": "jgrassler/monasca-api", "score": 2 }
#### File: api/core/request.py ```python import falcon from oslo_context import context from monasca_api.common.repositories import constants from monasca_api.v2.common import exceptions _TENANT_ID_PARAM = 'tenant_id' """Name of the query-param pointing at project-id (tenant-id)""" class Request(falcon.Request): """Variation of falcon.Request with context Following class enhances :py:class:`falcon.Request` with :py:class:`context.RequestContext`. """ def __init__(self, env, options=None): super(Request, self).__init__(env, options) self.context = context.RequestContext.from_environ(self.env) @property def project_id(self): """Returns project-id (tenant-id) :return: project-id :rtype: str """ return self.context.tenant @property def cross_project_id(self): """Returns project-id (tenant-id) found in query params. This particular project-id is later on identified as cross-project-id :return: project-id :rtype: str """ return self.get_param(_TENANT_ID_PARAM, required=False) @property def user_id(self): """Returns user-id :return: user-id :rtype: str """ return self.context.user @property def roles(self): """Returns roles associated with user :return: user's roles :rtype: list """ return self.context.roles @property def limit(self): """Returns LIMIT query param value. 'limit' is not required query param. In case it is not found, py:data:'.constants.PAGE_LIMIT' value is returned. :return: value of 'limit' query param or default value :rtype: int :raise exceptions.HTTPUnprocessableEntityError: if limit is not valid integer """ limit = self.get_param('limit', required=False, default=None) if limit is not None: if limit.isdigit(): limit = int(limit) if limit > constants.PAGE_LIMIT: return constants.PAGE_LIMIT else: return limit else: err_msg = 'Limit parameter must be a positive integer' raise exceptions.HTTPUnprocessableEntityError('Invalid limit', err_msg) else: return constants.PAGE_LIMIT def __repr__(self): return '%s, context=%s' % (self.path, self.context) ``` #### File: monasca_api/conf/database.py ```python from oslo_config import cfg url_opt = cfg.StrOpt(name='url', default='$database.connection', help=''' The SQLAlchemy connection string to use to connect to the database ''', required=False, deprecated_for_removal=True, deprecated_since='1.6.0', deprecated_reason='Please use database.connection option,' 'database.url is scheduled for removal ' 'in Pike release') def register_opts(conf): conf.register_opt(url_opt, 'database') def list_opts(): return 'database', [url_opt] ``` #### File: monasca_api/tests/base.py ```python import falcon from falcon import testing from oslo_config import cfg from oslo_config import fixture as oo_cfg from oslo_context import fixture as oo_ctx from oslotest import base as oslotest_base from monasca_api.api.core import request from monasca_api import conf from monasca_api import config class MockedAPI(falcon.API): """MockedAPI Subclasses :py:class:`falcon.API` in order to overwrite request_type property with custom :py:class:`request.Request` """ def __init__(self): super(MockedAPI, self).__init__( media_type=falcon.DEFAULT_MEDIA_TYPE, request_type=request.Request, response_type=falcon.Response, middleware=None, router=None ) class ConfigFixture(oo_cfg.Config): """Mocks configuration""" def __init__(self): super(ConfigFixture, self).__init__(config.CONF) def setUp(self): super(ConfigFixture, self).setUp() self.addCleanup(self._clean_config_loaded_flag) conf.register_opts() self._set_defaults() config.parse_args(argv=[]) # prevent oslo from parsing test args @staticmethod def _clean_config_loaded_flag(): config._CONF_LOADED = False def _set_defaults(self): self.conf.set_default('user', 'monasca', 'influxdb') class BaseTestCase(oslotest_base.BaseTestCase): def setUp(self): super(BaseTestCase, self).setUp() self.useFixture(ConfigFixture()) self.useFixture(oo_ctx.ClearRequestContext()) @staticmethod def conf_override(**kw): """Override flag variables for a test.""" group = kw.pop('group', None) for k, v in kw.items(): cfg.CONF.set_override(k, v, group) @staticmethod def conf_default(**kw): """Override flag variables for a test.""" group = kw.pop('group', None) for k, v in kw.items(): cfg.CONF.set_default(k, v, group) class BaseApiTestCase(BaseTestCase, testing.TestBase): api_class = MockedAPI @staticmethod def create_environ(*args, **kwargs): return testing.create_environ( *args, **kwargs ) ```
{ "source": "jgrassler/papercut", "score": 2 }
#### File: papercut/storage/phorum_mysql.py ```python import MySQLdb import time from mimify import mime_encode_header, mime_decode_header import re import smtplib import md5 import papercut.storage.mime as mime import papercut.settings import papercut.storage.strutil as strutil from papercut.version import __VERSION__ settings = papercut.settings.CONF() # patch by <NAME> <<EMAIL>> to fix the handling of unusual encodings of messages q_quote_multiline = re.compile("=\?(.*?)\?[qQ]\?(.*?)\?=.*?=\?\\1\?[qQ]\?(.*?)\?=", re.M | re.S) # we don't need to compile the regexps everytime.. doubleline_regexp = re.compile("^\.\.", re.M) singleline_regexp = re.compile("^\.", re.M) from_regexp = re.compile("^From:(.*)<(.*)>", re.M) subject_regexp = re.compile("^Subject:(.*)", re.M) references_regexp = re.compile("^References:(.*)<(.*)>", re.M) lines_regexp = re.compile("^Lines:(.*)", re.M) # phorum configuration files related regexps moderator_regexp = re.compile("(.*)PHORUM\['ForumModeration'\](.*)='(.*)';", re.M) url_regexp = re.compile("(.*)PHORUM\['forum_url'\](.*)='(.*)';", re.M) admin_regexp = re.compile("(.*)PHORUM\['admin_url'\](.*)='(.*)';", re.M) server_regexp = re.compile("(.*)PHORUM\['forum_url'\](.*)='(.*)http://(.*)/(.*)';", re.M) mail_code_regexp = re.compile("(.*)PHORUM\['PhorumMailCode'\](.*)=(.*)'(.*)';", re.M) class Papercut_Storage: """ Storage Backend interface for the Phorum web message board software (http://phorum.org) This is the interface for Phorum running on a MySQL database. For more information on the structure of the 'storage' package, please refer to the __init__.py available on the 'storage' sub-directory. """ def __init__(self): self.conn = MySQLdb.connect(host=settings.dbhost, db=settings.dbname, user=settings.dbuser, passwd=settings.dbpass) self.cursor = self.conn.cursor() def get_message_body(self, headers): """Parses and returns the most appropriate message body possible. The function tries to extract the plaintext version of a MIME based message, and if it is not available then it returns the html version. """ return mime.get_text_message(headers) def quote_string(self, text): """Quotes strings the MySQL way.""" return text.replace("'", "\\'") def group_exists(self, group_name): stmt = """ SELECT COUNT(*) AS total FROM forums WHERE LOWER(nntp_group_name)=LOWER('%s')""" % (group_name) self.cursor.execute(stmt) return self.cursor.fetchone()[0] def article_exists(self, group_name, style, range): table_name = self.get_table_name(group_name) stmt = """ SELECT COUNT(*) AS total FROM %s WHERE approved='Y'""" % (table_name) if style == 'range': stmt = "%s AND id > %s" % (stmt, range[0]) if len(range) == 2: stmt = "%s AND id < %s" % (stmt, range[1]) else: stmt = "%s AND id = %s" % (stmt, range[0]) self.cursor.execute(stmt) return self.cursor.fetchone()[0] def get_first_article(self, group_name): table_name = self.get_table_name(group_name) stmt = """ SELECT IF(MIN(id) IS NULL, 0, MIN(id)) AS first_article FROM %s WHERE approved='Y'""" % (table_name) num_rows = self.cursor.execute(stmt) return self.cursor.fetchone()[0] def get_group_stats(self, group_name): total, max, min = self.get_table_stats(self.get_table_name(group_name)) return (total, min, max, group_name) def get_table_stats(self, table_name): stmt = """ SELECT COUNT(id) AS total, IF(MAX(id) IS NULL, 0, MAX(id)) AS maximum, IF(MIN(id) IS NULL, 0, MIN(id)) AS minimum FROM %s WHERE approved='Y'""" % (table_name) num_rows = self.cursor.execute(stmt) return self.cursor.fetchone() def get_table_name(self, group_name): stmt = """ SELECT table_name FROM forums WHERE nntp_group_name='%s'""" % (group_name.replace('*', '%')) self.cursor.execute(stmt) return self.cursor.fetchone()[0] def get_message_id(self, msg_num, group): return '<%s@%s>' % (msg_num, group) def get_notification_emails(self, forum_id): # open the configuration file fp = open("%s%s.php" % (settings.phorum_settings_path, forum_id), "r") content = fp.read() fp.close() # get the value of the configuration variable recipients = [] mod_code = moderator_regexp.search(content, 0).groups() if mod_code[2] == 'r' or mod_code[2] == 'a': # get the moderator emails from the forum_auth table stmt = """ SELECT email FROM forums_auth, forums_moderators WHERE user_id=id AND forum_id=%s""" % (forum_id) self.cursor.execute(stmt) result = list(self.cursor.fetchall()) for row in result: recipients.append(row[0]) return recipients def send_notifications(self, group_name, msg_id, thread_id, parent_id, msg_author, msg_email, msg_subject, msg_body): msg_tpl = """From: Phorum <%(recipient)s> To: %(recipient)s Subject: Moderate for %(forum_name)s at %(phorum_server_hostname)s Message: %(msg_id)s. Subject: %(msg_subject)s Author: %(msg_author)s Message: %(phorum_url)s/read.php?f=%(forum_id)s&i=%(msg_id)s&t=%(thread_id)s&admview=1 %(msg_body)s To delete this message use this URL: %(phorum_admin_url)s?page=easyadmin&action=del&type=quick&id=%(msg_id)s&num=1&thread=%(thread_id)s To edit this message use this URL: %(phorum_admin_url)s?page=edit&srcpage=easyadmin&id=%(msg_id)s&num=1&mythread=%(thread_id)s """ # get the forum_id for this group_name stmt = """ SELECT id, name FROM forums WHERE nntp_group_name='%s'""" % (group_name) self.cursor.execute(stmt) forum_id, forum_name = self.cursor.fetchone() # open the main configuration file fp = open("%sforums.php" % (settings.phorum_settings_path), "r") content = fp.read() fp.close() # regexps to get the content from the phorum configuration files phorum_url = url_regexp.search(content, 0).groups()[2] phorum_admin_url = admin_regexp.search(content, 0).groups()[2] phorum_server_hostname = server_regexp.search(content, 0).groups()[3] # connect to the SMTP server smtp = smtplib.SMTP('localhost') emails = self.get_notification_emails(forum_id) for recipient in emails: current_msg = msg_tpl % vars() smtp.sendmail("Phorum <%s>" % (recipient), recipient, current_msg) # XXX: Coding blind here. I really don't know much about how Phorum works with # XXX: sending forum postings as emails, but it's here. Let's call this a # XXX: temporary implementation. Should work fine, I guess. phorum_mail_code = mail_code_regexp.search(content, 0).groups()[3] notification_mail_tpl = """Message-ID: <%(random_msgid)s@%(phorum_server_hostname)s> From: %(msg_author)s %(msg_email)s Subject: %(msg_subject)s To: %(forum_name)s <%(email_list)s> Return-Path: <%(email_return)s> Reply-To: %(email_return)s X-Phorum-%(phorum_mail_code)s-Version: Phorum %(phorum_version)s X-Phorum-%(phorum_mail_code)s-Forum: %(forum_name)s X-Phorum-%(phorum_mail_code)s-Thread: %(thread_id)s X-Phorum-%(phorum_mail_code)s-Parent: %(parent_id)s This message was sent from: %(forum_name)s. <%(phorum_url)s/read.php?f=%(forum_id)s&i=%(msg_id)s&t=%(thread_id)s> ---------------------------------------------------------------- %(msg_body)s ---------------------------------------------------------------- Sent using Papercut version %(__VERSION__)s """ stmt = """ SELECT email_list, email_return FROM forums WHERE LENGTH(email_list) > 0 AND id=%s""" % (forum_id) num_rows = self.cursor.execute(stmt) if num_rows == 1: email_list, email_return = self.cursor.fetchone() msg_body = strutil.wrap(msg_body) if len(msg_email) > 0: msg_email = '<%s>' % msg_email else: msg_email = '' random_msgid = md5.new(str(time.clock())).hexdigest() phorum_version = settings.phorum_version current_msg = notification_mail_tpl % vars() smtp.sendmail('%s %s' % (msg_author, msg_email), email_list, current_msg) smtp.quit() def get_NEWGROUPS(self, ts, group='%'): # since phorum doesn't record when each forum was created, we have no way of knowing this... return None def get_NEWNEWS(self, ts, group='*'): stmt = """ SELECT nntp_group_name, table_name FROM forums WHERE nntp_group_name='%s' ORDER BY nntp_group_name ASC""" % (group_name.replace('*', '%')) self.cursor.execute(stmt) result = list(self.cursor.fetchall()) articles = [] for group, table in result: stmt = """ SELECT id FROM %s WHERE approved='Y' AND UNIX_TIMESTAMP(datestamp) >= %s""" % (table, ts) num_rows = self.cursor.execute(stmt) if num_rows == 0: continue ids = list(self.cursor.fetchall()) for id in ids: articles.append("<%s@%s>" % (id, group)) if len(articles) == 0: return '' else: return "\r\n".join(articles) def get_GROUP(self, group_name): table_name = self.get_table_name(group_name) result = self.get_table_stats(table_name) return (result[0], result[2], result[1]) def get_LIST(self, username=""): stmt = """ SELECT nntp_group_name, table_name FROM forums WHERE LENGTH(nntp_group_name) > 0 ORDER BY nntp_group_name ASC""" self.cursor.execute(stmt) result = list(self.cursor.fetchall()) if len(result) == 0: return "" else: lists = [] for group_name, table in result: total, maximum, minimum = self.get_table_stats(table) if settings.server_type == 'read-only': lists.append("%s %s %s n" % (group_name, maximum, minimum)) else: lists.append("%s %s %s y" % (group_name, maximum, minimum)) return "\r\n".join(lists) def get_STAT(self, group_name, id): table_name = self.get_table_name(group_name) stmt = """ SELECT id FROM %s WHERE approved='Y' AND id=%s""" % (table_name, id) return self.cursor.execute(stmt) def get_ARTICLE(self, group_name, id): table_name = self.get_table_name(group_name) stmt = """ SELECT A.id, author, email, subject, UNIX_TIMESTAMP(datestamp) AS datestamp, body, parent FROM %s A, %s_bodies B WHERE A.approved='Y' AND A.id=B.id AND A.id=%s""" % (table_name, table_name, id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None result = list(self.cursor.fetchone()) if len(result[2]) == 0: author = result[1] else: author = "%s <%s>" % (result[1], result[2]) formatted_time = strutil.get_formatted_time(time.localtime(result[4])) headers = [] headers.append("Path: %s" % (settings.nntp_hostname)) headers.append("From: %s" % (author)) headers.append("Newsgroups: %s" % (group_name)) headers.append("Date: %s" % (formatted_time)) headers.append("Subject: %s" % (result[3])) headers.append("Message-ID: <%s@%s>" % (result[0], group_name)) headers.append("Xref: %s %s:%s" % (settings.nntp_hostname, group_name, result[0])) if result[6] != 0: headers.append("References: <%s@%s>" % (result[6], group_name)) return ("\r\n".join(headers), strutil.format_body(result[5])) def get_LAST(self, group_name, current_id): table_name = self.get_table_name(group_name) stmt = """ SELECT id FROM %s WHERE approved='Y' AND id < %s ORDER BY id DESC LIMIT 0, 1""" % (table_name, current_id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None return self.cursor.fetchone()[0] def get_NEXT(self, group_name, current_id): table_name = self.get_table_name(group_name) stmt = """ SELECT id FROM %s WHERE approved='Y' AND id > %s ORDER BY id ASC LIMIT 0, 1""" % (table_name, current_id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None return self.cursor.fetchone()[0] def get_HEAD(self, group_name, id): table_name = self.get_table_name(group_name) stmt = """ SELECT id, author, email, subject, UNIX_TIMESTAMP(datestamp) AS datestamp, parent FROM %s WHERE approved='Y' AND id=%s""" % (table_name, id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None result = list(self.cursor.fetchone()) if len(result[2]) == 0: author = result[1] else: author = "%s <%s>" % (result[1], result[2]) formatted_time = strutil.get_formatted_time(time.localtime(result[4])) headers = [] headers.append("Path: %s" % (settings.nntp_hostname)) headers.append("From: %s" % (author)) headers.append("Newsgroups: %s" % (group_name)) headers.append("Date: %s" % (formatted_time)) headers.append("Subject: %s" % (result[3])) headers.append("Message-ID: <%s@%s>" % (result[0], group_name)) headers.append("Xref: %s %s:%s" % (settings.nntp_hostname, group_name, result[0])) if result[5] != 0: headers.append("References: <%s@%s>" % (result[5], group_name)) return "\r\n".join(headers) def get_BODY(self, group_name, id): table_name = self.get_table_name(group_name) stmt = """ SELECT B.body FROM %s A, %s_bodies B WHERE A.id=B.id AND A.approved='Y' AND B.id=%s""" % (table_name, table_name, id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None else: return strutil.format_body(self.cursor.fetchone()[0]) def get_XOVER(self, group_name, start_id, end_id='ggg'): table_name = self.get_table_name(group_name) stmt = """ SELECT A.id, parent, author, email, subject, UNIX_TIMESTAMP(datestamp) AS datestamp, B.body FROM %s A, %s_bodies B WHERE A.approved='Y' AND A.id=B.id AND A.id >= %s""" % (table_name, table_name, start_id) if end_id != 'ggg': stmt = "%s AND A.id <= %s" % (stmt, end_id) self.cursor.execute(stmt) result = list(self.cursor.fetchall()) overviews = [] for row in result: if row[3] == '': author = row[2] else: author = "%s <%s>" % (row[2], row[3]) formatted_time = strutil.get_formatted_time(time.localtime(row[5])) message_id = "<%s@%s>" % (row[0], group_name) line_count = len(row[6].split('\n')) xref = 'Xref: %s %s:%s' % (settings.nntp_hostname, group_name, row[0]) if row[1] != 0: reference = "<%s@%s>" % (row[1], group_name) else: reference = "" # message_number <tab> subject <tab> author <tab> date <tab> message_id <tab> reference <tab> bytes <tab> lines <tab> xref overviews.append("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (row[0], row[4], author, formatted_time, message_id, reference, len(strutil.format_body(row[6])), line_count, xref)) return "\r\n".join(overviews) def get_XPAT(self, group_name, header, pattern, start_id, end_id='ggg'): # XXX: need to actually check for the header values being passed as # XXX: not all header names map to column names on the tables table_name = self.get_table_name(group_name) stmt = """ SELECT A.id, parent, author, email, subject, UNIX_TIMESTAMP(datestamp) AS datestamp, B.body FROM %s A, %s_bodies B WHERE A.approved='Y' AND %s REGEXP '%s' AND A.id = B.id AND A.id >= %s""" % (table_name, table_name, header, strutil.format_wildcards(pattern), start_id) if end_id != 'ggg': stmt = "%s AND A.id <= %s" % (stmt, end_id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None result = list(self.cursor.fetchall()) hdrs = [] for row in result: if header.upper() == 'SUBJECT': hdrs.append('%s %s' % (row[0], row[4])) elif header.upper() == 'FROM': # XXX: totally broken with empty values for the email address hdrs.append('%s %s <%s>' % (row[0], row[2], row[3])) elif header.upper() == 'DATE': hdrs.append('%s %s' % (row[0], strutil.get_formatted_time(time.localtime(result[5])))) elif header.upper() == 'MESSAGE-ID': hdrs.append('%s <%s@%s>' % (row[0], row[0], group_name)) elif (header.upper() == 'REFERENCES') and (row[1] != 0): hdrs.append('%s <%s@%s>' % (row[0], row[1], group_name)) elif header.upper() == 'BYTES': hdrs.append('%s %s' % (row[0], len(row[6]))) elif header.upper() == 'LINES': hdrs.append('%s %s' % (row[0], len(row[6].split('\n')))) elif header.upper() == 'XREF': hdrs.append('%s %s %s:%s' % (row[0], settings.nntp_hostname, group_name, row[0])) if len(hdrs) == 0: return "" else: return "\r\n".join(hdrs) def get_LISTGROUP(self, group_name): table_name = self.get_table_name(group_name) stmt = """ SELECT id FROM %s WHERE approved='Y' ORDER BY id ASC""" % (table_name) self.cursor.execute(stmt) result = list(self.cursor.fetchall()) return "\r\n".join(["%s" % k for k in result]) def get_XGTITLE(self, pattern=None): stmt = """ SELECT nntp_group_name, description FROM forums WHERE LENGTH(nntp_group_name) > 0""" if pattern != None: stmt = stmt + """ AND nntp_group_name REGEXP '%s'""" % (strutil.format_wildcards(pattern)) stmt = stmt + """ ORDER BY nntp_group_name ASC""" self.cursor.execute(stmt) result = list(self.cursor.fetchall()) return "\r\n".join(["%s %s" % (k, v) for k, v in result]) def get_XHDR(self, group_name, header, style, range): table_name = self.get_table_name(group_name) stmt = """ SELECT A.id, parent, author, email, subject, UNIX_TIMESTAMP(datestamp) AS datestamp, B.body FROM %s A, %s_bodies B WHERE A.approved='Y' AND A.id = B.id AND """ % (table_name, table_name) if style == 'range': stmt = '%s A.id >= %s' % (stmt, range[0]) if len(range) == 2: stmt = '%s AND A.id <= %s' % (stmt, range[1]) else: stmt = '%s A.id = %s' % (stmt, range[0]) if self.cursor.execute(stmt) == 0: return None result = self.cursor.fetchall() hdrs = [] for row in result: if header.upper() == 'SUBJECT': hdrs.append('%s %s' % (row[0], row[4])) elif header.upper() == 'FROM': hdrs.append('%s %s <%s>' % (row[0], row[2], row[3])) elif header.upper() == 'DATE': hdrs.append('%s %s' % (row[0], strutil.get_formatted_time(time.localtime(result[5])))) elif header.upper() == 'MESSAGE-ID': hdrs.append('%s <%s@%s>' % (row[0], row[0], group_name)) elif (header.upper() == 'REFERENCES') and (row[1] != 0): hdrs.append('%s <%s@%s>' % (row[0], row[1], group_name)) elif header.upper() == 'BYTES': hdrs.append('%s %s' % (row[0], len(row[6]))) elif header.upper() == 'LINES': hdrs.append('%s %s' % (row[0], len(row[6].split('\n')))) elif header.upper() == 'XREF': hdrs.append('%s %s %s:%s' % (row[0], settings.nntp_hostname, group_name, row[0])) if len(hdrs) == 0: return "" else: return "\r\n".join(hdrs) def do_POST(self, group_name, lines, ip_address, username=''): table_name = self.get_table_name(group_name) body = self.get_message_body(lines) author, email = from_regexp.search(lines, 0).groups() subject = subject_regexp.search(lines, 0).groups()[0].strip() # patch by <NAME> <<EMAIL>> to fix the handling of unusual encodings of messages lines = mime_decode_header(re.sub(q_quote_multiline, "=?\\1?Q?\\2\\3?=", lines)) if lines.find('References') != -1: # get the 'modifystamp' value from the parent (if any) references = references_regexp.search(lines, 0).groups() parent_id, void = references[-1].strip().split('@') stmt = """ SELECT IF(MAX(id) IS NULL, 1, MAX(id)+1) AS next_id FROM %s""" % (table_name) num_rows = self.cursor.execute(stmt) if num_rows == 0: new_id = 1 else: new_id = self.cursor.fetchone()[0] stmt = """ SELECT id, thread, modifystamp FROM %s WHERE approved='Y' AND id=%s GROUP BY id""" % (table_name, parent_id) num_rows = self.cursor.execute(stmt) if num_rows == 0: return None parent_id, thread_id, modifystamp = self.cursor.fetchone() else: stmt = """ SELECT IF(MAX(id) IS NULL, 1, MAX(id)+1) AS next_id, UNIX_TIMESTAMP() FROM %s""" % (table_name) self.cursor.execute(stmt) new_id, modifystamp = self.cursor.fetchone() parent_id = 0 thread_id = new_id stmt = """ INSERT INTO %s ( id, datestamp, thread, parent, author, subject, email, host, email_reply, approved, msgid, modifystamp, userid ) VALUES ( %s, NOW(), %s, %s, '%s', '%s', '%s', '%s', 'N', 'Y', '', %s, 0 ) """ % (table_name, new_id, thread_id, parent_id, self.quote_string(author.strip()), self.quote_string(subject), self.quote_string(email), ip_address, modifystamp) if not self.cursor.execute(stmt): return None else: # insert into the '*_bodies' table stmt = """ INSERT INTO %s_bodies ( id, body, thread ) VALUES ( %s, '%s', %s )""" % (table_name, new_id, self.quote_string(body), thread_id) if not self.cursor.execute(stmt): # delete from 'table_name' before returning.. stmt = """ DELETE FROM %s WHERE id=%s""" % (table_name, new_id) self.cursor.execute(stmt) return None else: # alert forum moderators self.send_notifications(group_name, new_id, thread_id, parent_id, author.strip(), email, subject, body) return 1 ```
{ "source": "JGrauNakima/cantools", "score": 2 }
#### File: database/can/database.py ```python import logging from .formats import dbc from .formats import kcd from .formats import sym from .internal_database import InternalDatabase from ...compat import fopen LOGGER = logging.getLogger(__name__) class Database(object): """This class contains all messages, signals and definitions of a CAN network. The factory functions :func:`load()<cantools.database.load()>`, :func:`load_file()<cantools.database.load_file()>` and :func:`load_string()<cantools.database.load_string()>` returns instances of this class. If `strict` is ``True`` an exception is raised if any signals are overlapping or if they don't fit in their message. """ def __init__(self, messages=None, nodes=None, buses=None, version=None, dbc_specifics=None, frame_id_mask=None, strict=True): self._messages = messages if messages else [] self._nodes = nodes if nodes else [] self._buses = buses if buses else [] self._name_to_message = {} self._frame_id_to_message = {} self._version = version self._dbc = dbc_specifics if frame_id_mask is None: frame_id_mask = 0xffffffff self._frame_id_mask = frame_id_mask self._strict = strict self.refresh() @property def messages(self): """A list of messages in the database. Use :meth:`.get_message_by_frame_id()` or :meth:`.get_message_by_name()` to find a message by its frame id or name. """ return self._messages @property def nodes(self): """A list of nodes in the database. """ return self._nodes @property def buses(self): """A list of CAN buses in the database. """ return self._buses @property def version(self): """The database version, or ``None`` if unavailable. """ return self._version @property def dbc(self): """An object containing dbc specific properties like e.g. attributes. """ return self._dbc def add_dbc(self, fp): """Read and parse DBC data from given file-like object and add the parsed data to the database. >>> db = cantools.database.Database() >>> with open ('foo.dbc', 'r') as fin: ... db.add_dbc(fin) """ self.add_dbc_string(fp.read()) def add_dbc_file(self, filename, encoding='cp1252'): """Open, read and parse DBC data from given file and add the parsed data to the database. `encoding` specifies the file encoding. >>> db = cantools.database.Database() >>> db.add_dbc_file('foo.dbc') """ with fopen(filename, 'r', encoding=encoding) as fin: self.add_dbc(fin) def add_dbc_string(self, string): """Parse given DBC data string and add the parsed data to the database. >>> db = cantools.database.Database() >>> with open ('foo.dbc', 'r') as fin: ... db.add_dbc_string(fin.read()) """ database = dbc.load_string(string, self._strict) self._messages += database.messages self._nodes = database.nodes self._buses = database.buses self._version = database.version self._dbc = database.dbc self.refresh() def add_kcd(self, fp): """Read and parse KCD data from given file-like object and add the parsed data to the database. """ self.add_kcd_string(fp.read()) def add_kcd_file(self, filename, encoding='utf-8'): """Open, read and parse KCD data from given file and add the parsed data to the database. `encoding` specifies the file encoding. """ with fopen(filename, 'r', encoding=encoding) as fin: self.add_kcd(fin) def add_kcd_string(self, string): """Parse given KCD data string and add the parsed data to the database. """ database = kcd.load_string(string, self._strict) self._messages += database.messages self._nodes = database.nodes self._buses = database.buses self._version = database.version self._dbc = database.dbc self.refresh() def add_sym(self, fp): """Read and parse SYM data from given file-like object and add the parsed data to the database. """ self.add_sym_string(fp.read()) def add_sym_file(self, filename, encoding='utf-8'): """Open, read and parse SYM data from given file and add the parsed data to the database. `encoding` specifies the file encoding. """ with fopen(filename, 'r', encoding=encoding) as fin: self.add_sym(fin) def add_sym_string(self, string): """Parse given SYM data string and add the parsed data to the database. """ database = sym.load_string(string, self._strict) self._messages += database.messages self._nodes = database.nodes self._buses = database.buses self._version = database.version self._dbc = database.dbc self.refresh() def _add_message(self, message): """Add given message to the database. """ if message.name in self._name_to_message: LOGGER.warning("Overwriting message '%s' with '%s' in the " "name to message dictionary.", self._name_to_message[message.name].name, message.name) masked_frame_id = (message.frame_id & self._frame_id_mask) if masked_frame_id in self._frame_id_to_message: LOGGER.warning( "Overwriting message '%s' with '%s' in the frame id to message " "dictionary because they have identical masked frame ids 0x%x.", self._frame_id_to_message[masked_frame_id].name, message.name, masked_frame_id) self._name_to_message[message.name] = message self._frame_id_to_message[masked_frame_id] = message def as_dbc_string(self): """Return the database as a string formatted as a DBC file. """ return dbc.dump_string(InternalDatabase(self._messages, self._nodes, self._buses, self._version, self._dbc)) def as_kcd_string(self): """Return the database as a string formatted as a KCD file. """ return kcd.dump_string(InternalDatabase(self._messages, self._nodes, self._buses, self._version, self._dbc)) def get_message_by_name(self, name): """Find the message object for given name `name`. """ return self._name_to_message[name] def get_message_by_frame_id(self, frame_id): """Find the message object for given frame id `frame_id`. """ return self._frame_id_to_message[frame_id & self._frame_id_mask] def get_node_by_name(self, name): """Find the node object for given name `name`. """ for node in self._nodes: if node.name == name: return node raise KeyError(name) def get_bus_by_name(self, name): """Find the bus object for given name `name`. """ for bus in self._buses: if bus.name == name: return bus raise KeyError(name) def encode_message(self, frame_id_or_name, data, scaling=True, padding=False, strict=True): """Encode given signal data `data` as a message of given frame id or name `frame_id_or_name`. `data` is a dictionary of signal name-value entries. If `scaling` is ``False`` no scaling of signals is performed. If `padding` is ``True`` unused bits are encoded as 1. If `strict` is ``True`` all signal values must be within their allowed ranges, or an exception is raised. >>> db.encode_message(158, {'Bar': 1, 'Fum': 5.0}) b'\\x01\\x45\\x23\\x00\\x11' >>> db.encode_message('Foo', {'Bar': 1, 'Fum': 5.0}) b'\\x01\\x45\\x23\\x00\\x11' """ try: message = self._frame_id_to_message[frame_id_or_name] except KeyError: message = self._name_to_message[frame_id_or_name] return message.encode(data, scaling, padding, strict) def decode_message(self, frame_id_or_name, data, decode_choices=True, scaling=True): """Decode given signal data `data` as a message of given frame id or name `frame_id_or_name`. Returns a dictionary of signal name-value entries. If `decode_choices` is ``False`` scaled values are not converted to choice strings (if available). If `scaling` is ``False`` no scaling of signals is performed. >>> db.decode_message(158, b'\\x01\\x45\\x23\\x00\\x11') {'Bar': 1, 'Fum': 5.0} >>> db.decode_message('Foo', b'\\x01\\x45\\x23\\x00\\x11') {'Bar': 1, 'Fum': 5.0} """ try: message = self._frame_id_to_message[frame_id_or_name] except KeyError: message = self._name_to_message[frame_id_or_name] return message.decode(data, decode_choices, scaling) def refresh(self): """Refresh the internal database state. This method must be called after modifying any message in the database to refresh the internal lookup tables used when encoding and decoding messages. """ self._name_to_message = {} self._frame_id_to_message = {} for message in self._messages: message.refresh(self._strict) self._add_message(message) def __repr__(self): lines = [] lines.append("version('{}')".format(self._version)) lines.append('') if self._nodes: for node in self._nodes: lines.append(repr(node)) lines.append('') for message in self._messages: lines.append(repr(message)) for signal in message.signals: lines.append(' ' + repr(signal)) lines.append('') return '\n'.join(lines) ``` #### File: cantools/tests/test_monitor.py ```python import unittest import curses try: from unittest.mock import Mock from unittest.mock import patch from unittest.mock import call except ImportError: from mock import Mock from mock import patch from mock import call import can from cantools.subparsers.monitor import Monitor class Args(object): def __init__(self, database, single_line=False): self.database = database self.encoding = None self.frame_id_mask = None self.no_strict = False self.single_line = single_line self.bit_rate = None self.bus_type = 'socketcan' self.channel = 'vcan0' class StdScr(object): def __init__(self, user_input=None, resolution=None): if resolution is None: resolution = [(30, 64)] self.getmaxyx = Mock(side_effect=resolution) self.nodelay = Mock() self.clear = Mock() self.addstr = Mock() self.refresh = Mock() if user_input is None: user_input = ['q'] self.getkey = Mock(side_effect=user_input) self.move = Mock() class CanToolsMonitorTest(unittest.TestCase): maxDiff = None def assert_called(self, mock, expected): self.assertEqual(mock.call_args_list, expected) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_immediate_quit(self, use_default_colors, curs_set, init_pair, is_term_resized, color_pair, bus, notifier): # Prepare mocks. stdscr = StdScr() args = Args('tests/files/motohawk.dbc') color_pair.side_effect = ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) monitor.run() # Check mocks. self.assert_called(use_default_colors, [call()]) self.assert_called(curs_set, [call(False)]) self.assert_called( init_pair, [ call(1, curses.COLOR_BLACK, curses.COLOR_GREEN), call(2, curses.COLOR_BLACK, curses.COLOR_CYAN) ]) self.assert_called(color_pair, [call(1), call(2)]) self.assert_called(bus, [call(bustype='socketcan', channel='vcan0')]) self.assert_called( stdscr.addstr, [ call(0, 0, 'Received: 0, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_display_one_frame(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr() args = Args('tests/files/motohawk.dbc') color_pair.side_effect = ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00')) monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_display_one_frame_single_line(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr() args = Args('tests/files/motohawk.dbc', single_line=True) color_pair.side_effect = ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00')) monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, " 0.000 ExampleMessage(Enable: 'Enabled' -, " "AverageRadius: 3.2 m, Temperature: 250.55 degK)"), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_display_one_frame_input_twice(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr() args = Args('tests/files/motohawk.dbc') color_pair.side_effect = ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00', timestamp=1.0)) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xd0\x00\x00\x00\x00\x00', timestamp=2.1)) monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ call(0, 0, 'Received: 2, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 1.100 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.54 degK'), call(6, 0, ' )'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_filter(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr(user_input=[ 'f', 'Y', '[', '\b', '\n', 'f', '\b', 'E', '\n', 'q' ]) args = Args('tests/files/motohawk.dbc') color_pair.side_effect = 10 * ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00')) monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ # No filter. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # 'f' pressed. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'Filter: ', 'cyan'), # No match on 'Y'. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(29, 0, 'Filter: Y ', 'cyan'), # Invalid filter 'Y['. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'Filter: Y[ ', 'cyan'), # No match on 'Y'. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(29, 0, 'Filter: Y ', 'cyan'), # Hit enter to hide filter. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # 'f' pressed again. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(29, 0, 'Filter: Y ', 'cyan'), # Backspace. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'Filter: ', 'cyan'), # Match on 'E'. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'Filter: E ', 'cyan'), # Hit enter to hide filter. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_reset(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr(user_input=[ 'f', 'E', '\n', 'p', ' ', 'r', 'f', '\n', 'q' ]) args = Args('tests/files/motohawk.dbc') color_pair.side_effect = 10 * ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00', timestamp=3)) # Discarded. monitor.on_message_received(can.Message( arbitration_id=497, data=b'\xc0\x06\xb0\x00\x00\x00\x00\x00', timestamp=6)) monitor.tick() monitor.tick() monitor.tick() # Input another before pause. monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xc0\x00\x00\x00\x00\x00', timestamp=7)) monitor.tick() # Input when paused. Will not be displayed. monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xd0\x00\x00\x00\x00\x00', timestamp=10)) monitor.tick() monitor.tick() monitor.tick() # Input after reset. monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\x00\x00\x00\x00\x00\x00', timestamp=11)) monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ # One ok and one with bad frame id. call(0, 0, 'Received: 2, Discarded: 1, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # 'f' pressed. call(0, 0, 'Received: 2, Discarded: 1, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'Filter: ', 'cyan'), # 'E' pressed. call(0, 0, 'Received: 2, Discarded: 1, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'Filter: E ', 'cyan'), # '\n' pressed. call(0, 0, 'Received: 3, Discarded: 1, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 4.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.54 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # 'p' pressed. Input frame not displayed. # 'r' pressed. call(0, 0, 'Received: 0, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # Input after reset. 'f' pressed. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.48 degK'), call(6, 0, ' )'), call(29 , 0, 'Filter: ', 'cyan'), # '\n' pressed. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.48 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') # 'q' pressed, no redraw. ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_play_pause(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr(user_input=[ ' ', ' ', 'p', ' ', ' ', 'p', ' ', ' ', ' ', 'q' ]) args = Args('tests/files/motohawk.dbc') color_pair.side_effect = 8 * ['green', 'cyan'] is_term_resized.return_value = False # Run monitor. monitor = Monitor(stdscr, args) for timestamp in range(4): monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00', timestamp=timestamp)) monitor.tick() # Display most recently received at unpause. monitor.tick() monitor.tick() monitor.tick() for timestamp in range(5, 7): monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00', timestamp=timestamp)) monitor.tick() monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ # Received when playing. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), call(0, 0, 'Received: 2, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 1.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), call(0, 0, 'Received: 3, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 2.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # Received when paused, displayed at unpause. call(0, 0, 'Received: 4, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 3.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), # Received when playing. call(0, 0, 'Received: 5, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 5.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29 , 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan'), call(0, 0, 'Received: 6, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 6.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(29, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset ', 'cyan') ]) @patch('can.Notifier') @patch('can.Bus') @patch('curses.color_pair') @patch('curses.is_term_resized') @patch('curses.init_pair') @patch('curses.curs_set') @patch('curses.use_default_colors') def test_resize(self, _use_default_colors, _curs_set, _init_pair, is_term_resized, color_pair, _bus, _notifier): # Prepare mocks. stdscr = StdScr(user_input=[' ', ' ', 'q'], resolution=[(30, 40), (25, 35), (25, 35), (20, 30)]) args = Args('tests/files/motohawk.dbc') color_pair.side_effect = 3 * ['green', 'cyan'] is_term_resized.return_value = True # Run monitor. monitor = Monitor(stdscr, args) monitor.on_message_received(can.Message( arbitration_id=496, data=b'\xc0\x06\xe0\x00\x00\x00\x00\x00', timestamp=1)) monitor.tick() monitor.run() # Check mocks. self.assert_called( stdscr.addstr, [ # 25 x 35. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(24, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset', 'cyan'), # 25 x 35. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(24, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset', 'cyan'), # 20 x 30. call(0, 0, 'Received: 1, Discarded: 0, Errors: 0'), call(1, 0, ' TIMESTAMP MESSAGE ', 'green'), call(2, 0, ' 0.000 ExampleMessage('), call(3, 0, " Enable: 'Enabled' -,"), call(4, 0, ' AverageRadius: 3.2 m,'), call(5, 0, ' Temperature: 250.55 degK'), call(6, 0, ' )'), call(19, 0, 'q: Quit, f: Filter, p: Play/Pause, r: Reset', 'cyan') ]) if __name__ == '__main__': unittest.main() ```
{ "source": "JGrauPirozzi/robinhood", "score": 2 }
#### File: JGrauPirozzi/robinhood/robinhood.py ```python import requests import urllib class Robinhood(object): # All known endpoints as of September 5th, 2015 endpoints = { "accounts": "https://api.robinhood.com/accounts", "ach_deposit_schedules": "https://api.robinhood.com/ach/deposit_schedules/", "ach_iav_auth": "https://api.robinhood.com/ach/iav/auth/", "ach_relationships": "https://api.robinhood.com/ach/relationships/", "ach_transfers": "https://api.robinhood.com/ach/transfers/", "applications": "https://api.robinhood.com/applications/", "dividends": "https://api.robinhood.com/dividends/", "document_requests": "https://api.robinhood.com/upload/document_requests/", "edocuments": "https://api.robinhood.com/documents/", "instruments": "https://api.robinhood.com/instruments/", "login": "https://api.robinhood.com/api-token-auth/", "margin_upgrades": "https://api.robinhood.com/margin/upgrades/", "markets": "https://api.robinhood.com/markets/", "notifications": "https://api.robinhood.com/notifications/", "notifications/devices": "https://api.robinhood.com/notifications/devices/", "orders": "https://api.robinhood.com/orders/", "password_reset": "https://api.robinhood.com/password_reset/request/", "quotes": "https://api.robinhood.com/quotes/", "user": "https://api.robinhood.com/user/", "user/additional_info": "https://api.robinhood.com/user/additional_info/", "user/basic_info": "https://api.robinhood.com/user/basic_info/", "user/employment": "https://api.robinhood.com/user/employment/", "user/investment_profile": "https://api.robinhood.com/user/investment_profile/", "watchlists": "https://api.robinhood.com/watchlists/" } def __init__(self, username, password): self.session = requests.session() self.username = username self.session.headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "en;q=1, fr;q=0.9, de;q=0.8, ja;q=0.7, nl;q=0.6, it;q=0.5", "Content-Type": "application/x-www-form-urlencoded; charset=utf-8", "X-Robinhood-API-Version": "1.0.0", "Connection": "keep-alive", "User-Agent": "Robinhood/823 (iPhone; iOS 7.1.2; Scale/2.00)" } self.session.headers['Authorization'] = 'Token ' + self.login(username, password) self.account = self.get_account_number() self.get_user_info() def login(self, username, password): data = "username=%s&password=%s" % (username, password) res = self.session.post(self.endpoints['login'], data = data) try: return res.json()['token'] except: raise Exception("Could not log in: " + res.text) def get_account_number(self): ''' Returns the brokerage account number of the account logged in. This is currently only used for placing orders, so you can ignore method. ''' res = self.session.get(self.endpoints['accounts']) if res.status_code == 200: accountURL = res.json()['results'][0]['url'] account_number = accountURL[accountURL.index('accounts')+9:-1] return account_number else: raise Exception("Could not retrieve account number: " + res.text) def instrument(self, symbol): ''' Generates an instrument object. Currently this is only used for placing orders, and generating and using the instrument object are handled for you, so you can ignore this method''' res = self.session.get(self.endpoints['instruments'], params={'query':symbol.upper()}) if res.status_code == 200: return res.json()['results'] else: raise Exception("Could not generate instrument object: " + res.text) def get_quote(self, symbol): ''' Returns a qoute object for a given symbol including all data returned by Robinhood's API''' data = { 'symbols' : symbol } res = self.session.get(self.endpoints['quotes'], params=data) if res.status_code == 200: return res.json()['results'] else: raise Exception("Could not retrieve quote: " + res.text) def quote_price(self, symbol): ''' Returns the most recent price of a given symbol ''' data = { 'symbols' : symbol } res = self.session.get(self.endpoints['quotes'], params=data) if res.status_code == 200: return res.json()['results'][0]['last_trade_price'] else: raise Exception("Could not retrieve quote: " + res.text) def place_order(self, instrument, quantity, side, order_type, bid_price=None, time_in_force="gfd", stop_price=None): ''' Places an order with Robinhood. Currently both market and limit orders work, but stop_limit and stop_loss orders are coming soon.''' data = """account=%s&instrument=%s&quantity=%d&side=%s&symbol=%s&time_in_force=%s&trigger=immediate&type=%s""" % ( urllib.quote('https://api.robinhood.com/accounts/' + self.account + '/'), urllib.unquote(instrument['url']), quantity, side, instrument['symbol'], time_in_force, order_type) if order_type == "market": data += "&price=%f" % (float(self.get_quote(instrument['symbol'])[0]['bid_price'])) if order_type == "limit": data += "&price=%f" % (float(bid_price)) ##Stop Loss and Stop Limit orders are a work in progress ##if order_type == "stop_loss": ## data += "&stop_price=%f" % (float(stop_price)) ##if order_type == "stop_limit": ## data += "&price=%f&stop_price=%f" % (float(bid_price), float(stop_price)) res = self.session.post(self.endpoints['orders'], data = data) if res.status_code == 201: res = res.json() order_ID = res['url'][res['url'].index("orders")+7:-1] return order_ID else: raise Exception("Could not place order: " + res.text) def place_buy_order(self, symbol, quantity, order_type=None, bid_price=None): ''' Places a buy order ''' i = self.instrument(symbol)[0] side = "buy" return self.place_order(i, quantity, side, order_type, bid_price) def place_sell_order(self, symbol, quantity, order_type=None, bid_price=None): ''' Places a sell order ''' i = self.instrument(symbol)[0] side = "sell" return self.place_order(i, quantity, side, order_type, bid_price) def order_details(self, order_ID): ''' Returns an order object which contains information about an order and its status''' res = self.session.get(self.endpoints['orders'] + order_ID + "/") if res.status_code == 200: return res.json() else: raise Exception("Could not get order status: " + res.text) def order_status(self, order_ID): ''' Returns an order status string''' return self.order_details(order_ID)['state'] def advanced_order_status(self, order_ID): ''' Will return number of shares completed, average price ... as a dict ''' def get_order(self, order_ID): ''' Will return a dict of order information for a given order ID ''' def list_orders(self): ''' returns a list of all order_IDs, ordered from newest to oldest ''' res = self.session.get(self.endpoints['orders']) if res.status_code == 200: orders = [] for i in res.json()['results']: URL = i['url'] orders.append(URL[URL.index("orders")+7:-1]) return orders else: raise Exception("Could not retrieve orders: " + res.text) def list_order_details(self): ''' Generates a dictionary where keys are order_IDs and values are order objects. ''' detailed_orders = {} for i in self.list_orders(): order = self.order_details(i) order['symbol'] = self.session.get(order['instrument']).json()['symbol'] detailed_orders[i] = order return detailed_orders def cancel_order(self, order_ID): ''' Cancels order with order_ID''' res = self.session.post(self.endpoints['orders'] + order_ID + "/cancel/") if res.status_code == 200: return res else: raise Exception("Could not cancel order: " + res.text) def get_user_info(self): ''' Pulls user info from API and stores it in Robinhood object''' res = self.session.get(self.endpoints['user']) if res.status_code == 200: self.first_name = res.json()['first_name'] self.last_name = res.json()['last_name'] else: raise Exception("Could not get user info: " + res.text) res = self.session.get(self.endpoints['user/basic_info']) if res.status_code == 200: res = res.json() self.phone_number = res['phone_number'] self.city = res['city'] self.number_dependents = res['number_dependents'] self.citizenship = res['citizenship'] self.marital_status = res['marital_status'] self.zipcode = res['zipcode'] self.state_residence = res['state'] self.date_of_birth = res['date_of_birth'] self.address = res['address'] self.tax_id_ssn = res['tax_id_ssn'] else: raise Exception("Could not get basic user info: " + res.text) ```
{ "source": "jgravelle-google/it-tools", "score": 2 }
#### File: it-tools/src/adapter.py ```python import argparse import os import sys import traceback import itl_parser arg_parser = argparse.ArgumentParser() arg_parser.add_argument('itl_in') arg_parser.add_argument('-o', dest='js_out', default=None) arg_parser.add_argument('--node', dest='do_node', action='store_true') arg_parser.add_argument('--name', dest='component_name', default=None) args = arg_parser.parse_args(sys.argv[1:]) # TODO: actually re-support node scripts itl_path = args.itl_in itl_filename = os.path.basename(itl_path) basename, _ = os.path.splitext(itl_filename) if args.js_out: js_path = os.path.abspath(args.js_out) outpath = os.path.dirname(js_path) else: outpath = os.path.abspath('out') js_path = os.path.join(outpath, basename + '.js') if args.component_name: component_name = args.component_name else: component_name = basename + 'Component' srcpath = os.path.dirname(__file__) def main(): contents = open(itl_path).read() component = itl_parser.parse(contents) ensure_path(outpath) write_js_module(component) def ensure_path(path): try: os.makedirs(path) except: pass # NodeJS wrapper module def write_js_module(component): def escape(s): return s.replace('\\', '/') def function(func, n_indent, is_internal=False): global num_locals ret = '' params = ', '.join(['x' + str(i) for i in range(len(func.params))]) if is_internal: decl = 'function {}'.format(func.name) else: decl = '"{}": function'.format(func.exname) ret += tab * n_indent + '{}({}) {{\n'.format(decl, params) for i in range(len(func.body)): sexpr = func.body[i] ret += tab * (n_indent + 1) if func.results and i == len(func.body) - 1: ret += 'return ' + sexpr.as_js() else: ret += sexpr.as_js() ret += ';\n' if is_internal: ret += tab * n_indent + '};\n' else: ret += tab * n_indent + '},\n' return ret # Paths and setup template_path = os.path.join(srcpath, 'wrapper_module_template.js') js_str = open(template_path).read() tab = ' ' js_str = js_str.replace('/**COMPONENT_NAME**/', component_name) module_names = '' load_modules = '' for mod in component.modules: name = mod.name path = mod.path module_names += tab * 2 + 'let {};\n'.format(name) load_modules += tab * 2 + '{} = await loadModule("{}", {{\n'.format(name, path) for imp, funcs in mod.imports.items(): load_modules += tab * 3 + imp + ': {\n' for func in funcs: load_modules += function(func, n_indent=4) load_modules += tab * 3 + '},\n' load_modules += tab * 2 + '});\n' # call any static constructors # TODO: configure this; have a start function in ITL to call these load_modules += tab * 2 + '{}._initialize();\n'.format(name) js_str = js_str.replace('/**MODULE_NAMES**/', module_names) js_str = js_str.replace('/**LOAD_MODULES**/', load_modules) component_functions = '' for ty in component.types.values(): component_functions += ty.js_decls(n_indent=2) for func in component.funcs: component_functions += function(func, n_indent=2, is_internal=True) js_str = js_str.replace('/**COMPONENT_FUNCTIONS**/\n', component_functions) exports = '' for func in component.exports: exports += function(func, n_indent=3) js_str = js_str.replace('/**EXPORTS**/\n', exports) open(js_path, 'w').write(js_str) print('Wrote JS module', js_path) if __name__ == '__main__': try: main() except Exception as e: trace = traceback.format_exc(e) print(trace) sys.exit(1) ```
{ "source": "jgraves/rules_ios", "score": 2 }
#### File: rules_ios/rules/transition_support.bzl ```python def _current_apple_platform(apple_fragment, xcode_config): """Returns a struct containing the platform and target os version""" cpu = apple_fragment.single_arch_cpu platform = apple_fragment.single_arch_platform xcode_config = xcode_config[apple_common.XcodeVersionConfig] target_os_version = xcode_config.minimum_os_for_platform_type( platform.platform_type, ) return struct( platform = platform, target_os_version = target_os_version, ) def _cpu_string(platform_type, settings): """Generates a <platform>_<arch> string for the current target based on the given parameters.""" # If the cpu value has already been transformed to the correct value, we must not change it anymore. # Otherwise, we may build for the wrong arch. cpu_value = settings["//command_line_option:cpu"] if (platform_type == "macos" and cpu_value.startswith("{}_".format(platform_type))) or cpu_value.startswith("{}_".format(platform_type)): return cpu_value if platform_type == "ios": ios_cpus = settings["//command_line_option:ios_multi_cpus"] if ios_cpus: return "ios_{}".format(ios_cpus[0]) return "ios_x86_64" if platform_type == "macos": macos_cpus = settings["//command_line_option:macos_cpus"] if macos_cpus: return "darwin_{}".format(macos_cpus[0]) return "darwin_x86_64" if platform_type == "tvos": tvos_cpus = settings["//command_line_option:tvos_cpus"] if tvos_cpus: return "tvos_{}".format(tvos_cpus[0]) return "tvos_x86_64" if platform_type == "watchos": watchos_cpus = settings["//command_line_option:watchos_cpus"] if watchos_cpus: return "watchos_{}".format(watchos_cpus[0]) return "watchos_i386" fail("ERROR: Unknown platform type: {}".format(platform_type)) def _min_os_version_or_none(attr, platform, attr_platform_type): if attr_platform_type != platform: return None if hasattr(attr, "platforms"): platforms = attr.platforms value = platforms.get(platform) return value elif hasattr(attr, "minimum_os_version"): return attr.minimum_os_version else: fail("ERROR: must either specify a single platform/minimum_os_version, or specify a dict via platforms") def _apple_rule_transition_impl(settings, attr): """Rule transition for Apple rules.""" platform_type = str(settings["//command_line_option:apple_platform_type"]) attr_platform_type = getattr(attr, "platform_type", None) attr_platforms = getattr(attr, "platforms", None) fail_on_apple_rule_transition_platform_mismatches = getattr(attr, "fail_on_apple_rule_transition_platform_mismatches", False) if attr_platform_type and attr_platform_type != platform_type: if fail_on_apple_rule_transition_platform_mismatches: fail("ERROR: {}: attribute platform_type set to {}, but inferred to be {}".format(attr.name, attr_platform_type, platform_type)) platform_type = attr_platform_type if attr_platforms and platform_type not in attr_platforms: if fail_on_apple_rule_transition_platform_mismatches: fail("ERROR: {}: attribute platforms set to {}, but platform inferred to be {}".format(attr.name, attr_platforms, platform_type)) platform_type = attr_platforms.keys()[0] ret = { "//command_line_option:apple configuration distinguisher": "applebin_" + platform_type, "//command_line_option:apple_platform_type": platform_type, "//command_line_option:apple_split_cpu": settings["//command_line_option:apple_split_cpu"], "//command_line_option:compiler": settings["//command_line_option:apple_compiler"], "//command_line_option:cpu": _cpu_string(platform_type, settings), "//command_line_option:crosstool_top": ( settings["//command_line_option:apple_crosstool_top"] ), "//command_line_option:fission": [], "//command_line_option:grte_top": settings["//command_line_option:apple_grte_top"], "//command_line_option:ios_minimum_os": _min_os_version_or_none(attr, "ios", platform_type), "//command_line_option:macos_minimum_os": _min_os_version_or_none(attr, "macos", platform_type), "//command_line_option:tvos_minimum_os": _min_os_version_or_none(attr, "tvos", platform_type), "//command_line_option:watchos_minimum_os": _min_os_version_or_none(attr, "watchos", platform_type), } return ret # These flags are a mix of options defined in native Bazel from the following fragments: # - https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/analysis/config/CoreOptions.java # - https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/rules/apple/AppleCommandLineOptions.java # - https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/rules/cpp/CppOptions.java _apple_rule_transition = transition( implementation = _apple_rule_transition_impl, inputs = [ "//command_line_option:apple_compiler", "//command_line_option:apple_crosstool_top", "//command_line_option:apple_platform_type", "//command_line_option:apple_grte_top", "//command_line_option:cpu", "//command_line_option:ios_multi_cpus", "//command_line_option:macos_cpus", "//command_line_option:tvos_cpus", "//command_line_option:watchos_cpus", "//command_line_option:apple_split_cpu", ], outputs = [ "//command_line_option:apple configuration distinguisher", "//command_line_option:apple_platform_type", "//command_line_option:apple_split_cpu", "//command_line_option:compiler", "//command_line_option:cpu", "//command_line_option:crosstool_top", "//command_line_option:fission", "//command_line_option:grte_top", "//command_line_option:ios_minimum_os", "//command_line_option:macos_minimum_os", "//command_line_option:tvos_minimum_os", "//command_line_option:watchos_minimum_os", ], ) transition_support = struct( apple_rule_transition = _apple_rule_transition, current_apple_platform = _current_apple_platform, ) ```
{ "source": "jgraving/cne", "score": 2 }
#### File: cne/selfsne/prior.py ```python import torch import torch.distributions as D from torch import nn from torch.nn import init from torch import optim from torch.utils.data import DataLoader import numpy as np import pytorch_lightning as pl from selfsne.kernels import KERNELS class MixturePrior(pl.LightningModule): def __init__( self, num_dims=2, num_components=2048, kernel="normal", logits="learn", kernel_scale=1.0, lr=0.1, ): super().__init__() self.save_hyperparameters() self.kernel = KERNELS[self.hparams.kernel] if self.hparams.num_components == 1: locs = torch.zeros((self.hparams.num_components, self.hparams.num_dims)) self.register_buffer("locs", locs) else: self.locs = nn.Parameter( torch.Tensor(self.hparams.num_components, self.hparams.num_dims) ) init.normal_(self.locs) if self.hparams.logits == "learn": self.logits = nn.Parameter(torch.zeros((self.hparams.num_components,))) init.zeros_(self.logits) elif self.hparams.logits == "maxent": logits = torch.zeros((self.hparams.num_components,)) self.register_buffer("logits", logits) self.watershed_optimized = False @property def multinomial(self): return D.Multinomial(logits=self.logits) @property def mixture(self): return D.Categorical(logits=self.logits) def sample(self, n_samples): components = D.Independent(D.Normal(loc=self.locs, scale=1), 1) normal_mixture = D.MixtureSameFamily(self.mixture, components) return normal_mixture.sample([n_samples]) @property def components(self): return self.kernel(self.locs.unsqueeze(1), self.hparams.kernel_scale) def entropy(self): return -(self.mixture.probs * self.log_prob(self.locs)).sum() def weighted_log_prob(self, x): return self.components.log_prob(x) + self.mixture.logits.unsqueeze(1) def log_prob(self, x): return self.weighted_log_prob(x).logsumexp(0) def disable_grad(self): for param in self.parameters(): param.requires_grad = False def enable_grad(self): for param in self.parameters(): param.requires_grad = True def rate(self, x): self.disable_grad() rate = self.log_prob(x) self.enable_grad() return rate def assign_modes(self, x): return self.weighted_log_prob(x).argmax(0) def quantize(self, x): return self.locs[self.assign_modes(x)] def entropy_upper_bound(self): return -(self.mixture.probs * self.log_prob(self.watershed_locs)).sum() def configure_optimizers(self): self.watershed_locs = nn.Parameter(self.locs.clone().detach()) return optim.Adam([self.watershed_locs], lr=self.hparams.lr) def watershed_labels(self): # perform sparse watershed assignment for component means watershed_modes = self.assign_modes(self.watershed_locs) watershed_assignments = torch.arange( self.hparams.num_components, device=watershed_modes.device ) # loop over k_components to ensure all modes are correctly assigned # hierarchy of clusters cannot be longer than num_components for _ in range(self.hparams.num_components): watershed_assignments = watershed_modes[watershed_assignments] # reindex starting at 0 unique_labels = torch.unique(watershed_assignments) for idx, label in enumerate(unique_labels): watershed_assignments[watershed_assignments == label] = idx return watershed_assignments def on_train_end(self): self.watershed_assignments = self.watershed_labels() self.watershed_optimized = True def training_epoch_end(self, training_step_outputs): self.log( "n_labels_epoch", self.watershed_labels().max() + 1, on_step=False, on_epoch=True, prog_bar=True, ) def training_step(self, batch, batch_idx): entropy = self.entropy_upper_bound() self.log( "entropy", entropy, on_step=True, on_epoch=True, prog_bar=True, ) return entropy def assign_labels(self, p): if not self.watershed_optimized: self.optimize_watershed() return self.watershed_assignments[self.assign_modes(p)] def optimize_watershed( self, max_epochs=999, steps_per_epoch=10, patience=10, verbose=True, gpus=None, lr=0.1, ): self.hparams.lr = lr if verbose: print("optimizing entropy...") dummy_loader = DataLoader(np.zeros(steps_per_epoch), batch_size=1) early_stopping = pl.callbacks.EarlyStopping("entropy", patience=patience) trainer = pl.Trainer( max_epochs=max_epochs, progress_bar_refresh_rate=verbose, weights_summary=None, callbacks=[early_stopping], gpus=gpus, ) trainer.fit(self, dummy_loader) ``` #### File: cne/selfsne/selfsne.py ```python import pytorch_lightning as pl import torch.optim as optim import torch.nn as nn import copy from selfsne.prior import MixturePrior from selfsne.losses import InfoNCE, RedundancyReduction from selfsne.neighbors import NearestNeighborSampler from selfsne.utils import stop_gradient class SelfSNE(pl.LightningModule): """Self-Supervised Noise Embedding""" def __init__( self, encoder, pair_sampler, projector=nn.Identity(), prior=MixturePrior(num_dims=2, num_components=1), similarity_loss=InfoNCE("studentt"), redundancy_loss=RedundancyReduction(2), similarity_multiplier=1.0, redundancy_multiplier=1.0, rate_multiplier=0.1, learning_rate=1e-3, weight_decay=0.01, ): super().__init__() self.encoder = encoder self.projector = projector self.pair_sampler = pair_sampler self.prior = prior self.similarity_loss = similarity_loss self.redundancy_loss = redundancy_loss self.save_hyperparameters( "similarity_multiplier", "redundancy_multiplier", "rate_multiplier", "learning_rate", "weight_decay", ignore=[ "encoder", "projector", "pair_sampler", "prior", "similarity_loss", "redundancy_loss", ], ) def forward(self, batch): return self.projector(self.encoder(batch)) def loss(self, batch, batch_idx, mode=""): query, key = self.pair_sampler(batch) query = self(query) key = self(key) similarity = self.similarity_loss(query, key).mean() redundancy = self.redundancy_loss(query, key).mean() prior_log_prob = -self.prior.log_prob(stop_gradient(query)).mean() rate = -self.prior.rate(query).mean() loss = { mode + "similarity": similarity, mode + "redundancy": redundancy, mode + "rate": rate, mode + "prior_entropy": self.prior.entropy(), mode + "loss": ( prior_log_prob + rate * self.hparams.rate_multiplier + similarity * self.hparams.similarity_multiplier + redundancy * self.hparams.redundancy_multiplier ), } for key in loss.keys(): self.log(key, loss[key], prog_bar=True) return loss def training_step(self, batch, batch_idx): return self.loss(batch, batch_idx, mode="")["loss"] def validation_step(self, batch, batch_idx): self.loss(batch, batch_idx, mode="val_") def test_step(self, batch, batch_idx): self.loss(batch, batch_idx, mode="test_") def predict_step(self, batch, batch_idx, dataloader_idx=0): embedded = self(batch) prior_log_prob = self.prior.log_prob(embedded) labels = self.prior.assign_labels(embedded) return { "embedding": embedded.cpu().numpy(), "labels": labels.cpu().numpy(), "prior_log_prob": prior_log_prob.cpu().numpy(), } def configure_optimizers(self): params_list = [ {"params": self.encoder.parameters()}, {"params": self.pair_sampler.parameters()}, {"params": self.similarity_loss.parameters()}, {"params": self.redundancy_loss.parameters()}, { "params": self.projector.parameters(), "weight_decay": 0.0, }, { "params": self.prior.parameters(), "weight_decay": 0.0, "lr": self.prior.hparams.lr, }, ] return optim.AdamW( params_list, lr=self.hparams.learning_rate, weight_decay=self.hparams.weight_decay, ) ```
{ "source": "jgray5/Lego-boost", "score": 3 }
#### File: examples/plotter/imgtracer.py ```python import json import logging import matplotlib.pyplot as plt import time from threading import Thread import numpy from PIL import Image class Tracer(object): def __init__(self, fname): super(Tracer, self).__init__() self.threshold = 64 self.orig_fname = fname self.orig = Image.open(fname) self.conv1 = self.remove_transparency(self.orig) self.conv1 = self.conv1.convert("L") self.src = numpy.asarray(self.conv1) self.dst = numpy.copy(self.src) self.dst.fill(False) self.mark = numpy.copy(self.dst) # start in center self.height, self.width = self.dst.shape[0:2] self.posy = self.height / 2 self.posx = self.width / 2 self.lines = [] def remove_transparency(self, im, bg_colour=(255, 255, 255)): # from https://stackoverflow.com/questions/35859140/remove-transparency-alpha-from-any-image-using-pil # Only process if image has transparency (http://stackoverflow.com/a/1963146) if im.mode in ('RGBA', 'LA') or (im.mode == 'P' and 'transparency' in im.info): # Need to convert to RGBA if LA format due to a bug in PIL (http://stackoverflow.com/a/1963146) alpha = im.convert('RGBA').split()[-1] # Create a new background image of our matt color. # Must be RGBA because paste requires both images have the same format # (http://stackoverflow.com/a/8720632 and http://stackoverflow.com/a/9459208) bg = Image.new("RGBA", im.size, bg_colour + (255,)) bg.paste(im, mask=alpha) return bg else: return im def trace(self): while self._has_unchecked_pixels(): # go circles to find a pixel in src if not self._spiral_till_pixel(): break # move until we find new pixels self._move_while_you_can() logging.info("Done") with open(self.orig_fname + ".json", "wt") as fhd: fhd.write(json.dumps(self.lines)) def _has_unchecked_pixels(self): ix, iy = numpy.where(self.mark == False) # FIXME: highly inefficient return len(ix) or len(iy) def is_src(self, posx, posy): return self.src[posy][posx] < self.threshold def _spiral_till_pixel(self): # TODO: optimize it, maybe use different algo (not spiral, just walkthrough?) radius = 1 direction = 0 offset = 0 while self._has_unchecked_pixels(): in_lower = self.posy < self.height and self.posx < self.width in_upper = self.posy >= 0 and self.posx >= 0 if in_lower and in_upper and not self.mark[self.posy][self.posx]: if self.is_src(self.posx, self.posy): return True self.mark[self.posy][self.posx] = True if direction == 0: self.posx += 1 self.posy += 0 elif direction == 1: self.posx += 0 self.posy += 1 elif direction == 2: self.posx += -1 self.posy += 0 elif direction == 3: self.posx += 0 self.posy += -1 else: raise ValueError() offset += 1 if offset >= radius: # time.sleep(0.01) offset = 0 direction += 1 if direction > 3: direction = 0 if direction in (0, 2): radius += 1 return False def _move_while_you_can(self): # time.sleep(0.1) logging.debug("%s:%s=%s", self.posy, self.posx, self.src[self.posy][self.posx]) dirs = self._check_directions() # TODO: use stack of this knowledge to speed-up walktrough dx, dy, length = self._get_best_direction(dirs) self.dst[self.posy][self.posx] = True self.mark[self.posy][self.posx] = True line = { "x1": self.posx, "y1": self.posy, "x2": self.posx + dx * length, "y2": self.posy + dy * length, "len": length } self.lines.append(line) logging.info("%s", line) for n in range(0, length): self.posy += dy self.posx += dx self.dst[self.posy][self.posx] = True self.mark[self.posy][self.posx] = True def _check_directions(self): dirs = { -1: {-1: 0, 0: 0, 1: 0}, 0: {-1: 0, 0: 0, 1: 0}, 1: {-1: 0, 0: 0, 1: 0}, } for dy in (-1, 0, 1): for dx in (-1, 0, 1): if dy == 0 and dx == 0: continue length = 1 while True: cx = self.posx + length * dx cy = self.posy + length * dy if not (0 <= cx < self.width) or not (0 <= cy < self.height): break if not self.is_src(cx, cy) or self.mark[cy][cx]: break dirs[dy][dx] = length length += 1 return dirs def _get_best_direction(self, dirs): bestlen = 0 bestx = 0 besty = 0 for y in dirs: for x in dirs[y]: if dirs[y][x] > bestlen: bestlen = dirs[y][x] bestx = x besty = y return bestx, besty, bestlen class TracerVisualizer(object): def __init__(self, tracer): """ :type tracer: Tracer """ self.tracer = tracer def run(self): tracer = self.tracer fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2) ax1.imshow(tracer.orig) ax2.imshow(tracer.src, cmap='binary') plt.show(block=False) thr = Thread(target=tracer.trace) thr.setDaemon(True) thr.start() while plt.get_fignums(): # weird trick to react on close ax3.set_title("%s:%s" % (tracer.posx, tracer.posy)) ax3.imshow(tracer.mark, cmap='gray') ax4.imshow(tracer.dst, cmap='gray') plt.pause(1) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) trc = Tracer("test3.png") TracerVisualizer(trc).run() time.sleep(5) ``` #### File: Lego-boost/pylgbst/constants.py ```python import binascii import struct import sys if sys.version_info[0] == 2: import Queue as queue else: import queue as queue queue = queue # just to use it def str2hex(data): return binascii.hexlify(data).decode("utf8") def usbyte(seq, index): return struct.unpack("<B", seq[index:index + 1])[0] def ushort(seq, index): return struct.unpack("<H", seq[index:index + 2])[0] # GENERAL MOVE_HUB_HARDWARE_HANDLE = 0x0E MOVE_HUB_HARDWARE_UUID = '00001624-1212-efde-1623-785feabcd123' PACKET_VER = 0x01 # PORTS PORT_C = 0x01 PORT_D = 0x02 PORT_LED = 0x32 PORT_A = 0x37 PORT_B = 0x38 PORT_AB = 0x39 PORT_TILT_SENSOR = 0x3A PORT_AMPERAGE = 0x3B PORT_VOLTAGE = 0x3C PORTS = { PORT_A: "A", PORT_B: "B", PORT_AB: "AB", PORT_C: "C", PORT_D: "D", PORT_LED: "LED", PORT_TILT_SENSOR: "TILT_SENSOR", PORT_AMPERAGE: "AMPERAGE", PORT_VOLTAGE: "VOLTAGE", } # PACKET TYPES MSG_DEVICE_INFO = 0x01 # 0501010305 gives 090001030600000010 MSG_DEVICE_SHUTDOWN = 0x02 # sent when hub shuts down by button hold MSG_PING_RESPONSE = 0x03 MSG_PORT_INFO = 0x04 MSG_PORT_CMD_ERROR = 0x05 MSG_SET_PORT_VAL = 0x81 MSG_PORT_STATUS = 0x82 MSG_SENSOR_SUBSCRIBE = 0x41 MSG_SENSOR_SOMETHING1 = 0x42 # it is seen close to sensor subscribe commands. Subscription options? Initial value? MSG_SENSOR_DATA = 0x45 MSG_SENSOR_SUBSCRIBE_ACK = 0x47 # DEVICE TYPES DEV_VOLTAGE = 0x14 DEV_AMPERAGE = 0x15 DEV_LED = 0x17 DEV_DCS = 0x25 DEV_IMOTOR = 0x26 DEV_MOTOR = 0x27 DEV_TILT_SENSOR = 0x28 DEVICE_TYPES = { DEV_DCS: "DISTANCE_COLOR_SENSOR", DEV_IMOTOR: "IMOTOR", DEV_MOTOR: "MOTOR", DEV_TILT_SENSOR: "TILT_SENSOR", DEV_LED: "LED", DEV_AMPERAGE: "AMPERAGE", DEV_VOLTAGE: "VOLTAGE", } # NOTIFICATIONS STATUS_STARTED = 0x01 STATUS_CONFLICT = 0x05 STATUS_FINISHED = 0x0a STATUS_INPROGRESS = 0x0c # FIXME: not sure about description STATUS_INTERRUPTED = 0x0e # FIXME: not sure about description # COLORS COLOR_BLACK = 0x00 COLOR_PINK = 0x01 COLOR_PURPLE = 0x02 COLOR_BLUE = 0x03 COLOR_LIGHTBLUE = 0x04 COLOR_CYAN = 0x05 COLOR_GREEN = 0x06 COLOR_YELLOW = 0x07 COLOR_ORANGE = 0x09 COLOR_RED = 0x09 COLOR_WHITE = 0x0a COLOR_NONE = 0xFF COLORS = { COLOR_BLACK: "BLACK", COLOR_PINK: "PINK", COLOR_PURPLE: "PURPLE", COLOR_BLUE: "BLUE", COLOR_LIGHTBLUE: "LIGHTBLUE", COLOR_CYAN: "CYAN", COLOR_GREEN: "GREEN", COLOR_YELLOW: "YELLOW", COLOR_ORANGE: "ORANGE", COLOR_RED: "RED", COLOR_WHITE: "WHITE", COLOR_NONE: "NONE" } # DEVICE INFO INFO_DEVICE_NAME = 0x01 INFO_BUTTON_STATE = 0x02 INFO_FIRMWARE_VERSION = 0x03 INFO_SOME4 = 0x04 INFO_SOME5_JITTERING = 0x05 INFO_SOME6 = 0x06 INFO_SOME7 = 0x07 INFO_MANUFACTURER = 0x08 INFO_HW_VERSION = 0x09 INFO_SOME10 = 0x0a INFO_SOME11 = 0x0b INFO_SOME12 = 0x0c INFO_ACTION_SUBSCRIBE = 0x02 INFO_ACTION_UNSUBSCRIBE = 0x03 INFO_ACTION_GET = 0x05 ```
{ "source": "jgreat/mobilecoin", "score": 2 }
#### File: mobilecoind/strategies/accounts.py ```python import grpc import json import logging import time import os import sys import uuid import mobilecoind_api_pb2 import mobilecoind_api_pb2_grpc from collections import namedtuple from enum import Enum from random import randint from google.protobuf.empty_pb2 import Empty logging.basicConfig(stream = sys.stdout, level = logging.INFO, format="%(levelname)s:%(module)s:%(lineno)s: %(message)s") AccountData = namedtuple("AccountData", ["account_key", "monitor_id", "public_address"]) class TransferStatus(Enum): pending = 0 success = 1 tombstoned = 2 failed = 3 def connect(host, port): # Set Up GRPC connection to wallet if port == '443': credentials = grpc.ssl_channel_credentials() channel = grpc.secure_channel('{}:{}'.format(host, port), credentials) else: channel = grpc.insecure_channel('{}:{}'.format(host, port)) return mobilecoind_api_pb2_grpc.MobilecoindAPIStub(channel) def register_account(key_data, stub) -> AccountData: # Generate an account key from this root entropy resp = stub.GetAccountKeyFromRootEntropy( mobilecoind_api_pb2.GetAccountKeyFromRootEntropyRequest( root_entropy=bytes(key_data['root_entropy']))) account_key = resp.account_key # Add this account to the wallet resp = stub.AddMonitor( mobilecoind_api_pb2.AddMonitorRequest(account_key=account_key, first_subaddress=0, num_subaddresses=1)) monitor_id = resp.monitor_id resp = stub.GetPublicAddress( mobilecoind_api_pb2.GetPublicAddressRequest(monitor_id=monitor_id, subaddress_index=0)) public_address = resp.public_address return AccountData(account_key, monitor_id, public_address) def load_key_and_register(keyfile, stub) -> AccountData: # Load the account key from file with open(keyfile, 'r') as f: key_data = json.load(f) # Remove discovery fqdn, as this causes InvalidTxOutMembershipProof key_data['acct_fqdn'] = None return register_account(key_data, stub) def register_random_key(stub, outdir) -> AccountData: entropy = [randint(0, 255) for i in range(32)] logging.debug("entropy = %s", entropy) data = {"root_entropy": entropy} outfile = 'account_keys_{}.json'.format(uuid.uuid4()) with open(os.path.join(outdir, outfile), 'w') as out: json.dump(data, out) return register_account(data, stub) def wait_for_accounts_sync(stub, accounts, wait_secs): logging.debug("accounts = %s", accounts[0]) block_count = stub.GetLedgerInfo(Empty()).block_count synced_ids = {a: False for a in accounts} while not all(synced_ids.values()): logging.info("Waiting for accounts to sync") for a in synced_ids: request = mobilecoind_api_pb2.GetMonitorStatusRequest(monitor_id=a) monitor_block = stub.GetMonitorStatus(request).status.next_block if monitor_block == block_count: synced_ids[a] = True time.sleep(wait_secs) logging.info("All accounts synced") def get_synced_accounts(stub, accounts): block_count = stub.GetLedgerInfo(Empty()).block_count synced = {a: False for a in accounts} while not any(synced.values()): logging.info("Waiting for accounts to sync") for a in synced: request = mobilecoind_api_pb2.GetMonitorStatusRequest(monitor_id=a) monitor_block = stub.GetMonitorStatus(request).status.next_block if monitor_block == block_count: synced[a] = True return {a for a in synced if synced[a] == True} def poll_mitosis(starting_balance, account_data, tx_stats, stub): complete = {t: False for t in tx_stats.keys()} pending = complete.keys() while not all(complete.values()): for tx_id in pending: try: resp = stub.GetBalance( mobilecoind_api_pb2.GetBalanceRequest( monitor_id=account_data.monitor_id)) if resp.balance == starting_balance and resp.account_block_height == resp.ledger_num_blocks: complete[tx_id] = True tx_stats[tx_id]['time_delta'] = time.time( ) - tx_stats[tx_id]['start'] tx_stats[tx_id][ 'block_delta'] = resp.ledger_num_blocks - tx_stats[ tx_id]['block_start'] # FIXME: don't know status currently...see below in poll tx_stats[tx_id]['status'] = TransferStatus.success except Exception as exc: logging.error("Got Balance exception: %s", repr(exc)) pending = [k for k in complete if not complete[k]] logging.info("Still pending: %s", len(pending)) time.sleep(2) logging.info("All accounts transfers complete") logging.debug(tx_stats) return tx_stats def poll(monitor_id, tx_stats, stub): complete = {t: False for t in tx_stats.keys()} receipts = {t: tx_stats[t] for t in tx_stats.keys()} pending = complete.keys() while not all(complete.values()): for tx_id in pending: try: resp = stub.GetTxStatusAsSender( mobilecoind_api_pb2.SubmitTxResponse( sender_tx_receipt=receipts[tx_id]["receipt"].sender_tx_receipt, receiver_tx_receipt_list=receipts[tx_id]["receipt"].receiver_tx_receipt_list )) if resp.status == mobilecoind_api_pb2.TxStatus.TombstoneBlockExceeded: logging.warning("Transfer did not complete in time: %s", tx_id) complete[tx_id] = True tx_stats[tx_id]['time_delta'] = time.time( ) - tx_stats[tx_id]['start'] tx_stats[tx_id]['status'] = TransferStatus.tombstoned elif resp.status == mobilecoind_api_pb2.TxStatus.Verified: logging.info("Transfer complete %s", tx_id) complete[tx_id] = True tx_stats[tx_id]['time_delta'] = time.time( ) - tx_stats[tx_id]['start'] tx_stats[tx_id]['status'] = TransferStatus.success else: logging.warning("Transfer status unknown: %s", resp.status) except Exception as e: logging.error("TransferStatus exception: %s", repr(e)) pending = [k for k in complete if not complete[k]] time.sleep(0.25) logging.info("All accounts transfers complete") logging.debug(tx_stats) return tx_stats ```
{ "source": "jgreat/tf-rancher-2.0", "score": 2 }
#### File: aws-ha-asg/lambda/lambda_function.py ```python import json import boto3 import botocore import logging import os import paramiko import socket import subprocess import warnings import yaml from random import randint from time import sleep from paramiko.ssh_exception import BadHostKeyException, AuthenticationException, SSHException warnings.filterwarnings(action='ignore',module='.*paramiko.*') print('Loading function') logger = logging.getLogger() logger.setLevel(logging.INFO) def lambda_handler(event, context): sleep(randint(1,15)) base_cluster_path = '/tmp/base_cluster.yml' cluster_path = '/tmp/cluster.yml' json_vars_path = '/tmp/vars.json' kubeconfig_path = '/tmp/kube_config_cluster.yml' snapshot_path = '/tmp/snapshots' s3_bucket = os.environ['S3_BUCKET'] rke_version = os.environ['RKE_VERSION'] ssh_user = os.environ.get('SSH_USER', default='rancher') rke_path = '/tmp/rke' state_path = '/tmp/cluster.rkestate' ssh_key_path = '/tmp/rsa_id' logger.info(json.dumps(event, indent=4, sort_keys=True)) message = json.loads(event['Records'][0]['Sns']['Message']) if 'LifecycleTransition' not in message: logger.info('Not a autoscale transition event. Doing nothing.') return transition = message['LifecycleTransition'] lifecycle_action_token = message['LifecycleActionToken'] metadata = json.loads(message['NotificationMetadata']) lb = metadata['lb'] ec2 = boto3.resource('ec2') instance = ec2.Instance(message['EC2InstanceId']) if instance.public_ip_address: ip = instance.public_ip_address internal_ip = instance.private_ip_address else: ip = instance.private_ip_address internal_ip = "" logger.info(message) logger.info('Instance ID: {}'.format(message['EC2InstanceId'])) logger.info('Transition: {}'.format(transition)) logger.info('Address: {}'.format(ip)) logger.info('Internal Address: {}'.format(internal_ip)) logger.info('LB Endpoint: {}'.format(lb)) try: # Get instance info logger.info('Waiting for instance to be ready') instance.wait_until_running() logger.info('Instance is in Running state') # Download RKE get_rke(version=rke_version, path=rke_path) # Get SSH key get_ssh_private_key(bucket=s3_bucket, path=ssh_key_path) # Test docker ready wait_for_docker(private_key_path=ssh_key_path, ip=ip) # Set Lock set_lock(bucket=s3_bucket, ip=ip) # Get state files get_kubeconfig(bucket=s3_bucket, path=kubeconfig_path) get_state(bucket=s3_bucket, path=state_path) get_base_cluster(bucket=s3_bucket, path=base_cluster_path) get_cluster(bucket=s3_bucket, path=cluster_path) # Take a snapshot if the cluster exists. if os.path.isfile(kubeconfig_path): snapshot_name = 'asg-{}-{}'.format(message['LifecycleHookName'], message['RequestId']) local_snapshot_path = '{}/{}'.format(snapshot_path, snapshot_name) remote_snapshot_path = '/opt/rke/etcd-snapshots/{}'.format(snapshot_name) take_snapshot(name=snapshot_name, rke_path=rke_path, cluster_path=cluster_path) if not os.path.isdir(snapshot_path): os.mkdir(snapshot_path) copy_snapshot(cluster_path=cluster_path, local_path=local_snapshot_path, remote_path=remote_snapshot_path) upload_snapshot(bucket=s3_bucket, name=snapshot_name, path=local_snapshot_path) # update cluster.yml node = { 'address': ip, 'internal_address': internal_ip, 'user': ssh_user, 'role': [ 'controlplane', 'etcd', 'worker' ], 'ssh_key_path': ssh_key_path } if transition == 'autoscaling:EC2_INSTANCE_LAUNCHING': add_node(base_cluster_path=base_cluster_path, cluster_path=cluster_path, node=node) elif transition == 'autoscaling:EC2_INSTANCE_TERMINATING': remove_node(path=cluster_path, node=node) else: raise Exception('Unknown transition, run away!') # run rke cmd = [ rke_path, 'up', '--config', cluster_path, '2>&1' ] response = subprocess.run(cmd) response.check_returncode() # Add ELB endpoint to kube_config_cluster.yml add_lb_to_kubeconfig(path=kubeconfig_path, lb=lb) json_vars_file(kubeconfig_path=kubeconfig_path, json_vars_path=json_vars_path) # Update files upload_files(bucket=s3_bucket, cluster_path=cluster_path, kubeconfig_path=kubeconfig_path, state_path=state_path, json_vars_path=json_vars_path) # Remove lock remove_lock(bucket=s3_bucket, ip=ip) # Send ASG complete complete_lifecycle(message, 'CONTINUE') except Exception as e: if lifecycle_action_token: complete_lifecycle(message, 'ABANDON') if ip: remove_lock(bucket=s3_bucket, ip=ip) raise e else: logger.info('rke up Success') def add_lb_to_kubeconfig(path, lb): logger.info('Updating Kubeconfig with LB endpoint: {}'.format(lb)) kube_config = {} with open(path, 'r') as k: kube_config = yaml.safe_load(k.read()) kube_config['clusters'][0]['cluster']['server'] = lb with open(path, 'w') as k: k.writelines(yaml.dump(kube_config, default_flow_style=False)) def json_vars_file(kubeconfig_path, json_vars_path): logger.info('Creating json_vars for TF to ingest') kube_config = {} with open(kubeconfig_path, 'r') as k: kube_config = yaml.safe_load(k.read()) json_vars = { 'host': kube_config['clusters'][0]['cluster']['server'], 'username': kube_config['users'][0]['name'], 'client_certificate_data': kube_config['users'][0]['user']['client-certificate-data'], 'client_key_data': kube_config['users'][0]['user']['client-key-data'], 'certificate_authority_data': kube_config['clusters'][0]['cluster']['certificate-authority-data'] } with open(json_vars_path, 'w') as j: j.writelines(json.dumps(json_vars)) def take_snapshot(name, rke_path, cluster_path): logger.info('Taking snapshot of current cluster. ' + name) cmd = [ rke_path, 'etcd', 'snapshot-save', '--config', cluster_path, '--name', name ] response = subprocess.run(cmd) response.check_returncode() def copy_snapshot(cluster_path, local_path, remote_path): # Pull snapshot from the first host in the cluster.yml cluster = {} with open(cluster_path, 'r') as c: cluster = yaml.safe_load(c.read()) ip = cluster['nodes'][0]['address'] user = cluster['nodes'][0]['user'] ssh_key_path = cluster['nodes'][0]['ssh_key_path'] logger.info('Copy snapshot from {} to localhost'.format(ip)) logger.info('Remote path: {}'.format(remote_path)) logger.info('Local local: {}'.format(local_path)) ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) private_key = paramiko.RSAKey.from_private_key_file(ssh_key_path) ssh.connect(hostname=ip, username=user, pkey=private_key) ftp_client=ssh.open_sftp() ftp_client.get(remote_path, local_path) ftp_client.close() def upload_snapshot(bucket, name, path): # upload to s3:// /snapshots logger.info('Uploading snapshot: ' + path) with open(path, 'rb') as k: s3 = boto3.client('s3') s3.upload_fileobj(k, bucket, 'snapshots/{}'.format(name), ExtraArgs={'ContentType': 'text/yaml'}) def get_state(bucket, path): s3 = boto3.client('s3') logger.info('Downloading cluster.rkestate from ' + bucket) try: s3.download_file(bucket, 'cluster.rkestate', path) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info('no existing state file') else: raise e def get_kubeconfig(bucket, path): s3 = boto3.client('s3') logger.info('Downloading kube_config_cluster.yml from ' + bucket) try: s3.download_file(bucket, 'kube_config_cluster.yml', path) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info('no existing kubeconfig file') else: raise e def get_cluster(bucket, path): s3 = boto3.client('s3') logger.info('Downloading cluster.yml from ' + bucket) try: s3.download_file(bucket, 'cluster.yml', path) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info('cluster.yml not found creating new') open(path, 'a').close() else: raise e def get_base_cluster(bucket, path): s3 = boto3.client('s3') logger.info('Downloading base_cluster.yml from ' + bucket) try: s3.download_file(bucket, 'base_cluster.yml', path) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info('base_cluster.yml not found creating new') open(path, 'a').close() else: raise e def add_node(cluster_path, base_cluster_path, node): cluster = {} base_cluster = {} with open(cluster_path, 'r') as c: cluster = yaml.safe_load(c.read()) # This seems dumb, but an empty document doesn't return an empty dict if not cluster: cluster = {} with open(base_cluster_path, 'r') as c: base_cluster = yaml.safe_load(c.read()) if not base_cluster: base_cluster = {} # merge base_cluster over values in cluster new_cluster = {**cluster, **base_cluster} # update cluster with new node if new_cluster: if 'nodes' in new_cluster: if node in new_cluster['nodes']: logger.info('found node entry in cluster.yml') else: logger.info('appending node entry to cluster.yml') new_cluster['nodes'].append(node) else: logger.info('adding node entry to cluster.yml') new_cluster['nodes'] = [ node ] else: logger.info('adding nodes entry to cluster.yml') new_cluster = { 'nodes': [ node ] } with open(cluster_path, 'w') as c: c.writelines(yaml.dump(new_cluster, default_flow_style=False)) def remove_node(path, node): cluster = {} with open(path, 'r') as c: cluster = yaml.safe_load(c.read()) if cluster: if 'nodes' in cluster: if node in cluster['nodes']: cluster['nodes'].remove(node) with open(path, 'w') as c: c.writelines(yaml.dump(cluster, default_flow_style=False)) def upload_files(bucket, cluster_path, kubeconfig_path, state_path, json_vars_path): s3 = boto3.client('s3') if os.path.isfile(cluster_path): logger.info('Uploading cluster.yml') with open(cluster_path, 'rb') as c: s3.upload_fileobj(c, bucket, 'cluster.yml', ExtraArgs={'ContentType': 'text/yaml'}) if os.path.isfile(kubeconfig_path): logger.info('Uploading kube_config_path.yml') with open(kubeconfig_path, 'rb') as k: s3.upload_fileobj(k, bucket, 'kube_config_cluster.yml', ExtraArgs={'ContentType': 'text/yaml'}) if os.path.isfile(state_path): logger.info('Uploading cluster.rkestate') with open(state_path, 'rb') as s: s3.upload_fileobj(s, bucket, 'cluster.rkestate') if os.path.isfile(json_vars_path): logger.info('Uploading vars.json') with open(json_vars_path, 'rb') as j: s3.upload_fileobj(j, bucket, 'vars.json', ExtraArgs={'ContentType': 'application/json'}) def set_lock(bucket, ip): s3 = boto3.client('s3') logger.info('Checking for lock file') # retry every 10 seconds, stop after 10 min for attempt in range(60): try: s3.head_object(Bucket=bucket, Key='rke_lock') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info("The lock_file does not exist. Setting now.") with open('/tmp/rke_lock', 'w') as lock: lock.write(ip) with open('/tmp/rke_lock', 'rb') as lock: s3.upload_fileobj(lock, bucket, 'rke_lock') break else: raise e else: logger.info('Lock file exists. Waiting for lock to clear - ' + str(attempt)) sleep(10) continue else: url = 's3://' + bucket + '/rke_tmp' raise Exception('Time out waiting for lock to clear. ' + url) def remove_lock(bucket, ip): s3 = boto3.client('s3') logger.info('Removing Lock File') try: s3.download_file(bucket, 'rke_lock', '/tmp/tmp_lock') with open('/tmp/tmp_lock') as t: if t.read() == ip: s3.delete_object(Bucket=bucket, Key='rke_lock') else: logger.info('Not my lock file') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info('lock file is gone?') else: raise e def get_rke(version, path): logger.info('Downloading RKE version ' + version) url = 'https://github.com/rancher/rke/releases/download/' + version + '/rke_linux-amd64' cmd = [ 'curl', '-fLSs', '-o', path, url ] subprocess.check_call(cmd) subprocess.check_call(['chmod', '+x', path]) def get_ssh_private_key(bucket, path): s3 = boto3.client('s3') logger.info('Downloading private key from ' + bucket) s3.download_file(bucket, 'id_rsa', path) def wait_for_docker(private_key_path, ip): ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) private_key = paramiko.RSAKey.from_private_key_file(private_key_path) logger.info('Waiting for Docker to be ready') # retry every 10 seconds, stop after 5 min for attempt in range(30): try: ssh.connect(hostname=ip, username='rancher', pkey=private_key) stdin, stdout, stderr = ssh.exec_command('docker ps') stdin.flush() data = stdout.read().splitlines() logger.debug(data) logger.debug('Return: ' + str(stdout.channel.recv_exit_status())) if stdout.channel.recv_exit_status() > 0: raise SSHException('Command Failed') logger.info('Docker ready') ssh.close() except (BadHostKeyException, AuthenticationException) as e: raise e except (SSHException, socket.error) as e: ssh.close() logger.info('Docker not ready ' + str(attempt)) sleep(10) continue else: break else: raise Exception('Wait for docker timed out') def complete_lifecycle(message, result): client = boto3.client('autoscaling') client.complete_lifecycle_action( LifecycleHookName=message['LifecycleHookName'], AutoScalingGroupName=message['AutoScalingGroupName'], LifecycleActionToken=message['LifecycleActionToken'], LifecycleActionResult=result ) ```
{ "source": "JG-Redeux/genomicdata", "score": 3 }
#### File: JG-Redeux/genomicdata/pdm.py ```python from PyQt5 import QtCore import pandas as pd class DataFrameModel(QtCore.QAbstractTableModel): """[Class which interfaces QT and Pandas dataframes] Args: QtCore ([QtCore]): [Inherits QAbstractTableModel from QtCore] Returns: [dataframe]: [dataframe outputed into QTableView] """ DtypeRole = QtCore.Qt.UserRole + 1000 ValueRole = QtCore.Qt.UserRole + 1001 def __init__(self, df=pd.DataFrame(), parent=None): """[init the instance] Args: df ([dataframe], optional): [dataframe to act as model]. Defaults to pd.DataFrame(). parent ([object], optional): [parent object]. Defaults to None. """ super(DataFrameModel, self).__init__(parent) self._dataframe = df def setDataFrame(self, dataframe): """[set dataframe as the model] Args: dataframe ([dataframe]): [dataframe to be set as model] """ self.beginResetModel() self._dataframe = dataframe.copy() self.endResetModel() def dataFrame(self): """[method to output the class dataframe] Returns: [dataframe]: [returns the dataframe] """ return self._dataframe dataFrame = QtCore.pyqtProperty(pd.DataFrame, fget=dataFrame, fset=setDataFrame) @QtCore.pyqtSlot(int, QtCore.Qt.Orientation, result=str) def headerData(self, section: int, orientation: QtCore.Qt.Orientation, role: int = QtCore.Qt.DisplayRole): """[get header data from dataframe] Args: section (int): [column index] orientation (QtCore.Qt.Orientation): [orientation from Qt5] role (int, optional): [role from Qt5]. Defaults to QtCore.Qt.DisplayRole. Returns: [QtCore.QVariant]: [Qt5 construct] """ if role == QtCore.Qt.DisplayRole: if orientation == QtCore.Qt.Horizontal: return self._dataframe.columns[section] else: return str(self._dataframe.index[section]) return QtCore.QVariant() def rowCount(self, parent=QtCore.QModelIndex()): """[get model row count] Args: parent ([object], optional): [object to inherit]. Defaults to QtCore.QModelIndex(). Returns: [int]: [row count] """ if parent.isValid(): return 0 return len(self._dataframe.index) def columnCount(self, parent=QtCore.QModelIndex()): """[get model column count] Args: parent ([object], optional): [object to inherit]. Defaults to QtCore.QModelIndex(). Returns: [int]: [columns size (count)] """ if parent.isValid(): return 0 return self._dataframe.columns.size def data(self, index, role=QtCore.Qt.DisplayRole): """[define model data] Args: index ([int]): [dataframe index number] role (int, optional): [role from Qt5]. Defaults to QtCore.Qt.DisplayRole. Returns: [objects]: [dataframe objects] """ if not index.isValid() or not (0 <= index.row() < self.rowCount() and 0 <= index.column() < self.columnCount()): return QtCore.QVariant() row = self._dataframe.index[index.row()] col = self._dataframe.columns[index.column()] dt = self._dataframe[col].dtype val = self._dataframe.iloc[row][col] if role == QtCore.Qt.DisplayRole: return str(val) elif role == DataFrameModel.ValueRole: return val if role == DataFrameModel.DtypeRole: return dt return QtCore.QVariant() def roleNames(self): """[get role names] Returns: [dict]: [dict with roles] """ roles = { QtCore.Qt.DisplayRole: b'display', DataFrameModel.DtypeRole: b'dtype', DataFrameModel.ValueRole: b'value' } return roles def sort(self, column): """[sort dataframe by column] Args: column ([string]): [column to sort by to] """ colname = self._dataframe.columns.tolist()[column] self.layoutAboutToBeChanged.emit() self._dataframe.sort_values(colname, ascending=QtCore.Qt.AscendingOrder, inplace=True) self._dataframe.reset_index(inplace=True, drop=True) self.layoutChanged.emit() def get_value(self, row, col): """[get value from dataframe[row,col]] Args: row ([int]): [row number] col ([int]): [col number] Returns: [object]: [value from dataframe[row,col]] """ return self._dataframe.iloc[row, col] ``` #### File: JG-Redeux/genomicdata/sqlmng.py ```python from errorex import gd_errors import psycopg2 from sqlalchemy import (MetaData, Table, create_engine, Column, Integer, String, Date, exists, Boolean, Float, exc, func, ForeignKey, select, text, or_, and_, literal, schema, inspect, DateTime) from sqlalchemy.engine import reflection from sqlalchemy.orm import sessionmaker, relationship, mapper from sqlalchemy.sql.expression import false from sqlalchemy.ext.declarative import declarative_base from sqlalchemy_utils import create_database, database_exists from sqlalchemy.dialects import postgresql # import data_import as itapi import pandas as pd import logging import datetime logger = logging.getLogger(__name__) Base = declarative_base() gerrors = gd_errors() # todo: update user info class SQL(object): """[manages sessions, connections and other database metainfo] Args: object ([object]): [parent object] """ default_tables = ["users_table", "patients_table", "samples_table", "exams_table"] # the init's parameters will be used to create the engine, it will be set in the main app def __init__(self, server_login, server_pw, hostname, database): """[init the sql class] Args: server_login ([string]): [server login] server_pw ([string]): [server password] hostname ([string]): [hostname] database ([string]): [target database] """ self.server_login = server_login self.server_pw = server_pw self.hostname = hostname self.database = database logger.info("SQLMNG - Postgress instance initialized.") # create the sqlalchemy engine using postgress and psycopg2 (the module) # the other infos comes from the SQL init class method def set_engine(self): """[set database engine] Returns: [engine]: [database engine] """ db_adress = 'postgresql+psycopg2://{}:{}@{}/{}'.format(self.server_login, self.server_pw, self.hostname, self.database) self.engine = create_engine(db_adress) if database_exists(self.engine.url) is False: logger.warn("SQLMNG - DB not found, creating new DB") logger.debug("SQLMNG - DB {} created".format(self.engine.url)) create_database(self.engine.url) logger.info("SQLMNG - DB found, connecting.") logger.debug(self.engine.url) self.metadata = MetaData(self.engine) return self.engine # this method sets the session using the engine defined previously def set_session(self, engine): """[define session from engine] Args: engine ([engine]): [sql engine] Returns: [session]: [database session from engine] """ Session = sessionmaker(bind=engine) self.session = Session() logger.debug(self.session) logger.info("SQLMNG - Session created.") return self.session def check_db_info(self): """[get database information] Returns: [list]: [list with database metadata] """ info_list = [list(Base.metadata.tables.keys()), self.metadata] return info_list ''' def _create_default_user_db(self): ### #May use in future ### users_dict = {"login": String, "password": String, "name": String, "surname": String, "nvl": String, "other_spec": String, "email": String, "date": Date} badwords_dict = {"badwords": String} self._create_db_table("db_user_schema", "users", **users_dict) self._create_db_table("db_user_schema", "badwords", **badwords_dict) self.commit_new_tables() self.check_db_info() ''' def _create_db_table(self, schema, tablename, **table_info): """[create table on schema.tablename with table_info] Args: schema ([string]): [schema name] tablename ([string]): [table name] """ ### # May use in future ### self.table = Table(tablename, self.metadata, Column('id', Integer, primary_key=True), *(Column(key, value) for key, value in table_info.items()), schema=schema) # self.commit_new_tables() # self.class_mapper(schema, tablename) def commit_new_table(self, schema, table): """[commit table creation] Args: schema ([string]): [schema name] tablename ([string]): [table name] """ print("sqlmng: ", schema, table) table = str_to_table(schema, table) table.__table__.create(self.engine) def schema_exists(self, schema_name, create=False): """[check if schema already exist] Args: schema_name ([string]): [schema name] create (bool, optional): [create table if not exist]. Defaults to False. Returns: [bool]: [True if schema exists] """ ret = self.engine.dialect.has_schema(self.engine, schema_name) if not ret: if create is True: self.engine.execute(schema.CreateSchema(schema_name)) return ret def table_exists(self, name, schema=None): """[check if table name exist] Args: name ([string]): [table name] schema ([string], optional): [schema name]. Defaults to None. Returns: [bool]: [True if table name exist] """ ret = inspect(self.engine).has_table(name, schema) return ret def class_mapper(self, schema, tablename): """[dynamically creates tables, not in use] Args: schema ([string]): [schema name] tablename ([string]): [table name] """ if tablename == "users": mydict = {'__table__': '{}.{}'.format(schema, tablename), '__table_args__': ({'autoload': True, 'autoload_with': self.engine},)} elif tablename == "badwords": mydict = {'__table__': '{}.{}'.format(schema, tablename), '__table_args__': ({'autoload': True, 'autoload_with': self.engine},)} else: mydict = {'__table__': '{}.{}'.format(schema, tablename), '__table_args__': ({'autoload': True, 'autoload_with': self.engine},)} cls = type('{}'.format(tablename), (Base,), mydict) mapper(cls, self.table) def detect_schema(self, schema, create_schema=False): """[Another implementation to check if schema exist on database] Args: schema ([string]): [schema name] create_schema (bool, optional): [if schema should be created]. Defaults to False. Returns: [bool]: [True if exists] """ fix_schema = str(schema) print("schema: ", fix_schema) flag = exists(select([(text("schema_name"))]).select_from(text("information_schema.schemata")) .where(text("schema_name = '{}'".format(fix_schema)))) if self.session.query(flag).scalar(): return True # self.engine.execute("SHOW CREATE SCHEMA {}".format(fix_schema)).scalar() # create the user on the database, the user_info should be a dict containing # login, pw, name, surname, email and datetime def add_user(self, session, user_info): """[summary] Args: session ([session]): [connection session] user_info ([list]): [list with info to add to server table] """ new_user = User(**user_info) session.add(new_user) session.commit() logger.info("SQLMNG - User added and changes commited.") # this method finds the target username and change the pw on the database for # the new one, the pw parameter def change_user_pw(self, session, username, pw): """[change user password on table] Args: session ([session]): [connection session] username ([string]): [username] pw ([string]): [password] """ session.query(User).filter_by(login=username).update({"password": pw}) session.commit() logging.info("SQLMNG - {} changed password.".format(username)) # this one deletes the target (id/login) entry from the database # the ident params change if the code searchs for id or login def delete_user(self, session, target, ident=True): """[delete user on table] Args: session ([session]): [connection session] target ([string]): [user to be deleted] ident (bool, optional): [if should be queried by id or login column]. Defaults to True. """ if ident: ident = session.query(User).filter_by(id=target).delete() else: ident = session.query(User).filter_by(login=target).delete() session.commit() logging.info("SQLMNG - {} deleted and changes commited.".format(target)) def query_values(self, session, column=None, schema="db_user_schema", target=None, table="users", _type="all", _pd=False): """[query values from table] Args: session ([session]): [connection session] column ([list or string], optional): [description]. Defaults to None. schema (str, optional): [schema name]. Defaults to "db_user_schema". target ([string], optional): [what should be queried]. Defaults to None. table (str, optional): [table to look into]. Defaults to "users". _type (str, optional): [query with .all(), .last(), .first(), .scalar() or .one()]. Defaults to "all". _pd (bool, optional): [guide the flow of the method]. Defaults to False. Raises: ValueError: [In case the column name doesn't exist] Returns: [object]: [return the query result] """ logging.debug("SQLMNG - {}".format(":".join(str(x) for x in [session, column, table, _type]))) table_name = str_to_table(schema, table) base_query = self.session.query(table_name) if table == "users": col = str_to_column(table_name, column) return self.session.query(col).all() if _pd is True: if column is not None and target is not None: try: col_obj = str_to_column(table_name, column) q = pd.read_sql(self.session.query(table_name).filter(col_obj == target).statement, self.session.bind) return q except: return pd.read_sql(self.session.query(table_name).statement, self.session.bind) elif column is not None: if _type is None: try: col_obj = str_to_column(table_name, column) q = pd.read_sql(self.session.query(table_name).order_by(column.asc()).statement, self.session.bind) return q except: return pd.read_sql(self.session.query(table_name).statement, self.session.bind) elif _type == "last": try: col_obj = str_to_column(table_name, column) q = pd.read_sql(self.session.query(table_name).order_by(column.id.asc()).limit(20).statement, self.session.bind) return q except: return pd.read_sql(self.session.query(table_name).statement, self.session.bind) else: return pd.read_sql(self.session.query(table_name).statement, self.session.bind) if column: if type(column) == str: col_obj = str_to_column(table_name, column) col_query = base_query.filter(col_obj == target) if _type == "first": return base_query.filter(col_obj == target).first() elif type(column) == list: col_obj_list = [str_to_column(table_name, col) for col in column] col_query = base_query.with_entities(*col_obj_list).filter(text(target)) else: raise ValueError("Column must be either str or list") if _type == "all": query = col_query.all() elif _type == "first": query = col_query.first() # #TODO next two elifs will not work with multiple columns, fix it elif _type == "scalar": query = base_query.filter(col_obj == target).first() is not None elif _type == "one": query = col_query.one() return query else: if _type == "all": query = base_query.all() elif _type == "first": query = base_query.first() else: query = base_query.first() return query # the query method makes query (on the user table) based on the target param # if the badword param is set to true the query will be made in the badword tables # if the user is set to true it will look for the login column, otherwise it will look at the email column # if scalar is set to true the output will be either True or False def query_user(self, session, target, badword=False, user=True, scalar=True): """[summary] Args: session ([session]): [connection session] target ([string]): [target to be queried for] badword (bool, optional): [look in badword table or not]. Defaults to False. user (bool, optional): [return the query result as a list]. Defaults to True. scalar (bool, optional): [return the query result as a bool]. Defaults to True. Returns: [object]: [query] """ if badword is True: query = session.query(exists().where(Badwords.badword == target)).scalar() if target: logging.info("SQLMNG - Badword {} queried.".format( target.replace(target, "*" * len(target)))) return query try: if scalar: query = session.query(exists().where(User.login == target)).scalar() else: if user: query = session.query(User).filter_by(login=target).first() else: query = session.query(User).filter_by(email=target).first() logging.info("SQLMNG - {} queried.".format(target)) return query except exc.SQLAlchemyError: return exc.SQLAlchemyError.__name__ # similar to the add_user and change password, it looks for the username and # update the row with the information inside new_info dict def update_user(self, session, username, new_info): """[update user in table users with new info] Args: session ([session]): [connection session] username ([string]): [user username to be updated] new_info ([dict]): [info to be updated] """ session.query(User).filter_by(login=username).update(new_info) session.commit() logging.debug("SQLMNG - Update <{}> requested.".format(new_info)) logging.info("SQLMNG - Update commited.") def upsert(self, schema, table_name, records={}): """[summary] Args: schema ([string]): [schema name] table_name ([string]): [table name] records (dict, optional): [records to be update]. Defaults to {}. Returns: [execute]: [return the execution of the upsert] """ metadata = MetaData(schema=schema) metadata.bind = self.engine table = Table(table_name, metadata, schema=schema, autoload=True) # get list of fields making up primary key primary_keys = [key.name for key in inspect(table).primary_key] # assemble base statement stmt = postgresql.insert(table).values(records) # define dict of non-primary keys for updating update_dict = { c.name: c for c in stmt.excluded if not c.primary_key } # assemble new statement with 'on conflict do update' clause update_stmt = stmt.on_conflict_do_update( index_elements=primary_keys, set_=update_dict, ) # execute with self.engine.connect() as conn: try: result = conn.execute(update_stmt) return result except exc.IntegrityError: return gerrors.fk_error() def add_rows_sampat(self, session, rows_info, schema, table): """[summary] Args: session ([session]): [connection session] rows_info ([dict]): [rows info to be added] schema ([string]): [schema name] table ([string]): [table name] Raises: ValueError: [In case the rows_info keyu doesn't match the table] """ table = str_to_table(schema, table) new_row = table(**rows_info) session.add(new_row) try: session.commit() except exc.ProgrammingError: raise ValueError logger.info("SQLMNG - {} rows added to {} table.".format(len(rows_info), table)) def delete_entry(self, session, schema, table, target): """[delete target entry from the table schema.table ] Args: session ([session]): [connection session] schema ([string]): [schema name] table ([string]): [table name] target ([string]): [id to be queried] """ true_table = str_to_table(schema, table) true_col = str_to_column(true_table, 'id') session.query(true_table).filter(true_col == target).delete() session.commit() def update_table(self, session, schema, table, column, target, new_entry): """[update table with new entry] Args: session ([session]): [connection session] schema ([string]): [schema name] table ([string]): [table name] column ([string]): [column to query the target] target ([string]): [which to be queried] new_entry ([dict]): [dict with info to be updated] """ true_table = str_to_table(schema, table) true_col = str_to_column(true_table, column) session.query(true_table).filter(true_col == target).update(new_entry) session.commit() def update_rows_sampat(self, session, rows_info, schema, table): """[summary] Args: session ([session]): [connection session] schema ([string]): [schema name] table ([string]): [table name] rows_info ([dict]): [dict with info to be updated] """ table_obj = str_to_table(schema, table) new_row = table_obj(**rows_info) session.merge(new_row) session.commit() logging.info('SQLMNG - Update commited') def pat_flow(self, rows_info, schema, table, verbose=False): """[specific flow to add entries into patients table] Args: rows_info ([dict]): [dict with info to be updated] schema ([string]): [schema name] table ([string]): [table name] verbose (bool, optional): [to print or not the content of rows_info]. Defaults to False. Raises: ValueError: [In case the entry weren't added to the database] """ #TODO lidar com duplicatas logging.debug("SQLMNG - Insert entry <{}> requested.".format(rows_info)) for entry in rows_info: target = int(entry["old_id"]) part = entry["particular"] check = self.session.query(Patient).filter(Patient.old_id == target, Patient.particular == part) check_bool = check.first() is not None if not check_bool: if verbose: print(entry) try: self.add_rows_sampat(self.session, entry, schema, table) except: logging.info('SQLMNG - Entry not added') raise ValueError("New entrys not inserted on DB") else: pass def samp_flow(self, rows_info, schema, table, verbose=False): """[specific flow to add entries into samples table] Args: rows_info ([dict]): [dict with info to be updated] schema ([string]): [schema name] table ([string]): [table name] verbose (bool, optional): [to print or not the content of rows_info]. Defaults to False. Raises: ValueError: [In case the entry weren't added to the database] """ for entry in rows_info: target = int(entry["samp_serial"]) old_id = int(entry["old_id"]) part = True if not entry["sample_group"] == "G" else False query = self.session.query(Patient).filter(Patient.old_id == old_id, Patient.particular == part) check = self.query_values(self.session, target=target, column='samp_serial', schema=schema, table=table, _type="scalar") if not check: entry["sample_owner"] = query.first() if verbose: print(entry) try: self.add_rows_sampat(self.session, entry, schema, table) except: logging.info('SQLMNG - Entry not added') raise ValueError("New entrys not inserted on DB") else: pass def exams_flow(self, rows_info, schema, table, verbose=False): """[specific flow to add entries into exams table] Args: rows_info ([dict]): [dict with info to be updated] schema ([string]): [schema name] table ([string]): [table name] verbose (bool, optional): [to print or not the content of rows_info]. Defaults to False. Raises: ValueError: [In case the entry weren't added to the database] """ for entry in rows_info: target = int(entry["exam_serial"]) old_id = int(entry["old_id"]) part = entry["sample_group"] query = self.session.query(Samples).filter(Samples.old_id == old_id, Samples.sample_group == part) check = self.query_values(self.session, target=target, column='exam_serial', schema=schema, table=table, _type="scalar") if not check: entry["master_sample"] = query.first() entry.pop("sample_group", None) entry.pop("old_id", None) if verbose: print(entry) try: self.add_rows_sampat(self.session, entry, schema, table) except: logging.info('SQLMNG - Entry not added') raise ValueError("New entrys not inserted on DB") else: pass def row_count(self, session, table="users_table"): """[get row count of table table] Args: session ([session]): [connection session] table (str, optional): [table name]. Defaults to "users_table". Returns: [int]: [row number] """ if table == "users_table": rows = session.query(func.count(User.id)).scalar() elif table == "Badword": rows = session.query(func.count(Badwords.id)).scalar() elif table == "samples_table": rows = session.query(func.count(Samples.id)).scalar() elif table == "patients_table": rows = session.query(func.count(Patient.id)).scalar() elif table == "exams_table": rows = session.query(func.count(Exams.id)).scalar() return rows def col_info(self, session, schema="db_sampat_schema", table="patients_table"): """[get columns info from table] Args: session ([session]): [connection session] schema (str, optional): [schema name]. Defaults to "db_sampat_schema". table (str, optional): [table name]. Defaults to "patients_table". Returns: [list]: [columns from table] """ insp = reflection.Inspector.from_engine(self.engine) col_info = insp.get_columns(table, schema) return col_info # back-end method used to add entries to the badword table, it accepts both lists and strings def populate_badword(self, session, badword): """[add badwords to table badwords] Args: session ([session]): [connection session] badword ([list, str]): [badword to be added] """ if type(badword) == list: for item in badword: new_bad = Badwords(badword=item) session.add(new_bad) else: print(badword) new_bad = Badwords(badword=badword) session.add(new_bad) session.commit() def close_conn(self, session): """[close the session] Args: session ([session]): [connection session] """ logging.info("SQL Session closed.") session.close() # class that defines the User table in the database, it follows the sqlalchemy guidelines class User(Base): """[define User table on database] """ __tablename__ = 'users_table' __table_args__ = {'schema': "db_user_schema"} id = Column(Integer, primary_key=True) login = Column(String) password = Column(String) name = Column(String) surname = Column(String) nvl = Column(String) other_spec = Column(String) email = Column(String) date = Column(Date) def __repr__(self): return "login={},password={},name={},surname={},nvl={},"\ "other_spec={},email={},date={}".format(self.login, self.password, self.name, self.surname, self.nvl, self.other_spec, self.email, self.date) # class that defines the Badword table in the database, it follows the sqlalchemy guidelines class Badwords(Base): """[define Badwords table on database] """ __tablename__ = 'badwords' __table_args__ = {'schema': "db_user_schema"} id = Column(Integer, primary_key=True) badword = Column(String) def __repr__(self): return "badword={}".format(self.badword) # class that defines the main db in the server, it follows the sqlalchemy guidelines class Patient(Base): """[define Patient table on database] """ __tablename__ = 'patients_table' __table_args__ = {'schema': "db_sampat_schema"} id = Column(Integer, primary_key=True, unique=True) # old_id = Column("barcode", Integer, unique=False) samples = relationship("Samples", backref='sample_owner') particular = Column(Boolean, default=False, unique=False, nullable=False) first_name = Column(String, default=None) second_name = Column(String, default=None) surname = Column(String, default=None) rn = Column(Boolean, default=False, unique=False) nt = Column(Boolean, default=False, unique=False) rg = Column(String, default=None) registry = Column(String, default=None) birth_date = Column(Date, default=None) register_date = Column(Date, default=None) pat_origin = Column(String, default=None) doctor = Column(String, default=None) parent_type = Column(String, default=None) parent = Column(String, default=None) lib = Column(Boolean, default=False, unique=False, nullable=False) diag_hipt = Column(String, default=None) term = Column(Boolean, default=False, unique=False, nullable=False) gen = Column(String, default=None) karyotype = Column(String, default=None) obs = Column(String, default=None) updated = Column(DateTime, default=datetime.datetime.now()) def __repr__(self): return rep_gen(self) class Samples(Base): """[define Samples table on database] """ __tablename__ = 'samples_table' __table_args__ = {'schema': "db_sampat_schema"} id = Column(Integer, primary_key=True) # old_id = Column(Integer, unique=False) sample_group = Column(String, default=None) samp_serial = Column(Integer, default=None, unique=True) patient_id = Column(Integer, ForeignKey('db_sampat_schema.patients_table.id'), nullable=False) exams = relationship('Exams', backref='master_sample') sample_orign = Column(String, default=None) cap_color = Column(String, default=None) material_type = Column(String, default=None) material_details = Column(String, default=None) material_quantity = Column(Float, default=None) main_tube = Column(Boolean, default=False, unique=False, nullable=False) aliquot = Column(Boolean, default=False, unique=False, nullable=False) aliquot_id = Column(Integer, default=None, nullable=True) extracted = Column(Boolean, default=False, unique=False, nullable=False) processed = Column(Boolean, default=False, unique=False, nullable=False) arquived = Column(Boolean, default=False, unique=False, nullable=False) arquiv_date = Column(Date, default=None, nullable=True) arq_position = Column(String, default=None) sample_register_date = Column(Date, default=None) sample_extraction_date = Column(Date, default=None) sample_process_date = Column(Date, default=None) sample_aliquot_date = Column(Date, default=None) sample_dna_concentration = Column(Float, default=None) sample_dna_quality = Column(Float, default=None) recall = Column(Boolean, default=False, nullable=False) recall_date = Column(Date, default=None, nullable=True) recall_sample_id = Column(Integer, default=None, nullable=True) recall_register_date = Column(Date, default=None, nullable=True) lib_date = Column(Date, default=None) lib = Column(Boolean, default=False, unique=False, nullable=False) obs = Column(String, default=None) updated = Column(DateTime, default=datetime.datetime.now()) def __repr__(self): return rep_gen(self) class Exams(Base): """[define Exams table on database] """ __tablename__ = 'exams_table' __table_args__ = {'schema': "db_sampat_schema"} id = Column(Integer, primary_key=True) sample_id = Column(Integer, ForeignKey('db_sampat_schema.samples_table.id'), nullable=False) exam_serial = Column(Integer, default=None, unique=True) sample_exam = Column(String, default=None) run_number = Column(Integer, default=None) seq_number = Column(Integer, default=None) run_letter = Column(String, default=None, unique=False) kit = Column(String, default=None) kit_lot = Column(String, default=None) platform = Column(String, default=None) results = Column(String, default=None) lib_date = Column(Date, default=None) lib = Column(Boolean, default=False, unique=False, nullable=False) obs = Column(String, default=None) updated = Column(DateTime, default=datetime.datetime.now()) def __repr__(self): return rep_gen(self) # a plain function that initialize the SQL class and outputs the instance and session def str_to_table(schema, table): """[transform string table into class object table] Args: schema ([string]): [schema name] table ([string]): [table name] Returns: [object]: [table object] """ '''# for item in Base._decl_class_registry.values(): # if hasattr(item, '__table__') and item.__table__.fullname == "{}.{}".format(schema, table): return item''' for item in Base.registry.mappers: if item.class_.__tablename__ == table.lower(): return item.class_ def str_to_column(table, column): """[transform string column into class object table.column] Args: table ([string]): [table name] column ([string]): [column name] Returns: [object]: [column object] """ return getattr(table, column) def sql_init(login, upw, hn, db): psql = SQL(login, upw, hn, db) try: engine = psql.set_engine() except TimeoutError as TE_ERROR: return TE_ERROR finally: sess = psql.set_session(engine) return psql, sess def rep_gen(ncls): """[method to generate how the table classes generate its __repr__ method] Args: ncls ([list]): [class keys] Raises: NameError: [In case the class doesn't exist] Returns: [string]: [__repr__ string] """ try: if type(ncls) == str: _cls = eval(ncls) else: _cls = ncls except: raise NameError("Class not found") cl_keys = [key for key in _cls.__dict__.keys() if not "_" in key] repr_str = "={},".join(cl_keys) + "={}" cls_attr = [getattr(_cls, key) for key in cl_keys] return repr_str.format(*cls_attr) ```
{ "source": "jgreener64/allopred", "score": 2 }
#### File: allopred/functions/nma_methods.py ```python import numpy as np from prody import * class GammaResidue(Gamma): """Return force constant for a particular pair of residues. Returns normal force constant apart from at the residues being tested for allosteric character. """ # see ProDy documentation for template def __init__(self, atoms, res_nos, frac_change, gamma=1): rnum = atoms.getResindices() # residue indices self._rnum = rnum self._res_nos = res_nos self._frac_change = float(frac_change) self._gamma = float(gamma) def gamma(self, dist2, i, j): rnum = self._rnum res_nos = self._res_nos gamma = self._gamma # if residue number is one of the input residues returns the modified force constant if rnum[i] in res_nos or rnum[j] in res_nos: return gamma * self._frac_change # otherwise return the normal force constant else: return gamma def quantify_difference(anm_active, anm_mod_active, no_modes): """Compares standard to perturbed normal modes at the active site residues and returns a single perturbation value.""" evals = anm_active.getEigvals()[:no_modes] # average magnitude difference for each normal mode mags_overall = [] # iterate over low-frequency modes for mode_no in range(no_modes): # get mode and modified mode mode = anm_active[mode_no].getEigvec() mode_mod = anm_mod_active[mode_no].getEigvec() # sometimes the modified mode is reversed, so also compare the mode with the reversed modified mode mode_mod_alt = -anm_mod_active[mode_no].getEigvec() # add the minimum of the differences av_mags = vector_difference(mode, mode_mod) av_mags_alt = vector_difference(mode, mode_mod_alt) # add the minimum of the differences, which will correspond to the correct orientation site_av = min(av_mags, av_mags_alt) mags_overall.append(site_av) av = weight_by_eval(evals, mags_overall) return av def vector_difference(mode1, mode2): """Returns average magnitude of vector difference between two eigenvectors.""" mags = [] # iterate over each atom for atom_index in range(0,len(mode1),3): # get normal and perturbed vectors vec1 = mode1[atom_index:atom_index+3] vec2 = mode2[atom_index:atom_index+3] # calculate magnitude of vector linking vectors diff = vec1 - vec2 mag = np.sqrt(diff.dot(diff)) mags.append(mag) return np.average(mags) def weight_by_eval(evals, diffs): """Returns the average perturbation across the normal modes weighted by eigenvalue.""" weightings = 1 / np.sqrt(evals) sum_weightings = sum(weightings) mags_weighted = weightings*diffs weighted_av = sum(mags_weighted) / sum_weightings return weighted_av ```
{ "source": "jgreer013/pymcc", "score": 2 }
#### File: jgreer013/pymcc/play.py ```python import pyxinput import torch import numpy as np import time import datetime import utils import neural_net from neural_net import Net import torchvision.models as models import torch.nn as nn from torchvision import transforms PATH = "WGANGP_withPrevAction_NEW_was_mse_30_sgd_16_0_01_e50.pt" class XController(pyxinput.vController): leftJoyX = 'AxisLx' leftJoyY = 'AxisLy' rightJoyX = 'AxisRx' rightJoyY = 'AxisRy' leftTrigger = 'TriggerL' rightTrigger = 'TriggerR' leftBumper = 'BtnShoulderL' rightBumper = 'BtnShoulderR' a = 'BtnA' x = 'BtnX' y = 'BtnY' b = 'BtnB' leftThumb = 'BtnThumbL' rightThumb = 'BtnThumbR' back = 'BtnBack' start = 'BtnStart' dpad = 'Dpad' current_state = np.random.rand(20) * 2 - 1 def get_controller_state(self): return self.current_state def update_controller_state(self, input_vector): self.current_state = input_vector self.set_value(self.leftJoyX, input_vector[0]) self.set_value(self.leftJoyY, input_vector[1]) self.set_value(self.rightJoyX, input_vector[2]) self.set_value(self.rightJoyY, input_vector[3]) self.set_value(self.leftTrigger, input_vector[4]) self.set_value(self.rightTrigger, input_vector[5]) self.set_value(self.leftBumper, int(input_vector[6])) self.set_value(self.rightBumper, int(input_vector[7])) self.set_value(self.a, int(input_vector[8])) self.set_value(self.x, int(input_vector[9])) self.set_value(self.y, int(input_vector[10])) self.set_value(self.b, int(input_vector[11])) self.set_value(self.leftThumb, int(input_vector[12])) self.set_value(self.rightThumb, int(input_vector[13])) #self.set_value(self.back, int(input_vector[14])) #self.set_value(self.start, int(input_vector[15])) dpad = input_vector[16:] if dpad[0] == 1: self.set_value(self.dpad, self.DPAD_LEFT) elif dpad[1] == 1: self.set_value(self.dpad, self.DPAD_RIGHT) elif dpad[2] == 1: self.set_value(self.dpad, self.DPAD_UP) elif dpad[3] == 1: self.set_value(self.dpad, self.DPAD_DOWN) else: self.set_value(self.dpad, self.DPAD_OFF) class ReadController(pyxinput.rController): test = "test" def init_network(): #net = Net() #net = neural_net.StickNet() net = neural_net.GeneratorWithAction() gpu = None if torch.cuda.is_available(): gpu = torch.device("cuda:0") net.load(PATH, gpu=gpu) return net def get_frame_as_tensor(): sct_img = utils.get_frame() sct_img.resize((960, 540)) np_img = np.asarray(sct_img) np_img = np.require(np_img, dtype='f4', requirements=['O', 'W']) np_img.setflags(write=True) image_tensor = torch.from_numpy(np_img) image_tensor = image_tensor.permute(2, 0, 1) image_tensor = image_tensor / 255.0 #normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) #image_tensor = normalize(image_tensor) image_tensor = image_tensor.unsqueeze(0) return image_tensor def get_current_controller_state_as_tensor(controller): current_controller_state = torch.from_numpy(controller.get_controller_state()) current_controller_state = current_controller_state.unsqueeze(0).float() return current_controller_state def fix_action(action): action[4:] = (action[4:] + 1) / 2.0 action[4:] = np.clip(action[4:], 0, 1) action[4:] = np.rint(action[4:]) return action if __name__ == "__main__": controller = XController() r_controller = ReadController(2) net = init_network() net.eval() cpu = torch.device('cpu') gpu = torch.device('cuda:0') print("Plugging in controller in 5 seconds") time.sleep(5) print("Plugging in controller") controller.PlugIn() print("Begin playing in 5 seconds (have to give time for controller to be plugged in and to allow you to bring focus to main window") time.sleep(5) while True: try: input_img = get_frame_as_tensor() input_img = input_img.to(gpu) current_controller_state = get_current_controller_state_as_tensor(controller) current_controller_state = current_controller_state.to(gpu) #stick_l_lr, stick_l_ud, stick_r_lr, stick_r_ud, buttons, stick_l_lr_probs, stick_l_ud_probs, stick_r_lr_probs, stick_r_ud_probs, buttons_probs = net(input_img) #sticks, buttons, button_probs = net(input_img, current_controller_state) #sticks, button_probs = net(input_img, current_controller_state) action = net(input_img, current_controller_state) #action = net(input_img) action = action.to(cpu).detach().numpy()[0] #sticks, buttons = torch.split(action, [4, 16], dim=1) #buttons = button_probs.to(cpu).detach().numpy()[0] #sticks = sticks.to(cpu).detach().numpy()[0] #action = np.concatenate((sticks, buttons)) #sticks, buttons = net(input_img) #action = torch.cat((sticks, buttons), 1).to(cpu).detach().numpy()[0] action = fix_action(action) #print(buttons) print(action) controller.update_controller_state(action) except KeyboardInterrupt: break print("UnPlugging controller") controller.UnPlug() ```
{ "source": "jgreer013/re-qomp", "score": 3 }
#### File: jgreer013/re-qomp/main.py ```python import sys import file_parse as fp import story_importance as si import distance_metric as dm import read_answer_set as ras import tensor_functionality as tenf usage = """Usage: python main.py <userStoryFileName.txt> <filterWord> <resultsFileName> <userStoryFileName.txt> is the name of the user story file to be read. <filterWord> is the word used to show user stories pertinent to that word. <resultsFileName> is the name of the result file.""" def main(): fName = "" filterWord = "" #print "Reading Answer Set Files" answer_set = ras.getAnswerSet("AnswerSetMetadata.txt") answer_set.extend(ras.getAnswerSet("AnswerSetWorkgroup.txt")) #print "Reading Input Files" # Attempt to read argument try: fName = sys.argv[1] except: print("Error: No filename given") print(usage) return try: filterWord = sys.argv[2] except: filterWord = "" userStories = fp.parseFile(fName) userStories = si.getRelevantStories(userStories, filterWord) orderedStories = [] for story in sorted(userStories.keys()): orderedStories.append(userStories[story]) #print "Generating TFIDF Vectors" tf_mat = dm.getTFIDFVectors(orderedStories) dist_mat = dm.getDistanceMatrix(tf_mat) #print "Generating Training Sets" training_set = ras.generateTrainingSets(userStories, tf_mat, answer_set) test_set = ras.generateTrainingSets(userStories, tf_mat, answer_set) #print "Training Sets Generated: " + str(len(training_set)) #final_predictions = tenf.trainTF(training_set, training_set) threshold = 0.9 # Print out vals for i in xrange(len(test_set)): a = i / (len(orderedStories)-1) b = i % (len(orderedStories)-1) if (b >= a): b = b + 1 val = test_set[i][2] if (val[1] == 1 and b > a): print str(a+1) + "," + str(b+1) # Rebuild results from one dimensional array """ for i in xrange(len(orderedStories)): for j in xrange(len(orderedStories)): count = i*46+j-1 if (i != j): print str(i) + ' ' + str(j) + ' ' + str(count)""" if __name__ == "__main__": main() ```
{ "source": "jgregoriods/quaesit", "score": 3 }
#### File: quaesit/quaesit/agent.py ```python import inspect from math import hypot, sin, asin, cos, radians, degrees from abc import ABCMeta, abstractmethod from random import randint, choice from typing import Dict, List, Tuple, Union class Agent(metaclass=ABCMeta): """ Class to represent an agent in an agent-based model. """ _id = 0 colors = ['blue', 'brown', 'cyan', 'gray', 'green', 'magenta', 'orange', 'pink', 'purple', 'red', 'yellow'] def __init__(self, world, coords: Tuple = None): self._id = Agent._id Agent._id += 1 self.world = world self.coords = coords or (randint(0, self.world.width - 1), randint(0, self.world.height - 1)) self.direction = 90 self.breed = self.__class__.__name__.lower() self.icon = '.' self.color = choice(self.colors) self.world.add_agent(self) def die(self): """ Remove the agent from the world. """ del self.world.agents[self._id] self.world.grid[self.coords]['agents'].remove(self) del self def hatch(self): """ Creates an agent and initializes it with the same parameters as oneself. """ sig = inspect.signature(self.__init__) filter_keys = [param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD] filtered_dict = {filter_key: self.__dict__[filter_key] for filter_key in filter_keys} return self.__class__(**filtered_dict) def move_to(self, coords: Tuple): """ Places the agent in a different cell of the world grid. """ self.world.remove_from_grid(self) self.coords = coords self.world.place_on_grid(self) def cell_here(self, layer = None): """ Returns the value of a layer in the model's grid for the cell where the agent is. If no layer is specified, the values of all layers are returned. """ if layer is not None: return self.world.grid[self.coords][layer] else: return self.world.grid[self.coords] def get_distance(self, coords: Tuple) -> int: """ Returns the distance (in cells) from the agent to a pair of coordinates. """ x, y = coords return round(hypot((x - self.coords[0]), (y - self.coords[1]))) def cells_in_radius(self, radius: int) -> Dict: """ Returns all cells and respective attributes within a distance of the agent. """ if self.world.torus: neighborhood = {self.world.to_torus((x, y)): self.world.grid[self.world.to_torus((x, y))] for x in range(self.coords[0] - radius, self.coords[0] + radius + 1) for y in range(self.coords[1] - radius, self.coords[1] + radius + 1) if self.get_distance((x, y)) <= radius} else: neighborhood = {(x, y): self.world.grid[(x, y)] for x in range(self.coords[0] - radius, self.coords[0] + radius + 1) for y in range(self.coords[1] - radius, self.coords[1] + radius + 1) if (self.get_distance((x, y)) <= radius and (x, y) in self.world.grid)} return neighborhood def empty_cells_in_radius(self, radius: int) -> Dict: """ Returns all empty cells (with no agents on them) and respective attributes within a distance of the agent. """ if self.world.torus: neighborhood = {self.world.to_torus((x, y)): self.world.grid[self.world.to_torus((x, y))] for x in range(self.coords[0] - radius, self.coords[0] + radius + 1) for y in range(self.coords[1] - radius, self.coords[1] + radius + 1) if (self.get_distance((x, y)) <= radius and not self.world.grid[self.world.to_torus((x, y))] ['agents'])} else: neighborhood = {(x, y): self.world.grid[(x, y)] for x in range(self.coords[0] - radius, self.coords[0] + radius + 1) for y in range(self.coords[1] - radius, self.coords[1] + radius + 1) if (self.get_distance((x, y)) <= radius and (x, y) in self.world.grid and not self.world.grid[(x, y)]['agents'])} return neighborhood def nearest_cell(self, cells: Union[List, Dict]) -> Tuple: """ Given a list or dictionary of cells, returns the coordinates of the cell that is nearest to the agent. """ dists = {cell: self.get_distance(cell) for cell in cells} return min(dists, key=dists.get) def agents_in_radius(self, radius: int): """ Returns all agents within a distance of oneself. """ neighborhood = self.cells_in_radius(radius) neighbors = [agent for coords in neighborhood for agent in self.world.grid[coords]['agents'] if agent is not self] return neighbors def agents_here(self) -> List: """ Returns all agents located on the same cell as oneself. """ return [agent for agent in self.world.grid[self.coords]['agents'] if agent is not self] def nearest_agent(self, agents: List = None): """ Given a list of agents, returns the agent that is nearest to oneself. If no list is provided, all agents are evaluated. """ if agents is None: agents = [self.world.agents[_id] for _id in self.world.agents] dists = {agent: self.get_distance(agent.coords) for agent in agents if agent is not self} return min(dists, key=dists.get) def turn_right(self, angle: int = 90): """ Rotates the agent's direction a number of degrees to the right. """ self.direction = round((self.direction - angle) % 360) def turn_left(self, angle: int = 90): """ Rotates the agent's direction a number of degrees to the left. """ self.direction = round((self.direction + angle) % 360) def forward(self, n_steps: int = 1): """ Moves the agent a number of cells forward in the direction it is currently facing. """ x = round(self.coords[0] + cos(radians(self.direction)) * n_steps) y = round(self.coords[1] + sin(radians(self.direction)) * n_steps) if self.world.torus: self.move_to(self.world.to_torus((x, y))) elif (x, y) in self.world.grid: self.move_to((x, y)) def face_towards(self, coords: Tuple): """ Turns the agent's direction towards a given pair of coordinates. """ if coords != self.coords: xdif = coords[0] - self.coords[0] ydif = coords[1] - self.coords[1] dist = hypot(xdif, ydif) angle = degrees(asin(ydif / dist)) if xdif < 0: self.direction = round(180 - angle) else: self.direction = round((360 + angle) % 360) def random_walk(self, n_steps: int = 1): """ Moves the agent one cell forward in a random direction for a number of times. """ for i in range(n_steps): self.turn_right(randint(0, 360)) self.forward() @abstractmethod def step(self): """ Methods to be performed by the agent at each step of the simulation. """ raise NotImplementedError ``` #### File: quaesit/quaesit/world.py ```python import numpy as np import rasterio as rio from abc import ABCMeta, abstractmethod from random import shuffle, randint, choice from scipy.interpolate import interp2d from statistics import mean from tqdm import tqdm from typing import Dict, Tuple class World(metaclass=ABCMeta): """ Class to represent the environment or world in an agent-based model. """ def __init__(self, width: int, height: int, tracking: Dict = None, torus: bool = True): self.width = width self.height = height self.grid = self.init_grid() self.torus = torus self.agents = {} self.tick = 0 self.display_layer = None self.tracking = tracking self.globals = {} if self.tracking: self.track = {agent: {param: [] for param in tracking[agent]} for agent in tracking} def init_grid(self) -> Dict: """ Creates the world grid with a layer to keep track of agents in each cell. """ grid = {} for i in range(self.width): for j in range(self.height): grid[(i, j)] = {'agents': []} return grid def add_layer(self, layer_name: str, file: str = None, array=None, value: int = 0, display: bool = False): """ Adds a new layer to the grid. Layer can be initialized with a given value or can be generated from a raster file or from a numpy array. In the latter cases, the layer is resampled to the world's dimensions. """ if file is not None: with rio.open(file) as layer: array = layer.read(1) self.interp_to_grid(array, layer_name) elif array is not None: self.interp_to_grid(array, layer_name) else: for cell in self.grid: self.grid[cell][layer_name] = value if display: self.display_layer = layer_name def interp_to_grid(self, array, layer_name): """ Bilinear interpolation of an array to the world's dimensions. """ height, width = array.shape xrange = lambda x: np.linspace(0, 1, x) f = interp2d(xrange(width), xrange(height), array, kind='linear') new_arr = f(xrange(self.width), xrange(self.height)) for i in range(self.width): for j in range(self.height): self.grid[(i, j)][layer_name] = new_arr[self.height - 1 - j, i] def to_torus(self, coords: Tuple) -> Tuple: """ In case world is toroidal, converts coordinates that exceed its limits back to the grid. """ x, y = coords return (x % self.width, y % self.height) def add_agent(self, agent): """ Adds a newly-created agent to the dictionary of agents and to the grid. """ self.agents[agent._id] = agent self.place_on_grid(agent) def remove_from_grid(self, agent): """ Removes an agent from the grid. """ self.grid[agent.coords]['agents'].remove(agent) def place_on_grid(self, agent): """ Places an agent on the grid's layer that keeps track of where agents are. """ self.grid[agent.coords]['agents'].append(agent) def random_cell(self): """ Returns the coordinates of a random grid cell. """ return (randint(0, self.width - 1), randint(0, self.height - 1)) def random_empty_cell(self): """ Returns the coordinates of a random grid cell with no agents on it. """ empty_cells = [cell for cell in self.grid if not self.grid[cell]['agents']] return choice(empty_cells) def save(self): """ Stores the variables to be tracked at each step of the model. """ for agent in self.tracking: if agent == 'global': for param in self.tracking[agent]: self.track['global'][param].append( self.globals[param]) elif agent[:5] == 'grid_': layer = np.reshape([self.grid[(i, j)][agent[5:]] for j in range(self.height) for i in range(self.width)], (self.height, self.width)) for param in self.tracking[agent]: if param[:6] == 'count_': val = param[6:] if val.isdigit(): val = int(val) self.track[agent][param].append( np.count_nonzero(layer == val)) elif param == 'avg': self.track[agent][param].append( np.average(layer)) elif param == 'sum': self.track[agent][param].append( np.sum(layer)) elif param == 'min': self.track[agent][param].append( np.min(layer)) elif param == 'max': self.track[agent][param].append( np.max(layer)) else: for param in self.tracking[agent]: if param == 'count': self.track[agent][param].append( len([self.agents[_id] for _id in self.agents if self.agents[_id].breed == agent])) elif param[:4] == 'avg_': self.track[agent][param].append( mean([getattr(self.agents[_id], param[4:]) for _id in self.agents if self.agents[_id].breed == agent] or [0])) elif param[:4] == 'sum_': self.track[agent][param].append( sum([getattr(self.agents[_id], param[4:]) for _id in self.agents if self.agents[_id].breed == agent])) elif param[:4] == 'min_': self.track[agent][param].append( min([getattr(self.agents[_id], param[4:]) for _id in self.agents if self.agents[_id].breed == agent] or [0])) elif param[:4] == 'max_': self.track[agent][param].append( max([getattr(self.agents[_id], param[4:]) for _id in self.agents if self.agents[_id].breed == agent] or [0])) @abstractmethod def setup(self): """ Actions to be executed to prepare the model before it starts to run. """ raise NotImplementedError def step(self): """ At each step of the model, each agent performs the actions defined in their own step method. Agents' actions are not parallel, but the order of the agents is shuffled at every step of the model. If keeping track of variables, they are saved at every step. """ agent_ids = list(self.agents.keys()) shuffle(agent_ids) for _id in agent_ids: if _id in self.agents: self.agents[_id].step() if self.tracking: self.save() self.tick += 1 def iterate(self, n_steps: int): """ Runs the model for a number of steps. """ for i in tqdm(range(n_steps)): self.step() ```
{ "source": "jgrembi/nL-qPCR_PathogenChip", "score": 3 }
#### File: nL-qPCR_PathogenChip/nlpr/pcr_tools.py ```python primer3_path = '/usr/bin/' #/usr/bin/primer3_core fuzznuc_path = '/usr/bin/' def hello_pcr_tools(): print "## \nYou are using a version pcr_tools.py last updated on Sept 20, 2012 \n##" def file_to_list(sys_index = 1,line_index = 0): L = list() import sys fn = sys.argv[sys_index] fh = open(fn , 'r') for line in fh: L.append(line.strip().split()[line_index]) return L def generate_seq_dictionary(x): # arg: a <filename.fna> # returns: a dictionary <record_dict> # USE ME IF YOU WANT TO GENERATE A DICTIONARY OF SEQUENCE # example: master_dictionary = generate_seq_dictionary(sys.argv[1]) from Bio import SeqIO fh = open(x, "rU") record_dict = SeqIO.to_dict(SeqIO.parse(fh, "fasta")) fh.close() print "## \nYou generated a sequence dictionary with %i entries \n##"%(len(record_dict.keys())) return record_dict def write_subfasta(L,D,filename): # args: # (1) a List of the accession you want to create # (2) Dictionary to search # (3) filename to write output file # returns # write the output file # USE ME WITH THE ABOVE generate_seq_dictionary TO MAKE A SUB FASTA FILE FROM THE MASTER DICTIONARY # example: # master_dictionary = generate_seq_dictionary(sys.argv[1]) # write_subfasta(list_of_accessions, master_dictionary, 'output.fna') fh = open(filename, "w") for l in L: #print "> %s \n%s\n" %(D[l].id,str(D[l].seq)) try: fh.write("> %s \n%s\n" %(D[l].id,str(D[l].seq))) except KeyError: continue fh.close() print "## \nYou wrote a subfasta with with %i sequence(s)\n##"%(len(L)) def write_full_subfasta(L,D,filename): # args: # (1) a List of the accession you want to create # (2) Dictionary to search # (3) filename to write output file # returns # write the output file # USE ME WITH THE ABOVE generate_seq_dictionary TO MAKE A SUB FASTA FILE FROM THE MASTER DICTIONARY # example: # master_dictionary = generate_seq_dictionary(sys.argv[1]) # write_subfasta(list_of_accessions, master_dictionary, 'output.fna') fh = open(filename, "w") for l in L: #print "> %s \n%s\n" %(D[l].id,str(D[l].seq)) try: fh.write(">%s \n%s\n" %(D[l].description,str(D[l].seq))) except KeyError: continue fh.close() print "## \nYou wrote a subfasta with with %i sequence(s)\n##"%(len(L)) def fna_to_pr3_input(In, Out): # For now the parameters are hardcoded, but this takes a fasta file and outputs .pr3in file import sys from Bio import SeqIO file_handle = open(In, 'r') output_handle = open(Out, "w") #This block writes the parameters to be use by primer3. Version 1.4 output_handle.write("PRIMER_NUM_RETURN=500\n") output_handle.write("PRIMER_MIN_TM=54\n") output_handle.write("PRIMER_OPT_TM=55\n") output_handle.write("PRIMER_MAX_TM=56\n") #output_handle.write("PRIMER_OPT_SIZE=17\n") output_handle.write("PRIMER_MIN_SIZE=15\n") output_handle.write("PRIMER_MAX_SIZE=26\n") output_handle.write("PRIMER_NUM_NS_ACCEPTED=1\n") output_handle.write("PRIMER_PRODUCT_SIZE_RANGE=75-200\n") output_handle.write("PRIMER_GC_CLAMP=0\n") output_handle.write("PRIMER_FILE_FLAG=1\n") output_handle.write("PRIMER_EXPLAIN_FLAG=1\n") #This block writes the sequences in sys.argv[1] to the primer3input file counter = 0 for seq_record in SeqIO.parse(file_handle, 'fasta'): output_handle.write("PRIMER_SEQUENCE_ID=" + str(seq_record.id) +"\n") output_handle.write("SEQUENCE=" + str(seq_record.seq) + "\n") output_handle.write("="+ "\n") counter = counter + 1 print "## \nYou generated a primer3 input file with %i sequence(s)\n##"%(counter) def fna_to_pr3_v2_3_4_input(In, Out, number_of_primers_to_generate): # For now the parameters are hardcoded, but this takes a fasta file and outputs .pr3in file import sys from Bio import SeqIO file_handle = open(In, 'r') output_handle = open(Out, "w") #This block writes the parameters to be use by primer3. Version 1.4 output_handle.write("PRIMER_NUM_RETURN=%i\n"%(number_of_primers_to_generate)) output_handle.write("PRIMER_MIN_TM=59\n") output_handle.write("PRIMER_OPT_TM=60\n") output_handle.write("PRIMER_MAX_TM=61\n") output_handle.write("PRIMER_MIN_SIZE=15\n") output_handle.write("PRIMER_MAX_SIZE=28\n") output_handle.write("PRIMER_NUM_NS_ACCEPTED=1\n") output_handle.write("PRIMER_PRODUCT_SIZE_RANGE=45-200\n") # CHANGED FOR tRNA study Feb 10, 2014 output_handle.write("PRIMER_GC_CLAMP=0\n") output_handle.write("PRIMER_FILE_FLAG=1\n") output_handle.write("PRIMER_EXPLAIN_FLAG=1\n") output_handle.write('PRIMER_TM_FORMULA=1\n') output_handle.write('PRIMER_SALT_CORRECTIONS=1\n') output_handle.write('PRIMER_THERMODYNAMIC_ALIGNMENT=1\n') output_handle.write('PRIMER_SALT_DIVALENT=3\n') output_handle.write('PRIMER_DNTP_CONC=0.6\n') output_handle.write('PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS=0\n') #output_handle.write('PRIMER_THERMODYNAMIC_PARAMETERS_PATH=' + primer3_path + 'primer3_config/\n') # output_handle.write('PRIMER_THERMODYNAMIC_PARAMETERS_PATH=/Users/koshlan/primer3-2.3.4/src/primer3_config/\n') #!UPDATE ME!# #output_handle.write('PRIMER_THERMODYNAMIC_PARAMETERS_PATH=/Users/JGrembi/primer3-2.3.4/src/primer3_config/\n') #This block writes the sequences in sys.argv[1] to the primer3input file counter = 0 for seq_record in SeqIO.parse(file_handle, 'fasta'): output_handle.write("SEQUENCE_ID=" + str(seq_record.id) +"\n") output_handle.write("SEQUENCE_TEMPLATE=" + str(seq_record.seq) + "\n") output_handle.write("="+ "\n") counter = counter + 1 print "## \nYou generated a primer3v2.3.4 input file with %i sequence(s)\n##"%(counter) def write_check_p3(p1,p2,Out): oh = open(Out, 'w') oh.write("PRIMER_TASK=check_primers\n") oh.write("SEQUENCE_PRIMER=%s\n"%(p1)) oh.write("SEQUENCE_PRIMER_REVCOMP=%s\n"%(p2)) oh.write("PRIMER_MIN_TM=55\n") oh.write("PRIMER_MAX_TM=70\n") oh.write("PRIMER_FILE_FLAG=1\n") oh.write("PRIMER_EXPLAIN_FLAG=1\n") oh.write("PRIMER_TM_FORMULA=1\n") oh.write("PRIMER_SALT_CORRECTIONS=1\n") oh.write("PRIMER_THERMODYNAMIC_ALIGNMENT=1\n") oh.write("PRIMER_SALT_DIVALENT=3\n") oh.write("PRIMER_DNTP_CONC=0.6\n") oh.write("PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS=0\n") #oh.write("PRIMER_THERMODYNAMIC_PARAMETERS_PATH=" + primer3_path + "primer3_config/\n") # oh.write("PRIMER_THERMODYNAMIC_PARAMETERS_PATH=/Users/JGrembi/primer3-2.3.4/src/primer3_config/\n")#!UPDATE ME!# # oh.write("PRIMER_THERMODYNAMIC_PARAMETERS_PATH=/Users/koshlan/primer3-2.3.4/src/primer3_config/\n") oh.write("=\n") def pr3_modern(In, Out, pr3_path): import os os.system(pr3_path + "primer3_core <" + In + ">" + Out) def pr3(In, Out): import os os.system(primer3_path + "primer3_core <" + In + ">" + Out) #os.system("/Users/JGrembi/primer3-2.3.4/src/primer3_core <" + In + ">" + Out) # os.system("/Users/koshlan/primer3-2.3.4/src/primer3_core <" + In + ">" + Out) #!UPDATE ME!# # JULY 24, 2014 (I MADE THIS CHAGEN SO JESS COULD RUN ON HER MACHINE)#os.system("/Users/koshlan/primer3-2.3.4/src/primer3_core <" + In + ">" + Out) #os.system("primer3_core <" + In + ">" + Out) def parse_pr3out(In, Out): # This was used from January 15, call_primer3_v3.py should work fine primer3output = open(In, 'r') output_handle = open(Out, 'w') primers_dictionary = {} PRIMER_PAIR = '0' ####################################################### #### II.i if statements to give each sequence an ID ### ####################################################### for line in primer3output: # if the line starts with the sequence identifier (typically first line), we store that information as a variable if line.startswith("PRIMER_SEQUENCE_ID"): #define the parent sequence name as the second element after line is split it into 2 elements on either side of the "=" symbol and strip away the newline PRIMER_SEQUENCE_ID = line.split("=")[1].strip("\n") continue #as we parse each pair begins with a PRIMER_PAIR_PENALTY_ Designation # for the first case if line.startswith("PRIMER_PAIR_PENALTY") and line.split('=')[0] == "PRIMER_PAIR_PENALTY": PRIMER_PAIR = '0' PRIMER_PAIR_PENALTY = line.split('=')[1].strip('\n') continue if line.startswith("PRIMER_PAIR_PENALTY_"): # strip away the Primer_Pair_Penalty portion of the string leaving just the number which will be use to identify the pair try: PRIMER_PAIR = line.split("=")[0] PRIMER_PAIR = PRIMER_PAIR.split("PRIMER_PAIR_PENALTY_")[1] PRIMER_PAIR_PENALTY = line.split('=')[1].strip('\n') except IndexError: continue ####################################################### #### II.ii if statements to get sequence and make dictionary ####################################################### if "PRIMER_LEFT" in line and "SEQUENCE" in line: PRIMER_LEFT_SEQUENCE = line.split("=")[1].strip('\n') primers_dictionary[PRIMER_SEQUENCE_ID + "_" + PRIMER_PAIR] = [PRIMER_LEFT_SEQUENCE] if "PRIMER_RIGHT" in line and "SEQUENCE" in line: PRIMER_RIGHT_SEQUENCE = line.split("=")[1].strip('\n') primers_dictionary[PRIMER_SEQUENCE_ID + "_" + PRIMER_PAIR].append(PRIMER_RIGHT_SEQUENCE) ####################################################### #### II.iii if statements to parse Tm, primer_start_positions, and penalty_score and PRINT ####################################################### #SPECIAL if Statments for the first case of primer position if line.split("=")[0] == "PRIMER_LEFT": LEFT_START = line.split("=")[1].split(',')[0] if line.split("=")[0] == "PRIMER_RIGHT": RIGHT_START = line.split("=")[1].split(',')[0] #SPECIAL if Statments for 2nd through nth case for primer position if line.split('=')[0] == "PRIMER_LEFT_" + PRIMER_PAIR: LEFT_START = line.split("=")[1].split(',')[0] if line.split('=')[0] == "PRIMER_RIGHT_" + PRIMER_PAIR: RIGHT_START = line.split("=")[1].split(',')[0] #if Statments for 1st through nth case for TM if "PRIMER_LEFT" in line and 'TM' in line: LEFT_TM = line.split("=")[1].strip('\n') if "PRIMER_RIGHT" in line and 'TM' in line: RIGHT_TM = line.split("=")[1].strip('\n') if "PRIMER_PRODUCT_SIZE" in line and not("RANGE" in line): PRIMER_PRODUCT_SIZE = line.split("=")[1].strip('\n') ####################################################### #### II.iii PRINT and WRITE OUTPUT ####################################################### #print ">" + PRIMER_SEQUENCE_ID + "_" + PRIMER_PAIR + "\t"+ PRIMER_PAIR_PENALTY + "\t" + PRIMER_LEFT_SEQUENCE + "\t" + PRIMER_RIGHT_SEQUENCE +"\t"+ LEFT_TM + "\t" + RIGHT_TM + "\t" + LEFT_START + "\t" + RIGHT_START + "\t"+ PRIMER_PRODUCT_SIZE output_handle.write(">" + PRIMER_SEQUENCE_ID + "_" + PRIMER_PAIR + "\t"+ PRIMER_PAIR_PENALTY + "\t" + PRIMER_LEFT_SEQUENCE + "\t" + PRIMER_RIGHT_SEQUENCE +"\t"+ LEFT_TM + "\t" + RIGHT_TM + "\t" + LEFT_START + "\t" + RIGHT_START + "\t"+ PRIMER_PRODUCT_SIZE + "\n") def parse_pr3_v2_3_4_out(In, Out): # This was used from January 15, call_primer3_v3.py should work fine primer3output = open(In, 'r') output_handle = open(Out, 'w') primers_dictionary = {} PRIMER_PAIR = '0' ####################################################### #### II.i if statements to give each sequence an ID ### ####################################################### import re for line in primer3output: # if the line starts with the sequence identifier (typically first line), we store that information as a variable if line.startswith("SEQUENCE_ID"): #define the parent sequence name as the second element after line is split it into 2 elements on either side of the "=" symbol and strip away the newline PRIMER_SEQUENCE_ID = line.split("=")[1].strip("\n") continue if re.search('PRIMER_PAIR_([\d]+)_PENALTY', line): # SEARCH FOR "PRIMER_PAIR_1_PENALTY" matchObj = re.search('PRIMER_PAIR_([\d]+)_PENALTY', line) try: PRIMER_PAIR = matchObj.group(1) PRIMER_PAIR_PENALTY = line.split('=')[1].strip('\n') except IndexError: continue ####################################################### #### II.ii if statements to get sequence and make dictionary ####################################################### if re.search('PRIMER_LEFT_([\d]+)_SEQUENCE', line): PRIMER_LEFT_SEQUENCE = line.split("=")[1].strip('\n') continue if re.search('PRIMER_RIGHT_([\d]+)_SEQUENCE', line): PRIMER_RIGHT_SEQUENCE = line.split("=")[1].strip('\n') continue if re.search('PRIMER_LEFT_([\d]+)=', line): LEFT_START = line.split("=")[1].split(',')[0] continue if re.search('PRIMER_RIGHT_([\d]+)=', line): RIGHT_START = line.split("=")[1].split(',')[0] continue if re.search('PRIMER_LEFT_([\d]+)_TM', line): LEFT_TM = line.split("=")[1].strip('\n') continue if re.search('PRIMER_RIGHT_([\d]+)_TM', line): RIGHT_TM = line.split("=")[1].strip('\n') continue if re.search('PRIMER_PAIR_([\d]+)_PRODUCT_SIZE', line): PRIMER_PRODUCT_SIZE = line.split("=")[1].strip('\n') output_handle.write(">" + PRIMER_SEQUENCE_ID + "_" + PRIMER_PAIR + "\t"+ PRIMER_PAIR_PENALTY + "\t" + PRIMER_LEFT_SEQUENCE + "\t" + PRIMER_RIGHT_SEQUENCE +"\t"+ LEFT_TM + "\t" + RIGHT_TM + "\t" + LEFT_START + "\t" + RIGHT_START + "\t"+ PRIMER_PRODUCT_SIZE + "\n") continue def write_fuznuc_pattern(p1,p2, Out, mismatches = 4): #args: # p1 (string) first primer sequence # p2 (string) second primer sequence # mismatches (int) number of acceptable mismatches per primer (DEFAULT = 4) # Out (string) name of temporary file to write the pattern file # results: writes a temporary file # >pat1 <mismatch=4> # GTTAGTCCCTTGGTGGCT # >pat2 <mismatch=4> # CGGGTCTAAAGCCTTTTC fh = open(Out, 'w') fh.write(">pat1 <mismatch=%i>\n%s\n>pat2 <mismatch=%i>\n%s\n"%(mismatches,p1,mismatches,p2)) def execute_fuznuc(pattern_file,target_seqs, Out): # Args: # pattern_file (string): name of the temporary pattern file .pat # target (string): name of the sequences file .fna # Out (sting): name of the temporary output file #NOTE: ENSURE THE FOLLOWING IS INSTALLED in ~/EMBOSS-6.4.0/emboss/fuzznuc #NOTE: http://emboss.sourceforge.net/docs/themes/ReportFormats.html import os os.system(fuzznuc_path + 'fuzznuc %s %s -pattern @%s -complement Y -rformat excel'%(target_seqs, Out, pattern_file)) #os.system('~/EMBOSS-6.5.7/emboss/fuzznuc %s %s -pattern @%s -complement Y -rformat excel'%(target_seqs, Out, pattern_file)) #print "## \nFrom %s and %s You generated a fuznuc output file: %s\n##"%(target_seqs, pattern_file,Out) #EXAMPLE: #os.system('/Users/koshlan/EMBOSS-6.4.0/emboss/fuzznuc fuzzIn.fasta fuzzOut.pat -pattern @oligo_nucseq.pat -complement Y') def parse_fzout(In): # args: In (string) f # Returns Dictionary D[SeqName] { { 'AB301952.1': { 'negative': '1', 'positive': '0', 'total': 0}, fh = open(In, 'r') D={} for line in fh: # SKIP HEADER LINES if line.startswith("SeqName"): continue else: line = line.strip() L = line.split() (SeqName,Start,End,Score,Strand,Pattern_Seq,Mismatch) = line.split() Pattern = Pattern_Seq.split(':')[0] # KMB JAN 23, 2013, fixed the fact that pat:seq Seq = Pattern_Seq.split(':')[1] Mismatch = Mismatch.replace('.', '0') # Changed out the . for a zeor mismatch if SeqName not in D.keys(): D[SeqName] = dict() D[SeqName]['pat1'] = 99 D[SeqName]['pat2'] = 99 if Pattern == 'pat1': # KMB JAN 27, 2013 CHANGED to 'pat1:' to 'pat1' D[SeqName]['pat1'] = int(Mismatch) elif Pattern == "pat2": # KMB JAN 27, 2013 CHANGED to 'pat1:' to 'pat1' D[SeqName]['pat2'] = int(Mismatch) L = D.keys() for l in L: try: X = int(D[l]['pat1']) + int(D[l]['pat2']) except KeyError: D[l]['total'] = 99 else: D[l]['total'] = X #print "## \nThe function <parse_fzout> recieved %s, and returned a dictionary"%(In) # import pprint # pp = pprint.PrettyPrinter(indent=4) # pp.pprint(D) return D def hit_percentage_calc(L,D,acceptable_mismatches): hit_count = 0 for l in L: try: (l in D.keys()) & (D[l]['total'] < acceptable_mismatches) except KeyError: continue else: if (l in D.keys()) & (D[l]['total'] < acceptable_mismatches): hit_count = hit_count + 1 hit_percentage = round(float(hit_count)/float(len(L)), 3) # (1) return hit_percentage def hit_percentage_calc_plus_discovery(L,D,acceptable_mismatches): hit_count = 0 Lout = [] for l in L: try: (l in D.keys()) & (D[l]['total'] < acceptable_mismatches) except KeyError: continue else: if (l in D.keys()) & (D[l]['total'] < acceptable_mismatches): Lout.append(l) hit_count = hit_count + 1 hit_percentage = round(float(hit_count)/float(len(L)),3) # (1) #print hit_percentage #print Loutl #print L #print D return {'hit_percentage' : hit_percentage, 'hits': Lout} def hit_percentage_calc_plus_number_of_mismatch(L,D,acceptable_mismatches): hit_count = 0 Lout = [] Lout_mismatch = [] for l in L: try: (l in D.keys()) & (D[l]['total'] < acceptable_mismatches) except KeyError: continue else: if (l in D.keys()) & (D[l]['total'] < acceptable_mismatches): Lout.append(l) Lout_mismatch.append(D[l]['total']) hit_count = hit_count + 1 hit_percentage = round(float(hit_count)/float(len(L)),3) # (1) #print hit_percentage #print Loutl #print L #print D return {'hit_percentage' : hit_percentage, 'hits': Lout, 'number_mismatched': Lout_mismatch } def sort_single_capture_primers(In,Out,number_of_primers_to_review): # this finds the primers that best capture the whole cluster, return the 100 best. import os os.system("sort -k 10,10nr -k 2,2n %s > tempsort.txt" %(In)) # SORT COMMAND, SORT FIRST ON THE 10th column numerically, next sort on the 2nd colum os.system('head -%i tempsort.txt > %s' %(number_of_primers_to_review, Out)) # sort -t$'\t' -k 10,10nr -k 2,2n def sort_single_capture_primers_by_2_columns(In,Out,number_of_primers_to_review, column, column2): # this finds the primers that best capture the whole cluster, return the 100 best. import os os.system("sort -k %i,%inr -k %i,%inr -k 2,2n %s > tempsort.txt" %(column, column, column2, column2,In)) # SORT COMMAND, SORT FIRST ON THE 10th column numerically, next sort on the 2nd colum os.system('head -%i tempsort.txt > %s' %(number_of_primers_to_review, Out)) # sort -t$'\t' -k 10,10nr -k 2,2n def sort_by_priority_columns(In,Out,priority_column, second_priority_column, number_of_primers_to_review, direction): # this finds the primers that best capture the whole cluster, return the 100 best. import os priority_column = int(priority_column) second_priority_column = int(second_priority_column) if direction is 'F': os.system("sort -k %i,%in -k %i,%in %s > tempsort.txt" %(priority_column, priority_column, second_priority_column, second_priority_column, In)) # SORT COMMAND, SORT FIRST ON THE priority column numerically, next sort on the 2nd priority column os.system('head -%i tempsort.txt > %s' %(number_of_primers_to_review, Out)) elif direction is 'R': os.system("sort -k %i,%inr -k %i,%in %s > tempsort.txt" %(priority_column, priority_column, second_priority_column, second_priority_column, In)) # SORT COMMAND, SORT FIRST ON THE priority column numerically, next sort on the 2nd priority column os.system('head -%i tempsort.txt > %s' %(number_of_primers_to_review, Out)) # sort -t$'\t' -k 10,10nr -k 2,2n def sort_by_3_priority_columns(In,Out,priority_column, second_priority_column, third_priority_column, number_of_primers_to_review, direction): # this finds the primers that best capture the whole cluster, return the 100 best. import os priority_column = int(priority_column) second_priority_column = int(second_priority_column) third_priority_column = int(third_priority_column) if direction is 'F': os.system("sort -k %i,%in -k %i,%inr -k %i,%in %s > tempsort.txt" %(priority_column, priority_column, second_priority_column, second_priority_column,third_priority_column,third_priority_column, In)) # SORT COMMAND, SORT FIRST ON THE priority column numerically, next sort on the 2nd priority column os.system('head -%i tempsort.txt > %s' %(number_of_primers_to_review, Out)) elif direction is 'R': os.system("sort -k %i,%inr -k %i,%inr -k %i,%in %s > tempsort.txt" %(priority_column, priority_column, second_priority_column, second_priority_column,third_priority_column,third_priority_column, In)) # SORT COMMAND, SORT FIRST ON THE priority column numerically, next sort on the 2nd priority column os.system('head -%i tempsort.txt > %s' %(number_of_primers_to_review, Out)) # sort -t$'\t' -k 10,10nr -k 2,2n def sort_exclusion_table(In, Out): import os os.system("sort -k ") def probe_plotter(line, fn_blastout, count): # ARGS # A LINE FROM MY BLAST OUT (NOTE: COLUMN INDEX 12 and -1 MUST CONTAIN THE RELEVANT FIELDS) # fn - filename : FOR THE BLASTOUT PUT # DEPDENDS ON grab_sub_blastout and R_probe_plotter.R # RETURNS # EXECUTES R, WHICH WRITES A PDF SHOWNING THE PERFORMANCE OF THE ASSAY # RUN ME: probe_plotter(line, '../3_Run/PF13486_Full_Length350to700AA.ncbi.aa.gbk.faa.blastresult') # line = ">BAE84628.1_0 0.054721 GGCTATTATGCAGCGCCGTG CAGAACTCGCGTACCCCGAA 63.949 64.004 1062 1258 197 1.0 1.0 1.0 BAE84628.1|CAD28792.1 0.005 0.052 0.054 ACH87596.1|CAR57929.1|CAR57926.1|ACH87599.1|ACH87597.1|BAF57046.1|CAR57927.1|AAO60101.1|CAR57937.1|CAR57932.1|CAJ75430.1|CAJ75435.1|CAR57933.1|ACH87594.1|CAR57934.1|ACH87598.1|CAR57936.1|CAR57931.1|CAD28790.2|CAR57935.1|CAR57930.1" import os line = line.strip() primary_seq = line.split()[0] assay_id = primary_seq.replace(">","") assay_id = str(count) + "_" + assay_id # THIS ALLOWS COUNTING primary_seq = primary_seq.split("_")[0].replace(">","") inclusion_hit_list = line.split()[12].split("|") exclusion_hit_list = line.split()[16].split("|") from pcr_tools import grab_sub_blastout grab_sub_blastout(primary_seq, fn_blastout, 'BLASTout.temp') # Grab the sub-section of the blast that you need, next you will add a column with hits and non hits fh = open('BLASTout.temp', 'r') oh = open('BLASToutScored.temp', 'w') for line in fh: line = line.strip() subject = line.split()[1] if subject in inclusion_hit_list: oh.write(line + "\tI\n") elif subject in exclusion_hit_list: oh.write(line + "\tE\n") else: oh.write(line + "\tN\n") fh.close() oh.close() # CALL R path = os.getcwd() + "/" os.system("./R_probe_plotter.R %s %s %s"%(assay_id, path, 'BLASToutScored.temp')) def advanced_probe_plotter(full_line, fn_blastout, count): # ARGS # A LINE FROM MY BLAST OUT (NOTE: COLUMN INDEX 12 and -1 MUST CONTAIN THE RELEVANT FIELDS) # fn - filename : FOR THE BLASTOUT PUT # DEPDENDS ON grab_sub_blastout and R_complex_probe_plotter.R # RETURNS # EXECUTES R, WHICH WRITES A PDF SHOWNING THE PERFORMANCE OF THE ASSAY # RUN ME: import os full_line = full_line.strip() inclusion_hit_list = full_line.split()[10].split("|") thermo_penalty = full_line.split()[1] # This is the primer3 penalty inclusivity = full_line.split()[9] # This is the inclusivity of the desired sequences primary_seq = full_line.split()[0] # >BAE84628.1_0 original_seq = primary_seq.split("_")[0].replace(">","") assay_id = primary_seq.replace(">","") #BAE84628.1_0 assay_id = str(count) + "_" + assay_id # THIS ALLOWS COUNTING primary_seq = primary_seq.split("_")[0].replace(">","") #BAE84628.1 match_info = full_line.split()[9::2] match_hits = full_line.split()[10::2] exclusion_hits= match_hits[5:] from pcr_tools import list_partition non_redundant_hits = list_partition(exclusion_hits, "|", "No_Hits") my_dict = dict(enumerate(non_redundant_hits)) new_dict = {} # Contains the index position of every sequence (in this case 0 corresponds with zero mismatchs, 1 with (1,2 mismatchs), 2 (3,4 mismatches)) for k in my_dict.keys(): L = my_dict[k] for l in L: new_dict[l] = k # NOW WE GO THROUGH THE ACTUAL BLAST AND MARK EACH SEQUENCE WITH LOOKUPS. from pcr_tools import grab_sub_blastout grab_sub_blastout(primary_seq, fn_blastout, 'BLASTout.temp') # Grab the sub-section of the blast that you need, next you will add a column with hits and non hits fh = open('BLASTout.temp', 'r') oh = open('BLASToutScored.temp', 'w') for line in fh: line = line.strip() subject = line.split()[1] if subject in inclusion_hit_list: oh.write(line + "\tI" + "\tNA\n") continue else: oh.write(line + "\tE") if subject in new_dict.keys(): x = new_dict[subject] oh.write("\t%s\n" %(x)) else: oh.write("\tNA\n") fh.close() oh.close() path = os.getcwd() + "/" os.system("../scripts_used/R_complex_probe_plotter.r %s %s %s %s"%(assay_id, path, 'BLASToutScored.temp', original_seq)) def grab_sub_blastout(seq_id, fn_blastout, Out): import os os.system("grep -E '^%s' %s > %s" %(seq_id, fn_blastout, Out)) def list_partition(L, deliminator, empty): # THIS TAKES A LIST OF STRING WITH A DELIMINATOR BREAKS THEM OPEN AND PARTITIONS INTO A LIST OF LIST, WHERE EACH SUBSEQUENCE OBJECT HAS NO ENTRIES FROM THE PREVIOUS SET. THIS HAS PRACTICAL IMPLICATION WHEN TAKING OUR LIST OF HITS GIVEN INCREASING NUMBER OF ACCEPTABLE MISMATCHES. # TEST IT WITH: #mega = ["A|B|C","A|B|C|D","A|B|C|D|E","A|B|C|D|E|F"] #print list_partition(mega, "|", "No_Hits") # SHOULD GET : [['A', 'C', 'B'], ['D'], ['E'], ['F']] def no_hits_check(L, string): if string in L : return [ ] else: return L accumulated_set = set() output = [] while len(L) > 0: my_list = L.pop(0).split(deliminator) my_list = no_hits_check(my_list, empty) my_set = set(my_list) my_set = my_set - accumulated_set accumulated_set = accumulated_set | my_set output.append(list(my_set)) return output ``` #### File: nlpr/utils/nL_nr_assay_check.py ```python import sys fn = sys.argv[1] fh = open(fn, 'r') def plus_or_minus(x,h): L = [] for i in range(h): L.append(int(x-i)) L.append(int(x+i)) return list(set(L)) def lists_overlap3(a, b): return bool(set(a) & set(b)) forbidden_range_F = [] forbidden_range_R = [] forbidden_range_F2 = [] forbidden_range_R2= [] forbidden_range_F3 = [] forbidden_range_R3 = [] # Take the best hit line = fh.readline() line = line.strip() print line for line in fh: forbidden_range_F3 = list(forbidden_range_F2) forbidden_range_R3 = list(forbidden_range_R2) forbidden_range_F2 = list(forbidden_range_F) forbidden_range_R2 = list(forbidden_range_R) #print "#####" #print forbidden_range_F2 #print forbidden_range_F3 #print "#####" line = line.strip() start = int(line.split()[6]) end = int(line.split()[7]) forbidden_range_F.append(start) forbidden_range_R.append(end) test_F = plus_or_minus(int(start),4) test_R = plus_or_minus(int(end),4) if lists_overlap3(test_F, forbidden_range_F2) and lists_overlap3(test_R,forbidden_range_R2): pass else: print line fh.close() ```
{ "source": "jgrenadier/ui", "score": 2 }
#### File: jgrenadier/ui/main.py ```python import json import re import pandas as pd from sqlalchemy import create_engine import requests import param import parambokeh import holoviews as hv import geoviews as gv import datashader as ds import dask.dataframe as dd from cartopy import crs from bokeh.models import WMTSTileSource from holoviews.operation.datashader import datashade # Get renderer and set global display options hv.extension('bokeh') hv.opts("RGB [width=1200 height=682 xaxis=None yaxis=None show_grid=False]") hv.opts("Polygons (fill_color=None line_width=1.5) [apply_ranges=False tools=['tap']]") hv.opts("Points [apply_ranges=False] WMTS (alpha=0.5)") # Load census data df = dd.io.parquet.read_parquet('data/census.snappy.parq').persist() census_points = gv.Points(df, kdims=['easting', 'northing'], vdims=['race']) # Declare colormapping color_key = {'w': 'white', 'b': 'green', 'a': 'red', 'h': 'orange', 'o': 'saddlebrown'} races = {'w': 'White', 'b': 'Black', 'a': 'Asian', 'h': 'Hispanic', 'o': 'Other'} color_points = hv.NdOverlay({races[k]: gv.Points([0,0], crs=crs.PlateCarree())(style=dict(color=v)) for k, v in color_key.items()}) # Apply datashading to census data x_range, y_range = ((-13884029.0, -7453303.5), (2818291.5, 6335972.0)) # Continental USA shade_defaults = dict(x_range=x_range, y_range=y_range, x_sampling=10, y_sampling=10, width=1200, height=682, color_key=color_key, aggregator=ds.count_cat('race'),) shaded = datashade(census_points, **shade_defaults) shapefile = {'state_house': 'cb_2016_48_sldl_500k', 'state_senate': 'cb_2016_48_sldu_500k', 'us_house': 'cb_2015_us_cd114_5m'} # Define tile source tile_url = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{Z}/{Y}/{X}.jpg' tiles = gv.WMTS(WMTSTileSource(url=tile_url)) DIVISION_ID_RE = { 'state_house': re.compile(r'ocd-division/country:us/state:[a-z]{2}/sldl:([0-9]+)'), 'state_senate': re.compile(r'ocd-division/country:us/state:[a-z]{2}/sldu:([0-9]+)'), 'us_house': re.compile(r'ocd-division/country:us/state:[a-z]{2}/cd:([0-9]+)'), 'county': re.compile(r'ocd-division/country:us/state:[a-z]{2}/county:[^\/]+/council_district:([0-9]+)'), 'city_council': re.compile(r'ocd-division/country:us/state:[a-z]{2}/place:[^\/]+/council_district:([0-9]+)'), } # engine = create_engine('mysql+mysqlconnector://atxhackathon:atxhackathon@atxhackathon.chs2sgrlmnkn.us-east-1.rds.amazonaws.com:3306/atxhackathon', echo=False) # cnx = engine.raw_connection() # vtd_data = pd.read_sql('SELECT * FROM vtd2016preselection', cnx) def address_latlon_lookup(address, api_key): json_response = requests.get( 'https://maps.googleapis.com/maps/api/geocode/json?address={address}&key={api_key}'.format( address=address, api_key=api_key)) # TODO: error handling for not found addresses # result comes out looking like {"lat" : 30.2280933, "lng" : -97.8503729} location = json.loads(json_response)['results'][0]['geometry']['location'] return location['lat'], location['lng'] def address_district_lookup(address, district_type, api_key): json_response = requests.get( 'https://www.googleapis.com/civicinfo/v2/representatives?address={address}&key={api_key}'.format( address=address, api_key=api_key) ) # TODO: error handling for not found addresses divisions = json.loads(json_response)['divisions'] for key in divisions: match = DIVISION_ID_RE[district_type].match(key) if match: district = match.group(1) # TODO: error handling for no matching RE (maybe due to different state expression) return district def load_district_shapefile(district_type, **kwargs): district_type = '_'.join([part.lower() for part in district_type.split()]) shape_path = 'data/{0}/{0}.shp'.format(shapefile[district_type]) districts = gv.Shape.from_shapefile(shape_path, crs=crs.PlateCarree()) districts = gv.operation.project_shape(districts) districts = hv.Polygons([gv.util.geom_to_array(dist.data) for dist in districts]) # districts.opts(plot=dict(fill_color=None, line_width=1.5)) return districts class DistrictExplorer(hv.streams.Stream): district_type = param.ObjectSelector(objects=('US House', 'State House', 'State Senate'), default='US House') def make_view(self, **kwargs): districts = hv.DynamicMap(load_district_shapefile, streams=[self]) options = dict(width=1000, height=600, xaxis=None, yaxis=None, show_grid=False) tiles.opts(plot=options) return tiles * shaded * color_points * districts # def event(self, **kwargs): # if not self.output or any(k in kwargs for k in ['District type']): # self.output = hv.DynamicMap(self.view, streams=[self]) # else: # super(DistrictExplorer, self).event(**kwargs) explorer = DistrictExplorer(name="District explorer") dmap = explorer.make_view() plot = hv.renderer('bokeh').instance(mode='server').get_plot(dmap) parambokeh.Widgets(explorer, continuous_update=True, callback=explorer.event, on_init=True, plots=[plot.state], mode='server') ```
{ "source": "jgressmann/sc2links", "score": 2 }
#### File: jgressmann/sc2links/addon.py ```python __author__ = 'jgressmann' from datetime import date import pickle import sys import traceback import urllib import urlparse #import urlresolver import xbmc import xbmcaddon import xbmcgui import xbmcplugin import zlib import resources.lib.sc2links as sc2links addon = xbmcaddon.Addon() #__addonname__ = addon.getAddonInfo('name') addonid = addon.getAddonInfo('id') def debug(val): if isinstance(val, str) or isinstance(val, unicode): pass else: val = repr(val) message = u'%s: %s' % (addonid, val) xbmc.log(message.encode('utf-8'), xbmc.LOGDEBUG) def build_url(query): return sys.argv[0] + '?' + urllib.urlencode(query) handle = int(sys.argv[1]) args = dict(urlparse.parse_qsl(sys.argv[2][1:])) debug("url args: " + repr(args)) revealMatches = addon.getSetting('reveal_matches') == 'true' debug('reveal matches: ' + str(revealMatches)) lastNYears = 0 try: lastNYears = int(addon.getSetting('last_n_years_to_fetch')) except: pass debug('last_n_years_to_fetch: ' + repr(lastNYears)) def get_youtube_info(url): parsed = urlparse.urlparse(url) args = urlparse.parse_qs(parsed.query) id = None time = None # 'https://www.youtube.com/embed/TdjhjhbT3eA' if parsed.path.startswith('/embed/'): id = parsed.path[7:] else: # parse something like https://www.youtube.com/watch?v=XqywDF675kQ #debug(str(args)) time = args.get('t', [''])[0] id = args.get('v', [''])[0] if not id: # parse something like https://youtu.be/3A3guAd42Dw?t=9 if parsed.hostname == 'youtu.be': pathParts = (parsed.path or '').split('/') if len(pathParts) == 2: id = pathParts[1] if id: return (id, time) def get_youtube_plugin_url(web_url): data = get_youtube_info(web_url) if data: id = data[0] time = data[1] if id: args = {'play': 'plugin://plugin.video.youtube/play/?video_id={}'.format(id)} if time: args['time'] = time return build_url(args) debug('failed to get youtube id for ' + repr(web_url)) def get_twitch_info(url): # parse something like https://www.twitch.tv/videos/161472611?t=07h49m09s def _twitch_time_to_seconds(t): seconds = 0 buf = '' for c in t: if c == 'h': if len(buf): seconds += int(buf) * 3600 buf = '' elif c == 'm': if len(buf): seconds += int(buf) * 60 buf = '' elif c == 's': if len(buf): seconds += int(buf) buf = '' elif c.isdigit(): buf += c else: # oh well pass return seconds id = None time = None parsed = urlparse.urlparse(url) args = urlparse.parse_qs(parsed.query) #debug('path: ' + str(parsed.path)) if parsed.path.find('/videos/') == 0: id = parsed.path[8:] #debug('id: ' + str(id)) if id and id.isdigit(): time = args.get('t', [None])[0] if time: time = _twitch_time_to_seconds(time) else: # https://player.twitch.tv/?video=v187746182&autoplay=false&time= args = urlparse.parse_qs(parsed.query) id = args.get('video', [None])[0] if id: id = id[1:] time = args.get('time', [None])[0] if time: time = _twitch_time_to_seconds(time) return (id, time) def get_twitch_plugin_url(web_url): data = get_twitch_info(web_url) if data: id = data[0] time = data[1] if id: #@dispatcher.register(MODES.PLAY, kwargs=['seek_time', 'channel_id', 'video_id', 'slug', 'ask', 'use_player', 'quality']) args = {'play': 'plugin://plugin.video.twitch/?mode=play&video_id={}'.format(id)} if time: args['time'] = time return build_url(args) debug('failed to get twitch id for ' + repr(web_url)) compress = True def by_name(lhs, rhs): return cmp(lhs.name, rhs.name) def build(): level = int(args.get('level', 0)) debug("level " + repr(level)) args.update({'level': level+1}) data0 = args.get('data0', None) if data0: if compress: #debug("data1z " + repr(data0)) data0 = zlib.decompress(data0) #debug("data1p " + repr(data0)) data0 = pickle.loads(data0) #debug("data0 " + repr(data0)) data1 = args.get('data1', None) if data1: if compress: #debug("data1z " + repr(data1)) data1 = zlib.decompress(data1) #debug("datap " + repr(data1)) data1 = pickle.loads(data1) #debug("data1 " + repr(data1)) year = args.get('year', None) if year: year = int(year) debug("year " + repr(year)) name = args.get('name', None) debug("name " + repr(name)) stage_name = args.get('stage_name', None) debug("stage_name " + repr(stage_name)) overrideFilter = args.get('override_filter', False) debug("overrideFilter " + repr(overrideFilter)) # yearsFiltered = args.get('years_filtered', None) # debug("yearsFiltered " + repr(yearsFiltered)) if level == 0: args.update({'order': 0}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem('By Name'), isFolder=1) args.update({'order': 1}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem('By Year'), isFolder=1) elif level == 1: order = int(args.get('order', 0)) # want only the last n years worth of shows? yearsFiltered = not overrideFilter and lastNYears >= 1 if yearsFiltered: currentYear = date.today().year + 1 years = [x for x in range(currentYear-(lastNYears), currentYear)] #debug("years: " + repr(years)) sc2 = sc2links.Sc2Links(years=years) else: sc2 = sc2links.Sc2Links() children = sc2.children # debug("children: " + repr(children)) data = pickle.dumps(children) if compress: data = zlib.compress(data) args.update({'data0': data}) if order == 1: years = [x.year for x in children] years = set(years) years = sorted(years, reverse=True) #debug('years: ' + repr(years)) for year in years: displayYear = str(year or 'Other') args.update({'year': year or -1}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem(displayYear), isFolder=1) else: names = [x.name for x in children] names = set(names) names = sorted(names) #debug('names: ' + repr(names)) for name in names: args.update({'name': name}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem(name), isFolder=1) if yearsFiltered: # load all item args.update({'override_filter': True, 'level': level}) debug('args ' + repr(args)) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem("Load all"), isFolder=1) elif level == 2: children = data0 if year is None: filtered = [child for child in children if child.name == name] years = [x.year for x in filtered] years = set(years) years = sorted(years, reverse=True) #debug('# children by name' + repr(len(years))) for year in years: displayYear = str(year or 'Other') args.update({'year': year or -1}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem(displayYear), isFolder=1) else: filtered = [child for child in children if child.year == year] sortedByName = sorted(filtered, cmp=by_name) #debug('# children by year' + repr(len(sortedByName))) for child in sortedByName: args.update({'name': child.name}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem(child.name), isFolder=1) elif level == 3: item = None for child in data0: if child.name == name and child.year == year: item = child break if item: children = item.children data = pickle.dumps(children) if compress: data = zlib.compress(data) args.update({'data1': data}) for child in children: args.update({'stage_name': child.name}) url = build_url(args) xbmcplugin.addDirectoryItem(handle, url, xbmcgui.ListItem(child.name), isFolder=1) elif level == 4: item = None for child in data1: if child.name == stage_name: item = child break if item: vods = item.children for vod in vods: url = vod.url debug('vod url' + repr(url)) if not url: # match didn't take place continue plugin_url = get_youtube_plugin_url(url) or get_twitch_plugin_url(url) debug('plugin url:' + repr(plugin_url)) if not plugin_url: # couldn't resolve vod url continue label = 'Match ' + str(vod.match_number) if revealMatches: if len(vod.side2): label += u' {} - {}'.format(vod.side1, vod.side2) else: label += ' ' + vod.side1 xbmcplugin.addDirectoryItem(handle, plugin_url, xbmcgui.ListItem(label), False) xbmcplugin.endOfDirectory(handle) def play(url, args): time = args.get('time', None) # BROKEN URL RESOLVER # media_url = urlresolver.resolve('https://www.youtube.com/watch?v=7OXVPgu6urw') # # Create a playable item with a path to play. # play_item = xbmcgui.ListItem(path=url) # play_item.setProperty('StartOffset', time) # # Pass the item to the Kodi player. # xbmcplugin.setResolvedUrl(handle, True, listitem=play_item) # return # stop whatever is playing player = xbmc.Player() player.stop() # launch youtube plugin xbmc.executebuiltin('PlayMedia({})'.format(url)) # seek? if time: delay = 5 try: delay = int(addon.getSetting('youtube_seek_delay_s')) except: pass timeout = 20 try: timeout = int(addon.getSetting('youtube_seek_delay_s')) except: pass # xbmcgui.Dialog().ok(addonname, "have time: " + time) # wait for playback if timeout > 0: for i in range(0, timeout): if player.isPlaying(): debug('player is playing') break xbmc.sleep(1000) # seek if player.isPlaying() and delay > 0: xbmc.sleep(delay * 1000) player.seekTime(int(time)) __run = 0 try: url = args.get('play', '') if url: play(url, args) else: build() debug("run: " + repr(__run)) __run += 1 except Exception as e: debug(u'Exception: ' + str(e)) map(debug, str(traceback.format_exc()).splitlines()) ```
{ "source": "jgresty/snyk-threadfix", "score": 3 }
#### File: snyk-threadfix/snyk_threadfix/utils.py ```python import json import os import sys from pathlib import Path import requests def get_default_token_path(): home = str(Path.home()) default_token_path = "%s/.config/configstore/snyk.json" % home return default_token_path def get_token_from_file(token_file_path): path = token_file_path with open(path, "r") as f: json_obj = json.load(f) token = json_obj["api"] return token def get_token_by_env_var(): return os.environ.get("SNYK_TOKEN") def get_token(): t = get_token_by_env_var() if not t: token_file_path = get_default_token_path() t = get_token_from_file(token_file_path) return t def get_snyk_api_headers(snyk_token): snyk_api_headers = {"Authorization": "token %s" % snyk_token} return snyk_api_headers def validate_token(snyk_token): h = get_snyk_api_headers(snyk_token) full_api_url = "https://snyk.io/api/v1/" resp = requests.get(full_api_url, headers=h) return resp.ok ``` #### File: snyk-threadfix/tests/test_tokenparsing.py ```python import json import tempfile import pytest import requests_mock from mock import patch from snyk_threadfix import main, utils def test_get_token_from_file_fails_if_token_file_not_found(): with pytest.raises(FileNotFoundError) as pytest_wrapped_exception: t = utils.get_token_from_file("/some/path/that/does/not/exist/snyk.json") assert pytest_wrapped_exception.type == FileNotFoundError assert pytest_wrapped_exception.value.args[1] == "No such file or directory" def test_get_token_from_file_fails_if_token_file_cant_be_parsed(): """Build a temp file with an invalid spec and make sure it fails""" obj_token_json = {"some-invalid-key": "test-token"} with tempfile.NamedTemporaryFile() as temp_token_file: with open(temp_token_file.name, "w") as temp_token_file_write: json.dump(obj_token_json, temp_token_file_write, indent=2) with pytest.raises(KeyError) as pytest_wrapped_exception: temp_filename = temp_token_file.name returned_token = utils.get_token_from_file(temp_filename) assert pytest_wrapped_exception.type == KeyError assert pytest_wrapped_exception.value.args[0] == "api" def test_get_token_works_with_well_formed_token_file(): obj_token_json = {"api": "test-token"} with tempfile.NamedTemporaryFile() as temp_token_file: with open(temp_token_file.name, "w") as temp_token_file_write: json.dump(obj_token_json, temp_token_file_write, indent=2) temp_filename = temp_token_file.name returned_token = utils.get_token_from_file(temp_filename) assert returned_token == "test-token" def test_snyk_auth_header_is_correct(): token = "<PASSWORD>" auth_headers = utils.get_snyk_api_headers(token) assert auth_headers["Authorization"] == "token test-token" def test_main_fails_if_token_not_set_in_file_or_env_var(monkeypatch, capsys): monkeypatch.delenv( "SNYK_TOKEN", raising=False ) # raising=True means raise an exception if this var doesn't exist to delete t = utils.get_token_by_env_var() # should return None if not set assert t is None with patch( "snyk_threadfix.utils.get_default_token_path", return_value="/some/path/that/does/not/exist/snyk.json", ): with pytest.raises(SystemExit) as pytest_wrapped_exception: main.main(["--org-id", "abc123", "--project-ids", "123"]) captured_out = capsys.readouterr() assert ( "Error fetching Snyk token. Set SNYK_TOKEN env var or run `snyk auth <your-token>` (see https://github.com/snyk/snyk#installation)." in captured_out.err ) assert pytest_wrapped_exception.type == SystemExit def test_main_fails_if_token_file_cant_be_parsed(monkeypatch, capsys): """Build a temp file with an invalid spec and make the main fails properly""" # make sure SNYK_TOKEN appears to not be set for this test (in case this test is run in an env where it is set) monkeypatch.delenv( "SNYK_TOKEN", raising=False ) # raising=True means raise an exception if this var doesn't exist to delete t = utils.get_token_by_env_var() # should return None if not set assert t is None obj_token_json = {"some-invalid-key": "test-token"} with tempfile.NamedTemporaryFile() as temp_token_file: with open(temp_token_file.name, "w") as temp_token_file_write: json.dump(obj_token_json, temp_token_file_write, indent=2) with patch( "snyk_threadfix.utils.get_default_token_path", return_value=temp_token_file.name, ): with pytest.raises(SystemExit) as pytest_wrapped_exception: main.main(["--org-id", "abc123", "--project-ids", "123"]) captured_out = capsys.readouterr() assert ( "Error fetching Snyk token. Set SNYK_TOKEN env var or run `snyk auth <your-token>` (see https://github.com/snyk/snyk#installation)." in captured_out.err ) assert pytest_wrapped_exception.type == SystemExit def test_validate_token(): with requests_mock.mock() as m: m.get( "https://snyk.io/api/v1/", status_code=200, text='{"what orgs can the current token access?":"https://snyk.io/api/v1/orgs","what projects are owned by this org?":"https://snyk.io/api/v1/org/:id/projects","test a package for issues":"https://snyk.io/api/v1/test/:packageManager/:packageName/:packageVersion"}', ) is_valid = utils.validate_token("test-token") assert is_valid def test_validate_token_fails_for_invalid_token(): with requests_mock.mock() as m: m.get("https://snyk.io/api/v1/", status_code=401) is_valid = utils.validate_token("test-token") assert not is_valid def test_main_fails_if_validate_token_fails(): with patch("snyk_threadfix.utils.get_token_from_file", return_value="test-token"): with patch("snyk_threadfix.main.validate_token", return_value=False): with pytest.raises(Exception) as pytest_wrapped_exception: main.main(["--org-id", "abc123", "--project-ids", "123"]) assert pytest_wrapped_exception.type == main.SnykTokenInvalidError def test_get_token_by_env_var_works(monkeypatch): monkeypatch.setenv("SNYK_TOKEN", "SOME_TOKEN", prepend=False) t = utils.get_token_by_env_var() assert t == "SOME_TOKEN" monkeypatch.delenv("SNYK_TOKEN", raising=True) t = utils.get_token_by_env_var() # should return None if not set assert t is None def test_verify_token_comes_from_env_var_rather_than_file_if_both_set(monkeypatch): with patch( "snyk_threadfix.utils.get_token_from_file", return_value="token-from-file" ) as get_token_from_file_mock: monkeypatch.setenv("SNYK_TOKEN", "SOME_TOKEN_FROM_ENV_VAR", prepend=False) t = utils.get_token() assert t == "SOME_TOKEN_FROM_ENV_VAR" assert get_token_from_file_mock.call_count == 0 ```
{ "source": "jgresula/jagpdf", "score": 3 }
#### File: apitest/py/annots.py ```python import jagpdf import sys import os import jag.testlib as testlib g_font = testlib.EasyFontTTF() #raw_input("attach") def do_some(doc): doc.page_start(5.9*72, 5.9*72) page=doc.page().canvas() page.color("fs", 0.75) page.rectangle(20, 20, 72, 72) page.path_paint('s') page.text_font(g_font(8)) page.text(25, 57, "a gray rectangle") page.text(25, 45, "www.boost.org") doc.page().annotation_uri(20, 20, 72, 72, "http://www.boost.org") doc.page_end() def do_goto_each_other(doc): def page_vis(this,other): page=doc.page().canvas() page.text_font(g_font(8)) page.color("fs", 0.75) page.rectangle(20, 20, 72, 72) page.path_paint('s') page.text(25, 57, "This is Page *%d*" % this) page.text(25, 45, "Click for page %d" % other) return page dest_1st = doc.destination_reserve() page_nr = doc.page_number() doc.page_start(5.9*72, 5.9*72) dest_1st_direct = doc.destination_define("mode=XYZ") #should get page automatically dest_2nd = doc.destination_reserve() page = page_vis(page_nr+1, page_nr+2) doc.page().annotation_goto(20, 20, 72, 72, dest_2nd) doc.page_end() doc.page_start(5.9*72, 5.9*72) page = page_vis(page_nr+2, page_nr+1) doc.page().annotation_goto(20, 20, 72, 72, dest_1st) doc.page_end() doc.page_start(5.9*72, 5.9*72) page = page_vis(page_nr+3, page_nr+1) doc.page().annotation_goto(20, 20, 72, 72, dest_1st_direct) doc.page_end() doc.destination_define_reserved(dest_1st, "page=%d;mode=XYZ" % page_nr) doc.destination_define_reserved(dest_2nd, "page=%d;mode=XYZ" % (page_nr+1)) def do_outline_and_goto(doc): def make_goto(x, y, dest, txt): page.color("fs", 0.75) page.rectangle(x, y, 36, 36) page.path_paint('s') page.text(x+10, y+10, txt) doc.page().annotation_goto(x, y, 36, 36, dest) page_nr = doc.page_number() p25 = doc.destination_define("mode=XYZ;zoom=0.25") doc.page_start(5.9*72, 5.9*72) page = doc.page().canvas() p50 = doc.destination_define("mode=XYZ;zoom=0.50") p75 = doc.destination_reserve() doc.outline().item("Page %d" % (page_nr+1)) doc.outline().level_down() doc.outline().item("zoom 25%", p25) doc.outline().item("zoom 50%", p50) doc.outline().item("zoom 75%", p75) doc.outline().level_up() page.text_font(g_font(8)) make_goto(20, 20, p25, "25%") make_goto(20, 60, p50, "50%") make_goto(20, 100, p75, "75%") doc.page_end() doc.destination_define_reserved(p75, "page=%d;mode=XYZ;zoom=0.75" % page_nr) def do_goto_single_page(doc): pheight = 5.9*72 doc.page_start(5.9*72, pheight) page = doc.page().canvas() page.color("fs", 0.75) page.rectangle(20, 20, 72, 72) page.rectangle(20, pheight-92, 72, 72) page.path_paint('s') page.text_font(g_font(8)) page.text(25, 57, "click to zoom") page.text(25, 45, "to 200%") page.text(25, pheight-47, "click to fit height") doc.page().annotation_goto(20, pheight-92, 72, 72, "page=%d;mode=FitV" % doc.page_number()) doc.page().annotation_goto(20, 20, 72, 72, "page=%d;mode=XYZ;left=0;top=%lf;zoom=2" % (doc.page_number(),pheight)) doc.page_end() def test_main(argv=None): cfg = testlib.test_config() #cfg.set("doc.trace_level", "5") doc = testlib.create_test_doc(argv, 'annots.pdf', cfg) g_font.set_writer(doc) do_some(doc) do_goto_single_page(doc) do_goto_each_other(doc) do_outline_and_goto(doc) doc.finalize() if __name__ == "__main__": test_main() ``` #### File: apitest/py/colorspaces.py ```python import jagpdf import os import sys import jag.testlib as testlib ## =============================================== ## GENERAL ## =============================================== class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) class Bind: def __init__(self, fn, *args): self.args = args self.fn = fn def __call__(self, *args): return self.fn(*(self.args + args)) g_font = testlib.EasyFont() def draw_rect_grid(page, spec, it): # spec.x0,y0,w,h,nx,ny,step_x, step_y for yc in range(spec.num_y): for xc in range(spec.num_x): x = spec.x0 + xc*spec.w + xc*spec.step_x y = spec.y0 + yc*spec.h + yc*spec.step_y it(xc,yc) page.rectangle(x, y, spec.w, spec.h) page.path_paint("fs") def grid1(page, rng, x, y): page.color("fs", float(x)/rng) def grid3(page, rng, fix, x, y): if fix == 0: page.color("fs", float(x)/rng, float(y)/rng, 0.0) elif fix == 1: page.color("fs", float(x)/rng, 0.0, float(y)/rng) elif fix == 2: page.color("fs", 0.0, float(x)/rng, float(y)/rng) else: assert(0) def grid4(page, rng, fix, x, y): if fix == 0: page.color("fs", float(x)/rng, float(y)/rng, 0.0, 0.0) elif fix == 1: page.color("fs", float(x)/rng, 0.0, float(y)/rng, 0.0) elif fix == 2: page.color("fs", 0.0, float(x)/rng, float(y)/rng, 0.0) else: assert(0) ## =============================================== ## DEVICE SPACES ## =============================================== def do_device_spaces(writer): writer.page_start(5.9*72, 6.2*72) page = writer.page().canvas() page.text_font(g_font(12)) page.text(20, 20, "DeviceGray") page.state_save() page.color_space("fs", jagpdf.CS_DEVICE_GRAY) spec = Bunch(x0=20, y0=40, w=13, h=13, num_x=24, num_y=1, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(grid1,page,spec.num_x)) page.state_restore() page.text(20, 70, "DeviceRGB") page.state_save() page.color_space("fs", jagpdf.CS_DEVICE_RGB) spec = Bunch(x0=20, y0=85, w=7, h=7, num_x=14, num_y=14, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 0)) spec.x0 = 2.1*72 draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 1)) spec.x0 = 3.9*72 draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 2)) page.state_restore() page.text(20, 230, "DeviceCMYK") page.state_save() page.color_space("fs", jagpdf.CS_DEVICE_CMYK) spec = Bunch(x0=20, y0=250, w=7, h=7, num_x=14, num_y=14, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(grid4, page, spec.num_x, 0)) spec.x0 = 2.1*72 draw_rect_grid(page, spec, Bind(grid4, page, spec.num_x, 1)) spec.x0 = 3.9*72 draw_rect_grid(page, spec, Bind(grid4, page, spec.num_x, 2)) page.state_restore() page.text_font(g_font(14)) page.text(20, 410, "Device Color Spaces") writer.page_end() ## =============================================== ## LAB SPACES ## =============================================== def def_calrgb(writer, gamma=None, mtx=""): calrgb = "calrgb;white=0.9505, 1.0890" if gamma: calrgb += ";gamma=%.3f, %.3f, %.3f" % (gamma, gamma, gamma) if mtx: calrgb += ";matrix=0.4497, 0.2446, 0.0252, 0.3163, 0.6720, 0.1412, 0.1845, 0.0833, 0.9227" return writer.color_space_load(calrgb), gamma and gamma or "default", mtx def lab_grid3(page, rng, L, x, y): x0 = ((float(x)/rng)-0.5)*200 y0 = ((float(y)/rng)-0.5)*200 page.color("fs", L, x0, y0) def do_cie_spaces(writer): writer.page_start(5.9*72, 11.3*72) page = writer.page().canvas() page.text_font(g_font(12)) curr_y = 20 def def_calgray(gamma=None): spec = "calgray; white=0.9505, 1.0890" if gamma: spec += ';gamma=%.3f' % gamma return writer.color_space_load(spec), gamma and gamma or "default" for cs_id, gamma in [def_calgray(), def_calgray(2.2)]: page.text(20, curr_y, "CalGray - gamma " + str(gamma)) curr_y += 15 page.state_save() page.color_space("fs", cs_id) spec = Bunch(x0=20, y0=curr_y, w=13, h=13, num_x=24, num_y=1, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(grid1,page,spec.num_x)) page.state_restore() curr_y += 35 page.text(20, curr_y, "CIE Lab") page.text(110, curr_y, "L=25") page.text(240, curr_y, "L=75") page.text(370, curr_y, "L=100") curr_y += 15 cielab = "cielab;white=0.9505, 1.0890" cielabid = writer.color_space_load(cielab) page.state_save() page.color_space("fs", cielabid) spec = Bunch(x0=20, y0=curr_y, w=7, h=7, num_x=14, num_y=14, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(lab_grid3, page, spec.num_x, 25)) spec.x0 = 2.1*72 draw_rect_grid(page, spec, Bind(lab_grid3, page, spec.num_x, 75)) spec.x0 = 3.9*72 draw_rect_grid(page, spec, Bind(lab_grid3, page, spec.num_x, 100)) page.state_restore() curr_y += 145 for cs_id, gamma, mtx, in [def_calrgb(writer), def_calrgb(writer,2.2), def_calrgb(writer,1.8, ' - transformed')]: page.text(20, curr_y, "CalRGB - gamma " + str(gamma) + str(mtx)) curr_y += 15 page.state_save() page.color_space("fs", cs_id) spec = Bunch(x0=20, y0=curr_y, w=7, h=7, num_x=14, num_y=14, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 0)) spec.x0 = 2.1*72 draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 1)) spec.x0 = 3.9*72 draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 2)) page.state_restore() curr_y += 140 curr_y += 20 page.text_font(g_font(14)) page.text(20, curr_y, "CIE Color Spaces - white point [0.9505, 0.0, 1.0890]") writer.page_end() ## =============================================== ## ICC Based spaces ## =============================================== g_res_dir = os.path.expandvars('${JAG_TEST_RESOURCES_DIR}/icc') g_icc_files = ['AdobeRGB1998.icc',\ "sRGB Color Space Profile.icm",\ 'WideGamutRGB.icc',\ 'AppleRGB.icc',\ 'CIERGB.icc',\ 'ColorMatchRGB.icc'] g_iccs = [os.path.join(g_res_dir, icc) for icc in g_icc_files] def def_iccbased(writer, icc_file): spec = "icc; components=3; profile=" + icc_file # alternate is ignored return writer.color_space_load(spec), os.path.basename(icc_file) def do_iccbased_spaces(writer): writer.page_start(5.9*72, 14*72) page = writer.page().canvas() page.text_font(g_font(12)) curr_y = 20 for cs_id, desc in [def_iccbased(writer,d) for d in g_iccs]: page.text(20, curr_y, desc) curr_y += 15 page.state_save() page.color_space("fs", cs_id) spec = Bunch(x0=20, y0=curr_y, w=7, h=7, num_x=14, num_y=14, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 0)) spec.x0 = 2.1*72 draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 1)) spec.x0 = 3.9*72 draw_rect_grid(page, spec, Bind(grid3, page, spec.num_x, 2)) page.state_restore() curr_y += 140 curr_y += 20 page.text_font(g_font(14)) page.text(20, curr_y, "ICC Based color spaces") writer.page_end() ## =============================================== ## Indexed spaces ## =============================================== def palette332(): result = [] for i in range(256): result += int(255 * ((i&7)/7.0)),\ int(255 * (((i>>3)&7)/7.0)),\ int(255 * (((i>>6)&3)/3.0)) return result def palette431(): result = [] for i in range(256): result += int(255 * ((i&15)/15.0)),\ int(255 * (((i>>4)&7)/7.0)),\ int(255 * (((i>>7)&1)/1.0)) return result def indexed_fn(page, x, y): page.color("fs", y*16+x) def do_indexed_spaces(writer): writer.page_start(5.9*72, 7.5*72) page = writer.page().canvas() page.text_font(g_font(12)) curr_y = 20 curr_x = 20 def def_indexed(csid, pal): palette = "by-id; id=%d; palette=%s" % (csid, ','.join([str(c) for c in pal])) return writer.color_space_load(palette) calrgb_id = def_calrgb(writer,2.2)[0] icc_id = def_iccbased(writer,g_iccs[1])[0] #sRGB for cs_id, desc in [(def_indexed(jagpdf.CS_DEVICE_RGB, palette332()), "332 DeviceRGB"),\ (def_indexed(jagpdf.CS_DEVICE_RGB, palette431()), "431 DeviceRGB"),\ (def_indexed(calrgb_id, palette332()), "332 CallRGB - g2.2"),\ (def_indexed(calrgb_id, palette431()), "431 CallRGB - g2.2"),\ (def_indexed(icc_id, palette332()), "332 ICC - sRGB"),\ (def_indexed(icc_id, palette431()), "431 ICC - sRGB"),\ ]: page.text(curr_x, curr_y, "Indexed - " + desc) page.state_save() page.color_space("fs", cs_id) spec = Bunch(x0=curr_x, y0=curr_y+15, w=6, h=6, num_x=16, num_y=16, step_x=2, step_y=2) draw_rect_grid(page, spec, Bind(indexed_fn, page)) page.state_restore() curr_x += 200 if curr_x > 350: curr_x = 20 curr_y += 155 curr_y += 20 page.text_font(g_font(14)) page.text(20, curr_y, "Indexed color spaces") writer.page_end() def test_main(argv=None): writer = testlib.create_test_doc(argv, 'colorspaces.pdf') g_font.set_writer(writer) do_iccbased_spaces(writer) do_cie_spaces(writer) do_device_spaces(writer) do_indexed_spaces(writer) writer.finalize() if __name__ == '__main__': test_main() ``` #### File: apitest/py/colorstate.py ```python import jagpdf import os import jag.testlib as testlib import sys def do_page(writer): writer.page_start(3*72, 80) page = writer.page().canvas() font = testlib.EasyFont(writer) page.text_font(font()) page.color_space("f", jagpdf.CS_DEVICE_RGB) page.color("f", .7, 0, 0) page.text(20, 20, "This text should be red!") page.state_save() page.color_space("f", jagpdf.CS_DEVICE_CMYK) page.color("f", 1, 1, 0, .45) page.text(20, 40, "This text should be dark blue!") page.state_restore() page.text(20, 60, "This text should be red again!") writer.page_end() def test_main(argv=None): doc_writer = testlib.create_test_doc(argv, 'colorstate.pdf') do_page(doc_writer) doc_writer.finalize() if __name__ == '__main__': test_main() ``` #### File: apitest/py/cubespng.py ```python import jagpdf import jag.testlib as testlib import os g_png_dir = os.path.expandvars('${JAG_TEST_RESOURCES_DIR}/images/') media = 400, 400 def get_pattern(doc): pcell = doc.canvas_create() pcell.color_space('f', jagpdf.CS_DEVICE_GRAY) pcell.color('f', 0) pcell.rectangle(0, 0, 10, 10) pcell.rectangle(10, 10, 10, 10) pcell.path_paint('f') return doc.tiling_pattern_load('step=20, 20', pcell) def image_pos(img): img_width = img.width() / img.dpi_x() * 72 img_height = img.height() / img.dpi_y() * 72 x = (media[0]-img_width) / 2 y = (media[1]-img_height) / 2 return x, y def test_main(argv=None): cfg = jagpdf.create_profile() cfg.set("doc.compressed", "1") doc = testlib.create_test_doc(argv, 'transparent_cubes.pdf', cfg) img = doc.image_load_file(os.path.join(g_png_dir, 'cubes_transparent.png')) doc.page_start(*media) canvas = doc.page().canvas() canvas.color_space_pattern('f') canvas.pattern('f', get_pattern(doc)) canvas.rectangle(0, 0, *media) canvas.path_paint('f') canvas.image(img, *image_pos(img)) doc.page_end() doc.finalize() if __name__ == '__main__': test_main() ``` #### File: apitest/py/customimage.py ```python import os import jag.imagemanip as imagemanip import jag.testlib as testlib import jagpdf import tempfile import sys import md5 #mask interpolation - it seems the it does not have any effect class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) def add(self, **kwds): self.__dict__.update(kwds) return self g_font = testlib.EasyFont() g_img_dim = 72, 72 g_alt_img_dim = 67, 59 g_temp_files = testlib.TemporaryFiles() def prepare_page(doc, dim): doc.page_start(*dim) page = doc.page().canvas() testlib.do_background(page, (0.6, 0.3, 0.2), dim, 5) page.color_space("fs", jagpdf.CS_DEVICE_RGB) page.color("fs", 1.0, 1.0, 1.0) page.text_font(g_font(6)) grid = imagemanip.grid_coords(3, 80) placer = imagemanip.ImagePlacer(doc, page, 20, 20, 95, 10) return page, grid, placer def default_cfg(): return Bunch(img_dim=g_img_dim, spec_fn=None, bits_a = [16, 8, 4, 2, 1], dpi=(72,72), from_file=False) g_img_cache = imagemanip.img_cache() def get_img_id(doc, image, bpc, nr_channels, cs, p = default_cfg()): spec = doc.image_definition() spec.dimensions(*p.img_dim) spec.bits_per_component(bpc) spec.dpi(*p.dpi) spec.color_space(cs) spec.format(jagpdf.IMAGE_FORMAT_NATIVE) img_data = g_img_cache.img_data(image, bpc, nr_channels, *p.img_dim) if p.from_file: handle, tmp_file = tempfile.mkstemp() img_data.tofile(open(tmp_file,'wb')) os.close(handle) g_temp_files.add(tmp_file) if p.from_file: spec.file_name(tmp_file) else: spec.data(img_data) desc = "%d levels per channel (%d %s)" % (2**bpc, bpc, bpc > 1 and "bits" or "bit") if p.spec_fn: desc2 = p.spec_fn(spec) if desc2: desc = desc2 id_ = doc.image_load(spec) testlib.must_throw(doc.image_load, spec) # cannot load the same spec twice return id_, desc def do_generic(doc, image, cs, nr_channels, title, p = default_cfg()): page_dim = 4.8*72, 3.8*72 page, grid, placer = prepare_page(doc, page_dim) for bpc in p.bits_a: img, desc = get_img_id(doc, image, bpc, nr_channels, cs, p) placer(img, desc, *grid.next()) page.text_font(g_font(14)) page.text(20, page_dim[1] - 30, title) doc.page_end() ########################################################################### LineX_d = imagemanip.image(imagemanip.LineX, *g_img_dim) LineY_d = imagemanip.image(imagemanip.LineY, *g_img_dim) InvertedEllipseC_d = imagemanip.image(imagemanip.InvertedEllipseC, *g_img_dim) Rhomboid_d = imagemanip.image(imagemanip.Rhomboid, *g_img_dim) Cross_d = imagemanip.image(imagemanip.Cross, *g_img_dim) Checkboard_d = [(x%4 in [0,1] and y%4 in [0,1]) and 1 or 0 for x,y in imagemanip.grid_coords(*g_img_dim)] LineX_d_alt = imagemanip.image(imagemanip.LineX, *g_alt_img_dim) LineY_d_alt = imagemanip.image(imagemanip.LineY, *g_alt_img_dim) InvertedEllipseC_d_alt = imagemanip.image(imagemanip.InvertedEllipseC, *g_alt_img_dim) Rhomboid_d_alt = imagemanip.image(imagemanip.Rhomboid, *g_alt_img_dim) Cross_d_alt = imagemanip.image(imagemanip.Cross, *g_alt_img_dim) #odd mask goes through file, even through memory class HardMask: def set_doc(self, doc): self.dim = 64, 64 self.doc = doc self.registry = {} generic = imagemanip.image(imagemanip.InvertedEllipseC, *self.dim) self.mask_data = imagemanip.pack_bits(generic, 1, 1, *self.dim) self.req_nr = 0 self.test_errors() def test_errors(self): spec = self.doc.define_image_mask() testlib.must_throw(self.doc.register_image_mask, spec) spec.dimensions(*self.dim) testlib.must_throw(self.doc.register_image_mask, spec) def id(self, interpolate, reverse): key = (interpolate, reverse) if key in self.registry: return self.registry[key] else: self.req_nr += 1 spec = self.doc.define_image_mask() spec.dimensions(*self.dim) spec.interpolate(interpolate) spec.bit_depth(1) if self.req_nr%2: handle, tmp_file = tempfile.mkstemp() self.mask_data.tofile(open(tmp_file,'wb')) os.close(handle) g_temp_files.add(tmp_file) spec.file_name(tmp_file) else: spec.data(self.mask_data) if reverse: pass #spec.reverse() id = self.doc.register_image_mask(spec) self.registry[key] = id return id g_hardmask = HardMask() ########################################################################### class hard_mask_fn: def __init__(self): self.val = [(0,1), (1,1), (0,0), (1,0)] def __call__(self, spec): val = self.val.pop() spec.image_mask(g_hardmask.id(*val)) return "interpolate .. %s, reverse %s" % (val[0] and "yes" or "no", val[1] and "yes" or "no") class gamma_fn: def __init__(self): self.val = [1.0, 1.4, 1.8, 2.2, 2.6, 3.0] def __call__(self, spec): val = self.val.pop() spec.gamma(val) return 'gamma ' + str(val) class decode_fn: def __init__(self, channels): self.val = [(0, 1), (1, 0), (0, 0.5), (0.5, 1), (0.25, 0.75), (0.4, 0.6)] self.channels = channels def __call__(self, spec): val = self.val.pop() spec.decode(self.channels*val) return 'decode ' + ("[%2f, %2f]" % val) class alternate_fn: def __init__(self, doc, img_id): self.val = [img_id, None] self.supported = doc.version() >= 3 def __call__(self, spec): val = self.val.pop() if val: if self.supported: spec.alternate_for_printing(val) return 'alternated' else: return 'not alternated' class rendering_intent_fn: def __init__(self): self.val = [None,\ "RI_ABSOLUTE_COLORIMETRIC",\ "RI_RELATIVE_COLORIMETRIC",\ "RI_SATURATION",\ "RI_PERCEPTUAL"] def __call__(self, spec): val = self.val.pop() if val: spec.rendering_intent(getattr(jagpdf, val)) return val[3:] else: return 'default' class interpolate_fn: def __init__(self): self.val = [0, 1] def __call__(self, spec): val = self.val.pop() spec.interpolate(val) return val and "interpolated" or "not interpolated" class color_key_mask8_fn: def __init__(self, channels): self.val = [None, (0,127), (127,255), (64,192), (96,160), (32,224)] self.ch = channels def __call__(self, spec): val = self.val.pop() if val: spec.color_key_mask(self.ch*val) return "<%.2f, %.2f>" % (val[0]/255.0, val[1]/255.0) else: return "not-masked" # return Bunch(img_dim=g_img_dim, spec_fn=None, bits_a = [16, 8, 4, 2, 1]) def do_grayscale(doc): for idata in ["LineX", "Cross", "InvertedEllipseC", "Rhomboid"]: do_generic(doc, globals()[idata+'_d'], jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - " + idata) cfg = default_cfg().add(from_file=True) do_generic(doc, LineX_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - LineX (from file)", cfg) cfg = default_cfg().add(img_dim = g_alt_img_dim) do_generic(doc, LineY_d_alt, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - %dx%d" % g_alt_img_dim, cfg) cfg = default_cfg().add(bits_a = 6*[16], spec_fn = gamma_fn()) do_generic(doc, LineY_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - gamma", cfg) cfg = default_cfg().add(dpi=(144,144)) do_generic(doc, LineY_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - 144 dpi", cfg) cfg = default_cfg().add(bits_a = 6*[16], spec_fn = decode_fn(1)) do_generic(doc, Cross_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - decode", cfg) alt_img_id, desc = get_img_id(doc, Cross_d, 16, 1, jagpdf.CS_DEVICE_GRAY) cfg = default_cfg().add(bits_a = 2*[16], spec_fn = alternate_fn(doc, alt_img_id)) do_generic(doc, LineX_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - alternate for print", cfg) Cross_d_low = imagemanip.image(imagemanip.Cross, 18, 18) cfg = default_cfg().add(bits_a = 2*[16], dpi=(18,18), spec_fn = interpolate_fn(), img_dim = (18,18)) do_generic(doc, Cross_d_low, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - interpolate", cfg) cfg = default_cfg().add(bits_a = 6*[8], spec_fn = color_key_mask8_fn(1)) do_generic(doc, LineX_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - color key mask", cfg) cfg = default_cfg().add(bits_a = 4*[8], spec_fn = hard_mask_fn()) do_generic(doc, Cross_d, jagpdf.CS_DEVICE_GRAY, 1, "GRAYSCALE - hard mask", cfg) def do_rgb(doc): channels = [LineX_d, LineY_d, Rhomboid_d] generic_image = imagemanip.interleave_channels(*channels) do_generic(doc, generic_image, jagpdf.CS_DEVICE_RGB, 3, "RGB") cfg = default_cfg().add(bits_a = 5*[16], spec_fn = rendering_intent_fn()) channels = [LineX_d, LineY_d, Rhomboid_d] generic_image = imagemanip.interleave_channels(*channels) do_generic(doc, generic_image, jagpdf.CS_DEVICE_RGB, 3, "RGB - rendering intent", cfg) cfg = default_cfg().add(img_dim = g_alt_img_dim) channels = [LineX_d_alt, LineY_d_alt, Rhomboid_d_alt] generic_image2 = imagemanip.interleave_channels(*channels) do_generic(doc, generic_image2, jagpdf.CS_DEVICE_RGB, 3, "RGB - %dx%d" % g_alt_img_dim, cfg) cfg = default_cfg().add(bits_a = 6*[8], spec_fn = color_key_mask8_fn(3)) do_generic(doc, generic_image, jagpdf.CS_DEVICE_RGB, 3, "RGB - color key mask", cfg) cfg = default_cfg().add(bits_a = 4*[8], spec_fn = hard_mask_fn()) do_generic(doc, generic_image, jagpdf.CS_DEVICE_RGB, 3, "RGB - hard mask", cfg) def do_cmyk(doc): channels = [LineX_d, LineY_d, Rhomboid_d, InvertedEllipseC_d] generic_image = imagemanip.interleave_channels(*channels) do_generic(doc, generic_image, jagpdf.CS_DEVICE_CMYK, 4, "CMYK") cfg = default_cfg().add(img_dim = g_alt_img_dim) channels = [LineX_d_alt, LineY_d_alt, Rhomboid_d_alt, InvertedEllipseC_d_alt] generic_image2 = imagemanip.interleave_channels(*channels) do_generic(doc, generic_image2, jagpdf.CS_DEVICE_CMYK, 4, "CMYK - %dx%d" % g_alt_img_dim, cfg) cfg = default_cfg().add(bits_a = 6*[8], spec_fn = color_key_mask8_fn(4)) do_generic(doc, generic_image, jagpdf.CS_DEVICE_CMYK, 4, "CMYK - color key mask", cfg) cfg = default_cfg().add(bits_a = 4*[8], spec_fn = hard_mask_fn()) do_generic(doc, generic_image, jagpdf.CS_DEVICE_CMYK, 4, "CMYK - hard mask", cfg) def do_cielab(doc): channels = [g_img_dim[0]*g_img_dim[1]*[0.5], LineX_d, LineY_d] image = imagemanip.interleave_channels(*channels) do_generic(doc, image, doc.color_space_load('cielab; white=0.9505, 1.089'), 3, "CIE Lab") def do_indexed(doc): palette = [str(v) for v in range(256)] cfg = default_cfg().add(bits_a = 1*[8]) do_generic(doc, LineX_d, doc.color_space_load('gray; palette=' + ','.join(palette)), 1, "Palette", cfg) def check_errors(doc): spec = doc.image_definition() testlib.must_throw(doc.image_load, spec) spec.data([10,20,30,40]) testlib.must_throw(doc.image_load, spec) spec.dimensions(2, 2) testlib.must_throw(doc.image_load, spec) spec.bits_per_component(8) testlib.must_throw(doc.image_load, spec) spec.color_space(jagpdf.CS_DEVICE_GRAY) spec.format(jagpdf.IMAGE_FORMAT_NATIVE) doc.image_load(spec) spec1 = doc.image_definition() spec1.format(jagpdf.IMAGE_FORMAT_PNG) spec1.file_name("this_file_does_not_exist") testlib.must_throw(doc.image_load, spec1) def do_main(argv=None): out_files = ["customimage15.pdf",\ "customimage14.pdf",\ "customimage13.pdf",\ "customimage12.pdf"] # (0,2,1) - removed for index, version, strict in [(3,2,0), (2,3,1), (1,4,1), (0,5,1)]: if strict and version == 2: # it seems that this test branch is flawed as the # exceptions are raised in different places then # originally inteded checker = testlib.must_throw cfg = testlib.test_config() cfg.set("doc.version", str(version)) cfg.set("doc.strict_mode", str(strict)) doc = jagpdf.create_as_stream(testlib.NoopStreamOut(), cfg) else: checker = lambda fn, *args: fn(*args) doc, cfg = testlib.get_legacy_doc(argv, out_files[index], {'doc.version':version, 'doc.strict_mode':strict}) g_font.set_writer(doc) checker(g_hardmask.set_doc, doc) checker(do_grayscale, doc) checker(do_rgb, doc) checker(do_cmyk, doc) checker(do_cielab, doc) checker(do_indexed, doc) check_errors(doc) doc.finalize() def test_main(argv=None): try: do_main(argv) #print g_img_cache.stats() except: g_temp_files.release() raise if __name__ == '__main__': test_main() # testlib.profile_test(test_main) ``` #### File: apitest/py/defaultfont2.py ```python import jagpdf import jag.testlib as testlib def test_main(argv=None): doc = testlib.create_test_doc(argv, 'defaultfont2.pdf') doc.page_start(200, 36) doc.page().canvas().text(10, 10, 'written in the default font') doc.page_end() doc.page_start(200, 48) canvas = doc.page().canvas() canvas.state_save() courier = doc.font_load('standard;name=Courier;size=10') canvas.text_font(courier) canvas.text(10, 10, 'written in Courier') canvas.state_restore() doc.page().canvas().text(10, 30, 'written in the default font') doc.page_end() doc.page_start(200, 36) doc.page().canvas().text(10, 10, 'written in the default font') doc.page_end() doc.finalize() if __name__ == "__main__": test_main() ``` #### File: apitest/py/docoutline.py ```python import jagpdf import sys import os import jag.testlib as testlib #raw_input('attach') g_font = testlib.EasyFontTTF() g_page_height = 7*72 ITALIC = 1 BOLD = 2 def do_page(doc, title, x=None, y=None, style=None, rgb=None, text=None): global g_page_height outline = doc.outline() if None==text: text=title doc.page_start(5.9*72, g_page_height) if None!=style: if doc.version() >= 4: outline.style(style) if None!=rgb: if doc.version() >= 4: outline.color(*rgb) if None==x: outline.item(title) else: outline.item(title, 'mode=XYZ; left=%f; top=%f' % (x, y)) page = doc.page().canvas() page.text_font(g_font()) page.text(20, g_page_height/2, text) doc.page_end() g_page_height -= 36 def standard_usage(doc): outline = doc.outline() do_page(doc, 'P\xc5\x99\xc3\xadli\xc5\xa1 \xc5\xbelu\xc5\xa5ou\xc4\x8dk\xc3\xbd k\xc5\xaf\xc5\x88', text="utf16-be bookmark") outline.state_save() do_page(doc, '2nd page - gray', rgb=(0.5,0.5,0.5)) outline.state_restore() do_page(doc, '3rd page - default style') outline.level_down() outline.state_save() do_page(doc, '3a page - bold red', style=BOLD, rgb=(1.0,0.0,0.0)) outline.state_save() do_page(doc, '3b page - 1/2h bold italic red', 0, g_page_height/2, style=BOLD|ITALIC) outline.state_restore() outline.level_down() do_page(doc, '3b1 page - bold red') outline.level_up() outline.state_restore() do_page(doc, '3c page - default style') # the last level_up() is not called intentionally as the # implementation is supposed to take care about that def fault_injection(): doc = jagpdf.create_stream(testlib.NoopStreamOut()) outline = doc.outline() testlib.must_throw(outline.item, "Invalid bookmark") outline.state_save() doc.page_start(5.9*72, g_page_height) testlib.must_throw(outline.level_down) testlib.must_throw(outline.level_up) doc.page_end() outline.state_restore() testlib.must_throw(outline.state_restore) doc.finalize() def do_document(argv, cfg, name): doc = testlib.create_test_doc(argv, name, cfg) g_font.set_writer(doc) standard_usage(doc) doc.finalize() def do_invalid_destinations(argv,cfg,name): invalid_dests = [\ "zoom=1.2", "mode=nonsense", "mode=XYZ;zoom=onan", "mode=FitR;left=1;top=1;bottom=1" ] for d in invalid_dests: doc = testlib.create_test_doc(argv, name, cfg) doc.page_start(10.0*72, 10.0*72) doc.outline().item("~", d) doc.page_end() testlib.must_throw(doc.finalize) doc = None syntax_err_dests = ["oom=1.2"] doc = testlib.create_test_doc(argv, name, cfg) doc.page_start(10.0*72, 10.0*72) for d in syntax_err_dests: testlib.must_throw(doc.outline().item, "~", d) doc.page_end() doc.finalize() def do_generic_bookmarks(argv, cfg, name): rl = 72 rt = 9*72 rr = 72+144 doc = testlib.create_test_doc(argv, name, cfg) outline = doc.outline() doc.page_start(10.0*72, 10.0*72) page = doc.page().canvas() page.rectangle(rl, 7*72, 144, 144) page.path_paint('s') page.rectangle(72+36, 7*72+36, 72, 72) page.path_paint('s') outline.item("Zoom 100%", "mode=XYZ;zoom=1.0") outline.item("Zoom 250%", "mode=XYZ;zoom=2.5") outline.item("Zoom 25%", "mode=XYZ;zoom=.25") outline.item("Rect top-left, retain zoom", "mode=XYZ;left=%lf;top=%lf" % (rl,rt) ) outline.item("Fit width, position rectangle top", "mode=FitH;top=%lf" % rt) outline.item("Fit width, retain y", "mode=FitH") outline.item("Fit height, position rectangle right", "mode=FitV;left=%lf" % rr) outline.item("Fit height, retain x", "mode=FitV") outline.item("Fit inner rectangle", "mode=FitR;left=%lf;top=%lf;bottom=%lf;right=%lf" %\ (72+36, 7*72+36+72, 7*72+36, 72+36+72 )) outline.item("Fit page", "mode=Fit") outline.item("Fit page bbox", "mode=FitB") outline.item("Fit bbox width, retain y", "mode=FitBH") outline.item("Fit bbox width, top 1/2 rect", "mode=FitBH;top=%lf" % (rt-72)) outline.item("Fit bbox height, retain x", "mode=FitBV") outline.item("Fit bbox height, left 1/2 rect", "mode=FitBV;left=%lf" % (rl+72)) outline.item("", "mode=XYZ;zoom=1.5") outline.item("^^ an empty bookmark that zooms to 150%", "mode=XYZ;zoom=1.0") doc.page_end() doc.finalize() def test_main(argv=None): cfg = testlib.test_config() # cfg.set("doc.trace_level", "5") # cfg.set("doc.trace_show_loc", "0") do_invalid_destinations(argv, cfg, 'docoutline_invalid_dest.pdf') do_generic_bookmarks(argv, cfg, 'docoutline_generic.pdf') do_document(argv, cfg, 'docoutline.pdf') cfg.set("doc.version", "3") do_document(argv, cfg, 'docoutline13.pdf') cfg.set("doc.version", "4") cfg.set("doc.encryption", "standard") cfg.set("info.static_producer", "1") cfg.set("doc.static_file_id", "1") cfg.set("info.creation_date", "0") do_document(argv, cfg, 'docoutline_enc.pdf') ## fault injection fault_injection() if __name__ == "__main__": test_main() ``` #### File: apitest/py/grstatemachine.py ```python import jagpdf import jag.testlib as testlib dim = 200, 200 # tests graphics state machine def test_main(argv=None): doc = jagpdf.create_stream(testlib.NoopStreamOut()) doc.page_start(*dim) canvas = doc.page().canvas() testlib.must_throw(canvas.line_to, 20, 20) testlib.must_throw(canvas.path_paint, 'f') canvas.text_start(0, 0) testlib.must_throw(canvas.text, 10, 10, "Not allowed here!") canvas.text("This is OK") canvas.text_end() doc.page_end() doc.finalize() if __name__ == '__main__': test_main() ``` #### File: apitest/py/img-gamma.py ```python import jagpdf import os import jag.testlib as testlib g_font = testlib.EasyFont() def do_basic_page(writer): img_file = os.path.expandvars('${JAG_TEST_RESOURCES_DIR}/images/lena_uncalibrated.jpg') for g in [1.0, 1.4, 1.8, 2.2]: writer.page_start(5.6*72 + 4, 5.6*72 + 34) page = writer.page().canvas() img_spec = writer.image_definition() img_spec.format(jagpdf.IMAGE_FORMAT_JPEG) img_spec.file_name(img_file) img_spec.gamma(g) img = writer.image_load(img_spec); page.image(img, 2, 32) page.text_font(g_font(12)) page.text(10, 10, "gamma: " + str(g)) writer.page_end() def do_gamma_preserve(writer): img_file = os.path.expandvars('${JAG_TEST_RESOURCES_DIR}/images/lena_uncalibrated.jpg') writer.page_start(5.6*72 + 4, 6.6*72 + 34) page = writer.page().canvas() page.color_space("fs", jagpdf.CS_DEVICE_RGB) page.color("fs", .7, .2, .5) page.rectangle(2, 10, 5.6*72, 72) page.path_paint("fs") img_spec = writer.image_definition() img_spec.format(jagpdf.IMAGE_FORMAT_JPEG) img_spec.file_name(img_file) img_spec.gamma(2.2) img = writer.image_load(img_spec); page.image(img, 2, 32+74) # page.color("fs", .7, .8, .5) page.rectangle(46, 28, 4.2*72, 36) page.path_paint("fs") page.color("fs", .9, .9, .9) page.text_font(g_font(8)) page.text(10, 12, "[preserve gamma:] two rectangles in the same color, one contained in another") writer.page_end() def test_main(argv=None): doc_writer = testlib.create_test_doc(argv, 'img-gamma.pdf') g_font.set_writer(doc_writer) do_gamma_preserve(doc_writer) do_basic_page(doc_writer) doc_writer.finalize() if __name__ == '__main__': test_main() ``` #### File: apitest/py/kerning.py ```python import jagpdf import jag.testlib as testlib # AY and YA seems to have the largest kerning def test_main(argv=None): doc = testlib.create_test_doc(argv, 'kerning.pdf') font = doc.font_load('standard;name=Helvetica;size=12') pheight = 58 doc.page_start(7*72, pheight) canvas = doc.page().canvas() canvas.text_font(font) txt = "AYAYAYAYAYAYAYA YAYAYAYAYAYAYAYAYA YAYAYAYAYAYAYAY AYAYAYAYAY" # fetch widths finfo = font widths = [finfo.advance(c) for c in txt] txt_width = sum(widths) # draw bounding lines canvas.state_save() canvas.color('s', 0.8) canvas.move_to(12, 0) canvas.line_to(12, pheight) canvas.move_to(12+txt_width, 0) canvas.line_to(12+txt_width, pheight) canvas.path_paint('s') canvas.state_restore() # write whole string - single text object canvas.text_start(12, 12) canvas.text(txt) canvas.text_end() # write single characters - single text object canvas.text_start(12, 24) for c in txt: canvas.text(c) canvas.text_end() # write single characters - text object for each x = 12 for i,c in enumerate(txt): canvas.text_start(x, 36) canvas.text(c) canvas.text_end() x += widths[i] doc.page_end() doc.finalize() if __name__ == '__main__': test_main() ``` #### File: apitest/py/long_test.py ```python import jagpdf import jag.testlib as testlib import sys import os import threading s_profile =""" info.title = title info.author = unknown info.subject = unknown info.keywords = unknown info.creator = unknown info.creation_date = unknown """ s_image_dir = os.path.expandvars('${JAG_TEST_RESOURCES_DIR}') s_jpeg_file = os.path.join(s_image_dir, "images-jpeg", "PalmTree-CMYK-icc-FOGRA27.jpg") def test_main(argv=None): do_it() num_threads = 10 docs_per_thread = 3; while 1: threads = [WorkerThread(docs_per_thread) for i in xrange(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() class WorkerThread(threading.Thread): def __init__(self, num_docs): threading.Thread.__init__(self) self.num_docs = num_docs def run(self): while self.num_docs: do_it() self.num_docs -= 1 def do_it(): prof = jagpdf.create_profile_from_string(s_profile) stream = testlib.NoopStreamOut() doc = jagpdf.create_stream(stream) doc.page_start(5.9*72, 3.5*72) canvas = doc.page().canvas() # meat img = doc.image_load_file(s_jpeg_file) canvas.image(img, 50, 50) canvas.text(10, 10, 200 * 'a') canvas.move_to(10, 10) canvas.line_to(20, 20) canvas.path_paint("fs") font_ttf = testlib.EasyFontTTF(doc)(10) font_core = testlib.EasyFont(doc)(10) canvas.text_font(font_ttf) canvas.text(10, 10, 50 * 'x') font_ttf.advance('abcdefghijklmnopqrstuvwxyz') canvas.text_font(font_core) canvas.text(10, 10, 50 * 'y') font_core.advance('abcdefghijklmnopqrstuvwxyz') # finalize doc.page_end() doc.finalize() # touch the result s = 0 for b in stream.content(): s = s + ord(b) if __name__ == "__main__": test_main() ``` #### File: apitest/py/piechart.py ```python import jagpdf import jag.testlib as testlib import math paper = 597.6, 848.68 # -- scheme generator # http://www.wellstyled.com/tools/colorscheme2/index-en.html colors_str="""#FF3300 #B32400 #FFCCBF #FF9980 #00B366 #007D48 #BFFFE4 #80FFC9 #0033CC #00248F #BFCFFF #809FFF #FF9900 #B36B00 #FFE6BF #FFCC80 """ chart_data = [ ('Africa', 767), ('Asia', 3634), ('Europe', 729), ('South America and the Caribbean', 511), ('Northern America', 307), ('Oceania', 30) ] def color_to_rgb(str): r = int(str[1:3], 16) / 255.0 g = int(str[3:5], 16) / 255.0 b = int(str[5:7], 16) / 255.0 return r, g, b colors = [color_to_rgb(c) for c in colors_str.split()] def get_color(): for i in [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14]: yield colors[i] def draw_piechart(canvas, cx, cy, rx, ry, font, items, title, font_title): """items is a sequence of [name, quantity]""" total_quant = reduce(lambda s, i: s + i[1], items, 0) items.sort(lambda l, r: cmp(r[1], l[1])) color = get_color() color_map = dict([(name, color.next()) for name, q in items]) items.reverse() canvas.color_space('fs', jagpdf.CS_DEVICE_RGB) # shadow # canvas.color('f', 0.2, 0.2, 0.2) # canvas.arc(cx+4, cy-4, rx, ry, 0, 2 * math.pi) # canvas.path_paint('f') # chart angle = math.pi / 2.0 color = get_color() max_str_len = 0.0 canvas.line_join(jagpdf.LINE_JOIN_BEVEL) for name, quant in items: canvas.color('fs', *color_map[name]) sweep = quant * 2 * math.pi / total_quant canvas.arc(cx, cy, rx, ry, angle, sweep) canvas.line_to(cx, cy) canvas.path_close() canvas.path_paint('fs') angle += sweep max_str_len = max(max_str_len, font.advance(name)) # legend boxes items.reverse() legend_x, legend_y = cx - rx, cy + ry + (1 + len(items))*font.height() y = 0 box_h = font.bbox_ymax() - font.bbox_ymin() box_w = 20 for name, quant in items: canvas.color('f', *color_map[name]) canvas.rectangle(legend_x, legend_y - y + font.bbox_ymin(), box_w, box_h) canvas.path_paint('f') y += font.height() # legend text canvas.text_font(font) canvas.text_start(legend_x + box_w + 8, legend_y) perc_offset = max_str_len + 10 canvas.color('f', 0, 0, 0) for name, quant in items: canvas.text("%s" % name) canvas.text_translate_line(perc_offset, 0) canvas.text("%.2f%%" % (100.0 * quant / total_quant)) canvas.text_translate_line(-perc_offset, -font.height()) canvas.text_end() # edge # canvas.color('s', 0.5, 0.5, 0.5) # canvas.arc(cx, cy, rx, ry, 0, 2 * math.pi) # canvas.path_paint('s') # title canvas.text_font(font_title) canvas.color('f', 0, 0, 0) title_w = font_title.advance(title) canvas.text(legend_x + ((2 * rx - title_w) / 2.0), \ legend_y + 1.4 * font_title.height(), title) def test_main(argv=None): doc = testlib.create_test_doc(argv, 'piechart.pdf') font = doc.font_load('standard;name=Helvetica;size=12') font_title = doc.font_load('standard;name=Helvetica-Bold;size=28') doc.page_start(*paper) canvas = doc.page().canvas() draw_piechart(canvas, 300, 400, 250, 200, font, chart_data, 'World Population', font_title) doc.page_end() doc.finalize() if __name__ == "__main__": test_main() ``` #### File: apitest/py/t0133.py ```python import jagpdf import jag.testlib as testlib import os def do(writer): writer.page_start(3*72, 1.5*72) page = writer.page().canvas() img = os.path.expandvars('${JAG_TEST_RESOURCES_DIR}/images/klenot.png') page.image(writer.image_load_file(img, jagpdf.IMAGE_FORMAT_PNG), 10, 30) writer.page_end() def test_main(argv=None): profile = testlib.test_config() profile.set("doc.encryption", "standard") profile.set("doc.static_file_id", "1") profile.set("info.creation_date", "0") profile.set("info.static_producer", "1") doc = testlib.create_test_doc(argv, 'encrypted_indexed_cs.pdf', profile) do(doc) doc.finalize() if __name__ == '__main__': test_main() ``` #### File: code/tools/afm_parser.py ```python import glyphlist import glob import re from string import Template import sys import md5 from collections import defaultdict import math import random from StringIO import StringIO import os AFM_DIR = '../../external/data/Core14_AFMs/' TYPEMAN_DIR = '../src/resources/typeman/' class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) class Face: def __init__( self, ctx ): self.ctx = ctx self.chars = [] self.FontName = "" self.FullName = "" self.FamilyName = "" self.FontBBox = None #[llx lly urx ury] self.EncodingScheme = "" self.CharacterSet = "" self.CapHeight = 0 self.XHeight = 0 self.Ascender = 0 self.Descender = 0 self.UnderlinePosition = 0 self.BuiltinEncoding = 0 self.UnderlineThickness = 0 self.ItalicAngle = 0 self.IsFixedPitch = True self.Weight = 400 # 100-900 self.StdHW = 0 self.StdVW = 0 self.KernGetter = "NULL" self.md5 = md5.new() def finalize(self): if self.EncodingScheme == 'FontSpecific': # sort by unicode self.chars.sort( lambda l,r: cmp(l.code,r.code) ) else: # sort by code self.chars.sort( lambda l,r: cmp(l.unicode,r.unicode) ) def on_afm_line(self,line): """called for each input line""" self.md5.update( line ) class HandlerBase: def __init__( self, face ): self.face = face def on_line( self, s ): self.face.on_afm_line( s ) self.process_line_( s ) class FontMetricsHandler(HandlerBase): def __init__( self, face, arg ): HandlerBase.__init__( self, face ) def process_line_( self, s ): kwd, val = get_kwd_and_val(s) if kwd in set( ['FontName','FullName','FamilyName', 'EncodingScheme', 'CharacterSet'] ): setattr( self.face, kwd, val ) #verbatim elif kwd in set( [ 'CapHeight', 'XHeight', 'Ascender', 'Descender', 'UnderlinePosition', 'UnderlineThickness', 'StdHW', 'StdVW' ] ): setattr( self.face, kwd, int(val) ) elif kwd in set( ['ItalicAngle'] ): setattr( self.face, kwd, float(val) ) elif kwd == "FontBBox": self.face.FontBBox = [int(s) for s in val.split(" ") ] assert( len(self.face.FontBBox) == 4 ) elif kwd == "IsFixedPitch": self.face.IsFixedPitch = val=='true' and True or False elif kwd == "Weight": #see: http://www.w3.org/TR/CSS21/fonts.html#font-boldness self.face.Weight = { 'Medium' : 400, 'Normal' : 400, 'Roman' : 400, 'Bold' : 700, 'Light' : 300 }[val] elif kwd in set( ['Version', 'Notice', 'Comment', 'Characters'] ): pass #ignore elif kwd in set( ['MappingScheme', 'EscChar', 'IsBaseFont', 'VVector', 'IsFixedV', 'CharWidth'] ): assert not "unsupported keyword" else: print "kwd: ", kwd assert not "unknown keyword" class CharMetricsHandler(HandlerBase): def __init__( self, face, arg ): HandlerBase.__init__( self, face ) def process_line_( self, s ): l = [ item.strip().split( ' ', 1) for item in s.split(';')[:-1] ] rd = dict( l ) bbox = [int(s) for s in rd['B'].split(" ") ] assert( len(bbox) == 4 ) try: u = glyphlist.glyph_to_unicode_map[rd['N']] except: assert( self.face.EncodingScheme == 'FontSpecific' ) u = 0 self.face.chars.append( Bunch(unicode=u, code=int(rd['C']), widthx=int(rd['WX']), bbox=bbox) ) class KernDataHandler(HandlerBase): def __init__( self, face, arg ): HandlerBase.__init__( self, face ) def process_line_( self, s ): assert not "should not get here" class KernPairsHandler(HandlerBase): def __init__( self, face, arg ): HandlerBase.__init__( self, face ) self.getter_fun = None def process_line_( self, s ): kwd, left, right, value = s.split(' ') assert( kwd == 'KPX' ) left = glyphlist.glyph_to_unicode_map[left] right = glyphlist.glyph_to_unicode_map[right] # store the kerning info to ctx.kern_dict, # which is (left, right) -> {get_fun: value} if not self.getter_fun: self.getter_fun = 'kern_' + font_name_to_id(self.face.FontName) self.face.KernGetter = self.getter_fun self.face.ctx.kern_dict[(left,right)][self.getter_fun] = value def get_kwd_and_val( line ): sp = line.split( " ", 1 ) assert( len(sp) == 1 or len(sp) == 2 ) if len(sp) == 1: return sp[0], None else: return sp def get_handler_type( handler ): return globals()[handler+'Handler'] def font_name_to_id( fontname ): return re.sub( '[^a-zA-Z_]', '_', fontname ) def font_name_to_enum( fontname ): return "T1_" + font_name_to_id( fontname ).upper() def process_afm(instream, ctx): """processes single afm file""" handlers = [] face = Face(ctx) for line in instream: line = line.strip() key, val = get_kwd_and_val( line ) if key.startswith( 'Start' ): handlers.append( get_handler_type( key[5:] )(face, val) ) elif key.startswith( 'End' ): last=handlers.pop() assert( last.__class__==get_handler_type(key[3:]) ) else: handlers[-1].on_line( line ) face.finalize() return face; def process_afm_dir(dirname, ctx): """non-recursively processes diretory of afm files""" faces = [] for fname in glob.glob( dirname + '/*.afm' ): faces.append(process_afm(open(fname), ctx)) return faces ########################################################################### # header generator cpp_header_muster=""" """ def do_cpp_header( faces, outs ): ENUMS = ",\n ".join( [ font_name_to_enum(f.FontName) for f in faces ] ) header_templ = os.path.join(TYPEMAN_DIR, 't1adobestandardfonts.h.template') header_templ = open(header_templ).read() outs.write( Template(header_templ).substitute(locals())) ########################################################################### # cpp generator cpp_impl_muster=""" """ kern_getter_templ=""" Int $getter_fun(kern_offsets_t const& krec) { return krec.$value_holder; } """ def make_kern_pair_key(left, right): return left + (right << 16) def output_kern_table(templ, ctx, getter_to_index, value_to_index): # insertion into the hash table depends on randomizer, so make it # deterministic here random.seed(0) # these 3 primes in combination with table size give ~93% load factor hash1_p = 226783 hash2_p = 1354601 hash3_p = 1622471 hash_table_size = 3491 num_hash_functions = 3 num_cells = 1 h = HFunctionsDivision(hash1_p, hash2_p, hash3_p) # these 2 primes in combination with table size give ~62% load factor hash1_p = 16069 hash2_p = 43787 hash_table_size = 5261 num_hash_functions = 2 h = HFunctionsDivision(hash1_p, hash2_p) # 2 primes, 2 cells -> 91.7% hash1_p = 1984061 hash2_p = 885931 num_cells = 2 h = HFunctionsDivision(hash1_p, hash2_p) hash_table_size = 1777 # ch = CuckooNest(hash_table_size, h, num_cells) result = [] min_unicode, max_unicode = sys.maxint, 0 values = {} # offset tuple -> its index values[(0, 0, 0, 0, 0, 0)] = 0 for k, v in ctx.kern_dict.iteritems(): key = make_kern_pair_key(*k) min_unicode = min(min_unicode, k[0], k[1]) max_unicode = max(max_unicode, k[0], k[1]) value = 8 * [0] for getter, val in v.iteritems(): value[getter_to_index[getter]] = value_to_index[val] value = tuple(value) try: value_i = values[value] except KeyError: value_i = len(values) values[value] = value_i ch.insert(key, str(value_i)) result += ch.c_output("{0xffffffff, 0}") kerning_table = ",\n ".join(result) num_kerning_offsets = len(values) offset_list = [(v, k) for k, v in values.iteritems()] offset_list.sort() off_tuples = (os for i, os in offset_list) off_strings = (", ".join(str(o) for o in off) for off in off_tuples) offset_c_values = ("{%s}" % s for s in off_strings) kerning_offsets = ",\n ".join(offset_c_values) return Template(templ).safe_substitute(locals()) def output_kern_data(templ, ctx): """outputs data needed for pair kerning""" getters, values = set(), set() for pair, d in ctx.kern_dict.iteritems(): for g, val in d.iteritems(): getters.add(g) values.add(val) getter_to_index = dict([(g, i) for i, g in enumerate(getters)]) vlist = [(v, i + 1) for i, v in enumerate(values)] vlist.append((0, 0)) vlist.sort(lambda l, r : cmp(l[1], r[1])) value_to_index = dict(vlist) kern_values = ",\n ".join((str(v) for v, i in vlist)) templ = output_kern_table(templ, ctx, getter_to_index, value_to_index) # output getter functions (they access offset value for given font) kerning_getters = [] for getter_fun, value_holder_i in getter_to_index.iteritems(): value_holder = "offset_%d" % value_holder_i kerning_getters.append(Template(kern_getter_templ).substitute(locals())) kerning_getters = "\n".join(kerning_getters) return Template(templ).safe_substitute(locals()) def do_cpp_impl(faces, outs, ctx): FACE_PTRS = ",\n ".join( [ "&"+font_name_to_id(f.FontName) for f in faces ] ) FACE_DEFS = [] for face in faces: FACE_DEFS.append( do_cpp_impl_face(face) ) FACE_DEFS = "\n".join( FACE_DEFS ) impl_templ = os.path.join(TYPEMAN_DIR, 't1adobestandardfonts.cpp.template') impl_templ = open(impl_templ).read() impl_templ = output_kern_data(impl_templ, ctx) outs.write(Template(impl_templ).substitute(locals())) cpp_impl_face_muster=""" const int ${FACEID}_num_glyphs = $NUM_GLYPHS; const t1s_glyph ${FACEID}_glyphs[${FACEID}_num_glyphs] = { ${GLYPHS_DEF} }; const t1s_face $FACEID = { { /* units */ 1000, /* bbox_xmin */ $FontBBox_xmin, /* bbox_ymin */ $FontBBox_ymin, /* bbox_xmax */ $FontBBox_xmax, /* bbox_ymax */ $FontBBox_ymax, /* baseline_distance */ $BaselineDistance, /* ascender */ $Ascender, /* descender */ $Descender, /* avg_width */ $AvgWidth, /* max_width */ $MaxWidth, /* missing_width */ $MissingWidth, /* cap height */ $CapHeight, /* xheight */ $XHeight }, /* font metrics */ /* font name */ \"$FontName\", /* full name */ \"$FullName\", /* family name */ \"$FamilyName\", /* encoding scheme */ \"$EncodingScheme\", /* built-in encoding */ $BuiltinEncoding, /* char set */ \"$CharacterSet\", /* underline position */ $UnderlinePosition, /* underline thickness */ $UnderlineThickness, /* italic angle */ $ItalicAngle, /* is fixed pitch */ $IsFixedPitch, /* weight */ $Weight, /* horizontal stem w */ $StdHW, /* vertical stem w */ $StdVW, /* num glyphs */ $NUM_GLYPHS, /* glyph metrics */ ${FACEID}_glyphs, /* kerning getter */ ${KernGetter}, /* hash */ { $HASH } }; """ def calc_face_width_attrs( face ): AvgWidth, MaxWidth, MissingWidth = 0, -1, -1 for c in face.chars: AvgWidth += c.widthx if c.widthx > MaxWidth: MaxWidth = c.widthx if c.unicode == 32: MissingWidth = c.widthx AvgWidth = AvgWidth / len( face.chars ) return locals() def do_cpp_impl_face(face): FACEID = font_name_to_id( face.FontName ) NUM_GLYPHS = len(face.chars) GLYPHS_DEF = [] for i in range( 0, NUM_GLYPHS, 5 ): GLYPHS_DEF.append( ", ".join( ["{%d,%d,%d}" % (c.unicode, c.code, c.widthx) for c in face.chars[i:i+5]] ) ) GLYPHS_DEF = ",\n ".join(GLYPHS_DEF) locals().update( face.__dict__ ) locals()['IsFixedPitch'] = locals()['IsFixedPitch'] and "true" or "false" locals()['BuiltinEncoding'] = locals()['EncodingScheme'] == 'FontSpecific' and "true" or "false" HASH = ", ".join( [ "0x%02x"%ord(b) for b in face.md5.digest() ] ) locals().update( calc_face_width_attrs(face) ) FontBBox_xmin = face.FontBBox[0] FontBBox_ymin = face.FontBBox[1] FontBBox_xmax = face.FontBBox[2] FontBBox_ymax = face.FontBBox[3] # taken from FreeType, t1objs.c BaselineDistance = 1000*12/10 if BaselineDistance < locals()['Ascender']-locals()['Descender']: BaselineDistance = locals()['Ascender']-locals()['Descender'] return Template(cpp_impl_face_muster).substitute( locals() ) def gen_cpp_jagbase(): ctx = Bunch(kern_dict=defaultdict(lambda : {})) faces = process_afm_dir(AFM_DIR, ctx) if faces: header_file = os.path.join(TYPEMAN_DIR, 't1adobestandardfonts.h') do_cpp_header(faces, open(header_file, 'wb' )) impl_file = os.path.join(TYPEMAN_DIR, 't1adobestandardfonts.cpp') do_cpp_impl(faces, open(impl_file, 'wb'), ctx) #C 33 ; WX 600 ; N exclam ; B 202 -15 398 572 ; def encoding_status(): content = open(AFM_DIR + 'Courier-Bold.afm').read() names = re.compile('; N ([a-zA-Z]+) ;') core_names = set(names.findall(content)) encodings = ['windows-1250', 'windows-1251', 'windows-1252', 'windows-1253'] for enc in encodings: for i in xrange(128,256): try: c = unicode(chr(i), enc) assert len(c) == 1 codepoint = ord(c[0]) name = glyphlist.unicode_to_glyph(codepoint) if name not in core_names: print enc, name, "0x%x" % codepoint except UnicodeDecodeError, err: print enc, err # --------------------------------------------------------------------------- # kerning stats # def kern_generator(): from glyphlist import glyph_to_unicode_map as gmap for fontfile in glob.glob('../../external/data/Core14_AFMs/*.afm'): for line in open(fontfile): if line.startswith('KPX'): kpx, left, right, offset = line.split() yield fontfile, gmap[left], gmap[right], offset def kern_stats(): # unique lefts per font # avg number of rights per single left # % of kern pairs in all pair in lorem ipsum kd = defaultdict(lambda : {}) pairs_total = 0 pairs_unique = set() values_unique = set() pairs_per_font = defaultdict(lambda : 0) pairs_freq_font = defaultdict(lambda : 0) max_unicode = 0 max_left = 0 max_right = 0 min_left = sys.maxint min_right = sys.maxint max_diff = 0 glyphs = set() max_val, min_val = 0, sys.maxint for font, left, right, val in kern_generator(): kd[font][(left, right)] = val pairs_total += 1 pairs_unique.add((left, right)) values_unique.add(val) max_val = max(max_val, int(val)) min_val = min(min_val, int(val)) pairs_per_font[font] += 1 pairs_freq_font[(left, right)] += 1 max_unicode = max(max_unicode, left, right) max_left = max(max_left, left) max_right = max(max_right, right) min_left = min(min_left, left) min_right = min(min_right, right) max_diff = max(max_diff, abs(left - right)) glyphs.add(left) glyphs.add(right) # post-proc pairs_dist = defaultdict(lambda : 0) for v in pairs_freq_font.itervalues(): pairs_dist[v] += 1 # out log2_glyphs = defaultdict(lambda : 0) for g in glyphs: log2_glyphs[math.ceil(math.log(g, 2))] += 1 print 'total:', pairs_total print 'unique pairs:', len(pairs_unique), ', tree depth:', math.log(len(pairs_unique), 2) print 'unique glyphs:', len(glyphs) print 'unique values:', len(values_unique) print 'min val:', min_val, ', max_val:', max_val, ", diff:", (max_val - min_val) print 'pairs per font:', ', '.join([str(v) for v in pairs_per_font.itervalues()]) print 'pairs freq in fonts:', ', '.join(['%d: %d' % (k, v) for k, v in pairs_dist.iteritems()]) print 'bits per glyph:', ', '.join(("%d: %d" % (k, v) for k, v in log2_glyphs.iteritems())) print 'max unicode:', max_unicode, ', max left:', max_left, ', max right:', max_right print 'min left:', min_left, ', min right:', min_right, ', max diff:', max_diff class CuckooNest: def __init__(self, nr_buckets, hash_funs, nr_cells=1): self.nr_buckets = nr_buckets self.hash_funs = hash_funs self.nr_cells = nr_cells self.table = nr_cells * nr_buckets * [None] self.nr_items = 0 def cells(self, n, key): """Calculate hash using n-th hash function and return a list of cell indices.""" pos = self.hash_funs(n, key) % self.nr_buckets return [self.nr_cells * pos + n for n in range(self.nr_cells)] def insert(self, key, value): cells = self.cells(0, key) item = (key, value) for n in xrange(self.nr_items + 1): for cell in cells: if None == self.table[cell]: self.table[cell] = item self.nr_items += 1 return p0 = random.choice(cells) item, self.table[p0] = self.table[p0], item all_cells = [self.cells(i, item[0]) for i in range(len(self.hash_funs))] all_cells.remove(cells) cells = random.choice(all_cells) raise TableFull('cannot insert %d' % item[0]) def load_factor(self): return float(self.nr_items) / len(self.table) def lookup(self, key): for i in range(len(self.hash_funs)): pos = self.cells(i, key) for p in pos: if self.table[p] and self.table[p][0] == key: return self.table[p][1] return None def stats(self): print '#items:', self.nr_items print 'load factor:', float(self.nr_items) / len(self.table) def load_factor(self): return float(self.nr_items) / len(self.table) def c_output(self, empty_slot): result = [] for i in range(len(self.table)): item = self.table[i] if item != None: result.append("{0x%08x, %s}" % item) else: result.append(empty_slot) return result class TableFull(Exception): def __init__(self, msg): Exception.__init__(self, msg) class HFunctionsDivision: def __init__(self, *primes): self.primes = primes def __call__(self, i, key): return key % self.primes[i] def __len__(self): return len(self.primes) def __str__(self): return 'Division: ' + ', '.join((str(p) for p in self.primes)) def HDivisionIter(): # h = HFunctionsDivision(1984061, 885931) # yield CuckooNest(1777, h, 2), h while 1: from primes import primes h = HFunctionsDivision(random.choice(primes), random.choice(primes), random.choice(primes)) yield CuckooNest(3491, h), h import itertools def eratosthenes(): '''Yields the sequence of prime numbers via the Sieve of Eratosthenes.''' D = { } # map each composite integer to its first-found prime factor for q in itertools.count(2): # q gets 2, 3, 4, 5, ... ad infinitum p = D.pop(q, None) if p is None: # q not a key in D, so q is prime, therefore, yield it yield q # mark q squared as not-prime (with q as first-found prime factor) D[q*q] = q else: # let x <- smallest (N*p)+q which wasn't yet known to be composite # we just learned x is composite, with p first-found prime factor, # since p is the first-found prime factor of q -- find and mark it x = p + q while x in D: x += p D[x] = p def gen_primes(n): print "primes = [ \\" for p in eratosthenes(): if p > n: break print "%d," % p print "]" def get_pairs_dict(): pairs_dict = {} min_key, max_key = sys.maxint, 0 for font, left, right, val in kern_generator(): pairs_dict.setdefault((left, right), {})[font] = val return pairs_dict def output_keys(): for k, v in get_pairs_dict().iteritems(): print make_kern_pair_key(*k) def hfuns_generator(n): from primes import primes while 1: yield HFunctionsDivision(*[random.choice(primes) for i in range(n)]) def test_load_factor(): from primes import primes N = 50 p1 = primes.index(5003) # 3271 p2 = primes.index(6007) sizes = primes[p1:p2] pairs_dict = get_pairs_dict() items = [(make_kern_pair_key(*k), v) for k, v in pairs_dict.iteritems()] cells = 1 maximize_load_factor(N, items, sizes, hfuns_generator(2), cells) def maximize_load_factor(N, input_data, nr_buckets_lst, hfun_gen, nr_cells): found, reset = 1, 2 low, high = 0, len(nr_buckets_lst) status = reset while high > low: if status & reset: max_factor = 0.0 nr_tries = N mid = low + (high - low) / 2 else: nr_tries *= 2 status = reset for i in xrange(nr_tries): hfuns = hfun_gen.next() htable = CuckooNest(nr_buckets_lst[mid], hfuns, nr_cells) try: for key, val in input_data: htable.insert(key, val) print 'OK:', nr_buckets_lst[mid], htable.load_factor(), hfuns high = mid - 1 status = found | reset break except TableFull: if htable.load_factor() > max_factor: max_factor = htable.load_factor() status = 0 if status == reset: print 'not found:', nr_buckets_lst[mid], ', load factor:', max_factor, \ 'target was:', len(input_data) / float(nr_buckets_lst[mid]) low = mid + 1 def construct_hash_table(): pairs_dict = get_pairs_dict() found = False best_lf = 0.0 hiter = HDivisionIter() for h, funs in hiter: try: for k, v in pairs_dict.iteritems(): h.insert(make_kern_pair_key(*k), v) h.stats() found = True break except TableFull, exc: if h.load_factor() > best_lf: print 'Load factor: %.3f' % h.load_factor(), 'for', funs best_lf = h.load_factor() # verify if found: for k, v in pairs_dict.iteritems(): assert v == h.lookup(make_kern_pair_key(*k)) assert h.lookup(make_kern_pair_key(5000, 5000)) == None print 'OK for ' + str(funs) return h else: print 'FAILED' def kern_frequency(fname): h = construct_hash_table() data = " ".join(open(fname).read().split()) freq = 0 for i in range(0, len(data)-1): k = make_kern_pair_key(ord(data[i]), ord(data[i+1])) if h.lookup(k): freq += 1 return len(data), freq, float(freq) / (len(data)-1) if __name__ == "__main__": #gen_cpp_jagbase() #encoding_status() #kern_stats() #construct_hash_table() test_load_factor() #gen_primes(0x20002c) # redirect to primes.py #print kern_frequency('/home/jarda/tmp/kant-critique-142.txt') #test_is_prime() #output_keys() ``` #### File: code/tools/doc_generator.py ```python import sys import os import fnmatch import shutil def cmd_stdout( cmd, indata=None ): in_, out = os.popen4( cmd ) if indata: in_.write( indata ) in_.close() outdata = out.read() ret = out.close() retcode = ret!=None and ret or 0 return retcode, outdata def get_root_dir(): root = os.getenv( 'JAGBASE_ROOT' ) if not root: raise RuntimeError( 'JAGBASE_ROOT not defined.' ) return os.path.abspath(root) def glob_iter( dirname, patterns ): for dirpath, dirnames, filenames in os.walk(dirname): for pat in patterns: files = [ os.path.join( dirpath, f ) for f in filenames ] for fname in fnmatch.filter(files, pat ): yield os.path.abspath( fname ) # copying of the resulting html files is done here def process_html( lang ): bjam_args = "-a doc html doc-lang=%s" % lang retcode, outdata = run_bjam_cmd( bjam_args ) print outdata if retcode: raise RuntimeError( 75*'-' + '\nbjam failed with %d' % retcode ) copy_htmldoc_files(lang) def copy_htmldoc_files(lang): html_src_dir = os.path.abspath( os.path.join( get_root_dir(), 'doc/quickbook/html/' ) ) dist_dir = os.path.abspath( os.path.join( get_root_dir(), 'distribution/doc/%s/html' % lang ) ) prefix_len = len(html_src_dir) + 1 for fname in glob_iter(html_src_dir, ['*.png', '*.html', '*.css'] ): dest = os.path.join( dist_dir, fname[prefix_len:] ) target_dir = os.path.dirname( dest ) if not os.path.isdir( target_dir ): os.makedirs( target_dir ) shutil.copyfile( fname, dest ) # copying of certain formats is carried out by the dist-doc target def process_self_installing( lang, format ): bjam_args = "-a dist-doc %s doc-lang=%s" % ( format, lang ) retcode, outdata = run_bjam_cmd( bjam_args ) print outdata if retcode: raise RuntimeError( 75*'-' + '\nbjam failed with %d' % retcode ) # bjam is run from the quickbook directory def run_bjam_cmd( args ): run_dir = os.path.join( get_root_dir(), 'doc/quickbook' ) curr_dir = os.getcwd() os.chdir( run_dir ) try: cmd = 'bjam ' + args retcode, output = cmd_stdout( cmd ) finally: os.chdir( curr_dir ) return retcode, output def main(): lang, format = parse_cmd_line() if format in ['ps', 'pdf']: process_self_installing( lang, format ) else: globals()['process_'+format]( lang ) helpik="""doc_generator.py <c,cpp,python> <html,pdf,ps>""" def usage(): print helpik sys.exit(1) def parse_cmd_line(): """returns (language, format)""" def check_arg( arg, allowed ,feat ): if arg not in allowed: raise RuntimeError( "Unknown %s: %s" % ( feat, arg ) ) if len(sys.argv) != 3: usage() check_arg( sys.argv[1], ['c', 'cpp', 'python' ], 'language' ) check_arg( sys.argv[2], ['html', 'pdf', 'ps' ], 'format' ) return sys.argv[1:] if __name__ == "__main__": try: main() except RuntimeError, exc: print exc sys.exit(1) ``` #### File: pygccxml/declarations/typedef.py ```python import declaration import dependencies class typedef_t( declaration.declaration_t ): """describes C++ typedef declaration""" def __init__( self, name='', type=None ): """creates class that describes C++ typedef""" declaration.declaration_t.__init__( self, name ) self._type = type def _get__cmp__items( self ): """implementation details""" return [self.type] def __eq__(self, other): if not declaration.declaration_t.__eq__( self, other ): return False return self.type == other.type def _get_type(self): return self._type def _set_type(self, type): self._type = type type = property( _get_type, _set_type , doc="reference to the original L{type<type_t>}" ) def i_depend_on_them( self, recursive=True ): return [ dependencies.dependency_info_t( self, self.type ) ] @property def byte_size (self): "Size of this type in bytes @type: int" return self._type.byte_size @property def byte_align (self): "alignment of this type in bytes @type: int" return self._type.byte_align ``` #### File: pygccxml/declarations/type_visitor.py ```python class type_visitor_t(object): """ types visitor interface All functions within this class should be redefined in derived classes. """ def __init__(self): object.__init__(self) def visit_void( self ): raise NotImplementedError() def visit_char( self ): raise NotImplementedError() def visit_unsigned_char( self ): raise NotImplementedError() def visit_signed_char( self ): raise NotImplementedError() def visit_wchar( self ): raise NotImplementedError() def visit_short_int( self ): raise NotImplementedError() def visit_short_unsigned_int( self ): raise NotImplementedError() def visit_bool( self ): raise NotImplementedError() def visit_int( self ): raise NotImplementedError() def visit_unsigned_int( self ): raise NotImplementedError() def visit_long_int( self ): raise NotImplementedError() def visit_long_unsigned_int( self ): raise NotImplementedError() def visit_long_long_int( self ): raise NotImplementedError() def visit_long_long_unsigned_int( self ): raise NotImplementedError() def visit_float( self ): raise NotImplementedError() def visit_double( self ): raise NotImplementedError() def visit_long_double( self ): raise NotImplementedError() def visit_complex_long_double(self): raise NotImplementedError() def visit_complex_double(self): raise NotImplementedError() def visit_complex_float(self): raise NotImplementedError() def visit_jbyte(self): raise NotImplementedError() def visit_jshort(self): raise NotImplementedError() def visit_jint(self): raise NotImplementedError() def visit_jlong(self): raise NotImplementedError() def visit_jfloat(self): raise NotImplementedError() def visit_jdouble(self): raise NotImplementedError() def visit_jchar(self): raise NotImplementedError() def visit_jboolean(self): raise NotImplementedError() def visit_volatile( self ): raise NotImplementedError() def visit_const( self ): raise NotImplementedError() def visit_pointer( self ): raise NotImplementedError() def visit_reference( self ): raise NotImplementedError() def visit_array( self ): raise NotImplementedError() def visit_free_function_type( self ): raise NotImplementedError() def visit_member_function_type( self ): raise NotImplementedError() def visit_member_variable_type( self ): raise NotImplementedError() def visit_declarated( self ): raise NotImplementedError() def visit_restrict( self ): raise NotImplementedError() ``` #### File: code/tools/msggen.py ```python import StringIO import time import os import string import re import sys ## ## Globals ## g_curr_time = time.strftime( '%c' ) ## ## Templates ## prologue = """// Copyright (c) 2005-2009 <NAME> // // Distributed under the MIT license (See accompanying file // LICENSE.txt or copy at http://jagpdf.org/LICENSE.txt) // // this file was generated by msggen.py """ epilogue = """ } // namespace jag /** EOF @file */ """ msg_header_file=""" #include <core/errlib/except.h> #include <boost/format/format_fwd.hpp> #include <boost/shared_ptr.hpp> namespace jag { ${header_cont} """ msg_impl_file=""" #include <${msg_include}> #include <boost/format.hpp> using namespace boost; namespace jag { static shared_ptr<format> my_fmt( const char* fmtstr ) { shared_ptr<format> fmter( new format(fmtstr) ); fmter->exceptions(io::no_error_bits); return fmter; } ${impl_cont} """ msg_decl=""" struct msg_${msg_name} { boost::shared_ptr<boost::format> m_fmt; public: msg_${msg_name}( ${ctor_args} ); operator msg_info_t() const; static unsigned msg_id(); }; """ msg_def=""" msg_${msg_name}::msg_${msg_name}( ${ctor_args} ) { m_fmt = my_fmt( \"${msg_txt}\" ); *m_fmt ${fmt_action}; } msg_${msg_name}::operator msg_info_t() const { return msg_info_t( msg_id(), m_fmt->str() ); } unsigned msg_${msg_name}::msg_id() { return ${msg_id}; } """ try: import hashlib md5_creator = hashlib.md5 except ImportError: import md5 md5_creator = md5.new def get_guards( fname ): if os.path.splitext(fname)[1]!='.h': return '','' m = md5_creator() m.update(os.path.basename(fname)) guard = 'JAG_' + m.hexdigest() return string.Template( '#ifndef ${guard}\n#define ${guard}\n' ).substitute( locals()),\ string.Template( '#endif // ${guard}\n' ).substitute( locals()) re_fmt_plh = re.compile( "%([0-9])(.)%" ) def handler_msg( opts, line ): # print 'msg:', line msg_id, msg_name, msg_txt = line.split( None, 2 ) # form message id msg_id = int(msg_id) assert msg_id < 65536 # msg id is 16bit msg_id += opts['module_id'] msg_id = "0x%x" % msg_id if msg_id in opts.setdefault( 'msgids', set() ): assert not "duplicate ids" opts['msgids'].add( msg_id ) # form formatting args fmtargs_s = set() for item in re_fmt_plh.findall( msg_txt ): fmtargs_s.add( item ) fmtargs_l = [ (int(n), f) for n,f in fmtargs_s ] fmtargs_l.sort() ctor_args, fmt_action = [], '' arg2type = { 'i' : 'int',\ 's' : 'char const*' } for i, (n,f) in enumerate( fmtargs_l ): assert i+1 == n # check missing fmt arguments (one-based) ctor_args.append( "%s p%d" % (arg2type[f], n ) ) fmt_action = fmt_action + " %% p%d" % n ctor_args = ", ".join( ctor_args ) # remove type specifier from the fmt str msg_txt = re_fmt_plh.sub( lambda m: '%%%d%%' % int(m.group(0)[1]), msg_txt ) # write message declaration and definition opts['msg_h'].write( string.Template( msg_decl ).substitute( locals() ) ) opts['msg_c'].write( string.Template( msg_def ).substitute( locals() ) ) def finalize( fname, buff ): fout = open( fname, 'wb' ) guard_start, guard_end = get_guards( fname ) if fname.endswith( 'cpp' ): fout.write( '#include "precompiled.h"\n' ) fout.write( prologue ) fout.write( guard_start ) fout.write( buff ) fout.write( epilogue ) fout.write( guard_end ) fout.close() remsg_head = re.compile( '\[messages=([0-9]+)\]' ) def main( infile, impl_fname, header_fname ): opts = dict( msg_h = StringIO.StringIO(),\ msg_c = StringIO.StringIO() ) handler = None for line in open( infile ): line = line.strip() if not line or line[0] == '#': continue else: m = remsg_head.match( line ) if m: opts['module_id']=int(m.group(1)) assert opts['module_id'] < 256 # module id is 8 bit opts['module_id'] = opts['module_id'] << 16 handler=handler_msg continue assert handler handler( opts, line ) msg_include = os.path.basename( header_fname ) header_cont = opts['msg_h'].getvalue() finalize( header_fname, string.Template( msg_header_file ).substitute( locals() ) ) impl_cont = opts['msg_c'].getvalue() finalize( impl_fname, string.Template( msg_impl_file ).substitute( locals() ) ) if __name__ == "__main__": # main( "msgdef.jmsg", "msg.cxx", "msg.h" ) # sys.exit(0) if len(sys.argv) != 4: print "usage msggen <msgdef_file> <impl_file> <header_file>" sys.exit(1) main( sys.argv[1], sys.argv[2], sys.argv[3] ) ``` #### File: tools/source_parsing/doxyxml.py ```python import os import new import sys try: import xml.dom.minidom from xml.dom.ext.Dom2Sax import Dom2SaxParser import xml.xpath except ImportError: # these are needed only for the documentation build pass def normalize_cpp_id( id_ ): if id_.startswith('::'): return id_[2:] return id_ def nodeattr( node, key ): return node.attributes[(None,key)].nodeValue ########################################################################### # saxhandler wraps class saxhandler_with_filtering: """filters out specified elements""" def __init__( self, h, elements ): self.h = h self.elements = elements self.blocked = [] def startElement( self, name, attrs ): if not self.blocked: if name in self.elements: self.blocked.append( name ) else: self.h.startElement( name, attrs ) def endElement( self, name ): if name in self.elements: assert self.blocked[-1] == name self.blocked.pop() elif not self.blocked: self.h.endElement( name ) def characters( self, ch ): if not self.blocked: self.h.characters( ch ) class saxhandler_first_node: """lets through only the first node""" def __init__( self, h ): self.h = h self.s = [] self.done = False def startElement( self, name, attrs ): if not self.done: self.s.append( name ) self.h.startElement( name, attrs ) def endElement( self, name ): if not self.done: self.h.endElement( name ) self.s.pop() if not self.s: self.done = True def characters( self, ch ): if not self.done: self.h.characters( ch ) ########################################################################### # object hirerarchy class doxybase(object): def __init__( self, node, doxy ): self.node_ = node self.doxy = doxy def is_internal(self): for xpath in ['detaileddescription/internal', 'briefdescription/internal']: if xml.xpath.Evaluate(xpath, self.node_): return True return False def is_publicly_documented(self): for xpath in ['detaileddescription//jag_undocumented', 'briefdescription//jag_undocumented']: if xml.xpath.Evaluate(xpath, self.node_): return False return True def _process_node( self, xpath, handler, allow_empty=False, first_child=True, take_parent=False ): nodes = xml.xpath.Evaluate(xpath, self.node_) if not nodes and allow_empty: return assert len(nodes)==1 p = Dom2SaxParser() p.setContentHandler(handler) node = first_child and nodes[0].firstChild or nodes[0] if take_parent: node = node.parentNode p.parse(node) def detailed_desc(self, handler): hwrap = saxhandler_with_filtering(handler, set( ['simplesect', 'parameterlist'] ) ) self._process_node( 'detaileddescription', hwrap ) def brief_desc(self, handler): self._process_node( 'briefdescription', handler ) def parameters_desc(self, handler): hwrap = saxhandler_first_node(handler) # @kind="exception" -> exceptions self._process_node( 'detaileddescription/para/parameterlist[@kind="param"]', hwrap, True, False ) def simplesect_desc(self, handler, kind ): hwrap = saxhandler_first_node(handler) self._process_node( 'detaileddescription/para/simplesect[@kind="%s"]'%kind, hwrap, True, False ) # To add a custom alias go to file doxyfile-template and adjust the # ALIAS option. The alias should look like this: # # ALIAS = jag_alias="\par My Alias.\n\xmlonly<jag_alias/>\endxmlonly" # # Details: # If we use "@jag_alias my alias text" somewhere in the documentation # then Doxygen inserts <jag_alias/> as a sibling of "my alias # text". So we need to find <jag_alias/> element first and then # process its parent. # def custom_alias_desc(self, handler, alias): hwrap = saxhandler_with_filtering(handler, set(['title', alias])) self._process_node( 'detaileddescription/para/simplesect[@kind="par"]/para/%s' % alias, hwrap, True, False, take_parent=True ) def id(self): return nodeattr( self.node_, 'id' ) class class_d(doxybase): def __init__( self, node, doxy ): doxybase.__init__( self, node, doxy ) def method( self, name ): xpath = 'sectiondef/memberdef[@kind="function"]/name/text()' nodes = [ node for node in xml.xpath.Evaluate(xpath, self.node_) if node.nodeValue == name] assert len(nodes) == 1 return memfun_d( nodes[0].parentNode.parentNode, self.doxy ) class memfun_d(doxybase): def __init__( self, node, doxy ): doxybase.__init__( self, node, doxy ) assert self.node_.parentNode.nodeName == 'sectiondef' def section( self ): """ ret values: 'user-defined', 'public-func' """ return nodeattr( self.node_.parentNode, 'kind' ) def section_header( self ): assert self.section() == 'user-defined' return xml.xpath.Evaluate('header/text()', self.node_.parentNode)[0].nodeValue def section_desc( self, handler ): """returns node""" assert self.section() == 'user-defined' nodes = xml.xpath.Evaluate('description', self.node_.parentNode) if nodes: assert len(nodes) == 1 node = nodes[0] p = Dom2SaxParser() p.setContentHandler(handler) p.parse(node.firstChild) class enumeration_d(doxybase): def __init__( self, node, doxy ): doxybase.__init__( self, node, doxy ) def value( self, value_str ): xpath = 'enumvalue/name/text()' nodes = [ node for node in xml.xpath.Evaluate(xpath, self.node_) if node.nodeValue == value_str] assert len(nodes) == 1 return enum_value_d( nodes[0].parentNode.parentNode, self.doxy ) class enum_value_d(doxybase): def __init__( self, node, doxy ): doxybase.__init__( self, node, doxy ) class function_d(doxybase): def __init__( self, node, doxy ): doxybase.__init__( self, node, doxy ) ########################################################################### class Doxy: def __init__( self, dir_ ): self.dir_ = os.path.abspath( dir_ ) self.cache = {} self.index = self._get_doc( 'index.xml' ) def _get_doc( self, name ): if name not in self.cache: doc = xml.dom.minidom.parse(os.path.join(self.dir_, name)).documentElement self.cache[name] = doc return self.cache[name] def _generic_find( self, xpath, name ): name = normalize_cpp_id( name ) nodes = [ node for node in xml.xpath.Evaluate(xpath, self.index) if node.nodeValue == name] if len(nodes) != 1: raise RuntimeError( "Doxy: number of nodes for '%s' is %d" % (name,len(nodes)) ) return nodes[0].parentNode.parentNode def find_class( self, name ): xpath = 'compound[@kind="class"]/name/text()' cls_node = self._generic_find( xpath, name ) xmlfile = nodeattr( cls_node, 'refid' ) + '.xml' doc = self._get_doc( xmlfile ) return class_d( doc.childNodes[1], self ) def _find_in_ns( self, type_, typedef, name ): xpath = 'compound[@kind="namespace"]/member[@kind="%s"]/name/text()' % type_ ns, entity = normalize_cpp_id( name ).rsplit( '::', 1 ) entity_node = self._generic_find( xpath, entity ) ns_node = entity_node.parentNode assert xml.xpath.Evaluate("name/text()", ns_node)[0].nodeValue == ns ns_xmlfile = nodeattr( ns_node, 'refid' ) + '.xml' ns_doc = self._get_doc( ns_xmlfile ) entity_id = nodeattr( entity_node, 'refid' ) xpath = 'compounddef/sectiondef[@kind="%s"]/memberdef[@kind="%s"][@id="%s"]' % ( typedef, type_, entity_id ) return xml.xpath.Evaluate(xpath, ns_doc)[0] def find_enumeration( self, name ): return enumeration_d( self._find_in_ns( 'enum', 'enum', name), self ) def find_function( self, name ): return function_d( self._find_in_ns( 'function', 'func', name), self ) def get_comments_w32( doxycfg, xmldir ): for drive in ['c', 'd']: doxyexe = drive + ':/Progra~1/doxygen/bin/doxygen.exe' if os.path.isfile(doxyexe): break in_, out = os.popen4(doxyexe + ' -') in_.write( doxycfg ) in_.close() doxyout = out.read() ret = out.close() if ret is None: return Doxy( xmldir ), doxyout else: raise RuntimeError( doxyout + 'Doxygen failed with code %d' % ret ) pass def get_comments_linux( doxycfg, xmldir ): in_, out = os.popen4( 'doxygen -' ) in_.write( doxycfg ) in_.close() doxyout = out.read() ret = out.close() if ret is None: return Doxy( xmldir ), doxyout else: raise RuntimeError( doxyout + 'Doxygen failed with code %d' % ret ) pass def get_comments( doxycfg, xmldir ): if sys.platform.startswith( 'linux' ): return get_comments_linux( doxycfg, xmldir ) else: return get_comments_w32( doxycfg, xmldir ) ########################################################################### # test def _dump_method( m ): print 'internal:', m.is_internal() print 'section:', m.section() if m.section()=='user-defined': print 'section header:', m.section_header() print 'section description:', m.section_desc() if __name__ == "__main__": d = Doxy( 'c:/Code/cpp/sandbox/jagbase/code/tools/source_parsing/xml-jagbase' ) # d = Doxy('c:/Code/python/sig/xml/') # c = d.find_class( "::Strs::DocPlatform::IStoreManager" ) # for m_str in [ 'init_internal', 'typemapped' ]: # m = c.method( m_str ) # print '>>', m_str # _dump_method( m ) # e = d.find_enumeration( "::Strs::DocPlatform::RequestPriority" ) # for val in ['UNDEFINED_internal', 'ASAP', 'NO_RUSH']: # ev = e.value( val ) # print val, '-', ev.is_internal() and 'Internal' or 'Public' # f = d.find_function( "::Strs::DocPlatform::factory" ) ```
{ "source": "jgrewe/odml-ui", "score": 2 }
#### File: odml-ui/odmlui/EditorTab.py ```python from gi import pygtkcompat pygtkcompat.enable() pygtkcompat.enable_gtk(version='3.0') import gtk import os.path import odml import odml.validation from odml.tools.odmlparser import ODMLReader, ODMLWriter, allowed_parsers from .CommandManager import CommandManager from .Helpers import uri_to_path, get_parser_for_uri, get_extension, \ create_pseudo_values, get_parser_for_file_type from .MessageDialog import ErrorDialog from .treemodel import event from .ValidationWindow import ValidationWindow class EditorTab(object): """ Represents a Document Object in the Editor """ file_uri = None edited = 0 def __init__(self, window, cmdm=None): if cmdm is None: cmdm = CommandManager() cmdm.enable_undo = self.enable_undo cmdm.enable_redo = self.enable_redo cmdm.error_func = window.command_error self.command_manager = cmdm self.document = None self.window = window self._clones = [self] def new(self, doc=None): """ initialize a new document """ if doc is None: doc = odml.Document() sec = odml.Section(name="Default Section") doc.append(sec) self.window.registry.add(doc) self.document = doc self.file_uri = None def parse_properties(self, odml_sections): for i in odml_sections: create_pseudo_values(i.properties) self.parse_properties(i.sections) def load(self, uri): self.file_uri = uri file_path = uri_to_path(uri) parser = get_parser_for_uri(file_path) odml_reader = ODMLReader(parser=parser) try: self.document = odml_reader.from_file(file_path) except Exception as e: ErrorDialog(None, "Error while parsing '%s'" % file_path, str(e)) return False self.document.finalize() self.parse_properties(self.document.sections) self.window.registry.add(self.document) self.window._info_bar.show_info("Loading of %s done!" % (os.path.basename(file_path))) return True def reset(self): self.edited = 0 # initialize the edit stack position self.command_manager.reset() self.enable_undo(enable=False) self.enable_redo(enable=False) @property def is_modified(self): return self.edited != len(self.command_manager) def save_if_changed(self): """ if the document was modified, ask the user if he or she wants to save the document returns false if the user cancelled the action """ if not self.is_modified: return True dialog = gtk.MessageDialog(self.window, gtk.DIALOG_MODAL, gtk.MESSAGE_INFO, gtk.BUTTONS_YES_NO, "%s has been modified. Do you want to save your changes?" % self.file_uri) dialog.add_button(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL) dialog.set_title("Save changes?") dialog.set_default_response(gtk.RESPONSE_CANCEL) response = dialog.run() dialog.destroy() if response == gtk.RESPONSE_CANCEL: return False if response == gtk.RESPONSE_NO: return True return self.window.save(None) def save(self, uri, file_type=None): # Mandatory document validation before save to avoid # not being able to open an invalid document. self.remove_validation() validation = odml.validation.Validation(self.document) self.document.validation_result = validation for e in self.document.validation_result.errors: if e.is_error: self.window._info_bar.show_info("Invalid document. Please fix errors (red) before saving.") self.validate() return self.document.clean() parser = None if file_type: parser = get_parser_for_file_type(file_type) if not parser: parser = get_parser_for_uri(uri) odml_writer = ODMLWriter(parser=parser) file_path = uri_to_path(uri) ext = get_extension(file_path) if ext != parser: file_path += ".%s" % parser.lower() try: odml_writer.write_file(self.document, file_path) except Exception as e: self.window._info_bar.show_info("Save failed: %s" % e) return self.document.finalize() # undo the clean self.window._info_bar.show_info("%s was saved" % (os.path.basename(file_path))) self.edited = len(self.command_manager) return True # TODO return false on any error and notify the user def enable_undo(self, enable=True): for tab in self._clones: tab._enable_undo(enable) def _enable_undo(self, enable): if self.window.current_tab is self: self.window.enable_undo(enable) def enable_redo(self, enable=True): for tab in self._clones: tab._enable_redo(enable) def _enable_redo(self, enable=True): if self.window.current_tab is self: self.window.enable_redo(enable) def clone(self, klass=None): if klass is None: klass = self.__class__ ntab = klass(self.window, self.command_manager) self._clones.append(ntab) ntab._clones = self._clones ntab.file_uri = self.file_uri ntab.document = self.document return ntab def validate(self): """check the document for errors""" self.remove_validation() validation = odml.validation.Validation(self.document) self.document.validation_result = validation if len(validation.errors) > 0: self.update_validation_error_objects(validation.errors) ValidationWindow(self).show() else: self.window._info_bar.show_info("The document is valid. No errors found.") self.remove_validation() def update_validation_error_objects(self, errors): """ send out a change event for all error-affected objects so that the gui can refresh these """ for err in errors: c = event.ChangeContext(('_error', True)) c.post_change = True c.action = "set" c.pass_on(err.obj) def remove_validation(self): """remove any dangling validation references""" if not hasattr(self.document, "validation_result"): return errors = self.document.validation_result.errors del self.document.validation_result self.update_validation_error_objects(errors) def get_name(self): """return the filename of this tab's document""" return os.path.basename(str(self.file_uri)) def update_label(self): """update the tab label with the current filename""" self.label.set_text(self.get_name()) def close(self): """ any cleanup? """ self._clones.remove(self) ``` #### File: odml-ui/odmlui/PropertyView.py ```python from gi import pygtkcompat pygtkcompat.enable() pygtkcompat.enable_gtk(version='3.0') import gtk import odml import odml.dtypes as dtypes import odml.terminology as terminology from odml import DType from . import commands from . import TextEditor from .DragProvider import DragProvider from .Helpers import create_pseudo_values from .TreeView import TerminologyPopupTreeView from .treemodel import PropertyModel, ValueModel from .dnd.odmldrop import OdmlDrag, OdmlDrop from .dnd.targets import ValueDrop, PropertyDrop, SectionDrop from .dnd.text import TextDrag, TextDrop, TextGenericDropForPropertyTV COL_KEY = 0 COL_VALUE = 1 class PropertyView(TerminologyPopupTreeView): """ The Main treeview for editing properties and their value-attributes """ _section = None def __init__(self, registry): super(PropertyView, self).__init__() tv = self._treeview for name, (id, propname) in PropertyModel.ColMapper.sort_iteritems(): if name == "Type": combo_col = self.create_odml_types_col(id, name, propname) tv.append_column(combo_col) else: renderer, column = self.add_column( name=name, edit_func=self.on_edited, id=id, data=propname) if name == "Value": tv.set_expander_column(column) tv.set_headers_visible(True) tv.set_rules_hint(True) tv.show() # set up our drag provider dp = DragProvider(self._treeview) _exec = lambda cmd: self.execute(cmd) vd = ValueDrop(exec_func=_exec) pd = PropertyDrop(exec_func=_exec) sd = SectionDrop(exec_func=_exec) for target in [ OdmlDrag(mime="odml/property-ref", inst=odml.property.Property), TextDrag(mime="odml/property", inst=odml.property.Property), OdmlDrag(mime="odml/value-ref", inst=ValueModel.Value), TextDrag(mime="odml/value", inst=ValueModel.Value), TextDrag(mime="TEXT"), OdmlDrop(mime="odml/value-ref", target=vd, registry=registry, exec_func=_exec), OdmlDrop(mime="odml/property-ref", target=pd, registry=registry, exec_func=_exec), OdmlDrop(mime="odml/section-ref", target=sd, registry=registry, exec_func=_exec), TextDrop(mime="odml/value", target=vd), TextDrop(mime="odml/property", target=pd), TextDrop(mime="odml/section", target=sd), TextGenericDropForPropertyTV(exec_func=_exec), ]: dp.append(target) dp.execute = _exec dp.connect() def dtype_renderer_function(self, tv_column, cell_combobox, tree_model, tree_iter, data): """ Defines a custom cell renderer function, which is executed for every cell of the column, and sets the DType value from the underlying model. Argument 'Data': Here, it defines the column number in the Tree View. """ cell_data = tree_model.get(tree_iter, data)[0] cell_combobox.set_property('markup', cell_data) @property def section(self): return self._section @section.setter def section(self, section): if self._section is section and self.model: return self._section = section if self.model: self.model.destroy() self.model = PropertyModel.PropertyModel(section) @property def model(self): return self._treeview.get_model() @model.setter def model(self, new_value): self._treeview.set_model(new_value) def on_selection_change(self, tree_selection): (model, tree_iter) = tree_selection.get_selected() if not tree_iter: return obj = model.get_object(tree_iter) self.on_property_select(obj) # Always expand multi value properties when selected is_multi_value = isinstance(obj, odml.property.Property) and len(obj.value) > 1 if is_multi_value: tree_selection.get_tree_view().expand_row(model.get_path(tree_iter), False) def on_property_select(self, prop): """called when a different property is selected""" pass def on_get_tooltip(self, model, path, iter, tooltip): """ set the tooltip text, if the gui queries for it """ obj = model.get_object(iter) doc = obj.document if doc and hasattr(doc, "validation_result"): errors = doc.validation_result[obj] if len(errors) > 0: tooltip.set_text("\n".join([e.msg for e in errors])) return True def on_object_edit(self, tree_iter, column_name, new_text): """ called upon an edit event of the list view updates the underlying model property that corresponds to the edited cell """ prop = tree_iter._obj # are we editing the first_row of a <multi> value? first_row = not tree_iter.parent first_row_of_multi = first_row and tree_iter.has_child if not first_row and column_name != "pseudo_values": return # Do not replace multiple values with pseudo_value placeholder text. if first_row_of_multi and column_name == "pseudo_values" and new_text == "<multi>": return cmd = None # if we edit another attribute (e.g. unit), set this for all values of this property if first_row_of_multi and column_name == "pseudo_values": # editing multiple values of a property at once cmds = [] for value in prop.pseudo_values: cmds.append(commands.ChangeValue( object=value, attr=[column_name, "value"], new_value=new_text)) cmd = commands.Multiple(cmds=cmds) else: # first row edit event for the property, so switch to appropriate object # - Only if the 'value' column is edited, edit the pseudo-value object. # - Else, edit the property object if column_name == 'pseudo_values' and first_row: prop = prop.pseudo_values[0] if column_name == "pseudo_values" and first_row: column_name = [column_name, "value"] # backup the value attribute too cmd = commands.ChangeValue( object=prop, attr=column_name, new_value=new_text) if cmd: self.execute(cmd) def get_popup_menu_items(self): model, path, obj = self.popup_data menu_items = self.create_popup_menu_items("Add Property", "Empty Property", model.section, self.add_property, lambda sec: sec.properties, lambda prop: prop.name, stock="odml-add-Property") if obj is not None: # can also add value prop = obj if hasattr(obj, "_property"): # we care about the properties only prop = obj._property value_filter = lambda prop: [val for val in prop.values if val.value is not None and val.value != ""] for item in self.create_popup_menu_items("Add Value", "Empty Value", prop, self.add_value, value_filter, lambda val: val.value, stock="odml-add-Value"): menu_items.append(item) for item in self.create_popup_menu_items("Set Value", "Empty Value", prop, self.set_value, value_filter, lambda val: val.value): if item.get_submenu() is None: continue # don't want a sole Set Value item menu_items.append(item) val = obj if prop is obj: val = prop.pseudo_values[0] if len(prop.pseudo_values) == 1 else None if val is not None and val.dtype == "text": menu_items.append(self.create_menu_item("Edit text in larger window", self.edit_text, val)) # cannot delete properties that are linked (they'd be override on next load), instead allow to reset them merged = prop.get_merged_equivalent() if prop is obj and merged is not None: if merged != obj: menu_items.append(self.create_menu_item("Reset to merged default", self.reset_property, obj)) else: menu_items.append(self.create_popup_menu_del_item(obj)) return menu_items def edit_text(self, widget, val): """ popup menu action: edit text in larger window """ t = TextEditor.TextEditor(val, "value") t.execute = self.execute def reset_property(self, widget, prop): """ popup menu action: reset property """ dst = prop.get_merged_equivalent().clone() cmd = commands.ReplaceObject(obj=prop, repl=dst) self.execute(cmd) def set_value(self, widget, prop_value_pair): """ popup menu action: set value """ (prop, val) = prop_value_pair model, path, obj = self.popup_data if val is None: val = ValueModel.Value(prop) else: val = val.clone() if obj is prop: obj = prop.values[0] prop = obj._property # first append, then remove to keep the constraint that a property # will always hold at least one value cmd = commands.Multiple(cmds=[ commands.AppendValue(obj=prop, val=val), commands.DeleteObject(obj=obj) ]) self.execute(cmd) def add_value(self, widget, obj_value_pair): """ popup menu action: add value add a value to the selected property """ (obj, val) = obj_value_pair if val is None: val = ValueModel.Value(obj) else: val = val.clone() cmd = commands.AppendValue(obj=obj.pseudo_values, val=val) self.execute(cmd) # Reset model if the Value changes from "normal" to MultiValue. if self.model and len(obj.value) > 1: self.model.destroy() self.model = PropertyModel.PropertyModel(obj.parent) # Reselect updated object to update view. self.select_object(obj) def add_property(self, widget, obj_prop_pair): """ popup menu action: add property add a property to the active section """ (obj, prop) = obj_prop_pair if prop is None: name = self.get_new_obj_name(obj.properties, prefix='Unnamed Property') prop = odml.Property(name=name, dtype='string') # The default value part should be put in odML core library prop._value = [dtypes.default_values('string')] create_pseudo_values([prop]) else: prefix = prop.name name = self.get_new_obj_name(obj.properties, prefix=prefix) prop = prop.clone() prop.name = name cmd = commands.AppendValue(obj=obj, val=prop) self.execute(cmd) # Maybe define a generic Combo Box column creator ? def create_odml_types_col(self, id, name, propname): # Get all the members of odml.DType, which are not callable and are not `private`. dtypes_list = [x for x in dir(DType) if not callable(getattr(DType, x)) and not x.startswith('__')] dtypes_combo_list = gtk.ListStore(str) for i in dtypes_list: dtypes_combo_list.append([i]) combo_renderer = gtk.CellRendererCombo.new() combo_renderer.set_property("has-entry", False) combo_renderer.set_property("text-column", 0) combo_renderer.set_property("model", dtypes_combo_list) combo_renderer.set_property("editable", True) combo_renderer.connect("edited", self.on_edited, propname) combo_col = gtk.TreeViewColumn(name, combo_renderer) combo_col.set_min_width(40) combo_col.set_resizable(True) combo_col.set_cell_data_func(combo_renderer, self.dtype_renderer_function, id) return combo_col ``` #### File: odmlui/treemodel/TreeIters.py ```python import sys from . import GenericIter from . import nodes from .ValueModel import Value class PropIter(GenericIter.GenericIter): """ An iterator for a Property returns ValueIter objects if queried for children. Since Values don't have a parent relationship, the PropIter will store pass a corresponding parent attribute (the Property object) to the ValueIter As odML supports multi-values, each property may or may not have multiple children. """ def get_value(self, attr): if attr == "pseudo_values": if self.has_child: return self.get_mulitvalue(attr) else: return self.get_singlevalue(attr) else: return self.escape(getattr(self._obj, attr)) def get_mulitvalue(self, name): # Most of the stuff is empty and handled by the ValueIter if name == "pseudo_values": return self.escape("<multi>") return "" def get_singlevalue(self, name): #here we proxy the value object if len(self._obj.pseudo_values) == 0: return "" return ValueIter(self._obj.pseudo_values[0]).get_value(name) @property def has_child(self): return self.n_children > 1 @property def n_children(self): return len(self._obj.pseudo_values) @property def parent(self): return None class ValueIter(GenericIter.GenericIter): """ An iterator for a Value object """ def get_value(self, attr): if attr == "pseudo_values": value = self._obj.get_display() # Some issues with the rendering of `unicode` in Python 2 directly # to Tree Column cell renderer. Hence, first encode it here. if ValueIter.is_python2: value = value.encode('utf-8') # If the value is an empty string, render a placeholder text. if value == '': value = '<i>n/a</i>' return value # Return an empty string for anything lese return "" class SectionIter(GenericIter.GenericIter): @property def parent(self): if not self._obj.parent: return None if not self._obj.parent.parent: # the parent is the document root return None return super(SectionIter, self).parent class SectionPropertyIter(GenericIter.GenericIter): @property def n_children(self): return len(self._obj.properties) # associate the odml-classes to the corresponding iter-classes nodes.Section.IterClass = SectionIter nodes.Property.IterClass = PropIter Value.IterClass = ValueIter ``` #### File: odmlui/treemodel/ValueModel.py ```python import odml.base as base import odml.format as format import odml.dtypes as dtypes from . import nodes, event class ValueNode(nodes.ParentedNode): def path_from(self, path): raise TypeError("Value objects have no children") def path_to(self, child): raise TypeError("Value objects have no children") class ValueFormat(format.Format): _name = "value" _args = {} _map = {} class Value(base.baseobject, base._baseobj, ValueNode, event.ModificationNotifier): """ Since the odML value node has been merged with the odml.Property, and is only available as a 'pure' python list we cannot render it to the Editor UI directly. So, we make use of this wrapper class which acts as a mapper between the model values and the values rendered in Editor UI. A list of objects from this class is added as an additional attribute to the original `odml.Property` node, as `pseudo_values`. All interactions from the Editor interact with these pseudo_values, and internally, these pseudo-values update the original property._value list. """ _Changed = event.Event("value") _Changed.finish = event.pass_on_change _format = ValueFormat def __init__(self, parent, index=None): self._property = parent if index is None: # Instantiate a new odML value index = len(self._property.value) dtype = self.parent.dtype default_value = dtypes.default_values(dtype) self.parent.value.append(default_value) assert(isinstance(index, int)) self._index = index def __repr__(self): return "PseudoValue <%s>" % str(self.pseudo_values) @property def parent(self): """the property containing this value""" return self._property @property def dtype(self): """ Retuns the parent DType """ return self.parent.dtype @property def pseudo_values(self): """ Return a single element from the parent property's value list. """ return self.parent._value[self._index] @pseudo_values.setter def pseudo_values(self, new_string): """ First, try to check if the new value fits in the parent property's dtype. If it does, then update the value. """ prop_dtype = self.parent.dtype new_value = dtypes.get(new_string, prop_dtype) self.parent._value[self._index] = new_value @property def value(self): return self.pseudo_values def can_display(self, text=None, max_length=-1): """ return whether the content of this can be safely displayed in the gui """ if text is None: text = self.pseudo_values if text is None: return True if max_length != -1 and len(text) > max_length: return False if "\n" in text or "\t" in text: return False return True def get_display(self, max_length=-1): """ return a textual representation that can be used for display typically takes the first line (max *max_length* chars) and adds '…' """ text = str(self.pseudo_values) # Always escape "&" and "<" since they break the view otherwise. text = text.replace("&", "&amp;").replace("<", "&lt;") if self.can_display(text, max_length): return text text = text.split("\n")[0] if max_length != -1: text = text[:max_length] if self.can_display(text, max_length): return (text + u'…').encode('utf-8') return "(%d bytes)" % len(self._value) def reorder(self, new_index): return self._reorder(self.parent.value, new_index) def clone(self): obj = base.baseobject.clone(self) obj._property = None return obj ```
{ "source": "jgrewe/relacsed_nix", "score": 2 }
#### File: rlxnix/base/repro.py ```python import nixio import logging from tqdm import tqdm from .trace_container import TraceContainer, TimeReference from .stimulus import Stimulus from ..utils.util import nix_metadata_to_dict, metadata_to_json from ..utils.data_trace import DataType from ..utils.data_loader import DataLink, SegmentType class ReProRun(TraceContainer): """This class represents the data of a RePro run. It offers access to the data and metadata. """ def __init__(self, repro_run: nixio.Tag, traces, relacs_nix_version=1.1): """Create a RePro instance that represent one run of a relacs RePro. Parameters ---------- repro_run: nixio.Tag the nix - tag that represents the repro run traces: dict of rlxnix.DataTrace Dict of trace infos. relacs_nix_version: float The mapping version number. Defaults to 1.1. """ super().__init__(repro_run, traces, relacs_nix_version=relacs_nix_version) self._stimuli = [] self._metadata = None def _get_signal_trace_map(self): logging.critical("Repro._get_trace_map must be overwritten!") @property def metadata(self): """Returns the metadata for this ReProRun. The settings herein are the base settings of the RePro. They may vary for each stimulus. For a complete view use the ReProRun.stimulus_metadata property. Returns: -------- dictionary The metadata dictionary """ if self._metadata is None: self._metadata = nix_metadata_to_dict(self._tag.metadata) return self._metadata def add_stimulus(self, stimulus:Stimulus): """INTERNAL USE ONLY! Adds a stimulus to the list of stimuli run in the context of this RePro run. Parameters ---------- stimulus : rlxnix.Stimulus The stimulus that was run. """ self._stimuli.append(stimulus) @property def stimuli(self): """List of stimuli that were presented within the context of this RePro Run. Returns: -------- stimulus: rlxnix.Stimulus The Stimulus instance that provides access to the data during the stimulus output. """ return self._stimuli @property def stimulus_count(self): return len(self._stimuli) def trace_data(self, name, reference=TimeReference.Zero): """Get the data that was recorded while this repro was run. Paramters --------- name: str name of the referenced data trace e.g. "V-1" for the recorded voltage. reference: TimeReference Controls the time reference of the time axis and event times. If TimeReference.ReproStart is given all times will start after the Repro/Stimulus start. Defaults to TimeReference.Zero, i.e. all times will start at zero, the RePro/stimulus start time will be subtracted from event times and time axis. Returns ------- data: np.ndarray The recorded continuos or event data time: np.ndarray The respective time vector for continuous traces, None for event traces """ return self._trace_data(name, reference=reference) @property def stimulus_data_links(self) -> list: """Collection of rlxnix.DataLink objects for each stimulus presented in this ReproRun. Returns ------- list of rlxnix.DataLink List of DataLink objects """ data_links = [] for s in tqdm(self.stimuli, disable=not(logging.root.level == logging.INFO)): dl = s.data_link() if dl is not None: data_links.append(dl) return data_links @property def data_link(self) -> DataLink: """ Returns a DataLink object to the data recorded in this ReproRun Returns ------- rlxnix.DataLink The DataLink object """ dataset = self.repro_tag._parent.name + ".nix" block_id = self.repro_tag._parent.id tag_id = self.repro_tag.id type = SegmentType.ReproRun mdata = metadata_to_json(self.metadata) dl = DataLink(dataset, block_id, tag_id, type, self.start_time, self.stop_time, metadata=mdata, mapping_version=self._mapping_version) return dl def _check_stimulus(self, stimulus_index): if stimulus_index >= len(self.stimuli) or stimulus_index < 0: raise IndexError(f"Stimulus index {stimulus_index} is out of bounds for number of stimuli {len(self.stimuli)}") def _check_trace(self, trace_name, data_type=DataType.Continuous): """Checks if the provided trace name is among the traces in the file and if the expected data type matches the expectation. Parameters ---------- trace_name : str The name of the trace. data_type : DataType, optional The expected trace type. If you expect a Continuous data type and the provided name points to event data False will be returned, by default DataType.Continuous Returns ------- bool True if the trace was found and the data type matches the expectation, False otherwise. """ if trace_name is None: logging.warning("Repro.check_trace: Trace name is not specified!") return False if trace_name not in self._tag.references: logging.warning(f"Trace {trace_name} not found!") return False trace = self._trace_map[trace_name] if trace.trace_type != data_type: logging.warning(f"Data type of trace {trace.name} does not match expected data type (expected: {data_type}, found: {trace.trace_type}).") return False return True def __str__(self) -> str: info = "Repro: {n:s} \t type: {t:s}\n\tstart time: {st:.2f}s\tduration: {et:.2f}s" return info.format(n=self.name, t=self.type, st=self.start_time, et=self.duration) def __repr__(self) -> str: repr = "ReproRun object for repro run {name} from {start:.4f} to {stop:.4f}s, Tag {id} at {pos}." return repr.format(name=self.name, start=self.start_time, stop=self.stop_time, id=self.repro_tag.id, pos=hex(id(self))) def __getitem__(self, key) -> Stimulus: if isinstance(key, int): return self._stimuli[key] else: raise KeyError(f"Key is invalid! {key} is not instance of int.") def __len__(self) -> int: return len(self.stimuli) ``` #### File: plugins/efish/baseline.py ```python import logging import numpy as np from .efish_ephys_repro import EfishEphys class Baseline(EfishEphys): """Represents the run of the Baseline repro of the efish plugin-set. """ _repro_name = "BaselineActivity" def __init__(self, repro_run, traces, relacs_nix_version=1.1) -> None: super().__init__(repro_run, traces, relacs_nix_version) @property def baseline_rate(self): """Baseline spike rate. Returns ------- float The average spike rate. """ return len(self.spikes()) / self.duration @property def baseline_cv(self): """Coefficient of variation of the interspike intervals of the baseline spike response. Depends on the spike times to be stored in the file. The CV is defines as the standard deviation of the interspike intervals normalized to the average interspike interval and describes the regularity of the spontaneous spiking. A CV of 0 indicates perfectly regular spiking while a value of 1 is typical for random poisson spiking. Returns ------- _description_ """ spikes = self.spikes() if spikes is None or len(spikes) == 0: logging.warn("There are no baseline spikes") return 0.0 isis = np.diff(spikes) return np.std(isis) / np.mean(isis) @property def eod_frequency(self): """ Returns the EOD frequency (in Hz) of the fish. Depends on the eod times event signal to be present. Returns ------- float or None the eod frequency in Hz, None if the eod times are not stored in the file. """ if "eod times" not in self._signal_trace_map: logging.warning("EOD times are not stored in the file. You need to detect the eod times manually... ") return None return len(self.eod_times()) / self._duration def serial_correlation(self, max_lags=50): """Returns the serial correlation of the baseline interspike intervals. Parameters ---------- max_lags : int, optional The number of lags to be calculated, by default 50 Returns ------- np.ndarray The serial correlations from lag 0 to max_lags -1 """ if self.spikes() is None or len(self.spikes()) < max_lags: return None isis = np.diff(self.spikes()) unbiased = isis - np.mean(isis, 0) norm = sum(unbiased ** 2) a_corr = np.correlate(unbiased, unbiased, "same") / norm a_corr = a_corr[int(len(a_corr) / 2):] return a_corr[:max_lags] ``` #### File: plugins/efish/chirps.py ```python import nixio import numpy as np import matplotlib.pyplot as plt from .efish_ephys_repro import EfishEphys class Chirps(EfishEphys): _repro_name = "Chirps" def __init__(self, repro_run: nixio.Tag, traces, relacs_nix_version=1.1): super().__init__(repro_run, traces, relacs_nix_version=relacs_nix_version) @property def chirp_times(self): """ The times of the artificial chirps of a given stimulus presentation. Returns ------- list The chirp times relative to stimulus onset str The unit """ cts = [] unit = "" for s in self.stimuli: metadata = s.metadata cts.append(metadata[s.name]["ChirpTimes"][0]) unit = s.metadata[s.name]["ChirpTimes"][1] return cts, unit @property def beat_specification(self): """Returns the way the beat is specified. Will return either *absolute frequency* or "Relative EODf". In the first case the beat frequency is given by the *delta_f* property, in the latter by the *relative_eodf* property. Returns ------- str the beat selection setting of the Chirps RePro. """ spec = self.metadata["RePro-Info"]["settings"]["beatsel"][0][0] return spec @property def relative_eodf(self): """The beat frequency specified relative to the EOD frequency of the fish. Returns ------- float the releodf setting of the repro run. """ rel = self.metadata["RePro-Info"]["settings"]["releodf"][0][0] return rel @property def delta_f(self): """The difference frequency to the recorded fish's EOD frequency for all stimulus presentations Returns ------- float The dfs used. str the unit """ df = self.metadata["RePro-Info"]["settings"]["deltaf"][0][0] unit = self.metadata["RePro-Info"]["settings"]["deltaf"][1] return df, unit @property def chirp_duration(self): """The chirp durations of the stimulus presentations. Returns ------- float The chirp duration. str the unit """ cd = self.metadata["RePro-Info"]["settings"]["chirpwidth"][0][0] unit = self.metadata["RePro-Info"]["settings"]["chirpwidth"][1] return cd, unit @property def chirp_size(self): """The size of the frequency excursion of the chirp. Returns ------- list List containing the chirp size for each stimulus presentation. str the unit """ cs = self.metadata["RePro-Info"]["settings"]["chirpsize"][0][0] unit = self.metadata["RePro-Info"]["settings"]["chirpsize"][1] return cs, unit def _plot_axis(self, axis, x_data, y_data, spikes, chirp_times, ylabel): axis.plot(x_data, y_data, lw=0.5, color="tab:blue", label="voltage") axis.scatter(spikes, np.ones_like(spikes) * np.max(y_data), s=10, marker="*", c="tab:green", label="spikes") axis.scatter(chirp_times, np.ones_like(chirp_times) * np.min(y_data), s=20, marker="o", c="tab:red", label="chirps") axis.set_ylabel(ylabel) axis.spines["top"].set_visible(False) axis.spines["right"].set_visible(False) axis.set_xlim([x_data[0], x_data[-1]]) def plot_overview(self, stimulus_index=0, filename=None): """[summary] Parameters ---------- stimulus_index : int, optional The stimulus index, by default 0 filename: str, optional The filename for the figure. If not given, the plot will be shown. By default None """ spikes = self.spikes(stimulus_index=stimulus_index) voltage, time = self.membrane_voltage(stimulus_index=stimulus_index) eod, eod_time = self.local_eod(stimulus_index=stimulus_index) stim, stim_time = self.stimulus_output(stimulus_index=stimulus_index) chirp_times, _ = self.chirp_times c_times = chirp_times[stimulus_index] fig, axes = plt.subplots(ncols=1, nrows=3, sharex="all") self._plot_axis(axes[0], time, voltage, spikes, c_times, "voltage [mV]") axes[0].legend(fontsize=7, ncol=3, loc=(0.5, 1.05)) self._plot_axis(axes[1], eod_time, eod, spikes, c_times, "voltage [mV]") self._plot_axis(axes[2], stim_time, stim, spikes, c_times, "voltage [mV]") axes[-1].set_xlabel("time [s]") if filename is not None: fig.savefig(filename) plt.close() else: plt.show() ``` #### File: rlxnix/test/test_data_loader.py ```python import os import nixio import logging import rlxnix as rlx from rlxnix.utils.data_loader import SegmentType def test_to_pandas(): filename = os.path.join("..", "..", "data", "2021-11-11-aa.nix") if not os.path.exists(filename): logging.warning(f"file {filename} not found! Skipping test 'test_data_loader.test_to_pandas'") return dataset = rlx.Dataset(filename) repro_count = 0 stimulus_count = 0 for r in dataset.repro_runs(): repro_count += 1 stimulus_count += len(r.stimuli) df = dataset.to_pandas() assert len(df) == repro_count + stimulus_count assert len(df[df.segment_type == str(SegmentType.ReproRun)] == repro_count) assert len(df[df.segment_type == str(SegmentType.StimulusSegment)] == stimulus_count) def test_from_pandas(): filename = os.path.join("..", "..", "data", "2021-11-11-aa.nix") dataset = rlx.Dataset(filename) if not os.path.exists(filename): logging.warning(f"file {filename} not found! Skipping test 'test_data_loader.test_to_pandas'") return df = dataset.to_pandas() assert len(df) > 0 dl = rlx.from_pandas(df, 100) assert dl is None dl = rlx.from_pandas(df, 10) assert dl is not None assert dl.tag_id == df["tag_id"].values[10] dls = rlx.from_pandas(df, segment_type=SegmentType.ReproRun) assert isinstance(dls, list) for dl in dls: assert dl.segment_type == str(SegmentType.ReproRun) dls = rlx.from_pandas(df, segment_type=SegmentType.StimulusSegment) assert isinstance(dls, list) for dl in dls: assert dl.segment_type == str(SegmentType.StimulusSegment) ``` #### File: rlxnix/utils/data_trace.py ```python import logging from .mappings import DataType, type_map class DataTrace(object): """The DataTrace class represents a recorded data trace. The trace_type property holds whether the trace is an event or a continuously sampled trace. It further keeps the maximum number of samples and the maximum time information. It further provides access to the underlying nixio.DataArray. """ def __init__(self, data_array, mapping_version=1.1) -> None: super().__init__() event_type = type_map[mapping_version][DataType.Event] continuous_type = type_map[mapping_version][DataType.Continuous] t = data_array.type if (event_type not in t) and (continuous_type not in t): raise ValueError(f"DataTrace not valid to dataArrray of type {data_array.type}!") self._data_array = data_array self._name = data_array.name self._id = data_array.id self._type = data_array.type self._trace_type = DataType.Continuous if continuous_type in data_array.type else DataType.Event self._shape = data_array.shape self._sampling_interval = None if self._trace_type == DataType.Event: if sum(data_array.shape) > 0: self._max_time = data_array[-1] else: self._max_time = 0.0 else: self._max_time = self._shape[0] * data_array.dimensions[0].sampling_interval self._sampling_interval = data_array.dimensions[0].sampling_interval @property def trace_type(self): """The DataType stored in this trace. Either DataType.Continuous for continuously sampled data or DataType.Event for event type data. Returns ------- DataType The DataType of this trace. """ return self._trace_type @property def maximum_time(self): """The maximum time represetend in this Trace Returns ------- float The maximum time """ return self._max_time @property def shape(self): """The ashape of the stored data Returns ------- tuple The DataArray shape. """ return self._shape @property def name(self): """The name of this trace. Returns ------- str The name """ return self._name @property def data_array(self): """Returns the underlying nixio.DataArray entity. Returns ------- nixio.DataArray The nix entity that holds the trace data. """ return self._data_array @property def sampling_interval(self): """The sampling interval of this trace. Returns ------- float The sampling interval in seconds. """ if self.trace_type == DataType.Event: logging.warning("DataTrace: sampling interval makes no sense for event traces!") return self._sampling_interval def __str__(self) -> str: str = f"Name: {self._name}\tid: {self._id}\ntype: {self._type}\t data type: {self._trace_type}\t shape {self._shape}\n maximum time: {self._max_time}" return str def __repr__(self) -> str: return "DataTrace (Name: %r, DataArray: %r, DataType: %r)" % (self.name, self.data_array.id, self.trace_type) class TraceList(list): def __init_subclass__(cls) -> None: return super().__init_subclass__() def __contains__(self, __o: object) -> bool: if isinstance(__o, str): return any([dt.name == __o for dt in self]) if isinstance(__o, DataTrace): return any([dt.name == __o.name for dt in self]) return super().__contains__(__o) def __getitem__(self, index) -> DataTrace: if isinstance(index, str): for dt in self: if dt.name == index: return dt raise KeyError(f"Provided key {index} is not valid in this list.") else: return super().__getitem__(index) def append(self, trace): if not isinstance(trace, DataTrace): raise ValueError("TraceList can only accommodate DataTrace objects!") super().append(trace) ``` #### File: rlxnix/utils/mappings.py ```python from enum import Enum import nixio import nixio class DataType(Enum): Continuous = 0 Event = 1 StimulusSegment = 2 type_map = {1.0: {DataType.Event: "nix.events.position", DataType.Continuous: "nix.data.sampled", DataType.StimulusSegment: "nix.event.stimulus"}, 1.1: {DataType.Event: "relacs.data.event", DataType.Continuous: "relacs.data.sampled", DataType.StimulusSegment: "relacs.stimulus"} } def tag_start_and_extent(tag, index, mapping_version): start_time = None duration = None if isinstance(tag, nixio.MultiTag): if mapping_version == 1.0: start_time = tag.positions[index][0] duration = tag.extents[index][0] if tag.extents else 0.0 else: start_time = tag.positions[index, 0][0] duration = tag.extents[index, 0][0] if tag.extents else 0.0 elif isinstance(tag, nixio.Tag): start_time = tag.position[0] duration = tag.extent[0] if tag.extent else 0.0 return start_time, duration ```
{ "source": "JGridleyMLDL/TrustforSecurity", "score": 3 }
#### File: TrustforSecurity/Multilayer_Error_Check/generate data paper edition.py ```python import json import sys import numpy import copy #extractors = {0: {"precision": 0.5, "recall": 0.5}} #sources = {0: {"KBT": 0.5, "triples": [[0,0,0], [0,1,None]]}} #Correct triples have a value of 0, incorrect triples have a value of 1 through 25 #format = {0: {0: [], 1: [], 2: []} } def generateTriples(quantity): triples = [] for i in range(1, quantity + 1): triples.append([i, i, i]) return triples #Randomly shuffles triples def generateSource(allTriples, accuracy = 0.7): triples = copy.deepcopy(allTriples) numpy.random.default_rng().shuffle(triples) for triple in triples: if numpy.random.default_rng().integers(0, 100)/100 > accuracy: tmp = numpy.random.default_rng().integers(0, 2) if tmp == 0: triple[0] = 0 elif tmp == 1: triple[1] = 0 else: triple[2] = 0 return {"KBT": 0.7, "triples": triples} #Generates an extractor with a precision and recall of [0.1, 1.0) uniformly def generateExtractor(): return {"precision": 0.5, "recall": 0.5} def extract(extractor, source): extractedTriples = [] for triple in source["triples"]: if numpy.random.default_rng().integers(0, 100)/100 > extractor["recall"]: extractedTriples.append(copy.deepcopy(triple)) for i in range(len(extractedTriples[-1])): if numpy.random.default_rng().integers(0, 100)/100 > numpy.cbrt(extractor["precision"]): extractedTriples[-1][i] = -1 numpy.random.default_rng().shuffle(extractedTriples) return extractedTriples def main(): if len(sys.argv) != 4: print("Usage:", sys.argv[0], "[number of triples] [number of sources] [number of extractors]") exit() triples = [] sources = {} extractors = {} multilayerinput = {} print("Generating triples...") triples = generateTriples(int(sys.argv[1])) print("Completed!\n") print("Generating sources...") for i in range(int(sys.argv[2])): sources[i] = generateSource(triples) print("Completed!\n") print("Generating extractors...") for i in range(int(sys.argv[3])): extractors[i] = generateExtractor() print("Completed!\n") print("Extracting triples from sources...") for extractorID in range(int(sys.argv[3])): tmp = {} for sourceID in range(int(sys.argv[2])): if numpy.random.default_rng().integers(0, 100)/100 > 0.5: tmp[sourceID] = extract(extractors[extractorID], sources[sourceID]) multilayerinput[extractorID] = tmp print("Completed!\n") print("Writing to files...") with open("triples.json", "w") as triplesFile, open("sources.json", "w") as sourcesFile, open("extractors.json", "w") as extractorsFile, open("multilayerinput.json", "w") as multilayerInputFile: json.dump(triples, triplesFile, indent = 2) json.dump(sources, sourcesFile, indent = 2) json.dump(extractors, extractorsFile, indent = 2) json.dump(multilayerinput, multilayerInputFile, indent = 2) print("Completed!") if __name__ == "__main__": main() ``` #### File: TrustforSecurity/OldCode/generate_data.py ```python import json import sys import numpy #extractors = {0: {"precision": 0.5, "recall": 0.5}} #sources = {0: {"KBT": 0.5, "triples": [[0,0,0], [0,1,None]]}} #Correct triples have a value of 0, incorrect triples have a value of 1 through 25 #format = {0: {0: [], 1: [], 2: []} } def generateTriples(quantity): relationQuantity = round(numpy.sqrt(quantity)) triples = [] i = 0 while i * relationQuantity < quantity: for j in range(int(relationQuantity)): if i * relationQuantity + j >= quantity: break triples.append([i, j, 0]) i += 1 return triples #Generates a source with [minimumNumberOfTriples, maximumNumberOfTriples) triples and a KBT of [0.0, 1.0] uniformly #Randomly shuffles allTriples def generateSource(allTriples, minimumNumberOfTriples, maximumNumberOfTriples): triples = numpy.random.default_rng().choice(allTriples, numpy.random.default_rng().integers(minimumNumberOfTriples, maximumNumberOfTriples), replace = False, shuffle = False).tolist() incorrectTripleCount = numpy.random.default_rng().integers(0, len(triples) + 1) for i in range(incorrectTripleCount): triples[i][2] = int(numpy.random.default_rng().integers(1, 26)) numpy.random.default_rng().shuffle(triples) return {"KBT": (len(triples) - incorrectTripleCount)/len(triples), "triples": triples} #Generates an extractor with a precision and recall of [0.1, 1.0) uniformly def generateExtractor(): return {"precision": numpy.random.default_rng().uniform(0.1, 1.0), "recall": numpy.random.default_rng().uniform(0.1, 1.0)} def extract(extractor, source, allTriples): relevantCount = round(extractor["recall"] * len(source["triples"])) irrelevantCount = min(round((1/extractor["precision"] - 1) * relevantCount), len(source["triples"]) - relevantCount) #Messes up precision to an unknown degree extractedTriples = numpy.random.default_rng().choice(source["triples"], relevantCount + irrelevantCount, replace = False, shuffle = False).tolist() for tripleIndex in range(irrelevantCount): extractedTriples[tripleIndex][2] = int(numpy.random.default_rng().integers(1, 26)) numpy.random.default_rng().shuffle(extractedTriples) return extractedTriples def main(): if len(sys.argv) != 4: print("Usage:", sys.argv[0], "[number of triples] [number of sources] [number of extractors]") exit() triples = [] sources = {} extractors = {} multilayerinput = {} print("Generating triples...") triples = generateTriples(int(sys.argv[1])) print("Completed!\n") print("Generating sources...") for i in range(int(sys.argv[2])): sources[i] = generateSource(triples, 1, 101) #Controls how many triples can be in a source print("Completed!\n") print("Generating extractors...") for i in range(int(sys.argv[3])): extractors[i] = generateExtractor() print("Completed!\n") print("Extracting triples from sources...") for extractorID in range(int(sys.argv[3])): tmp = {} for sourceID in range(int(sys.argv[2])): tmp[sourceID] = extract(extractors[extractorID], sources[sourceID], triples) multilayerinput[extractorID] = tmp print("Completed!\n") print("Writing to files...") with open("triples.json", "w") as triplesFile, open("sources.json", "w") as sourcesFile, open("extractors.json", "w") as extractorsFile, open("multilayerinput.json", "w") as multilayerInputFile: json.dump(triples, triplesFile, indent = 2) json.dump(sources, sourcesFile, indent = 2) json.dump(extractors, extractorsFile, indent = 2) json.dump(multilayerinput, multilayerInputFile, indent = 2) print("Completed!") if __name__ == "__main__": main() ``` #### File: TrustforSecurity/OldCode/multilayer.py ```python import sys import json import numpy from dataclasses import dataclass from collections import defaultdict ### Default Values ### gamma = 0.44 initialPrecision = 0.8 initialRecall = 0.8 initialAccuracy = 0.8 ### Data Classes ### @dataclass class Extractor: precision: float recall: float presenceVote: float absenceVote: float def __init__(self, precision=initialPrecision, recall=initialRecall): self.precision = precision self.recall = recall self.updatePresenceAndAbsenceVote() # Equation 7 def getSpecificity(self) -> float: return (gamma / (1.0 - gamma)) * ((1.0 - self.precision) / self.precision) * self.recall # Equation 12 def updatePresenceAndAbsenceVote(self) -> None: specificity = self.getSpecificity() self.presenceVote = numpy.log(self.recall) - numpy.log(specificity) self.absenceVote = numpy.log(1.0 - self.recall) - numpy.log(1.0 - specificity) @dataclass class Source: accuracy: float def __init__(self, accuracy=initialAccuracy): self.accuracy = accuracy ### Estimating C ### def sigmoid(x): return (1.0 / (1.0 + numpy.exp(-x))) # Equation 14 (Change to 31 later) def getVoteCount(sourceDataItemSlice, value, extractors): voteCount = 0.0 for extractorIndex in range(sourceDataItemSlice.size): if sourceDataItemSlice[extractorIndex] == value: voteCount += extractors[extractorIndex].presenceVote else: voteCount += extractors[extractorIndex].absenceVote return voteCount # Equation 15 def getProbabilityCwdvGivenXwdv(sourceDataItemSlice, value, extractors, alpha): return sigmoid(getVoteCount(sourceDataItemSlice, value, extractors) + numpy.log(alpha / (1.0 - alpha))) ### Estimating V ### # Equation 23, 24, and 25 def getProbabilityVdEqualsVGivenX(dataItemDomainSlice, relevantValue, sources, probabilityCwdvGivenXwdvSlice): numerator = 0.0 denominator = 0.0 n = len(dataItemDomainSlice) - 1.0 if n == 0: # If there is only one value extracted for a given data item, then it MUST be the correct value for that data item (not necessarily true) return 1.0 for value in dataItemDomainSlice: for sourceIndex in range(len(sources)): if value in probabilityCwdvGivenXwdvSlice[ sourceIndex]: # Assume that if a triple was never extracted for a particular source then the probability is zero expVCV = numpy.exp(probabilityCwdvGivenXwdvSlice[sourceIndex][value] * numpy.log( (n * sources[sourceIndex].accuracy) / (1.0 - sources[sourceIndex].accuracy))) if value == relevantValue: numerator += expVCV denominator += expVCV return numerator / denominator ### Estimating Accuracy ### # Equation 28 def getAccuracyForSource(sourceSliceOfCwdv, probabilityVdEqualsVGivenX): numerator = 0.0 denominator = 0.0 for dataItemIndex in range(len(sourceSliceOfCwdv)): if sourceSliceOfCwdv[dataItemIndex]: numerator += sourceSliceOfCwdv[dataItemIndex][1] * probabilityVdEqualsVGivenX[dataItemIndex][ sourceSliceOfCwdv[dataItemIndex][0]] denominator += sourceSliceOfCwdv[dataItemIndex][1] return numerator / denominator ### Estimating Precision and Recall ### # Equation 29 and 30 (Change to 32 and 33 later) def getPrecisionAndRecallForExtractor(extractorSliceOfValueCube, probabilityCwdvGivenXwdv, denominatorRecall): numerator = 0.0 denominatorPrecision = 0.0 for sourceIndex in range(extractorSliceOfValueCube.shape[0]): for dataItemIndex in range(extractorSliceOfValueCube.shape[1]): if (extractorSliceOfValueCube[sourceIndex][dataItemIndex]): if extractorSliceOfValueCube[sourceIndex][dataItemIndex] in probabilityCwdvGivenXwdv[sourceIndex][ dataItemIndex]: # This seems wrong, double check numerator += probabilityCwdvGivenXwdv[sourceIndex][dataItemIndex][ extractorSliceOfValueCube[sourceIndex][dataItemIndex]] denominatorPrecision += 1.0 return numerator / denominatorPrecision, numerator / denominatorRecall ### Calculating Alpha ### def getAlpha(probabilityVdEqualsVGivenX, accuracy): return probabilityVdEqualsVGivenX * accuracy + (1 - probabilityVdEqualsVGivenX) * (1 - accuracy) ### Multilayer Algorithm ### # Values Cube is a 3D Matrix with Axis (Extactor, Source, Data Item) with Value as the entries # sourceDataItemDomain stores a set of all extracted values by source and data item in 2D matrix # dataItemDomain stores a set of all extracted values by data item in a 2D list def multilayer(valuesCube, sourceDataItemDomain, dataItemDomain, maxIterations): # Initialize all necessary data structures extractors = numpy.array([Extractor() for _ in range(valuesCube.shape[0])], dtype="object") # Stores all extractors in list by extractor index sources = numpy.array([Source() for _ in range(valuesCube.shape[1])], dtype="object") # Stores all sources in list by source index probabilityCwdvGivenXwdv = numpy.array( [[dict() for _ in range(valuesCube.shape[2])] for _ in range(valuesCube.shape[1])], dtype="object") # 2D list by source and data item index holding a map from value to P(Cwdv|Xwdv) argmaxProbabilityCwdvGivenXwdv = numpy.array([[None] * valuesCube.shape[2] for _ in range(valuesCube.shape[1])], dtype="object") # 2D list by source and data item index holding (data item index, value, P(Cwdv|Xwdv)) tuple that is argmax P(Cwdv|Xwdv) probabilityVdEqualsVGivenX = numpy.array([dict() for _ in range(valuesCube.shape[2])], dtype="object") # 1D List by data item index holding a map from value to P(Vd = v|Xd) alphas = numpy.array( [[defaultdict(lambda: 0.5) for _ in range(valuesCube.shape[2])] for _ in range(valuesCube.shape[1])], dtype="object") # 2D list by source and data item index holding map from value to alpha # Begin Iterative Algorithm for _ in range(maxIterations): print("ITERATION") # Estimate C for sourceIndex in range(len(sourceDataItemDomain)): for dataItemIndex in range(len(sourceDataItemDomain[sourceIndex])): for value in sourceDataItemDomain[sourceIndex][dataItemIndex]: tmp = getProbabilityCwdvGivenXwdv(valuesCube[:, sourceIndex, dataItemIndex], value, extractors, alphas[sourceIndex][dataItemIndex][value]) probabilityCwdvGivenXwdv[sourceIndex][dataItemIndex][value] = tmp if not argmaxProbabilityCwdvGivenXwdv[sourceIndex][dataItemIndex] or \ argmaxProbabilityCwdvGivenXwdv[sourceIndex][dataItemIndex][1] < tmp: argmaxProbabilityCwdvGivenXwdv[sourceIndex][dataItemIndex] = (value, tmp) # Estimate V for dataItemIndex in range(len(dataItemDomain)): for value in dataItemDomain[dataItemIndex]: probabilityVdEqualsVGivenX[dataItemIndex][value] = getProbabilityVdEqualsVGivenX( dataItemDomain[dataItemIndex], value, sources, probabilityCwdvGivenXwdv[:, dataItemIndex]) # Estimate Accuracy for sourceIndex in range(len(sources)): sources[sourceIndex].accuracy = getAccuracyForSource(argmaxProbabilityCwdvGivenXwdv[sourceIndex], probabilityVdEqualsVGivenX) # Estimate Precision and Recall denominatorRecall = sum( value for values in [values.values() for values in probabilityCwdvGivenXwdv.flatten()] for value in values) for extractorIndex in range(len(extractors)): extractors[extractorIndex].precision, extractors[extractorIndex].recall = getPrecisionAndRecallForExtractor( valuesCube[extractorIndex], probabilityCwdvGivenXwdv, denominatorRecall) extractors[extractorIndex].updatePresenceAndAbsenceVote() # Check for Convergence # Calculate Alpha for sourceIndex in range(len(sourceDataItemDomain)): for dataItemIndex in range(len(sourceDataItemDomain[sourceIndex])): for value in sourceDataItemDomain[sourceIndex][dataItemIndex]: alphas[sourceIndex][dataItemIndex][value] = getAlpha( probabilityVdEqualsVGivenX[dataItemIndex][value], sources[sourceIndex].accuracy) error_Checking(valuesCube, sources) return sources, extractors def main(): ''' if len(sys.argv) != 3: print(f"Usage: python {sys.argv[0]} [filename]") exit() ''' with open("multilayerinput_small.json", 'r') as inputFile: data = json.load(inputFile) extractorToIndex = {} sourceToIndex = {} dataItemToIndex = {} for extractor in data: if extractor not in extractorToIndex: extractorToIndex[extractor] = len(extractorToIndex) for source in data[extractor]: if source not in sourceToIndex: sourceToIndex[source] = len(sourceToIndex) for triple in data[extractor][source]: dataItem = (triple[0], triple[1]) value = triple[2] if dataItem not in dataItemToIndex: dataItemToIndex[dataItem] = len(dataItemToIndex) valueCube = numpy.empty((len(extractorToIndex), len(sourceToIndex), len(dataItemToIndex)), dtype="object") sourceDataItemDomain = numpy.array( [[set() for _ in range(len(dataItemToIndex))] for _ in range(len(sourceToIndex))], dtype="object") dataItemDomain = numpy.array([set() for _ in range(len(dataItemToIndex))], dtype="object") for extractor in data: for source in data[extractor]: for triple in data[extractor][source]: dataItem = (triple[0], triple[1]) value = triple[2] valueCube[extractorToIndex[extractor], sourceToIndex[source], dataItemToIndex[dataItem]] = value sourceDataItemDomain[sourceToIndex[source], dataItemToIndex[dataItem]].add(value) dataItemDomain[dataItemToIndex[dataItem]].add(value) print(multilayer(valueCube, sourceDataItemDomain, dataItemDomain, 100)) ################## # Error Checking # ################## def calc_SqV(pVdEqualsVGivenX, IVdequalsV, dataItemDomain): # Calculates the difference between True (I) values and our (p) values total = 0 for dataItemIndex in range(len(dataItemDomain)): for value in dataItemDomain[dataItemIndex]: diff = pVdEqualsVGivenX[dataItemIndex][value] - IVdequalsV[dataItemIndex][value] total += pow(diff, 2) return total def calc_SqC(sourceDataItemDomain, pCwdvGivenXwdv, ICwdv): total = 0 for sourceIndex in range(len(sourceDataItemDomain)): for dataItemIndex in range(len(sourceDataItemDomain[sourceIndex])): for value in sourceDataItemDomain[sourceIndex][dataItemIndex]: diff = pCwdvGivenXwdv[sourceIndex][dataItemIndex][value] - ICwdv[sourceIndex][dataItemIndex][value] total += pow(diff, 2) return total def calc_SqA(A_calc, A_actual): total = 0 for sourceIndex in range(len(A_calc)): diff = A_calc[sourceIndex].accuracy - A_actual[sourceIndex] total += pow(diff, 2) return total # pVdEqualsVGivenX, dataItemDomain, sourceDataItemDomain, pCwdvGivenXwdv, def error_Checking(valuesCube, A_calc): # Optional argument number 2 is the validation dataset # Accuracy Comparison with open("sources.json", 'r') as inputFile: data = json.load(inputFile) return 0 A_real = numpy.array([0 for _ in range(valuesCube.shape[1])]) for s in data: A_real[int(s)] = int(data[s]["KBT"]) SqA = calc_SqA(A_calc, A_real) print("Squared Error of Source Accuracies: " + str(SqA)) # Extractor Comparison with open("") if __name__ == "__main__": main() ``` #### File: OldCode/Object-oriented Version/DataClass.py ```python class DataMatrix: # Imagine having a 3 Dimensional Matrix for all of the data Matrix3D = numpy.zeros(Extractors, Sources, DataItems) #Needs to be accessible for sources and extractors --> Can iterate by i, j, or k #Need modifing functions for while reading in JSON data # Function or class that keeps track of extractor accuracies. class Extractors: #Idea is a 3d matrix with accuracies, precision, recall, Q extractor_Accuracies = numpy(extractor_id_rows, accuracies_as_columns) def New_Accuracy_Prediction(extractor_id, accuracy): #creates a new columns for this iteration's accuracies Matrix3D = numpy.zeros(Extractors, Sources, DataItems) f = open("data.json", "r") data = json.load(f) for e in range(data.keys()): for s in range(e.keys()): for i in range(len(data[e][s])): #data_pair = (data[s][e][i][0], (data[s][e][i][1], data[s][e][i][2])) Matrix3D[e][s][i] = (0, 0) ``` #### File: OldCode/Object-oriented Version/multilayer (1).py ```python Version/multilayer (1).py import json import numpy from dataclasses import dataclass from collections import defaultdict ### Default Values ### gamma = 0.5 initialPrecision = 0.8 initialRecall = 0.8 initialAccuracy = 0.8 ### Data Classes ### @dataclass class Extractor: precision: float recall: float presenceVote: float absenceVote: float def __init__(self, precision = initialPrecision, recall = initialRecall): self.precision = precision self.recall = recall self.updatePresenceAndAbsenceVote() #Equation 7 def getSpecificity(self) -> float: return (gamma/(1.0 - gamma)) * ((1.0 - self.precision)/self.precision) * self.recall #Equation 12 def updatePresenceAndAbsenceVote(self) -> None: specificity = self.getSpecificity() self.presenceVote = numpy.log(self.recall) - numpy.log(specificity) self.absenceVote = numpy.log(1.0 - self.recall) - numpy.log(1.0 - specificity) @dataclass class Source: accuracy: float def __init__(self, accuracy = initialAccuracy): self.accuracy = accuracy ### Estimating C ### def sigmoid(x): return (1.0/(1.0 + numpy.exp(-x))) #Equation 14 (Replace with 31 for Extractors with Confidence Values) def getVoteCount(sourceDataItemSlice, value, extractors): voteCount = 0 for extractorIndex in range(sourceDataItemSlice.size): if sourceDataItemSlice[extractorIndex] == value: voteCount += extractors[extractorIndex].presenceVote else: voteCount += extractors[extractorIndex].absenceVote return voteCount #Equation 15 def getProbabilityCwdvGivenXwdv(sourceDataItemSlice, value, extractors, alpha): return sigmoid(getVoteCount(sourceDataItemSlice, value, extractors) + numpy.log(alpha/(1.0 - alpha))) ### Multilayer Algorithm ### #Values Cube is a 3D Matrix with Axis (Extactor, Source, Data Item) with Value as the entries def multilayer(valuesCube, maxIterations): extractors = defaultdict(Extractor) sources = defaultdict(Source) pass def getMatrixFromJSON(jsonData): pass if __name__ == "__main__": multilayer(numpy.array([[["0", "0", "0", "0"], ["0", "1", "0", "1"]], [["1", "1", "1", "1"], ["0", "0", "2", "2"]], [["2", "2", "2", "2"], ["2", "0", "1", "2"]]]), 100) #Read input data and call the model #with open("data.json", "r") as f: # data = f.read() # Parsing the file #json_data = json.loads(data) ``` #### File: OldCode/Object-oriented Version/multilayer.py ```python import numpy as np import math as m import json class DataPoint: def __init__(self, E, W, D, V): self.extractor = E self.value = V self.source = W self.data_item = D def calc_ewdv(self, e, w, d, v): # Checks if the triple is was extracted - THIS NEEDS ADJUSTING - if e in self.extractor and ((w, d, v) in e.triplets): return 1 else: return 0 class Extractor: def __init__(self, data, R_e=0.8, Q_e=0.2): # data being a set() of triplet tuples containing all extracted information by the extractor over the dataset self.triplets = data self.R_e = R_e self.Q_e = Q_e class InputData: def __init__(self, data): self.extractors = data['extractors'] self.data_pairs = data['data_items'] # List of (d, v) self.sources = data['sources'] self.data_items = [] self.data_values = [] for d in self.data_pairs: self.data_items.append(d[0]) self.data_values.append(d[1]) ''' Class which will act as the container for an instance of this truth-discovery algorithm. This will maintain all hyperparameters along with default starting values ''' class Model: def __init__(self, max_iter=100, A_w=0.5): self.A_w = A_w self.max_iter = max_iter self.theta = np.array(2) ''' Analog for Algorithm 1 MultiLayer(X, t_max) from Knowledge Based Trust paper ''' def multilayer(self): self.A = np.zeros(len(self.X)) self.A += self.A_w # Test for if Z and theta converge, then return the value Loop - Convergence condition goes here itr = 0 iteration_results = np.array() while itr <= self.max_iter: # Change this to also check for convergence # Intermediary steps this_itr = np.array() for extractor in range(len(Extractors)): # Estimate C C = self.calc_Cwdv(DP) # Percolate through other functions self.A_w = self.iterate_ahat(data) vote_count = self.calc_VCC_prime(data, DP) # Estimate V V = self.calc_Vd(data) # Estimate thetas theta1 = self.calc_A_w_hat(DP, data) theta2 = np.array(self.calc_P_e_hat(data), self.calc_R_e_hat(data)) # Save the results self.A[extractor] = theta1 this_itr.append((theta1, theta2)) # Make this more organized? iteration_results.append(this_itr) ''' This block of functions are designated as those required to estiamte C ''' def calc_Pre_e(self, e): # Presence vote for a triple that it extracts (Eq. 12) return m.log(e.R_e) - m.log(e.Q_e) def calc_Abs_e(self, e): # Absence vote for a triple that it does not extract (Eq. 13) return m.log(1 - e.R_e) - m.log(1 - e.Q_e) def calc_VCC(self, DP): # VCC calculates the for vote count (Eq. 14) # For each extractor, count the sum of presence and absence votes Pre_e, Abs_e = 0 for e in DP.extractor: if DP.calc_ewdv(e, DP.source, DP.data_item, DP.value) == 1: Pre_e += self.calc_Pre_e(e) elif DP.calc_ewdv(e, DP.source, DP.data_item, DP.value): Abs_e += self.calc_Abs_e(e) return Pre_e + Abs_e # Modeled after equation 15 in the paper -- Returns P[C_{wdv} = 1 | X_{wdv}] def calc_Cwdv(self, DP): # Probability that w provides (d, v) given whether it was extracted result = calc_VCC(DP) + m.log((self.A_w) / (1 - self.A_w)) #Check if its supposed to be alpha result = 1 / (1 + (m.e ** -(result))) return result INCORRENT - NEEDS ARGMAX ON PG 942 # Modeled after equation 26 in the paper -- Returns \hat{a}^{t+1} def iterate_ahat(self, X): # Recalculates our assumption that a = p(Cwdv = 1) return self.calc_Vd(X) * self.A_w + (1 - self.calc_Vd(X))*(1 - self.A_w) # Modeled after equation 31 in the paper -- Returns VCC'(w, d, v) def calc_VCC_prime(self, X, DP): # Accounts for extraction confidence values result = 0 for e in X.extractors: if DP.calc_ewdv(e, DP.source, DP.data_item, DP.value): result += self.calc_Pre_e(e) elif DP.calc_ewdv(e, DP.source, DP.data_item, DP.value): result += self.calc_Abs_e(e) return result ''' This block of functions is designated as those required to estimate V ''' # Modeled after equation 23 in the paper -- Returns VCV'(w, d, v) def calc_VCV_prime(self, DP): # Calculates the vote count for an extractor using weights now n = len(self.A) result = self.calc_Cwdv(DP) * m.log((n * self.A_w) / (1 - self.A_w)) return result # Modeled after equation 24 in the paper -- Returns VCV'(d, v) def calc_VCV_prime_general(self, X, DP): # Sum of all vote counts for each source from the extractor with weights result = 0 for w in X.sources: DP.source = w result += self.calc_VCV_prime(DP) return result # Modeled after equation 25 in the paper -- Returns P[V_d = v | X_d] def calc_Vd(self, X): # Probability that the extracted value is the true value. denom = 0 for v in X.true_v: DP = DataPoint(None, None, X.data_item, v) denom += m.e ** (self.calc_VCV_prime_general(X, DP)) return (m.e ** (self.calc_VCV_prime_general(X, DataPoint(None, None, X.data_item, X.value))) / denom) ''' This block of functions is designed as those required to estimate Theta ''' ''' Theta 1 ''' # Modeled after equation 28 in the paper -- Returns \hat{A}_w^{t+1} def calc_A_w_hat(self, DP, X): # Calculating the accuracy of the web source num_val = 0 den_val = 0 for dataPoint in X.getData(): if self.calc_Cwdv(dataPoint) > 1: num_val += self.calc_Cwdv(dataPoint) * self.calc_Vd(X) den_val += self.calc_Cwdv(dataPoint) return num_val / den_val ''' Theta 2 ''' # Modeled after equation 32 in the paper -- Returns \hat{P}_e def calc_P_e_hat(self, X): # Calculating the precision of the extractor num_val = 0 den_val = 0 for dataPoint in X.getData(): if dataPoint.calc_Xewdv() > 0: num_val += dataPoint.calc_Xewdv() * self.calc_Cwdv(dataPoint) den_val += dataPoint.calc_Xewdv() # Modeled after equation 33 in the paper -- Returns \hat{R}_e def calc_R_e_hat(self, X): # Calculating the recall of the extractor num_val, den_val = 0 for dataPoint in X.getData(): if dataPoint.calc_Xewdv() > 0: num_val += dataPoint.calc_Xewdv() * self.calc_Cwdv(dataPoint) den_val += self.calc_Cwdv(dataPoint) return num_val / den_val if __name__ == "__main__": # Read input data and call the model with open("data.json", "r") as f: data = f.read() # Parsing the file json_data = json.loads(data) ```
{ "source": "jgrieger1/pubnubsub-handler", "score": 3 }
#### File: jgrieger1/pubnubsub-handler/pubnubsubhandler.py ```python import json import threading import logging from pubnub.pnconfiguration import PNConfiguration from pubnub.pubnub import PubNub from pubnub.enums import PNOperationType, PNStatusCategory, \ PNReconnectionPolicy from pubnub.callbacks import SubscribeCallback SUBSCRIPTIONS = {} CHANNELS = [] _LOGGER = logging.getLogger(__name__) class PubNubSubscriptionHandler(): """ Connection handler for PubNub Subscriptions. """ def __init__(self, sub_key, keep_alive_function=None, keep_alive=3600, sub_delay=1): """ Create the PubNub connection object. Args: sub_key (str): The PubNub Subscription key to use. keep_alive_function (func, optional): If provided will be run every keep_alive seconds. Use if something needs run to keep your PubNub updates flowing. Defaults to None. Example: For Wink subscriptions the Wink API needs polled occasionally to keep updates flowing from PubNub. keep_alive (int, optional): How often to run the keep_alive_function in seconds. Defaults to 3600 (1 hour) sub_delay (int, optional): How long to delay the call to subscribe. Defaults to 1 second. (No delay) """ self._sub_key = sub_key self._pnconfig = PNConfiguration() self._pnconfig.reconnect_policy = PNReconnectionPolicy.EXPONENTIAL self._pnconfig.subscribe_key = sub_key self._pnconfig.ssl = True self._pubnub = PubNub(self._pnconfig) self._listener = PubNubSubCallback() self._pubnub.add_listener(self._listener) self._keep_alive_function = keep_alive_function self._keep_alive = keep_alive self._subscribed = False self._subscription_delay = sub_delay def add_subscription(self, channel, callback_function): """ Add a channel to subscribe to and a callback function to run when the channel receives an update. If channel already exists, create a new "subscription" and append another callback function. Args: channel (str): The channel to add a subscription too. callback_function (func): The function to run on an update to the passed in channel. """ if channel not in CHANNELS: CHANNELS.append(channel) SUBSCRIPTIONS[channel] = [callback_function] else: SUBSCRIPTIONS[channel].append(callback_function) # If a channel gets added after subscription has already been called # call subscribe on the individual channel, here. if self._subscribed: _LOGGER.info("New channel added after main subscribe call.") self._pubnub.subscribe().channels(channel).execute() def subscribe(self): """ Call the real subscribe method in self._subscription_delay seconds. This give the calling program more time to add devices to keep the TCP connections to a minimum. """ threading.Timer(self._subscription_delay, self._subscribe).start() def _run_keep_alive(self): """ Start a new thread timer to keep the keep_alive_function running every keep_alive seconds. """ threading.Timer(self._keep_alive, self._run_keep_alive).start() _LOGGER.info("Polling the API") # This may or may not return something self._keep_alive_function() def unsubscribe(self): """ Completly stop all pubnub operations. """ _LOGGER.info("PubNub unsubscribing") self._pubnub.unsubscribe_all() self._pubnub.stop() self._pubnub = None def _subscribe(self): """ Start the subscription to the channel list. If self._keep_alive_function isn't None start timer thread to run self._keep_alive_function every self._keep_alive amount of seconds. """ _LOGGER.info("PubNub subscribing") self._pubnub.subscribe().channels(CHANNELS).execute() if self._keep_alive_function is not None: threading.Timer(self._keep_alive, self._run_keep_alive).start() self._subscribed = True class PubNubSubCallback(SubscribeCallback): """ PubNub Callback handler. """ def status(self, pubnub, status): """ Things to do on different status updates. """ if status.operation == PNOperationType.PNSubscribeOperation \ or status.operation == PNOperationType.PNUnsubscribeOperation: if status.category == PNStatusCategory.PNConnectedCategory: # This is expected for a subscribe, this means there is no error or issue whatsoever _LOGGER.info("PubNub connected") elif status.category == PNStatusCategory.PNReconnectedCategory: # This usually occurs if subscribe temporarily fails but reconnects. This means # there was an error but there is no longer any issue _LOGGER.info("PubNub reconnected") elif status.category == PNStatusCategory.PNDisconnectedCategory: # This is the expected category for an unsubscribe. This means there # was no error in unsubscribing from everything _LOGGER.info("PubNub unsubscribed") elif status.category == PNStatusCategory.PNUnexpectedDisconnectCategory: # This is usually an issue with the internet connection, this is an error, handle appropriately # retry will be called automatically _LOGGER.info("PubNub disconnected (lost internet?)") else: # This is usually an issue with the internet connection, this is an error, handle appropriately # retry will be called automatically _LOGGER.info("PubNub disconnected (lost internet?)") elif status.operation == PNOperationType.PNHeartbeatOperation: # Heartbeat operations can in fact have errors, so it is important to check first for an error. # For more information on how to configure heartbeat notifications through the status # PNObjectEventListener callback, consult <link to the PNCONFIGURATION heartbeart config> if status.is_error(): # There was an error with the heartbeat operation, handle here _LOGGER.info("PubNub failed heartbeat") else: # Heartbeat operation was successful _LOGGER.info("PubNub heartbeat") else: pass def presence(self, pubnub, presence): """ Don't currently support anything presence operations """ return def message(self, pubnub, message): """ Called when a new message is recevied on one of the subscribed to channels. Proccess the message and call the channels callback function(s). """ try: json_data = json.dumps(message.message.get('data')) except AttributeError: json_data = message.message for func in SUBSCRIPTIONS[message.channel]: # This means pubnub couldn't get the current state of the channel # The pull_url is the location to pull the current state from. # Returning None here to have the calling program handle this. if 'pull_url' in json_data: func(None) else: func(json.loads(json_data)) ```
{ "source": "jgriesfeller/pyaerocom-pycharm-scratches", "score": 2 }
#### File: jgriesfeller/pyaerocom-pycharm-scratches/EBASReadingScratch.py ```python def main(): import matplotlib.pyplot as plt plt.close("all") from pyaerocom import const from pyaerocom.io.read_aeronet_sunv3 import ReadAeronetSunV3 import pyaerocom.io as pio import pyaerocom as pya # pya.change_verbosity(new_level='warning', log=pya.logger) # reader = ReadAeronetSunV3(const.AERONET_SUN_V3L2_AOD_ALL_POINTS_NAME) # od = reader.read_file("/home/jang/MyPyaerocom/testdata-minimal/obsdata/AeronetSunV3Lev2.0.AP/renamed/19930101_20211120_Zvenigorod.lev20") # print(od) DATA_ID = const.EBAS_MULTICOLUMN_NAME reader = pio.ReadUngridded(DATA_ID) # data = reader.read(vars_to_retrieve="concCocpm25") data = reader.read(vars_to_retrieve="concso4") # data = reader.read(vars_to_retrieve="SO4ugSm3") print(data) # ETOPO1_Ice_g_gmt4.grd if __name__ == "__main__": main() ```
{ "source": "j-griffith/cinder", "score": 3 }
#### File: api/validation/parameter_types.py ```python import copy import re import unicodedata import six def _is_printable(char): """determine if a unicode code point is printable. This checks if the character is either "other" (mostly control codes), or a non-horizontal space. All characters that don't match those criteria are considered printable; that is: letters; combining marks; numbers; punctuation; symbols; (horizontal) space separators. """ category = unicodedata.category(char) return (not category.startswith("C") and (not category.startswith("Z") or category == "Zs")) def _get_all_chars(): for i in range(0xFFFF): yield six.unichr(i) # build a regex that matches all printable characters. This allows # spaces in the middle of the name. Also note that the regexp below # deliberately allows the empty string. This is so only the constraint # which enforces a minimum length for the name is triggered when an # empty string is tested. Otherwise it is not deterministic which # constraint fails and this causes issues for some unittests when # PYTHONHASHSEED is set randomly. def _build_regex_range(ws=True, invert=False, exclude=None): """Build a range regex for a set of characters in utf8. This builds a valid range regex for characters in utf8 by iterating the entire space and building up a set of x-y ranges for all the characters we find which are valid. :param ws: should we include whitespace in this range. :param exclude: any characters we want to exclude :param invert: invert the logic The inversion is useful when we want to generate a set of ranges which is everything that's not a certain class. For instance, produce all all the non printable characters as a set of ranges. """ if exclude is None: exclude = [] regex = "" # are we currently in a range in_range = False # last character we found, for closing ranges last = None # last character we added to the regex, this lets us know that we # already have B in the range, which means we don't need to close # it out with B-B. While the later seems to work, it's kind of bad form. last_added = None def valid_char(char): if char in exclude: result = False elif ws: result = _is_printable(char) else: # Zs is the unicode class for space characters, of which # there are about 10 in this range. result = (_is_printable(char) and unicodedata.category(char) != "Zs") if invert is True: return not result return result # iterate through the entire character range. in_ for c in _get_all_chars(): if valid_char(c): if not in_range: regex += re.escape(c) last_added = c in_range = True else: if in_range and last != last_added: regex += "-" + re.escape(last) in_range = False last = c else: if in_range: regex += "-" + re.escape(c) return regex valid_description_regex_base = '^[%s]*$' valid_description_regex = valid_description_regex_base % ( _build_regex_range()) name = { 'type': 'string', 'minLength': 1, 'maxLength': 255, 'format': 'name' } description = { 'type': ['string', 'null'], 'minLength': 0, 'maxLength': 255, 'pattern': valid_description_regex, } boolean = { 'type': ['boolean', 'string'], 'enum': [True, 'True', 'TRUE', 'true', '1', 'ON', 'On', 'on', 'YES', 'Yes', 'yes', 'y', 't', False, 'False', 'FALSE', 'false', '0', 'OFF', 'Off', 'off', 'NO', 'No', 'no', 'n', 'f'], } uuid = { 'type': 'string', 'format': 'uuid' } extra_specs = { 'type': 'object', 'patternProperties': { '^[a-zA-Z0-9-_:. ]{1,255}$': { 'type': 'string', 'maxLength': 255 } }, 'additionalProperties': False } extra_specs_with_no_spaces_key = { 'type': 'object', 'patternProperties': { '^[a-zA-Z0-9-_:.]{1,255}$': { 'type': ['string', 'null'], 'minLength': 0, 'maxLength': 255 } }, 'additionalProperties': False } group_snapshot_status = { 'type': 'string', 'format': 'group_snapshot_status' } extra_specs_with_null = copy.deepcopy(extra_specs) extra_specs_with_null['patternProperties'][ '^[a-zA-Z0-9-_:. ]{1,255}$']['type'] = ['string', 'null'] name_allow_zero_min_length = { 'type': ['string', 'null'], 'minLength': 0, 'maxLength': 255 } uuid_allow_null = { 'type': ['string', 'null'] } metadata_allows_null = copy.deepcopy(extra_specs) metadata_allows_null['type'] = ['object', 'null'] container = { 'type': ['string', 'null'], 'minLength': 0, 'maxLength': 255} backup_url = {'type': 'string', 'minLength': 1, 'format': 'base64'} backup_service = {'type': 'string', 'minLength': 0, 'maxLength': 255} nullable_string = { 'type': ('string', 'null'), 'minLength': 0, 'maxLength': 255 } ``` #### File: dell_emc/unity/adapter.py ```python import contextlib import copy import functools import os import random from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import importutils from cinder import exception from cinder.i18n import _ from cinder import utils as cinder_utils from cinder.volume.drivers.dell_emc.unity import client from cinder.volume.drivers.dell_emc.unity import utils from cinder.volume import utils as vol_utils storops = importutils.try_import('storops') if storops: from storops import exception as storops_ex else: # Set storops_ex to be None for unit test storops_ex = None LOG = logging.getLogger(__name__) PROTOCOL_FC = 'FC' PROTOCOL_ISCSI = 'iSCSI' class VolumeParams(object): def __init__(self, adapter, volume): self._adapter = adapter self._volume = volume self._volume_id = volume.id self._name = volume.name self._size = volume.size self._description = (volume.display_description if volume.display_description else volume.display_name) self._pool = None self._io_limit_policy = None @property def volume_id(self): return self._volume_id @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def size(self): return self._size @size.setter def size(self, value): self._size = value @property def description(self): return self._description @description.setter def description(self, value): self._description = value @property def pool(self): if self._pool is None: self._pool = self._adapter._get_target_pool(self._volume) return self._pool @pool.setter def pool(self, value): self._pool = value @property def io_limit_policy(self): if self._io_limit_policy is None: qos_specs = utils.get_backend_qos_specs(self._volume) self._io_limit_policy = self._adapter.client.get_io_limit_policy( qos_specs) return self._io_limit_policy @io_limit_policy.setter def io_limit_policy(self, value): self._io_limit_policy = value def __eq__(self, other): return (self.volume_id == other.volume_id and self.name == other.name and self.size == other.size and self.io_limit_policy == other.io_limit_policy) class CommonAdapter(object): protocol = 'unknown' driver_name = 'UnityAbstractDriver' driver_volume_type = 'unknown' def __init__(self, version=None): self.version = version self.driver = None self.config = None self.configured_pool_names = None self.reserved_percentage = None self.max_over_subscription_ratio = None self.volume_backend_name = None self.ip = None self.username = None self.password = <PASSWORD> self.array_cert_verify = None self.array_ca_cert_path = None self._serial_number = None self.storage_pools_map = None self._client = None self.allowed_ports = None def do_setup(self, driver, conf): self.driver = driver self.config = self.normalize_config(conf) self.configured_pool_names = self.config.unity_storage_pool_names self.reserved_percentage = self.config.reserved_percentage self.max_over_subscription_ratio = ( self.config.max_over_subscription_ratio) self.volume_backend_name = ( self.config.safe_get('volume_backend_name') or self.driver_name) self.ip = self.config.san_ip self.username = self.config.san_login self.password = self.config.san_password # Allow for customized CA self.array_cert_verify = self.config.driver_ssl_cert_verify self.array_ca_cert_path = self.config.driver_ssl_cert_path sys_version = self.client.system.system_version if utils.is_before_4_1(sys_version): raise exception.VolumeBackendAPIException( data=_('Unity driver does not support array OE version: %s. ' 'Upgrade to 4.1 or later.') % sys_version) self.storage_pools_map = self.get_managed_pools() self.allowed_ports = self.validate_ports(self.config.unity_io_ports) group_name = (self.config.config_group if self.config.config_group else 'DEFAULT') folder_name = '%(group)s.%(sys_name)s' % { 'group': group_name, 'sys_name': self.client.system.info.name} persist_path = os.path.join(cfg.CONF.state_path, 'unity', folder_name) storops.TCHelper.set_up(persist_path) def normalize_config(self, config): config.unity_storage_pool_names = utils.remove_empty( '%s.unity_storage_pool_names' % config.config_group, config.unity_storage_pool_names) config.unity_io_ports = utils.remove_empty( '%s.unity_io_ports' % config.config_group, config.unity_io_ports) return config def get_all_ports(self): raise NotImplementedError() def validate_ports(self, ports_whitelist): all_ports = self.get_all_ports() # After normalize_config, `ports_whitelist` could be only None or valid # list in which the items are stripped. if ports_whitelist is None: return all_ports.id # For iSCSI port, the format is 'spa_eth0', and 'spa_iom_0_fc0' for FC. # Unix style glob like 'spa_*' is supported. whitelist = set(ports_whitelist) matched, _ignored, unmatched_whitelist = utils.match_any(all_ports.id, whitelist) if not matched: LOG.error('No matched ports filtered by all patterns: %s', whitelist) raise exception.InvalidConfigurationValue( option='%s.unity_io_ports' % self.config.config_group, value=self.config.unity_io_ports) if unmatched_whitelist: LOG.error('No matched ports filtered by below patterns: %s', unmatched_whitelist) raise exception.InvalidConfigurationValue( option='%s.unity_io_ports' % self.config.config_group, value=self.config.unity_io_ports) LOG.info('These ports %(matched)s will be used based on ' 'the option unity_io_ports: %(config)s', {'matched': matched, 'config': self.config.unity_io_ports}) return matched @property def verify_cert(self): verify_cert = self.array_cert_verify if verify_cert and self.array_ca_cert_path is not None: verify_cert = self.array_ca_cert_path return verify_cert @property def client(self): if self._client is None: self._client = client.UnityClient( self.ip, self.username, self.password, verify_cert=self.verify_cert) return self._client @property def serial_number(self): if self._serial_number is None: self._serial_number = self.client.get_serial() return self._serial_number def get_managed_pools(self): names = self.configured_pool_names array_pools = self.client.get_pools() valid_names = utils.validate_pool_names(names, array_pools.name) return {p.name: p for p in array_pools if p.name in valid_names} def makeup_model(self, lun, is_snap_lun=False): lun_type = 'snap_lun' if is_snap_lun else 'lun' location = self._build_provider_location(lun_id=lun.get_id(), lun_type=lun_type) return { 'provider_location': location, 'provider_id': lun.get_id() } def create_volume(self, volume): """Creates a volume. :param volume: volume information """ params = VolumeParams(self, volume) log_params = { 'name': params.name, 'size': params.size, 'description': params.description, 'pool': params.pool, 'io_limit_policy': params.io_limit_policy} LOG.info('Create Volume: %(name)s, size: %(size)s, description: ' '%(description)s, pool: %(pool)s, io limit policy: ' '%(io_limit_policy)s.', log_params) return self.makeup_model( self.client.create_lun(name=params.name, size=params.size, pool=params.pool, description=params.description, io_limit_policy=params.io_limit_policy)) def delete_volume(self, volume): lun_id = self.get_lun_id(volume) if lun_id is None: LOG.info('Backend LUN not found, skipping the deletion. ' 'Volume: %(volume_name)s.', {'volume_name': volume.name}) else: self.client.delete_lun(lun_id) def _initialize_connection(self, lun_or_snap, connector, vol_id): host = self.client.create_host(connector['host']) self.client.update_host_initiators( host, self.get_connector_uids(connector)) hlu = self.client.attach(host, lun_or_snap) data = self.get_connection_info(hlu, host, connector) data['target_discovered'] = True if vol_id is not None: data['volume_id'] = vol_id conn_info = { 'driver_volume_type': self.driver_volume_type, 'data': data, } return conn_info @cinder_utils.trace def initialize_connection(self, volume, connector): lun = self.client.get_lun(lun_id=self.get_lun_id(volume)) return self._initialize_connection(lun, connector, volume.id) def _terminate_connection(self, lun_or_snap, connector): is_force_detach = connector is None if is_force_detach: self.client.detach_all(lun_or_snap) else: host = self.client.create_host(connector['host']) self.client.detach(host, lun_or_snap) @cinder_utils.trace def terminate_connection(self, volume, connector): lun = self.client.get_lun(lun_id=self.get_lun_id(volume)) return self._terminate_connection(lun, connector) def get_connector_uids(self, connector): return None def get_connection_info(self, hlu, host, connector): return {} def extend_volume(self, volume, new_size): lun_id = self.get_lun_id(volume) if lun_id is None: msg = (_('Backend LUN not found for Volume: %(volume_name)s.') % {'volume_name': volume.name}) raise exception.VolumeBackendAPIException(data=msg) else: self.client.extend_lun(lun_id, new_size) def _get_target_pool(self, volume): return self.storage_pools_map[utils.get_pool_name(volume)] def _build_provider_location(self, lun_id=None, lun_type=None): return utils.build_provider_location( system=self.serial_number, lun_type=lun_type, lun_id=lun_id, version=self.version) def update_volume_stats(self): return { 'volume_backend_name': self.volume_backend_name, 'storage_protocol': self.protocol, 'thin_provisioning_support': True, 'thick_provisioning_support': False, 'pools': self.get_pools_stats(), } def get_pools_stats(self): self.storage_pools_map = self.get_managed_pools() return [self._get_pool_stats(pool) for pool in self.pools] @property def pools(self): return self.storage_pools_map.values() def _get_pool_stats(self, pool): return { 'pool_name': pool.name, 'total_capacity_gb': utils.byte_to_gib(pool.size_total), 'provisioned_capacity_gb': utils.byte_to_gib( pool.size_subscribed), 'free_capacity_gb': utils.byte_to_gib(pool.size_free), 'reserved_percentage': self.reserved_percentage, 'location_info': ('%(pool_name)s|%(array_serial)s' % {'pool_name': pool.name, 'array_serial': self.serial_number}), 'thin_provisioning_support': True, 'thick_provisioning_support': False, 'max_over_subscription_ratio': ( self.max_over_subscription_ratio)} def get_lun_id(self, volume): """Retrieves id of the volume's backing LUN. :param volume: volume information """ if volume.provider_location: return utils.extract_provider_location(volume.provider_location, 'id') else: # In some cases, cinder will not update volume info in DB with # provider_location returned by us. We need to retrieve the id # from array. lun = self.client.get_lun(name=volume.name) return lun.get_id() if lun is not None else None def create_snapshot(self, snapshot): """Creates a snapshot. :param snapshot: snapshot information. """ src_lun_id = self.get_lun_id(snapshot.volume) snap = self.client.create_snap(src_lun_id, snapshot.name) location = self._build_provider_location(lun_type='snapshot', lun_id=snap.get_id()) return {'provider_location': location, 'provider_id': snap.get_id()} def delete_snapshot(self, snapshot): """Deletes a snapshot. :param snapshot: the snapshot to delete. """ snap = self.client.get_snap(name=snapshot.name) self.client.delete_snap(snap) def _get_referenced_lun(self, existing_ref): if 'source-id' in existing_ref: lun = self.client.get_lun(lun_id=existing_ref['source-id']) elif 'source-name' in existing_ref: lun = self.client.get_lun(name=existing_ref['source-name']) else: reason = _('Reference must contain source-id or source-name key.') raise exception.ManageExistingInvalidReference( existing_ref=existing_ref, reason=reason) if lun is None or not lun.existed: raise exception.ManageExistingInvalidReference( existing_ref=existing_ref, reason=_("LUN doesn't exist.")) return lun def manage_existing(self, volume, existing_ref): """Manages an existing LUN in the array. The LUN should be in a manageable pool backend, otherwise return error. Rename the backend storage object so that it matches the `volume['name']` which is how drivers traditionally map between a cinder volume and the associated backend storage object. LUN ID or name are supported in `existing_ref`, like: .. code-block:: none existing_ref:{ 'source-id':<LUN id in Unity> } or .. code-block:: none existing_ref:{ 'source-name':<LUN name in Unity> } """ lun = self._get_referenced_lun(existing_ref) lun.modify(name=volume.name) return { 'provider_location': self._build_provider_location(lun_id=lun.get_id(), lun_type='lun'), 'provider_id': lun.get_id() } def manage_existing_get_size(self, volume, existing_ref): """Returns size of volume to be managed by `manage_existing`. The driver does some check here: 1. The LUN `existing_ref` should be managed by the `volume.host`. """ lun = self._get_referenced_lun(existing_ref) target_pool_name = utils.get_pool_name(volume) lun_pool_name = lun.pool.name if target_pool_name and lun_pool_name != target_pool_name: reason = (_('The imported LUN is in pool %(pool_name)s ' 'which is not managed by the host %(host)s.') % {'pool_name': lun_pool_name, 'host': volume.host}) raise exception.ManageExistingInvalidReference( existing_ref=existing_ref, reason=reason) return utils.byte_to_gib(lun.size_total) def _disconnect_device(self, conn): conn['connector'].disconnect_volume(conn['conn']['data'], conn['device']) def _connect_device(self, conn): return self.driver._connect_device(conn) @contextlib.contextmanager def _connect_resource(self, lun_or_snap, connector, res_id): """Connects to LUN or snapshot, and makes sure disconnect finally. :param lun_or_snap: the LUN or snapshot to connect/disconnect. :param connector: the host connector information. :param res_id: the ID of the LUN or snapshot. :return: the connection information, in a dict with format like (same as the one returned by `_connect_device`): { 'conn': <info returned by `initialize_connection`>, 'device': <value returned by `connect_volume`>, 'connector': <host connector info> } """ init_conn_func = functools.partial(self._initialize_connection, lun_or_snap, connector, res_id) term_conn_func = functools.partial(self._terminate_connection, lun_or_snap, connector) with utils.assure_cleanup(init_conn_func, term_conn_func, False) as conn_info: conn_device_func = functools.partial(self._connect_device, conn_info) with utils.assure_cleanup(conn_device_func, self._disconnect_device, True) as attach_info: yield attach_info def _dd_copy(self, vol_params, src_snap, src_lun=None): """Creates a volume via copying a Unity snapshot. It attaches the `volume` and `snap`, then use `dd` to copy the data from the Unity snapshot to the `volume`. """ dest_lun = self.client.create_lun( name=vol_params.name, size=vol_params.size, pool=vol_params.pool, description=vol_params.description, io_limit_policy=vol_params.io_limit_policy) src_id = src_snap.get_id() try: conn_props = cinder_utils.brick_get_connector_properties() with self._connect_resource(dest_lun, conn_props, vol_params.volume_id) as dest_info, \ self._connect_resource(src_snap, conn_props, src_id) as src_info: if src_lun is None: # If size is not specified, need to get the size from LUN # of snapshot. lun = self.client.get_lun( lun_id=src_snap.storage_resource.get_id()) size_in_m = utils.byte_to_mib(lun.size_total) else: size_in_m = utils.byte_to_mib(src_lun.size_total) vol_utils.copy_volume( src_info['device']['path'], dest_info['device']['path'], size_in_m, self.driver.configuration.volume_dd_blocksize, sparse=True) except Exception: with excutils.save_and_reraise_exception(): utils.ignore_exception(self.client.delete_lun, dest_lun.get_id()) LOG.error('Failed to create cloned volume: %(vol_id)s, ' 'from source unity snapshot: %(snap_name)s.', {'vol_id': vol_params.volume_id, 'snap_name': src_snap.name}) return dest_lun def _thin_clone(self, vol_params, src_snap, src_lun=None): tc_src = src_snap if src_lun is None else src_lun try: LOG.debug('Try to thin clone from %s.', tc_src.name) lun = self.client.thin_clone( tc_src, vol_params.name, description=vol_params.description, io_limit_policy=vol_params.io_limit_policy, new_size_gb=vol_params.size) except storops_ex.UnityThinCloneLimitExceededError: LOG.info('Number of thin clones of base LUN exceeds system ' 'limit, dd-copy a new one and thin clone from it.') # Copy via dd if thin clone meets the system limit hidden = copy.copy(vol_params) hidden.name = 'hidden-%s' % vol_params.name hidden.description = 'hidden-%s' % vol_params.description copied_lun = self._dd_copy(hidden, src_snap, src_lun=src_lun) LOG.debug('Notify storops the dd action of lun: %(src_name)s. And ' 'the newly copied lun is: %(copied)s.', {'src_name': tc_src.name, 'copied': copied_lun.name}) storops.TCHelper.notify(tc_src, storops.ThinCloneActionEnum.DD_COPY, copied_lun) lun = self.client.thin_clone( copied_lun, vol_params.name, description=vol_params.description, io_limit_policy=vol_params.io_limit_policy, new_size_gb=vol_params.size) except storops_ex.SystemAPINotSupported: # Thin clone not support on array version before Merlin lun = self._dd_copy(vol_params, src_snap, src_lun=src_lun) LOG.debug( 'Volume copied via dd because array OE is too old to support ' 'thin clone api. source snap: %(src_snap)s, lun: %(src_lun)s.', {'src_snap': src_snap.name, 'src_lun': 'Unknown' if src_lun is None else src_lun.name}) return lun def create_volume_from_snapshot(self, volume, snapshot): snap = self.client.get_snap(snapshot.name) return self.makeup_model( self._thin_clone(VolumeParams(self, volume), snap), is_snap_lun=True) def create_cloned_volume(self, volume, src_vref): """Creates cloned volume. 1. Take an internal snapshot of source volume, and attach it. 2. Thin clone from the snapshot to a new volume. Note: there are several cases the thin clone will downgrade to `dd`, 2.1 Source volume is attached (in-use). 2.2 Array OE version doesn't support thin clone. 2.3 The current LUN family reaches the thin clone limits. 3. Delete the internal snapshot created in step 1. """ src_lun_id = self.get_lun_id(src_vref) if src_lun_id is None: raise exception.VolumeBackendAPIException( data=_( "LUN ID of source volume: %s not found.") % src_vref.name) src_lun = self.client.get_lun(lun_id=src_lun_id) src_snap_name = 'snap_clone_%s' % volume.id create_snap_func = functools.partial(self.client.create_snap, src_lun_id, src_snap_name) vol_params = VolumeParams(self, volume) with utils.assure_cleanup(create_snap_func, self.client.delete_snap, True) as src_snap: LOG.debug('Internal snapshot for clone is created, ' 'name: %(name)s, id: %(id)s.', {'name': src_snap_name, 'id': src_snap.get_id()}) if src_vref.volume_attachment: lun = self._dd_copy(vol_params, src_snap, src_lun=src_lun) LOG.debug('Volume copied using dd because source volume: ' '%(name)s is attached: %(attach)s.', {'name': src_vref.name, 'attach': src_vref.volume_attachment}) return self.makeup_model(lun) else: lun = self._thin_clone(vol_params, src_snap, src_lun=src_lun) return self.makeup_model(lun, is_snap_lun=True) def get_pool_name(self, volume): return self.client.get_pool_name(volume.name) @cinder_utils.trace def initialize_connection_snapshot(self, snapshot, connector): snap = self.client.get_snap(snapshot.name) return self._initialize_connection(snap, connector, snapshot.id) @cinder_utils.trace def terminate_connection_snapshot(self, snapshot, connector): snap = self.client.get_snap(snapshot.name) return self._terminate_connection(snap, connector) @cinder_utils.trace def restore_snapshot(self, volume, snapshot): return self.client.restore_snapshot(snapshot.name) class ISCSIAdapter(CommonAdapter): protocol = PROTOCOL_ISCSI driver_name = 'UnityISCSIDriver' driver_volume_type = 'iscsi' def get_all_ports(self): return self.client.get_ethernet_ports() def get_connector_uids(self, connector): return utils.extract_iscsi_uids(connector) def get_connection_info(self, hlu, host, connector): targets = self.client.get_iscsi_target_info(self.allowed_ports) if not targets: msg = _("There is no accessible iSCSI targets on the system.") raise exception.VolumeBackendAPIException(data=msg) one_target = random.choice(targets) portals = [a['portal'] for a in targets] iqns = [a['iqn'] for a in targets] data = { 'target_luns': [hlu] * len(portals), 'target_iqns': iqns, 'target_portals': portals, 'target_lun': hlu, 'target_portal': one_target['portal'], 'target_iqn': one_target['iqn'], } return data class FCAdapter(CommonAdapter): protocol = PROTOCOL_FC driver_name = 'UnityFCDriver' driver_volume_type = 'fibre_channel' def __init__(self, version=None): super(FCAdapter, self).__init__(version=version) self.lookup_service = None def do_setup(self, driver, config): super(FCAdapter, self).do_setup(driver, config) self.lookup_service = utils.create_lookup_service() def get_all_ports(self): return self.client.get_fc_ports() def get_connector_uids(self, connector): return utils.extract_fc_uids(connector) @property def auto_zone_enabled(self): return self.lookup_service is not None def get_connection_info(self, hlu, host, connector): targets = self.client.get_fc_target_info( host, logged_in_only=(not self.auto_zone_enabled), allowed_ports=self.allowed_ports) if not targets: msg = _("There is no accessible fibre channel targets on the " "system.") raise exception.VolumeBackendAPIException(data=msg) if self.auto_zone_enabled: data = self._get_fc_zone_info(connector['wwpns'], targets) else: data = { 'target_wwn': targets, } data['target_lun'] = hlu return data def _terminate_connection(self, lun_or_snap, connector): # For FC, terminate_connection needs to return data to zone manager # which would clean the zone based on the data. super(FCAdapter, self)._terminate_connection(lun_or_snap, connector) ret = None if self.auto_zone_enabled: ret = { 'driver_volume_type': self.driver_volume_type, 'data': {} } host = self.client.create_host(connector['host']) if len(host.host_luns) == 0: targets = self.client.get_fc_target_info( logged_in_only=True, allowed_ports=self.allowed_ports) ret['data'] = self._get_fc_zone_info(connector['wwpns'], targets) return ret def _get_fc_zone_info(self, initiator_wwns, target_wwns): mapping = self.lookup_service.get_device_mapping_from_network( initiator_wwns, target_wwns) targets, itor_tgt_map = utils.convert_to_itor_tgt_map(mapping) return { 'target_wwn': targets, 'initiator_target_map': itor_tgt_map, } ```
{ "source": "j-griffith/pushbutton-ci", "score": 2 }
#### File: handler/src/handler.py ```python import json import logging import os import paramiko import pika import sys import time logging.basicConfig(filename='/src/handler.log', level=logging.INFO) class GerritEventStream(object): def __init__(self, *args, **kwargs): logging.info('Connecting to gerrit stream using env variables...') self.ssh = paramiko.SSHClient() self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) connected = False while not connected: try: self.ssh.connect(os.environ.get('gerrit_host'), int(os.environ.get('gerrit_port')), os.environ.get('ci_account'), key_filename=os.environ.get('gerrit_ssh_key')) connected = True except paramiko.SSHException as e: logging.error('%s', e) logging.warn('Gerrit may be down, will pause and retry...') time.sleep(10) self.stdin, self.stdout, self.stderr =\ self.ssh.exec_command("gerrit stream-events") def __iter__(self): return self def next(self): return self.stdout.readline() def _verify_vars(): for key in ['gerrit_ssh_key', 'gerrit_host', 'gerrit_port', 'project_name', 'ci_name', 'ci_account', 'recheck_string']: if not os.environ.get(key, None): logging.error('Missing env variable: %s' % key) sys.exit(1) return True def _is_valid_event(event): valid = False comment_added = event.get('comment', '') project = event.get('change', {}).get('project', {}) branch = event.get('change', {}).get('branch', {}) author = event.get('author', {}).get('username', {}) if (comment_added and project == os.environ.get('project_name') and branch == 'master'): if (os.environ.get('recheck_string') in comment_added or ('Verified+1' in comment_added and author == 'jenkins')): valid = True if valid: return event else: return None reconnect = 6 while reconnect: try: connection = pika.BlockingConnection( pika.ConnectionParameters( host='rabbit')) channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True) reconnect = 0 except pika.exceptions.ConnectionClosed as ex: logging.warning('Connection to RMQ failed, ' 'remaining attempts: %s' % reconnect) reconnect -= 1 time.sleep(10) if reconnect < 1: raise(ex) if not _verify_vars: logging.error('Missing required variable, exiting!') sys.exit(1) connected = False events = [] while not connected: try: events = GerritEventStream('sfcli') logging.info('Connected to gerrit, streaming events.') connected = True except Exception as ex: logging.exception('Error connecting to Gerrit: %s', ex) time.sleep(60) pass logging.info('launching event handler/listener loop') loop_counter = 0 while True: for event in events: try: event = json.loads(event) except Exception as ex: logging.error('Failed json.loads on event: %s', event) logging.exception(ex) break valid_event = _is_valid_event(event) if valid_event: logging.info('Identified valid event, sending to queue...') channel.basic_publish( exchange='', routing_key='task_queue', body=json.dumps(valid_event), properties=pika.BasicProperties( delivery_mode=2,)) ```
{ "source": "jgrigera/indico", "score": 2 }
#### File: indico/cli/maintenance.py ```python from __future__ import unicode_literals import click from indico.cli.core import cli_group from indico.core.db import db from indico.core.db.sqlalchemy.principals import PrincipalType from indico.core.db.sqlalchemy.util.models import get_simple_column_attrs from indico.modules.attachments import Attachment, AttachmentFolder from indico.modules.attachments.models.principals import AttachmentFolderPrincipal, AttachmentPrincipal from indico.modules.events.contributions import Contribution from indico.modules.events.contributions.models.principals import ContributionPrincipal from indico.modules.events.models.principals import EventPrincipal from indico.modules.events.models.roles import EventRole from indico.modules.events.sessions import Session from indico.modules.events.sessions.models.principals import SessionPrincipal click.disable_unicode_literals_warning = True @cli_group() def cli(): pass def _fix_role_principals(principals, get_event): role_attrs = get_simple_column_attrs(EventRole) | {'members'} for p in principals: click.echo('Fixing {}'.format(p)) event = get_event(p) try: event_role = [r for r in event.roles if r.code == p.event_role.code][0] except IndexError: event_role = EventRole(event=event) event_role.populate_from_attrs(p.event_role, role_attrs) else: click.echo(' using existing role {}'.format(event_role)) p.event_role = event_role db.session.flush() @cli.command() def fix_event_role_acls(): """Fixes ACLs referencing event roles from other events. This happened due to a bug prior to 2.2.3 when cloning an event which had event roles in its ACL. """ fixed_something = False broken = (EventPrincipal.query .join(EventRole, EventRole.id == EventPrincipal.event_role_id) .filter(EventPrincipal.type == PrincipalType.event_role, EventPrincipal.event_id != EventRole.event_id) .all()) _fix_role_principals(broken, lambda p: p.event) fixed_something = fixed_something or bool(broken) broken = (SessionPrincipal.query .join(Session, Session.id == SessionPrincipal.session_id) .join(EventRole, EventRole.id == SessionPrincipal.event_role_id) .filter(SessionPrincipal.type == PrincipalType.event_role, Session.event_id != EventRole.event_id) .all()) _fix_role_principals(broken, lambda p: p.session.event) fixed_something = fixed_something or bool(broken) broken = (ContributionPrincipal.query .join(Contribution, Contribution.id == ContributionPrincipal.contribution_id) .join(EventRole, EventRole.id == ContributionPrincipal.event_role_id) .filter(ContributionPrincipal.type == PrincipalType.event_role, Contribution.event_id != EventRole.event_id) .all()) _fix_role_principals(broken, lambda p: p.contribution.event) fixed_something = fixed_something or bool(broken) broken = (AttachmentFolderPrincipal.query .join(AttachmentFolder, AttachmentFolder.id == AttachmentFolderPrincipal.folder_id) .join(EventRole, EventRole.id == AttachmentFolderPrincipal.event_role_id) .filter(AttachmentFolderPrincipal.type == PrincipalType.event_role, AttachmentFolder.event_id != EventRole.event_id) .all()) _fix_role_principals(broken, lambda p: p.folder.event) fixed_something = fixed_something or bool(broken) broken = (AttachmentPrincipal.query .join(Attachment, Attachment.id == AttachmentPrincipal.attachment_id) .join(AttachmentFolder, AttachmentFolder.id == Attachment.folder_id) .join(EventRole, EventRole.id == AttachmentPrincipal.event_role_id) .filter(AttachmentPrincipal.type == PrincipalType.event_role, AttachmentFolder.event_id != EventRole.event_id) .all()) _fix_role_principals(broken, lambda p: p.attachment.folder.event) fixed_something = fixed_something or bool(broken) if not fixed_something: click.secho('Nothing to fix :)', fg='green') return click.confirm(click.style('Do you want to commit the fixes shown above?', fg='white', bold=True), default=True, abort=True) db.session.commit() click.secho('Success!', fg='green') ``` #### File: core/settings/util.py ```python from __future__ import unicode_literals from copy import copy _not_in_db = object() def _get_cache_key(proxy, name, kwargs): return type(proxy), proxy.module, name, frozenset(kwargs.viewitems()) def _preload_settings(cls, proxy, cache, **kwargs): settings = cls.get_all(proxy.module, **kwargs) for name, value in settings.iteritems(): cache_key = _get_cache_key(proxy, name, kwargs) cache[cache_key] = value # cache missing entries as not in db for name in proxy.defaults.viewkeys() - settings.viewkeys(): cache_key = _get_cache_key(proxy, name, kwargs) cache[cache_key] = _not_in_db return settings def get_all_settings(cls, acl_cls, proxy, no_defaults, **kwargs): """Helper function for SettingsProxy.get_all""" if no_defaults: rv = cls.get_all(proxy.module, **kwargs) if acl_cls and proxy.acl_names: rv.update(acl_cls.get_all_acls(proxy.module, **kwargs)) return {k: proxy._convert_to_python(k, v) for k, v in rv.iteritems()} settings = dict(proxy.defaults) if acl_cls and proxy.acl_names: settings.update({name: set() for name in proxy.acl_names}) settings.update({k: proxy._convert_to_python(k, v) for k, v in cls.get_all(proxy.module, **kwargs).iteritems() if not proxy.strict or k in proxy.defaults}) if acl_cls and proxy.acl_names: settings.update(acl_cls.get_all_acls(proxy.module, **kwargs)) return settings def get_setting(cls, proxy, name, default, cache, **kwargs): """Helper function for SettingsProxy.get""" from indico.core.settings import SettingsProxyBase cache_key = _get_cache_key(proxy, name, kwargs) try: value = cache[cache_key] if value is not _not_in_db: return proxy._convert_to_python(name, value) except KeyError: setting = _preload_settings(cls, proxy, cache, **kwargs).get(name, _not_in_db) cache[cache_key] = setting if setting is not _not_in_db: return proxy._convert_to_python(name, setting) # value is not_in_db, so use the default # we always copy the proxy's default in case it's something mutable return copy(proxy.defaults.get(name)) if default is SettingsProxyBase.default_sentinel else default def get_setting_acl(cls, proxy, name, cache, **kwargs): """Helper function for ACLProxy.get""" cache_key = _get_cache_key(proxy, name, kwargs) try: return cache[cache_key] except KeyError: cache[cache_key] = acl = cls.get_acl(proxy.module, name, **kwargs) return acl ``` #### File: legacy/services/tools.py ```python def toJsDate(datetime): return "(new Date(%i,%i,%i,%i,%i,%i))" % (datetime.year, datetime.month - 1, datetime.day, datetime.hour, datetime.minute, datetime.second) ``` #### File: modules/auth/blueprint.py ```python from __future__ import unicode_literals from flask import request from indico.modules.auth.controllers import (RHAccounts, RHAdminImpersonate, RHLinkAccount, RHLogin, RHLoginForm, RHLogout, RHRegister, RHRemoveAccount, RHResetPassword) from indico.web.flask.util import make_compat_redirect_func from indico.web.flask.wrappers import IndicoBlueprint _bp = IndicoBlueprint('auth', __name__, template_folder='templates', virtual_template_folder='auth') _bp.add_url_rule('/login/', 'login', RHLogin, methods=('GET', 'POST')) _bp.add_url_rule('/login/<provider>/', 'login', RHLogin) _bp.add_url_rule('/login/<provider>/form', 'login_form', RHLoginForm) _bp.add_url_rule('/login/<provider>/link-account', 'link_account', RHLinkAccount, methods=('GET', 'POST')) _bp.add_url_rule('/logout/', 'logout', RHLogout) _bp.add_url_rule('/register/', 'register', RHRegister, methods=('GET', 'POST'), defaults={'provider': None}) _bp.add_url_rule('/register/<provider>', 'register', RHRegister, methods=('GET', 'POST')) _bp.add_url_rule('/reset-password/', 'resetpass', RHResetPassword, methods=('GET', 'POST')) _bp.add_url_rule('/admin/users/impersonate', 'admin_impersonate', RHAdminImpersonate, methods=('POST',)) with _bp.add_prefixed_rules('/user/<int:user_id>', '/user'): _bp.add_url_rule('/accounts/', 'accounts', RHAccounts, methods=('GET', 'POST')) _bp.add_url_rule('/accounts/<identity>/remove/', 'remove_account', RHRemoveAccount, methods=('POST',)) @_bp.url_defaults def _add_user_id(endpoint, values): if endpoint in {'auth.accounts', 'auth.remove_account'} and 'user_id' not in values: values['user_id'] = request.view_args.get('user_id') # Legacy URLs auth_compat_blueprint = _compat_bp = IndicoBlueprint('compat_auth', __name__) _compat_bp.add_url_rule('/user/login', 'login', make_compat_redirect_func(_bp, 'login')) _compat_bp.add_url_rule('/user/register', 'register', make_compat_redirect_func(_bp, 'register')) ``` #### File: auth/models/registration_requests.py ```python from __future__ import unicode_literals from sqlalchemy.dialects.postgresql import ARRAY, JSONB from werkzeug.datastructures import MultiDict from indico.core.db import db from indico.util.locators import locator_property from indico.util.string import format_repr, return_ascii class RegistrationRequest(db.Model): __tablename__ = 'registration_requests' __table_args__ = ( db.CheckConstraint('email = lower(email)', 'lowercase_email'), {'schema': 'users'} ) id = db.Column( db.Integer, primary_key=True ) comment = db.Column( db.Text, nullable=False, default='' ) email = db.Column( db.String, unique=True, nullable=False, index=True ) extra_emails = db.Column( ARRAY(db.String), nullable=False, default=[] ) user_data = db.Column( JSONB, nullable=False ) _identity_data = db.Column( 'identity_data', JSONB, nullable=False ) settings = db.Column( JSONB, nullable=False ) @locator_property def locator(self): return {'request_id': self.id} @property def identity_data(self): identity_data = self._identity_data.copy() # if we have data in identity_data, it was converted from a # MultiDict so we need to convert it back. if 'data' in identity_data: tmp = MultiDict() tmp.update(self._identity_data['data']) identity_data['data'] = tmp return identity_data @identity_data.setter def identity_data(self, identity_data): identity_data = identity_data.copy() # `identity_data['data']` for multipass-based identities is a # MultiDict, but json-encoding it would lose all extra values # for a key, so we convert it to a dict of lists first if 'data' in identity_data: identity_data['data'] = dict(identity_data['data'].lists()) self._identity_data = identity_data @return_ascii def __repr__(self): return format_repr(self, 'id', 'email') ``` #### File: abstracts/models/review_questions.py ```python from __future__ import unicode_literals from indico.core.db.sqlalchemy import db from indico.core.db.sqlalchemy.review_questions import ReviewQuestionMixin from indico.modules.events.reviewing_questions_fields import get_reviewing_field_types from indico.util.locators import locator_property class AbstractReviewQuestion(ReviewQuestionMixin, db.Model): __tablename__ = 'abstract_review_questions' __table_args__ = {'schema': 'event_abstracts'} event_backref_name = 'abstract_review_questions' # relationship backrefs: # - ratings (AbstractReviewRating.question) @locator_property def locator(self): return dict(self.event.locator, question_id=self.id) @property def field(self): try: impl = get_reviewing_field_types('abstracts')[self.field_type] except KeyError: return None return impl(self) ``` #### File: controllers/backend/editable_list.py ```python from __future__ import unicode_literals import uuid from flask import jsonify, request, session from sqlalchemy.orm import joinedload from werkzeug.exceptions import Forbidden from indico.legacy.common.cache import GenericCache from indico.modules.events.contributions.models.contributions import Contribution from indico.modules.events.editing.controllers.base import RHEditablesBase, RHEditableTypeManagementBase from indico.modules.events.editing.models.editable import Editable from indico.modules.events.editing.operations import assign_editor, generate_editables_zip, unassign_editor from indico.modules.events.editing.schemas import EditableBasicSchema, EditingEditableListSchema from indico.util.i18n import _ from indico.util.marshmallow import Principal from indico.web.args import use_kwargs from indico.web.flask.util import url_for archive_cache = GenericCache('editables-archive') class RHEditableList(RHEditableTypeManagementBase): """Return the list of editables of the event for a given type""" def _process_args(self): RHEditableTypeManagementBase._process_args(self) self.contributions = (Contribution.query .with_parent(self.event) .options(joinedload('editables')) .order_by(Contribution.friendly_id) .all()) def _process(self): return (EditingEditableListSchema(many=True, context={'editable_type': self.editable_type}) .jsonify(self.contributions)) class RHPrepareEditablesArchive(RHEditablesBase): def _process(self): key = unicode(uuid.uuid4()) data = [editable.id for editable in self.editables] archive_cache.set(key, data, time=1800) download_url = url_for('.download_archive', self.event, type=self.editable_type.name, uuid=key) return jsonify(download_url=download_url) class RHDownloadArchive(RHEditableTypeManagementBase): def _process(self): editable_ids = archive_cache.get(unicode(request.view_args['uuid']), []) editables = Editable.query.filter(Editable.id.in_(editable_ids)).all() return generate_editables_zip(editables) class RHAssignEditor(RHEditablesBase): @use_kwargs({ 'editor': Principal(required=True) }) def _process_args(self, editor): RHEditablesBase._process_args(self) if (not self.event.can_manage(editor, self.editable_type.editor_permission) and not self.event.can_manage(editor, 'editing_manager')): raise Forbidden(_('This user is not an editor of the {} type').format(self.editable_type.name)) self.editor = editor def _process(self): editables = [e for e in self.editables if e.editor != self.editor] for editable in editables: assign_editor(editable, self.editor) return EditableBasicSchema(many=True).jsonify(editables) class RHAssignMyselfAsEditor(RHEditablesBase): def _check_access(self): RHEditablesBase._check_access(self) if (not self.event.can_manage(session.user, self.editable_type.editor_permission) and not self.event.can_manage(session.user, 'editing_manager')): raise Forbidden(_('You are not an editor of the {} type').format(self.editable_type.name)) def _process(self): editables = [e for e in self.editables if e.editor != session.user] for editable in editables: assign_editor(editable, session.user) return EditableBasicSchema(many=True).jsonify(editables) class RHUnassignEditor(RHEditablesBase): def _process(self): editables = [e for e in self.editables if e.editor] for editable in editables: unassign_editor(editable) return EditableBasicSchema(many=True).jsonify(editables) ``` #### File: papers/controllers/base.py ```python from __future__ import unicode_literals from flask import request, session from werkzeug.exceptions import Forbidden, NotFound from indico.modules.events.contributions.models.contributions import Contribution from indico.modules.events.controllers.base import RHDisplayEventBase from indico.modules.events.management.controllers.base import ManageEventMixin from indico.modules.events.util import check_event_locked class RHPapersBase(RHDisplayEventBase): """Base class for all paper-related RHs""" EVENT_FEATURE = 'papers' def _check_access(self): RHDisplayEventBase._check_access(self) # Only let managers access the management versions. if self.management and not self.event.cfp.is_manager(session.user): raise Forbidden @property def management(self): """Whether the RH is currently used in the management area""" return request.view_args.get('management', False) class RHManagePapersBase(ManageEventMixin, RHPapersBase): """ Base class for all paper-related RHs that require full event management permissions """ PERMISSION = 'paper_manager' DENY_FRAMES = True @property def management(self): """Whether the RH is currently used in the management area""" return request.view_args.get('management', True) class RHJudgingAreaBase(RHPapersBase): """Base class for all paper-related RHs only available to judges/managers""" def _check_access(self): RHPapersBase._check_access(self) if not session.user or not self.event.cfp.can_access_judging_area(session.user): raise Forbidden check_event_locked(self, self.event) class RHPaperBase(RHPapersBase): PAPER_REQUIRED = True normalize_url_spec = { 'locators': { lambda self: self.contribution } } def _process_args(self): RHPapersBase._process_args(self) self.contribution = Contribution.get_or_404(request.view_args['contrib_id'], is_deleted=False) self.paper = self.contribution.paper if self.paper is None and self.PAPER_REQUIRED: raise NotFound def _check_access(self): RHPapersBase._check_access(self) if not self._check_paper_protection(): raise Forbidden check_event_locked(self, self.event) def _check_paper_protection(self): """Perform a permission check on the current paper. Override this in case you want to check for more specific privileges than the generic "can access". """ return self.contribution.can_access(session.user) ``` #### File: registration/testing/fixtures.py ```python import pytest from indico.modules.events.registration.models.forms import RegistrationForm from indico.modules.events.registration.models.registrations import Registration, RegistrationState from indico.modules.events.registration.util import create_personal_data_fields @pytest.fixture def dummy_regform(db, dummy_event): """Create a dummy registration form for the dummy event""" regform = RegistrationForm(event=dummy_event, title='Registration Form', currency='USD') create_personal_data_fields(regform) # enable all fields for field in regform.sections[0].fields: field.is_enabled = True db.session.add(regform) db.session.flush() return regform @pytest.fixture def dummy_reg(db, dummy_event, dummy_regform, dummy_user): """Create a dummy registration for the dummy event""" reg = Registration( registration_form_id=dummy_regform.id, first_name="Guinea", last_name="Pig", checked_in=True, state=RegistrationState.complete, currency="USD", email="<EMAIL>", user=dummy_user ) dummy_event.registrations.append(reg) db.session.flush() return reg ``` #### File: events/requests/__init__.py ```python from __future__ import unicode_literals from flask import session from indico.core import signals from indico.modules.events.requests.base import RequestDefinitionBase, RequestFormBase from indico.modules.events.requests.util import get_request_definitions, is_request_manager from indico.util.i18n import _ from indico.web.flask.util import url_for from indico.web.menu import SideMenuItem __all__ = ('RequestDefinitionBase', 'RequestFormBase') @signals.app_created.connect def _check_request_definitions(app, **kwargs): # This will raise RuntimeError if the request type names are not unique get_request_definitions() @signals.menu.items.connect_via('event-management-sidemenu') def _extend_event_management_menu(sender, event, **kwargs): if not get_request_definitions(): return if not event.can_manage(session.user) and not is_request_manager(session.user): return return SideMenuItem('requests', _('Logistics'), url_for('requests.event_requests', event), section='services') @signals.event_management.management_url.connect def _get_event_management_url(event, **kwargs): if is_request_manager(session.user): return url_for('requests.event_requests', event) @signals.users.merged.connect def _merge_users(target, source, **kwargs): from indico.modules.events.requests.models.requests import Request Request.find(created_by_id=source.id).update({Request.created_by_id: target.id}) Request.find(processed_by_id=source.id).update({Request.processed_by_id: target.id}) @signals.event.deleted.connect def _event_deleted(event, **kwargs): from indico.modules.events.requests.models.requests import Request, RequestState query = (Request.query.with_parent(event) .filter(Request.state.in_((RequestState.accepted, RequestState.pending)))) for req in query: req.definition.withdraw(req, notify_event_managers=False) ``` #### File: events/sessions/fields.py ```python from __future__ import unicode_literals from indico.modules.events.fields import PersonLinkListFieldBase from indico.modules.events.sessions.models.persons import SessionBlockPersonLink from indico.modules.events.util import serialize_person_link from indico.web.forms.widgets import JinjaWidget class SessionBlockPersonLinkListField(PersonLinkListFieldBase): person_link_cls = SessionBlockPersonLink linked_object_attr = 'session_block' widget = JinjaWidget('events/sessions/forms/session_person_link_widget.html') def _serialize_person_link(self, principal, extra_data=None): extra_data = extra_data or {} return dict(extra_data, **serialize_person_link(principal)) def _convert_data(self, data): return list({self._get_person_link(x) for x in data}) ``` #### File: timetable/models/entries.py ```python from __future__ import unicode_literals from datetime import timedelta from sqlalchemy import DDL from sqlalchemy.event import listens_for from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm.base import NEVER_SET, NO_VALUE from indico.core.db import db from indico.core.db.sqlalchemy import PyIntEnum, UTCDateTime from indico.core.db.sqlalchemy.util.models import populate_one_to_one_backrefs from indico.util.date_time import overlaps from indico.util.i18n import _ from indico.util.locators import locator_property from indico.util.string import format_repr, return_ascii from indico.util.struct.enum import RichIntEnum class TimetableEntryType(RichIntEnum): __titles__ = [None, _("Session Block"), _("Contribution"), _("Break")] # entries are uppercase since `break` is a keyword... SESSION_BLOCK = 1 CONTRIBUTION = 2 BREAK = 3 def _make_check(type_, *cols): all_cols = {'session_block_id', 'contribution_id', 'break_id'} required_cols = all_cols & set(cols) forbidden_cols = all_cols - required_cols criteria = ['{} IS NULL'.format(col) for col in sorted(forbidden_cols)] criteria += ['{} IS NOT NULL'.format(col) for col in sorted(required_cols)] condition = 'type != {} OR ({})'.format(type_, ' AND '.join(criteria)) return db.CheckConstraint(condition, 'valid_{}'.format(type_.name.lower())) class TimetableEntry(db.Model): __tablename__ = 'timetable_entries' @declared_attr def __table_args__(cls): return (db.Index('ix_timetable_entries_start_dt_desc', cls.start_dt.desc()), _make_check(TimetableEntryType.SESSION_BLOCK, 'session_block_id'), _make_check(TimetableEntryType.CONTRIBUTION, 'contribution_id'), _make_check(TimetableEntryType.BREAK, 'break_id'), db.CheckConstraint("type != {} OR parent_id IS NULL".format(TimetableEntryType.SESSION_BLOCK), 'valid_parent'), {'schema': 'events'}) id = db.Column( db.Integer, primary_key=True ) event_id = db.Column( db.Integer, db.ForeignKey('events.events.id'), index=True, nullable=False ) parent_id = db.Column( db.Integer, db.ForeignKey('events.timetable_entries.id'), index=True, nullable=True, ) session_block_id = db.Column( db.Integer, db.ForeignKey('events.session_blocks.id'), index=True, unique=True, nullable=True ) contribution_id = db.Column( db.Integer, db.ForeignKey('events.contributions.id'), index=True, unique=True, nullable=True ) break_id = db.Column( db.Integer, db.ForeignKey('events.breaks.id'), index=True, unique=True, nullable=True ) type = db.Column( PyIntEnum(TimetableEntryType), nullable=False ) start_dt = db.Column( UTCDateTime, nullable=False ) event = db.relationship( 'Event', lazy=True, backref=db.backref( 'timetable_entries', order_by=lambda: TimetableEntry.start_dt, cascade='all, delete-orphan', lazy='dynamic' ) ) session_block = db.relationship( 'SessionBlock', lazy=False, backref=db.backref( 'timetable_entry', cascade='all, delete-orphan', uselist=False, lazy=True ) ) contribution = db.relationship( 'Contribution', lazy=False, backref=db.backref( 'timetable_entry', cascade='all, delete-orphan', uselist=False, lazy=True ) ) break_ = db.relationship( 'Break', cascade='all, delete-orphan', single_parent=True, lazy=False, backref=db.backref( 'timetable_entry', cascade='all, delete-orphan', uselist=False, lazy=True ) ) children = db.relationship( 'TimetableEntry', order_by='TimetableEntry.start_dt', lazy=True, backref=db.backref( 'parent', remote_side=[id], lazy=True ) ) # relationship backrefs: # - parent (TimetableEntry.children) @property def object(self): if self.type == TimetableEntryType.SESSION_BLOCK: return self.session_block elif self.type == TimetableEntryType.CONTRIBUTION: return self.contribution elif self.type == TimetableEntryType.BREAK: return self.break_ @object.setter def object(self, value): from indico.modules.events.contributions import Contribution from indico.modules.events.sessions.models.blocks import SessionBlock from indico.modules.events.timetable.models.breaks import Break self.session_block = self.contribution = self.break_ = None if isinstance(value, SessionBlock): self.session_block = value elif isinstance(value, Contribution): self.contribution = value elif isinstance(value, Break): self.break_ = value elif value is not None: raise TypeError('Unexpected object: {}'.format(value)) @hybrid_property def duration(self): return self.object.duration if self.object is not None else None @duration.setter def duration(self, value): self.object.duration = value @duration.expression def duration(cls): from indico.modules.events.contributions import Contribution from indico.modules.events.sessions.models.blocks import SessionBlock from indico.modules.events.timetable.models.breaks import Break return db.case({ TimetableEntryType.SESSION_BLOCK.value: db.select([SessionBlock.duration]) .where(SessionBlock.id == cls.session_block_id) .correlate_except(SessionBlock) .as_scalar(), TimetableEntryType.CONTRIBUTION.value: db.select([Contribution.duration]) .where(Contribution.id == cls.contribution_id) .correlate_except(Contribution) .as_scalar(), TimetableEntryType.BREAK.value: db.select([Break.duration]) .where(Break.id == cls.break_id) .correlate_except(Break) .as_scalar(), }, value=cls.type) @hybrid_property def end_dt(self): if self.start_dt is None or self.duration is None: return None return self.start_dt + self.duration @end_dt.expression def end_dt(cls): return cls.start_dt + cls.duration @property def session_siblings(self): if self.type == TimetableEntryType.SESSION_BLOCK: return [x for x in self.siblings if x.session_block and x.session_block.session == self.session_block.session] elif self.parent: return self.siblings else: return [] @property def siblings(self): from indico.modules.events.timetable.util import get_top_level_entries, get_nested_entries tzinfo = self.event.tzinfo day = self.start_dt.astimezone(tzinfo).date() siblings = (get_nested_entries(self.event)[self.parent_id] if self.parent_id else get_top_level_entries(self.event)) return [x for x in siblings if x.start_dt.astimezone(tzinfo).date() == day and x.id != self.id] @property def siblings_query(self): tzinfo = self.event.tzinfo day = self.start_dt.astimezone(tzinfo).date() criteria = (TimetableEntry.id != self.id, TimetableEntry.parent == self.parent, db.cast(TimetableEntry.start_dt.astimezone(tzinfo), db.Date) == day) return TimetableEntry.query.with_parent(self.event).filter(*criteria) @locator_property def locator(self): return dict(self.event.locator, entry_id=self.id) @return_ascii def __repr__(self): return format_repr(self, 'id', 'type', 'start_dt', 'end_dt', _repr=self.object) def can_view(self, user): """Checks whether the user will see this entry in the timetable.""" if self.type in (TimetableEntryType.CONTRIBUTION, TimetableEntryType.BREAK): return self.object.can_access(user) elif self.type == TimetableEntryType.SESSION_BLOCK: if self.object.can_access(user): return True return any(x.can_access(user) for x in self.object.contributions) def extend_start_dt(self, start_dt): assert start_dt < self.start_dt extension = self.start_dt - start_dt self.start_dt = start_dt self.duration = self.duration + extension def extend_end_dt(self, end_dt): diff = end_dt - self.end_dt if diff < timedelta(0): raise ValueError("New end_dt is before current end_dt.") self.duration += diff def extend_parent(self, by_start=True, by_end=True): """Extend start/end of parent objects if needed. No extension if performed for entries crossing a day boundary in the event timezone. :param by_start: Extend parent by start datetime. :param by_end: Extend parent by end datetime. """ tzinfo = self.event.tzinfo if self.start_dt.astimezone(tzinfo).date() != self.end_dt.astimezone(tzinfo).date(): return if self.parent is None: if by_start and self.start_dt < self.event.start_dt: self.event.start_dt = self.start_dt if by_end and self.end_dt > self.event.end_dt: self.event.end_dt = self.end_dt else: extended = False if by_start and self.start_dt < self.parent.start_dt: self.parent.extend_start_dt(self.start_dt) extended = True if by_end and self.end_dt > self.parent.end_dt: self.parent.extend_end_dt(self.end_dt) extended = True if extended: self.parent.extend_parent(by_start=by_start, by_end=by_end) def is_parallel(self, in_session=False): siblings = self.siblings if not in_session else self.session_siblings for sibling in siblings: if overlaps((self.start_dt, self.end_dt), (sibling.start_dt, sibling.end_dt)): return True return False def move(self, start_dt): """Move the entry to start at a different time. This method automatically moves children of the entry to preserve their start time relative to the parent's start time. """ if self.type == TimetableEntryType.SESSION_BLOCK: diff = start_dt - self.start_dt for child in self.children: child.start_dt += diff self.start_dt = start_dt def move_next_to(self, sibling, position='before'): if sibling not in self.siblings: raise ValueError("Not a sibling") if position not in ('before', 'after'): raise ValueError("Invalid position") if position == 'before': start_dt = sibling.start_dt - self.duration else: start_dt = sibling.end_dt self.move(start_dt) @listens_for(TimetableEntry.__table__, 'after_create') def _add_timetable_consistency_trigger(target, conn, **kw): sql = """ CREATE CONSTRAINT TRIGGER consistent_timetable AFTER INSERT OR UPDATE ON {} DEFERRABLE INITIALLY DEFERRED FOR EACH ROW EXECUTE PROCEDURE events.check_timetable_consistency('timetable_entry'); """.format(target.fullname) DDL(sql).execute(conn) @listens_for(TimetableEntry.session_block, 'set') def _set_session_block(target, value, *unused): target.type = TimetableEntryType.SESSION_BLOCK @listens_for(TimetableEntry.contribution, 'set') def _set_contribution(target, value, *unused): target.type = TimetableEntryType.CONTRIBUTION @listens_for(TimetableEntry.break_, 'set') def _set_break(target, value, *unused): target.type = TimetableEntryType.BREAK @listens_for(TimetableEntry.start_dt, 'set') def _set_start_dt(target, value, oldvalue, *unused): from indico.modules.events.util import register_time_change if oldvalue in (NEVER_SET, NO_VALUE): return if value != oldvalue and target.object is not None: register_time_change(target) populate_one_to_one_backrefs(TimetableEntry, 'session_block', 'contribution', 'break_') ``` #### File: modules/groups/legacy.py ```python from __future__ import unicode_literals from indico.legacy.fossils.user import IGroupFossil from indico.modules.groups import GroupProxy from indico.util.fossilize import Fossilizable, fossilizes from indico.util.string import encode_utf8, return_ascii, to_unicode class GroupWrapper(Fossilizable): """Group-like wrapper class that holds a DB-stored (or remote) group.""" fossilizes(IGroupFossil) def __init__(self, group_id): self.id = to_unicode(group_id).encode('utf-8') @property def group(self): """Returns the underlying GroupProxy :rtype: indico.modules.groups.core.GroupProxy """ raise NotImplementedError def getId(self): return self.id def getName(self): raise NotImplementedError def getEmail(self): return '' @return_ascii def __repr__(self): return u'<{} {}: {}>'.format(type(self).__name__, self.id, self.group) class LocalGroupWrapper(GroupWrapper): is_local = True groupType = 'Default' @encode_utf8 def getName(self): return GroupProxy(self.id).name class LDAPGroupWrapper(GroupWrapper): is_local = False groupType = 'LDAP' def __init__(self, group_id, provider_name): super(LDAPGroupWrapper, self).__init__(group_id) self.provider_name = provider_name @property def provider(self): return self.provider_name @encode_utf8 def getName(self): return self.id ``` #### File: modules/news/views.py ```python from __future__ import unicode_literals from indico.modules.admin.views import WPAdmin from indico.util.i18n import _ from indico.web.views import WPDecorated, WPJinjaMixin class WPNews(WPJinjaMixin, WPDecorated): template_prefix = 'news/' title = _('News') def _get_body(self, params): return self._get_page_content(params) class WPManageNews(WPAdmin): template_prefix = 'news/' ``` #### File: modules/users/views.py ```python from __future__ import unicode_literals from flask import request from indico.modules.admin.views import WPAdmin from indico.modules.users import User from indico.util.i18n import _ from indico.web.breadcrumbs import render_breadcrumbs from indico.web.views import WPDecorated, WPJinjaMixin class WPUser(WPJinjaMixin, WPDecorated): """Base WP for user profile pages. Whenever you use this, you MUST include `user` in the params passed to `render_template`. Any RH using this should inherit from `RHUserBase` which already handles user/admin access. In this case, simply add ``user=self.user`` to your `render_template` call. """ template_prefix = 'users/' def __init__(self, rh, active_menu_item, **kwargs): kwargs['active_menu_item'] = active_menu_item WPDecorated.__init__(self, rh, **kwargs) def _get_breadcrumbs(self): if 'user_id' in request.view_args: user = User.get(request.view_args['user_id']) profile_breadcrumb = _('Profile of {name}').format(name=user.full_name) else: profile_breadcrumb = _('My Profile') return render_breadcrumbs(profile_breadcrumb) def _get_body(self, params): return self._get_page_content(params) class WPUserDashboard(WPUser): bundles = ('module_users.dashboard.js',) class WPUsersAdmin(WPAdmin): template_prefix = 'users/' bundles = ('module_users.js',) ``` #### File: modules/vc/__init__.py ```python from __future__ import unicode_literals from flask import has_request_context, render_template, session from indico.core import signals from indico.modules.events.layout.util import MenuEntryData from indico.modules.users import User from indico.modules.vc.forms import VCPluginSettingsFormBase from indico.modules.vc.models.vc_rooms import VCRoom, VCRoomEventAssociation from indico.modules.vc.plugins import VCPluginMixin from indico.modules.vc.util import get_managed_vc_plugins, get_vc_plugins from indico.util.i18n import _ from indico.web.flask.templating import get_overridable_template_name, template_hook from indico.web.flask.util import url_for from indico.web.menu import SideMenuItem, TopMenuItem __all__ = ('VCPluginMixin', 'VCPluginSettingsFormBase', 'VCRoomEventAssociation') @template_hook('event-header') def _inject_event_header(event, **kwargs): res = VCRoomEventAssociation.find_for_event(event, only_linked_to_event=True) event_vc_rooms = [event_vc_room for event_vc_room in res.all() if event_vc_room.vc_room.plugin is not None] if event_vc_rooms: return render_template('vc/event_header.html', event=event, event_vc_rooms=event_vc_rooms) @template_hook('vc-actions') def _inject_vc_room_action_buttons(event, item, **kwargs): event_vc_room = VCRoomEventAssociation.get_linked_for_event(event).get(item) if event_vc_room and event_vc_room.vc_room.plugin: plugin = event_vc_room.vc_room.plugin name = get_overridable_template_name('vc_room_timetable_buttons.html', plugin, core_prefix='vc/') return render_template(name, event=event, event_vc_room=event_vc_room, **kwargs) @signals.menu.items.connect_via('event-management-sidemenu') def _extend_event_management_menu(sender, event, **kwargs): if not get_vc_plugins(): return if not event.can_manage(session.user): return return SideMenuItem('videoconference', _('Videoconference'), url_for('vc.manage_vc_rooms', event), section='services') @signals.event.sidemenu.connect def _extend_event_menu(sender, **kwargs): def _visible(event): return bool(get_vc_plugins()) and VCRoomEventAssociation.find_for_event(event).has_rows() return MenuEntryData(_('Videoconference Rooms'), 'videoconference_rooms', 'vc.event_videoconference', position=14, visible=_visible) @signals.event.contribution_deleted.connect @signals.event.session_block_deleted.connect def _link_object_deleted(obj, **kwargs): for event_vc_room in obj.vc_room_associations: event_vc_room.link_object = obj.event @signals.event.session_deleted.connect def _session_deleted(sess, **kwargs): for block in sess.blocks: _link_object_deleted(block) @signals.event.deleted.connect def _event_deleted(event, **kwargs): user = session.user if has_request_context() and session.user else User.get_system_user() for event_vc_room in VCRoomEventAssociation.find_for_event(event, include_hidden=True, include_deleted=True): event_vc_room.delete(user) @signals.menu.items.connect_via('top-menu') def _topmenu_items(sender, **kwargs): if not session.user or not get_managed_vc_plugins(session.user): return return TopMenuItem('services-vc', _('Videoconference'), url_for('vc.vc_room_list'), section='services') @signals.event_management.get_cloners.connect def _get_vc_cloner(sender, **kwargs): from indico.modules.vc.clone import VCCloner return VCCloner @signals.users.merged.connect def _merge_users(target, source, **kwargs): VCRoom.find(created_by_id=source.id).update({VCRoom.created_by_id: target.id}) ``` #### File: indico/util/date_time_test.py ```python from datetime import datetime, timedelta import pytest from pytz import timezone from indico.util.date_time import as_utc, format_human_timedelta, iterdays, strftime_all_years @pytest.mark.parametrize(('delta', 'granularity', 'expected'), ( (timedelta(days=0, hours=0, minutes=0, seconds=0), 'seconds', '0 seconds'), (timedelta(days=0, hours=0, minutes=0, seconds=0), 'minutes', '0 minutes'), (timedelta(days=0, hours=0, minutes=0, seconds=0), 'hours', '0 hours'), (timedelta(days=0, hours=0, minutes=0, seconds=0), 'days', '0 days'), (timedelta(days=0, hours=0, minutes=0, seconds=5), 'seconds', '5 seconds'), (timedelta(days=0, hours=0, minutes=0, seconds=5), 'minutes', '5 seconds'), (timedelta(days=0, hours=0, minutes=1, seconds=5), 'seconds', '1m 5s'), (timedelta(days=0, hours=0, minutes=1, seconds=5), 'minutes', '1 minute'), (timedelta(days=0, hours=0, minutes=1, seconds=5), 'hours', '1 minute'), (timedelta(days=0, hours=1, minutes=10, seconds=0), 'hours', '1 hour'), (timedelta(days=0, hours=1, minutes=30, seconds=0), 'minutes', '1h 30m'), (timedelta(days=1, hours=1, minutes=0, seconds=0), 'minutes', '1d 1h'), (timedelta(days=1, hours=1, minutes=10, seconds=0), 'minutes', '1d 1h 10m'), (timedelta(days=1, hours=1, minutes=10, seconds=0), 'hours', '1d 1h'), (timedelta(days=1, hours=1, minutes=0, seconds=0), 'days', '1 day'), (timedelta(days=1, hours=12, minutes=0, seconds=0), 'days', '1 day'), (timedelta(days=2, hours=0, minutes=0, seconds=0), 'days', '2 days'), (timedelta(days=7, hours=0, minutes=0, seconds=0), 'days', '7 days') )) def test_format_human_timedelta(delta, granularity, expected): assert format_human_timedelta(delta, granularity) == expected @pytest.mark.parametrize(('dt', 'fmt', 'expected'), ( (datetime(2015, 11, 12, 17, 30), '%Y-%m-%d', '2015-11-12'), (datetime(1015, 11, 12, 17, 30), '%Y-%m-%d %H:%M', '1015-11-12 17:30'), )) def test_strftime_all_years(dt, fmt, expected): assert strftime_all_years(dt, fmt) == expected dt = datetime tz = timezone('Europe/Zurich') iterdays_test_data = ( (dt(2015, 1, 1, 10, 30).date(), dt(2015, 1, 1, 12, 30), True, None, None, 1), (dt(2015, 1, 1, 10, 30), dt(2014, 1, 1, 12, 30), True, None, None, 0), (dt(2015, 1, 1, 10, 30), dt(2015, 1, 1, 12, 30), True, None, None, 1), (dt(2017, 10, 13), dt(2017, 10, 19), True, None, None, 5), (dt(2017, 10, 13), dt(2017, 10, 19), False, None, None, 7), (dt(2017, 10, 13), dt(2017, 10, 19), True, [dt(2017, 10, 17).date()], None, 1), (dt(2017, 10, 13), dt(2017, 10, 19), True, [dt(2017, 10, 14).date()], None, 0), (dt(2017, 10, 13), dt(2017, 10, 19), False, [dt(2017, 10, 14).date()], None, 1), (dt(2017, 10, 13), dt(2017, 10, 19), False, None, [dt(2017, 10, 14).date(), dt(2017, 10, 16).date()], 5), (dt(2017, 10, 13), dt(2017, 10, 19), False, [dt(2017, 10, 15).date()], [dt(2017, 10, 14).date()], 1), (dt(2017, 10, 28, 10, 30), dt(2017, 10, 31, 12, 30), True, None, [dt(2017, 10, 28, 10, 30)], 2), (as_utc(dt(2017, 10, 28)).astimezone(tz), as_utc(dt(2017, 10, 31)).astimezone(tz), True, None, None, 2), (as_utc(dt(2017, 3, 26)).astimezone(tz), as_utc(dt(2017, 3, 28)).astimezone(tz), True, None, None, 2), ) @pytest.mark.parametrize(('from_', 'to', 'skip_weekends', 'day_whitelist', 'day_blacklist', 'expected'), iterdays_test_data) def test_iterdays(from_, to, skip_weekends, day_whitelist, day_blacklist, expected): assert len(list(iterdays(from_, to, skip_weekends, day_whitelist, day_blacklist))) == expected ``` #### File: indico/util/rules.py ```python from __future__ import unicode_literals from indico.core import signals from indico.util.decorators import classproperty from indico.util.signals import named_objects_from_signal class Condition(object): """Base class for conditions. `Condition`s allow you to define criteria to match on and then evaluate those criteria and check whether there is a match (as part of a rule). """ #: The name of the condition. Must be unique within the context #: where the condition is used name = None #: Whether the condition must always be present required = False #: A short description of the condition. description = None #: {value: condition_name} containing conditions that are allowed for each value type #: non-specified values are considered as compatible with all other conditions. compatible_with = None @classproperty @classmethod def friendly_name(cls): return cls.name @classmethod def is_used(cls, rule): """Check whether the condition is used in a rule""" return rule.get(cls.name) is not None @classmethod def is_none(cls, **kwargs): """Check whether the condition requires a null value. Inheriting methods should overload this """ raise NotImplementedError @classmethod def get_available_values(cls, **kwargs): """Get a dict of values that can be used for the condition. Subclasses are encouraged to explicitly specify the arguments they expect instead of using ``**kwargs``. The key of each item is the actual value that will be used in the check while the value is what is going to be displayed. :param kwargs: arguments specific to the condition's context """ raise NotImplementedError @classmethod def _clean_values(cls, values, **kwargs): return list(cls.get_available_values(**kwargs).viewkeys() & set(values)) @classmethod def check(cls, values, **kwargs): """Check whether the condition is matched Subclasses are encouraged to explicitly specify the arguments they expect instead of using ``**kwargs``. This method is only called if the rule is active and if there are valid values (as defined by `get_available_values`). :param values: a collection of values that are accepted for a match. it never contains values which are not available anymore. :param kwargs: arguments specific to the conditions's context """ raise NotImplementedError def get_conditions(context, **kwargs): """Get a dict of available conditions. :param context: the context where the conditions are used :param kwargs: arguments specific to the context """ return named_objects_from_signal(signals.get_conditions.send(context, **kwargs)) def check_rule(context, rule, **kwargs): """Check whether a rule matches. :param context: the context where the conditions are used :param rule: the rule to check :param kwargs: arguments specific to the context """ for name, condition in get_conditions(context, **kwargs).iteritems(): if not condition.is_used(rule): if condition.required: return False else: continue values = condition._clean_values(rule[name], **kwargs) if not values and condition.is_none(**kwargs): # the property we're checking is null and the rule wants null return True elif not condition.check(values, **kwargs): return False return True def get_missing_conditions(context, rule, **kwargs): """Get the set of missing required conditions. :param context: the context where the conditions are used :param rule: the rule to check :param kwargs: arguments specific to the context """ rules = {condition for condition in get_conditions(context, **kwargs).itervalues() if condition.required} return {condition.friendly_name for condition in rules if not condition.is_used(rule)} ``` #### File: indico/util/serializer.py ```python from enum import Enum from indico.core.errors import IndicoError from indico.core.logger import Logger class Serializer(object): __public__ = [] def to_serializable(self, attr='__public__', converters=None): serializable = {} if converters is None: converters = {} for k in getattr(self, attr): try: if isinstance(k, tuple): k, name = k else: k, name = k, k v = getattr(self, k) if callable(v): # to make it generic, we can get rid of it by properties v = v() if isinstance(v, Serializer): v = v.to_serializable() elif isinstance(v, list): v = [e.to_serializable() for e in v] elif isinstance(v, dict): v = dict((k, vv.to_serializable() if isinstance(vv, Serializer) else vv) for k, vv in v.iteritems()) elif isinstance(v, Enum): v = v.name if type(v) in converters: v = converters[type(v)](v) serializable[name] = v except Exception: msg = 'Could not retrieve {}.{}.'.format(self.__class__.__name__, k) Logger.get('Serializer{}'.format(self.__class__.__name__)).exception(msg) raise IndicoError(msg) return serializable ``` #### File: web/forms/base.py ```python from __future__ import unicode_literals import weakref from flask import flash, g, request, session from flask_wtf import FlaskForm from wtforms import ValidationError from wtforms.csrf.core import CSRF from wtforms.ext.sqlalchemy.fields import QuerySelectField from wtforms.fields.core import FieldList from wtforms.form import FormMeta from wtforms.widgets.core import HiddenInput from indico.core import signals from indico.core.auth import multipass from indico.util.i18n import _ from indico.util.signals import values_from_signal from indico.util.string import return_ascii, strip_whitespace from indico.web.flask.util import url_for class _DataWrapper(object): """Wrapper for the return value of generated_data properties""" def __init__(self, data): self.data = data @return_ascii def __repr__(self): return '<DataWrapper({!r})>'.format(self.data) class generated_data(property): """property decorator for generated data in forms""" def __get__(self, obj, objtype=None): if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") return _DataWrapper(self.fget(obj)) class IndicoFormMeta(FormMeta): def __call__(cls, *args, **kwargs): # If we are instantiating a form that was just extended, don't # send the signal again - it's pointless to extend the extended # form and doing so could actually result in infinite recursion # if the signal receiver didn't specify a sender. if kwargs.pop('__extended', False): return super(IndicoFormMeta, cls).__call__(*args, **kwargs) extra_fields = values_from_signal(signals.add_form_fields.send(cls)) # If there are no extra fields, we don't need any custom logic # and simply create an instance of the original form. if not extra_fields: return super(IndicoFormMeta, cls).__call__(*args, **kwargs) kwargs['__extended'] = True ext_cls = type(b'_Extended' + cls.__name__, (cls,), {}) for name, field in extra_fields: name = 'ext__' + name if hasattr(ext_cls, name): raise RuntimeError('Field name collision in {}: {}'.format(cls.__name__, name)) setattr(ext_cls, name, field) return ext_cls(*args, **kwargs) class IndicoFormCSRF(CSRF): def generate_csrf_token(self, csrf_token_field): return session.csrf_token def validate_csrf_token(self, form, field): if field.current_token == field.data: return if not g.get('flashed_csrf_message'): # Only flash the message once per request. We may end up in here # multiple times if `validate()` is called more than once flash(_('It looks like there was a problem with your current session. Please submit the form again.'), 'error') g.flashed_csrf_message = True raise ValidationError(_('Invalid CSRF token')) class IndicoForm(FlaskForm): __metaclass__ = IndicoFormMeta class Meta: csrf = True csrf_class = IndicoFormCSRF def bind_field(self, form, unbound_field, options): # We don't set default filters for query-based fields as it breaks them if no query_factory is set # while the Form is instantiated. Also, it's quite pointless for those fields... # FieldList simply doesn't support filters. no_filter_fields = (QuerySelectField, FieldList) filters = [strip_whitespace] if not issubclass(unbound_field.field_class, no_filter_fields) else [] filters += unbound_field.kwargs.get('filters', []) bound = unbound_field.bind(form=form, filters=filters, **options) bound.get_form = weakref.ref(form) # GC won't collect the form if we don't use a weakref return bound def __init__(self, *args, **kwargs): csrf_enabled = kwargs.pop('csrf_enabled', None) if csrf_enabled is not None: # This is exactly what FlaskForm already does, but without # a deprecation warning. # Being able to set ``csrf_enabled=False`` is much nicer # than ``meta={'csrf': False}`` and if we ever need to # change it for some reason we can always replace it everywhere kwargs['meta'] = kwargs.get('meta') or {} kwargs['meta'].setdefault('csrf', csrf_enabled) super(IndicoForm, self).__init__(*args, **kwargs) self.ajax_response = None def process_ajax(self): """ Check if the current request is an AJAX request related to a field in this form and execute the field's AJAX logic. The response is available in the `ajax_response` attribute afterwards. :return: Whether an AJAX response was processed. """ field_id = request.args.get('__wtf_ajax') if not field_id: return False field = next((f for f in self._fields.itervalues() if f.id == field_id and isinstance(f, AjaxFieldMixin)), None) if not field: return False rv = field.process_ajax() self.ajax_response = rv return True def validate(self): valid = super(IndicoForm, self).validate() if not valid: return False if not all(values_from_signal(signals.form_validated.send(self), single_value=True)): return False self.post_validate() return True def post_validate(self): """Called after the form was successfully validated. This method is a good place e.g. to override the data of fields in certain cases without going through the hassle of generated_data. """ def populate_obj(self, obj, fields=None, skip=None, existing_only=False): """Populates the given object with form data. If `fields` is set, only fields from that list are populated. If `skip` is set, fields in that list are skipped. If `existing_only` is True, only attributes that already exist on `obj` are populated. Attributes starting with ``ext__`` are always skipped as they are from plugin-defined fields which should always be handled separately. """ def _included(field_name): if fields and field_name not in fields: return False if skip and field_name in skip: return False if existing_only and not hasattr(obj, field_name): return False if field_name.startswith('ext__'): return False return True # Populate data from actual fields for name, field in self._fields.iteritems(): if not _included(name): continue field.populate_obj(obj, name) # Populate generated data for name, value in self.generated_data.iteritems(): if not _included(name): continue setattr(obj, name, value) @property def visible_fields(self): """A list containing all fields that are not hidden.""" return [field for field in self if not isinstance(field.widget, HiddenInput)] @property def error_list(self): """A list containing all errors, prefixed with the field's label.'""" all_errors = [] for field_name, errors in self.errors.iteritems(): for error in errors: if isinstance(error, dict) and isinstance(self[field_name], FieldList): for field in self[field_name].entries: all_errors += ['{}: {}'.format(self[field_name].label.text, sub_error) for sub_error in field.form.error_list] else: all_errors.append('{}: {}'.format(self[field_name].label.text, error)) return all_errors @property def generated_data(self): """Returns a dict containing all generated data""" cls = type(self) return {field: getattr(self, field).data for field in dir(cls) if isinstance(getattr(cls, field), generated_data)} @property def data(self): """Extends form.data with generated data from properties""" data = {k: v for k, v in super(IndicoForm, self).data.iteritems() if k != self.meta.csrf_field_name and not k.startswith('ext__')} data.update(self.generated_data) return data class FormDefaults(object): """Simple wrapper to be used for Form(obj=...) default values. It allows you to specify default values via kwargs or certain attrs from an object. You can also set attributes directly on this object, which will act just like kwargs :param obj: The object to get data from :param attrs: Set of attributes that may be taken from obj :param skip_attrs: Set of attributes which are never taken from obj :param defaults: Additional values which are used only if not taken from obj """ def __init__(self, obj=None, attrs=None, skip_attrs=None, **defaults): self.__obj = obj self.__use_items = hasattr(obj, 'iteritems') and hasattr(obj, 'get') # smells like a dict self.__obj_attrs = attrs self.__obj_attrs_skip = skip_attrs self.__defaults = defaults def __valid_attr(self, name): """Checks if an attr may be retrieved from the object""" if self.__obj is None: return False if self.__obj_attrs is not None and name not in self.__obj_attrs: return False if self.__obj_attrs_skip is not None and name in self.__obj_attrs_skip: return False return True def __setitem__(self, key, value): self.__defaults[key] = value def __setattr__(self, key, value): if key.startswith('_{}__'.format(type(self).__name__)): object.__setattr__(self, key, value) else: self.__defaults[key] = value def __getattr__(self, item): if self.__valid_attr(item): if self.__use_items: return self.__obj.get(item, self.__defaults.get(item)) else: return getattr(self.__obj, item, self.__defaults.get(item)) elif item in self.__defaults: return self.__defaults[item] else: raise AttributeError(item) def __contains__(self, item): return hasattr(self, item) class SyncedInputsMixin(object): """Mixin for a form having inputs using the ``SyncedInputWidget``. This mixin will process the synced fields, adding them the necessary attributes for them to render and work properly. The fields which are synced are defined by ``multipass.synced_fields``. :param synced_fields: set -- a subset of ``multipass.synced_fields`` which corresponds to the fields currently being synchronized for the user. :param synced_values: dict -- a map of all the synced fields (as defined by ``multipass.synced_fields``) and the values they would have if they were synced (regardless of whether it is or not). Fields not present in this dict do not show the sync button at all. """ def __init__(self, *args, **kwargs): synced_fields = kwargs.pop('synced_fields', set()) synced_values = kwargs.pop('synced_values', {}) super(SyncedInputsMixin, self).__init__(*args, **kwargs) self.syncable_fields = set(synced_values) for key in ('first_name', 'last_name'): if not synced_values.get(key): synced_values.pop(key, None) self.syncable_fields.discard(key) if self.is_submitted(): synced_fields = self.synced_fields provider = multipass.sync_provider provider_name = provider.title if provider is not None else 'unknown identity provider' for field in multipass.synced_fields: self[field].synced = self[field].short_name in synced_fields self[field].synced_value = synced_values.get(field) self[field].provider_name = provider_name @property def synced_fields(self): """The fields which are set as synced for the current request.""" return set(request.form.getlist('synced_fields')) & self.syncable_fields class AjaxFieldMixin(object): """Mixin for a Field to be able to handle AJAX requests. This mixin will allow you to handle AJAX requests during regular form processing, e.g. when you have a field that needs an AJAX callback to perform search operations. To use this mixin, the controllers processing the form must include the following code:: if form.process_ajax(): return form.ajax_response It is a good idea to run this code as early as possible to avoid doing expensive operations like loading a big list of objects which may be never used when returning early due to the AJAX request. """ def process_ajax(self): raise NotImplementedError def get_ajax_url(self, **url_args): kwargs = dict(request.view_args, **request.args.to_dict(False)) kwargs.update(url_args) kwargs['__wtf_ajax'] = self.id return url_for(request.endpoint, **kwargs) ``` #### File: forms/fields/protection.py ```python from __future__ import absolute_import, unicode_literals from flask import render_template from markupsafe import Markup from indico.core.db import db from indico.core.db.sqlalchemy.protection import ProtectionMode from indico.util.i18n import _ from indico.web.forms.fields import IndicoEnumRadioField from indico.web.forms.widgets import JinjaWidget class IndicoProtectionField(IndicoEnumRadioField): widget = JinjaWidget('forms/protection_widget.html', single_kwargs=True) radio_widget = JinjaWidget('forms/radio_buttons_widget.html', orientation='horizontal', single_kwargs=True) def __init__(self, *args, **kwargs): self.protected_object = kwargs.pop('protected_object')(kwargs['_form']) get_acl_message_url = kwargs.pop('acl_message_url', None) self.acl_message_url = get_acl_message_url(kwargs['_form']) if get_acl_message_url else None self.can_inherit_protection = self.protected_object.protection_parent is not None if not self.can_inherit_protection: kwargs['skip'] = {ProtectionMode.inheriting} super(IndicoProtectionField, self).__init__(*args, enum=ProtectionMode, **kwargs) def render_protection_message(self): protected_object = self.get_form().protected_object if hasattr(protected_object, 'get_non_inheriting_objects'): non_inheriting_objects = protected_object.get_non_inheriting_objects() else: non_inheriting_objects = [] if isinstance(protected_object.protection_parent, db.m.Event): parent_type = _('Event') elif isinstance(protected_object.protection_parent, db.m.Category): parent_type = _('Category') else: parent_type = _('Session') rv = render_template('_protection_info.html', field=self, protected_object=protected_object, parent_type=parent_type, non_inheriting_objects=non_inheriting_objects) return Markup(rv) ``` #### File: http_api/metadata/xml.py ```python import re from datetime import datetime import dateutil.parser from lxml import etree from pytz import timezone, utc from indico.core.logger import Logger from indico.util.string import to_unicode from indico.web.http_api.metadata.serializer import Serializer def _deserialize_date(date_dict): dt = datetime.combine(dateutil.parser.parse(date_dict['date']).date(), dateutil.parser.parse(date_dict['time']).time()) return timezone(date_dict['tz']).localize(dt).astimezone(utc) class XMLSerializer(Serializer): """ Receives a fossil (or a collection of them) and converts them to XML """ _mime = 'text/xml' def __init__(self, query_params, pretty=False, **kwargs): self._typeMap = kwargs.pop('typeMap', {}) super(XMLSerializer, self).__init__(query_params, pretty, **kwargs) def _convert(self, value, _control_char_re=re.compile(r'[\x00-\x08\x0b\x0c\x0e-\x1f]')): if isinstance(value, datetime): return value.isoformat() elif isinstance(value, (int, long, float, bool)): return str(value) else: value = to_unicode(value) if isinstance(value, str) else value if isinstance(value, basestring): # Get rid of control chars breaking XML conversion value = _control_char_re.sub(u'', value) return value def _xmlForFossil(self, fossil, doc=None): attribs = {} id = None if '_fossil' in fossil: attribs['fossil'] = fossil['_fossil'] if 'id' in fossil: id = attribs['id'] = str(fossil['id']) if '_type' in fossil: typeName = self._typeMap.get(fossil['_type'], fossil['_type']) else: typeName = 'collection' felement = etree.Element(typeName.lower(), attrib=attribs) if doc: doc.getroot().append(felement) for k, v in fossil.iteritems(): if k in ['_fossil', '_type', 'id']: continue if isinstance(k, (int, float)) or (isinstance(k, basestring) and k.isdigit()): elem = etree.SubElement(felement, 'entry', {'key': unicode(k)}) else: elem = etree.SubElement(felement, k) if isinstance(v, dict) and set(v.viewkeys()) == {'date', 'time', 'tz'}: v = _deserialize_date(v) if isinstance(v, (list, tuple)): onlyDicts = all(isinstance(subv, dict) for subv in v) if onlyDicts: for subv in v: elem.append(self._xmlForFossil(subv)) else: for subv in v: if isinstance(subv, dict): elem.append(self._xmlForFossil(subv)) else: subelem = etree.SubElement(elem, 'item') subelem.text = self._convert(subv) elif isinstance(v, dict): elem.append(self._xmlForFossil(v)) else: txt = self._convert(v) try: elem.text = txt except Exception: Logger.get('xmlSerializer').exception('Setting XML text value failed (id: %s, value %r)', id, txt) return felement def _execute(self, fossil, xml_declaration=True): if isinstance(fossil, list): # collection of fossils doc = etree.ElementTree(etree.Element("collection")) for elem in fossil: self._xmlForFossil(elem, doc) result = doc else: result = self._xmlForFossil(fossil) return etree.tostring(result, pretty_print=self.pretty, xml_declaration=xml_declaration, encoding='utf-8') Serializer.register('xml', XMLSerializer) ```
{ "source": "jgrigonis/arcade", "score": 3 }
#### File: arcade/arcade/sound.py ```python import pyglet import typing # pyglet.lib.load_library('C:/Program Files/Python36/Lib/site-packages/arcade/Win32/avbin') # pyglet.have_avbin=True # pyglet.debug_lib=True # pyglet.debug_trace=True def load_sound_library(): """ Special code for Windows so we grab the proper avbin from our directory. Otherwise hope the correct package is installed. """ # lazy loading if not load_sound_library._sound_library_loaded: load_sound_library._sound_library_loaded = True else: return import os appveyor = not os.environ.get('APPVEYOR') is None import platform system = platform.system() if system == 'Windows': import sys is64bit = sys.maxsize > 2**32 import site packages = site.getsitepackages() if appveyor: if is64bit: path = "Win64/avbin" else: path = "Win32/avbin" else: if is64bit: path = packages[0] + "/lib/site-packages/arcade/Win64/avbin" else: path = packages[0] + "/lib/site-packages/arcade/Win32/avbin" elif system == 'Darwin': from distutils.sysconfig import get_python_lib path = get_python_lib() + '/lib/site-packages/arcade/lib/libavbin.10.dylib' pyglet.options['audio'] = ('openal', 'pulse', 'silent') else: path = "avbin" pyglet.options['audio'] = ('openal', 'pulse', 'silent') pyglet.lib.load_library(path) pyglet.have_avbin = True # Initialize static function variable load_sound_library._sound_library_loaded = False def load_sound(filename: str) -> typing.Any: """ Load a sound and get it ready to play. """ load_sound_library() source = pyglet.media.load(filename, streaming=False) return source def play_sound(sound: typing.Any): """ Play a previously loaded sound. """ load_sound_library() sound.play() ``` #### File: arcade/examples/pinball.py ```python import arcade import timeit BALL_DRAG = 0.001 NO_FLIPPER = 0 FLIPPER_UP = 1 class MyApplication(arcade.Window): """ Main application class. """ def __init__(self, width, height, resizable): super().__init__(width, height, resizable=resizable) self.sprite_list = arcade.SpriteList() self.left_flipper_list = arcade.SpriteList() self.right_flipper_list = arcade.SpriteList() self.left_flipper_state = NO_FLIPPER self.right_flipper_state = NO_FLIPPER self.time = 0 arcade.set_background_color(arcade.color.DARK_SLATE_GRAY) # Top wall for x in range(20, 800, 40): wall = arcade.PhysicsAABB("images/boxCrate_double.png", [x, 980], [40, 40], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) # Left wall for y in range(260, 980, 40): wall = arcade.PhysicsAABB("images/boxCrate_double.png", [20, y], [40, 40], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) # Right wall for y in range(260, 980, 40): wall = arcade.PhysicsAABB("images/boxCrate_double.png", [780, y], [40, 40], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) # Left bottom slope y = 260 for x in range(40, 280, 10): y -= 5 wall = arcade.PhysicsAABB("images/boxCrate_double.png", [x, y], [10, 10], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) # Right bottom slope y = 260 for x in range(760, 520, -10): y -= 5 wall = arcade.PhysicsAABB("images/boxCrate_double.png", [x, y], [10, 10], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) # Left flipper y = 135 for x in range(280, 350, 10): wall = arcade.PhysicsAABB("images/boxCrate_double.png", [x, y], [10, 10], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) self.left_flipper_list.append(wall) y -= 5 # Right flipper y = 135 for x in range(520, 440, -10): wall = arcade.PhysicsAABB("images/boxCrate_double.png", [x, y], [10, 10], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) self.right_flipper_list.append(wall) y -= 5 # Bumpers for row in range(2): for column in range(2): bumper = arcade.PhysicsCircle("images/bumper.png", [250 + 300 * column, 450 + 300 * row], 35, [0, 0], 1.5, 100, BALL_DRAG) bumper.static = True self.sprite_list.append(bumper) wall = arcade.PhysicsAABB("images/python_logo.png", [400, 600], [150, 150], [0, 0], 1, 100, 0) wall.static = True self.sprite_list.append(wall) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() self.sprite_list.draw() start_x = 20 start_y = 10 arcade.draw_text("Processing time: {:.3f}".format(self.time), start_x, start_y, arcade.color.BLACK, 12) def update(self, x): """ Move everything """ start_time = timeit.default_timer() arcade.process_2d_physics_movement(self.sprite_list, gravity=0.08) arcade.process_2d_physics_collisions(self.sprite_list) # -- Left flipper control if self.left_flipper_state == FLIPPER_UP and self.left_flipper_list[0].center_y < 145: y = 2 y_change = 2 for sprite in self.left_flipper_list: sprite.change_y = y y += y_change sprite.frozen = False elif self.left_flipper_state == NO_FLIPPER and self.left_flipper_list[0].center_y > 135: y = -2 y_change = -2 for sprite in self.left_flipper_list: sprite.change_y = y y += y_change sprite.frozen = False else: for sprite in self.left_flipper_list: sprite.change_y = 0 sprite.frozen = True # -- Right flipper control if self.right_flipper_state == FLIPPER_UP and self.right_flipper_list[0].center_y < 145: y = 2 y_change = 2 for sprite in self.right_flipper_list: sprite.change_y = y y += y_change sprite.frozen = False elif self.right_flipper_state == NO_FLIPPER and self.right_flipper_list[0].center_y > 135: y = -2 y_change = -2 for sprite in self.right_flipper_list: sprite.change_y = y y += y_change sprite.frozen = False else: for sprite in self.right_flipper_list: sprite.change_y = 0 sprite.frozen = True for sprite in self.sprite_list: if sprite.center_y < -20: sprite.kill() self.time = timeit.default_timer() - start_time def on_key_press(self, key, modifiers): """ Called whenever the mouse moves. """ if key == arcade.key.LEFT: self.left_flipper_state = FLIPPER_UP elif key == arcade.key.RIGHT: self.right_flipper_state = FLIPPER_UP elif key == arcade.key.SPACE: x = 720 y = 300 ball = arcade.PhysicsCircle("images/pool_cue_ball.png", [x, y], 15, [0, +20], 1, .25, BALL_DRAG) self.sprite_list.append(ball) def on_key_release(self, key, modifiers): """ Called when the user presses a mouse button. """ if key == arcade.key.LEFT: self.left_flipper_state = NO_FLIPPER elif key == arcade.key.RIGHT: self.right_flipper_state = NO_FLIPPER window = MyApplication(800, 1000, resizable=False) window.set_size(700, 700) arcade.run() ``` #### File: arcade/examples/snow.py ```python import random import math import arcade SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 class Snowflake: """ Each instance of this class represents a single snowflake. Based on drawing filled-circles. """ def __init__(self): self.x = 0 self.y = 0 def reset_pos(self): # Reset flake to random position above screen self.y = random.randrange(SCREEN_HEIGHT, SCREEN_HEIGHT + 100) self.x = random.randrange(SCREEN_WIDTH) class MyAppWindow(arcade.Window): """ Main application class. """ def __init__(self, width, height): """ Initializer :param width: :param height: """ # Calls "__init__" of parent class (arcade.Window) to setup screen super().__init__(width, height) # Sprite lists self.snowflake_list = None def start_snowfall(self): """ Set up snowfall and initialize variables. """ self.snowflake_list = [] for i in range(50): # Create snowflake instance snowflake = Snowflake() # Randomly position snowflake snowflake.x = random.randrange(SCREEN_WIDTH) snowflake.y = random.randrange(SCREEN_HEIGHT + 200) # Set other variables for the snowflake snowflake.size = random.randrange(4) snowflake.speed = random.randrange(20, 40) snowflake.angle = random.uniform(math.pi, math.pi * 2) # Add snowflake to snowflake list self.snowflake_list.append(snowflake) # Don't show the mouse pointer self.set_mouse_visible(False) # Set the background color arcade.set_background_color(arcade.color.BLACK) def on_draw(self): """ Render the screen. """ # This command is necessary before drawing arcade.start_render() # Draw the current position of each snowflake for snowflake in self.snowflake_list: arcade.draw_circle_filled(snowflake.x, snowflake.y, snowflake.size, arcade.color.WHITE) def update(self, delta_time): """ All the logic to move, and the game logic goes here. """ # Animate all the snowflakes falling for snowflake in self.snowflake_list: snowflake.y -= snowflake.speed * delta_time # Check if snowflake has fallen below screen if snowflake.y < 0: snowflake.reset_pos() # Some math to make the snowflakes move side to side snowflake.x += snowflake.speed * math.cos(snowflake.angle) * delta_time snowflake.angle += 1 * delta_time def main(): window = MyAppWindow(SCREEN_WIDTH, SCREEN_HEIGHT) window.start_snowfall() arcade.run() if __name__ == "__main__": main() ```
{ "source": "jgrindal/JGUtils", "score": 3 }
#### File: JGUtils/jgutils/batchrename.py ```python import glob, os, argparse def parse_args(): parser = argparse.ArgumentParser( description='Batch Renamer') parser.add_argument('--dir', type=str, required=True, default='./', help='Directory for things to be renamed') parser.add_argument('--pattern', type=str, required=False, default='*', help='pattern to choose') parser.add_argument('--prefix', type=str, required=False, default='', help='prefix to add to the filename') parser.add_argument('--postfix', type=str, required=False, default='', help='postfix to add to the filename') return parser.parse_args() def rename(dir, pattern, titlePattern): for pathAndFilename in glob.iglob(os.path.join(dir, pattern)): title, ext = os.path.splitext(os.path.basename(pathAndFilename)) os.rename(pathAndFilename, os.path.join(dir, titlePattern % title + ext)) if __name__ == '__main__': args = parse_args() tp = str(args.prefix) + "%s" + str(args.postfix) rename(args.dir, args.pattern, tp) ```
{ "source": "jgrip/dotfiles", "score": 3 }
#### File: dotfiles/bin/dotty.py ```python from __future__ import print_function # Copyright (C) 2015 <NAME> <<EMAIL>> # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import json import os import shutil from sys import stderr import argparse # Fix Python 2.x. try: input = raw_input except NameError: pass def ask_user(prompt): valid = {"yes":True, 'y':True, '':True, "no":False, 'n':False} while True: print("{0} ".format(prompt),end="") choice = input().lower() if choice in valid: return valid[choice] else: print("Enter a correct choice.", file=stderr) def create_directory(path): exp = os.path.expanduser(path) if (not os.path.isdir(exp)): print("{0} doesnt exist, creating.".format(exp)) os.makedirs(exp) def create_symlink(src, dest, replace): dest = os.path.expanduser(dest) src = os.path.abspath(src) broken_symlink = os.path.lexists(dest) and not os.path.exists(dest) if os.path.lexists(dest): if os.path.islink(dest) and os.readlink(dest) == src: print("Skipping existing {0} -> {1}".format(dest, src)) return elif replace or ask_user("{0} exists, delete it? [Y/n]".format(dest)): if os.path.isfile(dest) or broken_symlink or os.path.islink(dest): os.remove(dest) else: shutil.rmtree(dest) else: return print("Linking {0} -> {1}".format(dest, src)) try: os.symlink(src, dest) except AttributeError: import ctypes symlink = ctypes.windll.kernel32.CreateSymbolicLinkW symlink.argtypes = (ctypes.c_wchar_p, ctypes.c_wchar_p, ctypes.c_uint32) symlink.restype = ctypes.c_ubyte flags = 1 if os.path.isdir(src) else 0 symlink(dest, src, flags) def copy_path(src, dest): dest = os.path.expanduser(dest) src = os.path.abspath(src) if os.path.exists(dest): if ask_user("{0} exists, delete it? [Y/n]".format(dest)): if os.path.isfile(dest) or os.path.islink(dest): os.remove(dest) else: shutil.rmtree(dest) else: return print("Copying {0} -> {1}".format(src, dest)) if os.path.isfile(src): shutil.copy(src, dest) else: shutil.copytree(src, dest) def run_command(command): print("Running {0}".format(command)) os.system(command) def main(): parser = argparse.ArgumentParser() parser.add_argument("config", help="the JSON file you want to use") parser.add_argument("-r", "--replace", action="store_true", help="replace files/folders if they already exist") args = parser.parse_args() js = json.load(open(args.config)) os.chdir(os.path.expanduser(os.path.abspath(os.path.dirname(args.config)))) if 'directories' in js: [create_directory(path) for path in js['directories']] if 'link' in js: [create_symlink(src, dst, args.replace) for src, dst in js['link'].items()] if 'copy' in js: [copy_path(src, dst) for src, dst in js['copy'].items()] if 'install' in js and 'install_cmd' in js: packages = ' '.join(js['install']) run_command("{0} {1}".format(js['install_cmd'], packages)) if 'commands' in js: [run_command(command) for command in js['commands']] print("Done!") if __name__ == "__main__": main() ```
{ "source": "jgritans/torrent_finder", "score": 3 }
#### File: jgritans/torrent_finder/torrents.py ```python import pandas as pd from web import soup class EmptyTable(Exception): def __init__(self, message): self.message = message class FailedDfCreation(Exception): def __init__(self, message): self.message = message class HardToFixBetterSkip(Exception): def __init__(self, message): self.message = message def get_torrent_table(movie, res_kwds, criteria): try: sizes = { 'M': 1, 'G': 1000 } # get HTML table from 1337x.to link = f"https://1337x.to/category-search/{movie.title} {movie.year}/Movies/1/".replace(" ", "+") table_rows = soup(link).table.find_all('tr') if len(table_rows) < 2: raise Exception table_rows.pop(0) l = [] for tr in table_rows: try: td = tr.find_all('td') row = [cell.text for cell in td] + [f"https://1337x.to{a['href']}" for a in tr.find_all(href=True)] +["","",""] row.pop(6) l.append(row) except: continue # Create, clean up and sort downloads_df downloads_df = pd.DataFrame(l, columns=['Title', 'Se', 'Le', 'Time', 'Size', 'Uploader', 'Item_link', 'User_link','Language','Id','Status']).dropna() downloads_df.Size = [val.replace(',', '').split('B')[0].split(' ') for val in downloads_df.Size] downloads_df[['Size', 'Unit']] = downloads_df.Size.tolist() downloads_df.Unit = downloads_df.Unit.map(sizes) downloads_df.Size = downloads_df.Size.map(float) * downloads_df.Unit downloads_df.Se = downloads_df.Se.map(int) downloads_df.Le = downloads_df.Le.map(int) downloads_df.Size = downloads_df.Size.map(int) downloads_df = downloads_df[downloads_df['Se'] >= criteria['seeders']].sort_values(['Size', 'Se'], ascending=False) downloads_df['Year'] = movie.year # Infer and add resolution to df downloads_df['Resolution'] = '' for res in res_kwds: # add resolutions to df for i in range(len(downloads_df)): for keyword in res_kwds[res]: if keyword in downloads_df.iloc[i, downloads_df.columns.get_loc('Title')]: downloads_df.iloc[i, downloads_df.columns.get_loc('Resolution')] = res return downloads_df except: raise EmptyTable def get_mirror(soup, mirror_site): info_hash = next(p.text.split(' ')[-1] for p in soup.find_all('p') if 'hash' in p.text.lower()) return mirror_site.format(info_hash) ``` #### File: jgritans/torrent_finder/web.py ```python from requests import get as requests_get from bs4 import BeautifulSoup HEADERS={"Accept-Language": "en-US,en;q=0.5",'User-Agent': 'Mozilla/5.0 (Platform; Security; OS-or-CPU; Localization; rv:1.4) Gecko/20030624 Netscape/7.1 (ax)'} class noTorrent(Exception): def __init__(self, message='error'): self.message = message def soup(link): link = link.replace("'",'+') r = requests_get(link, headers=HEADERS) return BeautifulSoup(r.text, features='lxml') def download_torrent(url, filename, download_path='C:'): print(f" Attempting to download") response = requests_get(url, headers=HEADERS) if not filename: filename = url.split('/')[-1] file_path = f"{download_path}/{filename}.torrent".replace(' ','_') if file_path[0] == '/': file_path = file_path[1:] with open(file_path, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) # else: # print(f'{url} does not contain {url.split("/")[-1]}') # # raise noTorrent print(' successful torrent download') ```
{ "source": "jgritchie/AlienInvaders", "score": 3 }
#### File: AlienInvaders/src/button.py ```python import pygame.font class Button: def __init__(self, ai_game, message): self.screen = ai_game.screen self.screen_rect = self.screen.get_rect() self.width, self.height = 200, 50 self.button_color = (0, 255, 0) self.text_color = (0, 255, 255) self.font = pygame.font.SysFont(None, 48) self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.center = self.screen_rect.center self.prep_message(message) def prep_message(self, message): self.message_image = self.font.render(message, True, self.text_color, self.button_color) self.message_image_rect = self.message_image.get_rect() self.message_image_rect.center = self.rect.center def draw_button(self): self.screen.fill(self.button_color, self.rect) self.screen.blit(self.message_image, self.message_image_rect) ```
{ "source": "jg-rivera/cert-ripper", "score": 3 }
#### File: cert-ripper/src/ripper.py ```python from dotenv import load_dotenv from PyPDF2 import PdfFileReader, PdfFileWriter import os import json class CertRipper: def __init__( self, start_page_index=0, master_pdf_path=None, json_points_path=None, ripped_certs_path=None, ripped_cert_file_name=None, ): self.start_page_index = start_page_index self.master_pdf_path = master_pdf_path self.pdf = PdfFileReader(master_pdf_path) self.pdf_length = self.pdf.getNumPages() self.json_points_path = json_points_path self.ripped_certs_path = ripped_certs_path self.ripped_cert_file_name = ripped_cert_file_name def process(self): recipient_groups = self.get_recipient_groups_from_points() self.extract_pdf_from_master(recipient_groups) def extract_pdf_from_master(self, recipient_groups): current_page_index = self.start_page_index process_index = 0 for recipient_group in recipient_groups: recipient_group_name = recipient_group["name"] recipient_group_tag = recipient_group["tag"] recipient_slugs = recipient_group["recipient_slugs"] print( f"[*] Ripping \x1b[93m{recipient_group_name}\x1b[0m group ...") for recipient_slug in recipient_slugs: page = self.pdf.getPage(current_page_index) file_name = self.ripped_cert_file_name.format( index=current_page_index + 1, tag=recipient_group_tag, recipient=recipient_slug ) pdf_writer = PdfFileWriter() pdf_writer.addPage(page) output_file_name = f"{self.ripped_certs_path}\\{file_name}.pdf" with open(output_file_name, "wb") as out: pdf_writer.write(out) print( f"\x1b[95m[{process_index}]\x1b[0m Ripped \x1b[92m[{file_name}]\x1b[0m from \x1b[94mpage {current_page_index + 1}\x1b[0m of master") current_page_index += 1 process_index += 1 def get_recipient_groups_from_points(self): recipient_groups = [] total_recipients = 0 with open(self.json_points_path, "r") as json_file: points = json.load(json_file) for point in points: point_name = point["name"] point_tag = point["tag"] point_recipients = point["recipients"] point_recipient_slugs = [] for point_recipient in point_recipients: recipient_name = point_recipient["name"] recipient_name_slug = "_".join(recipient_name.split()) point_recipient_slugs.append(recipient_name_slug) total_recipients += 1 recipient_groups.append({ "name": point_name, "tag": point_tag, "recipient_slugs": point_recipient_slugs }) total_groups = len(recipient_groups) self.__check_pdf_length(total_recipients) print( f"Read \x1b[95m{total_groups} groups(s)\x1b[0m and \x1b[95m{total_recipients} recipient(s)\x1b[0m from JSON points") return recipient_groups def __check_pdf_length(self, recipients_length): pdf_length = self.pdf_length - (self.start_page_index) if pdf_length != recipients_length: raise ValueError( f"Number of recipients ({recipients_length}) does not match with PDF length ({pdf_length})" ) if __name__ == "__main__": load_dotenv() ripper = CertRipper( start_page_index=os.getenv("START_PAGE_INDEX"), master_pdf_path=os.getenv("MASTER_PDF_PATH"), json_points_path=os.getenv("JSON_POINTS_PATH"), ripped_certs_path=os.getenv("RIPPED_CERTS_PATH"), ripped_cert_file_name=os.getenv("RIPPED_CERT_FILE_NAME"), ) ripper.process() ``` #### File: src/utils/template_reader.py ```python class TemplateReader: def __init__(self, template_path): self.template_path = template_path def read(self): print(f"Using template for email: \x1b[94m{self.template_path}\x1b[0m") with open(self.template_path) as file: template_html = file.read() return template_html ```
{ "source": "jgrnt/disco", "score": 3 }
#### File: disco/schemes/scheme_http.py ```python from disco import comm def open(url, task=None): return comm.open_url(url) def input_stream(fd, sze, url, params): """Opens the specified url using an http client.""" import disco.worker file = open(url, task=disco.worker.active_task) return file, len(file), file.url ``` #### File: disco/worker/__init__.py ```python import os, sys, time, traceback, random from disco.compat import basestring, force_utf8 from disco.error import DataError from disco.fileutils import DiscoOutput, NonBlockingInput, Wait, AtomicFile from disco.comm import open_url # Maximum amount of time a task might take to finish. DISCO_WORKER_MAX_TIME = 24 * 60 * 60 # Use active_task as a global variable. # I will set this when a task is running, and then access it from utilities that # need task data like ddfs directory, etc. active_task = None class MessageWriter(object): def __init__(self, worker): self.worker = worker def write(self, string): string = string.strip() if string: self.worker.send('MSG', force_utf8(string)) def isatty(self): return False def flush(self): pass class Worker(dict): """ A :class:`Worker` is a :class:`dict` subclass, with special methods defined for serializing itself, and possibly reinstantiating itself on the nodes where :term:`tasks <task>` are run. .. note:: The base worker tries to guess which modules are needed automatically, for all of the :term:`job functions` specified below, if the *required_modules* parameter is not specified. It sends any local dependencies (i.e. modules not included in the Python standard library) to nodes by default. If guessing fails, or you have other requirements, see :mod:`disco.worker.modutil` for options. The :class:`Worker` base class defines the following parameters: :type save_results: bool :param save_results: whether or not to save the output to :ref:`DDFS`. :type save_info: string :param save_info: the information about saving into a DFS. :type profile: bool :param profile: determines whether :meth:`run` will be profiled. :type required_files: list of paths or dict :param required_files: additional files that are required by the worker. Either a list of paths to files to include, or a dictionary which contains items of the form ``(filename, filecontents)``. .. versionchanged:: 0.4 The worker includes *required_files* in :meth:`jobzip`, so they are available relative to the working directory of the worker. :type required_modules: see :ref:`modspec` :param required_modules: required modules to send with the worker. """ stderr = sys.stderr def __init__(self, **kwargs): super(Worker, self).__init__(self.defaults()) self.update(kwargs) self.outputs = {} @property def bin(self): """ The path to the :term:`worker` binary, relative to the :term:`job home`. Used to set :attr:`jobdict.worker` in :meth:`jobdict`. """ from inspect import getsourcefile, getmodule return getsourcefile(getmodule(self)).strip('/') def defaults(self): """ :return: dict of default values for the :class:`Worker`. """ return {'save_results': False, 'profile': False, 'required_files': {}, 'required_modules': None} def getitem(self, key, job, jobargs, default=None): """ Resolves ``key`` in the following order: #. ``jobargs`` (parameters passed in during :meth:`disco.job.Job.run`) #. ``job`` (attributes of the :class:`disco.job.Job`) #. ``self`` (items in the :class:`Worker` dict itself) #. ``default`` """ if key in jobargs: return jobargs[key] elif hasattr(job, key): return getattr(job, key) return self.get(key, default) def get_modules(self, job, **jobargs): from disco.worker.modutil import find_modules from disco.util import iterify def get(key): return self.getitem(key, job, jobargs) from inspect import getsourcefile, getmodule job_path = getsourcefile(getmodule(job)) return find_modules([obj for key in self for obj in iterify(get(key)) if callable(obj)], job_path=job_path, exclude=['Task']) def jobdict(self, job, **jobargs): """ Creates a basic :ref:`jobdict` for the :class:`Worker`. Makes use of the following parameters: :type name: string :param name: directly sets :attr:`jobdict.prefix`. :type owner: string :param owner: directly sets :attr:`jobdict.owner`. If not specified, uses :envvar:`DISCO_JOB_OWNER`. :return: :ref:`jobdict` dict. """ return {'prefix': self.getitem('name', job, jobargs), 'save_results': self.getitem('save_results', job, jobargs, False), 'save_info': self.getitem('save_info', job, jobargs, "ddfs"), 'scheduler': self.getitem('scheduler', job, jobargs, {}), 'owner': self.getitem('owner', job, jobargs, job.settings['DISCO_JOB_OWNER'])} def jobenvs(self, job, **jobargs): """ :return: :ref:`jobenvs` dict. """ envs = {'PYTHONPATH': ':'.join([path.strip('/') for path in sys.path])} envs['LD_LIBRARY_PATH'] = 'lib' envs['PYTHONPATH'] = ':'.join(('lib', envs.get('PYTHONPATH', ''))) return envs def jobhome(self, job, **jobargs): """ :return: the :term:`job home` (serialized). Calls :meth:`jobzip` to create the :class:`disco.fileutils.DiscoZipFile`. """ jobzip = self.jobzip(job, **jobargs) jobzip.close() return jobzip.dumps() def jobzip(self, job, **jobargs): """ A hook provided by the :class:`Worker` for creating the :term:`job home` zip. The base implementation creates a minimal zip file containing the Disco standard library, and any user-specified required files and modules. :return: a :class:`disco.fileutils.DiscoZipFile`. """ # First, add the disco standard library. from clx import __file__ as clxpath from disco import __file__ as discopath from disco.fileutils import DiscoZipFile jobzip = DiscoZipFile() jobzip.writepath(os.path.dirname(clxpath), exclude=('.pyc', '__pycache__')) jobzip.writepath(os.path.dirname(discopath), exclude=('.pyc', '__pycache__')) jobzip.writesource(job) jobzip.writesource(self) # Then, add any user-specified required files. from disco.util import iskv def get(key): return self.getitem(key, job, jobargs) if isinstance(get('required_files'), dict): for path, bytes in get('required_files').items(): jobzip.writestr(path, bytes) else: for path in get('required_files'): jobzip.write(path, os.path.join('lib', os.path.basename(path))) if get('required_modules') is None: self['required_modules'] = self.get_modules(job, **jobargs) for mod in get('required_modules'): if iskv(mod): jobzip.writepath(mod[1]) # Done with basic minimal zip. return jobzip def input(self, task, merged=False, **kwds): """ :type task: :class:`disco.task.Task` :param task: the task for which to retrieve input. :type merged: bool :param merged: if specified, returns a :class:`MergedInput`. :type kwds: dict :param kwds: additional keyword arguments for the :class:`Input`. :return: an :class:`Input` to iterate over the inputs from the master. """ if merged: return MergedInput(self.get_inputs(), task=task, **kwds) return SerialInput(self.get_inputs(), task=task, **kwds) def output(self, task, label=None, **kwds): """ :type task: :class:`disco.task.Task` :param task: the task for which to create output. :type label: int or None :param label: the label of the output partition to get. :type kwds: dict :param kwds: additional keyword arguments for the :class:`Output`. :return: the previously opened :class:`Output` for *label*, or if necessary, a newly opened one. """ if label not in self.outputs: self.outputs[label] = Output(task.output(label=label), **kwds) return self.outputs[label] def start(self, task, job, **jobargs): from disco.sysutil import set_mem_limit set_mem_limit(job.settings['DISCO_WORKER_MAX_MEM']) task.makedirs() if self.getitem('profile', job, jobargs): from cProfile import runctx name = 'profile-{0}'.format(task.uid) path = task.path(name) runctx('self.run(task, job, **jobargs)', globals(), locals(), path) task.put(name, open(path, 'rb').read()) else: self.run(task, job, **jobargs) self.end(task, job, **jobargs) def run(self, task, job, **jobargs): """ Called to do the actual work of processing the :class:`disco.task.Task`. This method runs in the Disco cluster, on a server that is executing one of the tasks in a job submitted by a client. """ self.getitem(task.stage, job, jobargs)(task, job, **jobargs) def end(self, task, job, **jobargs): self.send_outputs() self.send('MSG', "Results sent to master") @classmethod def main(cls): """ The main method used to bootstrap the :class:`Worker` when it is being executed. It is enough for the module to define:: if __name__ == '__main__': Worker.main() .. note:: It is critical that subclasses check if they are executing in the ``__main__`` module, before running :meth:`main`, as the worker module is also generally imported on the client side. """ try: sys.stdin = NonBlockingInput(sys.stdin, timeout=3 * DISCO_WORKER_MAX_TIME) sys.stdout = sys.stderr = MessageWriter(cls) cls.send('WORKER', {'pid': os.getpid(), 'version': "1.1"}) task = cls.get_task() job, jobargs = task.jobobjs job.worker.start(task, job, **jobargs) cls.send('DONE') except (DataError, EnvironmentError, MemoryError) as e: # check the number of open file descriptors (under proc), warn if close to max # http://stackoverflow.com/questions/899038/getting-the-highest-allocated-file-descriptor # also check for other known reasons for error, such as if disk is full cls.send('ERROR', traceback.format_exc()) raise except Exception as e: cls.send('FATAL', force_utf8(traceback.format_exc())) raise @classmethod def send(cls, type, payload=''): from json import dumps, loads body = dumps(payload) cls.stderr.write('{0} {1} {2}\n'.format(type, len(body), body)) cls.stderr.flush() spent, rtype = sys.stdin.t_read_until(' ') spent, rsize = sys.stdin.t_read_until(' ', spent=spent) spent, rbody = sys.stdin.t_read(int(rsize) + 1, spent=spent) if type == 'ERROR': raise ValueError(loads(rbody[:-1])) return loads(rbody[:-1]) @classmethod def get_input(cls, id): done, inputs = cls.send('INPUT', ['include', [id]]) _id, status, _label, replicas = inputs[0] if status == 'busy': raise Wait if status == 'failed': raise DataError("Can't handle broken input", id) return [(id, str(url)) for id, url in replicas] @classmethod def get_inputs(cls, done=False, exclude=[]): while done != "done": done, inputs = cls.send('INPUT', ['exclude', exclude]) for id, _status, label, _replicas in inputs: if id not in exclude: label = label if label == 'all' else int(label) yield IDedInput((cls, id, label)) exclude.append(id) @classmethod def labelled_input_map(cls, task, inputs): from disco.util import ispartitioned, read_index from collections import defaultdict def update_label_map(lm, i): reps = [url for rid, url in i.replicas] if ispartitioned(reps): for l, url, size in read_index(reps[0]): if i.label in ('all', l): lm[l].append([url]) else: lm[i.label].append(reps) label_map = defaultdict(list) for i in inputs: update_label_map(label_map, i) return label_map @classmethod def concat_input(cls, task, output_label, replicas): output = AtomicFile(task.output_path(output_label)) BUFFER_SIZE = 1024*1024 for reps in replicas: # Use only the first replica for now, since a set of one # is the most common case. # TODO: handle falling back to alternative replicas. inp = open_url(reps[0]) buf = inp.read(BUFFER_SIZE) while (len(buf) > 0): output.write(buf) buf = inp.read(BUFFER_SIZE) inp.close() output.close() return output.path, output.size() @classmethod def get_task(cls): from disco.task import Task return Task(**dict((str(k), v) for k, v in cls.send('TASK').items())) def send_outputs(self): for output in self.outputs.values(): output.close() self.send('OUTPUT', [output.label, output.path, output.size()]) class Params(object): """ Classic parameter container for tasks. This object provides a way to contain custom parameters, or state, in your tasks. You can specify any number of ``key, value`` pairs to the :class:`Params`. The pairs will be available to task functions through the *params* argument. Each task receives its own copy of the initial params object. *key* must be a valid Python identifier. *value* can be any Python object. """ def __init__(self, **kwargs): self.__dict__.update(kwargs) class IDedInput(tuple): @property def worker(self): return self[0] @property def id(self): return self[1] @property def label(self): return self[2] @property def replicas(self): return self.worker.get_input(self.id) @property def isindex(self): from disco.util import ispartitioned return ispartitioned(self.locations) @property def locations(self): return [r for rid, r in self.replicas] def unavailable(self, tried): return self.worker.send('INPUT_ERR', [self.id, list(tried)]) def __str__(self): return '{0}'.format([url for rid, url in self.replicas]) class ReplicaIter(object): def __init__(self, input): self.input, self.used = input, set() self.checked_local = False def __iter__(self): return self def next(self): from disco.util import urlsplit replicas = dict(self.input.replicas) repl_ids = list(set(replicas) - self.used) if not self.checked_local and active_task: # Try to favor opening a local file self.checked_local = True for repl_id in repl_ids: replica = replicas[repl_id] scheme, netloc, rest = urlsplit(replica, localhost=active_task.host, ddfs_data=active_task.ddfs_data, disco_data=active_task.disco_data) if scheme == 'file': self.used.add(repl_id) if os.path.exists(rest): # file might not exist due to replica rebalancing return replica repl_ids.remove(repl_id) if repl_ids: repl_id = random.choice(repl_ids) self.used.add(repl_id) return replicas[repl_id] self.input.unavailable(self.used) raise StopIteration def __next__(self): return self.next() class InputIter(object): def __init__(self, input, task=None, open=None, start=0): self.input = input if isinstance(input, IDedInput): self.urls = ReplicaIter(input) elif isinstance(input, basestring): self.urls = iter([input]) else: self.urls = iter(input) self.last = start - 1 self.open = open if open else Input.default_opener(task=task) self.swap() def __iter__(self): return self def next(self): try: self.last, item = next(self.iter) return item except DataError: self.swap(traceback.format_exc()) raise Wait(0) def __next__(self): return self.next() def swap(self, error=None): try: def skip(iter, N): from itertools import dropwhile return dropwhile(lambda n_rec: n_rec[0] < N, enumerate(iter)) self.iter = skip(self.open(next(self.urls)), self.last + 1) except DataError: self.swap(traceback.format_exc()) except StopIteration: if error: raise DataError("Exhausted all available replicas, " "last error was:\n\n{0}".format(error), self.input) raise DataError("Exhausted all available replicas", self.input) class Input(object): """ An iterable over one or more :class:`Worker` inputs, which can gracefully handle corrupted replicas or otherwise failed inputs. :type open: function :param open: a function with the following signature:: def open(url): ... return file used to open input files. """ def __init__(self, input, task=None, **kwds): self.input, self.task, self.kwds = input, task, kwds def __iter__(self): iter = self.input_iter(self.input) while iter: try: for item in iter: yield item iter = None except Wait as w: time.sleep(w.retry_after) def input_iter(self, input): return InputIter(self.input, task=self.task, **self.kwds) @classmethod def default_opener(cls, task): from disco import schemes def open(url): return schemes.open(url, task=task) return open class BaseOutput(object): def __init__(self, path_type_label): self.path, self.type, label = path_type_label self.label = 0 if label is None else int(label) def size(self): return os.path.getsize(self.path) def close(self): pass class Output(BaseOutput): """ A container for outputs from :class:`workers <Worker>`. :type open: function :param open: a function with the following signature:: def open(url): ... return file used to open new output files. .. attribute:: path The path to the underlying output file. .. attribute:: type The type of output. .. attribute:: label The label for the output (or None). .. attribute:: file The underlying output file handle. """ def __init__(self, path_type_label, open=None): super(Output, self).__init__(path_type_label) self.open = open or DiscoOutput self.file = self.open(self.path) def close(self): self.file.close() class SerialInput(Input): """ Produces an iterator over the records in a list of sequential inputs. """ def __iter__(self): for input in self.input: for record in Input(input, task=self.task, **self.kwds): yield record class ParallelInput(Input): """ Produces an iterator over the unordered records in a set of inputs. Usually require the full set of inputs (i.e. will block with streaming). """ BUSY_TIMEOUT = 1 def __iter__(self): iters = [self.input_iter(input) for input in self.input] while iters: iter = iters.pop() try: for item in iter: yield item except Wait as w: if not iters: time.sleep(w.retry_after) iters.insert(0, iter) def couple(self, iters, heads, n): while True: if heads[n] is Wait: self.fill(iters, heads, n=n) head = heads[n] heads[n] = Wait yield head def fetch(self, iters, heads, stop=all): busy = 0 for n, head in enumerate(heads): if head is Wait: try: heads[n] = next(iters[n]) except Wait: if stop in (all, n): busy += 1 except StopIteration: if stop in (all, n): raise return busy def fill(self, iters, heads, n=all, busy=True): while busy: busy = self.fetch(iters, heads, stop=n) if busy: time.sleep(self.BUSY_TIMEOUT) return heads class MergedInput(ParallelInput): """ Produces an iterator over the minimal head elements of the inputs. """ def __iter__(self): from heapq import merge iters = [self.input_iter(input) for input in self.input] heads = [Wait] * len(iters) return merge(*(self.couple(iters, heads, n) for n in range(len(iters)))) if __name__ == '__main__': Worker.main() ```
{ "source": "jgrob1/core", "score": 2 }
#### File: components/homekit/type_humidifiers.py ```python import logging from pyhap.const import CATEGORY_HUMIDIFIER from homeassistant.components.humidifier.const import ( ATTR_HUMIDITY, ATTR_MAX_HUMIDITY, ATTR_MIN_HUMIDITY, DEFAULT_MAX_HUMIDITY, DEFAULT_MIN_HUMIDITY, DEVICE_CLASS_DEHUMIDIFIER, DEVICE_CLASS_HUMIDIFIER, DOMAIN, SERVICE_SET_HUMIDITY, ) from homeassistant.const import ( ATTR_DEVICE_CLASS, ATTR_ENTITY_ID, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON, UNIT_PERCENTAGE, ) from homeassistant.core import callback from homeassistant.helpers.event import async_track_state_change_event from .accessories import TYPES, HomeAccessory from .const import ( CHAR_ACTIVE, CHAR_CURRENT_HUMIDIFIER_DEHUMIDIFIER, CHAR_CURRENT_HUMIDITY, CHAR_DEHUMIDIFIER_THRESHOLD_HUMIDITY, CHAR_HUMIDIFIER_THRESHOLD_HUMIDITY, CHAR_TARGET_HUMIDIFIER_DEHUMIDIFIER, CONF_LINKED_HUMIDITY_SENSOR, PROP_MAX_VALUE, PROP_MIN_STEP, PROP_MIN_VALUE, SERV_HUMIDIFIER_DEHUMIDIFIER, ) _LOGGER = logging.getLogger(__name__) HC_HUMIDIFIER = 1 HC_DEHUMIDIFIER = 2 HC_HASS_TO_HOMEKIT_DEVICE_CLASS = { DEVICE_CLASS_HUMIDIFIER: HC_HUMIDIFIER, DEVICE_CLASS_DEHUMIDIFIER: HC_DEHUMIDIFIER, } HC_HASS_TO_HOMEKIT_DEVICE_CLASS_NAME = { DEVICE_CLASS_HUMIDIFIER: "Humidifier", DEVICE_CLASS_DEHUMIDIFIER: "Dehumidifier", } HC_DEVICE_CLASS_TO_TARGET_CHAR = { HC_HUMIDIFIER: CHAR_HUMIDIFIER_THRESHOLD_HUMIDITY, HC_DEHUMIDIFIER: CHAR_DEHUMIDIFIER_THRESHOLD_HUMIDITY, } HC_STATE_INACTIVE = 0 HC_STATE_IDLE = 1 HC_STATE_HUMIDIFYING = 2 HC_STATE_DEHUMIDIFYING = 3 @TYPES.register("HumidifierDehumidifier") class HumidifierDehumidifier(HomeAccessory): """Generate a HumidifierDehumidifier accessory for a humidifier.""" def __init__(self, *args): """Initialize a HumidifierDehumidifier accessory object.""" super().__init__(*args, category=CATEGORY_HUMIDIFIER) self.chars = [] state = self.hass.states.get(self.entity_id) device_class = state.attributes.get(ATTR_DEVICE_CLASS, DEVICE_CLASS_HUMIDIFIER) self._hk_device_class = HC_HASS_TO_HOMEKIT_DEVICE_CLASS[device_class] self._target_humidity_char_name = HC_DEVICE_CLASS_TO_TARGET_CHAR[ self._hk_device_class ] self.chars.append(self._target_humidity_char_name) serv_humidifier_dehumidifier = self.add_preload_service( SERV_HUMIDIFIER_DEHUMIDIFIER, self.chars ) # Current and target mode characteristics self.char_current_humidifier_dehumidifier = ( serv_humidifier_dehumidifier.configure_char( CHAR_CURRENT_HUMIDIFIER_DEHUMIDIFIER, value=0 ) ) self.char_target_humidifier_dehumidifier = ( serv_humidifier_dehumidifier.configure_char( CHAR_TARGET_HUMIDIFIER_DEHUMIDIFIER, value=self._hk_device_class, valid_values={ HC_HASS_TO_HOMEKIT_DEVICE_CLASS_NAME[ device_class ]: self._hk_device_class }, ) ) # Current and target humidity characteristics self.char_current_humidity = serv_humidifier_dehumidifier.configure_char( CHAR_CURRENT_HUMIDITY, value=0 ) max_humidity = state.attributes.get(ATTR_MAX_HUMIDITY, DEFAULT_MAX_HUMIDITY) max_humidity = round(max_humidity) max_humidity = min(max_humidity, 100) min_humidity = state.attributes.get(ATTR_MIN_HUMIDITY, DEFAULT_MIN_HUMIDITY) min_humidity = round(min_humidity) min_humidity = max(min_humidity, 0) self.char_target_humidity = serv_humidifier_dehumidifier.configure_char( self._target_humidity_char_name, value=45, properties={ PROP_MIN_VALUE: min_humidity, PROP_MAX_VALUE: max_humidity, PROP_MIN_STEP: 1, }, ) # Active/inactive characteristics self.char_active = serv_humidifier_dehumidifier.configure_char( CHAR_ACTIVE, value=False ) self.async_update_state(state) serv_humidifier_dehumidifier.setter_callback = self._set_chars self.linked_humidity_sensor = self.config.get(CONF_LINKED_HUMIDITY_SENSOR) if self.linked_humidity_sensor: humidity_state = self.hass.states.get(self.linked_humidity_sensor) if humidity_state: self._async_update_current_humidity(humidity_state) async def run_handler(self): """Handle accessory driver started event. Run inside the Home Assistant event loop. """ if self.linked_humidity_sensor: async_track_state_change_event( self.hass, [self.linked_humidity_sensor], self.async_update_current_humidity_event, ) await super().run_handler() @callback def async_update_current_humidity_event(self, event): """Handle state change event listener callback.""" self._async_update_current_humidity(event.data.get("new_state")) @callback def _async_update_current_humidity(self, new_state): """Handle linked humidity sensor state change to update HomeKit value.""" if new_state is None: _LOGGER.error( "%s: Unable to update from linked humidity sensor %s: the entity state is None", self.entity_id, self.linked_humidity_sensor, ) return try: current_humidity = float(new_state.state) if self.char_current_humidity.value != current_humidity: _LOGGER.debug( "%s: Linked humidity sensor %s changed to %d", self.entity_id, self.linked_humidity_sensor, current_humidity, ) self.char_current_humidity.set_value(current_humidity) except ValueError as ex: _LOGGER.error( "%s: Unable to update from linked humidity sensor %s: %s", self.entity_id, self.linked_humidity_sensor, ex, ) def _set_chars(self, char_values): _LOGGER.debug("HumidifierDehumidifier _set_chars: %s", char_values) if CHAR_TARGET_HUMIDIFIER_DEHUMIDIFIER in char_values: hk_value = char_values[CHAR_TARGET_HUMIDIFIER_DEHUMIDIFIER] if self._hk_device_class != hk_value: _LOGGER.error( "%s is not supported", CHAR_TARGET_HUMIDIFIER_DEHUMIDIFIER ) if CHAR_ACTIVE in char_values: self.call_service( DOMAIN, SERVICE_TURN_ON if char_values[CHAR_ACTIVE] else SERVICE_TURN_OFF, {ATTR_ENTITY_ID: self.entity_id}, f"{CHAR_ACTIVE} to {char_values[CHAR_ACTIVE]}", ) if self._target_humidity_char_name in char_values: humidity = round(char_values[self._target_humidity_char_name]) self.call_service( DOMAIN, SERVICE_SET_HUMIDITY, {ATTR_ENTITY_ID: self.entity_id, ATTR_HUMIDITY: humidity}, f"{self._target_humidity_char_name} to " f"{char_values[self._target_humidity_char_name]}{UNIT_PERCENTAGE}", ) @callback def async_update_state(self, new_state): """Update state without rechecking the device features.""" is_active = new_state.state == STATE_ON # Update active state if self.char_active.value != is_active: self.char_active.set_value(is_active) # Set current state if is_active: if self._hk_device_class == HC_HUMIDIFIER: current_state = HC_STATE_HUMIDIFYING else: current_state = HC_STATE_DEHUMIDIFYING else: current_state = HC_STATE_INACTIVE if self.char_current_humidifier_dehumidifier.value != current_state: self.char_current_humidifier_dehumidifier.set_value(current_state) # Update target humidity target_humidity = new_state.attributes.get(ATTR_HUMIDITY) if isinstance(target_humidity, (int, float)): if self.char_target_humidity.value != target_humidity: self.char_target_humidity.set_value(target_humidity) ``` #### File: components/image/__init__.py ```python import asyncio import logging import pathlib import secrets import shutil import typing from PIL import Image, ImageOps, UnidentifiedImageError from aiohttp import hdrs, web from aiohttp.web_request import FileField import voluptuous as vol from homeassistant.components.http.view import HomeAssistantView from homeassistant.const import CONF_ID from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import collection from homeassistant.helpers.storage import Store import homeassistant.util.dt as dt_util from .const import DOMAIN _LOGGER = logging.getLogger(__name__) STORAGE_KEY = DOMAIN STORAGE_VERSION = 1 VALID_SIZES = {256, 512} MAX_SIZE = 1024 * 1024 * 10 CREATE_FIELDS = { vol.Required("file"): FileField, } UPDATE_FIELDS = { vol.Optional("name"): vol.All(str, vol.Length(min=1)), } async def async_setup(hass: HomeAssistant, config: dict): """Set up the Image integration.""" image_dir = pathlib.Path(hass.config.path(DOMAIN)) hass.data[DOMAIN] = storage_collection = ImageStorageCollection(hass, image_dir) await storage_collection.async_load() collection.StorageCollectionWebsocket( storage_collection, DOMAIN, DOMAIN, CREATE_FIELDS, UPDATE_FIELDS, ).async_setup(hass, create_create=False) hass.http.register_view(ImageUploadView) hass.http.register_view(ImageServeView(image_dir, storage_collection)) return True class ImageStorageCollection(collection.StorageCollection): """Image collection stored in storage.""" CREATE_SCHEMA = vol.Schema(CREATE_FIELDS) UPDATE_SCHEMA = vol.Schema(UPDATE_FIELDS) def __init__(self, hass: HomeAssistant, image_dir: pathlib.Path) -> None: """Initialize media storage collection.""" super().__init__( Store(hass, STORAGE_VERSION, STORAGE_KEY), logging.getLogger(f"{__name__}.storage_collection"), ) self.async_add_listener(self._change_listener) self.image_dir = image_dir async def _process_create_data(self, data: typing.Dict) -> typing.Dict: """Validate the config is valid.""" data = self.CREATE_SCHEMA(dict(data)) uploaded_file: FileField = data["file"] if not uploaded_file.content_type.startswith("image/"): raise vol.Invalid("Only images are allowed") data[CONF_ID] = secrets.token_hex(16) data["filesize"] = await self.hass.async_add_executor_job(self._move_data, data) data["content_type"] = uploaded_file.content_type data["name"] = uploaded_file.filename data["uploaded_at"] = dt_util.utcnow().isoformat() return data def _move_data(self, data): """Move data.""" uploaded_file: FileField = data.pop("file") # Verify we can read the image try: image = Image.open(uploaded_file.file) except UnidentifiedImageError: raise vol.Invalid("Unable to identify image file") # Reset content uploaded_file.file.seek(0) media_folder: pathlib.Path = self.image_dir / data[CONF_ID] media_folder.mkdir(parents=True) media_file = media_folder / "original" # Raises if path is no longer relative to the media dir media_file.relative_to(media_folder) _LOGGER.debug("Storing file %s", media_file) with media_file.open("wb") as target: shutil.copyfileobj(uploaded_file.file, target) image.close() return media_file.stat().st_size @callback def _get_suggested_id(self, info: typing.Dict) -> str: """Suggest an ID based on the config.""" return info[CONF_ID] async def _update_data(self, data: dict, update_data: typing.Dict) -> typing.Dict: """Return a new updated data object.""" return {**data, **self.UPDATE_SCHEMA(update_data)} async def _change_listener(self, change_type, item_id, data): """Handle change.""" if change_type != collection.CHANGE_REMOVED: return await self.hass.async_add_executor_job(shutil.rmtree, self.image_dir / item_id) class ImageUploadView(HomeAssistantView): """View to upload images.""" url = "/api/image/upload" name = "api:image:upload" async def post(self, request): """Handle upload.""" # Increase max payload request._client_max_size = MAX_SIZE # pylint: disable=protected-access data = await request.post() item = await request.app["hass"].data[DOMAIN].async_create_item(data) return self.json(item) class ImageServeView(HomeAssistantView): """View to download images.""" url = "/api/image/serve/{image_id}/{filename}" name = "api:image:serve" requires_auth = False def __init__( self, image_folder: pathlib.Path, image_collection: ImageStorageCollection ): """Initialize image serve view.""" self.transform_lock = asyncio.Lock() self.image_folder = image_folder self.image_collection = image_collection async def get(self, request: web.Request, image_id: str, filename: str): """Serve image.""" image_size = filename.split("-", 1)[0] try: parts = image_size.split("x", 1) width = int(parts[0]) height = int(parts[1]) except (ValueError, IndexError): raise web.HTTPBadRequest if not width or width != height or width not in VALID_SIZES: raise web.HTTPBadRequest image_info = self.image_collection.data.get(image_id) if image_info is None: raise web.HTTPNotFound() hass = request.app["hass"] target_file = self.image_folder / image_id / f"{width}x{height}" if not target_file.is_file(): async with self.transform_lock: # Another check in case another request already finished it while waiting if not target_file.is_file(): await hass.async_add_executor_job( _generate_thumbnail, self.image_folder / image_id / "original", image_info["content_type"], target_file, (width, height), ) return web.FileResponse( target_file, headers={hdrs.CONTENT_TYPE: image_info["content_type"]} ) def _generate_thumbnail(original_path, content_type, target_path, target_size): """Generate a size.""" image = ImageOps.exif_transpose(Image.open(original_path)) image.thumbnail(target_size) image.save(target_path, format=content_type.split("/", 1)[1]) ``` #### File: components/knx/cover.py ```python from xknx.devices import Cover as XknxCover from homeassistant.components.cover import ( ATTR_POSITION, ATTR_TILT_POSITION, DEVICE_CLASS_BLIND, SUPPORT_CLOSE, SUPPORT_OPEN, SUPPORT_SET_POSITION, SUPPORT_SET_TILT_POSITION, SUPPORT_STOP, CoverEntity, ) from homeassistant.core import callback from homeassistant.helpers.event import async_track_utc_time_change from . import ATTR_DISCOVER_DEVICES, DATA_KNX async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up cover(s) for KNX platform.""" if discovery_info is not None: async_add_entities_discovery(hass, discovery_info, async_add_entities) @callback def async_add_entities_discovery(hass, discovery_info, async_add_entities): """Set up covers for KNX platform configured via xknx.yaml.""" entities = [] for device_name in discovery_info[ATTR_DISCOVER_DEVICES]: device = hass.data[DATA_KNX].xknx.devices[device_name] entities.append(KNXCover(device)) async_add_entities(entities) class KNXCover(CoverEntity): """Representation of a KNX cover.""" def __init__(self, device: XknxCover): """Initialize the cover.""" self.device = device self._unsubscribe_auto_updater = None @callback def async_register_callbacks(self): """Register callbacks to update hass after device was changed.""" async def after_update_callback(device): """Call after device was updated.""" self.async_write_ha_state() if self.device.is_traveling(): self.start_auto_updater() self.device.register_device_updated_cb(after_update_callback) async def async_added_to_hass(self): """Store register state change callback.""" self.async_register_callbacks() async def async_update(self): """Request a state update from KNX bus.""" await self.device.sync() @property def name(self): """Return the name of the KNX device.""" return self.device.name @property def available(self): """Return True if entity is available.""" return self.hass.data[DATA_KNX].connected @property def should_poll(self): """No polling needed within KNX.""" return False @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" if self.device.supports_angle: return DEVICE_CLASS_BLIND return None @property def supported_features(self): """Flag supported features.""" supported_features = SUPPORT_OPEN | SUPPORT_CLOSE | SUPPORT_SET_POSITION if self.device.supports_stop: supported_features |= SUPPORT_STOP if self.device.supports_angle: supported_features |= SUPPORT_SET_TILT_POSITION return supported_features @property def current_cover_position(self): """Return the current position of the cover. None is unknown, 0 is closed, 100 is fully open. """ # In KNX 0 is open, 100 is closed. try: return 100 - self.device.current_position() except TypeError: return None @property def is_closed(self): """Return if the cover is closed.""" return self.device.is_closed() @property def is_opening(self): """Return if the cover is opening or not.""" return self.device.is_opening() @property def is_closing(self): """Return if the cover is closing or not.""" return self.device.is_closing() async def async_close_cover(self, **kwargs): """Close the cover.""" await self.device.set_down() async def async_open_cover(self, **kwargs): """Open the cover.""" await self.device.set_up() async def async_set_cover_position(self, **kwargs): """Move the cover to a specific position.""" knx_position = 100 - kwargs[ATTR_POSITION] await self.device.set_position(knx_position) async def async_stop_cover(self, **kwargs): """Stop the cover.""" await self.device.stop() self.stop_auto_updater() @property def current_cover_tilt_position(self): """Return current tilt position of cover.""" if not self.device.supports_angle: return None try: return 100 - self.device.current_angle() except TypeError: return None async def async_set_cover_tilt_position(self, **kwargs): """Move the cover tilt to a specific position.""" knx_tilt_position = 100 - kwargs[ATTR_TILT_POSITION] await self.device.set_angle(knx_tilt_position) def start_auto_updater(self): """Start the autoupdater to update Home Assistant while cover is moving.""" if self._unsubscribe_auto_updater is None: self._unsubscribe_auto_updater = async_track_utc_time_change( self.hass, self.auto_updater_hook ) def stop_auto_updater(self): """Stop the autoupdater.""" if self._unsubscribe_auto_updater is not None: self._unsubscribe_auto_updater() self._unsubscribe_auto_updater = None @callback def auto_updater_hook(self, now): """Call for the autoupdater.""" self.async_write_ha_state() if self.device.position_reached(): self.stop_auto_updater() self.hass.add_job(self.device.auto_stop_if_necessary()) ```
{ "source": "jgroehl/PokerGame", "score": 3 }
#### File: PokerGame/pokerlib/Evalutaor.py ```python import numpy as np from pokerlib.EvaluationStateMachine import FlushStateDevice, \ StraightStateDevice, CardValueStateDevice ROYAL_FLUSH = 9 STRAIGHT_FLUSH = 8 FOUR_OF_A_KIND = 7 FULL_HOUSE = 6 FLUSH = 5 STRAIGHT = 4 THREE_OF_A_KIND = 3 TWO_PAIR = 2 PAIR = 1 HIGH_CARD = 0 def evaluate_cards(cards): cards = np.asarray(cards) cards.sort() cards_values = np.asarray([cards[i].value for i in range(len(cards))]) cards_value_diff = [cards[i+1].value-cards[i].value for i in range(len(cards)-1)] suits = np.asarray([cards[i].suit for i in range(len(cards))]) suits_indexes = np.argsort(suits) suits.sort() cards_suit_diff = [suits[i + 1] - suits[i] for i in range(len(suits) - 1)] flush_state_machine = FlushStateDevice() straight_state_machine = StraightStateDevice() value_state_machine = CardValueStateDevice() if len(cards) is not 7: raise AssertionError("Need seven cards to evaluate") for index in range(len(cards_suit_diff)): flush_state_machine.on_event(cards_suit_diff[index], index) flush_card_indexes = suits_indexes[flush_state_machine.used_card_indices] is_flush = flush_state_machine.state.evaluate() for index in range(len(cards_value_diff)): straight_state_machine.on_event(cards_value_diff[index], index) value_state_machine.on_event(cards_value_diff[index], index) is_straight = straight_state_machine.state.evaluate() straight_indexes = straight_state_machine.used_card_indices is_ace_high_straight = False if not is_straight and \ (12 in cards_values and 0 in cards_values and 1 in cards_values and 2 in cards_values and 3 in cards_values): is_straight = True is_ace_high_straight = True ace_straight_values = [12, 0, 1, 2, 3] straight_indexes = np.asarray([np.where(cards_values == ace_straight_values[i])[0][0] for i in range(len(ace_straight_values))]) value_result = value_state_machine.state.evaluate() value_indexes = value_state_machine.used_card_indices sf_indexes = np.intersect1d(flush_card_indexes, straight_indexes) index_diffs = np.abs([sf_indexes[i]-sf_indexes[i+1] for i in range(len(sf_indexes)-1)]) high_cards = list(np.copy(cards)) if is_flush \ and is_straight \ and (np.sum(index_diffs) == len(sf_indexes)-1 or is_ace_high_straight) \ and len(sf_indexes) > 4: if (cards[sf_indexes][-1].value == 12 and cards[sf_indexes][-2].value == 11): # Add the king in here for the ace to five straight flush check. return [ROYAL_FLUSH, cards[sf_indexes], []] if cards[sf_indexes][-1].value == 12: sf_indexes = list(sf_indexes) sf_indexes.insert(0, sf_indexes.pop(-1)) sf_indexes = np.asarray(sf_indexes) return [STRAIGHT_FLUSH, cards[sf_indexes], []] if value_result == FOUR_OF_A_KIND: return_cards = cards[value_indexes] if len(return_cards) > 4: card_values = np.asarray([cards[index].value for index in value_indexes]) return_cards = return_cards[np.where(card_values == np.median(card_values))] for card in return_cards: high_cards.remove(card) return [FOUR_OF_A_KIND, return_cards, get_high_cards(high_cards, 1)] if value_result == FULL_HOUSE: return_cards = cards[value_indexes] return [FULL_HOUSE, return_cards[:], []] if is_flush: return_cards = cards[flush_card_indexes] return [FLUSH, return_cards[-5:], []] if is_straight: return_cards = cards[straight_indexes] return [STRAIGHT, return_cards[-5:], []] if value_result == THREE_OF_A_KIND: for card in cards[value_indexes]: high_cards.remove(card) return [THREE_OF_A_KIND, cards[value_indexes], get_high_cards(high_cards, 2)] if value_result == TWO_PAIR: return_cards = cards[value_indexes][-4:] for card in return_cards: high_cards.remove(card) return [TWO_PAIR, return_cards, get_high_cards(high_cards, 1)] if value_result == PAIR: for card in cards[value_indexes]: high_cards.remove(card) return [PAIR, cards[value_indexes], get_high_cards(high_cards, 3)] return [HIGH_CARD, [], cards[2:]] def get_high_cards(cards, number): if len(cards) < number: raise AssertionError("cannot get so many high cards") cards.sort() return cards[(-1*number):] ```
{ "source": "jgroehl/simpa", "score": 2 }
#### File: device_digital_twins/detection_geometries/ithera_invision_array.py ```python import numpy as np from simpa.core.device_digital_twins import DetectionGeometryBase from simpa.utils import Tags class iTheraInvision256TFDetectionGeometry(DetectionGeometryBase): """ This class represents a digital twin of a ultrasound detection device with a curved detection geometry. The origin for this device is the center (focus) of the curved array. """ def __init__(self, device_position_mm=None, field_of_view_extent_mm=None): """ :param pitch_mm: In-plane distance between the beginning of one detector element to the next detector element. :param radius_mm: :param number_detector_elements: :param detector_element_width_mm: :param detector_element_length_mm: :param center_frequency_hz: :param bandwidth_percent: :param sampling_frequency_mhz: :param angular_origin_offset: :param device_position_mm: Center (focus) of the curved array. """ super(iTheraInvision256TFDetectionGeometry, self).__init__( number_detector_elements=256, detector_element_width_mm=0.635, detector_element_length_mm=15, center_frequency_hz=5e6, bandwidth_percent=55, sampling_frequency_mhz=40, device_position_mm=device_position_mm) self.positions = (np.asarray([[0.02890019, -0.02837304, 0.], [0.02941755, -0.02783627, 0.], [0.02992494, -0.02729007, 0.], [0.03042219, -0.02673463, 0.], [0.03090913, -0.02617013, 0.], [0.0313856, -0.02559676, 0.], [0.03185144, -0.02501472, 0.], [0.03230648, -0.0244242, 0.], [0.03275058, -0.0238254, 0.], [0.03318357, -0.02321854, 0.], [0.03360533, -0.0226038, 0.], [0.0340157, -0.02198141, 0.], [0.03441454, -0.02135156, 0.], [0.03480172, -0.02071449, 0.], [0.03517711, -0.02007039, 0.], [0.03554058, -0.0194195, 0.], [0.03589201, -0.01876202, 0.], [0.03623128, -0.01809819, 0.], [0.03655827, -0.01742822, 0.], [0.03687287, -0.01675235, 0.], [0.03717498, -0.0160708, 0.], [0.03746449, -0.01538381, 0.], [0.03774131, -0.01469161, 0.], [0.03800534, -0.01399442, 0.], [0.0382565, -0.0132925, 0.], [0.03849469, -0.01258607, 0.], [0.03871983, -0.01187538, 0.], [0.03893186, -0.01116066, 0.], [0.0391307, -0.01044216, 0.], [0.03931627, -0.00972012, 0.], [0.03948853, -0.00899479, 0.], [0.0396474, -0.00826641, 0.], [0.03979284, -0.00753523, 0.], [0.0399248, -0.0068015, 0.], [0.04004323, -0.00606546, 0.], [0.04014809, -0.00532737, 0.], [0.04023935, -0.00458747, 0.], [0.04031697, -0.00384602, 0.], [0.04038093, -0.00310327, 0.], [0.04043121, -0.00235946, 0.], [0.04046779, -0.00161485, 0.], [0.04049066, -0.0008697, 0.], [0.04049981, -0.00012425, 0.], [0.04049524, 0.00062124, 0.], [0.04047694, 0.00136652, 0.], [0.04044493, 0.00211133, 0.], [0.04039921, 0.00285544, 0.], [0.04033981, 0.00359857, 0.], [0.04026674, 0.00434048, 0.], [0.04018002, 0.00508093, 0.], [0.04007969, 0.00581965, 0.], [0.03996578, 0.0065564, 0.], [0.03983833, 0.00729093, 0.], [0.03969738, 0.00802299, 0.], [0.03954297, 0.00875233, 0.], [0.03937517, 0.0094787, 0.], [0.03919403, 0.01020186, 0.], [0.03899961, 0.01092157, 0.], [0.03879197, 0.01163757, 0.], [0.03857119, 0.01234963, 0.], [0.03833734, 0.01305751, 0.], [0.0380905, 0.01376096, 0.], [0.03783075, 0.01445975, 0.], [0.03755818, 0.01515364, 0.], [0.03727289, 0.0158424, 0.], [0.03697497, 0.01652579, 0.], [0.03666452, 0.01720358, 0.], [0.03634165, 0.01787554, 0.], [0.03600646, 0.01854144, 0.], [0.03565907, 0.01920106, 0.], [0.0352996, 0.01985417, 0.], [0.03492817, 0.02050056, 0.], [0.0345449, 0.02114, 0.], [0.03414993, 0.02177228, 0.], [0.03374339, 0.02239718, 0.], [0.03332542, 0.02301449, 0.], [0.03289615, 0.023624, 0.], [0.03245573, 0.02422551, 0.], [0.03200432, 0.02481881, 0.], [0.03154207, 0.0254037, 0.], [0.03106913, 0.02597998, 0.], [0.03058566, 0.02654746, 0.], [0.03009182, 0.02710594, 0.], [0.02958779, 0.02765524, 0.], [0.02907374, 0.02819517, 0.], [0.02854983, 0.02872555, 0.], [0.02801625, 0.02924619, 0.], [0.02747318, 0.02975692, 0.], [0.02692079, 0.03025757, 0.], [0.02635929, 0.03074797, 0.], [0.02578886, 0.03122795, 0.], [0.02520968, 0.03169735, 0.], [0.02462197, 0.03215601, 0.], [0.02402591, 0.03260377, 0.], [0.02342171, 0.03304048, 0.], [0.02280957, 0.033466, 0.], [0.02218971, 0.03388018, 0.], [0.02156233, 0.03428288, 0.], [0.02092764, 0.03467397, 0.], [0.02028586, 0.0350533, 0.], [0.0196372, 0.03542076, 0.], [0.0189819, 0.03577622, 0.], [0.01832016, 0.03611955, 0.], [0.01765221, 0.03645064, 0.], [0.01697828, 0.03676939, 0.], [0.0162986, 0.03707567, 0.], [0.0156134, 0.0373694, 0.], [0.01492291, 0.03765046, 0.], [0.01422736, 0.03791876, 0.], [0.01352699, 0.03817421, 0.], [0.01282203, 0.03841673, 0.], [0.01211273, 0.03864624, 0.], [0.01139933, 0.03886265, 0.], [0.01068206, 0.03906589, 0.], [0.00996118, 0.03925589, 0.], [0.00923692, 0.03943259, 0.], [0.00850953, 0.03959593, 0.], [0.00777926, 0.03974586, 0.], [0.00704635, 0.03988231, 0.], [0.00631105, 0.04000526, 0.], [0.00557361, 0.04011465, 0.], [0.00483429, 0.04021044, 0.], [0.00409333, 0.04029261, 0.], [0.00335098, 0.04036113, 0.], [0.0026075, 0.04041597, 0.], [0.00186313, 0.04045712, 0.], [0.00111813, 0.04048456, 0.], [0.00037275, 0.04049828, 0.], [-0.00037275, 0.04049828, 0.], [-0.00111813, 0.04048456, 0.], [-0.00186313, 0.04045712, 0.], [-0.0026075, 0.04041597, 0.], [-0.00335098, 0.04036113, 0.], [-0.00409333, 0.04029261, 0.], [-0.00483429, 0.04021044, 0.], [-0.00557361, 0.04011465, 0.], [-0.00631105, 0.04000526, 0.], [-0.00704635, 0.03988231, 0.], [-0.00777926, 0.03974586, 0.], [-0.00850953, 0.03959593, 0.], [-0.00923692, 0.03943259, 0.], [-0.00996118, 0.03925589, 0.], [-0.01068206, 0.03906589, 0.], [-0.01139933, 0.03886265, 0.], [-0.01211273, 0.03864624, 0.], [-0.01282203, 0.03841673, 0.], [-0.01352699, 0.03817421, 0.], [-0.01422736, 0.03791876, 0.], [-0.01492291, 0.03765046, 0.], [-0.0156134, 0.0373694, 0.], [-0.0162986, 0.03707567, 0.], [-0.01697828, 0.03676939, 0.], [-0.01765221, 0.03645064, 0.], [-0.01832016, 0.03611955, 0.], [-0.0189819, 0.03577622, 0.], [-0.0196372, 0.03542076, 0.], [-0.02028586, 0.0350533, 0.], [-0.02092764, 0.03467397, 0.], [-0.02156233, 0.03428288, 0.], [-0.02218971, 0.03388018, 0.], [-0.02280957, 0.033466, 0.], [-0.02342171, 0.03304048, 0.], [-0.02402591, 0.03260377, 0.], [-0.02462197, 0.03215601, 0.], [-0.02520968, 0.03169735, 0.], [-0.02578886, 0.03122795, 0.], [-0.02635929, 0.03074797, 0.], [-0.02692079, 0.03025757, 0.], [-0.02747318, 0.02975692, 0.], [-0.02801625, 0.02924619, 0.], [-0.02854983, 0.02872555, 0.], [-0.02907374, 0.02819517, 0.], [-0.02958779, 0.02765524, 0.], [-0.03009182, 0.02710594, 0.], [-0.03058566, 0.02654746, 0.], [-0.03106913, 0.02597998, 0.], [-0.03154207, 0.0254037, 0.], [-0.03200432, 0.02481881, 0.], [-0.03245573, 0.02422551, 0.], [-0.03289615, 0.023624, 0.], [-0.03332542, 0.02301449, 0.], [-0.03374339, 0.02239718, 0.], [-0.03414993, 0.02177228, 0.], [-0.0345449, 0.02114, 0.], [-0.03492817, 0.02050056, 0.], [-0.0352996, 0.01985417, 0.], [-0.03565907, 0.01920106, 0.], [-0.03600646, 0.01854144, 0.], [-0.03634165, 0.01787554, 0.], [-0.03666452, 0.01720358, 0.], [-0.03697497, 0.01652579, 0.], [-0.03727289, 0.0158424, 0.], [-0.03755818, 0.01515364, 0.], [-0.03783075, 0.01445975, 0.], [-0.0380905, 0.01376096, 0.], [-0.03833734, 0.01305751, 0.], [-0.03857119, 0.01234963, 0.], [-0.03879197, 0.01163757, 0.], [-0.03899961, 0.01092157, 0.], [-0.03919403, 0.01020186, 0.], [-0.03937517, 0.0094787, 0.], [-0.03954297, 0.00875233, 0.], [-0.03969738, 0.00802299, 0.], [-0.03983833, 0.00729093, 0.], [-0.03996578, 0.0065564, 0.], [-0.04007969, 0.00581965, 0.], [-0.04018002, 0.00508093, 0.], [-0.04026674, 0.00434048, 0.], [-0.04033981, 0.00359857, 0.], [-0.04039921, 0.00285544, 0.], [-0.04044493, 0.00211133, 0.], [-0.04047694, 0.00136652, 0.], [-0.04049524, 0.00062124, 0.], [-0.04049981, -0.00012425, 0.], [-0.04049066, -0.0008697, 0.], [-0.04046779, -0.00161485, 0.], [-0.04043121, -0.00235946, 0.], [-0.04038093, -0.00310327, 0.], [-0.04031697, -0.00384602, 0.], [-0.04023935, -0.00458747, 0.], [-0.04014809, -0.00532737, 0.], [-0.04004323, -0.00606546, 0.], [-0.0399248, -0.0068015, 0.], [-0.03979284, -0.00753523, 0.], [-0.0396474, -0.00826641, 0.], [-0.03948853, -0.00899479, 0.], [-0.03931627, -0.00972012, 0.], [-0.0391307, -0.01044216, 0.], [-0.03893186, -0.01116066, 0.], [-0.03871983, -0.01187538, 0.], [-0.03849469, -0.01258607, 0.], [-0.0382565, -0.0132925, 0.], [-0.03800534, -0.01399442, 0.], [-0.03774131, -0.01469161, 0.], [-0.03746449, -0.01538381, 0.], [-0.03717498, -0.0160708, 0.], [-0.03687287, -0.01675235, 0.], [-0.03655827, -0.01742822, 0.], [-0.03623128, -0.01809819, 0.], [-0.03589201, -0.01876202, 0.], [-0.03554058, -0.0194195, 0.], [-0.03517711, -0.02007039, 0.], [-0.03480172, -0.02071449, 0.], [-0.03441454, -0.02135156, 0.], [-0.0340157, -0.02198141, 0.], [-0.03360533, -0.0226038, 0.], [-0.03318357, -0.02321854, 0.], [-0.03275058, -0.0238254, 0.], [-0.03230648, -0.0244242, 0.], [-0.03185144, -0.02501472, 0.], [-0.0313856, -0.02559676, 0.], [-0.03090913, -0.02617013, 0.], [-0.03042219, -0.02673463, 0.], [-0.02992494, -0.02729007, 0.], [-0.02941755, -0.02783627, 0.], [-0.02890019, -0.02837304, 0.]]) * 1000)[:, [0, 2, 1]] detector_positions = self.get_detector_element_positions_base_mm() min_x_coordinate = np.min(detector_positions[:, 0]) max_x_coordinate = np.max(detector_positions[:, 0]) self.probe_width_mm = max_x_coordinate - min_x_coordinate min_z_coordinate = np.min(detector_positions[:, 2]) max_z_coordinate = np.max(detector_positions[:, 2]) self.probe_height_mm = max_z_coordinate - min_z_coordinate if field_of_view_extent_mm is None: self.field_of_view_extent_mm = np.asarray([-self.probe_width_mm/2, self.probe_width_mm/2, 0, 0, 0, 100]) else: self.field_of_view_extent_mm = field_of_view_extent_mm def check_settings_prerequisites(self, global_settings) -> bool: if global_settings[Tags.DIM_VOLUME_Z_MM] < (self.probe_height_mm + 1): self.logger.error("Volume z dimension is too small to encompass the device in simulation!" "Must be at least {} mm but was {} mm" .format((self.probe_height_mm + 1), global_settings[Tags.DIM_VOLUME_Z_MM])) return False if global_settings[Tags.DIM_VOLUME_X_MM] < (self.probe_width_mm + 1): self.logger.error("Volume x dimension is too small to encompass MSOT device in simulation!" "Must be at least {} mm but was {} mm" .format(self.probe_width_mm, global_settings[Tags.DIM_VOLUME_X_MM])) return False return True def update_settings_for_use_of_model_based_volume_creator(self, global_settings): pass def get_detector_element_positions_base_mm(self) -> np.ndarray: return self.positions def get_detector_element_orientations(self) -> np.ndarray: detector_positions = self.get_detector_element_positions_base_mm() detector_orientations = np.subtract(0, detector_positions) norm = np.linalg.norm(detector_orientations, axis=-1) for dim in range(3): detector_orientations[:, dim] = detector_orientations[:, dim] / norm return detector_orientations def serialize(self) -> dict: serialized_device = self.__dict__ return {"iTheraInvision256TFDetectionGeometry": serialized_device} @staticmethod def deserialize(dictionary_to_deserialize): deserialized_device = iTheraInvision256TFDetectionGeometry() for key, value in dictionary_to_deserialize.items(): deserialized_device.__dict__[key] = value return deserialized_device ``` #### File: simulation_modules/optical_simulation_module/__init__.py ```python import numpy as np from typing import Union, Dict from abc import abstractmethod import gc from simpa.utils import Tags, Settings from simpa.core import SimulationModule from simpa.utils.dict_path_manager import generate_dict_path from simpa.io_handling.io_hdf5 import save_hdf5, load_hdf5 from simpa.core.device_digital_twins import IlluminationGeometryBase, PhotoacousticDevice from simpa.utils.quality_assurance.data_sanity_testing import assert_array_well_defined class OpticalForwardModuleBase(SimulationModule): """ Use this class as a base for implementations of optical forward models. This class has the attributes `self.temporary_output_files` which stores file paths that are temporarily created as input to the optical simulator, e.g. MCX. The class attributes `nx, ny & nz` represent the volume dimensions """ def __init__(self, global_settings: Settings): super(OpticalForwardModuleBase, self).__init__(global_settings=global_settings) self.component_settings = self.global_settings.get_optical_settings() self.nx = None self.ny = None self.nz = None self.temporary_output_files = [] @abstractmethod def forward_model(self, absorption_cm: np.ndarray, scattering_cm: np.ndarray, anisotropy: np.ndarray, illumination_geometry: IlluminationGeometryBase): """ A deriving class needs to implement this method according to its model. :param absorption_cm: Absorption in units of per centimeter :param scattering_cm: Scattering in units of per centimeter :param anisotropy: Dimensionless scattering anisotropy :param illumination_geometry: A device that represents a detection geometry :return: Fluence in units of J/cm^2 """ pass def run(self, device: Union[IlluminationGeometryBase, PhotoacousticDevice]) -> None: """ runs optical simulations. Volumes are first loaded from HDF5 file and parsed to `self.forward_model`, the output is aggregated in case multiple illuminations are defined by `device` and stored in the same HDF5 file. :param device: Illumination or Photoacoustic device that defines the illumination geometry :return: None """ self.logger.info("Simulating the optical forward process...") properties_path = generate_dict_path(Tags.SIMULATION_PROPERTIES, wavelength=self.global_settings[Tags.WAVELENGTH]) optical_properties = load_hdf5(self.global_settings[Tags.SIMPA_OUTPUT_PATH], properties_path) absorption = optical_properties[Tags.DATA_FIELD_ABSORPTION_PER_CM][str(self.global_settings[Tags.WAVELENGTH])] scattering = optical_properties[Tags.DATA_FIELD_SCATTERING_PER_CM][str(self.global_settings[Tags.WAVELENGTH])] anisotropy = optical_properties[Tags.DATA_FIELD_ANISOTROPY][str(self.global_settings[Tags.WAVELENGTH])] gruneisen_parameter = optical_properties[Tags.DATA_FIELD_GRUNEISEN_PARAMETER] del optical_properties gc.collect() _device = None if isinstance(device, IlluminationGeometryBase): _device = device elif isinstance(device, PhotoacousticDevice): _device = device.get_illumination_geometry() else: raise TypeError(f"The optical forward modelling does not support devices of type {type(device)}") results = self.run_forward_model(_device=_device, device=device, absorption=absorption, scattering=scattering, anisotropy=anisotropy) fluence = results[Tags.DATA_FIELD_FLUENCE] if not (Tags.IGNORE_QA_ASSERTIONS in self.global_settings and Tags.IGNORE_QA_ASSERTIONS): assert_array_well_defined(fluence, assume_non_negativity=True, array_name="fluence") if Tags.LASER_PULSE_ENERGY_IN_MILLIJOULE in self.component_settings: units = Tags.UNITS_PRESSURE # Initial pressure should be given in units of Pascale conversion_factor = 1e6 # 1 J/cm^3 = 10^6 N/m^2 = 10^6 Pa initial_pressure = (absorption * fluence * gruneisen_parameter * (self.component_settings[Tags.LASER_PULSE_ENERGY_IN_MILLIJOULE] / 1000) * conversion_factor) else: units = Tags.UNITS_ARBITRARY initial_pressure = absorption * fluence if not (Tags.IGNORE_QA_ASSERTIONS in self.global_settings and Tags.IGNORE_QA_ASSERTIONS): assert_array_well_defined(initial_pressure, assume_non_negativity=True, array_name="initial_pressure") results[Tags.DATA_FIELD_FLUENCE] = fluence results[Tags.OPTICAL_MODEL_UNITS] = units results[Tags.DATA_FIELD_INITIAL_PRESSURE] = initial_pressure optical_output = {} for k, item in results.items(): optical_output[k] = {self.global_settings[Tags.WAVELENGTH]: item} optical_output_path = generate_dict_path(Tags.OPTICAL_MODEL_OUTPUT_NAME) save_hdf5(optical_output, self.global_settings[Tags.SIMPA_OUTPUT_PATH], optical_output_path) self.logger.info("Simulating the optical forward process...[Done]") def run_forward_model(self, _device, device: Union[IlluminationGeometryBase, PhotoacousticDevice], absorption: np.ndarray, scattering: np.ndarray, anisotropy: np.ndarray) -> Dict: """ runs `self.forward_model` as many times as defined by `device` and aggregates the results. :param _device: device illumination geometry :param device: class defining illumination :param absorption: Absorption volume :param scattering: Scattering volume :param anisotropy: Dimensionless scattering anisotropy :return: """ results = self.forward_model(absorption_cm=absorption, scattering_cm=scattering, anisotropy=anisotropy, illumination_geometry=_device) fluence = results[Tags.DATA_FIELD_FLUENCE] return {Tags.DATA_FIELD_FLUENCE: fluence} ```
{ "source": "j-groeneveld/covid", "score": 2 }
#### File: sim/lib/plot.py ```python import time import bisect import numpy as np import pandas as pd import networkx as nx import scipy import scipy.optimize from scipy.interpolate import interp1d import scipy as sp import random as rd import os, math from datetime import datetime import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.dates import date2num, num2date from lib.measures import (MeasureList, BetaMultiplierMeasureBySite, SocialDistancingForAllMeasure, BetaMultiplierMeasureByType, SocialDistancingForPositiveMeasure, SocialDistancingByAgeMeasure, SocialDistancingForSmartTracing, ComplianceForAllMeasure) from lib.rt import compute_daily_rts, R_T_RANGE import numpy as np import seaborn as sns from matplotlib.colors import ListedColormap TO_HOURS = 24.0 DPI = 200 NO_PLOT = False TEST_LAG = 48.0 # hours matplotlib.rcParams.update({ "figure.autolayout": False, "figure.figsize": (6, 4), "figure.dpi": 150, "axes.linewidth": 0.8, "xtick.major.width": 0.8, "xtick.minor.width": 0.8, "ytick.major.width": 0.8, "ytick.minor.width": 0.8, "text.usetex": True, "font.family": "serif", # use serif rather than sans-serif "font.serif": "Times New Roman", # use "Times New Roman" as the standard font "font.size": 16, "axes.titlesize": 16, "axes.labelsize": 16, "legend.fontsize": 14, "legend.frameon": True, "xtick.labelsize": 14, "ytick.labelsize": 14, "lines.linewidth": 2.0, "lines.markersize": 4, "grid.linewidth": 0.4, }) def days_to_datetime(arr, start_date): # timestamps ts = arr * 24 * 60 * 60 + pd.Timestamp(start_date).timestamp() return pd.to_datetime(ts, unit='s') def lockdown_widget(lockdown_at, start_date, lockdown_label_y, ymax, lockdown_label, ax, ls='--', xshift=0.0, zorder=None): # Convert x-axis into posix timestamps and use pandas to plot as dates lckdn_x = days_to_datetime(lockdown_at, start_date=start_date) ax.plot([lckdn_x, lckdn_x], [0, ymax], linewidth=2.5, linestyle=ls, color='black', label='_nolegend_', zorder=zorder) lockdown_label_y = lockdown_label_y or ymax*0.4 ax.text(x=lckdn_x - pd.Timedelta(2.1 + xshift, unit='d'), y=lockdown_label_y, s=lockdown_label, rotation=90) def target_widget(show_target,start_date, ax, zorder=None): txx = np.linspace(0, show_target.shape[0] - 1, num=show_target.shape[0]) txx = days_to_datetime(txx, start_date=start_date) ax.plot(txx, show_target, linewidth=4, linestyle='', marker='X', ms=6, color='red', label='COVID-19 case data', zorder=zorder) class Plotter(object): """ Plotting class """ def __init__(self): # plot constants # check out https://colorhunt.co/ self.color_expo = '#ffcc00' self.color_iasy = '#00a8cc' self.color_ipre = '#005082' self.color_isym = '#000839' self.color_testing = '#ffa41b' self.color_posi = '#21bf73' self.color_nega = '#fd5e53' self.color_all = '#ffa41b' self.color_positive = '#00a8cc' self.color_age = '#005082' self.color_tracing = '#000839' self.color_infected = '#000839' self.filling_alpha = 0.5 self.color_different_scenarios = [ '#dc2ade', '#21ff53', '#323edd', '#ff9021', '#4d089a', '#cc0066', '#ff6666', '#216353', '#66cccc', '#ff2222' ] self.color_different_scenarios_alt = [ '#a1dab4', '#41b6c4', '#2c7fb8', '#253494', ] # sequential # self.color_different_scenarios = [ # # '#ffffcc', # '#c7e9b4', # '#7fcdbb', # '#41b6c4', # '#2c7fb8', # '#253494', # '#000000' # ] # 2D visualization self.density_alpha = 0.7 self.marker_home = "^" self.marker_site = "o" self.color_home = '#000839' self.color_site = '#000000' self.size_home = 80 self.size_site = 300 def __is_state_at(self, sim, r, state, t): if state == 'posi' or state == 'nega': return (sim.state_started_at[state][r] - TEST_LAG <= t) & (sim.state_ended_at[state][r] - TEST_LAG > t) else: return (sim.state_started_at[state][r] <= t) & (sim.state_ended_at[state][r] > t) def __state_started_before(self, sim, r, state, t): if state == 'posi' or state == 'nega': return (sim.state_started_at[state][r] - TEST_LAG <= t) else: return (sim.state_started_at[state][r] <= t) def __is_contained_at(self, sim, r, measure, t): contained = np.zeros(sim.n_people, dtype='bool') for i in range(sim.n_people): if measure == 'SocialDistancingForAllMeasure': contained[i] = sim.measure_list[r].is_contained_prob(SocialDistancingForAllMeasure, t=t, j=i) elif measure == 'SocialDistancingForSmartTracing': contained[i] = sim.measure_list[r].is_contained_prob(SocialDistancingForSmartTracing, t=t, j=i) elif measure == 'SocialDistancingByAgeMeasure': contained[i] = sim.measure_list[r].is_contained_prob(SocialDistancingByAgeMeasure, t=t, age=sim.people_age[r, i]) elif measure == 'SocialDistancingForPositiveMeasure': contained[i] = sim.measure_list[r].is_contained_prob(SocialDistancingForPositiveMeasure, t=t, j=i, state_posi_started_at=sim.state_started_at['posi'][r, :], state_posi_ended_at=sim.state_ended_at['posi'][r, :], state_resi_started_at=sim.state_started_at['resi'][r, :], state_dead_started_at=sim.state_started_at['dead'][r, :]) else: raise ValueError('Social distancing measure unknown.') return contained def __comp_state_cumulative(self, sim, state, acc): ''' Computes `state` variable over time [0, self.max_time] with given accuracy `acc ''' ts, means, stds = [], [], [] for t in np.linspace(0.0, sim.max_time, num=acc, endpoint=True): restarts = [np.sum(self.__state_started_before(sim, r, state, t)) for r in range(sim.random_repeats)] ts.append(t/TO_HOURS) means.append(np.mean(restarts)) stds.append(np.std(restarts)) return np.array(ts), np.array(means), np.array(stds) def __comp_state_over_time(self, sim, state, acc): ''' Computes `state` variable over time [0, self.max_time] with given accuracy `acc ''' ts, means, stds = [], [], [] for t in np.linspace(0.0, sim.max_time, num=acc, endpoint=True): restarts = [np.sum(self.__is_state_at(sim, r, state, t)) for r in range(sim.random_repeats)] ts.append(t/TO_HOURS) means.append(np.mean(restarts)) stds.append(np.std(restarts)) return np.array(ts), np.array(means), np.array(stds) def __comp_contained_over_time(self, sim, measure, acc): ''' Computes `state` variable over time [0, self.max_time] with given accuracy `acc ''' ts, means, stds = [], [], [] for t in np.linspace(0.0, sim.max_time, num=acc, endpoint=True): restarts = [np.sum(self.__is_contained_at(sim, r, measure, t)) for r in range(sim.random_repeats)] ts.append(t/TO_HOURS) means.append(np.mean(restarts)) stds.append(np.std(restarts)) return np.array(ts), np.array(means), np.array(stds) def plot_cumulative_infected(self, sim, title='Example', filename='daily_inf_0', figsize=(6, 5), errorevery=20, acc=1000, ymax=None, lockdown_label='Lockdown', lockdown_at=None, lockdown_label_y=None, show_target=None, start_date='1970-01-01', subplot_adjust=None, legend_loc='upper right'): '''' Plots daily infected split by group averaged over random restarts, using error bars for std-dev ''' if acc > sim.max_time: acc = int(sim.max_time) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ts, iasy_mu, iasy_sig = self.__comp_state_cumulative(sim, 'iasy', acc) # _, ipre_mu, ipre_sig = self.__comp_state_cumulative(sim, 'ipre', acc) _, isym_mu, isym_sig = self.__comp_state_cumulative(sim, 'isym', acc) # _, expo_mu, iexpo_sig = self.__comp_state_cumulative(sim, 'expo', acc) # _, posi_mu, posi_sig = self.__comp_state_cumulative(sim, 'posi', acc) line_xaxis = np.zeros(ts.shape) line_iasy = iasy_mu line_isym = iasy_mu + isym_mu error_isym = np.sqrt(iasy_sig**2 + isym_sig**2) # Convert x-axis into posix timestamps and use pandas to plot as dates ts = days_to_datetime(ts, start_date=start_date) # lines ax.plot(ts, line_iasy, c='black', linestyle='-') ax.errorbar(ts, line_isym, yerr=error_isym, c='black', linestyle='-', elinewidth=0.8, errorevery=errorevery, capsize=3.0) # filling ax.fill_between(ts, line_xaxis, line_iasy, alpha=self.filling_alpha, label='Asymptomatic', edgecolor=self.color_iasy, facecolor=self.color_iasy, linewidth=0, zorder=0) ax.fill_between(ts, line_iasy, line_isym, alpha=self.filling_alpha, label='Symptomatic', edgecolor=self.color_isym, facecolor=self.color_isym, linewidth=0, zorder=0) # limits if ymax is None: ymax = 1.5 * np.max(iasy_mu + isym_mu) ax.set_ylim((0, ymax)) # ax.set_xlabel('Days') ax.set_ylabel('People') # extra if lockdown_at is not None: lockdown_widget(lockdown_at, start_date, lockdown_label_y, ymax, lockdown_label, ax) if show_target is not None: target_widget(show_target, start_date, ax) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') #set ticks every week ax.xaxis.set_major_locator(mdates.WeekdayLocator()) #set major ticks format ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d')) fig.autofmt_xdate(bottom=0.2, rotation=0, ha='center') # legend ax.legend(loc=legend_loc, borderaxespad=0.5) subplot_adjust = subplot_adjust or {'bottom':0.14, 'top': 0.98, 'left': 0.12, 'right': 0.96} plt.subplots_adjust(**subplot_adjust) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def plot_daily_infected(self, sim, title='Example', filename='daily_inf_0', figsize=(6, 5), errorevery=20, acc=1000, ymax=None, lockdown_label='Lockdown', lockdown_at=None, lockdown_label_y=None, show_target=None, lockdown_end=None, start_date='1970-01-01', subplot_adjust=None, legend_loc='upper right'): '''' Plots daily infected split by group averaged over random restarts, using error bars for std-dev ''' if acc > sim.max_time: acc = int(sim.max_time) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ts, iasy_mu, iasy_sig = self.__comp_state_over_time(sim, 'iasy', acc) _, ipre_mu, ipre_sig = self.__comp_state_over_time(sim, 'ipre', acc) _, isym_mu, isym_sig = self.__comp_state_over_time(sim, 'isym', acc) # _, expo_mu, iexpo_sig = self.__comp_state_over_time(sim, 'expo', acc) # _, posi_mu, posi_sig = self.__comp_state_over_time(sim, 'posi', acc) line_xaxis = np.zeros(ts.shape) line_iasy = iasy_mu line_ipre = iasy_mu + ipre_mu line_isym = iasy_mu + ipre_mu + isym_mu error_isym = np.sqrt(iasy_sig**2 + ipre_sig**2 + isym_sig**2) # Convert x-axis into posix timestamps and use pandas to plot as dates ts = days_to_datetime(ts, start_date=start_date) # lines ax.plot(ts, line_iasy, c='black', linestyle='-') ax.plot(ts, line_ipre, c='black', linestyle='-') ax.errorbar(ts, line_isym, yerr=error_isym, c='black', linestyle='-', elinewidth=0.8, errorevery=errorevery, capsize=3.0) # filling ax.fill_between(ts, line_xaxis, line_iasy, alpha=self.filling_alpha, label='Asymptomatic', edgecolor=self.color_iasy, facecolor=self.color_iasy, linewidth=0, zorder=0) ax.fill_between(ts, line_iasy, line_ipre, alpha=self.filling_alpha, label='Pre-symptomatic', edgecolor=self.color_ipre, facecolor=self.color_ipre, linewidth=0, zorder=0) ax.fill_between(ts, line_ipre, line_isym, alpha=self.filling_alpha, label='Symptomatic', edgecolor=self.color_isym, facecolor=self.color_isym, linewidth=0, zorder=0) # limits if ymax is None: ymax = 1.5 * np.max(iasy_mu + ipre_mu + isym_mu) ax.set_ylim((0, ymax)) # ax.set_xlabel('Days') ax.set_ylabel('People') # extra if lockdown_at is not None: lockdown_widget(lockdown_at, start_date, lockdown_label_y, ymax, lockdown_label, ax) if lockdown_end is not None: lockdown_widget(lockdown_at=lockdown_end, start_date=start_date, lockdown_label_y=lockdown_label_y, ymax=ymax, lockdown_label='End of lockdown', ax=ax, ls='dotted') if show_target is not None: target_widget(show_target, start_date, ax) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') #set ticks every week ax.xaxis.set_major_locator(mdates.WeekdayLocator()) #set major ticks format ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d')) fig.autofmt_xdate(bottom=0.2, rotation=0, ha='center') # legend ax.legend(loc=legend_loc, borderaxespad=0.5) subplot_adjust = subplot_adjust or {'bottom':0.14, 'top': 0.98, 'left': 0.12, 'right': 0.96} plt.subplots_adjust(**subplot_adjust) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def plot_daily_tested(self, sim, title='Example', filename='daily_tested_0', figsize=(10, 10), errorevery=20, acc=1000, ymax=None): '''' Plots daily tested, positive daily tested, negative daily tested averaged over random restarts, using error bars for std-dev ''' if acc > sim.max_time: acc = int(sim.max_time) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) # automatically shifted by `test_lag` in the function ts, posi_mu, posi_sig = self.__comp_state_over_time(sim, 'posi', acc) _, nega_mu, nega_sig = self.__comp_state_over_time(sim, 'nega', acc) line_xaxis = np.zeros(ts.shape) line_posi = posi_mu line_nega = posi_mu + nega_mu error_posi = posi_sig error_nega = nega_sig + posi_sig T = posi_mu.shape[0] # lines ax.errorbar(ts, posi_mu, yerr=posi_sig, elinewidth=0.8, errorevery=errorevery, c='black', linestyle='-') ax.errorbar(ts, nega_mu, yerr=nega_sig, elinewidth=0.8, errorevery=errorevery, c='black', linestyle='-') # filling ax.fill_between(ts, line_xaxis, posi_mu, alpha=self.filling_alpha, label=r'Positive tests', edgecolor=self.color_posi, facecolor=self.color_posi, linewidth=0, zorder=0) ax.fill_between(ts, posi_mu, nega_mu, alpha=self.filling_alpha, label=r'Negative tests', edgecolor=self.color_nega, facecolor=self.color_nega, linewidth=0, zorder=0) # axis ax.set_xlim((0, np.max(ts))) if ymax is None: ymax = 1.5 * np.max(posi_mu + nega_mu) ax.set_ylim((0, ymax)) ax.set_xlabel(r'$t$ [days]') ax.set_ylabel(r'[people]') # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') # legend fig.legend(loc='center right', borderaxespad=0.1) # Adjust the scaling factor to fit your legend text completely outside the plot plt.subplots_adjust(right=0.70) ax.set_title(title, pad=20) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def plot_daily_at_home(self, sim, title='Example', filename='daily_at_home_0', figsize=(10, 10), errorevery=20, acc=1000, ymax=None): '''' Plots daily tested, positive daily tested, negative daily tested averaged over random restarts, using error bars for std-dev ''' if acc > sim.max_time: acc = int(sim.max_time) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ts, all_mu, all_sig = self.__comp_contained_over_time(sim, 'SocialDistancingForAllMeasure', acc) _, positive_mu, positive_sig = self.__comp_contained_over_time(sim, 'SocialDistancingForPositiveMeasure', acc) _, age_mu, age_sig = self.__comp_contained_over_time(sim, 'SocialDistancingByAgeMeasure', acc) _, tracing_mu, tracing_sig = self.__comp_contained_over_time(sim, 'SocialDistancingForSmartTracing', acc) _, iasy_mu, iasy_sig = self.__comp_state_over_time(sim, 'iasy', acc) _, ipre_mu, ipre_sig = self.__comp_state_over_time(sim, 'ipre', acc) _, isym_mu, isym_sig = self.__comp_state_over_time(sim, 'isym', acc) line_xaxis = np.zeros(ts.shape) line_all = all_mu line_positive = positive_mu line_age = age_mu line_tracing = tracing_mu line_infected = iasy_mu + ipre_mu + isym_mu error_all = all_sig error_positive = positive_sig error_age = age_sig error_tracing = tracing_sig error_infected = np.sqrt(np.square(iasy_sig) + np.square(ipre_sig) + np.square(isym_sig)) # lines ax.errorbar(ts, line_infected, label=r'Total infected', errorevery=errorevery, c=self.color_infected, linestyle='--', yerr=error_infected) ax.errorbar(ts, line_all, yerr=error_all, elinewidth=0.8, errorevery=errorevery, c='black', linestyle='-') ax.errorbar(ts, line_positive, yerr=error_positive, elinewidth=0.8, errorevery=errorevery, c='black', linestyle='-') ax.errorbar(ts, line_age, yerr=error_age, elinewidth=0.8, errorevery=errorevery, c='black', linestyle='-') ax.errorbar(ts, line_tracing, yerr=error_tracing, elinewidth=0.8, errorevery=errorevery, c='black', linestyle='-') # filling ax.fill_between(ts, line_xaxis, line_all, alpha=self.filling_alpha, label=r'SD for all', edgecolor=self.color_all, facecolor=self.color_all, linewidth=0, zorder=0) ax.fill_between(ts, line_xaxis, line_positive, alpha=self.filling_alpha, label=r'SD for positively tested', edgecolor=self.color_positive, facecolor=self.color_positive, linewidth=0, zorder=0) ax.fill_between(ts, line_xaxis, line_age, alpha=self.filling_alpha, label=r'SD for age group', edgecolor=self.color_age, facecolor=self.color_age, linewidth=0, zorder=0) ax.fill_between(ts, line_xaxis, line_tracing, alpha=self.filling_alpha, label=r'SD for traced contacts', edgecolor=self.color_tracing, facecolor=self.color_tracing, linewidth=0, zorder=0) # axis ax.set_xlim((0, np.max(ts))) if ymax is None: ymax = 1.5 * np.max([all_mu, positive_mu, age_mu, tracing_mu]) ax.set_ylim((0, ymax)) ax.set_xlabel(r'$t$ [days]') ax.set_ylabel(r'[people]') # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') # legend fig.legend(loc='center right', borderaxespad=0.1) # Adjust the scaling factor to fit your legend text completely outside the plot plt.subplots_adjust(right=0.70) ax.set_title(title, pad=20) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def compare_total_infections(self, sims, titles, figtitle='Title', filename='compare_inf_0', figsize=(10, 10), errorevery=20, acc=1000, ymax=None, lockdown_label='Lockdown', lockdown_at=None, lockdown_label_y=None, show_positives=False, show_legend=True, legendYoffset=0.0, legend_is_left=False, subplot_adjust=None, start_date='1970-01-01', first_one_dashed=False): '''' Plots total infections for each simulation, named as provided by `titles` to compare different measures/interventions taken. Colors taken as defined in __init__, and averaged over random restarts, using error bars for std-dev ''' fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) for i in range(len(sims)): if acc > sims[i].max_time: acc = sims[i].max_time ts, iasy_mu, iasy_sig = self.__comp_state_over_time(sims[i], 'iasy', acc) _, ipre_mu, ipre_sig = self.__comp_state_over_time(sims[i], 'ipre', acc) _, isym_mu, isym_sig = self.__comp_state_over_time(sims[i], 'isym', acc) _, posi_mu, posi_sig = self.__comp_state_over_time(sims[i], 'posi', acc) # Convert x-axis into posix timestamps and use pandas to plot as dates ts = days_to_datetime(ts, start_date=start_date) line_xaxis = np.zeros(ts.shape) line_infected = iasy_mu + ipre_mu + isym_mu error_infected = np.sqrt(np.square(iasy_sig) + np.square(ipre_sig) + np.square(isym_sig)) # lines if show_positives: ax.errorbar(ts, line_infected, yerr=error_infected, label='[Infected] ' + titles[i], errorevery=errorevery, c=self.color_different_scenarios[i], linestyle='-') T = posi_mu.shape[0] ax.errorbar(ts, posi_mu, yerr=posi_sig, label='[Tested positive]', errorevery=errorevery, c=self.color_different_scenarios[i], linestyle='--', elinewidth=0.8) else: ax.errorbar(ts, line_infected, yerr=error_infected, label=titles[i], errorevery=errorevery, elinewidth=0.8, capsize=3.0, c=self.color_different_scenarios[i], linestyle='--' if i == 0 and first_one_dashed else '-') # axis # ax.set_xlim((0, np.max(ts))) if ymax is None: ymax = 1.5 * np.max(iasy_mu + ipre_mu + isym_mu) ax.set_ylim((0, ymax)) # ax.set_xlabel('Days') ax.set_ylabel('People') if lockdown_at is not None: lockdown_widget(lockdown_at, start_date, lockdown_label_y, ymax, lockdown_label, ax, xshift=0.5) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') #set ticks every week # ax.xaxis.set_major_locator(mdates.WeekdayLocator()) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2)) #set major ticks format ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d')) fig.autofmt_xdate(bottom=0.2, rotation=0, ha='center') if show_legend: # legend if legend_is_left: leg = ax.legend(loc='upper left', borderaxespad=0.5) else: leg = ax.legend(loc='upper right', borderaxespad=0.5) if legendYoffset != 0.0: # Get the bounding box of the original legend bb = leg.get_bbox_to_anchor().inverse_transformed(ax.transAxes) # Change to location of the legend. bb.y0 += legendYoffset bb.y1 += legendYoffset leg.set_bbox_to_anchor(bb, transform = ax.transAxes) subplot_adjust = subplot_adjust or {'bottom':0.14, 'top': 0.98, 'left': 0.12, 'right': 0.96} plt.subplots_adjust(**subplot_adjust) plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def compare_total_fatalities_and_hospitalizations(self, sims, titles, figtitle=r'Hospitalizations and Fatalities', filename='compare_inf_0', figsize=(10, 10), errorevery=20, acc=1000, ymax=None, lockdown_at=None, subplot_adjust=None, start_date='1970-01-01', first_one_dashed=False): '''' Plots total fatalities and hospitalizations for each simulation, named as provided by `titles` to compare different measures/interventions taken. Colors taken as defined in __init__, and averaged over random restarts, using error bars for std-dev ''' fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) # hospitalizations for i in range(len(sims)): if acc > sims[i].max_time: acc = sims[i].max_time ts, hosp_mu, hosp_sig = self.__comp_state_over_time( sims[i], 'hosp', acc) ts, dead_mu, dead_sig = self.__comp_state_over_time( sims[i], 'dead', acc) # Convert x-axis into posix timestamps and use pandas to plot as dates ts = days_to_datetime(ts, start_date=start_date) # lines ax.errorbar(ts, hosp_mu, yerr=hosp_sig, label=titles[i], errorevery=errorevery, c=self.color_different_scenarios[i], linestyle='-', elinewidth=0.8, capsize=3.0) ax.errorbar(ts, dead_mu, yerr=dead_sig, errorevery=errorevery, c=self.color_different_scenarios[i], linestyle='--', elinewidth=0.8, capsize=3.0) # axis if ymax is None: ymax = 1.5 * np.max(iasy_mu + ipre_mu + isym_mu) ax.set_ylim((0, ymax)) # ax.set_xlabel('Days') ax.set_ylabel('People') if lockdown_at is not None: ax.plot(lockdown_at * np.ones(acc), np.linspace(0, ymax, num=acc), linewidth=1, linestyle='--', color='black', zorder=10) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') #set ticks every week # ax.xaxis.set_major_locator(mdates.WeekdayLocator()) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2)) #set major ticks format ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d')) fig.autofmt_xdate(bottom=0.2, rotation=0, ha='center') # legend # ax.legend(loc='upper right', borderaxespad=0.5) ax.legend(loc='upper left', borderaxespad=0.5) subplot_adjust = subplot_adjust or { 'bottom': 0.14, 'top': 0.98, 'left': 0.12, 'right': 0.96} plt.subplots_adjust(**subplot_adjust) plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def plot_2d_infections_at_time(self, sim, at_time, density_bandwidth=1.0, restart=0, title='Example', filename='2d_inf_0', figsize=(10, 10), acc=1000, ymax=None): ''' Plots 2d visualization using mobility object. The bandwidth set by `density_bandwidth` determines the bandwidth of the RBF kernel in KDE used to generate the plot. Smaller means more affected by local changes. Set the colors and markers in the __init__ function ''' if acc > sim.max_time: acc = int(sim.max_time) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) # infections r = restart is_expo = self.__is_state_at(sim, r, 'expo', at_time) is_iasy = self.__is_state_at(sim, r, 'iasy', at_time) is_ipre = self.__is_state_at(sim, r, 'ipre', at_time) is_isym = self.__is_state_at(sim, r, 'isym', at_time) is_infected = is_iasy | is_ipre | is_isym no_state = (1 - is_infected) & (1 - is_expo) idx_expo = np.where(is_expo)[0] idx_infected = np.where(is_infected)[0] idx_none = np.where(no_state)[0] # self.color_isym = 'red' # self.color_expo= 'yellow' ### sites site_loc = sim.site_loc ax.scatter(site_loc[:, 0], site_loc[:, 1], alpha=self.filling_alpha, label='public sites', marker=self.marker_site, color=self.color_site, facecolors=self.color_site, s=self.size_site) ### home locations and their states home_loc = sim.home_loc # no state ax.scatter(home_loc[idx_none, 0], home_loc[idx_none, 1], marker=self.marker_home, color=self.color_home, facecolors='none', s=self.size_home) try: # expo ax.scatter(home_loc[idx_expo, 0], home_loc[idx_expo, 1], marker=self.marker_home, color=self.color_home, facecolors=self.color_expo, s=self.size_home, label='exposed households') sns.kdeplot(home_loc[idx_expo, 0], home_loc[idx_expo, 1], shade=True, alpha=self.density_alpha, shade_lowest=False, cbar=False, ax=ax, color=self.color_expo, bw=density_bandwidth, zorder=0) # infected ax.scatter(home_loc[idx_infected, 0], home_loc[idx_infected, 1], marker=self.marker_home, color=self.color_home, facecolors=self.color_isym, s=self.size_home, label='infected households') sns.kdeplot(home_loc[idx_infected, 0], home_loc[idx_infected, 1], shade=True, alpha=self.density_alpha, shade_lowest=False, cbar=False, ax=ax, color=self.color_isym, bw=density_bandwidth, zorder=0) except: print('KDE failed, likely no exposed and infected at this time. Try different timing.') plt.close() return # axis ax.set_xlim((-0.1, 1.1)) ax.set_ylim((-0.1, 1.1)) plt.axis('off') # legend fig.legend(loc='center right', borderaxespad=0.1) # Adjust the scaling factor to fit your legend text completely outside the plot plt.subplots_adjust(right=0.85) ax.set_title(title, pad=20) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def compare_hospitalizations_over_time(self, sims, titles, figtitle='Hospitalizations', filename='compare_hosp_0', capacity_line_at=20, figsize=(10, 10), errorevery=20, acc=1000, ymax=None): '''' Plots total hospitalizations for each simulation, named as provided by `titles` to compare different measures/interventions taken. Colors taken as defined in __init__, and averaged over random restarts, using error bars for std-dev. The value of `capacity_line_at` defines the y-intercept of the hospitalization capacity line ''' fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) for i in range(len(sims)): if acc > sims[i].max_time: acc = sims[i].max_time ts, line_hosp, error_sig = self.__comp_state_over_time( sims[i], 'hosp', acc) line_xaxis = np.zeros(ts.shape) # lines ax.errorbar(ts, line_hosp, yerr=error_sig, errorevery=errorevery, c='black', linestyle='-', elinewidth=0.8) # filling ax.fill_between(ts, line_xaxis, line_hosp, alpha=self.filling_alpha, zorder=0, label=r'Hospitalized under: ' + titles[i], edgecolor=self.color_different_scenarios[i], facecolor=self.color_different_scenarios[i], linewidth=0) # capacity line ax.plot(ts, capacity_line_at * np.ones(ts.shape[0]), label=r'Max. hospitalization capacity', c='red', linestyle='--', linewidth=4.0) # axis ax.set_xlim((0, np.max(ts))) if ymax is None: ymax = 1.5 * np.max(line_hosp + error_sig) ax.set_ylim((0, ymax)) ax.set_xlabel(r'$t$ [days]') ax.set_ylabel(r'[people]') # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') # legend fig.legend(loc='center right', borderaxespad=0.1) # Adjust the scaling factor to fit your legend text completely outside the plot plt.subplots_adjust(right=0.70) ax.set_title(figtitle, pad=20) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI, bbox_inches='tight') if NO_PLOT: plt.close() return def plot_positives_vs_target(self, sim, targets, title='Example', filename='inference_0', figsize=(6, 5), errorevery=1, acc=17, ymax=None, start_date='1970-01-01', lockdown_label='Lockdown', lockdown_at=None, lockdown_label_y=None, subplot_adjust=None): '''' Plots daily tested averaged over random restarts, using error bars for std-dev together with targets from inference ''' if acc > sim.max_time: acc = int(sim.max_time) fig, ax = plt.subplots(figsize=figsize) # inference # automatically shifted by `test_lag` in the function ts, posi_mu, posi_sig = self.__comp_state_over_time(sim, 'posi', acc) T = posi_mu.shape[0] xx = days_to_datetime(ts, start_date=start_date) ax.plot(xx, posi_mu, c='k', linestyle='-', label='COVID-19 simulated case data') ax.fill_between(xx, posi_mu - posi_sig, posi_mu + posi_sig, color='grey', alpha=0.1, linewidth=0.0) # target target_widget(targets, start_date, ax) # axis #ax.set_xlim((0, np.max(ts))) if ymax is None: ymax = 1.5 * np.max(posi_mu) ax.set_ylim((0, ymax)) # ax.set_xlabel('Days') ax.set_ylabel('Positive cases') if lockdown_at is not None: lockdown_widget(lockdown_at, start_date, lockdown_label_y, ymax, lockdown_label, ax) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') #set ticks every week ax.xaxis.set_major_locator(mdates.WeekdayLocator()) #set major ticks format ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d')) fig.autofmt_xdate(bottom=0.2, rotation=0, ha='center') # legend ax.legend(loc='upper left', borderaxespad=0.5) subplot_adjust = subplot_adjust or {'bottom':0.14, 'top': 0.98, 'left': 0.12, 'right': 0.96} plt.subplots_adjust(**subplot_adjust) plt.draw() plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI)#, bbox_inches='tight') if NO_PLOT: plt.close() return def plot_daily_rts(self, sims, filename, start_date, titles=None, sigma=None, r_t_range=R_T_RANGE, window=3, figsize=(6, 5), subplot_adjust=None, lockdown_label='Lockdown', lockdown_at=None, lockdown_label_y=None, ymax=None, colors=['grey'], fill_between=True, draw_dots=True, errorevery=1, show_legend=False, xtick_interval=1, ci=0.9): # If a single summary is provided if not isinstance(sims, list): sims = [sims] sigma = [sigma] results = list() for i, sim in enumerate(sims): res = compute_daily_rts(sim, start_date, sigma[i], r_t_range, window, ci) results.append(res) # Colors ABOVE = [1,0,0] MIDDLE = [1,1,1] BELOW = [0,0,0] cmap = ListedColormap(np.r_[ np.linspace(BELOW,MIDDLE,25), np.linspace(MIDDLE,ABOVE,25) ]) color_mapped = lambda y: np.clip(y, .5, 1.5)-.5 ymax_computed = 0.0 # Keep track of max y to set limit fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) for i, result in enumerate(results): index = result['ML'].index values = result['ML'].values # Plot dots and line ax.plot(index, values, c=colors[i], zorder=1, alpha=1.0) if draw_dots: ax.scatter(index, values, s=40, lw=0.0, c=cmap(color_mapped(values)), edgecolors='k', zorder=2) # Aesthetically, extrapolate credible interval by 1 day either side lowfn = interp1d(date2num(index), result[f'Low_{ci*100:.0f}'].values, bounds_error=False, fill_value='extrapolate') highfn = interp1d(date2num(index), result[f'High_{ci*100:.0f}'].values, bounds_error=False, fill_value='extrapolate') extended = pd.date_range(start=index[0], end=index[-1]) error_low = lowfn(date2num(extended)) error_high = highfn(date2num(extended)) if fill_between: ax.fill_between(extended, error_low, error_high, color=colors[i], alpha=0.1, linewidth=0.0) else: # Ignore first value which is just prior, not informed by data ax.errorbar(x=index[1:], y=values[1:], label=titles[i], yerr=np.vstack((result[f'Low_{ci*100:.0f}'], result[f'High_{ci*100:.0f}']))[:,1:], color=colors[i], linewidth=1.0, elinewidth=0.8, capsize=3.0, errorevery=errorevery) ymax_computed = max(ymax_computed, np.max(error_high)) # Plot horizontal line at R_t = 1 ax.axhline(1.0, c='k', lw=1, alpha=.25); # limits ymax = ymax or 1.2 * ymax_computed ax.set_ylim((0, ymax_computed)) if show_legend: ax.legend(loc='upper left', borderaxespad=0.5) # extra if lockdown_at is not None: lockdown_widget(lockdown_at, start_date, lockdown_label_y, ymax, lockdown_label, ax, zorder=-200) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') # Set label ax.set_ylabel(r'$R_t$') #set ticks every week ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=xtick_interval)) #set major ticks format ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d')) fig.autofmt_xdate(bottom=0.2, rotation=0, ha='center') subplot_adjust = subplot_adjust or {'bottom':0.14, 'top': 0.98, 'left': 0.12, 'right': 0.96} plt.subplots_adjust(**subplot_adjust) plt.savefig('plots/' + filename + '.png', format='png', facecolor=None, dpi=DPI)#, bbox_inches='tight') if NO_PLOT: plt.close() ``` #### File: sim/lib/utils.py ```python from functools import wraps def enforce_init_run(fn): @wraps(fn) def wrapped(self, *args, **kwargs): if self._is_init: return fn(self, *args, **kwargs) else: raise Exception(('Model is not properly set. ' '`set_data` must be called first.')) return wrapped ```
{ "source": "j-groeneveld/delivery-kitchen", "score": 4 }
#### File: delivery-kitchen/src/order.py ```python from enum import Enum from time import time class OrderStatus(Enum): waiting = 1 delivered = 2 discarded = 3 class Order: """ Represents each order and in charge of computing current value. Attributes: name: temp: decay_rate: shelf_life: created_at: status: overflow_in: overflow_out: _discarded_at: _delivered_at: ### ~ @property[ies] ~ ### terminated_at: delivered_at: discarded_at: status: total_decay: order_age: value: infant_value: regular_decay: overflow_decay: Public methods: has_value: Checks to see whether :attr: value is > 0 """ def __init__(self, data: dict, overflow: bool = False): try: self.name = data["name"] self.temp = data["temp"] self.decay_rate = float(data["decayRate"]) self.shelf_life = int(data["shelfLife"]) except KeyError as e: # TODO meh bug report https://bugs.python.org/issue2651 raise KeyError( "Inadequate data to create Order.\n" f"Missing key: {e}\n" f"data: {data}\n" ) self.created_at = time() self.status = OrderStatus.waiting self.overflow_in = time() if overflow else None self.overflow_out = None self._discarded_at = None self._delivered_at = None def __repr__(self) -> str: return self.__str__() def __str__(self) -> str: return ( f"~~ {self.name} ~~\n" # f"status: {self.status.name}\n" # f"temp: {self.temp}\n" # f"shelf_life: {self.shelf_life}\n" f"value: {self.value}\n" # f"\tinfant_value: {self.infant_value}\n" # f"total_decay: {self.total_decay}\n" # f"\ttemp: {self.regular_decay}\n" # f"\toverflow_decay: {self.overflow_decay}\n" # f"\tdecay_rate: {self.decay_rate}\n" # f"created_at: {self.created_at}\n" # f"\toverflow_in: {self.overflow_in}\n" # f"\toverflow_out: {self.overflow_out}\n" ) @property def terminated_at(self) -> float: """Basically serves to freeze the aging process of an order if terminated. """ return self.delivered_at or self.discarded_at @property def delivered_at(self) -> float: return self._delivered_at @property def discarded_at(self) -> float: return self._discarded_at @property def status(self) -> float: return self._status @property def total_decay(self) -> float: return self.regular_decay + self.overflow_decay @property def order_age(self) -> float: return self._compute_order_age() @property def value(self) -> float: return self._get_value() @property def infant_value(self) -> float: return self.shelf_life @property def regular_decay(self) -> float: return self._compute_regular_decay() @property def overflow_decay(self) -> float: return self._compute_overflow_decay() @delivered_at.setter def delivered_at(self, delivered_at: float) -> None: self._delivered_at = delivered_at self.status = OrderStatus.delivered @discarded_at.setter def discarded_at(self, discarded_at: float) -> None: self._discarded_at = discarded_at self.status = OrderStatus.discarded @status.setter def status(self, status: OrderStatus) -> None: if type(status) != OrderStatus: raise ValueError("status must be of type OrderStatus") self._status = status ########################### ### ~ Public methods ~ ### ########################### def has_value(self) -> bool: return self.value > 0 ########################### ### ~ Private methods ~ ### ########################### def _compute_overflow_decay(self) -> float: """ Computes decay attributed to being on overflow shelf. """ return 2 * self.decay_rate * self._compute_overflow_shelf_age() def _compute_regular_decay(self) -> float: """ Computes decay attributed to being on a regular shelf. """ return self.decay_rate * self._compute_regular_shelf_age() def _compute_order_age(self) -> float: start = self.created_at end = self.terminated_at if self._is_terminated() else time() return end - start def _compute_overflow_shelf_age(self) -> float: if not self._has_overflow(): return 0.0 overflow_out = time() if self.overflow_out is None else self.overflow_out return overflow_out - self.overflow_in def _compute_regular_shelf_age(self) -> float: return self.order_age - self._compute_overflow_shelf_age() def _currently_on_overflow_shelf(self) -> bool: return self._has_overflow() and self.overflow_out is None def _get_value(self) -> bool: """ Compute value based on following formula: value = ([shelf life] - [order age]) - ([overflow shelf decay]) - ([regular shelf decay]) """ return self.infant_value - self.order_age - self.total_decay def _has_overflow(self) -> bool: return self.overflow_in is not None def _is_terminated(self) -> bool: return self.terminated_at is not None ```
{ "source": "j-groeneveld/streaming-serverless", "score": 2 }
#### File: py/lib/validator_helpers.py ```python import os import re import json import yaml EVENTS = yaml.load(open("./events.yml")) def create_py_compliant_event(event): original_variables = event.get("variables") old_values = ["$"] old_values.extend(original_variables) new_values = [""] new_values.extend([_convert_camel_to_underscore(x) for x in original_variables]) py_compliant_event_str = _multi_replace(str(event), old_values, new_values) return eval(py_compliant_event_str) def create_sns_params(event): notifications = {} if not event else _create_notification_params(event) return ( {} if not notifications else dict(Message=json.dumps(notifications), MessageStructure="json") ) def handle_validator_results(sns, sns_params, topic_name): return ( "Not a valid event" if not sns_params else _publish_to_topic(sns, sns_params, topic_name) ) def interpolate_vars(event, **resource_data): variable_map = _handle_variables(event, **resource_data) event["variable_map"] = variable_map notifications = event.get("notifications") for medium, config in notifications.items(): assert isinstance(config, dict) notifications[medium] = { attr_key: attr_val.format(**variable_map) for attr_key, attr_val in config.items() } return event def parse_validator_method(event_name): return f"validate_{event_name.lower()}" """ Methods to be used internally within this module""" def _convert_camel_to_underscore(key): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", key) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def _create_notification_params(event): notifications = event.get("notifications") variable_map = event.get("variable_map") assert isinstance(notifications, dict) assert isinstance(variable_map, dict) for key in notifications.keys(): notifications[key]["to"] = variable_map.get(f"{key}_to") notifications[key][ "body" ] += f". Sent from my {os.environ['AWS_EXECUTION_ENV']}!" return {"default": dict(notifications=notifications)} def _get_topic_arn(sns, topic_name): topics = sns.list_topics().get("Topics") return next( topic["TopicArn"] for topic in topics if _get_topic_name_from_ARN(topic.get("TopicArn")) == topic_name ) def _get_topic_name_from_ARN(arn): """ Returns undefined if arn is invalid Example arn: "arn:aws:sns:us-east-1:123456789012:notifications" """ return arn.split(":")[-1] def _handle_variables(event, **resource_data): def get_subject_task(**kwargs): return kwargs.get("new_task") or kwargs.get("old_task") or dict() mappings = dict( sms_to=lambda **kwargs: get_subject_task(**kwargs).get("assignee_phone"), email_to=lambda **kwargs: get_subject_task(**kwargs).get("assignee_email"), task_title=lambda **kwargs: get_subject_task(**kwargs).get("title"), ) return {key: mappings[key](**resource_data) for key in event.get("variables")} def _multi_replace(s, old_values, new_values): """ Given a string and replace_me with_me lists, it returns the replaced string. :param str string: string to execute replacements on :param old_values old values to be replaced :param new_values values to be substituted in place of old values :rtype: str """ old_values = [re.escape(v) for v in old_values] replacements = dict(zip(old_values, new_values)) pattern = re.compile("|".join(replacements.keys())) s = pattern.sub(lambda match: replacements[re.escape(match.group())], s) return s def _publish_to_topic(sns, sns_params, topic_name): topic_arn = _get_topic_arn(sns, topic_name) return sns.publish(TopicArn=topic_arn, **sns_params) ```
{ "source": "jgromero/football", "score": 3 }
#### File: gfootball/env/football_env.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import importlib import logging from gfootball.env import config as cfg from gfootball.env import constants from gfootball.env import football_action_set from gfootball.env import football_env_wrapper import gym import gym.spaces # @jgromero: added to support spaces in Google Colaboratory import numpy as np class FootballEnv(gym.Env): """Allows multiple players to play in the same environment.""" def __init__(self, config): self._config = config player_config = {'index': 0} # There can be at most one agent at a time. We need to remember its # team and the index on the team to generate observations appropriately. self._agent = None self._agent_left_team = True self._agent_index = -1 self._left_players = self._construct_players(config['left_players'], player_config, True) self._right_players = self._construct_players(config['right_players'], player_config, False) self._env = football_env_wrapper.FootballEnvWrapper(self._config) self._num_actions = len(football_action_set.get_action_set(self._config)) self.last_observation = None self._last_swapped_sides = False @property def action_space(self): if self._config.number_of_players_agent_controls() > 1: return gym.spaces.MultiDiscrete( [self._num_actions] * self._config.number_of_players_agent_controls()) return gym.spaces.Discrete(self._num_actions) def _construct_players(self, definitions, config, left_team): result = [] position = 0 for definition in definitions: (name, d) = cfg.parse_player_definition(definition) config_name = 'player_{}'.format(name) if config_name in config: config[config_name] += 1 else: config[config_name] = 0 try: player_factory = importlib.import_module( 'gfootball.env.players.{}'.format(name)) except ImportError as e: logging.warning('Failed loading player "%s"', name) logging.warning(e) exit(1) player_config = copy.deepcopy(config) player_config.update(d) player = player_factory.Player(player_config, self._config) if name == 'agent': assert not self._agent, 'Only one \'agent\' player allowed' self._agent = player self._agent_left_team = left_team self._agent_index = len(result) self._agent_position = position result.append(player) position += player.num_controlled_players() config['index'] += 1 return result def _convert_observations(self, original, left_team, player, player_position): """Converts generic observations returned by the environment to the player specific observations. Args: original: original observations from the environment. left_team: is the player on the left team or not. player: player for which to generate observations. player_position: index into observation corresponding to the player. """ observations = {} for v in constants.EXPOSED_OBSERVATIONS: # Active and sticky_actions are added below. if v != 'active' and v != 'sticky_actions': observations[v] = copy.deepcopy(original[v]) length = player.num_controlled_players() if left_team: observations['active'] = copy.deepcopy( original['left_agent_controlled_player'][ player_position:player_position + length]) observations['sticky_actions'] = copy.deepcopy( original['left_agent_sticky_actions'][ player_position:player_position + length]) observations['is_active_left'] = True else: observations['active'] = copy.deepcopy( original['right_agent_controlled_player'][ player_position:player_position + length]) observations['sticky_actions'] = copy.deepcopy( original['right_agent_sticky_actions'][ player_position:player_position + length]) observations['is_active_left'] = False diff = constants.EXPOSED_OBSERVATIONS.difference(observations.keys()) assert not diff or (len(diff) == 1 and 'frame' in observations) if 'frame' in original: observations['frame'] = original['frame'] return observations def _get_actions(self): obs = self._env.observation() actions = [] player_position = 0 for player in self._left_players: adopted_obs = self._convert_observations(obs, True, player, player_position) player_position += player.num_controlled_players() a = player.take_action(adopted_obs) if isinstance(a, np.ndarray): a = a.tolist() elif not isinstance(a, list): a = [a] assert len(adopted_obs['active']) == len( a), 'Player returned {} actions instead of {}.'.format( len(a), len(adopted_obs['active'])) actions.extend(a) player_position = 0 for player in self._right_players: adopted_obs = self._convert_observations(obs, False, player, player_position) player_position += player.num_controlled_players() a = player.take_action(adopted_obs) if isinstance(a, np.ndarray): a = a.tolist() elif not isinstance(a, list): a = [a] assert len(adopted_obs['active']) == len( a), 'Player returned {} actions instead of {}.'.format( len(a), len(adopted_obs['active'])) actions.extend(a) return actions def step(self, action): if self._agent: self._agent.set_action(action) observation, reward, done = self._env.step(self._get_actions()) if self._agent: observation = self._convert_observations(observation, self._agent_left_team, self._agent, self._agent_position) if not self._agent_left_team: reward = -reward self.last_observation = observation return observation, np.array(reward, dtype=np.float32), done, {} def reset(self): self._env.reset() if self._config['swap_sides'] != self._last_swapped_sides: self._left_players, self._right_players = ( self._right_players, self._left_players) self._agent_left_team = not self._agent_left_team self._last_swapped_sides = self._config['swap_sides'] for player in self._left_players + self._right_players: player.reset() observation = self._env.observation() if self._agent: observation = self._convert_observations(observation, self._agent_left_team, self._agent, self._agent_position) self.last_observation = observation return observation def write_dump(self, name): return self._env.write_dump(name) def close(self): self._env.close() ```
{ "source": "JGroselle/dispatch", "score": 2 }
#### File: dispatch/auth/service.py ```python import logging from typing import Optional from fastapi import HTTPException, Depends from fastapi.encoders import jsonable_encoder from starlette.requests import Request from starlette.status import HTTP_401_UNAUTHORIZED from sqlalchemy.exc import IntegrityError from dispatch.plugins.base import plugins from dispatch.config import ( DISPATCH_AUTHENTICATION_PROVIDER_SLUG, DISPATCH_AUTHENTICATION_DEFAULT_USER, ) from dispatch.organization import service as organization_service from dispatch.project import service as project_service from dispatch.enums import UserRoles from .models import ( DispatchUser, DispatchUserOrganization, DispatchUserProject, UserOrganization, UserProject, UserRegister, UserUpdate, ) log = logging.getLogger(__name__) InvalidCredentialException = HTTPException( status_code=HTTP_401_UNAUTHORIZED, detail="Could not validate credentials" ) def get(*, db_session, user_id: int) -> Optional[DispatchUser]: """Returns a user based on the given user id.""" return db_session.query(DispatchUser).filter(DispatchUser.id == user_id).one_or_none() def get_by_email(*, db_session, email: str) -> Optional[DispatchUser]: """Returns a user object based on user email.""" return db_session.query(DispatchUser).filter(DispatchUser.email == email).one_or_none() def create_or_update_project_role(*, db_session, user: DispatchUser, role_in: UserProject): """Creates a new project role or updates an existing role.""" if not role_in.project.id: project = project_service.get_by_name(db_session=db_session, name=role_in.project.name) project_id = project.id else: project_id = role_in.project.id project_role = ( db_session.query(DispatchUserProject) .filter( DispatchUserProject.dispatch_user_id == user.id, ) .filter(DispatchUserProject.project_id == project_id) .one_or_none() ) if not project_role: return DispatchUserProject( project_id=project_id, role=role_in.role, ) project_role.role = role_in.role return project_role def create_or_update_organization_role( *, db_session, user: DispatchUser, role_in: UserOrganization ): """Creates a new organization role or updates an existing role.""" if not role_in.organization.id: organization = organization_service.get_by_name( db_session=db_session, name=role_in.organization.name ) organization_id = organization.id else: organization_id = role_in.organization.id organization_role = ( db_session.query(DispatchUserOrganization) .filter( DispatchUserOrganization.dispatch_user_id == user.id, ) .filter(DispatchUserOrganization.organization_id == organization_id) .one_or_none() ) if not organization_role: return DispatchUserOrganization( organization_id=organization.id, role=role_in.role, ) organization_role.role = role_in.role return organization_role def create(*, db_session, organization: str, user_in: UserRegister) -> DispatchUser: """Creates a new dispatch user.""" # pydantic forces a string password, but we really want bytes password = bytes(user_in.password, "utf-8") # create the user user = DispatchUser( **user_in.dict(exclude={"password", "organizations", "projects"}), password=password ) org = organization_service.get_by_slug(db_session=db_session, slug=organization) # add the user to the default organization user.organizations.append( DispatchUserOrganization(organization=org, role=UserRoles.member.value) ) # get the default project default_project = project_service.get_default(db_session=db_session) # add the user to the default project user.projects.append(DispatchUserProject(project=default_project, role=UserRoles.member.value)) db_session.add(user) db_session.commit() return user def get_or_create(*, db_session, organization: str, user_in: UserRegister) -> DispatchUser: """Gets an existing user or creates a new one.""" try: return create(db_session=db_session, organization=organization, user_in=user_in) except IntegrityError: db_session.rollback() return get_by_email(db_session=db_session, email=user_in.email) def update(*, db_session, user: DispatchUser, user_in: UserUpdate) -> DispatchUser: """Updates a user.""" user_data = jsonable_encoder(user) update_data = user_in.dict(exclude={"password"}, skip_defaults=True) for field in user_data: if field in update_data: setattr(user, field, update_data[field]) if user_in.password: password = bytes(user_in.password, "<PASSWORD>") user.password = password if user_in.organizations: roles = [] for role in user_in.organizations: roles.append( create_or_update_organization_role(db_session=db_session, user=user, role_in=role) ) db_session.add(user) db_session.commit() return user def get_current_user(request: Request) -> DispatchUser: """Attempts to get the current user depending on the configured authentication provider.""" if DISPATCH_AUTHENTICATION_PROVIDER_SLUG: auth_plugin = plugins.get(DISPATCH_AUTHENTICATION_PROVIDER_SLUG) user_email = auth_plugin.get_current_user(request) else: log.debug("No authentication provider. Default user will be used") user_email = DISPATCH_AUTHENTICATION_DEFAULT_USER if not user_email: log.exception( f"Unable to determine user email based on configured auth provider or no default auth user email defined. Provider: {DISPATCH_AUTHENTICATION_PROVIDER_SLUG}" ) raise InvalidCredentialException return get_or_create( db_session=request.state.db, organization=request.state.organization, user_in=UserRegister(email=user_email), ) def get_current_role( request: Request, current_user: DispatchUser = Depends(get_current_user) ) -> UserRoles: """Attempts to get the current user depending on the configured authentication provider.""" return current_user.get_organization_role(organization_name=request.state.organization) ``` #### File: dispatch/tag/views.py ```python from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session from dispatch.database.core import get_db, get_class_by_tablename from dispatch.database.service import common_parameters, search_filter_sort_paginate from dispatch.tag.recommender import get_recommendations from .models import ( TagCreate, TagPagination, TagRead, TagUpdate, ) from .service import create, delete, get, update router = APIRouter() @router.get("", response_model=TagPagination) def get_tags(*, common: dict = Depends(common_parameters)): """ Get all tags, or only those matching a given search term. """ return search_filter_sort_paginate(model="Tag", **common) @router.get("/{tag_id}", response_model=TagRead) def get_tag(*, db_session: Session = Depends(get_db), tag_id: str): """ Given its unique ID, retrieve details about a single tag. """ tag = get(db_session=db_session, tag_id=tag_id) if not tag: raise HTTPException(status_code=404, detail="The requested tag does not exist.") return tag @router.post("", response_model=TagRead) def create_tag(*, db_session: Session = Depends(get_db), tag_in: TagCreate): """ Create a new tag. """ tag = create(db_session=db_session, tag_in=tag_in) return tag @router.put("/{tag_id}", response_model=TagRead) def update_tag(*, db_session: Session = Depends(get_db), tag_id: int, tag_in: TagUpdate): """ Given its unique ID, update details of an tag. """ tag = get(db_session=db_session, tag_id=tag_id) if not tag: raise HTTPException(status_code=404, detail="An tag with this ID does not exist.") tag = update(db_session=db_session, tag=tag, tag_in=tag_in) return tag @router.delete("/{tag_id}") def delete_tag(*, db_session: Session = Depends(get_db), tag_id: int): """ Delete an tag, returning only an HTTP 200 OK if successful. """ tag = get(db_session=db_session, tag_id=tag_id) if not tag: raise HTTPException(status_code=404, detail="An tag with this ID does not exist.") delete(db_session=db_session, tag_id=tag_id) @router.get("/recommendations/{model_name}/{id}", response_model=TagPagination) def get_tag_recommendations(*, db_session: Session = Depends(get_db), model_name: str, id: int): """ Retrieves a tag recommendation based on the model and model id. """ model_object = get_class_by_tablename(model_name) model = db_session.query(model_object).filter(model_object.id == id).one_or_none() project_slug = model.project.slug organization_slug = model.project.organization.slug if not model: raise HTTPException( status_code=404, detail=f"No model found. ModelName: {model_name} Id: {id}" ) tags = get_recommendations( db_session, [t.id for t in model.tags], organization_slug, project_slug, model_name ) return {"items": tags, "total": len(tags)} ```
{ "source": "jgross11/generic-group-project", "score": 2 }
#### File: routes/errors/routes.py ```python from flask import session from flask.templating import render_template from bless_this_chess.Utils import Map, create_blueprint error_bp = create_blueprint('error_bp', __name__) @error_bp.app_errorhandler(404) @error_bp.app_errorhandler(405) @error_bp.app_errorhandler(500) def pageNotFound(error): map = Map() map.put("error", error) return render_template('error.jinja2', map=map) ```
{ "source": "jgrossmac/dss", "score": 2 }
#### File: dss/build/make-certs.py ```python import argparse import itertools import glob import os import shutil import subprocess class CockroachCluster(object): def __init__(self, cluster, ca_cert_to_join=None): self._ca_cert_to_join = ca_cert_to_join self._cluster = cluster @property def ca_cert_to_join(self): return self._ca_cert_to_join @property def namespace(self): return 'dss-main' @property def directory(self): return os.path.join('workspace', self._cluster) @property def ca_certs_file(self): return os.path.join(self.ca_certs_dir, 'ca.crt') @property def ca_key_dir(self): return os.path.join(self.directory, 'ca_key_dir') @property def ca_key_file(self): return os.path.join(self.ca_key_dir, 'ca.key') @property def ca_certs_dir(self): return os.path.join(self.directory, 'ca_certs_dir') @property def client_certs_dir(self): return os.path.join(self.directory, 'client_certs_dir') @property def node_certs_dir(self): return os.path.join(self.directory, 'node_certs_dir') def parse_args(): parser = argparse.ArgumentParser( description='Creates certificates for a new Cockroachdb cluster') parser.add_argument('--cluster', metavar='CLUSTER', help='kubernetes cluster context name') parser.add_argument('--node-address', metavar='ADDRESS', nargs='*', default=[], help='extra addresses to add to the node certificate') parser.add_argument('--ca-cert-to-join', metavar='FILENAME', help='file containing an existing CA cert of a cluster to join.') return parser.parse_args() def main(): args = parse_args() cr = CockroachCluster(args.cluster, args.ca_cert_to_join) # Create the generated directories. try: os.mkdir('workspace') except OSError: pass try: os.mkdir(cr.directory) except OSError: pass # Create a new CA. # Delete and recreate the ca_certs_dir. shutil.rmtree(cr.ca_certs_dir, ignore_errors=True) shutil.rmtree(cr.ca_key_dir, ignore_errors=True) os.mkdir(cr.ca_certs_dir) os.mkdir(cr.ca_key_dir) # Build node and client certs. # Delete and recreate the directories. shutil.rmtree(cr.node_certs_dir, ignore_errors=True) shutil.rmtree(cr.client_certs_dir, ignore_errors=True) os.mkdir(cr.client_certs_dir) os.mkdir(cr.node_certs_dir) # Create the CA. subprocess.check_call([ 'cockroach', 'cert', 'create-ca', '--certs-dir', cr.ca_certs_dir, '--ca-key', cr.ca_key_file]) # Copy out the CA cert for generation, we delete these copy later. shutil.copy(cr.ca_certs_file, cr.client_certs_dir) shutil.copy(cr.ca_certs_file, cr.node_certs_dir) # We slightly abuse the rotate certs feature: # https://www.cockroachlabs.com/docs/stable/rotate-certificates.html if cr.ca_cert_to_join: with open(cr.ca_certs_file, 'a') as new_certs_fh: with open(cr.ca_cert_to_join) as join_ca_cert_fh: new_certs_fh.write(join_ca_cert_fh.read()) new_certs_fh.write('\n') print('Created new CA certificate in {}'.format(cr.ca_certs_dir)) subprocess.check_call([ 'cockroach', 'cert', 'create-client', 'root', '--certs-dir', cr.client_certs_dir, '--ca-key', cr.ca_key_file]) print('Created new client certificate in {}'.format(cr.client_certs_dir)) node_addresses = ['localhost'] node_addresses.extend(args.node_address) node_addresses.extend([ 'cockroachdb-balanced.%s' % cr.namespace, 'cockroachdb-balanced.%s.svc.cluster.local' % cr.namespace, '*.cockroachdb', '*.cockroachdb.%s' % cr.namespace, 'cockroachdb.%s' % cr.namespace, '*.cockroachdb.%s.svc.cluster.local' % cr.namespace ]) subprocess.check_call([ 'cockroach', 'cert', 'create-node', '--certs-dir', cr.node_certs_dir, '--ca-key', cr.ca_key_file] + node_addresses) os.remove(os.path.join(cr.node_certs_dir, 'ca.crt')) os.remove(os.path.join(cr.client_certs_dir, 'ca.crt')) print('Created new node certificate in {}'.format(cr.node_certs_dir)) if __name__ == '__main__': main() ``` #### File: monitoring/prober/test_subscription_isa_interactions.py ```python import datetime import common def test_create_isa(session, isa1_uuid): time_start = datetime.datetime.utcnow() time_end = time_start + datetime.timedelta(minutes=60) resp = session.put( '/identification_service_areas/{}'.format(isa1_uuid), json={ 'extents': { 'spatial_volume': { 'footprint': { 'vertices': common.VERTICES, }, 'altitude_lo': 20, 'altitude_hi': 400, }, 'time_start': time_start.strftime(common.DATE_FORMAT), 'time_end': time_end.strftime(common.DATE_FORMAT), }, 'flights_url': 'https://example.com/dss', }) assert resp.status_code == 200 def test_create_subscription(session, isa1_uuid, sub1_uuid): time_start = datetime.datetime.utcnow() time_end = time_start + datetime.timedelta(minutes=60) resp = session.put( '/subscriptions/{}'.format(sub1_uuid), json={ 'extents': { 'spatial_volume': { 'footprint': { 'vertices': common.VERTICES, }, 'altitude_lo': 20, 'altitude_hi': 400, }, 'time_start': time_start.strftime(common.DATE_FORMAT), 'time_end': time_end.strftime(common.DATE_FORMAT), }, 'callbacks': { 'identification_service_area_url': 'https://example.com/foo' }, }) assert resp.status_code == 200 # The response should include our ISA. data = resp.json() assert data['subscription']['notification_index'] == 0 assert isa1_uuid in [x['id'] for x in data['service_areas']] def test_modify_isa(session, isa1_uuid, sub1_uuid): # GET the ISA first to find its version. resp = session.get('/identification_service_areas/{}'.format(isa1_uuid)) assert resp.status_code == 200 version = resp.json()['service_area']['version'] # Then modify it. resp = session.put( '/identification_service_areas/{}/{}'.format(isa1_uuid, version), json={ 'extents': { 'spatial_volume': { 'footprint': { 'vertices': common.VERTICES, }, 'altitude_lo': 12345, 'altitude_hi': 67890, }, }, 'flights_url': 'https://example.com/dss', }) assert resp.status_code == 200 # The response should include our subscription. data = resp.json() assert { 'url': 'https://example.com/foo', 'subscriptions': [{ 'notification_index': 1, 'subscription_id': sub1_uuid, },], } in data['subscribers'] def test_delete_isa(session, isa1_uuid, sub1_uuid): # GET the ISA first to find its version. resp = session.get('/identification_service_areas/{}'.format(isa1_uuid)) assert resp.status_code == 200 version = resp.json()['service_area']['version'] # Then delete it. resp = session.delete('/identification_service_areas/{}/{}'.format( isa1_uuid, version)) assert resp.status_code == 200 # The response should include our subscription. data = resp.json() assert { 'url': 'https://example.com/foo', 'subscriptions': [{ 'notification_index': 2, 'subscription_id': sub1_uuid, },], } in data['subscribers'] def test_delete_subscription(session, sub1_uuid): # GET the sub first to find its version. resp = session.get('/subscriptions/{}'.format(sub1_uuid)) assert resp.status_code == 200 data = resp.json() version = data['subscription']['version'] assert data['subscription']['notification_index'] == 2 # Then delete it. resp = session.delete('/subscriptions/{}/{}'.format(sub1_uuid, version)) assert resp.status_code == 200 ``` #### File: test/interoperability/interop.py ```python import os import sys import argparse import clients import datetime import uuid from interop_test_suite import InterOpTestSuite from typing import Dict def parseArgs() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Test Interoperability of DSSs") parser.add_argument("OAuth", help="URI to the OAuth Server.") # When using Password OAuth flow, Username, Password, and Clients-id are # necessary for authentication parser.add_argument("--username", help="Username used to get OAuth Token") parser.add_argument("--password", help="Password used to get OAuth Token") parser.add_argument( "--client-id", help="Client ID used to get OAuth Token, used with Username and Password", ) # When using Service Account OAuth flow, only the Service Account JSON File # is required to request Token. parser.add_argument( "--service-account", "--svc", help="Path to Service Account Credentials file used to get OAuth Token", ) parser.add_argument( "DSS", help="List of URIs to DSS Servers. At least 2 DSSs", nargs="+" ) return parser.parse_args() def main() -> int: args = parseArgs() if args.service_account: oauth_client = clients.OAuthClient( args.OAuth, clients.AuthType.SERVICE_ACCOUNT, service_account_json=args.service_account, ) elif args.username: assert args.password, "Password is required when using Username" assert args.client_id, "Client ID is required when authenticating with Password" oauth_client = clients.OAuthClient( args.OAuth, clients.AuthType.PASSWORD, username=args.username, password=args.password, client_id=args.client_id, ) else: oauth_client = clients.OAuthClient(args.OAuth, clients.AuthType.NONE) oauth_client.parameterized_url = True dss_clients: Dict[str, clients.DSSClient] = {} for dss in args.DSS: dss_clients[dss] = clients.DSSClient(host=dss, oauth_client=oauth_client) # Begin Tests tests = InterOpTestSuite(dss_clients) tests.startTest() return os.EX_OK if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jgrovegeo/dea-notebooks", "score": 3 }
#### File: dea-notebooks/Scripts/notebookapp_crophealth.py ```python from ipyleaflet import ( Map, GeoJSON, DrawControl, basemaps ) import datetime as dt import datacube import ogr import matplotlib as mpl import matplotlib.pyplot as plt import rasterio from rasterio.features import geometry_mask import xarray as xr from IPython.display import display import warnings import ipywidgets as widgets # Load utility functions from dea_datahandling import load_ard from dea_spatialtools import transform_geojson_wgs_to_epsg from dea_bandindices import calculate_indices def load_crophealth_data(): """ Loads Sentinel-2 analysis-ready data (ARD) product for the crop health case-study area. The ARD product is provided for the last year. Last modified: January 2020 outputs ds - data set containing combined, masked data from Sentinel-2a and -2b. Masked values are set to 'nan' """ # Suppress warnings warnings.filterwarnings('ignore') # Initialise the data cube. 'app' argument is used to identify this app dc = datacube.Datacube(app='Crophealth-app') # Specify latitude and longitude ranges latitude = (-24.974997, -24.995971) longitude = (152.429994, 152.395805) # Specify the date range # Calculated as today's date, subtract 90 days to match NRT availability # Dates are converted to strings as required by loading function below end_date = dt.date.today() start_date = end_date - dt.timedelta(days=365) time = (start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d")) # Construct the data cube query products = ["s2a_ard_granule", "s2b_ard_granule"] query = { 'x': longitude, 'y': latitude, 'time': time, 'measurements': [ 'nbart_red', 'nbart_green', 'nbart_blue', 'nbart_nir_1', 'nbart_swir_2', 'nbart_swir_3' ], 'output_crs': 'EPSG:3577', 'resolution': (-10, 10) } # Load the data and mask out bad quality pixels ds_s2 = load_ard(dc, products=products, min_gooddata=0.5, **query) # Calculate the normalised difference vegetation index (NDVI) across # all pixels for each image. # This is stored as an attribute of the data ds_s2 = calculate_indices(ds_s2, index='NDVI', collection='ga_s2_1') # Return the data return(ds_s2) def run_crophealth_app(ds): """ Plots an interactive map of the crop health case-study area and allows the user to draw polygons. This returns a plot of the average NDVI value in the polygon area. Last modified: January 2020 inputs ds - data set containing combined, masked data from Sentinel-2a and -2b. Must also have an attribute containing the NDVI value for each pixel """ # Suppress warnings warnings.filterwarnings('ignore') # Update plotting functionality through rcParams mpl.rcParams.update({'figure.autolayout': True}) # Define the bounding box that will be overlayed on the interactive map # The bounds are hard-coded to match those from the loaded data geom_obj = { "type": "Feature", "properties": { "style": { "stroke": True, "color": 'red', "weight": 4, "opacity": 0.8, "fill": True, "fillColor": False, "fillOpacity": 0, "showArea": True, "clickable": True } }, "geometry": { "type": "Polygon", "coordinates": [ [ [152.395805, -24.995971], [152.395805, -24.974997], [152.429994, -24.974997], [152.429994, -24.995971], [152.395805, -24.995971] ] ] } } # Create a map geometry from the geom_obj dictionary # center specifies where the background map view should focus on # zoom specifies how zoomed in the background map should be loadeddata_geometry = ogr.CreateGeometryFromJson(str(geom_obj['geometry'])) loadeddata_center = [ loadeddata_geometry.Centroid().GetY(), loadeddata_geometry.Centroid().GetX() ] loadeddata_zoom = 14 # define the study area map studyarea_map = Map( center=loadeddata_center, zoom=loadeddata_zoom, basemap=basemaps.Esri.WorldImagery ) # define the drawing controls studyarea_drawctrl = DrawControl( polygon={"shapeOptions": {"fillOpacity": 0}}, marker={}, circle={}, circlemarker={}, polyline={}, ) # add drawing controls and data bound geometry to the map studyarea_map.add_control(studyarea_drawctrl) studyarea_map.add_layer(GeoJSON(data=geom_obj)) # Index to count drawn polygons polygon_number = 0 # Define widgets to interact with instruction = widgets.Output(layout={'border': '1px solid black'}) with instruction: print("Draw a polygon within the red box to view a plot of " "average NDVI over time in that area.") info = widgets.Output(layout={'border': '1px solid black'}) with info: print("Plot status:") fig_display = widgets.Output(layout=widgets.Layout( width="50%", # proportion of horizontal space taken by plot )) with fig_display: plt.ioff() fig, ax = plt.subplots(figsize=(8, 6)) ax.set_ylim([-1, 1]) colour_list = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Function to execute each time something is drawn on the map def handle_draw(self, action, geo_json): nonlocal polygon_number # Execute behaviour based on what the user draws if geo_json['geometry']['type'] == 'Polygon': info.clear_output(wait=True) # wait=True reduces flicker effect with info: print("Plot status: polygon sucessfully added to plot.") # Convert the drawn geometry to pixel coordinates geom_selectedarea = transform_geojson_wgs_to_epsg( geo_json, EPSG=3577 # hard-coded to be same as case-study data ) # Construct a mask to only select pixels within the drawn polygon mask = geometry_mask( [geom_selectedarea for geoms in [geom_selectedarea]], out_shape=ds.geobox.shape, transform=ds.geobox.affine, all_touched=False, invert=True ) masked_ds = ds.NDVI.where(mask) masked_ds_mean = masked_ds.mean(dim=['x', 'y'], skipna=True) colour = colour_list[polygon_number % len(colour_list)] # Add a layer to the map to make the most recently drawn polygon # the same colour as the line on the plot studyarea_map.add_layer( GeoJSON( data=geo_json, style={ 'color': colour, 'opacity': 1, 'weight': 4.5, 'fillOpacity': 0.0 } ) ) # add new data to the plot xr.plot.plot( masked_ds_mean, marker='*', color=colour, ax=ax ) # reset titles back to custom ax.set_title("Average NDVI from Sentinel-2") ax.set_xlabel("Date") ax.set_ylabel("NDVI") # refresh display fig_display.clear_output(wait=True) # wait=True reduces flicker effect with fig_display: display(fig) # Iterate the polygon number before drawing another polygon polygon_number = polygon_number + 1 else: info.clear_output(wait=True) with info: print("Plot status: this drawing tool is not currently " "supported. Please use the polygon tool.") # call to say activate handle_draw function on draw studyarea_drawctrl.on_draw(handle_draw) with fig_display: # TODO: update with user friendly something display(widgets.HTML("")) # Construct UI: # +-----------------------+ # | instruction | # +-----------+-----------+ # | map | plot | # | | | # +-----------+-----------+ # | info | # +-----------------------+ ui = widgets.VBox([instruction, widgets.HBox([studyarea_map, fig_display]), info]) display(ui) ```
{ "source": "j-grover/autonormalize", "score": 4 }
#### File: autonormalize/autonormalize/normalize.py ```python import pandas as pd from .classes import Dependencies def normalize(dependencies, df): """ Normalizes the dependency relationships in dependencies into new groups by breaking up all partial and transitive dependencies. Arguments: dependencies (Dependencies) : the dependencies to be split up Returns: new_groups (list[Dependencies]) : list of new dependencies objects representing the new groups """ dependencies.remove_implied_extroneous() no_part_deps = remove_part_deps(dependencies, df) no_trans_deps = [] for grp in no_part_deps: no_trans_deps += remove_trans_deps(grp, df) return no_trans_deps class DepDF(object): """ Represents dataframe and functional dependencies between columns in it. Used in the normalization process. Attributes: deps df parent children index """ def __init__(self, deps, df, index, parent=None): """ Creates a DepDF. Arguments: deps (Dependencies) : dependenies among the df df (pd.DataFrame) : dataframe for the object index (list[str]) : index columns for dataframe parent (DepDF, optional) : parent DepDF object """ self.deps = deps self.df = df self.parent = parent self.children = [] self.index = index def return_dfs(self): """ Returns the dataframes stored in self and all its descendents. Returns: dfs (list[pd.DataFrame]) : dataframes """ if self.children == []: return [self.df] result = [self.df] for child in self.children: result += child.return_dfs() return result def make_indexes(depdf): """ Goes through depdf, and all of its descendents, and if any have primary keys of more than one attribute, creates a new index column, and replaces the old primary key columns with the new column in the parent df. Arguments: depdf (DepDF) : depDF to make indexes for """ prim_key = depdf.deps.get_prim_key() if len(prim_key) > 1: depdf.df.insert(0, '_'.join(prim_key), range(0, len(depdf.df))) depdf.index = ['_'.join(prim_key)] # now need to replace it in the parent df... if depdf.parent is not None: add = [None] * len(depdf.parent.df) indices = depdf.parent.df.groupby(prim_key).indices for name in indices: mask = None for i in range(len(prim_key)): m = depdf.df[prim_key[i]] == name[i] if mask is None: mask = m else: mask = mask & m new_val = depdf.df[mask]['_'.join(prim_key)].item() for index in indices[name]: add[index] = new_val depdf.parent.df.drop(columns=prim_key, inplace=True) depdf.parent.df.insert(len(depdf.parent.df.columns), '_'.join(prim_key), add) for child in depdf.children: make_indexes(child) def normalize_dataframe(depdf): """ Normalizes the dataframe represetned by depdf, created descendents as needed. Arguments: depdf (DepDF) : depdf to normalize """ part_deps = depdf.deps.find_partial_deps() filter(part_deps, depdf.df) if part_deps != []: split_on = find_most_comm(part_deps, depdf.deps, depdf.df) split_up(split_on, depdf) return trans_deps = depdf.deps.find_trans_deps() filter(trans_deps, depdf.df) if trans_deps != []: split_on = find_most_comm(trans_deps, depdf.deps, depdf.df) split_up(split_on, depdf) return def split_up(split_on, depdf): """ Breaks off a depdf and forms its child. Recursively calls normalize on the original depdf, and its newly formed child. Arguments: split_on (list[str]) : attributes to split the dataframe on depdf (DepDF) : the depdf ot split """ parent_deps, child_deps = split_on_dep(split_on, depdf.deps) child = DepDF(child_deps, form_child(depdf.df, child_deps), split_on, depdf) depdf.deps = parent_deps depdf.df = depdf.df.drop(columns=list(set(depdf.df.columns).difference(parent_deps.all_attrs()))) depdf.children.append(child) normalize_dataframe(depdf) normalize_dataframe(child) def form_child(df, deps): """ Returns a new dataframe based off of the dependencies in deps. Arguments: df (pd.DataFrame) : dataframe to create new dataframe from deps (Dependencies) : dependencies to base new dataframe off of """ attrs = deps.all_attrs() drops = set(df.columns).difference(attrs) new_df = df.drop(columns=list(drops)) new_df = drop_primary_dups(new_df, deps.get_prim_key()) return new_df def remove_part_deps(dependencies, df): """ Breaks up the dependency relations in dependencies into new groups of relations so that there are no more partial dependencies. Arguments: dependencies (Dependncies) : the dependencies to be split up Returns: new_groups (list[Dependencies]) : list of new dependencies objects representing the new groups with no partial depenencies """ part_deps = dependencies.find_partial_deps() filter(part_deps, df) if part_deps == []: return [dependencies] new_deps = split_on_dep(find_most_comm(part_deps, dependencies), dependencies) return remove_part_deps(new_deps[0], df) + remove_part_deps(new_deps[1], df) def remove_trans_deps(dependencies, df): """ Breaks up the dependency relations in dependencies into new groups of relations so that there are no more transitive dependencies. Arguments: dependencies (Dependencies) : the dependencies to be split up Returns: new_groups (list[Dependencies]): list of new dependencies objects representing the new groups with no transitive depenencies """ trans_deps = dependencies.find_trans_deps() filter(trans_deps, df) if trans_deps == []: return [dependencies] new_deps = split_on_dep(find_most_comm(trans_deps, dependencies), dependencies) return remove_trans_deps(new_deps[0], df) + remove_trans_deps(new_deps[1], df) def find_most_comm(deps, dependencies, df=None): """ Given a list of dependency relations, finds the most common set of LHS attributes. If more than one LHS set occurs the same amount of times, chooses the set with the least number of attributes. Arguments: deps (list[(set[str], str)]) : list of tuples representing relations where the lhs is a set of attribute names, and the rhs is an attribute. Returns: most_comm (set[str]) : the most common lhs set of attributes """ positions = {} priority_lst = [] for lhs, rhs in deps: if frozenset(lhs) in positions: ind = positions[frozenset(lhs)] score = priority_lst[ind][0] + 1 while ind != 0 and priority_lst[ind - 1][0] < score: priority_lst[ind] = priority_lst[ind - 1] positions[frozenset(priority_lst[ind - 1][1])] = ind ind -= 1 priority_lst[ind] = (score, lhs) positions[frozenset(lhs)] = ind else: priority_lst.append((1, lhs)) positions[frozenset(lhs)] = len(priority_lst) - 1 # IF THEY ARE THE SAME, CHOOSE ONE WITH SHORTEST LENGHT options = [item[1] for item in priority_lst if item[0] == priority_lst[0][0]] max_lhs = choose_index(options, df) # max_lhs = priority_lst[0][1] # scr = priority_lst[0][0] # i = 1 # while i < len(priority_lst) and priority_lst[i][0] == scr: # if len(priority_lst[i][1]) < len(max_lhs): # max_lhs = priority_lst[i][1] # i += 1 for i in range(len(max_lhs)): for key in dependencies.get_prim_key(): if dependencies.equiv_attrs(max_lhs[i], key): max_lhs[i] = key return max_lhs def split_on_dep(lhs_dep, dependencies): """ Given the LHS attributes of a dependency, breaks up the dependency relations in dependencies into two groups so that the LHS given is the primary key of the new group. The old group keeps the same primary key. Arguments: lhs_dep (list[str]) : set of attributes to be the new group's primary key dependencies (Dependencies) : dependency relations to be split up Returns: new_groups ((Dependencies, Dependencies)) : the new groups """ new_deps = {} old_deps = dependencies.serialize() new_rhs = set() # new primary key for attr in lhs_dep: new_deps[attr] = old_deps[attr][:] for rhs in list(old_deps.keys()): for lhs in old_deps[rhs]: if set(lhs).issubset(lhs_dep): # if lhs_dep in old_deps[rhs]: new_deps[rhs] = old_deps[rhs] old_deps.pop(rhs) new_rhs.add(rhs) break for rhs in old_deps: for lhs in old_deps[rhs][:]: if len(new_rhs.intersection(lhs)) != 0: old_deps[rhs].remove(lhs) old_rhs = set(list(old_deps.keys())) for attr in lhs_dep: old_rhs.remove(attr) for rhs in new_deps: for lhs in new_deps[rhs][:]: if len(old_rhs.intersection(lhs)) != 0: new_deps[rhs].remove(lhs) return (Dependencies(old_deps, dependencies.get_prim_key()), Dependencies(new_deps, lhs_dep)) def drop_primary_dups(df, prim_key): """ Drops all duplicates based off of the columns in prim_key. If there isn't a unique value for the other columns, for every unique instance of columns in prim_key, keeps the "mode" of the unique instances' occurance. Arguments: df (pd.DataFrame) : dataframe to drop duplicates of prim_key (list[str]) : columns that form the primary key of the dataframe Returns: new_df (pd.DataFrame) : dataframe with duplicates dropped """ df_lst = [] if df.drop_duplicates(prim_key).shape[0] == df.shape[0]: return df groups = df.groupby(prim_key) for name, group in groups: df_lst.append(group.mode().iloc[0]) # new_df = new_df.append(group.mode().iloc[0], ignore_index=True) result = (pd.DataFrame(df_lst, columns=df.columns)).reset_index(drop=True) return result.astype(dict(df.dtypes)) def choose_index(keys, df): """ Chooses key from a list of keys. Order of priority: 1) shortest length 2) has "id" in some form in name of an attribute 3) has attribute furthest to the left in table Arguments: keys (list[set[str]]) : list of keys to choose from df (pd.DataFrame) : pandas dataframe keys are for Returns: index (list[str]) : chosen key """ sort_key = sorted(keys, key=len) m = len(sort_key[0]) options = [key for key in sort_key if len(key) == m] for key in options: for attr in key: if "_id" in attr.lower() or " id" in attr.lower() or "id _" in attr.lower() or "id " in attr.lower(): return list(key) if df is None: return list(options[0]) for col in df.columns: includes = [option for option in options if col in option] if len(includes) == 1: return list(includes[0]) if len(includes) > 1: options = includes return list(options[0]) def filter(keys, df): """ Filters out any keys that contain attributes that are not strings, ints, or categories from a list of relations. Arguments: keys (list[(list[str], str)]) : relationships to filter out df (pd.DataFrame) : dataframe attributes in keys are from """ for key, rhs in keys[:]: for attr in key: if df[attr].dtypes.name not in set(['category', 'int64', 'object']): keys.remove((key, rhs)) break ```
{ "source": "jg-rp/Flask-Liquid", "score": 2 }
#### File: Flask-Liquid/flask_liquid/flask_liquid.py ```python from __future__ import annotations from contextlib import contextmanager from itertools import chain from typing import Any from typing import Callable from typing import Dict from typing import Iterable from typing import Iterator from typing import Mapping from typing import Optional from typing import Type from flask import Flask from flask import current_app from flask import signals_available from flask import template_rendered from flask import before_render_template from flask import _request_ctx_stack from liquid import Environment from liquid import Mode from liquid import Undefined from liquid.template import BoundTemplate from liquid.loaders import BaseLoader from liquid.loaders import FileSystemLoader TemplateContextProcessorCallable = Callable[[], Dict[str, Any]] class Liquid: """The Liquid template extension for Flask. :param tag_start_string: The sequence of characters indicating the start of a liquid tag. Defaults to ``{%``. :type tag_start_string: str :param tag_end_string: The sequence of characters indicating the end of a liquid tag. Defaults to ``%}``. :type tag_end_string: str :param statement_start_string: The sequence of characters indicating the start of an output statement. Defaults to ``{{``. :type statement_start_string: str :param statement_end_string: The sequence of characters indicating the end of an output statement. Defaults to ``}}`` :type statement_end_string: str :param template_comments: If ``True``, enable template comments. Where, by default, anything between ``{#`` and ``#}`` is considered a comment. Defaults to ``False``. :type template_comments: bool :param comment_start_string: The sequence of characters indicating the start of a comment. Defaults to ``{#``. ``template_comments`` must be ``True`` for ``comment_start_string`` to have any effect. :type comment_start_string: str :param comment_end_string: The sequence of characters indicating the end of a comment. Defaults to ``#}``. ``template_comments`` must be ``True`` for ``comment_end_string`` to have any effect. :type comment_end_string: str :param tolerance: Indicates how tolerant to be of errors. Must be one of ``Mode.LAX``, ``Mode.WARN`` or ``Mode.STRICT``. Defaults to ``Mode.STRICT``. :type tolerance: Mode :param loader: A template loader. If you want to use the builtin "render" or "include" tags, a loader must be configured. Defaults to an empty :class:`liquid.loaders.DictLoader`. :type loader: liquid.loaders.BaseLoader :param undefined: A subclass of :class:`Undefined` that represents undefined values. Could be one of the built-in undefined types, :class:`Undefined`, :class:`DebugUndefined` or :class:`StrictUndefined`. Defaults to :class:`Undefined`, an undefined type that silently ignores undefined values. :type undefined: liquid.Undefined :param strict_filters: If ``True``, will raise an exception upon finding an undefined filter. Otherwise undefined filters are silently ignored. Defaults to ``True``. :type strict_filters: bool :param autoescape: If `True`, all context values will be HTML-escaped before output unless they've been explicitly marked as "safe". Requires the package Markupsafe. Defaults to ``False``. :type autoescape: bool :param auto_reload: If `True`, loaders that have an ``uptodate`` callable will reload template source data automatically. For deployments where template sources don't change between service reloads, setting auto_reload to `False` can yield an increase in performance by avoiding calls to ``uptodate``. Defaults to ``True``. :type auto_reload: bool :param cache_size: The capacity of the template cache in number of templates. Defaults to 300. If ``cache_size`` is ``None`` or less than ``1``, it has the effect of setting ``auto_reload`` to ``False``. :type cache_size: int :param expression_cache_size: The capacity of each of the common expression caches. Defaults to ``0``, disabling expression caching. :type expression_cache_size: int :param globals: An optional mapping that will be added to the context of any template loaded from this environment. Defaults to ``None``. :type globals: dict :param flask_context_processors: If set to `True` Flask context processors will be applied to Liquid every render context. Defaults to `False`. :param flask_signals: If set to `True` the `template_rendered` and `before_template_rendered` signals will be emitted for Liquid templates. """ # pylint: disable=redefined-builtin too-many-arguments too-many-locals def __init__( self, app: Optional[Flask] = None, *, tag_start_string: str = r"{%", tag_end_string: str = r"%}", statement_start_string: str = r"{{", statement_end_string: str = r"}}", template_comments: bool = False, comment_start_string: str = "{#", comment_end_string: str = "#}", tolerance: Mode = Mode.STRICT, loader: Optional[BaseLoader] = None, undefined: Type[Undefined] = Undefined, strict_filters: bool = True, autoescape: bool = True, auto_reload: bool = True, globals: Optional[Mapping[str, object]] = None, flask_context_processors: bool = False, flask_signals: bool = True, cache_size: int = 300, expression_cache_size: int = 0, ): self.app = app self.env = Environment( tag_start_string=tag_start_string, tag_end_string=tag_end_string, statement_start_string=statement_start_string, statement_end_string=statement_end_string, tolerance=tolerance, loader=loader, undefined=undefined, strict_filters=strict_filters, autoescape=autoescape, auto_reload=auto_reload, globals=globals, template_comments=template_comments, comment_start_string=comment_start_string, comment_end_string=comment_end_string, cache_size=cache_size, expression_cache_size=expression_cache_size, ) # init_app will default to a file system loader if one was not provided. # This differs from the default behavior of `liquid.Environment`, where the # default loader is an empty DictLoader. self._loader = loader # Indicates if Flask context processors should be used to update the liquid # context on each request. self.flask_context_processors = flask_context_processors # Indicates if the extension should trigger Flask's `template_rendered` and # `before_template_rendered` signals. self.flask_signals = flask_signals if app is not None: self.init_app(app) def init_app(self, app: Flask) -> None: """Initialise a Flask app with a Liquid environment.""" app.config.setdefault( "LIQUID_TAG_START_STRING", self.env.tag_start_string, ) app.config.setdefault( "LIQUID_TAG_END_STRING", self.env.tag_end_string, ) app.config.setdefault( "LIQUID_STATEMENT_START_STRING", self.env.statement_start_string, ) app.config.setdefault( "LIQUID_STATEMENT_END_STRING", self.env.statement_end_string, ) app.config.setdefault( "LIQUID_TEMPLATE_COMMENTS", self.env.template_comments, ) app.config.setdefault( "LIQUID_COMMENT_START_STRING", self.env.comment_start_string or "{#", ) app.config.setdefault( "LIQUID_COMMENT_END_STRING", self.env.comment_end_string or "#}", ) app.config.setdefault("LIQUID_TOLERANCE", self.env.mode) app.config.setdefault("LIQUID_UNDEFINED", self.env.undefined) app.config.setdefault("LIQUID_STRICT_FILTERS", self.env.strict_filters) app.config.setdefault("LIQUID_TEMPLATE_FOLDER", app.template_folder) app.config.setdefault("LIQUID_AUTOESCAPE", self.env.autoescape) app.config.setdefault("LIQUID_AUTO_RELOAD", self.env.auto_reload) app.config.setdefault( "LIQUID_EXPRESSION_CACHE_SIZE", self.env.expression_cache_size, ) app.config.setdefault( "LIQUID_FLASK_CONTEXT_PROCESSORS", self.flask_context_processors, ) app.config.setdefault( "LIQUID_FLASK_SIGNALS", self.flask_signals, ) self.flask_signals = app.config["LIQUID_FLASK_SIGNALS"] if not self._loader: self._loader = FileSystemLoader( search_path=app.config["LIQUID_TEMPLATE_FOLDER"] ) self.flask_context_processors = app.config["LIQUID_FLASK_CONTEXT_PROCESSORS"] self.env.tag_start_string = app.config["LIQUID_TAG_START_STRING"] self.env.tag_end_string = app.config["LIQUID_TAG_END_STRING"] self.env.statement_start_string = app.config["LIQUID_STATEMENT_START_STRING"] self.env.statement_end_string = app.config["LIQUID_STATEMENT_END_STRING"] self.env.mode = app.config["LIQUID_TOLERANCE"] self.env.undefined = app.config["LIQUID_UNDEFINED"] self.env.strict_filters = app.config["LIQUID_STRICT_FILTERS"] self.env.autoescape = app.config["LIQUID_AUTOESCAPE"] self.env.auto_reload = app.config["LIQUID_AUTO_RELOAD"] self.env.mode = app.config["LIQUID_TOLERANCE"] self.env.loader = self._loader self.env.comment_start_string = app.config["LIQUID_COMMENT_START_STRING"] self.env.comment_end_string = app.config["LIQUID_COMMENT_END_STRING"] self.env.template_comments = app.config["LIQUID_TEMPLATE_COMMENTS"] # Working around a bad decision in the Environment constructor. if not self.env.template_comments: self.env.comment_start_string = "" self.env.comment_end_string = "" self.env.set_expression_cache_size(app.config["LIQUID_EXPRESSION_CACHE_SIZE"]) # Just in case init_app is called late and templates have already been loaded. self.env.cache.clear() app.extensions["flask_liquid"] = self self.app = app def _make_context(self, context: Dict[str, object]) -> Dict[str, object]: """Add the result of Flask context processors to the given context.""" # NOTE: We're not using `app.update_template_context` because we don't want # g, request, session etc. # Updates `context` in place. Will not overwrite keys already in context. if self.flask_context_processors and self.app: processors = self.app.template_context_processors funcs: Iterable[TemplateContextProcessorCallable] = processors[None] request_context = _request_ctx_stack.top if request_context is not None: blueprint = request_context.request.blueprint if blueprint is not None and blueprint in processors: funcs = chain(funcs, processors[blueprint]) orig_ctx = context.copy() for func in funcs: context.update(func()) context.update(orig_ctx) return context @contextmanager def _signals( self, template: BoundTemplate, context: Mapping[str, object] ) -> Iterator[Liquid]: if signals_available and self.flask_signals: before_render_template.send( self.app, template=template, context=context, ) yield self if signals_available and self.flask_signals: template_rendered.send( self.app, template=template, context=context, ) def render_template(self, template_name: str, **context: object) -> str: """Render a Liquid template from the configured template loader.""" context = self._make_context(context) template = self.env.get_template(template_name) with self._signals(template, context): rendered = template.render(**context) return rendered async def render_template_async(self, template_name: str, **context: object) -> str: """Render a Liquid template from the configured template loader.""" context = self._make_context(context) template = await self.env.get_template_async(template_name) with self._signals(template, context): rendered = await template.render_async(**context) return rendered def render_template_string(self, source: str, **context: object) -> str: """Render a Liquid template from a template string.""" context = self._make_context(context) template = self.env.from_string(source) with self._signals(template, context): rendered = template.render(**context) return rendered async def render_template_string_async(self, source: str, **context: object) -> str: """Render a Liquid template from a template string.""" context = self._make_context(context) template = self.env.from_string(source) with self._signals(template, context): rendered = await template.render_async(**context) return rendered def render_template(template_name: str, **context: object) -> str: """Render a Liquid template in the current Flask application context.""" ext: Liquid = current_app.extensions["flask_liquid"] return ext.render_template(template_name, **context) async def render_template_async(template_name: str, **context: object) -> str: """Render a Liquid template in the current Flask application context.""" ext: Liquid = current_app.extensions["flask_liquid"] return await ext.render_template_async(template_name, **context) def render_template_string(source: str, **context: object) -> str: """Render a Liquid template from a string in the current Flask application context.""" ext: Liquid = current_app.extensions["flask_liquid"] return ext.render_template_string(source, **context) async def render_template_string_async(source: str, **context: object) -> str: """Render a Liquid template from a string in the current Flask application context.""" ext: Liquid = current_app.extensions["flask_liquid"] return await ext.render_template_string_async(source, **context) ``` #### File: Flask-Liquid/tests/test_liquid.py ```python import os import tempfile from contextlib import contextmanager from unittest import TestCase from unittest import skipIf import flask from flask import Flask from flask import Blueprint from flask import template_rendered from flask import before_render_template from liquid import Undefined from liquid import StrictUndefined from liquid.exceptions import UndefinedError from liquid.exceptions import NoSuchFilterFunc from liquid.loaders import DictLoader from flask_liquid import Liquid from flask_liquid import render_template from flask_liquid import render_template_string from flask_liquid import render_template_async from flask_liquid import render_template_string_async SKIP_ASYNC = bool(int(flask.__version__[0]) < 2) # pylint: disable=redefined-builtin unused-variable def create_app(config, globals=None, loader=None): """Test Flask application factory.""" app = Flask(__name__) app.testing = True app.config.from_mapping(config) _ = Liquid(app, globals=globals, loader=loader) @app.context_processor def add_some_context(): return {"username": "some"} @app.route("/fromstring") def from_string(): return render_template_string(r"Hello {{ you }}", you="World") @app.route("/rendertemplate") def from_template_file(): return render_template("index.html", you="World") @app.route("/render/<name>") def render_by_name(name): return render_template(name) @app.route("/globalcontext") def global_context(): return render_template_string(r"Hello {{ you }}") @app.route("/standardcontext") def standard_context(): return render_template_string(r"{{ g }}{{ username }}{{ request.path }}") @app.route("/contextprocessor") def with_context_from_processor(): return render_template_string(r"{{ username }}") # pylint: disable=invalid-name bp = Blueprint("blue", __name__, url_prefix="/blue") @bp.route("/greeting") def blueprint_hello(): return render_template_string(r"{{ greeting }}, {{ you }}.") @bp.context_processor def blueprint_context(): return {"greeting": "Goodbye"} app.register_blueprint(bp) return app # pylint: disable=redefined-builtin unused-variable def create_async_app(config, globals=None, loader=None): """Test Flask application factory.""" app = Flask(__name__) app.testing = True app.config.from_mapping(config) _ = Liquid(app, globals=globals, loader=loader) @app.context_processor def add_some_context(): return {"username": "some"} @app.route("/fromstring") async def from_string(): return await render_template_string_async(r"Hello {{ you }}", you="World") @app.route("/rendertemplate") async def from_template_file(): return await render_template_async("index.html", you="World") @app.route("/render/<name>") async def render_by_name(name): return await render_template_async(name) @app.route("/globalcontext") async def global_context(): return await render_template_string_async(r"Hello {{ you }}") @app.route("/standardcontext") async def standard_context(): return await render_template_string_async( r"{{ g }}{{ username }}{{ request.path }}" ) @app.route("/contextprocessor") async def with_context_from_processor(): return await render_template_string_async(r"{{ username }}") return app @contextmanager def capture_template_rendered(app): """Utility context manager for capturing signals.""" recorded = [] # pylint: disable=unused-argument def record(_, template, context, **extra): recorded.append((template, context)) template_rendered.connect(record, app) try: yield recorded finally: template_rendered.disconnect(record, app) @contextmanager def capture_before_render_templates(app): """Utility context manager for capturing signals.""" recorded = [] # pylint: disable=unused-argument def record(_, template, context, **extra): recorded.append((template, context)) before_render_template.connect(record, app) try: yield recorded finally: before_render_template.disconnect(record, app) class DefaultLiquidTestCase(TestCase): """Flask-Liquid test case with default configuration.""" def setUp(self): self.app = create_app( config={"LIQUID_TEMPLATE_FOLDER": "tests/templates/"}, globals={"you": "World"}, ) def test_render_from_string(self): """Test that we can render a liquid template given as a string.""" with self.app.test_client() as client: resp = client.get("/fromstring") self.assertEqual(resp.data, b"Hello World") def test_render_template(self): """Test that we can render a liquid template from the file system.""" with self.app.test_client() as client: resp = client.get("/rendertemplate") self.assertEqual(resp.data, b"Hello World") def test_render_template_by_name(self): """Test that we can render a liquid template from the file system.""" with self.app.test_client() as client: resp = client.get("/render/snippet.html") self.assertEqual(resp.data, b"Goodbye, World!\n") def test_render_with_global_context(self): """Test that we can render liquid templates with global context.""" with self.app.test_client() as client: resp = client.get("/globalcontext") self.assertEqual(resp.data, b"Hello World") def test_standard_flask_context(self): """Test that the standard Flask context variables are not included.""" with self.app.test_client() as client: resp = client.get("/standardcontext") self.assertEqual(resp.data, b"") def test_template_rendered_signal(self): """Test that the template_rendered signal is fired when a liquid template is rendered.""" with capture_template_rendered(self.app) as templates: resp = self.app.test_client().get("/rendertemplate") self.assertEqual(resp.data, b"Hello World") template, _ = templates[0] self.assertEqual("index.html", template.name) def test_before_render_template_signal(self): """Test that the before_rendered_tempplate signal is fired before a liquid template is rendered.""" with capture_before_render_templates(self.app) as templates: resp = self.app.test_client().get("/rendertemplate") self.assertEqual(resp.data, b"Hello World") template, _ = templates[0] self.assertEqual("index.html", template.name) @skipIf(SKIP_ASYNC, "async views require flask>=2") class AsyncLiquidTestCase(DefaultLiquidTestCase): """Async Flask-Liquid test case.""" def setUp(self): self.app = create_async_app( config={"LIQUID_TEMPLATE_FOLDER": "tests/templates/"}, globals={"you": "World"}, ) class LiquidLoaderTestCase(TestCase): """Flask-Liquid test cases using arbitrary template loaders.""" def test_render_template(self): """Test that we can render a template from a location of our choosing.""" with tempfile.TemporaryDirectory() as tmpdirname: with open( os.path.join(tmpdirname, "index.html"), "w", encoding="utf-8" ) as fd: fd.write(r"Hello {{ you }}") app = create_app( config={"LIQUID_TEMPLATE_FOLDER": tmpdirname}, globals={"you": "World"}, ) resp = app.test_client().get("/rendertemplate") self.assertEqual(resp.data, b"Hello World") def test_dict_loader(self): """Test that we can render a template from a dictionary loader.""" snippets = { "index": "<HTML>{% include 'heading' %}</HTML>", "heading": "<h1>{{ some }}</h1>", } expected = b"<HTML><h1>other</h1></HTML>" app = create_app( config={}, globals={"some": "other"}, loader=DictLoader(snippets), ) with app.test_client() as client: resp = client.get("/render/index") self.assertEqual(resp.data, expected) class FlaskContextTestCase(TestCase): """Flask-Liquid test case using Flask context processors.""" def setUp(self): self.app = create_app( config={"LIQUID_FLASK_CONTEXT_PROCESSORS": True}, globals={"you": "World"}, ) self.async_app = create_async_app( config={"LIQUID_FLASK_CONTEXT_PROCESSORS": True}, globals={"you": "World"}, ) def test_context_processor(self): """Test that we can use context variables from context processors in liquid templates.""" with self.app.test_client() as client: resp = client.get("/contextprocessor") self.assertEqual(resp.data, b"some") @skipIf(SKIP_ASYNC, "async views require flask>=2") def test_context_processor_async(self): """Test that we can use context variables from context processors in liquid templates.""" with self.async_app.test_client() as client: resp = client.get("/contextprocessor") self.assertEqual(resp.data, b"some") def test_blueprint_context_processor(self): """Test that we can use context variables from context processors registered on blueprints.""" with self.app.test_client() as client: resp = client.get("/blue/greeting") self.assertEqual(resp.data, b"Goodbye, World.") class NoSignalsTestCase(TestCase): """Flask-Liquid test case using Flask signals.""" def setUp(self): self.app = create_app( config={ "LIQUID_FLASK_SIGNALS": False, "LIQUID_TEMPLATE_FOLDER": "tests/templates/", }, globals={"you": "World"}, ) def test_template_rendered_signal(self): """Test that the template_rendered signal is not fired when send_flask_signals is False.""" with capture_template_rendered(self.app) as templates: resp = self.app.test_client().get("/rendertemplate") self.assertEqual(resp.data, b"Hello World") self.assertEqual(len(templates), 0) def test_before_render_template_signal(self): """Test that the before_rendered_tempplate signal is not fired when send_flask_signals is False""" with capture_before_render_templates(self.app) as templates: resp = self.app.test_client().get("/rendertemplate") self.assertEqual(resp.data, b"Hello World") self.assertEqual(len(templates), 0) class LiquidEnvironmentTestCase(TestCase): """Liquid environment configuration test case.""" def test_undefined(self): """Test that we can reference undefined variables without error.""" app = create_app( config={"LIQUID_UNDEFINED": Undefined}, ) with app.app_context(): result = render_template_string(r"Hello, {{ nosuchthing }}.") self.assertEqual(result, "Hello, .") def test_strict_undefined(self): """Test that we can set the `undefined` type.""" app = create_app( config={"LIQUID_UNDEFINED": StrictUndefined}, ) with app.app_context(): with self.assertRaises(UndefinedError): _ = render_template_string(r"Hello, {{ nosuchthing }}.") def test_lax_filters(self): """Test that undefined filters can be ignored.""" app = create_app( config={"LIQUID_STRICT_FILTERS": False}, globals={"username": "You"}, ) with app.app_context(): result = render_template_string(r"Hello, {{ username | upper }}.") self.assertEqual(result, "Hello, You.") def test_strict_filters(self): """Test that undefined filters can raise an exception.""" app = create_app( config={"LIQUID_STRICT_FILTERS": True}, globals={"username": "You"}, ) with app.app_context(): with self.assertRaises(NoSuchFilterFunc): _ = render_template_string(r"Hello, {{ username | upper }}.") def test_autoescape(self): """Test that autoescape is enabled by default.""" app = create_app( config={}, globals={"username": "You"}, ) with app.app_context(): result = render_template_string( r"Hello, {{ foo }}.", foo="<b>you</b>", ) self.assertEqual(result, "Hello, &lt;b&gt;you&lt;/b&gt;.") def test_disable_autoescape(self): """Test that we can disable autoescape.""" app = create_app( config={"LIQUID_AUTOESCAPE": False}, globals={"username": "You"}, ) with app.app_context(): result = render_template_string( r"Hello, {{ foo }}.", foo="<b>you</b>", ) self.assertEqual(result, "Hello, <b>you</b>.") def test_enable_template_comments(self): """Test that we can enable template comments.""" app = create_app( config={"LIQUID_TEMPLATE_COMMENTS": True}, globals={"username": "You"}, ) with app.app_context(): result = render_template_string(r"Hello, {# some comment -#} World!") self.assertEqual(result, "Hello, World!") def test_expression_cache(self): """Test that we can enable expresssion caching.""" app = create_app( config={"LIQUID_EXPRESSION_CACHE_SIZE": 1}, globals={"username": "You"}, ) ext: Liquid = app.extensions["flask_liquid"] self.assertTrue(hasattr(ext.env.parse_filtered_expression_value, "cache_info")) ```
{ "source": "jg-rp/liquid-extra", "score": 2 }
#### File: liquid_extra/filters/html.py ```python import html from liquid import Markup from liquid import escape from liquid.filter import string_filter from liquid.filter import with_environment from liquid import Environment @string_filter @with_environment def stylesheet_tag(url: str, *, environment: Environment) -> str: """Wrap a URL in an HTML stylesheet tag.""" tag = '<link href="{}" rel="stylesheet" type="text/css" media="all" />' if environment.autoescape: # We are deliberately forcing possible Markup strings to normal strings. We do # not want markup in the middle of a link tag. return Markup(tag).format(escape(str(url))) return tag.format(html.escape(url)) @string_filter @with_environment def script_tag(url: str, *, environment: Environment) -> str: """Wrap a URL in an HTML script tag.""" tag = '<script src="{}" type="text/javascript"></script>' if environment.autoescape: # We are deliberately forcing possible Markup strings to normal strings. We do # not want markup in the middle of a script tag. return Markup(tag).format(escape(str(url))) return tag.format(html.escape(url)) ``` #### File: liquid_extra/tags/withblock.py ```python from __future__ import annotations import sys from functools import partial from typing import TYPE_CHECKING from typing import Dict from typing import NamedTuple from typing import Optional from typing import TextIO from liquid.ast import Node from liquid.ast import BlockNode from liquid.context import Context from liquid.expression import Expression from liquid.lex import include_expression_rules from liquid.lex import _compile_rules from liquid.lex import _tokenize from liquid.parse import expect from liquid.parse import get_parser from liquid.parse import parse_expression from liquid.parse import parse_unchained_identifier from liquid.stream import TokenStream from liquid.tag import Tag from liquid.token import Token from liquid.token import TOKEN_TAG from liquid.token import TOKEN_EXPRESSION from liquid.token import TOKEN_TRUE from liquid.token import TOKEN_FALSE from liquid.token import TOKEN_NIL from liquid.token import TOKEN_NULL from liquid.token import TOKEN_COLON from liquid.token import TOKEN_AS from liquid.token import TOKEN_EOF from liquid.token import TOKEN_COMMA if TYPE_CHECKING: # pragma: no cover from liquid import Environment TAG_WITH = sys.intern("with") TAG_ENDWITH = sys.intern("endwith") with_expression_keywords = frozenset( [ TOKEN_TRUE, TOKEN_FALSE, TOKEN_NIL, TOKEN_NULL, TOKEN_AS, ] ) # We're borrowing token rules from the `include` tag, with our own set of valid # keywords. tokenize_with_expression = partial( _tokenize, rules=_compile_rules(include_expression_rules), keywords=with_expression_keywords, ) class WithKeywordArg(NamedTuple): name: str expr: Expression class WithNode(Node): def __init__(self, tok: Token, args: Dict[str, Expression], block: BlockNode): self.tok = tok self.args = args self.block = block def render_to_output(self, context: Context, buffer: TextIO) -> Optional[bool]: namespace = {k: v.evaluate(context) for k, v in self.args.items()} with context.extend(namespace): return self.block.render(context, buffer) class WithTag(Tag): name = TAG_WITH end = TAG_ENDWITH def __init__(self, env: Environment): super().__init__(env) self.parser = get_parser(self.env) def parse(self, stream: TokenStream) -> Node: expect(stream, TOKEN_TAG, value=TAG_WITH) tok = stream.current stream.next_token() expect(stream, TOKEN_EXPRESSION) expr_stream = TokenStream(tokenize_with_expression(stream.current.value)) # A dictionary to help handle duplicate keywords. args = {} while expr_stream.current.type != TOKEN_EOF: key, expr = self.parse_argument(expr_stream) args[key] = expr if expr_stream.current.type == TOKEN_COMMA: expr_stream.next_token() # Eat comma stream.next_token() block = self.parser.parse_block(stream, (TAG_ENDWITH, TOKEN_EOF)) expect(stream, TOKEN_TAG, value=TAG_ENDWITH) return WithNode(tok=tok, args=args, block=block) # pylint: disable=no-self-use def parse_argument(self, stream: TokenStream) -> WithKeywordArg: """Parse a keyword argument from a stream of tokens.""" key = str(parse_unchained_identifier(stream)) stream.next_token() expect(stream, TOKEN_COLON) stream.next_token() # Eat colon val = parse_expression(stream) stream.next_token() return WithKeywordArg(key, val) ``` #### File: liquid-extra/tests/test_if_not_tag.py ```python from unittest import TestCase from typing import Mapping from typing import NamedTuple from typing import Any from liquid.context import Context from liquid.environment import Environment from liquid.loaders import DictLoader from liquid.stream import TokenStream from liquid import Mode from liquid.exceptions import Error from liquid.expression import BooleanExpression from liquid.expression import IdentifierPathElement from liquid.expression import Identifier from liquid.expression import Boolean from liquid.expression import StringLiteral from liquid.expression import IntegerLiteral from liquid.expression import FloatLiteral from liquid.expression import PrefixExpression from liquid.expression import InfixExpression from liquid.golden.if_tag import cases as golden_cases from liquid.token import Token from liquid.token import TOKEN_IDENTIFIER from liquid.token import TOKEN_STRING from liquid.token import TOKEN_INTEGER from liquid.token import TOKEN_NIL from liquid.token import TOKEN_TRUE from liquid.token import TOKEN_FALSE from liquid.token import TOKEN_CONTAINS from liquid.token import TOKEN_DOT from liquid.token import TOKEN_AND from liquid.token import TOKEN_OR from liquid.token import TOKEN_EQ from liquid.token import TOKEN_NE from liquid.token import TOKEN_LG from liquid.token import TOKEN_GT from liquid.token import TOKEN_LE from liquid.token import TOKEN_GE from liquid.token import TOKEN_LPAREN from liquid.token import TOKEN_RPAREN from liquid.token import TOKEN_RANGE from liquid_extra.tags.if_not import tokenize_boolean_not_expression from liquid_extra.tags.if_not import NotExpressionParser from liquid_extra.tags.if_not import NotPrefixExpression from liquid_extra.tags.if_not import TOKEN_NOT from liquid_extra.tags.if_not import TOKEN_RANGELPAREN from liquid_extra.tags import IfNotTag class LexerCase(NamedTuple): description: str source: str expect: Any class ParserCase(NamedTuple): description: str expression: str expect: Any class EvalCase(NamedTuple): description: str context: Mapping expression: str expect: Any class RenderCase(NamedTuple): description: str template: str expect: str globals: Mapping[str, Any] = {} partials: Mapping[str, Any] = {} class BooleanLexerTestCase(TestCase): def test_lex_boolean_expression(self): """Test that we can tokenize comparison expressions.""" test_cases = [ LexerCase( "literal boolean", "false == true", [ Token(1, TOKEN_FALSE, "false"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_TRUE, "true"), ], ), LexerCase( "not nil identifier", "user != nil", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_NE, "!="), Token(1, TOKEN_NIL, "nil"), ], ), LexerCase( "alternate not nil", "user <> nil", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_LG, "<>"), Token(1, TOKEN_NIL, "nil"), ], ), LexerCase( "identifier equals string literal", "user.name == 'brian'", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "name"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_STRING, "brian"), ], ), LexerCase( "equality with or", "user.name == 'bill' or user.name == 'bob'", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "name"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_STRING, "bill"), Token(1, TOKEN_OR, "or"), Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "name"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_STRING, "bob"), ], ), LexerCase( "equality with and", "user.name == 'bob' and user.age > 45", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "name"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_STRING, "bob"), Token(1, TOKEN_AND, "and"), Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "age"), Token(1, TOKEN_GT, ">"), Token(1, TOKEN_INTEGER, "45"), ], ), LexerCase( "greater than or equal to integer literal", "user.age >= 21", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "age"), Token(1, TOKEN_GE, ">="), Token(1, TOKEN_INTEGER, "21"), ], ), LexerCase( "less than or equal to integer literal", "user.age <= 21", [ Token(1, TOKEN_IDENTIFIER, "user"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "age"), Token(1, TOKEN_LE, "<="), Token(1, TOKEN_INTEGER, "21"), ], ), LexerCase( "identifier contains string", "product.tags contains 'sale'", [ Token(1, TOKEN_IDENTIFIER, "product"), Token(1, TOKEN_DOT, "."), Token(1, TOKEN_IDENTIFIER, "tags"), Token(1, TOKEN_CONTAINS, "contains"), Token(1, TOKEN_STRING, "sale"), ], ), LexerCase( "literal boolean not true", "false == not true", [ Token(1, TOKEN_FALSE, "false"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_NOT, "not"), Token(1, TOKEN_TRUE, "true"), ], ), LexerCase( "literal boolean not false", "false == not false", [ Token(1, TOKEN_FALSE, "false"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_NOT, "not"), Token(1, TOKEN_FALSE, "false"), ], ), LexerCase( "parens", "(false and false)", [ Token(1, TOKEN_LPAREN, "("), Token(1, TOKEN_FALSE, "false"), Token(1, TOKEN_AND, "and"), Token(1, TOKEN_FALSE, "false"), Token(1, TOKEN_RPAREN, ")"), ], ), LexerCase( "range literals", "(1..3) == (1..3)", [ Token(1, TOKEN_RANGELPAREN, "("), Token(1, TOKEN_INTEGER, "1"), Token(1, TOKEN_RANGE, ".."), Token(1, TOKEN_INTEGER, "3"), Token(1, TOKEN_RPAREN, ")"), Token(1, TOKEN_EQ, "=="), Token(1, TOKEN_RANGELPAREN, "("), Token(1, TOKEN_INTEGER, "1"), Token(1, TOKEN_RANGE, ".."), Token(1, TOKEN_INTEGER, "3"), Token(1, TOKEN_RPAREN, ")"), ], ), ] for case in test_cases: with self.subTest(msg=case.description): tokens = list(tokenize_boolean_not_expression(case.source)) self.assertTrue(len(tokens) == len(case.expect)) for got, want in zip(tokens, case.expect): self.assertEqual(got, want) class BooleanExpressionParserTestCase(TestCase): """Liquid expression parser test cases.""" def _test(self, test_cases, lex_func, parse_func): """Helper method for testing lists of Cases.""" for case in test_cases: with self.subTest(msg=case.description): tokens = TokenStream(lex_func(case.expression)) expr = parse_func(tokens) self.assertEqual(expr, case.expect) def test_parse_boolean_expression(self): """Test that we can parse boolean expressions.""" test_cases = [ ParserCase( "string literal double quotes", '"foobar"', BooleanExpression( expression=StringLiteral("foobar"), ), ), ParserCase( "integer literal", "7", BooleanExpression( expression=IntegerLiteral(7), ), ), ParserCase( "negative integer literal statement expression", "-7", BooleanExpression( expression=PrefixExpression( "-", right=IntegerLiteral(7), ), ), ), ParserCase( "float literal statement expression", "3.14", BooleanExpression( expression=FloatLiteral(3.14), ), ), ParserCase( "negative float literal statement expression", "-3.14", BooleanExpression( expression=NotPrefixExpression( "-", right=FloatLiteral(3.14), ), ), ), ParserCase( "single identifier statement expression", "collection", BooleanExpression( expression=Identifier( path=[IdentifierPathElement("collection")], ), ), ), ParserCase( "chained identifier", "collection.products", BooleanExpression( expression=Identifier( path=[ IdentifierPathElement("collection"), IdentifierPathElement("products"), ], ), ), ), ParserCase( "keyword true", "true", BooleanExpression( expression=Boolean(True), ), ), ParserCase( "keyword false", "false", BooleanExpression( expression=Boolean(False), ), ), ParserCase( "boolean equality", "true == true", BooleanExpression( expression=InfixExpression( left=Boolean(True), operator="==", right=Boolean(True), ), ), ), ParserCase( "boolean inequality", "true != false", BooleanExpression( expression=InfixExpression( left=Boolean(True), operator="!=", right=Boolean(False), ), ), ), ParserCase( "boolean inequality alternate", "true <> false", BooleanExpression( expression=InfixExpression( left=Boolean(True), operator="<>", right=Boolean(False), ), ), ), ParserCase( "identifier greater than literal", "user.age > 21", BooleanExpression( expression=InfixExpression( left=Identifier( path=[ IdentifierPathElement("user"), IdentifierPathElement("age"), ], ), operator=">", right=IntegerLiteral(21), ), ), ), ParserCase( "identifier less than literal", "age < 18", BooleanExpression( expression=InfixExpression( left=Identifier( path=[IdentifierPathElement("age")], ), operator="<", right=IntegerLiteral(18), ), ), ), ParserCase( "identifier less than or equal to literal", "age <= 18", BooleanExpression( expression=InfixExpression( left=Identifier( path=[IdentifierPathElement("age")], ), operator="<=", right=IntegerLiteral(18), ), ), ), ParserCase( "identifier greater than or equal to literal", "age >= 18", BooleanExpression( expression=InfixExpression( left=Identifier( path=[IdentifierPathElement("age")], ), operator=">=", right=IntegerLiteral(18), ), ), ), ParserCase( "boolean or boolean", "true or false", BooleanExpression( expression=InfixExpression( left=Boolean(True), operator="or", right=Boolean(False), ), ), ), ParserCase( "identifier contains string", "product.tags contains 'sale'", BooleanExpression( expression=InfixExpression( left=Identifier( path=[ IdentifierPathElement("product"), IdentifierPathElement("tags"), ], ), operator="contains", right=StringLiteral("sale"), ), ), ), ParserCase( "not true", "not true", BooleanExpression( expression=NotPrefixExpression( "not", right=Boolean(True), ), ), ), ParserCase( "right associative", "true and false and false or true", BooleanExpression( expression=InfixExpression( left=Boolean(True), operator="and", right=InfixExpression( left=Boolean(False), operator="and", right=InfixExpression( left=Boolean(False), operator="or", right=Boolean(True), ), ), ), ), ), ParserCase( "grouped boolean", "(true and false and false) or true", BooleanExpression( expression=InfixExpression( left=InfixExpression( left=Boolean(True), operator="and", right=InfixExpression( left=Boolean(False), operator="and", right=Boolean(False), ), ), operator="or", right=Boolean(True), ), ), ), ParserCase( "parens", "(true and false and false)", BooleanExpression( expression=InfixExpression( left=Boolean(True), operator="and", right=InfixExpression( left=Boolean(False), operator="and", right=Boolean(False), ), ), ), ), ] expression_parser = NotExpressionParser() self._test( test_cases, tokenize_boolean_not_expression, expression_parser.parse_boolean_expression, ) class BooleanExpressionEvalTestCase(TestCase): """Boolean expression evaluator test cases.""" def _test(self, test_cases, lex_func, parse_func): """Utility method for evaluating lists of test cases.""" env = Environment() for case in test_cases: context = Context(env, case.context) with self.subTest(msg=case.description): tokens = TokenStream(lex_func(case.expression)) expr = parse_func(tokens) res = expr.evaluate(context) self.assertEqual(res, case.expect) def test_eval_boolean_expression(self): """Test that we can evaluate boolean expressions.""" test_cases = [ EvalCase( description="true literal", context={}, expression="true", expect=True, ), EvalCase( description="false literal", context={}, expression="false", expect=False, ), EvalCase( description="string literal", context={}, expression="'some'", expect=True, ), EvalCase( description="empty string", context={}, expression="''", expect=True, ), EvalCase( description="negative integer", context={}, expression="-7", expect=True, ), EvalCase( description="truthy identifier", context={"collection": {"title": "foo"}}, expression="collection.title", expect=True, ), EvalCase( description="falsey identifier", context={"collection": {"title": "foo"}}, expression="collection.tags", expect=False, ), EvalCase( description="truthy comparision", context={"user": {"age": 21}}, expression="user.age >= 21", expect=True, ), EvalCase( description="not equal comparision", context={"user": {"age": 21}}, expression="user.age != 21", expect=False, ), EvalCase( description="truthy comparision and logic operator", context={ "user": {"age": 20}, "collection": { "tags": [ "safe", ] }, }, expression="user.age >= 21 or collection.tags contains 'safe'", expect=True, ), EvalCase( description="boolean with logic operators", context={}, expression="true and false and false or true", expect=False, ), EvalCase( description="empty array", context={"a": {"array": []}}, expression="a.array == empty", expect=True, ), EvalCase( description="empty object", context={"a": {"obj": {}}}, expression="a.obj == empty", expect=True, ), EvalCase( description="not empty array", context={"a": {"array": [1, 2]}}, expression="a.array == empty", expect=False, ), EvalCase( description="not empty object", context={"a": {"obj": {"foo": "bar"}}}, expression="a.obj == empty", expect=False, ), EvalCase( description="invalid comparison to empty", context={"a": {"foo": 1}}, expression="a.foo == empty", expect=False, ), EvalCase( description="empty equals empty", context={}, expression="empty == empty", expect=True, ), EvalCase( description="empty not equals true", context={}, expression="empty != true", expect=True, ), EvalCase( description="nil equals nil", context={}, expression="nil == nil", expect=True, ), EvalCase( description="string contains string", context={}, expression="'hello' contains 'ell'", expect=True, ), EvalCase( description="string contains int", context={}, expression="'hel1lo' contains 1", expect=True, ), EvalCase( description="string not equal int", context={}, expression="'hello' != 1", expect=True, ), EvalCase( description="array contains", context={"foo": [1, 2, 4]}, expression="foo contains 2", expect=True, ), EvalCase( description="array does not contain", context={"foo": [1, 2, 4]}, expression="foo contains 3", expect=False, ), EvalCase( description="int equals", context={}, expression="1 == 1", expect=True, ), EvalCase( description="int less than", context={}, expression="1 < 2", expect=True, ), EvalCase( description="int less than or equal", context={}, expression="1 <= 1", expect=True, ), EvalCase( description="int greater than", context={}, expression="1 > 0", expect=True, ), EvalCase( description="int greater than or equal", context={}, expression="1 >= 1", expect=True, ), EvalCase( description="true equals true", context={}, expression="true == true", expect=True, ), EvalCase( description="true equal false", context={}, expression="true == false", expect=False, ), EvalCase( description="true not equal false", context={}, expression="true != false", expect=True, ), EvalCase( description="string equals int", context={}, expression="'2' == 2", expect=False, ), EvalCase( description="empty string is truthy", context={}, expression="''", expect=True, ), EvalCase( description="empty string and string is truthy", context={}, expression="'' and 'foo'", expect=True, ), EvalCase( description="float equals int", context={}, expression="1 == 1.0", expect=True, ), EvalCase( description="not true literal", context={}, expression="not true", expect=False, ), EvalCase( description="not false literal", context={}, expression="not false", expect=True, ), EvalCase( description="not nil literal", context={}, expression="not nil", expect=True, ), EvalCase( description="not empty", context={}, expression="not empty", expect=False, ), EvalCase( description="not string literal", context={}, expression="not 'some'", expect=False, ), EvalCase( description="not empty string", context={}, expression="not ''", expect=False, ), EvalCase( description="boolean with logic not operators", context={}, expression="true and not false", expect=True, ), EvalCase( description="grouped boolean with logic operators", context={}, expression="(true and false and false) or true", expect=True, ), EvalCase( description="nested grouped boolean with logic operators", context={}, expression="((true or false) or (false)) and true", expect=True, ), EvalCase( description="grouped boolean with not", context={}, expression="(true and false and false) or not true", expect=False, ), EvalCase( description="range literal equals range literal", context={}, expression="(1..3) == (1..3)", expect=True, ), ] expression_parser = NotExpressionParser() self._test( test_cases, tokenize_boolean_not_expression, expression_parser.parse_boolean_expression, ) class BooleanRenderTestCases(TestCase): """Test cases for testing template renders.""" def _test(self, test_cases): """Helper method for testing lists of test cases.""" for case in test_cases: env = Environment(loader=DictLoader(case.partials)) env.add_tag(IfNotTag) template = env.from_string(case.template, globals=case.globals) with self.subTest(msg=case.description): result = template.render() self.assertEqual(result, case.expect) def test_if_not_tag(self): """Test that we can render `if` tags.""" test_cases = [ RenderCase( description="condition with literal consequence", template=r"{% if product.title == 'foo' %}bar{% endif %}", expect="bar", globals={"product": {"title": "foo"}}, ), RenderCase( description=( "condition with literal consequence and literal alternative" ), template=( r"{% if product.title == 'hello' %}bar{% else %}baz{% endif %}" ), expect="baz", globals={"product": {"title": "foo"}}, ), RenderCase( description="condition with conditional alternative", template=( r"{% if product.title == 'hello' %}" r"foo" r"{% elsif product.title == 'foo' %}" r"bar" r"{% endif %}" ), expect="bar", globals={"product": {"title": "foo"}}, ), RenderCase( description=( "condition with conditional alternative and final alternative" ), template=( r"{% if product.title == 'hello' %}" r"foo" r"{% elsif product.title == 'goodbye' %}" r"bar" r"{% else %}" r"baz" r"{% endif %}" ), expect="baz", globals={"product": {"title": "foo"}}, ), RenderCase( description="truthy-ness of a dictionary", template=r"{% if product %}bar{% else %}foo{% endif %}", expect="bar", globals={"product": {"title": "foo"}}, ), RenderCase( description="falsey-ness of a literal nil", template=r"{% if nil %}bar{% else %}foo{% endif %}", expect="foo", ), RenderCase( description="falsey-ness of a non existant name", template=r"{% if nosuchthing %}bar{% else %}foo{% endif %}", expect="foo", ), RenderCase( description="nested condition in the consequence block", template=( r"{% if product %}" r"{% if title == 'Hello' %}baz{% endif %}" r"{% endif %}" ), expect="baz", globals={ "product": {"title": "foo"}, "title": "Hello", }, ), RenderCase( description="nested condition, alternative in the consequence block", template=( r"{% if product %}" r"{% if title == 'goodbye' %}" r"baz" r"{% else %}" r"hello" r"{% endif %}" r"{% endif %}" ), expect="hello", globals={"product": {"title": "foo"}, "title": "Hello"}, ), RenderCase( description="false", template=r"{% if false %}{% endif %}", expect="", ), RenderCase( description="contains condition", template=r"{% if product.tags contains 'garden' %}baz{% endif %}", expect="baz", globals={"product": {"tags": ["sports", "garden"]}}, ), RenderCase( description="not equal condition", template=r"{% if product.title != 'foo' %}baz{% endif %}", expect="", globals={"product": {"title": "foo"}}, ), RenderCase( description="alternate not equal condition", template=r"{% if product.title <> 'foo' %}baz{% endif %}", expect="", globals={"product": {"title": "foo"}}, ), RenderCase( description="blank empty 'if'", template=r"{% if true %} {% elsif false %} {% else %} {% endif %}", expect="", ), RenderCase( description="blank nested block", template=( r"{% if true %} " r"{% comment %} this is blank {% endcomment %} " r"{% endif %}" ), expect="", ), RenderCase( description="not false", template=r"{% if not false %}foo{% endif %}", expect="foo", ), RenderCase( description="not true", template=r"{% if not true %}foo{% endif %}", expect="", ), RenderCase( description="literal boolean filter", template=r"{{ false | default: true }}", expect="true", ), RenderCase( description="not comparison to empty", template=r"{% if not '' == empty %}foo{% endif %}", expect="", ), RenderCase( description="not contains", template=r"{% if not foo contains 'z' %}bar{% endif %}", expect="bar", globals={"foo": ["a", "b", "c"]}, ), RenderCase( description="and not", template=r"{% if not foo and not bar %}hello{% endif %}", expect="hello", globals={"foo": False, "bar": False}, ), RenderCase( description="true and not", template=r"{% if foo and not bar %}hello{% endif %}", expect="hello", globals={"foo": True, "bar": False}, ), RenderCase( description="not equals", template=r"{% if not foo == True %}hello{% endif %}", expect="hello", globals={"foo": False}, ), RenderCase( description="not not equals False", template=r"{% if not foo != true %}hello{% endif %}", expect="", globals={"foo": False}, ), RenderCase( description="not not equals true", template=r"{% if not foo != true %}hello{% endif %}", expect="hello", globals={"foo": True}, ), RenderCase( description="not contains with parens", template=r"{% if not (foo contains 'z') %}bar{% endif %}", expect="bar", globals={"foo": ["a", "b", "c"]}, ), ] self._test(test_cases) def test_golden_if(self): """Test liquid's golden test cases.""" for case in golden_cases: env = Environment( loader=DictLoader(case.partials), tolerance=Mode.STRICT, ) with self.subTest(msg=case.description): if case.error: with self.assertRaises(Error): template = env.from_string(case.template, globals=case.globals) result = template.render() else: template = env.from_string(case.template, globals=case.globals) result = template.render() self.assertEqual(result, case.expect) ``` #### File: liquid-extra/tests/test_json_filter.py ```python from dataclasses import dataclass from dataclasses import is_dataclass from dataclasses import asdict from liquid.exceptions import FilterArgumentError from liquid_extra.filters import JSON from .base import FilterTestCase from .base import RenderFilterTestCase from .base import Case from .base import RenderCase @dataclass class MockData: length: int width: int class JSONFilterTestCase(FilterTestCase): """Test the JSON template filter.""" def test_json_filter(self): test_cases = [ Case( description="serialize a string", val="hello", args=[], kwargs={}, expect='"hello"', ), Case( description="serialize an int", val=42, args=[], kwargs={}, expect="42", ), Case( description="serialize a dict with list", val={"foo": [1, 2, 3]}, args=[], kwargs={}, expect='{"foo": [1, 2, 3]}', ), Case( description="serialize an arbitrary object", val={"foo": MockData(3, 4)}, args=[], kwargs={}, expect=FilterArgumentError, ), ] self.env.add_filter(JSON.name, JSON()) self._test(self.ctx.filter(JSON.name), test_cases) def test_json_with_encoder_func(self): test_cases = [ Case( description="serialize a dataclass", val={"foo": MockData(3, 4)}, args=[], kwargs={}, expect=r'{"foo": {"length": 3, "width": 4}}', ), Case( description="serialize an arbitrary object", val={"foo": object()}, args=[], kwargs={}, expect=FilterArgumentError, ), ] def default(obj): if is_dataclass(obj): return asdict(obj) raise TypeError(f"can't serialize object {obj}") self.env.add_filter(JSON.name, JSON(default=default)) self._test(self.ctx.filter(JSON.name), test_cases) class RenderJSONFilterTestCase(RenderFilterTestCase): """Test the JSON filter from a template.""" def test_render_json_filter(self): test_cases = [ RenderCase( description="render a string literal as JSON", template=r"{{ 'hello' | json }}", expect='"hello"', globals={}, partials={}, ), RenderCase( description="render a tuple of ints", template=r"{{ dat | json }}", expect="[1, 2, 3]", globals={"dat": (1, 2, 3)}, partials={}, ), ] self._test(JSON(), test_cases) def test_render_json_with_encoder_func(self): test_cases = [ RenderCase( description="render an arbitrary object as JSON", template=r"{{ foo | json }}", expect=FilterArgumentError, globals={"foo": object()}, partials={}, ), RenderCase( description="render a dataclass as JSON", template=r"{{ foo | json }}", expect=r'{"length": 3, "width": 4}', globals={"foo": MockData(3, 4)}, partials={}, ), ] def default(obj): if is_dataclass(obj): return asdict(obj) raise TypeError(f"can't serialize object {obj}") self._test(JSON(default=default), test_cases) ``` #### File: liquid-extra/tests/test_t_filter.py ```python from liquid_extra.filters import Translate from .base import FilterTestCase from .base import RenderFilterTestCase from .base import Case from .base import RenderCase mock_locales = { "default": { "layout": { "greeting": r"Hello {{ name }}", }, "cart": { "general": { "title": "Shopping Basket", }, }, "pagination": { "next": "Next Page", }, }, "de": { "layout": { "greeting": r"Hallo {{ name }}", }, "cart": { "general": { "title": "Warenkorb", }, }, "pagination": { "next": "Nächste Seite", }, }, } class TranslateFilterTestCase(FilterTestCase): """Test the Translate template filter.""" def test_translate_filter(self): test_cases = [ Case( description="default locale", val="cart.general.title", args=[], kwargs={}, expect="Shopping Basket", ), Case( description="default locale missing key", val="foo.bar", args=[], kwargs={}, expect="foo.bar", ), Case( description="default locale not a string", val=42, args=[], kwargs={}, expect="42", ), Case( description="default locale interpopulate", val="layout.greeting", args=[], kwargs={"name": "World"}, expect="Hello World", ), ] self.env.add_filter(Translate.name, Translate(locales=mock_locales)) self._test(self.ctx.filter(Translate.name), test_cases) def test_translate_filter_with_locale(self): test_cases = [ Case( description="de locale", val="cart.general.title", args=[], kwargs={}, expect="Warenkorb", ), Case( description="de locale missing key", val="foo.bar", args=[], kwargs={}, expect="foo.bar", ), Case( description="de locale not a string", val=42, args=[], kwargs={}, expect="42", ), Case( description="de locale interpopulate", val="layout.greeting", args=[], kwargs={"name": "Welt"}, expect="Hallo Welt", ), ] self.env.add_filter(Translate.name, Translate(locales=mock_locales)) self.ctx.assign("locale", "de") self._test(self.ctx.filter(Translate.name), test_cases) class RenderTranslateFilterTestCase(RenderFilterTestCase): """Test the Translate filter from a template.""" def test_render_translate_filter(self): test_cases = [ RenderCase( description="default locale", template=r"{{ 'cart.general.title' | t }}", expect="Shopping Basket", globals={}, partials={}, ), RenderCase( description="default locale missing key", template=r"{{ 'foobar' | t }}", expect="foobar", globals={}, partials={}, ), RenderCase( description="default locale interpopulate", template=r"{{ 'layout.greeting' | t: name: 'World' }}", expect="Hello World", globals={}, partials={}, ), RenderCase( description="default locale interpopulate from context", template=r"{{ 'layout.greeting' | t: name: user.name }}", expect="Hello World", globals={"user": {"name": "World"}}, partials={}, ), RenderCase( description="de locale", template=r"{{ 'cart.general.title' | t }}", expect="Warenkorb", globals={"locale": "de"}, partials={}, ), ] self._test(Translate(locales=mock_locales), test_cases) ``` #### File: liquid-extra/tests/test_with_tag.py ```python from dataclasses import dataclass from dataclasses import field from typing import Dict from unittest import TestCase from liquid import Environment from liquid_extra.tags import WithTag @dataclass class Case: """Table driven test helper.""" description: str template: str expect: str globals: Dict[str, object] = field(default_factory=dict) class RenderWithTagTestCase(TestCase): def test_render_with_tag(self): """Test that we can render a `with` tag.""" test_cases = [ Case( description="block scoped variable", template=r"{{ x }}{% with x: 'foo' %}{{ x }}{% endwith %}{{ x }}", expect="foo", ), Case( description="block scoped alias", template=( r"{% with p: collection.products.first %}" r"{{ p.title }}" r"{% endwith %}" r"{{ p.title }}" r"{{ collection.products.first.title }}" ), expect="A ShoeA Shoe", globals={"collection": {"products": [{"title": "A Shoe"}]}}, ), Case( description="multiple block scoped variables", template=( r"{% with a: 1, b: 3.4 %}" r"{{ a }} + {{ b }} = {{ a | plus: b }}" r"{% endwith %}" ), expect="1 + 3.4 = 4.4", ), ] env = Environment() env.add_tag(WithTag) for case in test_cases: with self.subTest(msg=case.description): template = env.from_string(case.template, globals=case.globals) self.assertEqual(template.render(), case.expect) ```
{ "source": "jg-rp/liquid", "score": 3 }
#### File: builtin/filters/math.py ```python import math import decimal from typing import Optional from typing import Union from liquid.context import is_undefined from liquid.exceptions import FilterArgumentError from liquid.filter import math_filter from liquid.filter import num_arg from liquid.filter import int_arg DecimalT = decimal.Decimal NumberT = Union[float, int] @math_filter def abs_(num: NumberT) -> NumberT: """Return the absolute value of a number. Accepts an int, float or a string representations of an int or float. """ return abs(num) @math_filter def at_most(num: NumberT, other: NumberT) -> NumberT: """Return `val` or `args[0]`, whichever is smaller. Accepts an int, float or a string representations of an int or float. """ other = num_arg(other, default=0) return min(num, other) @math_filter def at_least(num: NumberT, other: NumberT) -> NumberT: """Return `val` or `args[0]`, whichever is greater. Accepts an int, float or a string representations of an int or float. """ other = num_arg(other, default=0) return max(num, other) @math_filter def ceil(num: NumberT) -> NumberT: """Return the ceiling of x as an Integral. Accepts an int, float or a string representations of an int or float. """ return math.ceil(num) @math_filter def divided_by(num: NumberT, other: object) -> NumberT: """Divide `num` by `other`.""" other = num_arg(other, default=0) try: if isinstance(other, int): return num // other return num / other except ZeroDivisionError as err: raise FilterArgumentError(f"divided_by: can't divide by {other}") from err @math_filter def floor(num: NumberT) -> NumberT: """Return the floor of x as an Integral. Accepts an int, float or a string representations of an int or float. """ return math.floor(num) @math_filter def minus(num: NumberT, other: NumberT) -> NumberT: """Subtract one number from another.""" other = num_arg(other, default=0) if isinstance(num, int) and isinstance(other, int): return num - other return float(DecimalT(str(num)) - DecimalT(str(other))) @math_filter def plus(num: NumberT, other: NumberT) -> NumberT: """Add one number to another.""" other = num_arg(other, default=0) if isinstance(num, int) and isinstance(other, int): return num + other return float(DecimalT(str(num)) + DecimalT(str(other))) @math_filter def round_(num: NumberT, ndigits: Optional[int] = None) -> NumberT: """Round a number to a given precision in decimal digits.""" if ndigits or is_undefined(ndigits): ndigits = int_arg(ndigits, default=0) return round(num, ndigits) return round(num) @math_filter def times(num: NumberT, other: NumberT) -> NumberT: """Multiply a value by an integer or float.""" other = num_arg(other, default=0) if isinstance(num, int) and isinstance(other, int): return num * other return float(DecimalT(str(num)) * DecimalT(str(other))) @math_filter def modulo(num: NumberT, other: NumberT) -> NumberT: """Divide a value by a number and returns the remainder.""" other = num_arg(other, default=0) try: if isinstance(num, int) and isinstance(other, int): return num % other return float(DecimalT(str(num)) % DecimalT(str(other))) except ZeroDivisionError as err: raise FilterArgumentError(f"modulo: can't divide by {other}") from err ``` #### File: builtin/filters/misc.py ```python from __future__ import annotations import datetime import functools from typing import Any from typing import Union from typing import TYPE_CHECKING from dateutil import parser try: from markupsafe import Markup except ImportError: from liquid.exceptions import Markup # type: ignore from liquid import is_undefined from liquid.filter import liquid_filter from liquid.filter import with_environment from liquid.exceptions import FilterArgumentError from liquid.expression import EMPTY if TYPE_CHECKING: from liquid import Environment @liquid_filter def size(obj: Any) -> int: """Return the length of an array or string.""" try: return len(obj) except TypeError: return 0 @liquid_filter def default(obj: Any, default_: object = "", *, allow_false: bool = False) -> Any: """Return a default value if the input is nil, false, or empty.""" _obj = obj if hasattr(obj, "__liquid__"): _obj = obj.__liquid__() if allow_false is True and _obj is False: return obj if _obj in (None, False, EMPTY) or is_undefined(_obj): return default_ return obj @with_environment @liquid_filter @functools.lru_cache(maxsize=10) def date( dat: Union[datetime.datetime, str], fmt: str, *, environment: Environment ) -> str: """Formats a datetime according the the given format string.""" if is_undefined(dat): return "" if is_undefined(fmt): return str(dat) if isinstance(dat, str): if dat in ("now", "today"): dat = datetime.datetime.now() else: dat = parser.parse(dat) if not isinstance(dat, (datetime.datetime, datetime.date)): raise FilterArgumentError( f"date expected datetime.datetime, found {type(dat).__name__}" ) rv = dat.strftime(fmt) if environment.autoescape and isinstance(fmt, Markup): return Markup(rv) return rv ``` #### File: builtin/tags/include_tag.py ```python import sys from typing import Optional from typing import Dict from typing import Any from typing import TextIO from typing import Tuple from liquid.ast import Node from liquid.builtin.drops import IterableDrop from liquid.context import Context from liquid.expression import Expression from liquid.expression import Identifier from liquid.exceptions import LiquidSyntaxError from liquid.lex import tokenize_include_expression from liquid.stream import TokenStream from liquid.tag import Tag from liquid.parse import expect from liquid.parse import parse_identifier from liquid.parse import parse_expression from liquid.parse import parse_string_or_identifier from liquid.parse import parse_unchained_identifier from liquid.token import Token from liquid.token import TOKEN_TAG from liquid.token import TOKEN_EXPRESSION from liquid.token import TOKEN_IDENTIFIER from liquid.token import TOKEN_WITH from liquid.token import TOKEN_FOR from liquid.token import TOKEN_AS from liquid.token import TOKEN_COMMA from liquid.token import TOKEN_COLON from liquid.token import TOKEN_EOF TAG_INCLUDE = sys.intern("include") class IncludeNode(Node): """Parse tree node for the built-in "include" tag.""" __slots__ = ("tok", "name", "var", "alias", "args") def __init__( self, tok: Token, name: Expression, var: Optional[Identifier] = None, alias: Optional[str] = None, args: Optional[Dict[str, Any]] = None, ): self.tok = tok self.name = name self.var = var self.alias = alias self.args = args or {} def __str__(self) -> str: buf = [f"{self.name}"] if self.var: buf.append(f" with {self.var}") if self.alias: buf.append(f" as {self.alias}") if self.args: buf.append(", ") args = (f"{key}={val}" for key, val in self.args.items()) buf.append(", ".join(args)) return f"include({''.join(buf)})" def __repr__(self) -> str: return f"IncludeNode(tok={self.tok!r}, name={self.name})" # pragma: no cover def render_to_output(self, context: Context, buffer: TextIO) -> Optional[bool]: name = self.name.evaluate(context) template = context.get_template(str(name)) namespace: Dict[str, object] = {} # Add any keyword arguments to the new template context. for key, val in self.args.items(): namespace[key] = val.evaluate(context) with context.extend(namespace): # Bind a variable to the included template. if self.var is not None: val = self.var.evaluate(context) key = self.alias or template.name.split(".")[0] # If the variable is array-like, render the template once for each # item in the array. # # The reference implementation does not seem to distinguish between # "for" and "with". Just checks for array-like-ness. if isinstance(val, (tuple, list, IterableDrop)): # NOTE: What if an included template with a bound array updates # a keyword argument value? Do we need to update namespace # arguments after each loop? # # The reference implementation seems to evaluate arguments once, # before the loop. for itm in val: namespace[key] = itm template.render_with_context(context, buffer, partial=True) else: namespace[key] = val template.render_with_context(context, buffer, partial=True) else: template.render_with_context(context, buffer, partial=True) return True async def render_to_output_async( self, context: Context, buffer: TextIO ) -> Optional[bool]: """Same as ``render_to_output`` but uses async versions of get_template and render_with_context.""" name = await self.name.evaluate_async(context) template = await context.get_template_async(str(name)) namespace: Dict[str, object] = {} for key, val in self.args.items(): namespace[key] = await val.evaluate_async(context) with context.extend(namespace): if self.var is not None: val = await self.var.evaluate_async(context) key = self.alias or template.name.split(".")[0] if isinstance(val, (tuple, list, IterableDrop)): for itm in val: namespace[key] = itm await template.render_with_context_async( context, buffer, partial=True ) else: namespace[key] = val await template.render_with_context_async( context, buffer, partial=True ) else: await template.render_with_context_async(context, buffer, partial=True) return True class IncludeTag(Tag): """The built-in "include" tag.""" name = TAG_INCLUDE block = False def parse(self, stream: TokenStream) -> IncludeNode: """Read an IncludeNode from the given stream of tokens.""" expect(stream, TOKEN_TAG, value=self.name) tok = stream.current stream.next_token() expect(stream, TOKEN_EXPRESSION) expr_stream = TokenStream(tokenize_include_expression(stream.current.value)) # Need a string or identifier that resolves to a string. This is the name # of the template to be included. name = parse_string_or_identifier(expr_stream, linenum=tok.linenum) expr_stream.next_token() identifier: Optional[Identifier] = None alias: Optional[str] = None # Optionally bind a variable to the included template context if expr_stream.current.type in (TOKEN_WITH, TOKEN_FOR): expr_stream.next_token() # Eat 'with' or 'for' expect(expr_stream, TOKEN_IDENTIFIER) identifier = parse_identifier(expr_stream) expr_stream.next_token() # The bound variable will take the name of the template by default, # or an alias if an identifier follows the "as" keyword. if expr_stream.current.type == TOKEN_AS: expr_stream.next_token() # Eat 'as' expect(expr_stream, TOKEN_IDENTIFIER) alias = str(parse_unchained_identifier(expr_stream)) expr_stream.next_token() # Zero or more keyword arguments args = {} # The first keyword argument might follow immediately or after a comma. if expr_stream.current.type == TOKEN_IDENTIFIER: key, val = _parse_argument(expr_stream) args[key] = val while expr_stream.current.type != TOKEN_EOF: if expr_stream.current.type == TOKEN_COMMA: expr_stream.next_token() # Eat comma key, val = _parse_argument(expr_stream) args[key] = val else: typ = expr_stream.current.type raise LiquidSyntaxError( f"expected a comma separated list of arguments, found {typ}", linenum=tok.linenum, ) return IncludeNode(tok, name=name, var=identifier, alias=alias, args=args) def _parse_argument(stream: TokenStream) -> Tuple[str, Expression]: key = str(parse_unchained_identifier(stream)) stream.next_token() expect(stream, TOKEN_COLON) stream.next_token() # Eat colon val = parse_expression(stream) stream.next_token() return key, val ``` #### File: builtin/tags/increment_tag.py ```python import sys from typing import Optional from typing import TextIO from liquid.ast import Node from liquid.context import Context from liquid.lex import tokenize_identifier from liquid.stream import TokenStream from liquid.tag import Tag from liquid.parse import expect from liquid.parse import parse_unchained_identifier from liquid.token import Token from liquid.token import TOKEN_TAG from liquid.token import TOKEN_EXPRESSION TAG_INCREMENT = sys.intern("increment") class IncrementNode(Node): """Parse tree node for the built-in "increment" tag.""" __slots__ = ("tok", "identifier") def __init__(self, tok: Token, identifier: str): self.tok = tok self.identifier = identifier def __str__(self) -> str: return f"{self.identifier} += 1" def render_to_output(self, context: Context, buffer: TextIO) -> Optional[bool]: buffer.write(str(context.increment(self.identifier))) return True class IncrementTag(Tag): """The built-in "increment" tag.""" name = TAG_INCREMENT block = False def parse(self, stream: TokenStream) -> IncrementNode: expect(stream, TOKEN_TAG, value=TAG_INCREMENT) tok = stream.current stream.next_token() expect(stream, TOKEN_EXPRESSION) tokens = TokenStream(tokenize_identifier(stream.current.value)) ident = parse_unchained_identifier(tokens) return IncrementNode(tok=tok, identifier=str(ident)) ``` #### File: builtin/tags/tablerow_tag.py ```python import math import sys from itertools import islice from typing import Any from typing import Dict from typing import List from typing import Mapping from typing import Optional from typing import TextIO from typing import Iterator from liquid.token import Token from liquid.token import TOKEN_TAG from liquid.token import TOKEN_EXPRESSION from liquid.ast import Node from liquid.ast import BlockNode from liquid.context import Context from liquid.expression import LoopExpression from liquid.expression import NIL from liquid.lex import tokenize_loop_expression from liquid.parse import expect from liquid.parse import parse_loop_expression from liquid.parse import get_parser from liquid.tag import Tag from liquid.stream import TokenStream TAG_TABLEROW = sys.intern("tablerow") TAG_ENDTABLEROW = sys.intern("endtablerow") # pylint: disable=too-many-instance-attributes class TableRow(Mapping[str, object]): """Table row helper variables.""" __slots__ = ( "name", "it", "length", "ncols", "item", "first", "last", "index", "index0", "rindex", "rindex0", "col", "col0", "col_first", "col_last", "_keys", "row", "nrows", ) def __init__(self, name: str, it: Iterator[Any], length: int, ncols: int) -> None: self.name = name self.it = it self.length = length self.ncols = ncols self.item = None self.first = False self.last = False self.index = 0 self.index0 = -1 self.rindex = self.length + 1 self.rindex0 = self.length self.col = 0 self.col0 = -1 self.col_first = True self.col_last = False # Zero based row counter is not exposed to templates. self.row = 0 self.nrows = math.ceil(self.length / self.ncols) self._keys: List[str] = [ "length", "index", "index0", "rindex", "rindex0", "first", "last", "col", "col0", "col_first", "col_last", ] def __repr__(self) -> str: # pragma: no cover return f"TableRow(name='{self.name}', length={self.length})" def __getitem__(self, key: str) -> object: if key in self._keys: return getattr(self, key) raise KeyError(key) def __len__(self) -> int: return len(self._keys) def __iter__(self) -> Iterator[Any]: return self def __next__(self) -> object: return next(self.it) def step(self) -> None: """Set the value for the current/next loop iteration and update forloop helper variables.""" self.index += 1 self.index0 += 1 self.rindex -= 1 self.rindex0 -= 1 if self.index0 == 0: self.first = True else: self.first = False if self.rindex0 == 0: self.last = True else: self.last = False self.col0 = self.index0 % self.ncols self.col = self.col0 + 1 if self.col == 1: self.col_first = True else: self.col_first = False if self.col == self.ncols: self.col_last = True else: self.col_last = False if self.col == 1: self.row += 1 class TablerowNode(Node): """Parse tree node for the built-in "tablerow" tag.""" __slots__ = ("tok", "expression", "block") def __init__( self, tok: Token, expression: LoopExpression, block: BlockNode, ): self.tok = tok self.expression = expression self.block = block def __str__(self) -> str: return f"tablerow({ self.expression }) {{ {self.block} }}" def render_to_output(self, context: Context, buffer: TextIO) -> Optional[bool]: name = self.expression.name loop_iter, length = self.expression.evaluate(context) if self.expression.cols and self.expression.cols != NIL: cols = self.expression.cols.evaluate(context) assert isinstance(cols, int) else: cols = length loop_iter = grouper(loop_iter, cols) tablerow = TableRow(name, loop_iter, length, cols) namespace: Dict[str, object] = { "tablerowloop": tablerow, name: None, } with context.extend(namespace): for i, row in enumerate(tablerow): buffer.write(f'<tr class="row{i+1}">') # Hack to mimic the odd newlines in the reference implementation. if i == 0: buffer.write("\n") for j, itm in enumerate(row): tablerow.step() namespace[name] = itm buffer.write(f'<td class="col{j+1}">') self.block.render(context=context, buffer=buffer) buffer.write("</td>") # Newline as per reference implementation. buffer.write("</tr>\n") return True async def render_to_output_async( self, context: Context, buffer: TextIO ) -> Optional[bool]: name = self.expression.name loop_iter, length = await self.expression.evaluate_async(context) if self.expression.cols and self.expression.cols != NIL: cols = await self.expression.cols.evaluate_async(context) assert isinstance(cols, int) else: cols = length loop_iter = grouper(loop_iter, cols) tablerow = TableRow(name, loop_iter, length, cols) namespace: Dict[str, object] = { "tablerowloop": tablerow, name: None, } with context.extend(namespace): for i, row in enumerate(tablerow): buffer.write(f'<tr class="row{i+1}">') if i == 0: buffer.write("\n") for j, itm in enumerate(row): tablerow.step() namespace[name] = itm buffer.write(f'<td class="col{j+1}">') await self.block.render_async(context=context, buffer=buffer) buffer.write("</td>") buffer.write("</tr>\n") return True class TablerowTag(Tag): """The built-in "tablerow" tag.""" name = TAG_TABLEROW end = TAG_ENDTABLEROW def parse(self, stream: TokenStream) -> TablerowNode: parser = get_parser(self.env) expect(stream, TOKEN_TAG, value=TAG_TABLEROW) tok = stream.current stream.next_token() expect(stream, TOKEN_EXPRESSION) expr_iter = tokenize_loop_expression(stream.current.value) loop_expression = parse_loop_expression(TokenStream(expr_iter)) stream.next_token() block = parser.parse_block(stream, (TAG_ENDTABLEROW,)) expect(stream, TOKEN_TAG, value=TAG_ENDTABLEROW) return TablerowNode(tok, expression=loop_expression, block=block) def grouper(iterator: Iterator[Any], n: int) -> Iterator[Any]: "Collect data into fixed-length chunks or blocks" # grouper('ABCDEFG', 3) --> ABC DEF G" return iter(lambda: tuple(islice(iterator, n)), ()) ``` #### File: liquid/liquid/exceptions.py ```python from typing import Any from typing import Dict from typing import Optional from typing import Type from typing import Union from pathlib import Path class Error(Exception): """Base class for all Liquid exceptions.""" def __init__( self, *args: object, linenum: Optional[int] = None, filename: Optional[Union[str, Path]] = None, ): self.linenum = linenum self.filename = filename super().__init__(*args) def __str__(self) -> str: msg = super().__str__() if self.linenum: msg = f"{msg}, on line {self.linenum}" if self.filename: msg += f" of {self.filename}" return msg @property def message(self) -> object: """Return the exception's error message if one was given.""" if self.args: return self.args[0] return None class LiquidInterrupt(Exception): """Loop interrupt""" class LiquidSyntaxError(Error): """Exception raised when there is a parser error.""" def __init__( self, *args: object, linenum: Optional[int] = None, filename: Optional[Union[str, Path]] = None, ): super().__init__(*args, linenum=linenum, filename=filename) self.source: Optional[str] = None @property def name(self) -> str: """Return the name of the template that raised this exception. Return an empty string if a name is not available.""" if isinstance(self.filename, Path): return self.filename.as_posix() if self.filename: return str(self.filename) return "" class LiquidTypeError(Error): """Exception raised when an error occurs at render time.""" class DisabledTagError(Error): """Exception raised when an attempt is made to render a disabled tag.""" class NoSuchFilterFunc(Error): """Exception raised when a filter lookup fails.""" class FilterError(Error): """Exception raised when a filter fails.""" class FilterArgumentError(Error): """Exception raised when a filters arguments are invalid.""" class FilterValueError(Error): """Exception raised when a filters value is invalid.""" class TemplateNotFound(Error): """Excpetions raised when a template could not be found.""" def __str__(self) -> str: msg = super().__str__() msg = f"template not found {msg}" return msg class ContextDepthError(Error): """Exception raised when the maximum context depth is reached. Usually indicates recursive use of ``render`` or ``include`` tags. """ class UndefinedError(Error): """Exception raised by the StrictUndefined type.""" class BreakLoop(LiquidInterrupt): """Exception raised when a BreakNode is rendered.""" class ContinueLoop(LiquidInterrupt): """Exception raised when a ContinueNode is rendered.""" class LiquidWarning(UserWarning): """Base warning.""" class LiquidSyntaxWarning(LiquidWarning): """Replaces LiquidSyntaxError when in WARN mode.""" class LiquidTypeWarning(LiquidWarning): """Replaces LiquidTypeError when in WARN mode.""" class FilterWarning(LiquidWarning): """Replaces filter exceptions when in WARN mode.""" WARNINGS: Dict[Type[Error], Type[LiquidWarning]] = { LiquidSyntaxError: LiquidSyntaxWarning, LiquidTypeError: LiquidTypeWarning, FilterArgumentError: FilterWarning, NoSuchFilterFunc: FilterWarning, } def lookup_warning(exc: Type[Error]) -> Type[LiquidWarning]: """Return a warning equivalent of the given exception.""" return WARNINGS.get(exc, LiquidWarning) def escape(val: Any) -> str: """A dummy escape function that always raises an exception.""" raise Error("autoescape requires Markupsafe to be installed") class Markup(str): """A dummy markup class that always raises an exception.""" def __init__(self, _: object): super().__init__() raise Error("autoescape requires Markupsafe to be installed") def join(self, _: object) -> str: raise Error( "autoescape requires Markupsafe to be installed" ) # pragma: no cover # pylint: disable=no-self-use,missing-function-docstring def unescape(self) -> str: raise Error( "autoescape requires Markupsafe to be installed" ) # pragma: no cover def format(self, *args: Any, **kwargs: Any) -> str: raise Error( "autoescape requires Markupsafe to be installed" ) # pragma: no cover ``` #### File: liquid/liquid/lex.py ```python from __future__ import annotations import re from functools import lru_cache from functools import partial from typing import Iterator from typing import Tuple from typing import Iterable from typing import Collection from typing import Pattern from typing import Callable from liquid.exceptions import LiquidSyntaxError from liquid.token import TOKEN_ILLEGAL from liquid.token import TOKEN_TAG from liquid.token import TOKEN_EXPRESSION from liquid.token import TOKEN_STATEMENT from liquid.token import TOKEN_LITERAL from liquid.token import TOKEN_IDENTIFIER from liquid.token import TOKEN_STRING from liquid.token import TOKEN_INTEGER from liquid.token import TOKEN_FLOAT from liquid.token import TOKEN_EMPTY from liquid.token import TOKEN_NIL from liquid.token import TOKEN_NULL from liquid.token import TOKEN_BLANK from liquid.token import TOKEN_WITH from liquid.token import TOKEN_FOR from liquid.token import TOKEN_AS from liquid.token import TOKEN_BY from liquid.token import TOKEN_NEGATIVE from liquid.token import TOKEN_TRUE from liquid.token import TOKEN_FALSE from liquid.token import TOKEN_CONTAINS from liquid.token import TOKEN_IN from liquid.token import TOKEN_LPAREN from liquid.token import TOKEN_RPAREN from liquid.token import TOKEN_RANGE from liquid.token import TOKEN_LIMIT from liquid.token import TOKEN_OFFSET from liquid.token import TOKEN_REVERSED from liquid.token import TOKEN_CONTINUE from liquid.token import TOKEN_COLS from liquid.token import TOKEN_PIPE from liquid.token import TOKEN_COLON from liquid.token import TOKEN_COMMA from liquid.token import TOKEN_DOT from liquid.token import TOKEN_LBRACKET from liquid.token import TOKEN_RBRACKET from liquid.token import TOKEN_ASSIGN from liquid.token import TOKEN_AND from liquid.token import TOKEN_OR from liquid.token import operators from liquid.token import Token __all__ = ( "tokenize_assignment_expression", "tokenize_boolean_expression", "tokenize_filtered_expression", "tokenize_loop_expression", "tokenize_identifier", "tokenize_include_expression", "tokenize_paginate_expression", "tokenize_liquid_expression", "get_lexer", "get_liquid_expression_lexer", ) IDENTIFIER_PATTERN = r"\w[a-zA-Z0-9_\-]*" STRING_PATTERN = r"(?P<quote>[\"'])(?P<quoted>.*?)(?P=quote)" identifier_rules = ( (TOKEN_INTEGER, r"\d+"), (TOKEN_STRING, STRING_PATTERN), (TOKEN_IDENTIFIER, IDENTIFIER_PATTERN), (TOKEN_DOT, r"\."), (TOKEN_LBRACKET, r"\["), (TOKEN_RBRACKET, r"]"), ("NEWLINE", r"\n"), ("SKIP", r"[ \t\r]+"), (TOKEN_ILLEGAL, r"."), ) filtered_expression_rules = ( (TOKEN_RANGE, r"\.\."), (TOKEN_LPAREN, r"\("), (TOKEN_RPAREN, r"\)"), (TOKEN_FLOAT, r"\d+\.(?!\.)\d*"), (TOKEN_INTEGER, r"\d+"), (TOKEN_NEGATIVE, r"-"), (TOKEN_STRING, STRING_PATTERN), (TOKEN_IDENTIFIER, IDENTIFIER_PATTERN), (TOKEN_DOT, r"\."), (TOKEN_COMMA, r","), (TOKEN_LBRACKET, r"\["), (TOKEN_RBRACKET, r"]"), (TOKEN_COLON, r":"), (TOKEN_PIPE, r"\|"), ("NEWLINE", r"\n"), ("SKIP", r"[ \t\r]+"), (TOKEN_ILLEGAL, r"."), ) filtered_expression_keywords = frozenset( [ TOKEN_TRUE, TOKEN_FALSE, TOKEN_NIL, TOKEN_NULL, TOKEN_EMPTY, TOKEN_BLANK, ] ) assignment_expression_rules = ( (TOKEN_ASSIGN, r"="), *filtered_expression_rules, ) boolean_expression_rules = ( (TOKEN_RANGE, r"\.\."), (TOKEN_LPAREN, r"\("), (TOKEN_RPAREN, r"\)"), (TOKEN_FLOAT, r"\d+\.(?!\.)\d*"), (TOKEN_INTEGER, r"\d+"), (TOKEN_NEGATIVE, r"-"), (TOKEN_STRING, STRING_PATTERN), (TOKEN_IDENTIFIER, r"\w[a-zA-Z0-9_\-?]*"), (TOKEN_DOT, r"\."), (TOKEN_LBRACKET, r"\["), (TOKEN_RBRACKET, r"]"), (TOKEN_COLON, r":"), ("NEWLINE", r"\n"), ("OP", r"[!=<>]{1,2}"), ("SKIP", r"[ \t\r]+"), (TOKEN_ILLEGAL, r"."), ) boolean_expression_keywords = frozenset( [ TOKEN_TRUE, TOKEN_FALSE, TOKEN_NIL, TOKEN_NULL, TOKEN_EMPTY, TOKEN_BLANK, TOKEN_AND, TOKEN_OR, TOKEN_CONTAINS, ] ) loop_expression_rules = ( (TOKEN_FLOAT, r"\d+\.(?!\.)\d*"), (TOKEN_INTEGER, r"\d+"), (TOKEN_IDENTIFIER, IDENTIFIER_PATTERN), (TOKEN_RANGE, r"\.\."), (TOKEN_DOT, r"\."), (TOKEN_LBRACKET, r"\["), (TOKEN_RBRACKET, r"]"), (TOKEN_LPAREN, r"\("), (TOKEN_RPAREN, r"\)"), (TOKEN_COLON, r":"), ("NEWLINE", r"\n"), ("SKIP", r"[ \t\r]+"), (TOKEN_ILLEGAL, r"."), ) loop_expression_keywords = frozenset( [ TOKEN_IN, TOKEN_OFFSET, TOKEN_LIMIT, TOKEN_REVERSED, TOKEN_COLS, TOKEN_CONTINUE, ] ) include_expression_rules = ( (TOKEN_RANGE, r"\.\."), (TOKEN_LPAREN, r"\("), (TOKEN_RPAREN, r"\)"), (TOKEN_FLOAT, r"\d+\.(?!\.)\d*"), (TOKEN_INTEGER, r"\d+"), (TOKEN_NEGATIVE, r"-"), (TOKEN_STRING, STRING_PATTERN), (TOKEN_IDENTIFIER, r"\w[a-zA-Z0-9_\-?]*"), (TOKEN_DOT, r"\."), (TOKEN_COMMA, r","), (TOKEN_LBRACKET, r"\["), (TOKEN_RBRACKET, r"]"), (TOKEN_COLON, r":"), ("NEWLINE", r"\n"), ("SKIP", r"[ \t\r]+"), (TOKEN_ILLEGAL, r"."), ) include_expression_keywords = frozenset( [ TOKEN_TRUE, TOKEN_FALSE, TOKEN_NIL, TOKEN_NULL, TOKEN_EMPTY, TOKEN_BLANK, TOKEN_WITH, TOKEN_FOR, TOKEN_AS, ] ) # pylint: disable=too-many-locals def compile_liquid_rules( tag_start_string: str = r"{%", tag_end_string: str = r"%}", statement_start_string: str = r"{{", statement_end_string: str = r"}}", comment_start_string: str = r"", comment_end_string: str = r"", ) -> Pattern[str]: """Compile rules for lexing liquid templates.""" tag_s = re.escape(tag_start_string) tag_e = re.escape(tag_end_string) stmt_s = re.escape(statement_start_string) stmt_e = re.escape(statement_end_string) comment_s = re.escape(comment_start_string) comment_e = re.escape(comment_end_string) raw_pattern = rf"{tag_s}\s*raw\s*{tag_e}(?P<raw>.*?){tag_s}\s*endraw\s*{tag_e}" statement_pattern = rf"{stmt_s}-?\s*(?P<stmt>.*?)\s*(?P<rss>-?){stmt_e}" # The "name" group is zero or more characters so that a malformed tag (one # with no name) does not get treated as a literal. tag_pattern = rf"{tag_s}-?\s*(?P<name>\w*)\s*(?P<expr>.*?)\s*(?P<rst>-?){tag_e}" if not comment_start_string: # Do not support shorthand comment syntax literal_pattern = rf".+?(?=(({tag_s}|{stmt_s})(?P<rstrip>-?))|$)" liquid_rules = [ ("RAW", raw_pattern), (TOKEN_STATEMENT, statement_pattern), ("TAG", tag_pattern), (TOKEN_LITERAL, literal_pattern), ] else: literal_pattern = rf".+?(?=(({tag_s}|{stmt_s}|{comment_s})(?P<rstrip>-?))|$)" comment_pattern = rf"{comment_s}(?P<comment>.*?)(?P<rsc>-?){comment_e}" liquid_rules = [ ("RAW", raw_pattern), ("COMMENT", comment_pattern), (TOKEN_STATEMENT, statement_pattern), ("TAG", tag_pattern), (TOKEN_LITERAL, literal_pattern), ] return _compile_rules(liquid_rules) def _compile_rules(rules: Iterable[Tuple[str, str]]) -> Pattern[str]: """Compile the given rules into a single regular expression.""" pattern = "|".join(f"(?P<{name}>{pattern})" for name, pattern in rules) return re.compile(pattern, re.DOTALL) # NOTE: Here we're talking about expressions found in "liquid" tags only. Each line # starts with a tag name, optionally followed by zero or more space or tab characters # and an expression, which is terminated by a newline. def _tokenize_liquid_expression( source: str, rules: Pattern[str], line_count: int = 1, comment_start_string: str = "", ) -> Iterator[Token]: """Tokenize a "liquid" tag expression.""" for match in rules.finditer(source): kind = match.lastgroup assert kind is not None line_num = line_count value = match.group() line_count += value.count("\n") if kind == "LIQUID_EXPR": name = match.group("name") if name == comment_start_string: continue yield Token(line_num, TOKEN_TAG, name) if match.group("expr"): yield Token(line_num, TOKEN_EXPRESSION, match.group("expr")) elif kind == "SKIP": continue else: raise LiquidSyntaxError( f"expected newline delimited tag expressions, found {value!r}" ) @lru_cache(maxsize=128) def get_liquid_expression_lexer( comment_start_string: str = "", ) -> Callable[..., Iterator[Token]]: """Return a tokenizer that yields tokens from a `liquid` tag's expression.""" # Dubious assumption here. comment_start_string = comment_start_string.replace("{", "") if comment_start_string: comment = re.escape(comment_start_string) rules = ( ( "LIQUID_EXPR", rf"[ \t]*(?P<name>(\w+|{comment}))[ \t]*(?P<expr>.*?)[ \t\r]*?(\n+|$)", ), ("SKIP", r"[\r\n]+"), (TOKEN_ILLEGAL, r"."), ) else: rules = ( ("LIQUID_EXPR", r"[ \t]*(?P<name>\w+)[ \t]*(?P<expr>.*?)[ \t\r]*?(\n+|$)"), ("SKIP", r"[\r\n]+"), (TOKEN_ILLEGAL, r"."), ) return partial( _tokenize_liquid_expression, rules=_compile_rules(rules), comment_start_string=comment_start_string, ) # For backaward compatibility. No line comments. tokenize_liquid_expression = get_liquid_expression_lexer(comment_start_string="") def _tokenize( source: str, rules: Pattern[str], keywords: Collection[str] ) -> Iterator[Token]: """Generate tokens from the given source string according to the compiled rules.""" line_num = 1 for match in rules.finditer(source): kind = match.lastgroup assert kind is not None value = match.group() if kind == TOKEN_IDENTIFIER and value in keywords: kind = value elif kind == TOKEN_STRING: value = match.group("quoted") elif kind == "OP": try: kind = operators[value] except KeyError as err: raise LiquidSyntaxError( f"unknown operator {value!r}", linenum=line_num, ) from err elif kind == "NEWLINE": line_num += 1 continue elif kind == "SKIP": continue elif kind == TOKEN_ILLEGAL: raise LiquidSyntaxError(f"unexpected {value!r}", linenum=line_num) yield Token(line_num, kind, value) tokenize_identifier = partial( _tokenize, rules=_compile_rules(identifier_rules), keywords=(), ) tokenize_loop_expression = partial( _tokenize, rules=_compile_rules(loop_expression_rules), keywords=loop_expression_keywords, ) tokenize_filtered_expression = partial( _tokenize, rules=_compile_rules(filtered_expression_rules), keywords=filtered_expression_keywords, ) tokenize_assignment_expression = partial( _tokenize, rules=_compile_rules(assignment_expression_rules), keywords=filtered_expression_keywords, ) tokenize_boolean_expression = partial( _tokenize, rules=_compile_rules(boolean_expression_rules), keywords=boolean_expression_keywords, ) tokenize_include_expression = partial( _tokenize, rules=_compile_rules(include_expression_rules), keywords=include_expression_keywords, ) tokenize_paginate_expression = partial( _tokenize, rules=_compile_rules(identifier_rules), keywords={TOKEN_BY}, ) def _tokenize_template(source: str, rules: Pattern[str]) -> Iterator[Token]: line_count = 1 lstrip = False for match in rules.finditer(source): kind = match.lastgroup assert kind is not None line_num = line_count value = match.group() line_count += value.count("\n") if kind == TOKEN_STATEMENT: value = match.group("stmt") lstrip = bool(match.group("rss")) elif kind == "TAG": name = match.group("name") yield Token(line_num, TOKEN_TAG, name) kind = TOKEN_EXPRESSION value = match.group("expr") lstrip = bool(match.group("rst")) if not value: continue elif kind == "COMMENT": lstrip = bool(match.group("rsc")) continue elif kind == "RAW": kind = TOKEN_LITERAL value = match.group("raw") elif kind == TOKEN_LITERAL: if lstrip: value = value.lstrip() if match.group("rstrip"): value = value.rstrip() if not value: continue if value.startswith(r"{{"): raise LiquidSyntaxError( "expected '}}', found 'eof'", linenum=line_count ) if value.startswith(r"{%"): raise LiquidSyntaxError( "expected '%}', found 'eof'", linenum=line_count ) yield Token(line_num, kind, value) @lru_cache(maxsize=128) def get_lexer( tag_start_string: str = r"{%", tag_end_string: str = r"%}", statement_start_string: str = r"{{", statement_end_string: str = r"}}", comment_start_string: str = "", comment_end_string: str = "", ) -> Callable[[str], Iterator[Token]]: """Return a template lexer using the given tag and statement delimiters.""" rules = compile_liquid_rules( tag_start_string, tag_end_string, statement_start_string, statement_end_string, comment_start_string, comment_end_string, ) return partial(_tokenize_template, rules=rules) ``` #### File: liquid/liquid/tag.py ```python from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING from liquid.ast import Node from liquid.ast import IllegalNode from liquid.exceptions import Error from liquid.parse import eat_block from liquid.stream import TokenStream if TYPE_CHECKING: # pragma: no cover from liquid import Environment class Tag(ABC): """Base class for all built-in and custom template tags.""" block = True name = "" end = "" def __init__(self, env: Environment): self.env = env def get_node(self, stream: TokenStream) -> Node: """Wraps `Tag.parse`, possibly returning an `IllegalNode`.""" tok = stream.current try: return self.parse(stream) except Error as err: if not err.linenum: err.linenum = tok.linenum self.env.error(err) if self.block and hasattr(self, "end"): eat_block(stream, (self.end,)) return IllegalNode(tok) @abstractmethod def parse(self, stream: TokenStream) -> Node: """Return a parse tree node by parsing tokens from the given stream.""" ``` #### File: liquid/utils/html.py ```python from html.parser import HTMLParser from typing import List class StripParser(HTMLParser): # pylint: disable=abstract-method """An HTML parser that strips out tags.""" def __init__(self) -> None: super().__init__(convert_charrefs=False) self.reset() self.dat: List[str] = [] def handle_data(self, data: str) -> None: self.dat.append(data) def handle_entityref(self, name: str) -> None: self.dat.append(f"&{name};") def handle_charref(self, name: str) -> None: self.dat.append(f"&#{name};") def get_data(self) -> str: """Return accumulated data.""" return "".join(self.dat) def strip_tags(value: str) -> str: """Return the given value with all HTML tags removed.""" if "<" in value and ">" in value: parser = StripParser() parser.feed(value) parser.close() return parser.get_data() return value ``` #### File: tests/filters/test_string.py ```python import unittest from functools import partial from inspect import isclass from typing import NamedTuple from typing import Any from typing import List from typing import Dict from liquid.environment import Environment from liquid.exceptions import FilterArgumentError from liquid.exceptions import FilterValueError from liquid.exceptions import FilterError from liquid.builtin.filters.string import capitalize from liquid.builtin.filters.string import append from liquid.builtin.filters.string import downcase from liquid.builtin.filters.string import escape from liquid.builtin.filters.string import escape_once from liquid.builtin.filters.string import lstrip from liquid.builtin.filters.string import newline_to_br from liquid.builtin.filters.string import prepend from liquid.builtin.filters.string import remove from liquid.builtin.filters.string import remove_first from liquid.builtin.filters.string import replace from liquid.builtin.filters.string import replace_first from liquid.builtin.filters.string import slice_ from liquid.builtin.filters.string import split from liquid.builtin.filters.string import upcase from liquid.builtin.filters.string import strip from liquid.builtin.filters.string import rstrip from liquid.builtin.filters.string import strip_html from liquid.builtin.filters.string import strip_newlines from liquid.builtin.filters.string import truncate from liquid.builtin.filters.string import truncatewords from liquid.builtin.filters.string import url_encode from liquid.builtin.filters.string import url_decode from liquid.builtin.filters.string import base64_encode from liquid.builtin.filters.string import base64_decode from liquid.builtin.filters.string import base64_url_safe_encode from liquid.builtin.filters.string import base64_url_safe_decode class Case(NamedTuple): description: str val: Any args: List[Any] kwargs: Dict[Any, Any] expect: Any class StringFilterTestCase(unittest.TestCase): """Test string filter functions.""" def setUp(self) -> None: self.env = Environment() def _test(self, func, test_cases): if getattr(func, "with_environment", False): func = partial(func, environment=self.env) for case in test_cases: with self.subTest(msg=case.description): if isclass(case.expect) and issubclass( case.expect, (FilterArgumentError, FilterValueError, FilterError) ): with self.assertRaises(case.expect): func(case.val, *case.args, **case.kwargs) else: self.assertEqual( func(case.val, *case.args, **case.kwargs), case.expect ) def test_capitalize(self): """Test capitalize filter function.""" test_cases = [ Case( description="lower case string", val="hello", args=[], kwargs={}, expect="Hello", ), Case( description="already capitalized string", val="Hello", args=[], kwargs={}, expect="Hello", ), Case( description="unexpected argument", val="hello", args=[2], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(capitalize, test_cases) def test_append(self): """Test append filter function.""" test_cases = [ Case( description="concat", val="hello", args=["there"], kwargs={}, expect="hellothere", ), Case( description="not a string", val=5, args=["there"], kwargs={}, expect="5there", ), Case( description="argument not a string", val="hello", args=[5], kwargs={}, expect="hello5", ), Case( description="missing argument", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=["how", "are", "you"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=["hi"], kwargs={}, expect="hi", ), Case( description="undefined argument", val="hi", args=[self.env.undefined("test")], kwargs={}, expect="hi", ), ] self._test(append, test_cases) def test_downcase(self): """Test downcase filter function.""" test_cases = [ Case( description="make lower case", val="HELLO", args=[], kwargs={}, expect="hello", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="HELLO", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(downcase, test_cases) def test_escape(self): """Test escape filter function.""" test_cases = [ Case( description="make HTML-safe", val="<p>test</p>", args=[], kwargs={}, expect="&lt;p&gt;test&lt;/p&gt;", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="HELLO", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(escape, test_cases) def test_escape_once(self): """Test escape_once filter function.""" test_cases = [ Case( description="make HTML-safe", val="&lt;p&gt;test&lt;/p&gt;", args=[], kwargs={}, expect="&lt;p&gt;test&lt;/p&gt;", ), Case( description="make HTML-safe from mixed safe and markup.", val="&lt;p&gt;test&lt;/p&gt;<p>test</p>", args=[], kwargs={}, expect="&lt;p&gt;test&lt;/p&gt;&lt;p&gt;test&lt;/p&gt;", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="HELLO", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(escape_once, test_cases) def test_lstrip(self): """Test lstrip filter function.""" test_cases = [ Case( description="left padded", val=" \t\r\n hello", args=[], kwargs={}, expect="hello", ), Case( description="right padded", val="hello \t\r\n ", args=[], kwargs={}, expect="hello \t\r\n ", ), Case( description="left and right padded", val=" \t\r\n hello \t\r\n ", args=[], kwargs={}, expect="hello \t\r\n ", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(lstrip, test_cases) def test_newline_to_br(self): """Test newline_to_br filter function.""" test_cases = [ Case( description="string with newlines", val="- apples\n- oranges\n", args=[], kwargs={}, expect="- apples<br />\n- oranges<br />\n", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="reference implementation test 1", val="a\nb\nc", args=[], kwargs={}, expect="a<br />\nb<br />\nc", ), Case( description="reference implementation test 2", val="a\r\nb\nc", args=[], kwargs={}, expect="a<br />\nb<br />\nc", ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(newline_to_br, test_cases) def test_prepend(self): """Test prepend filter function.""" test_cases = [ Case( description="concat", val="hello", args=["there"], kwargs={}, expect="therehello", ), Case( description="not a string", val=5, args=["there"], kwargs={}, expect="there5", ), Case( description="argument not a string", val="hello", args=[5], kwargs={}, expect="5hello", ), Case( description="missing argument", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=["how", "are", "you"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=["hi"], kwargs={}, expect="hi", ), Case( description="undefined argument", val="hi", args=[self.env.undefined("test")], kwargs={}, expect="hi", ), ] self._test(prepend, test_cases) def test_remove(self): """Test remove filter function.""" test_cases = [ Case( description="remove substrings", val="I strained to see the train through the rain", args=["rain"], kwargs={}, expect="I sted to see the t through the ", ), Case( description="not a string", val=5, args=["there"], kwargs={}, expect="5", ), Case( description="argument not a string", val="hello", args=[5], kwargs={}, expect="hello", ), Case( description="missing argument", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=["how", "are", "you"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=["rain"], kwargs={}, expect="", ), Case( description="undefined argument", val="I strained to see the train through the rain", args=[self.env.undefined("test")], kwargs={}, expect="I strained to see the train through the rain", ), ] self._test(remove, test_cases) def test_remove_first(self): """Test remove_first filter function.""" test_cases = [ Case( description="remove substrings", val="I strained to see the train through the rain", args=["rain"], kwargs={}, expect="I sted to see the train through the rain", ), Case( description="not a string", val=5, args=["rain"], kwargs={}, expect="5", ), Case( description="argument not a string", val="hello", args=[5], kwargs={}, expect="hello", ), Case( description="missing argument", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=["how", "are", "you"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=["rain"], kwargs={}, expect="", ), Case( description="undefined argument", val="I strained to see the train through the rain", args=[self.env.undefined("test")], kwargs={}, expect="I strained to see the train through the rain", ), ] self._test(remove_first, test_cases) def test_replace(self): """Test replace filter function.""" test_cases = [ Case( description="replace substrings", val="Take my protein pills and put my helmet on", args=["my", "your"], kwargs={}, expect="Take your protein pills and put your helmet on", ), Case( description="not a string", val=5, args=["rain", "foo"], kwargs={}, expect="5", ), Case( description="argument not a string", val="hello", args=[5, "your"], kwargs={}, expect="hello", ), Case( description="missing argument", val="hello", args=["ll"], kwargs={}, expect="heo", ), Case( description="missing arguments", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=["how", "are", "you"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=["my", "your"], kwargs={}, expect="", ), Case( description="undefined first argument", val="Take my protein", args=[self.env.undefined("test"), "#"], kwargs={}, expect="#T#a#k#e# #m#y# #p#r#o#t#e#i#n#", ), Case( description="undefined second argument", val="Take my protein pills and put my helmet on", args=["my", self.env.undefined("test")], kwargs={}, expect="Take protein pills and put helmet on", ), ] self._test(replace, test_cases) def test_replace_first(self): """Test replace_first filter function.""" test_cases = [ Case( description="replace substrings", val="Take my protein pills and put my helmet on", args=["my", "your"], kwargs={}, expect="Take your protein pills and put my helmet on", ), Case( description="not a string", val=5, args=["rain", "foo"], kwargs={}, expect="5", ), Case( description="argument not a string", val="hello5", args=[5, "your"], kwargs={}, expect="helloyour", ), Case( description="missing argument", val="hello", args=["ll"], kwargs={}, expect="heo", ), Case( description="missing arguments", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=["how", "are", "you"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=["my", "your"], kwargs={}, expect="", ), Case( description="undefined first argument", val="Take my protein pills and put my helmet on", args=[self.env.undefined("test"), "your"], kwargs={}, expect="yourTake my protein pills and put my helmet on", ), Case( description="undefined second argument", val="Take my protein pills and put my helmet on", args=["my", self.env.undefined("test")], kwargs={}, expect="Take protein pills and put my helmet on", ), ] self._test(replace_first, test_cases) def test_slice(self): """Test slice filter function.""" test_cases = [ Case( description="zero", val="hello", args=[0], kwargs={}, expect="h", ), Case( description="one", val="hello", args=[1], kwargs={}, expect="e", ), Case( description="one length three", val="hello", args=[1, 3], kwargs={}, expect="ell", ), Case( description="out of range", val="hello", args=[99], kwargs={}, expect="", ), Case( description="not a string", val=5, args=[0], kwargs={}, expect="5", ), Case( description="first argument not an integer", val="hello", args=["foo"], kwargs={}, expect=FilterArgumentError, ), Case( description="second argument not an integer", val="hello", args=[5, "foo"], kwargs={}, expect=FilterArgumentError, ), Case( description="missing arguments", val="hello", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello", args=[1, 2, 3], kwargs={}, expect=FilterArgumentError, ), Case( description="unexpected keyword arguments", val="hello", args=[1, 2], kwargs={"x": "y"}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[1, 3], kwargs={}, expect="", ), Case( description="undefined first argument", val="hello", args=[self.env.undefined("test"), 3], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined second argument", val="hello", args=[1, self.env.undefined("test")], kwargs={}, expect="e", ), ] self._test(slice_, test_cases) def test_split(self): """Test split filter function.""" test_cases = [ Case( description="split string", val="Hi, how are you today?", args=[ " ", ], kwargs={}, expect=["Hi,", "how", "are", "you", "today?"], ), Case( description="not a string", val=5, args=[" "], kwargs={}, expect=["5"], ), Case( description="argument not a string", val="hello th1ere", args=[1], kwargs={}, expect=["hello th", "ere"], ), Case( description="missing argument", val="hello there", args=[], kwargs={}, expect=FilterArgumentError, ), Case( description="too many arguments", val="hello there", args=[" ", ","], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[" "], kwargs={}, expect=[""], ), Case( description="undefined argument", val="Hi, how are you today?", args=[self.env.undefined("test")], kwargs={}, expect=[ "H", "i", ",", " ", "h", "o", "w", " ", "a", "r", "e", " ", "y", "o", "u", " ", "t", "o", "d", "a", "y", "?", ], ), ] self._test(split, test_cases) def test_upcase(self): """Test upcase filter function.""" test_cases = [ Case( description="make lower case", val="hello", args=[], kwargs={}, expect="HELLO", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(upcase, test_cases) def test_strip(self): """Test strip filter function.""" test_cases = [ Case( description="left padded", val=" \t\r\n hello", args=[], kwargs={}, expect="hello", ), Case( description="right padded", val="hello \t\r\n ", args=[], kwargs={}, expect="hello", ), Case( description="left and right padded", val=" \t\r\n hello \t\r\n ", args=[], kwargs={}, expect="hello", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(strip, test_cases) def test_rstrip(self): """Test rstrip filter function.""" test_cases = [ Case( description="left padded", val=" \t\r\n hello", args=[], kwargs={}, expect=" \t\r\n hello", ), Case( description="right padded", val="hello \t\r\n ", args=[], kwargs={}, expect="hello", ), Case( description="left and right padded", val=" \t\r\n hello \t\r\n ", args=[], kwargs={}, expect=" \t\r\n hello", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(rstrip, test_cases) def test_strip_html(self): """Test strip_html filter function.""" test_cases = [ Case( description="some HTML markup", val="Have <em>you</em> read <strong>Ulysses</strong> &amp; &#20;?", args=[], kwargs={}, expect="Have you read Ulysses &amp; &#20;?", ), Case( description="some HTML markup with HTML comment", val=( "<!-- Have --><em>you</em> read " "<strong>Ulysses</strong> &amp; &#20;?" ), args=[], kwargs={}, expect="you read Ulysses &amp; &#20;?", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(strip_html, test_cases) def test_strip_newlines(self): """Test strip_newlines filter function.""" test_cases = [ Case( description="newline and other whitespace", val="hello there\nyou", args=[], kwargs={}, expect="hello thereyou", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="reference implementation test 1", val="a\nb\nc", args=[], kwargs={}, expect="abc", ), Case( description="reference implementation test 2", val="a\r\nb\nc", args=[], kwargs={}, expect="abc", ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(strip_newlines, test_cases) def test_truncate(self): """Test truncate filter function.""" test_cases = [ Case( description="default end", val="Ground control to Major Tom.", args=[20], kwargs={}, expect="Ground control to...", ), Case( description="custom end", val="Ground control to Major Tom.", args=[25, ", and so on"], kwargs={}, expect="Ground control, and so on", ), Case( description="no end", val="Ground control to Major Tom.", args=[20, ""], kwargs={}, expect="Ground control to Ma", ), Case( description="string is shorter than length", val="Ground control", args=[20], kwargs={}, expect="Ground control", ), Case( description="not a string", val=5, args=[10], kwargs={}, expect="5", ), Case( description="too many arguments", val="hello", args=[5, "foo", "bar"], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[5], kwargs={}, expect="", ), Case( description="undefined first argument", val="Ground control to Major Tom.", args=[self.env.undefined("test")], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined second argument", val="Ground control to Major Tom.", args=[20, self.env.undefined("test")], kwargs={}, expect="Ground control to Ma", ), Case( description="default length is 50", val="Ground control to Major Tom. Ground control to Major Tom.", args=[], kwargs={}, expect="Ground control to Major Tom. Ground control to ...", ), ] self._test(truncate, test_cases) def test_truncatewords(self): """Test truncatewords filter function.""" test_cases = [ Case( description="default end", val="Ground control to Major Tom.", args=[3], kwargs={}, expect="Ground control to...", ), Case( description="custom end", val="Ground control to Major Tom.", args=[3, "--"], kwargs={}, expect="Ground control to--", ), Case( description="no end", val="Ground control to Major Tom.", args=[3, ""], kwargs={}, expect="Ground control to", ), Case( description="fewer words than word count", val="Ground control", args=[3], kwargs={}, expect="Ground control", ), Case( description="not a string", val=5, args=[10], kwargs={}, expect="5", ), Case( description="too many arguments", val="hello", args=[5, "foo", "bar"], kwargs={}, expect=FilterArgumentError, ), Case( description="reference implementation test 1", val="测试测试测试测试", args=[5], kwargs={}, expect="测试测试测试测试", ), Case( description="reference implementation test 2", val="one two three", args=[2, 1], kwargs={}, expect="one two1", ), Case( description="reference implementation test 3", val="one two\tthree\nfour", args=[3], kwargs={}, expect="one two three...", ), Case( description="reference implementation test 4", val="one two three four", args=[2], kwargs={}, expect="one two...", ), Case( description="reference implementation test 5", val="one two three four", args=[0], kwargs={}, expect="one...", ), Case( description="undefined left value", val=self.env.undefined("test"), args=[5], kwargs={}, expect="", ), Case( description="undefined first argument", val="one two three four", args=[self.env.undefined("test")], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined second argument", val="one two three four", args=[2, self.env.undefined("test")], kwargs={}, expect="one two", ), Case( description="very long argument", val="", args=[100000000000000], kwargs={}, expect=FilterArgumentError, ), Case( description="default number of words is 15", val="a b c d e f g h i j k l m n o p q", args=[], kwargs={}, expect="a b c d e f g h i j k l m n o...", ), ] self._test(truncatewords, test_cases) def test_url_encode_html(self): """Test url_encode filter function.""" test_cases = [ Case( description="some special URL characters", val="email address is <EMAIL>!", args=[], kwargs={}, expect="email+address+is+bob%40example.com%21", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(url_encode, test_cases) def test_url_decode_html(self): """Test url_decode filter function.""" test_cases = [ Case( description="some special URL characters", val="email+address+is+bob%40example.com%21", args=[], kwargs={}, expect="email address is <EMAIL>!", ), Case( description="not a string", val=5, args=[], kwargs={}, expect="5", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(url_decode, test_cases) def test_base64_encode(self): """Test base64_encode filter function.""" test_cases = [ Case( description="from string", val="_#/.", args=[], kwargs={}, expect="XyMvLg==", ), Case( description="from string with URL unsafe", val=( r"abcdefghijklmnopqrstuvwxyz " r"ABCDEFGHIJKLMNOPQRSTUVWXYZ " r"1234567890 !@#$%^&*()-=_+/?.:;[]{}\|" ), args=[], kwargs={}, expect=( "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXogQUJDREVGR0hJSktMTU5PUFFSU1RVV" "ldYWVogMTIzNDU2Nzg5MCAhQCMkJV4mKigpLT1fKy8/Ljo7W117fVx8" ), ), Case( description="not a string", val=5, args=[], kwargs={}, expect="NQ==", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(base64_encode, test_cases) def test_base64_decode(self): """Test base64_decode filter function.""" test_cases = [ Case( description="from string", val="XyMvLg==", args=[], kwargs={}, expect="_#/.", ), Case( description="from string with URL unsafe", val=( "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXogQUJDREVGR0hJSktMTU5PUFFSU1RVV" "ldYWVogMTIzNDU2Nzg5MCAhQCMkJV4mKigpLT1fKy8/Ljo7W117fVx8" ), args=[], kwargs={}, expect=( r"abcdefghijklmnopqrstuvwxyz " r"ABCDEFGHIJKLMNOPQRSTUVWXYZ " r"1234567890 !@#$%^&*()-=_+/?.:;[]{}\|" ), ), Case( description="not a string", val=5, args=[], kwargs={}, expect=FilterError, ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(base64_decode, test_cases) def test_base64_url_safe_encode(self): """Test base64_url_safe_encode filter function.""" test_cases = [ Case( description="from string", val="_#/.", args=[], kwargs={}, expect="XyMvLg==", ), Case( description="from string with URL unsafe", val=( r"abcdefghijklmnopqrstuvwxyz " r"ABCDEFGHIJKLMNOPQRSTUVWXYZ " r"1234567890 !@#$%^&*()-=_+/?.:;[]{}\|" ), args=[], kwargs={}, expect=( "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXogQUJDREVGR0hJSktMTU5PUFFSU1RVV" "ldYWVogMTIzNDU2Nzg5MCAhQCMkJV4mKigpLT1fKy8_Ljo7W117fVx8" ), ), Case( description="not a string", val=5, args=[], kwargs={}, expect="NQ==", ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(base64_url_safe_encode, test_cases) def test_base64_url_safe_decode(self): """Test base64_url_safe_decode filter function.""" test_cases = [ Case( description="from string", val="XyMvLg==", args=[], kwargs={}, expect="_#/.", ), Case( description="from string with URL unsafe", val=( "<KEY>" "<KEY>" ), args=[], kwargs={}, expect=( r"abcdefghijklmnopqrstuvwxyz " r"ABCDEFGHIJKLMNOPQRSTUVWXYZ " r"1234567890 !@#$%^&*()-=_+/?.:;[]{}\|" ), ), Case( description="not a string", val=5, args=[], kwargs={}, expect=FilterError, ), Case( description="unexpected argument", val="hello", args=[5], kwargs={}, expect=FilterArgumentError, ), Case( description="undefined left value", val=self.env.undefined("test"), args=[], kwargs={}, expect="", ), ] self._test(base64_url_safe_decode, test_cases) ``` #### File: mocks/filters/money.py ```python from liquid.filter import math_filter @math_filter def money_with_currency(money): """A filter function that returns a number formatted with currency info.""" return f"$ {money / 100.0:.2f} USD" @math_filter def money_(money): """A filter function that returns a number formatted as money.""" return f"$ {money / 100.0:.2f}" ``` #### File: liquid/tests/test_context.py ```python from unittest import TestCase from typing import NamedTuple from typing import Type from liquid.context import builtin from liquid.context import get_item from liquid.context import _undefined from liquid.context import ReadOnlyChainMap from liquid.environment import Environment from liquid.exceptions import LiquidTypeError from liquid.exceptions import lookup_warning from liquid.mode import Mode class Case(NamedTuple): """Table driven test case helper.""" description: str template: str expect_exception: Type[Exception] expect_msg: str expect_render: str = "" class BadContextTemplateTestCase(TestCase): """Bad context test case.""" def _test(self, test_cases, mode=Mode.STRICT): """Helper method for running lists of `Case`s""" env = Environment() env.mode = mode global_context = {"arr": [], "hash": {}} for case in test_cases: with self.subTest(msg=case.description): if mode == Mode.STRICT: with self.assertRaises(case.expect_exception) as raised: template = env.from_string( case.template, globals=global_context ) result = template.render() self.assertEqual(str(raised.exception), case.expect_msg) elif mode == Mode.WARN: with self.assertWarns(lookup_warning(case.expect_exception)): template = env.from_string( case.template, globals=global_context ) result = template.render() elif mode == Mode.LAX: template = env.from_string(case.template, globals=global_context) result = template.render() self.assertEqual(result, case.expect_render) def test_bad_context(self): """Test that we handle render time errors due to incorrect context.""" test_cases = [ Case( description="array less than hash", template="{% if arr < hash %}foo{% endif %}", expect_exception=LiquidTypeError, expect_msg=r"invalid operator for types '[] < {}', on line 1", ), ] self._test(test_cases, mode=Mode.STRICT) self._test(test_cases, mode=Mode.WARN) self._test(test_cases, mode=Mode.LAX) class ReadOnlyChainMapTestCase(TestCase): """Read only chain map test case.""" def test_get(self): """Test that we can get items from a chain map.""" test_cases = [ { "description": "earlier maps take priority", "maps": ({"foo": 1}, {"foo": 2}), "expect": 1, }, { "description": "fall back top later maps", "maps": ({"bar": 1}, {"foo": 2}), "expect": 2, }, { "description": "default to None", "maps": ({"bar": 1}, {"bar": 2}), "expect": None, }, ] for case in test_cases: with self.subTest(msg=case["description"]): chain_map = ReadOnlyChainMap(*case["maps"]) self.assertEqual(chain_map.get("foo"), case["expect"]) def test_iter(self): """Test that we can iterate a chain map.""" chain_map = ReadOnlyChainMap({"foo": 1}, {"bar": 2}, {"foo": 3}) self.assertEqual(list(chain_map), ["foo", "bar", "foo"]) class ChainedItemGetterTestCase(TestCase): """Chained item getter test case.""" def test_get_item(self): """Test that we can get nested items.""" test_cases = [ { "description": "single string key", "obj": {"foo": 1}, "key": ["foo"], "expect": 1, }, { "description": "chained string key", "obj": {"foo": {"bar": 2}}, "key": ["foo", "bar"], "expect": 2, }, { "description": "single int key", "obj": ["foo", "bar"], "key": [0], "expect": "foo", }, { "description": "chained string and int key", "obj": {"foo": [1, 2]}, "key": ["foo", 1], "expect": 2, }, { "description": "default to undefined", "obj": {"foo": 1}, "key": ["no", "such", "thing"], "expect": _undefined, }, ] for case in test_cases: with self.subTest(msg=case["description"]): self.assertEqual(get_item(case["obj"], *case["key"]), case["expect"]) class BuiltinDynamicScopeTestCase(TestCase): """Built-in dynamic scope test case.""" def test_builtin_contains_now(self): """Test that `now` is in the builtin scope.""" self.assertTrue("now" in builtin) def test_builtin_contains_today(self): """Test that `today` is in the builtin scope.""" self.assertTrue("today" in builtin) def test_builtin_not_contains(self): """Test that garbage is not in the builtin scope.""" self.assertFalse("foo" in builtin) def test_builtin_length(self): """Test that builtin has a length.""" self.assertEqual(len(builtin), 2) def test_builtin_iter(self): """Test that builtin has a length.""" self.assertEqual(list(builtin), ["now", "today"]) ``` #### File: liquid/tests/test_exceptions.py ```python from pathlib import Path from unittest import TestCase from liquid import Environment from liquid import Mode from liquid.exceptions import Error from liquid.exceptions import LiquidSyntaxError class EnvironmentErrorTestCase(TestCase): def test_exception_class_is_raised(self): """Test env.error handles exception classes.""" env = Environment(tolerance=Mode.STRICT, strict_filters=True) with self.assertRaises(Error): env.error(LiquidSyntaxError, msg=":(") class LiquidErrorTestCase(TestCase): def test_base_error_message(self): """Test that the base error can include a message.""" try: raise Error("Oh no!", "extra info") except Error as err: self.assertEqual(err.message, "Oh no!") def test_base_error_no_message(self): """Test that the base error can not include a message.""" try: raise Error() except Error as err: self.assertEqual(err.message, None) def test_base_error_include_filename(self): """Test that the base error can include a filename.""" try: raise Error("Oh no!", linenum=1, filename="foo.liquid") except Error as err: self.assertEqual(str(err), "Oh no!, on line 1 of foo.liquid") class LiquidSyntaxErrorTestCase(TestCase): def test_template_name_from_string(self): """Test that a syntax error can include a template name as a string.""" try: raise LiquidSyntaxError("Oh no!", filename="foo.liquid") except LiquidSyntaxError as err: self.assertEqual(err.name, "foo.liquid") def test_template_name_from_path(self): """Test that a syntax error can include a template name as a path.""" try: raise LiquidSyntaxError("Oh no!", filename=Path("/templates/foo.liquid")) except LiquidSyntaxError as err: self.assertEqual(err.name, "/templates/foo.liquid") def test_no_template_name(self): """Test that a syntax error can not include template name.""" try: raise LiquidSyntaxError("Oh no!") except LiquidSyntaxError as err: self.assertEqual(err.name, "") ``` #### File: liquid/tests/test_template_api.py ```python import unittest from liquid import Template from liquid import Environment from liquid import Mode class TemplateAPITestCase(unittest.TestCase): """Test case for the `Template` API.""" def test_implicit_environment(self): """Test that an Environment is created automatically.""" template = Template(r"Hello, {{ you }}") self.assertIsNotNone(template.env) def test_environment_cache(self): """Test that we reuse Environments.""" template = Template(r"Hello, {{ you }}!") another = Template(r"Goodbye, {{ you }}.") self.assertEqual(template.env, another.env) lax = Template("something", tolerance=Mode.LAX) self.assertNotEqual(lax.env, template.env) def test_implicit_explicit(self): """Test that an implicit environment renders the same as an explicit one.""" env = Environment() source = r"Hello, {{ you }}" context = {"you": "there"} some = env.from_string(source) other = Template(source) self.assertEqual(some.render(**context), other.render(**context)) ``` #### File: liquid/tests/test_template_cache.py ```python import unittest from liquid.utils import LRUCache class TemplateCacheTestCase(unittest.TestCase): def setUp(self) -> None: self.cache = LRUCache(capacity=5) self.cache["foo"] = "bar" self.cache["some"] = "other" def test_copy(self): """Test that we can copy a cache.""" copy = self.cache.copy() self.assertEqual(self.cache.items(), copy.items()) copy["some"] = "different" self.assertNotEqual(self.cache.items(), copy.items()) def test_set_default(self): """Test that we can set a default value for cache keys.""" self.cache.setdefault("foo", "baz") self.assertEqual(self.cache["foo"], "bar") val = self.cache.setdefault("hello", "there") self.assertEqual(self.cache["hello"], val) def test_clear(self): """Test that we can clear all items from the cache.""" self.assertEqual(len(self.cache), 2) self.cache.clear() self.assertEqual(len(self.cache), 0) def test_contains(self): """Test that we can check for membership.""" self.assertEqual("foo" in self.cache, True) def test_delete(self): """Test that we can remove items from the cache.""" self.assertEqual(len(self.cache), 2) del self.cache["foo"] self.assertEqual("foo" in self.cache, False) self.assertEqual(len(self.cache), 1) def test_values(self): """Test that we can get a list of cache values.""" self.assertEqual(self.cache.values(), ["other", "bar"]) def test_keys(self): """Test that we can get a list of cache keys.""" self.assertEqual(self.cache.keys(), ["some", "foo"]) def test_reversed(self): """Test that we can get a list of cache keys, oldest first.""" self.assertEqual(list(reversed(self.cache)), ["foo", "some"]) def test_capacity(self): """Test that the cache does not exceed capacity.""" self.cache["a"] = 1 self.cache["b"] = 2 self.cache["c"] = 3 self.assertEqual(len(self.cache), 5) self.cache["d"] = 4 self.assertEqual(len(self.cache), 5) def test_priority(self): """Test that recently used items are not removed from the cache.""" self.cache["a"] = 1 self.cache["b"] = 2 self.cache["c"] = 3 self.assertEqual(len(self.cache), 5) self.assertEqual("foo" in self.cache, True) self.cache["d"] = 4 self.assertEqual("foo" in self.cache, False) self.assertEqual("some" in self.cache, True) self.cache["some"] = "updated" self.cache["e"] = 5 self.assertEqual("some" in self.cache, True) self.assertEqual("a" in self.cache, False) ```
{ "source": "jgrprior/csp", "score": 3 }
#### File: jgrprior/csp/init_db.py ```python import argparse import collections import datetime import hashlib import itertools import pathlib import random import secrets import string import sqlite3 import sys from dataclasses import dataclass from dataclasses import field from typing import NamedTuple from typing import Optional __version__ = "0.1.3" # A list of colours that are used to generate usernames. COLOURS = [ "Aquamarine", "Chocolate", "Crimson", "Coral", "Magenta", "Olive", "Orchid", "Salmon", "Fire", "Ghost", "Golden", "Honey", "Lavender", "Lime", "Spring", "Rose", "Violet", "Peach", "Turquoise", ] # A list of animals that are used to generate usernames. ANIMALS = [ "Aardvark", "Albatross", "Goat", "Alsatian", "Leopard", "Angelfish", "Antelope", "Fox", "Armadillo", "Alpaca", "Baboon", "Bandicoot", "Badger", "Barracuda", "Bison", "Camel", "Chinchilla", "Cockatoo", "Dingo", "Shrew", "Eskipoo", "Ermine", ] # Characters used for generating password hashing salt. SALT_CHARS = string.ascii_lowercase + string.ascii_uppercase + string.digits # Default number of iterations used by the password hashing algorithm. HASH_ITERATIONS = 10 # 260000 # Choose a random mean (average) performance per user from this list. PERFORMANCE_MEANS = [5000, 7500, 10000, 15000] # Choose a random standard deviation per user from this list. PERFORMANCE_SD = [1000, 1250, 1500] # Choose a random performance trend per user/week from this list. PERFORMANCE_TRENDS = [0.8, 1, 1.2] # Skew average performance on gender. GENDER_PERFORMANCE = { "male": 0.9, "female": 1.2, "neutral": 1, } # Skew average performance on age band. AGEBAND_PERFORMANCE = { 1: 1.3, 2: 1.1, 3: 0.8, 4: 1.1, 5: 1.2, 6: 1.0, 7: 0.9, 8: 0.8, 9: 0.7, 10: 0.6, 11: 0.6, } class User(NamedTuple): """A generated user that does not yet have a user ID.""" email: str nickname: str hashed_password: str gender: Optional[str] = None dob: Optional[datetime.date] = None class Room(NamedTuple): """A generated room that does not yet have a room ID.""" user_id: int name: str description: str units: str access: str created: datetime.datetime class RoomMember(NamedTuple): """A generated room member that does not yet have a member ID.""" room_id: int user_id: int class Activity(NamedTuple): """A generated activity that does not yet have an activity ID.""" room_id: int user_id: int timestamp: datetime.datetime performance: int effort: int class Buddy(NamedTuple): """A generated buddy relationship between two users.""" room_id: int inviter_id: int invitee_id: int def init_db(db): """Initialise the database. If the database already exists, data will be deleted before creating new tables.""" with open("schema.sql") as fd: db.executescript(fd.read()) def insert_users(db, users): """Insert users into the database.""" with db: db.executemany( "INSERT INTO user " "(email, nickname, hashed_password, gender, dob) " "VALUES (?, ?, ?, ?, ?)", users, ) def insert_rooms(db, rooms): """Insert rooms into the database.""" with db: db.executemany( "INSERT INTO room " "(owner_id, name, description, units, access, created) " "VALUES (?, ?, ?, ?, ?, ?)", rooms, ) def insert_room_members(db, members): """Insert room members into the database.""" with db: db.executemany( "INSERT INTO room_member (room_id, user_id) VALUES (?, ?)", members, ) def insert_activities(db, activities): """Insert activities into the database.""" with db: db.executemany( "INSERT INTO activity " "(room_id, user_id, timestamp, performance, effort) " "VALUES (?, ?, ?, ?, ?)", activities, ) def insert_buddies(db, buddies): """Insert buddies into the database.""" with db: db.executemany( "INSERT INTO buddy " "(room_id, inviter_id, invitee_id) " "VALUES (?, ?, ?)", buddies, ) def hash_password(password, salt_length=16, iterations=HASH_ITERATIONS): """Securely hash the given password.""" salt = "".join(secrets.choice(SALT_CHARS) for _ in range(salt_length)) dk = hashlib.pbkdf2_hmac("sha256", password.encode(), salt.encode(), iterations) return f"pbkdf2:sha256:{iterations}${salt}${dk.hex()}" def generate_users(hash_iterations=HASH_ITERATIONS): """Generate users with arbitrary names and email addresses.""" animal_colour_product = list(itertools.product(set(COLOURS), set(ANIMALS))) random.shuffle(animal_colour_product) genders = random.choices( ["male", "female", "neutral"], weights=[100, 100, 2], k=len(animal_colour_product), ) ages = [] for _ in range(len(animal_colour_product)): age = int(random.gauss(35, 20)) while age < 3 or age > 110: age = int(random.gauss(35, 20)) ages.append(age) users = [] for animal, colour in animal_colour_product: nickname = animal + colour email = nickname + "@example.com" # XXX: Never use a user's username as a default password, or use any # default password whatsoever. users.append( User( email, nickname, hash_password(nickname, iterations=hash_iterations), gender=genders.pop(), dob=datetime.date.today() - datetime.timedelta(days=ages.pop() * 365), ) ) return users def generate_rooms(db): """Generate some activity rooms owned by randomly selected users.""" users = db.execute("SELECT user_id FROM user ORDER BY RANDOM()") rooms = [ Room( user_id=next(users)["user_id"], name="<NAME>", description="Fleet town daily step counters.", units="steps/day", access="public", created=random_timestamp( datetime.datetime.now() - datetime.timedelta(days=90) ), ), Room( user_id=next(users)["user_id"], name="<NAME>", description="Hart district daily step counters.", units="steps/day", access="public", created=random_timestamp( datetime.datetime.now() - datetime.timedelta(days=100) ), ), Room( user_id=next(users)["user_id"], name="<NAME>", description="Daily steps for Holly and friends.", units="steps/day", access="private", created=random_timestamp( datetime.datetime.now() - datetime.timedelta(days=85) ), ), ] return rooms def generate_room_members(db): """Generate some records for the `room_member` table, indicating that a user is a member of a room.""" rooms = db.execute("SELECT room_id FROM room") users = db.execute("SELECT user_id FROM user") user_ids = [user["user_id"] for user in users] members = [] for room in rooms: room_users = random.sample(user_ids, len(user_ids) // 3) for user_id in room_users: members.append(RoomMember(room["room_id"], user_id)) return members def random_timestamp(dt): """Return a random datetime on the same day as `dt`. `dt` is assumed to be a ``datetime.datetime``.""" start = dt.replace(hour=23, minute=59, second=59) end = dt.replace(hour=0, minute=0, second=0) max_timestamp = int(start.timestamp()) min_timestamp = int(end.timestamp()) timestamp = random.randrange(min_timestamp, max_timestamp) return datetime.datetime.fromtimestamp(timestamp) def age_band_from_dob(dob): """Return the ageband given a date of birth.""" today = datetime.date.today() age = today.year - dob.year - ((today.month, today.day) < (dob.month, dob.day)) if age <= 15: band = 1 elif age <= 25: band = 2 elif age <= 35: band = 3 elif age <= 45: band = 4 elif age <= 55: band = 5 elif age <= 65: band = 6 elif age <= 75: band = 7 elif age <= 85: band = 8 elif age <= 95: band = 9 elif age <= 105: band = 10 else: band = 11 return band @dataclass class UserPerformance: user_id: int gender: str dob: datetime.datetime age_band: int = field(init=False) mu: int = field(init=False) sigma: int = field(init=False) week_number: int = field(init=False, default=-1) activities: dict = field(default_factory=dict, init=False) def __post_init__(self): self.age_band = age_band_from_dob(self.dob) self.mu = ( random.choice(PERFORMANCE_MEANS) * GENDER_PERFORMANCE[self.gender] ) * AGEBAND_PERFORMANCE[self.age_band] self.sigma = random.choice(PERFORMANCE_SD) def activity(self, room_id, timestamp: datetime.datetime) -> Activity: """Return a new activity for this user for the given timestamp.""" date = timestamp.date() if date in self.activities: # We've already generated an activity for this user on this day, # but in a different room. Copy the activity to the new room. return self.activities[date]._replace(room_id=room_id) # Trend up or down when we start a new week. week_number = timestamp.isocalendar()[1] if self.week_number != week_number: self.week_number = week_number if self.mu < 3000: # Don't let mean performance get too low. self.mu *= max(PERFORMANCE_TRENDS) else: self.mu *= random.choice(PERFORMANCE_TRENDS) performance = int(random.gauss(self.mu, self.sigma)) while performance < 1: # Don't want negative steps. performance = int(random.gauss(self.mu, self.sigma)) effort = random.randint(1, 10) return Activity( room_id=room_id, user_id=self.user_id, timestamp=timestamp, performance=performance, effort=effort, ) def generate_activities(db): """Generate some activities representing users that have completed the activity defined in a room.""" members = db.execute( "SELECT room.room_id, room.created AS 'room_timestamp [timestamp]', " "user.user_id, user.gender, user.dob AS 'dob [date]' " "FROM room_member " "JOIN room ON (room.room_id = room_member.room_id) " "JOIN user ON (user.user_id = room_member.user_id) " "WHERE departed is NULL" ) # XXX: Assumes all activities are step counts for now. activities = [] # We're trying to simulate performance trends for each user. We'll keep # track of a user's performance with a map of user_ids to UserPerformance # objects. users_performance = {} # XXX: There are no gaps. We're assuming all users have recorded their # performance every day since the creation of the room. Even if they # didn't join the room until later. now = datetime.datetime.now() for room_id, room_timestamp, user_id, gender, dob in members: if user_id not in users_performance: # First time we're seeing this user. Create a new UserPerformance # object with a random (skewed) performance mean and standard # deviation. users_performance[user_id] = UserPerformance(user_id, gender, dob) user = users_performance[user_id] # Generate an activity for the current room and user for each day # since the room was created. max_delta = now - room_timestamp for day in range(max_delta.days): timestamp = random_timestamp(now - datetime.timedelta(days=day)) activities.append(user.activity(room_id, timestamp)) return activities def pop_users(ids, n): invitees = [] for _ in range(n): try: invitees.append(ids.pop()) except IndexError: break return invitees def generate_buddies(db): """Generate some buddies representing users that have invited other users to join a room.""" members = db.execute( "SELECT room.room_id, room.owner_id, user_id " "FROM room_member JOIN room " "ON (room.room_id = room_member.room_id) " "WHERE departed IS NULL " "ORDER BY room_member.room_id" ) # Rather than making multiple SQL queries, at least one for each room, # we're grabbing them all in one go, then grouping them into rooms here. room_ids = [] room_members = [] for key, group in itertools.groupby(members, key=lambda r: r["room_id"]): room_ids.append(key) room_members.append(list(group)) buddies = [] # We're trying to simulate a directed graph. The `buddy` table effectively # being an adjacency list but with the added dimension of a room. for room_id, room in zip(room_ids, room_members): owner = room[0]["owner_id"] queue = collections.deque([[owner]]) user_ids = [member["user_id"] for member in room] if owner in user_ids: user_ids.remove(owner) random.shuffle(user_ids) while queue: for inviter in queue.popleft(): invitees = pop_users(user_ids, random.randrange(2, 5)) for invitee in invitees: buddies.append(Buddy(room_id, inviter, invitee)) if invitees: queue.append(invitees) return buddies def main(path_to_database, init_only=False, hash_iterations=HASH_ITERATIONS): db = sqlite3.connect( path_to_database, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES, ) db.row_factory = sqlite3.Row init_db(db) if not init_only: users = generate_users(hash_iterations=hash_iterations) insert_users(db, users) rooms = generate_rooms(db) insert_rooms(db, rooms) room_members = generate_room_members(db) insert_room_members(db, room_members) activities = generate_activities(db) insert_activities(db, activities) buddies = generate_buddies(db) insert_buddies(db, buddies) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Project database initialisation and mock data generation." ) parser.add_argument( "path", help="Name or path to the SQLite database file.", metavar="PATH", ) parser.add_argument( "--hash-iterations", type=int, default=HASH_ITERATIONS, help=( "The number of iterations used by the password " f"hahsing algorithm. Defaults to {HASH_ITERATIONS}." ), ) parser.add_argument( "--version", action="version", version=f"%(prog)s v{__version__}", ) parser.add_argument( "--init-only", action="store_true", help="Initialise the database without generating mock data.", ) parser.add_argument( "-f", "--force", action="store_true", help="Don't wait for confirmation before overriting an existing database.", ) args = parser.parse_args() path = pathlib.Path(args.path).with_suffix(".sqlite") if not args.force and path.exists(): overwrite = input( f"The database at '{path}' already exists. Overwrite (y/[n])? " ) if overwrite.lower() not in ("y", "yes"): sys.exit(1) main( str(path), init_only=args.init_only, hash_iterations=args.hash_iterations, ) ```
{ "source": "jgrprior/Gymtivity", "score": 3 }
#### File: Gymtivity/landing/tests.py ```python from http import HTTPStatus from django.test import SimpleTestCase from django.urls import reverse class LandingPageTestCase(SimpleTestCase): def test_landing_page_loads(self): """Test that the landing page loads.""" response = self.client.get(reverse("landing:index")) self.assertEqual(response.status_code, HTTPStatus.OK) def test_landing_link_to_login(self): """Test that the landing page contains a link to the login page.""" response = self.client.get(reverse("landing:index")) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertContains(response, "Login") def test_landing_link_to_registration(self): """Test that the landing page contains a link to the sign up page.""" response = self.client.get(reverse("landing:index")) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertContains(response, "Sign Up") ``` #### File: project/views/generic.py ```python from django.http import JsonResponse from project.db.models import SerializableModel class JSONResponseMixin: """A mixin that can be used to render a JSON response.""" def render_to_json_response(self, context, **response_kwargs): """Returns a JSON response, transforming 'context' to make the payload.""" return JsonResponse( self.get_data(context), json_dumps_params={"indent": 2}, **response_kwargs, ) def get_data(self, context): """Returns an object that will be serialized as JSON by json.dumps().""" context_object_name = getattr(self, "context_object_name") context_object = context.get(context_object_name) if isinstance(context_object, SerializableModel): data = context_object.serialize() else: data = [obj.serialize() for obj in context_object] # TODO: Add status code return {"data": {context_object_name: data}} ```
{ "source": "jgrss/cultionet", "score": 2 }
#### File: cultionet/scripts/create_train_files.py ```python import argparse import logging from pathlib import Path from cultionet.utils.project_paths import setup_paths import geowombat as gw import numpy as np import geopandas as gpd from shapely.geometry import Polygon logger = logging.getLogger(__name__) class TemporalStats(gw.TimeModule): def __init__(self): super(TemporalStats, self).__init__() self.count = 3 self.dtype = 'uint16' @staticmethod def nan_to_num(array) -> np.ndarray: return np.nan_to_num(array, nan=0.0, posinf=0.0, neginf=0.0) def calculate(self, array): array_mean = self.nan_to_num(array.mean(axis=0).squeeze()) array_max = self.nan_to_num(array.max(axis=0).squeeze()) array_cv = (self.nan_to_num(array.std(axis=0).squeeze() / array_mean) * 10000.0).clip(0, 10000) return np.stack((array_mean, array_max, array_cv)) def create_train_files(args): ppaths = setup_paths(args.project_path) region_ids = args.regions.split('-') region_ids = list(map(int, region_ids)) if len(region_ids) > 1: region_ids = list(range(region_ids[0], region_ids[1]+1)) for region in region_ids: for var in args.image_vars: image_path = Path(args.project_path) / f'{region:06d}' / 'brdf_ts' / 'ms' / var image_list = list(image_path.glob('*.tif')) image_year = int(image_list[0].name[:4]) + 1 # File names grids = ppaths.edge_training_path / f'{region:06d}_grid_{image_year}.gpkg' edges = ppaths.edge_training_path / f'{region:06d}_poly_{image_year}.gpkg' view_bands_path = ppaths.edge_training_path.parent / 'view_images' view_bands_path.mkdir(parents=True, exist_ok=True) view_bands = view_bands_path / f'{region:06d}_view_{image_year}.tif' if not view_bands.is_file(): with gw.series(image_list, transfer_lib='numpy') as src: src.apply( TemporalStats(), bands=-1, processes=False, num_workers=4, outfile=str(view_bands) ) if not grids.is_file(): with gw.open(image_list[0], chunks=512) as src: grid_df = src.gw.geodataframe grid_df['grid'] = 0 left, bottom, right, top = grid_df.total_bounds.tolist() geom = Polygon([(left, top), (left, top), (left, top), (left, top), (left, top)]) edge_df = gpd.GeoDataFrame( data=[0], columns=['class'], geometry=[geom], crs=grid_df.crs ) edge_df.to_file(edges, driver='GPKG') grid_df.to_file(grids, driver='GPKG') def main(): parser = argparse.ArgumentParser(description='Creates edge and grid files for training', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( '-v', '--image-vars', dest='image_vars', help='The time series variables', default=None, nargs='+' ) parser.add_argument('-p', '--project-path', dest='project_path', help='The NNet project path', default=None) parser.add_argument('--regions', dest='regions', help='The region ids (e.g., 1-10)', default=None) args = parser.parse_args() create_train_files(args) if __name__ == '__main__': main() ``` #### File: cultionet/data/datasets.py ```python import typing as T from pathlib import Path import random import logging from ..errors import TensorShapeError import attr import torch from torch_geometric.data import Data, Dataset ATTRVINSTANCE = attr.validators.instance_of ATTRVIN = attr.validators.in_ ATTRVOPTIONAL = attr.validators.optional @attr.s class EdgeDataset(Dataset): """An edge dataset """ root: T.Union[str, Path, bytes] = attr.ib(default='.') transform: T.Any = attr.ib(default=None) pre_transform: T.Any = attr.ib(default=None) data_means: T.Optional[torch.Tensor] = attr.ib(validator=ATTRVOPTIONAL(ATTRVINSTANCE(torch.Tensor)), default=None) data_stds: T.Optional[torch.Tensor] = attr.ib(validator=ATTRVOPTIONAL(ATTRVINSTANCE(torch.Tensor)), default=None) pattern: T.Optional[str] = attr.ib(validator=ATTRVOPTIONAL(ATTRVINSTANCE(str)), default='data*.pt') data_list_ = None def __attrs_post_init__(self): super(EdgeDataset, self).__init__( str(self.root), transform=self.transform, pre_transform=self.pre_transform ) def get_data_list(self): """Gets the list of data files""" self.data_list_ = list(Path(self.processed_dir).glob(self.pattern)) def shuffle_items(self): """Applies a random in-place shuffle to the data list""" random.shuffle(self.data_list_) @property def num_time_features(self): """Get the number of time features """ data = self[0] return int(data.nbands) @property def raw_file_names(self): """Get the raw file names """ if not self.data_list_: self.get_data_list() return self.data_list_ def download(self): pass def process(self): pass @property def processed_file_names(self): """Get a list of processed files""" return self.data_list_ def check_dims(self): """Checks if all tensors in the dataset match in shape dimensions """ ref_dim = self[0].x.shape for i in range(1, len(self)): if self[i].x.shape != ref_dim: raise TensorShapeError(f'{Path(self.data_list_[i]).name} does not match the reference.') def len(self): """Returns the dataset length""" return len(self.processed_file_names) def split_train_val(self, val_frac: float) -> T.Tuple['EdgeDataset', 'EdgeDataset']: """Splits the dataset into train and validation Args: val_frac (float): The validation fraction. Returns: train dataset, validation dataset """ n_train = int(len(self) * (1-val_frac)) self.shuffle_items() train_ds = self[:n_train] val_ds = self[n_train:] return train_ds, val_ds def normalize(self, batch: Data) -> Data: """Normalizes data to z-scores Args: batch (Data): A `torch_geometric` data object. z-scores: z = (x - mean) / std Returns: A `torch_geometric` data object. """ def add_dims(d: torch.Tensor) -> torch.Tensor: return d.unsqueeze(0) x = torch.cat([ (batch.x[:, :-1] - add_dims(self.data_means)) / add_dims(self.data_stds), batch.x[:, -1][:, None] ], dim=1) norm_batch = Data(x=x, **{k: getattr(batch, k) for k in batch.keys if k != 'x'}) return norm_batch def get(self, idx): """Gets an individual data object from the dataset Args: idx (int): The dataset index position. Returns: A `torch_geometric` data object. """ if isinstance(self.data_means, torch.Tensor): batch = torch.load(Path(self.processed_dir) / self.data_list_[idx]) return self.normalize(batch) else: return torch.load(Path(self.processed_dir) / self.data_list_[idx]) ``` #### File: cultionet/data/modules.py ```python import typing as T from .datasets import EdgeDataset import pytorch_lightning as pl from torch_geometric.data import DataLoader class EdgeDataModule(pl.LightningDataModule): """A Lightning data module """ def __init__( self, train_ds: T.Optional[EdgeDataset] = None, val_ds: T.Optional[EdgeDataset] = None, test_ds: T.Optional[EdgeDataset] = None, predict_ds: T.Optional[EdgeDataset] = None, batch_size: int = 5, num_workers: int = 0, shuffle: bool = True ): super().__init__() self.train_ds = train_ds self.val_ds = val_ds self.test_ds = test_ds self.predict_ds = predict_ds self.batch_size = batch_size self.num_workers = num_workers self.shuffle = shuffle def train_dataloader(self): """Returns a data loader for train data """ return DataLoader( self.train_ds, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers ) def val_dataloader(self): """Returns a data loader for validation data """ return DataLoader( self.val_ds, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers ) def test_dataloader(self): """Returns a data loader for test data """ return DataLoader( self.test_ds, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers ) def predict_dataloader(self): """Returns a data loader for predict data """ return DataLoader( self.predict_ds, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers ) ``` #### File: cultionet/models/refinement.py ```python from . import model_utils import torch class RefineConv(torch.nn.Module): """A refinement convolution layer """ def __init__(self, in_channels: int, mid_channels: int, out_channels: int, dropout: float = 0.1): super(RefineConv, self).__init__() self.gc = model_utils.GraphToConv() self.cg = model_utils.ConvToGraph() self.seq = torch.nn.Sequential( torch.nn.Conv2d(in_channels, mid_channels, kernel_size=1, padding=0, bias=False, padding_mode='replicate'), torch.nn.BatchNorm2d(mid_channels), torch.nn.ELU(alpha=0.1, inplace=False), torch.nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=1, bias=False, padding_mode='replicate'), torch.nn.BatchNorm2d(mid_channels), torch.nn.Dropout(dropout), torch.nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=1, bias=False, padding_mode='replicate'), torch.nn.BatchNorm2d(mid_channels), torch.nn.Dropout(dropout), torch.nn.Conv2d(mid_channels, out_channels, kernel_size=1, padding=0, bias=False, padding_mode='replicate') ) def __call__(self, *args, **kwargs): return self.forward(*args, **kwargs) def forward(self, x: torch.Tensor, batch_size: torch.Tensor, height: int, width: int) -> torch.Tensor: x = self.gc( x, batch_size, height, width ) x = self.seq(x) return self.cg(x) ``` #### File: cultionet/utils/project_paths.py ```python from pathlib import Path from dataclasses import dataclass import shutil import typing as T @dataclass class ProjectPaths: project_path: Path image_path: Path composite_path: Path proba_path: Path figure_path: Path data_path: Path process_path: Path ckpt_path: Path train_path: Path predict_path: Path edge_training_path: Path ckpt_file: Path loss_file: Path norm_file: Path def remove_train_path(self): if self.process_path.is_dir(): for fn in self.process_path.glob('*.pt'): fn.unlink() shutil.rmtree(str(self.process_path)) self.process_path.mkdir(exist_ok=True, parents=True) def setup_paths(project_path: T.Union[str, Path, bytes], append_ts: T.Optional[bool] = True) -> ProjectPaths: project_path = Path(project_path) image_path = project_path / 'time_series_vars' if append_ts else project_path composite_path = project_path.parent / 'composites' proba_path = project_path.parent / 'composites_probas' figure_path = project_path / 'figures' data_path = project_path / 'data' ckpt_path = project_path / 'ckpt' train_path = data_path / 'train' process_path = train_path / 'processed' predict_path = data_path / 'predict' edge_training_path = project_path / 'user_train' ckpt_file = ckpt_path / 'last.ckpt' loss_file = ckpt_path / 'losses.npy' norm_file = ckpt_path / 'last.norm' for p in [proba_path, figure_path, data_path, process_path, ckpt_path, train_path, edge_training_path]: p.mkdir(exist_ok=True, parents=True) return ProjectPaths( project_path=project_path, image_path=image_path, composite_path=composite_path, proba_path=proba_path, figure_path=figure_path, data_path=data_path, process_path=process_path, ckpt_path=ckpt_path, train_path=train_path, predict_path=predict_path, edge_training_path=edge_training_path, ckpt_file=ckpt_file, loss_file=loss_file, norm_file=norm_file ) ``` #### File: cultionet/tests/test_dataset.py ```python import os from pathlib import Path from .data import load_data from cultionet.data.datasets import EdgeDataset from cultionet.utils.project_paths import setup_paths import torch import pytest project_path = Path(os.path.abspath(os.path.dirname(__file__))) ppaths = setup_paths(project_path) ds = EdgeDataset(ppaths.train_path) data = next(iter(ds)) loaded_data = load_data() def test_load(): assert torch.allclose(data.x, loaded_data.x) assert torch.allclose(data.y, loaded_data.y) def test_ds_type(): assert isinstance(ds, EdgeDataset) def test_ds_len(): assert len(ds) == 1 def test_x_type(): assert isinstance(data.x, torch.Tensor) def test_x_shape(): assert data.x.shape == (10000, 39) def test_y_shape(): assert data.y.shape == (10000,) def test_nbands_attr(): assert data.nbands == 13 def test_image_shape(): assert data.height == 100 assert data.width == 100 ```
{ "source": "jgrss/geowombat", "score": 2 }
#### File: geowombat/radiometry/angles.py ```python import os from pathlib import Path import fnmatch import subprocess from collections import namedtuple import tarfile import logging from ..handler import add_handler import numpy as np import xarray as xr import rasterio as rio from rasterio.crs import CRS # from rasterio.warp import reproject, Resampling from affine import Affine import xml.etree.ElementTree as ET try: import cv2 OPENCV_INSTALLED = True except: OPENCV_INSTALLED = False logger = logging.getLogger(__name__) logger = add_handler(logger) def shift_objects(data, solar_za, solar_az, sensor_za, sensor_az, h, num_workers): """ Shifts objects along x and y dimensions Args: data (DataArray): The data to shift. solar_za (DataArray): The solar zenith angle. solar_az (DataArray): The solar azimuth angle. sensor_za (DataArray): The sensor, or view, zenith angle. sensor_az (DataArray): The sensor, or view, azimuth angle. h (float): The object height. num_workers (Optional[int]): The number of dask workers. Returns: ``xarray.DataArray`` """ # Scale the angles to degrees sza = solar_za * 0.01 sza.coords['band'] = [1] saa = solar_az * 0.01 saa.coords['band'] = [1] vza = sensor_za * 0.01 vza.coords['band'] = [1] vaa = sensor_az * 0.01 vaa.coords['band'] = [1] # Convert to radians rad_sza = np.deg2rad(sza) rad_saa = np.deg2rad(saa) rad_vza = np.deg2rad(vza) rad_vaa = np.deg2rad(vaa) apparent_solar_az = np.pi + np.arctan((np.sin(rad_saa) * np.tan(rad_sza) - np.sin(rad_vaa) * np.tan(rad_vza)) / (np.cos(rad_saa) * np.tan(rad_sza) - np.cos(rad_vaa) * np.tan(rad_vza))) # Maximum horizontal distance d = (h**2 * ((np.sin(rad_saa) * np.tan(rad_sza) - np.sin(rad_vaa) * np.tan(rad_vza))**2 + (np.cos(rad_saa) * np.tan(rad_sza) - np.cos(rad_vaa) * np.tan(rad_vza))**2))**0.5 # Convert the polar angle to cartesian offsets x = int((np.cos(apparent_solar_az) * d).max(skipna=True).data.compute(num_workers=num_workers)) y = int((np.sin(apparent_solar_az) * d).max(skipna=True).data.compute(num_workers=num_workers)) return data.shift(shifts={'x': x, 'y': y}, fill_value=0) def estimate_cloud_shadows(data, clouds, solar_za, solar_az, sensor_za, sensor_az, heights=None, num_workers=1): """ Estimates shadows from a cloud mask and adds to the existing mask Args: data (DataArray): The wavelengths, scaled 0-1. clouds (DataArray): The cloud mask, where clouds=1 and clear sky=0. solar_za (DataArray): The solar zenith angle. solar_az (DataArray): The solar azimuth angle. sensor_za (DataArray): The sensor, or view, zenith angle. sensor_az (DataArray): The sensor, or view, azimuth angle. heights (Optional[list]): The cloud heights, in kilometers. num_workers (Optional[int]): The number of dask workers. Returns: ``xarray.DataArray`` References: For the angle offset calculations, see :cite:`fisher_2014`. For the shadow test, see :cite:`sun_etal_2018`. """ attrs = data.attrs.copy() if not heights: heights = list(range(200, 1400, 200)) shadows = None for h in heights: potential_shadows = shift_objects(clouds, solar_za, solar_az, sensor_za, sensor_az, h, num_workers) if not isinstance(shadows, xr.DataArray): shadows = xr.where((data.sel(band='nir') < 0.25) & (data.sel(band='swir1') < 0.11) & (potential_shadows.sel(band='mask') == 1), 1, 0) else: shadows = xr.where(((data.sel(band='nir') < 0.25) & (data.sel(band='swir1') < 0.11) & (potential_shadows.sel(band='mask') == 1)) | shadows.sel(band='mask') == 1, 1, 0) shadows = shadows.expand_dims(dim='band') # Add the shadows to the cloud mask data = xr.where(clouds.sel(band='mask') == 1, 1, xr.where(shadows.sel(band='mask') == 1, 2, 0)) data = data.expand_dims(dim='band') data.attrs = attrs return data def scattering_angle(cos_sza, cos_vza, sin_sza, sin_vza, cos_raa): """ Calculates the scattering angle Args: cos_sza (DataArray): The cosine of the solar zenith angle. cos_vza (DataArray): The cosine of the view zenith angle. sin_sza (DataArray): The sine of the solar zenith angle. sin_vza (DataArray): The sine of the view zenith angle. cos_raa (DataArray): The cosine of the relative azimuth angle. Equation: .. math:: \Theta = scattering angle \theta_0 = solar zenith angle \theta_S = sensor zenith angle \zeta = relative azimuth angle \Theta_s = \arccos{- \cos{\theta_0} \cos{\theta_S} - \sin{\theta_0} \sin{\theta_S} \cos{\zeta}} References: scattering angle = the angle between the direction of incident and scattered radiation Liu, CH and <NAME> (2009) AEROSOL OPTICAL DEPTH RETRIEVAL FOR SPOT HRV IMAGES, Journal of Marine Science and Technology http://stcorp.github.io/harp/doc/html/algorithms/derivations/scattering_angle.html Returns: Scattering angle (in radians) as an ``xarray.DataArray`` """ scattering_angle = xr.ufuncs.arccos(-cos_sza * cos_vza - sin_sza * sin_vza * cos_raa) return xr.ufuncs.cos(scattering_angle) ** 2 def relative_azimuth(saa, vaa): """ Calculates the relative azimuth angle Args: saa (DataArray): The solar azimuth angle (in degrees). vaa (DataArray): The view azimuth angle (in degrees). Reference: http://stcorp.github.io/harp/doc/html/algorithms/derivations/relative_azimuth_angle.html Returns: Relative azimuth (in degrees) as an ``xarray.DataArray`` """ # Relative azimuth (in radians) raa = xr.ufuncs.deg2rad(saa - vaa) # Create masks raa_plus = xr.where(raa >= 2.0*np.pi, 1, 0) raa_minus = xr.where(raa < 0, 1, 0) # raa = xr.where(raa_plus == 1, raa + (2.0*np.pi), raa) # raa = xr.where(raa_minus == 1, raa - (2.0*np.pi), raa) raa = xr.where(raa_plus == 1, raa - (2.0 * np.pi), raa) raa = xr.where(raa_minus == 1, raa + (2.0 * np.pi), raa) return xr.ufuncs.fabs(xr.ufuncs.rad2deg(raa)) def get_sentinel_sensor(metadata): # Parse the XML file tree = ET.parse(metadata) root = tree.getroot() for child in root: if 'general_info' in child.tag[-14:].lower(): general_info = child for ginfo in general_info: if ginfo.tag == 'TILE_ID': file_name = ginfo.text return file_name[:3].lower() def parse_sentinel_angles(metadata, proc_angles, nodata): """ Gets the Sentinel-2 solar angles from metadata Args: metadata (str): The metadata file. proc_angles (str): The angles to parse. Choices are ['solar', 'view']. nodata (int or float): The 'no data' value. Returns: zenith and azimuth angles as a ``tuple`` of 2d ``numpy`` arrays """ if proc_angles == 'view': zenith_values = np.zeros((13, 23, 23), dtype='float64') + nodata azimuth_values = np.zeros((13, 23, 23), dtype='float64') + nodata else: zenith_values = np.zeros((23, 23), dtype='float64') + nodata azimuth_values = np.zeros((23, 23), dtype='float64') + nodata view_tag = 'Sun_Angles_Grid' if proc_angles == 'solar' else 'Viewing_Incidence_Angles_Grids' # Parse the XML file tree = ET.parse(metadata) root = tree.getroot() # Find the angles for child in root: if child.tag.split('}')[-1] == 'Geometric_Info': geoinfo = child break for segment in geoinfo: if segment.tag == 'Tile_Angles': angles = segment for angle in angles: if angle.tag == view_tag: if proc_angles == 'view': band_id = int(angle.attrib['bandId']) for bset in angle: if bset.tag == 'Zenith': zenith = bset if bset.tag == 'Azimuth': azimuth = bset for field in zenith: if field.tag == 'Values_List': zvallist = field for field in azimuth: if field.tag == 'Values_List': avallist = field for rindex in range(len(zvallist)): zvalrow = zvallist[rindex] avalrow = avallist[rindex] zvalues = zvalrow.text.split(' ') avalues = avalrow.text.split(' ') values = list(zip(zvalues, avalues)) for cindex in range(len(values)): if (values[cindex][0].lower() != 'nan') and (values[cindex][1].lower() != 'nan'): ze = float(values[cindex][0]) az = float(values[cindex][1]) if proc_angles == 'view': zenith_values[band_id, rindex, cindex] = ze azimuth_values[band_id, rindex, cindex] = az else: zenith_values[rindex, cindex] = ze azimuth_values[rindex, cindex] = az return zenith_values, azimuth_values def sentinel_pixel_angles(metadata, ref_file, outdir='.', nodata=-32768, overwrite=False, verbose=0): """ Generates Sentinel pixel angle files Args: metadata (str): The metadata file. ref_file (str): A reference image to use for geo-information. outdir (Optional[str])): The output directory to save the angle files to. nodata (Optional[int or float]): The 'no data' value. overwrite (Optional[bool]): Whether to overwrite existing angle files. verbose (Optional[int]): The verbosity level. References: https://www.sentinel-hub.com/faq/how-can-i-access-meta-data-information-sentinel-2-l2a https://github.com/marujore/sentinel_angle_bands/blob/master/sentinel2_angle_bands.py Returns: zenith and azimuth angles as a ``namedtuple`` of angle file names """ if not OPENCV_INSTALLED: logger.exception('OpenCV must be installed.') AngleInfo = namedtuple('AngleInfo', 'vza vaa sza saa sensor') sza, saa = parse_sentinel_angles(metadata, 'solar', nodata) vza, vaa = parse_sentinel_angles(metadata, 'view', nodata) sensor_name = get_sentinel_sensor(metadata) with rio.open(ref_file) as src: profile = src.profile.copy() ref_height = src.height ref_width = src.width ref_extent = src.bounds profile.update(transform=Affine(src.res[0], 0.0, ref_extent.left, 0.0, -src.res[1], ref_extent.top), height=ref_height, width=ref_width, nodata=-32768, dtype='int16', count=1, driver='GTiff', tiled=True, compress='lzw') ref_base = '_'.join(os.path.basename(ref_file).split('_')[:-1]) opath = Path(outdir) opath.mkdir(parents=True, exist_ok=True) # Set output angle file names. sensor_azimuth_file = opath.joinpath(ref_base + '_sensor_azimuth.tif').as_posix() sensor_zenith_file = opath.joinpath(ref_base + '_sensor_zenith.tif').as_posix() solar_azimuth_file = opath.joinpath(ref_base + '_solar_azimuth.tif').as_posix() solar_zenith_file = opath.joinpath(ref_base + '_solar_zenith.tif').as_posix() for angle_array, angle_file in zip([vaa, vza, saa, sza], [sensor_azimuth_file, sensor_zenith_file, solar_azimuth_file, solar_zenith_file]): pfile = Path(angle_file) if overwrite: if pfile.is_file(): pfile.unlink() if not pfile.is_file(): # TODO: write data for each band? if len(angle_array.shape) > 2: angle_array = angle_array.mean(axis=0) with rio.open(angle_file, mode='w', **profile) as dst: if verbose > 0: logger.info(' Writing {} to file ...'.format(angle_file)) # Resample and scale angle_array_resamp = np.int16(cv2.resize(angle_array, (0, 0), fy=ref_height / angle_array.shape[0], fx=ref_width / angle_array.shape[1], interpolation=cv2.INTER_LINEAR) / 0.01) dst.write(angle_array_resamp, indexes=1) return AngleInfo(vaa=str(sensor_azimuth_file), vza=str(sensor_zenith_file), saa=str(solar_azimuth_file), sza=str(solar_zenith_file), sensor=sensor_name) # Potentially useful for angle creation # https://github.com/gee-community/gee_tools/blob/master/geetools/algorithms.py # def slope_between(a, b): # return (a[1] - b[1]) / (a[0] - b[0]) # # # @nb.jit # def _calc_sensor_angles(data, # zenith_angles, # azimuth_angles, # yvalues, # xvalues, # celly, # cellx, # satellite_height, # nodata, # acquisition_date): # # """ # Calculates sensor zenith and azimuth angles # """ # # slope = slope_between(np.array([data.gw.meta.right + ((data.gw.ncols/2.0)*data.gw.cellx), data.gw.meta.top]), # np.array([data.gw.meta.left, data.gw.meta.top - ((data.gw.nrows / 2.0) * data.gw.celly)])) # # slope_perc = -1.0 / slope # # view_az = (math.pi / 2.0) - math.arctan(slope_perc) # # for i in range(0, yvalues.shape[0]): # # for j in range(0, xvalues.shape[0]): # # if data_band[i, j] != nodata: # # # TODO: calculate satellite drift angle # dist_from_nadir = None # # # Calculate the distance from the current location to the satellite # dist_to_satellite = np.hypot(satellite_height, dist_from_nadir) # # # Calculate the view angle # # zenith_angles[i, j] # # # Solar zenith angle = 90 - elevation angle scaled to integer range # zenith_angles[i, j] = (90.0 - get_altitude_fast(xvalues[j], yvalues[i], acquisition_date)) / 0.01 # # # Solar azimuth angle # azimuth_angles[i, j] = float(get_azimuth_fast(xvalues[j], yvalues[i], acquisition_date)) / 0.01 # # return zenith_angles, azimuth_angles # @nb.jit # def _calc_solar_angles(data_band, zenith_angles, azimuth_angles, yvalues, xvalues, nodata, acquisition_date): # # """ # Calculates solar zenith and azimuth angles # """ # # for i in range(0, yvalues): # # for j in range(0, xvalues): # # if data_band[i, j] != nodata: # # # Solar zenith angle = 90 - elevation angle scaled to integer range # zenith_angles[i, j] = (90.0 - get_altitude_fast(xvalues[j], yvalues[i], acquisition_date)) / 0.01 # # # Solar azimuth angle # azimuth_angles[i, j] = float(get_azimuth_fast(xvalues[j], yvalues[i], acquisition_date)) / 0.01 # # return zenith_angles, azimuth_angles # def pixel_angles(data, band, nodata, meta): # # """ # Generates pixel zenith and azimuth angles # # Args: # data (Xarray): The data with coordinate and transform attributes. # band (int or str): The ``data`` band to use for masking. # nodata (int or float): The 'no data' value in ``data``. # meta (namedtuple): The metadata file. Should have image acquisition year, month, day and hour attributes. # """ # # acquisition_date = dtime(meta.year, meta.month, meta.day, meta.hour, 0, 0, 0, tzinfo=datetime.timezone.utc) # # yvalues = data.y.values # xvalues = data.x.values # # data_band = data.sel(band=band).data.compute() # sze = np.zeros((data.gw.nrows, data.gw.ncols), dtype='int16') - 32768 # saa = np.zeros((data.gw.nrows, data.gw.ncols), dtype='int16') - 32768 # # sze, saa = _calc_solar_angles(data_band, sze, saa, yvalues, xvalues, nodata, acquisition_date) # # sze_attrs = data.attrs.copy() # saa_attrs = data.attrs.copy() # # sze_attrs['values'] = 'Solar zenith angle' # sze_attrs['scale_factor'] = 0.01 # # saa_attrs['values'] = 'Solar azimuth angle' # sze_attrs['scale_factor'] = 0.01 # # szex = xr.DataArray(data=da.from_array(sze[np.newaxis, :, :], # chunks=(1, data.gw.row_chunks, data.gw.col_chunks)), # coords={'band': 'sze', # 'y': data.y, # 'x': data.x}, # dims=('band', 'y', 'x'), # attrs=sze_attrs) # # saax = xr.DataArray(data=da.from_array(saa[np.newaxis, :, :], # chunks=(1, data.gw.row_chunks, data.gw.col_chunks)), # coords={'band': 'saa', # 'y': data.y, # 'x': data.x}, # dims=('band', 'y', 'x'), # attrs=saa_attrs) # # return szex, saax def landsat_pixel_angles(angles_file, ref_file, out_dir, sensor, l57_angles_path=None, l8_angles_path=None, subsample=1, resampling='bilinear', num_threads=1, verbose=0): """ Generates Landsat pixel angle files Args: angles_file (str): The angles file. ref_file (str): A reference file. out_dir (str): The output directory. sensor (str): The sensor. l57_angles_path (str): The path to the Landsat 5 and 7 angles bin. l8_angles_path (str): The path to the Landsat 8 angles bin. subsample (Optional[int]): The sub-sample factor when calculating the angles. resampling (Optional[str]): The resampling method if ``filename`` is a ``list``. Choices are ['average', 'bilinear', 'cubic', 'cubic_spline', 'gauss', 'lanczos', 'max', 'med', 'min', 'mode', 'nearest']. num_threads (Optional[int]): The number of threads to pass to ``rasterio.warp.reproject``. verbose (Optional[int]): The verbosity level. Returns: zenith and azimuth angles as a ``namedtuple`` of angle file names """ if not l57_angles_path: gw_bin = os.path.realpath(os.path.dirname(__file__)) gw_out = os.path.realpath(Path(gw_bin).joinpath('../bin').as_posix()) gw_tar = os.path.realpath(Path(gw_bin).joinpath('../bin/ESPA.tar.gz').as_posix()) if not Path(gw_bin).joinpath('../bin/ESPA').is_dir(): with tarfile.open(gw_tar, mode='r:gz') as tf: tf.extractall(gw_out) l57_angles_path = Path(gw_out).joinpath('ESPA/landsat_angles').as_posix() l8_angles_path = Path(gw_out).joinpath('ESPA/l8_angles').as_posix() AngleInfo = namedtuple('AngleInfo', 'vza vaa sza saa') # Setup the angles name. # example file = LE07_L1TP_225098_20160911_20161008_01_T1_sr_band1.tif with rio.open(ref_file) as src: ref_res = src.res ref_height = src.height ref_width = src.width ref_extent = src.bounds ref_base = '_'.join(os.path.basename(ref_file).split('_')[:-1]) opath = Path(out_dir) opath.mkdir(parents=True, exist_ok=True) # Set output angle file names. sensor_azimuth_file = opath.joinpath(ref_base + '_sensor_azimuth.tif').as_posix() sensor_zenith_file = opath.joinpath(ref_base + '_sensor_zenith.tif').as_posix() solar_azimuth_file = opath.joinpath(ref_base + '_solar_azimuth.tif').as_posix() solar_zenith_file = opath.joinpath(ref_base + '_solar_zenith.tif').as_posix() if not Path(sensor_azimuth_file).is_file(): # Setup the command. if sensor.lower() in ['l5', 'l7']: angle_command = '{PATH} {META} -s {SUBSAMP:d} -b 1'.format(PATH=str(Path(l57_angles_path).joinpath('landsat_angles')), META=angles_file, SUBSAMP=subsample) # 1=zenith, 2=azimuth out_order = dict(azimuth=2, zenith=1) # out_order = [2, 1, 2, 1] else: angle_command = '{PATH} {META} BOTH {SUBSAMP:d} -f -32768 -b 4'.format(PATH=str(Path(l8_angles_path).joinpath('l8_angles')), META=angles_file, SUBSAMP=subsample) # 1=azimuth, 2=zenith out_order = dict(azimuth=1, zenith=2) # out_order = [1, 2, 1, 2] os.chdir(out_dir) if verbose > 0: logger.info(' Generating pixel angles ...') # Create the angle files. subprocess.call(angle_command, shell=True) # Get angle data from 1 band. sensor_angles = fnmatch.filter(os.listdir(out_dir), '*sensor_B04.img')[0] solar_angles = fnmatch.filter(os.listdir(out_dir), '*solar_B04.img')[0] sensor_angles_fn_in = opath.joinpath(sensor_angles).as_posix() solar_angles_fn_in = opath.joinpath(solar_angles).as_posix() # Convert the data for in_angle, out_angle, band_pos in zip([sensor_angles_fn_in, sensor_angles_fn_in, solar_angles_fn_in, solar_angles_fn_in], [sensor_azimuth_file, sensor_zenith_file, solar_azimuth_file, solar_zenith_file], ['azimuth', 'zenith', 'azimuth', 'zenith']): new_res = subsample*ref_res[0] # Update the .hdr file with open(in_angle + '.hdr', mode='r') as txt: lines = txt.readlines() for lidx, line in enumerate(lines): if line.startswith('map info'): lines[lidx] = line.replace('30.000, 30.000', f'{new_res:.3f}, {new_res:.3f}') Path(in_angle + '.hdr').unlink() with open(in_angle + '.hdr', mode='w') as txt: txt.writelines(lines) with rio.open(in_angle) as src: profile = src.profile.copy() epsg = src.crs.to_epsg() # Adjust Landsat images in the Southern hemisphere if str(epsg).startswith('326') and (ref_extent.top < 0): transform = Affine(new_res, 0.0, ref_extent.left, 0.0, -new_res, ref_extent.top+10_000_000.0) crs = CRS.from_epsg(f'327{str(epsg)[3:]}') else: transform = Affine(new_res, 0.0, ref_extent.left, 0.0, -new_res, ref_extent.top) crs = src.crs profile.update(transform=transform, crs=crs, height=src.height, width=src.width, nodata=-32768, dtype='int16', count=1, driver='GTiff', tiled=True, compress='lzw') # src_band = rio.Band(src, out_order[band_pos], 'int16', (src.height, src.width)) with rio.open(out_angle, mode='w', **profile) as dst: dst.write(src.read(out_order[band_pos]), indexes=1) # dst_band = rio.Band(dst, 1, 'int16', (dst.height, dst.width)) # # reproject(src_band, # destination=dst_band, # resampling=getattr(Resampling, resampling), # num_threads=num_threads) os.chdir(os.path.expanduser('~')) return AngleInfo(vaa=str(sensor_azimuth_file), vza=str(sensor_zenith_file), saa=str(solar_azimuth_file), sza=str(solar_zenith_file)) ``` #### File: geowombat/radiometry/mask.py ```python from ..errors import logger from ..core import ndarray_to_xarray from ..core import norm_diff import numpy as np import xarray as xr try: from s2cloudless import S2PixelCloudDetector S2CLOUDLESS_INSTALLED = True except: S2CLOUDLESS_INSTALLED = False def estimate_shadows(data, cloud_mask, solar_zenith, solar_azimuth, cloud_heights, nodata, scale_factor, num_workers): """ Estimates shadows from masked clouds, solar angle, and solar azimuth Args: data (DataArray) cloud_mask (DataArray) solar_zenith (DataArray) solar_azimuth (DataArray) cloud_heights (list) nodata (int | float) scale_factor (float) num_workers (int): The number of parallel compute workers. Reference: https://github.com/samsammurphy/cloud-masking-sentinel2/blob/master/cloud-masking-sentinel2.ipynb Returns: ``xarray.DataArray``: Data range: 0 to 1, where 0=non-shadow; 1=shadow """ potential_shadows = [] for cloud_height in cloud_heights: shadow_vector = xr.ufuncs.tan(solar_zenith.sel(band=1)) * cloud_height # x and y components of shadow vector length # TODO: check if correct y = int(((xr.ufuncs.cos(solar_azimuth.sel(band=1)) * shadow_vector) / data.gw.celly).round().min().data.compute(num_workers=num_workers)) x = -int(((xr.ufuncs.sin(solar_azimuth.sel(band=1)) * shadow_vector) / data.gw.celly).round().min().data.compute(num_workers=num_workers)) # affine translation of clouds cloud_shift = cloud_mask.shift({'x': x, 'y': y}, fill_value=0) potential_shadows.append(cloud_shift) potential_shadows = xr.concat(potential_shadows, dim='band') potential_shadows = potential_shadows.assign_coords(coords={'band': list(range(1, len(cloud_heights)+1))}) potential_shadows = potential_shadows.max(dim='band') potential_shadows = potential_shadows.expand_dims(dim='band') potential_shadows = potential_shadows.assign_coords(coords={'band': [1]}) dark_pixels = norm_diff(data, 'swir2', 'green', sensor='s2', nodata=nodata, scale_factor=scale_factor) shadows = xr.where((potential_shadows.sel(band=1) >= 1) & (cloud_mask.sel(band=1) != 1) & (dark_pixels.sel(band='norm-diff') >= 0.1), 1, 0) shadows = shadows.expand_dims(dim='band') shadows = shadows.assign_coords(coords={'band': [1]}) return shadows class CloudShadowMasker(object): @staticmethod def mask_s2(data, solar_za, solar_az, cloud_heights=None, nodata=None, scale_factor=1, num_workers=1, **kwargs): """ Masks Sentinel 2 data Args: data (DataArray): The Sentinel 2 data to mask. solar_za (DataArray): The solar zenith angle. solar_az (DataArray): The solar azimuth angle. cloud_heights (Optional[list]): A list of potential cloud heights. nodata (Optional[int or float]): A 'no data' value to fill NAs with. scale_factor (Optional[float]): A scale factor to apply to the data. num_workers (Optional[int]): The number of parallel compute workers. kwargs (Optional[dict]): Keyword arguments for ``s2cloudless.S2PixelCloudDetector``. Returns: ``xarray.DataArray``: Data range: 0 to 4, where 0=clear; 2=shadow; 4=cloud Example: >>> import geowombat as gw >>> from geowombat.radiometry import mask_s2 >>> >>> with gw.config.update(sensor='s2f', scale_factor=0.0001): >>> >>> with gw.open('image.tif') as src, \ >>> gw.open('solar_zenith.tif') as sza, \ >>> gw.open('solar_azimuth.tif') as saa: >>> >>> s2_mask = mask_s2(src, sza, saa) """ # from ..radiometry.mask import CloudShadowMasker # mask_s2 = CloudShadowMasker().mask_s2 # # mask = mask_s2(data, # sza, # saa, # scale_factor=0.0001, # nodata=0, # num_workers=num_threads) # # fnmask = Path(load_bands_names[0]).name.split('.')[0] # mask.gw.to_raster(f'/media/jcgr/data/projects/global_fields/data/grids/ms/test/000960/{fnmask}_mask.tif', # n_workers=1, n_threads=1) # # if bands_out: # data = _assign_attrs(data, attrs, bands_out) new_attrs = data.attrs.copy() if not cloud_heights: cloud_heights = list(range(500, 2000, 500)) if not isinstance(nodata, int) and not isinstance(nodata, float): nodata = data.gw.nodata if scale_factor == 1.0: scale_factor = data.gw.scale_factor if S2CLOUDLESS_INSTALLED: if not kwargs: kwargs = dict(threshold=0.4, average_over=4, dilation_size=5, all_bands=False) cloud_detector = S2PixelCloudDetector(**kwargs) # Get the S2Cloudless bands data_cloudless = data.sel(band=['coastal', 'blue', 'red', 'nir1', 'nir', 'rededge', 'water', 'cirrus', 'swir1', 'swir2']) # Scale from 0-10000 to 0-1 if isinstance(nodata, int) or isinstance(nodata, float): data_cloudless = xr.where(data_cloudless != nodata, data_cloudless * scale_factor, nodata).clip(0, 1).astype('float64') else: data_cloudless = (data_cloudless * scale_factor).clip(0, 1).astype('float64') # Reshape for predictions .. # from [bands x rows x columns] # to [images x rows x columns x bands] X = data_cloudless.transpose('y', 'x', 'band').data.compute(num_workers=num_workers)[np.newaxis, :, :, :] ################ # Predict clouds ################ # Convert from NumPy array to DataArray # clear=0, clouds=1 cloud_mask = ndarray_to_xarray(data, cloud_detector.get_cloud_masks(X), [1]) ################# # Predict shadows ################# # Scale the angles to degrees sza = solar_za * 0.01 sza.coords['band'] = [1] saa = solar_az * 0.01 saa.coords['band'] = [1] # Convert to radians rad_sza = xr.ufuncs.deg2rad(sza) rad_saa = xr.ufuncs.deg2rad(saa) # non-shadow=0, shadows=1 shadow_mask = estimate_shadows(data, cloud_mask, rad_sza, rad_saa, cloud_heights, nodata, scale_factor, num_workers) # Recode for final output mask = xr.where(cloud_mask.sel(band=1) == 1, 4, xr.where(shadow_mask.sel(band=1) == 1, 2, xr.where(data.max(dim='band') == nodata, 255, 0))).expand_dims(dim='band').astype('uint8') mask = mask.assign_coords(coords={'band': ['mask']}) new_attrs['nodatavals'] = (255) new_attrs['scales'] = (1.0) new_attrs['offsets'] = (0.0) new_attrs['pre-scaling'] = scale_factor new_attrs['sensor'] = 's2' new_attrs['clearval'] = (0) new_attrs['shadowval'] = (2) new_attrs['cloudval'] = (4) new_attrs['fillval'] = (255) mask = mask.assign_attrs(**new_attrs) else: logger.warning(' S2Cloudless is not installed.') mask = None return mask ``` #### File: geowombat/util/web.py ```python import os import shutil import fnmatch import tarfile import subprocess from pathlib import Path from datetime import datetime from collections import namedtuple import time import logging import concurrent.futures from ..handler import add_handler from ..radiometry import BRDF, LinearAdjustments, RadTransforms, landsat_pixel_angles, sentinel_pixel_angles, QAMasker, DOS, SixS from ..radiometry.angles import estimate_cloud_shadows from ..core.properties import get_sensor_info from ..core import ndarray_to_xarray from ..backends.gdal_ import warp import geowombat as gw import numpy as np from osgeo import gdal import pandas as pd import geopandas as gpd import xarray as xr from shapely.geometry import Polygon try: import requests REQUESTS_INSTALLED = True except: REQUESTS_INSTALLED = False try: from s2cloudless import S2PixelCloudDetector S2CLOUDLESS_INSTALLED = True except: S2CLOUDLESS_INSTALLED = False logger = logging.getLogger(__name__) logger = add_handler(logger) RESAMPLING_DICT = dict(bilinear=gdal.GRA_Bilinear, cubic=gdal.GRA_Cubic, nearest=gdal.GRA_NearestNeighbour) OrbitDates = namedtuple('OrbitDates', 'start end') FileInfo = namedtuple('FileInfo', 'name key') GoogleFileInfo = namedtuple('GoogleFileInfo', 'url url_file meta angles') def _rmdir(pathdir): """ Removes a directory path """ if pathdir.is_dir(): for child in pathdir.iterdir(): if child.is_file(): try: child.unlink() except: pass try: pathdir.rmdir() except: try: shutil.rmtree(str(pathdir)) except: pass def _delayed_read(fn): attempt = 0 max_attempts = 10 while True: if Path(fn).is_file(): break else: time.sleep(2) attempt += 1 if attempt >= max_attempts: break with open(str(fn), mode='r') as tx: lines = tx.readlines() return lines def _update_status_file(fn, log_name): attempt = 0 max_attempts = 10 while True: wait_on_file = False # Check if the file is open by another process for proc in psutil.process_iter(): try: for item in proc.open_files(): if item.path == str(fn): wait_on_file = True break except Exception: pass if wait_on_file: break if wait_on_file: time.sleep(2) else: break attempt += 1 if attempt >= max_attempts: break with open(str(fn), mode='r') as tx: lines = tx.readlines() if lines: lines = list(set(lines)) if log_name + '\n' not in lines: lines.append(log_name + '\n') fn.unlink() with open(str(fn), mode='w') as tx: tx.writelines(lines) def _clean_and_update(outdir_angles, finfo_dict, meta_name, check_angles=True, check_downloads=True, load_bands_names=None): if check_angles: _rmdir(outdir_angles) if check_downloads: for k, v in finfo_dict.items(): if Path(v.name).is_file(): try: Path(v.name).unlink() except Warning: logger.warning(' Could not delete {}.'.format(v.name)) else: logger.warning(' The {} file does not exist to delete.'.format(v.name)) # if update_status: # _update_status_file(status, meta_name) if load_bands_names: for loaded_band in load_bands_names: if Path(loaded_band).is_file(): try: Path(loaded_band).unlink() except Warning: logger.warning(' Could not delete {}.'.format(loaded_band)) def _assign_attrs(data, attrs, bands_out): if bands_out: data = data.sel(band=bands_out) data = data.transpose('band', 'y', 'x') data.attrs = attrs return data def _parse_google_filename(filename, landsat_parts, sentinel_parts, public_url): file_info = GoogleFileInfo(url=None, url_file=None, meta=None, angles=None) f_base, f_ext = os.path.splitext(filename) fn_parts = f_base.split('_') if fn_parts[0].lower() in landsat_parts: # Collection 1 url_ = '{PUBLIC}-landsat/{SENSOR}/01/{PATH}/{ROW}/{FDIR}'.format(PUBLIC=public_url, SENSOR=fn_parts[0], PATH=fn_parts[2][:3], ROW=fn_parts[2][3:], FDIR='_'.join(fn_parts[:-1])) url_filename = '{URL}/{FN}'.format(URL=url_, FN=filename) url_meta = '{URL}/{FN}_MTL.txt'.format(URL=url_, FN='_'.join(fn_parts[:-1])) url_angles = '{URL}/{FN}_ANG.txt'.format(URL=url_, FN='_'.join(fn_parts[:-1])) file_info = GoogleFileInfo(url=url_, url_file=url_filename, meta=url_meta, angles=url_angles) return file_info def _download_workers(gcp_str, poutdir, outdir, fname, fn, null_items, verbose): # Renaming Sentinel data rename = False # Full path of GCP local download down_file = str(poutdir.joinpath(fname)) if down_file.endswith('_ANG.txt'): fbase = fname.replace('_ANG.txt', '') key = 'angle' elif down_file.endswith('_MTL.txt'): fbase = fname.replace('_MTL.txt', '') key = 'meta' elif down_file.endswith('MTD_TL.xml'): fbase = Path(fn).parent.name down_file = str(poutdir.joinpath(fbase + '_MTD_TL.xml')) key = 'meta' rename = True elif down_file.endswith('_BQA.TIF'): fbase = fname.replace('_BQA.TIF', '') key = 'qa' else: if fname.endswith('.jp2'): fbase = Path(fn).parent.parent.name key = Path(fn).name.split('.')[0].split('_')[-1] down_file = str(poutdir.joinpath(fbase + '_' + key + '.jp2')) rename = True else: fsplit = fname.split('_') fbase = '_'.join(fsplit[:-1]) key = fsplit[-1].split('.')[0] # TODO: QA60 continue_download = True if fbase in null_items: continue_download = False if continue_download: ################### # Download the file ################### if not Path(down_file).is_file(): if fn.lower().startswith('gs://gcp-public-data'): com = 'gsutil cp -r {} {}'.format(fn, outdir) else: com = 'gsutil cp -r {}/{} {}'.format(gcp_str, fn, outdir) if verbose > 0: logger.info(' Downloading {} ...'.format(fname)) subprocess.call(com, shell=True) if rename: os.rename(str(Path(outdir).joinpath(Path(fn).name)), down_file) # Store file information return key, FileInfo(name=down_file, key=key) else: return None, None class DownloadMixin(object): def download_gcp(self, sensor, downloads=None, outdir='.', outdir_brdf=None, search_wildcards=None, search_dict=None, n_jobs=1, verbose=0): """ Downloads a file from Google Cloud platform Args: sensor (str): The sensor to query. Choices are ['l5', 'l7', 'l8', 's2a', 's2c']. downloads (Optional[str or list]): The file or list of keys to download. If not given, keys will be taken from ``search_dict`` or ``self.search_dict``. outdir (Optional[str | Path]): The output directory. outdir_brdf (Optional[Path]): The output directory. search_wildcards (Optional[list]): A list of search wildcards. search_dict (Optional[dict]): A keyword search dictionary to override ``self.search_dict``. n_jobs (Optional[int]): The number of files to download in parallel. verbose (Optional[int]): The verbosity level. Returns: ``dict`` of ``dicts`` where sub-dictionaries contain a ``namedtuple`` of the downloaded file and tag """ if not search_dict: if not self.search_dict: logger.exception(' A keyword search dictionary must be provided, either from `self.list_gcp` or the `search_dict` argument.') else: search_dict = self.search_dict poutdir = Path(outdir) if outdir != '.': poutdir.mkdir(parents=True, exist_ok=True) if not downloads: downloads = list(search_dict.keys()) if not isinstance(downloads, list): downloads = [downloads] if sensor in ['s2', 's2a', 's2b', 's2c']: gcp_str = 'gsutil cp -r gs://gcp-public-data-sentinel-2' else: gcp_str = 'gsutil cp -r gs://gcp-public-data-landsat' downloaded = {} null_items = [] for search_key in downloads: download_list = self.search_dict[search_key] if search_wildcards: download_list_ = [] for swild in search_wildcards: download_list_ += fnmatch.filter(download_list, '*{}'.format(swild)) download_list = download_list_ download_list_names = [Path(dfn).name for dfn in download_list] logger.info(' The download contains {:d} items: {}'.format(len(download_list_names), ','.join(download_list_names))) # Separate each scene if sensor.lower() in ['l5', 'l7', 'l8']: # list of file ids id_list = ['_'.join(fn.split('_')[:-1]) for fn in download_list_names if fn.endswith('_MTL.txt')] # list of lists where each sub-list is unique download_list_unique = [[fn for fn in download_list if sid in Path(fn).name] for sid in id_list] else: id_list = list(set(['_'.join(fn.split('_')[:-1]) for fn in download_list_names])) download_list_unique = [download_list] for scene_id, sub_download_list in zip(id_list, download_list_unique): logger.info(' Checking scene {} ...'.format(scene_id)) downloaded_sub = {} # Check if the file has been downloaded if sensor.lower() in ['l5', 'l7', 'l8']: if not scene_id.lower().startswith(self.sensor_collections[sensor.lower()]): logger.exception(' The scene id {SCENE_ID} does not match the sensor {SENSOR}.'.format(SCENE_ID=scene_id, SENSOR=sensor)) raise NameError # Path of BRDF stack out_brdf = outdir_brdf.joinpath(scene_id + '.tif') else: fn = sub_download_list[0] fname = Path(fn).name if fname.lower().endswith('.jp2'): fbase = Path(fn).parent.parent.name key = Path(fn).name.split('.')[0].split('_')[-1] down_file = str(poutdir.joinpath(fbase + '_' + key + '.jp2')) brdfp = '_'.join(Path(down_file).name.split('_')[:-1]) out_brdf = outdir_brdf.joinpath(brdfp + '_MTD.tif') else: out_brdf = None if out_brdf: if out_brdf.is_file() or \ Path(str(out_brdf).replace('.tif', '.nc')).is_file() or \ Path(str(out_brdf).replace('.tif', '.nodata')).is_file(): logger.warning(f' The output BRDF file, {str(out_brdf)}, already exists.') _clean_and_update(None, None, None, check_angles=False, check_downloads=False) continue else: logger.warning(f' Continuing with the download for {str(out_brdf)}.') # Move the metadata file to the front of the # list to avoid unnecessary downloads. if sensor.lower() in ['l5', 'l7', 'l8']: meta_index = [i for i in range(0, len(sub_download_list)) if sub_download_list[i].endswith('_MTL.txt')][0] sub_download_list.insert(0, sub_download_list.pop(meta_index)) else: # The Sentinel 2 metadata files come in their own list pass download_list_names = [Path(dfn).name for dfn in sub_download_list] results = [] with concurrent.futures.ThreadPoolExecutor(max_workers=n_jobs) as executor: futures = [executor.submit(_download_workers, gcp_str, poutdir, outdir, fname, fn, null_items, verbose) for fname, fn in zip(download_list_names, sub_download_list)] for f in concurrent.futures.as_completed(futures): results.append(f.result()) for key, finfo_ in results: if finfo_: downloaded_sub[key] = finfo_ if downloaded_sub: if len(downloaded_sub) < len(sub_download_list): downloaded_names = [Path(v.name).name for v in list(downloaded_sub.values())] missing_items = ','.join(list(set(download_list_names).difference(downloaded_names))) logger.warning(' Only {:d} files out of {:d} were downloaded.'.format(len(downloaded_sub), len(sub_download_list))) logger.warning(' {} are missing.'.format(missing_items)) downloaded[search_key] = downloaded_sub return downloaded def download_aws(self, landsat_id, band_list, outdir='.'): """ Downloads Landsat 8 data from Amazon AWS Args: landsat_id (str): The Landsat id to download. band_list (list): The Landsat bands to download. outdir (Optional[str]): The output directory. Examples: >>> from geowombat.util import GeoDownloads >>> >>> dl = GeoDownloads() >>> dl.download_aws('LC08_L1TP_224077_20200518_20200518_01_RT', ['b2', 'b3', 'b4']) """ if not REQUESTS_INSTALLED: logger.exception('Requests must be installed.') if not isinstance(outdir, Path): outdir = Path(outdir) parts = landsat_id.split('_') path_row = parts[2] path = int(path_row[:3]) row = int(path_row[3:]) def _download_file(in_file, out_file): response = requests.get(in_file) with open(out_file, 'wb') as f: f.write(response.content) mtl_id = '{landsat_id}_MTL.txt'.format(landsat_id=landsat_id) url = '{aws_l8_public}/{path:03d}/{row:03d}/{landsat_id}/{mtl_id}'.format(aws_l8_public=self.aws_l8_public, path=path, row=row, landsat_id=landsat_id, mtl_id=mtl_id) mtl_out = outdir / mtl_id _download_file(url, str(mtl_out)) angle_id = '{landsat_id}_ANG.txt'.format(landsat_id=landsat_id) url = '{aws_l8_public}/{path:03d}/{row:03d}/{landsat_id}/{angle_id}'.format(aws_l8_public=self.aws_l8_public, path=path, row=row, landsat_id=landsat_id, angle_id=angle_id) angle_out = outdir / angle_id _download_file(url, str(angle_out)) for band in band_list: band_id = '{landsat_id}_{band}.TIF'.format(landsat_id=landsat_id, band=band.upper()) url = '{aws_l8_public}/{path:03d}/{row:03d}/{landsat_id}/{band_id}'.format(aws_l8_public=self.aws_l8_public, path=path, row=row, landsat_id=landsat_id, band_id=band_id) band_out = outdir / band_id _download_file(url, str(band_out)) # def download_landsat_range(self, sensors, bands, path_range, row_range, date_range, **kwargs): # # """ # Downloads Landsat data from iterables # # Args: # sensors (str): A list of sensors to download. # bands (str): A list of bands to download. # path_range (iterable): A list of paths. # row_range (iterable): A list of rows. # date_range (iterable): A list of ``datetime`` objects or a list of strings as yyyymmdd. # kwargs (Optional[dict]): Keyword arguments to pass to ``download``. # # Examples: # >>> from geowombat.util import GeoDownloads # >>> # >>> dl = GeoDownloads() # >>> dl.download_landsat_range(['lc08'], ['b4'], [42], [34], ['20170616', '20170620']) # """ # # if (len(date_range) == 2) and not isinstance(date_range[0], datetime): # start_date = date_range[0] # end_date = date_range[1] # # sdt = datetime.strptime(start_date, '%Y%m%d') # edt = datetime.strptime(end_date, '%Y%m%d') # # date_range = pd.date_range(start=sdt, end=edt).to_pydatetime().tolist() # # for sensor in sensors: # for band in bands: # for path in path_range: # for row in row_range: # for dt in date_range: # str_date = '{:d}{:02d}{:02d}'.format(dt.year, dt.month, dt.day) # # # TODO: check if L1TP is used for all sensors # # TODO: fixed DATE2 # filename = '{SENSOR}_L1TP_{PATH:03d}{ROW:03d}_{DATE}_{DATE2}_01_T1_{BAND}.TIF'.format( # SENSOR=sensor.upper(), # PATH=path, # ROW=row, # DATE=str_date, # DATE2=None, # BAND=band) # # self.download(filename, **kwargs) class CloudPathMixin(object): @staticmethod def get_landsat_urls(scene_id, bands=None, cloud='gcp'): """ Gets Google Cloud Platform COG urls for Landsat Args: scene_id (str): The Landsat scene id. bands (Optional[list]): The list of band names. cloud (Optional[str]): The cloud strorage to get the URL from. For now, only 'gcp' is supported. Returns: ``tuple`` of band URLs and metadata URL as strings Example: >>> import os >>> import geowombat as gw >>> from geowombat.util import GeoDownloads >>> >>> os.environ['CURL_CA_BUNDLE'] = '/etc/ssl/certs/ca-certificates.crt' >>> >>> gdl = GeoDownloads() >>> >>> scene_urls, meta_url = gdl.get_landsat_urls('LC08_L1TP_042034_20171225_20180103_01_T1', >>> bands=['blue', 'green', 'red']) >>> >>> with gw.open(urls) as src: >>> print(src) """ gcp_base = 'https://storage.googleapis.com/gcp-public-data-landsat' sensor_collection, level, path_row, date_acquire, date_other, collection, tier = scene_id.split('_') path = path_row[:3] row = path_row[3:] if bands: sensor = f'{sensor_collection[0].lower()}{sensor_collection[3]}' # Landsat 7 has the thermal band sensor = 'l7th' if sensor == 'l7' else sensor wavelengths = get_sensor_info(key='wavelength', sensor=sensor) band_pos = [getattr(wavelengths, b) for b in bands] else: band_pos = [1] lid = f'{sensor_collection}/01/{path}/{row}/{scene_id}' scene_urls = [f'{gcp_base}/{lid}/{scene_id}_B{band_pos}.TIF' for band_pos in band_pos] meta_url = f'{gcp_base}/{lid}/{scene_id}_MTL.txt' return scene_urls, meta_url @staticmethod def get_sentinel2_urls(safe_id, bands=None, cloud='gcp'): """ Gets Google Cloud Platform COG urls for Sentinel 2 Args: safe_id (str): The Sentinel 2 SAFE id. bands (Optional[list]): The list of band names. cloud (Optional[str]): The cloud strorage to get the URL from. For now, only 'gcp' is supported. Returns: ``tuple`` of band URLs and metadata URL as strings Example: >>> import os >>> import geowombat as gw >>> from geowombat.util import GeoDownloads >>> >>> os.environ['CURL_CA_BUNDLE'] = '/etc/ssl/certs/ca-certificates.crt' >>> >>> gdl = GeoDownloads() >>> >>> safe_id = 'S2A_MSIL1C_20180109T135101_N0206_R024_T21HUD_20180109T171608.SAFE/GRANULE/L1C_T21HUD_A013320_20180109T135310' >>> >>> scene_urls, meta_url = gdl.get_sentinel2_urls(safe_id, >>> bands=['blue', 'green', 'red', 'nir']) >>> >>> with gw.open(urls) as src: >>> print(src) """ gcp_base = 'https://storage.googleapis.com/gcp-public-data-sentinel-2' sensor, level, date, __, __, mgrs, __ = safe_id.split('/')[0].split('_') utm = mgrs[1:3] zone = mgrs[3] id_ = mgrs[4:] if bands: sensor = sensor.lower() wavelengths = get_sensor_info(key='wavelength', sensor=sensor) band_pos = [getattr(wavelengths, b) for b in bands] else: band_pos = [1] lid = f'{utm}/{zone}/{id_}/{safe_id}/IMG_DATA/{mgrs}_{date}' scene_urls = [f'{gcp_base}/tiles/{lid}_B{band_pos:02d}.jp2' for band_pos in band_pos] meta_url = f'{utm}/{zone}/{id_}/{safe_id}/MTD_TL.xml' return scene_urls, meta_url class GeoDownloads(CloudPathMixin, DownloadMixin): def __init__(self): self._gcp_search_dict = None self.search_dict = None self.gcp_public = 'https://storage.googleapis.com/gcp-public-data' self.aws_l8_public = 'https://landsat-pds.s3.amazonaws.com/c1/L8' self.landsat_parts = ['lt05', 'le07', 'lc08'] self.sentinel_parts = ['s2a', 's2b'] s2_dict = dict(coastal=1, blue=2, green=3, red=4, nir1=5, nir2=6, nir3=7, nir=8, rededge=8, water=9, cirrus=10, swir1=11, swir2=12) self.gcp_dict = dict(l5='LT05/01', l7='LE07/01', l8='LC08/01', s2='tiles', s2a='tiles', s2b='tiles', s2c='tiles') self.sensor_collections = dict(l5='lt05', l7='le07', l8='lc08') self.orbit_dates = dict(l5=OrbitDates(start=datetime.strptime('1984-3-1', '%Y-%m-%d'), end=datetime.strptime('2013-6-5', '%Y-%m-%d')), l7=OrbitDates(start=datetime.strptime('1999-4-15', '%Y-%m-%d'), end=datetime.strptime('2100-1-1', '%Y-%m-%d')), l8=OrbitDates(start=datetime.strptime('2013-2-11', '%Y-%m-%d'), end=datetime.strptime('2100-1-1', '%Y-%m-%d')), s2a=OrbitDates(start=datetime.strptime('2015-6-23', '%Y-%m-%d'), end=datetime.strptime('2100-1-1', '%Y-%m-%d')), s2b=OrbitDates(start=datetime.strptime('2017-3-7', '%Y-%m-%d'), end=datetime.strptime('2100-1-1', '%Y-%m-%d'))) self.associations = dict(l5=dict(blue=1, green=2, red=3, nir=4, swir1=5, thermal=6, swir2=7), l7=dict(blue=1, green=2, red=3, nir=4, swir1=5, thermal=6, swir2=7, pan=8), l8=dict(coastal=1, blue=2, green=3, red=4, nir=5, swir1=6, swir2=7, pan=8, cirrus=9, tirs1=10, tirs2=11), s2=s2_dict, s2a=s2_dict, s2b=s2_dict, s2c=s2_dict) def download_cube(self, sensors, date_range, bounds, bands, bands_out=None, crs=None, out_bounds=None, outdir='.', resampling='bilinear', ref_res=None, l57_angles_path=None, l8_angles_path=None, subsample=1, write_format='gtiff', write_angle_files=False, mask_qa=False, lqa_mask_items=None, chunks=512, cloud_heights=None, sr_method='srem', earthdata_username=None, earthdata_key_file=None, earthdata_code_file=None, srtm_outdir=None, n_jobs=1, num_workers=1, num_threads=1, **kwargs): """ Downloads a cube of Landsat and/or Sentinel 2 imagery Args: sensors (str or list): The sensors, or sensor, to download. date_range (list): The date range, given as [date1, date2], where the date format is yyyy-mm. bounds (GeoDataFrame, list, or tuple): The geometry bounds (in WGS84 lat/lon) that define the cube extent to download. If given as a ``GeoDataFrame``, only the first ``DataFrame`` record will be used. If given as a ``tuple`` or a ``list``, the order should be (left, bottom, right, top). bands (str or list): The bands to download. E.g.: Sentinel s2cloudless bands: bands = ['coastal', 'blue', 'red', 'nir1', 'nir', 'rededge', 'water', 'cirrus', 'swir1', 'swir2'] bands_out (Optional[list]): The bands to write to file. This might be useful after downloading all bands to mask clouds, but are only interested in subset of those bands. crs (Optional[str or object]): The output CRS. If ``bounds`` is a ``GeoDataFrame``, the CRS is taken from the object. out_bounds (Optional[list or tuple]): The output bounds in ``crs``. If not given, the bounds are taken from ``bounds``. outdir (Optional[str]): The output directory. ref_res (Optional[tuple]): A reference cell resolution. resampling (Optional[str]): The resampling method. l57_angles_path (str): The path to the Landsat 5 and 7 angles bin. l8_angles_path (str): The path to the Landsat 8 angles bin. subsample (Optional[int]): The sub-sample factor when calculating the angles. write_format (Optional[bool]): The data format to write. Choices are ['gtiff', 'netcdf']. write_angle_files (Optional[bool]): Whether to write the angles to file. mask_qa (Optional[bool]): Whether to mask data with the QA file. lqa_mask_items (Optional[list]): A list of QA mask items for Landsat. chunks (Optional[int]): The chunk size to read at. cloud_heights (Optional[list]): The cloud heights, in kilometers. sr_method (Optional[str]): The surface reflectance correction method. Choices are ['srem', '6s']. earthdata_username (Optional[str]): The EarthData username. earthdata_key_file (Optional[str]): The EarthData secret key file. earthdata_code_file (Optional[str]): The EarthData secret passcode file. srtm_outdir (Optional[str]): The output SRTM directory. n_jobs (Optional[int]): The number of parallel download workers for ``joblib``. num_workers (Optional[int]): The number of parallel workers for ``dask.compute``. num_threads (Optional[int]): The number of GDAL warp threads. kwargs (Optional[dict]): Keyword arguments passed to ``to_raster``. Examples: >>> from geowombat.util import GeoDownloads >>> gdl = GeoDownloads() >>> >>> # Download a Landsat 7 panchromatic cube >>> gdl.download_cube(['l7'], >>> ['2010-01-01', '2010-02-01'], >>> (-91.57, 40.37, -91.46, 40.42), >>> ['pan'], >>> crs="+proj=aea +lat_1=-5 +lat_2=-42 +lat_0=-32 +lon_0=-60 +x_0=0 +y_0=0 +ellps=aust_SA +units=m +no_defs") >>> >>> # Download a Landsat 7, 8 and Sentinel 2 cube of the visible spectrum >>> gdl.download_cube(['l7', 'l8', 's2a'], >>> ['2017-01-01', '2018-01-01'], >>> (-91.57, 40.37, -91.46, 40.42), >>> ['blue', 'green', 'red'], >>> crs={'init': 'epsg:102033'}, >>> readxsize=1024, >>> readysize=1024, >>> n_workers=1, >>> n_threads=8) """ if write_format not in ['gtiff', 'netcdf']: logger.warning(f' Did not recognize {write_format}. Setting the output data format as gtiff.') write_format = 'gtiff' if not lqa_mask_items: lqa_mask_items = ['fill', 'saturated', 'cloudconf', 'shadowconf', 'cirrusconf'] if isinstance(sensors, str): sensors = [sensors] angle_kwargs = kwargs.copy() angle_kwargs['nodata'] = -32768 nodataval = kwargs['nodata'] if 'nodata' in kwargs else 65535 angle_infos = {} rt = RadTransforms() br = BRDF() la = LinearAdjustments() dos = DOS() sixs = SixS() main_path = Path(outdir) outdir_tmp = main_path.joinpath('tmp') outdir_brdf = main_path.joinpath('brdf') main_path.mkdir(parents=True, exist_ok=True) outdir_tmp.mkdir(parents=True, exist_ok=True) outdir_brdf.mkdir(parents=True, exist_ok=True) # Logging file # status = Path(outdir).joinpath('status.txt') # # if not status.is_file(): # # with open(str(status), mode='w') as tx: # pass # Get bounds from geometry if isinstance(bounds, tuple) or isinstance(bounds, list): bounds = Polygon([(bounds[0], bounds[3]), # upper left (bounds[2], bounds[3]), # upper right (bounds[2], bounds[1]), # lower right (bounds[0], bounds[1]), # lower left (bounds[0], bounds[3])]) # upper left bounds = gpd.GeoDataFrame([0], geometry=[bounds], crs={'init': 'epsg:4326'}) bounds_object = bounds.geometry.values[0] if not out_bounds: # Project the bounds out_bounds = bounds.to_crs(crs).bounds.values[0].tolist() # Get WRS file data_bin = os.path.realpath(os.path.dirname(__file__)) data_dir = Path(data_bin).joinpath('../data') shp_dict = {} if ('l5' in sensors) or ('l7' in sensors) or ('l8' in sensors): path_tar = Path(data_dir).joinpath('wrs2.tar.gz') path_shp = Path(data_dir).joinpath('wrs2_descending.shp') wrs = os.path.realpath(path_shp.as_posix()) if not path_shp.is_file(): with tarfile.open(os.path.realpath(path_tar.as_posix()), mode='r:gz') as tf: tf.extractall(data_dir.as_posix()) df_wrs = gpd.read_file(wrs) df_wrs = df_wrs[df_wrs.geometry.intersects(bounds_object)] if df_wrs.empty: logger.warning(' The geometry bounds is empty.') return shp_dict['wrs'] = df_wrs if ('s2a' in sensors) or ('s2b' in sensors) or ('s2c' in sensors): path_tar = Path(data_dir).joinpath('mgrs.tar.gz') path_shp = Path(data_dir).joinpath('sentinel2_grid.shp') mgrs = os.path.realpath(path_shp.as_posix()) if not path_shp.is_file(): with tarfile.open(os.path.realpath(path_tar.as_posix()), mode='r:gz') as tf: tf.extractall(data_dir.as_posix()) df_mgrs = gpd.read_file(mgrs) df_mgrs = df_mgrs[df_mgrs.geometry.intersects(bounds_object)] if df_mgrs.empty: logger.warning(' The geometry bounds is empty.') return shp_dict['mgrs'] = df_mgrs dt1 = datetime.strptime(date_range[0], '%Y-%m') dt2 = datetime.strptime(date_range[1], '%Y-%m') months = list(range(1, 13)) year_months = {} if dt1.month <= dt2.month: month_range = months[months.index(dt1.month):months.index(dt2.month) + 1] else: month_range = months[months.index(dt1.month):] + months[:months.index(dt2.month) + 1] if dt1.year == dt2.year: year_months[dt1.year] = month_range else: for y in range(dt1.year, dt2.year + 1): if y == dt1.year: year_months[y] = list(range(dt1.month, 13)) elif y == dt2.year: year_months[y] = list(range(1, dt2.month + 1)) else: year_months[y] = months year = dt1.year while True: if year > dt2.year: break for m in year_months[year]: yearmonth_query = '{:d}{:02d}'.format(year, m) target_date = datetime.strptime(yearmonth_query, '%Y%m') for sensor in sensors: # Avoid unnecessary GCP queries if (target_date < self.orbit_dates[sensor.lower()].start) or \ (target_date > self.orbit_dates[sensor.lower()].end): continue band_associations = self.associations[sensor] if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: locations = ['{}/{}/{}'.format(dfrow.Name[:2], dfrow.Name[2], dfrow.Name[3:]) for dfi, dfrow in shp_dict['mgrs'].iterrows()] else: locations = ['{:03d}/{:03d}'.format(int(dfrow.PATH), int(dfrow.ROW)) for dfi, dfrow in shp_dict['wrs'].iterrows()] for location in locations: if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: query = '{LOCATION}/{LEVEL}*{YM}*.SAFE/GRANULE/*'.format(LOCATION=location, LEVEL=sensor.upper(), YM=yearmonth_query) else: query = '{LOCATION}/*{PATHROW}_{YM}*_T1'.format(LOCATION=location, PATHROW=location.replace('/', ''), YM=yearmonth_query) # Query and list available files on the GCP self.list_gcp(sensor, query) self.search_dict = self.get_gcp_results if not self.search_dict: logger.warning( ' No results found for {SENSOR} at location {LOC}, year {YEAR:d}, month {MONTH:d}.'.format( SENSOR=sensor, LOC=location, YEAR=year, MONTH=m)) continue # Download data if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: load_bands = [f'B{band_associations[bd]:02d}' if bd != 'rededge' else f'B{band_associations[bd]:01d}A' for bd in bands] search_wildcards = ['MTD_TL.xml'] + [bd + '.jp2' for bd in load_bands] file_info = self.download_gcp(sensor, outdir=outdir_tmp, outdir_brdf=outdir_brdf, search_wildcards=search_wildcards, n_jobs=n_jobs, verbose=1) # Reorganize the dictionary to combine bands and metadata new_dict_ = {} for finfo_key, finfo_dict in file_info.items(): sub_dict_ = {} if 'meta' in finfo_dict: key = finfo_dict['meta'].name sub_dict_['meta'] = finfo_dict['meta'] for finfo_key_, finfo_dict_ in file_info.items(): if 'meta' not in finfo_dict_: for bdkey_, bdinfo_ in finfo_dict_.items(): if '_'.join(bdinfo_.name.split('_')[:-1]) in key: sub_dict_[bdkey_] = bdinfo_ new_dict_[finfo_key] = sub_dict_ file_info = new_dict_ else: del_keys = [k for k, v in self.search_dict.items() if 'gap_mask' in k] for dk in del_keys: del self.search_dict[dk] load_bands = sorted(['B{:d}'.format(band_associations[bd]) for bd in bands]) search_wildcards = ['ANG.txt', 'MTL.txt', 'BQA.TIF'] + [bd + '.TIF' for bd in load_bands] file_info = self.download_gcp(sensor, outdir=outdir_tmp, outdir_brdf=outdir_brdf, search_wildcards=search_wildcards, n_jobs=n_jobs, verbose=1) logger.info(' Finished downloading files for yyyymm query, {}.'.format(yearmonth_query)) # Create pixel angle files # TODO: this can be run in parallel for finfo_key, finfo_dict in file_info.items(): # Incomplete dictionary because file was checked, existed, and cleaned if 'meta' not in finfo_dict: logger.warning(' The metadata does not exist.') _clean_and_update(None, finfo_dict, None, check_angles=False) continue brdfp = '_'.join(Path(finfo_dict['meta'].name).name.split('_')[:-1]) out_brdf = outdir_brdf.joinpath(brdfp + '.tif') out_angles = outdir_brdf.joinpath(brdfp + '_angles.tif') if sensor in ['s2', 's2a', 's2b', 's2c']: outdir_angles = outdir_tmp.joinpath('angles_{}'.format(Path(finfo_dict['meta'].name).name.replace('_MTD_TL.xml', ''))) else: outdir_angles = outdir_tmp.joinpath('angles_{}'.format(Path(finfo_dict['meta'].name).name.replace('_MTL.txt', ''))) if not Path(finfo_dict['meta'].name).is_file(): logger.warning(' The metadata does not exist.') _clean_and_update(outdir_angles, finfo_dict, finfo_dict['meta'].name, check_angles=False) continue if out_brdf.is_file(): logger.warning(' The output BRDF file, {}, already exists.'.format(brdfp)) _clean_and_update(outdir_angles, finfo_dict, finfo_dict['meta'].name, check_angles=False) continue if load_bands[0] not in finfo_dict: logger.warning(' The download for {} was incomplete.'.format(brdfp)) _clean_and_update(outdir_angles, finfo_dict, finfo_dict['meta'].name, check_angles=False) continue outdir_angles.mkdir(parents=True, exist_ok=True) ref_file = finfo_dict[load_bands[0]].name logger.info(' Processing angles for {} ...'.format(brdfp)) if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: meta = rt.get_sentinel_coefficients(finfo_dict['meta'].name) angle_info = sentinel_pixel_angles(finfo_dict['meta'].name, ref_file, str(outdir_angles), nodata=-32768, overwrite=False, verbose=1) if ' '.join(bands) == 'coastal blue green red nir1 nir2 nir3 nir rededge water cirrus swir1 swir2': rad_sensor = 's2af' if angle_info.sensor == 's2a' else 's2bf' elif ' '.join(bands) == 'coastal blue red nir1 nir rededge water cirrus swir1 swir2': rad_sensor = 's2acloudless' if angle_info.sensor == 's2a' else 's2bcloudless' elif ' '.join(bands) == 'blue green red nir1 nir2 nir3 nir rededge swir1 swir2': rad_sensor = angle_info.sensor elif ' '.join(bands) == 'blue green red nir swir1 swir2': rad_sensor = 's2al7' if angle_info.sensor == 's2a' else 's2bl7' elif ' '.join(bands) == 'nir1 nir2 nir3 rededge swir1 swir2': rad_sensor = 's2a20' if angle_info.sensor == 's2a' else 's2b20' elif ' '.join(bands) == 'blue green red nir': rad_sensor = 's2a10' if angle_info.sensor == 's2a' else 's2b10' else: rad_sensor = angle_info.sensor bandpass_sensor = angle_info.sensor else: meta = rt.get_landsat_coefficients(finfo_dict['meta'].name) angle_info = landsat_pixel_angles(finfo_dict['angle'].name, ref_file, str(outdir_angles), meta.sensor, l57_angles_path=l57_angles_path, l8_angles_path=l8_angles_path, subsample=subsample, resampling='bilinear', num_threads=num_workers, verbose=1) if (len(bands) == 1) and (bands[0] == 'pan'): rad_sensor = sensor + bands[0] else: if (len(bands) == 6) and (meta.sensor == 'l8'): rad_sensor = 'l8l7' elif (len(bands) == 7) and (meta.sensor == 'l8') and ('pan' in bands): rad_sensor = 'l8l7mspan' elif (len(bands) == 7) and (meta.sensor == 'l7') and ('pan' in bands): rad_sensor = 'l7mspan' else: rad_sensor = meta.sensor bandpass_sensor = sensor if sensor in ['s2', 's2a', 's2b', 's2c']: logger.info(f' Translating jp2 files to gtiff for {brdfp} ...') load_bands_names = [] # Convert to GeoTiffs to avoid CRS issue with jp2 format for bd in load_bands: # Check if the file exists to avoid duplicate GCP filenames` if Path(finfo_dict[bd].name).is_file(): warp(finfo_dict[bd].name, finfo_dict[bd].name.replace('.jp2', '.tif'), overwrite=True, delete_input=True, multithread=True, warpMemoryLimit=256, outputBounds=out_bounds, xRes=ref_res[0], yRes=ref_res[1], resampleAlg=RESAMPLING_DICT[resampling], creationOptions=['TILED=YES', 'COMPRESS=LZW', 'BLOCKXSIZE={CHUNKS:d}'.format(CHUNKS=chunks), 'BLOCKYSIZE={CHUNKS:d}'.format(CHUNKS=chunks)]) load_bands_names.append(finfo_dict[bd].name.replace('.jp2', '.tif')) else: # Get band names from user try: load_bands_names = [finfo_dict[bd].name for bd in load_bands] except: logger.exception(' Could not get all band name associations.') raise NameError logger.info(f' Applying BRDF and SR correction for {brdfp} ...') with gw.config.update(sensor=rad_sensor, ref_bounds=out_bounds, ref_crs=crs, ref_res=ref_res if ref_res else load_bands_names[-1], ignore_warnings=True, nasa_earthdata_user=earthdata_username, nasa_earthdata_key=earthdata_key_file, nasa_earthdata_code=earthdata_code_file): valid_data = True # Ensure there is data with gw.open(load_bands_names[0], band_names=[1], chunks=chunks, num_threads=num_threads) as data: if data.sel(band=1).min().data.compute(num_workers=num_workers) > 10000: valid_data = False if valid_data: if data.sel(band=1).max().data.compute(num_workers=num_workers) == 0: valid_data = False if valid_data: with gw.open(angle_info.sza, chunks=chunks, resampling='bilinear') as sza, \ gw.open(angle_info.vza, chunks=chunks, resampling='bilinear') as vza, \ gw.open(angle_info.saa, chunks=chunks, resampling='bilinear') as saa, \ gw.open(angle_info.vaa, chunks=chunks, resampling='bilinear') as vaa, \ gw.open(load_bands_names, band_names=bands, stack_dim='band', chunks=chunks, resampling=resampling, num_threads=num_threads) as data: attrs = data.attrs.copy() if mask_qa: if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: if S2CLOUDLESS_INSTALLED: cloud_detector = S2PixelCloudDetector(threshold=0.4, average_over=1, dilation_size=5, all_bands=False) # Get the S2Cloudless bands data_cloudless = data.sel(band=['coastal', 'blue', 'red', 'nir1', 'nir', 'rededge', 'water', 'cirrus', 'swir1', 'swir2']) # Scale from 0-10000 to 0-1 and reshape X = (data_cloudless * 0.0001).clip(0, 1).data\ .compute(num_workers=num_workers)\ .transpose(1, 2, 0)[np.newaxis, :, :, :] # Predict clouds # Potential classes? Currently, only clear and clouds are returned. # clear=0, clouds=1, shadow=2, snow=3, cirrus=4, water=5 mask = ndarray_to_xarray(data, cloud_detector.get_cloud_masks(X), ['mask']) else: if bands_out: # If there are extra bands, remove them because they # are not supported in the BRDF kernels. data = _assign_attrs(data, attrs, bands_out) logger.warning(' S2Cloudless is not installed, so skipping Sentinel cloud masking.') if sr_method == 'srem': if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: # The S-2 data are in TOAR (0-10000) toar_scaled = (data * 0.0001)\ .astype('float64')\ .clip(0, 1)\ .assign_attrs(**attrs) # Convert TOAR to surface reflectance sr = rt.toar_to_sr(toar_scaled, sza, saa, vza, vaa, rad_sensor, method='srem', dst_nodata=nodataval) else: # Convert DN to surface reflectance sr = rt.dn_to_sr(data, sza, saa, vza, vaa, method='srem', sensor=rad_sensor, meta=meta, src_nodata=nodataval, dst_nodata=nodataval) else: if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: # The S-2 data are in TOAR (0-10000) data = (data * 0.0001)\ .astype('float64')\ .assign_attrs(**attrs) data_values = 'toar' else: data_values = 'dn' if isinstance(earthdata_username, str) and \ isinstance(earthdata_key_file, str) and \ isinstance(earthdata_code_file, str): altitude = sixs.get_mean_altitude(data, srtm_outdir, n_jobs=n_jobs) altitude *= 0.0001 else: altitude = 0.0 # Resample to 100m x 100m data_coarse = data.sel(band=['blue', 'swir2']).gw\ .transform_crs(dst_res=500.0, resampling='med') aot = dos.get_aot(data_coarse, meta.sza, meta, data_values=data_values, dn_interp=data, angle_factor=1.0, interp_method='fast', aot_fallback=0.3, h2o=2.0, o3=0.3, # global average of total ozone in a vertical column (3 cm) altitude=altitude, w=151, n_jobs=n_jobs) if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: sr = rt.toar_to_sr(data, meta.sza, None, None, None, meta=meta, src_nodata=nodataval, dst_nodata=nodataval, angle_factor=1.0, method='6s', interp_method='fast', h2o=2.0, o3=0.3, aot=aot, altitude=altitude, n_jobs=n_jobs) else: sr = rt.dn_to_sr(data, meta.sza, None, None, None, meta=meta, src_nodata=nodataval, dst_nodata=nodataval, angle_factor=1.0, method='6s', interp_method='fast', h2o=2.0, o3=0.3, aot=aot, altitude=altitude, n_jobs=n_jobs) # BRDF normalization sr_brdf = br.norm_brdf(sr, sza, saa, vza, vaa, sensor=rad_sensor, wavelengths=data.band.values.tolist(), out_range=10000.0, src_nodata=nodataval, dst_nodata=nodataval) if bandpass_sensor.lower() in ['l5', 'l7', 's2', 's2a', 's2b', 's2c']: # Linearly adjust to Landsat 8 sr_brdf = la.bandpass(sr_brdf, bandpass_sensor.lower(), to='l8', scale_factor=0.0001, src_nodata=nodataval, dst_nodata=nodataval) if mask_qa: if sensor.lower() in ['s2', 's2a', 's2b', 's2c']: if S2CLOUDLESS_INSTALLED: wavel_sub = sr_brdf.gw.set_nodata(nodataval, nodataval, out_range=(0, 1), dtype='float64') # Estimate the cloud shadows mask = estimate_cloud_shadows(wavel_sub, mask, sza, saa, vza, vaa, heights=cloud_heights, num_workers=num_workers) # Update the bands with the mask sr_brdf = xr.where((mask.sel(band='mask') == 0) & (sr_brdf != nodataval), sr_brdf.clip(0, 10000), nodataval).astype('uint16') sr_brdf = _assign_attrs(sr_brdf, attrs, bands_out) if write_format == 'gtiff': sr_brdf.gw.to_raster(str(out_brdf), **kwargs) else: sr_brdf.gw.to_netcdf(str(out_brdf), zlib=True, complevel=5) else: with gw.open(finfo_dict['qa'].name, band_names=['qa']) as qa: if sensor.lower() == 'l8': qa_sensor = 'l8-c1' else: qa_sensor = 'l-c1' mask = QAMasker(qa, qa_sensor, mask_items=lqa_mask_items, confidence_level='maybe').to_mask() # Mask non-clear pixels sr_brdf = xr.where(mask.sel(band='mask') < 2, sr_brdf.clip(0, 10000), nodataval).astype('uint16') sr_brdf = _assign_attrs(sr_brdf, attrs, bands_out) if write_format == 'gtiff': sr_brdf.gw.to_raster(str(out_brdf), **kwargs) else: sr_brdf.gw.to_netcdf(str(out_brdf), zlib=True, complevel=5) else: # Set 'no data' values sr_brdf = sr_brdf.gw.set_nodata(nodataval, nodataval, out_range=(0, 10000), dtype='uint16') sr_brdf = _assign_attrs(sr_brdf, attrs, bands_out) if write_format == 'gtiff': sr_brdf.gw.to_raster(str(out_brdf), **kwargs) else: sr_brdf.gw.to_netcdf(str(out_brdf).replace('.tif', '.nc'), zlib=True, complevel=5) if write_angle_files: angle_stack = xr.concat((sza, saa), dim='band')\ .astype('int16')\ .assign_coords(band=['sza', 'saa'])\ .assign_attrs(**sza.attrs.copy()) if write_format == 'gtiff': angle_stack.gw.to_raster(str(out_angles), **kwargs) else: angle_stack.gw.to_netcdf(str(out_angles).replace('.tif', '.nc'), zlib=True, complevel=5) else: logger.warning(' Not enough data for {} to store on disk.'.format(str(out_brdf))) # Write an empty file for tracking with open(str(out_brdf).replace('.tif', '.nodata'), 'w') as tx: tx.writelines([]) angle_infos[finfo_key] = angle_info _clean_and_update(outdir_angles, finfo_dict, finfo_dict['meta'].name, load_bands_names=load_bands_names) year += 1 def list_gcp(self, sensor, query): """ Lists files from Google Cloud Platform Args: sensor (str): The sensor to query. Choices are ['l5', 'l7', 'l8', 's2a', 's2c']. query (str): The query string. Examples: >>> dl = GeoDownloads() >>> >>> # Query from a known directory >>> dl.list_gcp('landsat', 'LC08/01/042/034/LC08_L1TP_042034_20161104_20170219_01_T1/') >>> >>> # Query a date for Landsat 5 >>> dl.list_gcp('l5', '042/034/*2016*') >>> >>> # Query a date for Landsat 7 >>> dl.list_gcp('l7', '042/034/*2016*') >>> >>> # Query a date for Landsat 8 >>> dl.list_gcp('l8', '042/034/*2016*') >>> >>> # Query Sentinel-2 >>> dl.list_gcp('s2a', '21/H/UD/*2019*.SAFE/GRANULE/*') Returns: ``dict`` """ if sensor not in ['l5', 'l7', 'l8', 's2', 's2a', 's2b', 's2c']: logger.exception(" The sensor must be 'l5', 'l7', 'l8', 's2', 's2a', 's2b', or 's2c'.") raise NameError if sensor in ['s2', 's2a', 's2b', 's2c']: gcp_str = "gsutil ls -r gs://gcp-public-data-sentinel-2" else: gcp_str = "gsutil ls -r gs://gcp-public-data-landsat" gsutil_str = gcp_str + "/" + self.gcp_dict[sensor] + "/" + query try: proc = subprocess.run(gsutil_str.split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) except: logger.exception('gsutil must be installed.') output = proc.stdout gcp_search_list = [outp for outp in output.decode('utf-8').split('\n') if '$folder$' not in outp] self._gcp_search_dict = {} if gcp_search_list: # Check for length-1 lists with empty strings if gcp_search_list[0]: if sensor in ['s2', 's2a', 's2b', 's2c']: self._gcp_search_dict = self._prepare_gcp_dict(gcp_search_list, 'gs://gcp-public-data-sentinel-2/') else: self._gcp_search_dict = self._prepare_gcp_dict(gcp_search_list, 'gs://gcp-public-data-landsat/') @property def get_gcp_results(self): return self._gcp_search_dict.copy() @staticmethod def _prepare_gcp_dict(search_list, gcp_str): """ Prepares a list of GCP keys into a dictionary Args: search_list (list) Returns: ``dict`` """ df = pd.DataFrame(data=search_list, columns=['url']) df['mask'] = df.url.str.strip().str.endswith('/:') mask_idx = np.where(df['mask'].values)[0] mask_range = mask_idx.shape[0] - 1 if mask_idx.shape[0] > 1 else 1 url_dict = {} for mi in range(0, mask_range): m1 = mask_idx[mi] if mask_range > 1: m2 = mask_idx[mi + 1] - 1 else: m2 = len(search_list) key = search_list[m1].replace(gcp_str, '').replace('/:', '') values = search_list[m1:m2] values = [value for value in values if value] url_dict[key] = [value for value in values if not value.endswith('/:')] return url_dict ``` #### File: jgrss/geowombat/setup.py ```python import setuptools from pathlib import Path from distutils.core import setup from distutils.extension import Extension import re from collections import defaultdict import subprocess try: from Cython.Build import cythonize except: raise ImportError('Cython must be installed to build GeoWombat.') try: import numpy as np except: raise ImportError('NumPy must be installed to build GeoWombat.') # Parse the version from the module. # Source: https://github.com/mapbox/rasterio/blob/master/setup.py with open('geowombat/version.py') as f: for line in f: if line.find("__version__") >= 0: version = line.split("=")[1].strip() version = version.strip('"') version = version.strip("'") continue pkg_name = 'geowombat' maintainer = '' maintainer_email = '' description = 'GeoWombat: Utilities for geospatial data' git_url = 'https://github.com/jgrss/geowombat' download_url = '{GIT}/archive/{PKG}-{VERSION}'.format(GIT=git_url, PKG=pkg_name, VERSION=version) keywords = ['raster', 'satellite'] extras = 'extra-requirements.txt' with open('README.md') as f: long_description = f.read() with open('LICENSE.txt') as f: license_file = f.read() with open('requirements.txt') as f: required_packages = f.readlines() # Attempt to get the GDAL binary version try: process = subprocess.Popen(['gdalinfo', '--version'], stdout=subprocess.PIPE, stderr=None) gdal_version = str(process.communicate()[0]).split(',')[0].split(' ')[1].strip() except: gdal_version = None if gdal_version: required_packages.append('GDAL=={GDAL_VERSION}\n'.format(GDAL_VERSION=gdal_version)) def get_extra_requires(path, add_all=True): with open(path) as fp: extra_deps = defaultdict(set) for k in fp: if k.strip() and not k.startswith('#'): tags = set() if ':' in k: k, v = k.split(':') tags.update(vv.strip() for vv in v.split(',')) tags.add(re.split('[<=>]', k)[0]) for t in tags: extra_deps[t].add(k) # add tag `all` at the end if add_all: extra_deps['all'] = set(vv for v in extra_deps.values() for vv in v) return extra_deps def get_packages(): return setuptools.find_packages() def get_package_data(): return {'': ['*.md', '*.txt'], 'data': ['*.png'], 'geowombat': ['config.ini', 'data/*.tif', 'data/*.TIF', 'data/*.gpkg', 'data/*.tar.gz', 'moving/*.so', 'bin/*.tar.gz']} def get_extensions(): extensions = [Extension('*', sources=['geowombat/moving/_moving.pyx'], extra_compile_args=['-fopenmp'], extra_link_args=['-fopenmp'])] if Path('geowombat/moving/_test.pyx').is_file(): extensions += [Extension('*', sources=['geowombat/moving/_test.pyx'], extra_compile_args=['-fopenmp'], extra_link_args=['-fopenmp'])] if Path('geowombat/radiometry/_fusion.pyx').is_file(): extensions += [Extension('*', sources=['geowombat/radiometry/_fusion.pyx'], extra_compile_args=['-fopenmp'], extra_link_args=['-fopenmp'])] return extensions def setup_package(): include_dirs = [np.get_include()] metadata = dict(name=pkg_name, maintainer=maintainer, maintainer_email=maintainer_email, description=description, license=license_file, version=version, long_description=long_description, packages=get_packages(), package_data=get_package_data(), ext_modules=cythonize(get_extensions()), zip_safe=False, keywords=' '.join(keywords), url=git_url, download_url=download_url, install_requires=required_packages, extras_require=get_extra_requires(extras), include_dirs=include_dirs, classifiers=['Intended Audience :: Science/Research', 'License :: MIT', 'Topic :: Scientific :: Remote Sensing', 'Programming Language :: Cython', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8']) setup(**metadata) if __name__ == '__main__': setup_package() ```
{ "source": "jgrss/sacfei", "score": 2 }
#### File: sacfei/sacfei/utils.py ```python from __future__ import division from future.utils import viewitems from builtins import int, zip import concurrent.futures import os import itertools from ._adaptive_threshold import threshold as athreshold from .pool import pooler from ._moving_window import moving_window # from mpglue.raster_tools import create_raster # from mpglue import moving_window import numpy as np import cv2 # SciPy from scipy.ndimage.measurements import label as nd_label from scipy.ndimage.measurements import mean as nd_mean import scipy.stats as sci_stats from scipy.stats import mode as sci_mode from sklearn.preprocessing import StandardScaler # Scikit-image from skimage.exposure import rescale_intensity from skimage.filters import threshold_local from skimage.morphology import remove_small_objects, skeletonize from skimage.morphology import thin as sk_thin from skimage.feature import peak_local_max from skimage.measure import regionprops from skimage.measure import label as sk_label import pymorph from mahotas import thin as mthin from mahotas.morph import hitmiss as mhitmiss # from tqdm import tqdm # from joblib import Parallel, delayed def local_straightness(arr, kernel_filter, w, sigma_color, sigma_space): """ https://ieeexplore-ieee-org.ezproxy.library.uq.edu.au/document/1334256 https://docs.opencv.org/master/d4/d70/tutorial_anisotropic_image_segmentation_by_a_gst.html Example: >>> conv_kernels = set_kernel_pairs(methods=['compass']) >>> kernel_filter = conv_kernels['compass']['kernels'] >>> local_straightness(array, kernel_filter, 3, 1, 1) """ diff_x = cv2.filter2D(np.float32(arr), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_CONSTANT) diff_y = cv2.filter2D(np.float32(arr), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_CONSTANT) diff_xy = diff_x * diff_y diff_xx = diff_x * diff_x diff_yy = diff_y * diff_y c11 = cv2.boxFilter(np.float32(diff_xx), cv2.CV_32F, (w, w)) c22 = cv2.boxFilter(np.float32(diff_yy), cv2.CV_32F, (w, w)) c12 = cv2.boxFilter(np.float32(diff_xy), cv2.CV_32F, (w, w)) # c11 = cv2.bilateralFilter(np.float32(diff_xx), w, sigma_color, sigma_space) # c22 = cv2.bilateralFilter(np.float32(diff_yy), w, sigma_color, sigma_space) # c12 = cv2.bilateralFilter(np.float32(diff_xy), w, sigma_color, sigma_space) gamma_max = (c11 + c22 + np.sqrt((c11 - c22)**2 + 4*c12**2)) / 2.0 gamma_min = (c11 + c22 - np.sqrt((c11 - c22)**2 + 4*c12**2)) / 2.0 s = 1.0 - (gamma_min / gamma_max) return s def logistic(x, **params): return sci_stats.logistic.cdf(x, **params) def sigmoid(x, a, b): return 1.0 / (1.0 + np.exp(-b * (x - a))) def log_transform(egm, scale=1e-6, logistic_alpha=1.6, logistic_beta=0.5): """ Transforms an EGM to probabilities Args: egm (2d array) scale (Optional[float]): The scaling factor logistic_alpha (Optional[float]) logistic_beta (Optional[float]) Returns: Probabilities (2d array) """ # Mask egm[egm == 0] = np.nan log_min = np.nanpercentile(np.log(egm * scale), 2) egm[np.isnan(egm)] = 0 # Log transform egm_proba = np.where(egm > 0, np.log(egm * scale), log_min) # Scale and clip r, c = egm_proba.shape zegm = np.where(egm_proba.ravel() > log_min)[0] scaler = StandardScaler().fit(egm_proba.ravel()[zegm][:, np.newaxis]) egm_proba = scaler.transform(egm_proba.ravel()[:, np.newaxis]).reshape(r, c) egm_proba = rescale_intensity(egm_proba, in_range=(-3, 3), out_range=(-3, 3)) # CDF return logistic(egm_proba, loc=logistic_alpha, scale=logistic_beta) def bayes(prior_a, prior_b, likelihood): """ Bayes rule Args: prior_a (float): The class prior probability. prior_b (float): The class prior probability. likelihood (float) """ posterior = (likelihood * prior_a) / (likelihood * prior_a + prior_b * (1.0 - prior_a)) posterior[np.isnan(posterior)] = 0 return posterior class Params(object): def __init__(self, **kwargs): for k, v in viewitems(kwargs): setattr(self, k, v) def mopen(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=iters) def mclose(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_CLOSE, se, iterations=iters) def merode(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_ERODE, se, iterations=iters) def mdilate(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_DILATE, se, iterations=iters) def closerec(array2morph, se, r=3, iters=5): """ Close by reconstruction Args: array2morph (2d array) se (str) r (Optional[int]) iters (Optional[int]) """ if se == 'disk': se = np.uint8(pymorph.sedisk(r=r)) elif se == 'cross': se = np.uint8(pymorph.secross(r=r)) evi2_dist = np.float32(cv2.distanceTransform(np.uint8(np.where(array2morph >= 20, 1, 0)), cv2.DIST_L2, 3)) seed = np.uint8(np.where(evi2_dist >= 2, cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=1), 0)) im_result = seed.copy() for iter in range(0, iters): im_dilated = cv2.morphologyEx(np.uint8(im_result), cv2.MORPH_DILATE, se, iterations=1) im_rec = np.minimum(im_dilated, array2morph) im_result = im_rec.copy() if np.allclose(seed, im_rec): break return im_result def openrec(array2morph, se, iters=5): """ Open by reconstruction Args: array2morph (2d array) se (2d array) iters (Optional[int]) """ evi2_dist = np.float32(cv2.distanceTransform(np.uint8(np.where(array2morph >= 20, 1, 0)), cv2.DIST_L2, 3)) seed = np.uint8(np.where(evi2_dist >= 2, cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=1), 0)) im_result = seed.copy() for iter in range(0, iters): im_dilated = merode(im_result, se, iters=1) im_rec = np.minimum(im_dilated, array2morph) im_result = im_rec.copy() if np.allclose(seed, im_rec): break return im_result def set_kernel_pairs(methods=None): """ Creates 2d convolution kernels Args: methods (Optional[str list]): Choices are ['compass', 'kirsch', 'prewitt', 'roberts', 'scharr', 'sobel']. Returns: List of kernel filters """ returned_filters = dict() if methods: returned_filters['custom'] = dict(kernels=methods, compass=True) methods = ['compass', 'kirsch', 'prewitt', 'roberts', 'sobel'] # Prewitt compass compass_filters = np.array([[[-1, -1, -1], [1, -2, 1], [1, 1, 1]], [[-1, -1, 1], [-1, -2, 1], [1, 1, 1]], [[-1, 1, 1], [-1, -2, 1], [-1, 1, 1]], [[1, 1, 1], [-1, -2, 1], [-1, -1, 1]], [[1, 1, 1], [1, -2, 1], [-1, -1, -1]], [[1, 1, 1], [1, -2, -1], [1, -1, -1]], [[1, 1, -1], [1, -2, -1], [1, 1, -1]]], dtype='float32') # Sobel sobel_filters = np.array([[[1, 2, 0], [2, 0, -2], [0, -2, -1]], [[-1, -2, 0], [-2, 0, 2], [0, 2, 1]], [[0, 2, 1], [-2, 0, 2], [-1, -2, 0]], [[0, -2, -1], [2, 0, -2], [1, 2, 0]], [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], [[1, 0, -1], [2, 0, -2], [1, 0, -1]], [[-1, -2, -1], [0, 0, 0], [1, 2, 1]], [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]], dtype='float32') # Scharr scharr_filters = np.array([[[10, 3, 0], [3, 0, -3], [0, -3, -10]], [[-10, -3, 0], [-3, 0, 3], [0, 3, 10]], [[0, 3, 10], [-3, 0, 3], [-10, -3, 0]], [[0, -3, -10], [3, 0, -3], [10, 3, 0]], [[-10, 0, 10], [-3, 0, 3], [-10, 0, 10]], [[10, 0, -10], [3, 0, -3], [10, 0, -10]], [[-10, -3, -10], [0, 0, 0], [10, 3, 10]], [[10, 3, 10], [0, 0, 0], [-10, -3, -10]]], dtype='float32') # Roberts cross roberts_filters = np.array([[[0, -1], [1, 0]], [[0, 1], [-1, 0]], [[-1, 0], [0, 1]], [[1, 0], [0, -1]]], dtype='float32') # Prewitt prewitt_filters = np.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]], [[-1, -1, -1], [0, 0, 0], [1, 1, 1]], [[1, 1, 0], [1, 0, -1], [0, -1, -1]], [[-1, -1, 0], [-1, 0, 1], [0, 1, 1]], [[1, 0, -1], [1, 0, -1], [1, 0, -1]], [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]], [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]], [[0, -1, -1], [1, 0, -1], [1, 1, 0]]], dtype='float32') # Kirsch compass kirsch_filters = np.array([[[5, 5, 5], [-3, 0, -3], [-3, -3, -3]], [[5, 5, -3], [5, 0, -3], [-3, -3, -3]], [[5, -3, -3], [5, 0, -3], [5, -3, -3]], [[-3, -3, -3], [5, 0, -3], [5, 5, -3]], [[-3, -3, -3], [-3, 0, -3], [5, 5, 5]], [[-3, -3, -3], [-3, 0, 5], [-3, 5, 5]], [[-3, -3, 5], [-3, 0, 5], [-3, -3, 5]]], dtype='float32') if 'compass' in methods: returned_filters['compass'] = dict(kernels=compass_filters, compass=True) if 'kirsch' in methods: returned_filters['kirsch'] = dict(kernels=kirsch_filters, compass=True) if 'prewitt' in methods: returned_filters['prewitt'] = dict(kernels=prewitt_filters, compass=False) if 'roberts' in methods: returned_filters['roberts'] = dict(kernels=roberts_filters, compass=False) if 'scharr' in methods: returned_filters['scharr'] = dict(kernels=scharr_filters, compass=False) if 'sobel' in methods: returned_filters['sobel'] = dict(kernels=sobel_filters, compass=False) return returned_filters def find_circles(intensity_array, kernel_size): """ Finds circles Args: intensity_array (2d array) kernel_size (int) """ kernel_radius = int(kernel_size / 2.0) kernel_circle = np.uint8(pymorph.sedisk(r=kernel_radius, dim=2, metric='euclidean', flat=True, h=0) * 1) kernel_square = np.uint8(pymorph.sebox(r=kernel_radius) * 1) circles = cv2.filter2D(np.float32(intensity_array), cv2.CV_32F, kernel_circle, borderType=cv2.BORDER_CONSTANT) squares = cv2.filter2D(np.float32(intensity_array), cv2.CV_32F, kernel_square, borderType=cv2.BORDER_CONSTANT) diff = circles - squares local_max_coords = peak_local_max(diff, min_distance=kernel_size, indices=True) local_max = np.zeros(intensity_array.shape, dtype='uint8') for local_coord in local_max_coords: local_coord[0] -= kernel_radius local_coord[1] -= kernel_radius local_max[local_coord[0]:local_coord[0]+kernel_size, local_coord[1]:local_coord[1]+kernel_size] = kernel_circle se = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype='uint8') return cv2.morphologyEx(local_max, cv2.MORPH_GRADIENT, se) def _get_magnitude(image2convolve, kernel_filter): """ Calculates the Edge Gradient Magnitude from x and y derivatives Args: image2convolve (2d array) kernel_filter (tuple) Returns: EGM as 2d array """ return cv2.magnitude(cv2.filter2D(np.float32(image2convolve), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_CONSTANT), cv2.filter2D(np.float32(image2convolve), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_CONSTANT)) def get_magnitude(im, kernels=None, pad=15): """ Gets the Edge Gradient Magnitude (EGM) over multiple edge kernels Args: im (2d array) kernels (Optional[list] pad (Optional[int]) Returns: Gradient edge magnitude as 2d array. [Mean EGM] * [Max EGM] """ n_rows, n_cols = im.shape # Pad image edges. if pad > 0: im = np.float32(cv2.copyMakeBorder(im, pad, pad, pad, pad, cv2.BORDER_REFLECT)) # The convolution kernel pairs conv_kernels = set_kernel_pairs(methods=kernels) # Mean EGM # mag_p = np.zeros((len(conv_kernels), im.shape[0], im.shape[1]), dtype='float32') mag_p = np.zeros(im.shape, dtype='float32') for kernel_name, kernel_dict in viewitems(conv_kernels): kernel_filters = kernel_dict['kernels'] mag_c = np.zeros(im.shape, dtype='float32') if kernel_dict['compass']: if isinstance(kernel_filters, list): kiter = len(kernel_filters) # Get the maximum EGM over all kernel pairs. for ki in range(0, kiter): for kw in range(0, 2): # Image convolution temp_egm = cv2.filter2D(np.float32(im), cv2.CV_32F, np.array(kernel_filters[ki], dtype='float32')[kw], borderType=cv2.BORDER_CONSTANT) mag_c = np.maximum(mag_c, temp_egm) else: # Get the maximum EGM over all kernels. for ki in range(0, kernel_filters.shape[0]): # Image convolution temp_egm = cv2.filter2D(np.float32(im), cv2.CV_32F, kernel_filters[ki], borderType=cv2.BORDER_CONSTANT) mag_c = np.maximum(mag_c, temp_egm) else: if isinstance(kernel_filters, list): kiter = len(kernel_filters) # Get the maximum EGM over all kernel pairs. for ki in range(0, kiter): # EGM temp_egm = _get_magnitude(im, np.array(kernel_filters[ki], dtype='float32')) mag_c = np.maximum(mag_c, temp_egm) else: kiter = kernel_filters.shape[0] # Get the maximum EGM over all kernel pairs. for ki in range(0, kiter, 2): # EGM temp_egm = _get_magnitude(im, kernel_filters[ki:ki+2]) mag_c = np.maximum(mag_c, temp_egm) mag_p += mag_c if pad > 0: # mag_p = mag_p.mean(axis=0)[pad:n_rows+pad, pad:n_cols+pad] * mag_p.max(axis=0)[pad:n_rows+pad, pad:n_cols+pad] mag_p = mag_p[pad:n_rows+pad, pad:n_cols+pad] / len(conv_kernels) else: # mag_p = mag_p.mean(axis=0) * mag_p.max(axis=0) mag_p = mag_p / len(conv_kernels) mag_p[np.isnan(mag_p) | np.isinf(mag_p)] = 0.0 return mag_p def get_mag_egm(ts_array, ts_r, ts_c, kernels): # EGM holder mag_egm = np.zeros((ts_array.shape[0], ts_r, ts_c), dtype='float32') se = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype='uint8') # count = np.zeros((ts_r, ts_c), dtype='uint8') # Get the EGM from each day. for ti in range(0, ts_array.shape[0]): mask = mdilate(np.where(ts_array[ti] == 0, 1, 0), se, iters=10) # count[mask == 0] += 1 # Get the EGM over all 'kernels'. magg_ = get_magnitude(ts_array[ti], kernels=kernels, pad=0) # magg_[mask == 1] = 0 magg_[mask == 1] = np.nan mag_egm[ti] = magg_ # Get the mean EGM over all layers # mag_egm_mean = mag_egm.sum(axis=0) / np.float32(count) mag_egm_mean = np.nanmean(mag_egm, axis=0) mag_egm_med = np.nanmedian(mag_egm, axis=0) mag_egm_cv = np.nanstd(mag_egm, axis=0) / mag_egm_med mag_egm_cv = ((mag_egm_cv + mag_egm_med) / 2.0) * 10000.0 return mag_egm_mean, mag_egm_cv def get_mag_dist(ts_array, ts_r, ts_c, cvm): # EGM holder mag_dist = np.zeros((ts_r, ts_c), dtype='float32') # Get the edge distance from each day. for ti in range(0, ts_array.shape[0]-3): mag_dist_ = moving_window(ts_array[ti:ti+3], statistic='distance', window_size=3, weights=cvm) mag_dist += mag_dist_ return mag_dist / float(ts_array.shape[0]-3) def _do_clahe(image2adjust, clip_perc, grid_tile): """ Contrast Limited Adaptive Histogram Equalization (CLAHE) Args: image2adjust (2d array) clip_perc (float) grid_tile (int) Returns: CLAHE adjusted 2d array """ clahe = cv2.createCLAHE(clipLimit=clip_perc, tileGridSize=grid_tile) return clahe.apply(image2adjust) def local_hist_eq(image2adjust, clip_percentages=None, grid_tiles=None, method='mean'): """ Computes multi-scale Contrast Limited Adaptive Histogram Equalization (CLAHE) Args: image2adjust (ndarray): The edge gradient magnitude array to adjust. Should be uint8 data type. clip_percentages (Optional[float list]): A list of clip percentages for CLAHE. Default is [1.]. grid_tiles (Optional[tuple list]): A list of grid tuples for CLAHE. Default is [(16, 16)]. method (Optional[str]): The aggregation method. Returns: Adjusted image as 2d array. """ if not clip_percentages: clip_percentages = [1.] if grid_tiles: grid_tiles = [(gk, gk) for gk in grid_tiles] else: grid_tiles = [(16, 16)] rws, cls = image2adjust.shape if method == 'mean': temp_arr_eq = np.zeros((rws, cls), dtype='uint64') elif method == 'median' or method == 'min': temp_arr_eq = np.zeros((len(clip_percentages) * len(grid_tiles), rws, cls), dtype='uint64') counter = 0 # Iterate over each clip percentage. for clip_perc in clip_percentages: # Iterate over each grid tile. for grid_tile in grid_tiles: # Compute CLAHE and add it to the output array. if method == 'mean': temp_arr_eq += _do_clahe(image2adjust, clip_perc, grid_tile) # temp_arr_eq += rescale_intensity(exposure.equalize_adapthist(image2adjust, # kernel_size=grid_tile[0], # clip_limit=clip_perc), # in_range=(0., 1.), out_range=(0, 255)) elif method == 'median' or method == 'min': temp_arr_eq[counter] = _do_clahe(image2adjust, clip_perc, grid_tile) counter += 1 # Return the mean CLAHE-adjusted edge gradient magnitude if method == 'mean': return np.float32(temp_arr_eq / float(len(clip_percentages) * len(grid_tiles))) / 255.0 # return np.uint8(np.divide(temp_arr_eq, float(len(clip_percentages) * len(grid_tiles))) / 255.) elif method == 'median': return np.float32(np.median(temp_arr_eq, axis=0) / 255.0) elif method == 'min': return np.float32(temp_arr_eq.min(axis=0) / 255.0) def locate_endpoints(edge_image, locations='all'): """ Locates edge endpoints Args: edge_image (2d array) locations (Optional[str]): Choices are ['all', 'small', 'broken']. Returns: Image endpoints, where endpoints = 1. """ # Setup the endpoint structuring elements for # hit or miss morphology. if locations == 'all': endpoints = [np.array([[0, 0, 0], [0, 1, 0], [2, 1, 2]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 2], [0, 2, 1]], dtype='uint8'), np.array([[0, 0, 2], [0, 1, 1], [0, 0, 2]], dtype='uint8'), np.array([[0, 2, 1], [0, 1, 2], [0, 0, 0]], dtype='uint8'), np.array([[2, 1, 2], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 2, 0], [2, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[2, 0, 0], [1, 1, 0], [2, 0, 0]], dtype='uint8'), np.array([[0, 0, 0], [2, 1, 0], [1, 2, 0]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 0], [1, 2, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 2], [0, 0, 1]], dtype='uint8'), np.array([[1, 2, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8')] elif locations == 'small': endpoints = [np.array([[0, 0, 0], [0, 1, 0], [1, 1, 1]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 1], [0, 0, 1]], dtype='uint8'), np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype='uint8'), np.array([[1, 1, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 0, 0], [1, 1, 0], [1, 0, 0]], dtype='uint8'), np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 0], [1, 1, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 1], [0, 0, 1]], dtype='uint8'), np.array([[1, 1, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 0, 0], [1, 1, 0], [1, 0, 0]], dtype='uint8')] elif locations == 'broken': endpoints = [np.array([[0, 0, 0], [0, 1, 0], [1, 0, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1]], dtype='uint8'), np.array([[1, 0, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 0, 0], [0, 1, 0], [1, 0, 0]], dtype='uint8')] end_points = np.zeros(edge_image.shape, dtype='uint8') # Find the endpoints. for endpoint in endpoints: end_points += mhitmiss(np.uint8(edge_image), endpoint) end_points[end_points > 1] = 1 return end_points def _locate_islands(edge_image): """ Locates single pixel islands Args: edge_image (2d array) Returns: Image endpoint islands, where islands = 1. """ # Setup the endpoint structuring elements for # hit or miss morphology. endpoint = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype='uint8') end_points = np.zeros(edge_image.shape, dtype='uint8') end_points += mhitmiss(edge_image, endpoint) end_points[end_points > 1] = 1 return end_points def _trim_endpoints(edge_image, iterations, locations='all', filter=False, filter_ws=15, filter_pct=.1, skeleton=False): """ Trims unconnected lines, starting from endpoints Args: edge_image (2d array) iterations (int) locations (str) filter (bool) filter_ws (int) filter_pct (float) skeleton (bool) """ if filter: edge_image_sum = moving_window(edge_image, statistic='sum', window_size=filter_ws) for iter in range(0, iterations): # Locate the endpoints ep = locate_endpoints(edge_image, locations=locations) # Filter high density areas. if filter: ep[edge_image_sum >= int((filter_ws * filter_ws) * filter_pct)] = 0 # Remove the endpoints from the edge image. edge_image[ep == 1] = 0 # Fill small gaps after the first iteration. if iter == 0: edge_image = moving_window(edge_image, statistic='fill', window_size=3, n_neighbors=2) # Remove remaining single pixels. ep = _locate_islands(edge_image) edge_image[ep == 1] = 0 if skeleton: return _do_skeleton(edge_image) else: return edge_image def _link_edge_endpoints(cr, max_gap, mag_image, **kwargs): """ Links edge endpoints Args: cr (2d array) max_gap (int) mag_image (2d array) """ # Link endpoints cr = moving_window(np.uint8(cr*1), statistic='link', window_size=max_gap, endpoint_array=locate_endpoints(np.uint8(cr*1)), gradient_array=mag_image, **kwargs) # Fill broken links # __--__ to # ______ cr = _trim_endpoints(cr, 1, locations='broken') cr = moving_window(cr, statistic='fill', window_size=3) # A little cleanup before linking. cr = _trim_endpoints(cr, 1, locations='all', filter=True, filter_ws=15, filter_pct=.1) # Link endpoints. return moving_window(cr * 1, statistic='link', window_size=max_gap, endpoint_array=locate_endpoints(cr * 1), gradient_array=mag_image, **kwargs) def canny_morphology(value_array, egm_array, l1, l2, k_size, l_egm, link_window): """ Args: value_array (2d array): Float32 0-1 egm_array (2d array): Float32 0-1 l1 (int): Canny lower threshold. l2 (int): Canny upper threshold. k_size (int): Canny aperture size. l_egm (float): The EGM lower threshold. link_window (int): The link window size. """ canny_edge = cv2.Canny(np.uint8(value_array * 255.), l1, l2, apertureSize=k_size, L2gradient=True) # canny_edge = moving_window(egm_array, # window_size=3, # weights=egd, # statistic='suppression') canny_edge[canny_edge > 0] = 1 canny_edge = _trim_endpoints(canny_edge, 1, locations='broken') # Remove small edge objects. # canny_edge = nd_label(canny_edge)[0] canny_edge = sk_label(np.uint8(canny_edge), connectivity=2) # canny_edge = np.uint64(remove_small_objects(canny_edge, min_size=5, connectivity=1)) # Remove objects with low EGM. props = regionprops(canny_edge, intensity_image=egm_array) canny_edge = np.float32(canny_edge) for prop in props: canny_edge[canny_edge == prop.label] = prop.mean_intensity canny_edge[canny_edge <= l_egm] = 0 canny_edge[canny_edge > 0] = 1 # Link endpoints canny_edge = _trim_endpoints(np.uint8(canny_edge), 1, locations='broken') canny_edge = moving_window(np.uint8(canny_edge), statistic='link', window_size=link_window, endpoint_array=locate_endpoints(np.uint8(canny_edge)), gradient_array=egm_array, smallest_allowed_gap=5) # Remove small objects. # canny_edge = nd_label(np.uint8(canny_edge))[0] canny_edge = sk_label(np.uint8(canny_edge), connectivity=2) canny_edge = np.uint64(remove_small_objects(canny_edge, min_size=10, connectivity=1)) # props = regionprops(canny_edge, intensity_image=egm_array) # canny_edge = np.float32(canny_edge) canny_edge[canny_edge > 0] = 1 return _trim_endpoints(canny_edge, 1) # for prop in props: # # if (prop.eccentricity < .4) and (prop.area < 100): # canny_edge[canny_edge == prop.label] = 0 # # # if ((prop.major_axis_length + .00001) / (prop.minor_axis_length + .00001) < 2) and (prop.area < 100): # # canny_edge[canny_edge == prop.label] = 0 # # canny_edge[canny_edge > 0] = 1 # cannycv_r = cv2.threshold(np.uint8(canny_edge), 0, 1, cv2.THRESH_BINARY_INV)[1] # # dist = cv2.distanceTransform(np.uint8(cannycv_r), cv2.DIST_L2, 3) # # canny_edge = moving_window(dist, statistic='seg-dist', window_size=3) # # canny_edge = moving_window(np.uint8(canny_edge), # statistic='link', # window_size=link_window, # endpoint_array=locate_endpoints(np.uint8(canny_edge)), # gradient_array=egm_array, # smallest_allowed_gap=5) return canny_edge def _do_skeleton(cr): """ Computes the morphological skeleton Args: cr (2d array) Returns: Image skeleton as 2d array """ # Fill holes to keep straighter skeleton lines. return np.uint8(skeletonize(moving_window(np.uint8(cr), statistic='fill', window_size=3))) def morphological_cleanup(cr, min_line_size, theta_45_iters=0, theta_90_iters=0, theta_180_iters=0, pre_thin=False, endpoint_iterations=0, skeleton=False, link_ends=False, egm_array=None, extend_endpoints=False, max_gap=25, min_egm=25, smallest_allowed_gap=3, medium_allowed_gap=7, link_iters=1, link_window_size=7, extend_iters=1, value_array=None): """ A function to morphologically clean binary edges Args: cr (2d array) min_line_size (int) theta_45_iters (Optional[int]) theta_90_iters (Optional[int]) theta_180_iters (Optional[int]) pre_thin (Optional[bool]) endpoint_iterations (Optional[int]) skeleton (Optional[bool]) link_ends (Optional[bool]) egm_array (Optional[2d array]): Edge gradient magnitude extend_endpoints (Optional[bool]) max_gap (Optional[int]) min_egm (Optional[int]) smallest_allowed_gap (Optional[int]) medium_allowed_gap (Optional[int]) link_iters (Optional[int]) link_window_size (Optional[int]) extend_iters (Optional[int]) value_array (Optional[2d array]) Returns: Morphologically cleaned edges as 2d array """ if isinstance(value_array, np.ndarray): low_value_edge_idx = np.where((cr == 1) & (value_array < 0.2)) if pre_thin: # Thin edges with 1 iteration cr = pymorph.thin(pymorph.binary(cr), n=1, Iab=pymorph.endpoints()) # Remove small edge objects. # cr = nd_label(cr)[0] cr = sk_label(np.uint8(cr), connectivity=2) cr = np.uint64(remove_small_objects(cr, min_size=min_line_size, connectivity=1)) cr[cr > 0] = 1 # Extend endpoints along # the same gradient # orientation. if extend_endpoints: # The edge gradient direction egd_array = moving_window(egm_array, window_size=link_window_size, statistic='edge-direction') for iter in range(0, extend_iters): cr = moving_window(cr, statistic='extend-endpoints', window_size=3, endpoint_array=locate_endpoints(cr), gradient_array=egm_array*255., weights=egd_array) # Thin edges if (theta_180_iters > 0) and (theta_90_iters > 0) and (theta_45_iters > 0): # cr = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=180, n=theta_180_iters)) # cr2 = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=90, n=theta_90_iters)) # cr3 = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), n=theta_45_iters)) # # cr[(cr2 == 1) | (cr3 == 1)] = 1 cr = sk_thin(np.uint8(cr), max_iter=1) else: if theta_180_iters > 0: cr = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=180, n=theta_180_iters)) if theta_90_iters > 0: cr = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=90, n=theta_90_iters)) if theta_45_iters > 0: cr = np.uint8(mthin(np.uint8(cr), max_iter=theta_45_iters)) # Remove small objects again after # thinning and trimming. if min_line_size > 0: # cr, __ = nd_label(cr) cr = sk_label(np.uint8(cr), connectivity=2) cr = np.uint64(remove_small_objects(cr, min_size=min_line_size, connectivity=1)) cr[cr > 0] = 1 # if skeleton: # crc = _do_skeleton(cr.copy()) # Link endpoints with small gaps. if link_ends: for link_iter in range(0, link_iters): cr = _link_edge_endpoints(cr, max_gap, egm_array, min_egm=min_egm, smallest_allowed_gap=smallest_allowed_gap, medium_allowed_gap=medium_allowed_gap) cr = _trim_endpoints(cr, 1) # import matplotlib.pyplot as plt # cr = _do_skeleton(cr) # plt.subplot(121) # plt.imshow(crc) # plt.subplot(122) # plt.imshow(cr) # plt.show() # import sys # sys.exit() # Compute the morphological skeleton. # The skeleton is morphological thinning with # infinite iterations. if skeleton: cr = _do_skeleton(cr) # Trim endpoints with ``endpoint_iterations`` iterations. if endpoint_iterations > 0: cr = _trim_endpoints(cr, endpoint_iterations, skeleton=True) # Fill small holes if isinstance(value_array, np.ndarray): cr[low_value_edge_idx] = 1 cr = moving_window(cr, statistic='fill', window_size=3, n_neighbors=2) # Fill broken links # __--__ to # ______ cr = _trim_endpoints(cr, 1, locations='broken') return moving_window(cr, statistic='fill', window_size=3) def init_distance(egm_array, threshold): """ Initializes a euclidean distance transform array Args: egm_array (2d array) threshold (float or int) """ # Threshold the EGM into a binary edge/no edge array. binary_array = np.uint8(np.where(egm_array < threshold, 1, 0)) # Get the euclidean distance from edge pixels. dist = np.float32(cv2.distanceTransform(binary_array, cv2.DIST_L2, 3)) dist[dist < 0] = 0 dist /= dist.max() return dist def init_level_set(egm_array, threshold): """ Initializes a level set array Args: egm_array (2d array) threshold (float or int) """ # Threshold the EGM into a binary edge/no edge array. binary_array = np.uint8(np.where(egm_array < threshold, 1, 0)) # Get the euclidean distance from edge pixels. dist = np.float32(cv2.distanceTransform(binary_array, cv2.DIST_L2, 3)) dist = np.where((binary_array == 1) & (dist > 1), dist, 0) binary_array_r = np.uint8(cv2.threshold(binary_array, 0, 1, cv2.THRESH_BINARY_INV)[1]) dist_r = cv2.distanceTransform(binary_array_r, cv2.DIST_L2, 3) return np.where(dist == 0, dist_r * -1., dist) def multiscale_threshold(egm_array, min_object_size, windows=None, link_ends=False, theta_180_iters=1, theta_90_iters=1, theta_45_iters=1, skeleton=False, endpoint_iterations=1, method='wmean', ignore_thresh=15.0, inverse_dist=True, n_jobs=-1): """ Computes multi-scale adaptive threshold and morphological "cleaning" Args: egm_array (ndarray): min_object_size (int): windows (Optional[int list]): link_ends (Optional[bool]): theta_180_iters (Optional[int]): theta_90_iters (Optional[int]): theta_45_iters (Optional[int]): skeleton (Optional[bool]): endpoint_iterations (Optional[int]): method (Optional[str]): Choices area ['gaussian', 'mean', 'median', 'weighted']. ignore_thresh (Optional[float]) inverse_dist (Optional[bool]) n_jobs (Optional[int]) Returns: Binary edges as 2d array """ if not isinstance(windows, list): windows = [11, 21, 31, 41, 51, 61, 71] # Get the image shape. im_rows, im_cols = egm_array.shape # Setup the output binary edge array holder. thresholded_edges = np.zeros((im_rows, im_cols), dtype='uint8') wp = 64 egm_array = cv2.copyMakeBorder(egm_array, wp, wp, wp, wp, cv2.BORDER_REFLECT) for w in windows: # Threshold the array with the current window size. if method == 'gaussian': # The gaussian threshold is a weighted sum of the window, # where the weights are a gaussian window. binary_adaptive_m = cv2.adaptiveThreshold(egm_array, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, w, 15.) elif method == 'mean-c': binary_adaptive_m = cv2.adaptiveThreshold(egm_array, 1, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, w, 15.) elif method == 'median': binary_adaptive_m = threshold_local(egm_array, w, method=method) elif method == 'wmean': dist_transform = np.float64(init_distance(egm_array, 30)) dist_transform = np.float64(closerec(np.uint8(dist_transform*255.0), 'disk', r=3, iters=5)) dist_transform /= dist_transform.max() binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=ignore_thresh, rt=-25.0, n_jobs=n_jobs, method=method, inverse_dist=inverse_dist, edge_direction_array=None, edge_distance_array=dist_transform) elif method == 'bernson': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=-10., n_jobs=n_jobs, method=method) elif method == 'niblack': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=-10., k=-.01, n_jobs=n_jobs, method=method) elif method == 'sauvola': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=-10., k=-.01, n_jobs=n_jobs, method=method) elif method == 'bradley': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=1., n_jobs=n_jobs, method=method) elif method == 'otsu': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=1., n_jobs=n_jobs, method=method) elif method == '60': func = lambda arr: np.percentile(arr, 60) binary_adaptive_m = threshold_local(egm_array, w, 'generic', param=func) else: raise ValueError('The method was not recognized.') # Cleanup the binary edges with image morphology. thresholded_edges += morphological_cleanup(binary_adaptive_m[wp:-wp, wp:-wp], min_object_size, theta_180_iters=theta_180_iters, theta_90_iters=theta_90_iters, theta_45_iters=theta_45_iters, skeleton=skeleton, endpoint_iterations=endpoint_iterations, link_ends=link_ends, egm_array=egm_array) thresholded_edges[thresholded_edges > 1] = 1 return thresholded_edges # def _remove_interior_islands(prop, # min_area_int_, # mean_threshold_, # boundary_mean_, # prop_area_weight_, # bbox_pad, # arows, # acols, # segments_g, # original_binary_edge_g, # se_cross): def _remove_interior_islands(*args): """ Gets indices to remove interior island objects """ prop, min_area_int_, mean_threshold_, boundary_mean_, prop_area_weight_, bbox_pad, arows, acols, segments_g, original_binary_edge_g, se_cross = list(itertools.chain(*args)) # mean_threshold_ = 0.2 # The minimum EVI2 threshold allowed for objects # boundary_mean_ = 0.25 # The maximum EVI2 threshold allowed for boundaries # min_area_int_ = 222 # The minimum pixel count allowed for interior objects # Get the bounding box of the current segment. min_row, min_col, max_row, max_col = prop.bbox # Expand the box. min_row = min_row - bbox_pad if (min_row - bbox_pad) > 0 else 0 max_row = max_row + bbox_pad if (max_row + bbox_pad) < (arows - 1) else arows - 1 min_col = min_col - bbox_pad if (min_col - bbox_pad) > 0 else 0 max_col = max_col + bbox_pad if (max_col + bbox_pad) < (acols - 1) else acols - 1 # Get a subset of the current object. labels_sub = segments_g[min_row:max_row, min_col:max_col] # Get a subset of the pre-cleaned edges if isinstance(original_binary_edge_g, np.ndarray): binary_sub = original_binary_edge_g[min_row:max_row, min_col:max_col] # Get the count of pre-cleaned # edges in the object. binary_edge_count = ((binary_sub == 1) & (labels_sub == prop.label)).sum() # Don't include objects half covered by pre-cleaned edges. if binary_edge_count >= int(prop.area * prop_area_weight_): idx = list(np.where(labels_sub == prop.label)) idx[0] = idx[0] + min_row idx[1] = idx[1] + min_col return list(idx[0]), list(idx[1]) # Don't include objects with low EVI2. if hasattr(prop, 'mean_intensity'): if prop.mean_intensity < mean_threshold_: idx = list(np.where(labels_sub == prop.label)) idx[0] = idx[0] + min_row idx[1] = idx[1] + min_col return list(idx[0]), list(idx[1]) # Get the current object. labels_sub_center = np.uint8(np.where(labels_sub == prop.label, 1, 0)) # Get the boundary labels. label_boundary = cv2.morphologyEx(labels_sub_center, cv2.MORPH_DILATE, se_cross, iterations=2) - labels_sub_center boundary_idx = np.where(label_boundary == 1) # Check if the current object is completely # surrounded by 1-2 other objects. if np.any(boundary_idx): boundary_values = labels_sub[boundary_idx] # The parcel should be surrounded # by other vegetation. if boundary_values.mean() >= boundary_mean_: unique_boundary_values = list(np.unique(boundary_values)) if (0 in unique_boundary_values) and (0 < len(unique_boundary_values) <= 2) and (prop.area < min_area_int_): idx = list(np.where(labels_sub_center == 1)) idx[0] = idx[0] + min_row idx[1] = idx[1] + min_col return list(idx[0]), list(idx[1]) else: return list(), list() else: return list(), list() else: return list(), list() # def _clean_objects(prop, # min_area_, # min_area_int_, # mean_threshold_, # boundary_mean_, # bbox_pad, # arows, # acols, # segments_g, # morphed_sep, # morphed, # se_cross, # se_square): def _clean_objects(*args): """ Area: 15m: 0.1 ha / [(15m x 15m) x 0.0001] = 5 pixels 5 ha / [(15m x 15m) x 0.0001] = 222 pixels 10 ha / [(15m x 15m) x 0.0001] = 444 pixels 20 ha / [(15m x 15m) x 0.0001] = 888 pixels 5,000 ha / [(15m x 15m) x 0.0001] = 222,222 pixels 10,000 ha / [(15m x 15m) x 0.0001] = 444,444 pixels 20,000 ha / [(15m x 15m) x 0.0001] = 888,888 pixels """ prop, min_area_, min_area_int_, mean_threshold_, boundary_mean_, bbox_pad, arows, acols, segments_g, morphed_sep, morphed, se_cross, se_square = list(itertools.chain(*args)) el_ = [] # mean_threshold_ = 0.2 # The minimum EVI2 threshold allowed for objects # boundary_mean_ = 0.25 # The maximum EVI2 threshold allowed for boundaries # min_area_ = 5 # The minimum pixel count allowed for any object # max_area_ = 250000 # The maximum pixel count allowed for any object # min_area_int_ = 222 # The minimum pixel count allowed for interior objects # if prop.area > 10000: # return el_, el_, el_, el_, el_ if hasattr(prop, 'mean_intensity'): if prop.mean_intensity < mean_threshold_: return el_, el_, el_, el_, el_ # Get the bounding box of the current segment. min_row, min_col, max_row, max_col = prop.bbox # Expand the box. min_row = min_row - bbox_pad if (min_row - bbox_pad) > 0 else 0 max_row = max_row + bbox_pad if (max_row + bbox_pad) < (arows - 1) else arows - 1 min_col = min_col - bbox_pad if (min_col - bbox_pad) > 0 else 0 max_col = max_col + bbox_pad if (max_col + bbox_pad) < (acols - 1) else acols - 1 # Get a subset of the current object. labels_sub = segments_g[min_row:max_row, min_col:max_col] morphed_sep_sub = morphed_sep[min_row:max_row, min_col:max_col] morphed_sub = morphed[min_row:max_row, min_col:max_col] # Get the current object. labels_sub_center = np.uint8(np.where(labels_sub == prop.label, 1, 0)) # Get the boundary labels. label_boundary = cv2.morphologyEx(labels_sub_center, cv2.MORPH_DILATE, se_cross, iterations=2) - labels_sub_center boundary_idx = np.where(label_boundary == 1) # Check if the current object is completely # surrounded by 1-3 other objects. if np.any(boundary_idx): boundary_values = labels_sub[boundary_idx] # The parcel should be surrounded # by other vegetation. if boundary_values.mean() >= boundary_mean_: unique_boundary_values = list(np.unique(boundary_values)) if (0 in unique_boundary_values) and (0 < len(unique_boundary_values) <= 2) and (prop.area < min_area_int_): return el_, el_, el_, el_, el_ # Morphological closing by reconstruction closerec_sub = pymorph.closerec(pymorph.binary(labels_sub_center)) closerec_sub = merode(closerec_sub, se_cross) closerec_sub = mopen(closerec_sub, se_square) if (closerec_sub == 1).sum() < min_area_: return el_, el_, el_, el_, el_ else: idxs = list(np.where((morphed_sep_sub == 0) & (closerec_sub == 1))) idxs[0] = idxs[0] + min_row idxs[1] = idxs[1] + min_col # Decrease the gaps between land cover closerec_sub = cv2.morphologyEx(np.uint8(closerec_sub), cv2.MORPH_DILATE, se_cross, iterations=2) idx = list(np.where((morphed_sub == 0) & (closerec_sub == 1))) idx[0] = idx[0] + min_row idx[1] = idx[1] + min_col return list(idxs[0]), list(idxs[1]), \ list(np.zeros(len(idx[0]), dtype='uint64') + prop.label), \ list(idx[0]), list(idx[1]) def clean_objects(segments, intensity_array=None, original_binary_edge=None, binary=True, min_object_area=5, min_interior_count=222, mean_threshold=0.2, boundary_mean=0.25, prop_area_weight=0.9, bbox_pad=10, chunk_size=100000, n_jobs=1): """ Cleans objects with morphological operations Args: segments (2d array): The segmented objects array to be cleaned. intensity_array (2d array): The intensity values. original_binary_edge (2d array): The original edges as binary. binary (Optional[bool]): Whether the input segments are binary (True) or labelled (False). Default is True. min_object_area (Optional[int]): The minimum object area. min_interior_count (Optional[int]): The minimum pixel count of interior pixels. mean_threshold (float): The vegetation index mean threshold. boundary_mean (float): The vegetation index boundary threshold. prop_area_weight (float): The object property area weighting. bbox_pad (Optional[int]): The `regionprops bbox` padding. Default is 10. chunk_size (Optional[int]): The chunk size for multiprocessing. Default is 100,000. n_jobs (Optional[int]): Returns: Segments dilated, Segments with separate boundaries """ # global morphed, segments_g, morphed_sep, se_cross, se_square, original_binary_edge_g # segments_g = segments # original_binary_edge_g = original_binary_edge arows, acols = segments.shape if binary: segments = nd_label(segments)[0] # segments = sk_label(np.uint8(segments), connectivity=1) morphed_sep = np.zeros((arows, acols), dtype='uint8') morphed = np.zeros((arows, acols), dtype='uint64') se_cross = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype='uint8') se_square = np.array([[1, 1], [1, 1]], dtype='uint8') props = regionprops(segments, intensity_image=intensity_array) # Clean parcels for chi in range(0, len(props), chunk_size): data_gen = ((prop_, min_object_area, min_interior_count, mean_threshold, boundary_mean, bbox_pad, arows, acols, segments, morphed_sep, morphed, se_cross, se_square) for prop_ in props[chi:chi+chunk_size]) cleaned_parcels = [] with concurrent.futures.ThreadPoolExecutor(n_jobs) as executor: for res in executor.map(_clean_objects, data_gen): cleaned_parcels.append(res) # cleaned_parcels = Parallel(backend='multiprocessing', # n_jobs=n_jobs)(delayed(_clean_objects)(prop_, # min_object_area, # min_interior_count, # mean_threshold, # boundary_mean, # bbox_pad, # arows, # acols, # segments, # morphed_sep, # morphed, # se_cross, # se_square) for prop_ in props[chi:chi+chunk_size]) rowidx_sep_list, colidx_sep_list, labels_list, rowidx_list, colidx_list = zip(*cleaned_parcels) labels_list = np.array(list(itertools.chain.from_iterable(labels_list)), dtype='uint64') # piece together the parcels if np.any(labels_list): # Objects with separate boundaries rowidx_sep_list = np.array(list(itertools.chain.from_iterable(rowidx_sep_list)), dtype='uint64') colidx_sep_list = np.array(list(itertools.chain.from_iterable(colidx_sep_list)), dtype='uint64') morphed_sep[(rowidx_sep_list, colidx_sep_list)] = 1 # Objects with dilated boundaries rowidx_list = np.array(list(itertools.chain.from_iterable(rowidx_list)), dtype='uint64') colidx_list = np.array(list(itertools.chain.from_iterable(colidx_list)), dtype='uint64') morphed[(rowidx_list, colidx_list)] = labels_list # One last check for interior islands props = regionprops(morphed, intensity_image=intensity_array) # segments_g = morphed for chi in range(0, len(props), chunk_size): data_gen = ((prop_, min_interior_count, mean_threshold, boundary_mean, prop_area_weight, bbox_pad, arows, acols, morphed, original_binary_edge, se_cross) for prop_ in props[chi:chi+chunk_size]) cleaned_parcels = [] with concurrent.futures.ThreadPoolExecutor(n_jobs) as executor: for res in executor.map(_remove_interior_islands, data_gen): cleaned_parcels.append(res) # cleaned_parcels = Parallel(backend='multiprocessing', # n_jobs=n_jobs)(delayed(_remove_interior_islands)(prop_, # min_interior_count, # mean_threshold, # boundary_mean, # prop_area_weight, # bbox_pad, # arows, # acols, # morphed, # original_binary_edge, # se_cross) for prop_ in props[chi:chi+chunk_size]) rowidx_list, colidx_list = zip(*cleaned_parcels) rowidx_list = np.array(list(itertools.chain.from_iterable(rowidx_list)), dtype='uint64') colidx_list = np.array(list(itertools.chain.from_iterable(colidx_list)), dtype='uint64') # piece together the parcels if np.any(rowidx_list): morphed[(rowidx_list, colidx_list)] = 0 morphed_sep[morphed == 0] = 0 return morphed, morphed_sep def invert_size_check(im_edges, min_size_object, binary=True): """ Inverts binary edges and checks sizes Args: im_edges (2d array): Edge array, where edges = 1. min_size_object (int): The minimum size of line to be retained. binary (Optional[bool]): Whether to recode the output labelled edges to binary. Default is True. Returns: Image objects as 2d array """ # Invert edges to objects im_objects = cv2.threshold(np.uint8(im_edges), 0, 1, cv2.THRESH_BINARY_INV)[1] # Remove potential field objects smaller # than size threshold. im_objects = nd_label(im_objects)[0] # im_objects = sk_label(np.uint8(im_objects), connectivity=1) im_objects = np.uint64(remove_small_objects(im_objects, min_size=min_size_object, connectivity=1)) if binary: im_objects[im_objects > 0] = 1 return im_objects def _intersect_objects(prop): lc_values = list() area_values = list() orient_values = list() solidity_values = list() eccentricity_values = list() if prop.label == 0: return lc_values, area_values, orient_values, solidity_values, eccentricity_values, list(), list() # Get the bounding box of the current segment. min_row, min_col, max_row, max_col = prop.bbox # Get the label sub-array # labels_sub = lc_objects_g[min_row:max_row, min_col:max_col] # Get the indices of the current object. # labels_sub_idx = list(np.where(labels_sub == prop.label)) labels_sub_idx = (prop.coords[:, 0], prop.coords[:, 1]) labels_sub_idx_object = (prop.coords[:, 0] - min_row, prop.coords[:, 1] - min_col) n_samples = len(labels_sub_idx[0]) # labels_sub_idx[0] = labels_sub_idx[0] + min_row # labels_sub_idx[1] = labels_sub_idx[1] + min_col ################################## # LAND COVER CLASS ID INTERSECTION ################################## if get_class_id_g: # Get the land cover # class for the object. lc_array_sub = lc_array_g[min_row:max_row, min_col:max_col] # Get the majority land cover class lc_mode_object = sci_mode(lc_array_sub[tuple(labels_sub_idx_object)]) lc_mode = int(lc_mode_object.mode) lc_count = int(lc_mode_object.count) # Check that the land cover count # is above the required threshold. # The pixel count needed # to meet the threshold pix_count = int(prop.area * object_fraction_g) # There must be at least # `object_fraction_g` of the # target class in the object. if lc_count >= pix_count: # Return the majority class lc_values = list(np.zeros(n_samples, dtype='uint8') + lc_mode) else: # Return empty lc_values = list(np.zeros(n_samples, dtype='uint8')) # Get the current object. # labels_sub_center = np.uint8(np.where(labels_sub == idx, 1, 0)) ########################## # OBJECT AREA INTERSECTION ########################## if get_object_area_g: object_area = round(prop.area * pixel_ha, 2) area_values = list(np.zeros(n_samples, dtype='float32') + object_area) ######################## # OBJECT ID INTERSECTION ######################## if get_orientation_g: orient_values = list(np.zeros(n_samples, dtype='float32') + prop.orientation) if get_solidity_g: solidity_values = list(np.zeros(n_samples, dtype='float32') + prop.solidity) if get_eccentricity_g: eccentricity_values = list(np.zeros(n_samples, dtype='float32') + prop.eccentricity) # Return the object value return lc_values, \ area_values, \ orient_values, \ solidity_values, \ eccentricity_values, \ list(labels_sub_idx[0]), \ list(labels_sub_idx[1]) def intersect_objects(lc_objects, lc_objects_sep=None, lc_array=None, var_array=None, objects_are_unique=False, object_fraction=0.5, get_object_area=True, get_object_id=False, get_class_id=False, get_orientation=False, get_solidity=False, get_eccentricity=False, cell_size=30.0, n_jobs=1, chunk_size=100000): """" Intersects land cover objects with a thematic land cover map Args: lc_objects (2d array): The segmented objects. lc_objects_sep (2d array): The eroded segmented objects. lc_array (Optional[2d array]): The land cover array, needed if `get_object_area = False`. Default is None. var_array (Optional[2d array]): The image variables array. Default is None. objects_are_unique (Optional[bool]): Whether the land cover objects of `lc_objects` are unique. Default is False. object_fraction (Optional[float]): The fraction of an object in `lc_objects` to be considered for intersection. Default is 0.5. get_object_area (Optional[bool]): Whether to return the object area. Default is True. get_object_id (Optional[bool]): Whether to return the object id from `lc_objects`. Default is False. get_class_id (Optional[bool]): Whether to return the land cover class id from `lc_array`. Default is False. get_orientation (Optional[bool]): Whether to return the object orientation. Default is False. get_solidity (Optional[bool]): Whether to return the object solidity. Default is False. get_eccentricity (Optional[bool]): Whether to return the object eccentricity. Default is False. cell_size (Optional[float]): The cell size, used when `get_object_area = True`. Default is 30. n_jobs (Optional[int]): The number of parallel jobs. Default is 1. chunk_size (Optional[int]): The chunk size for Pool. Default is 100,000. """ global object_fraction_g, get_object_area_g, get_object_id_g, \ get_class_id_g, get_orientation_g, get_solidity_g, get_eccentricity_g, \ pixel_ha, lc_objects_g, lc_array_g object_fraction_g = object_fraction get_object_area_g = get_object_area get_object_id_g = get_object_id get_class_id_g = get_class_id get_orientation_g = get_orientation get_solidity_g = get_solidity get_eccentricity_g = get_eccentricity lc_objects_g = lc_objects lc_array_g = lc_array # Square meters to hectares pixel_ha = (cell_size * cell_size) * 0.0001 out_array = np.zeros((5, lc_objects.shape[0], lc_objects.shape[1]), dtype='float32') # Get unique object ids. if not objects_are_unique: lc_objects[lc_objects > 0] = 1 lc_objects, n_objects = nd_label(lc_objects) # Get object properties. # zo = prop.area props_int = regionprops(lc_objects) for chi in range(0, len(props_int), chunk_size): with pooler(processes=n_jobs) as pool: # Get object statistics intersected_objects = pool.map(_intersect_objects, props_int[chi:chi+chunk_size], chunk_size) lc_values_, area_values_, ori_values_, sol_values_, ecc_values_, rowidx_list, colidx_list = zip(*intersected_objects) # Join the lists lc_values_ = np.array(list(itertools.chain.from_iterable(lc_values_)), dtype='uint8') area_values_ = np.array(list(itertools.chain.from_iterable(area_values_)), dtype='float32') ori_values_ = np.array(list(itertools.chain.from_iterable(ori_values_)), dtype='float32') sol_values_ = np.array(list(itertools.chain.from_iterable(sol_values_)), dtype='float32') ecc_values_ = np.array(list(itertools.chain.from_iterable(ecc_values_)), dtype='float32') rowidx_list = np.array(list(itertools.chain.from_iterable(rowidx_list)), dtype='uint64') colidx_list = np.array(list(itertools.chain.from_iterable(colidx_list)), dtype='uint64') # Piece together the parcels # land cover if lc_values_.shape[0] > 0: out_array[0, rowidx_list, colidx_list] = lc_values_ # area if area_values_.shape[0] > 0: out_array[1, rowidx_list, colidx_list] = area_values_ # orientation if ori_values_.shape[0] > 0: out_array[2, rowidx_list, colidx_list] = ori_values_ # solidarity if sol_values_.shape[0] > 0: out_array[3, rowidx_list, colidx_list] = sol_values_ # eccentricity if ecc_values_.shape[0] > 0: out_array[4, rowidx_list, colidx_list] = ecc_values_ if isinstance(lc_objects_sep, np.ndarray): # Swap the land cover with the eroded objects out_array[0] = np.where(lc_objects_sep > 0, out_array[0], 0) if isinstance(var_array, np.ndarray): # Give the objects unique labels lc_objects_labs_ = sk_label(np.uint8(lc_objects_sep), connectivity=2) lc_objects_labs_index = np.unique(lc_objects_labs_) # Get the mean for each variable layer for var_idx, var_layer in enumerate(var_array): layer_means = nd_mean(var_layer, labels=lc_objects_labs_, index=lc_objects_labs_index) new_layer = np.zeros(var_layer.shape, dtype='float32') # Update the layer values for object_index in lc_objects_labs_index: new_layer[lc_objects_labs_ == object_index] = layer_means[object_index] # Add the layer to the output array out_array = np.vstack((out_array, new_layer[np.newaxis, :, :])) return out_array def smooth(ts_array, iterations=1, window_size=5, sigma_color=1.0, sigma_space=1.0): """ Spatially smooths a series of arrays Args: ts_array (3d array): The time series array to smooth [time dimensions x rows x columns]. iterations (Optional[int]): The number of smoothing iterations. Default is 1. window_size (Optional[int]): The bi-lateral filter window size (in pixels). Default is 5. sigma_color (Optional[float]): The bi-lateral filter color sigma. Default is 1.0. sigma_space (Optional[float]): The bi-lateral filter space (distance) sigma. Default is 1.0. Returns: The smoothed 3d `ts_array`. """ for tsp in range(0, ts_array.shape[0]): for iteration in range(0, iterations): # Subtract the inhibition term. # ts_array[tsp] = moving_window(ts_array[tsp], # statistic='inhibition', # window_size=5, # inhibition_ws=3, # iterations=1, # inhibition_scale=.5, # inhibition_operation=1) # Add the inhibition term. # ts_array[tsp] = moving_window(ts_array[tsp], # statistic='inhibition', # window_size=5, # inhibition_ws=3, # iterations=1, # inhibition_scale=.5, # inhibition_operation=2) # Fill basins ts_array[tsp] = moving_window(ts_array[tsp], statistic='fill-basins', window_size=3, iterations=2) # Fill peaks ts_array[tsp] = moving_window(ts_array[tsp], statistic='fill-peaks', window_size=3, iterations=2) # Bilateral filter ts_array[tsp] = cv2.bilateralFilter(ts_array[tsp], window_size, sigma_color, sigma_space) return ts_array class PixelStats(object): @staticmethod def calc(array2proc, statistic, lower_percentile, upper_percentile): if statistic == 'cv': ts_stat = array2proc.std(axis=0) / np.median(array2proc, axis=0) ts_stat = np.where(ts_stat > 1, 1, ts_stat) elif statistic == 'max': ts_stat = array2proc.max(axis=0) elif statistic == 'mean': ts_stat = array2proc.mean(axis=0) elif statistic in ['25', '50', '75']: ts_stat = np.percentile(array2proc, int(statistic), axis=0) ts_stat = moving_window(ts_stat, statistic='fill-basins', window_size=3, iterations=2) ts_stat = moving_window(ts_stat, statistic='fill-peaks', window_size=3, iterations=2) ts_stat[np.isnan(ts_stat) | np.isinf(ts_stat)] = 0 return rescale_intensity(ts_stat, in_range=(np.percentile(ts_stat, lower_percentile), np.percentile(ts_stat, upper_percentile)), out_range=(0, 1)) class ArrayWriter(object): def write2file(self, output_image, write_mag=False, write_egm=False, write_edges=False, write_objects=False, write_cv=False): out_bands = 0 if write_mag: out_bands += 1 if write_egm: out_bands += 1 if write_edges: out_bands += 1 if write_objects: out_bands += 1 if write_cv: out_bands += 1 band_pos = 1 if os.path.isfile(output_image): os.remove(output_image) with create_raster(output_image, None, compress='deflate', rows=self.parameter_info.n_rows, cols=self.parameter_info.n_cols, bands=out_bands, projection=self.parameter_info.projection, cellY=self.parameter_info.extent_dict['cell_y'], cellX=self.parameter_info.extent_dict['cell_x'], left=self.parameter_info.extent_dict['left'], top=self.parameter_info.extent_dict['top'], storage='float32') as out_rst: if write_mag: out_rst.write_array(self.mag[self.parameter_info.ipad:self.parameter_info.ipad+self.parameter_info.n_rows, self.parameter_info.jpad:self.parameter_info.jpad+self.parameter_info.n_cols], band=band_pos) out_rst.close_band() band_pos += 1 if write_egm: out_rst.write_array(self.egm[self.parameter_info.ipad:self.parameter_info.ipad+self.parameter_info.n_rows, self.parameter_info.jpad:self.parameter_info.jpad+self.parameter_info.n_cols], band=band_pos) out_rst.close_band() band_pos += 1 if write_edges: out_rst.write_array(self.im_edges, band=band_pos) out_rst.close_band() band_pos += 1 if write_objects: out_rst.write_array(self.objects[self.parameter_info.ipad:self.parameter_info.ipad+self.parameter_info.n_rows, self.parameter_info.jpad:self.parameter_info.jpad+self.parameter_info.n_cols], band=band_pos) out_rst.close_band() band_pos += 1 if write_cv: out_rst.write_array(self.ts_array.var(axis=0) / self.ts_array.mean(axis=0), band=band_pos) out_rst.close_band() out_rst.close_file() del out_rst def adjust_edges(original_edges, edges2adjust, lower_threshold=.1, scale_factor=2., scale_range=(0, 1), min_object_size=100, iterations=1): for iteration in range(0, iterations): edges2adjust[edges2adjust > lower_threshold] = 1 edges2adjust = sk_label(np.uint8(edges2adjust), connectivity=2) edges2adjust = np.uint64(remove_small_objects(edges2adjust, min_size=min_object_size, connectivity=1)) edges2adjust[edges2adjust > 0] = 1 edges2adjust = np.float32(np.where(edges2adjust == 1, original_edges * scale_factor, original_edges / scale_factor)) edges2adjust = rescale_intensity(edges2adjust, in_range=scale_range, out_range=(0, 1)) if iterations > 1: original_edges = edges2adjust.copy() scale_factor += .1 scale_range = scale_range[0], scale_range[1]+.1 return rescale_intensity((edges2adjust + (original_edges * .5)) / 1.5, in_range=(0, 1), out_range=(0, 1)) # import matplotlib.pyplot as plt # plt.imshow(edges2adjust) # plt.show() # import sys # sys.exit() def hist_match(source, template): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image Args: source (2d array): Image to transform; the histogram is computed over the flattened array. template (2d array): Template image; can have different dimensions to source. Reference: https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x Returns: matched (2d array): The transformed output image. """ oldshape = source.shape source = source.ravel() template = template.ravel() # Get the set of unique pixel values and # their corresponding indices and counts s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) # take the cumsum of the counts and normalize by the number of pixels to # get the empirical cumulative distribution functions for the source and # template images (maps pixel value --> quantile) s_quantiles = np.float32(s_counts.cumsum()) s_quantiles /= s_quantiles[-1] t_quantiles = np.float32(t_counts.cumsum()) t_quantiles /= t_quantiles[-1] # interpolate linearly to find the pixel values in the template image # that correspond most closely to the quantiles in the source image interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) ```
{ "source": "jgrss/satsmooth", "score": 2 }
#### File: satsmooth/anc/anc_smoothers.py ```python import os import itertools import multiprocessing as multi from ._dl import gd # from ._lowess_smooth import lowess_smooth from .. import remove_outliers, interp2d, LinterpMulti from ..utils import nd_to_columns, columns_to_nd, scale_min_max from .. import rolling_mean2d, peaks_valleys2d, group_peaks_valleys2d # from ._bspline import bezier_curve import numpy as np from scipy.interpolate import UnivariateSpline from scipy.signal import savgol_filter import scipy.sparse as sparse from scipy.sparse.linalg import splu from skimage.segmentation import active_contour #from sklearn.gaussian_process import GaussianProcessRegressor #from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared # from numba import jit, prange, set_num_threads def _cspline_func(*args): xd, xd_smooth, y_, s, optimize = list(itertools.chain(*args)) w = np.where(y_ > 0, 1, 0.1).astype('float64') if optimize: min_gcv = 1e9 eps = 0.00001 for s_ in s: spl_ = UnivariateSpline(xd, y_, w=w, s=s_) # Degrees of freedom (degree = 3) dof = spl_.get_knots().shape[0] + 3 + 1 n = spl_.get_coeffs().shape[0] # Weighted sum of squared errors sse = spl_.get_residual() # Roughness penalty denom = n - dof*s_ + eps gcv = (n / denom) / ((sse / denom) + eps) if gcv < min_gcv: min_gcv = gcv spl = spl_ else: spl = UnivariateSpline(xd, y_, w=w, s=s, k=3) return spl(xd_smooth) # @jit(parallel=True) def cspline_func(xinfo, indices, yarray, s, optimize, n_jobs, chunksize): data_gen = ((xinfo.xd, xinfo.xd_smooth, yarray[i], s, optimize) for i in range(0, yarray.shape[0])) with multi.Pool(processes=n_jobs) as executor: yout = [result[indices] for result in executor.imap(_cspline_func, data_gen, chunksize=chunksize)] # yout = np.empty((yarray.shape[0], indices.shape[0]), dtype='float64') # # for i in range(0, yarray.shape[0]): # yout[i] = _cspline_func(xinfo, yarray[i], s, optimize)[indices] return np.array(yout) def speyediff(N, d, format='csc'): """ (utility function) Construct a d-th order sparse difference matrix based on an initial N x N identity matrix Final matrix (N-d) x N """ assert not (d < 0), "d must be non negative" shape = (N-d, N) diagonals = np.zeros(2*d + 1) diagonals[d] = 1. for i in range(d): diff = diagonals[:-1] - diagonals[1:] diagonals = diff offsets = np.arange(d+1) spmat = sparse.diags(diagonals, offsets, shape, format=format) return spmat def _whittaker_func(*args): coefmat, y_ = list(itertools.chain(*args)) return splu(coefmat).solve(y_) def whittaker_func(yarray, s, order, n_jobs, chunksize): """ Source: https://github.com/mhvwerts/whittaker-eilers-smoother/blob/master/whittaker_smooth.py """ m = yarray.shape[1] E = sparse.eye(m, format='csc') D = speyediff(m, order, format='csc') coefmat = E + s * D.conj().T.dot(D) data_gen = ((coefmat, yarray[i]) for i in range(0, yarray.shape[0])) with multi.Pool(processes=n_jobs) as executor: yout = [result for result in executor.imap(_whittaker_func, data_gen, chunksize=chunksize)] return np.array(yout) def _gpr_func(*args): X, y_ = list(itertools.chain(*args)) gp_kernel = ExpSineSquared(length_scale=1.0, periodicity=365.25/2.0, periodicity_bounds=(1e-2, 1e1)) + WhiteKernel(1e-1) gpr = GaussianProcessRegressor(kernel=gp_kernel) gpr.fit(X, y_) return gpr.predict(X, return_std=False) def gpr_func(xinfo, indices, yarray, n_jobs, chunksize): X = xinfo.xd_smooth[:, np.newaxis] # yout = np.empty((yarray.shape[0], indices.shape[0]), dtype='float64') data_gen = ((X, yarray[i]) for i in range(0, yarray.shape[0])) with multi.Pool(processes=n_jobs) as executor: yout = [result[indices] for result in executor.imap(_gpr_func, data_gen, chunksize=chunksize)] # for i in range(0, yarray.shape[0]): # yout[i] = _gpr_func(X, yarray[i])[indices] return np.array(yout) def _snake_contour(*args): X, y, pad, gain = list(itertools.chain(*args)) data_idx = np.arange(y.shape[0]) n = X.shape[0] ymax = int(y.max() / gain) c = np.zeros((ymax, n), dtype='float64') - 1 ridx = (ymax-np.uint8(y / gain)).clip(0, ymax-1).astype('int64') ridx[0] = ridx[1] ridx[-1] = ridx[-2] idx = (ridx, data_idx) # Fill the array with the time series c[idx] = y min_mse = 1e9 for alpha, beta, gamma in itertools.product([0.001, 0.01, 0.1], [0.1, 0.5, 1.0], [0.1]): snake = active_contour(c, np.array(idx).T, boundary_condition='fixed', alpha=alpha, beta=beta, w_line=1, w_edge=0, gamma=gamma, max_iterations=100, convergence=1) ysnake_ = ((ymax - snake[:, 0]) * gain).clip(0, 1) roughness = scale_min_max(np.abs(np.diff(ysnake_, n=4).mean()), 1e-6, 1e-5, 0.01, 1) weights = np.where(y > ysnake_, 1, 0.5) weights[:pad] = 0 weights[-pad:] = 0 se = (ysnake_ - y)**2 mse = np.average(se, weights=weights) * roughness if mse < min_mse: min_mse = mse ysnake = ysnake_.copy() return ysnake[pad:-pad] def snake_contour(X, yarray, pad=10, n_jobs=1, chunksize=10): X = np.pad(X, (pad, pad), mode='linear_ramp') yarray = np.pad(yarray, ((0, 0), (pad, pad)), mode='reflect') data_gen = ((X, yarray[i], pad, 0.01) for i in range(0, yarray.shape[0])) with multi.Pool(processes=n_jobs) as executor: yout = [result for result in executor.imap(_snake_contour, data_gen, chunksize=chunksize)] return np.array(yout) class Fourier(object): def __init__(self, period=365.25, poly_order=1, harmonic_order=1): self.period = period self.poly_order = poly_order self.harmonic_order = harmonic_order self.coef_matrix = None def _matrix(self, dates): w = 2.0 * np.pi / self.period if self.poly_order == 0: self.coef_matrix = np.ones(shape=(len(dates), 1), order='F') else: self.coef_matrix = np.zeros(shape=(len(dates), self.harmonic_order*2+self.poly_order), order='F') w12 = w * dates for p_order in range(1, self.poly_order+1): self.coef_matrix[:, p_order-1] = dates**p_order if self.harmonic_order > 0: for h_order in range(1, self.harmonic_order+1): self.coef_matrix[:, h_order+self.poly_order-1] = np.cos(w12*h_order) self.coef_matrix[:, h_order+1+self.poly_order-1] = np.sin(w12*h_order) if self.poly_order > 0: self.coef_matrix = np.c_[self.coef_matrix, np.ones(self.coef_matrix.shape[0], dtype='float64')[:, np.newaxis]] def fit_predict(self, X, yarray, indices=None): self._matrix(X) if isinstance(indices, np.ndarray): est = np.zeros((yarray.shape[0], indices.shape[0]), dtype='float64') else: est = np.zeros(yarray.shape, dtype='float64') # popt coefficients -> n coeffs x n samples popt = np.linalg.lstsq(self.coef_matrix, yarray.T, rcond=None)[0] def _pred_func(a): return (a*popt).sum(axis=0) for t in range(0, self.coef_matrix[indices].shape[0]): est[:, t] = _pred_func(self.coef_matrix[indices][t][:, np.newaxis]) return est class SmoothersMixin(object): @property def shape_in(self): return self._shape_in @shape_in.setter def shape_in(self, shape): self._shape_in = shape @property def shape_out(self): if self.shape_is_3d: return self.ndims_out, self.nrows, self.ncols else: return self.nsamples, self.ndims_out @property def shape_is_3d(self): return True if len(self.shape_in) == 3 else False @property def ndims_in(self): return self._ndims_in @ndims_in.setter def ndims_in(self, ndims): self._ndims_in = ndims @property def ndims_out(self): return self.indices.shape[0] @property def nrows(self): return self._nrows @nrows.setter def nrows(self, nrows): self._nrows = nrows @property def ncols(self): return self._ncols @ncols.setter def ncols(self, ncols): self._ncols = ncols @property def nsamples(self): return self.nrows * self.ncols def _reshape_inputs(self): if self.shape_is_3d: return nd_to_columns(self.data, *self.shape_in) else: return self.data def _reshape_outputs(self, outputs): if self.shape_is_3d: return columns_to_nd(outputs, *self.shape_out) else: return outputs def pre_remove_outliers(xinfo, yarray, n_jobs, **kwargs): ytest = remove_outliers(np.ascontiguousarray(xinfo.xd, dtype='float64'), np.ascontiguousarray(yarray, dtype='float64'), **kwargs) return interp2d(ytest, no_data_value=0.0, n_jobs=n_jobs) def _dbl_pvs(y: np.ndarray) -> np.ndarray: """Detects peaks and valleys for the double logistic function Args: y (2d array): (samples x time) """ peak_valley_kwargs = dict(min_value=0.05, min_dist=5, min_sp_dist=0.1, min_prop_sp_dist=0.001, n_jobs=os.cpu_count()) def gaussian_func(x, sigma): """Gaussian function for window weights""" return np.exp(-pow(x, 2) / (2.0 * pow(sigma, 2))) # The peaks/valleys array holder pvs = np.zeros((2, *y.shape), dtype='float64') # Iterate over multiple window sizes for k in [21, 28]: # Smooth the curve with a weighted rolling mean weights = gaussian_func(np.linspace(-1, 1, k), 0.5) ymean = rolling_mean2d(np.pad(y.copy(), ((0, 0), (k, k)), mode='reflect'), w=k, weights=weights, n_jobs=os.cpu_count())[:, k:-k] # Estimate peak/valley locations pvs += peaks_valleys2d(np.ascontiguousarray(ymean, dtype='float64'), order=k, **peak_valley_kwargs)[0] pvs[pvs > 1] = 1 return group_peaks_valleys2d(np.int64(pvs), y.copy(), w=21, min_prop_sp_dist=peak_valley_kwargs['min_prop_sp_dist'], n_jobs=os.cpu_count()) class AncSmoothers(SmoothersMixin): def __init__(self, xinfo, data, pad=50, index_by_indices=False, remove_outliers=True, max_outlier_days1=120, max_outlier_days2=120, min_outlier_values=7, dev_thresh1=0.2, dev_thresh2=0.2, n_jobs=1): self.xinfo = xinfo self.data = data.copy() self.pad = pad self.index_by_indices = index_by_indices self.remove_outliers = remove_outliers self.max_outlier_days1 = max_outlier_days1 self.max_outlier_days2 = max_outlier_days2 self.min_outlier_values = min_outlier_values self.dev_thresh1 = dev_thresh1 self.dev_thresh2 = dev_thresh2 self.n_jobs = n_jobs # set_num_threads(n_jobs) self.shape_in = self.data.shape if self.shape_is_3d: self.ndims, self.nrows, self.ncols = self.shape_in else: nsamples, self.ndims = self.shape_in self.nrows = int(nsamples / 2) self.ncols = 2 if self.index_by_indices: self.indices = np.ascontiguousarray(xinfo.skip_idx + xinfo.start_idx, dtype='uint64') else: self.indices = np.ascontiguousarray(np.arange(0, self.xinfo.xd_smooth.shape[0]), dtype='uint64') self._preprocess() def _preprocess(self): if not self.remove_outliers: self.data = interp2d(np.float64(self._reshape_inputs()), no_data_value=0.0, n_jobs=self.n_jobs) else: self.data = pre_remove_outliers(self.xinfo, self._reshape_inputs(), max_outlier_days1=self.max_outlier_days1, max_outlier_days2=self.max_outlier_days2, min_outlier_values=self.min_outlier_values, dev_thresh1=self.dev_thresh1, dev_thresh2=self.dev_thresh2, n_jobs=self.n_jobs) def csp(self, s=0.1, optimize=False, chunksize=10): """Cubic smoothing spline """ return self._reshape_outputs(cspline_func(self.xinfo, self.indices, self.data, s, optimize, self.n_jobs, chunksize)[:, self.indices]) # def bsp(self, window_size=50, mfactor=3, max_iter=1): # # return bezier_curve(self.data.copy(), # window_size=window_size, # mfactor=mfactor, # max_iters=max_iter) # # # interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) # # # # return self._reshape_outputs(interp.interpolate(bezier_curve(self.data.copy(), # # window_size=window_size, # # mfactor=mfactor, # # max_iters=max_iter))[:, self.indices], # # *self.shape_out) def dbl(self, lr=None, max_iters=1000, reltol=1e-08, init_params=None, beta1=0.9, beta2=0.99, chunksize=10): """Double logistic function """ # Interpolate and regrid interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) y = interp.interpolate(self.data, fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs) # Detect peaks/valleys pv_array = _dbl_pvs(y) if lr is None: lr = np.array([0.01, 0.1, 1.0, 0.5, 1.0, 0.5, 0.001], dtype='float64') if init_params is None: init_params = np.ascontiguousarray([0.03, 0.6, 75, 20.0, 300, 20.0, 0.0001], dtype='float64') return self._reshape_outputs(gd(ordinals=np.ascontiguousarray(self.xinfo.xd_smooth, dtype='int64'), y=y, pv_array=np.ascontiguousarray(pv_array, dtype='int64'), lr=lr, max_iters=max_iters, reltol=reltol, init_params=init_params, constraints=np.array([[0.0, 0.2], [0.2, 2.0], [0.0, 185.0], [5.0, 40.0], [185.0, 367.0], [5.0, 40.0], [1e-8, 0.01]]), beta1=beta1, beta2=beta2, n_jobs=self.n_jobs, chunksize=chunksize)[:, self.indices]) def harm(self, period=365.25, poly_order=1, harmonic_order=1): """Linear harmonic regression """ interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) clf = Fourier(period=period, poly_order=poly_order, harmonic_order=harmonic_order) ypred = clf.fit_predict(self.xinfo.xd_smooth[self.xinfo.start_idx:self.xinfo.end_idx], interp.interpolate(self.data, fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs)[:, self.xinfo.start_idx:self.xinfo.end_idx], indices=self.xinfo.skip_idx) return self._reshape_outputs(ypred) def sg(self, w=7, p=3): """Savitsky-Golay smoothing """ interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) return self._reshape_outputs(interp.interpolate(savgol_filter(self.data, w, p), fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs)[:, self.indices]) def wh(self, s=1.0, order=2, chunksize=10): """Whittaker smoothing """ interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) return self._reshape_outputs(interp.interpolate(whittaker_func(self.data, s, order, self.n_jobs, chunksize), fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs)[:, self.indices]) def lw(self, w=31, chunksize=10): """Lowess smoothing """ interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) return self._reshape_outputs( interp.interpolate(lowess_smooth(ordinals=np.ascontiguousarray(self.xinfo.xd, dtype='int64'), y=self.data, w=w, n_jobs=self.n_jobs, chunksize=chunksize), fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs)[:, self.indices]) def gpr(self, chunksize=10): interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) return self._reshape_outputs(gpr_func(self.xinfo, self.indices, interp.interpolate(self.data, fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs), self.n_jobs, chunksize)) def ac(self, pad=10, chunksize=10): """Active contour smoothing """ interp = LinterpMulti(self.xinfo.xd, self.xinfo.xd_smooth) return self._reshape_outputs(rolling_mean2d(np.ascontiguousarray(interp.interpolate(snake_contour(self.xinfo.xd, self.data, pad=pad, n_jobs=self.n_jobs, chunksize=chunksize), fill_no_data=True, no_data_value=0, n_jobs=self.n_jobs)[:, self.indices], dtype='float64'), w=21, no_data_value=0, weights=np.ones(21, dtype='float64'), n_jobs=self.n_jobs)) ``` #### File: satsmooth/utils/tfill.py ```python from pathlib import Path from datetime import datetime from datetime import timedelta from collections import namedtuple import calendar import concurrent.futures from ..preprocessing import interp2d, fill_gaps # from ..preprocessing import interp2d # from ..preprocessing.fill_gaps_py import fill_gaps from ..preprocessing.fill_gaps_py import fill_x from . import nd_to_columns, columns_to_nd, prepare_x import numpy as np import cv2 import pandas as pd from numba import jit from tqdm.auto import trange, tqdm from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer ThreadPoolExecutor = concurrent.futures.ThreadPoolExecutor @jit(nopython=True, nogil=True) def calc_gap_lengths(ordinals, darray): """ Calculates the length of gaps Args: ordinals (1d array) darray (2d array) """ nr, nc = darray.shape gap_counts = np.zeros((nr, nc), dtype='int64') for i in range(0, nr): j = 0 while True: if darray[i, j] == 0: gap_total = 0 # Find all gaps for g in range(j, nc): if darray[i, g] == 0: gap_total += ordinals[g] else: break for q in range(j, g): gap_counts[i, q] = gap_total j = g + 1 else: j += 1 if j >= nc: break return gap_counts def spatial_mean(yarray, w=5): """ Spatial mean over rows and columns """ wh = int(w / 2.0) yarray = np.pad(yarray.copy(), ((0, 0), (w, w), (w, w)), mode='reflect') ymean = np.zeros(yarray.shape, dtype='float64') ymask = np.where(yarray > 0, 1, 0).astype('uint8') ycount = np.zeros(yarray.shape, dtype='uint8') offsets = np.linspace(-wh, wh, w).astype(int).tolist() for yoff in offsets: for xoff in offsets: ymean += np.roll(yarray, (0, yoff, xoff), (0, 1, 2)) ycount += np.roll(ymask, (0, yoff, xoff), (0, 1, 2)) ymean /= ycount.astype('float64') return ymean[:, w:-w, w:-w] def tsmooth(yarray, q, method='linear', w=7): """ Temporal smoothing over time dimension """ return (pd.DataFrame(data=yarray.copy()) .interpolate(method=method, axis=1) .rolling(w, center=True, axis=1) .quantile(q) .bfill(axis=1) .ffill(axis=1)).values def kmeans(yarray, n_classes=5, max_iters=20, n_attempts=20, n_jobs=1): """ Clusters data by k-means Args: yarray (2d array): The data to cluster. n_classes (Optional[int]): The number of clusters. max_iters (Optional[int]): The maximum number of iterations. n_attempts (Optional[int]): The number of attempts. n_jobs (Optional[int]): The number of concurrent threads for interpolation. """ # Define criteria = ( type, max_iter = 10 , epsilon = 1.0 ) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, max_iters, 1.0) # Set flags (Just to avoid line break in the code) flags = cv2.KMEANS_RANDOM_CENTERS # Apply KMeans labels = cv2.kmeans(np.float32(interp2d(yarray.copy(), no_data_value=0.0, n_jobs=n_jobs)), n_classes, None, criteria, n_attempts, flags)[1].flatten() return labels class FillMixin(object): @staticmethod def get_gap_lengths(X, y): ordinals = np.array([X[i+1].toordinal() - X[i].toordinal() for i in range(0, X.shape[0]-1)] + [0], dtype='int64') return calc_gap_lengths(ordinals, y) @staticmethod def check_day_dist(dta, dtb, max_days): """ Checks if two dates fall within a day range Args: dta (object): The first ``datetime.datetime`` object. dtb (object): The second ``datetime.datetime`` object. max_days (int): The maximum number of days. Returns: ``bool`` """ # Get the maximum number of days in the current month max_month_days = calendar.monthrange(dta.year, dtb.month)[1] month_day = min(dtb.day, max_month_days) dtc = datetime.strptime(f'{dta.year}-{dtb.month}-{month_day}', '%Y-%m-%d') if abs(dta - dtc).days <= max_days: return True # Get the maximum number of days in the current month max_month_days = calendar.monthrange(dta.year-1, dtb.month)[1] month_day = min(dtb.day, max_month_days) dtc = datetime.strptime(f'{dta.year-1}-{dtb.month}-{month_day}', '%Y-%m-%d') if abs(dta - dtc).days <= max_days: return True # Get the maximum number of days in the current month max_month_days = calendar.monthrange(dta.year+1, dtb.month)[1] month_day = min(dtb.day, max_month_days) dtc = datetime.strptime(f'{dta.year+1}-{dtb.month}-{month_day}', '%Y-%m-%d') if abs(dta - dtc).days <= max_days: return True return False def check_day_dist(dta, dtb, max_days): """ Checks if two dates fall within a day range Args: dta (object): The first ``datetime.datetime`` object. dtb (object): The second ``datetime.datetime`` object. max_days (int): The maximum number of days. Returns: ``bool`` """ # Get the maximum number of days in the current month max_month_days = calendar.monthrange(dta.year, dtb.month)[1] month_day = min(dtb.day, max_month_days) dtc = datetime.strptime(f'{dta.year}-{dtb.month}-{month_day}', '%Y-%m-%d') if abs(dta - dtc).days <= max_days: return True # Get the maximum number of days in the current month max_month_days = calendar.monthrange(dta.year-1, dtb.month)[1] month_day = min(dtb.day, max_month_days) dtc = datetime.strptime(f'{dta.year-1}-{dtb.month}-{month_day}', '%Y-%m-%d') if abs(dta - dtc).days <= max_days: return True # Get the maximum number of days in the current month max_month_days = calendar.monthrange(dta.year+1, dtb.month)[1] month_day = min(dtb.day, max_month_days) dtc = datetime.strptime(f'{dta.year+1}-{dtb.month}-{month_day}', '%Y-%m-%d') if abs(dta - dtc).days <= max_days: return True return False def sort_by_date(xinfo, data, time_index, max_days=30, max_years=2): """ Sorts images by nearest date to reference Args: xinfo (object): The data object. data (3d array): The data to slice and sort. time_index (int): The current time reference. max_days (Optional[int]): The maximum number of days difference. max_years (Optional[int]): The maximum number of years difference. Returns: 3d array """ # filter references by date try: target_date = xinfo.dates[time_index] except: return None, np.array([0]) ref_idx = np.array([i for i in range(0, xinfo.dates.shape[0]) if (abs(target_date.year - xinfo.dates[i].year) <= max_years) and check_day_dist(target_date, xinfo.dates[i], max_days)], dtype='int64') if ref_idx.shape[0] == 0: return None, np.array([0]) else: slice_idx = ref_idx[np.argsort(np.abs(ref_idx - time_index))] # Sort by nearest to reference ``time_index`` return xinfo.dates[slice_idx], data[slice_idx] def fill_layer(xinfo, y, didx, nrows, ncols, wmax, wmin, min_count, dev_thresh, max_days, max_years, nodata, num_threads, chunksize): """ Fills gaps """ Results = namedtuple('Results', 'index array') # Sort the arrays in ascending order to the target date gap_dates, gap_array = sort_by_date(xinfo, y, didx, max_days=max_days, max_years=max_years) if (gap_array.shape[1] == 1) or (gap_array.max() == nodata): return Results(index=didx, array=y[didx]) # The target date needs some data if gap_array[0].max() > 0: gdims, grows, gcols = gap_array.shape # Get the cluster labels cluster_labels = kmeans(nd_to_columns(gap_array, gdims, grows, gcols), n_classes=5, max_iters=20, n_attempts=20, n_jobs=num_threads).reshape(grows, gcols) if len(y.shape) > 3: gap_array = np.float64(gap_array) else: gap_array = np.float64(gap_array.reshape(gdims, 1, nrows, ncols)) prefill_wmax_half = int(wmax / 2.0) gap_array = np.pad(gap_array, ((0, 0), (0, 0), (prefill_wmax_half, prefill_wmax_half), (prefill_wmax_half, prefill_wmax_half)), mode='reflect') cluster_labels = np.pad(cluster_labels, ((prefill_wmax_half, prefill_wmax_half), (prefill_wmax_half, prefill_wmax_half)), mode='reflect') # Fill gaps at time ``didx`` # y[didx] = np.squeeze(fill_gaps(gap_array, # np.ascontiguousarray(cluster_labels, dtype='int64'), # np.array([1], dtype='float64'), # not currently used # wmax=self.wmax, # wmin=self.wmin, # nodata=self.nodata, # min_count=self.min_count, # dev_thresh=self.dev_thresh, # n_jobs=self.num_threads, # chunksize=self.chunksize))[prefill_wmax_half:-prefill_wmax_half, # prefill_wmax_half:-prefill_wmax_half] ygap = gap_array[0] X, day_weights = fill_x(gap_dates, gap_array[1:], nodata) if X.max() == nodata: return Results(index=didx, array=y[didx]) return Results(index=didx, array=np.squeeze(fill_gaps(X, ygap, np.ascontiguousarray(cluster_labels, dtype='int64'), np.ascontiguousarray(day_weights, dtype='float64'), wmax=wmax, wmin=wmin, nodata=nodata, min_count=min_count, dev_thresh=dev_thresh, n_jobs=num_threads, chunksize=chunksize))[prefill_wmax_half:-prefill_wmax_half, prefill_wmax_half:-prefill_wmax_half]) # return Results(index=didx, array=np.squeeze(fill_gaps(gap_array, # np.ascontiguousarray(cluster_labels, dtype='int64'), # w=wmax, # nodata=nodata, # dev_thresh=dev_thresh))) else: return Results(index=didx, array=y[didx]) class SFill(FillMixin): def __init__(self, start='2000-07-01', end='2020-07-01', rule='D', skip='WMS', wmax=25, wmin=5, nodata=0, n_iters=1, max_days=30, max_years=0, min_count=20, dev_thresh=0.03, num_threads=1, chunksize=10): self.start = start self.end = end self.rule = rule self.skip = skip self.wmax = wmax self.wmin = wmin self.nodata = nodata self.n_iters = n_iters self.max_days = max_days self.max_years = max_years self.min_count = min_count self.dev_thresh = dev_thresh self.num_threads = num_threads self.chunksize = chunksize def impute(self, X, y): """ Args: X (1d array) y (3d array) """ xinfo = prepare_x(X, self.start, self.end, rule=self.rule, skip=self.skip) ndims, nrows, ncols = y.shape y = np.nan_to_num(y, nan=self.nodata, posinf=self.nodata, neginf=self.nodata) yout = y.copy() with ThreadPoolExecutor(max_workers=int(self.num_threads / 2.0)) as executor: for iter_ in range(0, self.n_iters): # for didx in range(0, ndims): # # res = fill_layer(xinfo, y, didx, # self.wmax, # self.dev_thresh, # self.max_days, # self.max_years, # self.nodata, # int(self.num_threads / 2.0)) # CYTHON data_gen = ((xinfo, y, didx, nrows, ncols, self.wmax, self.wmin, self.min_count, self.dev_thresh, self.max_days, self.max_years, self.nodata, 2, self.chunksize) for didx in range(0, ndims)) # STRIDES # data_gen = ((xinfo, # y, # didx, # nrows, # ncols, # self.wmax, # self.dev_thresh, # self.max_days, # self.max_years, # self.nodata, # 2) for didx in range(0, ndims)) futures = [executor.submit(fill_layer, *args) for args in data_gen] for f in tqdm(concurrent.futures.as_completed(futures), total=ndims): results = f.result() yout[results.index] = results.array y = np.nan_to_num(yout.copy(), nan=self.nodata, posinf=self.nodata, neginf=self.nodata) futures = None return np.nan_to_num(yout, nan=self.nodata, posinf=self.nodata, neginf=self.nodata) def sort_by_date(self, xinfo, data, time_index, max_days=30, max_years=2): """ Sorts images by nearest date to reference Args: xinfo (object): The data object. data (3d array): The data to slice and sort. time_index (int): The current time reference. max_days (Optional[int]): The maximum number of days difference. max_years (Optional[int]): The maximum number of years difference. Returns: 3d array """ # filter references by date try: target_date = xinfo.dates[time_index] except: return None, np.array([0]) ref_idx = np.array([i for i in range(0, xinfo.dates.shape[0]) if (abs(target_date.year - xinfo.dates[i].year) <= max_years) and self.check_day_dist(target_date, xinfo.dates[i], max_days)], dtype='int64') if ref_idx.shape[0] == 0: return None, np.array([0]) else: # dates = xinfo.dates[ref_idx[np.argsort(np.abs(ref_idx - time_index))]] # days = [abs((dt - dates[0]).days) for dt in dates] # Sort by nearest to reference ``time_index`` return data[ref_idx[np.argsort(np.abs(ref_idx - time_index))]] class TFill(FillMixin): """ Args: month (Optional[int]): The start and end month. min_gap_length (Optional[int]): The minimum allowed gap length to not be imputed. Example: >>> tf = TFill() >>> tf.impute(X, y) """ def __init__(self, start_year=2000, end_year=2020, month=7, min_gap_length=30, batch_size=5, num_threads=1): self.start_year = start_year self.end_year = end_year self.month = month self.min_gap_length = min_gap_length self.batch_size = batch_size self.num_threads = num_threads self.half_batch = int(self.batch_size / 2.0) self.df = None def impute(self, X, y): """ Args: X (1d array) y (3d array) """ ndims, nrows, ncols = y.shape # 5x5 spatial average # yfill = spatial_mean(y, w=5) y = nd_to_columns(y, ndims, nrows, ncols) yfill = y.copy() self.df = pd.DataFrame(data=range(0, X.shape[0]), columns=['name'], index=X) gap_lengths = self.get_gap_lengths(X, y) for batch_year in trange(self.start_year, self.end_year+1): ######################### # Center the batch window ######################### # Time series start if batch_year - self.half_batch < self.start_year: batch_start = batch_year batch_end = batch_year + self.batch_size # Time series end elif self.end_year - batch_year < self.batch_size: batch_start = self.end_year - self.batch_size batch_end = self.end_year else: batch_start = batch_year - self.half_batch batch_end = batch_year - self.half_batch + self.batch_size dates_batch = self.df.loc[f'{batch_start}-{self.month:02d}-01':f'{batch_end}-{self.month:02d}-01']\ .index.to_pydatetime() if dates_batch.shape[0] > 0: date_list = self.get_unique_dates(dates_batch) if date_list.shape[0] > 2: yh_med, yh_lwr, yh_upr = self.stack(date_list, y, batch_year, batch_year+self.batch_size) yfill = self.fill(date_list, gap_lengths, y, yh_med, yh_lwr, yh_upr, yfill, batch_year) return yfill def fill(self, X_batch, gap_lengths, y, yh_med, yh_lwr, yh_upr, yfill, year_0): # Get a 12-month slice frame_slice = self.df.loc[f'{year_0}-{self.month:02d}-01':f'{year_0+1}-{self.month:02d}-01'] year_slice = frame_slice.index.to_pydatetime().tolist() # Get all dates for the current year slice date_slice_list = self._adjust_dates(year_0, year_slice, base_year=year_0) # Get the indices that fit into the full array idx_full = frame_slice.name.values idx, put_indices = self.get_indices(X_batch, idx_full, date_slice_list) # Impute with the rolling median yfill[:, idx] = np.where(y[:, idx] == 0, np.where((yh_med[:, put_indices] <= yh_upr[:, put_indices]) & (yh_med[:, put_indices] >= yh_lwr[:, put_indices]) & (gap_lengths[:, idx] > self.min_gap_length), yh_med[:, put_indices], y[:, idx]), y[:, idx]) return yfill @staticmethod def get_indices(X_batch, idx_full, date_slice_list): put_indices = [] idx = [] for pix_idx, dta in zip(idx_full, date_slice_list): pix_put_idx = np.where(X_batch == dta)[0] if pix_put_idx.shape[0] > 0: idx.append(pix_idx) put_indices.append(int(pix_put_idx[0])) return idx, put_indices def stack(self, X_batch, y, year_0, year_n): # Create the array holder yh = np.zeros((y.shape[0], X_batch.shape[0]), dtype='float64') # TODO: iterate in batches for year in range(year_0, year_n+1): # Get a 12-month slice frame_slice = self.df.loc[f'{year}-{self.month:02d}-01':f'{year+1}-{self.month:02d}-01'] year_slice = frame_slice.index.to_pydatetime().tolist() # Get all dates for the current year slice date_slice_list = self._adjust_dates(year, year_slice, base_year=year_0, check_monotonic=True) # Get the indices that fit into the full array idx_full = frame_slice.name.values idx, put_indices = self.get_indices(X_batch, idx_full, date_slice_list) yh[:, put_indices] = np.where(yh[:, put_indices] == 0, y[:, idx], np.where(y[:, idx] > 0.01, y[:, idx], yh[:, put_indices])) # Get the cluster labels cluster_labels = kmeans(yh, n_classes=5, max_iters=20, n_attempts=20, n_jobs=self.num_threads) yh[yh == 0] = np.nan yh_impute = yh.copy() yh_impute[np.isnan(yh_impute)] = 0 yh_lwr = np.zeros(yh_impute.shape, dtype='float64') yh_upr = np.zeros(yh_impute.shape, dtype='float64') imp = IterativeImputer(missing_values=np.nan, sample_posterior=False, n_nearest_features=10, max_iter=10, initial_strategy='mean', min_value=0, max_value=1) # Impute for each cluster for clab in np.unique(cluster_labels): # Get the current cluster clab_idx = np.where(cluster_labels == clab)[0] yh_clab = yh[clab_idx] yh_impute_clab = yh_impute[clab_idx] # Get the columns with data valid_idx = np.where(yh_impute_clab.max(axis=0) > 0)[0] # Impute the current cluster yh_impute_clab[:, valid_idx] = imp.fit_transform(yh_clab) # MICE # mice_iters = 5 # for __ in range(0, mice_iters): # yh_impute[:, valid_idx] += imp.fit_transform(yh) # # yh_impute[:, valid_idx] /= float(mice_iters) # yh_impute = tsmooth(yh, 0.5) yh_lwr_clab = tsmooth(yh_clab, 0.1, w=15) yh_upr_clab = tsmooth(yh_clab, 0.9, w=15) # Update the cluster yh_impute[clab_idx] = yh_impute_clab yh_lwr[clab_idx] = yh_lwr_clab yh_upr[clab_idx] = yh_upr_clab return yh_impute, yh_lwr, yh_upr def get_unique_dates(self, dates_batch): """ Args: dates_batch (list): A list of datetime objects. """ year_0 = dates_batch[0].year year_n = dates_batch[-1].year date_list = [] for year in range(year_0, year_n): date_list = self._adjust_dates(year, dates_batch, adj_date_list=date_list, base_year=year_0) return np.sort(np.unique(date_list)) def _adjust_dates(self, year, dt_objs, adj_date_list=None, base_year=2000, check_monotonic=False): if not adj_date_list: adj_date_list = [] for dt in dt_objs: # Add 6 months to set July as fake January for sorting month = (dt + pd.DateOffset(months=12-self.month+1)).to_pydatetime().month if dt.year in [year, year+1]: if dt.day > calendar.monthrange(base_year+1, month)[1]: adj_dt = datetime.strptime(f'{base_year+1}{month:02d}{calendar.monthrange(base_year+1, month)[1]:02d}', '%Y%m%d') else: adj_dt = datetime.strptime(f'{base_year+1}{month:02d}{dt.day:02d}', '%Y%m%d') else: adj_dt = None if adj_dt is not None: adj_date_list.append(adj_dt) if check_monotonic: mono_increase = [True] + [True if adj_date_list[i] > adj_date_list[i-1] else False for i in range(1, len(adj_date_list))] if not all(mono_increase): for mi, mono_bool in enumerate(mono_increase): if not mono_bool: new_dt = adj_date_list[mi] - timedelta(days=1) adj_date_list[mi] = datetime.strptime(f'{base_year+1}{new_dt.month:02d}{new_dt.day:02d}', '%Y%m%d') return adj_date_list ``` #### File: jgrss/satsmooth/setup.py ```python import setuptools from distutils.core import setup from distutils.extension import Extension from Cython.Build import cythonize import platform try: from Cython.Distutils import build_ext except: from distutils.command import build_ext import numpy as np # Parse the version from the module. # Source: https://github.com/mapbox/rasterio/blob/master/setup.py with open('satsmooth/version.py') as f: for line in f: if line.find("__version__") >= 0: version = line.split("=")[1].strip() version = version.strip('"') version = version.strip("'") continue pkg_name = 'satsmooth' maintainer = '<NAME>' maintainer_email = '' description = 'Satellite n-dimensional signal smoothing' git_url = 'http://github.com/jgrss/satsmooth.git' with open('README.md') as f: long_description = f.read() with open('LICENSE.txt') as f: license_file = f.read() required_packages = ['cython', 'numpy'] compile_args = ['-fopenmp'] link_args = ['-fopenmp'] if platform.system().lower() == 'darwin': compile_args.insert(0, '-Xpreprocessor') link_args = ['-lomp'] def get_packages(): return setuptools.find_packages() def get_package_data(): return {'': ['*.md', '*.txt'], 'satsmooth': ['detect/*.so', 'smooth/*.so', 'preprocessing/*.so', 'testing/*.so', 'utils/*.pxd']} def get_extensions(): # extra_compile_args=['-O3', '-ffast-math', '-march=native', '-fopenmp'] return [Extension('*', sources=['satsmooth/detect/_signal.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/preprocessing/_linear_interp.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/preprocessing/_linear_interp_regrid.pyx'], language='c++'), Extension('*', sources=['satsmooth/preprocessing/_linear_interp_regrid_multi.pyx'], extra_compile_args=compile_args, extra_link_args=link_args, language='c++'), Extension('*', sources=['satsmooth/preprocessing/_linear_interp_regrid_multi_indexing.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/preprocessing/_fill_gaps.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/preprocessing/_outlier_removal.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/anc/_dl.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/anc/_lowess_smooth.pyx'], extra_compile_args=compile_args, extra_link_args=link_args, language='c++'), Extension('*', sources=['satsmooth/smooth/_adaptive_bilateral.pyx'], language='c++'), Extension('*', sources=['satsmooth/smooth/_rolling1d.pyx']), Extension('*', sources=['satsmooth/smooth/_rolling2d.pyx'], extra_compile_args=compile_args, extra_link_args=link_args), Extension('*', sources=['satsmooth/smooth/_spatial_temporal.pyx'], extra_compile_args=compile_args, extra_link_args=link_args, language='c++')] def setup_package(): include_dirs = [np.get_include()] metadata = dict(name=pkg_name, maintainer=maintainer, maintainer_email=maintainer_email, description=description, license=license_file, version=version, long_description=long_description, packages=get_packages(), package_data=get_package_data(), ext_modules=cythonize(get_extensions()), cmdclass=dict(build_ext=build_ext), download_url=git_url, install_requires=required_packages, include_dirs=include_dirs) setup(**metadata) if __name__ == '__main__': setup_package() ```
{ "source": "jgrss/tsaug", "score": 4 }
#### File: tsaug/_augmenter/crop.py ```python from typing import List, Optional, Tuple, Union import numpy as np from .base import _Augmenter, _default_seed from .resize import Resize class Crop(_Augmenter): """ Crop random sub-sequences from time series. To guarantee all output series have the same length, if the crop size is not deterministic, all crops must be resize to a fixed length. Parameters ---------- size : int, tuple, list The length of random crops. - If int, all crops have the same length. - If list, a crop from a series has a length sampled from this list randomly. - If 2-tuple, a crop from a series has a length sampled from this interval randomly. resize : int, optional The length that all crops are resized to. Only necessary if the crop size is not fixed. repeats : int, optional The number of times a series is augmented. If greater than one, a series will be augmented so many times independently. This parameter can also be set by operator `*`. Default: 1. prob : float, optional The probability of a series is augmented. It must be in (0.0, 1.0]. If multiple output is expected, this value must be 1.0, so that all output have the same length. This parameter can also be set by operator `@`. Default: 1.0. seed : int, optional The random seed. Default: None. """ def __init__( self, size: Union[int, Tuple[int, int], List[int]], resize: Optional[int] = None, repeats: int = 1, prob: float = 1.0, seed: Optional[int] = _default_seed, ): self.size = size self.resize = resize super().__init__(repeats=repeats, prob=prob, seed=seed) @classmethod def _get_param_name(cls) -> Tuple[str, ...]: return ("size", "resize") @property def size(self) -> Union[int, Tuple[int, int], List[int]]: return self._size @size.setter def size(self, n: Union[int, Tuple[int, int], List[int]]) -> None: SIZE_ERROR_MSG = ( "Parameter `size` must be a positive integer, " "a 2-tuple of positive integers representing an interval, " "or a list of positive integers." ) if not isinstance(n, int): if isinstance(n, list): if len(n) == 0: raise ValueError(SIZE_ERROR_MSG) if not all([isinstance(nn, int) for nn in n]): raise TypeError(SIZE_ERROR_MSG) if not all([nn > 0 for nn in n]): raise ValueError(SIZE_ERROR_MSG) elif isinstance(n, tuple): if len(n) != 2: raise ValueError(SIZE_ERROR_MSG) if (not isinstance(n[0], int)) or (not isinstance(n[1], int)): raise TypeError(SIZE_ERROR_MSG) if n[0] >= n[1]: raise ValueError(SIZE_ERROR_MSG) if (n[0] <= 0) or (n[1] <= 0): raise ValueError(SIZE_ERROR_MSG) else: raise TypeError(SIZE_ERROR_MSG) elif n <= 0: raise ValueError(SIZE_ERROR_MSG) self._size = n @property def resize(self) -> Optional[int]: return self._resize @resize.setter def resize(self, s: Optional[int]) -> None: if (s is not None) and (not isinstance(s, int)): raise TypeError("Parameter `resize` must be a positive integer.") if (s is not None) and (s <= 0): raise ValueError("Parameter `resize` must be a positive integer.") self._resize = s def _augmented_series_length(self, T: int) -> int: if isinstance(self.size, int): size = [self.size] elif isinstance(self.size, tuple): size = list(range(self.size[0], self.size[1])) else: size = self.size if self.resize is not None: resize = self.resize else: if len(size) > 1: raise ValueError( "Parameter `resize` must be specified if parameter `size` " "is not a single value." ) else: resize = size[0] return resize def _augment( self, X: np.ndarray, Y: Optional[np.ndarray] ) -> Tuple[np.ndarray, Optional[np.ndarray]]: """ Overwrite the memory-expensive base method. """ N, T, C = X.shape rand = np.random.RandomState(self.seed) if self.prob != 1.0: # it implies N == 1 and self.repeats == 1 if rand.uniform() > self.prob: if Y is None: return X.copy(), None else: return X.copy(), Y.copy() if isinstance(self.size, int): size = [self.size] elif isinstance(self.size, tuple): size = list(range(self.size[0], self.size[1])) else: size = self.size if self.resize is not None: resize = self.resize else: if len(size) > 1: raise ValueError( "Parameter `resize` must be specified if parameter `size` " "is not a single value." ) else: resize = size[0] X_aug = np.zeros((N * self.repeats, resize, C)) if Y is None: Y_aug = None else: L = Y.shape[2] Y_aug = np.zeros((N * self.repeats, resize, L)) crop_size = rand.choice(size, size=N * self.repeats) resizer = Resize(resize) for s in np.unique(crop_size): n = (crop_size == s).sum() crop_start = rand.choice(T - s + 1, size=n) X_aug[crop_size == s, :, :] = resizer.augment( X[ np.repeat( np.repeat(np.arange(N), self.repeats)[crop_size == s], s, ) .reshape(n, s) .astype(int), ( crop_start.reshape(n, 1) + np.arange(s).reshape(1, s) ).astype(int), :, ].reshape((n, s, C)) ) if (Y is not None) and (Y_aug is not None): Y_aug[crop_size == s, :, :] = resizer.augment( Y[ np.repeat( np.repeat(np.arange(N), self.repeats)[ crop_size == s ], s, ) .reshape(n, s) .astype(int), ( crop_start.reshape(n, 1) + np.arange(s).reshape(1, s) ).astype(int), :, ].reshape((n, s, L)) ) return X_aug, Y_aug def _augment_core( self, X: np.ndarray, Y: Optional[np.ndarray] ) -> Tuple[np.ndarray, Optional[np.ndarray]]: "Method _augment is overwritten, therefore this method is not needed." pass ``` #### File: tsaug/_augmenter/quantize.py ```python from typing import List, Optional, Tuple, Union import numpy as np from .base import _Augmenter, _default_seed class Quantize(_Augmenter): """ Quantize time series to a level set. Values in a time series are rounded to the nearest level in the level set. Parameters ---------- n_levels : int, tuple, or list, optional The number levels in a level set. - If int, all series (all channels if `per_channel` is True) are quantized to a level set of this size. - If list, a series (a channel if `per_channel` is True) is quantized to a level set whose size is sampled from this list randomly. - If 2-tuple, a series (a channel if `per_channel` is True) is quantized to a level set whose size is sampled from this interval randomly. Default: 10. how : str, optional The method that a level set is defined. - If 'uniform', a level set is defined by uniformly discretizing the range of this channel in this series. - If 'quantile', a level set is defined by the quantiles of values in this channel in this series. - If 'kmeans', a level set is defined by k-means clustering of values in this channel in this series. Note that this method could be slow. Default: 'uniform'. per_channel : bool, optional Whether to sample a level set size for each channel in a time series or to use the same size for all channels in a time series. Only used if the level set size is not deterministic. Default: False. repeats : int, optional The number of times a series is augmented. If greater than one, a series will be augmented so many times independently. This parameter can also be set by operator `*`. Default: 1. prob : float, optional The probability of a series is augmented. It must be in (0.0, 1.0]. This parameter can also be set by operator `@`. Default: 1.0. seed : int, optional The random seed. Default: None. """ def __init__( self, n_levels: Union[int, Tuple[int, int], List[int]] = 10, how: str = "uniform", per_channel: bool = False, repeats: int = 1, prob: float = 1.0, seed: Optional[int] = _default_seed, ): self.n_levels = n_levels self.how = how self.per_channel = per_channel super().__init__(repeats=repeats, prob=prob, seed=seed) @classmethod def _get_param_name(cls) -> Tuple[str, ...]: return ("n_levels", "how", "per_channel") @property def n_levels(self) -> Union[int, Tuple[int, int], List[int]]: return self._n_levels @n_levels.setter def n_levels(self, n: Union[int, Tuple[int, int], List[int]]) -> None: N_LEVELS_ERROR_MSG = ( "Parameter `n_levels` must be a positive integer, " "a 2-tuple of positive integers representing an interval, " "or a list of positive integers." ) if not isinstance(n, int): if isinstance(n, list): if len(n) == 0: raise ValueError(N_LEVELS_ERROR_MSG) if not all([isinstance(nn, int) for nn in n]): raise TypeError(N_LEVELS_ERROR_MSG) if not all([nn > 0 for nn in n]): raise ValueError(N_LEVELS_ERROR_MSG) elif isinstance(n, tuple): if len(n) != 2: raise ValueError(N_LEVELS_ERROR_MSG) if (not isinstance(n[0], int)) or (not isinstance(n[1], int)): raise TypeError(N_LEVELS_ERROR_MSG) if n[0] >= n[1]: raise ValueError(N_LEVELS_ERROR_MSG) if (n[0] <= 0) or (n[1] <= 0): raise ValueError(N_LEVELS_ERROR_MSG) else: raise TypeError(N_LEVELS_ERROR_MSG) elif n <= 0: raise ValueError(N_LEVELS_ERROR_MSG) self._n_levels = n @property def how(self) -> str: return self._how @how.setter def how(self, h: str) -> None: HOW_ERROR_MSG = "Parameter `how` must be one of 'uniform', 'quantile', and 'kmeans'." if not isinstance(h, str): raise TypeError(HOW_ERROR_MSG) if h not in ["uniform", "quantile", "kmeans"]: raise ValueError(HOW_ERROR_MSG) self._how = h @property def per_channel(self) -> bool: return self._per_channel @per_channel.setter def per_channel(self, p: bool) -> None: if not isinstance(p, bool): raise TypeError("Paremeter `per_channel` must be boolean.") self._per_channel = p def _augment_core( self, X: np.ndarray, Y: Optional[np.ndarray] ) -> Tuple[np.ndarray, Optional[np.ndarray]]: rand = np.random.RandomState(self.seed) N, T, C = X.shape if isinstance(self.n_levels, int): n_levels = (np.ones((N, 1, C)) * self.n_levels).astype(int) elif isinstance(self.n_levels, list): if self.per_channel: n_levels = rand.choice(self.n_levels, size=(N, 1, C)).astype( int ) else: n_levels = rand.choice(self.n_levels, size=(N, 1, 1)).astype( int ) n_levels = np.repeat(n_levels, C, axis=2) else: if self.per_channel: n_levels = rand.choice( range(self.n_levels[0], self.n_levels[1]), size=(N, 1, C) ).astype(int) else: n_levels = rand.choice( range(self.n_levels[0], self.n_levels[1]), size=(N, 1, 1) ).astype(int) n_levels = np.repeat(n_levels, C, axis=2) if self.how == "uniform": series_min = X.min(axis=1, keepdims=True) series_max = X.max(axis=1, keepdims=True) series_range = series_max - series_min series_range[series_range == 0] = 1 X_aug = (X - series_min) / series_range X_aug = X_aug * n_levels X_aug = X_aug.round() X_aug = X_aug.clip(0, n_levels - 1) X_aug = X_aug + 0.5 X_aug = X_aug / n_levels X_aug = X_aug * series_range + series_min elif self.how == "quantile": n_levels = n_levels.flatten() X_aug = X.copy() X_aug = X_aug.swapaxes(1, 2).reshape((N * C, T)) for i in range(len(X_aug)): bins = np.percentile( X_aug[i, :], np.arange(n_levels[i] + 1) / n_levels[i] / 100 ) bins_center = np.percentile( X_aug[i, :], np.arange(0.5, n_levels[i]) / n_levels[i] / 100, ) X_aug[i, :] = bins_center[ np.digitize(X_aug[i, :], bins).clip(0, n_levels[i] - 1), ] X_aug = X_aug.reshape(N, C, T).swapaxes(1, 2) else: try: from sklearn.cluster import KMeans except ImportError: raise ImportError( "To use kmeans quantization, sklearn>=0.22 must be installed." ) n_levels = n_levels.flatten() X_aug = X.copy() X_aug = X.swapaxes(1, 2).reshape((N * C, T)) model = KMeans(n_clusters=2, n_jobs=-1, random_state=self.seed) for i in range(len(X_aug)): model.n_clusters = n_levels[i] ind = model.fit_predict(X_aug[i].reshape(-1, 1)) X_aug[i, :] = model.cluster_centers_[ind, :].flatten() X_aug = X_aug.reshape(N, C, T).swapaxes(1, 2) if Y is not None: Y_aug = Y.copy() else: Y_aug = None return X_aug, Y_aug ``` #### File: tsaug/_augmenter/reverse.py ```python from typing import Optional, Tuple import numpy as np from .base import _Augmenter, _default_seed class Reverse(_Augmenter): """ Reverse the time line of series. Parameters ---------- repeats : int, optional The number of times a series is augmented. If greater than one, a series will be augmented so many times independently. This parameter can also be set by operator `*`. Default: 1. prob : float, optional The probability of a series is augmented. It must be in (0.0, 1.0]. This parameter can also be set by operator `@`. Default: 1.0. seed : int, optional The random seed. Default: None. """ def __init__( self, repeats: int = 1, prob: float = 1.0, seed: Optional[int] = _default_seed, ): super().__init__(repeats=repeats, prob=prob, seed=seed) @classmethod def _get_param_name(cls) -> Tuple[str, ...]: return tuple() def _augment_core( self, X: np.ndarray, Y: Optional[np.ndarray] ) -> Tuple[np.ndarray, Optional[np.ndarray]]: X_aug = X[:, ::-1, :].copy() # type: np.ndarray if Y is None: Y_aug = None # type: Optional[np.ndarray] else: Y_aug = Y[:, ::-1, :].copy() return X_aug, Y_aug ``` #### File: tsaug/tests/test_pipe.py ```python import numpy as np import pytest from tsaug import ( AddNoise, Convolve, Crop, Drift, Dropout, Pool, Quantize, Resize, Reverse, TimeWarp, ) rand = np.random.RandomState(123) N = 10 T = 100 C = 3 L = 2 X1 = np.random.uniform(size=T) X2 = np.random.uniform(size=(N, T)) X3 = np.random.uniform(size=(N, T, C)) Y1 = np.random.choice(2, size=T).astype(int) Y2 = np.random.choice(2, size=(N, T)).astype(int) Y3 = np.random.choice(2, size=(N, T, L)).astype(int) def test_pipe(): augmenter = ( AddNoise() * 2 @ 0.5 + (Crop(size=int(T / 2)) * 2 + Drift()) + (Dropout() @ 0.5 + Pool()) + Quantize() * 2 ) augmenter.augment(X1) augmenter.augment(X1, Y1) augmenter.augment(X2) augmenter.augment(X2, Y2) augmenter.augment(X2, Y3) augmenter.augment(X3) augmenter.augment(X3, Y2) augmenter.augment(X3, Y3) augmenter.summary() assert len(augmenter) == 6 exchange = Resize(size=int(T / 2)) * 2 @ 0.5 augmenter[3] = exchange assert augmenter[3] is exchange exchange.resize = int(T / 3) exchange.repeats = 3 exchange.prob = 0.4 assert isinstance(augmenter[3], Resize) assert augmenter[3].resize == int(T / 3) assert augmenter[3].repeats == 3 assert augmenter[3].prob == 0.4 ```
{ "source": "jgruber99/Sampford_Sampling", "score": 3 }
#### File: fairseq/modules/bert_layer_norm.py ```python import torch import torch.nn as nn class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """ Construct a layernorm module in the TF style used with BERT (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias ``` #### File: Sampford_Sampling/fairseq/search.py ```python import math import torch import torch.nn.functional as F from fairseq.gumbel import gumbel_like, gumbel_with_maximum import numpy as np from fairseq.cps_dp import sample from fairseq.cps_dp import sampford_sample #changed by the A-Team class Search(object): def __init__(self, tgt_dict): self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.scores_buf = None self.log_ps_buf = None self.log_ps_t_buf = None self.indices_buf = None self.beams_buf = None def _init_buffers(self, t): if self.scores_buf is None: self.scores_buf = t.new() self.log_ps_buf = t.new() self.log_ps_t_buf = t.new() self.indices_buf = torch.LongTensor().to(device=t.device) self.beams_buf = torch.LongTensor().to(device=t.device) def step(self, step, lprobs, scores, beam_size): """Take a single search step. Args: step: the current search step, starting at 0 lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step scores: (bsz x input_beam_size x step) the historical model scores of each hypothesis up to this point Return: A tuple of (scores, indices, beams) where: scores: (bsz x output_beam_size) the scores of the chosen elements; output_beam_size can be larger than input_beam_size, e.g., we may return 2*input_beam_size to account for EOS indices: (bsz x output_beam_size) the indices of the chosen elements beams: (bsz x output_beam_size) the hypothesis ids of the chosen elements, in the range [0, input_beam_size) """ raise NotImplementedError def set_src_lengths(self, src_lengths): self.src_lengths = src_lengths # class CPS(Search): # def __init__(self, tgt_dict, sampling_topk=-1, sampling_temperature=1.0, nucleus_p=1.): # super().__init__(tgt_dict) # self.sampling_topk = sampling_topk # assert self.sampling_topk == -1 # self.sampling_temperature = sampling_temperature # self.log_threshold = np.log(nucleus_p) # threshold for nucleus sampling # def _init_buffers(self, t): # super()._init_buffers(t) # self.remaining_subsetsum_product_probs = None # self.subset_sum_product_probs = None # self.dp = None # self.p = None # self.samples_idx = torch.LongTensor().to(device=t.device) # self.log_inclusion_probs = torch.FloatTensor().to(device=t.device) # def log_nucleus_multinomial_sample(self, logp, k): # """ # This function filters elements that have more than a threshold probability mass # @param logp: log-probability distribution (unnormalized is ok) over discrete random variable # @param k: final sample size # @return: nucleus samples indices and their log probabilities # """ # assert self.log_threshold <= 0 # def log_softmax(x): # c = x.max() # logsumexp = np.log(np.exp(x - c).sum()) # return x - c - logsumexp # logp = log_softmax(logp) # sorted_inds = np.argsort(-logp) # sorted_logits = logp[sorted_inds] # cumulative_lprobs = np.logaddexp.accumulate(sorted_logits) # sorted_indices_to_pick = cumulative_lprobs <= self.log_threshold # inds = sorted_inds[sorted_indices_to_pick] # if len(inds) < k: # we don't want to end up having less than k samples # inds = sorted_inds[0:k] # return inds, logp[inds] # def cps_sample(self, logp, k, bsz, maxlen): # """ # This function iterates through the batches and use cps sampling function in Cython to generate samples # @param logp: log probabilities of candidates # @param k: sample size # @param bsz: batch size # @param maxlen: maximum number of hypothesis which should be vocab size in NMT models # @return: inclusion probabilities for all the candidates and samples indices # """ # n = logp.size()[1] # torch.zeros([bsz, k], dtype=torch.int64, out=self.samples_idx) # torch.zeros([bsz, n], out=self.log_inclusion_probs) # logp_np = logp.detach().cpu().numpy() # logp_np = logp_np.astype(np.float64) # samples = [] # incs = [] # for j in range(bsz): # selected_inds, logits = self.log_nucleus_multinomial_sample(logp_np[j, :], k) # sample_idx, sample_inc = sample(logits, selected_inds, k) #Returns k words sampled at a given timestep # extended_inc = np.zeros(maxlen) # extended_inc[sample_idx] = sample_inc # samples.append(sample_idx) # incs.append(extended_inc) # sample_idx_np = np.asarray(samples) # log_inclusion_probs_np = np.asarray(incs) # self.samples_idx = torch.from_numpy(sample_idx_np).to(device=logp.device) # self.log_inclusion_probs = torch.from_numpy(log_inclusion_probs_np).to(device=logp.device) # _, indices = torch.sort(torch.gather(logp, -1, self.samples_idx), descending=True) # return self.log_inclusion_probs, torch.gather(self.samples_idx, -1, indices) # def step(self, step, lprobs, log_ps_t_copy, log_inc_probs, log_ps_t): # bsz, beam_size, vocab_size = lprobs.size() # self._init_buffers(lprobs) # lprobs_t = lprobs.clone() # if self.sampling_temperature != 1.0: # lprobs_t = F.log_softmax(lprobs / self.sampling_temperature, -1) # if step == 0: # # at the first step all hypotheses are equally likely, so use # # only the first beam # lprobs_t = lprobs_t[:, ::beam_size, :].contiguous() # else: # # Gather cumulative # lprobs_t.add_(log_ps_t[:, :, step - 1].unsqueeze(-1)) # maxlen = lprobs_t.view(bsz, -1).size(1) # cand_scores, self.indices_buf = self.cps_sample(lprobs_t.view(bsz, -1), # min(beam_size * 2, maxlen - 1), # bsz, maxlen) # cand_scores = cand_scores.to(dtype=torch.float32) # scores are inclusion probs # if step != 0: # cand_scores = cand_scores.view(bsz, beam_size, -1) # cand_scores.add_(log_inc_probs[:, :, step - 1].unsqueeze(-1)) # torch.gather( # lprobs_t.view(bsz, -1), -1, self.indices_buf, out=self.log_ps_t_buf # ) # torch.gather( # cand_scores.view(bsz, -1), -1, self.indices_buf, out=self.scores_buf # ) # torch.floor_divide(self.indices_buf, vocab_size, out=self.beams_buf) # self.indices_buf.fmod_(vocab_size) # return self.log_ps_t_buf, self.scores_buf, self.log_ps_t_buf, self.indices_buf, self.beams_buf class CPS(Search): def __init__(self, tgt_dict, sampling_topk=-1, sampling_temperature=1.0, nucleus_p=1.): super().__init__(tgt_dict) self.sampling_topk = sampling_topk assert self.sampling_topk == -1 self.sampling_temperature = sampling_temperature self.log_threshold = np.log(nucleus_p) # threshold for nucleus sampling def _init_buffers(self, t): super()._init_buffers(t) self.remaining_subsetsum_product_probs = None self.subset_sum_product_probs = None self.dp = None self.p = None self.samples_idx = torch.LongTensor().to(device=t.device) self.log_inclusion_probs = torch.FloatTensor().to(device=t.device) def log_nucleus_multinomial_sample(self, logp, k): """ This function filters elements that have more than a threshold probability mass @param logp: log-probability distribution (unnormalized is ok) over discrete random variable @param k: final sample size @return: nucleus samples indices and their log probabilities """ assert self.log_threshold <= 0 def log_softmax(x): c = x.max() logsumexp = np.log(np.exp(x - c).sum()) return x - c - logsumexp logp = log_softmax(logp) sorted_inds = np.argsort(-logp) sorted_logits = logp[sorted_inds] cumulative_lprobs = np.logaddexp.accumulate(sorted_logits) sorted_indices_to_pick = cumulative_lprobs <= self.log_threshold inds = sorted_inds[sorted_indices_to_pick] if len(inds) < k: # we don't want to end up having less than k samples inds = sorted_inds[0:k] return inds, logp[inds] def cps_sample(self, logp, k, bsz, maxlen): """ This function iterates through the batches and use cps sampling function in Cython to generate samples @param logp: log probabilities of candidates @param k: sample size @param bsz: batch size @param maxlen: maximum number of hypothesis which should be vocab size in NMT models @return: inclusion probabilities for all the candidates and samples indices """ n = logp.size()[1] torch.zeros([bsz, k], dtype=torch.int64, out=self.samples_idx) torch.zeros([bsz, n], out=self.log_inclusion_probs) logp_np = logp.detach().cpu().numpy() logp_np = logp_np.astype(np.float64) samples = [] incs = [] for j in range(bsz): selected_inds, logits = self.log_nucleus_multinomial_sample(logp_np[j, :], k) sample_idx, sample_inc = sampford_sample(logits, selected_inds, k) #Returns k words sampled at a given timestep extended_inc = np.zeros(maxlen) extended_inc[sample_idx] = sample_inc samples.append(sample_idx) incs.append(extended_inc) sample_idx_np = np.asarray(samples) log_inclusion_probs_np = np.asarray(incs) self.samples_idx = torch.from_numpy(sample_idx_np).to(device=logp.device) self.log_inclusion_probs = torch.from_numpy(log_inclusion_probs_np).to(device=logp.device) _, indices = torch.sort(torch.gather(logp, -1, self.samples_idx), descending=True) return self.log_inclusion_probs, torch.gather(self.samples_idx, -1, indices) def step(self, step, lprobs, log_ps_t_copy, log_inc_probs, log_ps_t): bsz, beam_size, vocab_size = lprobs.size() self._init_buffers(lprobs) lprobs_t = lprobs.clone() if self.sampling_temperature != 1.0: lprobs_t = F.log_softmax(lprobs / self.sampling_temperature, -1) if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs_t = lprobs_t[:, ::beam_size, :].contiguous() else: # Gather cumulative lprobs_t.add_(log_ps_t[:, :, step - 1].unsqueeze(-1)) maxlen = lprobs_t.view(bsz, -1).size(1) cand_scores, self.indices_buf = self.cps_sample(lprobs_t.view(bsz, -1), min(beam_size * 2, maxlen - 1), bsz, maxlen) cand_scores = cand_scores.to(dtype=torch.float32) # scores are inclusion probs if step != 0: cand_scores = cand_scores.view(bsz, beam_size, -1) cand_scores.add_(log_inc_probs[:, :, step - 1].unsqueeze(-1)) torch.gather( lprobs_t.view(bsz, -1), -1, self.indices_buf, out=self.log_ps_t_buf ) torch.gather( cand_scores.view(bsz, -1), -1, self.indices_buf, out=self.scores_buf ) torch.floor_divide(self.indices_buf, vocab_size, out=self.beams_buf) self.indices_buf.fmod_(vocab_size) return self.log_ps_t_buf, self.scores_buf, self.log_ps_t_buf, self.indices_buf, self.beams_buf class BeamSearch(Search): def __init__(self, tgt_dict, naive_stochastic=False, stochastic=False, sampling_topk=-1, sampling_temperature=1.0): super().__init__(tgt_dict) self.stochastic = stochastic self.naive_stochastic = naive_stochastic self.sampling_topk = sampling_topk assert self.sampling_topk == -1, "Sampling top-k for beam search not yet supported" self.sampling_temperature = sampling_temperature def step(self, step, lprobs, scores, log_ps, log_ps_t): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() lprobs_t = lprobs.clone() if self.sampling_temperature != 1.0: lprobs_t = F.log_softmax(lprobs / self.sampling_temperature, -1) if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs_t = lprobs_t[:, ::beam_size, :].contiguous() lprobs = lprobs[:, ::beam_size, :].contiguous() if self.stochastic or self.naive_stochastic: cand_scores = gumbel_like(lprobs_t) + lprobs_t else: cand_scores = lprobs_t else: # make probs contain cumulative scores for each hypothesis lprobs_t.add_(log_ps_t[:, :, step - 1].unsqueeze(-1)) lprobs.add_(log_ps[:, :, step - 1].unsqueeze(-1)) if self.stochastic: assert self.sampling_topk == -1 cand_scores, _ = gumbel_with_maximum(lprobs_t, scores[:, :, step - 1], -1) else: cand_scores = lprobs_t torch.topk( cand_scores.view(bsz, -1), k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, cand_scores.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), out=(self.scores_buf, self.indices_buf), ) # Gather cumulative torch.gather( lprobs.view(bsz, -1), -1, self.indices_buf, out=self.log_ps_buf ) if self.stochastic or self.naive_stochastic: torch.gather( lprobs_t.view(bsz, -1), -1, self.indices_buf, out=self.log_ps_t_buf ) else: self.log_ps_t_buf = self.scores_buf torch.floor_divide(self.indices_buf, vocab_size, out=self.beams_buf) self.indices_buf.fmod_(vocab_size) return self.scores_buf, self.log_ps_buf, self.log_ps_t_buf, self.indices_buf, self.beams_buf class LengthConstrainedBeamSearch(Search): def __init__(self, tgt_dict, min_len_a, min_len_b, max_len_a, max_len_b): super().__init__(tgt_dict) self.min_len_a = min_len_a self.min_len_b = min_len_b self.max_len_a = max_len_a self.max_len_b = max_len_b self.beam = BeamSearch(tgt_dict) def step(self, step, lprobs, scores): min_lens = self.min_len_a * self.src_lengths + self.min_len_b max_lens = self.max_len_a * self.src_lengths + self.max_len_b lprobs[step < min_lens, :, self.eos] = -math.inf lprobs[step == max_lens, :, self.eos] = 0 lprobs[step > max_lens, :, self.eos] = -math.inf return self.beam.step(step, lprobs, scores) class DiverseBeamSearch(Search): """Diverse Beam Search. See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models" for details. We only implement the Hamming Diversity penalty here, which performed best in the original paper. """ def __init__(self, tgt_dict, num_groups, diversity_strength): super().__init__(tgt_dict) self.num_groups = num_groups self.diversity_strength = -diversity_strength self.diversity_buf = None self.beam = BeamSearch(tgt_dict) def step(self, step, lprobs, scores, log_ps, log_ps_t): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() if beam_size % self.num_groups != 0: raise ValueError( 'DiverseBeamSearch requires --beam to be divisible by the number of groups' ) # initialize diversity penalty if self.diversity_buf is None: self.diversity_buf = lprobs.new() torch.zeros(lprobs[:, 0, :].size(), out=self.diversity_buf) scores_G, indices_G, beams_G = [], [], [] for g in range(self.num_groups): lprobs_g = lprobs[:, g::self.num_groups, :] scores_g = scores[:, g::self.num_groups, :] if step > 0 else None # apply diversity penalty if g > 0: lprobs_g = torch.add(lprobs_g, self.diversity_strength, self.diversity_buf.unsqueeze(1)) else: lprobs_g = lprobs_g.contiguous() scores_buf, _, _, indices_buf, beams_buf = self.beam.step(step, lprobs_g, scores_g, scores_g, scores_g) beams_buf.mul_(self.num_groups).add_(g) scores_G.append(scores_buf.clone()) indices_G.append(indices_buf.clone()) beams_G.append(beams_buf.clone()) # update diversity penalty self.diversity_buf.scatter_add_( 1, indices_buf, self.diversity_buf.new_ones(indices_buf.size()) ) # interleave results from different groups self.scores_buf = torch.stack(scores_G, dim=2, out=self.scores_buf).view(bsz, -1) self.indices_buf = torch.stack(indices_G, dim=2, out=self.indices_buf).view(bsz, -1) self.beams_buf = torch.stack(beams_G, dim=2, out=self.beams_buf).view(bsz, -1) return self.scores_buf, self.scores_buf, self.scores_buf, self.indices_buf, self.beams_buf class Sampling(Search): def __init__(self, tgt_dict, sampling_topk=-1, sampling_temperature=1.): super().__init__(tgt_dict) self.sampling_topk = sampling_topk self.sampling_temperature = sampling_temperature def step(self, step, lprobs, scores, log_ps, log_ps_t): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() # we exclude the first two vocab items, one of which is pad assert self.pad <= 1, 'sampling assumes the first two symbols can be ignored' lprobs_nopad = lprobs[:, :, 2:] # only sample from top-k candidates if self.sampling_topk > 0: lprobs_nopad, topk_indices = lprobs_nopad.topk(self.sampling_topk) # sampling temperature if self.sampling_temperature != 1.: lprobs_nopad_t = F.log_softmax(lprobs_nopad / self.sampling_temperature, -1) else: lprobs_nopad_t = lprobs_nopad # sample probs_nopad_t = lprobs_nopad_t.exp() if step == 0: self.indices_buf = torch.multinomial( probs_nopad_t.view(bsz, -1), beam_size, replacement=True, out=self.indices_buf, ).view(bsz, beam_size) else: self.indices_buf = torch.multinomial( probs_nopad_t.view(bsz * beam_size, -1), 1, replacement=True, out=self.indices_buf, ).view(bsz, beam_size) if step == 0: # expand to beam size lprobs_nopad = lprobs_nopad.expand(bsz, beam_size, -1) lprobs_nopad_t = lprobs_nopad_t.expand(bsz, beam_size, -1) # gather probs torch.gather( lprobs_nopad, dim=2, index=self.indices_buf.unsqueeze(-1), out=self.log_ps_buf, ) torch.gather( lprobs_nopad_t, dim=2, index=self.indices_buf.unsqueeze(-1), out=self.log_ps_t_buf, ) self.log_ps_buf = self.log_ps_buf.view(bsz, -1) self.log_ps_t_buf = self.log_ps_t_buf.view(bsz, -1) # remap indices if using top-k sampling if self.sampling_topk > 0: self.indices_buf = torch.gather( topk_indices.expand(bsz, beam_size, -1), dim=2, index=self.indices_buf.unsqueeze(-1), ).squeeze(2) # remap indices since we excluded the first two vocab items self.indices_buf.add_(2) if step == 0: self.beams_buf = self.indices_buf.new_zeros(bsz, beam_size) else: self.beams_buf = torch.arange(0, beam_size, out=self.beams_buf).repeat(bsz, 1) # make log_ps cumulative self.log_ps_buf.add_( torch.gather( log_ps[:, :, step - 1], dim=1, index=self.beams_buf, ) ) # make log_ps_t cumulative self.log_ps_t_buf.add_( torch.gather( log_ps_t[:, :, step - 1], dim=1, index=self.beams_buf, ) ) # Scores buf is not used for sampling self.scores_buf = self.log_ps_buf.clone() return self.scores_buf, self.log_ps_buf, self.log_ps_t_buf, self.indices_buf, self.beams_buf ```
{ "source": "jgruberf5/beacon-airflow", "score": 2 }
#### File: beacon_export_plugin/operators/beacon_metric_exporter_operator.py ```python import time import datetime import json import os import re import subprocess from airflow.models.baseoperator import BaseOperator from airflow.utils.decorators import apply_defaults from airflow.exceptions import AirflowException from beacon_export_plugin.hooks.beacon_hook import BeaconHook from requests.exceptions import HTTPError from line_protocol_parser import parse_line # schema test7 SCHEMA_SKEL = [ {'name': 'ts', 'type': 'TIMESTAMP', 'mode': 'REQUIRED'}, {'name': 'account_id', 'type': 'STRING', 'mode': 'REQUIRED'}, {'name': 'source_id', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'evt', 'type': 'RECORD', 'mode': 'NULLABLE', 'fields': [ {'name': 'version', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'sourceName', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'sourceDescription', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'fields', 'type': 'RECORD', 'mode': 'NULLABLE', 'fields': []}, {'name': 'tags', 'type': 'RECORD', 'mode': 'NULLABLE', 'fields': []}, {'name': 'timestamp', 'type': 'TIMESTAMP', 'mode': 'NULLABLE'} ] } ] WRITE_FILE_DELAY_SECS = 1 class F5BeaconMetricQueryExporterOperator(BaseOperator): @apply_defaults def __init__(self, # pylint: disable=too-many-arguments beacon_conn_id: str = 'f5_beacon_default', destination_dir: str = '/home/airflow/gcs/data', start_timestamp: int = 0, stop_timestamp: int = 0, metric_file: str = None, schema_file: str = None, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.beacon_conn_id = beacon_conn_id self.destination_dir = destination_dir self.start_timestamp = start_timestamp self.stop_timestamp = stop_timestamp self.beacon_hook = BeaconHook(beacon_conn_id) self.schema = SCHEMA_SKEL self.mfn = metric_file self.sfn = schema_file self.tags = {} self.fields = {} def execute(self, context): if not self.mfn: self.mfn = self.get_metrics_fn(context['dag_run'].run_id) if not self.sfn: self.sfn = self.get_schema_fn(context['dag_run'].run_id) conn = self.beacon_hook.get_conn() account_id = 'primary' if 'account_id' in conn.extra_dejson: account_id = conn.extra_dejson['account_id'] self.log.info('Executing extract metrics from f5 Beacon account %s between %s:%s into: %s', account_id, self.start_timestamp, self.stop_timestamp, self.destination_dir) known_measurements = self.beacon_hook.get_measurements() self.log.info('found %s measurement for f5 Beacon account %s', known_measurements, account_id) if os.path.exists(self.mfn): os.unlink(self.mfn) for measurement in known_measurements: self.get_measurement_records( measurement, context['dag_run'].run_id) self.write_schema(context['dag_run'].run_id) def get_metrics_fn(self, run_id): dest_dir = os.path.join(self.destination_dir, run_id) os.makedirs(dest_dir, exist_ok=True) return os.path.join(dest_dir, 'line_metrics.json') def get_schema_fn(self, run_id): dest_dir = os.path.join(self.destination_dir, run_id) os.makedirs(dest_dir, exist_ok=True) return os.path.join(dest_dir, 'line_schema.json') def get_field(self, field_name): field_name = self.format_col_name(field_name) key = field_name.lower() if key in self.fields: return self.fields[key] return None def get_tag(self, tag_name): tag_name = self.format_col_name(tag_name) key = tag_name.lower() if key in self.tags: return self.tags[key] return None def get_measurement_records(self, account_id, measurement, run_id): batch_size = 9000 have_records = True start_timestamp = int(self.start_timestamp) stop_timestamp = int(self.stop_timestamp) + 1 offset_seconds = 0 self.load_schema() while have_records: if offset_seconds > 0: start_timestamp = offset_seconds query = "SELECT * FROM \"%s\" WHERE time > %s000000000 and time < %s000000000 ORDER BY time LIMIT %s" % ( measurement, start_timestamp, stop_timestamp, batch_size) self.log.info( 'submitting query: %s to f5 Beacon metric API.', query) try: line_data = self.beacon_hook.query_metric( query, output_line=True) records = line_data.split("\n") number_of_records = len(records) if number_of_records: self.log.info('writing %d records from f5 Beacon metrics API to %s', number_of_records, self.destination_dir) offset_seconds = self.output_to_file( records, run_id, account_id) if number_of_records < batch_size: have_records = False except HTTPError as he: self.log.error(he) if batch_size > 1: batch_size = int(batch_size*0.9) else: raise AirflowException( 'could not export f5 Beacon metric for measurement %s after reducing record limit to 1', measurement) self.save_schema() def load_schema(self): if os.path.exists(self.sfn): with open(self.sfn, 'r') as sf: try: self.schema = json.load(sf) if not self.schema: self.schema = SCHEMA_SKEL except json.JSONDecodeError: self.schema = SCHEMA_SKEL self.populate_cols_from_schema() def populate_cols_from_schema(self): # reduce tags and fields through dict for col in self.schema: if col['name'] == 'evt': for event_cols in col['fields']: if event_cols['name'] == 'fields': for field_cols in event_cols['fields']: key = field_cols['name'].lower() self.fields[key] = field_cols['name'] if event_cols['name'] == 'tags': for tag_cols in event_cols['fields']: key = tag_cols['name'].lower() self.tags[key] = tag_cols['name'] def save_schema(self): with open(self.sfn, 'w+') as sf: json.dump(self.schema, sf, indent=4, separators=(',', ': ')) time.sleep(WRITE_FILE_DELAY_SECS) def format_col_name(self, existing_tag): # converting to Camel case or all lower case components = existing_tag.split('_') converted = components[0] + ''.join(x.title() for x in components[1:]) components = converted.split('-') converted = components[0] + ''.join(x.title() for x in components[1:]) if converted.isupper(): converted = converted.lower() if converted[0].isalpha() and converted[0].isupper(): converted = converted[0].lower() + converted[1:] if not (converted[0].isalpha() or converted[0] == '_'): converted = "beacon%s" % converted return converted def add_field_to_schema(self, field_name, field_type): field_name = self.format_col_name(field_name) for col in self.schema: if col['name'] == 'evt': for c in col['fields']: if c['name'] == 'fields': c['fields'].append( { 'name': field_name, 'type': field_type, 'mode': 'NULLABLE' } ) key = field_name.lower() self.fields[key] = field_name return field_name def add_tag_to_schema(self, tag_name): tag_name = self.format_col_name(tag_name) for col in self.schema: if col['name'] == 'evt': for c in col['fields']: if c['name'] == 'tags': c['fields'].append( { 'name': tag_name, 'type': 'STRING', 'mode': 'NULLABLE' } ) key = tag_name.lower() self.tags[key] = tag_name return tag_name def output_to_file(self, lines, run_id, account_id): df = open(self.mfn, 'a+') largest_timestamp = 0 for line in lines: if line: data = parse_line(line) # Transform ms_timestamp = float(int(data['time']) / 1000000000) fields_dict = {} for fn in data['fields']: val = data['fields'][fn] tfn = self.get_field(fn) if not tfn: if type(val) == bool: tfn = self.add_field_to_schema(fn, 'BOOL') elif type(val) == int: tfn = self.add_field_to_schema(fn, 'INT64') elif type(val) == float: tfn = self.add_field_to_schema(fn, 'FLOAT64') else: tfn = self.add_field_to_schema(fn, 'STRING') fields_dict[tfn] = val tags_dict = {} for tn in data['tags']: ttn = self.get_tag(tn) if not ttn: ttn = self.add_tag_to_schema(tn) tags_dict[ttn] = str(data['tags'][tn]) transformed_data = { 'ts': ms_timestamp, 'account_id': "urn:f5_cs::acccount:%s" % account_id, 'source_id': None, 'evt': { 'version': '1.0', 'sourceName': data['measurement'], 'sourceDescription': "data imported from beacon for account %s" % account_id, 'fields': fields_dict, 'tags': tags_dict, 'timestamp': ms_timestamp } } df.write("%s\n" % json.dumps(transformed_data)) if ms_timestamp > largest_timestamp: largest_timestamp = int(ms_timestamp) time.sleep(WRITE_FILE_DELAY_SECS) df.close() return largest_timestamp class F5BeaconMetricQueryDailyExporterOperator(F5BeaconMetricQueryExporterOperator): @apply_defaults def __init__(self, # pylint: disable=too-many-arguments beacon_conn_id: str = 'f5_beacon_default', destination_dir="/home/airflow/gcs/data", *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.beacon_conn_id = beacon_conn_id self.destination_dir = destination_dir self.beacon_hook = BeaconHook(self.beacon_conn_id) self.date = None def execute(self, context): if not self.mfn: self.mfn = self.get_metrics_fn(context['dag_run'].run_id) if not self.sfn: self.sfn = self.get_schema_fn(context['dag_run'].run_id) self.date = str(context.get("execution_date").date()) conn = self.beacon_hook.get_conn() account_id = 'primary' if 'account_id' in conn.extra_dejson: account_id = conn.extra_dejson['account_id'] self.log.info('Executing extract metrics from f5 Beacon account %s on %s into: %s', account_id, self.date, self.destination_dir) known_measurements = self.beacon_hook.get_measurements() self.log.info('found %s measurement for f5 Beacon account %s', known_measurements, account_id) self.start_timestamp = start_timestamp = int(time.mktime( datetime.datetime.strptime(self.date, '%Y-%m-%d').timetuple())) self.stop_timestamp = start_timestamp + 86400 if os.path.exists(self.mfn): os.unlink(self.mfn) for measurement in known_measurements: self.get_measurement_records( account_id, measurement, context['dag_run'].run_id) class F5BeaconMetricQueryHourlyExporterOperator(F5BeaconMetricQueryExporterOperator): @apply_defaults def __init__(self, # pylint: disable=too-many-arguments beacon_conn_id: str = 'f5_beacon_default', destination_dir="/home/airflow/gcs/data", *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.beacon_conn_id = beacon_conn_id self.destination_dir = destination_dir self.beacon_hook = BeaconHook(self.beacon_conn_id) def execute(self, context): if not self.mfn: self.mfn = self.get_metrics_fn(context['dag_run'].run_id) if not self.sfn: self.sfn = self.get_schema_fn(context['dag_run'].run_id) conn = self.beacon_hook.get_conn() account_id = 'primary' if 'account_id' in conn.extra_dejson: account_id = conn.extra_dejson['account_id'] self.stop_timestamp = int(time.mktime( context.get("execution_date").timetuple())) self.start_timestamp = self.stop_timestamp - 3600 self.log.info('Executing extract metrics from f5 Beacon account %s for %s - %s into: %s', account_id, self.start_timestamp, self.stop_timestamp, self.destination_dir) known_measurements = self.beacon_hook.get_measurements() self.log.info('found %s measurement for f5 Beacon account %s', known_measurements, account_id) if os.path.exists(self.mfn): os.unlink(self.mfn) for measurement in known_measurements: self.get_measurement_records( account_id, measurement, context['dag_run'].run_id) ```
{ "source": "jgruberf5/bigiq-cloudin", "score": 2 }
#### File: site-packages/cloudinit/bigiq_onboard_utils.py ```python import json import logging import os import importlib import subprocess import urlparse import socket import time import requests import yaml import shutil import StringIO from cloudinit import config_modules from errno import ENOENT, ENOEXEC LOG_FILE = '/var/log/f5-cloudinit.log' OUT_DIR = '/var/lib/cloud' MGMT_DHCP_TIMEOUT = 600 MCPD_TIMEOUT = 600 PROCESS_KILL_DELAY = 2 BIGSTART_DELAY = 5 ICONTROL_TIMEOUT = 600 URL_TIMEOUT = 600 BOOT_CLOUDINIT_DELAY = 5 MGMT_DHCP_LEASE_FILE = '/var/lib/dhclient/dhclient.leases' ANSIBLE_VAR_FILE = '/var/lib/cloud/ansible/onboard/onboard_vars.yml' DHCP_LEASE_DIR = OUT_DIR + '/dhclient' SSH_KEY_FILE = '/root/.ssh/authorized_keys' DEFAULT_DNS_SERVERS = ['8.8.8.8', '8.8.4.4'] DEFAULT_NTP_SERVERS = ['0.pool.ntp.org', '1.pool.ntp.org'] DEFAULT_TIMEZONE = 'UTC' DEFAULT_DISCOVERY_INTERFACE = '1.1' REMOVE_DHCP_LEASE_FILES = False HOSTNAME_SET = False NETWORKS_CONFIGURED = False FIRST_BOOT_FILE = '/var/run/cloudinit-complete' # because TMOS keeps moving CLI commands SYSCMDS = { 'ansible-playbook': '/usr/local/bin/ansible-playbook', 'awk': '/bin/awk', 'bigstart': '/usr/bin/bigstart', 'blkid': '/sbin/blkid', 'cat': '/bin/cat', 'chpasswd': '/usr/sbin/chpasswd', 'curl': '/usr/bin/curl', 'cut': '/bin/cut', 'dhclient': '/sbin/dhclient', 'dmidecode': '/usr/sbin/dmidecode', 'echo': '/bin/echo', 'egrep': '/bin/egrep', 'grep': '/bin/grep', 'lsblk': '/bin/lsblk', 'mount': '/bin/mount', 'nohup': '/usr/bin/nohup', 'ip': '/sbin/ip', 'pkill': '/usr/bin/pkill', 'ps': '/bin/ps', 'route': '/sbin/route', 'sleep': '/bin/sleep', 'tmm': '/usr/bin/tmm', 'tmsh': '/usr/bin/tmsh', 'tr': '/usr/bin/tr', 'umount': '/bin/umount', 'usermod': '/usr/sbin/usermod', 'wc': '/usr/bin/wc' } MGMT_DEV_NAME = 'eth0' def touch_file(filepath, times=None): """Touch file if needed""" if not os.path.isfile(filepath): if not os.path.exists(os.path.dirname(filepath)): os.makedirs(os.path.dirname(filepath)) with open(filepath, 'a'): os.utime(filepath, times) touch_file(LOG_FILE) LOG = logging.getLogger(__name__) LOG.setLevel(logging.DEBUG) FORMATTER = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') LOGFILE = logging.FileHandler(LOG_FILE) LOGFILE.setLevel(logging.DEBUG) LOGFILE.setFormatter(FORMATTER) LOG.addHandler(LOGFILE) def inject_public_ssh_keys(keys): """Injects discovered and metadata supplied SSH keys into the root account""" while not os.path.exists(SSH_KEY_FILE): LOG.error( "root SSH key authorized_keys file missing.. retrying") time.sleep(BOOT_CLOUDINIT_DELAY) with open(SSH_KEY_FILE, 'a+') as keyfile: for k in keys: LOG.debug("writing SSH authorized key to %s", SSH_KEY_FILE) keyfile.write(k + '\n') def is_v6(address): """Determines if the supplied address is a valid IPv6 address""" try: socket.inet_pton(socket.AF_INET6, address) return True except socket.error: return False def is_v4(address): """Determines if the supplied address is a valid IPv4 address""" try: socket.inet_pton(socket.AF_INET, address) return True except socket.error: return False def is_mgmt_ip(): """Test if the mgmt interface has an IP address assigned""" fnull = open(os.devnull, 'w') mgmt_ip = subprocess.Popen( "%s addr show %s | %s '^\\s*inet '| %s -v 169.254 | %s -l" % (SYSCMDS['ip'], MGMT_DEV_NAME, SYSCMDS['grep'], SYSCMDS['grep'], SYSCMDS['wc']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if int(mgmt_ip) == 1: return True mgmt_ip = subprocess.Popen( "%s addr show %s | %s '^\\s*inet6 '| %s -v fe80 | %s -l" % (SYSCMDS['ip'], MGMT_DEV_NAME, SYSCMDS['grep'], SYSCMDS['grep'], SYSCMDS['wc']), stdout=subprocess.PIPE, shell=True).communicate()[0].replace('\n', '') if int(mgmt_ip) == 1: return True return False def get_mgmt_cidr(): """Return the managment interface IP address in CIDR notation from tmsh""" fnull = open(os.devnull, 'w') mgmt_cidr = subprocess.Popen( "%s list sys management-ip one-line | %s -d' ' -f3" % (SYSCMDS['tmsh'], SYSCMDS['cut']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') return mgmt_cidr def is_mgmt_default_gateway(): """Test if the mgmt subnet has a default gateway""" fnull = open(os.devnull, 'w') mgmt_gw = subprocess.Popen("%s -n | %s '^0.0.0.0'| %s %s | %s -l" % (SYSCMDS['route'], SYSCMDS['grep'], SYSCMDS['grep'], MGMT_DEV_NAME, SYSCMDS['wc']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if int(mgmt_gw) == 1: return True return False def get_tmos_version(): """Get the TMOS version string""" fnull = open(os.devnull, 'w') version = subprocess.Popen( "%s /VERSION | %s -i sequence | %s -d':' -f2 | %s '[A-Z]' '[a-z]' | %s -d '[:space:]'" % (SYSCMDS['cat'], SYSCMDS['grep'], SYSCMDS['cut'], SYSCMDS['tr'], SYSCMDS['tr']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') return version def get_tmos_product(): """Get the TMOS product string""" fnull = open(os.devnull, 'w') product = subprocess.Popen( "%s show sys version | %s Product | %s '{print $NF}'" % (SYSCMDS['tmsh'], SYSCMDS['grep'], SYSCMDS['awk']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') return product def get_dmi_uuid(): """Get the system UUID from DMI""" fnull = open(os.devnull, 'w') uuid = subprocess.Popen( "%s | %s -i UUID | %s -d':' -f2 | %s '[A-Z]' '[a-z]' | %s -d '[:space:]'" % (SYSCMDS['dmidecode'], SYSCMDS['grep'], SYSCMDS['cut'], SYSCMDS['tr'], SYSCMDS['tr']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') return uuid def get_hostname(): """Get the system hostname""" return socket.gethostname() def set_password(username=None, password=None): """Set a local user password""" LOG.info('setting password for user: %s' % username) fnull = open(os.devnull, 'w') if username: if not password: disable_user(username) else: stdin = subprocess.PIPE stdout = subprocess.PIPE stderr = subprocess.PIPE cmd = subprocess.Popen(SYSCMDS['chpasswd'], stdin=stdin, stdout=stdout, stderr=stderr) cmd.communicate("%s:%s" % (username, password)) def set_password_tmsh(username=None, password=None): """Set a local user password via tmsh""" LOG.info('setting password via tmsh for user: %s' % username) wait_for_mcpd() fnull = open(os.devnull, 'w') cmd = "%s modify auth user %s password '%s'" % (SYSCMDS['tmsh'], username, password) setpassword = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=fnull, shell=True, ).communicate()[0].replace('\n', '') def disable_user(username=None): """Disable local user""" LOG.info('disabling user: %s' % username) fnull = open(os.devnull, 'w') if username: subprocess.call([SYSCMDS['usermod'], '-L', username], stdout=fnull, stderr=fnull) def enable_user(username=None): """Disable local user""" LOG.info('enabling user: %s' % username) fnull = open(os.devnull, 'w') if username: subprocess.call([SYSCMDS['usermod'], '-U', username], stdout=fnull, stderr=fnull) def run_cmd(cmd): """Run a CLI command and return its output""" fnull = open(os.devnull, 'w') cmd_stdout = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace( '\n', '') LOG.debug('running command %s produced %s', cmd, cmd_stdout) return cmd_stdout def wait_for_mgmt_dhcp(timeout=None): """Blocks until the mgmt DHCP lease file is present""" if not timeout: timeout = MGMT_DHCP_TIMEOUT end_time = time.time() + timeout while (end_time - time.time()) > 0: if os.path.isfile(MGMT_DHCP_LEASE_FILE ) and os.path.getsize(MGMT_DHCP_LEASE_FILE) > 0: return True LOG.info('waiting for mgmt DHCP request to complete') time.sleep(1) return False def is_mcpd(): """Determines if the TMOS master control process is running""" fnull = open(os.devnull, 'w') running = subprocess.Popen( "%s -a show sys mcp-state field-fmt | %s running | %s -l" % (SYSCMDS['tmsh'], SYSCMDS['grep'], SYSCMDS['wc']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if int(running) == 1: return True return False def wait_for_mcpd(timeout=None): """Blocks until the TMOS master control process is running""" if not timeout: timeout = MCPD_TIMEOUT end_time = time.time() + timeout while (end_time - time.time()) > 0: if is_mcpd(): return True time.sleep(1) LOG.error('mcpd did not reach tunning state in %s seconds', timeout) return False def is_tmm(): """Determines if the TMOS dataplane microkernels are running""" tmm_running = int( subprocess.Popen("%s -ef|%s %s|%s -v grep|%s -l| %s -d ';\n'" % (SYSCMDS['ps'], SYSCMDS['grep'], SYSCMDS['tmm'], SYSCMDS['grep'], SYSCMDS['wc'], SYSCMDS['tr']), stdout=subprocess.PIPE, shell=True).communicate()[0]) if tmm_running == 1: return True return False def force_mgmt_mtu(mtu): """Force mgmt interface MTU""" LOG.info('Forcing MGMT MTU to %s' % mtu) fnull = open(os.devnull, 'w') subprocess.call( [SYSCMDS['ip'], 'link', 'set', MGMT_DEV_NAME, 'mtu', "%s" % mtu], stdout=fnull, stderr=fnull) time.sleep(BIGSTART_DELAY) def force_tmm_down(): """Forces all TMOS dataplane microkernels down""" fnull = open(os.devnull, 'w') subprocess.call([SYSCMDS['pkill'], 'tmm'], stdout=fnull, stderr=fnull) subprocess.call([SYSCMDS['bigstart'], 'shutdown', 'tmm'], stdout=fnull, stderr=fnull) subprocess.call([SYSCMDS['pkill'], 'tmm'], stdout=fnull, stderr=fnull) time.sleep(PROCESS_KILL_DELAY) def stop_tmm(): """Stops TMOS dataplane microkernels""" fnull = open(os.devnull, 'w') subprocess.call([SYSCMDS['bigstart'], 'shutdown', 'tmm'], stdout=fnull, stderr=fnull) time.sleep(BIGSTART_DELAY) def start_tmm(): """Starts TMOS dataplane microkernels""" fnull = open(os.devnull, 'w') subprocess.call([SYSCMDS['bigstart'], 'startup', 'tmm'], stdout=fnull, stderr=fnull) time.sleep(BIGSTART_DELAY) def bigstart_restart(service_name=None): """Restart a service with bigstart""" fnull = open(os.devnull, 'w') if not service_name: service_name = '' subprocess.call([SYSCMDS['bigstart'], 'resstart', service_name], stdout=fnull, stderr=fnull) time.sleep(BIGSTART_DELAY) def is_icontrol(): """Determines if the TMOS control plane iControl REST service is running""" try: return requests.get('http://localhost:8100/shared/echo', auth=('admin', '')).json()['stage'] == 'STARTED' except Exception: return False def wait_for_icontrol(timeout=None): """Blocks until the TMOS control plane iControl REST service is running""" if not timeout: timeout = ICONTROL_TIMEOUT end_time = time.time() + timeout while (end_time - time.time()) > 0: if is_icontrol(): return True time.sleep(1) LOG.error('iControl REST services could not be reached after %s seconds', timeout) return False def is_rest_worker(workerpath): """Determines if the TMOS control plane iControl REST worker path exists""" try: return requests.get('http://localhost:8100' + workerpath, auth=('admin', '')).status_code != 404 except Exception: return False def wait_for_rest_worker(workerpath, timeout=None): """Blocks until the TMOS control plane iControl REST worker path exists""" task_url = 'http://localhost:8100' + workerpath if not timeout: timeout = ICONTROL_TIMEOUT end_time = time.time() + timeout while (end_time - time.time()) > 0: try: response = requests.get(task_url, auth=('admin', '')) if response.status_code < 400: return True except Exception: return False time.sleep(1) LOG.error('iControl REST worker %s could not be reached after %s seconds', workerpath, timeout) return False def is_url(monitor_url, status_code=None): """Determins if the URL is reachable and optionally returns a status code""" try: response = requests.get(monitor_url) LOG.debug('URL %s status %s', monitor_url, response.status_code) if status_code: if response.status_code == status_code: return True return True except Exception as ex: LOG.error('URL %s exception %s', monitor_url, ex) return False return False def wait_for_url(monitor_url, status_code=None, timeout=None): """Blocks until the URL is availale""" if not timeout: timeout = URL_TIMEOUT end_time = time.time() + timeout while (end_time - time.time()) > 0: if is_url(monitor_url, status_code): return True time.sleep(1) LOG.error('URL %s could not be reached after %s seconds', monitor_url, timeout) return False def dhcp_lease_dir_exists(): """Ensures DHCP lease file copy directory exists""" if not os.path.isdir(DHCP_LEASE_DIR): os.makedirs(DHCP_LEASE_DIR) def make_dhcp4_request(interface, timeout=120): """Makes DHCPv4 queries out a linux link device""" dhcp_lease_dir_exists() tmp_conf_file = DHCP_LEASE_DIR + '/dhclient.conf' lease_file = DHCP_LEASE_DIR + '/' + interface + '.lease' tmp_lease_file = '/tmp/' + interface + '.lease' fnull = open(os.devnull, 'w') dhclient_cf = open(tmp_conf_file, 'w') dhclient_cf.write( "\nrequest subnet-mask, broadcast-address, time-offset, routers,\n") dhclient_cf.write( " domain-name, domain-name-servers, domain-search, host-name,\n" ) dhclient_cf.write( " root-path, interface-mtu, classless-static-routes;\n") dhclient_cf.close() if os.path.isfile(lease_file): del_file(lease_file) subprocess.call([SYSCMDS['pkill'], 'dhclient'], stdout=fnull) subprocess.call([SYSCMDS['ip'], 'link', 'set', interface, 'up'], stdout=fnull) subprocess.call([ SYSCMDS['dhclient'], '-lf', tmp_lease_file, '-cf', tmp_conf_file, '-1', '-timeout', str(timeout), '-pf', '/tmp/dhclient.' + interface + '.pid', '-sf', SYSCMDS['echo'], interface ], stdout=fnull) if os.path.getsize(tmp_lease_file) > 0: copy(tmp_lease_file, lease_file) subprocess.call([SYSCMDS['pkill'], 'dhclient'], stdout=fnull) del_file('/tmp/dhclient.' + interface + '.pid') del_file(tmp_lease_file) return True else: subprocess.call([SYSCMDS['pkill'], 'dhclient'], stdout=fnull) del_file('/tmp/dhclient.' + interface + '.pid') del_file(tmp_lease_file) return False def process_dhcp4_lease(interface, return_options=None): """Parses dhclient v4 lease file format for metadata""" if not return_options: return_options = [ 'subnet-mask', 'routers', 'domain-name-servers', 'interface-mtu', 'classless-static-routes', 'host-name', 'domain-name' ] return_data = {} lease_file = DHCP_LEASE_DIR + '/' + interface + '.lease' if os.path.isfile(interface): lease_file = interface for line in open(lease_file): if 'fixed-address' not in return_data and "fixed-address" in line: # format: fixed-address 192.168.127.12; test_fixed_address = 'fixed-address ' lidx = line.index(test_fixed_address) return_data['fixed-address'] = \ line[lidx + len(test_fixed_address):].replace(';\n', '') for option in return_options: test_option = option + ' ' if (option not in return_data) and (test_option in line): # format: option routers 1.1.1.1; lidx = line.index(test_option) return_data[option] = \ line[lidx + len(test_option):].replace( ';\n', '').replace('"', '').replace("'", '') return return_data def process_dhcp4_routes(static_routes): """Processes dhclient v4 static routes metadata""" dhcp_routes = [] if static_routes: static_route_list = static_routes.split(',') for static_route in static_route_list: rap = static_route.split(' ') route = process_dhcp4_route(rap[0], rap[1]) if route: dhcp_routes.append(route) return dhcp_routes def process_dhcp4_route(static_route, gateway): """Parse single dhclient v4 route entry into a dictionary""" if not static_route == '0': route = {} route['network'] = static_route[static_route.find('.') + 1:] if len(route['network']) == 3: route['network'] = route['network'] + '.0.0.0' if route['network'].find('.') > 0: dots = route['network'].count('.') if dots == 1: route['network'] = route['network'] + '.0.0' if dots == 2: route['network'] = route['network'] + '.0' route['netmask'] = static_route[0:static_route.find('.')] route['gateway'] = gateway route['route_name'] = "route_%s_%s" % (route['network'], route['netmask']) route['route_name'] = route['route_name'].replace('.', '_').replace( ':', '_').replace('/', '_') # we don't forward to local or link local in a gateway if route['network'].startswith('127'): return None elif route['network'].startswith('169.254'): return None elif route['network'].lower().startswith('fe80'): return None return route return None def ipv4_cidr_from_netmask(netmask): """Convert IPv4 netmask to CIDR bits""" return sum([bin(int(x)).count('1') for x in netmask.split('.')]) def wait_for_dns_resolution(fqdn, timeout=30): """Wait for DNS to resolve a required FQDN""" start = time.time() end = start + timeout while time.time() < end: try: socket.gethostbyname(fqdn) return True except socket.error: LOG.error('FQDN %s could not be resolved', fqdn) time.sleep(1) LOG.error('FQDN %s could not be resolved in %s seconds', fqdn, timeout) return False def phone_home(phone_home_url=None, status='ERROR', verify_tls=True, metadata={}): """Issues a Phone Home web POST request with collected onboard data""" if phone_home_url: try: parsed_url = urlparse.urlparse(phone_home_url) headers = {'Content-Type': 'application/json'} post_data = {} post_data['id'] = get_dmi_uuid() post_data['version'] = get_tmos_version() post_data['product'] = get_tmos_product() post_data['hostname'] = get_hostname() post_data['management'] = get_mgmt_cidr() post_data['status'] = status post_data['metadata'] = metadata post_json = json.dumps(post_data) LOG.debug('POST %s - %s', phone_home_url, post_json) if verify_tls: resp = requests.post(phone_home_url, headers=headers, data=post_json) resp.raise_for_status() else: resp = requests.post(phone_home_url, headers=headers, data=post_json, verify=False) resp.raise_for_statuss() return True except Exception as err: LOG.error("could not phone home: %s - %s", phone_home_url, err) return False def clean(): """Remove any onboarding artifacts""" if REMOVE_DHCP_LEASE_FILES: lease_files = os.listdir(DHCP_LEASE_DIR) for lease_file in lease_files: del_file("%s/%s" % (DHCP_LEASE_DIR, lease_file)) # remove inject line in /config/startup injected_already = subprocess.Popen( "cat /config/startup | grep bigiq_onboard_utils" + " | wc -l", stdout=subprocess.PIPE, shell=True).communicate()[0].replace('\n', '') if injected_already == '1': subprocess.call([ '/bin/sed', '-i', "/bigiq_onboard_utils/d", '/config/startup' ]) def get_datasource_file(): return "/opt/cloud/instances/%s/datasource" % get_dmi_uuid().lower() def get_vendor_data_file(): return "/opt/cloud/instances/%s/vendor-data.txt" % get_dmi_uuid().lower() def get_meta_data_file(): return '/opt/cloud/instances/%s/meta_data' % get_dmi_uuid().lower() def get_user_data_file(): return "/opt/cloud/instances/%s/user-data.txt" % get_dmi_uuid().lower() def get_configdrive_dev(): """Get Device Name for a ConfigDrive""" fnull = open(os.devnull, 'w') dev = subprocess.Popen("%s | %s config-2 | %s -d':' -f1" % (SYSCMDS['blkid'], SYSCMDS['grep'], SYSCMDS['cut']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if not os.path.exists(dev): dev = subprocess.Popen( "%s --fs | %s config-2 | %s -d' ' -f1" % (SYSCMDS['lsblk'], SYSCMDS['grep'], SYSCMDS['cut']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if len(dev) > 2: dev = "/dev/%s" % dev return dev def mount_configdrive(dev, mountpath='/tmp/configdrive'): """Mount ConfigDrive""" if not os.path.exists(mountpath): os.makedirs(mountpath) fnull = open(os.devnull, 'w') mountout = subprocess.Popen("%s %s %s" % (SYSCMDS['mount'], dev, mountpath), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') return mountout def ummount_configdrive(mountpath): """Unmount ConfigDrive""" time.sleep(3) fnull = open(os.devnull, 'w') umountout = subprocess.Popen("%s %s" % (SYSCMDS['umount'], mountpath), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace( '\n', '') return umountout def onboard_configdrive(): """Dicover ConfigDrive and Mount""" dev = get_configdrive_dev() if dev: LOG.info('attempting to mount %s as a ConfigDrive data source' % dev) systemid = get_dmi_uuid().lower() userdata = '---' metadata = '{}' networkdata = '{}' mountpath = '/tmp/configdrive' mount_configdrive(dev, mountpath) userdatapath = "%s/openstack/latest/user_data" % mountpath metadatapath = "%s/openstack/latest/meta_data.json" % mountpath networkdatapath = "%s/openstack/latest/network_data.json" % mountpath if os.path.exists(userdatapath): f = open(userdatapath, "r") userdata = f.read() f.close() if os.path.exists(metadatapath): f = open(metadatapath, "r") metadata = f.read() f.close() if os.path.exists(networkdatapath): f = open(networkdatapath, "r") networkdata = f.read() f.close() create_cloudinit_resources( dev, systemid, userdata, metadata, networkdata, None, "DataSourceConfigDriveNet: DataSourceConfigDriveNet [net,ver=2][source=%s]" % dev) ummount_configdrive(mountpath) os.rmdir(mountpath) return True else: return False def get_nocloud_dev(): """Get Device Name for a NoCloudDrive""" fnull = open(os.devnull, 'w') dev = subprocess.Popen("%s | %s cidata | %s -d':' -f1" % (SYSCMDS['blkid'], SYSCMDS['grep'], SYSCMDS['cut']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if not os.path.exists(dev): dev = subprocess.Popen( "%s --fs | %s cidata | %s -d' ' -f1" % (SYSCMDS['lsblk'], SYSCMDS['grep'], SYSCMDS['cut']), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') if len(dev) > 2: dev = "/dev/%s" % dev return dev def mount_nocloud(dev, mountpath='/tmp/nocloud'): """Mount NoCloudDrive""" if not os.path.exists(mountpath): os.makedirs(mountpath) fnull = open(os.devnull, 'w') mountout = subprocess.Popen("%s %s %s" % (SYSCMDS['mount'], dev, mountpath), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace('\n', '') return mountout def ummount_nocloud(mountpath): """Unmount NoCloudDrive""" time.sleep(3) fnull = open(os.devnull, 'w') umountout = subprocess.Popen("%s %s" % (SYSCMDS['umount'], mountpath), stdout=subprocess.PIPE, stderr=fnull, shell=True).communicate()[0].replace( '\n', '') return umountout def onboard_nocloud(): """Dicover NoCloud and Mount""" dev = get_nocloud_dev() if dev: LOG.info('attempting to mount %s as a NoCloud data source' % dev) systemid = get_dmi_uuid().lower() userdata = '---' metadata = '' vendordata = '' mountpath = '/tmp/nocloud' mount_configdrive(dev, mountpath) userdatapath = "%s/user-data" % mountpath metadatapath = "%s/meta-data" % mountpath vendordatapath = "%s/vendor-data" % mountpath if os.path.exists(userdatapath): f = open(userdatapath, "r") userdata = f.read() f.close() if os.path.exists(metadatapath): f = open(metadatapath, "r") metadata = f.read() if metadata.find('instance-id') > 0: for line in metadata.splitlines(): if line.startswith('instance-id'): systemid = line.split(': ')[1] f.close() if os.path.exists(vendordatapath): f = open(vendordatapath, "r") vendordata = f.read() f.close() create_cloudinit_resources( dev, systemid, userdata, metadata, None, vendordata, "DataSourceNoCloud: DataSourceNoCloud [seed=%s][dsmode=net]" % dev) ummount_nocloud(mountpath) os.rmdir(mountpath) return True else: return False def create_cloudinit_resources(dev, systemid, userdata, metadata, networkdata, vendordata, ds_string): """Copy Source Resources to CloudInit Locations""" if not os.path.exists('/opt/cloud/data'): os.makedirs('/opt/cloud/data') if not os.path.exists('/opt/cloud/handlers'): os.makedirs('/opt/cloud/handlers') if not os.path.exists('/opt/cloud/instances'): os.makedirs("/opt/cloud/instances/%s" % systemid) if not os.path.exists("/opt/cloud/instance"): os.symlink("/opt/cloud/instances/%s" % systemid, '/opt/cloud/instance') if not os.path.exists('/opt/cloud/scripts'): os.makedirs('/opt/cloud/scripts/per-boot') os.makedirs('/opt/cloud/scripts/per-instance') os.makedirs('/opt/cloud/scripts/per-once') os.makedirs('/opt/cloud/seed') os.makedirs('/opt/cloud/sem') with open('/opt/cloud/data/previous-datasource', 'w') as ds: ds.write(ds_string) with open('/opt/cloud/instances/%s/datasource' % systemid, 'w') as ds: ds.write(ds_string) with open('/opt/cloud/data/instance-id', 'w') as instid: LOG.info('writing sytemid as %s' % systemid) instid.write(systemid) with open('/opt/cloud/data/previous-instance-id', 'w') as instid: instid.write(systemid) with open("/opt/cloud/instances/%s/user-data.txt" % systemid, 'w') as ds: LOG.info('writing user-data: %d bytes' % len(userdata)) ds.write(userdata) if metadata: try: json.loads(metadata) with open("/opt/cloud/instances/%s/meta_data.json" % systemid, 'w') as ds: LOG.info('writing meta_data.json: %d bytes' % len(metadata)) ds.write(metadata) except: with open("/opt/cloud/instances/%s/meta_data" % systemid, 'w') as ds: LOG.info('writing meta_data: %d bytes' % len(metadata)) ds.write(metadata) if networkdata: with open("/opt/cloud/instances/%s/network_data.json" % systemid, 'w') as ds: LOG.info('writing network_data.json: %d bytes' % len(networkdata)) ds.write(networkdata) if vendordata: with open("/opt/cloud/instances/%s/vendor-data.txt" % systemid, 'w') as ds: LOG.info("writing vendor-data.txt: %d bytes" % len(vendordata)) ds.write(vendordata) def set_hostname(hostname): global HOSTNAME_SET if not HOSTNAME_SET: wait_for_mcpd() fnull = open(os.devnull, 'w') cmd = "%s modify sys global-settings hostname %s" % (SYSCMDS['tmsh'], hostname) sethostname = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=fnull, shell=True, ).communicate()[0].replace('\n', '') cmd = "%s mv cm device $(%s list cm device | %s 'cm device' | %s -d ' ' -f3) %s" % ( SYSCMDS['tmsh'], SYSCMDS['tmsh'], SYSCMDS['grep'], SYSCMDS['cut'], hostname) renamedevice = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=fnull, shell=True, ).communicate()[0].replace('\n', '') HOSTNAME_SET = True def del_file(path): LOG.debug("Attempting to remove %s", path) try: os.unlink(path) except OSError as e: if e.errno != ENOENT: raise e def copy(src, dest): LOG.debug("Copying %s to %s", src, dest) shutil.copy(src, dest) def read_conf(fname): try: return load_yaml(load_file(fname), default={}) except IOError as e: if e.errno == ENOENT: return {} else: raise def pipe_in_out(in_fh, out_fh, chunk_size=1024, chunk_cb=None): bytes_piped = 0 while True: data = in_fh.read(chunk_size) if len(data) == 0: break else: out_fh.write(data) bytes_piped += len(data) if chunk_cb: chunk_cb(bytes_piped) out_fh.flush() return bytes_piped def decode_binary(blob, encoding='utf-8'): if isinstance(blob, basestring): return blob return blob.decode(encoding) def load_file(fname, read_cb=None, quiet=False, decode=True): LOG.debug("Reading from %s (quiet=%s)", fname, quiet) ofh = StringIO.StringIO() try: with open(fname, 'rb') as ifh: pipe_in_out(ifh, ofh, chunk_cb=read_cb) except IOError as e: if not quiet: raise if e.errno != ENOENT: raise contents = ofh.getvalue() LOG.debug("Read %s bytes from %s", len(contents), fname) if decode: return decode_binary(contents) else: return contents def load_yaml(blob, default=None, allowed=(dict, )): loaded = default blob = decode_binary(blob) try: LOG.debug( "Attempting to load yaml from string " "of length %s with allowed root types %s", len(blob), allowed) converted = yaml.load(blob, Loader=yaml.FullLoader) if converted is None: LOG.debug("loaded blob returned None, returning default.") converted = default elif not isinstance(converted, allowed): raise TypeError("Yaml load only allows %s root types" % allowed) loaded = converted except (yaml.YAMLError, TypeError, ValueError) as e: msg = 'Failed loading yaml blob' mark = None if hasattr(e, 'context_mark') and getattr(e, 'context_mark'): mark = getattr(e, 'context_mark') elif hasattr(e, 'problem_mark') and getattr(e, 'problem_mark'): mark = getattr(e, 'problem_mark') if mark: msg += ( '. Invalid format at line {line} column {col}: "{err}"'.format( line=mark.line + 1, col=mark.column + 1, err=e)) else: msg += '. {err}'.format(err=e) LOG.warning(msg) return loaded def save_config(): wait_for_mcpd() fnull = open(os.devnull, 'w') cmd = "%s save sys config" % SYSCMDS['tmsh'] saveconfig = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=fnull, shell=True, ).communicate()[0].replace('\n', '') def process_json_metadata(): metadatapath = "%s.json" % get_meta_data_file() if os.path.exists(metadatapath): with open(metadatapath, 'r') as md: metadata = json.load(md) if 'hostname' in metadata: if metadata['hostname'].find('.') < 0: set_hostname("%s.local" % metadata['hostname']) else: set_hostname(metadata['hostname']) if 'public_keys' in metadata: keys = [] for keyname in metadata['public_keys'].keys(): keys.append(metadata['public_keys'][keyname]) inject_public_ssh_keys(keys) def process_text_metadata(): metadatapath = get_meta_data_file() if os.path.exists(metadatapath): with open(metadatapath, 'r') as md: for line in md: if line.startswith('local-hostname'): hostname = line.split(': ')[1].strip() if hostname.find('.') < 0: set_hostname("%s.local" % hostname) else: set_hostname(hostname) def run_modules(): userdatapath = get_user_data_file() if os.path.exists(userdatapath): USERDATA_CONFIG = read_conf(userdatapath) for cm in config_modules: LOG.info('importing module: %s' % cm) m = importlib.import_module('cloudinit.config.%s' % cm) LOG.info('running %s handler' % m.MODULE_NAME) m.handle(m.MODULE_NAME, USERDATA_CONFIG, None, logging, []) def onboard(): if not os.path.exists(FIRST_BOOT_FILE): if onboard_configdrive(): run_modules() LOG.info('touching %s flag file' % FIRST_BOOT_FILE) touch_file(FIRST_BOOT_FILE) elif onboard_nocloud(): run_modules() LOG.info('touching %s flag file' % FIRST_BOOT_FILE) touch_file(FIRST_BOOT_FILE) else: LOG.error( 'BIG-IQ cloud-init only accepts ConfigDrive or NoCloud as a data sources' ) touch_file(FIRST_BOOT_FILE) else: LOG.info('cloudinit onboarding did not run because %s exists' % FIRST_BOOT_FILE) if __name__ == "__main__": onboard() ```
{ "source": "jgruberf5/ibmcloud_schematics_volterra_adn_tier_mz", "score": 2 }
#### File: modules/volterra/volterra_resource_site_create.py ```python import os import sys import json import argparse import urllib.request from urllib.error import HTTPError def get_tenant_id(tenant, token): headers = { "Authorization": "APIToken %s" % token } try: url = "https://%s.console.ves.volterra.io/api/web/namespaces/system" % tenant request = urllib.request.Request( url, headers=headers, method='GET') response = urllib.request.urlopen(request) return json.load(response)['system_metadata']['tenant'] except HTTPError as her: sys.stderr.write( "Error retrieving tenant ID - %s\n" % her) sys.exit(1) def assure_site_token(tenant, token, site_token_name): site_token_name = site_token_name.encode('utf-8').decode('utf-8') headers = { "Authorization": "APIToken %s" % token } # Does the site token exist try: url = "https://%s.console.ves.volterra.io/api/register/namespaces/system/tokens/%s" % ( tenant, site_token_name) request = urllib.request.Request( url, headers=headers, method='GET') response = urllib.request.urlopen(request) return json.load(response)['system_metadata']['uid'] except HTTPError as her: if her.code == 404: try: url = "https://%s.console.ves.volterra.io/api/register/namespaces/system/tokens" % tenant headers['volterra-apigw-tenant'] = tenant headers['content-type'] = 'application/json' data = { "metadata": { "annotations": {}, "description": "Site Authorization Token for %s" % site_token_name, "disable": False, "labels": {}, "name": site_token_name, "namespace": "system" }, "spec": {} } data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') response = urllib.request.urlopen(request) site_token = json.load(response) return site_token['system_metadata']['uid'] except HTTPError as err: sys.stderr.write( "Error creating site token resources %s: %s\n" % (url, err)) sys.exit(1) else: sys.stderr.write( "Error retrieving site token resources %s: %s\n" % (url, her)) sys.exit(1) except Exception as er: sys.stderr.write( "Error retrieving site token resources %s\n" % er) sys.exit(1) def assure_k8s_cluster(tenant, token, site_name, k8sdomain): headers = { "Authorization": "APIToken %s" % token } # create K8s cluster object try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/k8s_clusters/%s" % ( tenant, site_name) request = urllib.request.Request( url, headers=headers, method='GET') urllib.request.urlopen(request) except HTTPError as her: if her.code == 404: try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/k8s_clusters" % tenant headers['volterra-apigw-tenant'] = tenant headers['content-type'] = 'application/json' data = { "namespace": "system", "metadata": { "name": site_name, "namespace": None, "labels": {}, "annotations": {}, "description": None, "disable": None }, "spec": { "local_access_config": { "local_domain": k8sdomain, "default_port": {} }, "global_access_enable": {}, "use_default_psp": {}, "use_default_cluster_roles": {}, "use_default_cluster_role_bindings": {}, "no_insecure_registries": {} } } data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') urllib.request.urlopen(request) except HTTPError as err: sys.stderr.write( "Error creating k8s_clusters resources %s: %s\n" % (url, err)) sys.exit(1) def assure_voltstack_site(tenant, token, site_name, tenant_id, cluster_size, latitude, longitude, inside_networks, inside_gateways): headers = { "Authorization": "APIToken %s" % token } # create Voltstack site try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/sites/%s" % ( tenant, site_name) request = urllib.request.Request( url, headers=headers, method='GET') response = urllib.request.urlopen(request) return json.load(response)['system_metadata']['uid'] except HTTPError as her: if her.code == 404: try: v_static_routes = [] for gw in inside_gateways: v_static_routes.append( { "ip_prefixes": inside_networks, "ip_address": gw, "attrs": ['ROUTE_ATTR_INSTALL_HOST', 'ROUTE_ATTR_INSTALL_FORWARDING'] }) url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/voltstack_sites" % tenant headers['volterra-apigw-tenant'] = tenant headers['content-type'] = 'application/json' data = { "metadata": { "name": site_name, "namespace": None, "labels": {}, "annotations": {}, "description": None, "disable": None }, "spec": { "volterra_certified_hw": "kvm-volstack-combo", "master_nodes": [], "worker_nodes": [], "no_bond_devices": {}, "custom_network_config": { "slo_config": { "labels": {}, "static_routes": { "static_routes": v_static_routes }, "no_dc_cluster_group": {} }, "default_interface_config": {}, "no_network_policy": {}, "no_forward_proxy": {}, "global_network_list": { "global_network_connections": [ { "slo_to_global_dr": { "global_vn": { "tenant": "ves-io", "namespace": "shared", "name": "public" } } } ] }, }, "default_storage_config": {}, "disable_gpu": {}, "address": None, "coordinates": { "latitude": latitude, "longitude": longitude }, "k8s_cluster": { "tenant": tenant_id, "namespace": "system", "name": site_name }, "logs_streaming_disabled": {}, "deny_all_usb": {} }, "resource_version": None } masters = [] for indx in range(min(cluster_size, 3)): masters.append("%s-vce-%d" % (site_name, indx)) data['spec']['master_nodes'] = masters workers = [] for indx in range(cluster_size - 3): workers.append("%s-vce-%d" % (site_name, indx + 3)) data['spec']['worker_nodes'] = workers data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') response = urllib.request.urlopen(request) site = json.load(response) return site['system_metadata']['uid'] except HTTPError as err: sys.stderr.write( "Error creating volstack site resources %s: %s\n" % (url, err)) sys.exit(1) else: sys.stderr.write( "Error retrieving voltstack site resources %s: %s\n" % (url, her)) sys.exit(1) except Exception as er: sys.stderr.write( "Error retrieving voltstack site resources %s\n" % er) sys.exit(1) def assure_virtual_network(tenant, token, site_name, fleet_label, tenant_id, inside_networks, inside_gateways): headers = { "Authorization": "APIToken %s" % token } if inside_networks: # Does virtual network exist try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/virtual_networks/%s" % ( tenant, fleet_label) request = urllib.request.Request( url, headers=headers, method='GET') response = urllib.request.urlopen(request) except HTTPError as her: if her.code == 404: try: v_static_routes = [] for gw in inside_gateways: v_static_routes.append({ "ip_prefixes": inside_networks, "ip_address": gw, "attrs": ['ROUTE_ATTR_INSTALL_HOST', 'ROUTE_ATTR_INSTALL_FORWARDING'] }) url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/virtual_networks" % tenant headers['volterra-apigw-tenant'] = tenant headers['content-type'] = 'application/json' data = { "namespace": "system", "metadata": { "name": site_name, "namespace": "system", "labels": { "ves.io/fleet": fleet_label }, "annotations": {}, "description": "Routes inside %s" % site_name, "disable": False }, "spec": { "site_local_inside_network": {}, "static_routes": v_static_routes } } data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') urllib.request.urlopen(request) except HTTPError as her: sys.stderr.write( "Error creating virtual_networks resources %s: %s - %s\n" % (url, data, her)) sys.exit(1) else: sys.stderr.write( "Error retrieving virtual_networks resources %s: %s\n" % (url, her)) sys.exit(1) def assure_network_connector(tenant, token, site_name, fleet_label): headers = { "Authorization": "APIToken %s" % token } # Does Global Network connector exist? try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/network_connectors/%s" % ( tenant, site_name) request = urllib.request.Request( url, headers=headers, method='GET') urllib.request.urlopen(request) except HTTPError as her: if her.code == 404: try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/network_connectors" % tenant headers['volterra-apigw-tenant'] = tenant headers['content-type'] = 'application/json' data = { "namespace": "system", "metadata": { "name": site_name, "namespace": None, "labels": { "ves.io/fleet": fleet_label }, "annotations": {}, "description": "connecting %s to the global shared network" % site_name, "disable": False }, "spec": { "sli_to_global_dr": { "global_vn": { "tenant": "ves-io", "namespace": "shared", "name": "public" } }, "disable_forward_proxy": {} } } data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') urllib.request.urlopen(request) except HTTPError as her: sys.stderr.write( "Error creating network_connectors resources %s: %s - %s\n" % (url, data, her)) sys.exit(1) else: sys.stderr.write( "Error retrieving network_connectors resources %s: %s\n" % (url, her)) sys.exit(1) def assure_fleet(tenant, token, site_name, fleet_label, tenant_id): headers = { "Authorization": "APIToken %s" % token } # Does the fleet exist try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/fleets/%s" % ( tenant, site_name) request = urllib.request.Request( url, headers=headers, method='GET') response = urllib.request.urlopen(request) return json.load(response)['spec']['fleet_label'] except HTTPError as her: if her.code == 404: try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/fleets" % tenant headers['volterra-apigw-tenant'] = tenant headers['content-type'] = 'application/json' data = { "namespace": "system", "metadata": { "name": site_name, "namespace": None, "labels": {}, "annotations": {}, "description": "Fleet provisioning object for %s" % site_name, "disable": None }, "spec": { "fleet_label": fleet_label, "volterra_software_version": None, "network_connectors": [ { "kind": "network_connector", "uuid": None, "tenant": tenant_id, "namespace": "system", "name": site_name } ], "network_firewall": None, "operating_system_version": None, "outside_virtual_network": None, "inside_virtual_network": [ { "kind": "virtual_network", "uid": None, "tenant": tenant_id, "namespace": "system", "name": site_name } ], "default_config": {}, "no_bond_devices": {}, "no_storage_interfaces": {}, "no_storage_device": {}, "default_storage_class": {}, "no_dc_cluster_group": {}, "disable_gpu": {}, "no_storage_static_routes": {}, "enable_default_fleet_config_download": None, "logs_streaming_disabled": {}, "deny_all_usb": {} } } data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') response = urllib.request.urlopen(request) return json.load(response)['spec']['fleet_label'] except HTTPError as her: sys.stderr.write( "Error creating fleets resources %s: %s - %s\n" % (url, data, her)) sys.exit(1) else: sys.stderr.write( "Error retrieving feet resources %s: %s\n" % (url, her)) sys.exit(1) except Exception as er: sys.stderr.write( "Error retrieving fleet resources %s\n" % er) sys.exit(1) def assure_service_discovery(tenant, token, site_name, tenant_id, consul_servers, ca_cert_encoded): headers = { "Authorization": "APIToken %s" % token } for indx, consul_server in enumerate(consul_servers): name = "%s-consul-%d" % (site_name, indx) # Does service discovery exist try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/discoverys/%s" % ( tenant, name) request = urllib.request.Request( url, headers=headers, method='GET') urllib.request.urlopen(request) except HTTPError as her: if her.code == 404: try: url = "https://%s.console.ves.volterra.io/api/config/namespaces/system/discoverys" % tenant data = { "namespace": "system", "metadata": { "name": name, "namespace": None, "labels": {}, "annotations": {}, "description": None, "disable": False }, "spec": { "where": { "site": { "ref": [{ "kind": "site", "uid": None, "tenant": tenant_id, "namespace": "system", "name": site_name }], "network_type": "VIRTUAL_NETWORK_SITE_LOCAL_INSIDE" } }, "discovery_consul": { "access_info": { "connection_info": { "api_server": consul_server, "tls_info": { "server_name": None, "certificate_url": None, "certificate": None, "key_url": None, "ca_certificah signal has different support and stability in OTLP, described through its own maturity level, which in turn applies to all the OTLP Transports listed below.te_url": None, "trusted_ca_url": "string:///%s" % ca_cert_encoded } }, "scheme": None, "http_basic_auth_info": None }, "publish_info": { "disable": {} } } } } data = json.dumps(data) request = urllib.request.Request( url=url, headers=headers, data=bytes(data.encode('utf-8')), method='POST') urllib.request.urlopen(request) except HTTPError as her: sys.stderr.write( "Error creating discoverys resources %s: %s - %s\n" % (url, data, her)) sys.exit(1) else: sys.stderr.write( "Error retrieving discoverys resources %s: %s\n" % (url, her)) sys.exit(1) def main(): ap = argparse.ArgumentParser( prog='volterra_resource_site_destroy', usage='%(prog)s.py [options]', description='clean up site tokens and fleets on destroy' ) ap.add_argument( '--site', help='Volterra site name', required=True ) ap.add_argument( '--fleet', help='Volterra fleet label', required=True ) ap.add_argument( '--tenant', help='Volterra site tenant', required=True ) ap.add_argument( '--token', help='Volterra API token', required=True ) ap.add_argument( '--voltstack', help='Create Voltstack site', required=False, default='false' ) ap.add_argument( '--k8sdomain', help='Voltstack domain for K8s config', required=False, default='local' ) ap.add_argument( '--cluster_size', help='Volterra Cluster size', required=False, default='3' ), ap.add_argument( '--latitude', help='Volterra Cluster latitude', required=False, default='33.1032' ), ap.add_argument( '--longitude', help='Volterra Cluster longitude', required=False, default='-96.6706' ) ap.add_argument( '--inside_networks', help='Network CIDRs reachable inside the Volterra Cluster', required=False, default='[]' ) ap.add_argument( '--inside_gateways', help='Network inside the Volterra Cluster next hop IPv4 address', required=False, default='[]' ) ap.add_argument( '--consul_servers', help='Consul server IPv4 addresses to add as service discovery', required=False, default='[]' ) ap.add_argument( '--ca_cert_encoded', help='Base64 encoded Consul CA certificate to add as service discovery', required=False, default='[]' ) args = ap.parse_args() tenant_id = get_tenant_id( args.tenant, args.token ) if args.voltstack == "true": assure_k8s_cluster( args.tenant, args.token, args.site, args.k8sdomain ) assure_voltstack_site( args.tenant, args.token, args.site, tenant_id, int(args.cluster_size), args.latitude, args.longitude, json.loads(args.inside_networks), json.loads(args.inside_gateways) ) else: assure_virtual_network( args.tenant, args.token, args.site, args.fleet, tenant_id, json.loads(args.inside_networks), json.loads(args.inside_gateways) ) assure_network_connector( args.tenant, args.token, args.site, args.fleet ) assure_fleet( args.tenant, args.token, args.site, args.fleet, tenant_id ) consul_servers = json.loads(args.consul_servers) if consul_servers: assure_service_discovery( args.tenant, args.token, args.site, tenant_id, consul_servers, args.ca_cert_encoded ) site_token = assure_site_token( args.tenant, args.token, args.site ) site_token_file = "%s/%s_site_token.txt" % ( os.path.dirname(os.path.realpath(__file__)), args.site) if os.path.exists(site_token_file): os.unlink(site_token_file) with open(site_token_file, "w") as site_token_file: site_token_file.write(site_token) sys.stdout.write( 'Created registration token for the site: %s' % site_token) sys.exit(0) if __name__ == '__main__': main() ```
{ "source": "jgruberf5/salesinvites", "score": 2 }
#### File: jgruberf5/salesinvites/server.py ```python import csv import json import logging import os import requests import sys import threading import time from flask import Flask, flash, request, redirect, url_for VERSION = '05042020-3' CSV_FILE = '/tmp/list.csv' LOG_FILE = '/tmp/logoutput.txt' LOG = logging.getLogger('csv_invite_processor') LOG.setLevel(logging.DEBUG) FORMATTER = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') LOGSTREAM = logging.StreamHandler(sys.stdout) LOGSTREAM.setFormatter(FORMATTER) LOG.addHandler(LOGSTREAM) USERNAME = None PASSWORD = <PASSWORD> API_HOST = "api.cloudservices.f5.com" API_VERSION = "v1" ROLE_ID = "r-NAYFdYfiR" DRY_RUN = False DELAY = 0 TOKEN = None def get_service_token(): if USERNAME and PASSWORD: try: headers = { "Content-Type": "application/json" } data = { "username": USERNAME, "password": PASSWORD } url = "https://%s/%s/svc-auth/login" % (API_HOST, API_VERSION) response = requests.post( url, headers=headers, data=json.dumps(data)) if response.status_code < 300: return response.json()['access_token'] else: LOG.error('error retrieving token: %d: %s', response.status_code, response.content) except Exception as ex: LOG.error('error retrieveing token: %s', ex) return None else: LOG.error('can not issue token without setting Usename and Password') return None def get_account_info(token): if token: try: headers = { "Content-Type": "application/json", "Authorization": "Bearer %s" % token } url = "https://%s/%s/svc-account/user" % (API_HOST, API_VERSION) response = requests.get(url, headers=headers) if response.status_code < 300: data = response.json() return { 'user_id': data['id'], 'account_id': data['primary_account_id'] } else: LOG.error('error retrieving account: %d: %s', response.status_code, response.content) except Exception as ex: LOG.error('error retrieveing account: %s', ex) else: LOG.error('can not retrieve user account without access token') return None def get_existing_invites(token): try: headers = { "Content-Type": "application/json", "Authorization": "Bearer %s" % token } url = "https://%s/%s/svc-account/invites" % (API_HOST, API_VERSION) response = requests.get(url, headers=headers) if response.status_code < 300: return response.json() else: LOG.error('error retrieving existing invitations: %d: %s', response.status_code, response.content) except Exception as ex: LOG.error('error retrieveing account invitations: %s', ex) return None def delete_invite(token, invite_id): try: headers = { "Content-Type": "application/json", "Authorization": "Bearer %s" % token } url = "https://%s/%s/svc-account/invites/%s" % ( API_HOST, API_VERSION, invite_id) response = requests.delete(url, headers=headers) if response.status_code < 300: return True else: LOG.error('error deleting invitation: %s - %d: %s', invite_id, response.status_code, response.content) except Exception as ex: LOG.error('error deleting invitations: %s - %s', invite_id, ex) def delete_accepted_invitations(token, account_id): existing_invitations = get_existing_invites(token) if existing_invitations: for invite in existing_invitations['invites']: if invite['status'] == 'accepted' and invite['inviter_account_id'] == account_id: if DRY_RUN: LOG.info( 'dry run - would have deleted accepted invitation for %s', invite['invitee_email']) else: LOG.info('deleting accepted invitation for %s', invite['invitee_email']) delete_invite(token, invite['invite_id']) def get_existing_account_members(token, account_id): try: headers = { "Content-Type": "application/json", "Authorization": "Bearer %s" % token } url = "https://%s/%s/svc-account/accounts/%s/members" % ( API_HOST, API_VERSION, account_id) response = requests.get(url, headers=headers) if response.status_code < 300: return response.json() else: LOG.error('error retrieving existing account members: %d: %s', response.status_code, response.content) except Exception as ex: LOG.error('error retrieveing existing account members: %s', ex) return None def issue_invite(token, account_id, user_id, first_name, last_name, email): try: headers = { "Content-Type": "application/json", "Authorization": "Bearer %s" % token } data = { "inviter_account_id": account_id, "inviter_user_id": user_id, "account_ids": [ account_id ], "invitees": [ { "first_name": first_name, "last_name": last_name, "email": email } ], "role_id": ROLE_ID } url = "https://%s/%s/svc-account/invites" % (API_HOST, API_VERSION) response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code < 300: return response.json() else: LOG.error('error sending invitation for: %s - %d: %s', email, response.status_code, response.content) except Exception as ex: LOG.error('error sending invitations: %s - %s', email, ex) class ListProcessingThread(object): def __init__(self): thread = threading.Thread(target=self.run, args=()) thread.daemon = True thread.start() def run(self): LOG.debug('logging into F5 cloud services') token = get_service_token() if not token: LOG.error('halting processing due to login failure') LOG.info('finished processing %d records', 0) return False account_info = get_account_info(token) if not account_info: LOG.error('halting processing missing account ID') LOG.info('finished processing %d records', 0) return False if DRY_RUN: LOG.info('performing dry run simulation only') LOG.info('deleting accepted invitations for users in account: %s', account_info['user_id']) delete_accepted_invitations(token, account_info['account_id']) LOG.info('getting existing account members for account: %s', account_info['account_id']) sent_invites = [] members = get_existing_account_members( token, account_info['account_id'])['users'] for member in members: sent_invites.append(member['user']['email']) LOG.info('sending invites with user_id: %s, account id: %s', account_info['user_id'], account_info['account_id']) existing_invitations = get_existing_invites(token) if existing_invitations: for invite in existing_invitations['invites']: if not invite['invitee_email'] in sent_invites and invite['status'] == 'pending': sent_invites.append(invite['invitee_email']) else: LOG.warning('no existing invitations') line_count = 0 with open(CSV_FILE, newline='') as csvfile: try: invitations = csv.reader(csvfile, dialect='excel') for row in invitations: line_count += 1 first_name = row[0] last_name = row[1] email = row[2] if first_name == 'FirstName': continue if not email in sent_invites: if DRY_RUN: LOG.info( 'dry run - would have processed invitation for %s %s: %s', first_name, last_name, email) else: LOG.info('processing invitation for %s %s: %s', first_name, last_name, email) issue_invite( token, account_info['account_id'], account_info['user_id'], first_name, last_name, email) if DELAY > 0: time.sleep(DELAY) else: LOG.info('invitation for %s %s: %s already processed', first_name, last_name, email) except Exception as ex: LOG.error('error reading CSV: %s', ex) LOG.info('finished processing %d invitations', line_count) app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def upload_list(): global USERNAME, PASSWORD, API_HOST, API_VERSION, ROLE_ID, DRY_RUN, DELAY if request.method == 'POST': if 'username' not in request.form: flash('No username') return redirect(request.url) if 'password' not in request.form: flash('No password') return redirect(request.url) if 'file' not in request.files: flash('No file') return redirect(request.url) USERNAME = request.form['username'] PASSWORD = request.form['password'] if 'apihost' in request.form: API_HOST = request.form['apihost'] if 'apiversion' in request.form: API_VERSION = request.form['apiversion'] if 'roleid' in request.form: ROLE_ID = request.form['roleid'] if 'dryrun' in request.form and request.form['dryrun'] == 'on': DRY_RUN = True else: DRY_RUN = False if 'delay' in request.form: delay = request.form['delay'] DELAY = round((int(delay) / 1000), 2) file = request.files['file'] if file.filename == '': flash('No file') return redirect(request.url) if file: handlers = [h for h in LOG.handlers if not isinstance( h, logging.StreamHandler)] for handler in handlers: LOG.removeHandler(handler) if os.path.exists(LOG_FILE): os.unlink(LOG_FILE) if os.path.exists(CSV_FILE): os.unlink(CSV_FILE) textstream = logging.FileHandler(LOG_FILE) textstream.setFormatter(FORMATTER) LOG.addHandler(textstream) file.save(CSV_FILE) LOG.info('received %s', file.filename) num_lines = sum(1 for line in open(CSV_FILE)) LOG.info('processing %d lines', num_lines) LOG.info('starting list processing thread...') csv_processor = ListProcessingThread() return redirect(url_for('display_stream')) return ''' <!doctype html> <html> <head> <title>Upload CSV List</title> </head> <body> <h1>Invite with Excel Format CSV List</h1> <h2> Version: %s </h2> <pre> FirstName,LastName,email Bob,Johnson,<EMAIL> Mike,Smith,<EMAIL> Don,Williams,<EMAIL> Scott,White,<EMAIL> Justin,Case,<EMAIL> </pre> <form method=post enctype=multipart/form-data> <table> <tr><th align='left'>API Host: </th><td><input name=apihost value=api.cloudservices.f5.com></td></tr> <tr><th align='left'>API Version: </th><td><input name=apiversion value=v1></td></tr> <tr><th align='left'>Username: </th><td><input name=username></td></tr> <tr><th align='left'>Password: </th><td><input name=password></td></tr> <tr><th align='left'>Invite as Role ID: </th><td><input name=roleid value=r-NAYFdYfiR></td></tr> <tr><th align='left'>Dry Run: </th><td><input name=dryrun type=checkbox unchecked></td></tr> <tr><th align='left'>Delay Between Invites (ms): </th><td><input type=number name=delay min=0 max=10000 value=1000></td></tr> <tr><th align='left'>CSV Invite File: </th><td><input type=file name=file></td></tr> </table> </br> <input type=submit value=Process> </form> </body> </html> ''' % VERSION @app.route('/display_stream') def display_stream(): return ''' <!doctype html> <html> <head> <title>Processing the CSV List</title> </head> <body> <p>Last Record: <span id="latest"></span></p> <p>Output Log:</p> <ul id="output"></ul> <script> var latest = document.getElementById('latest'); var output = document.getElementById('output'); var position = 0; var stop_timer = false; function handleNewData() { var xhr = new XMLHttpRequest(); xhr.open('GET', '/stream_output'); xhr.send(); xhr.onload = function() { var messages = xhr.responseText.split('\\n'); messages.slice(position, -1).forEach(function(value) { console.log(value.includes('finished processing')); if(value.includes('finished processing')) { stop_timer = true; latest.textContent = 'Done'; } else { latest.textContent = value; var item = document.createElement('li'); item.textContent = value; output.appendChild(item); } }); position = messages.length - 1; } } var timer; timer = setInterval(function() { handleNewData(); if (stop_timer) { clearInterval(timer); latest.textContent = 'Done'; } }, 1000); </script> </body> </html> ''' @app.route('/stream_output') def stream(): def generate(): with open(LOG_FILE, 'r') as log_out: yield log_out.read() return app.response_class(generate(), mimetype='text/plain') app.run(host='0.0.0.0', threaded=True) ```
{ "source": "jgruberf5/TrustedProxy", "score": 2 }
#### File: TrustedProxy/tests/test_local_trusts.py ```python import requests import time import sys import signal import argparse import logging LOG = logging.getLogger('trusted_proxy_testing') LOG.setLevel(logging.DEBUG) FORMATTER = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') LOGSTREAM = logging.StreamHandler(sys.stdout) LOGSTREAM.setFormatter(FORMATTER) LOG.addHandler(LOGSTREAM) def handler(signum, frame): LOG.info('user requested exit..') sys.exit(0) def print_local_id(): local_device_info = {} try: device_response = requests.get( 'http://127.0.0.1:8100/mgmt/shared/identified-devices/config/device-info', auth=requests.auth.HTTPBasicAuth('admin', '')) device_response.raise_for_status() local_device_info = device_response.json() except Exception as ex: LOG.error( 'local iControl REST error getting local device info.. is restjavad down?') raise ex cert_json = {} try: cert_response = requests.get( 'http://127.0.0.1:8100/mgmt/shared/device-certificates', auth=requests.auth.HTTPBasicAuth('admin', '')) cert_response.raise_for_status() cert_json = cert_response.json() except Exception as ex: LOG.error( 'local iControl REST error getting local certificates.. is restjavad down?') raise ex local_certs = [] if 'items' in cert_json: local_certs = cert_json['items'] if not local_certs: raise Exception( 'no local certificates found.. local iControl REST error') local_cert_id = '' for c in local_certs: if c['machineId'] == local_device_info['machineId']: local_cert_id = c['certificateId'] LOG.info("########### LOCAL DEVICE ###########") LOG.info("%s version %s", local_device_info['platformMarketingName'], local_device_info['restFrameworkVersion']) LOG.info("hostname: %s", local_device_info['hostname']) LOG.info("id: %s", local_device_info['machineId']) LOG.info("certificate id:%s", local_cert_id) LOG.info("####################################") return local_cert_id def print_local_proxy_trusts(): try: proxy_response = requests.get( 'http://127.0.0.1:8105/shared/TrustedProxy') proxy_response.raise_for_status() except Exception as ex: LOG.error( 'local iControl LX exception calling TrustedProxy is it installed or is restnoded down?') raise ex proxy_trusts = proxy_response.json() LOG.info("######## LOCAL PROXY TRUSTS ########") for d in proxy_trusts: sec_left = int(600 - (int(time.time()) - d['timestamp'] / 1000)) LOG.info('have a trust token for: %s:%d for another %d seconds' % (d['targetHost'], d['targetPort'], sec_left)) LOG.info("####################################") return proxy_trusts def get_remote_device_info(targetHost, targetPort): data = { 'method': 'Get', 'uri': 'https://%s:%d/mgmt/shared/identified-devices/config/device-info' % (targetHost, targetPort) } response = requests.post( 'http://127.0.0.1:8105/shared/TrustedProxy', json=data) response.raise_for_status() return response.json() def get_remote_device_certificates(targetHost, targetPort): data = { 'method': 'Get', 'uri': 'https://%s:%d/mgmt/shared/device-certificates' % (targetHost, targetPort) } response = requests.post( 'http://127.0.0.1:8105/shared/TrustedProxy', json=data) response.raise_for_status() response_json = response.json() if 'items' in response_json: return response_json['items'] else: return [] def do_you_trust_me(localonly): my_cert_id = print_local_id() devices = print_local_proxy_trusts() if not localonly: LOG.info("########## TESTING TRUSTS ##########") for d in devices: remote_device_info = get_remote_device_info( d['targetHost'], d['targetPort']) remote_certs = get_remote_device_certificates( d['targetHost'], d['targetPort']) trusted = False remote_certificate_id = '' for c in remote_certs: if c['certificateId'] == my_cert_id: trusted = True if c['machineId'] == remote_device_info['machineId']: remote_certificate_id = c['certificateId'] remote_print = "%s at %s:%d (%s [%s] machineId: %s certificateId: %s)" % ( remote_device_info['hostname'], d['targetHost'], d['targetPort'], remote_device_info['platformMarketingName'], remote_device_info['restFrameworkVersion'], remote_device_info['machineId'], remote_certificate_id ) if trusted: LOG.info("%s trusts me" % remote_print) LOG.info("####################################") def test_cycle(delay, localonly=False): try: do_you_trust_me(localonly) except Exception as ex: LOG.error("test cycle failed with %s" % ex) time.sleep(delay) def main(): ap = argparse.ArgumentParser( prog='test_local_trusts', usage='%(prog)s.py [options]', description='poll remote devices assuring trusts are established' ) ap.add_argument( '--cycles', help="The number of cycles through local trusts to test. Default is continuous.", required=False, type=int, default=0 ) ap.add_argument( '--delay', help="The delay in seconds between cycles. Default is 10 seconds.", required=False, type=int, default=10 ) ap.add_argument( '--localonly', help="Show only local device responses, do not test the remote device trusts. Default is false.", action='store_true' ) args = ap.parse_args() signal.signal(signal.SIGINT, handler) if args.cycles == 0: while True: test_cycle(args.delay, localonly=args.localonly) else: for _ in range(args.cycles): test_cycle(args.delay, localonly=args.localonly) if __name__ == '__main__': main() ```
{ "source": "jgruber/khsprcexport", "score": 2 }
#### File: jgruber/khsprcexport/create_publisher_record_cards.py ```python import os import sys import argparse import datetime import khsprcexport.constants as constants import khsprcexport.importers as importers import khsprcexport.exporters as exporters import khsprcexport.utils as utils def _generate_pioneer_reports(output_dir, fsgs, publishers, fsrecords, json_output=False, pdf_output=True, pdf_template_file=None): # collect pioneer publisher ids pioneer_ids = utils.get_pioneers_ids(fsgs) # make pioneer report header pid_headers = {} for pid in pioneer_ids: pid_headers[pid] = utils.get_publisher_header(pid, publishers) # collect reports for pioneers in prc service years pioneer_service_reports = utils.get_reports(pioneer_ids, fsrecords) # create reports output_dir = os.path.join(output_dir, 'active', 'pioneers') reports_by_pid = {} for pr in pioneer_service_reports: if pr['publisher_id'] not in reports_by_pid.keys(): header = utils.get_publisher_header(pr['publisher_id'], publishers) reports_by_pid[pr['publisher_id']] = { 'header': header, 'reports': [] } reports_by_pid[pr['publisher_id']]['reports'].append(pr) for pid in reports_by_pid.keys(): reports_by_pid[pid]['summary'] = utils.get_reports_totals_avgs( reports_by_pid[pid]['reports']) if json_output: os.makedirs(output_dir, exist_ok=True) # write out json pioneer reports for r in reports_by_pid.keys(): report_out_file = "%s.json" % reports_by_pid[r]['header']['file_name_prefix'] report_out_path = os.path.join( output_dir, report_out_file) exporters.write_json_file(report_out_path, reports_by_pid[r]) if pdf_output: os.makedirs(output_dir, exist_ok=True) # write out S-21 pdf for r in reports_by_pid.keys(): report_out_file = "%s.pdf" % reports_by_pid[r]['header']['file_name_prefix'] report_out_path = os.path.join( output_dir, report_out_file) exporters.write_pdf_file( report_out_path, reports_by_pid[r], pdf_template_file) return pioneer_ids def _generate_inactive_reports(output_dir, fsgs, publishers, fsrecords, json_output=False, pdf_output=True, pdf_template_file=None): # collect inactive publisher ids inactive_ids = utils.get_inactive_ids(fsrecords) # colect reports for inactive in prc service years inactive_service_reports = utils.get_reports(inactive_ids, fsrecords) # create reports output_dir = os.path.join(output_dir, 'inactive') reports_by_pid = {} for pr in inactive_service_reports: if pr['publisher_id'] not in reports_by_pid.keys(): header = utils.get_publisher_header(pr['publisher_id'], publishers) reports_by_pid[pr['publisher_id']] = { 'header': header, 'reports': [] } reports_by_pid[pr['publisher_id']]['reports'].append(pr) for pid in reports_by_pid.keys(): reports_by_pid[pid]['summary'] = utils.get_reports_totals_avgs( reports_by_pid[pid]['reports']) if json_output: os.makedirs(output_dir, exist_ok=True) # write out json inactive reports for r in reports_by_pid.keys(): report_out_file = "%s.json" % reports_by_pid[r]['header']['file_name_prefix'] report_out_path = os.path.join( output_dir, report_out_file) exporters.write_json_file(report_out_path, reports_by_pid[r]) if pdf_output: os.makedirs(output_dir, exist_ok=True) # write out S-21 pdf for r in reports_by_pid.keys(): report_out_file = "%s.pdf" % reports_by_pid[r]['header']['file_name_prefix'] report_out_path = os.path.join( output_dir, report_out_file) exporters.write_pdf_file( report_out_path, reports_by_pid[r], pdf_template_file) return inactive_ids def _generate_fsg_reports(output_dir, fsgs, publishers, fsrecords, json_output=False, pdf_output=True, pdf_template_file=None): # collect pioneer publisher ids pioneer_ids = utils.get_pioneers_ids(fsgs) # collect inactive publisher ids inactive_ids = utils.get_inactive_ids(fsrecords) # create a list of field service group report objects fsg_pub_ids = {} for fsg in fsgs: # get publisher ids in this service group pub_ids = [] for pub in fsg['publishers']: if (pub['id'] not in pioneer_ids) and (pub['id'] not in inactive_ids): pub_ids.append(pub['id']) # collect reports for this service group fsg_reports = utils.get_reports(pub_ids, fsrecords) # create reports fsg_output_dir = os.path.join( output_dir, 'active', utils.make_dir_name(fsg['name'])) reports_by_pid = {} for pr in fsg_reports: if pr['publisher_id'] not in reports_by_pid.keys(): reports_by_pid[pr['publisher_id']] = { 'header': utils.get_publisher_header(pr['publisher_id'], publishers), 'reports': [] } reports_by_pid[pr['publisher_id']]['reports'].append(pr) for pid in reports_by_pid.keys(): reports_by_pid[pid]['summary'] = utils.get_reports_totals_avgs( reports_by_pid[pid]['reports']) if json_output: os.makedirs(fsg_output_dir, exist_ok=True) for r in reports_by_pid.keys(): report_out_file = "%s.json" % reports_by_pid[r]['header']['file_name_prefix'] report_out_path = os.path.join( fsg_output_dir, report_out_file) exporters.write_json_file(report_out_path, reports_by_pid[r]) if pdf_output: os.makedirs(fsg_output_dir, exist_ok=True) for r in reports_by_pid.keys(): report_out_file = "%s.pdf" % reports_by_pid[r]['header']['file_name_prefix'] report_out_path = os.path.join( fsg_output_dir, report_out_file) exporters.write_pdf_file( report_out_path, reports_by_pid[r], pdf_template_file) fsg_pub_ids[fsg['id']] = pub_ids return fsg_pub_ids def _generate_summary_reports(output_dir, fsgs, publishers, fsrecords, json_output=False, pdf_output=True, pdf_template_file=None): service_years = utils.get_service_years() # initial report data dictionaries pioneer_reports = utils.generate_dummy_report() pioneer_reports['header']['name'] = 'Pioneer Summary' pioneer_reports['header']['file_name_prefix'] = 'Pioneers' auxiliary_pioneer_reports = utils.generate_dummy_report() auxiliary_pioneer_reports['header']['name'] = 'Auxiliary Pioneer Summary' auxiliary_pioneer_reports['header']['file_name_prefix'] = 'AuxiliaryPioneers' publisher_reports = utils.generate_dummy_report() publisher_reports['header']['name'] = 'Auxiliary Pioneer Summary' publisher_reports['header']['file_name_prefix'] = 'Publishers' first_sy_month_indexes = {9: 0, 10: 1, 11: 2, 12: 3, 1: 4, 2: 5, 3: 6, 4: 7, 5: 8, 6: 9, 7: 10, 8: 11} second_sy_month_indexes = {9: 12, 10: 13, 11: 14, 12: 15, 1: 16, 2: 17, 3: 18, 4: 19, 5: 20, 6: 21, 7: 22, 8: 23} # used to get active, inactive .. see comments below # index_to_month_year = { # 0: (9, service_years[0] - 1), # 1: (10, service_years[0] - 1), # 2: (11, service_years[0] - 1), # 3: (12, service_years[0] -1), # 4: (1, service_years[0]), # 5: (2, service_years[0]), # 6: (3, service_years[0]), # 7: (4, service_years[0]), # 8: (5, service_years[0]), # 9: (6, service_years[0]), # 10: (7, service_years[0]), # 11: (8, service_years[0]), # 12: (9, service_years[1] - 1), # 13: (10, service_years[1] - 1), # 14: (11, service_years[1] - 1), # 15: (12, service_years[1] -1), # 16: (1, service_years[1]), # 17: (2, service_years[1]), # 18: (3, service_years[1]), # 19: (4, service_years[1]), # 20: (5, service_years[1]), # 21: (6, service_years[1]), # 22: (7, service_years[1]), # 23: (8, service_years[1]), #} all_pub_ids = [] for fsg in fsgs: for pub in fsg['publishers']: all_pub_ids.append(pub['id']) for sr in fsrecords: if sr['publisher_id'] in all_pub_ids and sr['service_year'] in service_years: month_index = 0 if sr['service_year'] == service_years[0]: month_index = first_sy_month_indexes[sr['month']] if sr['service_year'] == service_years[1]: month_index = second_sy_month_indexes[sr['month']] if sr['pioneer']: rs = pioneer_reports['summary'][sr['service_year']] rs['total_placements'] = rs['total_placements'] + sr['placements'] rs['total_video_showings'] = rs['total_video_showings'] + \ sr['video_showings'] rs['total_hours'] = rs['total_hours'] + sr['hours'] rs['total_return_visits'] = rs['total_placements'] + \ sr['placements'] rs['total_studies'] = rs['total_placements'] + sr['placements'] rs['number_of_reports'] = rs['number_of_reports'] + 1 mr = pioneer_reports['reports'][month_index] mr['placements'] = mr['placements'] + sr['placements'] mr['video_showings'] = mr['video_showings'] + sr['video_showings'] mr['hours'] = mr['hours'] + sr['hours'] mr['return_visits'] = mr['return_visits'] + sr['hours'] mr['studies'] = mr['studies'] + sr['studies'] if isinstance(mr['remarks'], str): mr['remarks'] = 0 mr['remarks'] = mr['remarks'] + 1 elif sr['auxiliary_pioneer']: rs = auxiliary_pioneer_reports['summary'][sr['service_year']] rs['total_placements'] = rs['total_placements'] + sr['placements'] rs['total_video_showings'] = rs['total_video_showings'] + \ sr['video_showings'] rs['total_hours'] = rs['total_hours'] + sr['hours'] rs['total_return_visits'] = rs['total_placements'] + \ sr['placements'] rs['total_studies'] = rs['total_placements'] + sr['placements'] rs['number_of_reports'] = rs['number_of_reports'] + 1 mr = auxiliary_pioneer_reports['reports'][month_index] mr['placements'] = mr['placements'] + sr['placements'] mr['video_showings'] = mr['video_showings'] + sr['video_showings'] mr['hours'] = mr['hours'] + sr['hours'] mr['return_visits'] = mr['return_visits'] + sr['hours'] mr['studies'] = mr['studies'] + sr['studies'] if isinstance(mr['remarks'], str): mr['remarks'] = 0 mr['remarks'] = mr['remarks'] + 1 else: rs = publisher_reports['summary'][sr['service_year']] rs['total_placements'] = rs['total_placements'] + sr['placements'] rs['total_video_showings'] = rs['total_video_showings'] + \ sr['video_showings'] rs['total_hours'] = rs['total_hours'] + sr['hours'] rs['total_return_visits'] = rs['total_placements'] + \ sr['placements'] rs['total_studies'] = rs['total_placements'] + sr['placements'] rs['number_of_reports'] = rs['number_of_reports'] + 1 mr = publisher_reports['reports'][month_index] mr['placements'] = mr['placements'] + sr['placements'] mr['video_showings'] = mr['video_showings'] + sr['video_showings'] mr['hours'] = mr['hours'] + sr['hours'] mr['return_visits'] = mr['return_visits'] + sr['hours'] mr['studies'] = mr['studies'] + sr['studies'] if isinstance(mr['remarks'], str): mr['remarks'] = 0 mr['remarks'] = mr['remarks'] + 1 # calculate averages for sy in service_years: pioneer_reports['summary'][sy]['avg_placements'] = round( (pioneer_reports['summary'][sy]['total_placements'] / pioneer_reports['summary'][sy]['number_of_reports']), 2) pioneer_reports['summary'][sy]['avg_video_showings'] = round( (pioneer_reports['summary'][sy]['total_video_showings'] / pioneer_reports['summary'][sy]['number_of_reports']), 2) pioneer_reports['summary'][sy]['total_hours'] = round(pioneer_reports['summary'][sy]['total_hours'], 2) pioneer_reports['summary'][sy]['avg_hours'] = round( (pioneer_reports['summary'][sy]['total_hours'] / pioneer_reports['summary'][sy]['number_of_reports']), 2) pioneer_reports['summary'][sy]['avg_return_visits'] = round( (pioneer_reports['summary'][sy]['total_return_visits'] / pioneer_reports['summary'][sy]['number_of_reports']), 2) pioneer_reports['summary'][sy]['avg_studies'] = round( (pioneer_reports['summary'][sy]['total_studies'] / pioneer_reports['summary'][sy]['number_of_reports']), 2) auxiliary_pioneer_reports['summary'][sy]['avg_placements'] = round( (auxiliary_pioneer_reports['summary'][sy]['total_placements'] / auxiliary_pioneer_reports['summary'][sy]['number_of_reports']), 2) auxiliary_pioneer_reports['summary'][sy]['avg_video_showings'] = round( (auxiliary_pioneer_reports['summary'][sy]['total_video_showings'] / auxiliary_pioneer_reports['summary'][sy]['number_of_reports']), 2) auxiliary_pioneer_reports['summary'][sy]['total_hours'] = round(auxiliary_pioneer_reports['summary'][sy]['total_hours'], 2) auxiliary_pioneer_reports['summary'][sy]['avg_hours'] = round( (auxiliary_pioneer_reports['summary'][sy]['total_hours'] / auxiliary_pioneer_reports['summary'][sy]['number_of_reports']), 2) auxiliary_pioneer_reports['summary'][sy]['avg_return_visits'] = round( (auxiliary_pioneer_reports['summary'][sy]['total_return_visits'] / auxiliary_pioneer_reports['summary'][sy]['number_of_reports']), 2) auxiliary_pioneer_reports['summary'][sy]['avg_studies'] = round( (auxiliary_pioneer_reports['summary'][sy]['total_studies'] / auxiliary_pioneer_reports['summary'][sy]['number_of_reports']), 2) publisher_reports['summary'][sy]['avg_placements'] = round( (publisher_reports['summary'][sy]['total_placements'] / publisher_reports['summary'][sy]['number_of_reports']), 2) publisher_reports['summary'][sy]['avg_video_showings'] = round( (publisher_reports['summary'][sy]['total_video_showings'] / publisher_reports['summary'][sy]['number_of_reports']), 2) publisher_reports['summary'][sy]['total_hours'] = round(publisher_reports['summary'][sy]['total_hours'], 2) publisher_reports['summary'][sy]['avg_hours'] = round( (publisher_reports['summary'][sy]['total_hours'] / publisher_reports['summary'][sy]['number_of_reports']), 2) publisher_reports['summary'][sy]['avg_return_visits'] = round( (publisher_reports['summary'][sy]['total_return_visits'] / publisher_reports['summary'][sy]['number_of_reports']), 2) publisher_reports['summary'][sy]['avg_studies'] = round( (publisher_reports['summary'][sy]['total_studies'] / publisher_reports['summary'][sy]['number_of_reports']), 2) # clean up remarks labels for r in pioneer_reports['reports']: r['remarks'] = "%d reports" % r['remarks'] for r in auxiliary_pioneer_reports['reports']: r['remarks'] = "%d reports" % r['remarks'] # This doesn't work because KHS adds 6 months before a publish began publishing # So your inactive account shows high if you don't know the month they moved in for indx, r in enumerate(publisher_reports['reports']): # (month, year) = index_to_month_year[indx] # print("\n\nGetting active_inactive %d-%d\n\n" % (year, month)) # (active, inactive) = utils.get_active_inactive_publisher_count(fsrecords, year, month) # r['remarks'] = "%d reports %d active %d inactive " % (r['remarks'], active, inactive) r['remarks'] = "%d reports " % (r['remarks']) if json_output: os.makedirs(output_dir, exist_ok=True) report_out_file = "%s.json" % pioneer_reports['header']['file_name_prefix'] report_out_path = os.path.join(output_dir, report_out_file) exporters.write_json_file(report_out_path, pioneer_reports) report_out_file = "%s.json" % auxiliary_pioneer_reports['header']['file_name_prefix'] report_out_path = os.path.join(output_dir, report_out_file) exporters.write_json_file(report_out_path, auxiliary_pioneer_reports) report_out_file = "%s.json" % publisher_reports['header']['file_name_prefix'] report_out_path = os.path.join(output_dir, report_out_file) exporters.write_json_file(report_out_path, publisher_reports) if pdf_output: os.makedirs(output_dir, exist_ok=True) report_out_file = "%s.pdf" % pioneer_reports['header']['file_name_prefix'] report_out_path = os.path.join(output_dir, report_out_file) exporters.write_pdf_file( report_out_path, pioneer_reports, pdf_template_file) report_out_file = "%s.pdf" % auxiliary_pioneer_reports['header']['file_name_prefix'] report_out_path = os.path.join(output_dir, report_out_file) exporters.write_pdf_file( report_out_path, auxiliary_pioneer_reports, pdf_template_file) report_out_file = "%s.pdf" % publisher_reports['header']['file_name_prefix'] report_out_path = os.path.join(output_dir, report_out_file) exporters.write_pdf_file( report_out_path, publisher_reports, pdf_template_file) ''' Parse command arguments and excute export workflow ''' def main(): ap = argparse.ArgumentParser( prog='create_publisher_record_cards', usage='%(prog)s.py [options]', description='reads KHS DBF files and creates S-21-E pdfs in a virtual card file', ) ap.add_argument( '--khsdatadir', help='path to KHS data files', required=True ) ap.add_argument( '--outputdir', help='path to output virtual card file', default='./prc_cardbox', ) ap.add_argument( '--json', help='create reports json', action='store_true' ) ap.add_argument( '--pdf', help='create S-21-E PDFs', action='store_true', ) ap.add_argument( '--pdftemplate', help='S-21-E.pdf original PDF template file - default is ./templates/S-21_E.pdf', default=os.path.join(os.path.dirname(os.path.realpath(__file__)), 'templates', 'S-21-E.pdf'), required=False ) ap.add_argument( '--zip', help='create a zip archive the output folder', action='store_true' ) ap.add_argument( '--zipfilename', help='the zip file to create', required=False, default='prcs-%s.zip' % datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") ) args = ap.parse_args() required_files = [ os.path.join(args.khsdatadir, constants.FSGROUP_FILE), os.path.join(args.khsdatadir, constants.NAMES_FILE), os.path.join(args.khsdatadir, constants.FIELD_SERVICE_FILE) ] if args.pdf: required_files.append(args.pdftemplate) for file_path in required_files: if not os.path.exists(file_path): print("\nCan not find %s, a required file\n" % file_path) sys.exit(1) # load data from KHS data (fsgs, publishers, fsrecords) = importers.load_khs_data(args.khsdatadir) # generate the pionner PRC reports _generate_pioneer_reports( args.outputdir, fsgs, publishers, fsrecords, args.json, args.pdf, args.pdftemplate) # generate the inactive PRC reports _generate_inactive_reports( args.outputdir, fsgs, publishers, fsrecords, args.json, args.pdf, args.pdftemplate) # generate the fields service group reports _generate_fsg_reports(args.outputdir, fsgs, publishers, fsrecords, args.json, args.pdf, args.pdftemplate) # generate the summary PRC reports _generate_summary_reports(args.outputdir, fsgs, publishers, fsrecords, args.json, args.pdf, args.pdftemplate) # optionally zip up the reports if args.zip: utils.zipdir(args.zipfilename, args.outputdir) ''' The script was executed from the CLI directly, run main function ''' if __name__ == "__main__": main() ``` #### File: khsprcexport/khsprcexport/importers.py ```python import os import datetime from khsprcexport import constants from dbfread import DBF ''' Export field service group list from DBF files. Each field service group in the Fsgroups.DBF file gets a dictionary in the list. The group dictionary includes the group ID, the group name, and list of publishers in the group. The publishers are taken from the Names.DBF file. The pulishers list entry is a dictionary with the publishers ID, first and last name, gender (M|F), annointed (boolean), elder (boolean), ministerial_servant (boolean), regular_pioneer (boolean), date of birth (YYYY-MM-DD), and date of baptism (YYYY-MM-DD). Example: [ { "id": 1, "name": "Unassigned", "publishers": [ { "id": 445, "last_name": "Doe", "first_name": "John", "gender": "M", "annointed": false, "elder": false, "ministerial_servant": false, "regular_pioneer": false, "date_of_birth": "2000-01-01", "date_of baptism": "2015-01-01" } ] } .... ] ''' def create_field_service_groups(fsg_file_path, names_path, excludes=[]): names_db = DBF(names_path) # build a dictionary of fields we need for the PRC field_index = {} for idx, f in enumerate(names_db.field_names): field_index[f] = idx fsg_id_index = field_index['FSGROUP_ID'] last_name_index = field_index['LASTNAME'] first_name_index = field_index['FIRSTNAME'] gender_index = field_index['GENDER'] anointed_index = field_index['ANOINTED'] elder_index = field_index['ELDER'] ministerial_servant_index = field_index['SERVANT'] regular_pioneer_index = field_index['PIONEER'] do_birth_index = field_index['DOB'] baptized_index = field_index['BAPTIZED'] unbaptized_publisher_index = field_index['UBP'] do_baptism_index = field_index['BAPTIZEDON'] deceased_index = field_index['DECEASED'] regular_aux_pioneer_index = field_index['AUX_PIONEE'] moved_date_index = field_index['MOVE_DATE'] publishers = {} fsg_n = {} for rec in names_db.records: vals = list(rec.values()) fsg_id = vals[fsg_id_index] if not fsg_n or fsg_id not in fsg_n.keys(): fsg_n[fsg_id] = [] male = False female = False if vals[gender_index] == 2: female = True else: male = True anointed = False other_sheep = True if vals[anointed_index]: anointed = True other_sheep = False elder = False if vals[elder_index]: elder = True ministerial_servant = False if vals[ministerial_servant_index]: ministerial_servant = True regular_pioneer = False if vals[regular_pioneer_index]: regular_pioneer = True baptized = False if vals[baptized_index]: baptized = True unbaptized_publisher = False if vals[unbaptized_publisher_index]: unbaptized_publisher = True regular_aux_pioneer = False if vals[regular_aux_pioneer_index]: regular_aux_pioneer = True do_birth = vals[do_birth_index] if do_birth: do_birth = do_birth.strftime("%Y-%m-%d") else: do_birth = '' do_baptism = vals[do_baptism_index] if do_baptism: do_baptism = do_baptism.strftime("%Y-%m-%d") else: if unbaptized_publisher: do_baptism = 'UBP' else: do_baptism = '' moved_date = vals[moved_date_index] if moved_date: moved_date = moved_date.strftime("%Y-%m-%d") deceased = False if vals[deceased_index]: deceased = True if not deceased and not moved_date: publishers[vals[0]] = { 'id': vals[0], 'last_name': vals[last_name_index], 'first_name': vals[first_name_index], 'male': male, 'female': female, 'anointed': anointed, 'other_sheep': other_sheep, 'elder': elder, 'ministerial_servant': ministerial_servant, 'regular_pioneer': regular_pioneer, 'regular_auxiliary_pioneer': regular_aux_pioneer, 'date_of_birth': do_birth, 'baptized': baptized, 'unbatized_publisher': unbaptized_publisher, 'date_immersed': do_baptism } fsg_n[fsg_id].append( publishers[vals[0]] ) fsgs = [] fsg_db = DBF(fsg_file_path) for rec in fsg_db.records: fsg = list(rec.values()) if fsg[1] not in excludes: fsgs.append( {'id': fsg[0], 'name': fsg[1], 'publishers': fsg_n[fsg[0]]}) return (fsgs, publishers) ''' Export field service reports from the Field_service.DBF file. Each field service report is added to a list of report dictionaries. Each report dictionary contains the publisher_id who submitted the report, the year(int), the month(int), the placements(int), the video_showings(int), hours(int), return_visits(int), studies(int), and a remarks field (string). Example: [ { "publisher_id": 674, "year": "2016", "month": "09", "placements": 0, "video_showings": 0, "hours": 7.0, "return_visits": 2, "studies": 0, "remarks": "" } ... ] ''' def create_field_service_reports(fs_file_path): fs_db = DBF(fs_file_path) # build a dictionary of fields we need for the PRC field_index = {} for idx, f in enumerate(fs_db.field_names): field_index[f] = idx publisher_id_index = field_index['NAMES_ID'] year_month_index = field_index['YEARMONTH'] placements_index = field_index['PLACEMENTS'] video_showings_index = field_index['VIDEOS'] hours_index = field_index['HOURS'] return_visits_index = field_index['RVS'] studies_index = field_index['STUDIES'] remarks_index = field_index['REMARKS'] par_index = field_index['PAR'] fs_reports = [] for rec in fs_db.records: vals = list(rec.values()) auxiliary_pioneer = False pioneer = False if vals[par_index] == 2: auxiliary_pioneer = True if vals[par_index] == 3: pioneer = True year = int(vals[year_month_index][0:4]) month = int(vals[year_month_index][-2:]) service_year = year if month > 8: service_year = year + 1 if vals[placements_index] is None: vals[placements_index] = 0 if vals[video_showings_index] is None: vals[video_showings_index] = 0 if vals[hours_index] is None: vals[hours_index] = 0 if vals[return_visits_index] is None: vals[return_visits_index] = 0 if vals[studies_index] is None: vals[studies_index] = 0 fs_reports.append( { 'publisher_id': vals[publisher_id_index], 'year': year, 'month': month, 'service_year': service_year, 'placements': vals[placements_index], 'video_showings': vals[video_showings_index], 'hours': vals[hours_index], 'return_visits': vals[return_visits_index], 'studies': vals[studies_index], 'remarks': vals[remarks_index], 'pioneer': pioneer, 'auxiliary_pioneer': auxiliary_pioneer, 'timestamp': datetime.datetime.strptime("%d-%d" % (year, month), '%Y-%m').timestamp() } ) return fs_reports def populate_fsgs(khsdatadir=None, exclude_fsg_names=[]): (fsgs, publishers) = create_field_service_groups( os.path.join(khsdatadir, constants.FSGROUP_FILE), os.path.join(khsdatadir, constants.NAMES_FILE), exclude_fsg_names) return (fsgs, publishers) def populate_fsrecs(khsdatadir): return create_field_service_reports( os.path.join(khsdatadir, constants.FIELD_SERVICE_FILE)) def load_khs_data(khsdatadir): (fsgs, publishers) = populate_fsgs(khsdatadir) fsrecs = populate_fsrecs(khsdatadir) return (fsgs, publishers, fsrecs) ```
{ "source": "jgru/dfxml_python", "score": 3 }
#### File: dfxml/bin/deidentify_xml.py ```python import typing private_dirs = ["home/","usr/home","Users"] ok_top_paths_win = ["program files/","System","Windows"] ok_top_paths_mac = ["bin/","usr","etc","private","applications","developer",'bin','sbin','lib','dev'] ok_top_paths = ok_top_paths_win + ok_top_paths_mac + ['$orphanfiles'] acceptable_extensions = ["exe","dll","sys","com","hlp"] import os.path, os, sys partdir : typing.Dict[str, str] = dict() def sanitize_part(part): """Sanitize a part of a pathname in a consistent manner""" if part not in partdir: partdir[part] = "P%07d" % (len(partdir)+1) return partdir[part] def sanitize_filename(fname): """Given a filename, sanitize each part and return it.""" ofn = fname jfn = fname if jfn[0]=='/': jfn=jfn[1:] pathok = False for p in ok_top_paths: if jfn.lower().startswith(p): pathok = True if not pathok: # if the path is not okay, replace all of the parts # and the name up to the .ext parts = fname.split("/") parts[:-1] = [sanitize_part(s) for s in parts[:-1]] (root,ext) = os.path.splitext(parts[-1]) if ext not in acceptable_extensions: parts[-1] = sanitize_part(root) + ext fname = "/".join(parts) if ofn[0]=='/' and fname[0]!='/': fname = "/" + fname return fname class xml_sanitizer: """Read and write the XML, but sanitize the filename elements.""" def __init__(self,out): self.out = out self.cdata = "" def _start_element(self, name, attrs): """ Handles the start of an element for the XPAT scanner""" s = ['<',name] if attrs: for (a,v) in attrs.items(): if '"' not in v: s += [' ',a,'="',v,'"'] else: s += [" ",a,"='",v,"'"] s += ['>'] self.out.write("".join(s)) self.cdata = "" # new element def _end_element(self, name): """Handles the end of an element for the XPAT scanner""" if name=="filename": self.cdata = sanitize_filename(self.cdata) if self.cdata=="\n": self.cdata="" self.out.write("".join([self.cdata,'</',name,'>'])) self.cdata = "" def _char_data(self, data): """Handles XML data""" self.cdata += data def process_xml_stream(self,xml_stream): "Run the reader on a given XML input stream" import xml.parsers.expat p = xml.parsers.expat.ParserCreate() p.StartElementHandler = self._start_element p.EndElementHandler = self._end_element p.CharacterDataHandler = self._char_data p.ParseFile(xml_stream) if __name__=="__main__": from optparse import OptionParser global options parser = OptionParser() parser.add_option("-t","--test",help='Test a specific pathanme to sanitize') (options,args) = parser.parse_args() if options.test: if os.path.isdir(options.test): for (dirpath,dirnames,filenames) in os.walk(options.test): for filename in filenames: fn = dirpath+"/"+filename print("%s\n %s" % (fn,sanitize_filename(fn))) x = xml_sanitizer(sys.stdout) x.process_xml_stream(open(args[0],'rb')) ``` #### File: dfxml/bin/idifference2.py ```python __version__ = "2.0.0alpha2" import sys import logging import os _logger = logging.getLogger(os.path.basename(__file__)) import dfxml.objects as Objects import make_differential_dfxml import summarize_differential_dfxml def ignorable_name(fn): """Filter out recognized pseudo-file names, accommodating user request for including dotdirs.""" if fn is None: return False if args.include_dotdirs and os.path.basename(fn) in [".", ".."]: return False return make_differential_dfxml.ignorable_name(fn) def main(): import argparse parser = argparse.ArgumentParser(description='%prog [options] file1 file2 (files can be xml or image files)') returningsoon = parser.add_argument_group("Returning soon", "Some of the options in idifference were not carried forward in the reimplementation. Please feel free to request these features be re-implemented if you need them.") parser.add_argument("-d","--debug",help="Enable debug printing",action='store_true') parser.add_argument("-x","--xml",help="Specify output file for DFXML manifest of differences",dest="xmlfilename") parser.add_argument("--include-dotdirs",help="Include files with names ending in '/.' and '/..'",action="store_true", default=False) parser.add_argument("--sort-by", help="Sorts reported file lists. Pass one of these arguments: \"times\" or \"paths\".") parser.add_argument("--summary",help="output summary statistics of file system changes",action="store_true", default=False) parser.add_argument("--timestamp",help="output all times in Unix timestamp format; otherwise use ISO 8601",action="store_true") returningsoon.add_argument("-n","--notimeline",help="do not generate a timeline",action="store_true") returningsoon.add_argument("-T","--tararchive",help="create tar archive file of new/changed files",dest="tarfile") returningsoon.add_argument("-Z","--zipfile",help="create ZIP64 archive file of new/changed files",dest="zipfile") returningsoon.add_argument("--html",help="specify output in HTML",action="store_true") returningsoon.add_argument("--noatime",help="Do not include atime changes",action="store_true") returningsoon.add_argument("--imagefile",help="specifies imagefile or file2 is an XML file and you are archiving") parser.add_argument("infiles", nargs="+") args = parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.debug else logging.INFO) if len(args.infiles) != 2: raise NotImplementedError("Sorry, but this version of idifference can only run on two disk images, not a longer sequence. Please feel free to request longer sequences be re-implemented if you need it.") if args.tarfile: raise NotImplementedError("Sorry, but the tarring argument was not carried forward in the re-implementation. Please feel free to request this feature be re-implemented if you need it.") if args.zipfile: raise NotImplementedError("Sorry, but the zipping argument was not carried forward in the re-implementation. Please feel free to request this feature be re-implemented if you need it.") #TODO The Extractor program should get a Zip-handling function to handle this flag. if args.html: raise NotImplementedError("Sorry, but the HTML output argument was not carried forward in the re-implementation. Please feel free to request this feature be re-implemented if you need it.") if args.noatime: raise NotImplementedError("Sorry, but the ignore-atime argument was not carried forward in the re-implementation. Please feel free to request this feature be re-implemented if you need it.") if args.notimeline: raise NotImplementedError("Sorry, but the notimeline argument was not carried forward in the re-implementation. Please feel free to request this feature be re-implemented if you need it.") if args.imagefile: raise NotImplementedError("Sorry, but the imagefile argument was not carried forward in the re-implementation. Please feel free to request this feature be re-implemented if you need it.") pre = None post = None for infile in args.infiles: pre = post post = infile _logger.info(">>> Reading %s." % infile) if not pre is None: diffdfxml = make_differential_dfxml.make_differential_dfxml( pre, post, diff_mode="idifference", ignore_filename_function=ignorable_name ) diffdfxml.program = sys.argv[0] diffdfxml.program_version = __version__ if args.xmlfilename: _logger.debug("Opening temp file for writing.") with open(args.xmlfilename, "w") as fh: diffdfxml.print_dfxml(output_fh=fh) summarize_differential_dfxml.report( diffdfxml, sort_by=args.sort_by, summary=args.summary, timestamp=args.timestamp ) if __name__=="__main__": main() ``` #### File: dfxml/bin/summarize_differential_dfxml.py ```python __version__ = "0.8.4" import collections import copy import logging import os from dfxml import objects as Objects import dfxml.bin.idifference as idifference _logger = logging.getLogger(os.path.basename(__file__)) #Only issue a potentially verbose warning once _nagged_timestamp_format = False class FOCounter(object): "Counter for FileObjects. Does not count differences (differential annotations)." def __init__(self): self._inodes = set() self._fo_tally = 0 self._fo_unalloc_unmatch_tally = 0 self._fo_allocation_tallies_inode = {True:0, False:0, None:0} self._fo_allocation_tallies_name = {True:0, False:0, None:0} def add(self, obj): assert isinstance(obj, Objects.FileObject) self._inodes.add((obj.partition, obj.inode)) self._fo_tally += 1 self._fo_allocation_tallies_inode[obj.alloc_inode] += 1 self._fo_allocation_tallies_name[obj.alloc_name] += 1 if not (obj.alloc_name and obj.alloc_inode) and obj.original_fileobject is None: self._fo_unalloc_unmatch_tally += 1 @property def inode_tally(self): return len(self._inodes) @property def fo_tally(self): return self._fo_tally @property def fo_unalloc_unmatch_tally(self): return self._fo_unalloc_unmatch_tally @property def fo_tally_alloc_inode(self): return self._fo_allocation_tallies_inode[True] @property def fo_tally_alloc_name(self): return self._fo_allocation_tallies_name[True] @property def fo_tally_nullalloc_inode(self): return self._fo_allocation_tallies_inode[None] @property def fo_tally_nullalloc_name(self): return self._fo_allocation_tallies_name[None] @property def fo_tally_unalloc_inode(self): return self._fo_allocation_tallies_inode[False] @property def fo_tally_unalloc_name(self): return self._fo_allocation_tallies_name[False] def report(dfxmlobject, sort_by=None, summary=None, timestamp=None): new_files = [] deleted_files = [] deleted_files_matched = [] deleted_files_unmatched = [] renamed_files = [] renamed_files_directory = [] renamed_files_regular = [] renamed_files_other = [] renamed_files_type_changed = [] renamed_files_type_changes = collections.defaultdict(int) #Key: (old name_type, new name_type); value: counter renamed_files_content_matches = [] modified_files = [] changed_files = [] unchanged_files = [] obj_alloc_counters = [FOCounter(), FOCounter()] matched_files_tally = 0 def _is_matched(obj): _matched = "matched" in obj.annos return _matched #Group objects by differential annotations for obj in dfxmlobject: if isinstance(obj, Objects.FileObject): if "matched" in obj.annos: matched_files_tally += 1 #_logger.debug("Inspecting %s for changes" % obj) if "new" in obj.annos: new_files.append(obj) elif "deleted" in obj.annos: deleted_files.append(obj) if _is_matched(obj): deleted_files_matched.append(obj) else: deleted_files_unmatched.append(obj) elif "renamed" in obj.annos: #Count content matches if obj.original_fileobject.sha1 == obj.sha1: renamed_files_content_matches.append(obj) renamed_files.append(obj) if obj.name_type != obj.original_fileobject.name_type: renamed_files_type_changed.append(obj) renamed_files_type_changes[(obj.original_fileobject.name_type or "", obj.name_type or "")] += 1 elif obj.name_type == "r": renamed_files_regular.append(obj) elif obj.name_type == "d": renamed_files_directory.append(obj) else: renamed_files_other.append(obj) elif "modified" in obj.annos: modified_files.append(obj) elif "changed" in obj.annos: changed_files.append(obj) else: unchanged_files.append(obj) #Count files of the post image if "deleted" in obj.annos: #Don't count the "Ghost" files created for deleted files that weren't matched between images if _is_matched(obj): obj_alloc_counters[1].add(obj) else: obj_alloc_counters[1].add(obj) #Count files of the baseline image if obj.original_fileobject: obj_alloc_counters[0].add(obj.original_fileobject) elif isinstance(obj, Objects.VolumeObject): #TODO pass def _sortkey_singlefi(): """Return a sorting key function, fit for use in sorted() on a list of FileObjects.""" def _key_by_path(fi): return ( fi.filename or "", str(fi.mtime) or "n/a", (fi.original_fileobject and fi.original_fileobject.filename) or "", (fi.original_fileobject and str(fi.original_fileobject.mtime)) or "n/a" ) def _key_by_times(fi): return ( str(fi.mtime) or "n/a", str(fi.crtime) or "n/a", fi.filename, (fi.original_fileobject and str(fi.original_fileobject.mtime)) or "n/a", (fi.original_fileobject and str(fi.original_fileobject.crtime)) or "n/a", (fi.original_fileobject and fi.original_fileobject.filename) or "" ) if sort_by == "path": return _key_by_path else: #Default: "times" return _key_by_times def _format_timestamp(t): """Takes a timestamp, returns a string.""" if t is None: return "n/a" if timestamp: if t.timestamp: return str(t.timestamp) else: if not _nagged_timestamp_format: _nagged_timestamp_format = True _logger.warning("Tried to format a Unix timestamp, but failed.") return "n/a" else: return str(t) idifference.h2("New files:") new_files_sorted = sorted(new_files, key=_sortkey_singlefi()) res = [(_format_timestamp(obj.mtime), obj.filename or "", obj.filesize) for obj in new_files_sorted] idifference.table(res) idifference.h2("Deleted files:") deleted_files_sorted = sorted(deleted_files, key=_sortkey_singlefi()) res = [( obj.original_fileobject.mtime, obj.original_fileobject.filename or "", obj.original_fileobject.filesize ) for obj in deleted_files_sorted] idifference.table(res) def _sortkey_renames(): def _key_by_path(fi): return ( fi.original_fileobject.filename or "", fi.filename or "", str(fi.mtime) or "", str(fi.original_fileobject.mtime) or "" ) def _key_by_times(fi): return ( str(fi.mtime) or "n/a", str(fi.ctime) or "n/a", str(fi.atime) or "n/a", str(fi.dtime) or "n/a", str(fi.crtime) or "n/a", fi.original_fileobject.filename or "", fi.filename or "" ) if sort_by == "path": return _key_by_path else: #Default: "times" return _key_by_times def _enumerated_changes(filelist): res = [] for fi in filelist: diffs_remaining = copy.deepcopy(fi.diffs) if "filename" in diffs_remaining: diffs_remaining -= {"filename"} res.append(("Renamed", "", fi.original_fileobject.filename, "renamed to", fi.filename)) for timeattr in Objects.TimestampObject.timestamp_name_list: if timeattr in diffs_remaining: diffs_remaining -= {timeattr} res.append(( fi.filename or "", "%s changed, " % timeattr, _format_timestamp(getattr(fi.original_fileobject, timeattr)), "->", _format_timestamp(getattr(fi, timeattr)) )) for diff in sorted(diffs_remaining): diffs_remaining -= {diff} res.append(( fi.filename or "", "%s changed, " % diff, getattr(fi.original_fileobject, diff) or "" "->", getattr(fi, diff) or "", )) return res idifference.h2("Renamed files:") renamed_files_sorted = sorted(renamed_files, key=_sortkey_renames()) res = _enumerated_changes(renamed_files_sorted) idifference.table(res, break_on_change=True) idifference.h2("Files with modified contents:") modified_files_sorted = sorted(modified_files, key=_sortkey_singlefi()) res = _enumerated_changes(modified_files_sorted) idifference.table(res, break_on_change=True) idifference.h2("Files with changed properties:") changed_files_sorted = sorted(changed_files, key=_sortkey_singlefi()) res = _enumerated_changes(changed_files_sorted) idifference.table(res, break_on_change=True) if summary: idifference.h2("Summary:") summ_recs = [ ("Prior image's file (file object) tally", str(obj_alloc_counters[0].fo_tally)), (" Inode allocation", ""), (" Allocated", str(obj_alloc_counters[0].fo_tally_alloc_inode)), (" Unallocated", str(obj_alloc_counters[0].fo_tally_unalloc_inode)), (" Unknown", str(obj_alloc_counters[0].fo_tally_nullalloc_inode)), (" Name allocation", ""), (" Allocated", str(obj_alloc_counters[0].fo_tally_alloc_name)), (" Unallocated", str(obj_alloc_counters[0].fo_tally_unalloc_name)), (" Unknown", str(obj_alloc_counters[0].fo_tally_nullalloc_name)), (" Unallocated, unmatched", obj_alloc_counters[0].fo_unalloc_unmatch_tally), ("Prior image's file (inode) tally", str(obj_alloc_counters[0].inode_tally)), ("Current image's file (file object) tally", str(obj_alloc_counters[1].fo_tally)), (" Inode allocation", ""), (" Allocated", str(obj_alloc_counters[1].fo_tally_alloc_inode)), (" Unallocated", str(obj_alloc_counters[1].fo_tally_unalloc_inode)), (" Unknown", str(obj_alloc_counters[1].fo_tally_nullalloc_inode)), (" Name allocation", ""), (" Allocated", str(obj_alloc_counters[1].fo_tally_alloc_name)), (" Unallocated", str(obj_alloc_counters[1].fo_tally_unalloc_name)), (" Unknown", str(obj_alloc_counters[1].fo_tally_nullalloc_name)), (" Unallocated, unmatched", obj_alloc_counters[1].fo_unalloc_unmatch_tally), ("Current image's file (inode) tally", str(obj_alloc_counters[1].inode_tally)), ("Matched files", str(matched_files_tally)), ("", ""), ("New files", str(len(new_files))), ("Deleted files", str(len(deleted_files))), (" Unmatched", str(len(deleted_files_unmatched))), (" Matched", str(len(deleted_files_matched))), ("Renamed files", str(len(renamed_files))), (" Directories", str(len(renamed_files_directory))), (" Regular files", str(len(renamed_files_regular))), (" Other", str(len(renamed_files_other))), (" Type changed", str(len(renamed_files_type_changed))), ] for key in sorted(renamed_files_type_changes.keys()): summ_recs.append((" %s -> %s" % key, str(renamed_files_type_changes[key]))) summ_recs += [ (" Content matches", str(len(renamed_files_content_matches))), ("Files with modified content", str(len(modified_files))), ("Files with changed file properties", str(len(changed_files))) ] idifference.table(summ_recs) def main(): global args dfxmlobject = Objects.parse(args.infile) report(dfxmlobject, sort_by=args.sort_by, summary=args.summary) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("-d", "--debug", action="store_true") parser.add_argument("--sort-by", help="Sorts file lists. Pass one of these arguments: \"times\" or \"path\".") parser.add_argument("--summary",help="output summary statistics of file system changes",action="store_true", default=False) parser.add_argument("infile", help="A differential DFXML file. Should include the optional 'delta:matched' attributes for counts to work correctly.") args = parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.debug else logging.INFO) if not args.infile.endswith("xml"): raise Exception("Input file should be a DFXML file, and should end with 'xml': %r." % args.infile) if not os.path.exists(args.infile): raise Exception("Input file does not exist: %r." % args.infile) main() ``` #### File: dfxml/tests/ByteRuns_test.py ```python __version__ = "0.1.1" import os import sys import copy import dfxml.objects as Objects def test_all(): br0 = Objects.ByteRun() br0.img_offset = 0 br0.len = 20 br1 = Objects.ByteRun() br1.img_offset = 20 br1.len = 30 br2 = Objects.ByteRun() br2.img_offset = 50 br2.len = 20 brs_contiguous = Objects.ByteRuns() brs_contiguous.append(br0) brs_contiguous.append(br1) brs_contiguous.append(br2) brs_glommed = Objects.ByteRuns() brs_glommed.glom(br0) brs_glommed.glom(br1) brs_glommed.glom(br2) brs_discontig = Objects.ByteRuns() brs_discontig.glom(br0) brs_discontig.glom(br2) brs_backward = Objects.ByteRuns() brs_backward.glom(br1) brs_backward.glom(br0) assert len(brs_contiguous) == 3 assert len(brs_glommed) == 1 assert len(brs_discontig) == 2 assert len(brs_backward) == 2 assert brs_glommed[0].len == 70 assert brs_backward[0].len == 30 assert brs_backward[1].len == 20 br_facet_data = Objects.ByteRuns(facet="data") br_facet_name = Objects.ByteRuns(facet="name") br_facet_default = Objects.ByteRuns() assert br_facet_data == br_facet_default assert br_facet_name != br_facet_data assert br_facet_name != br_facet_default ``` #### File: dfxml/tests/diffing_FileObject_test.py ```python __version__ = "0.1.1" import sys import logging import os import dfxml.objects as Objects def test_all(): logging.basicConfig(level=logging.DEBUG) _logger = logging.getLogger(os.path.basename(__file__)) f0 = Objects.FileObject() fo = Objects.FileObject() pfo = Objects.FileObject() pfo.inode = 234 f0.parent_object = pfo f0.filename = "test file" f0.error = "Neither a real file, nor real error" f0.partition = 2 f0.id = 235 f0.name_type = "r" f0.filesize = 1234 f0.unalloc = 0 f0.unused = 0 f0.orphan = 0 f0.compressed = 1 f0.inode = 6543 f0.libmagic = "data" f0.meta_type = 8 f0.mode = 755 f0.nlink = 1 f0.uid = "S-1-234-etc" f0.gid = "S-2-234-etc" f0.mtime = "1999-12-31T12:34:56Z" f0.ctime = "1998-12-31T12:34:56Z" f0.atime = "1997-12-31T12:34:56Z" f0.crtime = "1996-12-31T12:34:56Z" f0.seq = 3 f0.dtime = "1995-12-31T12:34:56Z" f0.bkup_time = "1994-12-31T12:34:56Z" f0.link_target = "Nonexistent file" f0.libmagic = "Some kind of compressed" f0.md5 = "db72d20e83d0ae39771403bc4cdde040" f0.sha1 = "866e1f426b2380aaf74a091aa0f39f62ae8a2de7" f0.sha256 = "4bc5996997ab9196b2d998b05ef302ed1dc167d74ec881533ee35008b5168630" f0.sha384 = "2ec378692eeae4b855f58832664f95bb85411caac8dcebe7cd3916e915559d3f0ccda688a1fad1e3f47801fe15298ac0" #fo.brs = brs #TODO _logger.debug("f0 = %r" % f0) _logger.debug("f0.to_dfxml() = %r" % f0.to_dfxml()) e0 = f0.to_Element() _logger.debug("e0 = %r" % e0) #f1 = eval(repr(f0)) #TODO The recursive evals cause namespace confusion (Objects.foo); replace the next two lines when that's settled. f1 = Objects.FileObject() f1.populate_from_Element(e0) f2 = Objects.FileObject() f2.populate_from_Element(e0) #The id property should not be included in the comparisons f1.id = 111 f1.alloc = False f2.mtime = "2999-12-31T12:34:56Z" f2.md5 = "593c8fe4a2236f3eeba7f4577b663876" f2.sha1 = "0c0c20c03bdb8913da8ea120bd59ba5f596deceb" f2.sha256 = "4f6dcb46e0f7b0ad748d083f6e92d7df586d0298a94acc3795287ff156614540" f2.sha384 = "2af87ca47d01989009caf3927a84be215528a53629dd935a828921ac0a4b22202bcba20d38fdd16d719b8c4241fcdacb" _logger.debug("f1 = %r" % f1) d01 = f0.compare_to_other(f1) _logger.debug("d01 = %r" % d01) assert d01 == set(["alloc"]) or d01 == set(["alloc", "unalloc"]) d02 = f0.compare_to_other(f2) _logger.debug("d02 = %r" % d02) assert d02 == set(["mtime", "md5", "sha1", "sha256", "sha384"]) f2.original_fileobject = f0 f2.compare_to_original() _logger.debug("f2.diffs = %r" % f2.diffs) assert f2.diffs == d02 #TODO include byte_runs if __name__=="__main__": test_all() ``` #### File: dfxml/tests/FileObject_externals_test.py ```python __version__ = "0.1.1" import sys import logging import os import xml.etree.ElementTree as ET import dfxml.objects as Objects def test_all(): _logger = logging.getLogger(os.path.basename(__file__)) logging.basicConfig(level=logging.DEBUG) XMLNS_TEST_CLAMSCAN = "file:///opt/local/bin/clamscan" XMLNS_TEST_UNREGGED = "file:///dev/random" ET.register_namespace("clam", XMLNS_TEST_CLAMSCAN) fi = Objects.FileObject() fi.filename = "clamscanned" #Try and fail to add a non-Element to the list. failed = None _logger.debug("Before: " + repr(fi.externals)) try: fi.externals.append(1) failed = False except TypeError: failed = True except: failed = True raise _logger.debug("After: " + repr(fi.externals)) assert failed failed = None #Dummy up a non-DFXML namespace element. This should be appendable. e = ET.Element("{%s}scan_results" % XMLNS_TEST_CLAMSCAN) e.text = "Clean" fi.externals.append(e) #Dummy up a DFXML namespace element. This should not be appendable (the schema specifies other namespaces). e = ET.Element("{%s}filename" % Objects.dfxml.XMLNS_DFXML) e.text = "Superfluous name" _logger.debug("Before: " + repr(fi.externals)) try: fi.externals.append(e) failed = False except ValueError: failed = True except: failed = True raise _logger.debug("After: " + repr(fi.externals)) assert failed failed = None #Add an element with the colon prefix style e = ET.Element("clam:version") e.text = "20140101" fi.externals.append(e) #Add an element that doesn't have an ET-registered namespace prefix. e = ET.Element("{%s}test2" % XMLNS_TEST_UNREGGED) e.text = "yes" fi.externals.append(e) #Test serialization s = Objects._ET_tostring(fi.to_Element()) #TODO Maybe this should be more than an internal function. _logger.debug(s) if s.find("scan_results") == -1: raise ValueError("Serialization did not output other-namespace element 'scan_results'.") if s.find("clam:version") == -1: raise ValueError("Serialization did not output prefixed element 'clam:version'.") if s.find("test2") == -1: raise ValueError("Serialization did not output unregistered-prefix element 'test2'.") #Test de-serialization fir = Objects.FileObject() x = ET.XML(s) fir.populate_from_Element(x) _logger.debug("De-serialized: %r." % fir.externals) assert len(fir.externals) == 3 if __name__=="__main__": test_all() ``` #### File: dfxml_python/tests/test_reads.py ```python import os import pytest import dfxml import dfxml.objects def nop(x): pass @pytest.fixture def top_srcdir() -> str: srcdir = os.path.dirname(__file__) retval = os.path.join(srcdir, "..") assert os.path.isdir(os.path.join(retval, "samples")), "Hard-coded expected path not found, '${top_srcdir}/samples/'." return retval @pytest.fixture def difference_test_0_filepath(top_srcdir) -> str: retval = os.path.join(top_srcdir, "samples", "difference_test_0.xml") assert os.path.exists(retval), "Hard-coded path to file did not find expected file, '${top_srcdir}/samples/difference_test_0.xml'." return retval def test_read_dfxml(difference_test_0_filepath): """ This test confirms that the DFXML pip-managed packaging exposes the dfxml package and the objects.py module. """ with open(difference_test_0_filepath, "rb") as fh: dfxml.read_dfxml(fh, callback=nop) def test_objects_iterparse(difference_test_0_filepath): """ This test confirms that the DFXML pip-managed packaging exposes the dfxml package's objects.py module. """ for (event, obj) in dfxml.objects.iterparse(difference_test_0_filepath): pass ```
{ "source": "jgrugru/encrypto-env", "score": 3 }
#### File: encrypto-env/encryptoenv/CLI.py ```python import argparse from os import getcwd from .EnvFile import EnvFile cli_version = '0.0.1-beta' class CLI(): """ Class that filters through the command line options. The run_script function is the lead function, calling functions for each specified option. """ def __init__(self, args): self.args = self.parse_args(args) self.environment_path = getcwd() + '/env/' self.env_filename = ".env" self.pem_filename = "my_key.pem" def parse_args(self, args): self.my_parser = argparse.ArgumentParser( prog='encrypto-env', usage='%(prog)s [options] path', description="Encrypt the contents of your .env file \ with an RSA key.", epilog='Please let me know of any improvements \ that could be made. |\ email: <EMAIL> | github: @jgrugru', fromfile_prefix_chars='@') self.my_group = self.my_parser.add_mutually_exclusive_group( required=False) self.my_parser.version = cli_version self.add_arguments() return self.my_parser.parse_args(args) def add_arguments(self): self.my_parser.add_argument( "-p", "--pem-file", metavar="pem_filepath", type=str, help="The pem filepath relative to the environment path folder") self.my_parser.add_argument( '--environment-path', metavar="env_path", type=str, help="Default is 'env' dir. Default dir for RSA key and .env") self.my_parser.add_argument( '-a', '--add-variable', action='store', metavar="var", type=str, nargs='+', help="Add variables to the .env file") self.my_parser.add_argument( '--clear', action='store_true', help="Clear the contents of the .env file") self.my_parser.add_argument( '--dot-env-file', metavar="dot_env_file", action="store", help="The .env filepath relative to the \ environment path folder") self.my_parser.add_argument( '-v', '--verbose', action='store_true', help="Verbose ouptut") self.my_parser.add_argument( '--version', action="version") self.my_group.add_argument( '-E', '--Encrypt', action='store_true', help="Encrypt .env file") self.my_group.add_argument( '-D', '--Decrypt', action='store_true', help='Decrypt .env file') self.my_group.add_argument( '--no-key', action='store_true', help="Disables creation of my_key.pem file") self.my_group.add_argument( '-l', '--list-variables', action='store_true', help="List the variable names stored in the .env file" ) def get_env_file(self): return self.env_file def environment_path_option(self): if self.args.environment_path: self.environment_path = self.args.environment_path def dot_env_file_option(self): if self.args.dot_env_file: self.env_filename = self.args.dot_env_file def pem_file_option(self): if self.args.pem_file: self.pem_filename = self.args.pem_file def create_env_file(self): self.env_file = EnvFile(environment_path=self.environment_path, filename=self.env_filename, pem_filename=self.pem_filename, no_key=self.args.no_key) def clear_option(self): if(self.args.clear): self.env_file.clear_file() def add_variable_option(self): if self.args.add_variable: if self.env_file.is_decryptable(): self.env_file.add_variables_as_bytes(self.args.add_variable) else: self.env_file.add_variables_as_text(self.args.add_variable) def print_variable_names_from_str(self, string): for count, variable in enumerate( string.split("\n")): if count != 0: print("\n") if variable != "": print(self.env_file.split_str_by_equalsign(variable)[0]) def list_variable_option(self): if self.args.list_variables: if self.env_file.is_decryptable(): print(self.env_file.get_decrypted_lines_as_list()) else: print(self.env_file.get_lines_as_list_from_text_file()) def run_script(self): # Print the variables with verbose mode. if self.args.verbose: print(vars(self.args)) self.environment_path_option() self.dot_env_file_option() self.pem_file_option() # --pem_file # --dot-env-file # --environment-path # --no-key # creates pem_file if it doesn't exist self.create_env_file() # --clear self.clear_option() # --add-variable self.add_variable_option() # -E if self.args.Encrypt and not self.env_file.is_decryptable(): self.env_file.encrypt() # -l self.list_variable_option() # -D if self.args.Decrypt and self.env_file.is_decryptable(): self.env_file.decrypt() ```
{ "source": "jgrugru/file-flamingo", "score": 4 }
#### File: file-flamingo/fileflamingo/EncryptionFile.py ```python from .TextFile import TextFile from .ByteFile import ByteFile from .Encryptor import Encryptor class EncryptionFile(TextFile, ByteFile): """ EncryptionFile class inherits from TextFile and ByteFile. EncryptionFile allows you to encrypt and decrypt the contents of the file. Constructor requires a filepath to an RSA key. The RSA key is passed to the Encryptor class which does the encryption and decryption. Due to the size of the RSA key generated in RSAFile.py, the max character count to be encrypted cannot be greater than 240, so encryption is done line by line. """ def __init__(self, filepath, rsa_filepath): super().__init__(str(filepath)) self.rsa_filepath = str(rsa_filepath) self.encryptor = Encryptor(self.rsa_filepath) def encrypt(self): """ Checks that the file is_encryptable, then encrypts the contents through the Encryptor class and writes the bytes to the file. """ if self.is_encryptable(): encrypted_file_lines = self.encrypt_text_lines() self.clear_file() self.map_file_lines(encrypted_file_lines, self.append_byte_line_to_file) self.is_encrypted = True else: print( self.get_filepath() + " does not exist or is \ not encryptable." ) def decrypt(self): """ Checks if the file is decryptable, then utilizes the Encryptor class to decrypt the data and write the text to the file. """ if self.is_decryptable(): decrypted_file_lines = self.decrypt_byte_lines() self.clear_file() self.map_file_lines(decrypted_file_lines, self.append_text_line_to_file) self.write_text_to_file(self.get_contents_of_file().strip()) self.is_encrypted = False else: print( self.get_filepath() + " does not exist or is \ not encryptable." ) def encrypt_text_lines(self): """ Grabs the file lines from the text file as a list. Then encrypts each line in the list and returns the encrypted file lines in a new list. """ file_lines = self.get_text_lines_as_list() encrypted_file_lines = self.map_file_lines(file_lines, self.encrypt_line) return encrypted_file_lines def decrypt_byte_lines(self): """ Grabs the byte lines from the byte file as a list. Then decrypts each line in the list and returns the decrypted file lines in a new list. """ file_lines = self.get_byte_lines_as_list() decrypted_file_lines = self.map_file_lines(file_lines, self.decrypt_line) decrypted_file_lines.remove(None) return decrypted_file_lines def encrypt_line(self, line): """ Before returning the encrypted line, the line is stripped to remove any whitespace. """ clean_line = line.strip() return self.encryptor.encrypt_data(clean_line) def decrypt_line(self, line): """ Returns the decrypted line if the line != b''. If line == b'', the function returns None. This is accomplished through the boolean expression len(line) == 0. """ if len(line): return self.encryptor.decrypt_data(line) else: return None ```
{ "source": "jgrugru/ifcollector", "score": 3 }
#### File: ifcollector/tests/test_ifcollector.py ```python from pytest import mark, raises from re import search from ifcollector import ifandstatement, iforstatement, CannotEvaluateExpression def matches_email_regex(value): match_object = search(r"^(\w|\.|\_|\-)+[@](\w|\_|\-|\.)+[.]\w{2,3}$", value) return bool(match_object) is_valid_test_str = [ str.isalnum, "len(value) > 5", "value == 'Testing'", lambda value: value == "Testing", ] is_valid_gmail = [ "len(value) > 5", "'@' in value", matches_email_regex, "'gmail.com' in value", lambda value: bool(search(r"^(\w|\.|\_|\-)+[@](\w|\_|\-|\.)+[.]\w{2,3}$", value)), ] @mark.parametrize( "value, ifstatement, expression_list, expected_result", [ ("Test String", ifandstatement, is_valid_test_str, False), ("Test ", ifandstatement, is_valid_test_str, False), ("Testing", ifandstatement, is_valid_test_str, True), ("Testing1", ifandstatement, is_valid_test_str, False), ("Test String", iforstatement, is_valid_test_str, True), ("Test ", iforstatement, is_valid_test_str, False), ("Testing", iforstatement, is_valid_test_str, True), ("Testing1", iforstatement, is_valid_test_str, True), ("<EMAIL>", ifandstatement, is_valid_gmail, True), ("<EMAIL>", ifandstatement, is_valid_gmail, False), ("@gmail.com", ifandstatement, is_valid_gmail, False), (" @gmail.com", ifandstatement, is_valid_gmail, False), ], ) def test_ifstatements(value, ifstatement, expression_list, expected_result): assert ifstatement(value, *expression_list, debug=True) == expected_result def test_CannotEvaluateExpression(): with raises(CannotEvaluateExpression): ifandstatement("Test String", lambda x, y: print("I am the lambda"), debug=True) ```
{ "source": "jgrugru/ticket_tracking_system", "score": 2 }
#### File: grewtix/tickets/tests.py ```python from django.test import TestCase, Client from .models import Ticket, TicketType, Project, Comment from django.contrib.auth.models import User from django.contrib import auth from model_bakery import baker from django.urls import reverse from datetime import timedelta from django.utils import timezone user_test_password = '<PASSWORD>' ############################## #Create test case for: #create ticket from POST request #edit from EDIT request #delete from request ######################### def create_user(username): user = User.objects.create(username=username) user.set_password(user_test_password) user.save() return user def create_ticket(ticket_subject, owner, creator): x = baker.make('Ticket') x.owner = owner x.creator = creator x.subject = ticket_subject x.save() return x def login(user): pass def create_comment_attached_to_ticket(ticket): comment = baker.make("Comment") comment.ticketID = ticket comment.save() return comment def update_tickets_creation_date(ticket, days): ticket.created_at = timezone.now() - timedelta(days=days) ticket.save() return ticket def output_response(response): obj = response for attr in dir(obj): print("obj.%s = %r" % (attr, getattr(obj, attr))) class test_login(TestCase): def test_login(self): client = Client() user = create_user('testuser') self.assertTrue(client.login(username='testuser', password=<PASSWORD>)) class test_features(TestCase): def test_index_response_code(self): response = self.client.get(reverse('tickets:index')) self.assertEqual(response.status_code, 200) self.assertContains(response, "Unassigned\n Queue") def test_tickets_age(self): ticket = baker.make("Ticket") ticket.save() response = self.client.get(reverse('tickets:all_ticket_queue')) self.assertContains(response, "today.") #test that the ticket was created today. update_tickets_creation_date(ticket, 1) response = self.client.get(reverse('tickets:all_ticket_queue')) self.assertContains(response, "day ago.") #test that the ticket was created 1 day ago. update_tickets_creation_date(ticket, 2) response = self.client.get(reverse('tickets:all_ticket_queue')) self.assertContains(response, "days ago.") #test that the ticket was created 2 days ago. update_tickets_creation_date(ticket, -1) response = self.client.get(reverse('tickets:all_ticket_queue')) self.assertContains(response, """<ul class="list-group">""") #test that the ticket was created 1 day in the future. Expected result is no tickets, #so check that the list group is created but empty. def test_assign_button(self): owner = create_user('testOwner') creator = create_user('testCreator') x = create_ticket('test ticket', creator, creator) self.client.login(username='testOwner', password=<PASSWORD>) #Login as testowner response = self.client.get(reverse('tickets:owned_by_user_queue')) self.assertContains(response, 'No tickets are available') response = self.client.get(reverse('tickets:assign', kwargs={'ticket_id': x.id})) #Check that the assign/ticket.id redirects to the edit page self.assertEqual(response.status_code, 302) response = self.client.get(reverse('tickets:owned_by_user_queue')) #check that the assign user worked correctly self.assertContains(response, 'testOwner') def test_regex_edit_ticket_path(self): #test that the reged path for tickets (ex. '\edit\prod-21') response = self.client.get('/edit/test-1234') #expected output should be a redirect to 'edit\21' if the ticket self.assertContains(response, "Could not find the ticket you are looking for.") #exists. ticket = baker.make("Ticket") ticket.save() response = self.client.get('/edit/' + str(ticket)) self.assertEqual(response.status_code, 302) class test_ticket_model(TestCase): def test_get_comments(self): ticket = baker.make("Ticket") ticket.save() self.assertIs(ticket.get_comments(), None) #Test without a comment, expected result is None comment = create_comment_attached_to_ticket(ticket) self.assertTrue(comment in ticket.get_comments()) #Test with a comment, expected result is comment to be returned in queryset response = Client().get(reverse('tickets:edit', kwargs={'pk': ticket.id})) self.assertContains(response, comment.comment) #Test that the comment appears in the ticket edit page. def test_post_ticket(self): self.client = Client() self.client.post('/create/', data = { "ticketType:" }) class test_ticket_querysets_view(TestCase): def __init__(self, x): super().__init__(x) self.client = Client() def setup_with_ticket(self): owner = create_user('testOwner') creator = create_user('testCreator') x = create_ticket('test ticket', owner, creator) self.client.login(username='testOwner', password=<PASSWORD>) def setup_without_ticket(self): owner = create_user('testOwner') self.client.login(username='testOwner', password=<PASSWORD>) def test_owned_by_user_queue_with_ticket(self): self.setup_with_ticket() response = self.client.get(reverse('tickets:owned_by_user_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testOwner') def test_owned_by_user_queue_without_ticket(self): self.setup_without_ticket() response = self.client.get(reverse('tickets:owned_by_user_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'No tickets are available') def test_created_by_user_queue_with_ticket(self): self.setup_with_ticket() response = self.client.get(reverse('tickets:created_by_user_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testOwner') def test_created_by_user_queue_without_ticket(self): self.setup_without_ticket() response = self.client.get(reverse('tickets:created_by_user_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'No tickets are available') def test_unassigned_queue_with_ticket(self): self.setup_with_ticket() response = self.client.get(reverse('tickets:unassigned_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testOwner') def test_unassigned_queue_without_ticket(self): self.setup_without_ticket() response = self.client.get(reverse('tickets:unassigned_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'No tickets are available') def test_recently_created_queue_with_ticket(self): self.setup_with_ticket() response = self.client.get(reverse('tickets:recently_created_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testOwner') def test_recently_created_queue_without_ticket(self): self.setup_without_ticket() response = self.client.get(reverse('tickets:recently_created_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'No tickets are available') def test_all_ticket_queue_with_ticket(self): self.setup_with_ticket() response = self.client.get(reverse('tickets:all_ticket_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testOwner') def test_all_ticket_queue_without_ticket(self): self.setup_without_ticket() response = self.client.get(reverse('tickets:all_ticket_queue')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'No tickets are available') # obj = response # for attr in dir(obj): # print("obj.%s = %r" % (attr, getattr(obj, attr))) ``` #### File: management/commands/populate_tickets.py ```python from django.core.management.base import BaseCommand from model_bakery import baker from tickets.models import Ticket, TicketType, Project # noqa: F401 from django.contrib.auth.models import User class Command(BaseCommand): help = 'Pass an integer, how many mock tickets you want created' def add_arguments(self, parser): parser.add_argument('populate', type=int) def handle(self, *args, **options): if options['populate']: for count in range(int(options['populate'])): ticket = baker.make( 'Ticket', ticketType=TicketType.objects.all()[0], project=Project.objects.all()[0], description="THIS IS A TEST.", priority='Low', status="Backlog", creator=User.objects.filter(username="jgruenbaum")[0], ) print("Created: " + str(ticket)) ticket.save() ```