metadata
dict
text
stringlengths
60
3.49M
{ "source": "jiayinhaoran/libyang", "score": 2 }
#### File: python/tests/test_schema.py ```python import os import unittest from libyang import Context from libyang.schema import Extension from libyang.schema import IfFeature from libyang.schema import IfOrFeatures from libyang.schema import Module from libyang.schema import Revision from libyang.schema import SContainer from libyang.schema import SLeaf from libyang.schema import SLeafList from libyang.schema import SList from libyang.schema import SNode from libyang.schema import SRpc from libyang.schema import Type from libyang.util import LibyangError YANG_DIR = os.path.join(os.path.dirname(__file__), 'yang') #------------------------------------------------------------------------------ class ModuleTest(unittest.TestCase): def setUp(self): self.ctx = Context(YANG_DIR) self.module = self.ctx.load_module('yolo-system') def tearDown(self): self.module = None self.ctx.destroy() self.ctx = None def test_mod_print_mem(self): s = self.module.print_mem('tree') self.assertGreater(len(s), 0) def test_mod_attrs(self): self.assertEqual(self.module.name(), 'yolo-system') self.assertEqual(self.module.description(), 'YOLO.') self.assertEqual(self.module.prefix(), 'sys') def test_mod_filepath(self): self.assertEqual(self.module.filepath(), os.path.join(YANG_DIR, 'yolo/yolo-system.yang')) def test_mod_iter(self): children = list(iter(self.module)) self.assertEqual(len(children), 4) def test_mod_children_rpcs(self): rpcs = list(self.module.children(types=(SNode.RPC,))) self.assertEqual(len(rpcs), 2) def test_mod_enable_features(self): self.assertFalse(self.module.feature_state('turbo-boost')) self.module.feature_enable('turbo-boost') self.assertTrue(self.module.feature_state('turbo-boost')) self.module.feature_disable('turbo-boost') self.assertFalse(self.module.feature_state('turbo-boost')) self.module.feature_enable_all() self.assertTrue(self.module.feature_state('turbo-boost')) self.module.feature_disable_all() def test_mod_features(self): features = list(self.module.features()) self.assertEqual(len(features), 2) def test_mod_get_feature(self): self.module.feature_enable('turbo-boost') feature = self.module.get_feature('turbo-boost') self.assertEqual(feature.name(), 'turbo-boost') self.assertEqual(feature.description(), 'Goes faster.') self.assertIsNone(feature.reference()) self.assertTrue(feature.state()) self.assertFalse(feature.deprecated()) self.assertFalse(feature.obsolete()) def test_mod_get_feature_not_found(self): with self.assertRaises(LibyangError): self.module.get_feature('does-not-exist') def test_mod_revisions(self): revisions = list(self.module.revisions()) self.assertEqual(len(revisions), 2) self.assertIsInstance(revisions[0], Revision) self.assertEqual(revisions[0].date(), '1999-04-01') self.assertEqual(revisions[1].date(), '1990-04-01') #------------------------------------------------------------------------------ class RevisionTest(unittest.TestCase): def setUp(self): self.ctx = Context(YANG_DIR) mod = self.ctx.load_module('yolo-system') revisions = list(mod.revisions()) self.revision = revisions[0] def tearDown(self): self.revision = None self.ctx.destroy() self.ctx = None def test_rev_date(self): self.assertEqual(self.revision.date(), '1999-04-01') def test_rev_reference(self): self.assertEqual(self.revision.reference(), 'RFC 2549 - IP over Avian Carriers with Quality of Service.') def test_rev_description(self): self.assertEqual(self.revision.description(), 'Version update.') def test_rev_extensions(self): exts = list(self.revision.extensions()) self.assertEqual(len(exts), 1) ext = self.revision.get_extension('human-name', prefix='omg-extensions') self.assertIsInstance(ext, Extension) #------------------------------------------------------------------------------ class IfFeatureTest(unittest.TestCase): def setUp(self): self.ctx = Context(YANG_DIR) mod = self.ctx.load_module('yolo-system') mod.feature_enable_all() self.leaf = next(self.ctx.find_path( '/yolo-system:conf/yolo-system:isolation-level')) def tearDown(self): self.container = None self.ctx.destroy() self.ctx = None def test_iffeatures(self): iffeatures = list(self.leaf.if_features()) self.assertEqual(len(iffeatures), 1) def test_iffeature_tree(self): iff = next(self.leaf.if_features()) tree = iff.tree() self.assertIsInstance(tree, IfOrFeatures) self.assertIsInstance(tree.a, IfFeature) self.assertIsInstance(tree.b, IfFeature) self.assertEqual(tree.a.feature().name(), 'turbo-boost') self.assertEqual(tree.b.feature().name(), 'networking') def test_iffeature_str(self): iff = next(self.leaf.if_features()) self.assertEqual(str(iff), 'turbo-boost OR networking') def test_iffeature_dump(self): iff = next(self.leaf.if_features()) self.assertEqual(iff.dump(), '''OR turbo-boost [Goes faster.] networking [Supports networking.] ''') #------------------------------------------------------------------------------ class ContainerTest(unittest.TestCase): def setUp(self): self.ctx = Context(YANG_DIR) mod = self.ctx.load_module('yolo-system') mod.feature_enable_all() self.container = next(self.ctx.find_path('/yolo-system:conf')) def tearDown(self): self.container = None self.ctx.destroy() self.ctx = None def test_cont_attrs(self): self.assertIsInstance(self.container, SContainer) self.assertEqual(self.container.nodetype(), SNode.CONTAINER) self.assertEqual(self.container.keyword(), 'container') self.assertEqual(self.container.name(), 'conf') self.assertEqual(self.container.fullname(), 'yolo-system:conf') self.assertEqual(self.container.description(), 'Configuration.') self.assertEqual(self.container.config_set(), False) self.assertEqual(self.container.config_false(), False) self.assertEqual(self.container.mandatory(), False) self.assertIsInstance(self.container.module(), Module) self.assertEqual(self.container.schema_path(), '/yolo-system:conf') self.assertEqual(self.container.data_path(), '/yolo-system:conf') self.assertIs(self.container.presence(), None) def test_cont_iter(self): children = list(iter(self.container)) self.assertEqual(len(children), 7) def test_cont_children_leafs(self): leafs = list(self.container.children(types=(SNode.LEAF,))) self.assertEqual(len(leafs), 5) def test_cont_parent(self): self.assertIsNone(self.container.parent()) #------------------------------------------------------------------------------ class ListTest(unittest.TestCase): SCHEMA_PATH = '/yolo-system:conf/yolo-system:url' DATA_PATH = "/yolo-system:conf/url[proto='%s'][host='%s']" def setUp(self): self.ctx = Context(YANG_DIR) self.ctx.load_module('yolo-system') self.list = next(self.ctx.find_path(self.SCHEMA_PATH)) def tearDown(self): self.list = None self.ctx.destroy() self.ctx = None def test_list_attrs(self): self.assertIsInstance(self.list, SList) self.assertEqual(self.list.nodetype(), SNode.LIST) self.assertEqual(self.list.keyword(), 'list') self.assertEqual(self.list.schema_path(), self.SCHEMA_PATH) self.assertEqual(self.list.data_path(), self.DATA_PATH) self.assertFalse(self.list.ordered()) def test_list_keys(self): keys = list(self.list.keys()) self.assertEqual(len(keys), 2) def test_list_iter(self): children = list(iter(self.list)) self.assertEqual(len(children), 5) def test_list_children_skip_keys(self): children = list(self.list.children(skip_keys=True)) self.assertEqual(len(children), 3) def test_list_parent(self): parent = self.list.parent() self.assertIsNotNone(parent) self.assertIsInstance(parent, SContainer) self.assertEqual(parent.name(), 'conf') #------------------------------------------------------------------------------ class RpcTest(unittest.TestCase): def setUp(self): self.ctx = Context(YANG_DIR) self.ctx.load_module('yolo-system') self.rpc = next(self.ctx.find_path('/yolo-system:format-disk')) def tearDown(self): self.rpc = None self.ctx.destroy() self.ctx = None def test_rpc_attrs(self): self.assertIsInstance(self.rpc, SRpc) self.assertEqual(self.rpc.nodetype(), SNode.RPC) self.assertEqual(self.rpc.keyword(), 'rpc') self.assertEqual(self.rpc.schema_path(), '/yolo-system:format-disk') def test_rpc_extensions(self): ext = list(self.rpc.extensions()) self.assertEqual(len(ext), 1) ext = self.rpc.get_extension('require-admin', prefix='omg-extensions') self.assertIsInstance(ext, Extension) def test_rpc_params(self): leaf = next(self.rpc.children()) self.assertIsInstance(leaf, SLeaf) self.assertEqual(leaf.data_path(), '/yolo-system:format-disk/disk') leaf = next(self.rpc.input().children()) self.assertIsInstance(leaf, SLeaf) def test_rpc_no_parent(self): self.assertIsNone(self.rpc.parent()) #------------------------------------------------------------------------------ class LeafTypeTest(unittest.TestCase): def setUp(self): self.ctx = Context(YANG_DIR) self.ctx.load_module('yolo-system') def tearDown(self): self.ctx.destroy() self.ctx = None def test_leaf_type_derived(self): leaf = next(self.ctx.find_path('/yolo-system:conf/yolo-system:hostname')) self.assertIsInstance(leaf, SLeaf) t = leaf.type() self.assertIsInstance(t, Type) self.assertEqual(t.name(), 'host') self.assertEqual(t.base(), Type.STRING) d = t.derived_type() self.assertEqual(d.name(), 'str') dd = d.derived_type() self.assertEqual(dd.name(), 'string') def test_leaf_type_status(self): leaf = next(self.ctx.find_path('/yolo-system:conf/yolo-system:hostname')) self.assertIsInstance(leaf, SLeaf) self.assertEqual(leaf.deprecated(), False) self.assertEqual(leaf.obsolete(), False) leaf = next(self.ctx.find_path('/yolo-system:conf/yolo-system:deprecated-leaf')) self.assertIsInstance(leaf, SLeaf) self.assertEqual(leaf.deprecated(), True) self.assertEqual(leaf.obsolete(), False) leaf = next(self.ctx.find_path('/yolo-system:conf/yolo-system:obsolete-leaf')) self.assertIsInstance(leaf, SLeaf) self.assertEqual(leaf.deprecated(), False) self.assertEqual(leaf.obsolete(), True) def test_leaf_type_union(self): leaf = next(self.ctx.find_path('/yolo-system:conf/yolo-system:number')) self.assertIsInstance(leaf, SLeafList) t = leaf.type() self.assertIsInstance(t, Type) self.assertEqual(t.name(), 'number') self.assertEqual(t.base(), Type.UNION) types = set(u.name() for u in t.union_types()) self.assertEqual(types, set(['signed', 'unsigned'])) bases = set(t.basenames()) self.assertEqual(bases, set(['int16', 'int32', 'uint16', 'uint32'])) def test_leaf_type_enum(self): leaf = next(self.ctx.find_path( '/yolo-system:conf/yolo-system:url/yolo-system:proto')) self.assertIsInstance(leaf, SLeaf) t = leaf.type() self.assertIsInstance(t, Type) self.assertEqual(t.name(), 'protocol') self.assertEqual(t.base(), Type.ENUM) enums = [e for e, _ in t.enums()] self.assertEqual(enums, ['http', 'https', 'ftp', 'sftp', 'tftp']) def test_leaf_type_bits(self): leaf = next(self.ctx.find_path( '/yolo-system:chmod/yolo-system:input/yolo-system:perms')) self.assertIsInstance(leaf, SLeaf) t = leaf.type() self.assertIsInstance(t, Type) self.assertEqual(t.name(), 'permissions') self.assertEqual(t.base(), Type.BITS) bits = [b for b, _ in t.bits()] self.assertEqual(bits, ['read', 'write', 'execute']) def test_leaf_parent(self): leaf = next(self.ctx.find_path( '/yolo-system:conf/yolo-system:url/yolo-system:proto')) parent = leaf.parent() self.assertIsNotNone(parent) self.assertIsInstance(parent, SList) self.assertEqual(parent.name(), 'url') ```
{ "source": "JiayinL/Dropout-Prediction", "score": 2 }
#### File: JiayinL/Dropout-Prediction/gdbt_cnn.py ```python from lightgbm import LGBMClassifier import pandas as pd import pandas_profiling from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from joblib import Parallel,delayed import numpy as np import re import pandas_profiling import time import json import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data from torch.autograd import Variable import torch.nn.utils.rnn as rnn_utils from sklearn.utils import shuffle import catboost from catboost import CatBoostClassifier, Pool, cv from sklearn.utils import shuffle from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score def time_transform(t): # 先转换为时间数组 timeArray = time.strptime(t, "%Y-%m-%d %H:%M:%S") # 转换为时间戳 timeStamp = int(time.mktime(timeArray)) return timeStamp def Z_score(mean_, std_,x): return (x-mean_)/std_ def max_mean_std(data): return np.max(data), np.mean(data), np.std(data) def calculate_acc(predictions, truth): hit = 0 for i in range(len(predictions)): if predictions[i] == truth[i]: hit = hit +1 return hit/len(predictions) train_set = pd.read_csv('train_set.csv',converters={'label_list': eval}) test_set = pd.read_csv('test_set_course_vec.csv',converters={'label_list': eval, 'course_vecs_CNN':eval, 'course_vecs_LR':eval}) course_info = pd.read_json('course_info.json',lines=True) #706 courses video_info = pd.read_json('video_info.json',lines=True) #38181 videos videoID = video_info['id'].values.tolist() courseID = course_info['course_id'].values.tolist() videoID_encoder = LabelEncoder() courseID_encoder = LabelEncoder() videoID_encoder.fit(videoID) courseID_encoder.fit(courseID) course_info['courseID'] = course_info['course_id'].progress_apply(lambda x : courseID_encoder.transform([x])) course_info['videoIDs'] = course_info['item'].progress_apply(lambda x : videoID_encoder.transform(x)) course_video_num = {} def count_videos(courseId, videoIds): number_of_video = len(videoIds) course_video_num[courseId[0]] = number_of_video course_info.progress_apply(lambda row: count_videos(row['courseID'],row['videoIDs']), axis=1) course_frequence= {} frequence_list = [] course_ids = course_info['courseID'].values.tolist() course_ids =[ item for elem in course_ids for item in elem] #706 courses for i in range(len(course_ids)): course_frequence[course_ids[i]]=0 # course_frequence[470] def course_frequence_calculate(courseListIDs): courseListIDs=re.sub('\s+', ' ',courseListIDs[1:-1].strip(' ')) courses_ = [int(i) for i in courseListIDs.split(' ')] for i in range(len(courses_)): num = course_frequence[courses_[i]] +1 course_frequence[courses_[i]] = num train_set['courseListIDs'].progress_apply(lambda x : course_frequence_calculate(x)) for k,v in course_frequence.items(): frequence_list.append(v) mean_course_frequence, max_course_frequence, std_course_frequence = max_mean_std(frequence_list) video_start_times_info = [] video_end_times_info = [] local_start_times_info = [] local_end_times_info = [] video_durations_info = [] local_watching_times_info = [] video_progress_times_info = [] watching_counts_info = [] local_interval_info = [] video_duration ={} def collect_info(course_ids,video_ids,watching_counts,video_durations,local_watching_times,video_progress_times, video_start_times, video_end_times, local_start_times,local_end_times,courseListIDs): course_ids = eval(course_ids) video_ids = eval(video_ids) watching_counts = eval(watching_counts) video_durations = eval(video_durations) local_watching_times = eval(local_watching_times) video_progress_times = eval(video_progress_times) video_start_times = eval(video_start_times) video_end_times = eval(video_end_times) local_start_times = eval(local_start_times) local_end_times = eval(local_end_times) courseListIDs=re.sub('\s+', ' ',courseListIDs[1:-1].strip(' ')) courses_ = [int(i) for i in courseListIDs.split(' ')] courses = {} courses_textual_content = {} courses_textual_name = {} for i in range(len(courses_)): courses[courses_[i]] = [] for i in range(len(course_ids)): course = course_ids[i] local_start_times_ = time_transform(local_start_times[i]) local_end_times_ = time_transform(local_end_times[i]) interval = local_end_times_ - local_start_times_ video_start_times_info.append(video_start_times[i]) video_end_times_info.append(video_end_times[i]) local_start_times_info.append(local_start_times_) local_end_times_info.append(local_end_times_) video_durations_info.append(video_durations[i]) video_duration[video_ids[i]] = video_durations[i] local_watching_times_info.append(local_watching_times[i]) video_progress_times_info.append(video_progress_times[i]) watching_counts_info.append(watching_counts[i]) local_interval_info.append(interval) train_set.progress_apply(lambda row: collect_info(row['course_ids'],row['video_ids'],row['watching_counts'],row['video_durations'],row['local_watching_times'],row['video_progress_times'], row['video_start_times'], row['video_end_times'], row['local_start_times'],row['local_end_times'],row['courseListIDs']), axis=1) #global stastic info std_local_start_times_info = np.std(local_start_times_info, ddof=1) mean_local_start_times_info = np.mean(local_start_times_info) std_video_start_times_info = np.std(video_start_times_info, ddof=1) mean_video_start_times_info = np.mean(video_start_times_info) std_video_end_times_info = np.std(video_end_times_info, ddof=1) mean_video_end_times_info = np.mean(video_end_times_info) std_local_end_times_info = np.std(local_end_times_info, ddof=1) mean_local_end_times_info = np.mean(local_end_times_info) std_video_durations_info = np.std(video_durations_info, ddof=1) mean_video_durations_info = np.mean(video_durations_info) std_local_watching_times_info = np.std(local_watching_times_info, ddof=1) mean_local_watching_times_info = np.mean(local_watching_times_info) std_video_progress_times_info = np.std(video_progress_times_info, ddof=1) mean_video_progress_times_info = np.mean(video_progress_times_info) std_watching_counts_info = np.std(watching_counts_info, ddof=1) mean_watching_counts_info = np.mean(watching_counts_info) std_local_interval_info = np.std(local_interval_info, ddof=1) mean_local_interval_info = np.mean(local_interval_info) def feature_genration(course_ids,video_ids,watching_counts,video_durations,local_watching_times,video_progress_times, video_start_times, video_end_times, local_start_times,local_end_times,courseListIDs): course_ids = eval(course_ids) video_ids = eval(video_ids) watching_counts = eval(watching_counts) video_durations = eval(video_durations) local_watching_times = eval(local_watching_times) video_progress_times = eval(video_progress_times) video_start_times = eval(video_start_times) video_end_times = eval(video_end_times) local_start_times = eval(local_start_times) local_end_times = eval(local_end_times) unix_start_time = [time_transform(i) for i in local_start_times] unix_end_time = [time_transform(i) for i in local_end_times] unix_interval = [unix_end_time[i] - unix_start_time[i] for i in range(len(unix_start_time))] z_score_local_start_time = [Z_score(mean_local_start_times_info,std_local_start_times_info,i) for i in unix_start_time] z_score_local_end_time = [Z_score(mean_local_end_times_info,std_local_end_times_info,i) for i in unix_end_time] z_score_interval = [Z_score(mean_local_interval_info,std_local_interval_info,i) for i in unix_interval] courseListIDs=re.sub('\s+', ' ',courseListIDs[1:-1].strip(' ')) courses_ = [int(i) for i in courseListIDs.split(' ')] courses = {} for i in range(len(courses_)): courses[courses_[i]] = [] # courses_textual_name[courses_[i]] = [] # courses_textual_content[courses_[i]] = [] for i in range(len(course_ids)): course = course_ids[i] info_vec = [course_ids[i],watching_counts[i],video_durations[i],local_watching_times[i],video_progress_times[i], video_start_times[i], video_end_times[i],z_score_interval[i],z_score_local_start_time[i],z_score_local_end_time[i]] courses[course].append(info_vec) course_vec = [] for i in range(len(courses_)): info_vecs = courses[courses_[i]] total_video_num = course_video_num[courses_[i]] num_of_vdo = len(info_vecs) percentage_viewed = num_of_vdo/total_video_num num_of_cos = len(courses_) course_watching_counts = [info_vecs[j][1] for j in range(len(info_vecs))] course_time_per_watching = [info_vecs[j][3]/info_vecs[j][1] for j in range(len(info_vecs))] course_video_durations = [info_vecs[j][2] for j in range(len(info_vecs))] course_local_watching_times = [info_vecs[j][3] for j in range(len(info_vecs))] course_video_progress_times = [info_vecs[j][4] for j in range(len(info_vecs))] course_video_watching_speed = [info_vecs[j][3]/info_vecs[j][4] for j in range(len(info_vecs))] course_video_start_times = [info_vecs[j][5] for j in range(len(info_vecs))] course_video_end_times = [info_vecs[j][6] for j in range(len(info_vecs))] course_z_score_interval = [info_vecs[j][7] for j in range(len(info_vecs))] course_z_score_local_start_time =[info_vecs[j][8] for j in range(len(info_vecs))] course_z_score_local_end_time =[info_vecs[j][9] for j in range(len(info_vecs))] max_watching_counts, mean_watching_counts, std_watching_counts = max_mean_std(course_watching_counts) max_video_durations, mean_video_durations, std_video_durations = max_mean_std(course_video_durations) max_local_watching_times, mean_local_watching_times, std_local_watching_times = max_mean_std(course_local_watching_times) max_video_progress_times, mean_video_progress_times, std_video_progress_times = max_mean_std(course_video_progress_times) max_video_watching_speed, mean_video_watching_speed, std_video_watching_speed = max_mean_std(course_video_watching_speed) max_video_start_times, mean_video_start_times, std_video_start_times = max_mean_std(course_video_start_times) max_video_end_times, mean_video_end_times, std_video_end_times = max_mean_std(course_video_end_times) max_z_score_interval, mean_z_score_interval, std_z_score_interval = max_mean_std(course_z_score_interval) max_z_score_local_start_time, mean_z_score_local_start_time, std_z_score_local_start_time = max_mean_std(course_z_score_local_start_time) max_z_score_local_end_time, mean_z_score_local_end_time, std_z_score_local_end_time = max_mean_std(course_z_score_local_end_time) max_time_per_watching, mean_time_per_watching, std_time_per_watching = max_mean_std(course_time_per_watching) #compared to global stastic # mean_watching_counts_ratio = mean_watching_counts/mean_watching_counts_info # mean_video_durations_ratio = mean_video_durations/mean_video_durations_info # mean_local_watching_times_ratio = mean_local_watching_times/mean_local_watching_times_info # mean_watching_speed_ratio = mean_video_watching_speed/(mean_local_watching_times_info/mean_video_progress_times_info) # std_watching_counts_ratio = std_watching_counts/std_watching_counts_info # std_video_durations_ratio = std_video_durations/std_video_durations_info # std_local_watching_times_ratio = std_local_watching_times/std_local_watching_times_info # std_watching_speed_ratio = std_video_watching_speed/(std_local_watching_times_info/std_video_progress_times_info) course_frequence_z_score = Z_score(mean_course_frequence,std_course_frequence,course_frequence[courses_[i]]) total_watching_counts = np.sum(course_watching_counts) total_video_durations = np.sum(course_video_durations) total_local_watching_times = np.sum(course_local_watching_times) total_video_progress_times = np.sum(course_video_progress_times) vec = [courses_[i],num_of_cos,num_of_vdo,max_watching_counts, mean_watching_counts, std_watching_counts, max_video_durations, mean_video_durations, std_video_durations, max_local_watching_times, mean_local_watching_times, std_local_watching_times, max_video_progress_times, mean_video_progress_times, std_video_progress_times, max_video_watching_speed, mean_video_watching_speed, std_video_watching_speed, max_video_start_times, mean_video_start_times, std_video_start_times, max_video_end_times, mean_video_end_times, std_video_end_times, max_z_score_interval, mean_z_score_interval, std_z_score_interval, total_video_num, percentage_viewed, max_z_score_local_start_time, mean_z_score_local_start_time, std_z_score_local_start_time, max_z_score_local_end_time, mean_z_score_local_end_time, std_z_score_local_end_time, # mean_watching_counts_ratio,mean_video_durations_ratio,mean_local_watching_times_ratio,mean_watching_speed_ratio, # std_watching_counts_ratio,std_video_durations_ratio,std_local_watching_times_ratio,std_watching_speed_ratio course_frequence_z_score,max_time_per_watching, mean_time_per_watching, std_time_per_watching, total_watching_counts,total_video_durations,total_local_watching_times,total_video_progress_times ] course_vec.append(vec) return course_vec def gbdt_prediction(course_ids,video_ids,watching_counts,video_durations,local_watching_times,video_progress_times, video_start_times, video_end_times, local_start_times,local_end_times,courseListIDs): course_ids = eval(course_ids) video_ids = eval(video_ids) watching_counts = eval(watching_counts) video_durations = eval(video_durations) local_watching_times = eval(local_watching_times) video_progress_times = eval(video_progress_times) video_start_times = eval(video_start_times) video_end_times = eval(video_end_times) local_start_times = eval(local_start_times) local_end_times = eval(local_end_times) unix_start_time = [time_transform(i) for i in local_start_times] unix_end_time = [time_transform(i) for i in local_end_times] unix_interval = [unix_end_time[i] - unix_start_time[i] for i in range(len(unix_start_time))] z_score_local_start_time = [Z_score(mean_local_start_times_info,std_local_start_times_info,i) for i in unix_start_time] z_score_local_end_time = [Z_score(mean_local_end_times_info,std_local_end_times_info,i) for i in unix_end_time] z_score_interval = [Z_score(mean_local_interval_info,std_local_interval_info,i) for i in unix_interval] courseListIDs=re.sub('\s+', ' ',courseListIDs[1:-1].strip(' ')) courses_ = [int(i) for i in courseListIDs.split(' ')] courses = {} for i in range(len(courses_)): courses[courses_[i]] = [] # courses_textual_name[courses_[i]] = [] # courses_textual_content[courses_[i]] = [] for i in range(len(course_ids)): course = course_ids[i] info_vec = [course_ids[i],watching_counts[i],video_durations[i],local_watching_times[i],video_progress_times[i], video_start_times[i], video_end_times[i],z_score_interval[i],z_score_local_start_time[i],z_score_local_end_time[i]] courses[course].append(info_vec) course_vec = [] for i in range(len(courses_)): info_vecs = courses[courses_[i]] total_video_num = course_video_num[courses_[i]] num_of_vdo = len(info_vecs) percentage_viewed = num_of_vdo/total_video_num num_of_cos = len(courses_) course_watching_counts = [info_vecs[j][1] for j in range(len(info_vecs))] course_time_per_watching = [info_vecs[j][3]/info_vecs[j][1] for j in range(len(info_vecs))] course_video_durations = [info_vecs[j][2] for j in range(len(info_vecs))] course_local_watching_times = [info_vecs[j][3] for j in range(len(info_vecs))] course_video_progress_times = [info_vecs[j][4] for j in range(len(info_vecs))] course_video_watching_speed = [info_vecs[j][3]/info_vecs[j][4] for j in range(len(info_vecs))] course_video_start_times = [info_vecs[j][5] for j in range(len(info_vecs))] course_video_end_times = [info_vecs[j][6] for j in range(len(info_vecs))] course_z_score_interval = [info_vecs[j][7] for j in range(len(info_vecs))] course_z_score_local_start_time =[info_vecs[j][8] for j in range(len(info_vecs))] course_z_score_local_end_time =[info_vecs[j][9] for j in range(len(info_vecs))] max_watching_counts, mean_watching_counts, std_watching_counts = max_mean_std(course_watching_counts) max_video_durations, mean_video_durations, std_video_durations = max_mean_std(course_video_durations) max_local_watching_times, mean_local_watching_times, std_local_watching_times = max_mean_std(course_local_watching_times) max_video_progress_times, mean_video_progress_times, std_video_progress_times = max_mean_std(course_video_progress_times) max_video_watching_speed, mean_video_watching_speed, std_video_watching_speed = max_mean_std(course_video_watching_speed) max_video_start_times, mean_video_start_times, std_video_start_times = max_mean_std(course_video_start_times) max_video_end_times, mean_video_end_times, std_video_end_times = max_mean_std(course_video_end_times) max_z_score_interval, mean_z_score_interval, std_z_score_interval = max_mean_std(course_z_score_interval) max_z_score_local_start_time, mean_z_score_local_start_time, std_z_score_local_start_time = max_mean_std(course_z_score_local_start_time) max_z_score_local_end_time, mean_z_score_local_end_time, std_z_score_local_end_time = max_mean_std(course_z_score_local_end_time) max_time_per_watching, mean_time_per_watching, std_time_per_watching = max_mean_std(course_time_per_watching) #compared to global stastic course_frequence_z_score = Z_score(mean_course_frequence,std_course_frequence,course_frequence[courses_[i]]) total_watching_counts = np.sum(course_watching_counts) total_video_durations = np.sum(course_video_durations) total_local_watching_times = np.sum(course_local_watching_times) total_video_progress_times = np.sum(course_video_progress_times) vec = [courses_[i],num_of_cos,num_of_vdo,max_watching_counts, mean_watching_counts, std_watching_counts, max_video_durations, mean_video_durations, std_video_durations, max_local_watching_times, mean_local_watching_times, std_local_watching_times, max_video_progress_times, mean_video_progress_times, std_video_progress_times, max_video_watching_speed, mean_video_watching_speed, std_video_watching_speed, max_video_start_times, mean_video_start_times, std_video_start_times, max_video_end_times, mean_video_end_times, std_video_end_times, max_z_score_interval, mean_z_score_interval, std_z_score_interval, total_video_num, percentage_viewed, max_z_score_local_start_time, mean_z_score_local_start_time, std_z_score_local_start_time, max_z_score_local_end_time, mean_z_score_local_end_time, std_z_score_local_end_time, # mean_watching_counts_ratio,mean_video_durations_ratio,mean_local_watching_times_ratio,mean_watching_speed_ratio, # std_watching_counts_ratio,std_video_durations_ratio,std_local_watching_times_ratio,std_watching_speed_ratio course_frequence_z_score,max_time_per_watching, mean_time_per_watching, std_time_per_watching, total_watching_counts,total_video_durations,total_local_watching_times,total_video_progress_times ] course_vec.append(vec) r_lightGBM = model_lgb.predict_proba(course_vec).tolist() r1 = [] for i in range(len(r_lightGBM)): r1.append(r_lightGBM[i][1]) # r = model_lgb.predict(course_vec).tolist() # r = catboost_model.predict(course_vec).tolist() return r1 train_set['course_vecs2'] = train_set.progress_apply(lambda row: feature_genration(row['course_ids'],row['video_ids'],row['watching_counts'],row['video_durations'],row['local_watching_times'],row['video_progress_times'], row['video_start_times'], row['video_end_times'], row['local_start_times'],row['local_end_times'],row['courseListIDs']), axis=1) data = train_set[['label_list','course_vecs2']] labels = data['label_list'].values.tolist() y = [ item for elem in labels for item in elem] course_info = data['course_vecs2'].values.tolist() course_list = [ item for elem in course_info for item in elem] model_lgb = LGBMClassifier(boosting_type='gbdt', num_leaves=64, learning_rate=0.01, n_estimators=2000, max_bin=425, subsample_for_bin=50000, objective='binary', min_split_gain=0, min_child_weight=5, min_child_samples=10, subsample=0.8, subsample_freq=1, colsample_bytree=1, reg_alpha=3, reg_lambda=5, seed=1000, n_jobs=-1, silent=True) model_lgb.fit(course_list, y, eval_names=['train'], eval_metric=['logloss','auc'], eval_set=[(course_list, y)], early_stopping_rounds=10) #test data prep test_set['course_vecs2'] = test_set.progress_apply(lambda row: feature_genration(row['course_ids'],row['video_ids'],row['watching_counts'],row['video_durations'],row['local_watching_times'],row['video_progress_times'], row['video_start_times'], row['video_end_times'], row['local_start_times'],row['local_end_times'],row['courseListIDs']), axis=1) test_data = train_set[['label_list','course_vecs2']] test_labels = test_data['label_list'].values.tolist() ground_truth = [ item for elem in test_labels for item in elem] course_info_test = test_data['course_vecs2'].values.tolist() course_list_test = [ item for elem in course_info_test for item in elem] result2 = model_lgb.predict(course_list_test) result2 =result2.tolist() acc = calculate_acc(result2,ground_truth) nb_courses = 706+1 course_emb_size = 5 nb_videos = 38181+1 video_emb_size = 15 feature_size1 = course_emb_size + 42 sequence_len = 70 feature_size2 = course_emb_size + video_emb_size + 13 num_out_channel = 32 kernel_size = [3,4,5] output_size = 32 hidden_dim = 64 num_of_lstm_layer = 1 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.course_embedding = torch.nn.Embedding(nb_courses, course_emb_size) self.video_embedding = torch.nn.Embedding(nb_videos, video_emb_size) self.ReLU_activation = nn.ReLU() self.tanh_activation = nn.Tanh() self.conv1 = nn.Conv1d(in_channels=feature_size2,out_channels=num_out_channel,kernel_size=kernel_size[0]) self.maxpool1 = nn.MaxPool1d(sequence_len - kernel_size[0] + 1) self.conv2 = nn.Conv1d(in_channels=feature_size2,out_channels=num_out_channel,kernel_size=kernel_size[1]) self.maxpool2 = nn.MaxPool1d(sequence_len - kernel_size[1] + 1) self.conv3 = nn.Conv1d(in_channels=feature_size2,out_channels=num_out_channel,kernel_size=kernel_size[2]) self.maxpool3 = nn.MaxPool1d(sequence_len - kernel_size[2] + 1) self.fc1 = nn.Linear(num_out_channel*len(kernel_size), 64) self.fc2 = nn.Linear(64, 16) self.fc3 = nn.Linear(16, 1) # self.softmax = nn.Softmax() self.sigmoid = nn.Sigmoid() def forward(self, course_id, video_id, continues): #course_id (batch_size, max_sen_len) #continues (batch_size, max_sen_len, feature_size) emb1 = self.course_embedding(course_id) # (batch_size,max_sen_len, embed_size) emb2 = self.video_embedding(video_id) x = torch.cat([emb1,emb2,continues], 2) x = x.permute(0, 2, 1) # Batch_size * (feature_dim) * max_sen_len x1 = self.conv1(x)#.squeeze(2) # shape = (64, num_channels, 1)(squeeze 2) x1 = self.ReLU_activation(x1) x1 = self.maxpool1(x1) x1 = x1.squeeze(2) x2 = self.conv2(x)#.squeeze(2) # shape = (64, num_channels, 1)(squeeze 2) x2 = self.ReLU_activation(x2) x2 = self.maxpool2(x2) x2 = x2.squeeze(2) x3 = self.conv3(x)#.squeeze(2) # shape = (64, num_channels, 1)(squeeze 2) x3 = self.ReLU_activation(x3) x3 = self.maxpool3(x3) x3 = x3.squeeze(2) all_out = torch.cat((x1, x2, x3), dim=1) # print(all_out.shape) info_fusion = self.tanh_activation(self.fc1(all_out)) info_fusion = self.tanh_activation(self.fc2(info_fusion)) final_out = self.fc3(info_fusion) # result = self.softmax(final_out) result = self.sigmoid(final_out) return result # 返回 softmax 的结果 model_CNN = TextCNN() model_CNN.load_state_dict(torch.load('textcnn_25epoch.model')) model_CNN.eval() def prediction_train_seperately(course_vecs_CNN): course_id = [] video_id = [] continues_feature = [] #get x for CNN course_list = course_vecs_CNN course_id_CNN = [] video_id = [] continues_feature2 = [] for i in range(len(course_list)): #get a course c = course_list[i] course_cat1 = [] course_cat2 = [] course_con = [] for j in range(len(c)): #get a subject s = c[j] cat_feture1 = s[0] #get course_id and video_id cat_feture2 = s[1] course_cat1.append(cat_feture1) course_cat2.append(cat_feture2) con_feture = s[2:] #get continues features course_con.append(con_feture) if len(course_cat1)<sequence_len: length = sequence_len - len(course_cat1) temp_course_id = [706] * length temp_video_id = [38180] * length temp2 = [[0,0,0,0,0,0,0,0,0,0,0,0,0]] * length course_cat1 = course_cat1 + temp_course_id course_cat2 = course_cat2 + temp_video_id course_con = course_con + temp2 course_id_CNN.append(course_cat1) video_id.append(course_cat2) continues_feature2.append(course_con) # to tensor continues_feature2 = torch.tensor(continues_feature2) course_id_CNN = torch.tensor(course_id_CNN).clone().long() video_id = torch.tensor(video_id).clone().long() predictions_gru = model_BiGRU(course_id_CNN,video_id,continues_feature2) predictions = torch.flatten(predictions_gru) results_prob = predictions.detach().numpy().tolist() return results_prob def merge_results(result1,result2): result = [] for i in range(len(result1)): result.append( int(np.round((result1[i]+result2[i])/2)) ) return result def merge_results_prob(result1,result2): result = [] for i in range(len(result1)): result.append( (result1[i]+result2[i])/2 ) return result test_set['gbdt_result'] = test_set.progress_apply(lambda row: gbdt_prediction(row['course_ids'],row['video_ids'],row['watching_counts'],row['video_durations'],row['local_watching_times'],row['video_progress_times'], row['video_start_times'], row['video_end_times'], row['local_start_times'],row['local_end_times'],row['courseListIDs']), axis=1) test_set['textcnn_result'] = test_set['course_vecs_CNN'].progress_apply(lambda x : prediction_train_seperately(x)) test_set['predictions'] = test_set.progress_apply(lambda row: merge_results(row['textcnn_result'],row['gbdt_result']), axis=1) test_set['predictions_prob'] = test_set.progress_apply(lambda row: merge_results_prob(row['textcnn_result'],row['gbdt_result']), axis=1) final_result = test_set[['predictions']].values.tolist() final_result_prob = test_set[['predictions_prob']].values.tolist() ground_truth = test_set[['label_list']].values.tolist() # test = final_result.values.tolist() final_result = [ item for elem in final_result for item in elem] final_result = [ item for elem in final_result for item in elem] final_result_prob = [ item for elem in final_result_prob for item in elem] final_result_prob = [ item for elem in final_result_prob for item in elem] ground_truth = [ item for elem in ground_truth for item in elem] ground_truth = [ item for elem in ground_truth for item in elem] acc = calculate_acc(final_result,ground_truth) auc = roc_auc_score(ground_truth, final_result_prob) f1=f1_score(ground_truth, final_result, average='macro') ``` #### File: JiayinL/Dropout-Prediction/LR_GRU.py ```python import pandas as pd import pandas_profiling from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from joblib import Parallel,delayed import numpy as np import json import re import time import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data from torch.autograd import Variable import torch.nn.utils.rnn as rnn_utils from sklearn.utils import shuffle def time_transform(t): # 先转换为时间数组 timeArray = time.strptime(t, "%Y-%m-%d %H:%M:%S") # 转换为时间戳 timeStamp = int(time.mktime(timeArray)) return timeStamp def Z_score(mean_, std_,x): return (x-mean_)/std_ def max_mean_std(data): return np.max(data), np.mean(data), np.std(data) def calculate_acc(predictions, truth): hit = 0 for i in range(len(predictions)): if predictions[i] == truth[i]: hit = hit +1 return hit/len(predictions) train_set_course_vec = pd.read_csv('train_set_course_vec.csv',converters={'label_list': eval, 'course_vecs_CNN':eval, 'course_vecs_LR':eval}) test_set_course_vec = pd.read_csv('test_set_course_vec.csv',converters={'label_list': eval, 'course_vecs_CNN':eval, 'course_vecs_LR':eval}) def training_data_prep(): course_id = [] video_id = [] continues_feature1 = [] data = train_set_course_vec[['label_list','course_vecs_LR','course_vecs_CNN']] data = shuffle(data) #Shuffle data #get y labels = data['label_list'].values.tolist() y = [ item for elem in labels for item in elem] #get x for LR course_info_LR = data['course_vecs_LR'].values.tolist() course_id_LR = [] continues_feature1 = [] for i in range(len(course_info_LR)): #get a course c = course_info_LR[i] course_cat1 = [] course_con = [] for j in range(len(c)): #get a subject s = c[j] cat_feture1 = s[0] #get course_id and video_id course_cat1.append(cat_feture1) con_feture = s[1:] #get continues features course_con.append(con_feture) course_id_LR.append(course_cat1) continues_feature1.append(course_con) #get x for CNN course_info_CNN = data['course_vecs_CNN'].values.tolist() course_list = [ item for elem in course_info_CNN for item in elem] # print(course_list[0][0]) course_id_CNN = [] video_id = [] continues_feature2 = [] for i in range(len(course_list)): #get a course c = course_list[i] course_cat1 = [] course_cat2 = [] course_con = [] for j in range(len(c)): #get a subject s = c[j] cat_feture1 = s[0] #get course_id and video_id cat_feture2 = s[1] course_cat1.append(cat_feture1) course_cat2.append(cat_feture2) con_feture = s[2:] #get continues features course_con.append(con_feture) if len(course_cat1)<sequence_len: length = sequence_len - len(course_cat1) temp_course_id = [706] * length temp_video_id = [38180] * length temp2 = [[0,0,0,0,0,0,0,0,0,0,0,0,0]] * length course_cat1 = course_cat1 + temp_course_id course_cat2 = course_cat2 + temp_video_id course_con = course_con + temp2 course_id_CNN.append(course_cat1) video_id.append(course_cat2) continues_feature2.append(course_con) # to tensor continues_feature1 = [ item for elem in continues_feature1 for item in elem] course_id_LR = [ item for elem in course_id_LR for item in elem] continues_feature1 = torch.tensor(continues_feature1) course_id_LR = torch.tensor(course_id_LR) continues_feature2 = torch.tensor(continues_feature2) course_id_CNN = torch.tensor(course_id_CNN) video_id = torch.tensor(video_id) y = torch.tensor(y) return continues_feature1,continues_feature2,course_id_LR,course_id_CNN,video_id,y def test_data_prep(): course_id = [] video_id = [] continues_feature = [] data = test_set_course_vec[['label_list','course_vecs_LR','course_vecs_CNN']] labels = data['label_list'].values.tolist() y = [ item for elem in labels for item in elem] #get x for LR course_info_LR = data['course_vecs_LR'].values.tolist() course_id_LR = [] continues_feature1 = [] for i in range(len(course_info_LR)): #get a course c = course_info_LR[i] course_cat1 = [] course_con = [] for j in range(len(c)): #get a subject s = c[j] cat_feture1 = s[0] #get course_id and video_id course_cat1.append(cat_feture1) con_feture = s[1:] #get continues features course_con.append(con_feture) course_id_LR.append(course_cat1) continues_feature1.append(course_con) #get x for CNN course_info_CNN = data['course_vecs_CNN'].values.tolist() course_list = [ item for elem in course_info_CNN for item in elem] # print(course_list[0][0]) course_id_CNN = [] video_id = [] continues_feature2 = [] for i in range(len(course_list)): #get a course c = course_list[i] course_cat1 = [] course_cat2 = [] course_con = [] for j in range(len(c)): #get a subject s = c[j] cat_feture1 = s[0] #get course_id and video_id cat_feture2 = s[1] course_cat1.append(cat_feture1) course_cat2.append(cat_feture2) con_feture = s[2:] #get continues features course_con.append(con_feture) if len(course_cat1)<sequence_len: length = sequence_len - len(course_cat1) temp_course_id = [706] * length temp_video_id = [38180] * length temp2 = [[0,0,0,0,0,0,0,0,0,0,0,0,0]] * length course_cat1 = course_cat1 + temp_course_id course_cat2 = course_cat2 + temp_video_id course_con = course_con + temp2 course_id_CNN.append(course_cat1) video_id.append(course_cat2) continues_feature2.append(course_con) # to tensor continues_feature1 = [ item for elem in continues_feature1 for item in elem] course_id_LR = [ item for elem in course_id_LR for item in elem] continues_feature1 = torch.tensor(continues_feature1) course_id_LR = torch.tensor(course_id_LR) continues_feature2 = torch.tensor(continues_feature2) course_id_CNN = torch.tensor(course_id_CNN) video_id = torch.tensor(video_id) y = torch.tensor(y) return continues_feature1,continues_feature2,course_id_LR,course_id_CNN,video_id,y def prediction(course_vecs_LR,course_vecs_CNN): course_id = [] video_id = [] continues_feature = [] #get x for LR course_info_LR = course_vecs_LR course_id_LR = [] continues_feature1 = [] for i in range(len(course_info_LR)): #get a course c = course_info_LR[i] cat_feture1 = c[0] #get course_id and video_id con_feture = c[1:] #get continues features course_id_LR.append(cat_feture1) continues_feature1.append(con_feture) #get x for CNN # course_info_CNN = course_vecs_CNN course_list = course_vecs_CNN # print(course_list[0][0]) course_id_CNN = [] video_id = [] continues_feature2 = [] for i in range(len(course_list)): #get a course c = course_list[i] course_cat1 = [] course_cat2 = [] course_con = [] for j in range(len(c)): #get a subject s = c[j] cat_feture1 = s[0] #get course_id and video_id cat_feture2 = s[1] course_cat1.append(cat_feture1) course_cat2.append(cat_feture2) con_feture = s[2:] #get continues features course_con.append(con_feture) if len(course_cat1)<sequence_len: length = sequence_len - len(course_cat1) temp_course_id = [706] * length temp_video_id = [38180] * length temp2 = [[0,0,0,0,0,0,0,0,0,0,0,0,0]] * length course_cat1 = course_cat1 + temp_course_id course_cat2 = course_cat2 + temp_video_id course_con = course_con + temp2 course_id_CNN.append(course_cat1) video_id.append(course_cat2) continues_feature2.append(course_con) # to tensor continues_feature1 = [ item for elem in continues_feature1 for item in elem] course_id_LR = [ item for elem in course_id_LR for item in elem] continues_feature1 = torch.tensor(continues_feature1) course_id_LR = torch.tensor(course_id_LR) continues_feature2 = torch.tensor(continues_feature2) course_id_CNN = torch.tensor(course_id_CNN) video_id = torch.tensor(video_id) y = torch.tensor(y) return continues_feature1,continues_feature2,course_id_LR,course_id_CNN,video_id,y nb_courses = 706+1 course_emb_size = 5 nb_videos = 38181+1 video_emb_size = 15 sequence_len = 70 # in_channel = feature_size2 = course_emb_size + video_emb_size + 13 feature_size1 = course_emb_size + 42 hidden_dim = 64 num_of_lstm_layer = 1 class LR_GRU(nn.Module): def __init__(self): super(LR_GRU, self).__init__() self.course_embedding = torch.nn.Embedding(nb_courses, course_emb_size) self.video_embedding = torch.nn.Embedding(nb_videos, video_emb_size) self.bi_gru = nn.GRU(input_size = feature_size2, hidden_size = hidden_dim // 2, num_layers=num_of_lstm_layer, bidirectional=True) self.lr_fc = nn.Linear(feature_size1, 1) self.fc1 = nn.Linear(hidden_dim, 32) self.fc2 = nn.Linear(32, 16) self.fc3 = nn.Linear(16, 1) self.ReLU_activation = nn.ReLU() self.tanh_activation = nn.Tanh() self.sigmoid_activation = nn.Sigmoid() self.final_fc = nn.Linear(2, 1) def forward(self, courseid_LR,courseid_CNN,continuesfeature1,continuesfeature2,videoid): #course_id (batch_size, max_sen_len) #continues (batch_size, max_sen_len, feature_size) emb1_LR = self.course_embedding(courseid_LR) emb1_CNN = self.course_embedding(courseid_CNN)# (batch_size,max_sen_len, embed_size) emb2 = self.video_embedding(videoid) # LR part LR_x = torch.cat([emb1_LR,continuesfeature1], 1) LR_result = self.sigmoid_activation(self.lr_fc(LR_x)) #GRU part GRU_x = torch.cat([emb1_CNN,emb2,continuesfeature2], 2) GRU_x = GRU_x.permute(1, 0, 2) # Batch_size * (feature_dim) * max_sen_len bigru_out, _ = self.bi_gru(GRU_x) output = bigru_out[-1] info_fusion = self.tanh_activation(self.fc1(output)) info_fusion = self.tanh_activation(self.fc2(info_fusion)) final_out = self.fc3(info_fusion) GRU_result = self.sigmoid_activation(final_out) #combine two result final_input = torch.cat((LR_result, GRU_result), dim=1) result = self.sigmoid_activation(self.final_fc(final_input)) return result,LR_result,GRU_result class LR_single_direc_GRU(nn.Module): def __init__(self): super(LR_single_direc_GRU, self).__init__() self.course_embedding = torch.nn.Embedding(nb_courses, course_emb_size) self.video_embedding = torch.nn.Embedding(nb_videos, video_emb_size) self.bi_gru = nn.GRU(input_size = feature_size2, hidden_size = hidden_dim , num_layers=num_of_lstm_layer, bidirectional=False) self.lr_fc = nn.Linear(feature_size1, 1) self.fc1 = nn.Linear(hidden_dim, 16) self.fc2 = nn.Linear(16, 8) self.fc3 = nn.Linear(8, 1) self.ReLU_activation = nn.ReLU() self.tanh_activation = nn.Tanh() self.sigmoid_activation = nn.Sigmoid() self.final_fc = nn.Linear(2, 1) def forward(self, courseid_LR,courseid_CNN,continuesfeature1,continuesfeature2,videoid): #course_id (batch_size, max_sen_len) #continues (batch_size, max_sen_len, feature_size) emb1_LR = self.course_embedding(courseid_LR) emb1_CNN = self.course_embedding(courseid_CNN)# (batch_size,max_sen_len, embed_size) emb2 = self.video_embedding(videoid) # LR part LR_x = torch.cat([emb1_LR,continuesfeature1], 1) LR_result = self.sigmoid_activation(self.lr_fc(LR_x)) #GRU part GRU_x = torch.cat([emb1_CNN,emb2,continuesfeature2], 2) GRU_x = GRU_x.permute(1, 0, 2) # Batch_size * (feature_dim) * max_sen_len bigru_out, _ = self.bi_gru(GRU_x) output = bigru_out[-1] info_fusion = self.tanh_activation(self.fc1(output)) info_fusion = self.tanh_activation(self.fc2(info_fusion)) final_out = self.fc3(info_fusion) GRU_result = self.sigmoid_activation(final_out) #combine two result final_input = torch.cat((LR_result, GRU_result), dim=1) result = self.sigmoid_activation(self.final_fc(final_input)) return result,LR_result,GRU_result model = LR_single_direc_GRU() optimizer = optim.Adam(model.parameters(), lr=0.001) # MSELoss = nn.MSELoss() MSELoss = nn.BCELoss() epoach_count = 15 #40 batchSize = 512 loss_value = [] acc_value = [] times = [] for m in model.modules(): if isinstance(m, (nn.Conv1d, nn.Linear)): nn.init.xavier_uniform_(m.weight) test_continues_feature1,test_continues_feature2,test_course_id_LR,test_course_id_CNN,test_video_id,ground_truth = test_data_prep() ground_truth = ground_truth.detach().numpy().tolist() for epoach in range(epoach_count): start = time.time() continues_feature1,continues_feature2,course_id_LR,course_id_CNN,video_id,y = training_data_prep() numOfMinibatches = int(len(course_id_CNN) / batchSize) + 1 numOfLastMinibatch = len(course_id_CNN) % batchSize # loss_value = [] for batchID in range(numOfMinibatches): if batchID == numOfMinibatches-1: numbOfBatches = numOfLastMinibatch else: numbOfBatches = batchSize leftIndex = batchID * batchSize rightIndex = leftIndex + numbOfBatches courseid_LR = course_id_LR[leftIndex: rightIndex].clone().long() videoid = video_id[leftIndex: rightIndex].clone().long() continuesfeature1 = continues_feature1[leftIndex: rightIndex].clone() courseid_CNN = course_id_CNN[leftIndex: rightIndex].clone().long() continuesfeature2 = continues_feature2[leftIndex: rightIndex].clone() predictions,LR_result,GRU_result = model(courseid_LR,courseid_CNN,continuesfeature1,continuesfeature2,videoid) predictions = torch.flatten(predictions) LR_result = torch.flatten(LR_result) GRU_result = torch.flatten(GRU_result) loss_final = MSELoss(predictions,y[leftIndex: rightIndex].float()) loss_lr = MSELoss(LR_result,y[leftIndex: rightIndex].float()) loss_gru = MSELoss(GRU_result,y[leftIndex: rightIndex].float()) # print('loss: ',loss) loss = loss_final + loss_lr +loss_gru optimizer.zero_grad() loss.backward() optimizer.step() loss_value.append(loss.item()) #testing if(batchID%100==0): test_numOfMinibatches = int(len(test_course_id_LR) / batchSize) + 1 test_numOfLastMinibatch = len(test_course_id_LR) % batchSize results = [] for test_batchID in range(test_numOfMinibatches): if test_batchID == test_numOfMinibatches-1: test_numbOfBatches = test_numOfLastMinibatch else: test_numbOfBatches = batchSize test_leftIndex = test_batchID * batchSize test_rightIndex = test_leftIndex + test_numbOfBatches test_courseid_LR = test_course_id_LR[test_leftIndex: test_rightIndex].clone().long() test_videoid = test_video_id[test_leftIndex: test_rightIndex].clone().long() test_continuesfeature1 = test_continues_feature1[test_leftIndex: test_rightIndex].clone() test_courseid_CNN = test_course_id_CNN[test_leftIndex: test_rightIndex].clone().long() test_continuesfeature2 = test_continues_feature2[test_leftIndex: test_rightIndex].clone() test_predictions,_,_ = model(test_courseid_LR,test_courseid_CNN,test_continuesfeature1,test_continuesfeature2,test_videoid) test_predictions = torch.round(torch.flatten(test_predictions)) results.append(test_predictions.detach().numpy().tolist()) result = [ item for elem in results for item in elem] # ground_truth = ground_truth.detach().numpy().tolist() acc = calculate_acc(result,ground_truth) acc_value.append(acc) print('Epoch[{}/{}],loss:{:.4f},loss_final:{:.4f},loss_LR:{:.4f},loss_GRU:{:.4f},acc:{:.4f}'.format(epoach, epoach_count,loss.item(),loss_final.item(),loss_lr.item(),loss_gru.item(),acc)) # batchIndex = batchList[leftIndex: rightIndex] end = time.time() interval = end-start times.append(interval) print('time:{:.4f}'.format(interval)) torch.save(model.state_dict(), 'lr_gru.model') ```
{ "source": "jiayi-ren/stock-scraper", "score": 3 }
#### File: jiayi-ren/stock-scraper/scraper.py ```python import alpha_vantage from alpha_vantage.timeseries import TimeSeries import datetime,os,sys,pandas import bokeh from bokeh.plotting import figure,show,save,output_file API_Key = pandas.read_csv("Alpha Vantage API key.txt") ts = TimeSeries(key='API_Key', output_format = 'pandas') ################### Stock data scraper ############ def intraday(stock,interval,size): data, meta_data = ts.get_intraday(symbol=stock,interval=interval, outputsize=size) def daily(stock,size): data, meta_data = ts.get_daily(symbol=stock, outputsize=size) return data def weekly(stock,size): data, meta_data = ts.get_weekly(symbol=stock, outputsize=size) def monthly(stock,size): data, meta_data = ts.get_weekly(symbol=stock, outputsize=size) ################### User Input #################### try: stock = input("Enter Stock Symbol: ") #stock symbol e.g. SPY duration = input("Choose Time Frame (intraday/daily/weekly/monthly): ") if duration == "intraday" : interval = input("Choose interval (1min, 5min, 15min, 30min) :") #1min,5min, 15min, 30min, 60min size = input("Choose data size (compact, full)\n" + "##compact:latest 100 data points##\n##full:all available datapoints##\ncompact or full? ") #compact:latest 100 data points, full:all available datapoints if size != ("compact" or "full"): size = input("Re-choose compact or full: ") df=daily(stock,size) ####### Invalid stock symbol check ############### except ValueError: print("\nInvalid stock symbol") sys.exit() df.columns=['open','high','low','close','volume'] df.index =pandas.to_datetime(df.index, format='%Y-%m-%d') ########### stock data output file ################### datafile = input("Enter a output data file name: ") df.to_csv(datafile +".csv") ################## Bokeh Graph saved to HTML file ############## htmlfilename=input("Enter graph file name otherwise N/A: ") def inc_dec(c, o): if c > o: value="Up" elif c < o: value="Down" else: value="Equal" return value def bokeh_graph(htmlfile= "N/A"): df["Status"]=[inc_dec(c, o) for c, o in zip(df.close,df.open)] df["Middle"]=(df.open+df.close)/2 df["Height"]=abs(df.open-df.close) p=figure(x_axis_type='datetime',plot_width=500,plot_height=300, sizing_mode="scale_width") p.title.text="Candlestick chart" p.grid.grid_line_alpha=0 p.segment(df.index,df.high,df.index,df.low,color="Black") hours_12=12*60*60*1000 p.rect(df.index[df.Status=='Up'],df.Middle[df.Status=="Up"], hours_12, df.Height[df.Status=='Up'],fill_color="green",line_color="black") p.rect(df.index[df.Status=='Down'],df.Middle[df.Status=="Down"], hours_12, df.Height[df.Status=='Down'],fill_color="red",line_color="black") if "N/A" in htmlfile.upper(): pass else: output_file(htmlfile+".html") save(p) bokeh_graph(htmlfilename) ```
{ "source": "jiayisunx/intel-extension-for-pytorch", "score": 2 }
#### File: tests/cpu/test_jit.py ```python from __future__ import division from __future__ import print_function ''' From PyTorch: Copyright (c) 2016- Facebook, Inc (<NAME>) Copyright (c) 2014- Facebook, Inc (<NAME>) Copyright (c) 2011-2014 Idiap Research Institute (<NAME>) Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) Copyright (c) 2011-2013 NYU (<NAME>) Copyright (c) 2006-2010 NEC Laboratories America (<NAME>, <NAME>, <NAME>, <NAME>) Copyright (c) 2006 Idiap Research Institute (<NAME>) Copyright (c) 2001-2004 Idiap Research Institute (<NAME>, <NAME>, <NAME>) From Caffe2: Copyright (c) 2016-present, Facebook Inc. All rights reserved. All contributions by Facebook: Copyright (c) 2016 Facebook Inc. All contributions by Google: Copyright (c) 2015 Google Inc. All rights reserved. All contributions by Yangqing Jia: Copyright (c) 2015 Yang<NAME> All rights reserved. All contributions from Caffe: Copyright(c) 2013, 2014, 2015, the respective contributors All rights reserved. All other contributions: Copyright(c) 2015, 2016 the respective contributors All rights reserved. Caffe2 uses a copyright model similar to Caffe: each contributor holds copyright over their contributions to Caffe2. The project versioning records all such contribution and copyright details. If a contributor wants to further mark their specific copyright on a particular contribution, they should indicate their copyright solely in the commit message of the change when it is committed. All rights reserved. ''' """Tests for rn50.""" import math import random import unittest from functools import reduce import torch import torch.nn as nn from torch.jit._recursive import wrap_cpp_module import copy import intel_pytorch_extension as ipex from intel_pytorch_extension import core import torch.nn as nn import torch.backends.cudnn as cudnn from torch.nn import Parameter import torch.nn.functional as F from torch.autograd import gradcheck from torch.autograd.gradcheck import gradgradcheck from torch._six import inf, nan from common_utils import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \ TEST_LIBROSA, run_tests, download_file, skipIfNoLapack, suppress_warnings, \ IS_WINDOWS, PY3, NO_MULTIPROCESSING_SPAWN, do_test_dtypes, do_test_empty_full, \ IS_SANDCASTLE, load_tests, brute_pdist, brute_cdist, slowTest, \ skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf device = ipex.DEVICE #device = 'cpu:0' SIZE = 100 conv_module = {2 : torch.nn.Conv2d, 3 : torch.nn.Conv3d} bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d} class ConvBatchNorm_Fixed(nn.Module): def __init__(self, dim, in_channels, out_channels, **kwargs): super(ConvBatchNorm_Fixed, self).__init__() seed = 2018 torch.manual_seed(seed) self.conv = conv_module[dim](in_channels, out_channels, bias=False, **kwargs) self.bn = bn_module[dim](out_channels, eps=0.001) def forward(self, x): return self.bn(self.conv(x)) class ConvRelu_Fixed(nn.Module): def __init__(self, dim, in_channels, out_channels, **kwargs): super(ConvRelu_Fixed, self).__init__() seed = 2018 torch.manual_seed(seed) self.conv = conv_module[dim](in_channels, out_channels, bias=False, **kwargs) def forward(self, x): return F.relu(self.conv(x), inplace=True) class ConvSum(nn.Module): def __init__(self, dim, in_channels, out_channels, **kwargs): super(ConvSum, self).__init__() seed = 2018 torch.manual_seed(seed) self.conv = conv_module[dim](in_channels, out_channels, bias=False, **kwargs) self.conv1 = conv_module[dim](in_channels, out_channels, bias=False, **kwargs) def forward(self, x): a = self.conv(x) b = self.conv1(x) return a+b class CascadedConvBnSumRelu(nn.Module): def __init__(self, dim, in_channels, mid_channels, out_channels, **kwargs): super(CascadedConvBnSumRelu, self).__init__() torch.manual_seed(2018) self.conv = conv_module[dim](in_channels, mid_channels, bias=False, **kwargs) self.conv1 = conv_module[dim]( mid_channels, out_channels, bias=False, padding=1, **kwargs) self.conv2 = conv_module[dim](in_channels, out_channels, bias=False, **kwargs) self.bn = bn_module[dim](mid_channels, eps=0.001) self.bn1 = bn_module[dim](out_channels, eps=0.001) self.bn2 = bn_module[dim](out_channels, eps=0.001) def forward(self, x): a = self.conv(x) a = self.bn(a) a = F.relu(a, inplace=True) a = self.conv1(a) a = self.bn1(a) b = self.conv2(x) b = self.bn2(b) return F.relu(a.add_(b), inplace=True) class LinearRelu(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(LinearRelu, self).__init__() seed = 2018 torch.manual_seed(seed) self.linear = nn.Linear(in_channels, out_channels, **kwargs) def forward(self, x): return F.relu(self.linear(x), inplace=True) class ConvSumInDiffBlock(nn.Module): def __init__(self, dim, in_channels, out_channels, **kwargs): super(ConvSumInDiffBlock, self).__init__() seed = 2018 torch.manual_seed(seed) self.conv = conv_module[dim](in_channels, out_channels, bias=False, **kwargs) def forward(self, x): y = self.conv(x) if y.size(1) != x.size(1): y += F.pad(x, (0, 0, 0, 0, 0, y.size(1) - x.size(1)), 'constant', 0.) else: y += x return y class Tester(TestCase): def _test_output(self, model, x, kind_in_graph=None, kind_not_in_graph=None): modelName = model.__class__.__name__ core.disable_jit_opt() core.disable_mix_bf16_fp32() model = model.to(device).eval() x = x.to(device) with torch.no_grad(): result = model(x) script_model = torch.jit.script(model) script_model.eval() trace_model = torch.jit.trace(model, x) trace_model.eval() with torch.no_grad(): sresult = script_model(x) tresult = trace_model(x) self.assertEqual(result, sresult) self.assertEqual(result, tresult) core.enable_jit_opt() script_fused_model = torch.jit.script(model) trace_fused_model = torch.jit.trace(model, x) with torch.no_grad(): # conv relu fusion, conv sum fusion or conv sum relu fusion script_graph = script_fused_model.graph_for(x) fused_sresult = script_fused_model(x) trace_graph = trace_fused_model.graph_for(x) fused_tresult = trace_fused_model(x) self.assertEqual(result, fused_sresult) self.assertEqual(result, fused_tresult) # check if the fused node exists in the graph if kind_in_graph is not None: self.assertTrue(any(n.kind() == kind_in_graph for n in script_graph.nodes())) self.assertTrue(any(n.kind() == kind_in_graph for n in trace_graph.nodes())) # check if certain node does not exist in the graph if kind_not_in_graph is not None: self.assertTrue(all(n.kind() != kind_not_in_graph for n in script_graph.nodes())) self.assertTrue(all(n.kind() != kind_not_in_graph for n in trace_graph.nodes())) def _test_output_bf16(self, model, x, kind_in_graph=None, kind_not_in_graph=None, prec=None): modelName = model.__class__.__name__ core.enable_auto_dnnl() core.enable_jit_opt() core.enable_mix_bf16_fp32() model = model.to(ipex.DEVICE).eval() x = x.to(ipex.DEVICE) x2 = x.clone() x3 = x.clone() script_fused_model = torch.jit.script(copy.deepcopy(model)) trace_fused_model = torch.jit.trace(copy.deepcopy(model), x3) with torch.no_grad(): # bf16, native path result = model(x) # bf16, jit script path script_graph = script_fused_model.graph_for(x2) fused_sresult = script_fused_model(x2) # bf 16, jit trace path trace_graph = trace_fused_model.graph_for(x3) fused_tresult = trace_fused_model(x3) # disable mix_bf16_fp32 when the calculation is done # to avoid affecting other scripts core.disable_mix_bf16_fp32() self.assertEqual(fused_sresult, result, prec=prec) self.assertEqual(fused_tresult, result, prec=prec) # check if the fused node exists in the graph if kind_in_graph is not None: self.assertTrue(any(n.kind() == kind_in_graph for n in script_graph.nodes())) self.assertTrue(any(n.kind() == kind_in_graph for n in trace_graph.nodes())) # check if certain node does not exist in the graph if kind_not_in_graph is not None: self.assertTrue(all(n.kind() != kind_not_in_graph for n in script_graph.nodes())) self.assertTrue(all(n.kind() != kind_not_in_graph for n in trace_graph.nodes())) def test_output_conv_bn_2d(self): self._test_output( ConvBatchNorm_Fixed(2, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 64, 64), kind_in_graph="aten::conv2d", kind_not_in_graph="aten::batch_norm",) self._test_output_bf16( ConvBatchNorm_Fixed(2, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 64, 64), kind_in_graph="aten::conv2d", kind_not_in_graph="aten::batch_norm", prec=0.02) def test_output_conv_bn_3d(self): self._test_output( ConvBatchNorm_Fixed(3, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 32, 32, 32), kind_in_graph="aten::conv3d", kind_not_in_graph="aten::batch_norm",) self._test_output_bf16( ConvBatchNorm_Fixed(3, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 32, 32, 32), kind_in_graph="aten::conv3d", kind_not_in_graph="aten::batch_norm", prec=0.02) def test_output_conv_relu_2d(self): self._test_output( ConvRelu_Fixed(2, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 64, 64), kind_in_graph="ipex::conv2d_relu") self._test_output_bf16( ConvRelu_Fixed(2, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 64, 64), kind_in_graph="ipex::conv2d_relu") def test_output_conv_relu_3d(self): self._test_output( ConvRelu_Fixed(3, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 32, 32, 32), kind_in_graph="ipex::conv3d_relu") self._test_output_bf16( ConvRelu_Fixed(3, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 32, 32, 32), kind_in_graph="ipex::conv3d_relu") def test_output_conv_sum_2d(self): self._test_output( ConvSum(2, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 64, 64), kind_in_graph="ipex::conv2d_sum") self._test_output_bf16( ConvSum(2, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 64, 64), kind_in_graph="ipex::conv2d_sum", prec=0.04) def test_output_conv_sum_3d(self): self._test_output( ConvSum(3, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 32, 32, 32), kind_in_graph="ipex::conv3d_sum") self._test_output_bf16( ConvSum(3, 3, 32, kernel_size=3, stride=1), torch.randn(32, 3, 32, 32, 32), kind_in_graph="ipex::conv3d_sum", prec=0.04) def test_output_cascaded_conv_bn_sum_relu_2d(self): self._test_output( CascadedConvBnSumRelu(2, 3, 64, 32, kernel_size=3, stride=1), torch.rand(32, 3, 64, 64), kind_in_graph="ipex::conv2d_sum_relu", kind_not_in_graph="aten::batch_norm") self._test_output_bf16( CascadedConvBnSumRelu(2, 3, 64, 32, kernel_size=3, stride=1), torch.rand(32, 3, 64, 64), kind_in_graph="ipex::conv2d_sum_relu", kind_not_in_graph="aten::batch_norm", prec=0.02) def test_output_cascaded_conv_bn_sum_relu_3d(self): self._test_output( CascadedConvBnSumRelu(3, 3, 64, 32, kernel_size=3, stride=1), torch.rand(32, 3, 32, 32, 32), kind_in_graph="ipex::conv3d_sum_relu", kind_not_in_graph="aten::batch_norm",) self._test_output_bf16( CascadedConvBnSumRelu(3, 3, 64, 32, kernel_size=3, stride=1), torch.rand(32, 3, 32, 32, 32), kind_in_graph="ipex::conv3d_sum_relu", kind_not_in_graph="aten::batch_norm", prec=0.02) def test_output_linear_relu(self): self._test_output( LinearRelu(3, 32, bias=True), torch.rand(32, 3), kind_in_graph="ipex::linear_relu") self._test_output_bf16( LinearRelu(3, 32, bias=True), torch.rand(32, 3), kind_in_graph="ipex::linear_relu") self._test_output( LinearRelu(3, 32, bias=False), torch.rand(32, 3), kind_in_graph="ipex::linear_relu") self._test_output_bf16( LinearRelu(3, 32, bias=False), torch.rand(32, 3), kind_in_graph="ipex::linear_relu") def test_jit_function(self): # test hool trace and script can works for function def fn(input, weight, bias): return F.linear(input, weight, bias) input = torch.randn(2, 4) weight = torch.randn(5, 4) bias = torch.randn(5) result = fn(input, weight, bias) scripted_fn = torch.jit.script(fn) traced_fn = torch.jit.trace(fn, (input, weight, bias)) self.assertEqual(scripted_fn(input, weight, bias), result) self.assertEqual(traced_fn(input, weight, bias), result) def test_jit_conv_sum_in_diff_block(self): self._test_output( ConvSumInDiffBlock(2, 3, 32, kernel_size=1, stride=1, padding=0), torch.rand(32, 3, 64, 64), kind_not_in_graph="ipex::conv2d_sum") self._test_output_bf16( ConvSumInDiffBlock(2, 3, 32, kernel_size=1, stride=1, padding=0), torch.rand(32, 3, 64, 64), kind_not_in_graph="ipex::conv2d_sum") if __name__ == '__main__': torch.manual_seed(2020) core.enable_auto_dnnl() test = unittest.main() ```
{ "source": "jiayixu64/graph-partition-neural-network-samples", "score": 3 }
#### File: gpnn/model/model_helper.py ```python import tensorflow as tf def aggregate(data, agg_idx, new_size, method="sum"): """ Aggregate data Args: data: tf tensor, see "unsorted_segment_x" in tf documents for more detail agg_idx: tf tensor of int, index for aggregation new_size: tf tensor of int, size of the data after aggregation method: aggregation method Returns: agg_data: tf tensor, aggregated data """ if method == "sum": agg_data = tf.unsorted_segment_sum(data, agg_idx, new_size) elif method == "avg": agg_data = tf.unsorted_segment_sum(data, agg_idx, new_size) denom_const = tf.unsorted_segment_sum(tf.ones_like(data), agg_idx, new_size) agg_data = tf.div(agg_data, (denom_const + tf.constant(1.0e-10))) elif method == "max": agg_data = tf.unsorted_segment_max(data, agg_idx, new_size) elif method == "min": agg_data = tf.unsorted_segment_max(-data, agg_idx, new_size) else: raise ValueError("Unsupported aggregation method!") return agg_data ```
{ "source": "JiayiXu/PythonLearning", "score": 4 }
#### File: PythonLearning/004_count_words/count.py ```python import operator import sys def main(argv): if len(argv) < 1: print("Usage:get_count.py <file> <top count=10>") sys.exit(2) file_name = argv[0] top_count = 10 if len(argv) > 1: top_count = int(argv[1]) word_count = {} with open(file_name, 'r') as file: for line in file: splits = line.split(' ') for word in splits: if word not in word_count: word_count[word] = 0 word_count[word] = word_count[word] + 1 sorted_x = sorted(word_count.items(), key=operator.itemgetter(1)) sorted_x.reverse() top_k = sorted_x[:top_count] print("top k is {}".format(top_k)) if __name__ == '__main__': main(sys.argv[1:]) ``` #### File: PythonLearning/007_count_code_info/count_code_info.py ```python import uuid import sys import os def main(argv): if len(argv) != 1: print("Usage:count_count_info.py <path>") sys.exit(2) count_code = 0 count_comments = 0 count_spaces = 0 for dirpath, _, filenames in os.walk(argv[0]): for file_name in filenames: if os.path.splitext(file_name)[1] == '.py': full_path = os.path.join(dirpath, file_name) code, comments, spaces = get_statistics(full_path) count_code += code count_comments += comments count_spaces += spaces print("Count_code:%s, count_comments:%s, count_spaces:%s" % (count_code, count_comments, count_spaces)) def get_statistics(full_path): count_code = 0 count_comments = 0 count_spaces = 0 with open(full_path, "r") as ins: is_start_of_comments = False for line in ins: context = line.strip() if context.startswith('#') or context.startswith('"""') or is_start_of_comments is True: count_comments += 1 elif context == '': count_spaces += 1 else: count_code += 1 if context.startswith('"""'): is_start_of_comments = True if context[::-1].startswith('"""'): is_start_of_comments = False return count_code, count_comments, count_spaces if __name__ == '__main__': main(sys.argv[1:]) ``` #### File: 007_count_code_info/test/test.py ```python import abc import sys def a(): # type something """this is a test progmra""" return c ```
{ "source": "JiaYong-Chen/Underwater-GPS-API", "score": 3 }
#### File: JiaYong-Chen/Underwater-GPS-API/olexoutput.py ```python from __future__ import print_function from nmeaoutput import get_data, checksum, send_udp, get_master_position import requests import argparse import json import time from math import floor import socket import sys def get_acoustic_position(base_url): return get_data("{}/api/v1/position/acoustic/filtered".format(base_url)) def gen_ssb(time_t, x, y, z): """ Generate PSIMSBB for Olex http://www.olex.no/olexiti.html Valid sentence: $PSIMSSB,180554.432,M44,A,,C,N,M,-61.300,39.017,34.026,0.072,T,0.050576,*47 1 ,2 ,3 ,5,6,7, 8 , 9 , 10 , 11 ,12,13, crc 1 = Time 2 = Name 3 = A 4 = Empty 5 = C - Cartesian 6 = N/E/H, N=North up, E=East up, H=vessel heading up 7 = any char, sw-filter: M Measured, F Filtered, P Predicted. 8 = distance in horizontal plane x (C+H => Starboard) 9 = distance in horizontal plane y (C+H => Forwards) 10 = distance in vertical plane depth 11 = ?? 12 = T?? 13 = ?? """ hhmmssss = '%02d%02d%02d%s' % (time_t.tm_hour, time_t.tm_min, time_t.tm_sec, '.%02d' if 0 != 0 else '') name = 'UGPS' result = 'PSIMSSB,{0},{1},{2},{3},{4},{5},{6},{7:.2f},{8:.2f},{9:.2f},{10},{11},{12}'.format( hhmmssss, name, 'A', '', 'C', 'H', 'M', x, y, z, 'T', '', '') crc = checksum(result) return '$%s*%0.2X' % (result, crc) def gen_sns(time_t, heading): """ $PSIMSNS,180554.432,M44,1,2,0.0,1.0,2.0,42, , ,1.5, , ,*47 1 ,2 ,3,4,5 , 6 , 7 , 8,9,10, 11,12,13, crc 1 = Time 2 = Name 3 = Transceiver number 4 = Transducer number 5 = Roll 6 = Pitch 7 = Heave 8 = Heading 9 = Tag 10 = Parameters 11 = Time age 12 = Spare1 13 = Master/Slave """ hhmmssss = '%02d%02d%02d%s' % (time_t.tm_hour, time_t.tm_min, time_t.tm_sec, '.%02d' if 0 != 0 else '') name = 'UGPS' result = 'PSIMSNS,{0},{1},{2},{3},{4},{5},{6},{7:.1f},{8},{9},{10},{11},{12}'.format( hhmmssss, name, '1', '1', '', '', '', heading, '', '', '1.0', '', '') crc = checksum(result) return '$%s*%0.2X' % (result, crc) class Sender(object): def __init__(self, ser, sock, ip, port, verbose): self.ser = ser self.sock = sock self.ip = ip self.port = port self.verbose = verbose def send(self, sentence): if self.verbose: print(sentence) if self.sock: send_udp(self.sock, self.ip, self.port, sentence) if self.ser: self.ser.write(sentence + "\n") def main(): if sys.version_info >= (3, 0): sys.stdout.write("This has only been tested with Python 2.x, not Python 3.x\n") sys.exit(1) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-u', '--url', help='IP/URL of Underwater GPS kit. Typically http://192.168.2.94', type=str, default='http://demo.waterlinked.com') parser.add_argument("-v", "--verbose", help="Print NMEA sentences", action="store_true") # UDP options parser.add_argument('-i', '--ip', help="Enable UDP output by specifying IP address to send UDP packets. Default disabled", type=str, default='') parser.add_argument('-p', '--port', help="Port to send UDP packet", type=int, default=5000) # Serial port options parser.add_argument('-s', '--serial', help="Enable serial port output by specifying port to use. Example: '/dev/ttyUSB0' or 'COM1' Default disabled", type=str, default='') parser.add_argument('-b', '--baud', help="Serial port baud rate", type=int, default=9600) args = parser.parse_args() if not (args.ip or args.serial): parser.print_help() print("ERROR: Please specify either serial port to use, ip address to use") sys.exit(1) print("Using base_url: {}".format(args.url)) ser = None if args.serial: import serial print("Serial port: {}".format(args.serial)) ser = serial.Serial(args.serial, args.baud) sock = None if args.ip: print("UDP: {} {}".format(args.ip, args.port)) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sender = Sender(ser, sock, args.ip, args.port, args.verbose) while True: pos = get_acoustic_position(args.url) if pos: sentence = gen_ssb(time.gmtime(), pos["x"], pos["y"], pos["z"]) sender.send(sentence) master = get_master_position(args.url) if master: sentence = gen_sns(time.gmtime(), master["orientation"]) sender.send(sentence) time.sleep(0.2) if __name__ == "__main__": main() ```
{ "source": "jiayouanan/cc_cache", "score": 2 }
#### File: jiayouanan/cc_cache/OFF_main.py ```python import configparser import yaml from multiprocessing import Process, Queue from TCache.sys_op import WorkloadTest, SystemOperator import os import time def backend_config_parse(filename='config/backend.ini'): """Parse backend connection configurations.""" parser = configparser.ConfigParser() parser.read(filename) db_conn_param, cache_conn_param = {}, {} if parser.has_section("system"): params = parser.items(section="system") for param in params: if param[0] == "db": db_conn_param[param[0]] = param[1] if param[0] == "cache": cache_conn_param[param[0]] = param[1] else: print('[system] section not found in {}, exiting.'.format(filename)) exit(1) db_params = parser.items(section=db_conn_param["db"]) for param in db_params: db_conn_param[param[0]] = param[1] cache_params = parser.items(section=cache_conn_param["cache"]) for param in cache_params: cache_conn_param[param[0]] = param[1] return db_conn_param, cache_conn_param def alg_config_parse(filename='config/sysTest.yaml'): with open(filename, 'r') as fp: try: alg_dict = yaml.safe_load(fp) alg_dict['dataset_dir'] = alg_dict['dataset_root'] + "/" + alg_dict['dataset_name'] return alg_dict except yaml.YAMLError as exc: print(exc) def system_process(config_file, queue, sys_test): """Process DB and Cache operations.""" # ---------- debug only ---------- print('module name:', __name__) print('parent process:', os.getppid()) print('process id:', os.getpid()) # ---------- debug only ---------- db_conn_param, cache_conn_param = backend_config_parse(config_file) if sys_test: sys_op = SystemOperator(db_conn_param, cache_conn_param) print('SYS Start Time: {}'.format(time.time())) sys_op.operation_exe(op_queue=queue) print('SYS End Time: {}'.format(time.time())) sys_op.cleanup() def alg_process(alg_dict, queue): alg_test = WorkloadTest(dataset_dir=alg_dict['dataset_dir'], sys_test=alg_dict['sys_test']) print('ALG Start time: {}'.format(time.time())) alg_test.batch_test(queue, csize=alg_dict['csize'], cache_scheme=alg_dict['cache_scheme'], alg_name=alg_dict['alg_name'], batch_size=alg_dict['batch_size'], reorder_flag=alg_dict['reorder_flag'], liveness_bound=alg_dict['liveness_bound'], reorder_name=alg_dict['reorder_name'], opt_len=alg_dict['opt_len']) print('ALG End Time: {}'.format(time.time())) if __name__ == '__main__': alg_dict = alg_config_parse('config/sysTest.yaml') op_queue = Queue() # system operation queue sys_test = alg_dict['sys_test'] p = Process(target=system_process, args=('config/backend.ini', op_queue, sys_test)) # child process p.start() alg_process(alg_dict, op_queue) # parent process p.join() ``` #### File: cc_cache/TCache/sys_op.py ```python from multiprocessing import Queue import time from utils.load_dataset import load_item_univ, load_txn_univ, load_txn_seq, load_ycsb_seq from TCache.cache_alg import SingleAlg from TCache.reorder_alg import ReorderAlg import numpy as np import json import pdb import os import psycopg2 import happybase from pymemcache.client import base from pymemcache.client.base import PooledClient import csv class WorkloadManager(object): """Manage workload for TCache """ def __init__(self, dataset_dir: str, sys_test=True) -> None: super().__init__() # load entire workload data from dataset_dir item_size_path = dataset_dir + '/item_size.pkl' cls_item_path = dataset_dir + '/cls_item.pkl' txn_item_path = dataset_dir + '/txn_item.pkl' id_seq_path = dataset_dir + '/id_seq.npy' flag_seq_path = dataset_dir + '/flag_seq.npy' self.item_size_dict, self.cls_item_dict = load_item_univ(item_size_path, cls_item_path) self.txn_item_dict = load_txn_univ(txn_item_path) self.txn_id_seq, self.write_flag_seq = load_txn_seq(id_seq_path, flag_seq_path) if sys_test: ycsb_seq_path = dataset_dir + '/transactions.dat' self.ycsb_id_2_key, self.ycsb_id_2_read, self.ycsb_id_2_write = load_ycsb_seq(ycsb_seq_path) self.get_workload_stats(print_stats=True) def get_workload_stats(self, print_stats=True) -> None: """ Get statistics for workload data. """ query_num = len(self.item_size_dict) cls_num = len(self.cls_item_dict) seq_len = len(self.txn_id_seq) read_qry_cnt, wrt_qry_cnt = 0, 0 wrt_txn_cnt = self.write_flag_seq.sum() read_txn_cnt = len(self.write_flag_seq) - wrt_txn_cnt # item_read_time_dict & item_write_time_dict just for workload statistics item_read_time_dict, item_write_time_dict = {i:[] for i in range(query_num)}, {i:[] for i in range(query_num)} for time_step in range(len(self.txn_id_seq)): txn_vec = self.txn_item_dict[self.txn_id_seq[time_step]] if self.write_flag_seq[time_step]: wrt_qry_cnt += np.sum(txn_vec) for item_id in np.where(txn_vec == 1)[0]: item_write_time_dict[item_id].append(time_step) else: read_qry_cnt += np.sum(txn_vec) for item_id in np.where(txn_vec == 1)[0]: item_read_time_dict[item_id].append(time_step) dist_read_qry_cnt, dist_wrt_qry_cnt = 0, 0 for i in range(query_num): if len(item_read_time_dict[i]) > 0: dist_read_qry_cnt += 1 if len(item_write_time_dict[i]) > 0: dist_wrt_qry_cnt += 1 total_item_size = sum(self.item_size_dict.values()) self.workload_stats = {'query_num': query_num, 'cls_num': cls_num, 'total_size': total_item_size, 'seq_len': seq_len, 'read_txn_cnt': read_txn_cnt, 'write_txn_cnt': wrt_txn_cnt, 'read_qry_cnt': read_qry_cnt, 'write_qry_cnt': wrt_qry_cnt, 'unique_read_qry_cnt': dist_read_qry_cnt, 'unique_write_qry_cnt': dist_wrt_qry_cnt} workload_stats_columns = ['query_num', 'cls_num', 'total_size', 'seq_len', 'read_txn_cnt', 'write_txn_cnt', 'read_qry_cnt', 'write_qry_cnt', 'unique_read_qry_cnt', 'unique_write_qry_cnt'] dict_data = [ {'query_num': query_num, 'cls_num': cls_num, 'total_size': total_item_size, 'seq_len': seq_len, 'read_txn_cnt': read_txn_cnt, 'write_txn_cnt': wrt_txn_cnt, 'read_qry_cnt': read_qry_cnt, 'write_qry_cnt': wrt_qry_cnt, 'unique_read_qry_cnt': dist_read_qry_cnt, 'unique_write_qry_cnt': dist_wrt_qry_cnt}] csv_file = "data/res/workload_stats.csv" try: with open(csv_file, 'a', newline='') as p: # a means append writer = csv.DictWriter(p, fieldnames=workload_stats_columns) if os.stat(csv_file).st_size == 0: # if csv_file is empty, then add the header writer.writeheader() for data in dict_data: writer.writerow(data) except IOError: print("I/O error") if print_stats: print(self.workload_stats) # json.dumps(self.workload_stats, indent=4) class WorkloadTest(WorkloadManager): """ Create input for algorithm, operate Cache and DB accordingly. """ def __init__(self, dataset_dir: str, sys_test=True) -> None: super().__init__(dataset_dir, sys_test) self.sys_test = sys_test self.orireor_txn_id_seq = np.zeros(self.workload_stats['seq_len'], dtype=int) # reorder seq based our strategy self.ran_txn_id_seq = np.zeros(self.workload_stats['seq_len'], dtype=int) self.readfir_txn_id_seq = np.zeros(self.workload_stats['seq_len'], dtype=int) # self.wrtfir_txn_id_seq = np.zeros(self.workload_stats['seq_len'], dtype=int) # generate reordered txn_id_seq, write_flag_seq and txn_item_dict self.reor_txn_id_seq = np.zeros(self.workload_stats['seq_len'], dtype=int) self.reor_write_flag_seq = np.zeros(self.workload_stats['seq_len'], dtype=int) self.reor_txn_item_dict = {} def generate_reor_res_seq(self, batch_start, batch_size, orireor_txn_id_seq, write_flag_seq, txn_item_dict): """ generate reordered txn_id_seq, write_flag_seq and txn_item_dict based on orireor_txn_id_seq""" for ordered_txn_num in range(batch_size): self.reor_txn_id_seq[batch_start+ordered_txn_num] = batch_start+ordered_txn_num self.reor_write_flag_seq[batch_start+ordered_txn_num] = write_flag_seq[orireor_txn_id_seq[batch_start+ordered_txn_num]] self.reor_txn_item_dict[batch_start+ordered_txn_num] = txn_item_dict[orireor_txn_id_seq[batch_start+ordered_txn_num]] def batch_test(self, queue: Queue, csize: float, cache_scheme: str, alg_name: str, batch_size: int, reorder_flag:bool, liveness_bound:int, reorder_name:str, opt_len=500) -> dict: """ Test transaction sequence in batches. """ assert self.workload_stats['seq_len'] % batch_size == 0 # transaction sequence consists of full batches by default cache_size = int(csize * self.workload_stats['total_size']) assert 'Comb' not in alg_name # TODO: support combiner style caching algorithm alg_obj = SingleAlg(alg_name) # using opt_len as findOB truncate length for optimization alg_obj.workload_init(cache_size, cache_scheme, item_num=self.workload_stats['query_num'], findOB_trunc=opt_len) batch_num = int(self.workload_stats['seq_len'] / batch_size) item_num = self.workload_stats['query_num'] seq_start_time = time.time() off_liveness, ran_liveness, readfir_liveness, wrtfir_liveness = 0, 0, 0, 0 off_max_liveness, ran_max_liveness, readfir_max_liveness, wrtfir_max_liveness = 0, 0, 0, 0 for i in range(batch_num): batch_start, batch_end = i * batch_size, (i + 1) * batch_size # TODO: define a new reorder object, generate the reordered txn_id_seq[batch_start:batch_end] & write_flag_seq[batch_start:batch_end] if reorder_flag: print("reordering start") reorder_obj = ReorderAlg(cache_size) reorder_obj.init_read_write_time(item_num, txn_id_seq=self.txn_id_seq[batch_start:batch_end], write_flag_seq=self.write_flag_seq[batch_start:batch_end], txn_item_dict=self.txn_item_dict, batch_start=batch_start) if reorder_name in ['Greedy']: # print("Greedy reorder algorithm") reorder_obj.get_writetxn_bond_readtxn(batch_start=batch_start, batch_end=batch_end, txn_id_seq=self.txn_id_seq[batch_start:batch_end], write_flag_seq=self.write_flag_seq[batch_start:batch_end], txn_item_dict=self.txn_item_dict, liveness_bound=liveness_bound) reorder_obj.pick_readtxn2wrttxn(batch_start, batch_size) self.orireor_txn_id_seq = reorder_obj.reorder_read_main(item_num, batch_start, batch_size, self.txn_id_seq[batch_start:batch_end], self.write_flag_seq[batch_start:batch_end], self.item_size_dict, self.txn_item_dict, self.orireor_txn_id_seq) self.generate_reor_res_seq(batch_start, batch_size, self.orireor_txn_id_seq, self.write_flag_seq, self.txn_item_dict) # compute the liveness based on the reordered seq off_liveness_res = reorder_obj.get_livenessbound(item_num, batch_start=batch_start, txn_id_seq=self.txn_id_seq[batch_start:batch_end], write_flag_seq=self.write_flag_seq[batch_start:batch_end], txn_item_dict=self.txn_item_dict, reor_txn_id_seq=self.orireor_txn_id_seq[batch_start:batch_end], liveness_bound=liveness_bound) off_liveness += off_liveness_res[0] off_max_liveness += off_liveness_res[1] if reorder_name in ['Random']: self.ran_txn_id_seq = reorder_obj.get_random_seq(batch_start, batch_end, self.ran_txn_id_seq) ran_liveness_res = reorder_obj.get_livenessbound(item_num, batch_start=batch_start, txn_id_seq=self.txn_id_seq[batch_start:batch_end], write_flag_seq=self.write_flag_seq[batch_start:batch_end], txn_item_dict=self.txn_item_dict, reor_txn_id_seq=self.ran_txn_id_seq[batch_start:batch_end], liveness_bound=liveness_bound) ran_liveness += ran_liveness_res[0] ran_max_liveness += ran_liveness_res[1] self.generate_reor_res_seq(batch_start, batch_size, self.ran_txn_id_seq, self.write_flag_seq, self.txn_item_dict) if reorder_name in ['Readfir']: self.readfir_txn_id_seq = reorder_obj.get_allreadfirst_seq(batch_start, batch_size, self.readfir_txn_id_seq) readfir_liveness_res = reorder_obj.get_livenessbound(item_num, batch_start=batch_start, txn_id_seq=self.txn_id_seq[batch_start:batch_end], write_flag_seq=self.write_flag_seq[batch_start:batch_end], txn_item_dict=self.txn_item_dict, reor_txn_id_seq=self.readfir_txn_id_seq[batch_start:batch_end], liveness_bound=liveness_bound) readfir_liveness += readfir_liveness_res[0] readfir_max_liveness += readfir_liveness_res[1] self.generate_reor_res_seq(batch_start, batch_size, self.readfir_txn_id_seq, self.write_flag_seq, self.txn_item_dict) if reorder_name in ['Wrtfir']: self.wrtfir_txn_id_seq = reorder_obj.get_allwrtfirst_seq(batch_start, batch_size, self.wrtfir_txn_id_seq) wrtfir_liveness_res = reorder_obj.get_livenessbound(item_num, batch_start=batch_start, txn_id_seq=self.txn_id_seq[batch_start:batch_end], write_flag_seq=self.write_flag_seq[batch_start:batch_end], txn_item_dict=self.txn_item_dict, reor_txn_id_seq=self.wrtfir_txn_id_seq[batch_start:batch_end], liveness_bound=liveness_bound) wrtfir_liveness += wrtfir_liveness_res[0] wrtfir_max_liveness += wrtfir_liveness_res[1] self.generate_reor_res_seq(batch_start, batch_size, self.wrtfir_txn_id_seq, self.write_flag_seq, self.txn_item_dict) else: self.reor_txn_id_seq = self.txn_id_seq self.reor_write_flag_seq = self.write_flag_seq self.reor_txn_item_dict = self.txn_item_dict # get item read and write time for current batch alg_obj.init_read_write_time(txn_id_seq=self.reor_txn_id_seq[batch_start:batch_end], write_flag_seq=self.reor_write_flag_seq[batch_start:batch_end], txn_item_dict=self.reor_txn_item_dict, batch_start=batch_start) for time_step in range(batch_start, batch_end): op_ret_dict = alg_obj.batch_step_process(time_step, batch_start, batch_end, self.reor_txn_id_seq[batch_start:batch_end], self.reor_write_flag_seq[batch_start:batch_end], self.item_size_dict, self.reor_txn_item_dict, self.cls_item_dict) if self.sys_test: # TODO: carry out cache and DB operation here tmp_op_dict = {} if 'write_items' in op_ret_dict: query_list = [self.ycsb_id_2_write[item_id] for item_id in np.where(op_ret_dict['write_items'] == 1)[0]] tmp_op_dict['db_write'] = query_list tmp_op_dict['db_write_key'] = [self.ycsb_id_2_key[item_id] for item_id in np.where(op_ret_dict['write_items'] == 1)[0]] # self.db_write_txn(query_list) if 'acc_update' in op_ret_dict: item_to_load = [item_id for item_id in np.where(op_ret_dict['acc_update'] == 1)[0]] query_list = [self.ycsb_id_2_read[item_id] for item_id in item_to_load] tmp_op_dict['acc_update'] = query_list tmp_op_dict['acc_update_key'] = [self.ycsb_id_2_key[item_id] for item_id in item_to_load] if 'evict_from_cache' in op_ret_dict: tmp_op_dict['cache_evict'] = [self.ycsb_id_2_key[item_id] for item_id in np.where(op_ret_dict['evict_from_cache'] == 1)[0]] if 'read_on_miss' in op_ret_dict: item_to_load = [item_id for item_id in np.where(op_ret_dict['read_on_miss'] == 1)[0]] query_list = [self.ycsb_id_2_read[item_id] for item_id in item_to_load] tmp_op_dict['read_on_miss'] = query_list tmp_op_dict['read_on_miss_key'] = [self.ycsb_id_2_key[item_id] for item_id in item_to_load] # self.load_to_cache(op_ret_dict['read_on_miss']) if 'read_on_abort' in op_ret_dict: item_to_load = [item_id for item_id in np.where(op_ret_dict['read_on_abort'] == 1)[0]] query_list = [self.ycsb_id_2_read[item_id] for item_id in item_to_load] tmp_op_dict['read_on_abort'] = query_list tmp_op_dict['read_on_abort_key'] = [self.ycsb_id_2_key[item_id] for item_id in item_to_load] # self.load_to_cache(op_ret_dict['read_on_abort']) if 'read_from_cache' in op_ret_dict: tmp_op_dict['cache_read'] = [self.ycsb_id_2_key[item_id] for item_id in np.where(op_ret_dict['read_from_cache'] == 1)[0]] # txn_answ = self.cache_client.get_many([self.ycsb_id_2_key[item_id] for item_id in np.where(op_ret_dict['read_from_cache'] == 1)[0]]) queue.put(tmp_op_dict) queue.put(None) seq_end_time = time.time() alg_obj.print_stats() # print('off_liveness: {}, ran_liveness: {}, readfir_liveness: {}, wrtfir_liveness: {}'.format( # off_liveness/batch_num, ran_liveness/batch_num, readfir_liveness/batch_num, wrtfir_liveness/batch_num)) # only when compare the performance of the reorder strategies, this csv file is useful. res_columns = ['off_avg_liveness', 'ran_avg_liveness', 'readfir_avg_liveness', 'wrtfir_avg_liveness', 'off_max_liveness', 'ran_max_liveness', 'readfir_max_liveness', 'wrtfir_max_liveness'] dict_data = [ {'off_avg_liveness': off_liveness/batch_num, 'ran_avg_liveness': ran_liveness/batch_num, 'readfir_avg_liveness': readfir_liveness/batch_num, 'wrtfir_avg_liveness': wrtfir_liveness/batch_num, 'off_max_liveness': off_max_liveness/batch_num, 'ran_max_liveness': ran_max_liveness/batch_num, 'readfir_max_liveness': readfir_max_liveness/batch_num, 'wrtfir_max_liveness': wrtfir_max_liveness/batch_num}] csv_file = "data/res/liveness.csv" try: with open(csv_file, 'a', newline='') as p: # a means append writer = csv.DictWriter(p, fieldnames=res_columns) if os.stat(csv_file).st_size == 0: # if csv_file is empty, then add the header writer.writeheader() for data in dict_data: writer.writerow(data) except IOError: print("I/O error") res_columns = ['alg_name', 'cache_scheme', 'cost', 'whole_cost', 'ob_cnt', 'evict_cnt','cch_cnt'] dict_data = [ {'alg_name': alg_obj.alg_name, 'cache_scheme': alg_obj.cache_scheme, 'cost': alg_obj.cost, 'whole_cost': alg_obj.whole_cost, 'ob_cnt': alg_obj.ob_cnt, 'evict_cnt': alg_obj.evict_cnt, 'cch_cnt': alg_obj.cch_cnt}] csv_file = "data/res/res.csv" try: with open(csv_file, 'a', newline='') as p: # a means append writer = csv.DictWriter(p, fieldnames=res_columns) if os.stat(csv_file).st_size == 0: # if csv_file is empty, then add the header writer.writeheader() for data in dict_data: writer.writerow(data) except IOError: print("I/O error") print('ALG Total Time: {}'.format(seq_end_time - seq_start_time)) # TODO: calculate throughput, save algorithm simulation result class SystemOperator: """Operate DB and cache based on operations in queue.""" def __init__(self, db_conn_param: dict, cache_conn_param: dict) -> None: self.db_sys = db_conn_param["db"] del db_conn_param['db'] if self.db_sys == "postgresql": self.db_conn = psycopg2.connect(**db_conn_param) self.db_conn.set_session(autocommit=False) self.db_cursor = self.db_conn.cursor() else: assert self.db_sys == "hbase" # self.db_conn = happybase.Connection(host=db_conn_param["host"], port=db_conn_param["port"]) self.db_conn = happybase.Connection(host=db_conn_param["host"], port=9090) self.table = self.db_conn.table('usertable') self.cache_sys = cache_conn_param["cache"] del cache_conn_param['cache'] if self.cache_sys == "memcached": self.cache_client = base.Client((cache_conn_param['host'], int(cache_conn_param['port']))) # self.cache_client = PooledClient(('127.0.0.1', int(cache_conn_param['port'])), max_pool_size = 400) self.cache_client.flush_all() def operation_exe(self, op_queue: Queue): """Get operations from queue, execute them.""" counter = 0 db_read_time, db_write_time, cache_read_time, cache_write_time = 0, 0, 0, 0 cache_counter = 0 cache_list = [] while True: op_dict = op_queue.get() # wait unless there is value in queue. Default: blocking if op_dict is None: print('counter: {}'.format(counter)) print("cache_counter:", cache_counter) sys_end_time = time.time() if sys_start_time is not None: print('System Execution Time: {}'.format(sys_end_time - sys_start_time)) print('db_read_time: {}, db_write_time: {}'.format(db_read_time, db_write_time)) print('cache_read_time: {}, cache_write_time: {}'.format(cache_read_time, cache_write_time)) break else: if counter == 0: sys_start_time = time.time() if 'db_write' in op_dict: db_write_time += self.db_write_txn(op_dict['db_write'], op_dict['db_write_key']) if 'acc_update' in op_dict: db_read_time += self.load_to_cache(op_dict['acc_update'], op_dict['acc_update_key']) if 'cache_evict' in op_dict: tmp_start_time = time.time() self.cache_client.delete_many(op_dict['cache_evict']) cache_write_time += time.time() - tmp_start_time if 'read_on_miss' in op_dict: db_read_time += self.load_to_cache(op_dict['read_on_miss'], op_dict['read_on_miss_key']) if 'read_on_abort' in op_dict: db_read_time += self.load_to_cache(op_dict['read_on_abort'], op_dict['read_on_abort_key']) if 'cache_read' in op_dict: cache_counter += 1 cache_list.append(op_dict['cache_read'][0]) # sumbit in a batch way if (counter%100==0): # print("*"*100) tmp_start_time = time.time() self.cache_client.get_many(cache_list) cache_read_time += time.time() - tmp_start_time #tmp_start_time = time.time() #self.cache_client.get_many(op_dict['cache_read']) # the type of op_dict['cache_read'] is list #print('each get memcache time: {}, counter: {}'.format(time.time() - tmp_start_time, counter)) #if (time.time() - tmp_start_time>0.02): # cache_counter+=1 #cache_read_time += time.time() - tmp_start_time counter += 1 def load_to_cache(self, query_list: list, key_str_list: list): """Execute read transaction at database and load results to cache.""" tmp_load_start_time = time.time() if self.db_sys == "postgresql": try: txn_res_list = [] for query_str in query_list: self.db_cursor.execute(query_str) txn_res_list.extend(self.db_cursor.fetchall()) self.db_conn.commit() for query_result in txn_res_list: self.cache_client.set(query_result[0], ''.join(query_result[1:])) except psycopg2.DatabaseError as e: print('PostgreSQL read transaction execution error') self.db_conn.rollback() else: # HBase read transaction try: txn_res_list = [] for (key_str, qual_bytes_list) in zip(key_str_list, query_list): row = self.table.row(key_str.encode('utf-8'), columns=qual_bytes_list) txn_res_list.append((key_str, b''.join(row.values()).decode('utf-8'))) self.cache_client.set_many(dict(txn_res_list)) except ValueError: print('HBase value error.') pass tmp_load_end_time = time.time() return tmp_load_end_time - tmp_load_start_time def db_write_txn(self, query_list: list, key_str_list: list): """Execute write transaction at database.""" tmp_write_start_time = time.time() if self.db_sys == "postgresql": # postgresql write transaction try: for query_str in query_list: self.db_cursor.execute(query_str) self.db_conn.commit() except psycopg2.DatabaseError as e: print('PostgreSQL write transaction execution error') self.db_conn.rollback() else: # HBase write transaction try: with self.table.batch(transaction=True) as bat: for (key_str, qual_val_dict) in zip(key_str_list, query_list): bat.put(key_str.encode('utf-8'), qual_val_dict) # TODO: check error handling here except ValueError: print('HBase value error.') pass tmp_write_end_time = time.time() return tmp_write_end_time - tmp_write_start_time def cleanup(self): """Close connection after testing.""" self.db_conn.close() self.cache_client.flush_all() self.cache_client.close() ``` #### File: cc_cache/utils/PointWrt_ds_generator.py ```python import yaml import argparse import numpy as np from numpy.random import default_rng import random import math import pickle import pdb import scipy.stats as stats from os.path import dirname from os.path import abspath from pathlib import Path def genr_item_univ(config: dict, size_res_path='data/item_size.pkl', cls_res_path='data/cls_item.pkl'): """Generate universe of items (queries). Generate and save result as <Item Size Table>. Item number and size range specified by params in config. Compute and save <Class Item Table> based on <Item Size Table> result. Args: config: dict, params parsed from input_params.yaml file size_res_path: str, file path to save <Item Size Table> dict cls_res_path: str, file path to save <Class Item Table> dict Returns: a dict mapping item id to item size, another dict mapping class id to class vector (binary/boolean) showing which items are in each class. Raises: ValueError: Undefined item distribution. """ item_size_dict = {} # cls_num = config['item_cls_num'] item_num = config['item_num'] item_min_size = config['item_min_size'] # s0, minimum item size item_max_size = config['item_max_size'] # s1, maximum item size if config['item_distr'] == 'cls_norm': # assert item_num % cls_num == 0 # each class contains same number of items print('Generating item universe in cls_norm distribution.') mu = (item_min_size + item_max_size) / 2 # adopt mean value of minimum and maximum size as mu sigma = (mu - item_min_size) / 4 # adopt 4 std, guarantee 99.99% size greater than item_min_size and smaller than item_max_size # random numbers satisfying normal distribution rng = stats.truncnorm( (item_min_size - mu) / sigma, (item_max_size - mu) / sigma, loc=mu, scale=sigma) item_size_arr = np.around(rng.rvs(item_num), 0) np.random.shuffle(item_size_arr) for j in range(item_num): item_size_dict[j] = item_size_arr[j] elif config['item_distr'] == 'cls_random': rng = default_rng(216) # set random seed item_size_arr = rng.integers(low=item_min_size, high=item_max_size + 1, size=item_num) np.random.shuffle(item_size_arr) for j in range(item_num): item_size_dict[j] = item_size_arr[j] elif config['item_distr'] == 'uni_size': assert item_min_size == item_max_size for j in range(item_num): item_size_dict[j] = item_min_size else: raise ValueError('Undefined item distribution.') print('Item Size Dict: \n {}'.format(item_size_dict)) # generate cls_item cls_item_fp = open(size_res_path, 'wb') pickle.dump(item_size_dict, cls_item_fp) cls_item_fp.close() # compute cls_item_dict based on item_size_dict cls_item_dict = {} if config['item_distr'] == 'uni_size': cls_num = 1 else: cls_num = math.ceil(math.log2(item_max_size / item_min_size)) for cls_id in range(cls_num): cls_item_dict[cls_id] = np.zeros(item_num, dtype=bool) # check each item size and update class binary vector for item_id in range(item_num): item_cls = math.floor(math.log2(item_size_dict[item_id] / item_min_size)) cls_item_dict[item_cls][item_id] = 1 # dump <Class Item Table> using pickle cls_item_fp = open(cls_res_path, 'wb') pickle.dump(cls_item_dict, cls_item_fp) cls_item_fp.close() return item_size_dict, cls_item_dict def genr_txn_seq(config: dict, txn_item_path='data/txn_item.pkl', id_seq_path='data/id_seq.npy', flag_seq_path='data/flag_seq.npy'): """Generate transaction sequence for point-write workload. """ # generate read-write flag based on write frequency seq_len = config['seq_len'] # transaction sequence length write_freq = config['write_freq'] # expected write transaction frequency rng = default_rng(522) flag_arr = rng.random(seq_len) write_flag_seq = flag_arr < write_freq np.save(flag_seq_path, write_flag_seq) # save to numpy file # create read / write transactions based on recent read / write queries item_num = config['item_num'] recent_read_thresh, recent_write_thresh = config['recent_read_thresh'], config['recent_write_thresh'] read_txn_size, write_txn_size = config['read_txn_size'], config['write_txn_size'] txn_vec_set = set() # store frozenset representing unique transactions unique_txn_cnt = 0 # unique transaction count, serve as transaction id during generation txn_item_dict = {} # map transaction id to transaction item vector txn_id_seq = np.zeros(seq_len, dtype=int) # transaction id sequence for i in range(seq_len): # generate write transaction if write_flag_seq[i]: # check if there are enought 'recent read transactions' to select write queries past_reads = np.where(write_flag_seq[0:i+1] == 0)[0] if past_reads.shape[0] >= recent_read_thresh: recent_reads = past_reads[-recent_read_thresh:past_reads.shape[0]]# find recent read queries recent_read_id = txn_id_seq[recent_reads] recent_read_queries = np.zeros(item_num, dtype=bool) for txn_id in recent_read_id: recent_read_queries = np.logical_or(recent_read_queries, txn_item_dict[txn_id]) non_recent_read_queries = np.logical_not(recent_read_queries) # choose 1 query from non-recent read queries, another from recent read queries if write_txn_size == 2: recent_num, non_recent_num = 1, 1 else: # TODO: fix this 50/50 setup recent_num, non_recent_num = math.ceil(write_txn_size * 0.5), math.floor(write_txn_size * 0.5) recent_samples = rng.choice(np.where(recent_read_queries == 1)[0], recent_num) non_recent_samples = rng.choice(np.where(non_recent_read_queries == 1)[0], non_recent_num) samples = np.concatenate((recent_samples, non_recent_samples)) tmp_txn_vec = np.zeros(item_num, dtype=bool) for item_id in samples: tmp_txn_vec[item_id] = 1 tmp_item_set = frozenset(samples) if tmp_item_set not in txn_vec_set: txn_vec_set.add(tmp_item_set) tmp_txn_id = unique_txn_cnt txn_id_seq[i] = tmp_txn_id txn_item_dict[tmp_txn_id] = tmp_txn_vec unique_txn_cnt += 1 else: for txn_id in txn_item_dict: if np.equal(tmp_txn_vec, txn_item_dict[txn_id]).all(): txn_id_seq[i] = txn_id break # not enough recent read transactions, choose write queries randomly else: samples = rng.choice(item_num, write_txn_size) # choose queries by random tmp_txn_vec = np.zeros(item_num, dtype=bool) for item_id in samples: tmp_txn_vec[item_id] = 1 tmp_item_set = frozenset(samples) if tmp_item_set not in txn_vec_set: txn_vec_set.add(tmp_item_set) tmp_txn_id = unique_txn_cnt txn_id_seq[i] = tmp_txn_id txn_item_dict[tmp_txn_id] = tmp_txn_vec unique_txn_cnt += 1 else: for txn_id in txn_item_dict: if np.equal(tmp_txn_vec, txn_item_dict[txn_id]).all(): txn_id_seq[i] = txn_id break # generate read transaction else: past_writes = np.where(write_flag_seq[0:i+1] == 1)[0] if past_writes.shape[0] >= recent_write_thresh: recent_writes = past_writes[-recent_write_thresh:past_writes.shape[0]]# find recent write queries recent_write_id = txn_id_seq[recent_writes] recent_write_queries = np.zeros(item_num, dtype=bool) for txn_id in recent_write_id: recent_write_queries = np.logical_or(recent_write_queries, txn_item_dict[txn_id]) non_recent_write_queries = np.logical_not(recent_write_queries) # choose 2 queries from non_recent_write, others from recent_write recent_num, non_recent_num = read_txn_size - 2, 2 recent_samples = rng.choice(np.where(recent_write_queries == 1)[0], recent_num) non_recent_samples = rng.choice(np.where(non_recent_write_queries == 1)[0], non_recent_num) samples = np.concatenate((recent_samples, non_recent_samples)) tmp_txn_vec = np.zeros(item_num, dtype=bool) for item_id in samples: tmp_txn_vec[item_id] = 1 tmp_item_set = frozenset(samples) if tmp_item_set not in txn_vec_set: txn_vec_set.add(tmp_item_set) tmp_txn_id = unique_txn_cnt txn_id_seq[i] = tmp_txn_id txn_item_dict[tmp_txn_id] = tmp_txn_vec unique_txn_cnt += 1 else: for txn_id in txn_item_dict: if np.equal(tmp_txn_vec, txn_item_dict[txn_id]).all(): txn_id_seq[i] = txn_id break # not enough recent write transactions, choose read queries randomly else: samples = rng.choice(item_num, read_txn_size) # choose queries by random tmp_txn_vec = np.zeros(item_num, dtype=bool) for item_id in samples: tmp_txn_vec[item_id] = 1 tmp_item_set = frozenset(samples) if tmp_item_set not in txn_vec_set: txn_vec_set.add(tmp_item_set) tmp_txn_id = unique_txn_cnt txn_id_seq[i] = tmp_txn_id txn_item_dict[tmp_txn_id] = tmp_txn_vec unique_txn_cnt += 1 else: for txn_id in txn_item_dict: if np.equal(tmp_txn_vec, txn_item_dict[txn_id]).all(): txn_id_seq[i] = txn_id break # save results to file txn_item_fp = open(txn_item_path, 'wb') pickle.dump(txn_item_dict, txn_item_fp) txn_item_fp.close() np.save(id_seq_path, txn_id_seq) np.save(flag_seq_path, write_flag_seq) return txn_item_dict, txn_id_seq, write_flag_seq if __name__ == '__main__': path = abspath(dirname(dirname(__file__)))+'/config/PointWrt.yaml' config_file = open(path, 'r') config_dict = yaml.load(config_file, Loader=yaml.FullLoader) workload_dir = abspath(dirname(dirname(__file__))) + '/data/PointWrt/' + 'QueryNum{}_Unisize_RThresh{}_WThresh{}_RSize{}_WSize{}_Wrt{}_Len{}'.format(config_dict['item_num'], config_dict['recent_read_thresh'], config_dict['recent_write_thresh'], config_dict['read_txn_size'], config_dict['write_txn_size'], config_dict['write_freq'], config_dict['seq_len']) Path(workload_dir).mkdir(parents=True, exist_ok=True) item_size_dict, cls_item_dict = genr_item_univ(config_dict, size_res_path=workload_dir+'/item_size.pkl', cls_res_path=workload_dir+'/cls_item.pkl') txn_item_dict, txn_id_seq, write_flag_seq = genr_txn_seq(config_dict, txn_item_path=workload_dir+'/txn_item.pkl', id_seq_path=workload_dir+'/id_seq.npy', flag_seq_path=workload_dir+'/flag_seq.npy') ```
{ "source": "jiayoustone/high_performance_python", "score": 3 }
#### File: 06_matrix/diffusion_1d/diffusion_numpy_memory.py ```python import numpy as np import time grid_size = (512,) @profile def laplacian(grid, out): np.copyto(out, grid) np.multiply(out, -2.0, out) np.add(out, np.roll(grid, +1), out) np.add(out, np.roll(grid, -1), out) @profile def evolve(grid, dt, out, D=1): laplacian(grid, out) np.multiply(out, D * dt, out) np.add(out, grid, out) def run_experiment(num_iterations): scratch = np.zeros(grid_size) grid = np.zeros(grid_size) block_low = int(grid_size[0] * .4) block_high = int(grid_size[0] * .5) grid[block_low:block_high] = 0.005 start = time.time() for i in range(num_iterations): evolve(grid, 0.1, scratch) grid, scratch = scratch, grid return time.time() - start if __name__ == "__main__": run_experiment(500) ``` #### File: jiayoustone/high_performance_python/nrange.py ```python def nrange(start, stop, step=1): while start < stop: yield start start += step @profile def ncall(): for i in nrange(1,1000000): pass if __name__ == "__main__": ncall() ```
{ "source": "jiayouwyhit/imodels", "score": 3 }
#### File: imodels/algebraic/slim.py ```python import cvxpy as cp # package for optimization import numpy as np from sklearn.base import BaseEstimator from sklearn.linear_model import LinearRegression, Lasso class SLIMRegressor(BaseEstimator): '''Sparse integer linear model ''' def __init__(self): self.model = LinearRegression() self.predict = self.model.predict def fit(self, X, y, lambda_reg=10, sample_weight=None): '''fit a linear model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ sample_weight: np.ndarray (n,) weight for each individual sample ''' if 'pandas' in str(type(X)): X = X.values if 'pandas' in str(type(y)): y = y.values assert type(X) == np.ndarray, 'inputs should be ndarrays' assert type(y) == np.ndarray, 'inputs should be ndarrays' # declare the integer-valued optimization variable w = cp.Variable(X.shape[1], integer=True) # set up the minimization problem residuals = X @ w - y if sample_weight is not None: # print('shapes', residuals.shape, sample_weight.shape) residuals = cp.multiply(sample_weight, residuals) try: mse = cp.sum_squares(residuals) l1_penalty = lambda_reg * cp.norm(w, 1) obj = cp.Minimize(mse + l1_penalty) prob = cp.Problem(obj) # solve the problem using an appropriate solver prob.solve() self.model.coef_ = w.value.astype(np.int) self.model.intercept_ = 0 except: m = Lasso(alpha=lambda_reg) m.fit(X, y, sample_weight=sample_weight) self.model.coef_ = np.round(m.coef_).astype(np.int) self.model.intercept_ = m.intercept_ def predict_proba(self, X): preds = self.predict(X) preds_proba = np.array([1 / (1 + np.exp(-y)) for y in preds]) return np.vstack((1 - preds_proba, preds_proba)).transpose() ``` #### File: imodels/util/score.py ```python from typing import List, Tuple from warnings import warn import pandas as pd import numpy as np from sklearn.utils import indices_to_mask from sklearn.linear_model import Lasso, LogisticRegression from sklearn.linear_model._coordinate_descent import _alpha_grid from sklearn.model_selection import KFold from imodels.util.rule import Rule def score_precision_recall(X, y, rules: List[List[str]], samples: List[List[int]], features: List[List[int]], feature_names: List[str], oob: bool = True) -> List[Rule]: scored_rules = [] for curr_rules, curr_samples, curr_features in zip(rules, samples, features): # Create mask for OOB samples mask = ~indices_to_mask(curr_samples, X.shape[0]) if sum(mask) == 0: if oob: warn( "OOB evaluation not possible: doing it in-bag. Performance evaluation is likely to be wrong" " (overfitting) and selected rules are likely to not perform well! Please use max_samples < 1." ) mask = curr_samples # XXX todo: idem without dataframe X_oob = pd.DataFrame( (X[mask, :])[:, curr_features], columns=np.array(feature_names)[curr_features] ) if X_oob.shape[1] <= 1: # otherwise pandas bug (cf. issue #16363) return [] y_oob = y[mask] y_oob = np.array((y_oob != 0)) # Add OOB performances to rules: scored_rules += [ Rule(r, args=_eval_rule_perf(r, X_oob, y_oob)) for r in set(curr_rules) ] return scored_rules def _eval_rule_perf(rule: str, X, y) -> Tuple[float, float]: detected_index = list(X.query(rule).index) if len(detected_index) <= 1: return (0, 0) y_detected = y[detected_index] true_pos = y_detected[y_detected > 0].sum() if true_pos == 0: return (0, 0) pos = y[y > 0].sum() return y_detected.mean(), float(true_pos) / pos def score_lasso(X, y, rules: List[str], alphas=None, cv=3, prediction_task='regression', max_rules=2000, random_state=None) -> Tuple[List[Rule], List[float], float]: if alphas is None: if prediction_task == 'regression': alphas = _alpha_grid(X, y) elif prediction_task == 'classification': alphas = [1 / alpha for alpha in np.logspace(-4, 4, num=10, base=10)] coef_zero_threshold = 1e-6 / np.mean(np.abs(y)) mse_cv_scores = [] nonzero_rule_coefs_count = [] kf = KFold(cv) # alphas are sorted from most reg. to least reg. for alpha in alphas: if prediction_task == 'regression': m = Lasso(alpha=alpha, random_state=random_state) else: m = LogisticRegression(penalty='l1', C=1/alpha, solver='liblinear') mse_cv = 0 for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] m.fit(X_train, y_train) mse_cv += np.mean((m.predict(X_test) - y_test) ** 2) m.fit(X, y) rule_count = np.sum(np.abs(m.coef_.flatten()) > coef_zero_threshold) if rule_count > max_rules: break nonzero_rule_coefs_count.append(rule_count) mse_cv_scores.append(mse_cv / cv) best_alpha = alphas[np.argmin(mse_cv_scores)] if prediction_task == 'regression': lscv = Lasso(alpha=best_alpha, random_state=random_state, max_iter=2000) else: lscv = LogisticRegression(penalty='l1', C=1/best_alpha, solver='liblinear', random_state=random_state, max_iter=200) lscv.fit(X, y) coef_ = lscv.coef_.flatten() coefs = list(coef_[:-len(rules)]) support = np.sum(X[:, -len(rules):], axis=0) / X.shape[0] nonzero_rules = [] for r, w, s in zip(rules, coef_[-len(rules):], support): if abs(w) > coef_zero_threshold: nonzero_rules.append(Rule(r, args=[w], support=s)) coefs.append(w) return nonzero_rules, coefs, lscv.intercept_ ``` #### File: imodels/tests/brl_test.py ```python import unittest from urllib.request import urlretrieve import numpy as np from scipy.io.arff import loadarff from sklearn.model_selection import train_test_split from imodels.rule_list.bayesian_rule_list.bayesian_rule_list import BayesianRuleListClassifier import os path_to_tests = os.path.dirname(os.path.realpath(__file__)) class TestBRL(unittest.TestCase): def test_integration_stability(self): '''Test on synthetic dataset ''' X = [[0, 0, 1, 1, 0], [1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1], [1, 0, 1, 1, 1]] y = [0, 0, 0, 0, 1, 1, 1, 1] M = BayesianRuleListClassifier(minsupport=0.02) feat = ['ft1', 'ft2', 'ft3', 'ft4', 'ft5'] M.fit(X, y, feature_labels=feat) assert [M.predict([row], threshold=0.5) for row in X] == y def test_integration_fitting(self): '''Test on a real (small) dataset ''' np.random.seed(13) feature_labels = ["#Pregnant", "Glucose concentration test", "Blood pressure(mmHg)", "Triceps skin fold thickness(mm)", "2-Hour serum insulin (mu U/ml)", "Body mass index", "Diabetes pedigree function", "Age (years)"] data = loadarff(os.path.join(path_to_tests, "test_data/diabetes.arff")) data_np = np.array(list(map(lambda x: np.array(list(x)), data[0]))) X, y_text = data_np[:, :-1].astype('float32'), data_np[:, -1].astype('str') y = (y_text == 'tested_positive').astype(np.int) # labels 0-1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.75) # split # train classifier (allow more iterations for better accuracy; use BigDataRuleListClassifier for large datasets) print('training...') model = BayesianRuleListClassifier(max_iter=1000, listlengthprior=5, class1label="diabetes", verbose=False) model.fit(X_train, y_train, feature_labels=feature_labels) preds = model.predict(X_test, threshold=0.1) print("RuleListClassifier Accuracy:", np.mean(y_test == preds), "Learned interpretable model:\n", model) ``` #### File: tests/notebooks/imodels_comparisons.py ```python import pickle as pkl import pandas as pd import imodels import itertools import os from imodels.util.evaluate.compare_models import run_comparison from sklearn.metrics import accuracy_score, f1_score from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier import matplotlib.pyplot as plt from tqdm import tqdm # %load_ext autoreload # %autoreload 2 # change working directory to project root if os.getcwd().split('/')[-1] != 'imodels': os.chdir('..') MODEL_COMPARISON_PATH = 'tests/test_data/comparison_data/' MODEL_COMPARISON_FILE = MODEL_COMPARISON_PATH + 'model_comparisons.pkl' # %% [markdown] # # compare static performance of different models # %% df = pkl.load(open(MODEL_COMPARISON_FILE, 'rb'))['df'].round(3) print('columns', df.columns, 'models', df.index) # %% [markdown] # # complexity-vs-accuracy plots for each model # %% COMPARISON_DATASETS = [ ("breast-cancer", 13), ("breast-w", 15), ("credit-g", 31), ("haberman", 43), ("heart", 1574), ("labor", 4), ("vote", 56), ] METRICS = [ ('Acc.', accuracy_score), ('Time', None), ('Complexity', None) ] def get_comparison_df(estimators): '''Get results for running multiple estimators ''' estimator_name = estimators[0][0] model_comparison_file = MODEL_COMPARISON_PATH + f'{estimator_name}_comparisons.pkl' if os.path.isfile(model_comparison_file): result = pkl.load(open(model_comparison_file, 'rb'))['df'] else: result = run_comparison(COMPARISON_DATASETS, METRICS, estimators, write=False, average=True, verbose=False) pkl.dump({'df': result}, open(model_comparison_file, 'wb')) return result def viz_model(result): '''Plot acc vs complexity ''' complexities = result[result.index.str.contains('Complexity')] accuracies = result[result.index.str.contains('Acc')] complexity_sort_indices = complexities.argsort() plt.plot(complexities[complexity_sort_indices], accuracies[complexity_sort_indices]) plt.xlabel('Complexity score') plt.ylabel('Average accuracy across comparison datasets') # %% [markdown] # ## Random Forest # %% est_rf = [ ('random_forest', RandomForestClassifier(n_estimators=n, max_depth=d)) for n, d in itertools.product([2, 3, 4], [2, 3]) ] est_gb = [ ('gradient_boosting', GradientBoostingClassifier(n_estimators=n, max_depth=d)) for n, d in itertools.product([2, 3, 4], [2, 3]) ] est_skope = [ ('skope', imodels.SkopeRulesClassifier(n_estimators=n, max_depth=d)) for n, d in itertools.product([2, 4, 8, 16, 32, 64, 96], [2, 3]) ] est_rulefit = [ ('rulefit', imodels.RuleFitClassifier(max_rules=n, tree_size=d)) for n, d in itertools.product([2, 4, 8, 16, 32, 48], [4, 8]) ] est_fplasso = [ ('fplasso', imodels.FPLassoClassifier(max_rules=n, maxcardinality=c)) for n, c in itertools.product([2, 4, 8, 16, 32, 48, 96], [2, 3]) ] est_fpskope = [ ('fpskope', imodels.FPSkopeClassifier(maxcardinality=c, max_depth_duplication=dd)) for c, dd in itertools.product([2, 3, 4], [1, 2, 3]) ] est_brl = [ ('brl', imodels.BayesianRuleListClassifier(listlengthprior=l, maxcardinality=c)) for l, c in itertools.product([2, 4, 8, 16], [2, 3]) ] est_grl = [('grl', imodels.GreedyRuleListClassifier(max_depth=d)) for d in [2, 4, 8, 16]] est_oner = [('oner', imodels.OneRClassifier(max_depth=d)) for d in [2, 3, 4, 5, 6, 7]] est_brs = [('brs', imodels.BoostedRulesClassifier(n_estimators=n)) for n in [2, 4, 8, 16, 32]] ests = [est_rf, est_gb, est_skope, est_rulefit, est_fplasso, est_fpskope, est_brl, est_grl, est_oner, est_brs] plt.figure(dpi=250) for est in tqdm(ests): result = get_comparison_df(est) complexities = result[result.index.str.contains('Complexity')] accuracies = result[result.index.str.contains('Acc')] complexity_sort_indices = complexities.argsort() plt.plot(complexities[complexity_sort_indices], accuracies[complexity_sort_indices], label=est[0][0].replace('_', ' ')) plt.xlabel('Complexity score') plt.ylabel('Average accuracy across comparison datasets') plt.legend(frameon=False, handlelength=1) plt.show() ```
{ "source": "Jiayuan-Gu/face-project", "score": 2 }
#### File: Detection/code/data_test.py ```python import os import sys import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import scipy.io as sio import time import logging # import resfcn_input # import resfcn_config as config def main(argv=None): # pylint: disable=unused-argument # images,labels,pos_ws,neg_ws,scan_names,z_indexs = resfcn_input.inputs() # print('inputs initialize.') data_dir = '/data-disk/gujy/Face/WF/tf_records' recordName = os.listdir(data_dir)[int(argv[0])] logFile = os.path.join('%s.log'%recordName) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%m-%d-%H:%M:%S', filename=logFile, filemode='w') reader = tf.TFRecordReader() _,serialized_example = reader.read(tf.train.string_input_producer([os.path.join(data_dir,recordName)])) features = tf.parse_single_example(serialized_example, features={ 'image': tf.VarLenFeature(dtype=tf.float32), 'image_shape':tf.FixedLenFeature(shape=[3],dtype=tf.int64), 'label': tf.VarLenFeature(dtype=tf.float32), 'label_shape':tf.FixedLenFeature(shape=[3],dtype=tf.int64), 'name': tf.FixedLenFeature(shape=[],dtype=tf.string) }) image = tf.cast(features['image'],tf.float32) image_shape = tf.cast(features['image_shape'],tf.int32) image = tf.sparse_tensor_to_dense(image) image = tf.reshape(image,image_shape) label = tf.cast(features['label'],tf.float32) label_shape = tf.cast(features['label_shape'],tf.int32) label = tf.sparse_tensor_to_dense(label) label = tf.reshape(label,label_shape) name = tf.cast(features['name'],tf.string) sess = tf.Session(config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True))) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess,coord=coord) for i in range(1000): try: # for i in range(100): # sess_output = sess.run([images,labels,pos_ws,neg_ws,scan_names,z_indexs]) # #sess_output = sess.run([image,label,pos_w,neg_w,scan_name,z_index,image_shape,label_shape]) # #sess_output[0]=np.reshape(sess_output[0],sess_output[-2]) # #sess_output[1]=np.reshape(sess_output[1],sess_output[-1]) # plt.subplot(121) # plt.imshow(sess_output[0][0,:,:,int(config.IMAGE_SIZE[-1]/2)]) # plt.subplot(122) # plt.imshow(sess_output[1][0,:,:,int(config.LABEL_SIZE[-1]/2)]) # plt.show() # print(sess_output[2]) # print(sess_output[3]) IMAGE,LABEL,NAME = sess.run([image,label,name]) print(NAME.decode()) except: logging.error('%d'%i) break finally: coord.request_stop() coord.join(threads) sess.close() if __name__ == '__main__': os.environ['CUDA_VISIBLE_DEVICES'] = '4' main(sys.argv[1:]) # img = 5*np.random.randn(5,5)+5; # print(img) # image = tf.constant(img) # a = tf.clip_by_value(image,4,6) # b = tf.image.adjust_brightness(a,-4) # print('Begin.') # os.environ['CUDA_VISIBLE_DEVICES'] = '0' # init = tf.initialize_all_variables() # sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) # sess.run(init) # print(sess.run([a,b])) ``` #### File: Detection/code/resfcn_config.py ```python import os import shutil import logging from datetime import datetime import tensorflow as tf version = 'v0.1.0.20170110' run = '1_0' time_stamp = datetime.now().strftime('%Y-%m-%d_%H_%M') is_training = True # tf config gpu_device = '5' session_config = tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True)) # resfcn_train data_dir = '/data-disk/gujy/Face/WF/tf_records' train_dir = os.path.join('/data-disk/gujy/Face/train',version,run) resume = True restore_path = '/data-disk/gujy/Face/train/v0.0.0.20161217/adam/3_0/checkpoint/model.ckpt-43000' # restore_path = None max_steps = 1e6 num_steps_debug = 20 num_steps_summary = 100 num_steps_checkpoint = 250 # resfcn_model CONV_STDDEV = None BIAS_STDDEV = 0.0 DECONV_STDDEV = None ## Weight decay CONV_WD = 1e-8 BIAS_WD = None DECONV_WD = 1e-8 # training setting learning_rate = 1e-4 # optimizer = tf.train.GradientDescentOptimizer optimizer = tf.train.AdamOptimizer # resfcn_input IMAGE_SIZE = [512,512,3] LABEL_SIZE = [512,512,1] CROP_SIZE = [512,512,4] neg_add_w = 0.1 input_threads = 4 batch_size = 4 tfrecords = [os.path.join(data_dir,tfrecord) for tfrecord in os.listdir(data_dir)] num_examples_per_epoch = 12880-362 num_batches_per_epoch = int(num_examples_per_epoch/batch_size) # whether to new a folder if not os.path.isdir(train_dir): os.makedirs(os.path.join(train_dir,'fig')) os.makedirs(os.path.join(train_dir,'checkpoint')) os.makedirs(os.path.join(train_dir,'summary')) os.makedirs(os.path.join(train_dir,'log')) shutil.copy('resfcn_config.py',os.path.join(train_dir,'log','%s.config'%time_stamp)) shutil.copy('resfcn_model.py',os.path.join(train_dir,'log','%s.model'%time_stamp)) log_file = os.path.join(train_dir,'log','%s.log'%time_stamp) # logger config logger = logging.getLogger('mylog') logger.propagate = False logger.setLevel(logging.DEBUG) fmt = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s') fileHandler = logging.FileHandler(log_file) fileHandler.setLevel(logging.DEBUG) fileHandler.setFormatter(fmt) consoleHandler = logging.StreamHandler() consoleHandler.setLevel(logging.INFO) consoleHandler.setFormatter(fmt) logger.addHandler(fileHandler) logger.addHandler(consoleHandler) def close_all(): fileHandler.close() consoleHandler.close() ``` #### File: Detection/code/resfcn_train.py ```python from datetime import datetime import time import os.path import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import resfcn_config as config from resfcn_config import logger import resfcn_model as resfcn import resfcn_input def train(): global_step = tf.Variable(0, trainable=False) learning_rate = tf.constant(config.learning_rate) # Get images and labels for FCN. images,labels,pos_ws,neg_ws,names = resfcn_input.inputs() print('inputs initialize.') # Build a Graph that computes the score map predictions from the # inference model. preds = resfcn.inference(images) # tf.image_summary('preds',preds[:,:,:,int(config.LABEL_SIZE[-1]/2)],max_images=int(config.batch_size/2)) print('inference initialize.') # Calculate loss. loss, pos_loss, neg_loss = resfcn.loss(preds, labels, pos_ws, neg_ws) print('loss initialize.') # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = resfcn.train(loss, global_step,learning_rate,optimizer=config.optimizer) print('train initialize.') # Create a saver. saver = tf.train.Saver(tf.all_variables(),max_to_keep=100,name='saver') print('saver initialize.') # Build the summary op summary_loss_op = tf.merge_all_summaries(key='LOSS_OP') summary_param_op = tf.merge_all_summaries(key='PARAM_OP') # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=config.session_config) sess.run(init) print('session initialize.') if config.resume: if not config.restore_path: restore_path = tf.train.latest_checkpoint(os.path.join(config.train_dir,'checkpoint')) if not restore_path: print('no checkpoint to continue.') sys.exit(1) saver.restore(sess,restore_path) logger.info('continue from %s',restore_path) else: saver.restore(sess,config.restore_path) logger.info('global step is set to %d',sess.run(tf.assign(global_step,0))) logger.info('learning rate is set to %.3f',sess.run(learning_rate)) logger.info('restart from %s',config.restore_path) optimizer_scope = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,"scope/prefix/for/optimizer") sess.run(tf.initialize_variables(optimizer_scope)) summary_writer = tf.train.SummaryWriter(os.path.join(config.train_dir,'summary'),sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess,coord=coord) print('training begins.') step = sess.run(global_step) try: while step<config.max_steps: sess_input = [train_op,loss] if step%config.num_steps_debug==0: sess_input.append(preds) sess_input.append(images) sess_input.append(labels) sess_input.append(names) sess_input.append(pos_loss) sess_input.append(neg_loss) sess_input.append(summary_loss_op) if step%config.num_steps_summary==0: sess_input.append(summary_param_op) start_time = time.time() sess_output = sess.run(sess_input) duration = time.time() - start_time assert not np.isnan(sess_output[1]),'Model with loss = nan.' num_examples_per_step = config.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.8f (%.1f examples/sec; %.3f sec/batch)') print (format_str % (datetime.now().strftime('%H:%M:%S'), step, sess_output[1], examples_per_sec, sec_per_batch)) if step % config.num_steps_debug==0: format_str = ('epoch %d, pos_loss = %.8f, neg_loss = %.8f') print(format_str % (int(step/config.num_batches_per_epoch), sess_output[6],sess_output[7])) summary_writer.add_summary(sess_output[8],step) ind = int(step%(2*config.num_steps_debug)==0)*int(config.batch_size/2) plt.subplot(131) plt.imshow(128-128*sess_output[3][ind,:,:,:]) plt.subplot(132) plt.imshow(sess_output[4][ind,:,:,int(config.LABEL_SIZE[-1]/2)]) plt.title(sess_output[5][ind].decode()) plt.subplot(133) plt.imshow(sess_output[2][ind,:,:,int(config.LABEL_SIZE[-1]/2)]) # plt.show() plt.savefig(os.path.join(config.train_dir,'fig/pred%d.png'%step)) # Summary the training process. if step % config.num_steps_summary == 0: summary_str = sess_output[-1] summary_writer.add_summary(summary_str,step) if step % config.num_steps_checkpoint == 0: checkpoint_path = os.path.join(config.train_dir,'checkpoint','model.ckpt') saver.save(sess, checkpoint_path, global_step=step) step=sess.run(global_step) except tf.errors.OutOfRangeError: print('Running %d steps.'%step) finally: coord.request_stop() coord.join(threads) sess.close() config.close_all() def main(argv=None): # pylint: disable=unused-argument os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_device train() if __name__ == '__main__': tf.app.run() ``` #### File: code/test/resfcn_test.py ```python import sys import os.path from datetime import datetime import time import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import test_config as config from test_config import logger import test_model as resfcn import test_input def test(): inputs = test_input.TEST_INPUT(); # Get images and labels for FCN. image = tf.placeholder(tf.float32,shape=[None,None,config.IMAGE_SIZE[2]],name='image_placeholder'); precrop = tf.image.resize_image_with_crop_or_pad(image,900,1600) crop = tf.image.resize_images(precrop,[450,800]) images = tf.expand_dims(crop,0) images = (images-128)/128 print('inputs initialize.') # Build a Graph that computes the score map predictions from the # inference model. preds = resfcn.inference(images) # tf.image_summary('preds',preds[:,:,:,int(config.LABEL_SIZE[-1]/2)],max_images=int(config.batch_size/2)) print('inference initialize.') # Create a saver. saver = tf.train.Saver(tf.all_variables(),name='saver') print('saver initialize.') # Start running operations on the Graph. sess = tf.Session(config=config.session_config) saver.restore(sess,config.restore_path) logger.info('load from %s',config.restore_path) print('test begins.') while inputs.isValid: # try: scan_time = datetime.now().strftime('%H:%M') image_batch = inputs.next_fig() # except Exception: # logger.info('encounter with error. Abort fig %s.'%inputs.figName) # inputs.next_fig() # continue start_time = time.time() crop_image,heatmap = sess.run([crop,preds],feed_dict = {image:image_batch}) duration = time.time() - start_time # num_examples_per_step = inputs.batch_size # examples_per_sec = num_examples_per_step / duration # sec_per_batch = float(duration) format_str = ('%s: %s (%.3f sec/fig)') print (format_str % (scan_time, inputs.figName, duration)) inputs.save(crop_image,heatmap) sess.close() config.close_all() def main(argv=None): # pylint: disable=unused-argument os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_device test() if __name__ == '__main__': tf.app.run() ``` #### File: code/test/test_input.py ```python import os import random import numpy as np from scipy import ndimage from scipy import misc import scipy.io as sio import matplotlib.pyplot as plt import matplotlib.image as mpimg # from matplotlib.patches import Rectangle import tensorflow as tf import test_config as config from test_config import logger class TEST_INPUT: def __init__(self): self.batch_size = config.batch_size self.fig_list = os.listdir(config.test_dir) self.curFig = -1 self.figName = None self.numFig = len(self.fig_list) self.isValid = self.numFig>0 def next_fig(self): if self.isValid == False: return None self.curFig += 1 if self.curFig+1>=self.numFig: self.isValid = False filename = self.fig_list[self.curFig] self.image = mpimg.imread(os.path.join(config.test_dir,filename)) self.image = misc.imresize(self.image,0.8) # plt.imshow(self.image) # plt.show() # image = np.expand_dims(image,0) self.figName,_ = os.path.splitext(filename) return self.image def save(self,image,heatmap): heatmap = np.squeeze(heatmap) conn,numCandidate = ndimage.label(heatmap>=config.thresh) candis = ndimage.find_objects(conn) # plt.imshow(256-image) # plt.show() for candi in candis: image[candi[0].start:candi[0].stop,candi[1].start,0]= 0 image[candi[0].start:candi[0].stop,candi[1].start,1]= 255 image[candi[0].start:candi[0].stop,candi[1].start,2]= 0 image[candi[0].start:candi[0].stop,candi[1].stop-1,0]= 0 image[candi[0].start:candi[0].stop,candi[1].stop-1,1]= 255 image[candi[0].start:candi[0].stop,candi[1].stop-1,2]= 0 image[candi[0].start,candi[1].start:candi[1].stop,0] = 0 image[candi[0].start,candi[1].start:candi[1].stop,1] = 255 image[candi[0].start,candi[1].start:candi[1].stop,2] = 0 image[candi[0].stop-1,candi[1].start:candi[1].stop,0] = 0 image[candi[0].stop-1,candi[1].start:candi[1].stop,1] = 255 image[candi[0].stop-1,candi[1].start:candi[1].stop,2] = 0 # ly = candi[0].start # height = candi[0].stop-candi[0].start # lx = candi[1].start # width = candi[1].stop-candi[1].start # plt.gca.add_patch(Rectangle((lx,ly),width,height,fill=None,alpha=1)) image = 256-image mpimg.imsave(os.path.join(config.output_dir,'pred','%s_bbxs.jpg'%self.figName),image) mpimg.imsave(os.path.join(config.output_dir,'pred','%s_heatmap.jpg'%self.figName),heatmap) ``` #### File: code/test/test_model.py ```python import os import sys import numpy as np import tensorflow as tf import test_input import test_config as config from test_config import logger # Global constants describing the Residue FCN model. ## Standard deviation for initialization CONV_STDDEV = config.CONV_STDDEV BIAS_STDDEV = config.BIAS_STDDEV DECONV_STDDEV = config.DECONV_STDDEV ## Weight decay CONV_WD = config.CONV_WD BIAS_WD = config.BIAS_WD DECONV_WD = config.DECONV_WD def _get_variable(name, shape, initializer, weight_decay=None,dtype=tf.float32,trainable=True): # Optionally add weigth decay according to weight_decay if weight_decay is not None: regularizer = tf.contrib.layers.l2_regularizer(weight_decay) else: regularizer = None var = tf.get_variable(name=name,shape=shape, initializer=initializer,dtype=dtype, regularizer=regularizer,trainable=trainable) return var def _get_filter_stddev(kernel_size,channel_size): filter_stddev = np.sqrt(2.0/(kernel_size[0]*kernel_size[1]*channel_size)) return filter_stddev def _conv2d(input_op, kernel_shape, op_name='conv2d', stride = None, padding='SAME', conv_stddev = CONV_STDDEV, conv_wd=CONV_WD): if conv_stddev is None: conv_stddev = _get_filter_stddev(kernel_shape[0:2],kernel_shape[2]) if stride is None: stride = [1, 1, 1, 1] kernel = _get_variable(name='conv_kernel',shape=kernel_shape, initializer=tf.truncated_normal_initializer(stddev=conv_stddev), weight_decay=conv_wd) conv = tf.nn.conv2d(input_op, kernel, strides=stride, padding=padding,name=op_name) return conv def _conv2d_bias(input_op, kernel_shape, op_name='conv2d_bias', stride = None, padding='SAME', conv_stddev = CONV_STDDEV, conv_wd=CONV_WD, bias_stddev = BIAS_STDDEV, bias_wd=BIAS_WD): with tf.variable_scope(op_name) as scope: conv = _conv2d(input_op, kernel_shape, stride=stride, padding=padding, conv_stddev = conv_stddev, conv_wd=conv_wd) bias = _get_variable('bias',shape=kernel_shape[3], initializer=tf.truncated_normal_initializer(stddev=bias_stddev),weight_decay=bias_wd) conv_bias = tf.nn.bias_add(conv, bias, name='conv2d_bias') return conv_bias def _batch_norm(input_op,channel_size,op_name='batch_norm'): with tf.variable_scope(op_name) as scope: offset = _get_variable(name='offset',shape=channel_size,initializer=tf.zeros_initializer) scale = _get_variable(name='scale',shape=channel_size,initializer=tf.ones_initialzer) moving_mean = tf.get_variable(name='moving_mean',shape=channel_size, initializer=tf.zeros_initializer,trainable=False) moving_variance = tf.get_variable(name='moving_variance',shape=channel_size, initializer=tf.ones_initialzer,trainable=False) mean,variance = tf.nn.moments(input_op,axes=[0,1,2]) update_moving_mean = moving_averages.assign_moving_average(moving_mean,mean,MOVING_AVERAGE_DECAY) update_moving_variance = moving_averages.assign_moving_average(moving_variance,variance,MOVING_AVERAGE_DECAY) tf.add_to_collection('UPDATE_OP',update_moving_mean) tf.add_to_collection('UPDATE_OP',update_moving_variance) if FLAGS.is_training: norm = tf.nn.batch_normalization(deconv,moving_mean,moving_variance,offset,scale,BN_EPSILON) else: norm = tf.nn.batch_normalization(deconv,mean,var,offset,scale,BN_EPSILON) return norm def _conv_layer(input_op, kernel_shape, op_name='conv_layer', stride=None, padding='SAME', batch_norm=False, activation=tf.nn.elu, conv_stddev = CONV_STDDEV, conv_wd=CONV_WD, bias_stddev = BIAS_STDDEV, bias_wd=BIAS_WD): with tf.variable_scope(op_name) as scope: pre_activation = _conv2d_bias(input_op, kernel_shape, stride=stride, padding=padding, conv_stddev = conv_stddev, conv_wd=conv_wd, bias_stddev = bias_stddev, bias_wd=bias_wd) if batch_norm: pre_activation = _batch_norm(pre_activation) if activation is not None: conv = activation(pre_activation) else: conv = pre_activation if config.is_training: print('conv layer:%s is established'%op_name) logger.debug(str(conv)) return conv def _deconv_layer(input_op, kernel_shape, shape_op, op_name='deconv_layer', stride=None, padding='SAME', deconv_stddev=DECONV_STDDEV, deconv_wd=DECONV_WD): if deconv_stddev is None: deconv_stddev = _get_filter_stddev(kernel_shape[0:2],kernel_shape[3]) if stride is None: stride = [1,2,2,1] with tf.variable_scope(op_name) as scope: kernel = _get_variable(name='deconv_kernel', shape = kernel_shape, initializer=tf.truncated_normal_initializer(stddev=deconv_stddev), weight_decay=deconv_wd) deconv = tf.nn.conv2d_transpose(input_op, kernel, output_shape= shape_op, strides=stride, padding=padding,name='deconv') if config.is_training: print('deconv layer:%s is established...'%op_name) logger.debug(str(deconv)) return deconv def _pool_layer(input_op, op_name='pool_layer', pooling=tf.nn.max_pool): with tf.variable_scope(op_name) as scope: pool = pooling(input_op, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') if config.is_training: print('pool layer:%s is established...'%op_name) logger.debug(str(pool)) return pool def _unpool_layer(input_op, size=None, op_name='unpool_layer'): if size is None: size = 2*(tf.shape(input_op)[1:3]) with tf.variable_scope(op_name) as scope: unpool = tf.image.resize_images(input_op, size=size) if config.is_training: print('unpool layer:%s is established...'%op_name) logger.debug(str(unpool)) return unpool def _residue_block(input_op, residue_op, kernel_shape, op_name='residue_block', activation=tf.nn.elu, batch_norm=False, conv_stddev = CONV_STDDEV, conv_wd=CONV_WD, bias_stddev = BIAS_STDDEV, bias_wd=BIAS_WD): with tf.variable_scope(op_name) as scope: conv1 = _conv_layer(input_op,kernel_shape,op_name='residue_conv1', batch_norm=batch_norm, activation=activation, conv_stddev = conv_stddev, bias_stddev = bias_stddev, conv_wd=conv_wd, bias_wd=bias_wd) conv2 = _conv_layer(input_op,kernel_shape,op_name='residue_conv2', batch_norm=batch_norm, activation=None, conv_stddev = conv_stddev, bias_stddev = bias_stddev, conv_wd=conv_wd, bias_wd=bias_wd) addition = tf.add(residue_op,conv2,name='addition') if activation is not None: residue = activation(addition) else: residue = addition if config.is_training: print('residue block:%s is established...'%op_name) logger.debug(str(residue)) return residue def inference(images): # Convolution # stage1 conv1_1 = _conv_layer(input_op=images, op_name='conv1_1', kernel_shape=[1,1,images.get_shape().as_list()[-1],32]) block1_1 = _residue_block(input_op=conv1_1,residue_op=conv1_1, op_name='block1_1', kernel_shape=[3,3,32,32]) block1_2 = _residue_block(input_op=block1_1,residue_op=block1_1, op_name='block1_2', kernel_shape=[3,3,32,32]) pool1 = _pool_layer(block1_2,'pool1') # stage2 conv2_1 = _conv_layer(input_op=pool1, op_name='conv2_1', kernel_shape=[1,1,32,64]) block2_1 = _residue_block(input_op=conv2_1,residue_op=conv2_1, op_name='block2_1', kernel_shape=[3,3,64,64]) block2_2 = _residue_block(input_op=block2_1,residue_op=block2_1, op_name='block2_2', kernel_shape=[3,3,64,64]) pool2 = _pool_layer(block2_2,'pool2') # stage3 conv3_1 = _conv_layer(input_op=pool2, op_name='conv3_1', kernel_shape=[1,1,64,128]) block3_1 = _residue_block(input_op=conv3_1,residue_op=conv3_1, op_name='block3_1', kernel_shape=[3,3,128,128]) block3_2 = _residue_block(input_op=block3_1,residue_op=block3_1, op_name='block3_2', kernel_shape=[3,3,128,128]) pool3 = _pool_layer(block3_2,'pool3') # stage4 conv4_1 = _conv_layer(input_op=pool3, op_name='conv4_1', kernel_shape=[1,1,128,256]) block4_1 = _residue_block(input_op=conv4_1,residue_op=conv4_1, op_name='block4_1', kernel_shape=[3,3,256,256]) block4_2 = _residue_block(input_op=block4_1,residue_op=block4_1, op_name='block4_2', kernel_shape=[3,3,256,256]) pool4 = _pool_layer(block4_2,'pool4') # stage5 conv5_1 = _conv_layer(input_op=pool4, op_name='conv5_1', kernel_shape=[1,1,256,512]) block5_1 = _residue_block(input_op=conv5_1,residue_op=conv5_1, op_name='block5_1', kernel_shape=[3,3,512,512]) block5_2 = _residue_block(input_op=block5_1,residue_op=block5_1, op_name='block5_2', kernel_shape=[3,3,512,512]) # upsample and fuse deconv4_1 = _deconv_layer(input_op=block5_2, op_name='deconv4_1', shape_op= tf.shape(block4_2), kernel_shape=[2,2,256,512]) block4_3 = _residue_block(input_op=deconv4_1,residue_op=block4_2, op_name='block4_3', kernel_shape=[3,3,256,256]) block4_4 = _residue_block(input_op=block4_3,residue_op=block4_3, op_name='block4_4', kernel_shape=[3,3,256,256]) deconv3_1 = _deconv_layer(input_op=block4_4, op_name='deconv3_1', shape_op= tf.shape(block3_2), kernel_shape=[2,2,128,256]) block3_3 = _residue_block(input_op=deconv3_1,residue_op=block3_2, op_name='block3_3', kernel_shape=[3,3,128,128]) block3_4 = _residue_block(input_op=block3_3,residue_op=block3_3, op_name='block3_4', kernel_shape=[3,3,128,128]) deconv2_1 = _deconv_layer(input_op=block3_4, op_name='deconv2_1', shape_op= tf.shape(block2_2), kernel_shape=[2,2,64,128]) block2_3 = _residue_block(input_op=deconv2_1,residue_op=block2_2, op_name='block2_3', kernel_shape=[3,3,64,64]) block2_4 = _residue_block(input_op=block2_3,residue_op=block2_3, op_name='block2_4', kernel_shape=[3,3,64,64]) deconv1_1 = _deconv_layer(input_op=block2_4, op_name='deconv1_1', shape_op= tf.shape(block1_2), kernel_shape=[2,2,32,64]) block1_3 = _residue_block(input_op=deconv1_1,residue_op=block1_2, op_name='block1_3', kernel_shape=[3,3,32,32]) block1_4 = _residue_block(input_op=block1_3,residue_op=block1_3, op_name='block1_4', kernel_shape=[3,3,32,32]) conv1_3 = _conv2d_bias(input_op=block1_4, kernel_shape = [1,1,32,1], op_name='conv1_3') # sigmoid preds = tf.sigmoid(conv1_3,name='pred') #conv1_3 = _conv_layer(input_op=block1_4, op_name='conv1_3', kernel_shape=[3,3,32,1]) #conv1_4 = _conv_layer(input_op=block1_4, op_name='conv1_4', kernel_shape=[3,3,32,1]) ## softmax #with tf.variable_scope('pred') as scope: #pred1 = tf.exp(conv1_3,name='pred1') #pred2 = tf.exp(conv1_4,name='pred2') #preds = tf.truediv(pred1,tf.add(pred1,pred2),name='softmax') return preds ```
{ "source": "Jiayuan-Gu/habitat-lab", "score": 2 }
#### File: hrl/skills/art_obj.py ```python from typing import List, Tuple import torch from habitat.tasks.rearrange.rearrange_sensors import ( IsHoldingSensor, RelativeRestingPositionSensor, ) from habitat_baselines.rl.hrl.skills.nn_skill import NnSkillPolicy class ArtObjSkillPolicy(NnSkillPolicy): def on_enter( self, skill_arg: List[str], batch_idx: int, observations, rnn_hidden_states, prev_actions, ) -> Tuple[torch.Tensor, torch.Tensor]: super().on_enter( skill_arg, batch_idx, observations, rnn_hidden_states, prev_actions ) self._did_leave_start_zone = torch.zeros( self._batch_size, device=prev_actions.device ) self._episode_start_resting_pos = observations[ RelativeRestingPositionSensor.cls_uuid ] def _is_skill_done( self, observations, rnn_hidden_states, prev_actions, masks, ) -> torch.BoolTensor: cur_resting_pos = observations[RelativeRestingPositionSensor.cls_uuid] did_leave_start_zone = ( torch.norm( cur_resting_pos - self._episode_start_resting_pos, dim=-1 ) > self._config.START_ZONE_RADIUS ) self._did_leave_start_zone = torch.logical_or( self._did_leave_start_zone, did_leave_start_zone ) cur_resting_dist = torch.norm( observations[RelativeRestingPositionSensor.cls_uuid], dim=-1 ) is_within_thresh = cur_resting_dist < self._config.AT_RESTING_THRESHOLD is_holding = ( observations[IsHoldingSensor.cls_uuid].view(-1).type(torch.bool) ) is_not_holding = ~is_holding return is_not_holding & is_within_thresh & self._did_leave_start_zone def _parse_skill_arg(self, skill_arg): self._internal_log(f"Parsing skill argument {skill_arg}") return int(skill_arg[-1].split("|")[1]) ``` #### File: hrl/skills/nn_skill.py ```python import gym.spaces as spaces import numpy as np import torch from habitat.config import Config as CN from habitat.core.spaces import ActionSpace from habitat_baselines.common.baseline_registry import baseline_registry from habitat_baselines.common.logging import baselines_logger from habitat_baselines.common.tensor_dict import TensorDict from habitat_baselines.rl.hrl.skills.skill import SkillPolicy from habitat_baselines.utils.common import get_num_actions def truncate_obs_space(space: spaces.Box, truncate_len: int) -> spaces.Box: """ Returns an observation space with taking on the first `truncate_len` elements of the space. """ return spaces.Box( low=space.low[..., :truncate_len], high=space.high[..., :truncate_len], dtype=np.float32, ) class NnSkillPolicy(SkillPolicy): """ Defines a skill to be used in the TP+SRL baseline. """ def __init__( self, wrap_policy, config, action_space: spaces.Space, filtered_obs_space: spaces.Space, filtered_action_space: spaces.Space, batch_size, should_keep_hold_state: bool = False, ): """ :param action_space: The overall action space of the entire task, not task specific. """ super().__init__( config, action_space, batch_size, should_keep_hold_state ) self._wrap_policy = wrap_policy self._filtered_obs_space = filtered_obs_space self._filtered_action_space = filtered_action_space self._ac_start = 0 self._ac_len = get_num_actions(filtered_action_space) for k, space in action_space.items(): if k not in filtered_action_space.spaces.keys(): self._ac_start += get_num_actions(space) else: break self._internal_log( f"Skill {self._config.skill_name}: action offset {self._ac_start}, action length {self._ac_len}" ) def parameters(self): if self._wrap_policy is not None: return self._wrap_policy.parameters() else: return [] @property def num_recurrent_layers(self): if self._wrap_policy is not None: return self._wrap_policy.net.num_recurrent_layers else: return 0 def to(self, device): super().to(device) if self._wrap_policy is not None: self._wrap_policy.to(device) def _get_filtered_obs(self, observations, cur_batch_idx) -> TensorDict: return TensorDict( { k: observations[k] for k in self._filtered_obs_space.spaces.keys() } ) def _internal_act( self, observations, rnn_hidden_states, prev_actions, masks, cur_batch_idx, deterministic=False, ): filtered_obs = self._get_filtered_obs(observations, cur_batch_idx) filtered_prev_actions = prev_actions[ :, self._ac_start : self._ac_start + self._ac_len ] filtered_obs = self._select_obs(filtered_obs, cur_batch_idx) _, action, _, rnn_hidden_states = self._wrap_policy.act( filtered_obs, rnn_hidden_states, filtered_prev_actions, masks, deterministic, ) full_action = torch.zeros(prev_actions.shape) full_action[:, self._ac_start : self._ac_start + self._ac_len] = action return full_action, rnn_hidden_states @classmethod def from_config(cls, config, observation_space, action_space, batch_size): # Load the wrap policy from file if len(config.LOAD_CKPT_FILE) == 0: raise ValueError( f"Skill {config.skill_name}: Need to specify LOAD_CKPT_FILE" ) ckpt_dict = torch.load(config.LOAD_CKPT_FILE, map_location="cpu") policy = baseline_registry.get_policy(config.name) policy_cfg = ckpt_dict["config"] if "GYM" not in policy_cfg.TASK_CONFIG: # Support loading legacy policies # TODO: Remove this eventually and drop support for policies # trained on older version of codebase. policy_cfg.defrost() policy_cfg.TASK_CONFIG.GYM = CN() policy_cfg.TASK_CONFIG.GYM.OBS_KEYS = list( set( policy_cfg.RL.POLICY.include_visual_keys + policy_cfg.RL.GYM_OBS_KEYS ) ) policy_cfg.freeze() expected_obs_keys = policy_cfg.TASK_CONFIG.GYM.OBS_KEYS filtered_obs_space = spaces.Dict( {k: observation_space.spaces[k] for k in expected_obs_keys} ) for k in config.OBS_SKILL_INPUTS: space = filtered_obs_space.spaces[k] # There is always a 3D position filtered_obs_space.spaces[k] = truncate_obs_space(space, 3) baselines_logger.debug( f"Skill {config.skill_name}: Loaded observation space {filtered_obs_space}", ) filtered_action_space = ActionSpace( { k: action_space[k] for k in policy_cfg.TASK_CONFIG.TASK.POSSIBLE_ACTIONS } ) if "ARM_ACTION" in filtered_action_space.spaces and ( policy_cfg.TASK_CONFIG.TASK.ACTIONS.ARM_ACTION.GRIP_CONTROLLER is None ): filtered_action_space["ARM_ACTION"] = spaces.Dict( { k: v for k, v in filtered_action_space["ARM_ACTION"].items() if k != "grip_action" } ) baselines_logger.debug( f"Loaded action space {filtered_action_space} for skill {config.skill_name}", ) actor_critic = policy.from_config( policy_cfg, filtered_obs_space, filtered_action_space ) try: actor_critic.load_state_dict( { # type: ignore k[len("actor_critic.") :]: v for k, v in ckpt_dict["state_dict"].items() } ) except Exception as e: raise ValueError( f"Could not load checkpoint for skill {config.skill_name} from {config.LOAD_CKPT_FILE}" ) from e return cls( actor_critic, config, action_space, filtered_obs_space, filtered_action_space, batch_size, ) ``` #### File: hrl/skills/wait.py ```python from typing import Any import gym.spaces as spaces import torch from habitat_baselines.rl.hrl.skills.skill import SkillPolicy class WaitSkillPolicy(SkillPolicy): def __init__( self, config, action_space: spaces.Space, batch_size, ): super().__init__(config, action_space, batch_size, True) self._wait_time = -1 def _parse_skill_arg(self, skill_arg: str) -> Any: self._wait_time = int(skill_arg[0]) self._internal_log(f"Requested wait time {self._wait_time}") def _is_skill_done( self, observations, rnn_hidden_states, prev_actions, masks, ) -> torch.BoolTensor: assert self._wait_time > 0 return self._cur_skill_step >= self._wait_time def _internal_act( self, observations, rnn_hidden_states, prev_actions, masks, cur_batch_idx, deterministic=False, ): action = torch.zeros(prev_actions.shape, device=prev_actions.device) return action, rnn_hidden_states ``` #### File: tasks/rearrange/rearrange_sensors.py ```python import numpy as np from gym import spaces from habitat.core.embodied_task import Measure from habitat.core.registry import registry from habitat.core.simulator import Sensor, SensorTypes from habitat.tasks.nav.nav import PointGoalSensor from habitat.tasks.rearrange.rearrange_sim import RearrangeSim from habitat.tasks.rearrange.utils import ( CollisionDetails, batch_transform_point, rearrange_logger, ) from habitat.tasks.utils import cartesian_to_polar, get_angle class MultiObjSensor(PointGoalSensor): """ Abstract parent class for a sensor that specifies the locations of all targets. """ def __init__(self, *args, task, **kwargs): self._task = task self._sim: RearrangeSim super(MultiObjSensor, self).__init__(*args, task=task, **kwargs) def _get_observation_space(self, *args, **kwargs): n_targets = self._task.get_n_targets() return spaces.Box( shape=(n_targets * 3,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) @registry.register_sensor class TargetCurrentSensor(MultiObjSensor): """ This is the ground truth object position sensor relative to the robot end-effector coordinate frame. """ cls_uuid: str = "obj_goal_pos_sensor" def _get_observation_space(self, *args, **kwargs): return spaces.Box( shape=(3,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, *args, **kwargs): self._sim: RearrangeSim T_inv = self._sim.robot.ee_transform.inverted() idxs, _ = self._sim.get_targets() scene_pos = self._sim.get_scene_pos() pos = scene_pos[idxs] for i in range(pos.shape[0]): pos[i] = T_inv.transform_point(pos[i]) return pos.reshape(-1) @registry.register_sensor class TargetStartSensor(MultiObjSensor): """ Relative position from end effector to target object """ cls_uuid: str = "obj_start_sensor" def get_observation(self, *args, observations, episode, **kwargs): self._sim: RearrangeSim global_T = self._sim.robot.ee_transform T_inv = global_T.inverted() pos = self._sim.get_target_objs_start() return batch_transform_point(pos, T_inv, np.float32).reshape(-1) class PositionGpsCompassSensor(Sensor): def __init__(self, *args, sim, task, **kwargs): self._task = task self._sim = sim super().__init__(*args, task=task, **kwargs) def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, config, **kwargs): n_targets = self._task.get_n_targets() self._polar_pos = np.zeros(n_targets * 2, dtype=np.float32) return spaces.Box( shape=(n_targets * 2,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def _get_positions(self) -> np.ndarray: raise NotImplementedError("Must override _get_positions") def get_observation(self, task, *args, **kwargs): pos = self._get_positions() robot_T = self._sim.robot.base_transformation rel_pos = batch_transform_point(pos, robot_T.inverted(), np.float32) for i, rel_obj_pos in enumerate(rel_pos): rho, phi = cartesian_to_polar(rel_obj_pos[0], rel_obj_pos[1]) self._polar_pos[(i * 2) : (i * 2) + 2] = [rho, -phi] return self._polar_pos @registry.register_sensor class TargetStartGpsCompassSensor(PositionGpsCompassSensor): cls_uuid: str = "obj_start_gps_compass" def _get_uuid(self, *args, **kwargs): return TargetStartGpsCompassSensor.cls_uuid def _get_positions(self) -> np.ndarray: return self._sim.get_target_objs_start() @registry.register_sensor class TargetGoalGpsCompassSensor(PositionGpsCompassSensor): cls_uuid: str = "obj_goal_gps_compass" def _get_uuid(self, *args, **kwargs): return TargetGoalGpsCompassSensor.cls_uuid def _get_positions(self) -> np.ndarray: _, pos = self._sim.get_targets() return pos @registry.register_sensor class AbsTargetStartSensor(MultiObjSensor): """ Relative position from end effector to target object """ cls_uuid: str = "abs_obj_start_sensor" def get_observation(self, observations, episode, *args, **kwargs): pos = self._sim.get_target_objs_start() return pos.reshape(-1) @registry.register_sensor class GoalSensor(MultiObjSensor): """ Relative to the end effector """ cls_uuid: str = "obj_goal_sensor" def get_observation(self, observations, episode, *args, **kwargs): global_T = self._sim.robot.ee_transform T_inv = global_T.inverted() _, pos = self._sim.get_targets() return batch_transform_point(pos, T_inv, np.float32).reshape(-1) @registry.register_sensor class AbsGoalSensor(MultiObjSensor): cls_uuid: str = "abs_obj_goal_sensor" def get_observation(self, *args, observations, episode, **kwargs): _, pos = self._sim.get_targets() return pos.reshape(-1) @registry.register_sensor class JointSensor(Sensor): def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim def _get_uuid(self, *args, **kwargs): return "joint" def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, config, **kwargs): return spaces.Box( shape=(config.DIMENSIONALITY,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, *args, **kwargs): joints_pos = self._sim.robot.arm_joint_pos return np.array(joints_pos, dtype=np.float32) @registry.register_sensor class JointVelocitySensor(Sensor): def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim def _get_uuid(self, *args, **kwargs): return "joint_vel" def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, config, **kwargs): return spaces.Box( shape=(config.DIMENSIONALITY,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, *args, **kwargs): joints_pos = self._sim.robot.arm_velocity return np.array(joints_pos, dtype=np.float32) @registry.register_sensor class EEPositionSensor(Sensor): cls_uuid: str = "ee_pos" def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim @staticmethod def _get_uuid(*args, **kwargs): return EEPositionSensor.cls_uuid def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, **kwargs): return spaces.Box( shape=(3,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, *args, **kwargs): trans = self._sim.robot.base_transformation ee_pos = self._sim.robot.ee_transform.translation local_ee_pos = trans.inverted().transform_point(ee_pos) return np.array(local_ee_pos) @registry.register_sensor class RelativeRestingPositionSensor(Sensor): cls_uuid: str = "relative_resting_position" def _get_uuid(self, *args, **kwargs): return RelativeRestingPositionSensor.cls_uuid def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, **kwargs): return spaces.Box( shape=(3,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, task, *args, **kwargs): base_trans = self._sim.robot.base_transformation ee_pos = self._sim.robot.ee_transform.translation local_ee_pos = base_trans.inverted().transform_point(ee_pos) relative_desired_resting = task.desired_resting - local_ee_pos return np.array(relative_desired_resting, dtype=np.float32) @registry.register_sensor class RestingPositionSensor(Sensor): """ Desired resting position in the robot coordinate frame. """ cls_uuid: str = "resting_position" def _get_uuid(self, *args, **kwargs): return RestingPositionSensor.cls_uuid def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, **kwargs): return spaces.Box( shape=(3,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, task, *args, **kwargs): return np.array(task.desired_resting) @registry.register_sensor class LocalizationSensor(Sensor): cls_uuid = "localization_sensor" def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim def _get_uuid(self, *args, **kwargs): return LocalizationSensor.cls_uuid def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, **kwargs): return spaces.Box( shape=(4,), low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, dtype=np.float32, ) def get_observation(self, observations, episode, *args, **kwargs): T = self._sim.robot.base_transformation forward = np.array([1.0, 0, 0]) heading = np.array(T.transform_vector(forward)) forward = forward[[0, 2]] heading = heading[[0, 2]] heading_angle = get_angle(forward, heading) c = np.cross(forward, heading) < 0 if not c: heading_angle = -1.0 * heading_angle return np.array([*T.translation, heading_angle], dtype=np.float32) @registry.register_sensor class IsHoldingSensor(Sensor): """ Binary if the robot is holding an object or grasped onto an articulated object. """ cls_uuid: str = "is_holding" def __init__(self, sim, config, *args, **kwargs): super().__init__(config=config) self._sim = sim def _get_uuid(self, *args, **kwargs): return IsHoldingSensor.cls_uuid def _get_sensor_type(self, *args, **kwargs): return SensorTypes.TENSOR def _get_observation_space(self, *args, **kwargs): return spaces.Box(shape=(1,), low=0, high=1, dtype=np.float32) def get_observation(self, observations, episode, *args, **kwargs): return np.array(int(self._sim.grasp_mgr.is_grasped)).reshape((1,)) @registry.register_measure class ObjectToGoalDistance(Measure): """ Euclidean distance from the target object to the goal. """ cls_uuid: str = "object_to_goal_distance" def __init__(self, sim, config, *args, **kwargs): self._sim = sim self._config = config super().__init__(**kwargs) @staticmethod def _get_uuid(*args, **kwargs): return ObjectToGoalDistance.cls_uuid def reset_metric(self, *args, episode, **kwargs): self.update_metric(*args, episode=episode, **kwargs) def update_metric(self, *args, episode, **kwargs): idxs, goal_pos = self._sim.get_targets() scene_pos = self._sim.get_scene_pos() target_pos = scene_pos[idxs] distances = np.linalg.norm(target_pos - goal_pos, ord=2, axis=-1) self._metric = {str(idx): dist for idx, dist in zip(idxs, distances)} @registry.register_measure class ObjAtGoal(Measure): """ Returns if the target object is at the goal (binary) for each of the target objects in the scene. """ cls_uuid: str = "obj_at_goal" def __init__(self, *args, sim, config, task, **kwargs): self._config = config super().__init__(*args, sim=sim, config=config, task=task, **kwargs) @staticmethod def _get_uuid(*args, **kwargs): return ObjAtGoal.cls_uuid def reset_metric(self, *args, episode, task, observations, **kwargs): task.measurements.check_measure_dependencies( self.uuid, [ ObjectToGoalDistance.cls_uuid, ], ) self.update_metric( *args, episode=episode, task=task, observations=observations, **kwargs, ) def update_metric(self, *args, episode, task, observations, **kwargs): obj_to_goal_dists = task.measurements.measures[ ObjectToGoalDistance.cls_uuid ].get_metric() self._metric = { str(idx): dist < self._config.SUCC_THRESH for idx, dist in obj_to_goal_dists.items() } @registry.register_measure class EndEffectorToObjectDistance(Measure): """ Gets the distance between the end-effector and all current target object COMs. """ cls_uuid: str = "ee_to_object_distance" def __init__(self, sim, config, *args, **kwargs): self._sim = sim self._config = config super().__init__(**kwargs) @staticmethod def _get_uuid(*args, **kwargs): return EndEffectorToObjectDistance.cls_uuid def reset_metric(self, *args, episode, **kwargs): self.update_metric(*args, episode=episode, **kwargs) def update_metric(self, *args, episode, **kwargs): ee_pos = self._sim.robot.ee_transform.translation idxs, _ = self._sim.get_targets() scene_pos = self._sim.get_scene_pos() target_pos = scene_pos[idxs] distances = np.linalg.norm(target_pos - ee_pos, ord=2, axis=-1) self._metric = {str(idx): dist for idx, dist in zip(idxs, distances)} @registry.register_measure class EndEffectorToRestDistance(Measure): """ Distance between current end effector position and position where end effector rests within the robot body. """ cls_uuid: str = "ee_to_rest_distance" def __init__(self, sim, config, *args, **kwargs): self._sim = sim self._config = config super().__init__(**kwargs) @staticmethod def _get_uuid(*args, **kwargs): return EndEffectorToRestDistance.cls_uuid def reset_metric(self, *args, episode, **kwargs): self.update_metric(*args, episode=episode, **kwargs) def update_metric(self, *args, episode, task, observations, **kwargs): to_resting = observations[RelativeRestingPositionSensor.cls_uuid] rest_dist = np.linalg.norm(to_resting) self._metric = rest_dist @registry.register_measure class ReturnToRestDistance(Measure): """ Distance between end-effector and resting position if the robot is holding the object. """ cls_uuid: str = "return_to_rest_distance" def __init__(self, sim, config, *args, **kwargs): self._sim = sim self._config = config super().__init__(**kwargs) @staticmethod def _get_uuid(*args, **kwargs): return ReturnToRestDistance.cls_uuid def reset_metric(self, *args, episode, **kwargs): self.update_metric(*args, episode=episode, **kwargs) def update_metric(self, *args, episode, task, observations, **kwargs): to_resting = observations[RelativeRestingPositionSensor.cls_uuid] rest_dist = np.linalg.norm(to_resting) snapped_id = self._sim.grasp_mgr.snap_idx abs_targ_obj_idx = self._sim.scene_obj_ids[task.abs_targ_idx] picked_correct = snapped_id == abs_targ_obj_idx if picked_correct: self._metric = rest_dist else: T_inv = self._sim.robot.ee_transform.inverted() idxs, _ = self._sim.get_targets() scene_pos = self._sim.get_scene_pos() pos = scene_pos[idxs][0] pos = T_inv.transform_point(pos) self._metric = np.linalg.norm(task.desired_resting - pos) @registry.register_measure class RobotCollisions(Measure): """ Returns a dictionary with the counts for different types of collisions. """ cls_uuid: str = "robot_collisions" def __init__(self, *args, sim, config, task, **kwargs): self._sim = sim self._config = config self._task = task super().__init__(*args, sim=sim, config=config, task=task, **kwargs) @staticmethod def _get_uuid(*args, **kwargs): return RobotCollisions.cls_uuid def reset_metric(self, *args, episode, task, observations, **kwargs): self._accum_coll_info = CollisionDetails() self.update_metric( *args, episode=episode, task=task, observations=observations, **kwargs, ) def update_metric(self, *args, episode, task, observations, **kwargs): cur_coll_info = self._task.get_cur_collision_info() self._accum_coll_info += cur_coll_info self._metric = { "total_collisions": self._accum_coll_info.total_collisions, "robot_obj_colls": self._accum_coll_info.robot_obj_colls, "robot_scene_colls": self._accum_coll_info.robot_scene_colls, "obj_scene_colls": self._accum_coll_info.obj_scene_colls, } @registry.register_measure class RobotForce(Measure): """ The amount of force in newton's accumulatively applied by the robot. """ cls_uuid: str = "robot_force" def __init__(self, *args, sim, config, task, **kwargs): self._sim = sim self._config = config self._task = task super().__init__(*args, sim=sim, config=config, task=task, **kwargs) @staticmethod def _get_uuid(*args, **kwargs): return RobotForce.cls_uuid def reset_metric(self, *args, episode, task, observations, **kwargs): self._accum_force = 0.0 self._prev_force = None self._cur_force = None self._add_force = None self.update_metric( *args, episode=episode, task=task, observations=observations, **kwargs, ) @property def add_force(self): return self._add_force def update_metric(self, *args, episode, task, observations, **kwargs): robot_force, _, overall_force = self._task.get_coll_forces() if self._task._config.COUNT_OBJ_COLLISIONS: self._cur_force = overall_force else: self._cur_force = robot_force if self._prev_force is not None: self._add_force = self._cur_force - self._prev_force if self._add_force > self._config.MIN_FORCE: self._accum_force += self._add_force self._prev_force = self._cur_force elif self._add_force < 0.0: self._prev_force = self._cur_force else: self._add_force = 0.0 else: self._prev_force = self._cur_force self._add_force = 0.0 self._metric = self._accum_force @registry.register_measure class NumStepsMeasure(Measure): """ The number of steps elapsed in the current episode. """ cls_uuid: str = "num_steps" @staticmethod def _get_uuid(*args, **kwargs): return NumStepsMeasure.cls_uuid def reset_metric(self, *args, episode, task, observations, **kwargs): self._metric = 0 def update_metric(self, *args, episode, task, observations, **kwargs): self._metric += 1 @registry.register_measure class ForceTerminate(Measure): """ If the accumulated force throughout this episode exceeds the limit. """ cls_uuid: str = "force_terminate" def __init__(self, *args, sim, config, task, **kwargs): self._sim = sim self._config = config self._task = task super().__init__(*args, sim=sim, config=config, task=task, **kwargs) @staticmethod def _get_uuid(*args, **kwargs): return ForceTerminate.cls_uuid def reset_metric(self, *args, episode, task, observations, **kwargs): task.measurements.check_measure_dependencies( self.uuid, [ RobotForce.cls_uuid, ], ) self.update_metric( *args, episode=episode, task=task, observations=observations, **kwargs, ) def update_metric(self, *args, episode, task, observations, **kwargs): accum_force = task.measurements.measures[ RobotForce.cls_uuid ].get_metric() if ( self._config.MAX_ACCUM_FORCE > 0 and accum_force > self._config.MAX_ACCUM_FORCE ): rearrange_logger.debug( f"Force threshold={self._config.MAX_ACCUM_FORCE} exceeded with {accum_force}, ending episode" ) self._task.should_end = True self._metric = True else: self._metric = False @registry.register_measure class DidViolateHoldConstraintMeasure(Measure): cls_uuid: str = "did_violate_hold_constraint" @staticmethod def _get_uuid(*args, **kwargs): return DidViolateHoldConstraintMeasure.cls_uuid def __init__(self, *args, sim, **kwargs): self._sim = sim super().__init__(*args, sim=sim, **kwargs) def reset_metric(self, *args, episode, task, observations, **kwargs): self.update_metric( *args, episode=episode, task=task, observations=observations, **kwargs, ) def update_metric(self, *args, **kwargs): self._metric = self._sim.grasp_mgr.is_violating_hold_constraint() class RearrangeReward(Measure): """ An abstract class defining some measures that are always a part of any reward function in the Habitat 2.0 tasks. """ def __init__(self, *args, sim, config, task, **kwargs): self._sim = sim self._config = config self._task = task super().__init__(*args, sim=sim, config=config, task=task, **kwargs) def reset_metric(self, *args, episode, task, observations, **kwargs): task.measurements.check_measure_dependencies( self.uuid, [ RobotForce.cls_uuid, ForceTerminate.cls_uuid, ], ) self.update_metric( *args, episode=episode, task=task, observations=observations, **kwargs, ) def update_metric(self, *args, episode, task, observations, **kwargs): reward = 0.0 reward += self._get_coll_reward() if self._sim.grasp_mgr.is_violating_hold_constraint(): reward -= self._config.CONSTRAINT_VIOLATE_PEN force_terminate = task.measurements.measures[ ForceTerminate.cls_uuid ].get_metric() if force_terminate: reward -= self._config.FORCE_END_PEN self._metric = reward def _get_coll_reward(self): reward = 0 force_metric = self._task.measurements.measures[RobotForce.cls_uuid] # Penalize the force that was added to the accumulated force at the # last time step. reward -= max( 0, # This penalty is always positive min( self._config.FORCE_PEN * force_metric.add_force, self._config.MAX_FORCE_PEN, ), ) return reward ``` #### File: rearrange/sub_tasks/nav_to_obj_task.py ```python import os.path as osp import random from collections import defaultdict from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple import magnum as mn import numpy as np from habitat.core.dataset import Episode from habitat.core.registry import registry from habitat.tasks.rearrange.multi_task.pddl_domain import PddlDomain from habitat.tasks.rearrange.multi_task.rearrange_pddl import ( PddlAction, RearrangeObjectTypes, search_for_id, ) from habitat.tasks.rearrange.multi_task.task_creator_utils import ( create_task_object, ) from habitat.tasks.rearrange.rearrange_task import ADD_CACHE_KEY, RearrangeTask from habitat.tasks.rearrange.utils import CacheHelper, rearrange_logger DYN_NAV_TASK_NAME = "RearrangeNavToObjTask-v0" @dataclass class NavToInfo: """ :property nav_target_pos: Where the robot should navigate to. :property nav_target_angle: What angle the robot should be at when at the goal. :property nav_to_task_name: The name of the sub-task we are navigating to. :property nav_to_obj_type: All sub-tasks are assumed to be interacting with some object. This is the object the sub-task we are navigating to is defined relative to. """ nav_target_pos: mn.Vector3 nav_target_angle: float nav_to_task_name: str nav_to_obj_type: RearrangeObjectTypes start_hold_obj_idx: Optional[bool] = None start_base_pos: Optional[mn.Vector3] = None start_base_rot: Optional[float] = None @registry.register_task(name=DYN_NAV_TASK_NAME) class DynNavRLEnv(RearrangeTask): """ :_nav_to_info: Information about the next skill we are navigating to. """ def __init__(self, *args, config, dataset=None, **kwargs): super().__init__(config=config, *args, dataset=dataset, **kwargs) self.force_obj_to_idx = None self.force_recep_to_name = None self._prev_measure = 1.0 data_path = dataset.config.DATA_PATH.format(split=dataset.config.SPLIT) fname = data_path.split("/")[-1].split(".")[0] save_dir = osp.dirname(data_path) self.cache = CacheHelper( osp.join(save_dir, f"{fname}_{config.TYPE}_start.pickle"), def_val={}, verbose=False, ) self.start_states = self.cache.load() self.domain = None self._nav_to_info: Optional[NavToInfo] = None @property def nav_to_obj_type(self): return self._nav_to_info.nav_to_obj_type @property def nav_to_task_name(self): return self._nav_to_info.nav_to_task_name @property def nav_target_pos(self): return self._nav_to_info.nav_target_pos @property def nav_target_angle(self): return self._nav_to_info.nav_target_angle def set_args(self, obj, **kwargs): if "marker" in kwargs: self.force_recep_to_name = kwargs["orig_applied_args"]["marker"] self.force_obj_to_idx = obj self.force_obj_to_name = kwargs["orig_applied_args"]["obj"] self.force_kwargs = kwargs def _get_allowed_tasks( self, filter_actions: Optional[List[str]] = None ) -> Dict[str, List[PddlAction]]: """ :returns: Mapping the action name to the grounded instances of the action that are possible in the current state. """ cur_preds = self.domain.get_true_predicates() # Get all actions which can be actively applied. allowed_actions = defaultdict(list) for action in self.domain.actions.values(): if ( filter_actions is not None and action.name not in filter_actions ): continue if action.task == DYN_NAV_TASK_NAME or ( len(self._config.FILTER_NAV_TO_TASKS) != 0 and action.name not in self._config.FILTER_NAV_TO_TASKS ): continue consistent_actions = action.get_possible_actions( cur_preds, self.domain.get_name_to_id_mapping() ) rearrange_logger.debug( f"For {action.name} got consistent actions:" ) for action in consistent_actions: rearrange_logger.debug(f"- {action}") allowed_actions[action.name].append(action) return allowed_actions def _get_nav_targ( self, task_name: str, task_args: Dict[str, Any], episode: Episode ) -> Tuple[mn.Vector3, float, RearrangeObjectTypes]: rearrange_logger.debug( f"Getting nav target for {task_name} with arguments {task_args}" ) # Get the config for this task action = self.domain.get_task_match_for_name(task_name) rearrange_logger.debug( f"Corresponding action with task={action.task}, task_def={action.task_def}, config_task_args={action.config_task_args}" ) orig_state = self._sim.capture_state(with_robot_js=True) create_task_object( action.task, action.task_def, self._config.clone(), self, self._dataset, False, task_args, episode, action.config_task_args, ) robo_pos = self._sim.robot.base_pos heading_angle = self._sim.robot.base_rot self._sim.set_state(orig_state, set_hold=True) _, obj_to_type = search_for_id( task_args["orig_obj"], self.domain.get_name_to_id_mapping() ) return robo_pos, heading_angle, obj_to_type def _generate_snap_to_obj(self) -> int: # Snap the target object to the robot hand. target_idxs, _ = self._sim.get_targets() return self._sim.scene_obj_ids[target_idxs[0]] def _generate_nav_start_goal(self, episode) -> NavToInfo: start_hold_obj_idx: Optional[int] = None # Only change the scene if this skill is not running as a sub-task if random.random() < self._config.OBJECT_IN_HAND_SAMPLE_PROB: start_hold_obj_idx = self._generate_snap_to_obj() allowed_tasks = self._get_allowed_tasks() nav_to_task_name = random.choice(list(allowed_tasks.keys())) task = random.choice(allowed_tasks[nav_to_task_name]) target_pos, target_angle, obj_type = self._get_nav_targ( nav_to_task_name, { **task.task_args, ADD_CACHE_KEY: "nav", }, episode, ) rearrange_logger.debug(f"Got nav to skill {nav_to_task_name}") target_pos = np.array(self._sim.safe_snap_point(target_pos)) start_pos, start_rot = get_robo_start_pos(self._sim, target_pos) return NavToInfo( nav_target_pos=target_pos, nav_target_angle=float(target_angle), nav_to_task_name=nav_to_task_name, nav_to_obj_type=obj_type, start_hold_obj_idx=start_hold_obj_idx, start_base_pos=start_pos, start_base_rot=start_rot, ) def _get_force_nav_start_info(self, episode: Episode) -> NavToInfo: rearrange_logger.debug( f"Navigation getting target for {self.force_obj_to_idx} with task arguments {self.force_kwargs}" ) name_to_id = self.domain.get_name_to_id_mapping() if self.force_recep_to_name is not None: rearrange_logger.debug( f"Forcing receptacle {self.force_recep_to_name}" ) _, entity_type = search_for_id( self.force_recep_to_name, name_to_id ) use_name = self.force_recep_to_name else: _, entity_type = search_for_id(self.force_obj_to_name, name_to_id) use_name = self.force_obj_to_name rearrange_logger.debug( f"Search object name {use_name} with type {entity_type}" ) matching_skills = self.domain.get_matching_skills( entity_type, use_name ) allowed_tasks = self._get_allowed_tasks(matching_skills) if len(allowed_tasks) == 0: raise ValueError( f"Got no allowed tasks {allowed_tasks} from {matching_skills}, {entity_type}, {use_name}" ) filtered_allowed_tasks = [] orig_args = self.force_kwargs["orig_applied_args"] for sub_allowed_tasks in allowed_tasks.values(): for task in sub_allowed_tasks: assigned_args = task.task_args # Check that `orig_args` is a SUBSET of `assigned_args` meaning # the keys and values match something in assigned args. is_orig_args_subset = all( [ assigned_args.get(k, None) == v or assigned_args.get(f"orig_{k}", None) == v for k, v in orig_args.items() ] ) if is_orig_args_subset: filtered_allowed_tasks.append(task) rearrange_logger.debug(f"Got allowed tasks {filtered_allowed_tasks}") if len(filtered_allowed_tasks) == 0: allowed_tasks_str = ( "".join(["\n - " + x for x in allowed_tasks]) + "\n" ) raise ValueError( f"Got no tasks out of {allowed_tasks_str}. With entity_type={entity_type}, use_name={use_name} force kwargs={self.force_kwargs}" ) nav_to_task = filtered_allowed_tasks[0] rearrange_logger.debug( f"Navigating to {nav_to_task.name} with arguments {nav_to_task.task_args}" ) targ_pos, nav_target_angle, obj_type = self._get_nav_targ( nav_to_task.name, nav_to_task.task_args, episode ) return NavToInfo( nav_target_pos=np.array(self._sim.safe_snap_point(targ_pos)), nav_target_angle=float(nav_target_angle), nav_to_task_name=nav_to_task.name, nav_to_obj_type=obj_type, ) def reset(self, episode: Episode): sim = self._sim super().reset(episode, fetch_observations=False) rearrange_logger.debug("Resetting navigation task") if self.domain is None: self.domain = PddlDomain( self._config.PDDL_DOMAIN_DEF, self._dataset, self._config, self._sim, ) else: self.domain.reset() episode_id = sim.ep_info["episode_id"] if self.force_obj_to_idx is not None: full_key = ( f"{episode_id}_{self.force_obj_to_idx}_{self.force_kwargs}" ) if ( full_key in self.start_states and not self._config.FORCE_REGENERATE ): self._nav_to_info = self.start_states[full_key] rearrange_logger.debug( f"Forcing episode, loaded `{full_key}` from cache {self.cache.cache_id}." ) if not isinstance(self._nav_to_info, NavToInfo): rearrange_logger.warning( f"Incorrect cache saved to file {self._nav_to_info}. Regenerating now." ) self._nav_to_info = None if self._nav_to_info is None: self._nav_to_info = self._get_force_nav_start_info(episode) self.start_states[full_key] = self._nav_to_info if self._config.SHOULD_SAVE_TO_CACHE: self.cache.save(self.start_states) rearrange_logger.debug( f"Forcing episode, saved key `{full_key}` to cache {self.cache.cache_id}." ) else: if ( episode_id in self.start_states and not self._config.FORCE_REGENERATE ): self._nav_to_info = self.start_states[episode_id] if ( not isinstance(self._nav_to_info, NavToInfo) or self._nav_to_info.start_base_pos is None or self._nav_to_info.start_base_rot is None ): rearrange_logger.warning( f"Incorrect cache saved to file {self._nav_to_info}. Regenerating now." ) self._nav_to_info = None else: rearrange_logger.debug( f"Loaded episode from cache {self.cache.cache_id}." ) if ( self._nav_to_info is not None and self._nav_to_info.start_hold_obj_idx is not None ): # The object to hold was generated from stale object IDs. # Reselect a new object to hold. self._nav_to_info.start_hold_obj_idx = ( self._generate_snap_to_obj() ) if self._nav_to_info is None: self._nav_to_info = self._generate_nav_start_goal(episode) self.start_states[episode_id] = self._nav_to_info if self._config.SHOULD_SAVE_TO_CACHE: self.cache.save(self.start_states) rearrange_logger.debug( f"Saved episode to cache {self.cache.cache_id}." ) sim.robot.base_pos = self._nav_to_info.start_base_pos sim.robot.base_rot = self._nav_to_info.start_base_rot if self._nav_to_info.start_hold_obj_idx is not None: if self._sim.grasp_mgr.is_grasped: raise ValueError( f"Attempting to grasp {self._nav_to_info.start_hold_obj_idx} even though object is already grasped" ) rearrange_logger.debug( f"Forcing to grasp object {self._nav_to_info.start_hold_obj_idx}" ) self._sim.grasp_mgr.snap_to_obj( self._nav_to_info.start_hold_obj_idx, force=True ) rearrange_logger.debug(f"Got nav to info {self._nav_to_info}") if not sim.pathfinder.is_navigable(self._nav_to_info.nav_target_pos): rearrange_logger.error("Goal is not navigable") if self._sim.habitat_config.DEBUG_RENDER: # Visualize the position the agent is navigating to. sim.viz_ids["nav_targ_pos"] = sim.visualize_position( self._nav_to_info.nav_target_pos, sim.viz_ids["nav_targ_pos"], r=0.2, ) return self._get_observations(episode) def get_robo_start_pos( sim, nav_targ_pos: mn.Vector3 ) -> Tuple[np.ndarray, float]: orig_state = sim.capture_state() start_pos, start_rot = sim.set_robot_base_to_random_point( max_attempts=1000 ) # Reset everything except for the robot state. orig_state["robot_T"] = None sim.set_state(orig_state) return start_pos, start_rot ```
{ "source": "Jiayuan-Gu/MPlib", "score": 2 }
#### File: Jiayuan-Gu/MPlib/setup.py ```python import os import sys import subprocess from setuptools import setup, Extension from setuptools.command.build_ext import build_ext class CMakeExtension(Extension): def __init__(self, name, sourcedir=""): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) if not extdir.endswith(os.path.sep): extdir += os.path.sep cfg = "Debug" if self.debug else "Release" cmake_generator = os.environ.get("CMAKE_GENERATOR", "") # Set Python_EXECUTABLE instead if you use PYBIND11_FINDPYTHON cmake_args = [ "-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={}".format(extdir), "-DPYTHON_EXECUTABLE={}".format(sys.executable), "-DCMAKE_BUILD_TYPE={}".format(cfg), # not used on MSVC, but no harm ] build_args = [] #if not cmake_generator: # cmake_args += ["-GNinja"] self.parallel = 16 if "CMAKE_BUILD_PARALLEL_LEVEL" not in os.environ: if hasattr(self, "parallel") and self.parallel: build_args += ["-j{}".format(self.parallel)] if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) print(cmake_args, build_args) subprocess.check_call( ["cmake", ext.sourcedir] + cmake_args, cwd=self.build_temp ) subprocess.check_call( ["cmake", "--build", "."] + build_args, cwd=self.build_temp ) setup( name="mplib", version="0.0.4", author_email="<EMAIL>", keywords="robotics motion planning", description="A lightweight motion planning library", classifiers=[ "Operating System :: POSIX :: Linux", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Other Audience", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Framework :: Robot Framework :: Tool", "Programming Language :: C++", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Education", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Utilities", ], python_requires='>=3.6', install_requires=["numpy >= 1.20", "toppra >= 0.4.0", "transforms3d >= 0.3.1"], ext_modules=[CMakeExtension("_mplib")], cmdclass={"build_ext": CMakeBuild}, zip_safe=False, packages=["mplib"], package_dir = {"mplib": "mplib/"} ) ```
{ "source": "Jiayuan-Gu/policy-refactorization", "score": 2 }
#### File: common/utils/metric_logger.py ```python from __future__ import division from collections import defaultdict from collections import deque import numpy as np import torch class Metric(object): def update(self, *args, **kwargs): raise NotImplementedError() def reset(self): raise NotImplementedError() @property def result(self): raise NotImplementedError() def __str__(self): raise NotImplementedError() @property def summary_str(self): raise NotImplementedError() class Average(Metric): """Track a series of values and provide access to smoothed values over a window or the global series average. """ default_fmt = '{avg:.4f} ({global_avg:.4f})' default_summary_fmt = '{global_avg:.4f}' def __init__(self, window_size=20, fmt=None, summary_fmt=None): self.values = deque(maxlen=window_size) self.counts = deque(maxlen=window_size) self.sum = 0.0 self.count = 0 self.fmt = fmt or self.default_fmt self.summary_fmt = summary_fmt or self.default_summary_fmt def update(self, value, count=1): self.values.append(value) self.counts.append(count) self.sum += value self.count += count def reset(self): self.values.clear() self.counts.clear() self.sum = 0.0 self.count = 0 @property def result(self): return self.global_avg def __str__(self): return self.fmt.format(avg=self.avg, global_avg=self.global_avg) @property def summary_str(self): return self.summary_fmt.format(global_avg=self.global_avg) @property def avg(self): return np.sum(self.values) / np.sum(self.counts) @property def global_avg(self): return self.sum / self.count if self.count != 0 else float('nan') class Accuracy(Average): default_fmt = '{avg:.2f} ({global_avg:.2f})' default_summary_fmt = '{global_avg:.2f}' def update(self, y_pred, y_true): assert y_pred.shape == y_true.shape if torch.is_tensor(y_pred) and torch.is_tensor(y_true): mask = torch.eq(y_pred, y_true) value = mask.float().sum().item() count = mask.numel() elif isinstance(y_pred, np.ndarray) and isinstance(y_true, np.ndarray): mask = np.equal(y_pred, y_true) value = mask.sum().item() count = mask.size else: raise TypeError('{}, {}'.format(type(y_pred), type(y_true))) super().update(value=value, count=count) @property def avg(self): return super().avg * 100.0 @property def global_avg(self): return super().global_avg * 100.0 class MetricLogger(object): """Metric logger.""" def __init__(self, delimiter='\t'): self.metrics = defaultdict(Average) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): count = v.numel() value = v.item() if count == 1 else v.sum().item() elif isinstance(v, np.ndarray): count = v.size value = v.item() if count == 1 else v.sum().item() elif isinstance(v, (tuple, list)): value, count = v value = value.item() count = count.item() elif isinstance(v, (float, int)): value = v count = 1 else: raise TypeError('Unsupported type: '.format(type(v))) self.metrics[k].update(value, count) def __getitem__(self, item): return self.metrics[item] def __str__(self): ret_str = [] for name, metric in self.metrics.items(): ret_str.append('{}: {}'.format(name, str(metric))) return self.delimiter.join(ret_str) @property def summary_str(self): ret_str = [] for name, metric in self.metrics.items(): ret_str.append('{}: {}'.format(name, metric.summary_str)) return self.delimiter.join(ret_str) def reset(self): for metric in self.metrics.values(): metric.reset() def test_Accuracy(): acc_metric = Accuracy() acc_metric.update(np.array([1, 0, 1]), np.array([1, 0, 0])) np.testing.assert_allclose(acc_metric.result, 2.0 / 3.0 * 100.0) print(acc_metric) acc_metric.update(torch.tensor([1, 0, 1]), torch.tensor([1, 0, 1])) np.testing.assert_allclose(acc_metric.result, 5.0 / 6.0 * 100.0) print(acc_metric) ``` #### File: common/utils/misc.py ```python import os import numpy as np import torch import gzip import pickle def print_dict(d: dict): """Print the given dictionary for debugging.""" for k, v in d.items(): if isinstance(v, (np.ndarray, torch.Tensor)): print(k, v.shape) else: print(k, v) def dynamic_load_modules(target_dir, context, excludes=('__init__.py',), verbose=True): """Load all the python files(.py) in the current directory. Notes: It is suggested to import modules explicitly. However, sometimes, we may temporarily add some modules to experiments, but do not want to include them in git or hope the program can still run when we remove the experimental modules. "from xxx import *" is not encouraged, unless __all__ is controlled carefully. """ all_filenames = os.listdir(target_dir) py_filenames = [x for x in all_filenames if x.endswith('.py') and x not in excludes] if verbose: print(py_filenames) module_names = [os.path.splitext(x)[0] for x in py_filenames] for name in module_names: exec('from .{} import *'.format(name), context) def dump_pickle(obj, path): if path.endswith('.pkl'): with open(path, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) elif path.endswith('.pgz'): with gzip.open(path, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) else: raise RuntimeError('Unsupported extension {}.'.format(os.path.splitext(path)[-1])) def load_pickle(path): if path.endswith('.pkl'): with open(path, 'rb') as f: return pickle.load(f) elif path.endswith('.pgz'): with gzip.open(path, 'rb') as f: return pickle.load(f) else: raise RuntimeError('Unsupported extension {}.'.format(os.path.splitext(path)[-1])) ``` #### File: refactorization/models_gnn/ec_net.py ```python import torch import torch.nn as nn import torch_geometric.nn as gnn from torch_geometric.nn import EdgeConv from refactorization.models_gnn.base import BaseGNN class EdgeConvNet(BaseGNN): def __init__(self, global_aggr='max', output_dim=3): super(BaseGNN, self).__init__() self.output_dim = output_dim self.encoder = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1, bias=True), nn.ReLU(), nn.MaxPool2d(2, 2), # [8, 8] nn.Conv2d(16, 32, 3, padding=1, bias=True), nn.ReLU(), nn.MaxPool2d(2, 2), # [4, 4] nn.Conv2d(32, 64, 3, padding=1, bias=False), nn.GroupNorm(4, 64), nn.ReLU(), nn.MaxPool2d(2, 2), # [2, 2] nn.Conv2d(64, 128, 3, padding=1, bias=False), nn.GroupNorm(8, 128), nn.ReLU(), nn.MaxPool2d(2, 2), # [1, 1] ) local_nn = nn.Sequential( nn.Linear((128 + 4) * 2, 128, bias=False), nn.GroupNorm(8, 128), nn.ReLU(), nn.Linear(128, 128, bias=False), nn.GroupNorm(8, 128), nn.ReLU(), nn.Linear(128, 128, bias=False), nn.GroupNorm(8, 128), nn.ReLU(), ) self.gnn = EdgeConv(local_nn, aggr='max') self.encoder2 = nn.Sequential( nn.Linear(128, 128, bias=False), nn.GroupNorm(8, 128), nn.ReLU(), nn.Linear(128, 128, bias=False), nn.GroupNorm(8, 128), nn.ReLU(), ) self.global_aggr = global_aggr self.fc = nn.Sequential( nn.Linear(128, 128, bias=True), nn.ReLU(), nn.Linear(128, 128, bias=True), nn.ReLU(), nn.Linear(128, output_dim), ) self.reset_parameters() def forward(self, data, batch_size=None, **kwargs): x = data.x batch = data.batch edge_index = data.edge_index pos = data.pos # infer real batch size, in case empty sample if batch_size is None: batch_size = data['size'].sum().item() img_feature = self.encoder(x).flatten(1) x = torch.cat([img_feature, pos], dim=1) x = self.gnn(x=x, edge_index=edge_index) x = self.encoder2(x) if self.global_aggr == 'max': global_feature = gnn.global_max_pool(x, batch, size=batch_size) elif self.global_aggr == 'sum': global_feature = gnn.global_add_pool(x, batch, size=batch_size) else: raise NotImplementedError() logits = self.fc(global_feature) out_dict = { 'logits': logits, } return out_dict def test(): from common.utils.misc import print_dict from torch_geometric.data import Data, Batch model = EdgeConvNet() print(model) data = Data( x=torch.rand(4, 3, 16, 16), action=torch.randint(3, [1]), pos=torch.rand(4, 4), edge_index=torch.tensor([[0, 1, 2, 3], [1, 2, 3, 0]], dtype=torch.int64), size=torch.tensor([1], dtype=torch.int64), ) data_batch = Batch.from_data_list([data]) pd_dict = model(data_batch) print_dict(pd_dict) loss_dict = model.compute_losses(pd_dict, data_batch) print_dict(loss_dict) ``` #### File: rl_libarary/agent/BaseAgent.py ```python import torch import numpy as np import torch.multiprocessing as mp from collections import deque from skimage.io import imsave # from ..utils import * from ..utils.logger import Logger, GlobalLogger from ..utils.normalizer import build_normalizer from ..utils.misc import mkdir, close_obj, has_flag from ..utils.torch_utils import random_seed import logging from ..component.envs import Task from common.utils.checkpoint import CheckpointerV2_RL from ..network.network_builder import build_network import pickle def update_dict_with_key_map(d1, d2, key_map): for k1, k2 in key_map.items(): if k1 not in d1: raise Exception('k1 not in d1') if k2 not in d2: raise Exception('k2 not in d2') d1[k1] = d2[k2] class BaseAgent: def __init__(self, config): self.config = config self.logger = GlobalLogger(logging.getLogger('RL'), config.final_output_dir, 0) self.task_ind = 0 self.state_normalizer = build_normalizer(config.RL.state_normalizer) self.reward_normalizer = build_normalizer(config.RL.reward_normalizer) self.checkpointer = None self.first_eval = True def close(self): close_obj(self.task) close_obj(self.evaluator) def lazy_init_checkpointer(self): if self.checkpointer is None: self.checkpointer = CheckpointerV2_RL(self.network, state_normalizer=self.state_normalizer, optimizer=self.optimizer, save_dir=self.config.final_output_dir, logger=self.logger, max_to_keep=self.config.train.n_checkpoints_to_keep) def save(self, tag=None): self.lazy_init_checkpointer() filename = '{:d}'.format(self.total_steps) if tag: filename += ('_' + tag) self.checkpointer.save(filename) def try_to_load_network(self): config = self.config if config.load_ckpt: self.load(config.load_ckpt) def load(self, ckpt_path): self.lazy_init_checkpointer() self.checkpointer.load(ckpt_path, resume=False, resume_states=False) def eval_episodes(self): if self.config.eval.is_async and not self.first_eval: self.evaluator.query_eval_done() # let the training wait for evaluation self.first_eval = False self.evaluator.eval_episodes(self.total_steps) def record_online_return(self, info, offset=0): # pass if isinstance(info, dict): if 'episodic_return' in info: # wrapped by OriginalReturnWrapper ret = info['episodic_return'] elif 'episode' in info: # procgen env ret = info['episode']['r'] else: return if ret is not None: self.logger.add_scalar('episodic_return_train', ret, self.total_steps + offset) if not has_flag(self.config.train, 'hide_episodic_return'): self.logger.info('steps %d, episodic_return_train %s' % (self.total_steps + offset, ret)) elif isinstance(info, tuple) or isinstance(info, list): for i, info_ in enumerate(info): self.record_online_return(info_, i) else: raise NotImplementedError def switch_task(self): config = self.config # if not config.tasks: if not hasattr(config, 'tasks'): return segs = np.linspace(0, config.max_steps, len(config.tasks) + 1) if self.total_steps > segs[self.task_ind + 1]: self.task_ind += 1 self.task = config.tasks[self.task_ind] self.states = self.task.reset() self.states = config.state_normalizer(self.states) def record_episode(self, dir, env): mkdir(dir) steps = 0 state = env.reset() while True: self.record_obs(env, dir, steps) action = self.record_step(state) state, reward, done, info = env.step(action) ret = info[0]['episodic_return'] steps += 1 if ret is not None: break def record_step(self, state): raise NotImplementedError # For DMControl def record_obs(self, env, dir, steps): env = env.env.envs[0] obs = env.render(mode='rgb_array') imsave('%s/%04d.png' % (dir, steps), obs) # from ..component.envs import LazyFrames class BaseActor(mp.Process): STEP = 0 RESET = 1 EXIT = 2 SPECS = 3 NETWORK = 4 CACHE = 5 def __init__(self, config, lock): mp.Process.__init__(self) self.config = config self.lock = lock self.state_normalizer = build_normalizer(config.RL.state_normalizer) self.__pipe, self.__worker_pipe = mp.Pipe() self._state = None self._task = None self._network = None self._total_steps = 0 self.__cache_len = 2 if not config.DQN.async_actor: self.start = lambda: None self.step = self._sample self._set_up() # self._task = self.task_fn() self._task = self.build_task() def build_task(self): config = self.config return Task(config.task.full_name, **dict(config.other)) def _sample(self): transitions = [] for _ in range(self.config.DQN.sgd_update_frequency): transitions.append(self._transition()) return transitions def run(self): self._set_up() config = self.config # self._task = self.task_fn() self._task = self.build_task() if hasattr(self.config.other, 'save_all_experience'): import h5py self.h5_data = h5py.File(self.config.other.save_all_experience, mode='w') cache = deque([], maxlen=2) while True: op, data = self.__worker_pipe.recv() if op == self.STEP: if not len(cache): cache.append(self._sample()) cache.append(self._sample()) self.__worker_pipe.send(cache.popleft()) cache.append(self._sample()) elif op == self.EXIT: self.__worker_pipe.close() if hasattr(self.config.other, 'save_all_experience'): self.h5_data.close() print('@@@@@@@@@@@@@@@@ close h5') return elif op == self.NETWORK: self._network = data else: raise NotImplementedError def _transition(self): raise NotImplementedError def _set_up(self): pass def step(self): self.__pipe.send([self.STEP, None]) return self.__pipe.recv() def close(self): if self.config.DQN.async_actor: self.__pipe.send([self.EXIT, None]) self.__pipe.close() def set_network(self, net): if not self.config.DQN.async_actor: self._network = net else: self.__pipe.send([self.NETWORK, net]) from ..utils.logger import EvalResultsWriter class BaseEvaluator(mp.Process): EVAL = 0 EXIT = 1 NETWORK = 2 # LOG = 3 def __init__(self, config, lock, logger): mp.Process.__init__(self) self.config = config self.lock = lock self.logger = logger self.state_normalizer = build_normalizer(config.RL.state_normalizer) if config.eval.is_async: self.__pipe, self.__worker_pipe = mp.Pipe() self.task = None self.network_outside = None # this is just a handle self.network = None else: self.start = lambda: None self.close = lambda: None self.eval_episodes = self._eval_episodes self._set_up() # self.task = self.task_fn() self.task = self.build_task() self.network = build_network(config) # self.results_writer = self.results_writer_fn() self.results_writer = self.build_writer() def build_task(self): config = self.config return Task(config.task.full_name, num_envs=config.eval.n_episodes if config.eval.parallel else 1, single_process=not config.eval.env_subprocess, **dict(config.other)) def build_writer(self): config = self.config return EvalResultsWriter('{:s}/eval'.format(config.final_output_dir) if config.final_output_dir else None, header={'env_id' : config.task.full_name}) def run(self): self._set_up() random_seed() config = self.config # self.task = self.task_fn() self.task = self.build_task() self.network = build_network(config) # self.results_writer = self.results_writer_fn() self.results_writer = self.build_writer() while True: op, data = self.__worker_pipe.recv() if op == self.EVAL: eval_done = self._eval_episodes(data) self.__worker_pipe.send(eval_done) # steps, mean, std = self._eval_episodes(data) # self.__worker_pipe.send((steps, mean, std)) elif op == self.EXIT: self.__worker_pipe.close() return elif op == self.NETWORK: self.network_outside = data else: raise NotImplementedError def _set_up(self): pass def close(self): self.__pipe.send([self.EXIT, None]) self.__pipe.close() def set_network(self, net): if not self.config.eval.is_async: self.network_outside = net else: self.__pipe.send([self.NETWORK, net]) def query_eval_done(self): eval_done = self.__pipe.recv() return eval_done def eval_episodes(self, current_steps): self.__pipe.send([self.EVAL, current_steps]) def eval_single_episode(self): env = self.task state = env.reset() while True: action = self.eval_step(state) state, reward, done, info = env.step(action) ret = info[0]['episodic_return'] if ret is not None: break return ret def _eval_episodes(self, steps): with self.lock: # copy the network weight self.network.load_state_dict(self.network_outside.state_dict()) self.network.eval() if self.config.eval.parallel: episodic_returns = self.eval_episode_parallel() else: episodic_returns = self.eval_episode_sequential() # print('@@@@@@@@@@@@@@@@@@@@ eval done') self.logger.info('steps %d, *** episodic_return_test %.3f (std = %.2f)' % ( steps, np.mean(episodic_returns), np.std(episodic_returns) )) self.logger.add_scalar('episodic_return_test', np.mean(episodic_returns), steps) self.results_writer.write_row(steps, episodic_returns) return True # return steps, np.mean(episodic_returns), np.std(episodic_returns) def eval_episode_parallel(self): episodic_returns = [ None for _ in range(self.config.eval.n_episodes) ] done_cnt = 0 env = self.task state = env.reset() step_cnt = 0 while True: step_cnt += 1 action = self.eval_step(state) state, reward, done, info = env.step(action) for i_env, _info in enumerate(info): ret = _info['episodic_return'] if episodic_returns[i_env] is None and ret is not None: episodic_returns[i_env] = ret done_cnt += 1 if done_cnt >= self.config.eval.n_episodes: # print('@@@@@@@@ eval step cnt:', step_cnt) return episodic_returns def eval_episode_sequential(self): episodic_returns = [] for ep in range(self.config.eval.n_episodes): total_rewards = self.eval_single_episode() episodic_returns.append(np.sum(total_rewards)) return episodic_returns def eval_step(self, state): raise NotImplementedError ``` #### File: rl_libarary/network/network_utils.py ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np # from ..utils import * class BaseNet: def __init__(self): pass def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer def make_mlp(in_channels, mlp_channels, act_builder=nn.ReLU, last_act=True): c_in = in_channels module_list = [] for idx, c_out in enumerate(mlp_channels): module_list.append(nn.Linear(c_in, c_out)) if last_act or idx < len(mlp_channels) - 1: module_list.append(act_builder()) c_in = c_out return nn.Sequential(*module_list) ``` #### File: rl_libarary/utils/logger.py ```python from tensorboardX import SummaryWriter import os import os.path as osp import numpy as np import torch import logging # logging.basicConfig(format='%(asctime)s - %(levelname)s: %(message)s') import sys def setup_logger(name, save_dir, comment=''): logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s %(name)s %(levelname)s: %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) if save_dir: filename = 'log' if comment: filename += '.' + comment log_file = os.path.join(save_dir, filename + '.txt') fh = logging.FileHandler(log_file) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) return logger class Logger(object): def __init__(self, vanilla_logger, log_dir, log_level=0): self.log_level = log_level self.writer = None if vanilla_logger is not None: self.info = vanilla_logger.info self.debug = vanilla_logger.debug self.warning = vanilla_logger.warning self.all_steps = {} self.log_dir = log_dir def lazy_init_writer(self): if self.log_dir and self.writer is None: self.writer = SummaryWriter(self.log_dir, flush_secs=30) def to_numpy(self, v): if isinstance(v, torch.Tensor): v = v.cpu().detach().numpy() return v def get_step(self, tag): if tag not in self.all_steps: self.all_steps[tag] = 0 step = self.all_steps[tag] self.all_steps[tag] += 1 return step def add_scalar(self, tag, value, step=None, log_level=0): if not self.log_dir: return self.lazy_init_writer() if log_level > self.log_level: return value = self.to_numpy(value) if step is None: step = self.get_step(tag) if np.isscalar(value): value = np.asarray([value]) self.writer.add_scalar(tag, value, step) def add_histogram(self, tag, values, step=None, log_level=0): if not self.log_dir: return self.lazy_init_writer() if log_level > self.log_level: return values = self.to_numpy(values) if step is None: step = self.get_step(tag) self.writer.add_histogram(tag, values, step) def flush(self): if not self.log_dir: return self.writer.flush() from tensorboardX import GlobalSummaryWriter class tmuGlobalSummaryWriter(GlobalSummaryWriter): def __init__(self, *args, **kwargs): super(tmuGlobalSummaryWriter, self).__init__(*args, **kwargs) def add_scalar(self, tag, scalar_value, global_step, walltime=None): """add scalar with given global step""" with self.lock: self.smw.add_scalar(tag, scalar_value, global_step, walltime) class GlobalLogger(Logger): def __init__(self, vanilla_logger, log_dir, log_level=0): super(GlobalLogger, self).__init__(vanilla_logger, log_dir) self.add_histogram = None if log_dir: self.writer = tmuGlobalSummaryWriter(self.log_dir, flush_secs=30) # def lazy_init_writer(self): # if self.log_dir and self.writer is None: # self.writer = tmuGlobalSummaryWriter.getSummaryWriter(self.log_dir) def add_scalar(self, tag, value, step=None, log_level=0): if not self.log_dir: return # self.lazy_init_writer() if log_level > self.log_level: return value = self.to_numpy(value) if step is None: step = self.get_step(tag) if np.isscalar(value): value = np.asarray([value]) self.writer.add_scalar(tag, value, step) import json, csv class EvalResultsWriter(object): def __init__(self, filename, header=''): if not filename: return EXT = 'csv' if not filename.endswith(EXT): if osp.isdir(filename): filename = osp.join(filename, EXT) else: filename = filename + "." + EXT self.f = open(filename, "wt") if isinstance(header, dict): header = '# {} \n'.format(json.dumps(header)) self.f.write(header) self.logger = csv.writer(self.f) self.logger.writerow(['step', 'ep_rewards']) self.f.flush() def write_row(self, step, ep_rewards): if hasattr(self, 'logger'): self.logger.writerow([step] + ep_rewards) self.f.flush() ``` #### File: space/datasets/build.py ```python from torch.utils.data.sampler import RandomSampler, BatchSampler from torch.utils.data.dataloader import DataLoader from common.utils.torch_utils import worker_init_fn from common.utils.sampler import IterationBasedBatchSampler def build_dataset(cfg, training=True): dataset_kwargs = cfg.DATASET.get('TRAIN' if training else 'VAL') if cfg.DATASET.NAME == 'FallingDigit': from .falling_digit import FallingDigit dataset = FallingDigit(to_tensor=True, **dataset_kwargs) else: raise ValueError('Unsupported dataset: {}.'.format(cfg.DATASET.NAME)) return dataset def build_dataloader(cfg, training=True, start_iter=0): dataset = build_dataset(cfg, training=training) worker_seed = cfg.RNG_SEED if cfg.RNG_SEED >= 0 else None if training: sampler = RandomSampler(dataset, replacement=False) batch_sampler = BatchSampler(sampler, batch_size=cfg.TRAIN.BATCH_SIZE, drop_last=True) batch_sampler = IterationBasedBatchSampler(batch_sampler, num_iterations=cfg.TRAIN.MAX_ITER, start_iter=start_iter) dataloader = DataLoader( dataset, batch_sampler=batch_sampler, num_workers=cfg.TRAIN.NUM_WORKERS, worker_init_fn=lambda worker_id: worker_init_fn(worker_id, base_seed=worker_seed), ) else: dataloader = DataLoader( dataset, batch_size=cfg.VAL.BATCH_SIZE, shuffle=True, # For visualization # shuffle=False, drop_last=False, num_workers=cfg.VAL.NUM_WORKERS, worker_init_fn=lambda worker_id: worker_init_fn(worker_id, base_seed=worker_seed), ) return dataloader ``` #### File: space/datasets/falling_digit.py ```python import pickle import numpy as np import cv2 import torch from torch.utils.data.dataset import Dataset import warnings class FallingDigit(Dataset): def __init__(self, path, start=0, end=-1, image_size=(128, 128), transform=None, to_tensor=True): self.path = path with open(path, 'rb') as f: self.data = pickle.load(f) self.data = self.data[start:(None if end == -1 else end)] self.image_size = image_size assert isinstance(image_size, tuple) self.transform = transform # data augmentation self.to_tensor = to_tensor def __getitem__(self, index): data = self.data[index] if 'image' in data: image = data['image'] else: image = data['original_image'] assert image.dtype == np.uint8 # resize if necessary if image.shape[:2] != self.image_size: warnings.warn('Resize image from {} to {}'.format(image.shape, self.image_size)) image = cv2.resize(image, self.image_size[::-1], interpolation=cv2.INTER_AREA) if self.transform is not None: image_pil = self.transform(image) image = np.asarray(image_pil) assert image.dtype == np.uint8 image = np.asarray(image, dtype=np.float32) / 255. if self.to_tensor: image = np.transpose(image, [2, 0, 1]) # (c, h, w) image = torch.tensor(image, dtype=torch.float32) out_dict = { 'image': image, } return out_dict def __len__(self): return len(self.data) def __str__(self): return '{:s}: {:d} images.'.format(self.__class__.__name__, len(self)) def test(): import os.path as osp from space.utils.plt_utils import show_image _ROOT_DIR = osp.join(osp.dirname(__file__), '../..') path = osp.join(_ROOT_DIR, 'data/falling_digit/FallingDigit_3-v0_n_72000_lv_0_to_3000_from_gt_policy.pkl') dataset = FallingDigit(path, to_tensor=False) for i in range(0, 10): data = dataset[i] image = data['image'] show_image(image) ``` #### File: policy-refactorization/tools/collect_demo_dataset_for_falling_digit.py ```python from __future__ import division import os import os.path as osp import argparse import pickle from tqdm import tqdm import numpy as np import random # import torch import cv2 import sys _ROOT_DIR = osp.abspath(osp.dirname(__file__) + '/..') sys.path.insert(0, _ROOT_DIR) from rl_libarary.utils.config import generate_eval_config from rl_libarary.agent.DQN_agent import DQNAgent from rl_libarary.component.envs import Task class EnvDataProvider(object): def __init__(self, env_name, ckpt, config_file, args): self.args = args self.config = generate_eval_config(config_file, env_name) self.agent = DQNAgent(self.config) self.agent.load(ckpt) self.agent.evaluator.network.load_state_dict(self.agent.network.state_dict()) self.env = self.agent.evaluator.task.env.envs[0].env # this env only transpose image def get_episode(self, level_idx): ep_data = [] s = self.env.reset(chosen_level_idx=level_idx) # must passed by kwargs tot_rewards = 0 done = False while not done: original_img = self.env.render(mode='rgb_array') # (128, 128, 3) q = self.agent.evaluator.eval_q([s]) ep_data.append({ 'original_image': original_img, # (128, 128, 3) of uint8 'q': q, # (3, ) of float32 }) if self.args.vis: cv2.imshow('game', original_img[:, :, ::-1]) # convert RGB to BGR cv2.waitKey(1) aaaa = input() if done: # print('ep_r:', tot_rewards) break s, r, done, _ = self.env.step(np.argmax(q)) tot_rewards += r if tot_rewards >= self.args.reward_th: return ep_data else: return None def close(self): self.agent.close() def parse_args(): parser = argparse.ArgumentParser(description='abc') parser.add_argument( '--cfg', dest='config_file', default='', metavar='FILE', help='path to config file', type=str, required=True, ) parser.add_argument('--output-dir', default=osp.join(osp.dirname(__file__), '../data'), type=str, help='output directory') parser.add_argument('--vis', action='store_true', help='whether to visualize') parser.add_argument('--env', type=str, required=True) parser.add_argument('--ckpt', type=str, required=True) parser.add_argument('--comment', type=str) parser.add_argument('--reward-th', default=2.99, type=float) parser.add_argument('--start_level', default=0, type=int) parser.add_argument('--num_levels', default=3000, type=int) args = parser.parse_args() return args def main(): """ python tools/collect_demo_dataset_for_falling_digit.py --env FallingDigitCIFAR_3-v1 --cfg configs/falling_digit_rl/dqn_relation_net_eval.yml --ckpt """ args = parse_args() e = EnvDataProvider(env_name=args.env, ckpt=args.ckpt, config_file=args.config_file, args=args) results = [] for i in tqdm(range(args.start_level, args.start_level + args.num_levels)): ep_data = e.get_episode(i) if ep_data is not None: results += ep_data e.close() output_dir = args.output_dir os.makedirs(output_dir, exist_ok=True) output_path = osp.join(output_dir, '{:s}_n_{:d}{:s}.pkl'.format( args.env, len(results), '_' + args.comment if args.comment else '')) print(output_path) with open(output_path, 'wb') as f: pickle.dump(results, f, protocol=pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": main() ```
{ "source": "jiayuanlu/MSRA", "score": 3 }
#### File: Lab 2/FNN/mnist_FNN.py ```python from __future__ import print_function import argparse import torch # torch.cuda.set_device(0) import nni import logging import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR criterion = nn.CrossEntropyLoss() import numpy as np import torchvision.models as models from torch.utils.tensorboard import SummaryWriter from nni.utils import merge_parameter writer = SummaryWriter('logs/mnist_experiment_1') logger = logging.getLogger('mnist_AutoML') class Net(nn.Module): def __init__(self): super(Net, self).__init__() # prelu=nn.PReLU(num_parameters=1) # self.dropout1 = nn.Dropout2d(0.25) self.in_hid_1= nn.Linear(784, 512) self.hid1=nn.LeakyReLU() self.in_hid_2= nn.Linear(512, 256) self.hid2=nn.LeakyReLU() self.in_hid_3= nn.Linear(256, 128) self.hid3=nn.LeakyReLU() self.hid_out=nn.Linear(128,10) def forward(self, data): x = data.view(-1, 784) output=self.in_hid_1(x) # output=self.dropout1(output) output=self.hid1(output) output=self.in_hid_2(output) output=self.hid2(output) output=self.in_hid_3(output) output=self.hid3(output) output=self.hid_out(output) output = F.log_softmax(output, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() running_loss = 0.0 correct = 0.0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() running_loss += loss.item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() if batch_idx % args['log_interval'] == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if batch_idx != 0: global_step = (epoch - 1) * len(train_loader) + batch_idx writer.add_scalar('Loss/train', running_loss / (args['batch_size'] * args['log_interval']), global_step) writer.add_scalar('Accuracy/train', 100. * correct / (args['batch_size'] * args['log_interval']), global_step) running_loss = 0.0 correct = 0.0 def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def profile(model, device, train_loader): dataiter = iter(train_loader) data, target = dataiter.next() data, target = data.to(device), target.to(device) with torch.autograd.profiler.profile(use_cuda=False) as prof: model(data[0].reshape(1,1,28,28)) print(prof) def main(): torch.backends.cudnn.enabled = False ### parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=True, help='For Saving the current Model') args = parser.parse_args() # use_cuda = not args.no_cuda and torch.cuda.is_available() # torch.manual_seed(args.seed) # device = torch.device("cuda" if use_cuda else "cpu") # kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} # train_loader = torch.utils.data.DataLoader( # datasets.MNIST('data', train=True, download=True, # transform=transforms.Compose([ # transforms.ToTensor(), # transforms.Normalize((0.1307,), (0.3081,)) # ])), # batch_size=args.batch_size, shuffle=True, **kwargs) # test_loader = torch.utils.data.DataLoader( # datasets.MNIST('data', train=False, transform=transforms.Compose([ # transforms.ToTensor(), # transforms.Normalize((0.1307,), (0.3081,)) # ])), # batch_size=args.test_batch_size, shuffle=True, **kwargs) # dataiter = iter(train_loader) # images, labels = dataiter.next() # grid = torchvision.utils.make_grid(images) # writer.add_image('images', grid, 0) # model = Net().to(device) # optimizer = optim.Adadelta(model.parameters(), lr=args.lr) # images=images.to(device) # writer.add_graph(model, images) # scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) # print("Start profiling...") # profile(model, device, train_loader) # print("Finished profiling.") # for epoch in range(1, args.epochs + 1): # train(args, model, device, train_loader, optimizer, epoch) # test_acc=test(model, device, test_loader) # scheduler.step() # # report intermediate result # nni.report_intermediate_result(test_acc) # logger.debug('test accuracy %g', test_acc) # logger.debug('Pipe send intermediate result done.') # # report final result # nni.report_final_result(test_acc) # if args.save_model: # print("Our model: \n\n", model, '\n') # print("The state dict keys: \n\n", model.state_dict().keys()) # torch.save(model.state_dict(), "mnist.pt") # state_dict = torch.load('mnist.pt') # print(state_dict.keys()) # writer.close() return args def NNI(args): # use_cuda = not args.no_cuda and torch.cuda.is_available() use_cuda = not args['no_cuda'] and torch.cuda.is_available() # torch.manual_seed(args.seed) torch.manual_seed(args['seed']) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['batch_size'], shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['test_batch_size'], shuffle=True, **kwargs) dataiter = iter(train_loader) images, labels = dataiter.next() grid = torchvision.utils.make_grid(images) writer.add_image('images', grid, 0) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args['lr']) images=images.to(device) writer.add_graph(model, images) scheduler = StepLR(optimizer, step_size=1, gamma=args['gamma'])#等间隔调整学习率 StepLR, 将学习率调整为 lr*gamma print("Start profiling...") profile(model, device, train_loader) print("Finished profiling.") for epoch in range(1, args['epochs'] + 1): train(args, model, device, train_loader, optimizer, epoch) test_acc=test(model, device, test_loader) scheduler.step() nni.report_intermediate_result(test_acc) logger.debug('test accuracy %g', test_acc) logger.debug('Pipe send intermediate result done.') nni.report_final_result(test_acc) if args['save_model']: print("Our model: \n\n", model, '\n') print("The state dict keys: \n\n", model.state_dict().keys()) torch.save(model.state_dict(), "mnist.pt") state_dict = torch.load('mnist.pt') print(state_dict.keys()) writer.close() if __name__ == '__main__': tuner_params = nni.get_next_parameter() logger.debug(tuner_params) params = vars(merge_parameter(main(), tuner_params)) print(params) NNI(params) ```
{ "source": "jiayuanlu/XJTU_course", "score": 2 }
#### File: Homework1/2D_Gauss_Filter/1_4.py ```python import numpy as np from scipy import signal import cv2 import random import math #双边滤波 def getClosenessWeight(sigma_g,H,W): r,c=np.mgrid[0:H:1,0:W:1] r -= (H - 1) // 2 c -= int(W - 1) // 2 closeWeight=np.exp(-0.5*(np.power(r,2)+np.power(c,2))/math.pow(sigma_g,2)) return closeWeight def bfltGray(I,H,W,sigma_g,sigma_d): #构建空间距离权重模板 closenessWeight=getClosenessWeight(sigma_g,H,W) #模板的中心点位置 cH = (H - 1) // 2 #//表示整数除法 cW = (W - 1) // 2 #图像矩阵的行数和列数 rows,cols=I.shape #双边滤波后的结果 bfltGrayImage=np.zeros(I.shape,np.float32) for r in range(rows): for c in range(cols): pixel=I[r][c] #判断边界 rTop=0 if r-cH<0 else r-cH rBottom=rows-1 if r+cH>rows-1 else r+cH cLeft=0 if c-cW<0 else c-cW cRight=cols-1 if c+cW>cols-1 else c+cW # 权重模板作用的区域 region=I[rTop:rBottom+1,cLeft:cRight+1] #构建灰度值相似性的权重因子 similarityWeightTemp=np.exp(-0.5*np.power(region-pixel,2.0)/math.pow(sigma_d,2)) #similarityWeightTemp = np.exp(-0.5 * np.power(region - pixel, 2.0) / math.pow(sigma_d, 2)) closenessWeightTemp=closenessWeight[rTop-r+cH:rBottom-r+cH+1,cLeft-c+cW:cRight-c+cW+1] #两个权重模板相乘 weightTemp=similarityWeightTemp*closenessWeightTemp #归一化权重模板 weightTemp=weightTemp/np.sum(weightTemp) #权重模板和对应的领域值相乘求和 bfltGrayImage[r][c]=np.sum(region*weightTemp) return bfltGrayImage if __name__=='__main__': ##启动语句 a= cv2.imread('8.jpeg', cv2.IMREAD_UNCHANGED) # 路径名中不能有中文,会出错,cv2. image1 = cv2.split(a)[0]#蓝通道 cv2.imshow("8_after1.png",image1) image1=image1/255.0 #双边滤波 bfltImage=bfltGray(image1,3,3,19,0.2) cv2.imshow("增强后图",bfltImage) cv2.waitKey(0) cv2.destroyAllWindows() ``` #### File: CVPR/Homework2/grad.py ```python from PIL import Image from numpy import * import matplotlib.pyplot as plt from scipy.ndimage import filters im = array(Image.open('1.jpeg').convert('L')) # im = array(Image.open('1.jpeg')) sigma = 7 # 标准差 imx = zeros(im.shape) filters.gaussian_filter(im, (sigma, sigma), (0, 1), imx) imy = zeros(im.shape) filters.gaussian_filter(im, (sigma, sigma), (1, 0), imy) plt.subplot(1, 3, 1) plt.axis('off') plt.imshow(im, plt.cm.gray) plt.imsave('Gauss_g1_7.jpg',im) plt.subplot(1, 3, 2) plt.axis('off') plt.imshow(imx, plt.cm.gray) plt.imsave('Gauss_gx_7.jpg',imx) plt.subplot(1, 3, 3) plt.axis('off') plt.imshow(imy, plt.cm.gray) plt.imsave('Gauss_gy_7.jpg',imy) plt.show() ``` #### File: DSP/pinyu_mfcc/feature.py ```python import numpy as np from python_speech_features import mfcc def averageEnergy(frames): energy = np.average(frames * frames, axis=1) return energy.reshape(-1) def zeroCrossingRate(frames): _, lens = frames.shape delta = np.abs(np.sign(frames[:, 1:]) - np.sign(frames[:, :lens - 1])) zeroCrossingRate = np.average(delta / 2, axis=1) return zeroCrossingRate.reshape(-1) def std(frames): return np.std(frames, axis=1).reshape(-1) def kurt(frames): maximum = np.max(frames, axis=1) rms = np.sqrt(averageEnergy(frames)) + 1e-6 return (maximum / rms).reshape(-1) def wave(frames): rms = np.sqrt(averageEnergy(frames)) + 1e-6 mean = np.average(frames, axis=1) mean[abs(mean) < 1e-6] = 1e-6 return (rms / mean).reshape(-1) def grad(frames): _, lens = frames.shape delta = np.abs(frames[:, 1:] - frames[:, :lens - 1]) return np.average(delta, axis=1).reshape(-1) def relate(frames): lens, _ = frames.shape product = frames[:lens - 1, :] * frames[1:, :] return np.average(product, axis=1).reshape(-1) def compute_mfcc(signal, numcep=13, nfilt=26, split=10): mfcc_feat = mfcc(signal, samplerate=44100, winlen=0.02, numcep=numcep, nfilt=nfilt, nfft=1024) length = mfcc_feat.shape[0] / split step = 0 feature = [] for i in range(split): start = np.floor(step).astype('int') end = np.ceil(step + length) end = int(min(end, mfcc_feat.shape[0])) feature.append(np.average(mfcc_feat[start:end, :], axis=0)) step += length feature = np.hstack(feature) return feature ``` #### File: NLP/Big_Homework/go.py ```python from sentence_transformers import SentenceTransformer import sklearn.preprocessing as prepro import numpy as np def go(s1: str, s2: str) -> float: model = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1') model = model.cuda() sentence_embeddings2 = model.encode(s2) a = prepro.normalize(sentence_embeddings1) b = prepro.normalize(sentence_embeddings2) inlier_product = a.dot(b.T) return (inlier_product[0,0]) ``` #### File: NLPLarge/communication/Request.py ```python import socket import pickle from .CheckResult import CheckResultPresentation as Result import client as cli def getBaseInfo(ip: str): """ 获取基本信息,连接失败时候返回None 否则返回包含服务器信息的四元组 """ address = (ip, 11451) client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: client.connect(address) client.sendall(b'444') data = client.recv(1024) info = pickle.loads(data) client.close() return info except BaseException: client.close() return None def getServerInfo(ip: str, modelName: str, dataGroupName: str): """ 获取模型信息及数据库信息 """ address = (ip, 11451) client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: client.connect(address) client.sendall(b'555') data = client.recv(8) if b'ok' == data: key = pickle.dumps(modelName) client.sendall(key) data = client.recv(1024) modelAddr = pickle.loads(data) else: client.close() return None client.sendall(b'666') data = client.recv(8) if b'ok' == data: key = pickle.dumps(dataGroupName) client.sendall(key) data = client.recv(1024) dataAddr = pickle.loads(data) else: client.close() return None client.close() return (modelAddr, dataAddr) except BaseException: client.close() return None def duplicateResultGet(address: str, lines: list) -> list: """ 收发查重包 """ # TODO: 测试 import time time.sleep(1) tar = list(range(1, 17)) raw = cli.duplicateCheck(lines, tar, 0.6, 3) parsed = cli.parse(raw, lines) response = [] for i in parsed.values(): response.append(Result(*i)) return response client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: client.connect(address) data = pickle.dumps(lines) client.sendall(data) data = client.recv(65536) ret = pickle.loads(data) client.close() return [Result(it[0], it[1], it[2]) for it in ret] except BaseException: client.close() return None ```
{ "source": "jiayu-ch15/curriculum", "score": 2 }
#### File: curriculum/algorithm/mpe_model.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from utils.distributions import Bernoulli, Categorical, DiagGaussian from utils.util import init import copy import math class Policy(nn.Module): def __init__(self, obs_space, action_space, num_agents, base = None, actor_base=None, critic_base=None, base_kwargs=None, device=torch.device("cpu")): super(Policy, self).__init__() self.mixed_obs = False self.mixed_action = False self.multi_discrete = False self.device = device self.num_agents = num_agents self.args = base_kwargs if base_kwargs is None: base_kwargs = {} self.actor_base = actor_base self.critic_base = critic_base @property def is_recurrent(self): return self.args['recurrent'] @property def is_naive_recurrent(self): return self.args['naive_recurrent'] def forward(self, share_inputs, inputs, rnn_hxs_actor, rnn_hxs_critic, masks): raise NotImplementedError def act(self, agent_id, share_inputs, inputs, rnn_hxs_actor, rnn_hxs_critic, masks, available_actions=None, deterministic=False): share_inputs = share_inputs.to(self.device) inputs = inputs.to(self.device) rnn_hxs_actor = rnn_hxs_actor.to(self.device) rnn_hxs_critic = rnn_hxs_critic.to(self.device) masks = masks.to(self.device) if available_actions is not None: available_actions = available_actions.to(self.device) dist = self.actor_base(inputs, self.num_agents) if deterministic: action = dist.mode() else: action = dist.sample() action_log_probs = dist.log_probs(action) action_out = action action_log_probs_out = action_log_probs value, rnn_hxs_actor, rnn_hxs_critic = self.critic_base(share_inputs, inputs, self.num_agents, rnn_hxs_actor, masks) return value, action_out, action_log_probs_out, rnn_hxs_actor, rnn_hxs_critic def get_value(self, agent_id, share_inputs, inputs, rnn_hxs_actor, rnn_hxs_critic, masks): share_inputs = share_inputs.to(self.device) inputs = inputs.to(self.device) rnn_hxs_actor = rnn_hxs_actor.to(self.device) rnn_hxs_critic = rnn_hxs_critic.to(self.device) masks = masks.to(self.device) value, rnn_hxs_actor, rnn_hxs_critic = self.critic_base(share_inputs, inputs, self.num_agents, rnn_hxs_actor, masks) return value, rnn_hxs_actor, rnn_hxs_critic def evaluate_actions(self, agent_id, share_inputs, inputs, rnn_hxs_actor, rnn_hxs_critic, masks, high_masks, action): share_inputs = share_inputs.to(self.device) inputs = inputs.to(self.device) rnn_hxs_actor = rnn_hxs_actor.to(self.device) rnn_hxs_critic = rnn_hxs_critic.to(self.device) masks = masks.to(self.device) high_masks = high_masks.to(self.device) action = action.to(self.device) dist = self.actor_base(inputs, self.num_agents) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy() action_log_probs_out = action_log_probs dist_entropy_out = dist_entropy.mean() value, rnn_hxs_actor, rnn_hxs_critic = self.critic_base(share_inputs, inputs, self.num_agents, rnn_hxs_actor, masks) return value, action_log_probs_out, dist_entropy_out, rnn_hxs_actor, rnn_hxs_critic # for simple speaker listener def act_role(self, agent_id, share_inputs, inputs, role, rnn_hxs_actor, rnn_hxs_critic, masks, available_actions=None, deterministic=False): share_inputs = share_inputs.to(self.device) inputs = inputs.to(self.device) rnn_hxs_actor = rnn_hxs_actor.to(self.device) rnn_hxs_critic = rnn_hxs_critic.to(self.device) masks = masks.to(self.device) if available_actions is not None: available_actions = available_actions.to(self.device) dist = self.actor_base(inputs, self.num_agents) if deterministic: action = dist.mode() else: action = dist.sample() action_log_probs = dist.log_probs(action) action_out = action action_log_probs_out = action_log_probs value, rnn_hxs_actor, rnn_hxs_critic = self.critic_base(share_inputs, inputs, self.num_agents, rnn_hxs_actor, masks) return value, action_out, action_log_probs_out, rnn_hxs_actor, rnn_hxs_critic def get_value_role(self, agent_id, share_inputs, inputs, role, rnn_hxs_actor, rnn_hxs_critic, masks): share_inputs = share_inputs.to(self.device) inputs = inputs.to(self.device) rnn_hxs_actor = rnn_hxs_actor.to(self.device) rnn_hxs_critic = rnn_hxs_critic.to(self.device) masks = masks.to(self.device) value, rnn_hxs_actor, rnn_hxs_critic = self.critic_base(share_inputs, inputs, self.num_agents, rnn_hxs_actor, masks) return value, rnn_hxs_actor, rnn_hxs_critic def evaluate_actions_role(self, agent_id, share_inputs, inputs, role, rnn_hxs_actor, rnn_hxs_critic, masks, high_masks, action): share_inputs = share_inputs.to(self.device) inputs = inputs.to(self.device) rnn_hxs_actor = rnn_hxs_actor.to(self.device) rnn_hxs_critic = rnn_hxs_critic.to(self.device) masks = masks.to(self.device) high_masks = high_masks.to(self.device) action = action.to(self.device) dist = self.actor_base(inputs, self.num_agents) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy() action_log_probs_out = action_log_probs dist_entropy_out = dist_entropy.mean() value, rnn_hxs_actor, rnn_hxs_critic = self.critic_base(share_inputs, inputs, self.num_agents, rnn_hxs_actor, masks) return value, action_log_probs_out, dist_entropy_out, rnn_hxs_actor, rnn_hxs_critic class ATTBase_actor(nn.Module): def __init__(self, num_inputs, action_space, agent_num, model_name, recurrent=False, hidden_size=64): super(ATTBase_actor, self).__init__() if recurrent: num_inputs = hidden_size init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) self.agent_num = agent_num if model_name == 'simple_spread' or 'hard_spread': self.actor = ObsEncoder_sp(hidden_size=hidden_size) elif model_name == 'push_ball': self.actor = ObsEncoder_pb(hidden_size=hidden_size) num_actions = action_space.n self.dist = Categorical(hidden_size, num_actions) def forward(self, inputs, agent_num): """ inputs: [batch_size, obs_dim] """ hidden_actor = self.actor(inputs, agent_num) dist = self.dist(hidden_actor, None) return dist class ATTBase_critic(nn.Module): def __init__(self, num_inputs, agent_num, model_name, recurrent=False, hidden_size=64): super(ATTBase_critic, self).__init__() if recurrent: num_inputs = hidden_size init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) self.agent_num = agent_num if model_name == 'simple_spread' or 'hard_spread': self.encoder = ObsEncoder_sp(hidden_size=hidden_size) elif model_name == 'push_ball': self.encoder = ObsEncoder_pb(hidden_size=hidden_size) self.correlation_mat = nn.Parameter(torch.FloatTensor(hidden_size,hidden_size),requires_grad=True) nn.init.orthogonal_(self.correlation_mat.data, gain=1) self.critic_linear = nn.Sequential( init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size), init_(nn.Linear(hidden_size, 1))) def forward(self, share_inputs, inputs, agent_num, rnn_hxs, masks): """ share_inputs: [batch_size, obs_dim*agent_num] inputs: [batch_size, obs_dim] """ batch_size = inputs.shape[0] obs_dim = inputs.shape[-1] f_ii = self.encoder(inputs, agent_num) obs_beta_ij = torch.matmul(f_ii.view(batch_size,1,-1), self.correlation_mat) # (batch,1,hidden_size) # 矩阵f_ij f_ij = self.encoder(share_inputs.reshape(-1,obs_dim),agent_num) obs_encoder = f_ij.reshape(batch_size,agent_num,-1) # (batch_size, nagents, hidden_size) beta = torch.matmul(obs_beta_ij, obs_encoder.permute(0,2,1)).squeeze(1) # (batch_size,nagents) alpha = F.softmax(beta,dim = 1).unsqueeze(2) # (batch_size,nagents,1) vi = torch.mul(alpha,obs_encoder) vi = torch.sum(vi,dim = 1) value = self.critic_linear(vi) return value, rnn_hxs, rnn_hxs class ObsEncoder_sp(nn.Module): # simple spread and hard spread def __init__(self, hidden_size=100): super(ObsEncoder_sp, self).__init__() init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) self.self_encoder = nn.Sequential( init_(nn.Linear(4, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.other_agent_encoder = nn.Sequential( init_(nn.Linear(2, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.landmark_encoder = nn.Sequential( init_(nn.Linear(3, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.agent_correlation_mat = nn.Parameter(torch.FloatTensor(hidden_size,hidden_size),requires_grad=True) nn.init.orthogonal_(self.agent_correlation_mat.data, gain=1) self.landmark_correlation_mat = nn.Parameter(torch.FloatTensor(hidden_size,hidden_size),requires_grad=True) nn.init.orthogonal_(self.landmark_correlation_mat.data, gain=1) self.fc = nn.Sequential( init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size) ) self.encoder_linear = nn.Sequential( init_(nn.Linear(hidden_size * 3, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size), init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size) ) # agent_num需要手动设置一下 def forward(self, inputs, agent_num): batch_size = inputs.shape[0] obs_dim = inputs.shape[-1] landmark_num = agent_num # landmark_num = int((obs_dim-4)/2)-2*(agent_num-1) #landmark_num = int((obs_dim-4-4*(agent_num-1))/3) self_emb = self.self_encoder(inputs[:, :4]) other_agent_emb = [] beta_agent = [] landmark_emb = [] beta_landmark = [] #start = time.time() agent_beta_ij = torch.matmul(self_emb.view(batch_size,1,-1), self.agent_correlation_mat) landmark_beta_ij = torch.matmul(self_emb.view(batch_size,1,-1), self.landmark_correlation_mat) for i in range(agent_num - 1): other_agent_emb.append(inputs[:, 4+3*landmark_num+2*i:4+3*landmark_num+2*(i+1)]) for i in range(landmark_num): landmark_emb.append(inputs[:, 4+3*i:4+3*(i+1)]) other_agent_emb = torch.stack(other_agent_emb,dim = 1) #(batch_size,n_agents-1,eb_dim) other_agent_emb = self.other_agent_encoder(other_agent_emb) beta_agent = torch.matmul(agent_beta_ij, other_agent_emb.permute(0,2,1)).squeeze(1) landmark_emb = torch.stack(landmark_emb,dim = 1) #(batch_size,n_agents-1,eb_dim) landmark_emb = self.landmark_encoder(landmark_emb) beta_landmark = torch.matmul(landmark_beta_ij, landmark_emb.permute(0,2,1)).squeeze(1) alpha_agent = F.softmax(beta_agent,dim = 1).unsqueeze(2) alpha_landmark = F.softmax(beta_landmark,dim = 1).unsqueeze(2) other_agent_vi = torch.mul(alpha_agent,other_agent_emb) other_agent_vi = torch.sum(other_agent_vi,dim=1) landmark_vi = torch.mul(alpha_landmark,landmark_emb) landmark_vi = torch.sum(landmark_vi,dim=1) gi = self.fc(self_emb) f = self.encoder_linear(torch.cat([gi, other_agent_vi, landmark_vi], dim=1)) return f class ObsEncoder_pb(nn.Module): # push ball def __init__(self, hidden_size=100): super(ObsEncoder_pb, self).__init__() init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) self.self_encoder = nn.Sequential( init_(nn.Linear(4, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.landmark_encoder = nn.Sequential( init_(nn.Linear(3, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.adv_encoder = nn.Sequential( init_(nn.Linear(2, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.good_encoder = nn.Sequential( init_(nn.Linear(2, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.adv_correlation_mat = nn.Parameter(torch.FloatTensor(hidden_size,hidden_size),requires_grad=True) nn.init.orthogonal_(self.adv_correlation_mat.data, gain=1) self.good_correlation_mat = nn.Parameter(torch.FloatTensor(hidden_size,hidden_size),requires_grad=True) nn.init.orthogonal_(self.good_correlation_mat.data, gain=1) self.landmark_correlation_mat = nn.Parameter(torch.FloatTensor(hidden_size,hidden_size),requires_grad=True) nn.init.orthogonal_(self.landmark_correlation_mat.data, gain=1) self.fc = nn.Sequential( init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) self.encoder_linear = nn.Sequential( init_(nn.Linear(hidden_size * 4, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size), init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh(), nn.LayerNorm(hidden_size)) def forward(self, inputs, agent_num): batch_size = inputs.shape[0] obs_dim = inputs.shape[-1] emb_self = self.self_encoder(inputs[:, :4]) adv_num = agent_num good_num = agent_num landmark_num = agent_num emb_adv = [] beta_adv = [] emb_good = [] beta_good = [] emb_landmark = [] beta_landmark = [] beta_adv_ij = torch.matmul(emb_self.view(batch_size,1,-1), self.adv_correlation_mat) beta_good_ij = torch.matmul(emb_self.view(batch_size,1,-1), self.good_correlation_mat) beta_landmark_ij = torch.matmul(emb_self.view(batch_size,1,-1), self.landmark_correlation_mat) for i in range(adv_num-1): emb_adv.append(inputs[:, 4+2*i:4+2*(i+1)]) good_offset = 4 + 2*(adv_num-1) for i in range(good_num): emb_good.append(inputs[:, good_offset+2*i:good_offset+2*(i+1)]) landmark_offset = 4 + 2*(adv_num-1) + 2*good_num for i in range(landmark_num): emb_landmark.append(inputs[:, landmark_offset+3*i:landmark_offset+3*(i+1)]) emb_adv = torch.stack(emb_adv,dim = 1) #(batch_size,n_agents-1,eb_dim) emb_adv = self.adv_encoder(emb_adv) beta_adv = torch.matmul(beta_adv_ij, emb_adv.permute(0,2,1)).squeeze(1) emb_good = torch.stack(emb_good,dim = 1) #(batch_size,n_agents-1,eb_dim) emb_good = self.good_encoder(emb_good) beta_good = torch.matmul(beta_good_ij, emb_good.permute(0,2,1)).squeeze(1) emb_landmark = torch.stack(emb_landmark,dim = 1) #(batch_size,n_agents-1,eb_dim) emb_landmark = self.landmark_encoder(emb_landmark) beta_landmark = torch.matmul(beta_landmark_ij, emb_landmark.permute(0,2,1)).squeeze(1) alpha_adv = F.softmax(beta_adv,dim = 1).unsqueeze(2) alpha_good = F.softmax(beta_good,dim = 1).unsqueeze(2) alpha_landmark = F.softmax(beta_landmark,dim = 1).unsqueeze(2) adv_vi = torch.mul(alpha_adv,emb_adv) adv_vi = torch.sum(adv_vi,dim=1) good_vi = torch.mul(alpha_good,emb_good) good_vi = torch.sum(good_vi,dim=1) landmark_vi = torch.mul(alpha_landmark,emb_landmark) landmark_vi = torch.sum(landmark_vi,dim=1) gi = self.fc(emb_self) f = self.encoder_linear(torch.cat([gi, adv_vi, good_vi, landmark_vi], dim=1)) return f ``` #### File: jiayu-ch15/curriculum/config.py ```python import argparse def get_config(): # get the parameters parser = argparse.ArgumentParser(description='MAPPO-sc.') # prepare parser.add_argument("--algorithm_name", type=str, default='mappo') parser.add_argument("--load_algorithm_name", type=str, default='mappo') parser.add_argument("--seed", type=int, default=1) parser.add_argument("--cuda", action='store_false', default=True) parser.add_argument("--cuda_deterministic", action='store_false', default=True) parser.add_argument("--n_training_threads", type=int, default=12) parser.add_argument("--n_rollout_threads", type=int, default=32) parser.add_argument("--num_env_steps", type=int, default=10e6, help='number of environment steps to train (default: 10e6)') # env parser.add_argument("--env_name", type=str, default='batch1') parser.add_argument("--load_num_agents", type=int, default=3) parser.add_argument("--num_agents", type=int, default=3) parser.add_argument("--share_reward", action='store_false', default=True) # hanabi parser.add_argument("--hanabi_name", type=str, default='Hanabi-Full-Minimal') # mpe parser.add_argument("--scenario_name", type=str, default='simple_spread') parser.add_argument("--num_landmarks", type=int, default=3) parser.add_argument("--num_good_agents", type=int, default=3) parser.add_argument("--num_adversaries", type=int, default=1) # evaluation parser.add_argument("--historical_length", type=int, default=5) # starcraft2 parser.add_argument("--map_name", type=str, default='3m') # hide and seek parser.add_argument("--task_type", type=str, default='all') parser.add_argument("--num_seekers", type=int, default=1) parser.add_argument("--num_hiders", type=int, default=1) parser.add_argument("--num_boxes", type=int, default=1) parser.add_argument("--num_ramps", type=int, default=1) parser.add_argument("--num_food", type=int, default=0) parser.add_argument("--floor_size", type=float, default=6.0) parser.add_argument("--grid_size", type=int, default=30) parser.add_argument("--fixed_door", action='store_false', default=True) parser.add_argument("--spawn_obs", action='store_true', default=False) parser.add_argument("--env_horizon", type=int, default=30) # network parser.add_argument("--share_policy", action='store_false', default=True, help='agent share the same policy') parser.add_argument("--hidden_size", type=int, default=64) parser.add_argument("--layer_N", type=int, default=1) parser.add_argument("--use_ReLU", action='store_true', default=False) parser.add_argument("--use_common_layer", action='store_true', default=False) parser.add_argument("--use_popart", action='store_false', default=True) parser.add_argument("--use_feature_popart", action='store_true', default=False) parser.add_argument("--use_feature_normlization", action='store_true', default=False) parser.add_argument("--use_orthogonal", action='store_false', default=True) parser.add_argument("--multi_critic", action='store_true', default=False) parser.add_argument("--critic_k", type=int, default=3) # lstm parser.add_argument("--naive_recurrent_policy", action='store_true', default=False, help='use a naive recurrent policy') parser.add_argument("--recurrent_policy", action='store_false', default=True, help='use a recurrent policy') parser.add_argument("--data_chunk_length", type=int, default=10) parser.add_argument("--critic_full_obs", action='store_true', default=False) # attn parser.add_argument("--attn", action='store_true', default=False) parser.add_argument("--attn_N", type=int, default=1) parser.add_argument("--attn_size", type=int, default=64) parser.add_argument("--attn_heads", type=int, default=4) parser.add_argument("--dropout", type=float, default=0.0) parser.add_argument("--use_average_pool", action='store_false', default=True) # ppo parser.add_argument("--ppo_epoch", type=int, default=15, help='number of ppo epochs (default: 4)') parser.add_argument("--use_clipped_value_loss", action='store_false', default=True) parser.add_argument("--clip_param", type=float, default=0.2, help='ppo clip parameter (default: 0.2)') parser.add_argument("--num_mini_batch", type=int, default=1, help='number of batches for ppo (default: 32)') parser.add_argument("--entropy_coef", type=float, default=0.01, help='entropy term coefficient (default: 0.01)') parser.add_argument("--value_loss_coef", type=float, default=1, help='value loss coefficient (default: 0.5)') parser.add_argument("--lr", type=float, default=5e-4, help='learning rate (default: 7e-4)') parser.add_argument("--eps", type=float, default=1e-5, help='RMSprop optimizer epsilon (default: 1e-5)') parser.add_argument("--weight_decay", type=float, default=0) parser.add_argument("--use-max-grad-norm", action='store_true', default=False) parser.add_argument("--max-grad-norm", type=float, default=20.0, help='max norm of gradients (default: 0.5)') parser.add_argument("--use-gae", action='store_false', default=True, help='use generalized advantage estimation') parser.add_argument("--gamma", type=float, default=0.99, help='discount factor for rewards (default: 0.99)') parser.add_argument("--gae-lambda", type=float, default=0.95, help='gae lambda parameter (default: 0.95)') parser.add_argument("--use-proper-time-limits", action='store_true', default=False, help='compute returns taking into account time limits') parser.add_argument("--use_huber_loss", action='store_false', default=True) parser.add_argument("--huber_delta", type=float, default=10.0) parser.add_argument("--use_accumulate_grad", action='store_true', default=False) parser.add_argument("--use_grad_average", action='store_true', default=False) # replay buffer parser.add_argument("--episode_length", type=int, default=200, help='number of forward steps in A2C (default: 5)') parser.add_argument("--test_episode_length", type=int, default=200, help='number of forward steps in A2C (default: 5)') # amigo parser.add_argument("--teacher_entropy_coef", type=float, default=0.01, help='entropy term coefficient (default: 0.01)') parser.add_argument("--teacher_lr", type=float, default=1e-3, help='learning rate (default: 7e-4)') parser.add_argument("--episode_length_teacher", type=int, default=200, help='number of teacher steps') parser.add_argument("--teacher_hidden_size", type=int, default=64) # run parser.add_argument("--use-linear-lr-decay", action='store_true', default=False, help='use a linear schedule on the learning rate') # save parser.add_argument("--save_interval", type=int, default=10) # log parser.add_argument("--log_interval", type=int, default=1) # eval parser.add_argument("--eval", action='store_true', default=False) parser.add_argument("--eval_interval", type=int, default=1) parser.add_argument("--eval_episodes", type=int, default=32) # render parser.add_argument("--save_gifs", action='store_true', default=False) parser.add_argument("--ifi", type=float, default=0.333333) parser.add_argument("--model_dir", type=str, default=None) # variational curriculum learning parser.add_argument("--del_switch", type=str, default='novelty', help="novelty means diversified, old means FIFO, random means random del") parser.add_argument("--buffer_length", type=int, default=2000) parser.add_argument("--h", type=float, default=1.0, help="h in the RBFkernel") parser.add_argument("--epsilon", type=float, default=0.6, help="uniform noise") parser.add_argument("--delta", type=float, default=0.6, help="gradient step") parser.add_argument('--sol_prop', type=float, default=0.05, help="proportion of solved samples") parser.add_argument('--B_exp', type=int, default=150, help="number of Bexp") parser.add_argument('--Rmin', type=int, default=0.5, help="the lower bound of V") parser.add_argument('--Rmax', type=int, default=0.95, help="the upper bound of V") parser.add_argument('--fixed_interval', type=int, default=3, help='fixed episodes for training tasks') parser.add_argument('--save_node',action='store_true', default=False) parser.add_argument('--save_node_interval', type=int, default=10) parser.add_argument('--archive_initial_length', type=int, default=1000) parser.add_argument('--eval_number', type=int, default=1) # entity progression parser.add_argument('--threshold_next', type=float, default=0.9, help='theshold for next phase') parser.add_argument('--decay_interval', type=int, default=30, help='decay the raito of the last phase') parser.add_argument("--num_target", type=int, default=8, help='num_agents of the final phase') # wandb parser.add_argument('--use_wandb',action='store_true', default=False) args = parser.parse_args() return args ``` #### File: hns/envs/base.py ```python import numpy as np import logging from mujoco_worldgen import Floor, WorldBuilder, WorldParams, Env from envs.hns.wrappers.multi_agent import (SplitMultiAgentActions, SplitObservations, SelectKeysWrapper) from envs.hns.wrappers.util import DiscretizeActionWrapper, DiscardMujocoExceptionEpisodes from envs.hns.wrappers.line_of_sight import AgentAgentObsMask2D from envs.hns.modules.agents import Agents from envs.hns.modules.walls import RandomWalls from envs.hns.modules.objects import Boxes, Ramps class Base(Env): ''' Multi-agent Base Environment. Args: horizon (int): Number of steps agent gets to act n_substeps (int): Number of internal mujoco steps per outer environment step; essentially this is action repeat. n_agents (int): number of agents in the environment floor_size (float): size of the floor grid_size (int): size of the grid that we'll use to place objects on the floor action_lims (float tuple): lower and upper limit of mujoco actions deterministic_mode (bool): if True, seeds are incremented rather than randomly sampled. ''' def __init__(self, horizon=250, n_substeps=5, n_agents=2, floor_size=6., grid_size=30, action_lims=(-1.0, 1.0), deterministic_mode=False, **kwargs): super().__init__(get_sim=self._get_sim, get_obs=self._get_obs, action_space=tuple(action_lims), horizon=horizon, deterministic_mode=deterministic_mode) self.n_agents = n_agents self.metadata = {} self.metadata['n_actors'] = n_agents self.horizon = horizon self.n_substeps = n_substeps self.floor_size = floor_size self.grid_size = grid_size self.kwargs = kwargs self.placement_grid = np.zeros((grid_size, grid_size)) self.modules = [] def add_module(self, module): self.modules.append(module) def _get_obs(self, sim): ''' Loops through modules, calls their observation_step functions, and adds the result to the observation dictionary. ''' obs = {} for module in self.modules: obs.update(module.observation_step(self, self.sim)) # print('obs: ',obs) return obs def _get_sim(self, seed): ''' Calls build_world_step and then modify_sim_step for each module. If a build_world_step failed, then restarts. ''' world_params = WorldParams(size=(self.floor_size, self.floor_size, 2.5), num_substeps=self.n_substeps) successful_placement = False failures = 0 while not successful_placement: if (failures + 1) % 10 == 0: logging.warning(f"Failed {failures} times in creating environment") builder = WorldBuilder(world_params, seed) floor = Floor() builder.append(floor) self.placement_grid = np.zeros((self.grid_size, self.grid_size)) # successful_placement = np.all([module.build_world_step(self, floor, self.floor_size) # for module in self.modules]) tmp_successful_placement = [module.build_world_step(self, floor, self.floor_size) for module in self.modules] successful_placement = np.all(tmp_successful_placement) failures += 1 sim = builder.get_sim() for module in self.modules: module.modify_sim_step(self, sim) return sim def make_env(n_substeps=5, horizon=250, deterministic_mode=False, n_agents=2, n_boxes=2, n_ramps=1): ''' This make_env function is not used anywhere; it exists to provide a simple, bare-bones example of how to construct a multi-agent environment using the modules framework. ''' env = Base(n_agents=n_agents, n_substeps=n_substeps, horizon=horizon, deterministic_mode=deterministic_mode) env.add_module(RandomWalls(grid_size=30, num_rooms=4, min_room_size=6, door_size=2)) if n_boxes > 0: env.add_module(Boxes(n_boxes=n_boxes)) if n_ramps > 0: env.add_module(Ramps(n_ramps=n_ramps)) env.add_module(Agents(n_agents)) env.reset() keys_self = ['agent_qpos_qvel'] keys_mask_self = ['mask_aa_obs'] keys_external = ['agent_qpos_qvel'] keys_mask_external = [] env = SplitMultiAgentActions(env) env = DiscretizeActionWrapper(env, 'action_movement') env = AgentAgentObsMask2D(env) env = SplitObservations(env, keys_self + keys_mask_self) env = SelectKeysWrapper(env, keys_self=keys_self, keys_external=keys_external, keys_mask=keys_mask_self + keys_mask_external, flatten=False) env = DiscardMujocoExceptionEpisodes(env) return env ``` #### File: mujoco-worldgen/bin/examine.py ```python import click import logging from mujoco_worldgen.util.envs import EnvViewer, examine_env from mujoco_worldgen.util.path import worldgen_path from mujoco_worldgen.util.parse_arguments import parse_arguments logger = logging.getLogger(__name__) # For more detailed on argv information, please have a look on # docstring below. @click.command() @click.argument('argv', nargs=-1, required=False) def main(argv): ''' examine.py is used to display environments Example uses: bin/examine.py simple_particle bin/examine.py examples/particle_gather.py bin/examine.py particle_gather n_food=5 floorsize=5 bin/examine.py example_env_examine.jsonnet ''' env_names, env_kwargs = parse_arguments(argv) assert len(env_names) == 1, 'You must provide exactly 1 environment to examine.' env_name = env_names[0] examine_env(env_name, env_kwargs, core_dir=worldgen_path(), envs_dir='examples', xmls_dir='xmls', env_viewer=EnvViewer) print(main.__doc__) if __name__ == '__main__': logging.getLogger('').handlers = [] logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) main() ``` #### File: mujoco_worldgen/util/path.py ```python from os.path import abspath, dirname, join WORLDGEN_ROOT_PATH = abspath(join(dirname(__file__), '..', '..')) def worldgen_path(*args): """ Returns an absolute path from a path relative to the mujoco_worldgen repository root directory. """ return join(WORLDGEN_ROOT_PATH, *args) ``` #### File: mujoco_worldgen/util/types.py ```python import functools import inspect import types def enforce_is_callable(var, error_msg): """ Raises an exception with provided error_msg if the variable is not a callable. """ if not callable(var): raise TypeError(error_msg) return var def extract_top_level_class(module, subclass): ''' Searches module for a top-level class (in terms if inheritence) of type subclass. :param module: module in which we search for subclass :param subclass: subclass that we search for :return: object of type subclass. ''' extracted_classes = [] for key, value in module.items(): if isinstance(value, types.ClassType) and issubclass(value, subclass): extracted_classes.append([key, value, 0]) # Get the class which is the most top level. assert len(extracted_classes) > 0, "Couldn't extract %s from module: %s" % (subclass, module) top_level = extracted_classes[0] for i in range(len(extracted_classes)): for j in range(len(extracted_classes)): if issubclass(extracted_classes[i][1], extracted_classes[j][1]): extracted_classes[i][2] += 1 if extracted_classes[i][2] > top_level[2]: top_level = extracted_classes[i] return top_level[1] def extract_matching_arguments(fun, kwargs): # Extracts subset of kwargs that contains arguments present in signature of fun. assert callable(fun), "First argument to extract_matching_arguments should be a function." assert isinstance(kwargs, dict), "Second argument to extract_matching_arguments should be a dictionary of arugments" fun_handler = fun while hasattr(fun_handler, "__wrapped__") or inspect.isclass(fun_handler): if hasattr(fun_handler, "__wrapped__"): fun_handler = fun_handler.__wrapped__ if inspect.isclass(fun_handler): fun_handler = fun_handler.__init__ spec = inspect.getfullargspec(fun_handler) fun_args = [] if spec.args is not None: fun_args += spec.args if spec.kwonlyargs is not None: fun_args += spec.kwonlyargs # function accepts kwargs. Therefore, we pass all arguments. if spec.varkw is not None: args_to_pass = kwargs args_remaining = {} else: args_to_pass = dict([(k, v) for k, v in kwargs.items() if k in fun_args]) args_remaining = dict([(k, v) for k, v in kwargs.items() if k not in fun_args]) return args_to_pass, args_remaining def store_args(method): """Stores provided method args as instance attributes.""" argspec = inspect.getfullargspec(method) defaults = {} if argspec.defaults is not None: defaults = dict( zip(argspec.args[-len(argspec.defaults):], argspec.defaults)) if argspec.kwonlydefaults is not None: defaults.update(argspec.kwonlydefaults) arg_names = argspec.args[1:] @functools.wraps(method) def wrapper(*positional_args, **keyword_args): self = positional_args[0] # Get default arg values args = defaults.copy() # Add provided arg values list( map(args.update, (zip(arg_names, positional_args[1:]), keyword_args.items()))) # Store values in instance as attributes self.__dict__.update(args) return method(*positional_args, **keyword_args) return wrapper class Maybe(type): ''' Metaclass to match types with optionally none. Use maybe() instead ''' maybe_type = type(None) # Overridden in derived classes def __instancecheck__(self, instance): return isinstance(instance, self.maybe_type) or instance is None def __repr__(self): return "<class Maybe({})>".format(self.maybe_type) def maybe(arg_type): ''' Helper for @accepts and @returns decorator. Maybe means optionally None. Example: @accepts(maybe(int), str, maybe(dict)) def foo(a, b, c): # a - can be int or None # b - must be str # c - can be dict or None See: https://wiki.haskell.org/Maybe ''' class Derived(metaclass=Maybe): maybe_type = arg_type return Derived # Copied from # http://pythoncentral.io/validate-python-function-parameters-and-return-types-with-decorators/ def accepts(*accepted_arg_types): ''' A decorator to validate the parameter types of a given function. It is passed a tuple of types. eg. (<type 'tuple'>, <type 'int'>) Note: It doesn't do a deep check, for example checking through a tuple of types. The argument passed must only be types. See also the maybe(), used for types that are optionally None. ''' def accept_decorator(validate_function): ''' Do not call this function directly! Use @accepts(...) instead! ''' # Check if the number of arguments to the validator # function is the same as the arguments provided # to the actual function to validate. We don't need # to check if the function to validate has the right # amount of arguments, as Python will do this # automatically (also with a TypeError). @functools.wraps(validate_function) def decorator_wrapper(*function_args, **function_args_dict): if len(accepted_arg_types) is not len(accepted_arg_types): raise InvalidArgumentNumberError(validate_function.__name__) # We're using enumerate to get the index, so we can pass the # argument number with the incorrect type to # ArgumentValidationError. for arg_num, (actual_arg, accepted_arg_type) in enumerate(zip(function_args, accepted_arg_types)): if not isinstance(actual_arg, accepted_arg_type): ord_num = _ordinal(arg_num + 1) raise ArgumentValidationError(ord_num, validate_function.__name__, accepted_arg_type) return validate_function(*function_args, **function_args_dict) return decorator_wrapper return accept_decorator def returns(*accepted_return_type_tuple): ''' Validates the return type. Since there's only ever one return type, this makes life simpler. Along with the accepts() decorator, this also only does a check for the top argument. For example you couldn't check (<type 'tuple'>, <type 'int'>, <type 'str'>). In that case you could only check if it was a tuple. See also maybe() for optionally returning a type or None ''' def return_decorator(validate_function): ''' Do not call this function directly! Use @returns(...) instead ! ''' # No return type has been specified. if len(accepted_return_type_tuple) == 0: raise TypeError('You must specify a return type.') @functools.wraps(validate_function) def decorator_wrapper(*function_args, **function_args_dict): # More than one return type has been specified. if len(accepted_return_type_tuple) > 1: raise TypeError('You must specify one return type.') # Since the decorator receives a tuple of arguments # and the is only ever one object returned, we'll just # grab the first parameter. accepted_return_type = accepted_return_type_tuple[0] # We'll execute the function, and # take a look at the return type. return_value = validate_function(*function_args, **function_args_dict) return_value_type = type(return_value) if isinstance(return_value_type, accepted_return_type): raise InvalidReturnType(return_value_type, validate_function.__name__) return return_value return decorator_wrapper return return_decorator def _ordinal(num): ''' Returns the ordinal number of a given integer, as a string. eg. 1 -> 1st, 2 -> 2nd, 3 -> 3rd, etc. ''' if 10 <= num % 100 < 20: return '{0}th'.format(num) else: ord = {1: 'st', 2: 'nd', 3: 'rd'}.get(num % 10, 'th') return '{0}{1}'.format(num, ord) class ArgumentValidationError(ValueError): ''' Raised when the type of an argument to a function is not what it should be. ''' def __init__(self, arg_num, func_name, accepted_arg_type): self.error = 'The {0} argument of {1}() is not a {2}'.format(arg_num, func_name, accepted_arg_type) def __str__(self): return self.error class InvalidArgumentNumberError(ValueError): ''' Raised when the number of arguments supplied to a function is incorrect. Note that this check is only performed from the number of arguments specified in the validate_accept() decorator. If the validate_accept() call is incorrect, it is possible to have a valid function where this will report a false validation. ''' def __init__(self, func_name): self.error = 'Invalid number of arguments for {0}()'.format(func_name) def __str__(self): return self.error class InvalidReturnType(ValueError): ''' As the name implies, the return value is the wrong type. ''' def __init__(self, return_type, func_name): self.error = 'Invalid return type {0} for {1}()'.format(return_type, func_name) def __str__(self): return self.error ``` #### File: hns/viewer/policy_viewer.py ```python import time import glfw import numpy as np from operator import itemgetter from mujoco_py import const, MjViewer from mujoco_worldgen.util.types import store_args from envs.hns.ma_policy.util import listdict2dictnp from functools import reduce import pdb import torch import copy def handle_dict_obs(keys, order_obs, mask_order_obs, dict_obs, num_agents, num_hiders): # obs = [] # share_obs = [] for i, key in enumerate(order_obs): if key in keys: if mask_order_obs[i] == None: temp_share_obs = dict_obs[key].reshape(num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = dict_obs[key].reshape(num_agents,-1).copy() temp_mask = dict_obs[mask_order_obs[i]].copy() temp_obs = dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros((mins_temp_mask.sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) # obs.append(reshape_obs) # share_obs.append(reshape_share_obs) # obs = np.array(obs)[:,num_hiders:] # share_obs = np.array(share_obs)[:,num_hiders:] obs = reshape_obs[num_hiders:] share_obs = reshape_share_obs[num_hiders:] return obs, share_obs def splitobs(obs, keepdims=True): ''' Split obs into list of single agent obs. Args: obs: dictionary of numpy arrays where first dim in each array is agent dim ''' n_agents = obs[list(obs.keys())[0]].shape[0] return [{k: v[[i]] if keepdims else v[i] for k, v in obs.items()} for i in range(n_agents)] class PolicyViewer(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.ob = env.reset() for policy in self.policies: policy.reset() assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 while self.duration is None or time.time() < self.end_time: if len(self.policies) == 1: action, _ = self.policies[0].act(self.ob) else: self.ob = splitobs(self.ob, keepdims=False) ob_policy_idx = np.split(np.arange(len(self.ob)), len(self.policies)) actions = [] for i, policy in enumerate(self.policies): inp = itemgetter(*ob_policy_idx[i])(self.ob) inp = listdict2dictnp([inp] if ob_policy_idx[i].shape[0] == 1 else inp) ac, info = policy.act(inp) actions.append(ac) action = listdict2dictnp(actions, keepdims=True) self.ob, rew, done, env_info = self.env.step(action) self.total_rew += rew if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_hs_single(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, all_args, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.dict_obs = env.reset() #for policy in self.policies: # policy.reset() assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','food_obs','observation_self'] self.mask_order_obs = ['mask_aa_obs','mask_ab_obs','mask_ar_obs','mask_af_obs',None] ''' # self.order_obs = ['agent_qpos_qvel', 'box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] # self.mask_order_obs = ['mask_aa_obs', 'mask_ab_obs','mask_ar_obs',None,None,None] self.order_obs = ['agent_qpos_qvel', 'box_obs','ramp_obs','construction_site_obs', 'observation_self'] self.mask_order_obs = [None,None,None,None,None] self.keys = self.env.observation_space.spaces.keys() self.num_agents = 2 self.num_hiders = 1 self.num_seekers = 1 for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] reshape_obs, reshape_share_obs = handle_dict_obs(self.keys, self.order_obs, self.mask_order_obs, self.dict_obs, self.num_agents, self.num_hiders) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) while self.duration is None or time.time() < self.end_time: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_seekers): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) # rearrange action action_movement = [] action_pull = [] action_glueall = [] for k in range(self.num_hiders): #action_movement.append(np.random.randint(11, size=3)) #hider随机游走 action_movement.append(np.array([5,5,5])) #hider静止不动 action_pull.append(0) action_glueall.append(0) for k in range(self.num_seekers): action_movement.append(actions[k][0][:3]) action_pull.append(np.int(actions[k][0][3])) action_glueall.append(np.int(actions[k][0][4])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) self.total_rew += rew self.obs = [] self.share_obs = [] reshape_obs, reshape_share_obs = handle_dict_obs(self.keys, self.order_obs, self.mask_order_obs, self.dict_obs, self.num_agents, self.num_hiders) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] reshape_obs, reshape_share_obs = handle_dict_obs(self.keys, self.order_obs, self.mask_order_obs, self.dict_obs, self.num_agents, self.num_hiders) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_bl(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, args, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.args = args self.num_agents = args.num_agents self.total_rew = 0.0 self.dict_obs = env.reset() self.eval_num = 10 self.eval_episode = 0 self.success_rate_sum = 0 self.step = 0 self.H = 5 #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] self.order_obs = ['agent_qpos_qvel', 'box_obs', 'ramp_obs', 'construction_site_obs', 'observation_self'] self.mask_order_obs = [None, None, None, None, None] for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) # generate the obs space obs_shape = [] obs_dim = 0 for key in self.order_obs: if key in self.env.observation_space.spaces.keys(): space = list(self.env.observation_space[key].shape) if len(space)<2: space.insert(0,1) obs_shape.append(space) obs_dim += reduce(lambda x,y:x*y,space) obs_shape.insert(0,obs_dim) split_shape = obs_shape[1:] self.policies[0].base.obs_shape = obs_shape self.policies[0].base.encoder_actor.embedding.split_shape = split_shape self.policies[0].base.encoder_critic.embedding.split_shape = split_shape self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) while (self.duration is None or time.time() < self.end_time) and self.eval_episode < self.eval_num: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) self.step += 1 #READ INFO self.test_lock_rate[self.step] = env_info['lock_rate'] self.test_return_rate[self.step] = env_info['return_rate'] if env_info['lock_rate'] == 1: self.test_success_rate[self.step] = env_info['return_rate'] else: self.test_success_rate[self.step] = 0 # print("Step %d Lock Rate"%self.step, self.test_lock_rate[self.step]) # print("Step %d Return Rate"%self.step, self.test_return_rate[self.step]) # print("Step %d Success Rate"%self.step, self.test_success_rate[self.step]) #print(self.dict_obs['box_obs'][0][0]) self.total_rew += rew self.is_lock = self.test_lock_rate[self.step] self.is_return = self.test_return_rate[self.step] self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False) or self.step >= self.args.episode_length - 1: self.eval_episode += 1 self.success_rate_sum += np.mean(self.test_success_rate[-self.H:]) print("Test Episode %d/%d Success Rate:"%(self.eval_episode, self.eval_num), np.mean(self.test_success_rate[-self.H:])) self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) self.add_overlay(const.GRID_TOPRIGHT, "Lock", str(self.is_lock)) self.add_overlay(const.GRID_TOPRIGHT, "Return", str(self.is_return)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() if self.eval_episode == self.eval_num: print("Mean Success Rate:", self.success_rate_sum / self.eval_num) def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] # reset the buffer self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) self.step = 0 for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_bl_good_case(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, args, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.args = args self.num_agents = args.num_agents self.total_rew = 0.0 # init starts self.eval_num = 1 self.eval_episode = 0 self.success_rate_sum = 0 self.step = 0 self.H = 5 buffer_length = 2000 boundary = args.grid_size-2 boundary_quadrant = [round(args.grid_size / 2), args.grid_size-3, 1, round(args.grid_size/2)-3] start_boundary = [round(args.grid_size / 2), args.grid_size-3, 1, round(args.grid_size/2)-3] # x1,x2,y1,y2 qudrant set last_node = node_buffer(args.num_agents, args.num_boxes, buffer_length, archive_initial_length=args.n_rollout_threads, reproduction_num=160, max_step=1, start_boundary=start_boundary, boundary=boundary, boundary_quadrant=boundary_quadrant) #self.starts = last_node.produce_good_case(self.eval_num, start_boundary, args.num_agents, args.num_boxes) self.starts = [[np.array([16, 4]), np.array([21, 2]), np.array([22, 2]), np.array([16, 4])]] print("[starts]", self.starts[0]) self.dict_obs = env.reset(self.starts[0]) #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] self.order_obs = ['agent_qpos_qvel', 'box_obs', 'ramp_obs', 'construction_site_obs', 'observation_self'] self.mask_order_obs = [None, None, None, None, None] for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) # generate the obs space obs_shape = [] obs_dim = 0 for key in self.order_obs: if key in self.env.observation_space.spaces.keys(): space = list(self.env.observation_space[key].shape) if len(space)<2: space.insert(0,1) obs_shape.append(space) obs_dim += reduce(lambda x,y:x*y,space) obs_shape.insert(0,obs_dim) split_shape = obs_shape[1:] self.policies[0].base.obs_shape = obs_shape self.policies[0].base.encoder_actor.embedding.split_shape = split_shape self.policies[0].base.encoder_critic.embedding.split_shape = split_shape self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) while self.duration is None or time.time() < self.end_time or self.eval_episode <= self.eval_num: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) self.step += 1 #READ INFO self.test_lock_rate[self.step] = env_info['lock_rate'] self.test_return_rate[self.step] = env_info['return_rate'] if env_info['lock_rate'] == 1: self.test_success_rate[self.step] = env_info['return_rate'] else: self.test_success_rate[self.step] = 0 #print(self.dict_obs['box_obs'][0][0]) self.total_rew += rew self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False) or self.step >= self.args.episode_length - 1: self.eval_episode += 1 self.success_rate_sum += np.mean(self.test_success_rate[-self.H:]) print("Test Episode %d/%d Success Rate:"%(self.eval_episode, self.eval_num), np.mean(self.test_success_rate[-self.H:])) if self.eval_episode == self.eval_num: break self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() if self.eval_episode == self.eval_num: print("Mean Success Rate:", self.success_rate_sum / self.eval_num) def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) print("[starts]", self.starts[self.eval_episode]) self.dict_obs = self.env.reset(self.starts[self.eval_episode]) self.obs = [] self.share_obs = [] # reset the buffer self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) self.step = 0 for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_sc(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.dict_obs = env.reset() #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','food_obs','observation_self'] self.mask_order_obs = ['mask_aa_obs','mask_ab_obs','mask_ar_obs','mask_af_obs',None] ''' self.order_obs = ['box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] self.mask_order_obs = ['mask_ab_obs','mask_ar_obs',None,None,None] self.num_agents = 1 for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] print(self.dict_obs) for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) print(self.obs) print(self.share_obs) while self.duration is None or time.time() < self.end_time: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} print(action_pull) self.dict_obs, rew, done, env_info = self.env.step(one_env_action) print(self.dict_obs) self.total_rew += rew self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_bc(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.dict_obs = env.reset() #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','food_obs','observation_self'] self.mask_order_obs = ['mask_aa_obs','mask_ab_obs','mask_ar_obs','mask_af_obs',None] ''' ''' self.order_obs = ['box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] self.mask_order_obs = [None,'mask_ar_obs',None,None,None] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] self.mask_order_obs = [None,None,'mask_ar_obs',None,None,None] self.num_agents = 2 for agent_id in range(self.num_agents): action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) while self.duration is None or time.time() < self.end_time: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) #print(self.dict_obs) self.total_rew += rew self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) ``` #### File: hns/wrappers/util.py ```python import gym from mujoco_py import MujocoException from gym.spaces import Dict, Box import numpy as np from copy import deepcopy import logging def update_obs_space(env, delta): spaces = env.observation_space.spaces.copy() for key, shape in delta.items(): spaces[key] = Box(-np.inf, np.inf, shape, np.float32) return Dict(spaces) class NumpyArrayRewardWrapper(gym.RewardWrapper): """ Convenience wrapper that casts rewards to the multiagent format (numpy array of shape (n_agents,)) """ def __init__(self, env): super().__init__(env) def reward(self, rew): return np.zeros((self.unwrapped.n_agents,)) + rew class DiscretizeActionWrapper(gym.ActionWrapper): ''' Take a Box action and convert it to a MultiDiscrete Action through quantization Args: action_key: (string) action to discretize nbuckets: (int) number of discrete actions per dimension. It should be odd such that actions centered around 0 will have the middle action be 0. ''' def __init__(self, env, action_key, nbuckets=11): super().__init__(env) self.action_key = action_key self.discrete_to_continuous_act_map = [] for i, ac_space in enumerate(self.action_space.spaces[action_key].spaces): assert isinstance(ac_space, Box) action_map = np.array([np.linspace(low, high, nbuckets) for low, high in zip(ac_space.low, ac_space.high)]) _nbuckets = np.ones((len(action_map))) * nbuckets self.action_space.spaces[action_key].spaces[i] = gym.spaces.MultiDiscrete(_nbuckets) self.discrete_to_continuous_act_map.append(action_map) self.discrete_to_continuous_act_map = np.array(self.discrete_to_continuous_act_map) def action(self, action): action = deepcopy(action) ac = action[self.action_key] # helper variables for indexing the discrete-to-continuous action map agent_idxs = np.tile(np.arange(ac.shape[0])[:, None], ac.shape[1]) ac_idxs = np.tile(np.arange(ac.shape[1]), ac.shape[0]).reshape(ac.shape) action[self.action_key] = self.discrete_to_continuous_act_map[agent_idxs, ac_idxs, ac] return action class DiscardMujocoExceptionEpisodes(gym.Wrapper): ''' Catches Mujoco Exceptions. Sends signal to discard Episode. ''' def __init__(self, env, n_agents): super().__init__(env) self.episode_error = False self.n_agents = n_agents def step(self, action): assert not self.episode_error, "Won't Continue Episode After Mujoco Exception -- \ Please discard episode and reset. If info['discard_episode'] is True the episode\ should be discarded" try: obs, rew, done, info = self.env.step(action) info['discard_episode'] = False except MujocoException as e: self.episode_error = True # Done is set to False such that rollout workers do not accidently send data in # the event that timelimit is up in the same step as an error occured. print("mujuco error incurs, discard episode.") obs, rew, done, info = {}, np.zeros(self.n_agents), True, {'discard_episode': True} logging.info(str(e)) logging.info("Encountered Mujoco Exception During Environment Step.\ Reset Episode Required") return obs, rew, done, info def reset(self): try: obs = self.env.reset() except MujocoException: logging.info("Encountered Mujoco Exception During Environment Reset.\ Trying Reset Again") obs = self.reset() self.episode_error = False return obs class MaskActionWrapper(gym.Wrapper): ''' For a boolean action, sets it to zero given a mask from the previous step. For example you could mask the grab action based on whether you can see the box Args: action_key (string): key in action dictionary to be masked mask_keys (string): keys in observation dictionary with which to mask. The shape of the concatenation of the masks (along the 1st dimension) should exactly match that of action_key ''' def __init__(self, env, action_key, mask_keys): super().__init__(env) self.action_key = action_key self.mask_keys = mask_keys def reset(self): self.prev_obs = self.env.reset() return deepcopy(self.prev_obs) def step(self, action): #import pdb; pdb.set_trace() mask = np.concatenate([self.prev_obs[k] for k in self.mask_keys], -1) action[self.action_key] = np.logical_and(action[self.action_key], mask) self.prev_obs, rew, done, info = self.env.step(action) return deepcopy(self.prev_obs), rew, done, info class AddConstantObservationsWrapper(gym.ObservationWrapper): ''' Adds new constant observations to the environment. Args: new_obs: Dictionary with the new observations. ''' def __init__(self, env, new_obs): super().__init__(env) self.new_obs = new_obs for obs_key in self.new_obs: assert obs_key not in self.observation_space.spaces, ( f'Observation key {obs_key} exists in original observation space') if type(self.new_obs[obs_key]) in [list, tuple]: self.new_obs[obs_key] = np.array(self.new_obs[obs_key]) shape = self.new_obs[obs_key].shape self.observation_space = update_obs_space(self, {obs_key: shape}) def observation(self, obs): for key, val in self.new_obs.items(): obs[key] = val return obs class SpoofEntityWrapper(gym.ObservationWrapper): ''' Add extra entities along entity dimension such that shapes can match between environments with differing number of entities. This is meant to be used after SplitObservations and SelectKeysWrapper. This will also add masks that are 1 except along the new columns (which could be used by fully observed value function) Args: total_n_entities (int): total number of entities after spoofing (including spoofed ones) keys (list): observation keys with which to add entities along the second dimension mask_keys (list): mask keys with which to add columns. ''' def __init__(self, env, total_n_entities, keys, mask_keys): super().__init__(env) self.total_n_entities = total_n_entities self.keys = keys self.mask_keys = mask_keys for key in self.keys + self.mask_keys: shape = list(self.observation_space.spaces[key].shape) shape[1] = total_n_entities self.observation_space = update_obs_space(self, {key: shape}) for key in self.mask_keys: shape = list(self.observation_space.spaces[key].shape) self.observation_space = update_obs_space(self, {key + '_spoof': shape}) def observation(self, obs): for key in self.keys: n_to_spoof = self.total_n_entities - obs[key].shape[1] if n_to_spoof > 0: obs[key] = np.concatenate([obs[key], np.zeros((obs[key].shape[0], n_to_spoof, obs[key].shape[-1]))], 1) for key in self.mask_keys: n_to_spoof = self.total_n_entities - obs[key].shape[1] obs[key + '_spoof'] = np.concatenate([np.ones_like(obs[key]), np.zeros((obs[key].shape[0], n_to_spoof))], -1) if n_to_spoof > 0: obs[key] = np.concatenate([obs[key], np.zeros((obs[key].shape[0], n_to_spoof))], -1) return obs class ConcatenateObsWrapper(gym.ObservationWrapper): ''' Group multiple observations under the same key in the observation dictionary. Args: obs_groups: dict of {key_to_save: [keys to concat]} ''' def __init__(self, env, obs_groups): super().__init__(env) self.obs_groups = obs_groups for key_to_save, keys_to_concat in obs_groups.items(): assert np.all([np.array(self.observation_space.spaces[keys_to_concat[0]].shape[:-1]) == np.array(self.observation_space.spaces[k].shape[:-1]) for k in keys_to_concat]), \ f"Spaces were {[(k, v) for k, v in self.observation_space.spaces.items() if k in keys_to_concat]}" new_last_dim = sum([self.observation_space.spaces[k].shape[-1] for k in keys_to_concat]) new_shape = list(self.observation_space.spaces[keys_to_concat[0]].shape[:-1]) + [new_last_dim] self.observation_space = update_obs_space(self, {key_to_save: new_shape}) ''' def observation(self, obs): for key_to_save, keys_to_concat in self.obs_groups.items(): for k in keys_to_concat: if k not in obs.keys(): print(keys_to_concat) print(obs.keys()) assert 0 obs[key_to_save] = np.concatenate([obs[k] for k in keys_to_concat], -1) return obs ''' def observation(self, obs): for key_to_save, keys_to_concat in self.obs_groups.items(): temp_obs = [] for k in keys_to_concat: if k in obs.keys(): temp_obs.append(obs[k]) if key_to_save in obs.keys(): obs[key_to_save] = np.concatenate(temp_obs, -1) return obs ```
{ "source": "jiayueru/YPPF", "score": 2 }
#### File: YPPF/app/QA_utils.py ```python from app.utils_dependency import * from app.models import ( NaturalPerson, Organization, Notification, QandA, ) from app.notification_utils import notification_create from app import utils def QA_create(sender, receiver, Q_text, anonymous_flag=False): # sender: user # receiver: user # Q_text: str(提问内容) # anonymous_flag: 是否匿名 new_qa = QandA.objects.create( sender=sender, receiver=receiver, Q_text=Q_text, anonymous_flag=anonymous_flag, ) notification_create( receiver=receiver, sender=sender, typename=Notification.Type.NEEDREAD, title="您收到了一条提问", content="请点击本条通知的标题,进入问答中心查看我的提问!", URL='/QAcenter/', anonymous_flag=anonymous_flag ) def QA_anwser(QA_id, A_text): with transaction.atomic(): qa = QandA.objects.select_for_update().get(id=QA_id) qa.A_text = A_text qa.save() notification_create( receiver=qa.sender, sender=qa.receiver, typename=Notification.Type.NEEDREAD, title="您收到了一条回答", content=A_text, URL='/QAcenter/', ) def QA_ignore(QA_id, sender_flag=True): with transaction.atomic(): qa = QandA.objects.select_for_update().get(id=QA_id) # 如果两边都ignore了,就delete if sender_flag: qa.status = QandA.Status.DELETE if qa.status == QandA.Status.IGNORE_RECEIVER else QandA.Status.IGNORE_SENDER else: qa.status = QandA.Status.DELETE if qa.status == QandA.Status.IGNORE_SENDER else QandA.Status.IGNORE_RECEIVER qa.save() def QA_delete(QA_id): with transaction.atomic(): qa = QandA.objects.select_for_update().get(id=QA_id) qa.status = QandA.Status.DELETE qa.save() def QA2Display(user): all_instances = dict() all_instances['send'], all_instances['receive'] = [], [] instances = { "send": QandA.objects.activated(sender_flag=True).select_related('receiver').filter(sender=user).order_by("-Q_time"), "receive": QandA.objects.activated(receiver_flag=True).select_related('sender').filter(receiver=user).order_by("-Q_time"), } me = NaturalPerson.objects.get(person_id=user) if hasattr(user, 'naturalperson') \ else Organization.objects.get(organization_id=user) my_name = me.name if hasattr(user, "naturalperson") else me.oname receiver_userids = instances['send'].values_list('receiver_id', flat=True) sender_userids = instances['receive'].values_list('sender_id', flat=True) sender_persons = NaturalPerson.objects.filter(person_id__in=sender_userids).values_list('person_id', 'name') sender_persons = {userid: name for userid, name in sender_persons} sender_orgs = Organization.objects.filter(organization_id__in=sender_userids).values_list('organization_id', 'oname') sender_orgs = {userid: name for userid, name in sender_orgs} receiver_persons = NaturalPerson.objects.filter(person_id__in=receiver_userids).values_list('person_id', 'name') receiver_persons = {userid: name for userid, name in receiver_persons} receiver_orgs = Organization.objects.filter(organization_id__in=receiver_userids).values_list('organization_id', 'oname') receiver_orgs = {userid: name for userid, name in receiver_orgs} for qa in instances['send']: send_QAs = dict() send_QAs['sender'] = my_name if qa.anonymous_flag: send_QAs['sender'] += "(匿名)" _, user_type, _ = utils.check_user_type(qa.receiver) if user_type == "Organization": send_QAs["receiver"] = receiver_orgs.get(qa.receiver_id) else: send_QAs["receiver"] = receiver_persons.get(qa.receiver_id) send_QAs['Q_text'] = qa.Q_text send_QAs['A_text'] = qa.A_text send_QAs['Q_time'] = qa.Q_time send_QAs['A_time'] = qa.A_time send_QAs['id'] = qa.id send_QAs['anwser_flag'] = (len(qa.A_text) != 0) all_instances['send'].append(send_QAs) for qa in instances['receive']: receive_QAs = dict() if qa.anonymous_flag: receive_QAs['sender'] = "匿名者" else: _, user_type, _ = utils.check_user_type(qa.sender) if user_type == "Organization": receive_QAs["sender"] = sender_orgs.get(qa.sender_id) else: receive_QAs["sender"] = sender_persons.get(qa.sender_id) receive_QAs['receiver'] = my_name receive_QAs['Q_text'] = qa.Q_text receive_QAs['A_text'] = qa.A_text receive_QAs['Q_time'] = qa.Q_time receive_QAs['A_time'] = qa.A_time receive_QAs['id'] = qa.id receive_QAs['anwser_flag'] = (len(qa.A_text) != 0) all_instances['receive'].append(receive_QAs) return all_instances ``` #### File: YPPF/app/YQPoint_utils.py ```python from app.utils_dependency import * from app.models import ( NaturalPerson, Organization, YQPointDistribute, TransferRecord, Notification, ) from datetime import datetime, timedelta from django.db.models import F from app.scheduler import scheduler __all__ = [ # 'distribute_YQPoint', 'add_YQPoints_distribute', 'confirm_transaction', 'record2Display', ] def _distribute_YQPoint_to_users(proposer, recipients, YQPoints, trans_time): ''' 内容: 由proposer账户(默认为一个小组账户),向每一个在recipients中的账户中发起数额为YQPoints的转账 并且自动生成默认为ACCEPTED的转账记录以便查阅 这里的recipients期待为一个Queryset,要么全为自然人,要么全为小组 proposer默认为一个小组账户 ''' try: assert proposer.YQPoint >= recipients.count() * YQPoints except: # 说明此时proposer账户的元气值不足 print( f"由{proposer}向自然人{recipients[:3]}...等{recipients.count()}个用户" + "发放元气值失败,原因可能是{proposer}的元气值剩余不足" ) try: is_nperson = isinstance(recipients[0], NaturalPerson) # 不为自然人则为小组 except: print("没有转账对象!") return # 更新元气值 recipients.update(YQPoint=F('YQPoint') + YQPoints) proposer.YQPoint -= recipients.count() * YQPoints proposer.save() # 生成转账记录 trans_msg = f"{proposer}向您发放了{YQPoints}元气值,请查收!" transfer_list = [TransferRecord( proposer=proposer.organization_id, recipient=(recipient.person_id if is_nperson else recipient.organization_id), amount=YQPoints, start_time=trans_time, finish_time=trans_time, message=trans_msg, status=TransferRecord.TransferStatus.ACCEPTED ) for recipient in recipients] TransferRecord.objects.bulk_create(transfer_list) def distribute_YQPoint(distributer): ''' 调用_distribute_YQPoint_to_users, 给大家发放元气值 这个函数的内容:根据distributer,找到发放对象,调用函数完成发放,(统计时间) distributer应该为一个YQPointDistribute类的实例 ''' trans_time = distributer.start_time # 没有问题,找到要发放元气值的人和小组 per_to_dis = NaturalPerson.objects.activated().filter( YQPoint__lte=distributer.per_max_dis_YQP) org_to_dis = Organization.objects.activated().filter( YQPoint__lte=distributer.org_max_dis_YQP).exclude(oname=YQP_ONAME) # 由学院账号给大家发放 YPcollege = Organization.objects.get(oname=YQP_ONAME) _distribute_YQPoint_to_users(proposer=YPcollege, recipients=per_to_dis, YQPoints=distributer.per_YQP, trans_time=trans_time) _distribute_YQPoint_to_users(proposer=YPcollege, recipients=org_to_dis, YQPoints=distributer.org_YQP, trans_time=trans_time) end_time = datetime.now() diff_time = end_time - trans_time debug_msg = ( f"已向{per_to_dis.count()}个自然人和{org_to_dis.count()}个小组转账," + f"用时{diff_time.seconds}s,{diff_time.microseconds}microsecond\n" ) print(debug_msg) def add_YQPoints_distribute(dtype): ''' 内容: 用于注册已知type=dtype的发放元气值的实例 每种类型(临时发放、每周发放、每两周发放)都必须只有一个正在应用的实例; 在注册时,如果已经有另一个正在进行的、类型相同的定时任务,会覆盖 暂时还没写怎么取消 ''' try: distributer = YQPointDistribute.objects.get(type=dtype, status=True) except Exception as e: print(f"按类型{dtype}注册任务失败,原因可能是没有状态为YES或者有多个状态为YES的发放实例\n{e}") if dtype == YQPointDistribute.DistributionType.TEMPORARY: # 说明此时是临时发放 scheduler.add_job(distribute_YQPoint, "date", id="temporary_YQP_distribute", run_date=distributer.start_time, args=[distributer]) else: # 说明此时是定期发放 scheduler.add_job(distribute_YQPoint, "interval", id=f"{dtype}weeks_interval_YQP_distribute", weeks=distributer.type, next_run_time=distributer.start_time, args=[distributer]) @log.except_captured(source='YQPoint_utils[confirm_transaction]', record_user=True) def confirm_transaction(request, tid=None, reject=None): # 导入关系不正常,可再优化 from app.notification_utils import notification_create, notification_status_change from app.wechat_send import publish_notification, WechatApp context = dict() context["warn_code"] = 1 # 先假设有问题 new_notification = None with transaction.atomic(): try: record = TransferRecord.objects.select_for_update().get( id=tid, recipient=request.user ) except Exception as e: context["warn_message"] = "交易遇到问题, 请联系管理员!" + str(e) return context if record.status != TransferRecord.TransferStatus.WAITING: context["warn_message"] = "交易已经完成, 请不要重复操作!" return context payer = record.proposer try: if hasattr(payer, "naturalperson"): payer = ( NaturalPerson.objects.activated() .select_for_update() .get(person_id=payer) ) else: payer = Organization.objects.select_for_update().get( organization_id=payer ) except: context["warn_message"] = "交易对象不存在或已毕业, 请联系管理员!" return context recipient = record.recipient if hasattr(recipient, "naturalperson"): recipient = ( NaturalPerson.objects.activated() .select_for_update() .get(person_id=recipient) ) else: recipient = Organization.objects.select_for_update().get( organization_id=recipient ) if reject is True: record.status = TransferRecord.TransferStatus.REFUSED payer.YQPoint += record.amount payer.save() context["warn_message"] = "拒绝转账成功!" new_notification = notification_create( receiver=record.proposer, sender=record.recipient, typename=Notification.Type.NEEDREAD, title=Notification.Title.TRANSFER_FEEDBACK, content=f"{str(recipient)}拒绝了您的转账。", URL="/myYQPoint/", ) notification_status_change(record.transfer_notification.get().id) else: record.status = TransferRecord.TransferStatus.ACCEPTED recipient.YQPoint += record.amount recipient.save() context["warn_message"] = "交易成功!" new_notification = notification_create( receiver=record.proposer, sender=record.recipient, typename=Notification.Type.NEEDREAD, title=Notification.Title.TRANSFER_FEEDBACK, content=f"{str(recipient)}接受了您的转账。", URL="/myYQPoint/", ) notification_status_change(record.transfer_notification.get().id) publish_notification(new_notification, app=WechatApp.TRANSFER) record.finish_time = datetime.now() # 交易完成时间 record.save() context["warn_code"] = 2 return context context["warn_message"] = "交易遇到问题, 请联系管理员!" return context @log.except_captured(source='YQPoint_utils[record2Display]') def record2Display(record_list, user): # 对应myYQPoint函数中的table_show_list lis = [] amount = {"send": 0.0, "recv": 0.0} # 储存这个列表中所有record的元气值的和 for record in record_list: lis.append({}) # 确定类型 record_type = "send" if record.proposer.username == user.username else "recv" # id lis[-1]["id"] = record.id # 时间 lis[-1]["start_time"] = record.start_time.strftime("%Y-%m-%d %H:%M") if record.finish_time is not None: lis[-1]["finish_time"] = record.finish_time.strftime("%Y-%m-%d %H:%M") # 对象 # 如果是给出列表,那么对象就是接收者 obj_user = record.recipient if record_type == "send" else record.proposer lis[-1]["obj_direct"] = "To " if record_type == "send" else "From" if hasattr(obj_user, "naturalperson"): # 如果OneToOne Field在个人上 lis[-1]["obj"] = obj_user.naturalperson.name lis[-1]["obj_url"] = "/stuinfo/?name=" + lis[-1]["obj"] + "+" + str(obj_user.id) else: lis[-1]["obj"] = obj_user.organization.oname lis[-1]["obj_url"] = "/orginfo/?name=" + lis[-1]["obj"] # 金额 lis[-1]["amount"] = record.amount amount[record_type] += record.amount # 留言 lis[-1]["message"] = record.message lis[-1]["if_act_url"] = False if record.corres_act is not None: lis[-1]["message"] = "报名活动" + record.corres_act.title # TODO 这里还需要补充一个活动跳转链接 # 状态 if record.status == TransferRecord.TransferStatus.PENDING: # PENDING 就不对个人可见了,个人看到的就是元气值已经转过去了 lis[-1]["status"] = "已接收" else: lis[-1]["status"] = record.get_status_display() # 对外展示为 1/10 """ 统一在前端修改 for key in amount: amount[key] = amount[key]/10 """ # 由于误差, 将amount调整为小数位数不超过2 for key in amount.keys(): amount[key] = round(amount[key], 1) return lis, amount ```
{ "source": "jiayuewan/group-testing-with-household-correlation", "score": 2 }
#### File: src/deprecated/counterexample.py ```python import numpy as np import matplotlib import matplotlib.cm cmap = matplotlib.cm.get_cmap().copy() cmap.set_bad('white',np.nan) import matplotlib.pyplot as plt import matplotlib.patches as mpatches theta1_list = np.linspace(0.01, 1, 100) theta2_list = np.linspace(0.01, 1, 100) num_grid = len(theta1_list) n=2 alpha=0.01 num_grid = len(theta1_list) def compute_np_beta(alpha, theta1, theta2): return (1 - alpha * (7/12*theta2**2 + 7/12*5/12*theta2 + 5**2/12**2) \ - (1-alpha) * (7/12*theta1*theta2+5/12*theta1)) def compute_np_eta(alpha, theta1, theta2, np_beta, n=2): denom = n * alpha * (1-np_beta) num = n * (theta1 * 2 * alpha * (1-alpha)\ + theta2 * alpha**2 * ((7/12)**2 + 2 * 7/12 * 5/12)\ + alpha**2 * (5/12)**2) return num/denom def compute_np_efficiency(n, alpha, eta, beta): inv_eff = 1/n + alpha * eta * (1-beta) return 1/inv_eff def compute_cp_efficiency(n, alpha, theta1, theta2): cp_inv_eff = 1/n + alpha * n * (8*theta1+2*theta2)/(5*theta1+3*theta1*theta2+4*theta2**2)*(theta1*theta2/4 + theta2**2/3 + 5*theta1/12) return 1/cp_inv_eff def plot_diff_efficiency(): diff_eff_vals = np.empty((num_grid, num_grid)) diff_eff_vals[:] = np.nan for i in range(num_grid): for j in range(i, num_grid): np_beta = compute_np_beta(alpha, theta1_list[i], theta2_list[j]) np_eta = compute_np_eta(alpha, theta1_list[i], theta2_list[j], np_beta) np_eff = compute_np_efficiency(n, alpha, np_eta, np_beta) cp_eff = compute_cp_efficiency(n, alpha, theta1_list[i], theta2_list[j]) diff_eff_vals[i,j] = cp_eff - np_eff data = diff_eff_vals.transpose() fig, ax = plt.subplots() im = ax.imshow(data, cmap = cmap, extent = [0, 100, 100, 0]) cbar = ax.figure.colorbar(im, ax=ax) ax.set_xlabel(r'$\theta_1$') ax.set_ylabel(r'$\theta_2$') ax.set_title("Difference in efficiency \n between correlated and naive pooling") fig.tight_layout() #plt.show() plt.contour(data, levels = [0], colors = 'r', linewidth=5) ax.hlines(y=100, xmin=0, xmax=49, color='r', linestyle='-', linewidth=5) ax.vlines(x=0.1, ymin=2, ymax=100, color='r', linestyle='-', linewidth=5) plt.savefig('/home/yz685/group-testing-with-household-correlation/figs/counterexample.pdf', format='pdf', dpi=600, bbox_inches='tight') if __name__ == '__main__': plt.rcParams["font.family"] = 'serif' plot_diff_efficiency() ``` #### File: group-testing-with-household-correlation/src/eval_p_index.py ```python from scipy.optimize import fsolve import numpy as np from household_dist import HOUSEHOLD_DIST def compute_household_infection_prob(prevalence, household_dist, SAR=0.3741): """ computes the probability that a household is infected given population level prevalence, household size distribution and household secondary attack rate INPUT: prevalence = population level prevalence household_dist = array-like, probability distribution of household sizes 1, 2, 3, ... SAR = household secondary attack rate """ assert(np.absolute(np.sum(household_dist) - 1) < 1e-6) exp_household_size = 0 exp_household_infection_multiplier = 0 for i in range(len(household_dist)): exp_household_size += (i + 1) * household_dist[i] exp_household_infection_multiplier += (1 + (i + 1 - 1) * SAR) * household_dist[i] p = prevalence * exp_household_size / exp_household_infection_multiplier return p # deprecated, modified from Massey's groupt testing code def match_prevalence(p_index, target_prevalence, household_dist, SAR): # computes probability of a primary case given population level prevalence, household size distribution, # and household secondary attack rate # INPUT: # p_index = probability of a primary case in the household # target_prevalence = population level prevalence # household_dist = probability distribution of household sizes 1,2,3,... # SAR = household secondary attack rate assert(np.absolute(np.sum(household_dist) - 1) < 1e-6) exp_household_size = 0 for i in range(len(household_dist)): exp_household_size += (i + 1) * household_dist[i] frac_tot_infected = 0 for i in range(len(household_dist)): frac_tot_infected += (i + 1) * (p_index + SAR * (1 - p_index) - SAR * (1 - p_index) ** (i + 1)) * household_dist[ i] / exp_household_size return frac_tot_infected - target_prevalence # deprecated, modified from Massey's group testing code def eval_p_index(match_prevalence, target_prevalence, household_dist, SAR=0.3741): return fsolve(match_prevalence, 0.005, args=(target_prevalence, household_dist, SAR)) if __name__ == '__main__': household_dist = HOUSEHOLD_DIST['US'] print("household infection probability (US population): " + str(compute_household_infection_prob(0.01, household_dist))) print("household infection probability (household size = 3): " + str(compute_household_infection_prob(0.01, household_dist=[0,0,1]))) ``` #### File: group-testing-with-household-correlation/src/plot_VL_and_table4.py ```python import numpy as np import matplotlib.pyplot as plt def plot_VL(n_samples = 1000000): mixture_weights = [0.33, 0.54, 0.13] mixture_params = [[8.09, 1.06], [5.35, 0.89], [3.75, 0.39]] samples = [] for _ in range(n_samples): component = np.random.choice(3, p = mixture_weights) mean, sd = mixture_params[component] samples.append(np.random.normal(loc = mean, scale = sd)) plt.rcParams["font.family"] = 'serif' plt.hist(samples, bins = 100, density = True) plt.title('log10 viral load distribution') plt.xlabel('log10 viral load') plt.ylabel('Density') # plt.savefig('log10_VL_density.pdf') def plot_table_4(): prevs = ['0.1%', '0.5%', '1%', '5%', '10%'] np_sizes = [40, 15, 12, 6, 4] cp_sizes = [40, 20, 12, 6, 4] np_sens_times_eff = [13.52, 6.29, 4.56, 2.17, 1.59] cp_sens_times_eff = [15.86, 7.26, 5.23, 2.44, 1.72] plt.rcParams["font.family"] = 'serif' plt.plot(np.arange(5), [1/np_sens_times_eff[i] for i in range(5)], color = 'mediumpurple', marker = '^', linestyle = '--', label = 'naive') plt.plot(np.arange(5), [1/cp_sens_times_eff[i] for i in range(5)], color = 'mediumaquamarine', marker = 'o', linestyle = '-', label = 'correlated') plt.xticks(np.arange(5), prevs) for i in range(5): plt.annotate(np_sizes[i], (i-0.2, 1/np_sens_times_eff[i])) plt.annotate(cp_sizes[i], (i+0.11, 1/cp_sens_times_eff[i]-0.01)) plt.xlabel('Prevalence') plt.ylabel(r'$(Sensitivity * Efficiency)^{-1}$') plt.legend() plt.title(r'$(Sensitivity * Efficiency)^{-1}$ for naive and correlated pooling') # plt.savefig('sens_eff.pdf') ```
{ "source": "jiayunhan/deep-anpr", "score": 2 }
#### File: jiayunhan/deep-anpr/detect_attack.py ```python __all__ = ( 'detect', 'post_process', ) import collections import itertools import math import sys import cv2 import numpy import tensorflow as tf import common import model from detect_get_logits import get_attack_logits def make_scaled_ims(im, min_shape): ratio = 1. / 2 ** 0.5 shape = (im.shape[0] / ratio, im.shape[1] / ratio) while True: shape = (int(shape[0] * ratio), int(shape[1] * ratio)) if shape[0] < min_shape[0] or shape[1] < min_shape[1]: break yield cv2.resize(im, (shape[1], shape[0])) def detect(im, param_vals): """ Detect number plates in an image. :param im: Image to detect number plates in. :param param_vals: Model parameters to use. These are the parameters output by the `train` module. :returns: Iterable of `bbox_tl, bbox_br, letter_probs`, defining the bounding box top-left and bottom-right corners respectively, and a 7,36 matrix giving the probability distributions of each letter. """ # Convert the image to various scales. scaled_ims = list(make_scaled_ims(im, model.WINDOW_SHAPE)) #scaled_ims = hide_attack(im, param_vals) #print(scaled_ims[0].shape) # Load the model which detects number plates over a sliding window. x, y, params = model.get_detect_model() # Execute the model at each scale. with tf.Session(config=tf.ConfigProto()) as sess: y_vals = [] for scaled_im in scaled_ims: feed_dict = {x: numpy.stack([scaled_im])} feed_dict.update(dict(zip(params, param_vals))) y_vals.append(sess.run(y, feed_dict=feed_dict)) print(y_vals[0].shape) # Interpret the results in terms of bounding boxes in the input image. # Do this by identifying windows (at all scales) where the model predicts a # number plate has a greater than 50% probability of appearing. # # To obtain pixel coordinates, the window coordinates are scaled according # to the stride size, and pixel coordinates. count = 0 for i, (scaled_im, y_val) in enumerate(zip(scaled_ims, y_vals)): for window_coords in numpy.argwhere(y_val[0, :, :, 0] > -math.log(1./0.99 - 1)): count = count + 1 letter_probs = (y_val[0, window_coords[0], window_coords[1], 1:].reshape( 7, len(common.CHARS))) letter_probs = common.softmax(letter_probs) img_scale = float(im.shape[0]) / scaled_im.shape[0] bbox_tl = window_coords * (8, 4) * img_scale bbox_size = numpy.array(model.WINDOW_SHAPE) * img_scale present_prob = common.sigmoid( y_val[0, window_coords[0], window_coords[1], 0]) yield bbox_tl, bbox_tl + bbox_size, present_prob, letter_probs #print("Detected count: ", count) def detect_max_shape(im, param_vals): scaled_ims = list(make_scaled_ims(im, model.WINDOW_SHAPE)) x, y, params = model.get_detect_model() # Execute the model at each scale. with tf.Session(config=tf.ConfigProto()) as sess: y_vals = [] for scaled_im in scaled_ims: feed_dict = {x: numpy.stack([scaled_im])} feed_dict.update(dict(zip(params, param_vals))) y_vals.append(sess.run(y, feed_dict=feed_dict)) # Interpret the results in terms of bounding boxes in the input image. # Do this by identifying windows (at all scales) where the model predicts a # number plate has a greater than 50% probability of appearing. # # To obtain pixel coordinates, the window coordinates are scaled according # to the stride size, and pixel coordinates. max_im = scaled_ims[0] max_prob = 0 for i, (scaled_im, y_val) in enumerate(zip(scaled_ims, y_vals)): for window_coords in numpy.argwhere(y_val[0, :, :, 0] > -math.log(1./0.99 - 1)): letter_probs = (y_val[0, window_coords[0], window_coords[1], 1:].reshape( 7, len(common.CHARS))) letter_probs = common.softmax(letter_probs) img_scale = float(im.shape[0]) / scaled_im.shape[0] bbox_tl = window_coords * (8, 4) * img_scale bbox_size = numpy.array(model.WINDOW_SHAPE) * img_scale present_prob = common.sigmoid( y_val[0, window_coords[0], window_coords[1], 0]) if(present_prob > max_prob): max_prob = present_prob max_im = scaled_im return max_im.shape def isDetected(im, param_vals): im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) / 255. scaled_ims = list(make_scaled_ims(im_gray, model.WINDOW_SHAPE)) x, y, params = model.get_detect_model() with tf.Session(config=tf.ConfigProto()) as sess: y_vals = [] for scaled_im in scaled_ims: feed_dict = {x: numpy.stack([scaled_im])} feed_dict.update(dict(zip(params, param_vals))) y_vals.append(sess.run(y, feed_dict=feed_dict)) count = 0 for i, (scaled_im, y_val) in enumerate(zip(scaled_ims, y_vals)): for window_coords in numpy.argwhere(y_val[0, :, :, 0] > -math.log(1./0.99 - 1)): count = count + 1 #only care about number of boxes it can detect print("COUNT: ", count) return count != 0 def original_img_hide_attack_color(im, param_vals): def perturb(img, param_vals): x_origin = tf.Variable(tf.zeros(img.shape)) assign_origin_op = tf.assign(x_origin, img) #convert image to gray so it can pass through detect model im_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) / 255. #resize colored image to match best scaled image shape max_im_shape = detect_max_shape(im_gray, param_vals) im_color_resize = tf.squeeze(tf.image.resize_images(x_origin, (max_im_shape[0], max_im_shape[1]))) img_gray = tf.image.rgb_to_grayscale(im_color_resize) #(250,250,1) im_gray = tf.squeeze(tf.cast(img_gray, numpy.float32)) #(250,250) input = tf.stack([im_gray]) #(1,250,250) _, y, params = model.get_detect_model(input) #mean over reduced probability for presence and letter detection, y[:,:,:,0] for just presence y_mean = tf.reduce_mean(y) optim_step = tf.train.GradientDescentOptimizer(3).minimize(y_mean, var_list = [x_origin]) adv = [] #create bounds for how far the image can deviate epsilon = tf.placeholder(tf.float32, ()) below = img - epsilon above = img + epsilon projected = tf.clip_by_value(tf.clip_by_value(x_origin, below, above), 0, 255) with tf.control_dependencies([projected]): project_step = tf.assign(x_origin, projected) #training with tf.Session(config=tf.ConfigProto()) as sess: sess.run(assign_origin_op) feed_dict = {} feed_dict.update(dict(zip(params, param_vals))) for i in range(400): sess.run(optim_step,feed_dict = feed_dict) sess.run(project_step, feed_dict = {epsilon: 8000/255.0}) print(sess.run(y_mean, feed_dict = feed_dict)) if(isDetected(x_origin.eval().astype(numpy.uint8), param_vals) == False): break adv = (x_origin.eval().astype(numpy.uint8)) return adv return perturb(im, param_vals) def _overlaps(match1, match2): bbox_tl1, bbox_br1, _, _ = match1 bbox_tl2, bbox_br2, _, _ = match2 return (bbox_br1[0] > bbox_tl2[0] and bbox_br2[0] > bbox_tl1[0] and bbox_br1[1] > bbox_tl2[1] and bbox_br2[1] > bbox_tl1[1]) def _group_overlapping_rectangles(matches): matches = list(matches) num_groups = 0 match_to_group = {} for idx1 in range(len(matches)): for idx2 in range(idx1): if _overlaps(matches[idx1], matches[idx2]): match_to_group[idx1] = match_to_group[idx2] break else: match_to_group[idx1] = num_groups num_groups += 1 groups = collections.defaultdict(list) for idx, group in match_to_group.items(): groups[group].append(matches[idx]) return groups def post_process(matches): """ Take an iterable of matches as returned by `detect` and merge duplicates. Merging consists of two steps: - Finding sets of overlapping rectangles. - Finding the intersection of those sets, along with the code corresponding with the rectangle with the highest presence parameter. """ groups = _group_overlapping_rectangles(matches) for group_matches in groups.values(): mins = numpy.stack(numpy.array(m[0]) for m in group_matches) maxs = numpy.stack(numpy.array(m[1]) for m in group_matches) present_probs = numpy.array([m[2] for m in group_matches]) letter_probs = numpy.stack(m[3] for m in group_matches) yield (numpy.max(mins, axis=0).flatten(), numpy.min(maxs, axis=0).flatten(), numpy.max(present_probs), letter_probs[numpy.argmax(present_probs)]) def print_help(): print("\nToo few arguments. Expected: 3") print("Usage: python detect.py [input_image] [weights] [output_image]\n") def letter_probs_to_code(letter_probs): return "".join(common.CHARS[i] for i in numpy.argmax(letter_probs, axis=1)) if __name__ == "__main__": if(len(sys.argv)<4): print_help() exit() f = numpy.load(sys.argv[2]) param_vals = [f[n] for n in sorted(f.files, key=lambda s: int(s[4:]))] im = cv2.imread(sys.argv[1]) img_color = original_img_hide_attack_color(im, param_vals) im_gray = cv2.cvtColor(img_color, cv2.COLOR_BGR2GRAY) / 255. #print(img_color) cv2.imwrite('perturbed' + sys.argv[3], img_color) for pt1, pt2, present_prob, letter_probs in post_process( detect(im_gray, param_vals)): pt1 = tuple(reversed(map(int, pt1))) pt2 = tuple(reversed(map(int, pt2))) code = letter_probs_to_code(letter_probs) color = (0.0, 255.0, 0.0) cv2.rectangle(im, pt1, pt2, color) cv2.putText(im, code, pt1, cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 0), thickness=5) cv2.putText(im, code, pt1, cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 255, 255), thickness=2) cv2.imwrite(sys.argv[3], im) ```
{ "source": "jiayunhan/perceptron-benchmark", "score": 3 }
#### File: perceptron/benchmarks/gaussian_blur.py ```python import numpy as np from tqdm import tqdm from collections import Iterable from scipy.ndimage.filters import gaussian_filter from .base import Metric from .base import call_decorator class GaussianBlurMetric(Metric): """Metric that tests models against Gaussian blurs.""" @call_decorator def __call__(self, adv, annotation=None, unpack=True, abort_early=True, epsilons=10000): """Blurs the image until it is misclassified. Parameters ---------- adv : `numpy.ndarray` The original, unperturbed input as a `numpy.ndarray`. annotation : int The reference label of the original input. unpack : bool If true, returns the adversarial input, otherwise returns the Adversarial object. abort_early : bool If true, returns when got first adversarial, otherwise returns when all the iterations are finished. epsilons : int or Iterable[float] Either Iterable of standard deviations of the Gaussian blur or number of standard deviations between 0 and 1 that should be tried. """ a = adv del adv del annotation del unpack image = a.original_image min_, max_ = a.bounds() axis = a.channel_axis(batch=False) hw = [image.shape[i] for i in range(image.ndim) if i != axis] h, w = hw size = max(h, w) if not isinstance(epsilons, Iterable): epsilons = np.linspace(0, 0.2, num=epsilons + 1)[1:] for epsilon in tqdm(epsilons): # epsilon = 1 will correspond to # sigma = size = max(width, height) sigmas = [epsilon * size] * 3 sigmas[axis] = 0 blurred = gaussian_filter(image, sigmas) blurred = np.clip(blurred, min_, max_) _, is_adversarial = a.predictions(blurred) if is_adversarial and abort_early: return ``` #### File: perceptron/benchmarks/interval_analysis.py ```python import warnings import logging import numpy as np from tqdm import tqdm from abc import ABC from abc import abstractmethod from .base import Metric from .base import call_decorator from perceptron.utils.image import onehot_like from perceptron.utils.func import to_tanh_space from perceptron.utils.func import to_model_space from perceptron.utils.func import AdamOptimizer from perceptron.utils.interval_analyze import symbolic, naive class IntervalMetric(Metric, ABC): """The base class of interval analysis used for network formal verifications. This verification method is described in [1,2]_. This implementation is based on the symbolic interval lib in [3]_. References ---------- .. [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>ana : "Formal Security Analysis of Neural Networks using Symbolic Intervals", https://arxiv.org/abs/1804.10829 .. [2] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>ana : "Efficient Formal Safety Analysis of Neural Networks", https://arxiv.org/abs/1809.08098 .. [3] https://github.com/tcwangshiqi-columbia/symbolic_interval """ @call_decorator def __call__(self, adv, optimal_bound=False, epsilon=None, parallel=False, unpack=False, annotation=None, normalize=False, threshold=0.001): """ The Linf version of interval analysis. It will add two parameters into adversarial: (1) is_verified: whether the sample is verified to be safe under given epsilon; (2) opt: the optimal bound for verifying the property safe Parameters ---------- adv : An class:`Adversarial` instance Keep all the information needed optimal_bound : Bool Whether we need to locate the minimal Linf bound that can be verified to be safe. epsilon : float The Linf epsilon range. If optimal_bound is False, it will serve as the testing epsilon. If optimal_bound is True, it will serve as the starting epsilon for searching the optimal one. parallel : Bool whether to parallelize the testing unpack : bool If true, returns the adversarial input, otherwise returns the Adversarial object. annotation : int The reference label of the original input. normalize : Bool Whether the input is normalized. Usually, MNIST will not be normalized while cifar10 will be normalized with 0.225. threshold : float The minimal threshold for the binary search """ assert epsilon is not None, "Provide an epsilon for verification!" a = adv del adv del annotation if not optimal_bound: is_verified = self.analyze(a, epsilon, parallel=parallel) if is_verified: print("The model is proved to be safe with " "given epsilon {0:.3f}".format(epsilon)) else: print("Can not be verified with given " "epsilon {0:.3f}".format(epsilon)) if optimal_bound: opt = self.analyze_bound(a, epsilon, threshold=0.001, parallel=parallel) if normalize: opt = opt * 0.225 * 255 else: opt = opt * 255 print("optimal bound found to be {0:.3f} out of 0 to 255".format(opt)) # Avoid warning for not finding the adversarial examples a._best_adversarial = a._original_image return None def analyze(self, adv, epsilon, parallel=False): """To be extended with different interval analysis methods.""" raise NotImplementedError def analyze_bound(self, adv, epsilon, threshold=0.001, parallel=False): """ Return the optimal bound provided by interval analysis. It indicates the largest Linf bound that is verified to be absent of adversarial examples under arbitrary attacks. The optimal bound is located by binary search. Parameters ---------- adv : An class:`Adversarial` instance Keep all the information needed epsilon : float The Linf epsilon range. Serves as the starting epsilon for searching the optimal one. threshold : float The minimal threshold for the binary search parallel : Bool whether to parallelize the testing """ bound = epsilon upper_bound = 1 lower_bound = 0 # binary search for the optimal bound while upper_bound - lower_bound > threshold: is_verified = self.analyze(adv, bound, parallel=parallel) if is_verified: # print("The model is proved to be safe with given epsilon", bound) lower_bound = bound else: # print("can not be verified with given epsilon", bound) upper_bound = bound bound = (upper_bound + lower_bound) / 2.0 return bound class SymbolicIntervalMetric(IntervalMetric): @staticmethod def analyze(adv, epsilon, parallel=False): """ Return whether the example is verified to be save within the given Linf <= epsilon analyzed by symbolic interval analysis. Parameters ---------- adv : An class:`Adversarial` instance Keep all the information needed epsilon : float The Linf epsilon range for testing parallel : Bool whether to parallelize the testing """ iloss, ierr = symbolic(adv._model._model, epsilon,\ adv._original_image,\ adv._original_pred,\ parallel=parallel) if ierr: is_verified = False else: is_verified = True return is_verified class NaiveIntervalMetric(IntervalMetric): @staticmethod def analyze(a, epsilon, parallel=False): """ Return whether the example is verified to be save within the given Linf <= epsilon analyzed by naive interval analysis. Parameters ---------- adv : An class:`Adversarial` instance Keep all the information needed. epsilon : float The Linf epsilon range for testing. parallel : Bool whether to parallelize the testing """ iloss, ierr = naive(a._model._model, epsilon,\ a._original_image, a._original_pred,\ parallel=parallel) if ierr: is_verified = False else: is_verified = True return is_verified ``` #### File: perceptron/benchmarks/translation.py ```python from abc import abstractmethod import numpy as np from tqdm import tqdm from collections import Iterable import math from .base import Metric from .base import call_decorator import warnings class TranslationMetric(Metric): """Metric that tests models against translations.""" @call_decorator def __call__(self, adv, pix_range=None, annotation=None, unpack=True, abort_early=True, verify=False, epsilons=100): """Translate the image until it is misclassified. Parameters ---------- adv : `numpy.ndarray` The original, unperturbed input as a `numpy.ndarray`. pix_range : int or (int, int) pix_range of pixels for translation attack annotation : int The reference label of the original input. unpack : bool If true, returns the adversarial input, otherwise returns the Adversarial object. abort_early : bool If true, returns when got first adversarial, otherwise returns when all the iterations are finished. verify : bool if True, return verifiable bound epsilons : int or Iterable[float] Either Iterable of translation distances or number of translation levels between 1 and 0 that should be tried. Epsilons are one minus the contrast level. Epsilons are not used if verify = True. """ if verify is True: warnings.warn('epsilon is not used in verification mode ' 'and abort_early is set to True.') if isinstance(pix_range, int): pix_range = (pix_range, pix_range) if pix_range: assert len( pix_range) == 2, "pix_range has to be float of pix_range or' \ ' (pix_range_low, pix_range_high)" assert pix_range[0] <= pix_range[1], "pix_range[0] should be'\ ' smaller than pix_range[1]" a = adv del adv del annotation del unpack image = a.original_image min_, max_ = a.bounds() axis = a.channel_axis(batch=False) hw = [image.shape[i] for i in range(image.ndim) if i != axis] img_width, img_height = hw translate_type, translate_max_bound = self._get_type(hw) if verify: epsilons_ub = np.arange(1, translate_max_bound, 1) epsilons_lb = np.arange(-1, -1 * translate_max_bound, -1) elif not isinstance(epsilons, Iterable): if not pix_range: range_max = translate_max_bound range_min = -1 * translate_max_bound else: range_max = pix_range[1] range_min = pix_range[0] if range_min >= 0: epsilons = np.minimum(translate_max_bound, epsilons) epsilons_ub = np.linspace( range_min, range_max, num=epsilons) epsilons_lb = [] elif range_max <= 0: epsilons = np.minimum(translate_max_bound, epsilons) epsilons_ub = [] epsilons_lb = np.linspace( range_max, range_min, num=epsilons) else: epsilons = np.minimum(2 * translate_max_bound, epsilons) epsilons_ub = np.linspace( 0, range_max, num=epsilons / 2 + 1)[1:] epsilons_lb = np.linspace( 0, range_min, num=epsilons / 2 + 1)[1:] else: epsilons_ub = epsilons epsilons_lb = [] epsilons_ub = epsilons_ub.astype(int) epsilons_lb = epsilons_lb.astype(int) upper_bound = 0 lower_bound = 0 if axis == 0: image_cv = np.transpose(image, (1, 2, 0)) elif axis == 2: image_cv = np.copy(image) else: raise ValueError('Invalid axis.') import cv2 print('Generating adversarial examples.') for idx, epsilon in enumerate(tqdm(epsilons_ub)): epsilon = int(epsilon) if translate_type == 'horizontal': M = np.float32([[1, 0, epsilon], [0, 1, 0]]) elif translate_type == 'vertical': M = np.float32([[1, 0, 0], [0, 1, epsilon]]) else: raise ValueError('Invalid translate_type') perturbed = cv2.warpAffine(image_cv, M, (img_width, img_height)) if axis == 0: perturbed = np.transpose(perturbed, (2, 0, 1)) _, is_adversarial = a.predictions(perturbed) if is_adversarial: epsilon_ub_idx = idx perturbed_ub = perturbed if abort_early or verify: break else: upper_bound = epsilon a.verifiable_bounds = (upper_bound, lower_bound) for idx, epsilon in enumerate(tqdm(epsilons_lb)): epsilon = int(epsilon) if translate_type == 'horizontal': M = np.float32([[1, 0, epsilon], [0, 1, 0]]) elif translate_type == 'vertical': M = np.float32([[1, 0, 0], [0, 1, epsilon]]) else: raise ValueError('Invalid translate_type') perturbed = cv2.warpAffine(image_cv, M, (img_width, img_height)) if axis == 0: perturbed = np.transpose(perturbed, (2, 0, 1)) _, is_adversarial = a.predictions(perturbed) if is_adversarial: epsilon_lb_idx = idx perturbed_lb = perturbed if abort_early or verify: break else: lower_bound = epsilon a.verifiable_bounds = (upper_bound, lower_bound) return @abstractmethod def _get_type(self, hw): raise NotImplementedError class HorizontalTranslationMetric(TranslationMetric): """Horizontally Translate the image until it is misclassified.""" def _get_type(self, hw): return 'horizontal', hw[1] class VerticalTranslationMetric(TranslationMetric): """Vertically Translate the image until it is misclassified.""" def _get_type(self, hw): return 'vertical', hw[0] ``` #### File: perceptron/defences/filters.py ```python import numpy as np from scipy import ndimage import cv2 class BinaryFilter(): """Binary filter as feature squeezer as described in [1]_. References ---------- .. [1] Weilin et: "Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. """ def __init__(self): pass def __call__(self, img_batch_np, threshold): """Squeeze image by binary filter Parameters ---------- img_batch_np : array Input image batch or image threshold : float Threshold for binarlize """ x_bin = np.maximum(np.sign(img_batch_np - threshold), 0) return x_bin class BinaryRandomFilter(): """Binary filter with randomness.""" def __init__(self): pass def __call__(self, img_batch_np, threshold, stddev=0.125): """Squeeze noise added image by binary filter. Parameters ---------- img_batch_np : array Input image batch or image threshold : float Threshold for binarlize stddev : float Standard deviation for gaussian nosie """ if stddev == 0.: rand_array = np.zeros(img_batch_np.shape) else: rand_array = np.random.normal(loc=0., scale=stddev, size=img_batch_np.shape) x_bin = np.maximum(np.sign(np.add(img_batch_np, rand_array) - threshold), 0) return x_bin class MedianFilter(): """Median filter as feature squeezer as described in [1]_. References ---------- .. [1] Weilin et: "Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. """ def __init__(self): pass def __call__(self, img_batch_np, width, height=-1): """Squeeze image by meadia filter Parameters ---------- img_batch_np : array Input image batch or image width : int The width of the sliding window (number of pixels) height : int The height of the window. The same as width by default. """ if height == -1: height = width x_mid = ndimage.filters.median_filter(img_batch_np, size=(1, width, height, 1), mode='reflect' ) return x_mid ``` #### File: models/detection/keras_yolov3.py ```python from __future__ import absolute_import import numpy as np import logging import os from perceptron.models.base import DifferentiableModel from perceptron.utils.criteria.detection import TargetClassMiss, RegionalTargetClassMiss from keras import backend as K import keras class KerasYOLOv3Model(DifferentiableModel): """Create a :class:`Model` instance from a `Keras` model. Parameters ---------- model : `keras.model.Model` The `Keras` model that are loaded. bounds : tuple Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255). model_image_shape : tuple Tuple of the model input shape in format (height, width). channel_axis : int The index of the axis that represents color channels. num_scales : int Number of scales, if the model detects object at different distances. num_anchors : int Number of anchor boxes for each scale. num_classes : int Number of classes for which the model will output predictions. max_boxes : int The maximum number of boxes allowed in the prediction output. anchors_path : str The path to the file containing anchor box coordinates. classes_path : str The path to the file containing class names. score : float The score threshold for considering a box as containing objects. iou : float The intersection over union (IoU) threshold. preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of input; we first substract the first element of preprocessing from the input and then divide the input by the second element. """ def __init__( self, model, bounds, model_image_shape=(416, 416), channel_axis=3, num_scales=3, num_anchors=3, num_classes=80, max_boxes=20, anchors_path='yolov3_anchors.txt', classes_path='coco_classes.txt', score=0.3, iou=0.45, preprocessing=(0, 1)): super(KerasYOLOv3Model, self).__init__(bounds=bounds, channel_axis=channel_axis, preprocessing=preprocessing) # Check if model data files exist. model_data_path = os.path.join( os.path.dirname(__file__), '../../zoo/yolov3/model_data/') model_input = model.input model_output = model.output # model_output should be list of ndarrays. assert len(model_output) == num_scales, \ "number of scales doesn't match model output" logits_per_grid = model_output[0].shape[-1] assert (num_classes + 5) * num_anchors == logits_per_grid, \ "number of logits per grid cell doesn't match model output" self._task = 'det' self._model_image_shape = model_image_shape self._num_classes = num_classes self._num_scales = num_scales self._num_anchors = num_anchors self._classes_path = os.path.join(model_data_path, classes_path) self._class_names = self.get_class() self._anchors_path = os.path.join(model_data_path, anchors_path) self._anchors = self._get_anchors() self._score = score self._iou = iou self._max_boxes = max_boxes _boxes, _box_scores, _box_confidence_logits, \ _box_class_probs_logits, _box_coord_logits = self._gather_feats( model_output, self._anchors, self._num_classes, self._model_image_shape) boxes, scores, classes = self._eval_pred( _boxes, _box_scores, self._num_classes, self._max_boxes, self._score, self._iou) # For attack use only. target_class = K.placeholder(dtype='int32') tgt_cls_loss = self._target_class_loss( target_class, _box_scores, _box_class_probs_logits) tgt_cls_gradient = K.gradients(tgt_cls_loss, model_input) tgt_cls_gradient = tgt_cls_gradient[0] tgt_cls_gradient = K.squeeze(tgt_cls_gradient, axis=0) self._batch_gather_feats_fn = K.function( [model_input], [_boxes, _box_scores, _box_confidence_logits, _box_class_probs_logits, _box_coord_logits]) self._batch_pred_fn = K.function( [_boxes, _box_scores], [boxes, scores, classes] ) self._tgt_cls_bw_grad_fn = K.function( [target_class, model_input], [tgt_cls_loss, tgt_cls_gradient] ) self._tgt_cls_pred_and_grad_fn = K.function( [model_input, target_class], [boxes, scores, classes, tgt_cls_loss, tgt_cls_gradient] ) def get_class(self): classes_path = os.path.expanduser(self._classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self._anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def num_classes(self): """Return the number of classes.""" return self._num_classes def class_names(self): """Return the class names as list.""" return self._class_names def model_task(self): """Return the task of the model: classification of detection.""" return self._task def batch_predictions(self, images): """Batch prediction of images. Parameters ---------- images : `numpy.ndarray` The input image in [b, h, n, c] ndarry format. Returns ------- list List of batch prediction resutls. Each element is a dictionary containing: {'boxes', 'scores', 'classes} """ px, _ = self._process_input(images) _boxes, _box_scores, _box_confidence_logits, \ _box_class_probs_logits, _box_coord_logits = \ self._batch_gather_feats_fn([px]) boxes, scores, classes = self._batch_pred_fn( [_boxes, _box_scores]) predictions = [] for i in range(len(boxes)): num = (scores[i] > 0.).sum() pred = {} pred['boxes'] = boxes[i][:num].tolist() pred['scores'] = scores[i][:num].tolist() pred['classes'] = classes[i][:num].tolist() predictions.append(pred) assert len(predictions) == images.shape[0], "batch size doesn't match." return predictions def predictions_and_gradient(self, image, criterion): """ Returns both predictions and gradients, and potentially loss w.r.t. to certain criterion. """ input_shape = image.shape px, dpdx = self._process_input(image) if isinstance(criterion, TargetClassMiss) or \ isinstance(criterion, RegionalTargetClassMiss): boxes, scores, classes, loss, gradient =\ self._tgt_cls_pred_and_grad_fn( [px[np.newaxis], criterion.target_class()]) else: raise NotImplementedError prediction = {} num = (scores[0] > 0.).sum() prediction['boxes'] = boxes[0][:num].tolist() prediction['scores'] = scores[0][:num].tolist() prediction['classes'] = classes[0][:num].tolist() gradient = self._process_gradient(dpdx, gradient) assert gradient.shape == input_shape return prediction, loss, gradient, def backward(self, target_class, image): """Get gradient with respect to the image.""" px, dpdx = self._process_input(image) loss, gradient = self._tgt_cls_bw_grad_fn([ target_class, px[np.newaxis], ]) gradient = self._process_gradient(dpdx, gradient) return loss, gradient def _gather_feats( self, yolo_outputs, anchors, num_classes, image_shape): """Evaluate model output to get _boxes and _boxes_scores logits. """ num_layers = len(yolo_outputs) anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] \ if num_layers == 3 else [[3, 4, 5], [1, 2, 3]] # default setting input_shape = K.shape(yolo_outputs[0])[1:3] * 32 batch_size = K.shape(yolo_outputs[0])[0] boxes = [] box_scores = [] box_coord_logits = [] box_confidence_logits = [] box_class_probs_logits = [] for l in range(num_layers): _boxes, _box_scores, _box_coord_logits, \ _box_confidence_logits, _box_class_probs_logits =\ self._boxes_and_scores( yolo_outputs[l], anchors[anchor_mask[l]], num_classes, input_shape, image_shape, batch_size, verbose=True) boxes.append(_boxes) box_scores.append(_box_scores) box_coord_logits.append(_box_coord_logits) box_confidence_logits.append(_box_confidence_logits) box_class_probs_logits.append(_box_class_probs_logits) boxes = K.concatenate(boxes, axis=1) # [batch_size, num_boxes, 4] box_scores = K.concatenate(box_scores, axis=1) box_coord_logits = K.concatenate(box_coord_logits, axis=1) box_confidence_logits = K.concatenate(box_confidence_logits, axis=1) box_class_probs_logits = K.concatenate(box_class_probs_logits, axis=1) return boxes, box_scores, box_confidence_logits, \ box_class_probs_logits, box_coord_logits def _target_class_loss( self, target_class, box_scores, box_class_probs_logits): """ Evaluate target_class_loss w.r.t. the input. """ box_scores = K.squeeze(box_scores, axis=0) box_class_probs_logits = K.squeeze(box_class_probs_logits, axis=0) import tensorflow as tf boi_idx = tf.where(box_scores[:, target_class] > self._score) loss_box_class_conf = tf.reduce_mean( tf.gather(box_class_probs_logits[:, target_class], boi_idx)) # Avoid the propagation of nan return tf.cond( tf.is_nan(loss_box_class_conf), lambda: tf.constant(0.), lambda: loss_box_class_conf) def _eval_pred( self, boxes, box_scores, num_classes, max_boxes=20, score_threshold=.6, iou_threshold=.5): """ Evaluate logits for boxes and scores to final boxes, class, scores results """ import tensorflow as tf def process_batch(params): boxes, box_scores = params mask = box_scores >= score_threshold max_boxes_tensor = K.constant(max_boxes, dtype='int32') boxes_ = [] scores_ = [] classes_ = [] for c in range(num_classes): # TODO: use keras backend instead of tf. class_boxes = tf.boolean_mask(boxes, mask[:, c]) class_box_scores = tf.boolean_mask( box_scores[:, c], mask[:, c]) nms_index = tf.image.non_max_suppression( class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold) class_boxes = K.gather(class_boxes, nms_index) class_box_scores = K.gather(class_box_scores, nms_index) classes = K.ones_like(class_box_scores, 'int32') * c boxes_.append(class_boxes) scores_.append(class_box_scores) classes_.append(classes) boxes_ = K.concatenate(boxes_, axis=0) scores_ = K.concatenate(scores_, axis=0) classes_ = K.concatenate(classes_, axis=0) pad_len = max_boxes - tf.shape(boxes_)[0] pad_boxes = tf.zeros([pad_len, 4], dtype=tf.float32) pad_scores = tf.zeros(pad_len, dtype=tf.float32) pad_classes = tf.zeros(pad_len, dtype=tf.int32) boxes_ = tf.concat([boxes_, pad_boxes], axis=0) scores_ = tf.concat([scores_, pad_scores], axis=0) classes_ = tf.concat([classes_, pad_classes], axis=0) return boxes_, scores_, classes_ boxes_, scores_, classes_ = tf.map_fn( process_batch, (boxes, box_scores), dtype=(tf.float32, tf.float32, tf.int32)) return boxes_, scores_, classes_ def _boxes_and_scores( self, feats, anchors, num_classes, input_shape, image_shape, batch_size, verbose=False): """ Convert Conv layer output to boxes. Multiply box_confidence with class_confidence to get real box_scores for each class. Parameters ---------- feats : `Tensor` Elements in the output list from `K.model.output`, shape = (N, 13, 13, 255). anchors : list anchors. num_classes : int num of classes. input_shape: tuple input shape obtained from model output grid information. image_shape: tuple placeholder for ORIGINAL image data shape. """ if verbose is True: box_xy, box_wh, box_confidence, box_class_probs, \ box_coord_logits, box_confidence_logits, \ box_class_probs_logits = self._model_head( feats, anchors, num_classes, input_shape, batch_size, verbose=verbose) else: box_xy, box_wh, box_confidence, box_class_probs = self._model_head( feats, anchors, num_classes, input_shape, batch_size) boxes = self._correct_boxes( box_xy, box_wh, input_shape, image_shape) boxes = K.reshape(boxes, [batch_size, -1, 4]) box_scores = box_confidence * box_class_probs box_scores = K.reshape(box_scores, [batch_size, -1, num_classes]) if verbose is True: box_coord_logits = K.reshape( box_coord_logits, [batch_size, -1, 4]) box_confidence_logits = K.reshape( box_confidence_logits, [batch_size, -1]) box_class_probs_logits = K.reshape( box_class_probs_logits, [batch_size, -1, num_classes]) return boxes, box_scores, box_coord_logits,\ box_confidence_logits, box_class_probs_logits return boxes, box_scores def _model_head( self, feats, anchors, num_classes, input_shape, batch_size, calc_loss=False, verbose=False): """Convert final layer features to bounding box parameters. No threshold or nms applied yet. Args: feats : `Tensor` Elements in the output list from K.model.output: shape = (N, 13, 13, 255) anchors : list anchors. num_classes : int num of classes. input_shape : tuple input shape obtained from model output grid information. Returns: Breaking the (num_class + 5) output logits into box_xy, box_wh, box_confidence, and box_class_probs. """ num_anchors = len(anchors) # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = K.reshape( K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] # height, width grid_y = K.tile( K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile( K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) feats = K.reshape( feats, [-1, batch_size, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # Adjust preditions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) /\ K.cast(grid_shape[::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor /\ K.cast(input_shape[::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:]) if calc_loss is True: return grid, feats, box_xy, box_wh if verbose is True: # In verbose mode, return logits BEFORE sigmoid activation box_coord_logits = feats[..., :4] box_confidence_logits = feats[..., 4: 5] box_class_probs_logits = feats[..., 5:] return box_xy, box_wh, box_confidence, box_class_probs, \ box_coord_logits, box_confidence_logits, \ box_class_probs_logits return box_xy, box_wh, box_confidence, box_class_probs def _correct_boxes( self, box_xy, box_wh, input_shape, image_shape): """Get corrected boxes, which are scaled to original shape.""" box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] input_shape = K.cast(input_shape, K.dtype(box_yx)) image_shape = K.cast(image_shape, K.dtype(box_yx)) new_shape = K.round(image_shape * K.min(input_shape / image_shape)) offset = (input_shape - new_shape) / 2. / input_shape scale = input_shape / new_shape box_yx = (box_yx - offset) * scale box_hw *= scale box_mins = box_yx - (box_hw / 2.) box_maxes = box_yx + (box_hw / 2.) boxes = K.concatenate([ box_mins[..., 0:1], # y_min box_mins[..., 1:2], # x_min box_maxes[..., 0:1], # y_max box_maxes[..., 1:2] # x_max ]) # Scale boxes back to original image shape. boxes *= K.concatenate([image_shape, image_shape]) return boxes ``` #### File: perceptron/tests/test_attack_carlini_wagner.py ```python from __future__ import absolute_import # To be removed later import sys sys.path.append('/workspace/projects/baidu/aisec/perceptron') from perceptron.utils.criteria.classification import Misclassification from perceptron.utils.image import imagenet_example from perceptron.utils.image import load_image from perceptron.attacks import CarliniWagnerL2Attack as Attack import numpy as np def test_untargeted_vgg16(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) vgg16 = models.vgg16(pretrained=True).eval() if torch.cuda.is_available(): vgg16 = vgg16.cuda() model = PyTorchModel( vgg16, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) print(image.shape) adversarial = attack(image, label, unpack=True) def test_untargeted_resnet18(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) resnet18 = models.resnet18(pretrained=True).eval() if torch.cuda.is_available(): resnet18 = resnet18.cuda() model = PyTorchModel( resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial = attack(image, label, unpack=True) if __name__ == "__main__": image = load_image( shape=(224, 224), data_format='channels_first', fname='car.png') image = image / 255. label = 644 test_untargeted_vgg16(image, label) ``` #### File: utils/adversarial/base.py ```python import numpy as np import numbers from abc import ABC from perceptron.utils.distances import MSE from perceptron.utils.distances import Distance class StopAttack(Exception): """Exception thrown to request early stopping of an attack if a given (optional!) threshold is reached. """ pass class Adversarial(ABC): """Defines the base class of an adversarial that should be found and stores the result. The :class:`Adversarial` class represents a single adversarial example for a given model, criterion and reference image. It can be passed to an adversarial attack to find the actual adversarial. Parameters ---------- model : a :class:`Model` instance The model that should be evaluated against the adversarial. criterion : a :class:`Criterion` instance The criterion that determines which images are adversarial. original_image : a :class:`numpy.ndarray` The original image to which the adversarial image should be as close as possible. original_pred : int(ClsAdversarial) or dict(DetAdversarial) The ground-truth predictions of the original image. distance : a :class:`Distance` class The measure used to quantify similarity between images. threshold : float or :class:`Distance` If not None, the attack will stop as soon as the adversarial perturbation has a size smaller than this threshold. Can be an instance of the :class:`Distance` class passed to the distance argument, or a float assumed to have the same unit as the the given distance. If None, the attack will simply minimize the distance as good as possible. Note that the threshold only influences early stopping of the attack; the returned adversarial does not necessarily have smaller perturbation size than this threshold; the `reached_threshold()` method can be used to check if the threshold has been reached. """ def __init__( self, model, criterion, original_image, original_pred=None, threshold=None, distance=MSE, verbose=False): self._model = model self._criterion = criterion self._original_image = original_image self._original_image_for_distance = original_image self._original_pred = original_pred self._distance = distance if threshold is not None and not isinstance(threshold, Distance): threshold = distance(value=threshold) self._threshold = threshold self.verbose = verbose self._best_adversarial = None self._best_distance = distance(value=np.inf) self._best_adversarial_output = None self._total_prediction_calls = 0 self._total_gradient_calls = 0 self._best_prediction_calls = 0 self._best_gradient_calls = 0 # used for attacks that can provide a verifiable bound self._verifiable_bounds = (0., 0.) # check if the original image is already adversarial try: self.predictions(original_image) except StopAttack: # if a threshold is specified and the original input is # misclassified, this can already cause a StopAttack # exception assert self._distance.value == 0. def _reset(self): self._best_adversarial = None self._best_distance = self._distance(value=np.inf) self._best_adversarial_output = None self._best_prediction_calls = 0 self._best_gradient_calls = 0 self.predictions(self._original_image) @property def verifiable_bounds(self): """The verifiable bounds obtained so far.""" return self._verifiable_bounds @verifiable_bounds.setter def verifiable_bounds(self, bounds): """The setter of verifiable bounds""" self._verifiable_bounds = bounds @property def image(self): """The best adversarial found so far.""" return self._best_adversarial @property def output(self): """The model predictions for the best adversarial found so far. None if no adversarial has been found. """ return self._best_adversarial_output @property def distance(self): """The distance of the adversarial input to the original input.""" return self._best_distance @property def original_image(self): """The original input.""" return self._original_image @property def original_pred(self): """The original label.""" return self._original_pred def set_distance_dtype(self, dtype): """Set the dtype of Distance.""" assert dtype >= self._original_image.dtype self._original_image_for_distance = self._original_image.astype( dtype, copy=False) def reset_distance_dtype(self): """Reset the dtype of Distance.""" self._original_image_for_distance = self._original_image def normalized_distance(self, image): """Calculates the distance of a given image to the original image. Parameters ---------- image : `numpy.ndarray` The image that should be compared to the original image. Returns ------- :class:`Distance` The distance between the given image and the original image. """ return self._distance( self._original_image_for_distance, image, bounds=self.bounds()) def reached_threshold(self): """Returns True if a threshold is given and the currently best adversarial distance is smaller than the threshold.""" return self._threshold is not None \ and self._best_distance <= self._threshold def target_class(self): """Interface to criterion.target_class for attacks. """ try: target_class = self._criterion.target_class() except AttributeError: target_class = None return target_class def num_classes(self): """Return number of classes.""" n = self._model.num_classes() assert isinstance(n, numbers.Number) return n def bounds(self): """Return bounds of model.""" min_, max_ = self._model.bounds() assert isinstance(min_, numbers.Number) assert isinstance(max_, numbers.Number) assert min_ < max_ return min_, max_ def in_bounds(self, input_): """Check if input is in bounds.""" min_, max_ = self.bounds() return min_ <= input_.min() and input_.max() <= max_ def channel_axis(self, batch): """ Interface to model.channel_axis for attacks. Parameters ---------- batch : bool Controls whether the index of the axis for a batch of images (4 dimensions) or a single image (3 dimensions) should be returned. """ axis = self._model.channel_axis() if not batch: axis = axis - 1 return axis def has_gradient(self): """ Returns true if _backward and _forward_backward can be called by an attack, False otherwise. """ try: self._model.gradient self._model.predictions_and_gradient except AttributeError: return False else: return True def _new_adversarial(self, image, predictions, in_bounds): image = image.copy() # to prevent accidental inplace changes distance = self.normalized_distance(image) if in_bounds and self._best_distance > distance: # new best adversarial if self.verbose: print('new best adversarial: {}'.format(distance)) self._best_adversarial = image self._best_distance = distance self._best_adversarial_output = predictions self._best_prediction_calls = self._total_prediction_calls self._best_gradient_calls = self._total_gradient_calls if self.reached_threshold(): raise StopAttack return True, distance return False, distance def _is_adversarial(self, image, predictions, in_bounds): """Interface to `criterion.is_adversary()` that calls _new_adversarial if necessary. Parameters ---------- image : `numpy.ndarray` Image with shape (height, width, channels). predictions : :class:`numpy.ndarray` A vector with the predictions for some image. label : int The label of the unperturbed reference image. """ is_adversarial = self._criterion.is_adversarial( predictions, self._original_pred) assert isinstance(is_adversarial, bool) or \ isinstance(is_adversarial, np.bool_) if is_adversarial: is_best, distance = self._new_adversarial( image, predictions, in_bounds) else: is_best = False distance = None return is_adversarial, is_best, distance def predictions(self, image, strict=True, return_details=False): """Interface to model.predictions for attacks. Parameters ---------- image : `numpy.ndarray` Image with shape (height, width, channels). strict : bool Controls if the bounds for the pixel values should be checked. """ in_bounds = self.in_bounds(image) assert not strict or in_bounds self._total_prediction_calls += 1 predictions = self._model.predictions(image) is_adversarial, is_best, distance = self._is_adversarial( image, predictions, in_bounds) if return_details: return predictions, is_adversarial, is_best, distance else: return predictions, is_adversarial def batch_predictions( self, images, greedy=False, strict=True, return_details=False): """Interface to model.batch_predictions for attacks. Parameters ---------- images : `numpy.ndarray` Batch of images with shape (batch, height, width, channels). greedy : bool Whether the first adversarial should be returned. strict : bool Controls if the bounds for the pixel values should be checked. """ if strict: in_bounds = self.in_bounds(images) assert in_bounds self._total_prediction_calls += len(images) predictions = self._model.batch_predictions(images) assert predictions.ndim == 2 assert predictions.shape[0] == images.shape[0] if return_details: assert greedy adversarials = [] for i in range(len(predictions)): if strict: in_bounds_i = True else: in_bounds_i = self.in_bounds(images[i]) is_adversarial, is_best, distance = self._is_adversarial( images[i], predictions[i], in_bounds_i) if is_adversarial and greedy: if return_details: return predictions, is_adversarial, i, is_best, distance else: return predictions, is_adversarial, i adversarials.append(is_adversarial) if greedy: # pragma: no cover # no adversarial found if return_details: return predictions, False, None, False, None else: return predictions, False, None is_adversarial = np.array(adversarials) assert is_adversarial.ndim == 1 assert is_adversarial.shape[0] == images.shape[0] return predictions, is_adversarial def gradient(self, image=None, label=None, strict=True): """Interface to model.gradient for attacks. Parameters ---------- image : `numpy.ndarray` Image with shape (height, width, channels). Defaults to the original image. label : int Label used to calculate the loss that is differentiated. Defaults to the original label. strict : bool Controls if the bounds for the pixel values should be checked. """ raise NotImplementedError def predictions_and_gradient( self, image=None, label=None, strict=True, return_details=False): """Interface to model.predictions_and_gradient for attacks. Parameters ---------- image : `numpy.ndarray` Image with shape (height, width, channels). Defaults to the original image. label : int Label used to calculate the loss that is differentiated. Defaults to the original label. strict : bool Controls if the bounds for the pixel values should be checked. """ raise NotImplementedError def backward(self, gradient, image=None, strict=True): raise NotImplementedError ``` #### File: perceptron/utils/tools.py ```python from perceptron.utils.image import load_image import matplotlib.pyplot as plt class bcolors: RED = "\033[1;31m" BLUE = "\033[1;34m" CYAN = "\033[1;36m" GREEN = "\033[0;32m" RESET = "\033[0;0m" BOLD = "\033[;1m" REVERSE = "\033[;7m" HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def get_image_format(framework_name, model_name): """Return the correct input range and shape for target framework and model""" special_shape = {'pytorch':{'inception_v3': (299, 299)}, 'keras': {'xception': (299, 299), 'inception_v3':(299, 299), 'yolo_v3': (416, 416), 'ssd300': (300, 300)}} special_bound = {'keras':{'vgg16':(0, 255), 'vgg19':(0, 255), 'resnet50':(0, 255), 'ssd300': (0, 255)}, 'cloud': {'aip_antiporn': (0, 255), 'google_safesearch': (0, 255), 'google_objectdetection': (0, 255)}} default_shape = (224, 224) default_bound = (0, 1) if special_shape.get(framework_name, None): if special_shape[framework_name].get(model_name, None): default_shape = special_shape[framework_name][model_name] if special_bound.get(framework_name, None): if special_bound[framework_name].get(model_name, None): default_bound = special_bound[framework_name][model_name] return {'shape': default_shape, 'bounds': default_bound} def get_image(fname, framework_name, model_name, data_format): """Get the image suitable for target model.""" kwargs = get_image_format(framework_name, model_name) kwargs['data_format'] = data_format kwargs['fname'] = fname image = load_image(**kwargs) return image def get_model(model_name, framework, summary): """Get model dispatcher.""" switcher = { 'keras': lambda: _load_keras_model(model_name, summary), 'tensorflow': lambda: _load_keras_model(model_name, summary), 'pytorch': lambda: _load_pytorch_model(model_name, summary), 'cloud': lambda: _load_cloud_model(model_name, summary) } _get_model = switcher.get(framework, None) return _get_model() def get_distance(distance_name): """Get the distance metric.""" import perceptron.utils.distances as distances switcher = { 'mse': distances.MSE, 'mae': distances.MAE, 'linf': distances.Linf, "l0": distances.L0, "l2": distances.MSE } return switcher.get(distance_name, None) def get_metric(attack_name, model, criteria, distance): """Get the attack class object.""" import perceptron.benchmarks as metrics kwargs = { 'model': model, 'criterion': criteria, 'distance': distance, } switcher = { "carlini_wagner_l2": lambda x: metrics.CarliniWagnerL2Metric(**x), "carlini_wagner_linf": lambda x: metrics.CarliniWagnerLinfMetric(**x), "additive_gaussian_noise": lambda x: metrics.AdditiveGaussianNoiseMetric(**x), "additive_uniform_noise": lambda x: metrics.AdditiveUniformNoiseMetric(**x), "blend_uniform_noise": lambda x: metrics.BlendedUniformNoiseMetric(**x), "gaussian_blur": lambda x: metrics.GaussianBlurMetric(**x), "brightness": lambda x: metrics.BrightnessMetric(**x), "contrast_reduction": lambda x: metrics.ContrastReductionMetric(**x), "motion_blur": lambda x: metrics.MotionBlurMetric(**x), "rotation": lambda x: metrics.RotationMetric(**x), "salt_and_pepper_noise": lambda x: metrics.SaltAndPepperNoiseMetric(**x), "spatial": lambda x: metrics.SpatialMetric(**x), "contrast": lambda x: metrics.ContrastReductionMetric(**x), "horizontal_translation": lambda x: metrics.HorizontalTranslationMetric(**x), "vertical_translation": lambda x: metrics.VerticalTranslationMetric(**x) } _init_attack = switcher.get(attack_name, None) attack = _init_attack(kwargs) return attack def get_criteria(criteria_name, target_class=None): """Get the adversarial criteria.""" import perceptron.utils.criteria as criteria switcher = { "misclassification": lambda: criteria.Misclassification(), "confident_misclassification": lambda: criteria.ConfidentMisclassification(), "topk_misclassification": lambda: criteria.TopKMisclassification(10), "target_class": lambda:criteria.TargetClass(target_class), "original_class_probability": lambda:criteria.OriginalClassProbability(), "target_class_probability": lambda:criteria.TargetClassProbability(target_class), "target_class_miss_google": lambda:criteria.TargetClassMissGoogle(target_class), "weighted_ap": lambda:criteria.WeightedAP(), "misclassification_antiporn": lambda:criteria.MisclassificationAntiPorn(), "misclassification_safesearch": lambda:criteria.MisclassificationSafeSearch(), "target_class_miss": lambda:criteria.TargetClassMiss(target_class), } return switcher.get(criteria_name, None)() def _load_keras_model(model_name, summary): import keras.applications as models switcher = { 'xception': lambda: models.xception.Xception(weights='imagenet'), 'vgg16': lambda: models.vgg16.VGG16(weights='imagenet'), 'vgg19': lambda: models.vgg19.VGG19(weights='imagenet'), "resnet50": lambda: models.resnet50.ResNet50(weights='imagenet'), "inception_v3": lambda: models.inception_v3.InceptionV3(weights='imagenet'), "yolo_v3": lambda: _load_yolov3_model(), "ssd300": lambda: _load_ssd300_model(), "retina_resnet_50": lambda: _load_retinanet_resnet50_model() } _load_model = switcher.get(model_name, None) _model = _load_model() from perceptron.models.classification.keras import KerasModel as ClsKerasModel from perceptron.models.detection.keras_ssd300 import KerasSSD300Model from perceptron.models.detection.keras_yolov3 import KerasYOLOv3Model from perceptron.models.detection.keras_retina_resnet50 import KerasResNet50RetinaNetModel import numpy as np format = get_image_format('keras', model_name) if format['bounds'][1] == 1: mean = np.array([0.485, 0.456, 0.406]).reshape((1, 1, 3)) std = np.array([0.229, 0.224, 0.225]).reshape((1, 1, 3)) preprocessing = (mean, std) else: preprocessing = (np.array([104, 116, 123]), 1) switcher = { 'yolo_v3': lambda x: KerasYOLOv3Model(x, bounds=(0, 1)), 'ssd300': lambda x: KerasSSD300Model(x, bounds=(0, 255)), 'retina_resnet_50': lambda x: KerasResNet50RetinaNetModel(None, bounds=(0, 255)), } _wrap_model = switcher.get( model_name, lambda x: ClsKerasModel(x, bounds=format['bounds'], preprocessing=preprocessing)) kmodel = _wrap_model(_model) return kmodel def _load_cloud_model(model_name, summary): import perceptron.models.classification.cloud as models switcher = { 'aip_antiporn': lambda: _load_antiporn_model(), "google_safesearch": lambda: models.GoogleSafeSearchModel(), "google_objectdetection": lambda: models.GoogleObjectDetectionModel(), } _load_model = switcher.get(model_name, None) cmodel = _load_model() return cmodel def _load_pytorch_model(model_name, summary): import torchvision.models as models switcher = { 'alexnet': lambda: models.alexnet(pretrained=True).eval(), "vgg11": lambda: models.vgg11(pretrained=True).eval(), "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(), "vgg13": lambda: models.vgg13(pretrained=True).eval(), "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(), "vgg16": lambda: models.vgg16(pretrained=True).eval(), "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(), "vgg19": lambda: models.vgg19(pretrained=True).eval(), "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(), "resnet18": lambda: models.resnet18(pretrained=True).eval(), "resnet34": lambda: models.resnet34(pretrained=True).eval(), "resnet50": lambda: models.resnet50(pretrained=True).eval(), "resnet101": lambda: models.resnet101(pretrained=True).eval(), "resnet152": lambda: models.resnet152(pretrained=True).eval(), "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(), "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(), "densenet121": lambda: models.densenet121(pretrained=True).eval(), "densenet161": lambda: models.densenet161(pretrained=True).eval(), "densenet201": lambda: models.densenet201(pretrained=True).eval(), "inception_v3": lambda: models.inception_v3(pretrained=True).eval(), } _load_model = switcher.get(model_name, None) _model = _load_model() import torch if torch.cuda.is_available(): _model = _model.cuda() from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel import numpy as np mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) pmodel = ClsPyTorchModel( _model, bounds=( 0, 1), num_classes=1000, preprocessing=( mean, std)) return pmodel def _load_yolov3_model(): from perceptron.zoo.yolov3.model import YOLOv3 model = YOLOv3() return model def _load_ssd300_model(): from perceptron.zoo.ssd_300.keras_ssd300 import SSD300 model = SSD300() return model def _load_retinanet_resnet50_model(): from perceptron.models.detection.keras_retina_resnet50 import KerasResNet50RetinaNetModel model = KerasResNet50RetinaNetModel() return model def _load_antiporn_model(): from perceptron.models.classification.cloud import AipAntiPornModel appId = '15064794' apiKey = '3R9pevnY2s077mCrzXP1Ole5' secretKey = "<KEY>" credential = (appId, apiKey, secretKey) model = AipAntiPornModel(credential) return model # plot the images def plot_image(adversary, title=None, figname='compare.png') : prev = adversary.original_image after = adversary.image import numpy as np if prev.shape[0] == 3 : prev = np.transpose(prev, (1, 2, 0)) after = np.transpose(after, (1, 2, 0)) max_value = 255 if prev.max() > 1 else 1 diff = np.absolute(prev - after) scale = max_value / diff.max() diff = diff * scale if max_value == 255: prev = prev.astype('uint8') after = after.astype('uint8') diff = diff.astype('uint8') fig, (ax1, ax2, ax3) = plt.subplots(1, 3) plt.axis('off') ax1.imshow(prev) ax1.set_title('Origin') ax1.axis('off') ax2.imshow(after) ax2.set_title('Adversary') ax2.axis('off') ax3.imshow(diff) ax3.set_title('Diff * %.1f' % scale) ax3.axis('off') if title: fig.suptitle(title, fontsize=12, fontweight='bold', y=0.80) # in case you do not have GUI interface plt.savefig(figname, bbox_inches='tight') plt.show() def plot_image_objectdetection(adversary, kmodel, bounds=(0, 1), title=None, figname='compare.png') : from perceptron.utils.image import draw_letterbox pred_ori = kmodel.predictions(adversary.original_image) pred_adv = kmodel.predictions(adversary.image) class_names = kmodel.get_class() ori_image = draw_letterbox(adversary.original_image, pred_ori, class_names=class_names, bounds=bounds) adv_image = draw_letterbox(adversary.image, pred_adv, class_names=class_names, bounds=bounds) import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2) plt.axis('off') ax1.imshow(ori_image) ax1.set_title('Origin') ax1.axis('off') ax2.imshow(adv_image) ax2.set_title('Adversary') ax2.axis('off') if title : fig.suptitle(title, fontsize=12, fontweight='bold', y=0.9) # in case you do not have GUI interface plt.savefig(figname, bbox_inches='tight', dpi=1000) plt.show() ``` #### File: zoo/yolov3/model.py ```python from functools import wraps from functools import reduce import numpy as np import tensorflow as tf from keras import backend as K from keras.layers import Conv2D from keras.layers import Add from keras.layers import ZeroPadding2D from keras.layers import UpSampling2D from keras.layers import Concatenate from keras.layers import MaxPooling2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.layers import Input from keras.regularizers import l2 def YOLOv3(num_anchors=3, weight_file="yolov3.h5", num_classes=80): from perceptron.utils.func import maybe_download_model_data model = yolo_body(Input(shape=(None, None, 3)), num_anchors, num_classes) weight_fpath = maybe_download_model_data( weight_file, 'https://perceptron-benchmark.s3-us-west-1.amazonaws.com/models/coco/yolov3.h5') model.load_weights(weight_fpath) return model def compose(*funcs): """Compose arbitrarily many functions, evaluated left to right. Reference: https://mathieularose.com/function-composition-in-python/ """ # return lambda x: reduce(lambda v, f: f(v), funcs, x) if funcs: return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) else: raise ValueError('Composition of empty sequence not supported.') @wraps(Conv2D) def DarknetConv2D(*args, **kwargs): """Wrapper to set Darknet parameters for Convolution2D.""" darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)} darknet_conv_kwargs['padding'] = 'valid' if \ kwargs.get('strides') == (2, 2) else 'same' darknet_conv_kwargs.update(kwargs) return Conv2D(*args, **darknet_conv_kwargs) def DarknetConv2D_BN_Leaky(*args, **kwargs): """Darknet Convolution2D followed by BatchNormalization and LeakyReLU.""" no_bias_kwargs = {'use_bias': False} no_bias_kwargs.update(kwargs) return compose( DarknetConv2D(*args, **no_bias_kwargs), BatchNormalization(), LeakyReLU(alpha=0.1)) def resblock_body(x, num_filters, num_blocks): '''A series of resblocks starting with a downsampling Convolution2D''' # Darknet uses left and top padding instead of 'same' mode x = ZeroPadding2D(((1, 0), (1, 0)))(x) x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x) for i in range(num_blocks): y = compose( DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)), DarknetConv2D_BN_Leaky(num_filters, (3, 3)))(x) x = Add()([x, y]) return x def darknet_body(x): '''Darknent body having 52 Convolution2D layers''' x = DarknetConv2D_BN_Leaky(32, (3, 3))(x) x = resblock_body(x, 64, 1) x = resblock_body(x, 128, 2) x = resblock_body(x, 256, 8) x = resblock_body(x, 512, 8) x = resblock_body(x, 1024, 4) return x def make_last_layers(x, num_filters, out_filters): '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer''' x = compose( DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)))(x) y = compose( DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D(out_filters, (1, 1)))(x) return x, y def yolo_body(inputs, num_anchors, num_classes): """Create YOLO_V3 model CNN body in Keras.""" darknet = Model(inputs, darknet_body(inputs)) x, y1 = make_last_layers( darknet.output, 512, num_anchors * (num_classes + 5)) x = compose( DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x) x = Concatenate()([x, darknet.layers[152].output]) x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5)) x = compose( DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x) x = Concatenate()([x, darknet.layers[92].output]) x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5)) return Model(inputs, [y1, y2, y3]) def tiny_yolo_body(inputs, num_anchors, num_classes): '''Create Tiny YOLO_v3 model CNN body in keras.''' x1 = compose( DarknetConv2D_BN_Leaky(16, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(32, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(64, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(128, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(256, (3, 3)))(inputs) x2 = compose( MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(512, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'), DarknetConv2D_BN_Leaky(1024, (3, 3)), DarknetConv2D_BN_Leaky(256, (1, 1)))(x1) y1 = compose( DarknetConv2D_BN_Leaky(512, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2) x2 = compose( DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x2) y2 = compose( Concatenate(), DarknetConv2D_BN_Leaky(256, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, x1]) return Model(inputs, [y1, y2]) ```
{ "source": "jiayuqiujq/OpenSecrets_Senators_Industries", "score": 3 }
#### File: src/OpenSecrets_Senators_Industries/OpenSecrets_Senators_Industries.py ```python from json.decoder import JSONDecodeError import pandas as pd import requests from bs4 import BeautifulSoup import lxml # Web-scrapping the OpenSecrets Website for the Top 20 Industries that have spent the most on Federal Lobbying def top_20_industries_ids(year='a'): """ Extracts the Top 20 Industries that have spent the most on Federal Lobbying from https://www.opensecrets.org/federal-lobbying/industries. Parameters ---------- year : str, optional Specific year (1998 - 2021) for which to retrieve the data for (the default is 'a' which would return the total amount of money spent on Federal Lobbying across all years from 1998 - 2021). Returns ------- pandas.DataFrame Dataframe containing the Top 20 Industries that have spent the most on Federal Lobbying, the amount of money they have each spent, and their unique Industry IDs. Examples -------- >>> top_20_industries_ids() [ Industry Total IDs 0 Pharmaceuticals/Health Products $4,990,257,367 H04 1 Insurance $3,210,878,113 F09 2 Electronics Mfg & Equip $2,795,736,767 B12 3 Electric Utilities $2,757,808,440 E08 4 Business Associations $2,623,983,096 N00 5 Oil & Gas $2,489,418,498 E01 6 Hospitals/Nursing Homes $2,025,651,797 H02 7 Misc Manufacturing & Distributing $2,008,839,171 N15 8 Education $1,902,258,320 W04 9 Securities & Investment $1,897,760,970 F07 10 Civil Servants/Public Officials $1,887,599,161 W03 11 Telecom Services $1,883,769,733 B09 12 Real Estate $1,874,450,800 F10 13 Air Transport $1,730,349,996 M01 14 Health Professionals $1,712,045,500 H01 15 Health Services/HMOs $1,405,134,830 H03 16 Automotive $1,322,462,732 M02 17 TV/Movies/Music $1,301,018,584 B02 18 Misc Issues $1,247,693,549 Q10 19 Defense Aerospace $1,232,991,613 D01 ] """ url = ('https://www.opensecrets.org/federal-lobbying/industries?cycle=' + str(year)) html = requests.get(url) soup = BeautifulSoup(html.text, 'html.parser') # Extracting all the URLs from the website urls = [] for link in soup.find_all('a'): urls.append(link.get('href')) # Extracting URLs that contain the unique industry IDs corresponding to each of the Top 20 url_ids = [url for url in urls if 'federal-lobbying/industries/summary' in url] url_ids_df = pd.DataFrame(url_ids) # Splitting the IDs from the rest of the URL ids = url_ids_df[0].str.split('id=') # Extracting list of unique industry IDs corresponding to each industry industry_id = [] for i in range(len(ids)): industry_id.append(ids[i][1]) # Extracting table of Top 20 Industries that have spent the most on Federal Lobbying along with the respective # amounts they have spent df = pd.read_html(html.text)[0][:20] # Adding a column to the table which contains the industry IDs corresponding to each Industry df['IDs'] = industry_id return df class ProPublicaAPIKey: """ All functions that require the ProPublica API Key. Attributes ---------- propublica_api_key: str ProPublica API Key to use ProPublica's Congress API. The API Key can be requested from https://www.propublica.org/datastore/api/propublica-congress-api. """ def __init__(self, propublica_api_key): self.propublica_api_key = propublica_api_key def senate_members(self, congress_sitting=117): """ Uses the ProPublica API to extract a list of Senators. Parameters ---------- congress_sitting: int, optional Allows the user to specify senators from which sitting of Congress (80-117) they would like information about (the default is 117, which would return all the senators in the 117th Congress). Returns ------- pandas.DataFrame Pandas DataFrame containing the names, state and CRP IDs of all senators in a particular sitting of Congress. Examples -------- >>> ProPublica = ProPublicaAPIKey('insert ProPublica API Key here') >>> ProPublica.senate_members() [ first_name middle_name last_name state crp_id 0 Tammy None Baldwin WI N00004367 1 John None Barrasso WY N00006236 2 Michael None Bennet CO N00030608 3 Marsha None Blackburn TN N00003105 4 Richard None Blumenthal CT N00031685 ... ... ... ... ... ... 97 Elizabeth None Warren MA N00033492 98 Sheldon None Whitehouse RI N00027533 99 Roger None Wicker MS N00003280 100 Ron None Wyden OR N00007724 101 Todd None Young IN N00030670 102 rows × 5 columns ] """ # Calling the ProPublica Congress API to extract information about senators in a particular sitting of Congress headers = {'X-API-Key': self.propublica_api_key} r = requests.get('https://api.propublica.org/congress/v1/' + str(congress_sitting) + '/senate/members.json', headers=headers) try: senate_members = r.json() senate_members_df = pd.DataFrame(senate_members['results'][0]['members']) # Selecting relevant columns to return new_cols = ['first_name', 'middle_name', 'last_name', 'state', 'crp_id'] result = senate_members_df[new_cols] return result except KeyError: print(f'Error: Unexpected content returned from API. Check if API Key is correct.') class OpenSecretsAPIKey: """ All functions that require the OpenSecrets API Key. Attributes ---------- opensecrets_api_key: str OpenSecrets API Key to use ProPublica's Congress API. The API Key can be requested from https://www.opensecrets.org/api/admin/index.php?function=signup. """ def __init__(self, opensecrets_api_key): self.opensecrets_api_key = opensecrets_api_key def top_senators_each_industry(self, propublica_api_key, industry_id='H04', **kwargs): """ Uses the OpenSecretsAPI and ProPublica API to provide the user with the senators who have received the most amount of funding from a particular industry. As the function makes as many calls as there are senators in a particular sitting of Congress, it may take a while to return the necessary results. Parameters ---------- propublica_api_key: class ProPublicaAPIKey The user's ProPublica API Key. See documentation on ProPublicaAPIKey. industry_id: str, optional Unique industry_id. Full list of industry IDs can be found at www.opensecrets.org/downloads/crp/CRP_IDs.xls. The user can also call top_20_industries_ids() to retrieve industry_ids. See documentation on top_20_industries_ids() (the default is 'H04', corresponding to Pharmaceuticals/Health Products industry). **kwargs : str, optional Extra arguments to 'propublica_api_key.senate_members'. See documentation on propublica_api_key.senate_members for possible arguments. Returns ------- pandas.DataFrame Pandas DataFrame with Senators ranked according to who has received the most amount of funding from a particular industry. Examples -------- >>> OpenSecrets = OpenSecretsAPIKey('insert OpenSecrets API Key here') >>> ProPublica = ProPublicaAPIKey('insert ProPublica API Key here') >>> OpenSecrets.top_senators_each_industry(ProPublica, industry_id = 'F09', congress_sitting = 116) [ cand_name cid cycle industry last_updated party state total 0 Casey, Bob N00027503 2018 Insurance 06/10/19 D Pennsylvania 357820.0 1 <NAME> N00043290 2018 Insurance 06/10/19 R Florida 328912.0 2 <NAME> N00003535 2018 Insurance 06/10/19 D Ohio 316800.0 3 <NAME> N00033982 2018 Insurance 06/10/19 R Arizona 294825.0 4 <NAME> N00004118 2018 Insurance 06/10/19 D Michigan 292400.0 ... ... ... ... ... ... ... ... ... 95 <NAME> N00013873 2018 Insurance 06/10/19 R Arkansas 3450.0 96 <NAME> N00031696 2018 Insurance 06/10/19 R Utah 3250.0 97 <NAME> N00006561 2018 Insurance 06/10/19 D New Mexico 1058.0 98 <NAME> N00009918 2018 Insurance 06/10/19 D Vermont 1015.0 99 <NAME> N00009920 2018 Insurance 06/10/19 R Alabama -5000.0 100 rows × 8 columns ] See Also -------- top_20_industries_ids() ProPublicaAPIKey """ # Extracting Senators' CRP_IDs senators_crp_id = propublica_api_key.senate_members(**kwargs)['crp_id'] # Initialising empty DataFrame for storing results result = pd.DataFrame() # for loop to retrieve the contribution received by each senator from the industry and storing them in DataFrame for senator_id in senators_crp_id: params = {'apikey': self.opensecrets_api_key, 'cid': senator_id, 'ind': industry_id, 'output': 'json'} r_opensecrets = requests.get('https://www.opensecrets.org/api/?method=candIndByInd&', params=params) # Passing calls that may return a null result as record is non-existent try: r_json = r_opensecrets.json() r_df = pd.DataFrame(r_json['response']['candIndus']) r_df_transpose = r_df.transpose() # Progressively building DataFrame by adding each successful call to the DataFrame result = pd.concat([result, r_df_transpose]) except JSONDecodeError: pass try: # Changing values in 'total' column from str to float for sorting later result['total'] = result['total'].astype(float) # Selecting relevant columns to return new_cols = ['cand_name', 'cid', 'cycle', 'industry', 'last_updated', 'party', 'state', 'total'] result = result.sort_values('total', ascending=False)[new_cols] result = result.reset_index(drop=True) return result except KeyError: print(f'Error: Unexpected content returned from API. Check if API Key is correct.') ```
{ "source": "jiayushe/hnr-2021", "score": 3 }
#### File: src/tests/test_utils.py ```python import os from utils import get_env_variable def test_get_env_variable_fail(): try: get_env_variable("not-existing-env") assert False, "Expected KeyError exception was skipped" except Exception: assert True, "Expected KeyError exception was raised" def test_get_env_variable_success(): os.environ["MY_ENV_VAR"] = "my-env-var" try: env_var = get_env_variable("MY_ENV_VAR") assert env_var == "my-env-var" assert not env_var == "wrong-var" except Exception: assert False ```
{ "source": "JiayuXu/leetcode-cn-answer", "score": 3 }
#### File: JiayuXu/leetcode-cn-answer/14.py ```python class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: if len(strs)==0: return "" if len(strs)==1: return strs[0] if strs[0]=="": return "" for i,a in enumerate(strs[0]): flag=True for s in strs: if i>=len(s) or a!=s[i]: flag=False break if not flag: return strs[0][:i] ``` #### File: JiayuXu/leetcode-cn-answer/1.py ```python class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: d={} for i,n in enumerate(nums): d_n=target-n if d_n in d: return [d[d_n],i] d[n]=i return [None,None] ``` #### File: JiayuXu/leetcode-cn-answer/70.py ```python class Solution: def climbStairs(self, n: int) -> int: if n==1: return 1 if n==2: return 2 l=[1,2] for i in range(2,n): l.append(l[i-1]+l[i-2]) return l.pop() ```
{ "source": "JiazeWang/grad-cam-pytorch", "score": 3 }
#### File: JiazeWang/grad-cam-pytorch/mgn.py ```python import copy import torch from torch import nn import torch.nn.functional as F from torchvision.models.resnet import resnet50, Bottleneck #def make_model(args): # return MGN(args) class ConvBlock(nn.Module): """Basic convolutional block: convolution + batch normalization + relu. Args (following http://pytorch.org/docs/master/nn.html#torch.nn.Conv2d): - in_c (int): number of input channels. - out_c (int): number of output channels. - k (int or tuple): kernel size. - s (int or tuple): stride. - p (int or tuple): padding. """ def __init__(self, in_c, out_c, k, s=1, p=0): super(ConvBlock, self).__init__() self.conv = nn.Conv2d(in_c, out_c, k, stride=s, padding=p) self.bn = nn.BatchNorm2d(out_c) def forward(self, x): return F.relu(self.bn(self.conv(x))) class SpatialAttn(nn.Module): """Spatial Attention (Sec. 3.1.I.1)""" def __init__(self): super(SpatialAttn, self).__init__() self.conv1 = ConvBlock(1, 1, 3, s=2, p=1) self.conv2 = ConvBlock(1, 1, 1) def forward(self, x): # global cross-channel averaging x = x.mean(1, keepdim=True) # 3-by-3 conv x = self.conv1(x) # bilinear resizing x = F.upsample(x, (x.size(2)*2, x.size(3)*2), mode='bilinear', align_corners=True) # scaling conv x = self.conv2(x) return x class ChannelAttn(nn.Module): """Channel Attention (Sec. 3.1.I.2)""" def __init__(self, in_channels, reduction_rate=16): super(ChannelAttn, self).__init__() assert in_channels%reduction_rate == 0 self.conv1 = ConvBlock(in_channels, in_channels // reduction_rate, 1) self.conv2 = ConvBlock(in_channels // reduction_rate, in_channels, 1) def forward(self, x): # squeeze operation (global average pooling) x = F.avg_pool2d(x, x.size()[2:]) # excitation operation (2 conv layers) x = self.conv1(x) x = self.conv2(x) return x class SoftAttn(nn.Module): """Soft Attention (Sec. 3.1.I) Aim: Spatial Attention + Channel Attention Output: attention maps with shape identical to input. """ def __init__(self, in_channels): super(SoftAttn, self).__init__() self.spatial_attn = SpatialAttn() self.channel_attn = ChannelAttn(in_channels) self.conv = ConvBlock(in_channels, in_channels, 1) def forward(self, x): y_spatial = self.spatial_attn(x) y_channel = self.channel_attn(x) y = y_spatial * y_channel y = torch.sigmoid(self.conv(y)) return y class HarmAttn(nn.Module): """Harmonious Attention (Sec. 3.1)""" def __init__(self, in_channels): super(HarmAttn, self).__init__() self.soft_attn = SoftAttn(in_channels) def forward(self, x): y_soft_attn = self.soft_attn(x) return y_soft_attn class MGN(nn.Module): def __init__(self): super(MGN, self).__init__() num_classes =739 num_feats = 256 resnet = resnet50(pretrained=True) self.backone = nn.Sequential( resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1, resnet.layer2, resnet.layer3[0], ) self.ha1 = HarmAttn(1024) res_conv4 = nn.Sequential(*resnet.layer3[1:]) res_g_conv5 = resnet.layer4 res_p_conv5 = nn.Sequential( Bottleneck(1024, 512, downsample=nn.Sequential(nn.Conv2d(1024, 2048, 1, bias=False), nn.BatchNorm2d(2048))), Bottleneck(2048, 512), Bottleneck(2048, 512)) res_p_conv5.load_state_dict(resnet.layer4.state_dict()) self.p1 = nn.Sequential(copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)) self.p2 = nn.Sequential(copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)) self.p3 = nn.Sequential(copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)) #if args.pool == 'max': #pool2d = nn.MaxPool2d #elif args.pool == 'avg': pool2d = nn.AvgPool2d #else: # raise Exception() self.maxpool_zg_p1 = pool2d(kernel_size=(24, 8)) self.maxpool_zg_p2 = pool2d(kernel_size=(24, 8)) self.maxpool_zg_p3 = pool2d(kernel_size=(24, 8)) self.maxpool_zp2 = pool2d(kernel_size=(12, 8)) self.maxpool_zp3 = pool2d(kernel_size=(8, 8)) reduction = nn.Sequential(nn.Conv2d(2048, num_feats, 1, bias=False), nn.BatchNorm2d(num_feats), nn.ReLU()) self._init_reduction(reduction) self.reduction_0 = copy.deepcopy(reduction) self.reduction_1 = copy.deepcopy(reduction) self.reduction_2 = copy.deepcopy(reduction) self.reduction_3 = copy.deepcopy(reduction) self.reduction_4 = copy.deepcopy(reduction) self.reduction_5 = copy.deepcopy(reduction) self.reduction_6 = copy.deepcopy(reduction) self.reduction_7 = copy.deepcopy(reduction) #self.fc_id_2048_0 = nn.Linear(2048, num_classes) self.fc_id_2048_0 = nn.Linear(num_feats, num_classes) self.fc_id_2048_1 = nn.Linear(num_feats, num_classes) self.fc_id_2048_2 = nn.Linear(num_feats, num_classes) self.fc_id_256_1_0 = nn.Linear(num_feats, num_classes) self.fc_id_256_1_1 = nn.Linear(num_feats, num_classes) self.fc_id_256_2_0 = nn.Linear(num_feats, num_classes) self.fc_id_256_2_1 = nn.Linear(num_feats, num_classes) self.fc_id_256_2_2 = nn.Linear(num_feats, num_classes) self.fc_g = nn.Linear(num_feats * 8, num_classes) self.fc_id_2048_0_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_2048_1_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_2048_2_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_256_1_0_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_256_1_1_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_256_2_0_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_256_2_1_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self.fc_id_256_2_2_w = nn.Sequential(nn.Linear(num_feats, 1), nn.Sigmoid()) self._init_fc(self.fc_id_2048_0) self._init_fc(self.fc_id_2048_1) self._init_fc(self.fc_id_2048_2) self._init_fc(self.fc_id_256_1_0) self._init_fc(self.fc_id_256_1_1) self._init_fc(self.fc_id_256_2_0) self._init_fc(self.fc_id_256_2_1) self._init_fc(self.fc_id_256_2_2) self._init_fc(self.fc_g) """ self._init_fc(self.fc_id_2048_0_w) self._init_fc(self.fc_id_2048_1_w) self._init_fc(self.fc_id_2048_2_w) self._init_fc(self.fc_id_256_1_0_w) self._init_fc(self.fc_id_256_1_1_w) self._init_fc(self.fc_id_256_2_0_w) self._init_fc(self.fc_id_256_2_1_w) self._init_fc(self.fc_id_256_2_2_w) """ @staticmethod def _init_reduction(reduction): # conv nn.init.kaiming_normal_(reduction[0].weight, mode='fan_in') #nn.init.constant_(reduction[0].bias, 0.) # bn nn.init.normal_(reduction[1].weight, mean=1., std=0.02) nn.init.constant_(reduction[1].bias, 0.) @staticmethod def _init_fc(fc): nn.init.kaiming_normal_(fc.weight, mode='fan_out') #nn.init.normal_(fc.weight, std=0.001) nn.init.constant_(fc.bias, 0.) def forward(self, x): x = self.backone(x) x_attention = self.ha1(x) #x_attn, x_theta = self.ha1(x) x = x * x_attention p1 = self.p1(x) p2 = self.p2(x) p3 = self.p3(x) zg_p1 = self.maxpool_zg_p1(p1) zg_p2 = self.maxpool_zg_p2(p2) zg_p3 = self.maxpool_zg_p3(p3) zp2 = self.maxpool_zp2(p2) z0_p2 = zp2[:, :, 0:1, :] z1_p2 = zp2[:, :, 1:2, :] zp3 = self.maxpool_zp3(p3) z0_p3 = zp3[:, :, 0:1, :] z1_p3 = zp3[:, :, 1:2, :] z2_p3 = zp3[:, :, 2:3, :] fg_p1 = self.reduction_0(zg_p1).squeeze(dim=3).squeeze(dim=2) fg_p2 = self.reduction_1(zg_p2).squeeze(dim=3).squeeze(dim=2) fg_p3 = self.reduction_2(zg_p3).squeeze(dim=3).squeeze(dim=2) f0_p2 = self.reduction_3(z0_p2).squeeze(dim=3).squeeze(dim=2) f1_p2 = self.reduction_4(z1_p2).squeeze(dim=3).squeeze(dim=2) f0_p3 = self.reduction_5(z0_p3).squeeze(dim=3).squeeze(dim=2) f1_p3 = self.reduction_6(z1_p3).squeeze(dim=3).squeeze(dim=2) f2_p3 = self.reduction_7(z2_p3).squeeze(dim=3).squeeze(dim=2) ''' l_p1 = self.fc_id_2048_0(zg_p1.squeeze(dim=3).squeeze(dim=2)) l_p2 = self.fc_id_2048_1(zg_p2.squeeze(dim=3).squeeze(dim=2)) l_p3 = self.fc_id_2048_2(zg_p3.squeeze(dim=3).squeeze(dim=2)) ''' l_p1 = self.fc_id_2048_0(fg_p1) l_p2 = self.fc_id_2048_1(fg_p2) l_p3 = self.fc_id_2048_2(fg_p3) l0_p2 = self.fc_id_256_1_0(f0_p2) l1_p2 = self.fc_id_256_1_1(f1_p2) l0_p3 = self.fc_id_256_2_0(f0_p3) l1_p3 = self.fc_id_256_2_1(f1_p3) l2_p3 = self.fc_id_256_2_2(f2_p3) #print("self.fc_id_2048_0_w(fg_p1).shape:",self.fc_id_2048_0_w(fg_p1).shape) #print("fg_p1.shape:", fg_p1.shape) lfg_p1 = self.fc_id_2048_0_w(fg_p1) * fg_p1 #print("lfg_p1.shape:", lfg_p1.shape) lfg_p2 = self.fc_id_2048_1_w(fg_p2) * fg_p2 lfg_p3 = self.fc_id_2048_2_w(fg_p3) * fg_p3 lf0_p2 = self.fc_id_256_1_0_w(f0_p2) * f0_p2 lf1_p2 = self.fc_id_256_1_1_w(f1_p2) * f1_p2 lf0_p3 = self.fc_id_256_2_0_w(f0_p3) * f0_p3 lf1_p3 = self.fc_id_256_2_1_w(f1_p3) * f1_p3 lf2_p3 = self.fc_id_256_2_2_w(f2_p3) * f2_p3 predict = torch.cat([lfg_p1, lfg_p2, lfg_p3, lf0_p2, lf1_p2, lf0_p3, lf1_p3, lf2_p3], dim=1) g1 = self.fc_g(predict) #predict = torch.cat([lfg_p1, lf0_p2, lf1_p2, lf0_p3, lf1_p3, lf2_p3], dim=1) #return predict return g1 ```
{ "source": "JiazeWang/Luna16", "score": 2 }
#### File: Luna16/model/net.py ```python import torch from torch import nn from configs import ANCHOR_SIZES class PostRes(nn.Module): def __init__(self, n_in, n_out, stride=1): super(PostRes, self).__init__() self.conv1 = nn.Conv3d(n_in, n_out, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm3d(n_out) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv3d(n_out, n_out, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm3d(n_out) if stride != 1 or n_out != n_in: self.shortcut = nn.Sequential( nn.Conv3d(n_in, n_out, kernel_size=1, stride=stride), nn.BatchNorm3d(n_out)) else: self.shortcut = None def forward(self, x): residual = x if self.shortcut is not None: residual = self.shortcut(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.preBlock = nn.Sequential( nn.Conv3d(1, 24, kernel_size=3, padding=1), nn.BatchNorm3d(24), nn.ReLU(inplace=True), nn.Conv3d(24, 24, kernel_size=3, padding=1), nn.BatchNorm3d(24), nn.ReLU(inplace=True)) num_blocks_forw = [2, 2, 3, 3] num_blocks_back = [3, 3] self.featureNum_forw = [24, 32, 64, 64, 64] self.featureNum_back = [128, 64, 64] for i in range(len(num_blocks_forw)): blocks = [] for j in range(num_blocks_forw[i]): if j == 0: blocks.append(PostRes(self.featureNum_forw[i], self.featureNum_forw[i + 1])) else: blocks.append(PostRes(self.featureNum_forw[i + 1], self.featureNum_forw[i + 1])) setattr(self, 'forw' + str(i + 1), nn.Sequential(*blocks)) for i in range(len(num_blocks_back)): blocks = [] for j in range(num_blocks_back[i]): if j == 0: if i == 0: addition = 3 else: addition = 0 blocks.append(PostRes(self.featureNum_back[i + 1] + self.featureNum_forw[i + 2] + addition, self.featureNum_back[i])) else: blocks.append(PostRes(self.featureNum_back[i], self.featureNum_back[i])) setattr(self, 'back' + str(i + 2), nn.Sequential(*blocks)) self.maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.unmaxpool1 = nn.MaxUnpool3d(kernel_size=2, stride=2) self.unmaxpool2 = nn.MaxUnpool3d(kernel_size=2, stride=2) self.path1 = nn.Sequential( nn.ConvTranspose3d(64, 64, kernel_size=2, stride=2), nn.BatchNorm3d(64), nn.ReLU(inplace=True)) self.path2 = nn.Sequential( nn.ConvTranspose3d(64, 64, kernel_size=2, stride=2), nn.BatchNorm3d(64), nn.ReLU(inplace=True)) self.drop = nn.Dropout3d(p=0.5, inplace=False) self.output = nn.Sequential(nn.Conv3d(self.featureNum_back[0], 64, kernel_size=1), nn.ReLU(), nn.Conv3d(64, 5 * len(ANCHOR_SIZES), kernel_size=1)) def forward(self, x, coord): out = self.preBlock(x) # 16 out_pool, indices0 = self.maxpool1(out) out1 = self.forw1(out_pool) # 32 out1_pool, indices1 = self.maxpool2(out1) out2 = self.forw2(out1_pool) # 64 out2_pool, indices2 = self.maxpool3(out2) out3 = self.forw3(out2_pool) # 96 out3_pool, indices3 = self.maxpool4(out3) out4 = self.forw4(out3_pool) # 96 rev3 = self.path1(out4) comb3 = self.back3(torch.cat((rev3, out3), 1)) # 96+96 rev2 = self.path2(comb3) comb2 = self.back2(torch.cat((rev2, out2, coord), 1)) # 64+64 comb2 = self.drop(comb2) out = self.output(comb2) size = out.size() out = out.view(out.size(0), out.size(1), -1) out = out.transpose(1, 2).contiguous().view(size[0], size[2], size[3], size[4], len(ANCHOR_SIZES), 5) return out ``` #### File: Luna16/prepare/_classes.py ```python import scipy.misc import numpy as np import SimpleITK as sitk from prepare.utility import get_segmented_lungs, get_augmented_cube from configs import RESOURCES_PATH, OUTPUT_PATH from glob import glob from skimage.measure import regionprops class CTScan(object): def __init__(self, seriesuid, centers, radii, clazz): self._seriesuid = seriesuid self._centers = centers paths = glob(f'''{RESOURCES_PATH}/*/{self._seriesuid}.mhd''') path = paths[0] self._ds = sitk.ReadImage(path) self._spacing = np.array(list(reversed(self._ds.GetSpacing()))) self._origin = np.array(list(reversed(self._ds.GetOrigin()))) self._image = sitk.GetArrayFromImage(self._ds) self._radii = radii self._clazz = clazz self._mask = None def preprocess(self): self._resample() self._segment_lung_from_ct_scan() self._normalize() self._zero_center() self._change_coords() def save_preprocessed_image(self): subdir = 'negatives' if self._clazz == 0 else 'positives' file_path = f'''preprocessed/{subdir}/{self._seriesuid}.npy''' np.save(f'{OUTPUT_PATH}/{file_path}', self._image) def get_info_dict(self): (min_z, min_y, min_x, max_z, max_y, max_x) = (None, None, None, None, None, None) for region in regionprops(self._mask): min_z, min_y, min_x, max_z, max_y, max_x = region.bbox assert (min_z, min_y, min_x, max_z, max_y, max_x) != (None, None, None, None, None, None) min_point = (min_z, min_y, min_x) max_point = (max_z, max_y, max_x) return {'seriesuid': self._seriesuid, 'radii': self._radii, 'centers': self._centers, 'spacing': list(self._spacing), 'lungs_bounding_box': [min_point, max_point], 'class': self._clazz} def _resample(self): spacing = np.array(self._spacing, dtype=np.float32) new_spacing = [1, 1, 1] imgs = self._image new_shape = np.round(imgs.shape * spacing / new_spacing) true_spacing = spacing * imgs.shape / new_shape resize_factor = new_shape / imgs.shape imgs = scipy.ndimage.interpolation.zoom(imgs, resize_factor, mode='nearest') self._image = imgs self._spacing = true_spacing def _segment_lung_from_ct_scan(self): result_img = [] result_mask = [] for slicee in self._image: rimg, rmsk = get_segmented_lungs(slicee) result_img.append(rimg) result_mask.append(rmsk) self._image = np.asarray(result_img) self._mask = np.asarray(result_mask, dtype=int) def _world_to_voxel(self, worldCoord): stretchedVoxelCoord = np.absolute(np.array(worldCoord) - np.array(self._origin)) voxelCoord = stretchedVoxelCoord / np.array(self._spacing) return voxelCoord.astype(int) def _get_world_to_voxel_coords(self, idx): return tuple(self._world_to_voxel(self._centers[idx])) def _get_voxel_coords(self): voxel_coords = [self._get_world_to_voxel_coords(j) for j in range(len(self._centers))] return voxel_coords def _change_coords(self): new_coords = self._get_voxel_coords() self._centers = new_coords def _normalize(self): MIN_BOUND = -1200 MAX_BOUND = 600. self._image = (self._image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) self._image[self._image > 1] = 1. self._image[self._image < 0] = 0. self._image *= 255. def _zero_center(self): PIXEL_MEAN = 0.25 * 256 self._image = self._image - PIXEL_MEAN class PatchMaker(object): def __init__(self, seriesuid: str, coords: list, radii: list, spacing: list, lungs_bounding_box: list, file_path: str, clazz: int): self._seriesuid = seriesuid self._coords = coords self._spacing = spacing self._radii = radii self._image = np.load(file=f'{file_path}') self._clazz = clazz self._lungs_bounding_box = lungs_bounding_box def _get_augmented_patch(self, idx, rot_id=None): return get_augmented_cube(img=self._image, radii=self._radii, centers=self._coords, spacing=tuple(self._spacing), rot_id=rot_id, main_nodule_idx=idx, lungs_bounding_box=self._lungs_bounding_box) def get_augmented_patches(self): radii = self._radii list_of_dicts = [] for i in range(len(self._coords)): times_to_sample = 1 if radii[i] > 15.: times_to_sample = 2 elif radii[i] > 20.: times_to_sample = 6 for j in range(times_to_sample): rot_id = int((j / times_to_sample) * 24 + np.random.randint(0, int(24 / times_to_sample))) img, radii2, centers, lungs_bounding_box, spacing, existing_nodules_in_patch = \ self._get_augmented_patch(idx=i, rot_id=rot_id) existing_radii = [radii2[i] for i in existing_nodules_in_patch] existing_centers = [centers[i] for i in existing_nodules_in_patch] subdir = 'negatives' if self._clazz == 0 else 'positives' file_path = f'''augmented/{subdir}/{self._seriesuid}_{i}_{j}.npy''' list_of_dicts.append( {'seriesuid': self._seriesuid, 'centers': existing_centers, 'sub_index': f'{i}_{j}', 'lungs_bounding_box': lungs_bounding_box, 'radii': existing_radii, 'class': self._clazz}) np.save(f'{OUTPUT_PATH}/{file_path}', img) return list_of_dicts ``` #### File: JiazeWang/Luna16/train.py ```python import random import torch import numpy as np import time import os from model.net import Net from model.loss import Loss from torch.autograd import Variable import itertools import pandas as pd from main.dataset import LunaDataSet from torch.utils.data import DataLoader from configs import VAL_PCT, TOTAL_EPOCHS, DEFAULT_LR, OUTPUT_PATH from glob import glob def get_lr(epoch): if epoch <= TOTAL_EPOCHS * 0.5: lr = DEFAULT_LR elif epoch <= TOTAL_EPOCHS * 0.8: lr = 0.1 * DEFAULT_LR else: lr = 0.01 * DEFAULT_LR return lr def train(data_loader, net, loss, epoch, optimizer, get_lr, save_dir='./models/'): print("****************training:*******************") start_time = time.time() net.train() lr = get_lr(epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr metrics = [] for i, (data, target, coord) in enumerate(data_loader): if torch.cuda.is_available(): data = Variable(data.cuda()) target = Variable(target.cuda()) coord = Variable(coord.cuda()) data = data.float() target = target.float() coord = coord.float() output = net(data, coord) loss_output = loss(output, target) optimizer.zero_grad() loss_output[0].backward() optimizer.step() loss_output[0] = loss_output[0].item() metrics.append(loss_output) break metrics = np.asarray(metrics, np.float32) if epoch % 10 == 0: net_state_dict = net.state_dict() for key in net_state_dict.keys(): net_state_dict[key] = net_state_dict[key].cpu() torch.save({ 'epoch': epoch, 'save_dir': save_dir, 'model_state_dict': net_state_dict, 'optimizer_state_dict': optimizer.state_dict(), 'loss': np.mean(metrics[:, 0])}, os.path.join(save_dir, f'''{epoch}.ckpt''')) end_time = time.time() print(f'''Epoch {epoch} (lr {lr})''') print(f'''Train: tpr {100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7])}, tnr {100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9])}, total pos {np.sum(metrics[:, 7])}, total neg {np.sum(metrics[:, 9])}, time {end_time - start_time}''') print(f'''loss {np.mean(metrics[:, 0])}, classify loss {np.mean(metrics[:, 1])}, regress loss {np.mean(metrics[:, 2])}, {np.mean(metrics[:, 3])}, {np.mean(metrics[:, 4])}, {np.mean(metrics[:, 5])}''') def validate(data_loader, net, loss): print("****************validation:*******************") start_time = time.time() net.eval() metrics = [] for i, (data, target, coord) in enumerate(data_loader): if torch.cuda.is_available(): data = Variable(data.cuda()) target = Variable(target.cuda()) coord = Variable(coord.cuda()) data = data.float() target = target.float() coord = coord.float() output = net(data, coord) loss_output = loss(output, target, train=False) loss_output[0] = loss_output[0].item() metrics.append(loss_output) break end_time = time.time() metrics = np.asarray(metrics, np.float32) print(f'''time {end_time - start_time}''') print(f'''loss {np.mean(metrics[:, 0])}, classify loss {np.mean(metrics[:, 1])}, regress loss {np.mean(metrics[:, 2])}, {np.mean(metrics[:, 3])}, {np.mean(metrics[:, 4])}, {np.mean(metrics[:, 5])}''') def run(load_last_checkpoint=False): save_dir = f'{OUTPUT_PATH}/models/' os.makedirs(save_dir, exist_ok=True) neural_net = Net() loss_fn = Loss() optim = torch.optim.SGD(neural_net.parameters(), DEFAULT_LR, momentum=0.9, weight_decay=1e-4) starting_epoch = 0 initial_loss = None if load_last_checkpoint: model_paths = glob(f'''{save_dir}*.ckpt''') model_names = [int(i.split('/')[-1][:-5]) for i in model_paths] latest_model_path = f'''{save_dir}{max(model_names)}.ckpt''' print('loading latest model from:', latest_model_path) checkpoint = torch.load(latest_model_path) neural_net.load_state_dict(checkpoint['model_state_dict']) optim.load_state_dict(checkpoint['optimizer_state_dict']) starting_epoch = checkpoint['epoch'] initial_loss = checkpoint['loss'] if torch.cuda.is_available(): neural_net = neural_net.cuda() loss_fn = loss_fn.cuda() print(f'''Training from epoch: {starting_epoch} towards: {TOTAL_EPOCHS}, with learning rate starting from: {get_lr(starting_epoch)}, and loss: {initial_loss}''') meta = pd.read_csv(f'{OUTPUT_PATH}/augmented_meta.csv', index_col=0).sample(frac=1).reset_index(drop=True) meta_group_by_series = meta.groupby(['seriesuid']).indices list_of_groups = [{i: list(meta_group_by_series[i])} for i in meta_group_by_series.keys()] random.Random(0).shuffle(list_of_groups) val_split = int(VAL_PCT * len(list_of_groups)) val_indices = list(itertools.chain(*[list(i.values())[0] for i in list_of_groups[:val_split]])) train_indices = list(itertools.chain(*[list(i.values())[0] for i in list_of_groups[val_split:]])) ltd = LunaDataSet(train_indices, meta) lvd = LunaDataSet(val_indices, meta) train_loader = DataLoader(ltd, batch_size=1, shuffle=False) val_loader = DataLoader(lvd, batch_size=1, shuffle=False) for ep in range(starting_epoch, TOTAL_EPOCHS): train(train_loader, neural_net, loss_fn, ep, optim, get_lr, save_dir=save_dir) validate(train_loader, neural_net, loss_fn) if __name__ == '__main__': run(load_last_checkpoint=False) ```
{ "source": "JiazeWang/lung_nodule_detector", "score": 2 }
#### File: dlung_v1/detector_viewer/xai_viewer.py ```python import sys import UI_util import numpy as np import cv2 import time import math from PyQt5 import QtCore, QtGui, QtWidgets from xai_viewer_ui import Ui_xai_viewer import torch import res18_split_focal as detect_model from torch.nn import DataParallel from torch.backends import cudnn from training.utils import * from training.split_combine import SplitComb #TODO: nodule view rescale feature add class Main_Window(QtWidgets.QMainWindow, Ui_xai_viewer): def __init__(self): super(Main_Window,self).__init__() ## set path and gpu number self.init_openpath = '/root/ssd_data/demo/' self.label_dirpath = '/root/ssd_data/luna_segment_attribute/' self.detect_resume = './detector.ckpt' self.gpu = '1' self.setupUi(self) self.actionOpen.triggered.connect(self.open) self.next_button.clicked.connect(self.next_slide) self.prev_button.clicked.connect(self.prev_slide) self.detect_button.clicked.connect(self.detect) self.horizontalScrollBar.valueChanged.connect(self.scroll_slide) self.listView.clicked.connect(self.click_nodule_list) self.resolution = np.array([1,1,1]) self.slice_index = 0 self.slice_num = 0 self.slice_width = 0 self.slice_height = 0 self.detect_net, self.split_comber, self.get_pbb \ = self.init_net() self.stride = 4 self.n_per_run = 1 self.detect_progressBar.setValue(0) self.fileopen_progressBar.setValue(0) self.file_dialog = QtWidgets.QFileDialog(directory=self.init_openpath) self.file_dialog.setNameFilters(["mhd files (*.mhd)", "Images (*.png *.jpg)", "All Files (*.*)"]) self.file_dialog.selectNameFilter("mhd files (*.mhd)") def keyPressEvent(self, qKeyEvent): print(qKeyEvent.key()) if qKeyEvent.key() == QtCore.Qt.Key_Z: print('Key_Left') self.prev_slide() elif qKeyEvent.key() == QtCore.Qt.Key_X: print('Key_Right') self.next_slide() #else: # super().keyPressEvent(qKeyEvent) def init_net(self): torch.manual_seed(0) torch.cuda.set_device(0) #model = import_module(self.model) detect_config, detect_net, _, get_pbb = detect_model.get_model() detect_checkpoint = torch.load(self.detect_resume) detect_net.load_state_dict(detect_checkpoint['state_dict']) n_gpu = setgpu(self.gpu) detect_net = detect_net.cuda() #loss = loss.cuda() cudnn.benchmark = True detect_net = DataParallel(detect_net) margin = 32 sidelen = 144 split_comber = SplitComb(sidelen, detect_config['max_stride'], detect_config['stride'], margin, detect_config['pad_value']) print ("init_net complete") return detect_net, split_comber, get_pbb def update_slide(self): img = np.array(self.slice_arr[self.slice_index], dtype=np.uint8) image = QtGui.QImage(img, self.slice_width, self.slice_height, self.slice_width * 3, QtGui.QImage.Format_RGB888) pixmap = QtGui.QPixmap.fromImage(image) self.slide_show_label.setAlignment(QtCore.Qt.AlignCenter) self.slide_show_label.setPixmap(pixmap.scaled(791, 481, QtCore.Qt.KeepAspectRatio)) self.slide_view_label.setText("Slide View " + str(self.slice_index) + "/" + str(self.slice_num - 1)) def update_slidebar(self): self.horizontalScrollBar.blockSignals(True) self.horizontalScrollBar.setValue(self.slice_index) self.horizontalScrollBar.blockSignals(False) def click_nodule_list(self, QModelIndex): print ("click_nodule_list", QModelIndex.row()) idx = QModelIndex.row() gt_num = 0 for i in range(len(self.lbb)): if (self.lbb[i][3] != 0): gt_num += 1 cand_num = len(self.world_pbb) if (idx > gt_num - 1): cand_idx = idx - gt_num if (int(round(self.world_pbb[cand_idx][1])) < 0): self.slice_index = 0 elif (int(round(self.world_pbb[cand_idx][1])) > (self.slice_num - 1)): self.slice_index = self.slice_num - 1 else: self.slice_index = int(round(self.world_pbb[cand_idx][1])) else: gt_idx = idx self.slice_index = int(round(self.lbb[gt_idx][0])) self.update_slide() self.update_slidebar() def detect(self): if (self.slice_num <= 0): return 0 s = time.time() data, coord2, nzhw = UI_util.split_data(np.expand_dims(self.sliceim_re, axis=0), self.stride, self.split_comber) self.detect_progressBar.setValue(10) self.gt_path = self.label_dirpath + self.pt_num + '_label.npy' labels = np.load(self.gt_path) e = time.time() self.lbb, self.world_pbb = UI_util.predict_nodule(self.detect_net, data, coord2, nzhw, labels, self.n_per_run, self.split_comber, self.get_pbb, self.detect_progressBar) nodule_items = [] for i in range(len(self.lbb)): if self.lbb[i][3] != 0: nodule_items.append('gt_' + str(i)) for i in range(len(self.world_pbb)): nodule_items.append('cand_' + str(i) + ' ' + str(round(self.world_pbb[i][0], 2))) model = QtGui.QStandardItemModel() for nodule in nodule_items: model.appendRow(QtGui.QStandardItem(nodule)) self.listView.setModel(model) print('elapsed time is %3.2f seconds' % (e - s)) UI_util.draw_nodule_rect(self.lbb, self.world_pbb, self.slice_arr) # attrbute_list = [] # for i in range(len(self.world_pbb)): # print (self.world_pbb[i][1:]) # print (np.shape(self.sliceim_re)) # crop_img, _ = UI_util.crop_nodule_arr_2ch(self.world_pbb[i][1:], np.expand_dims(self.sliceim_re, axis=0)) # output = UI_util.predict_attribute(self.attribute_net, crop_img.unsqueeze(0)) # print (output.cpu().data.numpy()) # attrbute_list.append(output.cpu().data.numpy()) #print ("/root/workspace/dsb2017_review/DSB2017_1/training/XAI_UI/test1" + str(i) + ".png") #print ("/root/workspace/dsb2017_review/DSB2017_1/training/XAI_UI/test2" + str(i) + ".png") #cv2.imwrite("/root/workspace/dsb2017_review/DSB2017_1/training/XAI_UI/test1" + str(i) + ".png", crop[0][24]) #cv2.imwrite("/root/workspace/dsb2017_review/DSB2017_1/training/XAI_UI/test2" + str(i) + ".png", crop[1][24]) # self.print_nodule_attribute(attrbute_list) self.detect_progressBar.setValue(100) #assert False self.update_slide() def open(self): #TODO: file type check self.file_dialog.exec_() fileName = self.file_dialog.selectedFiles() print("open ",fileName) if (fileName[0] == ''): return 0 self.pt_num = fileName[0].split('/')[-1].split('.mhd')[0] self.detect_progressBar.setValue(0) self.fileopen_progressBar.setValue(0) # self.tableWidget.setRowCount(0) # self.tableWidget.setColumnCount(0) self.file_name.setText(fileName[0] + " opening ...") model = QtGui.QStandardItemModel() self.listView.setModel(model) sliceim, origin, spacing, isflip = UI_util.load_itk_image(fileName[0]) self.fileopen_progressBar.setValue(10) if isflip: sliceim = sliceim[:, ::-1, ::-1] print('flip!') sliceim = UI_util.lumTrans(sliceim) self.sliceim_re, _ = UI_util.resample(sliceim, spacing, self.resolution, self.fileopen_progressBar, order=1) self.fileopen_progressBar.setValue(45) self.slice_arr = np.zeros((np.shape(self.sliceim_re)[0], np.shape(self.sliceim_re)[1], np.shape(self.sliceim_re)[2], 3)) self.slice_num = np.shape(self.sliceim_re)[0] self.slice_height = np.shape(self.sliceim_re)[1] self.slice_width = np.shape(self.sliceim_re)[2] for i in range(len(self.sliceim_re)): self.slice_arr[i] = cv2.cvtColor(self.sliceim_re[i], 8) self.fileopen_progressBar.setValue(45 + (45/len(self.sliceim_re))*(i+1)) print ("finish convert") self.slice_index = int(self.slice_num/2) img = np.array(self.slice_arr[self.slice_index], dtype=np.uint8) image = QtGui.QImage(img, self.slice_width, self.slice_height, self.slice_width*3, QtGui.QImage.Format_RGB888) self.update_slide() self.file_name.setText(fileName[0] + " open completed ...") self.horizontalScrollBar.setMaximum(self.slice_num - 1) self.horizontalScrollBar.setMinimum(0) self.update_slidebar() self.fileopen_progressBar.setValue(100) def next_slide(self): if self.slice_index < self.slice_num - 1: self.slice_index += 1 if (self.slice_num > 0): self.update_slide() self.update_slidebar() def prev_slide(self): if self.slice_index > 0: self.slice_index -= 1 if (self.slice_num > 0): self.update_slide() self.update_slidebar() def scroll_slide(self): if (self.slice_num > 0): self.slice_index = self.horizontalScrollBar.value() self.update_slide() if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) app.setApplicationName("XAI Viewer") window = Main_Window() window.show() app.exec_() ``` #### File: lung_nodule_detector/dlung_v1/generate_json.py ```python import numpy as np import sys from layers import nms, iou, acc import time import multiprocessing as mp import math import SimpleITK as sitk import os import pandas import csv import io from config import config import json def sigmoid(x): return 1 / (1 + math.exp(-x)) def convert_worldcoord(idx, pbb, filename): origin = np.load(filename+'_origin.npy') spacing = np.load(filename+'_spacing.npy') for label in pbb: pos_ori = label[1:4] radious_ori = label[4] #pos_ori = pos_ori + extendbox[:, 0] pos_ori = pos_ori * resolution / spacing #pos_ori = pos_ori * spacing #pos_ori = pos_ori + origin pos_ori = pos_ori[::-1] radious_ori = radious_ori / spacing[1] * resolution[1] radious_ori = radious_ori * spacing[1] label[1:4] = pos_ori label[4] = radious_ori label[0] = sigmoid(label[0]) return pbb def duplicate_file(in_filename): out_filename = in_filename + '.bin' byte_string = '' with open(in_filename, 'r') as infile: with open(out_filename, 'wb') as outfile: char = infile.read(1) byte = ord(char) # print byte byte_string += chr(byte) while char != "": char = infile.read(1) if char != "": byte = ord(char) # print byte byte_string += chr(byte) outfile.write(byte_string) outfile.close() def convert_json(input, output, thresholds=0.5): with open("record_folder_series.txt", 'r') as f: lines = f.readlines() patientdic = {} studydic = {} for line in lines: line = line.rstrip() line = line.split(" ") name = line[0] patientname = name.split("/")[1] studyname = name[8:] for i in line[1:]: patientdic[i] = patientname studydic[i] = studyname with open(input, "r") as f: lines = f.readlines() NoduleClass, NoduleScore, NoduleCoordinates, NoduleDiameter= [], [], [], [] nudule = {} num = 0 result = [] record = lines[1].split(",")[0] lines.append(lines[1]) for line in lines[1:]: nodule_dic = {} line = line.rstrip() line = line.split(",") if line[0] == record and num+1<len(lines[1:]): NoduleScore.append(line[-1]) if float(line[-1])> thresholds: NoduleClass.append(1) else: NoduleClass.append(0) NoduleCoordinates.append([line[1], line[2], line[3]]) NoduleDiameter.append(line[4]) else: nudule = {} series = {"SeriesName": record, \ "PatientFolder": patientdic[record], \ "StudyFolder": studydic[record],\ "nodules": nudule,} nudule["NoduleScore"] = NoduleScore nudule["NoduleClass"] = NoduleClass nudule["NoduleCoordinates"] = NoduleCoordinates nudule["NoduleDiameter"] = NoduleDiameter NoduleClass, NoduleScore, NoduleCoordinates, NoduleDiameter = [], [], [], [] if float(line[-1])> thresholds: NoduleClass.append(1) else: NoduleClass.append(0) NoduleScore.append(line[-1]) NoduleCoordinates.append([line[1], line[2], line[3]]) NoduleDiameter.append(line[4]) record = line[0] result.append(series) num = num + 1 with open(output,'w',encoding='utf-8') as f: f.write(json.dumps(result,indent=2)) if __name__ == '__main__': pbb = [] resolution = np.array([1,1,1]) submit_file = 'submission.txt' filename_dict = {} csv_submit = [] csv_sid = [] with open("record_test.txt", 'r') as f: lines = f.readlines() num = 0 if not os.path.exists(config["result"]): os.makedirs(config["result"]) for i in range(len(lines)): print("processing %s"%i) line = lines[i].rstrip() pbbdir = np.load(config["result"] + line + ".npy") origin_dir = np.load(config["npy_dir"] + line + "_origin.npy") spacing_dir = np.load(config["npy_dir"] + line + "_spacing.npy") pbb_item = pbbdir filename_dict[i] = str(line) pbb_item = pbb_item[pbb_item[:, 0].argsort()[::-1]] pbb_append_list = [] for item in pbb_item: if sigmoid(item[0]) < 0.1: continue is_overlap = False for appended in pbb_append_list: minimum_dist = 3 dist = math.sqrt( math.pow(appended[0] - item[0], 2) + math.pow(appended[1] - item[1], 2) + math.pow( appended[2] - item[2], 2)) if (dist < minimum_dist): is_overlap = True break; if not is_overlap: pbb_append_list.append(item) pbb.append(np.array(pbb_append_list)) pbb = np.array(pbb) conf_th = 0.1 nms_th = 0.3 detect_th = 0.3 for i in range(len(pbb)): nms_pbb = nms(pbb[i], nms_th) world_pbb = convert_worldcoord(i, nms_pbb, config["npy_dir"]+filename_dict[i]) s_id = filename_dict[i] for candidate in world_pbb: csv_submit.append([s_id, candidate[1], candidate[2], candidate[3], candidate[4], candidate[0]]) df_annos = pandas.DataFrame(csv_submit, columns=["seriesuid", "coordX", "coordY", "coordZ", "size", "probability"]) df_annos.to_csv(submit_file, index=False) convert_json('submission.txt', "result.json") ``` #### File: lung_nodule_detector/dlung_v1/prepare.py ```python import os import shutil import numpy as np import SimpleITK as sitk import scipy.ndimage from scipy.ndimage.measurements import label from scipy.ndimage.interpolation import zoom from scipy.ndimage.morphology import binary_dilation,generate_binary_structure from skimage.morphology import convex_hull_image from skimage import measure, morphology from lungmask import mask import pandas import sys import math import glob from multiprocessing import Pool from config import config def get_lung(filename, output): reader = sitk.ImageSeriesReader() dcm_series = reader.GetGDCMSeriesFileNames(filename) reader.SetFileNames(dcm_series) img = reader.Execute() segmentation = mask.apply(img) result_out= sitk.GetImageFromArray(segmentation) output = output+'.mhd' sitk.WriteImage(result_out, output) def get_lung_mhd(filename, output): img = sitk.ReadImage(filename) segmentation = mask.apply(img) result_out= sitk.GetImageFromArray(segmentation) output = output+'.mhd' sitk.WriteImage(result_out, output) def resample(image, spacing, new_spacing=[1.0, 1.0, 1.0], order=1): """ Resample image from the original spacing to new_spacing, e.g. 1x1x1 image: 3D numpy array of raw HU values from CT series in [z, y, x] order. spacing: float * 3, raw CT spacing in [z, y, x] order. new_spacing: float * 3, new spacing used for resample, typically 1x1x1, which means standardizing the raw CT with different spacing all into 1x1x1 mm. order: int, order for resample function scipy.ndimage.interpolation.zoom return: 3D binary numpy array with the same shape of the image after, resampling. The actual resampling spacing is also returned. """ # shape can only be int, so has to be rounded. new_shape = np.round(image.shape * spacing / new_spacing) # the actual spacing to resample. resample_spacing = spacing * image.shape / new_shape resize_factor = new_shape / image.shape image_new = scipy.ndimage.interpolation.zoom(image, resize_factor, mode='nearest', order=order) return (image_new, resample_spacing) def get_lung_box(binary_mask, new_shape, margin=5): """ Get the lung barely surrounding the lung based on the binary_mask and the new_spacing. binary_mask: 3D binary numpy array with the same shape of the image, that only region of both sides of the lung is True. new_shape: tuple of int * 3, new shape of the image after resamping in [z, y, x] order. margin: int, number of voxels to extend the boundry of the lung box. return: 3x2 2D int numpy array denoting the [z_min:z_max, y_min:y_max, x_min:x_max] of the lung box with respect to the image after resampling. """ # list of z, y x indexes that are true in binary_mask z_true, y_true, x_true = np.where(binary_mask) old_shape = binary_mask.shape lung_box = np.array([[np.min(z_true), np.max(z_true)], [np.min(y_true), np.max(y_true)], [np.min(x_true), np.max(x_true)]]) lung_box = lung_box * 1.0 * \ np.expand_dims(new_shape, 1) / np.expand_dims(old_shape, 1) lung_box = np.floor(lung_box).astype('int') z_min, z_max = lung_box[0] y_min, y_max = lung_box[1] x_min, x_max = lung_box[2] # extend the lung_box by a margin lung_box[0] = max(0, z_min-margin), min(new_shape[0], z_max+margin) lung_box[1] = max(0, y_min-margin), min(new_shape[1], y_max+margin) lung_box[2] = max(0, x_min-margin), min(new_shape[2], x_max+margin) return lung_box def worldToVoxelCoord(worldCoord, origin, spacing): stretchedVoxelCoord = np.absolute(worldCoord - origin) voxelCoord = stretchedVoxelCoord / spacing return voxelCoord def load_itk_image(filename): itkimage = sitk.ReadImage(filename) numpyImage = sitk.GetArrayFromImage(itkimage) numpyOrigin = np.array(list(reversed(itkimage.GetOrigin()))) numpySpacing = np.array(list(reversed(itkimage.GetSpacing()))) return numpyImage, numpyOrigin, numpySpacing def load_itk_dicom(filename): reader = sitk.ImageSeriesReader() dcm_series = reader.GetGDCMSeriesFileNames(filename) reader.SetFileNames(dcm_series) img = reader.Execute() numpyImage = sitk.GetArrayFromImage(img) numpyOrigin = np.array(list(reversed(img.GetOrigin()))) numpySpacing = np.array(list(reversed(img.GetSpacing()))) return numpyImage, numpyOrigin, numpySpacing def load_itk_series(filedir): img_dir = config["img_dir"] filename = os.path.join(img_dir, filedir) reader = sitk.ImageSeriesReader() seriesIDs = reader.GetGDCMSeriesIDs(filename) seriesIDsnew = [] for i in range(0, len(seriesIDs)): print("processing %s"%seriesIDs[i]) dcm_series = reader.GetGDCMSeriesFileNames(filename, seriesIDs[i]) reader.SetFileNames(dcm_series) img = reader.Execute() numpyImage = sitk.GetArrayFromImage(img) if numpyImage.shape[0]<=10: continue else: seriesIDsnew.append(seriesIDs[i]) output = os.path.join(config["mhd_dir"], seriesIDs[i]+'.mhd') sitk.WriteImage(img, output) return filedir+" "+" ".join(seriesIDsnew) def lumTrans(image, HU_min=-1200.0, HU_max=600.0, HU_nan=-2000.0): """ Convert HU unit into uint8 values. First bound HU values by predfined min and max, and then normalize image: 3D numpy array of raw HU values from CT series in [z, y, x] order. HU_min: float, min HU value. HU_max: float, max HU value. HU_nan: float, value for nan in the raw CT image. """ image_new = np.array(image) image_new[np.isnan(image_new)] = HU_nan # normalize to [0, 1] image_new = (image_new - HU_min) / (HU_max - HU_min) image_new = np.clip(image_new, 0, 1) image_new = (image_new * 255).astype('uint8') return image_new def convex_hull_dilate(binary_mask, dilate_factor=1.5, iterations=10): """ Replace each slice with convex hull of it then dilate. Convex hulls used only if it does not increase area by dilate_factor. This applies mainly to the inferior slices because inferior surface of lungs is concave. binary_mask: 3D binary numpy array with the same shape of the image, that only region of interest is True. One side of the lung in this specifical case. dilate_factor: float, factor of increased area after dilation iterations: int, number of iterations for dilation return: 3D binary numpy array with the same shape of the image, that only region of interest is True. Each binary mask is ROI of one side of the lung. """ binary_mask_dilated = np.array(binary_mask) for i in range(binary_mask.shape[0]): slice_binary = binary_mask[i] if np.sum(slice_binary) > 0: slice_convex = morphology.convex_hull_image(slice_binary) if np.sum(slice_convex) <= dilate_factor * np.sum(slice_binary): binary_mask_dilated[i] = slice_convex struct = scipy.ndimage.morphology.generate_binary_structure(3, 1) binary_mask_dilated = scipy.ndimage.morphology.binary_dilation( binary_mask_dilated, structure=struct, iterations=10) return binary_mask_dilated def apply_mask(image, binary_mask1, binary_mask2, pad_value=170, bone_thred=210, remove_bone=False): """ Apply the binary mask of each lung to the image. Regions out of interest are replaced with pad_value. image: 3D uint8 numpy array with the same shape of the image. binary_mask1: 3D binary numpy array with the same shape of the image, that only one side of lung is True. binary_mask2: 3D binary numpy array with the same shape of the image, that only the other side of lung is True. pad_value: int, uint8 value for padding image regions that is not interested. bone_thred: int, uint8 threahold value for determine parts of image is bone. return: D uint8 numpy array with the same shape of the image after applying the lung mask. """ binary_mask = binary_mask1 + binary_mask2 binary_mask1_dilated = convex_hull_dilate(binary_mask1) binary_mask2_dilated = convex_hull_dilate(binary_mask2) binary_mask_dilated = binary_mask1_dilated + binary_mask2_dilated binary_mask_extra = binary_mask_dilated ^ binary_mask # replace image values outside binary_mask_dilated as pad value image_new = image * binary_mask_dilated + \ pad_value * (1 - binary_mask_dilated).astype('uint8') # set bones in extra mask to 170 (ie convert HU > 482 to HU 0; # water). if remove_bone: image_new[image_new * binary_mask_extra > bone_thred] = pad_value return image_new def savenpy_luna_attribute(params_lists): inputpath, savepath, maskpath = params_lists print("Save %s to numpy"%inputpath) islabel = True isClean = True resolution = np.array([1, 1, 1]) sliceim, origin, spacing = load_itk_image(inputpath) lung_mask, _, _ = load_itk_image(maskpath) np.save(savepath + '_origin.npy', origin) np.save(savepath + '_spacing.npy', spacing) binary_mask1, binary_mask2 = lung_mask == 1, lung_mask == 2 binary_mask = binary_mask1 + binary_mask2 ori_sliceim_shape_yx = sliceim.shape[1:3] sliceim = lumTrans(sliceim) sliceim = apply_mask(sliceim, binary_mask1, binary_mask2) sliceim1, _ = resample(sliceim, spacing, resolution, order=1) seg_img = sliceim1 """ lung_box = get_lung_box(binary_mask, seg_img.shape) z_min, z_max = lung_box[0] y_min, y_max = lung_box[1] x_min, x_max = lung_box[2] seg_img = seg_img[z_min:z_max, y_min:y_max, x_min:x_max] #sliceim = sliceim1[np.newaxis, ...] """ np.save(savepath + '_clean.npy', seg_img) #nrrd.write(savepath + '_clean.nrrd', seg_img) return 1 def main(): img_dir = config["img_dir"] data_txt = config["data_txt"] lung_mask_dir = config["lung_mask_dir"] npy_dir = config["npy_dir"] mhd_dir = config['mhd_dir'] if not os.path.exists(lung_mask_dir): os.makedirs(lung_mask_dir) if not os.path.exists(npy_dir): os.makedirs(npy_dir) if not os.path.exists(mhd_dir): os.makedirs(mhd_dir) with open(data_txt, "r") as f: lines = f.readlines() record_series = [] record = [] params_lists = [] for line in lines: line = line.rstrip() savedir = '_'.join(line.split("/")) params_lists.append(line) pool = Pool(processes=10) result = pool.map(load_itk_series, params_lists) for item in result: record_series.append(item) pool.close() pool.join() print(record_series) with open("record_folder_series.txt",'w') as f: f.write('\n'.join(record_series)) record_name = [] for line in record_series: line = line.rstrip() line = line.split(' ') for i in range(1, len(line)): record_name.append(line[i]) with open("record_series_list.txt",'w') as f: f.write('\n'.join(record_name)) for line in record_name: print("lung segmentation:", line) line = line.rstrip() savedir = line get_lung_mhd(os.path.join(mhd_dir, line+'.mhd'), os.path.join(lung_mask_dir, line)) params_lists = [] for line in record_name: print(line) line = line.rstrip() savename = line npy_savepath = os.path.join(npy_dir, savename) mask_savepath = os.path.join(lung_mask_dir, savename+'.mhd') params_lists.append([os.path.join(mhd_dir, line+'.mhd'), npy_savepath, mask_savepath]) pool = Pool(processes=10) pool.map(savenpy_luna_attribute, params_lists) pool.close() pool.join() if __name__=='__main__': main() ``` #### File: JiazeWang/lung_nodule_detector/make_FROC_submit_native.py ```python import numpy as np import sys sys.path.append('../') from training.layers import nms, iou, acc import time import multiprocessing as mp import math import SimpleITK as sitk import os from config_training import config import pandas import csv import io save_dir = 'results/res18_split_focal/bbox/' submit_file = './luna_submission_res18_split_classify.csv' sid = './val9_sid.csv' val_num = np.load('val9.npy') luna_data = config['luna_data'] luna_label = './labels/lunaqualified_all.csv' shorter_label = './labels/shorter.csv' resolution = np.array([1,1,1]) annos = np.array(pandas.read_csv(luna_label)) abbrevs = np.array(pandas.read_csv(shorter_label, header=None)) namelist = abbrevs[:, 1] ids = list(abbrevs[:, 0]) def sigmoid(x): return 1 / (1 + math.exp(-x)) def load_itk_image(filename): with open(filename) as f: contents = f.readlines() line = [k for k in contents if k.startswith('TransformMatrix')][0] transformM = np.array(line.split(' = ')[1].split(' ')).astype('float') transformM = np.round(transformM) if np.any( transformM!=np.array([1,0,0, 0, 1, 0, 0, 0, 1])): isflip = True else: isflip = False itkimage = sitk.ReadImage(filename) numpyImage = sitk.GetArrayFromImage(itkimage) numpyOrigin = np.array(list(reversed(itkimage.GetOrigin()))) numpySpacing = np.array(list(reversed(itkimage.GetSpacing()))) return numpyImage, numpyOrigin, numpySpacing, isflip def convert_worldcoord(idx, pbb, filename_dict): sliceim, origin, spacing, isflip = load_itk_image(os.path.join(luna_data, filename_dict[idx] + '.mhd')) #Mask, extendbox = Mask_info(idx, filename_dict) ori_sliceim_shape_yx = sliceim.shape[1:3] for label in pbb: pos_ori = label[1:4] radious_ori = label[4] #pos_ori = pos_ori + extendbox[:, 0] pos_ori = pos_ori * resolution / spacing if isflip: pos_ori[1:] = ori_sliceim_shape_yx - pos_ori[1:] pos_ori[1] = pos_ori[1] * -1 pos_ori[2] = pos_ori[2] * -1 pos_ori = pos_ori * spacing pos_ori = pos_ori + origin pos_ori = pos_ori[::-1] radious_ori = radious_ori / spacing[1] * resolution[1] radious_ori = radious_ori * spacing[1] label[1:4] = pos_ori label[4] = radious_ori label[0] = sigmoid(label[0]) return pbb def duplicate_file(in_filename): out_filename = in_filename + '.bin' byte_string = '' with open(in_filename, 'r') as infile: with open(out_filename, 'wb') as outfile: char = infile.read(1) byte = ord(char) # print byte byte_string += chr(byte) while char != "": char = infile.read(1) if char != "": byte = ord(char) # print byte byte_string += chr(byte) outfile.write(byte_string) outfile.close() if __name__ == '__main__': pbb = [] lbb = [] filename_dict = {} csv_submit = [] csv_sid = [] print ("datadir", luna_data) for i in range(len(val_num)): pbb_item = np.load(save_dir + str(val_num[i]) + '_pbb.npy') lbb_item = np.load(save_dir + str(val_num[i]) + '_lbb.npy') filename_dict[i] = str(val_num[i]) pbb_item = pbb_item[pbb_item[:, 0].argsort()[::-1]] pbb_append_list = [] for item in pbb_item: #append nocule prob > 0.1 if sigmoid(item[0]) < 0.1: continue #check overlap under 3mm is_overlap = False for appended in pbb_append_list: minimum_dist = 3 dist = math.sqrt( math.pow(appended[0] - item[0], 2) + math.pow(appended[1] - item[1], 2) + math.pow( appended[2] - item[2], 2)) if (dist < minimum_dist): is_overlap = True break; if not is_overlap: pbb_append_list.append(item) pbb.append(np.array(pbb_append_list)) lbb.append(lbb_item) pbb = np.array(pbb) lbb = np.array(lbb) conf_th = 0.1 nms_th = 0.3 detect_th = 0.3 for i in range(len(pbb)): nms_pbb = nms(pbb[i], nms_th) world_pbb = convert_worldcoord(i, nms_pbb, filename_dict) print (filename_dict[i]) s_id = namelist[ids.index(int(filename_dict[i]))] #csv_sid.append([s_id.encode()]) csv_sid.append([s_id]) for candidate in world_pbb: csv_submit.append([s_id, candidate[1], candidate[2], candidate[3], candidate[0]]) df_annos = pandas.DataFrame(csv_submit, columns=["seriesuid", "coordX", "coordY", "coordZ", "probability"]) df_annos.to_csv(submit_file, index=False) df_annos = pandas.DataFrame(csv_sid) df_annos.to_csv(sid, index=False, header=False) ```
{ "source": "JiazeWang/lung_nodule_integ_viewer", "score": 2 }
#### File: JiazeWang/lung_nodule_integ_viewer/UI_util.py ```python import SimpleITK as sitk import numpy as np import torch import math import time import sys import cv2 from scipy.ndimage.interpolation import zoom from torch.autograd import Variable sys.path.append('../lung_nodule_detector') from training.layers import nms def load_itk_image(filename): with open(filename) as f: contents = f.readlines() line = [k for k in contents if k.startswith('TransformMatrix')][0] transformM = np.array(line.split(' = ')[1].split(' ')).astype('float') transformM = np.round(transformM) if np.any(transformM != np.array([1, 0, 0, 0, 1, 0, 0, 0, 1])): isflip = True else: isflip = False itkimage = sitk.ReadImage(filename) numpyImage = sitk.GetArrayFromImage(itkimage) numpyOrigin = np.array(list(reversed(itkimage.GetOrigin()))) numpySpacing = np.array(list(reversed(itkimage.GetSpacing()))) return numpyImage, numpyOrigin, numpySpacing, isflip def lumTrans(img): lungwin = np.array([-1200.,600.]) newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0]) newimg[newimg<0]=0 newimg[newimg>1]=1 newimg = (newimg*255).astype('uint8') return newimg def resample(imgs, spacing, new_spacing, progressBar, order=2): print (len(imgs.shape)) if len(imgs.shape)==3: new_shape = np.round(imgs.shape * spacing / new_spacing) true_spacing = spacing * imgs.shape / new_shape resize_factor = new_shape / imgs.shape imgs = zoom(imgs, resize_factor, mode = 'nearest',order=order) progressBar.setValue(40) return imgs, true_spacing elif len(imgs.shape)==4: n = imgs.shape[-1] newimg = [] for i in range(n): slice = imgs[:,:,:,i] newslice,true_spacing = resample(slice,spacing,new_spacing) newimg.append(newslice) newimg=np.transpose(np.array(newimg),[1,2,3,0]) return newimg,true_spacing else: raise ValueError('wrong shape') def resample_v1(imgs, spacing, new_spacing, order=2): print (len(imgs.shape)) if len(imgs.shape)==3: new_shape = np.round(imgs.shape * spacing / new_spacing) true_spacing = spacing * imgs.shape / new_shape resize_factor = new_shape / imgs.shape imgs = zoom(imgs, resize_factor, mode = 'nearest',order=order) return imgs, true_spacing elif len(imgs.shape)==4: n = imgs.shape[-1] newimg = [] for i in range(n): slice = imgs[:,:,:,i] newslice,true_spacing = resample(slice,spacing,new_spacing) newimg.append(newslice) newimg=np.transpose(np.array(newimg),[1,2,3,0]) return newimg,true_spacing else: raise ValueError('wrong shape') def split_data(data, stride, split_comber): print (data.shape[1:]) nz, nh, nw = data.shape[1:] pz = int(np.ceil(float(nz) / stride)) * stride ph = int(np.ceil(float(nh) / stride)) * stride pw = int(np.ceil(float(nw) / stride)) * stride data = np.pad(data, [[0, 0], [0, pz - nz], [0, ph - nh], [0, pw - nw]], 'constant', constant_values=0) xx, yy, zz = np.meshgrid(np.linspace(-0.5, 0.5, data.shape[1] / stride), np.linspace(-0.5, 0.5, data.shape[2] / stride), np.linspace(-0.5, 0.5, data.shape[3] / stride), indexing='ij') coord = np.concatenate([xx[np.newaxis, ...], yy[np.newaxis, ...], zz[np.newaxis, :]], 0).astype('float32') data, nzhw = split_comber.split(data) coord2, nzhw2 = split_comber.split(coord, side_len=split_comber.side_len / stride, max_stride=split_comber.max_stride / stride, margin=split_comber.margin / stride) assert np.all(nzhw == nzhw2) data = (data.astype(np.float32) - 128) / 128 return torch.from_numpy(data), torch.from_numpy(coord2), np.array(nzhw) def convert_prob(pbb): for label in pbb: pos_ori = label[1:4] radious_ori = label[4] #pos_ori = pos_ori + extendbox[:, 0] label[1:4] = pos_ori label[4] = radious_ori label[0] = sigmoid(label[0]) return pbb def sigmoid(x): return 1 / (1 + math.exp(-x)) def predict_nodule(net, data, coord, nzhw, lbb, n_per_run, split_comber, get_pbb, progressBar): net.eval() total_label = 0 total_candi = 0 splitlist = list(range(0, len(data) + 1, n_per_run)) if splitlist[-1] != len(data): splitlist.append(len(data)) outputlist = [] for i in range(len(splitlist) - 1): with torch.no_grad(): inputdata = Variable(data[splitlist[i]:splitlist[i + 1]]).cuda() inputcoord = Variable(coord[splitlist[i]:splitlist[i + 1]]).cuda() output = net(inputdata, inputcoord) outputlist.append(output.data.cpu().numpy()) progressBar.setValue(10 + (80/len(splitlist) * (i+1))) output = np.concatenate(outputlist, 0) output = split_comber.combine(output, nzhw=nzhw) # fps 1.215909091, sens 0.933333333, thres 0.371853054 thresh = 0.371853054 pbb, mask = get_pbb(output, thresh, ismask=True) pbb = pbb[pbb[:, 0].argsort()[::-1]] pbb_cand_list = [] # check overlap under 3mm for cand in pbb: is_overlap = False for appended in pbb_cand_list: minimum_dist = 3 dist = math.sqrt( math.pow(appended[1] - cand[1], 2) + math.pow(appended[2] - cand[2], 2) + math.pow( appended[3] - cand[3], 2)) if (dist < minimum_dist): is_overlap = True break; if not is_overlap: pbb_cand_list.append(cand) pbb_cand_list = np.array(pbb_cand_list) pbb_cand_list_nms = nms(pbb_cand_list, 0.3) # print (name) # print (lbb) world_pbb = convert_prob(pbb_cand_list_nms) # print (world_pbb) print("label", len(lbb)) print("z_pos y_pos x_pos size") for i in range(len(lbb)): for j in range(len(lbb[i])): print(round(lbb[i][j], 2), end='\t') print() print("candidate", len(world_pbb)) print("prob z_pos y_pos x_pos size") for i in range(len(world_pbb)): for j in range(len(world_pbb[i])): print(round(world_pbb[i][j], 2), end='\t') print() total_label += len(lbb) total_candi += len(world_pbb) return lbb, world_pbb def predict_nodule_v1(net, data, coord, nzhw, lbb, n_per_run, split_comber, get_pbb): net.eval() total_label = 0 total_candi = 0 splitlist = list(range(0, len(data) + 1, n_per_run)) if splitlist[-1] != len(data): splitlist.append(len(data)) outputlist = [] for i in range(len(splitlist) - 1): with torch.no_grad(): inputdata = Variable(data[splitlist[i]:splitlist[i + 1]]).cuda() inputcoord = Variable(coord[splitlist[i]:splitlist[i + 1]]).cuda() output = net(inputdata, inputcoord) outputlist.append(output.data.cpu().numpy()) output = np.concatenate(outputlist, 0) output = split_comber.combine(output, nzhw=nzhw) # fps 1.215909091, sens 0.933333333, thres 0.371853054 thresh = 0.371853054 pbb, mask = get_pbb(output, thresh, ismask=True) pbb = pbb[pbb[:, 0].argsort()[::-1]] pbb_cand_list = [] # check overlap under 3mm for cand in pbb: is_overlap = False for appended in pbb_cand_list: minimum_dist = 3 dist = math.sqrt( math.pow(appended[1] - cand[1], 2) + math.pow(appended[2] - cand[2], 2) + math.pow( appended[3] - cand[3], 2)) if (dist < minimum_dist): is_overlap = True break; if not is_overlap: pbb_cand_list.append(cand) pbb_cand_list = np.array(pbb_cand_list) pbb_cand_list_nms = nms(pbb_cand_list, 0.3) # print (name) # print (lbb) world_pbb = convert_prob(pbb_cand_list_nms) # print (world_pbb) print("label", len(lbb)) print("z_pos y_pos x_pos size") for i in range(len(lbb)): for j in range(len(lbb[i])): print(round(lbb[i][j], 2), end='\t') print() print("candidate", len(world_pbb)) print("prob z_pos y_pos x_pos size") for i in range(len(world_pbb)): for j in range(len(world_pbb[i])): print(round(world_pbb[i][j], 2), end='\t') print() total_label += len(lbb) total_candi += len(world_pbb) return lbb, world_pbb def draw_nodule_rect(lbb, world_pbb, img_arr): for i in range(len(lbb)): label = lbb[i] # label = np.ceil(label) r = (label[3] / 2) * 1.3 top_left = (max(int(math.ceil(label[2] - r)), 0), max(int(math.ceil(label[1] - r)), 0)) bottom_right = (min(int(math.ceil(label[2] + r)), np.shape(img_arr)[1]), min(int(math.ceil(label[1] + r)), np.shape(img_arr)[2])) z_range = [max(int(math.ceil(label[0] - r)), 0), min(int(math.ceil(label[0] + r)), np.shape(img_arr)[0])] for j in range(z_range[0], z_range[1]): cv2.rectangle(img_arr[j], top_left, bottom_right, (0, 255, 0), 1) for i in range(len(world_pbb)): candidate = world_pbb[i] r = (candidate[4] / 2) * 1.3 top_left = (max(int(math.ceil(candidate[3] - r)), 0), max(int(math.ceil(candidate[2] - r)), 0)) text_top_left = (max(int(math.ceil(candidate[3] - r)) - 1, 0), max(int(math.ceil(candidate[2] - r)) - 1, 0)) bottom_right = (min(int(math.ceil(candidate[3] + r)), np.shape(img_arr)[1]), min(int(math.ceil(candidate[2] + r)), np.shape(img_arr)[2])) z_range = [max(int(math.ceil(candidate[1] - r)), 0), min(int(math.ceil(candidate[1] + r)), np.shape(img_arr)[0])] font = cv2.FONT_HERSHEY_SIMPLEX for j in range(z_range[0], z_range[1]): cv2.rectangle(img_arr[j], top_left, bottom_right, (255, 0, 0), 1) #cv2.putText(img_arr[j], "c" + str(i) + "_" +str(round(candidate[0], 2)), top_left, font, 0.4, (255, 0, 0), 1, cv2.LINE_AA) cv2.putText(img_arr[j], "c" + str(i), text_top_left, font, 0.4, (255, 0, 0), 1, cv2.LINE_AA) def crop_all(target, img_arr, crop_size = 48): target = np.copy(target) start = [] for i in range(3): start.append(int(round(target[i])) - int(crop_size / 2)) pad = [] pad.append([0, 0]) for i in range(3): leftpad = max(0, -start[i]) rightpad = max(0, start[i] + crop_size - img_arr.shape[i + 1]) pad.append([leftpad, rightpad]) crop = img_arr[:, max(start[0], 0):min(start[0] + crop_size, img_arr.shape[1]), max(start[1], 0):min(start[1] + crop_size, img_arr.shape[2]), max(start[2], 0):min(start[2] + crop_size, img_arr.shape[3])] crop = np.pad(crop, pad, 'constant', constant_values=0) for i in range(3): target[i] = target[i] - start[i] return crop, target def crop_nodule_arr_2ch(target, img_arr, crop_size = 48): img_size = [crop_size, crop_size, crop_size] crop_img, target = crop_all(target, img_arr, crop_size) imgs = np.squeeze(crop_img, axis=0) z = int(target[0]) y = int(target[1]) x = int(target[2]) print (z, y, x) # z = 24 # y = 24 # x = 24 nodule_size = int(target[3]) margin = max(7, nodule_size * 0.4) radius = int((nodule_size + margin) / 2) s_z_pad = 0 e_z_pad = 0 s_y_pad = 0 e_y_pad = 0 s_x_pad = 0 e_x_pad = 0 s_z = max(0, z - radius) if (s_z == 0): s_z_pad = -(z - radius) e_z = min(np.shape(imgs)[0], z + radius) if (e_z == np.shape(imgs)[0]): e_z_pad = (z + radius) - np.shape(imgs)[0] s_y = max(0, y - radius) if (s_y == 0): s_y_pad = -(y - radius) e_y = min(np.shape(imgs)[1], y + radius) if (e_y == np.shape(imgs)[1]): e_y_pad = (y + radius) - np.shape(imgs)[1] s_x = max(0, x - radius) if (s_x == 0): s_x_pad = -(x - radius) e_x = min(np.shape(imgs)[2], x + radius) if (e_x == np.shape(imgs)[2]): e_x_pad = (x + radius) - np.shape(imgs)[2] # print (s_x, e_x, s_y, e_y, s_z, e_z) # print (np.shape(img_arr[s_z:e_z, s_y:e_y, s_x:e_x])) nodule_img = imgs[s_z:e_z, s_y:e_y, s_x:e_x] nodule_img = np.pad(nodule_img, [[s_z_pad, e_z_pad], [s_y_pad, e_y_pad], [s_x_pad, e_x_pad]], 'constant', constant_values=0) imgpad_size = [img_size[0] - np.shape(nodule_img)[0], img_size[1] - np.shape(nodule_img)[1], img_size[2] - np.shape(nodule_img)[2]] imgpad = [] imgpad_left = [int(imgpad_size[0] / 2), int(imgpad_size[1] / 2), int(imgpad_size[2] / 2)] imgpad_right = [int(imgpad_size[0] / 2), int(imgpad_size[1] / 2), int(imgpad_size[2] / 2)] for i in range(3): if (imgpad_size[i] % 2 != 0): rand = np.random.randint(2) if rand == 0: imgpad.append([imgpad_left[i], imgpad_right[i] + 1]) else: imgpad.append([imgpad_left[i] + 1, imgpad_right[i]]) else: imgpad.append([imgpad_left[i], imgpad_right[i]]) padding_crop = np.pad(nodule_img, imgpad, 'constant', constant_values=0) padding_crop = np.expand_dims(padding_crop, axis=0) crop = np.concatenate((padding_crop, crop_img)) crop = (crop.astype(np.float32) - 128) / 128 return torch.from_numpy(crop), crop def predict_attribute(attribute_net, crop_img): attribute_net.eval() with torch.no_grad(): crop_img = Variable(crop_img.cuda(async=True)) output = attribute_net(crop_img) return output ``` #### File: JiazeWang/lung_nodule_integ_viewer/xai_viewer_ui.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_xai_viewer(object): def setupUi(self, xai_viewer): xai_viewer.setObjectName("xai_viewer") xai_viewer.resize(1240, 1200) self.centralwidget = QtWidgets.QWidget(xai_viewer) self.centralwidget.setObjectName("centralwidget") self.prev_button = QtWidgets.QPushButton(self.centralwidget) self.prev_button.setGeometry(QtCore.QRect(298, 578, 80, 22)) self.prev_button.setObjectName("prev_button") self.next_button = QtWidgets.QPushButton(self.centralwidget) self.next_button.setGeometry(QtCore.QRect(382, 578, 80, 22)) self.next_button.setObjectName("next_button") self.listView = QtWidgets.QListView(self.centralwidget) self.listView.setGeometry(QtCore.QRect(109, 50, 171, 491)) self.listView.setObjectName("listView") self.horizontalScrollBar = QtWidgets.QScrollBar(self.centralwidget) self.horizontalScrollBar.setGeometry(QtCore.QRect(299, 550, 801, 16)) self.horizontalScrollBar.setOrientation(QtCore.Qt.Horizontal) self.horizontalScrollBar.setObjectName("horizontalScrollBar") self.slide_view_label = QtWidgets.QLabel(self.centralwidget) self.slide_view_label.setGeometry(QtCore.QRect(979, 30, 121, 16)) self.slide_view_label.setObjectName("slide_view_label") self.nodule_list_label = QtWidgets.QLabel(self.centralwidget) self.nodule_list_label.setGeometry(QtCore.QRect(111, 30, 81, 16)) self.nodule_list_label.setObjectName("nodule_list_label") self.file_name = QtWidgets.QLabel(self.centralwidget) self.file_name.setGeometry(QtCore.QRect(299, 30, 481, 16)) self.file_name.setObjectName("file_name") self.nodule_attribute_label = QtWidgets.QLabel(self.centralwidget) self.nodule_attribute_label.setGeometry(QtCore.QRect(10, 610, 111, 16)) self.nodule_attribute_label.setObjectName("nodule_attribute_label") self.detect_button = QtWidgets.QPushButton(self.centralwidget) self.detect_button.setGeometry(QtCore.QRect(467, 578, 80, 22)) self.detect_button.setObjectName("detect_button") self.detect_progressBar = QtWidgets.QProgressBar(self.centralwidget) self.detect_progressBar.setGeometry(QtCore.QRect(733, 574, 118, 23)) self.detect_progressBar.setProperty("value", 24) self.detect_progressBar.setObjectName("detect_progressBar") self.slide_show_label = QtWidgets.QLabel(self.centralwidget) self.slide_show_label.setGeometry(QtCore.QRect(309, 53, 791, 481)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(170, 170, 170)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(170, 170, 170)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(170, 170, 170)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.slide_show_label.setPalette(palette) self.slide_show_label.setFrameShape(QtWidgets.QFrame.Box) self.slide_show_label.setFrameShadow(QtWidgets.QFrame.Plain) self.slide_show_label.setLineWidth(1) self.slide_show_label.setText("") self.slide_show_label.setObjectName("slide_show_label") self.tableWidget = QtWidgets.QTableWidget(self.centralwidget) self.tableWidget.setGeometry(QtCore.QRect(13, 630, 1211, 150)) self.tableWidget.setObjectName("tableWidget") self.tableWidget.setColumnCount(0) self.tableWidget.setRowCount(0) self.sentenceWidget = QtWidgets.QTableWidget(self.centralwidget) self.sentenceWidget.setGeometry(QtCore.QRect(13, 800, 1211, 150)) self.sentenceWidget.setObjectName("sentenceWidget") self.sentenceWidget.setColumnCount(0) self.sentenceWidget.setRowCount(0) self.fileopen_progressBar = QtWidgets.QProgressBar(self.centralwidget) self.fileopen_progressBar.setGeometry(QtCore.QRect(951, 574, 118, 23)) self.fileopen_progressBar.setProperty("value", 24) self.fileopen_progressBar.setObjectName("fileopen_progressBar") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(674, 580, 51, 16)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(890, 580, 59, 14)) self.label_2.setObjectName("label_2") xai_viewer.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(xai_viewer) self.menubar.setGeometry(QtCore.QRect(0, 0, 1240, 19)) self.menubar.setObjectName("menubar") self.menuMenu = QtWidgets.QMenu(self.menubar) self.menuMenu.setObjectName("menuMenu") xai_viewer.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(xai_viewer) self.statusbar.setObjectName("statusbar") xai_viewer.setStatusBar(self.statusbar) self.actionOpen = QtWidgets.QAction(xai_viewer) self.actionOpen.setObjectName("actionOpen") self.actionSave = QtWidgets.QAction(xai_viewer) self.actionSave.setObjectName("actionSave") self.menuMenu.addSeparator() self.menuMenu.addAction(self.actionOpen) self.menubar.addAction(self.menuMenu.menuAction()) self.retranslateUi(xai_viewer) QtCore.QMetaObject.connectSlotsByName(xai_viewer) def retranslateUi(self, xai_viewer): _translate = QtCore.QCoreApplication.translate xai_viewer.setWindowTitle(_translate("xai_viewer", "XAI LUNG CT Viewer")) self.prev_button.setText(_translate("xai_viewer", "prev")) self.next_button.setText(_translate("xai_viewer", "next")) self.slide_view_label.setText(_translate("xai_viewer", "Slide View 0")) self.nodule_list_label.setText(_translate("xai_viewer", "nodule list")) self.file_name.setText(_translate("xai_viewer", "file name")) self.nodule_attribute_label.setText(_translate("xai_viewer", "nodule attribute")) self.detect_button.setText(_translate("xai_viewer", "detect")) self.label.setText(_translate("xai_viewer", "detect:")) self.label_2.setText(_translate("xai_viewer", "fileopen:")) self.menuMenu.setTitle(_translate("xai_viewer", "file")) self.actionOpen.setText(_translate("xai_viewer", "open")) self.actionSave.setText(_translate("xai_viewer", "save folder")) ```
{ "source": "JiazeWang/PAConv", "score": 2 }
#### File: obj_cls/cuda_lib/functional.py ```python from . import functions def assign_score_withk_halfkernel(score, point_input, knn_idx, aggregate='sum'): return functions.assign_score_withk_halfkernel(score, point_input, knn_idx, aggregate) def assign_score_withk(score, point_input, center_input, knn_idx, aggregate='sum'): return functions.assign_score_withk(score, point_input, center_input, knn_idx, aggregate) ``` #### File: obj_cls/model/model_gcn3d.py ```python import torch import torch.nn as nn import torch.nn.functional as F import sys sys.path.append("../") import gcn3d class GCN3D(nn.Module): def __init__(self, support_num: int, neighbor_num: int): super().__init__() self.neighbor_num = neighbor_num self.conv_0 = gcn3d.Conv_surface(kernel_num= 32, support_num= support_num) self.conv_1 = gcn3d.Conv_layer(32, 64, support_num= support_num) self.pool_1 = gcn3d.Pool_layer(pooling_rate= 4, neighbor_num= 4) self.conv_2 = gcn3d.Conv_layer(64, 128, support_num= support_num) self.conv_3 = gcn3d.Conv_layer(128, 256, support_num= support_num) self.pool_2 = gcn3d.Pool_layer(pooling_rate= 4, neighbor_num= 4) self.conv_4 = gcn3d.Conv_layer(256, 1024, support_num= support_num) self.bn1 = nn.BatchNorm1d(64, affine=False) self.bn2 = nn.BatchNorm1d(128, affine=False) self.bn3 = nn.BatchNorm1d(256, affine=False) self.bn4 = nn.BatchNorm1d(1024, affine=False) self.d1 = nn.Conv1d(32, 64, kernel_size=1, bias=False) self.d2 = nn.Conv1d(64, 128, kernel_size=1, bias=False) self.d3 = nn.Conv1d(128, 256, kernel_size=1, bias=False) self.d4 = nn.Conv1d(256, 1024, kernel_size=1, bias=False) self.classifier = nn.Sequential( nn.Linear(1024, 256), nn.Dropout(0.3), nn.BatchNorm1d(256), nn.ReLU(inplace= False), nn.Linear(256, 40) ) def forward(self, vertices: "(bs, vertice_num, 3)"): vertices = torch.transpose(vertices, 1, 2) bs, vertice_num, _ = vertices.size() neighbor_index = gcn3d.get_neighbor_index(vertices, self.neighbor_num) fm_0 = self.conv_0(neighbor_index, vertices) fm_0 = F.relu(fm_0, inplace= False) residual1 = torch.transpose(self.d1(torch.transpose(fm_0, 1, 2)), 1, 2) fm_1 = self.conv_1(neighbor_index, vertices, fm_0) fm_1 = self.bn1(fm_1.transpose(2,1)).transpose(2, 1) fm_1 = F.relu(fm_1, inplace= False) fm_1 += residual1 #fm_1 = F.relu(fm_1, inplace= False) vertices, fm_1 = self.pool_1(vertices, fm_1) neighbor_index = gcn3d.get_neighbor_index(vertices, self.neighbor_num) residual2 = torch.transpose(self.d2(torch.transpose(fm_1, 1, 2)), 1, 2) fm_2 = self.conv_2(neighbor_index, vertices, fm_1) fm_2 = self.bn2(fm_2.transpose(2,1)).transpose(2, 1) fm_2 = F.relu(fm_2, inplace= False) fm_2 += residual2 #fm_2 = F.relu(fm_2, inplace= False) residual3 = torch.transpose(self.d3(torch.transpose(fm_2, 1, 2)), 1, 2) fm_3 = self.conv_3(neighbor_index, vertices, fm_2) fm_3 = self.bn3(fm_3.transpose(2,1)).transpose(2, 1) fm_3 = F.relu(fm_3, inplace= False) fm_3 += residual3 #fm_3 = F.relu(fm_3, inplace= False) vertices, fm_3 = self.pool_2(vertices, fm_3) neighbor_index = gcn3d.get_neighbor_index(vertices, self.neighbor_num) residual4 = torch.transpose(self.d4(torch.transpose(fm_3, 1, 2)), 1, 2) fm_4 = self.conv_4(neighbor_index, vertices, fm_3) fm_4 = self.bn4(fm_4.transpose(2,1)).transpose(2, 1) fm_4 = F.relu(fm_4, inplace= False) fm_4 += residual4 feature_global = fm_4.max(1)[0] pred = self.classifier(feature_global) return pred def parameter_number(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def test(): import time sys.path.append("..") #from util import parameter_number device = torch.device('cuda:0') points = torch.zeros(8, 1024, 3).to(device) model = GCN3D(support_num= 1, neighbor_num= 20).to(device) start = time.time() output = model(points) print("Inference time: {}".format(time.time() - start)) print("Parameter #: {}".format(parameter_number(model))) print("Inputs size: {}".format(points.size())) print("Output size: {}".format(output.size())) if __name__ == '__main__': test() ``` #### File: obj_cls/model/vit.py ```python import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange import sys import numpy as np sys.path.append("../") from lib.pointops.functions import pointops # helpers class Encoder(nn.Module): def __init__(self, encoder_channel): super().__init__() self.encoder_channel = encoder_channel self.first_conv = nn.Sequential( nn.Conv1d(3, 128, 1), nn.BatchNorm1d(128), nn.ReLU(inplace=True), nn.Conv1d(128, 256, 1) ) self.second_conv = nn.Sequential( nn.Conv1d(512, 512, 1), nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Conv1d(512, self.encoder_channel, 1) ) def forward(self, point_groups): ''' point_groups : B G N 3 ----------------- feature_global : B G C ''' bs, g, n , _ = point_groups.shape point_groups = point_groups.reshape(bs * g, n, 3) # encoder feature = self.first_conv(point_groups.transpose(2,1)) # BG 256 n feature_global = torch.max(feature,dim=2,keepdim=True)[0] # BG 256 1 feature = torch.cat([feature_global.expand(-1,-1,n), feature], dim=1)# BG 512 n feature = self.second_conv(feature) # BG 1024 n feature_global = torch.max(feature, dim=2, keepdim=False)[0] # BG 1024 return feature_global.reshape(bs, g, self.encoder_channel) def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) def pair(t): return t if isinstance(t, tuple) else (t, t) # classes def cluster_points(input, cluster_num = 4): b, np, c = input.size() lable = torch.zeros(b, np) divide_x, index_x = torch.sort(input[:,:,0]) srt_x, rank_x = torch.sort(index_x) divide_y, index_y = torch.sort(input[:,:,1]) srt_y, rank_y = torch.sort(index_y) divide_z, index_z = torch.sort(input[:,:,2]) srt_z, rank_z = torch.sort(index_z) index_x = torch.floor(rank_x/(np/cluster_num)) index_y = torch.floor(rank_y/(np/cluster_num)) index_z = torch.floor(rank_z/(np/cluster_num)) index_xyz = index_x*1+index_y*cluster_num+index_z*cluster_num*cluster_num selet_index, index_index = torch.sort(index_xyz) result = batched_index_select(input, index_index) box_points = int(cluster_num*cluster_num*cluster_num) box_num = int(np / box_points) result = result.reshape(b, box_num, box_points * c) return result def sort_points(input): b, np, c = input.size() inputnew = input.clone() inputnew[:,:,0] = inputnew[:,:,0]- input[:,:,0].min() inputnew[:,:,1] = inputnew[:,:,1]- input[:,:,1].min() inputnew[:,:,2] = inputnew[:,:,2]- input[:,:,2].min() distance = inputnew[:,:,0] * inputnew[:,:,0] + inputnew[:,:,1] * inputnew[:,:,1]+inputnew[:,:,2] * inputnew[:,:,2] sort_d, index_d = torch.sort(distance) #print("index_d.shape", index_d.shape) result = batched_index_select(input, index_d) return result class get_new_points(nn.Module): def __init__(self, num_clusters = 32, num_neighbors = 32): super(get_new_points, self).__init__() self.num_clusters = num_clusters self.num_neighbors = num_neighbors self.grouper = pointops.QueryAndGroup(nsample=num_neighbors, use_xyz=True, return_xyz=True) def forward(self, p1): b, n, c = p1.size() p1 = p1.contiguous() p1_trans = p1.transpose(1, 2).contiguous() # (B, 3, N) p2 = pointops.gathering(p1_trans, (pointops.furthestsampling(p1, self.num_clusters)).contiguous()).transpose(1, 2).contiguous() p2 = sort_points(p2) n_x = self.grouper(xyz=p1, new_xyz=p2).reshape(b, self.num_clusters, c * self.num_neighbors) return n_x class get_new_points_v2(nn.Module): def __init__(self, num_clusters = 32, num_neighbors = 32): super(get_new_points_v2, self).__init__() self.num_clusters = num_clusters self.num_neighbors = num_neighbors self.grouper = pointops.QueryAndGroup(nsample=num_neighbors, use_xyz=True, return_xyz=True) def forward(self, p1): b, n, c = p1.size() p1 = p1.contiguous() p1_trans = p1.transpose(1, 2).contiguous() # (B, 3, N) p2 = pointops.gathering(p1_trans, (pointops.furthestsampling(p1, self.num_clusters)).contiguous()).transpose(1, 2).contiguous() p2 = sort_points(p2) n_x = self.grouper(xyz=p1, new_xyz=p2) n_x = n_x - p2.transpose(1, 2).unsqueeze(-1) return n_x.permute(0, 2, 3, 1) class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, patch_point_num, num_patches, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 256, dropout = 0., emb_dropout = 0.): super().__init__() patch_dim = channels * patch_point_num assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.emb = nn.Linear(patch_dim, dim) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) #self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.Encoder = Encoder(encoder_channel = dim) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() """ self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) """ self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, 256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Linear(256, num_classes) ) self.get_new_points = get_new_points_v2(num_clusters = num_patches, num_neighbors = patch_point_num) def forward(self, data, label=None, criterion=None): data = data.transpose(1,2) x = self.get_new_points(data) #print("x.shape",x.shape) x = self.Encoder(x) #print("x.after_encoder",x.shape) #x = self.emb(x) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) x = self.mlp_head(x) if criterion is not None: return x, criterion(x, label) else: return x def parameter_number(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) if __name__ == '__main__': model = ViT(patch_point_num=32, num_patches=64, num_classes=40, dim=256, depth=12, heads=6, mlp_dim=512).cuda() print(parameter_number(model)/1000000) points = torch.from_numpy(np.load("target.npy")).unsqueeze(0).contiguous().cuda()#.to(device) points = points.transpose(1,2) result = model(points) print("final_result:", result.shape) ``` #### File: PAConv/part_seg/gcn3d_attention.py ```python import math import torch import torch.nn as nn import torch.nn.functional as F import copy def get_neighbor_index(vertices: "(bs, vertice_num, 3)", neighbor_num: int): """ Return: (bs, vertice_num, neighbor_num) """ bs, v, _ = vertices.size() device = vertices.device inner = torch.bmm(vertices, vertices.transpose(1, 2)) #(bs, v, v) quadratic = torch.sum(vertices**2, dim= 2) #(bs, v) distance = inner * (-2) + quadratic.unsqueeze(1) + quadratic.unsqueeze(2) neighbor_index = torch.topk(distance, k= neighbor_num + 1, dim= -1, largest= False)[1] neighbor_index = neighbor_index[:, :, 1:] return neighbor_index def get_nearest_index(target: "(bs, v1, 3)", source: "(bs, v2, 3)"): """ Return: (bs, v1, 1) """ inner = torch.bmm(target, source.transpose(1, 2)) #(bs, v1, v2) s_norm_2 = torch.sum(source ** 2, dim= 2) #(bs, v2) t_norm_2 = torch.sum(target ** 2, dim= 2) #(bs, v1) d_norm_2 = s_norm_2.unsqueeze(1) + t_norm_2.unsqueeze(2) - 2 * inner nearest_index = torch.topk(d_norm_2, k= 1, dim= -1, largest= False)[1] return nearest_index def indexing_neighbor(tensor: "(bs, vertice_num, dim)", index: "(bs, vertice_num, neighbor_num)" ): """ Return: (bs, vertice_num, neighbor_num, dim) """ bs, v, n = index.size() id_0 = torch.arange(bs).view(-1, 1, 1) tensor_indexed = tensor[id_0, index] return tensor_indexed def get_neighbor_direction_norm(vertices: "(bs, vertice_num, 3)", neighbor_index: "(bs, vertice_num, neighbor_num)"): """ Return: (bs, vertice_num, neighobr_num, 3) """ neighbors = indexing_neighbor(vertices, neighbor_index) # (bs, v, n, 3) neighbor_direction = neighbors - vertices.unsqueeze(2) neighbor_direction_norm = F.normalize(neighbor_direction, dim= -1) return neighbor_direction_norm class Conv_surface(nn.Module): """Extract structure feafure from surface, independent from vertice coordinates""" def __init__(self, kernel_num, support_num): super().__init__() self.kernel_num = kernel_num self.support_num = support_num self.relu = nn.ReLU(inplace= True) self.directions = nn.Parameter(torch.FloatTensor(3, support_num * kernel_num)) self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.support_num * self.kernel_num) self.directions.data.uniform_(-stdv, stdv) def forward(self, neighbor_index: "(bs, vertice_num, neighbor_num)", vertices: "(bs, vertice_num, 3)"): """ Return vertices with local feature: (bs, vertice_num, kernel_num) """ bs, vertice_num, neighbor_num = neighbor_index.size() neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index) support_direction_norm = F.normalize(self.directions, dim= 0) #(3, s * k) theta = neighbor_direction_norm @ support_direction_norm # (bs, vertice_num, neighbor_num, s*k) theta = self.relu(theta) theta = theta.contiguous().view(bs, vertice_num, neighbor_num, self.support_num, self.kernel_num) theta = torch.max(theta, dim= 2)[0] # (bs, vertice_num, support_num, kernel_num) feature = torch.sum(theta, dim= 2) # (bs, vertice_num, kernel_num) return feature def clones(module, N): return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) # simple self attention and simple RPE in PointFormer # position_embedding (b,n,n) # query / key / value (b,h,n,d) def attention(query, key, value, mask=None, dropout=None, position_embedding=None): d_k = query.size(-1) # scores (b,h,n,n) scores = torch.matmul(query, key.transpose(-2, -1).contiguous()) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) if position_embedding is not None: position_embedding = position_embedding.unsqueeze(1) scores = scores + position_embedding p_attn = F.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, fn_attention=attention, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_model = d_model self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.fn_attention = fn_attention self.attn = None self.dropout = None self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.d_model * self.d_model) for linear in self.linears: linear.weight.data.uniform_(-stdv, stdv) def forward(self, query, key, value): nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2).contiguous() for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. #x, self.attn = attention(query, key, value, mask=mask, # dropout=self.dropout, position_embedding=position_embedding) x, self.attn = self.fn_attention(query, key, value, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class Attention_Conv_surface(nn.Module): def __init__(self, kernel_num, support_num): super().__init__() self.kernel_num = kernel_num self.support_num = support_num self.relu = nn.ReLU(inplace= True) self.query_directions = nn.Parameter(torch.FloatTensor(3, support_num * kernel_num)) self.value_directions = nn.Parameter(torch.FloatTensor(3, support_num * kernel_num)) self.key_directions = nn.Parameter(torch.FloatTensor(3, support_num * kernel_num)) self.multihead_attention = MultiHeadedAttention(4, kernel_num, fn_attention=attention) self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.support_num * self.kernel_num) self.query_directions.data.uniform_(-stdv, stdv) self.value_directions.data.uniform_(-stdv, stdv) self.key_directions.data.uniform_(-stdv, stdv) def forward(self, neighbor_index: "(bs, vertice_num, neighbor_num)", vertices: "(bs, vertice_num, 3)"): bs, vertice_num, neighbor_num = neighbor_index.size() neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index) support_query_direction_norm = F.normalize(self.query_directions, dim= 0) #(3, s * k) support_key_direction_norm = F.normalize(self.key_directions, dim= 0) #(3, s * k) support_value_direction_norm = F.normalize(self.value_directions, dim= 0) #(3, s * k) query_theta = neighbor_direction_norm @ support_query_direction_norm # (bs, vertice_num, neighbor_num, s*k) query_theta = self.relu(query_theta) query_theta = query_theta.contiguous().view(bs, vertice_num, neighbor_num, self.support_num, self.kernel_num) query_theta = torch.max(query_theta, dim= 2)[0] # (bs, vertice_num, support_num, kernel_num) query_theta = torch.sum(query_theta, dim= 2) # (bs, vertice_num, kernel_num) key_theta = neighbor_direction_norm @ support_key_direction_norm # (bs, vertice_num, neighbor_num, s*k) key_theta = self.relu(key_theta) key_theta = key_theta.contiguous().view(bs, vertice_num, neighbor_num, self.support_num, self.kernel_num) key_theta = torch.max(key_theta, dim= 2)[0] # (bs, vertice_num, support_num, kernel_num) key_theta = torch.sum(key_theta, dim= 2) # (bs, vertice_num, kernel_num) value_theta = neighbor_direction_norm @ support_value_direction_norm # (bs, vertice_num, neighbor_num, s*k) value_theta = self.relu(value_theta) value_theta = value_theta.contiguous().view(bs, vertice_num, neighbor_num, self.support_num, self.kernel_num) value_theta = torch.max(value_theta, dim= 2)[0] # (bs, vertice_num, support_num, kernel_num) value_theta = torch.sum(value_theta, dim= 2) # (bs, vertice_num, kernel_num) feature = self.multihead_attention(query_theta, key_theta, value_theta) return feature class Attention_Conv_surface2(nn.Module): def __init__(self, kernel_num, support_num): super().__init__() self.kernel_num = kernel_num self.support_num = support_num self.relu = nn.ReLU(inplace= True) self.directions = nn.Parameter(torch.FloatTensor(3, support_num * kernel_num)) self.multihead_attention = MultiHeadedAttention(4, kernel_num, fn_attention=attention) self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.support_num * self.kernel_num) self.directions.data.uniform_(-stdv, stdv) def forward(self, neighbor_index: "(bs, vertice_num, neighbor_num)", vertices: "(bs, vertice_num, 3)"): bs, vertice_num, neighbor_num = neighbor_index.size() neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index) support_direction_norm = F.normalize(self.directions, dim= 0) #(3, s * k) theta = neighbor_direction_norm @ support_direction_norm theta = self.relu(theta).contiguous().view(bs, vertice_num, neighbor_num, self.support_num, self.kernel_num) theta = torch.max(theta, dim= 2)[0] # (bs, vertice_num, support_num, kernel_num) theta = torch.sum(theta, dim= 2) # (bs, vertice_num, kernel_num) attention_theta = self.multihead_attention(theta, theta, theta) return attention_theta class Conv_layer(nn.Module): def __init__(self, in_channel, out_channel, support_num): super().__init__() # arguments: self.in_channel = in_channel self.out_channel = out_channel self.support_num = support_num # parameters: self.relu = nn.ReLU(inplace= True) self.weights = nn.Parameter(torch.FloatTensor(in_channel, (support_num + 1) * out_channel)) self.bias = nn.Parameter(torch.FloatTensor((support_num + 1) * out_channel)) self.directions = nn.Parameter(torch.FloatTensor(3, support_num * out_channel)) self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.out_channel * (self.support_num + 1)) self.weights.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-stdv, stdv) self.directions.data.uniform_(-stdv, stdv) def forward(self, neighbor_index: "(bs, vertice_num, neighbor_index)", vertices: "(bs, vertice_num, 3)", feature_map: "(bs, vertice_num, in_channel)"): """ Return: output feature map: (bs, vertice_num, out_channel) """ bs, vertice_num, neighbor_num = neighbor_index.size() neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index) support_direction_norm = F.normalize(self.directions, dim= 0) theta = neighbor_direction_norm @ support_direction_norm # (bs, vertice_num, neighbor_num, support_num * out_channel) theta = self.relu(theta) theta = theta.contiguous().view(bs, vertice_num, neighbor_num, -1) # (bs, vertice_num, neighbor_num, support_num * out_channel) feature_out = feature_map @ self.weights + self.bias # (bs, vertice_num, (support_num + 1) * out_channel) feature_center = feature_out[:, :, :self.out_channel] # (bs, vertice_num, out_channel) feature_support = feature_out[:, :, self.out_channel:] #(bs, vertice_num, support_num * out_channel) # Fuse together - max among product feature_support = indexing_neighbor(feature_support, neighbor_index) # (bs, vertice_num, neighbor_num, support_num * out_channel) activation_support = theta * feature_support # (bs, vertice_num, neighbor_num, support_num * out_channel) activation_support = activation_support.view(bs,vertice_num, neighbor_num, self.support_num, self.out_channel) activation_support = torch.max(activation_support, dim= 2)[0] # (bs, vertice_num, support_num, out_channel) activation_support = torch.sum(activation_support, dim= 2) # (bs, vertice_num, out_channel) feature_fuse = feature_center + activation_support # (bs, vertice_num, out_channel) return feature_fuse class Attention_Conv_layer_V2(nn.Module): def __init__(self, in_channel, out_channel, support_num): super().__init__() # arguments: self.in_channel = in_channel self.out_channel = out_channel self.support_num = support_num # parameters: self.relu = nn.ReLU(inplace= True) self.weights = nn.Parameter(torch.FloatTensor(in_channel, (support_num + 1) * out_channel)) self.bias = nn.Parameter(torch.FloatTensor((support_num + 1) * out_channel)) self.directions = nn.Parameter(torch.FloatTensor(3, support_num * out_channel)) self.multihead_attention = MultiHeadedAttention(4, out_channel, fn_attention=attention) self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.out_channel * (self.support_num + 1)) self.weights.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-stdv, stdv) self.directions.data.uniform_(-stdv, stdv) def forward(self, neighbor_index: "(bs, vertice_num, neighbor_index)", vertices: "(bs, vertice_num, 3)", feature_map: "(bs, vertice_num, in_channel)"): """ Return: output feature map: (bs, vertice_num, out_channel) """ bs, vertice_num, neighbor_num = neighbor_index.size() neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index) support_direction_norm = F.normalize(self.directions, dim= 0) theta = neighbor_direction_norm @ support_direction_norm # (bs, vertice_num, neighbor_num, support_num * out_channel) theta = self.relu(theta) theta = theta.contiguous().view(bs, vertice_num, neighbor_num, -1) # (bs, vertice_num, neighbor_num, support_num * out_channel) feature_out = feature_map @ self.weights + self.bias # (bs, vertice_num, (support_num + 1) * out_channel) feature_center = feature_out[:, :, :self.out_channel] # (bs, vertice_num, out_channel) feature_support = feature_out[:, :, self.out_channel:] #(bs, vertice_num, support_num * out_channel) # Fuse together - max among product feature_support = indexing_neighbor(feature_support, neighbor_index) # (bs, vertice_num, neighbor_num, support_num * out_channel) activation_support = theta * feature_support # (bs, vertice_num, neighbor_num, support_num * out_channel) activation_support = activation_support.view(bs,vertice_num, neighbor_num, self.support_num, self.out_channel) activation_support = torch.max(activation_support, dim= 2)[0] # (bs, vertice_num, support_num, out_channel) activation_support = torch.sum(activation_support, dim= 2) # (bs, vertice_num, out_channel) feature_fuse = feature_center + activation_support # (bs, vertice_num, out_channel) feature_fuse = self.multihead_attention(feature_fuse, feature_fuse, feature_fuse) return feature_fuse class Attention_Conv_layer(nn.Module): def __init__(self, in_channel, out_channel, support_num): super().__init__() # arguments: self.in_channel = in_channel self.out_channel = out_channel self.support_num = support_num # parameters: self.relu = nn.ReLU(inplace= True) self.query_weights = nn.Parameter(torch.FloatTensor(in_channel, (support_num + 1) * out_channel)) self.query_bias = nn.Parameter(torch.FloatTensor((support_num + 1) * out_channel)) self.query_directions = nn.Parameter(torch.FloatTensor(3, support_num * out_channel)) self.key_weights = nn.Parameter(torch.FloatTensor(in_channel, (support_num + 1) * out_channel)) self.key_bias = nn.Parameter(torch.FloatTensor((support_num + 1) * out_channel)) self.key_directions = nn.Parameter(torch.FloatTensor(3, support_num * out_channel)) self.value_weights = nn.Parameter(torch.FloatTensor(in_channel, (support_num + 1) * out_channel)) self.value_bias = nn.Parameter(torch.FloatTensor((support_num + 1) * out_channel)) self.value_directions = nn.Parameter(torch.FloatTensor(3, support_num * out_channel)) self.multihead_attention = MultiHeadedAttention(4, out_channel, fn_attention=attention) self.initialize() def initialize(self): stdv = 1. / math.sqrt(self.out_channel * (self.support_num + 1)) self.query_weights.data.uniform_(-stdv, stdv) self.query_bias.data.uniform_(-stdv, stdv) self.query_directions.data.uniform_(-stdv, stdv) self.key_weights.data.uniform_(-stdv, stdv) self.key_bias.data.uniform_(-stdv, stdv) self.key_directions.data.uniform_(-stdv, stdv) self.value_weights.data.uniform_(-stdv, stdv) self.value_bias.data.uniform_(-stdv, stdv) self.value_directions.data.uniform_(-stdv, stdv) def forward(self, neighbor_index: "(bs, vertice_num, neighbor_index)", vertices: "(bs, vertice_num, 3)", feature_map: "(bs, vertice_num, in_channel)"): bs, vertice_num, neighbor_num = neighbor_index.size() neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index) # query support_query_direction_norm = F.normalize(self.query_directions, dim= 0) query_theta = neighbor_direction_norm @ support_query_direction_norm # (bs, vertice_num, neighbor_num, support_num * out_channel) query_theta = self.relu(query_theta) query_theta = query_theta.contiguous().view(bs, vertice_num, neighbor_num, -1) # (bs, vertice_num, neighbor_num, support_num * out_channel) query_feature_out = feature_map @ self.query_weights + self.query_bias # (bs, vertice_num, (support_num + 1) * out_channel) query_feature_center = query_feature_out[:, :, :self.out_channel] # (bs, vertice_num, out_channel) query_feature_support = query_feature_out[:, :, self.out_channel:] #(bs, vertice_num, support_num * out_channel) # Fuse together - max among product query_feature_support = indexing_neighbor(query_feature_support, neighbor_index) # (bs, vertice_num, neighbor_num, support_num * out_channel) query_activation_support = query_theta * query_feature_support # (bs, vertice_num, neighbor_num, support_num * out_channel) query_activation_support = query_activation_support.view(bs,vertice_num, neighbor_num, self.support_num, self.out_channel) query_activation_support = torch.max(query_activation_support, dim= 2)[0] # (bs, vertice_num, support_num, out_channel) query_activation_support = torch.sum(query_activation_support, dim= 2) # (bs, vertice_num, out_channel) query_feature_fuse = query_feature_center + query_activation_support # (bs, vertice_num, out_channel) # key support_key_direction_norm = F.normalize(self.key_directions, dim= 0) key_theta = neighbor_direction_norm @ support_key_direction_norm # (bs, vertice_num, neighbor_num, support_num * out_channel) key_theta = self.relu(key_theta) key_theta = key_theta.contiguous().view(bs, vertice_num, neighbor_num, -1) # (bs, vertice_num, neighbor_num, support_num * out_channel) key_feature_out = feature_map @ self.key_weights + self.key_bias # (bs, vertice_num, (support_num + 1) * out_channel) key_feature_center = key_feature_out[:, :, :self.out_channel] # (bs, vertice_num, out_channel) key_feature_support = key_feature_out[:, :, self.out_channel:] #(bs, vertice_num, support_num * out_channel) # Fuse together - max among product key_feature_support = indexing_neighbor(key_feature_support, neighbor_index) # (bs, vertice_num, neighbor_num, support_num * out_channel) key_activation_support = key_theta * key_feature_support # (bs, vertice_num, neighbor_num, support_num * out_channel) key_activation_support = key_activation_support.view(bs,vertice_num, neighbor_num, self.support_num, self.out_channel) key_activation_support = torch.max(key_activation_support, dim= 2)[0] # (bs, vertice_num, support_num, out_channel) key_activation_support = torch.sum(key_activation_support, dim= 2) # (bs, vertice_num, out_channel) key_feature_fuse = key_feature_center + key_activation_support # (bs, vertice_num, out_channel) # value support_value_direction_norm = F.normalize(self.value_directions, dim= 0) value_theta = neighbor_direction_norm @ support_value_direction_norm # (bs, vertice_num, neighbor_num, support_num * out_channel) value_theta = self.relu(value_theta) value_theta = value_theta.contiguous().view(bs, vertice_num, neighbor_num, -1) # (bs, vertice_num, neighbor_num, support_num * out_channel) value_feature_out = feature_map @ self.value_weights + self.value_bias # (bs, vertice_num, (support_num + 1) * out_channel) value_feature_center = value_feature_out[:, :, :self.out_channel] # (bs, vertice_num, out_channel) value_feature_support = value_feature_out[:, :, self.out_channel:] #(bs, vertice_num, support_num * out_channel) # Fuse together - max among product value_feature_support = indexing_neighbor(value_feature_support, neighbor_index) # (bs, vertice_num, neighbor_num, support_num * out_channel) value_activation_support = value_theta * value_feature_support # (bs, vertice_num, neighbor_num, support_num * out_channel) value_activation_support = value_activation_support.view(bs,vertice_num, neighbor_num, self.support_num, self.out_channel) value_activation_support = torch.max(value_activation_support, dim= 2)[0] # (bs, vertice_num, support_num, out_channel) value_activation_support = torch.sum(value_activation_support, dim= 2) # (bs, vertice_num, out_channel) value_feature_fuse = value_feature_center + value_activation_support # (bs, vertice_num, out_channel) attention_feature = self.multihead_attention(query_feature_fuse, key_feature_fuse, value_feature_fuse) return attention_feature class Pool_layer(nn.Module): def __init__(self, pooling_rate: int= 4, neighbor_num: int= 4): super().__init__() self.pooling_rate = pooling_rate self.neighbor_num = neighbor_num def forward(self, vertices: "(bs, vertice_num, 3)", feature_map: "(bs, vertice_num, channel_num)"): """ Return: vertices_pool: (bs, pool_vertice_num, 3), feature_map_pool: (bs, pool_vertice_num, channel_num) """ bs, vertice_num, _ = vertices.size() neighbor_index = get_neighbor_index(vertices, self.neighbor_num) neighbor_feature = indexing_neighbor(feature_map, neighbor_index) #(bs, vertice_num, neighbor_num, channel_num) pooled_feature = torch.max(neighbor_feature, dim= 2)[0] #(bs, vertice_num, channel_num) pool_num = int(vertice_num / self.pooling_rate) sample_idx = torch.randperm(vertice_num)[:pool_num] vertices_pool = vertices[:, sample_idx, :] # (bs, pool_num, 3) feature_map_pool = pooled_feature[:, sample_idx, :] #(bs, pool_num, channel_num) return vertices_pool, feature_map_pool def test(): import time bs = 8 v = 1024 dim = 3 n = 20 vertices = torch.randn(bs, v, dim) neighbor_index = get_neighbor_index(vertices, n) s = 3 # conv_1 = Conv_surface(kernel_num= 32, support_num= s) conv_1 = Attention_Conv_surface2(kernel_num=32, support_num=s) # conv_2 = Conv_layer(in_channel= 32, out_channel= 64, support_num= s) conv_2 = Attention_Conv_layer(in_channel= 32, out_channel= 64, support_num= s) pool = Pool_layer(pooling_rate= 4, neighbor_num= 4) print("Input size: {}".format(vertices.size())) start = time.time() f1 = conv_1(neighbor_index, vertices) print("\n[1] Time: {}".format(time.time() - start)) print("[1] Out shape: {}".format(f1.size())) start = time.time() f2 = conv_2(neighbor_index, vertices, f1) print("\n[2] Time: {}".format(time.time() - start)) print("[2] Out shape: {}".format(f2.size())) start = time.time() v_pool, f_pool = pool(vertices, f2) print("\n[3] Time: {}".format(time.time() - start)) print("[3] v shape: {}, f shape: {}".format(v_pool.size(), f_pool.size())) if __name__ == "__main__": test() ``` #### File: part_seg/model/model_gcn3d_bn_layeratt.py ```python import torch import torch.nn as nn import torch.nn.functional as F import sys sys.path.append("../") import gcn3d class GCN3D(nn.Module): def __init__(self, class_num, support_num, neighbor_num): super().__init__() self.neighbor_num = neighbor_num self.num_part = class_num self.conv_0 = gcn3d.Conv_surface_attention(kernel_num= 128, support_num= support_num) self.conv_1 = gcn3d.Conv_layer_attention(128, 128, support_num= support_num) self.pool_1 = gcn3d.Pool_layer(pooling_rate= 4, neighbor_num= 4) self.conv_2 = gcn3d.Conv_layer_attention(128, 256, support_num= support_num) self.conv_3 = gcn3d.Conv_layer_attention(256, 256, support_num= support_num) self.pool_2 = gcn3d.Pool_layer(pooling_rate= 4, neighbor_num= 4) self.conv_4 = gcn3d.Conv_layer_attention(256, 512, support_num= support_num) dim_fuse = sum([128, 128, 256, 256, 512, 512, 16]) self.conv1d_block = nn.Sequential( nn.Conv1d(dim_fuse, 512, 1), nn.ReLU(inplace= True), nn.Conv1d(512, 512, 1), nn.ReLU(inplace= True), nn.Conv1d(512, class_num, 1), ) self.bn0 = nn.BatchNorm1d(128, momentum=0.1) self.bn1 = nn.BatchNorm1d(128, momentum=0.1) self.bn2 = nn.BatchNorm1d(256, momentum=0.1) self.bn3 = nn.BatchNorm1d(256, momentum=0.1) def forward(self, vertices: "tensor (bs, vetice_num, 3)", onehot: "tensor (bs, cat_num)", gt=None): """ Return: (bs, vertice_num, class_num) """ vertices = torch.transpose(vertices, 1, 2) bs, vertice_num, _ = vertices.size() #neighbor_index = gcn3d.get_neighbor_index(vertices, self.neighbor_num) neighbor_index, neighbor_value = gcn3d.get_neighbor_index_value(vertices, self.neighbor_num) fm_0 = F.relu(self.bn0(self.conv_0(neighbor_index, vertices, neighbor_value).transpose(2, 1)).transpose(2, 1), inplace= True) fm_1 = F.relu(self.bn1(self.conv_1(neighbor_index, vertices, fm_0, neighbor_value).transpose(2, 1)).transpose(2, 1), inplace= True) v_pool_1, fm_pool_1 = self.pool_1(vertices, fm_1) neighbor_index, neighbor_value = gcn3d.get_neighbor_index_value(v_pool_1, self.neighbor_num) fm_2 = F.relu(self.bn2(self.conv_2(neighbor_index, v_pool_1, fm_pool_1, neighbor_value).transpose(2, 1)).transpose(2, 1), inplace= True) fm_3 = F.relu(self.bn3(self.conv_3(neighbor_index, v_pool_1, fm_2, neighbor_value).transpose(2, 1)).transpose(2, 1), inplace= True) #print("add bn") v_pool_2, fm_pool_2 = self.pool_2(v_pool_1, fm_3) neighbor_index, neighbor_value = gcn3d.get_neighbor_index_value(v_pool_2, self.neighbor_num) fm_4 = self.conv_4(neighbor_index, v_pool_2, fm_pool_2, neighbor_value) f_global = fm_4.max(1)[0] #(bs, f) nearest_pool_1 = gcn3d.get_nearest_index(vertices, v_pool_1) nearest_pool_2 = gcn3d.get_nearest_index(vertices, v_pool_2) fm_2 = gcn3d.indexing_neighbor(fm_2, nearest_pool_1).squeeze(2) fm_3 = gcn3d.indexing_neighbor(fm_3, nearest_pool_1).squeeze(2) fm_4 = gcn3d.indexing_neighbor(fm_4, nearest_pool_2).squeeze(2) f_global = f_global.unsqueeze(1).repeat(1, vertice_num, 1) onehot = onehot.unsqueeze(1).repeat(1, vertice_num, 1) #(bs, vertice_num, cat_one_hot) fm_fuse = torch.cat([fm_0, fm_1, fm_2, fm_3, fm_4, f_global, onehot], dim= 2) conv1d_input = fm_fuse.permute(0, 2, 1) #(bs, fuse_ch, vertice_num) conv1d_out = self.conv1d_block(conv1d_input) conv1d_out = F.log_softmax(conv1d_out, dim=1) pred = conv1d_out.permute(0, 2, 1) #(bs, vertice_num, ch) if gt is not None: return pred, F.nll_loss(pred.contiguous().view(-1, self.num_part), gt.view(-1, 1)[:, 0]) else: return pred def test(): from dataset_shapenet import test_model dataset = "../../shapenetcore_partanno_segmentation_benchmark_v0" model = GCN3D(class_num= 50, support_num= 1, neighbor_num= 50) test_model(model, dataset, cuda= "0", bs= 2, point_num= 2048) if __name__ == "__main__": test() ``` #### File: PAConv/part_seg/modules.py ```python from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from lib.pointops.functions import pointops EPSILON = 1e-8 class PointTransformerLayer_old(nn.Module): def __init__(self, in_channels, out_channels=None, num_neighbors=16): super(PointTransformerLayer, self).__init__() self.out_channels = in_channels if out_channels is None else out_channels self.to_query = nn.Conv1d(in_channels, self.out_channels, kernel_size=1) self.to_key = nn.Conv1d(in_channels, self.out_channels, kernel_size=1) self.to_value = nn.Conv1d(in_channels, self.out_channels, kernel_size=1) self.to_pos_enc = nn.Sequential( nn.Conv2d(3, 3, kernel_size=1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=True), nn.Conv2d(3, self.out_channels, kernel_size=1) ) self.to_attn = nn.Sequential( nn.BatchNorm2d(self.out_channels), nn.ReLU(inplace=True), nn.Conv2d(self.out_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(self.out_channels), nn.ReLU(inplace=True), nn.Conv2d(self.out_channels, self.out_channels, kernel_size=1) ) self.key_grouper = pointops.QueryAndGroup(nsample=num_neighbors, return_idx=True) self.value_grouper = pointops.QueryAndGroup(nsample=num_neighbors, use_xyz=False) self.softmax = nn.Softmax(dim=-1) # (B, C_out, N, K) def forward(self, px): # points, p: (B, N, 3) # in_features, x: (B, C_in, N) p, x = px # query, key, and value q = self.to_query(x) # (B, C_out, N) k = self.to_key(x) # (B, C_out, N) v = self.to_value(x) # (B, C_out, N) # neighbor search n_k, _, n_idx = self.key_grouper(xyz=p, features=k) # (B, 3+C_out, N, K) n_v, _ = self.value_grouper(xyz=p, features=v, idx=n_idx.int()) # (B, C_out, N, K) # relative positional encoding n_r = self.to_pos_enc(n_k[:, 0:3, :, :]) # (B, C_out, N, K) n_v = n_v energy = q.unsqueeze(-1) - n_k[:, 3:, :, :] + n_r # self-attention a = self.to_attn(energy) # (B, C_out, N, K) a = self.softmax(a) y = torch.sum(n_v * a, dim=-1, keepdim=False) return [p, y] class PointTransformerLayer_L(nn.Module): def __init__(self, in_channels, out_channels=None, num_neighbors=16): super(PointTransformerLayer_L, self).__init__() self.out_channels = in_channels if out_channels is None else out_channels self.chunk = nn.TransformerEncoderLayer(d_model=in_channels, dim_feedforward=2 * in_channels, dropout=0.0, nhead=4) self.pe = nn.Sequential( nn.Conv2d(3, 3, kernel_size=1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=True), nn.Conv2d(3, self.out_channels, kernel_size=1) ) self.fc = nn.Conv1d(in_channels, self.out_channels, 1) self.grouper = pointops.QueryAndGroup(nsample=num_neighbors, use_xyz=False) self.softmax = nn.Softmax(dim=-1) # (B, C_out, N, K) def forward(self, px): # points, p: (B, N, 3) # in_features, x: (B, C_in, N) p, x = px group_features, grouped_xyz = self.grouper(xyz=p, features=x) #print("new.shape:",group_features.shape, grouped_xyz.shape) position_encoding = self.pe(grouped_xyz) input_features = group_features + position_encoding #print("input_features.shape", input_features.shape) B, D, np, ns = input_features.shape input_features = input_features.permute(0, 2, 1, 3).reshape(-1, D, ns).permute(2, 0, 1) #print("input_features_new.shape", input_features.shape) transformed_feats = self.chunk(input_features).permute(1, 2, 0).reshape(B, np, D, ns).transpose(1, 2) #print("transformed_feats.shape", transformed_feats.shape) output_features = F.max_pool2d(transformed_feats, kernel_size=[1, ns]).squeeze(-1) # (B, C, npoint) #print("output_features.shape", output_features.shape) output_features = self.fc(output_features).squeeze(-1) #print("output_features.shape", output_features.shape) return [p, output_features] class PointTransformerLayer_G(nn.Module): def __init__(self, in_channels, out_channels=None, num_neighbors=16): super(PointTransformerLayer_G, self).__init__() self.out_channels = in_channels if out_channels is None else out_channels self.chunk = nn.TransformerEncoderLayer(d_model=in_channels, dim_feedforward=2 * in_channels, dropout=0.0, nhead=4) self.pe = nn.Sequential( nn.Conv1d(3, 3, kernel_size=1, bias=False), nn.BatchNorm1d(3), nn.ReLU(inplace=True), nn.Conv1d(3, self.out_channels, kernel_size=1) ) self.fc = nn.Conv1d(in_channels, self.out_channels, 1) self.grouper = pointops.QueryAndGroup(nsample=num_neighbors, use_xyz=False) self.softmax = nn.Softmax(dim=-1) # (B, C_out, N, K) def forward(self, px): p, x = px xyz_flipped = p.transpose(1, 2) position_encoding = self.pe(xyz_flipped) input_features = x + position_encoding input_features = input_features.permute(2, 0, 1) transformed_feats = self.chunk(input_features).permute(1, 2, 0) output_features = self.fc(transformed_feats).squeeze(-1) return [p, output_features] class PointTransformerBlock(nn.Module): def __init__(self, in_channels, out_channels=None, num_neighbors=16): super(PointTransformerBlock, self).__init__() self.out_channels = in_channels if out_channels is None else out_channels self.linear1 = nn.Conv1d(in_channels, self.out_channels, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm1d(self.out_channels) self.transformer_l = PointTransformerLayer_L(self.out_channels, num_neighbors=num_neighbors) self.bn_l = nn.BatchNorm1d(self.out_channels) self.transformer_g = PointTransformerLayer_G(self.out_channels, num_neighbors=num_neighbors) self.bn_g = nn.BatchNorm1d(self.out_channels) self.linear2 = nn.Conv1d(self.out_channels, self.out_channels, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm1d(self.out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, px): p, x = px y = self.relu(self.bn1(self.linear1(x))) y = self.relu(self.bn_l(self.transformer_l([p, y])[1])) y = self.relu(self.bn_g(self.transformer_g([p, y])[1])) y = self.bn2(self.linear2(y)) y += x y = self.relu(y) return [p, y] class TransitionDown(nn.Module): def __init__(self, in_channels, out_channels=None, stride=4, num_neighbors=16): assert stride > 1 super(TransitionDown, self).__init__() self.out_channels = in_channels if out_channels is None else out_channels self.stride = stride self.grouper = pointops.QueryAndGroup(nsample=num_neighbors, use_xyz=True) self.mlp = nn.Sequential( nn.Conv2d(3 + in_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(self.out_channels), nn.ReLU(inplace=True), nn.Conv2d(self.out_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(self.out_channels), nn.ReLU(inplace=True) ) self.max_pool = nn.MaxPool2d((1, num_neighbors)) def forward(self, p1x): # points, p: (B, N, 3) # in_features, x: (B, C_in, N) p1, x = p1x # furthest point sampling and neighbor search M = x.shape[-1] // self.stride p1_trans = p1.transpose(1, 2).contiguous() # (B, 3, N) p2 = pointops.gathering(p1_trans, pointops.furthestsampling(p1, M)).transpose(1, 2).contiguous() n_x, _ = self.grouper(xyz=p1, new_xyz=p2, features=x) # (B, 3 + C_in, M, K) # mlp and local max pooling n_y = self.mlp(n_x) # (B, C_out, M, K) y = self.max_pool(n_y).squeeze(-1) # (B, C_out, M) return [p2, y] class TransitionUp(nn.Module): def __init__(self, in_channels, out_channels=None, skip_channels=None): super(TransitionUp, self).__init__() self.out_channels = in_channels if out_channels is None else out_channels self.skip_channels = in_channels if skip_channels is None else skip_channels self.linear1 = nn.Sequential( nn.Conv1d(in_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm1d(self.out_channels), nn.ReLU(inplace=True) ) self.linear2 = nn.Sequential( nn.Conv1d(self.skip_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm1d(self.out_channels), nn.ReLU(inplace=True) ) def forward(self, p1x1, p2x2): # in_points, p1: (B, N, 3) # in_features, x1: (B, C_in, N) # skip_points, p2: (B, M, 3) # skip_features, x2: (B, C_skip, M) p1, x1 = p1x1 p2, x2 = p2x2 # Three nearest neighbor upsampling dist, idx = pointops.nearestneighbor(p2, p1) dist_recip = 1.0 / (dist + EPSILON) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = dist_recip / norm up_x1 = pointops.interpolation(self.linear1(x1), idx, weight) # aggregation y = self.linear2(x2) + up_x1 # (B, C_out, M) return [p2, y] # Just for debugging class SimplePointTransformerSeg(nn.Module): def __init__(self, in_channels, num_classes, num_neighbors): super(SimplePointTransformerSeg, self).__init__() hidden_channels = in_channels * 4 # encoder self.in_mlp = nn.Sequential( nn.Conv1d(in_channels, hidden_channels, kernel_size=1, bias=False), nn.BatchNorm1d(hidden_channels), nn.ReLU(inplace=True), nn.Conv1d(hidden_channels, hidden_channels, kernel_size=1, bias=False), nn.BatchNorm1d(hidden_channels), nn.ReLU(inplace=True) ) self.block1 = PointTransformerBlock(hidden_channels, num_neighbors=num_neighbors) self.down = TransitionDown(hidden_channels, num_neighbors=num_neighbors) self.block2 = PointTransformerBlock(hidden_channels, num_neighbors=num_neighbors) # decoder self.up = TransitionUp(hidden_channels) self.block3 = PointTransformerBlock(hidden_channels, num_neighbors=num_neighbors) self.out_mlp = nn.Sequential( nn.Conv1d(hidden_channels, hidden_channels, kernel_size=1, bias=False), nn.BatchNorm1d(hidden_channels), nn.ReLU(inplace=True), nn.Conv1d(hidden_channels, num_classes, kernel_size=1) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else deepcopy(xyz) return xyz, features def forward(self, pc): # stride == 1 p1, x1 = self._break_up_pc(pc) x1 = self.in_mlp(x1) p1x1 = self.block1([p1, x1]) # stride == 4 p4x4 = self.down(p1x1) p4x4 = self.block2(p4x4) # stride == 1 p1y = self.up(p4x4, p1x1) p1y = self.block3(p1y) y = self.out_mlp(p1y[1]) return y if __name__ == "__main__": from time import time assert torch.cuda.is_available() B, C_in, C_out, N, K = 4, 6, 20, 1024, 16 model = SimplePointTransformerSeg(C_in, C_out, K).cuda() pc = torch.randn(B, N, 3 + C_in).cuda() s = time() y = model(pc) d = time() - s print("Elapsed time (sec):", d) print(y.shape) ``` #### File: lib/paconv_lib/functional.py ```python from . import functions def assign_score_withk(score, feat, center_feat, grouped_idx, aggregate='sum'): return functions.assign_score_withk(score, feat, center_feat, grouped_idx, aggregate) ``` #### File: model/pointnet2/pointnet2_paconv_seg.py ```python from collections import namedtuple import torch import torch.nn as nn from model.pointnet2.pointnet2_paconv_modules import PointNet2FPModule from util import block class PointNet2SSGSeg(nn.Module): r""" PointNet2 with single-scale grouping Semantic segmentation network that uses feature propogation layers Parameters ---------- k: int Number of semantics classes to predict over -- size of softmax classifier that run for each point c: int = 6 Number of input channels in the feature descriptor for each point. If the point cloud is Nx9, this value should be 6 as in an Nx9 point cloud, 3 of the channels are xyz, and 6 are feature descriptors use_xyz: bool = True Whether or not to use the xyz position of a point as a feature """ def __init__(self, c=3, k=13, use_xyz=True, args=None): super().__init__() self.nsamples = args.get('nsamples', [32, 32, 32, 32]) self.npoints = args.get('npoints', [None, None, None, None]) self.sa_mlps = args.get('sa_mlps', [[c, 32, 32, 64], [64, 64, 64, 128], [128, 128, 128, 256], [256, 256, 256, 512]]) self.fp_mlps = args.get('fp_mlps', [[128 + c, 128, 128, 128], [256 + 64, 256, 128], [256 + 128, 256, 256], [512 + 256, 256, 256]]) self.paconv = args.get('pointnet2_paconv', [True, True, True, True, False, False, False, False]) self.fc = args.get('fc', 128) if args.get('cuda', False): from model.pointnet2.pointnet2_paconv_modules import PointNet2SAModuleCUDA as PointNet2SAModule else: from model.pointnet2.pointnet2_paconv_modules import PointNet2SAModule self.SA_modules = nn.ModuleList() self.SA_modules.append(PointNet2SAModule(npoint=self.npoints[0], nsample=self.nsamples[0], mlp=self.sa_mlps[0], use_xyz=use_xyz, use_paconv=self.paconv[0], args=args)) self.SA_modules.append(PointNet2SAModule(npoint=self.npoints[1], nsample=self.nsamples[1], mlp=self.sa_mlps[1], use_xyz=use_xyz, use_paconv=self.paconv[1], args=args)) self.SA_modules.append(PointNet2SAModule(npoint=self.npoints[2], nsample=self.nsamples[2], mlp=self.sa_mlps[2], use_xyz=use_xyz, use_paconv=self.paconv[2], args=args)) self.SA_modules.append(PointNet2SAModule(npoint=self.npoints[3], nsample=self.nsamples[3], mlp=self.sa_mlps[3], use_xyz=use_xyz, use_paconv=self.paconv[3], args=args)) self.FP_modules = nn.ModuleList() self.FP_modules.append(PointNet2FPModule(mlp=self.fp_mlps[0], use_paconv=self.paconv[4], args=args)) self.FP_modules.append(PointNet2FPModule(mlp=self.fp_mlps[1], use_paconv=self.paconv[5], args=args)) self.FP_modules.append(PointNet2FPModule(mlp=self.fp_mlps[2], use_paconv=self.paconv[6], args=args)) self.FP_modules.append(PointNet2FPModule(mlp=self.fp_mlps[3], use_paconv=self.paconv[7], args=args)) self.FC_layer = nn.Sequential(block.Conv2d(self.fc, self.fc, bn=True), nn.Dropout(), block.Conv2d(self.fc, k, activation=None)) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = (pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): r""" Forward pass of the network Parameters ---------- pointcloud: Variable(torch.cuda.FloatTensor) (B, N, 3 + input_channels) tensor Point cloud to run predicts on Each point in the point-cloud MUST be formated as (x, y, z, features...) """ xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i](l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i]) # return self.FC_layer(l_features[0]) return self.FC_layer(l_features[0].unsqueeze(-1)).squeeze(-1) def model_fn_decorator(criterion): ModelReturn = namedtuple("ModelReturn", ['preds', 'loss', 'acc']) def model_fn(model, data, eval=False): with torch.set_grad_enabled(not eval): inputs, labels = data inputs = inputs.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) preds = model(inputs) loss = criterion(preds, labels) _, classes = torch.max(preds, 1) acc = (classes == labels).float().sum() / labels.numel() return ModelReturn(preds, loss, {"acc": acc.item(), 'loss': loss.item()}) return model_fn if __name__ == "__main__": import torch.optim as optim B, N, C, K = 2, 4096, 3, 13 inputs = torch.randn(B, N, 6)#.cuda() labels = torch.randint(0, 3, (B, N))#.cuda() model = PointNet2SSGSeg(c=C, k=K)#.cuda() optimizer = optim.SGD(model.parameters(), lr=5e-2, momentum=0.9, weight_decay=1e-4) print("Testing SSGCls with xyz") model_fn = model_fn_decorator(nn.CrossEntropyLoss()) for _ in range(5): optimizer.zero_grad() _, loss, _ = model_fn(model, (inputs, labels)) loss.backward() print(loss.item()) optimizer.step() model = PointNet2SSGSeg(c=C, k=K, use_xyz=False).cuda() optimizer = optim.SGD(model.parameters(), lr=5e-2, momentum=0.9, weight_decay=1e-4) print("Testing SSGCls without xyz") model_fn = model_fn_decorator(nn.CrossEntropyLoss()) for _ in range(5): optimizer.zero_grad() _, loss, _ = model_fn(model, (inputs, labels)) loss.backward() print(loss.item()) optimizer.step() ``` #### File: model/pointnet/pointnet.py ```python import torch import torch.nn as nn import torch.nn.functional as F class STN3D(nn.Module): def __init__(self, c): super(STN3D, self).__init__() self.c = c self.conv1 = nn.Conv1d(self.c, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.mp = nn.AdaptiveMaxPool1d(1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.c*self.c) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) def forward(self, x): batch_size = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = self.mp(x) x = x.view(-1, 1024) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = torch.eye(self.c).view(1, -1).repeat(batch_size, 1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, self.c, self.c) return x class PointNetFeat(nn.Module): def __init__(self, c=3, global_feat=True): super(PointNetFeat, self).__init__() self.global_feat = global_feat self.stn1 = STN3D(c) self.conv1 = nn.Conv1d(c, 64, 1) self.conv2 = nn.Conv1d(64, 64, 1) self.stn2 = STN3D(64) self.conv3 = nn.Conv1d(64, 64, 1) self.conv4 = nn.Conv1d(64, 128, 1) self.conv5 = nn.Conv1d(128, 1024, 1) self.mp = nn.AdaptiveMaxPool1d(1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(64) self.bn3 = nn.BatchNorm1d(64) self.bn4 = nn.BatchNorm1d(128) self.bn5 = nn.BatchNorm1d(1024) def forward(self, x): stn1 = self.stn1(x) x = torch.bmm(stn1, x) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) stn2 = self.stn2(x) x_tmp = torch.bmm(stn2, x) x = F.relu(self.bn3(self.conv3(x_tmp))) x = F.relu(self.bn4(self.conv4(x))) x = F.relu(self.bn5(self.conv5(x))) x = self.mp(x) x = x.view(-1, 1024) if not self.global_feat: x = x.view(-1, 1024, 1).repeat(1, 1, x_tmp.size()[2]) x = torch.cat([x_tmp, x], 1) return x class PointNetCls(nn.Module): def __init__(self, c=3, k=40, dropout=0.3, sync_bn=False): super(PointNetCls, self).__init__() self.feat = PointNetFeat(c, global_feat=True) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, k) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.dropout = nn.Dropout(p=dropout) def forward(self, x): x = x.transpose(1, 2) x = self.feat(x) x = F.relu(self.bn1(self.fc1(x))) x = F.relu(self.bn2(self.fc2(x))) x = self.dropout(x) x = self.fc3(x) return x # Segmentation with 9 channels input XYZ, RGB and normalized location to the room (from 0 to 1), with STN3D on input and feature class PointNetSeg(nn.Module): def __init__(self, c=9, k=13, sync_bn=False): super(PointNetSeg, self).__init__() self.feat = PointNetFeat(c, global_feat=False) self.conv1 = nn.Conv1d(1088, 512, 1) self.conv2 = nn.Conv1d(512, 256, 1) self.conv3 = nn.Conv1d(256, 128, 1) self.conv4 = nn.Conv1d(128, 128, 1) self.conv5 = nn.Conv1d(128, k, 1) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.bn3 = nn.BatchNorm1d(128) self.bn4 = nn.BatchNorm1d(128) def forward(self, x): x = x.transpose(1, 2) x = self.feat(x) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = F.relu(self.bn4(self.conv4(x))) x = self.conv5(x) return x if __name__ == '__main__': import os os.environ["CUDA_VISIBLE_DEVICES"] = '0' sim_data = torch.rand(16, 2048, 3) trans = STN3D(c=3) out = trans(sim_data.transpose(1, 2)) print('stn', out.size()) point_feat = PointNetFeat(global_feat=True) out = point_feat(sim_data.transpose(1, 2)) print('global feat', out.size()) point_feat = PointNetFeat(global_feat=False) out = point_feat(sim_data.transpose(1, 2)) print('point feat', out.size()) cls = PointNetCls(c=3, k=40) out = cls(sim_data) print('class', out.size()) sim_data = torch.rand(16, 2048, 9) seg = PointNetSeg(c=9, k=13) out = seg(sim_data) print('seg', out.size()) ``` #### File: scene_seg/util/paconv_util.py ```python import torch def weight_init(m): # print(m) if isinstance(m, torch.nn.Linear): torch.nn.init.xavier_normal_(m.weight) if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.Conv2d): torch.nn.init.xavier_normal_(m.weight) if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.Conv1d): torch.nn.init.xavier_normal_(m.weight) if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.BatchNorm1d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) def get_graph_feature(x, k, idx): batch_size = x.size(0) num_points = x.size(2) x = x.view(batch_size, -1, num_points) idx_base = torch.arange(0, batch_size, device=x.device).view(-1, 1, 1) * num_points idx = idx + idx_base idx = idx.view(-1) _, num_dims, _ = x.size() x = x.transpose(2, 1).contiguous() neighbor = x.view(batch_size * num_points, -1)[idx, :] neighbor = neighbor.view(batch_size, num_points, k, num_dims) x = x.view(batch_size, num_points, 1, num_dims).repeat(1, 1, k, 1) feature = torch.cat((neighbor - x, neighbor), dim=3) # (xj-xi, xj): b,n,k,2c return feature def assign_score(score, point_input): B, N, K, m = score.size() score = score.view(B, N, K, 1, m) point_output = torch.matmul(score, point_input).view(B, N, K, -1) # b,n,k,cout return point_output def get_ed(x, y): ed = torch.norm(x - y, dim=-1).reshape(x.shape[0], 1) return ed def assign_kernel_withoutk(in_feat, kernel, M): B, Cin, N0 = in_feat.size() in_feat_trans = in_feat.permute(0, 2, 1) out_feat_half1 = torch.matmul(in_feat_trans, kernel[:Cin]).view(B, N0, M, -1) # b,n,m,o1 out_feat_half2 = torch.matmul(in_feat_trans, kernel[Cin:]).view(B, N0, M, -1) # b,n,m,o1 if in_feat.size(1) % 2 != 0: out_feat_half_coord = torch.matmul(in_feat_trans[:, :, :3], kernel[Cin: Cin + 3]).view(B, N0, M, -1) # b,n,m,o1 else: out_feat_half_coord = torch.zeros_like(out_feat_half2) return out_feat_half1 + out_feat_half2, out_feat_half1 + out_feat_half_coord ```
{ "source": "JiazeWang/PVN3D", "score": 2 }
#### File: datasets/ycb/preprocess_testset.py ```python import os import cv2 import tqdm import torch import os.path import numpy as np from common import Config import pickle as pkl from lib.utils.basic_utils import Basic_Utils import scipy.io as scio import scipy.misc from datasets.ycb.ycb_dataset import YCB_Dataset config = Config(dataset_name='ycb') bs_utils = Basic_Utils(config) torch.multiprocessing.set_sharing_strategy('file_system') def worker_init_fn(worker_id): np.random.seed(np.random.get_state()[1][0] + worker_id) def main(): if os.path.exists(config.preprocessed_testset_pth): return test_ds = YCB_Dataset('test') test_loader = torch.utils.data.DataLoader( test_ds, batch_size=config.test_mini_batch_size, shuffle=False, num_workers=40, worker_init_fn=worker_init_fn ) data_lst = [] for i, data in tqdm.tqdm( enumerate(test_loader), leave=False, desc='Preprocessing valtestset' ): bs, _, _, _ = data[0].shape for ibs in range(bs): i_data = [item[ibs] for item in data] if len(i_data) < 11: print(len(i_data)) data_lst.append(i_data) pkl.dump(data_lst, open(config.preprocessed_testset_pth, 'wb')) if __name__ == "__main__": main() # vim: ts=4 sw=4 sts=4 expandtab ``` #### File: utils/ip_basic/ycb_fill_depth.py ```python import os import time import cv2 import numpy as np import pickle as pkl import png import nori2 from ip_basic import depth_map_utils, depth_map_utils_ycb from ip_basic import vis_utils import sys sys.path.append('..') from lib.utils.my_utils import my_utils from neupeak.utils.webcv2 import imshow, waitKey from tqdm import tqdm import concurrent.futures nf = nori2.Fetcher() def show_depth(name, dpt): dpt = (dpt / np.max(dpt) * 255).astype(np.uint8) imshow(name, dpt) def get_one_show(nid): fill_type = 'multiscale' # fill_type = 'fast' show_process = False extrapolate = True# False # True # blur_type = 'gaussian' blur_type = 'bilateral' data = pkl.loads(nf.get(nid)) bk_label = data['label'] bk_label = bk_label <= 0 bk_label_3c = np.repeat(bk_label[:, :, None], 3, 2) rgb_back = data['rgb'][:, :, :3] * bk_label_3c dpt_back = data['depth'].astype(np.float32) # * bk_label.astype(np.float32) cam_scale = data['meta']['factor_depth'].astype(np.float32)[0][0] scale_2_80 = 1 #80 / 4.6 # test scale_2_80 = 1 #80 / 6.6 # train_real dpt_back = dpt_back / cam_scale * scale_2_80 pcld, choose = my_utils.dpt_2_cld( data['depth'], cam_scale, data['obj_info_lst'][0]['K'] ) nrm = my_utils.get_normal(pcld) nrm_map = my_utils.get_normal_map(nrm, choose) print('dpt range(min, max): ', np.min(dpt_back), np.max(dpt_back), cam_scale) projected_depth = dpt_back.copy() start_fill_time = time.time() if fill_type == 'fast': final_dpt = depth_map_utils_ycb.fill_in_fast( projected_depth, extrapolate=extrapolate, blur_type=blur_type, # max_depth=120.0 ) elif fill_type == 'multiscale': final_dpt, process_dict = depth_map_utils_ycb.fill_in_multiscale( projected_depth, extrapolate=extrapolate, blur_type=blur_type, show_process=show_process, # max_depth=120.0 ) else: raise ValueError('Invalid fill_type {}'.format(fill_type)) end_fill_time = time.time() pcld, choose = my_utils.dpt_2_cld( final_dpt, scale_2_80, data['obj_info_lst'][0]['K'] ) nrm = my_utils.get_normal(pcld) nrm_map_final = my_utils.get_normal_map(nrm, choose) show_dict = dict( ori_dpt = dpt_back, final_dpt = final_dpt, rgb = data['rgb'][:, :, :3][...,::-1].astype(np.uint8), nrm_map = nrm_map, nrm_map_final = nrm_map_final, ) return show_dict def complete_dpt(nid_p): nid_lst = my_utils.read_lines(nid_p) # fill_type = 'fast' cnt = 0 import random # random.shuffle(nid_lst) with concurrent.futures.ProcessPoolExecutor(15) as executor: for info in executor.map(get_one_show, nid_lst): print(np.min(info['final_dpt']), np.max(info['final_dpt'])) show_depth('ori_dpth', info['ori_dpt']) show_depth('cmplt_dpth', info['final_dpt']) imshow('rgb', info['rgb']) imshow('nrm_map', info['nrm_map']) imshow('nrm_map_final', info['nrm_map_final']) if cnt == 0: cmd = waitKey(0) # cnt += 1 else: cmd = waitKey(2) def get_one_depth(nid): data = pkl.loads(nf.get(nid)) dpt_back = data['depth'].astype(np.float32) # * bk_label.astype(np.float32) cam_scale = data['meta']['factor_depth'].astype(np.float32)[0][0] # K = data['obj_info_lst'][0]['K'] # print(K) dpt_back = dpt_back / cam_scale dpt_back = dpt_back.reshape(-1) max_dpt = dpt_back[np.argpartition(dpt_back, -100)[-100:]] return np.mean(max_dpt) def get_depth_max_statics(nid_p): print(nid_p) nid_lst = my_utils.read_lines(nid_p) # nid_lst = nid_lst[:2] + nid_lst[-2:] max_dp = 0.0 with concurrent.futures.ProcessPoolExecutor(15) as executor: for dpt in tqdm(executor.map(get_one_depth, nid_lst)): if dpt > max_dp: max_dp = dpt print("max_dp: ", max_dp) def main(): nid_lst_p_lst = [ '/data/ycb_linemod_datasets/ycb/pose_nori_lists/allobj_test_real.nori.list', '/data/ycb_linemod_datasets/ycb/pose_nori_lists/allobj_train_real.nori.list', '/data/ycb_linemod_datasets/ycb/pose_nori_lists/allobj_train_syn.nori.list', # '/data/ycb_linemod_datasets/ycb/ycb_train_rdlm.nori.list', # '/data/ycb_linemod_datasets/ycb/ycb_train_syn_rdlm.nori.list', # '/data/ycb_linemod_datasets/ycb/ycb_train_real_rdlm.nori.list', # '/data/ycb_linemod_datasets/ycb/ycb_test_rdlm.nori.list' ] complete_dpt(nid_lst_p_lst[0]) for nid_lst_p in nid_lst_p_lst: get_depth_max_statics(nid_lst_p) if __name__ == "__main__": main() # vim: ts=4 sw=4 sts=4 expandtab ```
{ "source": "JiazeWang/reagent", "score": 3 }
#### File: reagent/registration_dense/pspnet.py ```python import math import torch from torch import nn from torch.nn import functional as F def conv3x3(in_planes, out_planes, stride=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride=stride, dilation=dilation) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, stride=1, dilation=dilation) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers=(3, 4, 23, 3)): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2./n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes*block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes*block.expansion, kernel_size=1, stride=stride, bias=False) ) layers = [block(self.inplanes, planes, stride, downsample)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x class PSPModule(nn.Module): def __init__(self, feat_dim, bins=(1, 2, 3, 6)): super(PSPModule, self).__init__() self.reduction_dim = feat_dim // len(bins) self.stages = [] self.stages = nn.ModuleList([self._make_stage(feat_dim, size) for size in bins]) def _make_stage(self, feat_dim, size): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(feat_dim, self.reduction_dim, kernel_size=1, bias=False) relu = nn.ReLU(inplace=True) return nn.Sequential(prior, conv, relu) def forward(self, feats): h, w = feats.size(2), feats.size(3) priors = [feats] for stage in self.stages: priors.append(F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True)) return torch.cat(priors, 1) class PSPUpsample(nn.Module): def __init__(self, in_channels, out_channels): super(PSPUpsample, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.PReLU() ) def forward(self, x): x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) return self.conv(x) class PSPNet(nn.Module): def __init__(self, bins=(1, 2, 3, 6), backend='resnet18'): super(PSPNet, self).__init__() if backend == 'resnet18': self.feats = ResNet(BasicBlock, [2, 2, 2, 2]) feat_dim = 512 else: raise NotImplementedError self.psp = PSPModule(feat_dim, bins) self.drop = nn.Dropout2d(p=0.15) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.final = nn.Conv2d(64, 32, kernel_size=1) def forward(self, x): f = self.feats(x) p = self.psp(f) #print("psp:", p.shape) #psp: torch.Size([32, 1024, 24, 24]) p = self.up_1(p) #up1: torch.Size([32, 256, 48, 48]) #print("up1:", p.shape) p = self.drop(p) p = self.up_2(p) #print("up2:", p.shape) #up2: torch.Size([32, 64, 96, 96]) p = self.drop(p) p = self.up_3(p) #print("up3:", p.shape) #up3: torch.Size([32, 64, 192, 192]) return self.final(p) ``` #### File: reagent/registration/train_pn_2D_mgpus_e50.py ```python import numpy as np np.random.seed(42) import torch torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.set_default_dtype(torch.float32) import torch.nn.functional as F import torch.nn as nn import os from tqdm import tqdm from prefetch_generator import BackgroundGenerator import argparse import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)).replace("/registration", "")) from environment import environment as env from environment import transformations as tra from environment.buffer import Buffer from registration.model_pn_2D import Agent import registration.model_pn_2D as util_model import utility.metrics as metrics from utility.logger import Logger from dataset.dataset import DatasetModelnet40, DatasetLinemod import config as cfg DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") def train(agent, logger, dataset, noise_type, epochs, lr, lr_step, alpha, model_path, reward_mode=""): optimizer = torch.optim.Adam(agent.parameters(), lr=lr, amsgrad=True) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_step, 0.5) Dataset = DatasetModelnet40 if dataset == "m40" else DatasetLinemod train_dataset = Dataset("train", noise_type) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.BATCH_SIZE, shuffle=True) val_dataset = Dataset("val", noise_type) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=cfg.BATCH_SIZE, shuffle=False) test_dataset = Dataset("test" if dataset == "m40" else "eval", noise_type) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=cfg.BATCH_SIZE, shuffle=False) RANDOM_STATE = np.random.get_state() # otherwise loader produces deterministic samples after iter 1 losses_bc, losses_ppo, train_rewards, final_rewards = [], [], [], [] episode = 0 # for loss logging (not using epoch) best_chamfer = np.infty buffer = Buffer() buffer.start_trajectory() for epoch in range(epochs): print(f"Epoch {epoch}") # -- train agent.train() np.random.set_state(RANDOM_STATE) progress = tqdm(BackgroundGenerator(train_loader), total=len(train_loader)) for data in progress: with torch.no_grad(): # per sample, generate a full trajectory source, target, pose_source, pose_target = env.init(data) if cfg.DISENTANGLED: pose_target = tra.to_disentangled(pose_target, source) current_source = source if reward_mode == "goal": reward = env.reward_goal(pose_source, pose_target) elif reward_mode == "step": gt_pcd_source = tra.apply_trafo(current_source, pose_target, disentangled=cfg.DISENTANGLED) _, prev_chamfer = env.reward_step(current_source, gt_pcd_source) # STAGE 1: generate trajectories for step in range(cfg.ITER_TRAIN): # expert prediction expert_action = env.expert(pose_source, pose_target, mode=cfg.EXPERT_MODE) # student prediction -- stochastic policy state_emb, action_logit, state_value, _ = agent(current_source, target) action = util_model.action_from_logits(action_logit, deterministic=False) action_logprob, action_entropy = util_model.action_stats(action_logit, action) # step environment and get reward new_source, pose_source = env.step(source, action, pose_source, cfg.DISENTANGLED) if reward_mode == "goal": reward = env.reward_goal(pose_source, pose_target) elif reward_mode == "step": reward, prev_chamfer = env.reward_step(new_source, gt_pcd_source, prev_chamfer) else: reward = torch.zeros((pose_source.shape[0], 1, 1)).to(DEVICE) # log trajectory buffer.log_step([current_source, target], state_value, reward, expert_action, action, action_logit, action_logprob) current_source = new_source train_rewards.append(reward.view(-1)) final_rewards.append(reward.view(-1)) if len(buffer) == cfg.NUM_TRAJ: # STAGE 2: policy (and value estimator) update using BC (and PPO) # convert buffer to tensor of samples (also computes return and advantage over trajectories) samples = buffer.get_samples() ppo_dataset = torch.utils.data.TensorDataset(*samples) ppo_loader = torch.utils.data.DataLoader(ppo_dataset, batch_size=cfg.BATCH_SIZE, shuffle=True, drop_last=False) # sample batches from buffer and update for batch in ppo_loader: sources, targets, \ expert_actions, state_values, \ actions, action_logits, action_logprobs, \ returns, advantages = batch # -- predict using current policy new_state_emb, new_action_logit, new_values, _ = agent(sources, targets) new_action_logprob, new_action_entropy = util_model.action_stats(new_action_logit, actions) # -- clone term loss_translation = F.cross_entropy(new_action_logit[0].view(-1, 11, 1, 1, 1), expert_actions[:, 0].reshape(-1, 1, 1, 1)) loss_rotation = F.cross_entropy(new_action_logit[1].view(-1, 11, 1, 1, 1), expert_actions[:, 1].reshape(-1, 1, 1, 1)) clone_loss = (loss_translation + loss_rotation) / 2 if alpha > 0: # -- policy term # ratio: lp > prev_lp --> probability of selecting that action increased ratio = torch.exp(new_action_logprob - action_logprobs).reshape(-1, 6) policy_loss = -torch.min(ratio * advantages.repeat(1, 6), ratio.clamp(1 - cfg.CLIP_EPS, 1 + cfg.CLIP_EPS) * advantages.repeat(1, 6)).mean() # -- value term value_loss = (new_values.view(-1, 1) - returns).pow(2) if cfg.CLIP_VALUE: values_clipped = state_values + (new_values - state_values)\ .clamp(-cfg.CLIP_EPS, cfg.CLIP_EPS) losses_v_clipped = (values_clipped.view(-1, 1) - returns).pow(2) value_loss = torch.max(value_loss, losses_v_clipped) value_loss = value_loss.mean() # -- entropy term entropy_loss = new_action_entropy.mean() # -- update optimizer.zero_grad() loss = clone_loss losses_bc.append(clone_loss.item()) if alpha > 0: ppo_loss = policy_loss + value_loss * cfg.C_VALUE - entropy_loss * cfg.C_ENTROPY loss += ppo_loss * alpha losses_ppo.append(ppo_loss.item()) loss.backward() optimizer.step() # logging if alpha > 0: logger.record("train/ppo", np.mean(losses_ppo)) logger.record("train/bc", np.mean(losses_bc)) logger.record("train/reward", float(torch.cat(train_rewards, dim=0).mean())) logger.record("train/final_reward", float(torch.cat(final_rewards, dim=0).mean())) logger.dump(step=episode) # reset losses_bc, losses_ppo, train_rewards, final_rewards = [], [], [], [] buffer.clear() episode += 1 buffer.start_trajectory() scheduler.step() RANDOM_STATE = np.random.get_state() # evaluation sets seeds again -- keep random state of the training stage # -- test if val_loader is not None: chamfer_val = evaluate(agent, logger, val_loader, prefix='val') if test_loader is not None: chamfer_test = evaluate(agent, logger, test_loader) if chamfer_test <= best_chamfer: print(f"new best: {chamfer_test}") best_chamfer = chamfer_test infos = { 'epoch': epoch, 'optimizer_state_dict': optimizer.state_dict() } util_model.save(agent, f"{model_path}_mgpu_shared_p50.zip", infos) model_epoch_path = os.path.join(code_path, f"weights/p50_shared_mgpus_pn_2d_{dataset}_{mode}_{str(epoch)}") util_model.save(agent, f"{model_epoch_path}.zip", infos) logger.dump(step=epoch) def evaluate(agent, logger, loader, prefix='test'): agent.eval() progress = tqdm(BackgroundGenerator(loader), total=len(loader)) predictions = [] val_losses = [] with torch.no_grad(): for data in progress: source, target, pose_source, pose_target = env.init(data) if cfg.DISENTANGLED: pose_target = tra.to_disentangled(pose_target, source) current_source = source for step in range(cfg.ITER_EVAL): expert_action = env.expert(pose_source, pose_target, mode=cfg.EXPERT_MODE) state_emb, action_logit, _, _ = agent(current_source, target) action = util_model.action_from_logits(action_logit, deterministic=True) loss_translation = F.cross_entropy(action_logit[0].view(-1, 11, 1, 1, 1), expert_action[:, 0].reshape(-1, 1, 1, 1)) loss_rotation = F.cross_entropy(action_logit[1].view(-1, 11, 1, 1, 1), expert_action[:, 1].reshape(-1, 1, 1, 1)) val_losses.append((loss_translation + loss_rotation).item()/2) current_source, pose_source = env.step(source, action, pose_source, cfg.DISENTANGLED) if cfg.DISENTANGLED: pose_source = tra.to_global(pose_source, source) predictions.append(pose_source) predictions = torch.cat(predictions) _, summary_metrics = metrics.compute_stats(predictions, data_loader=loader) # log test metrics if isinstance(loader.dataset, DatasetLinemod): logger.record(f"{prefix}/add", summary_metrics['add']) logger.record(f"{prefix}/adi", summary_metrics['adi']) return summary_metrics['add'] else: logger.record(f"{prefix}/mae-r", summary_metrics['r_mae']) logger.record(f"{prefix}/mae-t", summary_metrics['t_mae']) logger.record(f"{prefix}/iso-r", summary_metrics['r_iso']) logger.record(f"{prefix}/iso-t", summary_metrics['t_iso']) logger.record(f"{prefix}/chamfer", summary_metrics['chamfer_dist']) logger.record(f"{prefix}/adi-auc", summary_metrics['adi_auc10'] * 100) return summary_metrics['chamfer_dist'] if __name__ == '__main__': parser = argparse.ArgumentParser(description='ReAgent - training on ModelNet40 and LINEMOD') parser.add_argument('--mode', type=str, default='il', choices=['pretrain', 'il', 'ilrl'], help='pretraining (pretrain), IL-only (il), IL+RL with a step-wise reward (ilrls).') parser.add_argument('--dataset', type=str, default='m40', choices=['m40', 'lm'], help='Dataset used for training. All experiments on ModelNet40 and ScanObjectNN use the same ' 'weights - train both with "m40". Experiments on LINEMOD ("lm") use no pretraining.') args = parser.parse_args() # PATHS dataset = args.dataset mode = args.mode code_path = os.path.dirname(os.path.abspath(__file__)).replace("/registration", "") if not os.path.exists(os.path.join(code_path, "logs")): os.mkdir(os.path.join(code_path, "logs")) if not os.path.exists(os.path.join(code_path, "weights")): os.mkdir(os.path.join(code_path, "weights")) model_path = os.path.join(code_path, f"weights/{dataset}_{mode}") logger = Logger(log_dir=os.path.join(code_path, f"logs/{dataset}/"), log_name=f"pre50_shared_mGPUs_2D_pn_{mode}", reset_num_timesteps=True) if torch.cuda.device_count() > 1: print("Using multiple GPUs") else: print("Using single GPU") # TRAINING agent = nn.DataParallel(Agent()).to(DEVICE) if args.mode == "pretrain" and dataset == "m40": print(f"Training: dataset '{dataset}' - mode '{args.mode}'") train(agent, logger, dataset, noise_type="clean", epochs=50, lr=1e-3, lr_step=20, alpha=0, model_path=model_path) else: if args.mode == "il": alpha = 0.0 reward_mode = "" elif args.mode == "ilrl": alpha = 2.0 if dataset == "m40" else 0.1 # reduced influence on lm reward_mode = "step" else: raise ValueError("No pretraining on LINEMOD. Use 'il' or 'ilrl' instead.") print(f"Training: dataset '{dataset}' - mode '{args.mode}'{f' - alpha={alpha}' if args.mode != 'il' else ''}") if dataset == "m40": print(" loading pretrained weights...") if os.path.exists(os.path.join(code_path, f"weights/m40_pretrain_mgpu_shared.zip")): util_model.load(agent, os.path.join(code_path, f"weights/m40_pretrain_mgpu_shared.zip")) else: raise FileNotFoundError(f"No pretrained weights found at " f"{os.path.join(code_path, f'weights/m40_pretrain.zip')}. Run with " f"'pretrain' first or download the provided weights.") noise_type = "jitter" if dataset == "m40" else "segmentation" epochs = 100 if dataset == "m40" else 200 lr = 1e-4 if dataset == "m40" else 1e-3 lr_step = 20 if dataset == "m40" else 40 train(agent, logger, dataset, noise_type, epochs=epochs, lr=lr, lr_step=lr_step, alpha=alpha, reward_mode=reward_mode, model_path=model_path) ```
{ "source": "JiazeWang/SP-GAN", "score": 2 }
#### File: SP-GAN/Common/point_operation.py ```python import numpy as np def nonuniform_sampling(num = 4096, sample_num = 1024): sample = set() loc = np.random.rand()*0.8+0.1 while(len(sample)<sample_num): a = int(np.random.normal(loc=loc,scale=0.3)*num) if a<0 or a>=num: continue sample.add(a) return list(sample) def normalize_point_cloud(inputs): """ input: pc [N, P, 3] output: pc, centroid, furthest_distance """ #print("shape",input.shape) C = inputs.shape[-1] pc = inputs[:,:,:3] if C > 3: nor = inputs[:,:,3:] centroid = np.mean(pc, axis=1, keepdims=True) pc = inputs[:,:,:3] - centroid furthest_distance = np.amax( np.sqrt(np.sum(pc ** 2, axis=-1, keepdims=True)), axis=1, keepdims=True) pc = pc / furthest_distance if C > 3: return np.concatenate([pc,nor],axis=-1) else: return pc def shuffle_point_cloud_and_gt(batch_data,batch_gt=None): B,N,C = batch_data.shape idx = np.arange(N) np.random.shuffle(idx) batch_data = batch_data[:,idx,:] if batch_gt is not None: np.random.shuffle(idx) batch_gt = batch_gt[:,idx,:] return batch_data,batch_gt def shuffle_data(data, labels): """ Shuffle data and labels. Input: data: B,N,... numpy array label: B,... numpy array Return: shuffled data, label and shuffle indices """ idx = np.arange(len(labels)) np.random.shuffle(idx) return data[idx, ...], labels[idx] def rotate_point_cloud_by_angle_batch(batch_data, rotation_angle): """ Rotate the point cloud along up direction with certain angle. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotated_data = np.zeros(batch_data.shape, dtype=np.float32) for k in range(batch_data.shape[0]): #rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) shape_pc = batch_data[k, ...] rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) return rotated_data def rotate_point_cloud_and_gt(pc,gt=None,y_rotated=True): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ angles = np.random.uniform(size=(3)) * 2 * np.pi Rx = np.array([[1, 0, 0], [0, np.cos(angles[0]), -np.sin(angles[0])], [0, np.sin(angles[0]), np.cos(angles[0])]]) Ry = np.array([[np.cos(angles[1]), 0, np.sin(angles[1])], [0, 1, 0], [-np.sin(angles[1]), 0, np.cos(angles[1])]]) Rz = np.array([[np.cos(angles[2]), -np.sin(angles[2]), 0], [np.sin(angles[2]), np.cos(angles[2]), 0], [0, 0, 1]]) if y_rotated: rotation_matrix = Ry else: rotation_matrix = np.dot(Rz, np.dot(Ry, Rx)) pc = np.dot(pc, rotation_matrix) if gt is not None: gt = np.dot(gt, rotation_matrix) return pc, gt return pc def jitter_perturbation_point_cloud(pc, sigma=0.01, clip=0.02): """ Randomly jitter points. jittering is per point. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, jittered batch of point clouds """ N, C = pc.shape assert(clip > 0) jittered_data = np.clip(sigma * np.random.randn(N, C), -1*clip, clip) jittered_data += pc return jittered_data def jitter_perturbation_point_cloud_bt(batch_data, sigma=0.01, clip=0.02): """ Randomly jitter points. jittering is per point. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, jittered batch of point clouds """ jittered_data = np.zeros(batch_data.shape, dtype=np.float32) _, N, C = batch_data.shape for k in range(batch_data.shape[0]): # rotation_angle = np.random.uniform() * 2 * np.pi noise = np.clip(sigma * np.random.randn(N, C), -1 * clip, clip) shape_pc = batch_data[k, ...] jittered_data[k, ...] = shape_pc + noise return jittered_data def shift_point_cloud_and_gt(pc, gt = None, shift_range=0.1): """ Randomly shift point cloud. Shift is per point cloud. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, shifted batch of point clouds """ N, C = pc.shape shifts = np.random.uniform(-shift_range, shift_range, (3)) pc = pc + shifts if gt is not None: gt = gt + shifts return pc, gt return pc def translate_pointcloud(pointcloud): xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3]) xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3]) translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32') return translated_pointcloud def random_scale_point_cloud_and_gt(pc, gt = None, scale_low=0.8, scale_high=1.25): """ Randomly scale the point cloud. Scale is per point cloud. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, scaled batch of point clouds """ N, C = pc.shape scale = np.random.uniform(scale_low, scale_high, 1) pc = pc * scale if gt is not None: gt = gt * scale return pc, gt, scale return pc def rotate_perturbation_point_cloud(pc, angle_sigma=0.06, angle_clip=0.18): """ Randomly perturb the point clouds by small rotations Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ N, C = pc.shape angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip) Rx = np.array([[1,0,0], [0,np.cos(angles[0]),-np.sin(angles[0])], [0,np.sin(angles[0]),np.cos(angles[0])]]) Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])], [0,1,0], [-np.sin(angles[1]),0,np.cos(angles[1])]]) Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0], [np.sin(angles[2]),np.cos(angles[2]),0], [0,0,1]]) R = np.dot(Rz, np.dot(Ry,Rx)) pc = np.dot(pc, R) return pc def guass_noise_point_cloud(batch_data, sigma=0.005, mu=0.00): """ Add guassian noise in per point. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, jittered batch of point clouds """ batch_data += np.random.normal(mu, sigma, batch_data.shape) return batch_data def rotate_point_cloud_by_angle(self, data, rotation_angle): """ Rotate the point cloud along up direction with certain angle. :param batch_data: Nx3 array, original batch of point clouds :param rotation_angle: range of rotation :return: Nx3 array, rotated batch of point clouds """ cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) rotated_data = np.dot(data, rotation_matrix) return rotated_data ``` #### File: SP-GAN/Generation/H5DataLoader.py ```python import numpy as np import warnings import h5py from torch.utils.data import Dataset from glob import glob from Common import point_operation import os warnings.filterwarnings('ignore') from torchvision import transforms from Common import data_utils as d_utils from Common import point_operation import torch def load_h5(h5_filename,num=2048): f = h5py.File(h5_filename) data = f['poisson_%d'%num][:] return data point_transform = transforms.Compose( [ d_utils.PointcloudToTensor(), d_utils.PointcloudRotate(), d_utils.PointcloudRotatePerturbation(), d_utils.PointcloudScale(), d_utils.PointcloudTranslate(), d_utils.PointcloudJitter(), #d_utils.PointcloudRandomInputDropout(), ] ) point_transform2 = transforms.Compose( [ d_utils.PointcloudToTensor(), d_utils.PointcloudScale(), d_utils.PointcloudTranslate(), #d_utils.PointcloudRandomInputDropout(), ] ) class H5DataLoader(Dataset): def __init__(self, opts,augment=False, partition='train'): self.opts = opts self.num_points = opts.np self.con = opts.con if self.con: cats = ["chair","table","bench"][:opts.cls] pcs = [] labels = [] for i, cat in enumerate(cats): h5_file = os.path.join(opts.data_root, str(self.num_points), str(cat).lower() + ".h5") print("---------------h5_file:", h5_file) pc = load_h5(h5_file, self.num_points) pc = point_operation.normalize_point_cloud(pc) label = np.ones((pc.shape[0],))*i pcs.append(pc) labels.append(label) self.data = np.concatenate(pcs,axis=0) self.labels = np.concatenate(labels, axis=0).astype(np.int32) print(self.labels.shape) # elif opts.choice == "animal": # pcs = [] # for i in range(5): # h5_file = os.path.join(opts.data_root, str(self.num_points), str(opts.choice).lower(), str(opts.choice).lower() + "_%d.h5"%i) # print("---------------h5_file:", h5_file) # pc = load_h5(h5_file, self.num_points) # pc = point_operation.normalize_point_cloud(pc) # pcs.append(pc) # # self.data = np.concatenate(pcs,axis=0) elif opts.choice == "animal_all": pcs = [] cats = ["animal-pose", "animal-deform"] for cat in cats: h5_file = os.path.join(opts.data_root, str(self.num_points), str(cat).lower() + ".h5") print("---------------h5_file:", h5_file) pc = load_h5(h5_file, self.num_points) pc = point_operation.normalize_point_cloud(pc) pcs.append(pc) self.data = np.concatenate(pcs, axis=0) elif opts.choice == "bottle": pcs = [] cats = ["bottle","jar","pot"] for cat in cats: h5_file = os.path.join(opts.data_root, str(self.num_points), str(cat).lower() + ".h5") print("---------------h5_file:", h5_file) pc = load_h5(h5_file, self.num_points) pc = point_operation.normalize_point_cloud(pc) pcs.append(pc) self.data = np.concatenate(pcs,axis=0) else: h5_file = os.path.join(opts.data_root, str(self.num_points), str(opts.choice).lower()+".h5") print("---------------h5_file:",h5_file) self.data = load_h5(h5_file,self.num_points) self.labels = None self.data = self.opts.scale * point_operation.normalize_point_cloud(self.data) self.augment = augment self.partition = partition def __len__(self): return len(self.data) def __getitem__(self, index): point_set = self.data[index][:self.num_points,:3].copy() np.random.shuffle(point_set) if self.augment: point_set = point_operation.rotate_point_cloud_and_gt(point_set) point_set = point_operation.random_scale_point_cloud_and_gt(point_set) point_set = point_set.astype(np.float32) if self.con: label = self.labels[index].copy() return torch.Tensor(point_set), torch.Tensor(label) return torch.from_numpy(point_set) ``` #### File: SP-GAN/Generation/model.py ```python import numpy as np import math import sys import os import time import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.autograd import Variable import torch.nn.functional as F import logging import random import imageio # add for shape-preserving Loss from Common.point_operation import normalize_point_cloud from Generation.H5DataLoader import H5DataLoader from collections import namedtuple # from pointnet2.pointnet2_modules import PointNet2SAModule, PointNet2SAModuleMSG from Common.loss_utils import ChamferLoss,pairwise_CD from Common import point_operation from Common import data_utils as d_util from Common.loss_utils import get_local_pair,compute_all_metrics2,AverageValueMeter,dist_simple from Common import loss_utils from tensorboardX import SummaryWriter from Common.visu_utils import plot_pcd_three_views,point_cloud_three_views,plot_pcd_multi_rows from tqdm import tqdm #from Generation.Generator import Generator from Generation.Generator_advanced_model import Generator from Generation.Discriminator import Discriminator from Common.network_utils import * import copy from pprint import pprint cudnn.benchnark=True seed = 123 random.seed(seed) #np.random.seed(seed) torch.manual_seed(seed) #torch.cuda.manual_seed(seed) #torch.cuda.manual_seed_all(seed) def pc_normalize(pc): l = pc.shape[0] centroid = np.mean(pc, axis=0) pc = pc - centroid m = np.max(np.sqrt(np.sum(pc**2, axis=1))) pc = pc / m return pc class Model(object): def __init__(self, opts): self.opts = opts def backup(self): if self.opts.phase == 'train': source_folder = os.path.join(os.getcwd(),"Generation") common_folder = os.path.join(os.getcwd(),"Common") data_folder = os.path.join(os.getcwd(), "data_utils") os.system("cp %s/Generator.py '%s/Generator.py'" % (source_folder,self.opts.log_dir)) os.system("cp %s/Discriminator.py '%s/Discriminator.py'" % (source_folder,self.opts.log_dir)) os.system("cp %s/model.py '%s/model.py'" % (source_folder,self.opts.log_dir)) os.system("cp %s/loss_utils.py '%s/loss_utils.py'" % (common_folder,self.opts.log_dir)) os.system("cp %s/H5DataLoader.py '%s/H5DataLoader.py'" % (data_folder,self.opts.log_dir)) def build_model(self): """ Models """ self.G = Generator(self.opts) self.D = Discriminator(self.opts) self.multi_gpu = False if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs self.G = nn.DataParallel(self.G) self.D = nn.DataParallel(self.D) self.multi_gpu = True print('# generator parameters:', sum(param.numel() for param in self.G.parameters())) print('# discriminator parameters:', sum(param.numel() for param in self.D.parameters())) self.G.cuda() self.D.cuda() """ Training """ beta1 = 0.5 beta2 = 0.99 self.optimizerG = optim.Adam(filter(lambda p: p.requires_grad, self.G.parameters()), lr=self.opts.lr_g, betas=(beta1, beta2)) self.optimizerD = optim.Adam(filter(lambda p: p.requires_grad, self.D.parameters()), lr=self.opts.lr_d, betas=(beta1, beta2)) if self.opts.lr_decay: if self.opts.use_sgd: self.scheduler_G = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizerG, self.opts.max_epoch, eta_min=self.opts.lr_g) else: self.scheduler_G = torch.optim.lr_scheduler.StepLR(self.optimizerG, step_size=self.opts.lr_decay_feq, gamma=self.opts.lr_decay_rate) else: self.scheduler_G = None if self.opts.lr_decay: self.scheduler_D = torch.optim.lr_scheduler.StepLR(self.optimizerD, step_size=self.opts.lr_decay_feq, gamma=self.opts.lr_decay_rate) else: self.scheduler_D = None # define tensors self.z = torch.FloatTensor(self.opts.bs, self.opts.nz).cuda() self.z = Variable(self.z) self.ball = None label = torch.full((self.opts.bs,), 1).cuda() ones = torch.full((self.opts.bs,), 1).cuda() self.fix_z = None def noise_generator(self, bs=1,masks=None): if masks is None: if self.opts.n_rand: noise = np.random.normal(0, self.opts.nv, (bs, self.opts.np, self.opts.nz)) else: noise = np.random.normal(0, self.opts.nv, (bs, 1, self.opts.nz)) #scale = self.opts.nv #w = np.random.uniform(low=-scale, high=scale, size=(bs, 1, self.opts.nz)) noise = np.tile(noise,(1,self.opts.np,1)) if self.opts.n_mix and random.random() < 0.5: noise2 = np.random.normal(0, self.opts.nv, (bs, self.opts.nz)) for i in range(bs): id = np.random.randint(0,self.opts.np) idx = np.argsort(self.ball_dist[id])[::1] # idx = np.arange(self.opts.np) # np.random.shuffle(idx) num = int(max(random.random(),0.1)*self.opts.np) noise[i, idx[:num]] = noise2[i] else: noise = np.zeros((bs, self.opts.np, self.opts.nz)) for i in range(masks.shape[0]): mask = masks[i] unique_mask = np.unique(mask) for j in unique_mask: noise_once = np.random.normal(0, 0.2, (1, self.opts.nz)) idx = np.where(mask == j) noise[i,idx] = idx sim_noise = Variable(torch.Tensor(noise)).cuda() return sim_noise def sphere_generator(self,bs=2,static=True): if self.ball is None: self.ball = np.loadtxt('template/balls/%d.xyz'%self.opts.np)[:,:3] self.ball = pc_normalize(self.ball) N = self.ball.shape[0] # xx = torch.bmm(x, x.transpose(2,1)) xx = np.sum(self.ball ** 2, axis=(1)).reshape(N, 1) yy = xx.T xy = -2 * xx @ yy # torch.bmm(x, y.permute(0, 2, 1)) self.ball_dist = xy + xx + yy # [B, N, N] if static: ball = np.expand_dims(self.ball, axis=0) ball = np.tile(ball, (bs, 1, 1)) else: ball = np.zeros((bs, self.opts.np, 3)) for i in range(bs): idx = np.random.choice(self.ball.shape[0], self.opts.np) ball[i] = self.ball[idx] ball = Variable(torch.Tensor(ball)).cuda() return ball def train(self): global epoch self.build_model() self.backup() start_epoch = 1 # restore check-point if it exits if self.opts.restore: could_load, save_epoch = self.load(self.opts.log_dir) if could_load: start_epoch = save_epoch print(" [*] Load SUCCESS") self.LOG_FOUT = open(os.path.join(self.opts.log_dir, 'log_train.txt'), 'a') else: print('training...') self.LOG_FOUT = open(os.path.join(self.opts.log_dir, 'log_train.txt'), 'w') self.LOG_FOUT.write(str(self.opts) + '\n') self.log_string('PARAMETER ...') with open(os.path.join(self.opts.log_dir, 'args.txt'), 'w') as log: for arg in sorted(vars(self.opts)): log.write(arg + ': ' + str(getattr(self.opts, arg)) + '\n') # log of arguments pprint(self.opts) self.writer = None#SummaryWriter(logdir=self.opts.log_dir) '''DATA LOADING''' self.log_string('Load dataset ...') self.train_dataset = H5DataLoader(self.opts, augment=self.opts.augment) self.dataloader = torch.utils.data.DataLoader(self.train_dataset, batch_size=self.opts.bs, shuffle=True, num_workers=int(self.opts.workers),drop_last=True,pin_memory=True) self.num_batches = len(self.train_dataset) // self.opts.bs self.z_test = torch.FloatTensor(self.opts.bs, self.opts.nz).cuda() self.z_test.data.resize_(self.opts.bs, self.opts.nz).normal_(0.0, 1.0) # loop for epoch start_time = time.time() d_avg_meter = AverageValueMeter() g_avg_meter = AverageValueMeter() real_acc_avg_meter = AverageValueMeter() fake_acc_avg_meter = AverageValueMeter() global_step = 0 d_para = 1.0 g_para = 1.0 x = self.sphere_generator(bs=self.opts.bs) self.fix_z = self.noise_generator(bs=64) for epoch in range(start_epoch, self.opts.max_epoch+1): self.D.train() self.G.train() step_d = 0 step_g = 0 for idx, data in tqdm(enumerate(self.dataloader, 0),total=len(self.dataloader)): requires_grad(self.G, False) requires_grad(self.D, True) self.optimizerD.zero_grad() real_points = Variable(data,requires_grad=True) z = self.noise_generator(bs=self.opts.bs) d_fake_preds =self.G(x, z) real_points = real_points.transpose(2, 1).cuda() d_fake_preds = d_fake_preds.detach() d_real_logit = self.D(real_points) d_fake_logit = self.D(d_fake_preds) lossD,info= loss_utils.dis_loss(d_real_logit,d_fake_logit,gan=self.opts.gan,noise_label=self.opts.flip_d) lossD.backward() self.optimizerD.step() # -----------------------------------train G----------------------------------- requires_grad(self.G, True) requires_grad(self.D, False) self.optimizerG.zero_grad() z = self.noise_generator(bs=self.opts.bs) g_fake_preds =self.G(x, z) g_real_logit = self.D(real_points) g_fake_logit = self.D(g_fake_preds) lossG,_ = loss_utils.gen_loss(g_real_logit,g_fake_logit,gan=self.opts.gan,noise_label=self.opts.flip_g) lossG.backward() self.optimizerG.step() d_avg_meter.update(lossD.item()) g_avg_meter.update(lossG.item()) real_acc_avg_meter.update(info['real_acc']) fake_acc_avg_meter.update(info['fake_acc']) if self.writer is not None: self.writer.add_scalar("loss/d_Loss", lossD.data, global_step) self.writer.add_scalar("loss/g_Loss", lossG.data, global_step) self.writer.add_scalar("acc/real_acc", info['real_acc'], global_step) self.writer.add_scalar("acc/fake_acc", info['fake_acc'], global_step) self.writer.add_histogram('d_real_logit', d_real_logit, global_step) self.writer.add_histogram('d_fake_logit', d_fake_logit, global_step) self.writer.add_histogram('g_fake_logit', g_fake_logit, global_step) #optimizer.param_groups[0]['lr'] #scheduler_G.get_lr()[0] self.writer.add_scalar("lr/lr_g", self.optimizerG.param_groups[0]['lr'], global_step) self.writer.add_scalar("lr/lr_d", self.optimizerD.param_groups[0]['lr'], global_step) global_step +=1 if self.opts.save and global_step%20==0: requires_grad(self.G, False) self.draw_sample_save(epoch=epoch,step=global_step) requires_grad(self.G, True) if self.scheduler_G is not None: self.scheduler_G.step(epoch) if self.scheduler_D is not None: self.scheduler_D.step(epoch) time_tick = time.time() - start_time self.log_string("Epoch: [%2d] time: %2dm %2ds d_loss4: %.8f, g_loss: %.8f" \ % (epoch, time_tick / 60, time_tick % 60, d_avg_meter.avg, g_avg_meter.avg)) self.log_string("real_acc: %f fake_acc: %f" % (real_acc_avg_meter.avg, fake_acc_avg_meter.avg)) self.log_string("lr_g: %f lr_d: %f" % (self.optimizerG.param_groups[0]['lr'], self.optimizerD.param_groups[0]['lr'])) print("step_d:%d step_g:%d"%(step_d,step_g)) # if self.scheduler_G is not None and self.scheduler_D is not None: # print("lr_g: %f lr_d: %f"%(self.scheduler_G.get_lr()[0],self.scheduler_D.get_lr()[0])) requires_grad(self.G, False) requires_grad(self.D, True) if epoch % self.opts.snapshot == 0: self.save(self.opts.log_dir, epoch) if False and not self.opts.save: self.draw_sample(epoch) self.save(self.opts.log_dir, epoch) self.LOG_FOUT.close() def draw_sample(self, epoch): eval_dir = os.path.join(self.opts.log_dir, "plot") if not os.path.exists(eval_dir): os.makedirs(eval_dir) grid_x = 8 grid_y = 8 x = self.sphere_generator(bs=grid_y) pcds_list = [] title_list = [] for i in range(grid_x): title = ["S_%d" % (i * grid_y + j) for j in range(grid_y)] with torch.no_grad(): #z = self.noise_generator(bs=grid_y) z = self.fix_z[i*grid_y:(i+1)*grid_y] out_pc = self.G(x, z) out_pc = out_pc.transpose(2, 1) sample_pcs = out_pc.cpu().detach().numpy() sample_pcs = normalize_point_cloud(sample_pcs) pcds_list.append(0.75 * sample_pcs) title_list.append(title) plot_name = os.path.join(eval_dir, str(epoch) + ".png") plot_pcd_multi_rows(plot_name, pcds_list, title_list, cmap="Reds") def draw_sample_save(self, epoch, step): eval_dir = os.path.join(self.opts.log_dir, "plot") if not os.path.exists(eval_dir): os.makedirs(eval_dir) grid_x = 8 grid_y = 8 x = self.sphere_generator(bs=grid_y) pcds_list = [] title_list = [] for i in range(grid_x): title = ["S_%d" % (i * grid_y + j) for j in range(grid_y)] with torch.no_grad(): #z = self.noise_generator(bs=grid_y) z = self.fix_z[i*grid_y:(i+1)*grid_y] out_pc = self.G(x, z) out_pc = out_pc.transpose(2, 1) sample_pcs = out_pc.cpu().detach().numpy() sample_pcs = normalize_point_cloud(sample_pcs) pcds_list.append(0.75 * sample_pcs) title_list.append(title) plot_name = os.path.join(eval_dir, str(step) + ".png") plot_pcd_multi_rows(plot_name, pcds_list, title_list, cmap="Reds") for i in range(grid_x): pcs = normalize_point_cloud(pcds_list[i]) for j in range(grid_y): id = i*grid_y+j save_folder = os.path.join(eval_dir,"sample",str(id)) if not os.path.exists(save_folder): os.makedirs(save_folder) save_name = os.path.join(save_folder,"%d_step_%d.xyz"%(id,step)) np.savetxt(save_name,pcs[j],fmt="%.6f") def test_once(self,epoch): #self.G.eval() eval_dir = os.path.join(self.opts.log_dir,"plot") if not os.path.exists(eval_dir): os.makedirs(eval_dir) bs = 4 # x = np.loadtxt('template/ball.xyz') # x = pc_normalize(x) # x = np.expand_dims(x, axis=0) # x = np.tile(x, (bs, 1, 1)) # x = Variable(torch.Tensor(x)).cuda() x = self.sphere_generator(bs=bs) #if self.fix_z is None: self.fix_z = self.noise_generator(bs=bs) gen_points4 = self.G(x,self.fix_z) # print(gen_points.shape) gen_points4 = gen_points4.transpose(2, 1).cpu().data.numpy() # Bx3x2048 -> Bx2048x3 gen_points4 = point_operation.normalize_point_cloud(gen_points4) pcds = [gen_points4[0], gen_points4[1], gen_points4[2], gen_points4[3]] # print(type(pcds), len(pcds)) # np.asarray(pcds).reshape([3,self.opts.num_point,3]) plot_path = os.path.join(eval_dir, str(epoch) + ".png") visualize_titles = ['S1', 'S2', 'S3', 'S4'] plot_pcd_three_views(plot_path, pcds, visualize_titles) def log_string(self, out_str): self.LOG_FOUT.write(out_str+'\n') self.LOG_FOUT.flush() print(out_str) def set_logger(self): self.logger = logging.getLogger("CLS") self.logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler(os.path.join(self.opts.log_dir, "log_%s.txt" % self.opts.phase)) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) self.logger.addHandler(file_handler) def load(self, checkpoint_dir): if self.opts.pretrain_model_G is None and self.opts.pretrain_model_D is None: print('################ new training ################') return False, 1 print(" [*] Reading checkpoints...") #checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name) # ----------------- load G ------------------- if not self.opts.pretrain_model_G is None: resume_file_G = os.path.join(checkpoint_dir, self.opts.pretrain_model_G) flag_G = os.path.isfile(resume_file_G), if flag_G == False: print('G--> Error: no checkpoint directory found!') exit() else: print('resume_file_G------>: {}'.format(resume_file_G)) checkpoint = torch.load(resume_file_G) self.G.load_state_dict(checkpoint['G_model']) self.optimizerG.load_state_dict(checkpoint['G_optimizer']) G_epoch = checkpoint['G_epoch'] else: print(" [*] Failed to find the pretrain_model_G") exit() # ----------------- load D ------------------- if not self.opts.pretrain_model_D is None: resume_file_D = os.path.join(checkpoint_dir, self.opts.pretrain_model_D) flag_D = os.path.isfile(resume_file_D) if flag_D == False: print('D--> Error: no checkpoint directory found!') exit() else: print('resume_file_D------>: {}'.format(resume_file_D)) checkpoint = torch.load(resume_file_D) self.D.load_state_dict(checkpoint['D_model']) D_epoch = checkpoint['D_epoch'] else: print(" [*] Failed to find the pretrain_model_D") exit() print(" [*] Success to load model --> {} & {}".format(self.opts.pretrain_model_G, self.opts.pretrain_model_D)) return True, G_epoch def save(self, checkpoint_dir, index_epoch): if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) save_name = str(index_epoch)+'_'+self.opts.choice path_save_G = os.path.join(checkpoint_dir, save_name+'_G.pth') path_save_D = os.path.join(checkpoint_dir, save_name+'_D.pth') print('Save Path for G: {}'.format(path_save_G)) print('Save Path for D: {}'.format(path_save_D)) torch.save({ 'G_model':self.G.module.state_dict() if self.multi_gpu else self.G.state_dict(), 'G_optimizer': self.optimizerG.state_dict() , 'G_epoch': index_epoch, }, path_save_G) torch.save({ # 'D_model1': self.discriminator1.state_dict(), # 'D_model2': self.discriminator2.state_dict(), # 'D_model3': self.discriminator3.state_dict(), 'D_model': self.D.module.state_dict() if self.multi_gpu else self.D.state_dict(), 'D_optimizer': self.optimizerD.state_dict(), # 'D_optimizer2': self.optimizerD2.state_dict(), # 'D_optimizer3': self.optimizerD3.state_dict(), # 'D_optimizer4': self.optimizerD.state_dict(), 'D_epoch': index_epoch, }, path_save_D) # torch.save(G, os.path.join(opt.outd, opt.outm, f'G_nch-{opt.nch}_epoch-{epoch}.pth')) # torch.save(D, os.path.join(opt.outd, opt.outm, f'D_nch-{opt.nch}_epoch-{epoch}.pth')) # torch.save(Gs, os.path.join(opt.outd, opt.outm, f'Gs_nch-{opt.nch}_epoch-{epoch}.pth')) ``` #### File: metrics/pointops/pointops_util.py ```python from typing import Tuple import torch from torch.autograd import Function import torch.nn as nn from metrics.pointops import pointops_cuda import numpy as np class FurthestSampling(Function): @staticmethod def forward(ctx, xyz, m): """ input: xyz: (b, n, 3) and n > m, m: int32 output: idx: (b, m) """ assert xyz.is_contiguous() b, n, _ = xyz.size() idx = torch.cuda.IntTensor(b, m) temp = torch.cuda.FloatTensor(b, n).fill_(1e10) pointops_cuda.furthestsampling_cuda(b, n, m, xyz, temp, idx) return idx @staticmethod def backward(xyz, a=None): return None, None furthestsampling = FurthestSampling.apply class Gathering(Function): @staticmethod def forward(ctx, features, idx): """ input: features: (b, c, n), idx : (b, m) tensor output: (b, c, m) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() m = idx.size(1) output = torch.cuda.FloatTensor(b, c, m) pointops_cuda.gathering_forward_cuda(b, c, n, m, features, idx, output) ctx.for_backwards = (idx, c, n) return output @staticmethod def backward(ctx, grad_out): idx, c, n = ctx.for_backwards b, m = idx.size() grad_features = torch.cuda.FloatTensor(b, c, n).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.gathering_backward_cuda(b, c, n, m, grad_out_data, idx, grad_features.data) return grad_features, None gathering = Gathering.apply class NearestNeighbor(Function): @staticmethod def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Find the three nearest neighbors of unknown in known input: unknown: (b, n, 3), known: (b, m, 3) output: dist2: (b, n, 3) l2 distance to the three nearest neighbors idx: (b, n, 3) index of 3 nearest neighbors """ assert unknown.is_contiguous() assert known.is_contiguous() b, n, _ = unknown.size() m = known.size(1) dist2 = torch.cuda.FloatTensor(b, n, 3) idx = torch.cuda.IntTensor(b, n, 3) pointops_cuda.nearestneighbor_cuda(b, n, m, unknown, known, dist2, idx) return torch.sqrt(dist2), idx @staticmethod def backward(ctx, a=None, b=None): return None, None nearestneighbor = NearestNeighbor.apply class Interpolation(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: """ Performs weight linear interpolation on 3 features input: features: (b, c, m) features descriptors to be interpolated from idx: (b, n, 3) three nearest neighbors of the target features in features weight: (b, n, 3) weights output: (b, c, n) tensor of the interpolated features """ assert features.is_contiguous() assert idx.is_contiguous() assert weight.is_contiguous() b, c, m = features.size() n = idx.size(1) ctx.interpolation_for_backward = (idx, weight, m) output = torch.cuda.FloatTensor(b, c, n) pointops_cuda.interpolation_forward_cuda(b, c, m, n, features, idx, weight, output) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ input: grad_out: (b, c, n) output: grad_features: (b, c, m), None, None """ idx, weight, m = ctx.interpolation_for_backward b, c, n = grad_out.size() grad_features = torch.cuda.FloatTensor(b, c, m).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.interpolation_backward_cuda(b, c, n, m, grad_out_data, idx, weight, grad_features.data) return grad_features, None, None interpolation = Interpolation.apply class Grouping(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ input: features: (b, c, n), idx : (b, m, nsample) containing the indicies of features to group with output: (b, c, m, nsample) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() _, m, nsample = idx.size() output = torch.cuda.FloatTensor(b, c, m, nsample) pointops_cuda.grouping_forward_cuda(b, c, n, m, nsample, features, idx, output) ctx.for_backwards = (idx, n) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ input: grad_out: (b, c, m, nsample) output: (b, c, n), None """ idx, n = ctx.for_backwards b, c, m, nsample = grad_out.size() grad_features = torch.cuda.FloatTensor(b, c, n).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.grouping_backward_cuda(b, c, n, m, nsample, grad_out_data, idx, grad_features.data) return grad_features, None grouping = Grouping.apply class GroupingInt(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ input: features: (b, c, n), idx : (b, m, nsample) containing the indicies of features to group with output: (b, c, m, nsample) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() _, m, nsample = idx.size() output = torch.cuda.LongTensor(b, c, m, nsample) pointops_cuda.grouping_int_forward_cuda(b, c, n, m, nsample, features, idx, output) return output @staticmethod def backward(ctx, a=None): return None, None grouping_int = GroupingInt.apply class BallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor: """ input: radius: float, radius of the balls nsample: int, maximum number of features in the balls xyz: torch.Tensor, (b, n, 3) xyz coordinates of the features new_xyz: torch.Tensor, (b, m, 3) centers of the ball query output: (b, m, nsample) tensor with the indicies of the features that form the query balls """ assert xyz.is_contiguous() assert new_xyz.is_contiguous() b, n, _ = xyz.size() m = new_xyz.size(1) idx = torch.cuda.IntTensor(b, m, nsample).zero_() pointops_cuda.ballquery_cuda(b, n, m, radius, nsample, new_xyz, xyz, idx) return idx @staticmethod def backward(ctx, a=None): return None, None, None, None ballquery = BallQuery.apply class FeatureDistribute(Function): @staticmethod def forward(ctx, max_xyz: torch.Tensor, xyz: torch.Tensor) -> torch.Tensor: """ :param ctx: :param max_xyz: (b, n, 3) :param xyz: (b, m, 3) :return: distribute_idx: (b, m) """ assert max_xyz.is_contiguous() assert xyz.is_contiguous() b, n, _ = max_xyz.size() m = xyz.size(1) distribute_idx = torch.cuda.IntTensor(b, m).zero_() pointops_cuda.featuredistribute_cuda(b, n, m, max_xyz, xyz, distribute_idx) return distribute_idx @staticmethod def backward(ctx, a=None): return None, None featuredistribute = FeatureDistribute.apply class FeatureGather(Function): @staticmethod def forward(ctx, max_feature: torch.Tensor, distribute_idx: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param max_feature: (b, c, n) :param distribute_idx: (b, m) :return: distribute_feature: (b, c, m) ''' assert max_feature.is_contiguous() assert distribute_idx.is_contiguous() b, c, n = max_feature.size() m = distribute_idx.size(1) distribute_feature = torch.cuda.FloatTensor(b, c, m).zero_() pointops_cuda.featuregather_forward_cuda(b, n, m, c, max_feature, distribute_idx, distribute_feature) ctx.for_backwards = (distribute_idx, n) return distribute_feature @staticmethod def backward(ctx, grad_distribute_feature: torch.Tensor): ''' :param ctx: :param grad_distribute_feature: (b, c, m) :return: grad_max_feature: (b, c, n), None ''' distribute_idx, n = ctx.for_backwards b, c, m = grad_distribute_feature.size() grad_max_feature = torch.cuda.FloatTensor(b, c, n).zero_() grad_distribute_feature_data = grad_distribute_feature.data.contiguous() pointops_cuda.featuregather_backward_cuda(b, n, m, c, grad_distribute_feature_data, distribute_idx, grad_max_feature.data) return grad_max_feature, None featuregather = FeatureGather.apply class LabelStatBallRange(Function): @staticmethod def forward(ctx, radius: float, xyz: torch.Tensor, new_xyz: torch.Tensor, label_stat: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param radius: :param xyz: (b, n, 3) :param new_xyz: (b, m, 3) :param label_stat: (b, n, nclass) :return: new_label_stat: (b, m, nclass) ''' assert xyz.is_contiguous() assert new_xyz.is_contiguous() assert label_stat.is_contiguous() b, n, nclass = label_stat.size() m = new_xyz.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() pointops_cuda.labelstat_ballrange_cuda(b, n, m, radius, nclass, new_xyz, xyz, label_stat, new_label_stat) return new_label_stat @staticmethod def backward(ctx, a=None): return None, None, None, None labelstat_ballrange = LabelStatBallRange.apply class LabelStatIdx(Function): @staticmethod def forward(ctx, nsample: int, label_stat: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param nsample: :param label_stat: (b, n, nclass) :param idx: (b, m, nsample) :return: new_label_stat: (b, m, nclass) ''' assert label_stat.is_contiguous() assert idx.is_contiguous() b, n, nclass = label_stat.size() m = idx.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() pointops_cuda.labelstat_idx_cuda(b, n, m, nsample, nclass, label_stat, idx, new_label_stat) return new_label_stat @staticmethod def backward(ctx, a=None): return None, None, None labelstat_idx = LabelStatIdx.apply class LabelStatAndBallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor, label_stat: torch.Tensor): ''' :param ctx: :param radius: :param nsample: :param xyz: (b, n, 3) :param new_xyz: (b, m, 3) :param label_stat: (b, n, nclass) :return: new_label_stat: (b, m, nclass) idx: (b, m, nsample) ''' assert xyz.is_contiguous() assert new_xyz.is_contiguous() assert label_stat.is_contiguous() b, n, nclass = label_stat.size() m = new_xyz.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() idx = torch.cuda.IntTensor(b, m, nsample).zero_() pointops_cuda.labelstat_and_ballquery_cuda(b, n, m, radius, nsample, nclass, new_xyz, xyz, label_stat, idx, new_label_stat) return new_label_stat, idx @staticmethod def backward(ctx, a=None, b=None): return None, None, None, None, None labelstat_and_ballquery = LabelStatAndBallQuery.apply def pairwise_distances(x, y=None): ''' Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 ''' x_norm = (x ** 2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) import numpy as np return torch.clamp(dist, 0.0, np.inf) class KNNQueryNaive(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: idx: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz b, m, _ = new_xyz.size() n = xyz.size(1) ''' idx = torch.zeros(b, m, nsample).int().cuda() for i in range(b): dist = pairwise_distances(new_xyz[i, :, :], xyz[i, :, :]) [_, idxs] = torch.sort(dist, dim=1) idx[i, :, :] = idxs[:, 0:nsample] ''' # ''' # new_xyz_repeat = new_xyz.repeat(1, 1, n).view(b, m * n, 3) # xyz_repeat = xyz.repeat(1, m, 1).view(b, m * n, 3) # dist = (new_xyz_repeat - xyz_repeat).pow(2).sum(dim=2).view(b, m, n) dist = (new_xyz.repeat(1, 1, n).view(b, m * n, 3) - xyz.repeat(1, m, 1).view(b, m * n, 3)).pow(2).sum(dim=2).view(b, m, n) [_, idxs] = torch.sort(dist, dim=2) idx = idxs[:, :, 0:nsample].int() # ''' return idx @staticmethod def backward(ctx): return None, None, None knnquery_naive = KNNQueryNaive.apply class KNNQuery(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: idx: (b, m, nsample) ( dist2: (b, m, nsample) ) """ if new_xyz is None: new_xyz = xyz assert xyz.is_contiguous() assert new_xyz.is_contiguous() b, m, _ = new_xyz.size() n = xyz.size(1) idx = torch.cuda.IntTensor(b, m, nsample).zero_() dist2 = torch.cuda.FloatTensor(b, m, nsample).zero_() pointops_cuda.knnquery_cuda(b, n, m, nsample, xyz, new_xyz, idx, dist2) return idx @staticmethod def backward(ctx, a=None): return None, None, None knnquery = KNNQuery.apply class KNNQueryExclude(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: new_features: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz b, m, _ = new_xyz.size() n = xyz.size(1) ''' idx = torch.zeros(b, m, nsample).int().cuda() for i in range(b): dist = pairwise_distances(new_xyz[i, :, :], xyz[i, :, :]) [_, idxs] = torch.sort(dist, dim=1) idx[i, :, :] = idxs[:, 0:nsample] ''' # ''' # new_xyz_repeat = new_xyz.repeat(1, 1, n).view(b, m * n, 3) # xyz_repeat = xyz.repeat(1, m, 1).view(b, m * n, 3) # dist = (new_xyz_repeat - xyz_repeat).pow(2).sum(dim=2).view(b, m, n) dist = (new_xyz.repeat(1, 1, n).view(b, m * n, 3) - xyz.repeat(1, m, 1).view(b, m * n, 3)).pow(2).sum(dim=2).view(b, m, n) [_, idxs] = torch.sort(dist, dim=2) idx = idxs[:, :, 1:nsample+1].int() # ''' return idx @staticmethod def backward(ctx): return None, None, None knnquery_exclude = KNNQueryExclude.apply class Le_QueryAndGroup_SameSize(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup_SameSize, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, n, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ assert xyz.size() == new_xyz.size() if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return grouped_xyz, new_features class QueryAndGroup(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class QueryAndGroup_Dilate(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(QueryAndGroup_Dilate, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, 2*self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(2*self.nsample, xyz, new_xyz) # (b, m, nsample) idx2 = np.array([i for i in range(2*self.nsample)]) np.random.shuffle(idx2) idx2 = idx2[:self.nsample] idx = idx[:, :, idx2] xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class Le_QueryAndGroup(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return grouped_xyz, new_features class Gen_QueryAndGroupXYZ(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Gen_QueryAndGroupXYZ, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz #def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz #if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() # BxNx3 -> Bx3xN grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) return grouped_xyz class Le_QueryAndGroup_OnlyFeature(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup_OnlyFeature, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) #xyz_trans = xyz.transpose(1, 2).contiguous() #grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) #grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class GroupAll(nn.Module): """ Groups all features """ def __init__(self, use_xyz: bool = True): super(GroupAll, self).__init__() self.use_xyz = use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: ignored torch features: (b, c, n) descriptors of the features output: new_features: (b, c+3, 1, N) tensor """ grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) if features is not None: grouped_features = features.unsqueeze(2) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, 1, n) else: new_features = grouped_features else: new_features = grouped_xyz return new_features ```
{ "source": "jiazhaoquan-bit/hadoop-3.1.3-src", "score": 2 }
#### File: lib/release-doc-maker/releasedocmaker.py ```python from glob import glob from optparse import OptionParser from time import gmtime, strftime, sleep from distutils.version import LooseVersion import errno import os import re import shutil import sys import urllib import urllib2 import httplib import json from utils import to_unicode, sanitize_text, processrelnote, Outputs try: import dateutil.parser except ImportError: print "This script requires python-dateutil module to be installed. " \ "You can install it using:\n\t pip install python-dateutil" sys.exit(1) RELEASE_VERSION = {} JIRA_BASE_URL = "https://issues.apache.org/jira" SORTTYPE = 'resolutiondate' SORTORDER = 'older' NUM_RETRIES = 5 # label to be used to mark an issue as Incompatible change. BACKWARD_INCOMPATIBLE_LABEL = 'backward-incompatible' CHANGEHDR1 = "| JIRA | Summary | Priority | " + \ "Component | Reporter | Contributor |\n" CHANGEHDR2 = "|:---- |:---- | :--- |:---- |:---- |:---- |\n" ASF_LICENSE = ''' <!--- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. --> ''' def buildindex(title, asf_license): """Write an index file for later conversion using mvn site""" versions = glob("[0-9]*.[0-9]*") versions.sort(key=LooseVersion, reverse=True) with open("index.md", "w") as indexfile: if asf_license is True: indexfile.write(ASF_LICENSE) for version in versions: indexfile.write("* %s v%s\n" % (title, version)) for k in ("Changes", "Release Notes"): indexfile.write(" * [%s](%s/%s.%s.html)\n" % (k, version, k.upper().replace(" ", ""), version)) def buildreadme(title, asf_license): """Write an index file for Github using README.md""" versions = glob("[0-9]*.[0-9]*") versions.sort(key=LooseVersion, reverse=True) with open("README.md", "w") as indexfile: if asf_license is True: indexfile.write(ASF_LICENSE) for version in versions: indexfile.write("* %s v%s\n" % (title, version)) for k in ("Changes", "Release Notes"): indexfile.write(" * [%s](%s/%s.%s.md)\n" % (k, version, k.upper().replace(" ", ""), version)) class GetVersions(object): """ List of version strings """ def __init__(self, versions, projects): versions = versions projects = projects self.newversions = [] versions.sort(key=LooseVersion) print "Looking for %s through %s" % (versions[0], versions[-1]) newversions = set() for project in projects: url = JIRA_BASE_URL + \ "/rest/api/2/project/%s/versions" % project.upper() try: resp = urllib2.urlopen(url) except urllib2.HTTPError as err: code = err.code print "JIRA returns HTTP error %d: %s. Aborting." % (code, err.msg) error_response = err.read() try: error_response = json.loads(error_response) print "- Please ensure that specified projects are correct." for message in error_response['errorMessages']: print "-", message except Exception: print "Couldn't parse server response." sys.exit(1) datum = json.loads(resp.read()) for data in datum: newversions.add(data['name']) newlist = list(newversions.copy()) newlist.append(versions[0]) newlist.append(versions[-1]) newlist.sort(key=LooseVersion) start_index = newlist.index(versions[0]) end_index = len(newlist) - 1 - newlist[::-1].index(versions[-1]) for newversion in newlist[start_index + 1:end_index]: if newversion in newversions: print "Adding %s to the list" % newversion self.newversions.append(newversion) def getlist(self): return self.newversions class Version(object): """Represents a version number""" def __init__(self, data): self.mod = False self.data = data found = re.match(r'^((\d+)(\.\d+)*).*$', data) if found: self.parts = [int(p) for p in found.group(1).split('.')] else: self.parts = [] # backfill version with zeroes if missing parts self.parts.extend((0,) * (3 - len(self.parts))) def __str__(self): if self.mod: return '.'.join([str(p) for p in self.parts]) return self.data def __cmp__(self, other): return cmp(self.parts, other.parts) class Jira(object): """A single JIRA""" def __init__(self, data, parent): self.key = data['key'] self.fields = data['fields'] self.parent = parent self.notes = None self.incompat = None self.reviewed = None self.important = None def get_id(self): return to_unicode(self.key) def get_description(self): return to_unicode(self.fields['description']) def get_release_note(self): if self.notes is None: field = self.parent.field_id_map['Release Note'] if field in self.fields: self.notes = to_unicode(self.fields[field]) elif self.get_incompatible_change() or self.get_important(): self.notes = self.get_description() else: self.notes = "" return self.notes def get_priority(self): ret = "" pri = self.fields['priority'] if pri is not None: ret = pri['name'] return to_unicode(ret) def get_assignee(self): ret = "" mid = self.fields['assignee'] if mid is not None: ret = mid['displayName'] return to_unicode(ret) def get_components(self): if len(self.fields['components']) > 0: return ", ".join([comp['name'] for comp in self.fields['components'] ]) else: return "" def get_summary(self): return self.fields['summary'] def get_type(self): ret = "" mid = self.fields['issuetype'] if mid is not None: ret = mid['name'] return to_unicode(ret) def get_reporter(self): ret = "" mid = self.fields['reporter'] if mid is not None: ret = mid['displayName'] return to_unicode(ret) def get_project(self): ret = "" mid = self.fields['project'] if mid is not None: ret = mid['key'] return to_unicode(ret) def __cmp__(self, other): result = 0 if SORTTYPE == 'issueid': # compare by issue name-number selfsplit = self.get_id().split('-') othersplit = other.get_id().split('-') result = cmp(selfsplit[0], othersplit[0]) if result == 0: result = cmp(int(selfsplit[1]), int(othersplit[1])) # dec is supported for backward compatibility if SORTORDER in ['dec', 'desc']: result *= -1 elif SORTTYPE == 'resolutiondate': dts = dateutil.parser.parse(self.fields['resolutiondate']) dto = dateutil.parser.parse(other.fields['resolutiondate']) result = cmp(dts, dto) if SORTORDER == 'newer': result *= -1 return result def get_incompatible_change(self): if self.incompat is None: field = self.parent.field_id_map['Hadoop Flags'] self.reviewed = False self.incompat = False if field in self.fields: if self.fields[field]: for flag in self.fields[field]: if flag['value'] == "Incompatible change": self.incompat = True if flag['value'] == "Reviewed": self.reviewed = True else: # Custom field 'Hadoop Flags' is not defined, # search for 'backward-incompatible' label field = self.parent.field_id_map['Labels'] if field in self.fields and self.fields[field]: if BACKWARD_INCOMPATIBLE_LABEL in self.fields[field]: self.incompat = True self.reviewed = True return self.incompat def get_important(self): if self.important is None: field = self.parent.field_id_map['Flags'] self.important = False if field in self.fields: if self.fields[field]: for flag in self.fields[field]: if flag['value'] == "Important": self.important = True return self.important class JiraIter(object): """An Iterator of JIRAs""" @staticmethod def collect_fields(): """send a query to JIRA and collect field-id map""" resp = urllib2.urlopen(JIRA_BASE_URL + "/rest/api/2/field") data = json.loads(resp.read()) field_id_map = {} for part in data: field_id_map[part['name']] = part['id'] return field_id_map @staticmethod def query_jira(ver, projects, pos): """send a query to JIRA and collect a certain number of issue information""" count = 100 pjs = "','".join(projects) jql = "project in ('%s') and \ fixVersion in ('%s') and \ resolution = Fixed" % (pjs, ver) params = urllib.urlencode({'jql': jql, 'startAt': pos, 'maxResults': count}) return JiraIter.load_jira(params, 0) @staticmethod def load_jira(params, fail_count): """send query to JIRA and collect with retries""" try: resp = urllib2.urlopen(JIRA_BASE_URL + "/rest/api/2/search?%s" % params) except urllib2.HTTPError, err: code = err.code print "JIRA returns HTTP error %d: %s. Aborting." % (code, err.msg) error_response = err.read() try: error_response = json.loads(error_response) print "- Please ensure that specified projects, fixVersions etc. are correct." for message in error_response['errorMessages']: print "-", message except Exception: print "Couldn't parse server response." sys.exit(1) except httplib.BadStatusLine as err: return JiraIter.retry_load(err, params, fail_count) try: data = json.loads(resp.read()) except httplib.IncompleteRead as err: return JiraIter.retry_load(err, params, fail_count) return data @staticmethod def retry_load(err, params, fail_count): """Retry connection up to NUM_RETRIES times.""" print(err) fail_count += 1 if fail_count <= NUM_RETRIES: print "Connection failed %d times. Retrying." % (fail_count) sleep(1) return JiraIter.load_jira(params, fail_count) else: print "Connection failed %d times. Aborting." % (fail_count) sys.exit(1) @staticmethod def collect_jiras(ver, projects): """send queries to JIRA and collect all issues that belongs to given version and projects""" jiras = [] pos = 0 end = 1 while pos < end: data = JiraIter.query_jira(ver, projects, pos) if 'error_messages' in data: print "JIRA returns error message: %s" % data['error_messages'] sys.exit(1) pos = data['startAt'] + data['maxResults'] end = data['total'] jiras.extend(data['issues']) if ver not in RELEASE_VERSION: for issue in data['issues']: for fix_version in issue['fields']['fixVersions']: if 'releaseDate' in fix_version: RELEASE_VERSION[fix_version['name']] = fix_version[ 'releaseDate'] return jiras def __init__(self, version, projects): self.version = version self.projects = projects self.field_id_map = JiraIter.collect_fields() ver = str(version).replace("-SNAPSHOT", "") self.jiras = JiraIter.collect_jiras(ver, projects) self.iter = self.jiras.__iter__() def __iter__(self): return self def next(self): data = self.iter.next() j = Jira(data, self) return j class Linter(object): """Encapsulates lint-related functionality. Maintains running lint statistics about JIRAs.""" _valid_filters = ["incompatible", "important", "version", "component", "assignee"] def __init__(self, version, options): self._warning_count = 0 self._error_count = 0 self._lint_message = "" self._version = version self._filters = dict(zip(self._valid_filters, [False] * len( self._valid_filters))) self.enabled = False self._parse_options(options) @staticmethod def add_parser_options(parser): """Add Linter options to passed optparse parser.""" filter_string = ", ".join("'" + f + "'" for f in Linter._valid_filters) parser.add_option( "-n", "--lint", dest="lint", action="append", type="string", help="Specify lint filters. Valid filters are " + filter_string + ". " + "'all' enables all lint filters. " + "Multiple filters can be specified comma-delimited and " + "filters can be negated, e.g. 'all,-component'.") def _parse_options(self, options): """Parse options from optparse.""" if options.lint is None or len(options.lint) == 0: return self.enabled = True # Valid filter specifications are # self._valid_filters, negations, and "all" valid_list = self._valid_filters valid_list += ["-" + v for v in valid_list] valid_list += ["all"] valid = set(valid_list) enabled = [] disabled = [] for o in options.lint: for token in o.split(","): if token not in valid: print "Unknown lint filter '%s', valid options are: %s" % \ (token, ", ".join(v for v in sorted(valid))) sys.exit(1) if token.startswith("-"): disabled.append(token[1:]) else: enabled.append(token) for e in enabled: if e == "all": for f in self._valid_filters: self._filters[f] = True else: self._filters[e] = True for d in disabled: self._filters[d] = False def had_errors(self): """Returns True if a lint error was encountered, else False.""" return self._error_count > 0 def message(self): """Return summary lint message suitable for printing to stdout.""" if not self.enabled: return return self._lint_message + \ "\n=======================================" + \ "\n%s: Error:%d, Warning:%d \n" % \ (self._version, self._error_count, self._warning_count) def _check_missing_component(self, jira): """Return if JIRA has a 'missing component' lint error.""" if not self._filters["component"]: return False if len(jira.fields['components']) > 0: return False return True def _check_missing_assignee(self, jira): """Return if JIRA has a 'missing assignee' lint error.""" if not self._filters["assignee"]: return False if jira.fields['assignee'] is not None: return False return True def _check_version_string(self, jira): """Return if JIRA has a version string lint error.""" if not self._filters["version"]: return False field = jira.parent.field_id_map['Fix Version/s'] for ver in jira.fields[field]: found = re.match(r'^((\d+)(\.\d+)*).*$|^(\w+\-\d+)$', ver['name']) if not found: return True return False def lint(self, jira): """Run lint check on a JIRA.""" if not self.enabled: return if len(jira.get_release_note()) == 0: if self._filters["incompatible"] and jira.get_incompatible_change(): self._warning_count += 1 self._lint_message += "\nWARNING: incompatible change %s lacks release notes." % \ (sanitize_text(jira.get_id())) if self._filters["important"] and jira.get_important(): self._warning_count += 1 self._lint_message += "\nWARNING: important issue %s lacks release notes." % \ (sanitize_text(jira.get_id())) if self._check_version_string(jira): self._warning_count += 1 self._lint_message += "\nWARNING: Version string problem for %s " % jira.get_id( ) if self._check_missing_component(jira) or self._check_missing_assignee( jira): self._error_count += 1 error_message = [] if self._check_missing_component(jira): error_message.append("component") if self._check_missing_assignee(jira): error_message.append("assignee") self._lint_message += "\nERROR: missing %s for %s " \ % (" and ".join(error_message), jira.get_id()) def parse_args(): """Parse command-line arguments with optparse.""" usage = "usage: %prog [OPTIONS] " + \ "--project PROJECT [--project PROJECT] " + \ "--version VERSION [--version VERSION2 ...]" parser = OptionParser( usage=usage, epilog= "Markdown-formatted CHANGES and RELEASENOTES files will be stored" " in a directory named after the highest version provided.") parser.add_option("-i", "--index", dest="index", action="store_true", default=False, help="build an index file") parser.add_option("-l", "--license", dest="license", action="store_true", default=False, help="Add an ASF license") parser.add_option("-p", "--project", dest="projects", action="append", type="string", help="projects in JIRA to include in releasenotes", metavar="PROJECT") parser.add_option("-r", "--range", dest="range", action="store_true", default=False, help="Given versions are a range") parser.add_option( "--sortorder", dest="sortorder", metavar="TYPE", default=SORTORDER, # dec is supported for backward compatibility choices=["asc", "dec", "desc", "newer", "older"], help="Sorting order for sort type (default: %s)" % SORTORDER) parser.add_option("--sorttype", dest="sorttype", metavar="TYPE", default=SORTTYPE, choices=["resolutiondate", "issueid"], help="Sorting type for issues (default: %s)" % SORTTYPE) parser.add_option( "-t", "--projecttitle", dest="title", type="string", help="Title to use for the project (default is Apache PROJECT)") parser.add_option("-u", "--usetoday", dest="usetoday", action="store_true", default=False, help="use current date for unreleased versions") parser.add_option("-v", "--version", dest="versions", action="append", type="string", help="versions in JIRA to include in releasenotes", metavar="VERSION") parser.add_option( "-V", dest="release_version", action="store_true", default=False, help="display version information for releasedocmaker and exit.") parser.add_option("-O", "--outputdir", dest="output_directory", action="append", type="string", help="specify output directory to put release docs to.") parser.add_option("-B", "--baseurl", dest="base_url", action="append", type="string", help="specify base URL of the JIRA instance.") parser.add_option( "--retries", dest="retries", action="append", type="int", help="Specify how many times to retry connection for each URL.") parser.add_option("-X", "--incompatiblelabel", dest="incompatible_label", default="backward-incompatible", type="string", help="Specify the label to indicate backward incompatibility.") Linter.add_parser_options(parser) if len(sys.argv) <= 1: parser.print_help() sys.exit(1) (options, _) = parser.parse_args() # Validate options if not options.release_version: if options.versions is None: parser.error("At least one version needs to be supplied") if options.projects is None: parser.error("At least one project needs to be supplied") if options.base_url is not None: if len(options.base_url) > 1: parser.error("Only one base URL should be given") else: options.base_url = options.base_url[0] if options.output_directory is not None: if len(options.output_directory) > 1: parser.error("Only one output directory should be given") else: options.output_directory = options.output_directory[0] return options def main(): options = parse_args() if options.release_version: with open( os.path.join( os.path.dirname(__file__), "../VERSION"), 'r') as ver_file: print ver_file.read() sys.exit(0) if options.output_directory is not None: # Create the output directory if it does not exist. # Equivalent to `mkdir -p`. try: os.makedirs(options.output_directory) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir( options.output_directory): pass else: print "Unable to create output directory %s: %s" % \ (options.output_directory, exc.message) sys.exit(1) os.chdir(options.output_directory) if options.base_url is not None: global JIRA_BASE_URL JIRA_BASE_URL = options.base_url if options.incompatible_label is not None: global BACKWARD_INCOMPATIBLE_LABEL BACKWARD_INCOMPATIBLE_LABEL = options.incompatible_label proxy = urllib2.ProxyHandler() opener = urllib2.build_opener(proxy) urllib2.install_opener(opener) projects = options.projects if options.range is True: versions = [Version(v) for v in GetVersions(options.versions, projects).getlist()] else: versions = [Version(v) for v in options.versions] versions.sort() global SORTTYPE SORTTYPE = options.sorttype global SORTORDER SORTORDER = options.sortorder if options.title is None: title = projects[0] else: title = options.title if options.retries is not None: global NUM_RETRIES NUM_RETRIES = options.retries[0] haderrors = False for version in versions: vstr = str(version) linter = Linter(vstr, options) jlist = sorted(JiraIter(vstr, projects)) if len(jlist) == 0: print "There is no issue which has the specified version: %s" % version continue if vstr in RELEASE_VERSION: reldate = RELEASE_VERSION[vstr] elif options.usetoday: reldate = strftime("%Y-%m-%d", gmtime()) else: reldate = "Unreleased (as of %s)" % strftime("%Y-%m-%d", gmtime()) if not os.path.exists(vstr): os.mkdir(vstr) reloutputs = Outputs("%(ver)s/RELEASENOTES.%(ver)s.md", "%(ver)s/RELEASENOTES.%(key)s.%(ver)s.md", [], {"ver": version, "date": reldate, "title": title}) choutputs = Outputs("%(ver)s/CHANGES.%(ver)s.md", "%(ver)s/CHANGES.%(key)s.%(ver)s.md", [], {"ver": version, "date": reldate, "title": title}) if options.license is True: reloutputs.write_all(ASF_LICENSE) choutputs.write_all(ASF_LICENSE) relhead = '# %(title)s %(key)s %(ver)s Release Notes\n\n' \ 'These release notes cover new developer and user-facing ' \ 'incompatibilities, important issues, features, and major improvements.\n\n' chhead = '# %(title)s Changelog\n\n' \ '## Release %(ver)s - %(date)s\n'\ '\n' reloutputs.write_all(relhead) choutputs.write_all(chhead) incompatlist = [] importantlist = [] buglist = [] improvementlist = [] newfeaturelist = [] subtasklist = [] tasklist = [] testlist = [] otherlist = [] for jira in jlist: if jira.get_incompatible_change(): incompatlist.append(jira) elif jira.get_important(): importantlist.append(jira) elif jira.get_type() == "Bug": buglist.append(jira) elif jira.get_type() == "Improvement": improvementlist.append(jira) elif jira.get_type() == "New Feature": newfeaturelist.append(jira) elif jira.get_type() == "Sub-task": subtasklist.append(jira) elif jira.get_type() == "Task": tasklist.append(jira) elif jira.get_type() == "Test": testlist.append(jira) else: otherlist.append(jira) line = '* [%s](' % (sanitize_text(jira.get_id())) + JIRA_BASE_URL + \ '/browse/%s) | *%s* | **%s**\n' \ % (sanitize_text(jira.get_id()), sanitize_text(jira.get_priority()), sanitize_text(jira.get_summary())) if len(jira.get_release_note()) > 0 or \ jira.get_incompatible_change() or jira.get_important(): reloutputs.write_key_raw(jira.get_project(), "\n---\n\n") reloutputs.write_key_raw(jira.get_project(), line) if len(jira.get_release_note()) == 0: line = '\n**WARNING: No release note provided for this change.**\n\n' else: line = '\n%s\n\n' % ( processrelnote(jira.get_release_note())) reloutputs.write_key_raw(jira.get_project(), line) linter.lint(jira) if linter.enabled: print linter.message() if linter.had_errors(): haderrors = True shutil.rmtree(vstr) continue reloutputs.write_all("\n\n") reloutputs.close() if incompatlist: choutputs.write_all("### INCOMPATIBLE CHANGES:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(incompatlist) if importantlist: choutputs.write_all("\n\n### IMPORTANT ISSUES:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(importantlist) if newfeaturelist: choutputs.write_all("\n\n### NEW FEATURES:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(newfeaturelist) if improvementlist: choutputs.write_all("\n\n### IMPROVEMENTS:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(improvementlist) if buglist: choutputs.write_all("\n\n### BUG FIXES:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(buglist) if testlist: choutputs.write_all("\n\n### TESTS:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(testlist) if subtasklist: choutputs.write_all("\n\n### SUB-TASKS:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(subtasklist) if tasklist or otherlist: choutputs.write_all("\n\n### OTHER:\n\n") choutputs.write_all(CHANGEHDR1) choutputs.write_all(CHANGEHDR2) choutputs.write_list(otherlist) choutputs.write_list(tasklist) choutputs.write_all("\n\n") choutputs.close() if options.index: buildindex(title, options.license) buildreadme(title, options.license) if haderrors is True: sys.exit(1) if __name__ == "__main__": main() ```
{ "source": "JiazhengChai/cryptoData", "score": 3 }
#### File: JiazhengChai/cryptoData/utils.py ```python import os import csv import json import time import pytz import requests import dateparser import datetime as dt from binance.client import Client from datetime import datetime, timedelta cur_path=os.path.abspath(os.getcwd()) data_folder = os.path.join(cur_path, "data") if not os.path.exists(data_folder): os.makedirs(data_folder) int_to_month_dict = { 1: "Jan", 2: "Feb", 3: "March", 4: "Apr", 5: "May", 6: "June", 7: "July", 8: "Aug", 9: "Sep", 10: "Oct", 11: "Nov", 12: "Dec" } bybit_root_url = 'https://api.bybit.com/' bitbank_root_url = 'https://public.bitbank.cc' bitstamp_root_url = 'https://www.bitstamp.net/api/v2/ohlc' binance_spot_url = 'https://api.binance.com/api/v3/klines' binance_delivery_url='https://dapi.binance.com/dapi/v1/klines' bitfinex_root_url = 'https://api-pub.bitfinex.com/v2/candles/trade:' poloniex_root_url = "https://poloniex.com/public?command=returnChartData&" def date_to_milliseconds(date_str): """Convert UTC date to milliseconds :param date_str: date in readable format, i.e. "January 01, 2018", "11 hours ago UTC", "now UTC" :type date_str: str """ # get epoch value in UTC epoch = datetime.utcfromtimestamp(0).replace(tzinfo=pytz.utc) # parse our date string d = dateparser.parse(date_str) # if the date is not timezone aware apply UTC timezone if d.tzinfo is None or d.tzinfo.utcoffset(d) is None: d = d.replace(tzinfo=pytz.utc) # return the difference in time return int((d - epoch).total_seconds() * 1000.0) def date_to_utc(date_str): """Convert date to UTC :param date_str: date in readable format, i.e. "January 01, 2018", "11 hours ago UTC", "now UTC" :type date_str: str """ # get epoch value in UTC epoch = datetime.utcfromtimestamp(0).replace(tzinfo=pytz.utc) # parse our date string d = dateparser.parse(date_str) # if the date is not timezone aware apply UTC timezone if d.tzinfo is None or d.tzinfo.utcoffset(d) is None: d = d.replace(tzinfo=pytz.utc) # return the difference in time return int((d - epoch)) def interval_to_milliseconds(interval): """Convert a interval string to milliseconds :param interval: interval string 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w :type interval: str :return: None if unit not one of m, h, d or w None if string not in correct format int value of interval in milliseconds """ ms = None seconds_per_unit = { "m": 60, "h": 60 * 60, "d": 24 * 60 * 60, "w": 7 * 24 * 60 * 60 } unit = interval[-1] if unit in seconds_per_unit: try: ms = int(interval[:-1]) * seconds_per_unit[unit] * 1000 except ValueError: pass return ms def binance_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): base=base.upper() quote=quote.upper() if quote=="USD": quote=quote+"T" symbol=base+quote my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) client = Client("", "") limit = 500 timeframe = interval_to_milliseconds(interval) start_ts = date_to_milliseconds(start_str) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) idx = 0 symbol_existed = False while True: temp_data = client.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: for i in range(len(temp_data)): date = dt.datetime.fromtimestamp(temp_data[i][0] / 1000.0) op = temp_data[i][1] hi = temp_data[i][2] lo = temp_data[i][3] cl = temp_data[i][4] v = temp_data[i][5] writer.writerow( [date, op,hi , lo,cl, v]) print(date) start_ts = temp_data[len(temp_data) - 1][0] + timeframe else: print("Symbol not yet available. Increasing query start time...") start_ts += timeframe idx += 1 if len(temp_data) < limit: break if idx % 3 == 0: time.sleep(1) def binance_delivery_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): base=base.upper() quote=quote.upper() symbol=base+"USD_PERP" my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) client = Client("", "") limit = 500 timeframe = interval_to_milliseconds(interval) start_ts = date_to_milliseconds(start_str) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) idx = 0 symbol_existed = False while True: temp_data=client._request('get', 'https://dapi.binance.com/dapi/v1/klines', False, True, params={ 'symbol':symbol, 'interval':interval, 'limit':limit, 'startTime':start_ts, 'endTime':start_ts+(limit-1)*timeframe }) if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: for i in range(len(temp_data)): date = dt.datetime.fromtimestamp(temp_data[i][0] / 1000.0) op = temp_data[i][1] hi = temp_data[i][2] lo = temp_data[i][3] cl = temp_data[i][4] v = temp_data[i][5] writer.writerow( [date, op,hi , lo,cl, v]) print(date) start_ts = start_ts + (limit) * timeframe if(end_ts <= start_ts): break if(end_ts < start_ts+(limit)*timeframe): limit=1+(end_ts-start_ts)//timeframe else: print("Symbol not yet available for the requested dates.") start_ts += timeframe idx += 1 if len(temp_data) < limit: break if idx % 3 == 0: time.sleep(1) def bitstamp_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): # bitstamp available_pairs=["btcusd", "btceur", "btcgbp", "btcpax", "gbpusd", "gbpeur", "eurusd", "xrpusd", "xrpeur", "xrpbtc", "xrpgbp", "xrppax", "ltcusd", "ltceur", "ltcbtc", "ltcgbp", "ethusd", "etheur", "ethbtc", "ethgbp", "ethpax", "bchusd", "bcheur", "bchbtc", "bchgbp", "paxusd", "paxeur", "paxgbp", "xlmbtc", "xlmusd", "xlmeur", "xlmgbp"] base=base.lower() quote=quote.lower() symbol=base+quote if symbol not in available_pairs: print("Requested symbol not available in Bitstamp.") print("Please select from: ") print(available_pairs) quit() def bitstamp_get_bars(symbol, interval=86400, start=None, end=None, limit=500): url = bitstamp_root_url + '/' + symbol + '?step=' + str(interval) + '&limit=' + str(limit) if start: url = url + '&start=' + str(start) if end: url = url + '&end=' + str(end) data = json.loads(requests.get(url).text) return data my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) limit = 500 timeframe = interval_to_milliseconds(interval) timeframe=int(timeframe/1000) start_ts = date_to_milliseconds(start_str) start_ts=int(start_ts/1000)-timeframe end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) end_ts = int(end_ts / 1000) else: end_ts=start_ts+500*timeframe#60 cur_start=start_ts cur_end=end_ts if (end_ts-start_ts)/timeframe >500: cur_end=cur_start+500*timeframe idx = 0 symbol_existed = False while True: temp_data=bitstamp_get_bars(symbol, interval = timeframe,start=cur_start ,end=cur_end,limit=int((cur_end-cur_start)/timeframe) ) temp_data=temp_data["data"]["ohlc"] if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: for i in range(len(temp_data)): date = dt.datetime.fromtimestamp(int(temp_data[i]["timestamp"])) op = temp_data[i]["open"] hi = temp_data[i]["high"] lo = temp_data[i]["low"] cl = temp_data[i]["close"] v = temp_data[i]["volume"] writer.writerow( [date, op,hi , lo,cl, v]) if(cur_end==end_ts): break cur_start = int(temp_data[len(temp_data) - 1]["timestamp"]) + timeframe cur_end=cur_start+500*timeframe if(cur_end>end_ts): cur_end=end_ts else: print("Symbol not yet available. Increasing query start time...") start_ts += timeframe idx += 1 if len(temp_data) < limit: break if idx % 3 == 0: time.sleep(1) def poloniex_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): try: assert interval in ["5m","15m","30m","2h","4h","1d"] except: print("For poloniex, only the following timeframes are available.") print(["5m","15m","30m","2h","4h","1d"]) quit() base=base.upper() quote=quote.upper() if quote=="USD": quote=quote+"T" symbol=quote+"_"+base def poloniex_get_bars(symbol, interval=5, start=None, end=None): url = poloniex_root_url + "currencyPair=" + symbol + '&start=' + str(start) + '&end=' + str( end) + "&period=" + str(interval) + "&resolution=auto" data = json.loads(requests.get(url).text) return data my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) limit = 10000 timeframe = interval_to_milliseconds(interval) timeframe=int(timeframe/1000) start_ts = date_to_milliseconds(start_str) start_ts=int(start_ts/1000) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) end_ts = int(end_ts / 1000) else: end_ts=start_ts+limit*timeframe cur_start=start_ts cur_end=end_ts if (end_ts-start_ts)/timeframe >limit: cur_end=cur_start+limit*timeframe idx = 0 symbol_existed = False prev_time=0 while True: temp_data=poloniex_get_bars(symbol, interval = timeframe,start=cur_start ,end=cur_end) #print(len(temp_data)) if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: for i in range(len(temp_data)): date = dt.datetime.fromtimestamp(int(temp_data[i]["date"])) if i==0 : print(date) if prev_time!=0 : if((int(temp_data[i]["date"]-prev_time)!=300)): print("TIME DECALAGE.") if i==len(temp_data)-1: print(date) prev_time=int(temp_data[i]["date"]) op = temp_data[i]["open"] hi = temp_data[i]["high"] lo = temp_data[i]["low"] cl = temp_data[i]["close"] v = temp_data[i]["volume"] writer.writerow( [date, op,hi , lo,cl, v]) if(cur_end==end_ts): break cur_start = int(temp_data[len(temp_data) - 1]["date"]) + timeframe cur_end=cur_start+limit*timeframe if(cur_end>end_ts): cur_end=end_ts else: print("Symbol not yet available. Increasing query start time...") start_ts += timeframe idx += 1 if idx % 3 == 0: time.sleep(1) def bitfinex_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): try: assert interval in ['1m', '5m', '15m', '30m', '1h', '3h', '6h', '12h', '1d', '7d', '14d'] except: print("For poloniex, only the following timeframes are available.") print(['1m', '5m', '15m', '30m', '1h', '3h', '6h', '12h', '1d', '7d', '14d']) quit() base = base.upper() quote = quote.upper() if quote == "USDT": quote = "USD" symbol = base + quote def bitfinex_get_bars(symbol, tf, start=None, end=None, limit=10000): tf_min=tf // 60000 time_symbol="m" if tf_min >= 1440: tf_min=tf_min//1440 time_symbol = "D" elif tf_min>=60: tf_min=tf_min//60 time_symbol = "h" url = bitfinex_root_url + str(tf_min) + time_symbol+":t" + symbol + "/hist?" + '&start=' + str( start) + '&end=' + str(end) + \ "&limit=" + str(limit) + "&sort=1" data = json.loads(requests.get(url).text) return data my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) limit = 10000 timeframe = interval_to_milliseconds(interval) timeframe=int(timeframe) start_ts = date_to_milliseconds(start_str) start_ts=int(start_ts) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) end_ts =int(end_ts) else: end_ts=start_ts+limit*timeframe cur_start=start_ts cur_end=end_ts if (end_ts-start_ts)/timeframe >limit: cur_end=cur_start+limit*timeframe idx = 0 symbol_existed = False start=time.time() prev_time=0 while True: temp_data=bitfinex_get_bars(symbol, tf = timeframe,start=cur_start ,end=cur_end,limit=limit) #print(len(temp_data)) if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: for i in range(len(temp_data)): date = dt.datetime.fromtimestamp(int(temp_data[i][0]/1000)) if i == 0: print(date) if prev_time != 0: if ((int(temp_data[i][0] - prev_time) != 300000)): print("TIME DECALAGE.") if i == len(temp_data) - 1: print(date) prev_time = int(temp_data[i][0]) op = temp_data[i][1] hi = temp_data[i][3] lo = temp_data[i][4] cl = temp_data[i][2] v = temp_data[i][5] writer.writerow( [date, op,hi , lo,cl, v]) if(cur_end==end_ts): break try: cur_start = int(temp_data[len(temp_data) - 1][0]) + timeframe except: print("wait") cur_end=cur_start+limit*timeframe if(cur_end>end_ts): cur_end=end_ts else: print("Symbol not yet available. Increasing query start time...") start_ts += timeframe idx += 1 if idx % 3 == 0: time.sleep(1) def bybit_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): base = base.upper() quote = quote.upper() symbol = base + quote try: if quote=="USD": assert base in ["BTC","ETH","XRP","EOS"] elif quote=="USDT": assert base in ["BTC","ETH","LTC","BCH","LINK","XTZ"] except: print(symbol+" does not exist in Bybit.") print("Try changing the quote currency to 'USD' or 'USDT'") quit() def bybit_get_bars(symbol, interval=5, start=None, limit=200): if "USDT" in symbol: url = bybit_root_url + "public/linear/kline?symbol=" + symbol + "&interval=" + str( interval) + "&limit=" + str(limit) + "&from=" + str(start) else: url = bybit_root_url + "v2/public/kline/list?symbol=" + symbol + "&interval=" + str( interval) + "&limit=" + str(limit) + "&from=" + str(start) data = json.loads(requests.get(url).text) return data my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) limit = 200 if "m" in interval: interval_num=int(interval.replace("m","")) elif "h" in interval: hour=int(interval.replace("h","")) interval_num=hour*60 else: interval_num = interval[-1].upper() timeframe = interval_to_milliseconds(interval) timeframe=int(timeframe/1000) start_ts = date_to_milliseconds(start_str) start_ts=int(start_ts/1000) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) end_ts = int(end_ts / 1000) if interval!="5m": end_ts=end_ts+timeframe else: end_ts=start_ts+limit*timeframe cur_start=start_ts cur_end=end_ts if (end_ts-start_ts)/timeframe >limit: cur_end=cur_start+limit*timeframe idx = 0 symbol_existed = False while True: temp_data=bybit_get_bars(symbol, interval = interval_num,start=cur_start,limit=int((cur_end-cur_start)/timeframe)) temp_data=temp_data["result"] if not temp_data: print("Cannot query data for the current input parameters.") exit() if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: for i in range(len(temp_data)): date = dt.datetime.fromtimestamp(int(temp_data[i]["open_time"])) op = temp_data[i]["open"] hi = temp_data[i]["high"] lo = temp_data[i]["low"] cl = temp_data[i]["close"] v = temp_data[i]["volume"] writer.writerow( [date, op,hi , lo,cl, v]) print(date) if (cur_end >= end_ts): break cur_start = int(temp_data[len(temp_data) - 1]["open_time"]) + timeframe cur_end=cur_start+limit*timeframe if(cur_end>end_ts): cur_end=end_ts+timeframe else: print("Symbol not yet available. Increasing query start time...") start_ts += timeframe idx += 1 if len(temp_data) < limit: break if idx % 3 == 0: time.sleep(1) def bitbank_get_historical_klines_to_csv(csv_name,base,quote, interval, start_str, end_str=None): base = base.lower() quote = quote.lower() if quote in ["usd","usdt"]: symbol = base + "_jpy" else: symbol = base + quote if "min" not in interval and "m" in interval: interval=interval+"in" def bitbank_get_bars(symbol, ymd, interval="5min"): url = bitbank_root_url + "/" + symbol + "/candlestick/" + interval + "/" + ymd data = json.loads(requests.get(url).text) return data my_csv = open(csv_name, 'w') writer = csv.writer(my_csv, lineterminator='\n') writer.writerow(['Date', 'Open', 'High', 'Low', 'Close', 'Volume']) if "min" not in interval: print("Only minutes interval supported now.") print("Exiting.") exit() interval_unit=int(interval.replace("min","")) idx = 0 def daterange(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) try: sd = datetime.strptime(start_str, '%B %d, %Y') ed = datetime.strptime(end_str, '%B %d, %Y') except: sd = datetime.strptime(start_str, '%b %d, %Y') ed = datetime.strptime(end_str, '%b %d, %Y') for single_date in daterange(sd, ed): ymd=single_date.strftime("%Y%m%d") temp_data=bitbank_get_bars(symbol, ymd=ymd,interval =interval) data=temp_data["data"]["candlestick"][0]["ohlcv"] #print(len(data)) start_h=9 start_m=0 today_date=single_date for i in range(len(data)): if(start_m==0): date = today_date.strftime('%Y-%m-%d') + " " + str(start_h) + ":00:00" else: date = today_date.strftime('%Y-%m-%d') + " " + str(start_h) + ":" + str(start_m)+ ":00" if i==0: print(date) op = data[i][0] hi = data[i][1] lo = data[i][2] cl = data[i][3] v = data[i][4] writer.writerow( [date, op,hi , lo,cl, v]) start_m=start_m+interval_unit if(start_m==60): start_m=0 start_h=(start_h+1) if(start_h==24): start_h=0 today_date= today_date+ timedelta(1) idx += 1 if idx % 100 == 0: time.sleep(1) ```
{ "source": "JiazhengChai/spinningup_pytorch", "score": 2 }
#### File: spinningup_pytorch/assets/vertical_mvt_pendulum.py ```python import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import os TARGET_ENERGY=3 class VerticalMvtPendulumEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self,type='vertical_mvt_pendulum.xml',path=None,target_energy=TARGET_ENERGY): self.target_energy=target_energy self.before_init=True if path: mujoco_env.MujocoEnv.__init__(self, os.path.join(path,type), 2) else: try: mujoco_env.MujocoEnv.__init__(self, 'vertical_mvt_pendulum.xml', 2) except: print('Error.') print('Please specify the folder in which the '+type+ ' can be found.') exit() utils.EzPickle.__init__(self) self.before_init =False def step(self, action): z_before=self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) z_after = self.sim.data.qpos[0] ob = self._get_obs() a_energy_penalty=np.squeeze(np.abs(z_after-z_before)*np.abs(action)) stick_energy=np.abs(0.0417*ob[4])*ob[4]+4.905*(1-ob[2]) alive_bonus = 10 r= -(self.target_energy-stick_energy)**2 +alive_bonus - 0.01 * ob[0]** 2 - 0.01*a_energy_penalty if self.before_init: done = bool(ob[2] < 0) else: done = bool(ob[2] < 0 or np.abs(ob[4])<0.0001) #done=False return ob, r, done, {'actuator penalty':a_energy_penalty,'stick energy':stick_energy,'delta target energy':np.abs(self.target_energy-stick_energy)} def _get_obs(self): return np.concatenate([ self.sim.data.qpos[:1], # cart x pos np.sin(self.sim.data.qpos[1:]), # link angles np.cos(self.sim.data.qpos[1:]), np.clip(self.sim.data.qvel, -10, 10), np.clip(self.sim.data.qfrc_constraint, -10, 10) ]).ravel() def reset_model(self): self.set_state( self.init_qpos + self.np_random.uniform(low=-.1, high=.1, size=self.model.nq), self.init_qvel + self.np_random.randn(self.model.nv) * .1 ) return self._get_obs() def viewer_setup(self): v = self.viewer v.cam.trackbodyid = 0 v.cam.distance = self.model.stat.extent * 0.3 v.cam.lookat[0] = 0 v.cam.lookat[1] = -1 v.cam.lookat[2] = 0 v.cam.elevation = 0 ```
{ "source": "JiazhengChai/synergy_analysis", "score": 2 }
#### File: examples/development_TD3/collect_actions_TD3.py ```python import argparse from distutils.util import strtobool import json import os import pickle from collections import OrderedDict import tensorflow as tf import numpy as np from softlearning.policies.utils import get_policy_from_variant from softlearning.samplers import rollouts,my_rollouts speed_dict={ "v1":0.5, "v2":1, "v25": 1, "v3":2, "v4":3, "v45": 3, "v5":4, "v6":5, "v65": 5, } def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--agent', type=str) parser.add_argument('--path', type=str, default=None) parser.add_argument('--base_path', type=str, default=None) parser.add_argument('--tr', default='all', type=str, nargs='+') parser.add_argument('--energy', type=str, default='Energy0-v0', choices=['Energy0-v0','EnergyOne-v0','Energyz-v0', 'EnergyPoint5-v0','EnergyPoint1-v0', 'EnergyPoint25-v0','EnergyAlt-v0','smallRange-v0', 'bigRange-v0','Symloss-v0','Symdup-v0','SymlossGfblr-v0', 'SymdupGfblr-v0','SymlossG-v0','SymdupG-v0', 'SymlossT-v0','SymdupT-v0', 'Energy0-v1','Energy0-v2','Energy0-v3','Energy0-v4','Energy0-v5','Energy0-v6','Energy0-v7','Energy0-v8', 'Energy0-v9', 'SymlossT-v1','SymlossT-v2','SymlossT-v3','SymlossT-v4','SymlossT-v5','SymlossT-v6', 'SymlossG-v1','SymlossG-v2','SymlossG-v3','SymlossG-v4','SymlossG-v5','SymlossG-v6', 'LessSpring-v0','LessSpring-v2','LessSpring-v4','LessSpring-v6', 'MoreSpring-v0','MoreSpring-v2','MoreSpring-v4','MoreSpring-v6', 'ExSpring-v0', 'ExSpring-v2', 'ExSpring-v4','ExSpring-v6', 'MinSpring-v0', 'MinSpring-v2', 'MinSpring-v4', 'MinSpring-v6', 'ExSpring-v00', 'ExSpring-v45','ExSpring-v65', 'MinSpring-v00', 'MinSpring-v45', 'MinSpring-v65', 'Energy0-v00','Energy0-v45','Energy0-v65', 'MinSpringG-v0','MinSpringG-v2', 'MinSpringG-v4', 'MinSpringG-v6', 'MinSpringT-v0', 'MinSpringT-v2', 'MinSpringT-v4','MinSpringT-v6', 'ExSpringT-v0', 'ExSpringT-v2', 'ExSpringT-v4', 'ExSpringT-v6', 'ExSpringG-v0', 'ExSpringG-v2', 'ExSpringG-v4', 'ExSpringG-v6', ]) parser.add_argument('--start', '-s', type=int,default=100) parser.add_argument('--final', '-f', type=int,default=3000) parser.add_argument('--step', '-st', type=int,default=100) parser.add_argument('--gpu_choice', type=int, default=0) parser.add_argument('--max-path-length', '-l', type=int, default=1000) parser.add_argument('--num-rollouts', '-n', type=int, default=10) parser.add_argument('--render-mode', '-r', type=str, default=None, choices=('human', 'rgb_array', None), help="Mode to render the rollouts in.") parser.add_argument('--deterministic', '-d', type=lambda x: bool(strtobool(x)), nargs='?', const=True, default=True, help="Evaluate policy deterministically.") parser.add_argument('--name', type=str, help='Experiment name') args = parser.parse_args() return args def simulate_policy(args): if args.gpu_choice is not None: os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_choice) gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) checkpoint_path = args.checkpoint_path.rstrip('/') experiment_path = os.path.dirname(checkpoint_path) variant_path = os.path.join(experiment_path, 'params.json') with open(variant_path, 'r') as f: variant = json.load(f) pickle_path = os.path.join(checkpoint_path, 'checkpoint.pkl') print(pickle_path) print(os.getcwd()) with open(pickle_path, 'rb') as f: picklable = pickle.load(f) env = picklable['env'] policy = ( get_policy_from_variant(variant, env)) policy.set_weights(picklable['policy_weights']) with policy.set_deterministic (args.deterministic): paths = my_rollouts(env=env, policy=policy, path_length=args.max_path_length, n_paths=args.num_rollouts, render_mode=args.render_mode) return paths if __name__ == '__main__': args = parse_args() if not args.path: agent=args.agent energy=args.energy if args.base_path: top_path=os.path.join(args.base_path,agent+'/'+energy) else: top_path='./experiments_results/gym/'+agent+'/'+energy print(top_path) if 'Energy0' in energy: ene_sub='_E0_TD3' elif 'EnergyOne' in energy: ene_sub = '_E1_TD3' elif 'EnergyPoint5' in energy: ene_sub = '_Ep5_TD3' elif 'Energyz' in energy: ene_sub = '_Ez_TD3' elif 'EnergyPoint1' in energy: ene_sub = '_Ep1_TD3' elif 'EnergyPoint25' in energy: ene_sub = '_Ep25_TD3' elif 'EnergyAlt' in energy: ene_sub = '_Ealt_TD3' elif 'smallRange' in energy: ene_sub = '_sR_TD3' elif 'bigRange' in energy: ene_sub = '_bR_TD3' elif 'LessSpring' in energy: ene_sub = '_lS_TD3' elif 'MoreSpring' in energy: ene_sub = '_mS_TD3' elif 'ExSpring' in energy: if "T" in energy: ene_sub = '_maxST_TD3' elif "G" in energy: ene_sub = '_maxSG_TD3' else: ene_sub = '_maxS_TD3' elif 'MinSpring' in energy: if "T" in energy: ene_sub = '_minST_TD3' elif "G" in energy: ene_sub = '_minSG_TD3' else: ene_sub = '_minS_TD3' version = energy.split("-")[1] if version != "v0": ene_sub = ene_sub + version if agent=='HalfCheetah': abrv='HC' elif 'HalfCheetahSquat' in agent and 'dof' in agent: abrv='HCsquat' tmp_agent_name=agent.replace('HalfCheetahSquat', '') abrv+=tmp_agent_name elif 'HalfCheetah' in agent and 'dof' in agent: abrv = 'HC' tmp_agent_name = agent.replace('HalfCheetah', '') abrv += tmp_agent_name elif agent=='HalfCheetahHeavy': abrv = 'HCheavy' elif agent=='FullCheetah': abrv = 'FC' elif agent == 'FullCheetahHeavy': abrv = 'FCheavy' else: abrv = agent for experiment in os.listdir(top_path): exp_path=os.path.join(top_path,experiment) if 'TD3' in experiment: base_name=abrv+ene_sub trial='_'+experiment.split('_')[-1] extract_b = True if 'all' not in args.tr and trial not in args.tr: extract_b = False if extract_b: for folder in os.listdir(exp_path): if 'ExperimentRunner' in folder: base_path=os.path.join(exp_path,folder) start=args.start step=args.step final=args.final all_checkpoint = [] all_name =[] for ch in range(start,final+1,step): specific='checkpoint_'+str(ch) all_checkpoint.append(os.path.join(base_path, specific)) namee = base_name + '_C' + str(ch) + trial all_name.append(namee) for ind,chk in enumerate(all_checkpoint): args.checkpoint_path=chk args.name=all_name[ind] paths=simulate_policy(args) total_ori_reward = [] total_energy = [] total_pure_reward = [] action_list=[] states_list = [] for path in paths: try: tmp = 0 tmpe=0 tmpPure=0 for i in range(len(path['infos'])): tmp = tmp + path['infos'][i]['ori_reward'] tmpe = tmpe + path['infos'][i]['energy'] if "HalfCheetah" in agent or "FullCheetah" in agent : if "Squat" in agent: tmpPure=tmpPure + path['infos'][i]['reward_dist'] else: tmpPure=tmpPure + path['infos'][i]['reward_run'] elif "Ant" in agent: if "SquaT" in agent: tmpPure = tmpPure + path['infos'][i]['reward_distance'] elif "Run" in agent: tmpPure = tmpPure + path['infos'][i]['reward_forward'] elif "VA" in agent: tmpPure = tmpPure + path['infos'][i]['reward_dist']/5 elif "RealArm" in agent: tmpPure = tmpPure + path['infos'][i]['reward_dist']/5 if agent=="FullCheetahHeavy" and "v0" not in energy: speed=speed_dict[version] print("Speed: ",speed) tmp=tmp+len(path['infos'])*speed tmpPure=tmpPure+len(path['infos'])*speed total_ori_reward.append(tmp) total_energy.append(tmpe) total_pure_reward.append(tmpPure) except: pass path_action=path['actions'] if agent == 'FullCheetahHeavy' : if 'T' in ene_sub: print("trot") path_action=np.asarray(path_action) path_action[:,6:9] = -1 * path_action[:,0:3] path_action[:,9:12] = -1 * path_action[:,3:6] elif 'G' in ene_sub : print("gallop") path_action=np.asarray(path_action) path_action[:,6:12] = path_action[:,0:6] action_list.append(path_action) states_list.append(path['states']) action_list=np.asarray(action_list) states_list = np.asarray(states_list) name = args.name print(name) total_energy = np.asarray(total_energy) if not os.path.exists('./experiments_results/collected_actions/trajectory_npy/reward_energy_dict'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/reward_energy_dict',exist_ok=True) if not os.path.exists('./experiments_results/collected_actions/trajectory_npy/actions_npy'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/actions_npy',exist_ok=True) if not os.path.exists('./experiments_results/collected_actions/trajectory_npy/states_npy'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/states_npy',exist_ok=True) if not os.path.exists( './experiments_results/collected_actions/trajectory_npy/pure_reward_dict'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/pure_reward_dict', exist_ok=True) try: diagnostics = OrderedDict(( ('ori-return-average', np.mean(total_ori_reward)), ('ori-return-min', np.min(total_ori_reward)), ('ori-return-max', np.max(total_ori_reward)), ('ori-return-std', np.std(total_ori_reward)), ('total-energy-average', np.mean(total_energy)), ('total-energy-min', np.min(total_energy)), ('total-energy-max', np.max(total_energy)), ('total-energy-std', np.std(total_energy)), )) np.save('./experiments_results/collected_actions/trajectory_npy/reward_energy_dict/' + name, diagnostics) except: print("error in reward energy dict saving") pass try: diagnostics = OrderedDict(( ('pure-return-average', np.mean(total_pure_reward)), ('pure-return-std', np.std(total_pure_reward)), )) np.save('./experiments_results/collected_actions/trajectory_npy/pure_reward_dict/' + name, diagnostics) except: pass np.save('./experiments_results/collected_actions/trajectory_npy/actions_npy/' + name, action_list) np.save('./experiments_results/collected_actions/trajectory_npy/states_npy/' + name, states_list) else: base_path = args.path #base_name = abrv + ene_sub trial = '_' + base_path.split('/')[-2].split('-')[-1].split('_')[-1] base_name = base_path.split('/')[-2].split('-')[-1].replace(trial,'') start = args.start step = args.step final = args.final all_checkpoint = [] all_name = [] for ch in range(start, final + 1, step): specific = 'checkpoint_' + str(ch) all_checkpoint.append(os.path.join(base_path, specific)) namee = base_name + '_C' + str(ch) + trial all_name.append(namee) for ind, chk in enumerate(all_checkpoint): args.checkpoint_path = chk args.name = all_name[ind] paths = simulate_policy(args) total_ori_reward = [] total_energy = [] action_list = [] states_list = [] for path in paths: try: tmp = 0 tmpe = 0 for i in range(len(path['infos'])): tmp = tmp + path['infos'][i]['ori_reward'] tmpe = tmpe + path['infos'][i]['energy'] total_ori_reward.append(tmp) total_energy.append(tmpe) except: pass action_list.append(path['actions']) states_list.append(path['states']) action_list = np.asarray(action_list) states_list = np.asarray(states_list) name = args.name print(name) total_energy = np.asarray(total_energy) if not os.path.exists('./experiments_results/collected_actions/trajectory_npy/reward_energy_dict'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/reward_energy_dict', exist_ok=True) if not os.path.exists('./experiments_results/collected_actions/trajectory_npy/actions_npy'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/actions_npy', exist_ok=True) if not os.path.exists('./experiments_results/collected_actions/trajectory_npy/states_npy'): os.makedirs('./experiments_results/collected_actions/trajectory_npy/states_npy', exist_ok=True) try: diagnostics = OrderedDict(( ('ori-return-average', np.mean(total_ori_reward)), ('ori-return-min', np.min(total_ori_reward)), ('ori-return-max', np.max(total_ori_reward)), ('ori-return-std', np.std(total_ori_reward)), ('total-energy-average', np.mean(total_energy)), ('total-energy-min', np.min(total_energy)), ('total-energy-max', np.max(total_energy)), ('total-energy-std', np.std(total_energy)), )) np.save('./experiments_results/collected_actions/trajectory_npy/reward_energy_dict/' + name, diagnostics) except: pass np.save('./experiments_results/collected_actions/trajectory_npy/actions_npy/' + name, action_list) np.save('./experiments_results/collected_actions/trajectory_npy/states_npy/' + name, states_list) ``` #### File: examples/development/variants.py ```python from ray import tune import numpy as np from softlearning.misc.utils import deep_update M = 256 N = 128#256 #N=45#human REPARAMETERIZE = True NUM_COUPLING_LAYERS = 2 GAUSSIAN_POLICY_PARAMS_BASE = { 'type': 'GaussianPolicy', 'kwargs': { 'hidden_layer_sizes': (M, M), 'squash': True, } } DETERMINISTICS_POLICY_PARAMS_BASE = { 'type': 'DeterministicsPolicy', 'kwargs': { 'hidden_layer_sizes': (M, M), 'squash': True } } GAUSSIAN_POLICY_PARAMS_FOR_DOMAIN = {} DETERMINISTICS_POLICY_PARAMS_FOR_DOMAIN = {} POLICY_PARAMS_BASE = { 'GaussianPolicy': GAUSSIAN_POLICY_PARAMS_BASE, 'DeterministicsPolicy': DETERMINISTICS_POLICY_PARAMS_BASE, } POLICY_PARAMS_BASE.update({ 'gaussian': POLICY_PARAMS_BASE['GaussianPolicy'], 'deterministicsPolicy': POLICY_PARAMS_BASE['DeterministicsPolicy'], }) POLICY_PARAMS_FOR_DOMAIN = { 'GaussianPolicy': GAUSSIAN_POLICY_PARAMS_FOR_DOMAIN, 'DeterministicsPolicy': DETERMINISTICS_POLICY_PARAMS_FOR_DOMAIN, } POLICY_PARAMS_FOR_DOMAIN.update({ 'gaussian': POLICY_PARAMS_FOR_DOMAIN['GaussianPolicy'], 'deterministicsPolicy': POLICY_PARAMS_FOR_DOMAIN['DeterministicsPolicy'], }) DEFAULT_MAX_PATH_LENGTH = 1000 MAX_PATH_LENGTH_PER_DOMAIN = { 'Point2DEnv': 50, 'Pendulum': 200, } ALGORITHM_PARAMS_BASE = { 'type': 'SAC', 'kwargs': { 'epoch_length': 1000, 'train_every_n_steps': 1, 'n_train_repeat': 1, 'eval_render_mode': None, 'eval_n_episodes': 3, 'eval_deterministic': True, 'discount': 0.99, 'tau': 5e-3, 'reward_scale': 1.0, } } ALGORITHM_PARAMS_ADDITIONAL = { 'SAC': { 'type': 'SAC', 'kwargs': { 'reparameterize': REPARAMETERIZE, 'lr': 3e-4, 'target_update_interval': 1, 'tau': 5e-3, 'target_entropy': 'auto', 'store_extra_policy_info': False, 'action_prior': 'uniform', 'n_initial_exploration_steps': int(1e3), } }, 'TD3': { 'type': 'TD3', 'kwargs': { 'reparameterize': REPARAMETERIZE, 'lr': 1e-3, 'target_update_interval': 2, 'tau': 5e-3, 'store_extra_policy_info': False, 'action_prior': 'uniform', 'n_initial_exploration_steps': int(1e4), } }, } DEFAULT_NUM_EPOCHS = 200 NUM_EPOCHS_PER_DOMAIN = { 'Swimmer': int(3e2), 'Hopper': int(1e3), 'HalfCheetah': int(3e3), 'Giraffe': int(2e3), 'HalfCheetahHeavy':int(3e3), 'HalfCheetah5dof': int(3e3), 'HalfCheetah5dofv2': int(3e3), 'HalfCheetah5dofv3': int(3e3), 'HalfCheetah5dofv4': int(3e3), 'HalfCheetah5dofv5': int(3e3), 'HalfCheetah5dofv6': int(3e3), 'HalfCheetah4dof':int(3e3), 'HalfCheetah4dofv2': int(3e3), 'HalfCheetah4dofv3': int(3e3), 'HalfCheetah4dofv4': int(3e3), 'HalfCheetah4dofv5': int(3e3), 'HalfCheetah4dofv6': int(3e3), 'HalfCheetah2dof':int(3e3), 'HalfCheetah2dofv2': int(3e3), 'HalfCheetah2dofv3': int(3e3), 'HalfCheetah2dofv4': int(3e3), 'HalfCheetah2dofv5': int(3e3), 'HalfCheetah3doff': int(3e3), 'HalfCheetah3dofb': int(3e3), 'HalfCheetah3dofv3': int(3e3), 'HalfCheetah3dofv4': int(3e3), 'HalfCheetahSquat2dof': int(60), 'HalfCheetahSquat4dof': int(90), 'HalfCheetahSquat6dof': int(120), 'FullCheetah':int(3e3), 'FullCheetahHeavy': int(3e3), 'Centripede':int(2e3), 'Walker2d': int(1e3), 'Bipedal2d':int(300), 'Ant': int(2e3), 'AntSquaTRedundant': int(500), 'AntSquaT': int(500), 'AntRun': int(300), 'VA': int(30), 'VA4dof': int(30), 'VA6dof': int(30), 'VA8dof': int(100), 'RealArm7dof':int(90), 'RealArm6dof': int(90), 'RealArm5dof': int(60), 'RealArm4dof': int(60), 'RealArm5dofLT': int(60), 'RealArm4dofLT': int(60), 'RealArm5dofMinE': int(60), 'RealArm4dofMinE': int(60), 'RealArm3dof': int(30), 'AntHeavy': int(2e3), 'Humanoid': int(5e3),#int(1e4), 'Humanoidrllab': int(3e3),#int(1e4), 'Pusher2d': int(2e3), 'HandManipulatePen': int(1e4), 'HandManipulateEgg': int(1e4), 'HandManipulateBlock': int(1e4), 'HandReach': int(1e4), 'Point2DEnv': int(200), 'Reacher': int(200), 'Pendulum': 10, 'VMP': 50, } ALGORITHM_PARAMS_PER_DOMAIN = { **{ domain: { 'kwargs': { 'n_epochs': NUM_EPOCHS_PER_DOMAIN.get( domain, DEFAULT_NUM_EPOCHS), 'n_initial_exploration_steps': ( MAX_PATH_LENGTH_PER_DOMAIN.get( domain, DEFAULT_MAX_PATH_LENGTH ) * 10), } } for domain in NUM_EPOCHS_PER_DOMAIN } } ENV_PARAMS = { 'Bipedal2d': { # 6 DoF 'Energy0-v0': { 'target_energy':3 }, }, 'VA': { # 6 DoF 'Energyz-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.0, }, 'Energy0-v0': { 'distance_reward_weight':5.0, 'ctrl_cost_weight':0.05, }, 'EnergyPoint5-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.5, }, 'EnergyOne-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight':1, }, 'smallRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file':'vertical_arm_smallRange.xml' }, 'bigRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file':'vertical_arm_bigRange.xml' }, }, 'VA4dof': { # 6 DoF 'Energyz-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.0, }, 'Energy0-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, }, 'EnergyPoint5-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.5, }, 'EnergyOne-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 1, }, 'smallRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file': 'vertical_arm4dof_smallRange.xml' }, 'bigRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file': 'vertical_arm4dof_bigRange.xml' }, }, 'VA6dof': { # 6 DoF 'Energyz-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.0, }, 'Energy0-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, }, 'EnergyPoint5-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.5, }, 'EnergyOne-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 1, }, 'smallRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file': 'vertical_arm6dof_smallRange.xml' }, 'bigRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file': 'vertical_arm6dof_bigRange.xml' }, }, 'VA8dof': { # 6 DoF 'Energyz-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.0, }, 'Energy0-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05,#0.05 }, 'EnergyPoint5-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.5, }, 'EnergyOne-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 1, }, 'smallRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file': 'vertical_arm8dof_smallRange.xml' }, 'bigRange-v0': { 'distance_reward_weight': 5.0, 'ctrl_cost_weight': 0.05, 'xml_file': 'vertical_arm8dof_bigRange.xml' }, }, 'RealArm7dof': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight':5, 'shoulder_cost_weight':1, 'wrist_cost_weight':0 }, 'Energy0-v1': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx':0.01 }, 'Energy0-v2': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.1 }, 'Energy0-v3': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.2 }, 'Energy0-v9': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.15 }, 'Energy0-v4': { 'xml_file': 'real_arm7dofLessTorque.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v5': { 'xml_file': 'real_arm7dofMinTorque.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v6': { 'xml_file': 'real_arm7dofMoreWeight.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v7': { 'xml_file': 'real_arm7dof1p5Weight.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v8': { 'xml_file': 'real_arm7dof2p5Weight.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, }, 'RealArm6dof': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v1': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.01 }, 'Energy0-v2': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.1 }, }, 'RealArm5dof': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v1': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.01 }, 'Energy0-v2': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.1 }, }, 'RealArm5dofMinE': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'MinE_cost_weight': 0.5, }, }, 'RealArm4dofMinE': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'MinE_cost_weight': 0.5, }, }, 'RealArm5dofLT': { # 6 DoF 'Energy0-v0': { 'xml_file': 'real_arm5dofLessTorque.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, }, 'RealArm4dofLT': { # 6 DoF 'Energy0-v0': { 'xml_file': 'real_arm4dofLessTorque.xml', 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, }, 'RealArm4dof': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v1': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.01 }, 'Energy0-v2': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.1 }, }, 'RealArm3dof': { # 6 DoF 'Energy0-v0': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0 }, 'Energy0-v1': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.01 }, 'Energy0-v2': { 'distance_reward_weight': 5, 'shoulder_cost_weight': 1, 'wrist_cost_weight': 0, 'pcx': 0.1 }, }, 'Walker2d': { # 6 DoF 'Symloss-v0': { }, 'Symdup-v0': { }, }, 'HalfCheetahHeavy': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':0, }, }, 'HalfCheetah5dof': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah5dofv2': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, }, 'HalfCheetah5dofv3': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, }, 'HalfCheetah5dofv4': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, }, 'HalfCheetah5dofv5': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, }, 'HalfCheetah5dofv6': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, }, 'HalfCheetah4dof': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah4dofv2': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah4dofv3': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah4dofv4': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah4dofv5': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah4dofv6': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah3doff': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah3dofb': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah3dofv3': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah3dofv4': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetahSquat2dof': { # 6 DoF 'Energyz-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'Energy0-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.1, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyPoint25-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.25, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyAlt-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0., 'horizontal_weight': 0.1, 'energy_weights': 1.5, }, }, 'HalfCheetahSquat4dof': { # 6 DoF 'Energyz-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'Energy0-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.25, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyPoint1-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.1, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyPoint25-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.25, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyAlt-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0., 'horizontal_weight': 0.1, 'energy_weights': 1.5, }, }, 'HalfCheetahSquat6dof': { # 6 DoF 'Energyz-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'Energy0-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.25, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyPoint1-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.1, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyPoint25-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0.25, 'horizontal_weight': 0.1, 'energy_weights': 0, }, 'EnergyAlt-v0': { 'distance_weigth': 5.0, 'ctrl_cost_weight': 0., 'horizontal_weight': 0.1, 'energy_weights': 1.5, }, }, 'HalfCheetah2dof': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah2dofv2': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah2dofv3': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah2dofv4': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah2dofv5': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, 'EnergyOne-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 1., }, }, 'HalfCheetah': { # 6 DoF 'EnergySix-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':6.0, }, 'EnergyFour-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':4.0, }, 'EnergyTwo-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':2.0, }, 'EnergyOnePoint5-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':1.5, }, 'EnergyOne-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':1., }, 'EnergyPoint5-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':0.5, }, 'EnergyPoint1-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':0.1, }, 'Energy0-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':0, }, 'Symloss-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':0, }, 'Symdup-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, }, 'Energy0-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'half_cheetah_v2.xml', }, 'Symloss-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'half_cheetah_v2.xml', }, 'Symdup-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'half_cheetah_v2.xml', }, 'Energyz-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, }, }, 'FullCheetahHeavy': { # 6 DoF 'MinSpring-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', }, 'MinSpring-v00': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', }, 'MinSpring-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "speed": 1 }, 'MinSpring-v25': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "speed": 1 }, 'MinSpring-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "speed": 3 }, 'MinSpring-v45': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "speed": 3 }, 'MinSpring-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "speed": 5 }, 'MinSpring-v65': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "speed": 5 }, 'LessSpring-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv4.xml', }, 'LessSpring-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv4.xml', "speed":1 }, 'LessSpring-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv4.xml', "speed": 3 }, 'LessSpring-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv4.xml', "speed": 5 }, 'MoreSpring-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv5.xml', }, 'MoreSpring-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv5.xml', "speed":1 }, 'MoreSpring-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv5.xml', "speed": 3 }, 'MoreSpring-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv5.xml', "speed": 5 }, 'ExSpring-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', }, 'ExSpring-v00': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', }, 'ExSpring-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 1 }, 'ExSpring-v25': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0., 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 1 }, 'ExSpring-v210': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 1 }, 'ExSpring-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 3 }, 'ExSpring-v45': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0., 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 3 }, 'ExSpring-v410': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 3 }, 'ExSpring-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 5 }, 'ExSpring-v65': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 5 }, 'ExSpring-v610': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "speed": 5 }, 'Energy0-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', }, 'Energy0-v00': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', }, 'Energy0-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed":0.5 }, 'Energy0-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed":1 }, 'Energy0-v25': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 1 }, 'Energy0-v3': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed":2 }, 'Energy0-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3 }, 'Energy0-v45': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3 }, 'Energy0-v5': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 4 }, 'Energy0-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 5 }, 'Energy0-v65': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.25, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 5 }, 'RealFC-v1': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.25 # 5m/s:0.25 10m/s:0.5 15m/s:0.75 20m/s:1 25m/s:1.25 30m/s: 1.5 }, 'RealFC-v2': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.5 }, 'RealFC-v3': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.75 }, 'RealFC-v4': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1 }, 'RealFC-v5': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1.25 }, 'RealFC-v6': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1.5 }, 'RealFCT-v1': { 'forward_reward_weight': 10.0, 'ctrl_cost_weight': 0., 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.25, "walkstyle": "trot", # 5m/s:0.25 10m/s:0.5 15m/s:0.75 20m/s:1 25m/s:1.25 30m/s: 1.5 }, 'RealFCT-v2': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.5, "walkstyle": "trot", }, 'RealFCT-v3': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.75, "walkstyle": "trot", }, 'RealFCT-v4': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1, "walkstyle": "trot", }, 'RealFCT-v5': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1.25, "walkstyle": "trot", }, 'RealFCT-v6': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1.5, "walkstyle": "trot", }, 'RealFCG-v1': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.25, "walkstyle": "gallop", # 5m/s:0.25 10m/s:0.5 15m/s:0.75 20m/s:1 25m/s:1.25 30m/s: 1.5 }, 'RealFCG-v2': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.5, "walkstyle": "gallop", }, 'RealFCG-v3': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 0.75, "walkstyle": "gallop", }, 'RealFCG-v4': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1, "walkstyle": "gallop", }, 'RealFCG-v5': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1.25, "walkstyle": "gallop", }, 'RealFCG-v6': { 'forward_reward_weight': 5.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyReal.xml', "speed": 1.5, "walkstyle": "gallop", }, 'MinSpringGc-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", }, 'MinSpringGc-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 1 }, 'MinSpringGc-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 3 }, 'MinSpringGc-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 5 }, 'ExSpringGc-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", }, 'ExSpringGc-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 1 }, 'ExSpringGc-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 3 }, 'ExSpringGc-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 5 }, 'SymlossGc-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight': 8e-4, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', }, 'SymlossGc-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight': 8e-4, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 1 }, 'SymlossGc-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight': 8e-4, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3 }, 'SymlossGc-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'contact_cost_weight':8e-4, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 5 }, 'SymlossGphase-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "phase_delay": 15, }, 'SymlossGphase-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3, "phase_delay":15, }, 'ExSpringGphase-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 3, "phase_delay":15, }, 'MinSpringGphase-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 3, "phase_delay":15, }, 'MinSpringG-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", }, 'MinSpringG-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 1 }, 'MinSpringG-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 3 }, 'MinSpringG-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "gallop", "speed": 5 }, 'ExSpringG-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", }, 'ExSpringG-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 1 }, 'ExSpringG-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 3 }, 'ExSpringG-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "gallop", "speed": 5 }, 'SymlossG-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', }, 'SymlossG-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 0.5 }, 'SymlossG-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv3.xml', "walkstyle": "gallop", "speed": 1 }, 'SymlossG-v3': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 2 }, 'SymlossG-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3 }, 'SymlossG-v5': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 4 }, 'SymlossG-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 5 }, 'MinSpringT-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "trot", }, 'MinSpringT-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "trot", "speed": 1 }, 'MinSpringT-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "trot", "speed": 3 }, 'MinSpringT-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv6.xml', "walkstyle": "trot", "speed": 5 }, 'ExSpringT-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "trot", }, 'ExSpringT-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "trot", "speed": 1 }, 'ExSpringT-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "trot", "speed": 3 }, 'ExSpringT-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, 'xml_file': 'full_cheetah_heavyv7.xml', "walkstyle": "trot", "speed": 5 }, 'SymlossT-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', }, 'SymlossT-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "speed":0.5 }, 'SymlossT-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "speed":1 }, 'SymlossT-v3': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 2 }, 'SymlossT-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3 }, 'SymlossT-v5': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 4 }, 'SymlossT-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 5 }, 'SymlossT-v7': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trotv2", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 3 }, 'SymlossT-v8': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trotv2", 'xml_file': 'full_cheetah_heavyv3.xml', "speed": 5 }, 'SymlossGfblr-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallopFBLR", 'xml_file': 'full_cheetah_heavyv3.xml', }, 'SymPenG-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight" : 0.05, "soft_gait_target" : 0, "speed":3, }, 'SymPenG-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight" : 0.05,#0.25#0.5 "soft_gait_target" : 0, "speed":5, }, 'SymPenT-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 0.05, "soft_gait_target": 0, "speed":3, }, 'SymPenT-v1': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 0.05, "soft_gait_target": 0, "speed": 5, }, 'SymPenG-v2': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 1, "soft_gait_target": 2, "speed": 3, }, 'SymPenG-v3': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 1, "soft_gait_target": 2.5, "speed": 3, }, 'SymPenG-v4': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 1, "soft_gait_target": 3, "speed": 3, }, 'SymPenG-v5': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 1, "soft_gait_target": 2, "speed": 5, }, 'SymPenG-v6': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 1, "soft_gait_target": 2.5, "speed": 5, }, 'SymPenG-v7': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop", 'xml_file': 'full_cheetah_heavyv3.xml', "soft_gait_penalty_weight": 1, "soft_gait_target": 3, "speed": 5, }, # 'SymPenG-v5': { # 'forward_reward_weight': 1.0, # 'ctrl_cost_weight': 0.1, # 'energy_weights': 0, # "walkstyle": "gallop2", # 'xml_file': 'full_cheetah_heavyv3.xml', # "soft_gait_penalty_weight": 1, # "soft_gait_target": 0.25, # "soft_gait_target2": 0.5, # }, # 'SymPenG-v6': { # 'forward_reward_weight': 1.0, # 'ctrl_cost_weight': 0.1, # 'energy_weights': 0, # "walkstyle": "gallop2", # 'xml_file': 'full_cheetah_heavyv3.xml', # "soft_gait_penalty_weight": 1, # "soft_gait_target": 0.5, # "soft_gait_target2": 1, # }, # 'SymPenG-v7': { # 'forward_reward_weight': 1.0, # 'ctrl_cost_weight': 0.1, # 'energy_weights': 0, # "walkstyle": "gallop2", # 'xml_file': 'full_cheetah_heavyv3.xml', # "soft_gait_penalty_weight": 1, # "soft_gait_target": 0.25, # "soft_gait_target2": 0.75, # }, }, 'FullCheetah': { # 6 DoF 'Energy0-v0': { 'forward_reward_weight':1.0, 'ctrl_cost_weight':0.1, 'energy_weights':0, }, 'SymlossG-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle":"gallop" }, 'SymdupG-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallop" }, 'SymlossT-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot" }, 'SymdupT-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "trot" }, 'SymlossGfblr-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallopFBLR" }, 'SymdupGfblr-v0': { 'forward_reward_weight': 1.0, 'ctrl_cost_weight': 0.1, 'energy_weights': 0, "walkstyle": "gallopFBLR" }, }, 'AntRun': { # 6 DoF 'Energy0-v0': { 'terminate_when_unhealthy': False, ## 'energy_weights': 0, }, }, 'AntSquaT': { # 6 DoF 'Energy0-v0': { 'ctrl_cost_weight' : 0.1, ##0.1 'horizontal_weight' : 1, ## 'contact_cost_weight' : 0.005, ##5e-4 'distance_weigth' : 5, 'terminate_when_unhealthy':False,## 'energy_weights': 0, }, }, 'AntSquaTRedundant': { # 6 DoF 'Energy0-v0': { 'ctrl_cost_weight' : 0.1, ##0.1 'horizontal_weight' : 10, ## 'contact_cost_weight' : 0.1, ##5e-4 'distance_weigth' : 10, 'terminate_when_unhealthy':False,## 'energy_weights': 0, }, }, } NUM_CHECKPOINTS = 10 def get_variant_spec_base(universe, domain, task, policy, algorithm,epoch_length,num_epoch,actor_size=256,critic_size=256, n_layer=2): if num_epoch is not None: ALGORITHM_PARAMS_PER_DOMAIN[domain]['kwargs']['n_epochs']=num_epoch algorithm_params = deep_update( ALGORITHM_PARAMS_BASE, ALGORITHM_PARAMS_PER_DOMAIN.get(domain, {}) ) ALGORITHM_PARAMS_ADDITIONAL[algorithm]['kwargs']['epoch_length']=epoch_length nl=[] for i in range(n_layer): nl.append(actor_size) POLICY_PARAMS_BASE[policy]['kwargs']['hidden_layer_sizes']=tuple(nl) #POLICY_PARAMS_BASE[policy]['kwargs']['hidden_layer_sizes']=(actor_size,actor_size) algorithm_params = deep_update( algorithm_params, ALGORITHM_PARAMS_ADDITIONAL.get(algorithm, {}) ) print(algorithm_params) env_param = ENV_PARAMS.get(domain, {}).get(task, {}) variant_spec = { 'domain': domain, 'task': task, 'universe': universe, 'env_params':env_param , 'policy_params': deep_update( POLICY_PARAMS_BASE[policy], POLICY_PARAMS_FOR_DOMAIN[policy].get(domain, {}) ), 'Q_params': { 'type': 'double_feedforward_Q_function', 'kwargs': { 'hidden_layer_sizes': (critic_size,critic_size),#256 } }, 'algorithm_params': algorithm_params, 'replay_pool_params': { 'type': 'SimpleReplayPool', 'kwargs': { 'max_size': tune.sample_from(lambda spec: ( { 'SimpleReplayPool': int(1e6), 'TrajectoryReplayPool': int(1e4), }.get( spec.get('config', spec) ['replay_pool_params'] ['type'], int(1e6)) )), } }, 'sampler_params': { 'type': 'SimpleSampler', 'kwargs': { 'max_path_length': MAX_PATH_LENGTH_PER_DOMAIN.get( domain, epoch_length),#DEFAULT_MAX_PATH_LENGTH 'min_pool_size': MAX_PATH_LENGTH_PER_DOMAIN.get( domain, DEFAULT_MAX_PATH_LENGTH), 'batch_size': 256, } }, 'run_params': { 'seed': tune.sample_from( lambda spec: np.random.randint(0, 10000)), 'checkpoint_at_end': True, 'checkpoint_frequency': NUM_EPOCHS_PER_DOMAIN.get( domain, DEFAULT_NUM_EPOCHS) // NUM_CHECKPOINTS, 'checkpoint_replay_pool': False, }, } return variant_spec def get_variant_spec_image(universe, domain, task, policy, algorithm, *args, **kwargs): variant_spec = get_variant_spec_base( universe, domain, task, policy, algorithm, *args, **kwargs) if 'image' in task.lower() or 'image' in domain.lower(): preprocessor_params = { 'type': 'convnet_preprocessor', 'kwargs': { 'image_shape': variant_spec['env_params']['image_shape'], 'output_size': M, 'conv_filters': (4, 4), 'conv_kernel_sizes': ((3, 3), (3, 3)), 'pool_type': 'MaxPool2D', 'pool_sizes': ((2, 2), (2, 2)), 'pool_strides': (2, 2), 'dense_hidden_layer_sizes': (), }, } variant_spec['policy_params']['kwargs']['preprocessor_params'] = ( preprocessor_params.copy()) variant_spec['Q_params']['kwargs']['preprocessor_params'] = ( preprocessor_params.copy()) return variant_spec def get_variant_spec(args): universe, domain, task = args.universe, args.domain, args.task if ('image' in task.lower() or 'blind' in task.lower() or 'image' in domain.lower()): variant_spec = get_variant_spec_image( universe, domain, task, args.policy, args.algorithm) else: variant_spec = get_variant_spec_base( universe, domain, task, args.policy, args.algorithm,args.epoch_length,args.total_epoch,args.actor_size, args.critic_size,n_layer=args.n_layer) if args.checkpoint_replay_pool is not None: variant_spec['run_params']['checkpoint_replay_pool'] = ( args.checkpoint_replay_pool) return variant_spec ``` #### File: distributions/bijectors/conditional_scale_test.py ```python from absl.testing import parameterized import numpy as np import tensorflow.compat.v2 as tf from softlearning.distributions import bijectors from softlearning.internal import test_util @test_util.test_all_tf_execution_regimes class ScaleBijectorTest(test_util.TestCase, parameterized.TestCase): """Tests correctness of the Y = scale @ x transformation.""" def testName(self): bijector = bijectors.ConditionalScale() self.assertStartsWith(bijector.name, 'conditional_scale') @parameterized.named_parameters( dict(testcase_name='static_float32', is_static=True, dtype=np.float32), dict(testcase_name='static_float64', is_static=True, dtype=np.float64), dict(testcase_name='dynamic_float32', is_static=False, dtype=np.float32), dict(testcase_name='dynamic_float64', is_static=False, dtype=np.float64), ) def testNoBatchScale(self, is_static, dtype): scale = dtype(2.0) bijector = bijectors.ConditionalScale(dtype=dtype) x = self.maybe_static(np.array([1., 2, 3], dtype), is_static) self.assertAllClose([2., 4, 6], bijector.forward(x, scale=scale)) self.assertAllClose([.5, 1, 1.5], bijector.inverse(x, scale=scale)) self.assertAllClose( -np.log(2.), bijector.inverse_log_det_jacobian(x, scale=scale, event_ndims=0)) @parameterized.named_parameters( dict(testcase_name='static_float32', is_static=True, dtype=np.float32), dict(testcase_name='static_float64', is_static=True, dtype=np.float64), dict(testcase_name='dynamic_float32', is_static=False, dtype=np.float32), dict(testcase_name='dynamic_float64', is_static=False, dtype=np.float64), ) def testBatchScale(self, is_static, dtype): # Batched scale scale = tf.constant([2., 3.], dtype=dtype) bijector = bijectors.ConditionalScale(dtype=dtype) x = self.maybe_static(np.array([1.], dtype=dtype), is_static) self.assertAllClose([2., 3.], bijector.forward(x, scale=scale)) self.assertAllClose([0.5, 1./3.], bijector.inverse(x, scale=scale)) self.assertAllClose( [-np.log(2.), -np.log(3.)], bijector.inverse_log_det_jacobian(x, scale=scale, event_ndims=0)) if __name__ == '__main__': tf.test.main() ``` #### File: gym/mujoco/half_cheetah.py ```python import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import os from . import path from .mirror_utils import convert_to_mirror_list,MIRROR_DICTS from collections import deque DEFAULT_CAMERA_CONFIG = { 'distance': 4.0, } """ 0 rootz slider C 1 rooty hinge C 2 bthigh hinge L 3 bshin hinge L 4 bfoot hinge L 5 fthigh hinge R 6 fshin hinge R 7 ffoot hinge R 8 rootx slider C 9 rootz slider C 10 rooty hinge C 11 bthigh hinge L 12 bshin hinge L 13 bfoot hinge L 14 fthigh hinge R 15 fshin hinge R 16 ffoot hinge R """ class HalfCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','bfoot','fthigh','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) self.mirror_inds=MIRROR_DICTS["HalfCheetah"] self.mirror_lists=convert_to_mirror_list(self.mirror_inds) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(6): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahHeavyEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_heavy.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','bfoot','fthigh','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(6): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class FullCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='full_cheetah.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, contact_cost_weight=0, ##5e-4 contact_force_range=(-1.0, 1.0), reset_noise_scale=0.1, exclude_current_positions_from_observation=True, walkstyle="",#"gallop" "trot" energy_weights=0., phase_delay=0, soft_gait_penalty_weight=0, soft_gait_target=0, soft_gait_target2=0, speed=0): utils.EzPickle.__init__(**locals()) self.speed=speed self._forward_reward_weight = forward_reward_weight self.soft_gait_penalty_weight=soft_gait_penalty_weight self.soft_gait_target=soft_gait_target self.soft_gait_target2=soft_gait_target2 self.joint_list=['bthighL','bshinL','bfootL','fthighL','fshinL','ffootL', 'bthighR', 'bshinR', 'bfootR', 'fthighR', 'fshinR', 'ffootR'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._contact_cost_weight = contact_cost_weight self._contact_force_range = contact_force_range self.phase_delay=phase_delay if self.phase_delay!=0: self.delay_deque=deque(maxlen=self.phase_delay) self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) self.walkstyle=walkstyle mykey="FullCheetah_"+walkstyle self.agent=mykey self.mirror_lr_inds=MIRROR_DICTS["FullCheetah_lr"] self.mirror_lr_lists=convert_to_mirror_list(self.mirror_lr_inds) self.mirror_fb_inds=MIRROR_DICTS["FullCheetah_fb"] self.mirror_fb_lists=convert_to_mirror_list(self.mirror_fb_inds) self.contact={ "BL":[], "FL": [], "BR": [], "FR": [], } global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) def contact_forces(self): raw_contact_forces = self.sim.data.cfrc_ext min_value, max_value = self._contact_force_range contact_forces = np.clip(raw_contact_forces, min_value, max_value) return contact_forces def contact_cost(self): contact_cost = np.sum(np.square(self.contact_forces())) return self._contact_cost_weight *contact_cost def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def gait_cost(self,action): gait_cost=0 if self.walkstyle=="gallop": gait_cost=np.abs(np.sum(np.abs(action[6:12] - action[0:6]))-self.soft_gait_target) elif self.walkstyle == "gallop2": gait_cost=np.abs(np.sum(np.abs(action[6:9] - action[0:3]))-self.soft_gait_target)+\ np.abs(np.sum(np.abs(action[9:12] - action[3:6]))-self.soft_gait_target2) elif self.walkstyle == "trot": gait_cost=np.abs(np.sum(np.abs(action[6:9] +action[0:3])) +np.sum(np.abs(action[9:12] +action[3:6]))-self.soft_gait_target) return self.soft_gait_penalty_weight *gait_cost def step(self, action): if self.soft_gait_penalty_weight==0: if self._contact_cost_weight==0 and self.walkstyle=="gallop": if self.phase_delay!=0 and len(self.delay_deque)==self.phase_delay: action[6:12] = self.delay_deque[0] else: action[6:12] = action[0:6] # Right equals left if self.phase_delay != 0: self.delay_deque.append((action[0:6])) elif self.walkstyle=="trot": action[6:9] = -1*action[0:3]#bR equals negative bL action[9:12] = -1 * action[3:6] # fR equals negative fL elif self.walkstyle == "trotv2": action[9:12] = action[0:3] # fR equals bL action[6:9] = action[3:6] # bR equals fL # self.contact["BL"].append(0) # self.contact["FL"].append(0) # self.contact["BR"].append(0) # self.contact["FR"].append(0) # # for contactnum in range(self.data.ncon): # c=self.data.contact[contactnum] # if c.dist!=0: # cur_g = c.geom2 # if cur_g == 8: # self.contact["BL"][-1]=1 # #print("BL") # elif cur_g == 11: # self.contact["FL"][-1] = 1 # #print("FL") # elif cur_g == 14: # self.contact["BR"][-1] = 1 # #print("BR") # elif cur_g == 17: # #print("FR") # self.contact["FR"][-1] = 1 # # if len(self.contact["BL"])>500: # print("SAVE gait!") # #name="gallop_200_s5r5" # name = "RealFCT_v1r1" # np.save('../gait_info/' + name, self.contact) # quit() #print(self.data.contact[0].geom2) states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) if self.speed != 0: delta_speed=-abs(x_velocity-self.speed) #negative as we want to minimize this delta x_velocity=delta_speed ctrl_cost = self.control_cost(action) contact_cost = self.contact_cost() gait_cost = self.gait_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost - contact_cost- gait_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'reward_contact': -contact_cost, 'reward_gait': -gait_cost, 'ori_reward':forward_reward-ctrl_cost -contact_cost-gait_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_5dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_5dof.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','bfoot','fthigh','fshin'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_5dofv2(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_5dofv2.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh','bshin','bfoot','fthigh', 'ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_5dofv3(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_5dofv3.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh','bshin','bfoot', 'fshin', 'ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_5dofv4(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_5dofv4.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bshin','bfoot', 'fthigh','fshin', 'ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_5dofv5(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_5dofv5.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh','bfoot', 'fthigh','fshin', 'ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_5dofv6(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_5dofv6.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh', 'bshin', 'fthigh','fshin', 'ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_4dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dof.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','fthigh','fshin'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_4dofv2(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dofv2.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bshin','bfoot','fthigh','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_4dofv3(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dofv3.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bshin','bfoot','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_4dofv4(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dofv4.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bshin','bfoot','fthigh','fshin'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_4dofv5(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dofv5.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh','bfoot','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_4dofv6(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dofv6.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh','bshin','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_3doff(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_3dof_front.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','fthigh','fshin'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_3dofb(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_3dof_back.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','fthigh'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_3dofv3(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_3dofv3.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bshin','bfoot','fthigh'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_3dofv4(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_3dofv4.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight #self.joint_list = ['bthigh', 'bshin', 'bfoot', 'fthigh', 'fshin', 'ffoot'] self.joint_list=['bthigh','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_2dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_2dof.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','fthigh'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_2dofv2(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_2dofv2.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bfoot','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_2dofv3(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_2dofv3.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bshin','fshin'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_2dofv4(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_2dofv4.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bshin','fthigh'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahEnv_2dofv5(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_2dofv5.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','fshin'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahSquat2dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_2dofsquat.xml', distance_weigth=5.0, health_weight=1, horizontal_weight=0.1, ## ctrl_cost_weight=0., reset_noise_scale=0.1, healthy_z_range=(0.2, 1), terminate_when_unhealthy=False, ## exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) if terminate_when_unhealthy: healthy_reward=1.0 else: healthy_reward=0 self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._healthy_reward = healthy_reward self._health_weight=health_weight self._distance_weigth = distance_weigth self._horizontal_weight=horizontal_weight self._terminate_when_unhealthy = terminate_when_unhealthy self._healthy_z_range = healthy_z_range self.target_low=0.25#0.45 self.target_high=0.7#0.6 self.joint_list=['bshin','fshin'] self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) self.target_pos = np.asarray([0, 0, 0]) self.target_site=0 self.flipstep=75 self.timestep=0 global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost @property def is_healthy(self): # state = self.state_vector() # state = self.get_body_com("torso") state = self.sim.data.get_geom_xpos('head') min_z, max_z = self._healthy_z_range is_healthy = (np.isfinite(state).all() and min_z <= state[2] <= max_z) return is_healthy @property def healthy_reward(self): return float( self.is_healthy or self._terminate_when_unhealthy ) * self._healthy_reward @property def done(self): done = (not self.is_healthy if self._terminate_when_unhealthy else False) return done def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() #x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) self.timestep += 1 #x_position_after = self.sim.data.qpos[0] #x_velocity = ((x_position_after - x_position_before) # / self.dt) ctrl_cost = np.sum(np.square(action))#self.control_cost(action) healthy_reward = self.healthy_reward vec = self.get_body_com("torso")[2] - self.target_pos[2] reward_dist = np.linalg.norm(vec) horizontal_penalty=np.abs(sum([0, 0, 1] - self.sim.data.geom_xmat[1][6:9])) #forward_reward = x_velocity#self._forward_reward_weight * next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) #reward = forward_reward - ctrl_cost ori_reward = - self._distance_weigth * reward_dist \ - self._ctrl_cost_weight * ctrl_cost \ - self._horizontal_weight * horizontal_penalty \ + self._health_weight * healthy_reward done = self.done if self.timestep % self.flipstep == 0 and self.timestep != 0: # 2 if self.target_pos[2] <= self.target_low: self.target_pos[2] = self.target_high elif self.target_pos[2] >= self.target_high: self.target_pos[2] = self.target_low self.target_pos[0] = self.get_body_com("torso")[0] self.target_pos[1] = self.get_body_com("torso")[1] self.sim.data.site_xpos[self.target_site]= self.target_pos energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) # energy = energy + np.abs(action[i]) * delta_theta energy = energy + np.sum(np.square(delta_theta)) if not self._terminate_when_unhealthy: unhealty_penalty = -5 if not self.is_healthy: ori_reward += unhealty_penalty final_reward =ori_reward- self.energy_weights*energy observation = self._get_obs() info = { 'energy' : energy, 'reward_dist': -reward_dist, 'reward_ctrl': -ctrl_cost, 'horizontal_penalty': -horizontal_penalty, 'reward_survive': healthy_reward, 'ori_reward': ori_reward, } return observation, final_reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() body_orientation=self.sim.data.geom_xmat[1][6:9].flat.copy() #distance=list(self.get_body_com("torso")[2] - self.target_pos[2] ) distance = [self.get_body_com("torso")[2] - self.target_pos[2]] if self._exclude_current_positions_from_observation: position = position[1:] #observation = np.concatenate((position, velocity)).ravel() if self._horizontal_weight != 0: observation = np.concatenate( (position, velocity,body_orientation, distance)).ravel() else: observation = np.concatenate( (position, velocity, distance)).ravel() return observation def reset_model(self): self.timestep=0 noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) self.target_pos = np.asarray([self.get_body_com("torso")[0], self.get_body_com("torso")[1], self.target_low]) observation = self._get_obs() return observation def viewer_setup(self): '''for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value)''' self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 1.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0.5 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0.5 self.viewer.cam.lookat[2] += 0 self.viewer.cam.elevation = 0 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis class HalfCheetahSquat4dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_4dofsquat.xml', distance_weigth=5.0, health_weight=1, horizontal_weight=0.1, ## ctrl_cost_weight=0., reset_noise_scale=0.1, healthy_z_range=(0.2, 1), terminate_when_unhealthy=False, ## exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) if terminate_when_unhealthy: healthy_reward=1.0 else: healthy_reward=0 self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._healthy_reward = healthy_reward self._health_weight=health_weight self._distance_weigth = distance_weigth self._horizontal_weight=horizontal_weight self._terminate_when_unhealthy = terminate_when_unhealthy self._healthy_z_range = healthy_z_range self.target_low=0.25 self.target_high=0.7#0.6 self.joint_list=['bthigh','bshin','fthigh','fshin'] self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) self.target_pos = np.asarray([0, 0, 0]) self.target_site=0 self.flipstep=75 self.timestep=0 global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost @property def is_healthy(self): # state = self.state_vector() #state = self.get_body_com("torso") state=self.sim.data.get_geom_xpos('head') min_z, max_z = self._healthy_z_range is_healthy = (np.isfinite(state).all() and min_z <= state[2] <= max_z) return is_healthy @property def healthy_reward(self): return float( self.is_healthy or self._terminate_when_unhealthy ) * self._healthy_reward @property def done(self): done = (not self.is_healthy if self._terminate_when_unhealthy else False) return done def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() #x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) self.timestep += 1 #x_position_after = self.sim.data.qpos[0] #x_velocity = ((x_position_after - x_position_before) # / self.dt) ctrl_cost = np.sum(np.square(action))#self.control_cost(action) healthy_reward = self.healthy_reward vec = self.get_body_com("torso")[2] - self.target_pos[2] reward_dist = np.linalg.norm(vec) horizontal_penalty=np.abs(sum([0, 0, 1] - self.sim.data.geom_xmat[1][6:9])) #print(horizontal_penalty) #forward_reward = x_velocity#self._forward_reward_weight * next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) #reward = forward_reward - ctrl_cost ori_reward = - self._distance_weigth * reward_dist \ - self._ctrl_cost_weight * ctrl_cost \ - self._horizontal_weight * horizontal_penalty \ + self._health_weight * healthy_reward done = self.done if self.timestep % self.flipstep == 0 and self.timestep != 0: # 2 if self.target_pos[2] <= self.target_low: self.target_pos[2] = self.target_high elif self.target_pos[2] >= self.target_high: self.target_pos[2] = self.target_low self.target_pos[0] = self.get_body_com("torso")[0] self.target_pos[1] = self.get_body_com("torso")[1] self.sim.data.site_xpos[self.target_site]= self.target_pos energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) # energy = energy + np.abs(action[i]) * delta_theta energy = energy + np.sum(np.square(delta_theta)) if not self._terminate_when_unhealthy: unhealty_penalty = -5 if not self.is_healthy: ori_reward += unhealty_penalty final_reward =ori_reward- self.energy_weights*energy observation = self._get_obs() info = { 'energy' : energy, 'reward_dist': -reward_dist, 'reward_ctrl': -ctrl_cost, 'horizontal_penalty': -horizontal_penalty, 'reward_survive': healthy_reward, 'ori_reward': ori_reward, } return observation, final_reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() body_orientation=self.sim.data.geom_xmat[1][6:9].flat.copy() #distance=list(self.get_body_com("torso")[2] - self.target_pos[2] ) distance = [self.get_body_com("torso")[2] - self.target_pos[2]] if self._exclude_current_positions_from_observation: position = position[1:] #observation = np.concatenate((position, velocity)).ravel() if self._horizontal_weight != 0: observation = np.concatenate( (position, velocity,body_orientation, distance)).ravel() else: observation = np.concatenate( (position, velocity, distance)).ravel() return observation def reset_model(self): self.timestep=0 noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) self.target_pos = np.asarray([self.get_body_com("torso")[0], self.get_body_com("torso")[1], self.target_low]) observation = self._get_obs() return observation def viewer_setup(self): '''for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value)''' self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 1.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0.5 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0.5 self.viewer.cam.lookat[2] += 0 self.viewer.cam.elevation = 0 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis class HalfCheetahSquat6dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_squat.xml', distance_weigth=5.0, health_weight=1, horizontal_weight=0.1, ## ctrl_cost_weight=0., reset_noise_scale=0.1, healthy_z_range=(0.2, 1), terminate_when_unhealthy=False, ## exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) if terminate_when_unhealthy: healthy_reward=1.0 else: healthy_reward=0 self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._healthy_reward = healthy_reward self._health_weight=health_weight self._distance_weigth = distance_weigth self._horizontal_weight=horizontal_weight self._terminate_when_unhealthy = terminate_when_unhealthy self._healthy_z_range = healthy_z_range self.target_low=0.25 self.target_high=0.7#0.65 self.joint_list=['bthigh','bshin','bfoot','fthigh','fshin','ffoot'] self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) self.target_pos = np.asarray([0, 0, 0]) self.target_site=0 self.flipstep=75 self.timestep=0 global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost @property def is_healthy(self): # state = self.state_vector() # state = self.get_body_com("torso") state = self.sim.data.get_geom_xpos('head') min_z, max_z = self._healthy_z_range is_healthy = (np.isfinite(state).all() and min_z <= state[2] <= max_z) return is_healthy @property def healthy_reward(self): return float( self.is_healthy or self._terminate_when_unhealthy ) * self._healthy_reward @property def done(self): done = (not self.is_healthy if self._terminate_when_unhealthy else False) return done def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() #x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) self.timestep += 1 #x_position_after = self.sim.data.qpos[0] #x_velocity = ((x_position_after - x_position_before) # / self.dt) ctrl_cost = np.sum(np.square(action))#self.control_cost(action) healthy_reward = self.healthy_reward vec = self.get_body_com("torso")[2] - self.target_pos[2] reward_dist = np.linalg.norm(vec) horizontal_penalty=np.abs(sum([0, 0, 1] - self.sim.data.geom_xmat[1][6:9])) #forward_reward = x_velocity#self._forward_reward_weight * next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) #reward = forward_reward - ctrl_cost ori_reward = - self._distance_weigth * reward_dist \ - self._ctrl_cost_weight * ctrl_cost \ - self._horizontal_weight * horizontal_penalty \ + self._health_weight * healthy_reward done = self.done if self.timestep % self.flipstep == 0 and self.timestep != 0: # 2 if self.target_pos[2] <= self.target_low: self.target_pos[2] = self.target_high elif self.target_pos[2] >= self.target_high: self.target_pos[2] = self.target_low self.target_pos[0] = self.get_body_com("torso")[0] self.target_pos[1] = self.get_body_com("torso")[1] self.sim.data.site_xpos[self.target_site]= self.target_pos energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) # energy = energy + np.abs(action[i]) * delta_theta energy = energy + np.sum(np.square(delta_theta)) if not self._terminate_when_unhealthy: unhealty_penalty = -5 if not self.is_healthy: ori_reward += unhealty_penalty final_reward =ori_reward- self.energy_weights*energy observation = self._get_obs() info = { 'energy' : energy, 'reward_dist': -reward_dist, 'reward_ctrl': -ctrl_cost, 'horizontal_penalty': -horizontal_penalty, 'reward_survive': healthy_reward, 'ori_reward': ori_reward, } return observation, final_reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() body_orientation=self.sim.data.geom_xmat[1][6:9].flat.copy() #distance=list(self.get_body_com("torso")[2] - self.target_pos[2] ) distance = [self.get_body_com("torso")[2] - self.target_pos[2]] if self._exclude_current_positions_from_observation: position = position[1:] #observation = np.concatenate((position, velocity)).ravel() if self._horizontal_weight != 0: observation = np.concatenate( (position, velocity,body_orientation, distance)).ravel() else: observation = np.concatenate( (position, velocity, distance)).ravel() return observation def reset_model(self): self.timestep=0 noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) self.target_pos = np.asarray([self.get_body_com("torso")[0], self.get_body_com("torso")[1], self.target_low]) observation = self._get_obs() return observation def viewer_setup(self): '''for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value)''' self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 1.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0.5 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0.5 self.viewer.cam.lookat[2] += 0 self.viewer.cam.elevation = 0 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis ``` #### File: gym/mujoco/vertical_arm.py ```python import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import os from . import path DEFAULT_CAMERA_CONFIG = { 'trackbodyid': 0, 'distance': 1.0, 'lookat': np.array((0.0, 0.0, 0)), 'elevation': 0, } def sin(t,omega=1.5,phi=0.):#1 return np.sin(omega*t+phi) def cos(t,omega=1.5,phi=0.):#1 return np.cos(omega*t+phi) class VA(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self,xml_file='vertical_arm.xml', distance_reward_weight=5.0, ctrl_cost_weight=0.05 ): print(xml_file) #utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['shoulder', 'elbow'] self.real_time=0.01 self.frame_skip=2 self.t=0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight= distance_reward_weight self.ctrl_cost_weight= ctrl_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) '''if path is not None: mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) else: mujoco_env.MujocoEnv.__init__(self, xml_file, self.frame_skip)''' def step(self, a): #print(a) states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip")- self.target_pos reward_dist = - np.linalg.norm(vec) reward_ctrl = - np.square(a).sum() reward = self.distance_reward_weight*reward_dist +self.ctrl_cost_weight*reward_ctrl self.do_simulation(a, self.frame_skip) self.t += self.frame_skip * self.real_time self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [-0.15*sin(self.t,phi=0)*np.sin(-25* np.pi / 180.), 0, 0.15*sin(self.t,phi=0)*np.cos(-25* np.pi / 180.)+0.01]#,phi=1 self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight*reward_dist, 'reward_ctrl': self.ctrl_cost_weight*reward_ctrl, 'ori_reward': reward } return ob, reward, done, info#,reward_ctrl=reward_ctrl def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) def reset_model(self): self.t=0 #self.data.site_xpos[0] = [1, 1, 1] -.15 0.01 -.1 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:2] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[2:], self.sim.data.qvel.flat[:2], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]).ravel() class VA4dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self,xml_file='vertical_arm4dof.xml', distance_reward_weight=5.0, ctrl_cost_weight=0.05 ): print(xml_file) #utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['shoulder','shoulder2', 'elbow', 'elbow2'] self.real_time=0.01 self.frame_skip=2 self.t=0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight= distance_reward_weight self.ctrl_cost_weight= ctrl_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) '''if path is not None: mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) else: mujoco_env.MujocoEnv.__init__(self, xml_file, self.frame_skip)''' def step(self, a): #print(a) states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip")- self.target_pos reward_dist = - np.linalg.norm(vec) reward_ctrl =- np.square(a).sum() reward = self.distance_reward_weight*reward_dist +self.ctrl_cost_weight*reward_ctrl self.do_simulation(a, self.frame_skip) self.t += self.frame_skip * self.real_time self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [-0.15*sin(self.t,phi=0)*np.sin(-25* np.pi / 180.), 0, 0.15*sin(self.t,phi=0)*np.cos(-25* np.pi / 180.)+0.01]#,phi=1 self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight*reward_dist, 'reward_ctrl': self.ctrl_cost_weight*reward_ctrl, 'ori_reward': reward } return ob, reward, done, info#,reward_ctrl=reward_ctrl def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) def reset_model(self): self.t=0 #self.data.site_xpos[0] = [1, 1, 1] -.15 0.01 -.1 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:4] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[4:], self.sim.data.qvel.flat[:4], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]).ravel() class VA6dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self,xml_file='vertical_arm6dof.xml', distance_reward_weight=5.0, ctrl_cost_weight=0.05 ): print(xml_file) #utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['shoulder','shoulder2', 'elbow', 'elbow2','elbow3', 'elbow4'] self.real_time=0.01 self.frame_skip=2 self.t=0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight= distance_reward_weight self.ctrl_cost_weight= ctrl_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) '''if path is not None: mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) else: mujoco_env.MujocoEnv.__init__(self, xml_file, self.frame_skip)''' def step(self, a): #print(a) states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip")- self.target_pos reward_dist = - np.linalg.norm(vec) reward_ctrl =- np.square(a).sum() reward = self.distance_reward_weight*reward_dist +self.ctrl_cost_weight*reward_ctrl self.do_simulation(a, self.frame_skip) self.t += self.frame_skip * self.real_time self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [-0.15*sin(self.t,phi=0)*np.sin(-25* np.pi / 180.), 0, 0.15*sin(self.t,phi=0)*np.cos(-25* np.pi / 180.)+0.01]#,phi=1 self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight*reward_dist, 'reward_ctrl': self.ctrl_cost_weight*reward_ctrl, 'ori_reward': reward } return ob, reward, done, info#,reward_ctrl=reward_ctrl def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) def reset_model(self): self.t=0 #self.data.site_xpos[0] = [1, 1, 1] -.15 0.01 -.1 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:6] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[6:], self.sim.data.qvel.flat[:6], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]).ravel() class VA8dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self,xml_file='vertical_arm8dof.xml', distance_reward_weight=5.0, ctrl_cost_weight=0.05 ): print(xml_file) #utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['shoulder','shoulder2', 'shoulder3','shoulder4','elbow', 'elbow2','elbow3', 'elbow4'] self.real_time=0.01 self.frame_skip=2 self.t=0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight= distance_reward_weight self.ctrl_cost_weight= ctrl_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) '''if path is not None: mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) else: mujoco_env.MujocoEnv.__init__(self, xml_file, self.frame_skip)''' def step(self, a): #print(a) states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip")- self.target_pos reward_dist = - np.linalg.norm(vec) reward_ctrl =- np.square(a).sum() reward = self.distance_reward_weight*reward_dist +self.ctrl_cost_weight*reward_ctrl self.do_simulation(a, self.frame_skip) self.t += self.frame_skip * self.real_time self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [-0.15*sin(self.t,phi=0)*np.sin(-25* np.pi / 180.), 0, 0.15*sin(self.t,phi=0)*np.cos(-25* np.pi / 180.)+0.01]#,phi=1 self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight*reward_dist, 'reward_ctrl': self.ctrl_cost_weight*reward_ctrl, 'ori_reward': reward } return ob, reward, done, info#,reward_ctrl=reward_ctrl def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) def reset_model(self): self.t=0 #self.data.site_xpos[0] = [1, 1, 1] -.15 0.01 -.1 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:8] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[8:], self.sim.data.qvel.flat[:8], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]).ravel() # pcx=0.05#0.05#0.32#-0.6 # pcy=0#0.32#-0.2 #-0.2 class RealArm7dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='real_arm7dof.xml',distance_reward_weight=5, shoulder_cost_weight=0,wrist_cost_weight=0,pcx=0.05,pcy=0): # utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['s_abduction','s_flexion', 's_rotation','e_flexion','e_pronation', 'w_abduction','w_flexion'] self.pcx=pcx self.pcy=pcy self.real_time = 0.01 self.frame_skip = 2 # 2 self.f=0.4 self.t = 0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight=distance_reward_weight self.shoulder_cost_weight=shoulder_cost_weight self.wrist_cost_weight=wrist_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) def step(self, a): #a=0 states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip") - self.target_pos total_torque = a reward_dist = - np.linalg.norm(vec) #reward_ctrl = - np.square(total_torque).sum() reward_shoulder = - np.square(total_torque[0:3]).sum() reward_wristrot = - np.square(total_torque[4::]).sum() reward = self.distance_reward_weight * reward_dist\ + self.shoulder_cost_weight*reward_shoulder\ + self.wrist_cost_weight*reward_wristrot self.do_simulation(total_torque, self.frame_skip) self.t += self.frame_skip * self.real_time self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + \ [self.pcx + (-0.22 * np.sin(self.t * np.pi * 2 * self.f)),self.pcy + (-0.18 * np.cos(self.t * np.pi * 2 * self.f)),0.1] self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight * reward_dist, 'penalty_shoulder': self.shoulder_cost_weight * reward_shoulder, 'penalty_wrist': self.wrist_cost_weight * reward_wristrot, 'ori_reward': reward } return ob, reward, done,info def viewer_setup(self): self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 2.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0 self.viewer.cam.lookat[2] += 0.5 self.viewer.cam.elevation = -20 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis def reset_model(self): self.t = 0 #self.init_qpos[1] = -3.142 / 2 self.init_qpos[3] = -3.142 / 2 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:7] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[7:], self.sim.data.qvel.flat[:7], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[1] - self.target_pos[1]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]) class RealArm6dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='real_arm6dof.xml',distance_reward_weight=5, shoulder_cost_weight=0,wrist_cost_weight=0,pcx=0.05,pcy=0): # utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['s_abduction','s_flexion', 's_rotation','e_flexion', 'w_abduction','w_flexion'] self.pcx = pcx self.pcy = pcy self.real_time = 0.01 self.frame_skip = 2 # 2 self.f=0.4 self.t = 0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight=distance_reward_weight self.shoulder_cost_weight=shoulder_cost_weight self.wrist_cost_weight=wrist_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) def step(self, a): #a=0 states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip") - self.target_pos total_torque = a reward_dist = - np.linalg.norm(vec) #reward_ctrl = - np.square(total_torque).sum() reward_shoulder = - np.square(total_torque[0:3]).sum() reward_wristrot = - np.square(total_torque[4::]).sum() reward = self.distance_reward_weight * reward_dist\ + self.shoulder_cost_weight*reward_shoulder\ + self.wrist_cost_weight*reward_wristrot self.do_simulation(total_torque, self.frame_skip) self.t += self.frame_skip * self.real_time #self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [(p1x - p2x) * np.sin(self.t * np.pi*2*self.f) / 2 + (p1x + p2x) / 2, 0,(p1y - p2y) * np.sin(self.t * np.pi*2*self.f) / 2 + (p1y + p2y) / 2] # ,phi=1 self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + \ [self.pcx + (-0.22 * np.sin(self.t * np.pi * 2 * self.f)),self.pcy + (-0.18 * np.cos(self.t * np.pi * 2 * self.f)),0.1] self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight * reward_dist, 'penalty_shoulder': self.shoulder_cost_weight * reward_shoulder, 'penalty_wrist': self.wrist_cost_weight * reward_wristrot, 'ori_reward': reward } return ob, reward, done, info def viewer_setup(self): self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 2.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0 self.viewer.cam.lookat[2] += 0.5 self.viewer.cam.elevation = -20 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis def reset_model(self): self.t = 0 #self.init_qpos[1] = -3.142 / 2 self.init_qpos[3] = -3.142 / 2 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:6] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[6:], self.sim.data.qvel.flat[:6], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[1] - self.target_pos[1]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]) class RealArm5dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='real_arm5dof.xml',distance_reward_weight=5, shoulder_cost_weight=0,wrist_cost_weight=0,MinE_cost_weight=0,pcx=0.05,pcy=0): # utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['s_abduction', 's_flexion', 's_rotation', 'e_flexion', 'w_flexion'] self.pcx = pcx self.pcy = pcy self.real_time = 0.01 self.frame_skip = 2 # 2 self.f=0.4 self.t = 0 self.target_pos = np.asarray([0, 0, 0]) self.distance_reward_weight = distance_reward_weight self.shoulder_cost_weight = shoulder_cost_weight self.wrist_cost_weight = wrist_cost_weight self.MinE_cost_weight =MinE_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) def step(self, a): #a=0 states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip") - self.target_pos total_torque = a reward_dist = - np.linalg.norm(vec) #reward_ctrl = - np.square(total_torque).sum() reward_shoulder = - np.square(total_torque[0:3]).sum() reward_wristrot = - np.square(total_torque[4]).sum() #meanEff=np.abs(total_torque).sum()/len(self.joint_list) #penalty_MinE=-(np.abs(total_torque)-meanEff).sum() penalty_MinE=- np.sum(np.square(total_torque))#self.control_cost(action) # penalty_MinE = 0 # for i in range(len(self.joint_list)): # delta_theta = np.abs( self.sim.data.qvel.flat[i]) # # energy = energy + np.abs(action[i]) * delta_theta # penalty_MinE = penalty_MinE + np.abs(total_torque[i]) * delta_theta # penalty_MinE= -penalty_MinE reward = self.distance_reward_weight * reward_dist\ + self.shoulder_cost_weight*reward_shoulder\ + self.wrist_cost_weight*reward_wristrot ori_reward=reward reward = ori_reward+self.MinE_cost_weight *penalty_MinE self.do_simulation(total_torque, self.frame_skip) self.t += self.frame_skip * self.real_time #self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [(p1x - p2x) * np.sin(self.t * np.pi*2*self.f) / 2 + (p1x + p2x) / 2, 0,(p1y - p2y) * np.sin(self.t * np.pi*2*self.f) / 2 + (p1y + p2y) / 2] # ,phi=1 self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + \ [self.pcx + (-0.22 * np.sin(self.t * np.pi * 2 * self.f)),self.pcy + (-0.18 * np.cos(self.t * np.pi * 2 * self.f)),0.1] self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight * reward_dist, 'penalty_shoulder': self.shoulder_cost_weight * reward_shoulder, 'penalty_wrist': self.wrist_cost_weight * reward_wristrot, 'penalty_MinE': self.MinE_cost_weight *penalty_MinE, 'ori_reward': ori_reward } return ob, reward, done, info def viewer_setup(self): self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 2.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0 self.viewer.cam.lookat[2] += 0.5 self.viewer.cam.elevation = -20 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis def reset_model(self): self.t = 0 #self.init_qpos[1] = -3.142 / 2 self.init_qpos[3] = -3.142 / 2 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:5] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[5:], self.sim.data.qvel.flat[:5], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[1] - self.target_pos[1]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]) class RealArm4dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='real_arm4dof.xml',distance_reward_weight=5, shoulder_cost_weight=0,wrist_cost_weight=0,MinE_cost_weight=0,pcx=0.05,pcy=0): # utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = ['s_abduction', 's_flexion', 's_rotation', 'e_flexion'] self.pcx = pcx self.pcy = pcy self.real_time = 0.01 self.frame_skip = 2 # 2 self.f=0.4 self.t = 0 self.target_pos = np.asarray([0, 0, 0]) self.shoulder_cost_weight=shoulder_cost_weight self.distance_reward_weight=distance_reward_weight self.MinE_cost_weight =MinE_cost_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) def step(self, a): #a=0 states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip") - self.target_pos total_torque = a reward_dist = - np.linalg.norm(vec) #reward_ctrl = - np.square(total_torque).sum() reward_shoulder = - np.square(total_torque[0:3]).sum() #reward_wristrot = - np.square(total_torque[4::]).sum() #meanEff=np.abs(total_torque).sum()/len(self.joint_list) #penalty_MinE=-(np.abs(total_torque)-meanEff).sum() penalty_MinE=- np.sum(np.square(total_torque))#self.control_cost(action) # penalty_MinE = 0 # for i in range(len(self.joint_list)): # delta_theta = np.abs( self.sim.data.qvel.flat[i]) # # energy = energy + np.abs(action[i]) * delta_theta # penalty_MinE = penalty_MinE + np.abs(total_torque[i]) * delta_theta # penalty_MinE= -penalty_MinE reward = self.distance_reward_weight * reward_dist\ + self.shoulder_cost_weight*reward_shoulder #+ self.wrist_cost_weight*reward_wristrot ori_reward=reward reward = ori_reward+self.MinE_cost_weight *penalty_MinE self.do_simulation(total_torque, self.frame_skip) self.t += self.frame_skip * self.real_time self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + \ [self.pcx + (-0.22 * np.sin(self.t * np.pi * 2 * self.f)),self.pcy + (-0.18 * np.cos(self.t * np.pi * 2 * self.f)),0.1] self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight * reward_dist, 'penalty_shoulder': self.shoulder_cost_weight * reward_shoulder, 'penalty_MinE': self.MinE_cost_weight * penalty_MinE, 'ori_reward': ori_reward } return ob, reward, done,info def viewer_setup(self): self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 2.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0 self.viewer.cam.lookat[2] += 0.5 self.viewer.cam.elevation = -20 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis def reset_model(self): self.t = 0 #self.init_qpos[1] = -3.142 / 2 self.init_qpos[3] = -3.142 / 2 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:4] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[4:], self.sim.data.qvel.flat[:4], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[1] - self.target_pos[1]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]) class RealArm3dof(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='real_arm3dof.xml',distance_reward_weight=5, shoulder_cost_weight=0,wrist_cost_weight=0,pcx=0.05,pcy=0): # utils.EzPickle.__init__(self) utils.EzPickle.__init__(**locals()) self.joint_list = [ 's_flexion', 's_rotation', 'e_flexion'] self.pcx = pcx self.pcy = pcy self.real_time = 0.01 self.frame_skip = 2 # 2 self.f=0.4 self.t = 0 self.target_pos = np.asarray([0, 0, 0]) self.shoulder_cost_weight=shoulder_cost_weight self.distance_reward_weight=distance_reward_weight global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), self.frame_skip) def step(self, a): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) vec = self.get_body_com("fingertip") - self.target_pos total_torque = a reward_dist = - np.linalg.norm(vec) #reward_ctrl = - np.square(total_torque).sum() reward_shoulder = - np.square(total_torque[0:2]).sum() #reward_wristrot = - np.square(total_torque[4::]).sum() reward = self.distance_reward_weight * reward_dist\ + self.shoulder_cost_weight*reward_shoulder\ #+ self.wrist_cost_weight*reward_wristrot self.do_simulation(total_torque, self.frame_skip) self.t += self.frame_skip * self.real_time #self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + [(p1x - p2x) * np.sin(self.t * np.pi*2*self.f) / 2 + (p1x + p2x) / 2, 0,(p1y - p2y) * np.sin(self.t * np.pi*2*self.f) / 2 + (p1y + p2y) / 2] # ,phi=1 self.sim.data.site_xpos[0] = self.sim.data.site_xpos[0] + \ [self.pcx + (-0.22 * np.sin(self.t * np.pi * 2 * self.f)),self.pcy + (-0.18 * np.cos(self.t * np.pi * 2 * self.f)),0.1] self.target_pos = self.sim.data.site_xpos[0] ob = self._get_obs() next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(a[i]) * delta_theta done = False info = { 'energy': energy, 'reward_dist': self.distance_reward_weight * reward_dist, 'penalty_shoulder': self.shoulder_cost_weight * reward_shoulder, 'ori_reward': reward } return ob, reward, done, info def viewer_setup(self): self.viewer.cam.trackbodyid = 0 # id of the body to track () self.viewer.cam.distance = self.model.stat.extent * 2.0 # how much you "zoom in", model.stat.extent is the max limits of the arena self.viewer.cam.lookat[0] += 0 # x,y,z offset from the object (works if trackbodyid=-1) self.viewer.cam.lookat[1] += 0 self.viewer.cam.lookat[2] += 0.5 self.viewer.cam.elevation = -20 # camera rotation around the axis in the plane going through the frame origin (if 0 you just see a line) self.viewer.cam.azimuth = 90 # camera rotation around the camera's vertical axis def reset_model(self): self.t = 0 #self.init_qpos[1] = -3.142 / 2 self.init_qpos[2] = -3.142 / 2 qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) self.target_pos = self.data.site_xpos[0] return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:3] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[3:], self.sim.data.qvel.flat[:3], [self.get_body_com("fingertip")[0] - self.target_pos[0]], [self.get_body_com("fingertip")[1] - self.target_pos[1]], [self.get_body_com("fingertip")[2] - self.target_pos[2]] ]) ```
{ "source": "JiazhengChai/synergy_DRL", "score": 2 }
#### File: examples/plotting/AdaptiveW_process_SA.py ```python from sklearn.preprocessing import StandardScaler import numpy as np from sklearn.metrics import r2_score from matplotlib import pyplot as plt import os from matplotlib.lines import Line2D from exp_variant_class import exp_variant#,PCA from sklearn.decomposition import PCA import argparse from scipy import integrate import csv from scipy.stats.stats import pearsonr import pandas as pd def gauss(x, mu, a = 1, sigma = 1/6): return a * np.exp(-(x - mu)**2 / (2*sigma**2)) def R2(): return r'R^{{{e:d}}}'.format(e=int(2)) cmap = plt.cm.viridis cmaplist = [cmap(i) for i in range(cmap.N)] cmaplen=len(cmaplist) color_list=['b','r','g','c','m','y','k','#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#ffff33', '#a65628', '#f781bf'] plt.rcParams["figure.figsize"] = (10,8) parser = argparse.ArgumentParser() parser.add_argument('--agentt', type=str,choices=['HCheavy','HC','A','Antheavy','FC','Ctp','G','HC_E1']) args = parser.parse_args() tif=False sortt=False standscale=True temporal=True manual_pca=False recon_num=8 ori_total_vec_rsq=9 truncated_start=200 dll=50 std=True agentt=args.agentt precheck=False if 'HC' in agentt: total_vec = 6 total_chk=30 ori_final = 3000 ori_begin = 100 ori_step = 100 x_speed_index=8 desired_dist=500 if 'E1' in agentt: agentt_folder='HC_E1' elif 'heavy' in agentt: agentt_folder = 'HCheavy' else: agentt_folder = 'HC' elif 'FC' in agentt: total_vec = 12 total_chk=30 ori_final = 3000 ori_begin = 100 ori_step = 100 x_speed_index=14 desired_dist=500 agentt_folder='FC' top_folder=agentt file_path=os.path.abspath(os.getcwd()) path_list=file_path.split('/') while path_list[-1] !="synergyDRL": path_list.pop(-1) cwd="/".join(path_list) path_to_folder=cwd+'/experiments_results/Synergy/all_csv/raw_csv' final = ori_final begin = ori_begin step = ori_step path_to_csv=path_to_folder+'/'+agentt_folder output_folder=cwd+'/experiments_results/Synergy/all_csv/process_SA_intermediate/'+agentt if not os.path.exists(output_folder): os.makedirs(output_folder, exist_ok=True) process_csv = open(output_folder+ '/' + agentt +'_process_all_surface.csv', 'w') writer = csv.writer(process_csv, lineterminator='\n') writer.writerow(['Trials', 'Corr SA_P', 'Corr SA_PI', 'Corr SA_E','FSA', 'DSA', 'ASA','FP', 'FPI', 'FE']) TD3_data=[] for csv_ in os.listdir(path_to_csv): current_csv = pd.read_csv(path_to_csv + '/' + csv_) current_name_list=csv_.split('_') current_name_list=current_name_list[0:-2] name='' for cn in current_name_list: name=name+cn+'_' name=name[0:-1] P_list = current_csv['P'] PI_list = current_csv['PI'] E_list = current_csv['E'] SA_list = current_csv['Surface Area'] Checkpoint_list = current_csv['Checkpoint'] P_list = np.asarray(P_list) PI_list = np.asarray(PI_list) E_list = np.asarray(E_list) SA_list = np.asarray(SA_list) Checkpoint_list = np.asarray(Checkpoint_list) corr_SA_P = np.corrcoef(SA_list, P_list)[0, 1] corr_SA_PI = np.corrcoef(SA_list, PI_list)[0, 1] corr_SA_E = np.corrcoef(SA_list, E_list)[0, 1] FP = P_list[0] FPI = PI_list[0] FE = E_list[0] FSA = SA_list[0] DSA = SA_list[0] - SA_list[-1] SA_list2 = np.copy(SA_list) ASA = 0 neg_ASA = 0 for sa in SA_list: for sa2 in SA_list2: diff = sa - sa2 if diff >= 0 and diff > ASA: ASA = diff elif diff < 0: if diff < neg_ASA: neg_ASA = diff if np.abs(neg_ASA) > ASA: ASA = neg_ASA if 'TD3' not in name: writer.writerow([name,corr_SA_P,corr_SA_PI,corr_SA_E,FSA,DSA,ASA,FP,FPI,FE]) else: TD3_data.append([name,corr_SA_P,corr_SA_PI,corr_SA_E,FSA,DSA,ASA,FP,FPI,FE]) for row in TD3_data: writer.writerow(row) process_csv.close() ``` #### File: environments/gym/__init__.py ```python import gym CUSTOM_GYM_ENVIRONMENTS_PATH = __package__ MUJOCO_ENVIRONMENTS_PATH = f'{CUSTOM_GYM_ENVIRONMENTS_PATH}.mujoco' MUJOCO_ENVIRONMENT_SPECS = ( { 'id': 'VMPDv2-E0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_mvt_pendulum_v2:VerticalMvtPendulumEnvDV2'), }, { 'id': 'VMPD-E0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_mvt_pendulum:VerticalMvtPendulumDEnv'), }, { 'id': 'VMPv2-E0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_mvt_pendulum_v2:VerticalMvtPendulumEnvV2'), }, { 'id': 'VMP-E0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_mvt_pendulum:VerticalMvtPendulumEnv'), }, { 'id': 'Swimmer-Parameterizable-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.swimmer:SwimmerEnv'), }, { 'id': 'Swimmer-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.swimmer:SwimmerEnv'), }, { 'id': 'Hopper-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.hopper:HopperEnv'), }, { 'id': 'Hopper-EnergyPoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.hopper:HopperEnv'), }, { 'id': 'Hopper-EnergyOne-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.hopper:HopperEnv'), }, { 'id': 'Hopper-EnergyOnePoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.hopper:HopperEnv'), }, { 'id': 'Hopper-EnergyTwo-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.hopper:HopperEnv'), }, { 'id': 'Bipedal2d-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.bipedal_2:Bipedal2Env'), }, { 'id': 'Walker2d-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'Walker2d-EnergyPoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'Walker2d-EnergyOne-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'Walker2d-EnergyOnePoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'Walker2d-EnergyTwo-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'Walker2d-EnergyFour-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'Walker2d-EnergySix-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.walker2d:Walker2dEnv'), }, { 'id': 'HalfCheetah-EnergySix-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-EnergyFour-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-EnergyTwo-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-EnergyOnePoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-EnergyOne-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-EnergyPoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-EnergyPoint1-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv'), }, { 'id': 'HalfCheetah5dof-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv_5dof'), }, { 'id': 'HalfCheetah4dof-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv_4dof'), }, { 'id': 'HalfCheetah3doff-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv_3doff'), }, { 'id': 'HalfCheetah3dofb-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv_3dofb'), }, { 'id': 'HalfCheetah2dof-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv_2dof'), }, { 'id': 'Giraffe-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.giraffe:GiraffeEnv'), }, { 'id': 'HalfCheetahHeavy-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahHeavyEnv'), }, { 'id': 'VA-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_arm:VA'), }, { 'id': 'VA4dof-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_arm:VA4dof'), }, { 'id': 'VA6dof-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_arm:VA6dof'), }, { 'id': 'VA8dof-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.vertical_arm:VA8dof'), }, { 'id': 'Centripede-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.centripede:CentripedeEnv'), }, { 'id': 'FullCheetah-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:FullCheetahEnv'), }, { 'id': 'HalfCheetah-PerfIndex-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv2'), }, { 'id': 'HalfCheetah-InvPerfIndex-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.half_cheetah:HalfCheetahEnv3'), }, { 'id': 'Ant-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.ant:AntEnv'), }, { 'id': 'AntHeavy-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.ant:AntHeavyEnv'), }, { 'id': 'Ant-EnergyPoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.ant:AntEnv'), }, { 'id': 'Ant-EnergyOne-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.ant:AntEnv'), }, { 'id': 'Ant-EnergyOnePoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.ant:AntEnv'), }, { 'id': 'Ant-EnergyTwo-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.ant:AntEnv'), }, { 'id': 'Humanoid-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid:HumanoidEnv'), }, { 'id': 'Humanoid-EnergyOne-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid:HumanoidEnv'), }, { 'id': 'Humanoid-EnergyPoint5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid:HumanoidEnv'), }, { 'id': 'Humanoid-EnergyPoint1-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid:HumanoidEnv'), }, { 'id': 'Humanoid-EnergyPz5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid:HumanoidEnv'), }, { 'id': 'Humanoidrllab-Energy0-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid_rllab:HumanoidEnv'), }, { 'id': 'Humanoidrllab-EnergyOne-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid_rllab:HumanoidEnv'), }, { 'id': 'Humanoidrllab-EnergyP5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid_rllab:HumanoidEnv'), }, { 'id': 'Humanoidrllab-EnergyP1-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid_rllab:HumanoidEnv'), }, { 'id': 'Humanoidrllab-EnergyPz5-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.humanoid_rllab:HumanoidEnv'), }, { 'id': 'Pusher2d-Default-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.pusher_2d:Pusher2dEnv'), }, { 'id': 'Pusher2d-DefaultReach-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.pusher_2d:ForkReacherEnv'), }, { 'id': 'Pusher2d-ImageDefault-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.image_pusher_2d:ImagePusher2dEnv'), }, { 'id': 'Pusher2d-ImageReach-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.image_pusher_2d:ImageForkReacher2dEnv'), }, { 'id': 'Pusher2d-BlindReach-v0', 'entry_point': (f'{MUJOCO_ENVIRONMENTS_PATH}' '.image_pusher_2d:BlindForkReacher2dEnv'), }, ) GENERAL_ENVIRONMENT_SPECS = ( { 'id': 'MultiGoal-Default-v0', 'entry_point': (f'{CUSTOM_GYM_ENVIRONMENTS_PATH}' '.multi_goal:MultiGoalEnv') }, ) MULTIWORLD_ENVIRONMENT_SPECS = ( { 'id': 'Point2DEnv-Default-v0', 'entry_point': 'multiworld.envs.pygame.point2d:Point2DWallEnv' }, { 'id': 'Point2DEnv-Wall-v0', 'entry_point': 'multiworld.envs.pygame.point2d:Point2DWallEnv' }, ) MUJOCO_ENVIRONMENTS = tuple( environment_spec['id'] for environment_spec in MUJOCO_ENVIRONMENT_SPECS) GENERAL_ENVIRONMENTS = tuple( environment_spec['id'] for environment_spec in GENERAL_ENVIRONMENT_SPECS) MULTIWORLD_ENVIRONMENTS = tuple( environment_spec['id'] for environment_spec in MULTIWORLD_ENVIRONMENT_SPECS) GYM_ENVIRONMENTS = ( *MUJOCO_ENVIRONMENTS, *GENERAL_ENVIRONMENTS, *MULTIWORLD_ENVIRONMENTS, ) def register_mujoco_environments(): """Register softlearning mujoco environments.""" for mujoco_environment in MUJOCO_ENVIRONMENT_SPECS: gym.register(**mujoco_environment) gym_ids = tuple( environment_spec['id'] for environment_spec in MUJOCO_ENVIRONMENT_SPECS) return gym_ids def register_general_environments(): """Register gym environments that don't fall under a specific category.""" for general_environment in GENERAL_ENVIRONMENT_SPECS: gym.register(**general_environment) gym_ids = tuple( environment_spec['id'] for environment_spec in GENERAL_ENVIRONMENT_SPECS) return gym_ids def register_multiworld_environments(): """Register custom environments from multiworld package.""" for multiworld_environment in MULTIWORLD_ENVIRONMENT_SPECS: gym.register(**multiworld_environment) gym_ids = tuple( environment_spec['id'] for environment_spec in MULTIWORLD_ENVIRONMENT_SPECS) return gym_ids def register_environments(): registered_mujoco_environments = register_mujoco_environments() registered_general_environments = register_general_environments() registered_multiworld_environments = register_multiworld_environments() return ( *registered_mujoco_environments, *registered_general_environments, *registered_multiworld_environments, ) ``` #### File: gym/mujoco/half_cheetah.py ```python import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import os from . import path DEFAULT_CAMERA_CONFIG = { 'distance': 4.0, } class HalfCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','bfoot','fthigh','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(6): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class HalfCheetahHeavyEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='half_cheetah_heavy.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthigh','bshin','bfoot','fthigh','fshin','ffoot'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) #mujoco_env.MujocoEnv.__init__(self, xml_file, 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(6): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) class FullCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, xml_file='full_cheetah.xml', forward_reward_weight=1.0, ctrl_cost_weight=0.1, reset_noise_scale=0.1, exclude_current_positions_from_observation=True, energy_weights=0.): utils.EzPickle.__init__(**locals()) self._forward_reward_weight = forward_reward_weight self.joint_list=['bthighL','bshinL','bfootL','fthighL','fshinL','ffootL', 'bthighR', 'bshinR', 'bfootR', 'fthighR', 'fshinR', 'ffootR'] self._ctrl_cost_weight = ctrl_cost_weight self.energy_weights=energy_weights self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation) global path mujoco_env.MujocoEnv.__init__(self, os.path.join(path, xml_file), 5) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(action)) return control_cost def step(self, action): states_angle = [] for j in self.joint_list: states_angle.append(self.sim.data.get_joint_qpos(j)) #states=self._get_obs() x_position_before = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) x_position_after = self.sim.data.qpos[0] x_velocity = ((x_position_after - x_position_before) / self.dt) ctrl_cost = self.control_cost(action) forward_reward = self._forward_reward_weight * x_velocity observation = self._get_obs() #next_states=observation next_states_angle = [] for j in self.joint_list: next_states_angle.append(self.sim.data.get_joint_qpos(j)) reward = forward_reward - ctrl_cost done = False energy = 0 for i in range(len(self.joint_list)): delta_theta = np.abs(next_states_angle[i] - states_angle[i]) energy = energy + np.abs(action[i]) * delta_theta '''delta_theta_bt = np.abs(next_states[2] - states[2]) delta_theta_bs = np.abs(next_states[3] - states[3]) delta_theta_bf = np.abs(next_states[4] - states[4]) delta_theta_ft = np.abs(next_states[5] - states[5]) delta_theta_fs = np.abs(next_states[6] - states[6]) delta_theta_ff = np.abs(next_states[7] - states[7]) energy_bt = np.abs(action[0]) * delta_theta_bt energy_bs = np.abs(action[1]) * delta_theta_bs energy_bf = np.abs(action[2]) * delta_theta_bf energy_ft = np.abs(action[3]) * delta_theta_ft energy_fs = np.abs(action[4]) * delta_theta_fs energy_ff = np.abs(action[5]) * delta_theta_ff energy = energy_bt + energy_bs + energy_bf + energy_ft + energy_fs + energy_ff''' reward -= self.energy_weights*energy info = { 'x_position': x_position_after, 'x_velocity': x_velocity, 'energy' : energy, 'reward_run': forward_reward, 'reward_ctrl': -ctrl_cost, 'ori_reward':forward_reward-ctrl_cost } return observation, reward, done, info def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() if self._exclude_current_positions_from_observation: position = position[1:] observation = np.concatenate((position, velocity)).ravel() return observation def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel + self._reset_noise_scale * self.np_random.randn( self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value) ``` #### File: softlearning/models/feedforward.py ```python import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions from softlearning.utils.keras import PicklableKerasModel SCALE_DIAG_MIN_MAX = (-20, 2) def sampling(args): z_log_var = args batch = tf.keras.backend.shape(z_log_var)[0] dim = tf.keras.backend.int_shape(z_log_var)[1] # by default, random_normal has mean=0 and std=1.0 epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) return tf.keras.backend.exp(0.5 * z_log_var) * epsilon def feedforward_model(input_shapes, output_size, hidden_layer_sizes, activation='relu', output_activation='linear', preprocessors=None, name='feedforward_model', *args, **kwargs): inputs = [ tf.keras.layers.Input(shape=input_shape) for input_shape in input_shapes ] if preprocessors is None: preprocessors = (None, ) * len(inputs) preprocessed_inputs = [ preprocessor(input_) if preprocessor is not None else input_ for preprocessor, input_ in zip(preprocessors, inputs) ] concatenated = tf.keras.layers.Lambda( lambda x: tf.concat(x, axis=-1) )(preprocessed_inputs) out = concatenated for units in hidden_layer_sizes: out = tf.keras.layers.Dense( units, *args, activation=activation, **kwargs )(out) out = tf.keras.layers.Dense( output_size, *args, activation=output_activation, **kwargs )(out) model = PicklableKerasModel(inputs, out, name=name) return model ```
{ "source": "jiazheng-xing/Swin_Multimodal", "score": 2 }
#### File: jiazheng-xing/Swin_Multimodal/train_swin.py ```python import os from torch._C import import_ir_module import torch.nn as nn from datasets import Action_DATASETS from torch.utils.data import DataLoader from tqdm import tqdm import wandb import argparse import shutil from pathlib import Path import yaml from dotmap import DotMap import pprint from modules.Visual_Prompt_OR import visual_prompt from utils.KLLoss import KLLoss from test_swin import validate from utils.Augmentation import * from utils.solver_swin import _optimizer, _lr_scheduler from utils.tools import * from utils.Text_Prompt import * from utils.saving import * from swin.swin_transf import SwinTransformer3D from swin.pretrain_load import inflate_weights class TextCLIP(nn.Module): def __init__(self, model) : super(TextCLIP, self).__init__() self.model = model def forward(self,text): return self.model.encode_text(text) class ImageCLIP(nn.Module): def __init__(self, model) : super(ImageCLIP, self).__init__() self.model = model def forward(self,image): return self.model.encode_image(image) def main(): global args, best_prec1 global global_step parser = argparse.ArgumentParser() parser.add_argument('--config', '-cfg', default='') parser.add_argument('--log_time', default='') args = parser.parse_args() with open(args.config, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader ) working_dir = os.path.join('./exp', config['network']['type'], config['network']['arch'], config['data']['dataset'], args.log_time) wandb.init(project=config['network']['type'],name='{}_{}_{}_{}'.format(args.log_time,config['network']['type'], config['network']['arch'], config['data']['dataset'])) print('-' * 80) print(' ' * 20, "working dir: {}".format(working_dir)) print('-' * 80) print('-' * 80) print(' ' * 30, "Config") pp = pprint.PrettyPrinter(indent=4) pp.pprint(config) print('-' * 80) config = DotMap(config) Path(working_dir).mkdir(parents=True, exist_ok=True) shutil.copy(args.config, working_dir) shutil.copy('train.py', working_dir) device = "cuda" if torch.cuda.is_available() else "cpu" # If using GPU then use mixed precision training. model, clip_state_dict = clip.load(config.network.arch,device=device,jit=False, tsm=config.network.tsm, T=config.data.num_segments,dropout=config.network.drop_out, emb_dropout=config.network.emb_dropout,pretrain=config.network.init, joint = config.network.joint) #Must set jit=False for training ViT-B/32 swin_model = SwinTransformer3D(patch_size = tuple(config.swin_model.patch_size), drop_path_rate = config.swin_model.drop_path_rate, in_channels = config.swin_model.in_channels, depths = tuple(config.swin_model.depths), embed_dim =config.swin_model.embed_dim, num_heads= tuple(config.swin_model.num_heads)) # swin_model = SwinTransformer3D() transform_train = get_augmentation(True,config) transform_val = get_augmentation(False,config) if config.data.randaug.N > 0: transform_train = randAugment(transform_train, config) print('train transforms: {}'.format(transform_train.transforms)) print('val transforms: {}'.format(transform_val.transforms)) model_text = TextCLIP(model) model_image = ImageCLIP(model) swin_model = torch.nn.DataParallel(swin_model).cuda() model_text = torch.nn.DataParallel(model_text).cuda() model_image = torch.nn.DataParallel(model_image).cuda() wandb.watch(swin_model) wandb.watch(model) train_data = Action_DATASETS(config.data.train_list,config.data.label_list,num_segments=config.data.num_segments,image_tmpl=config.data.image_tmpl,random_shift=config.random_shift, transform=transform_train) train_loader = DataLoader(train_data,batch_size=config.data.batch_size,num_workers=config.data.workers,shuffle=True,pin_memory=False,drop_last=True) val_data = Action_DATASETS(config.data.val_list,config.data.label_list, random_shift=config.data.random_shift,num_segments=config.data.num_segments,image_tmpl=config.data.image_tmpl, transform=transform_val) val_loader = DataLoader(val_data,batch_size=config.data.batch_size,num_workers=config.data.workers,shuffle=False,pin_memory=False,drop_last=True) # if device == "cpu": model_text.float() model_image.float() swin_model.float() # else : # clip.model.convert_weights(model_text) # Actually this line is unnecessary since clip by default already on float16 # clip.model.convert_weights(model_image) # clip.model.convert_weights(swin_model) loss_img = KLLoss() loss_txt = KLLoss() start_epoch = config.solver.start_epoch if config.pretrain: if os.path.isfile(config.pretrain): print(("=> loading checkpoint '{}'".format(config.pretrain))) checkpoint = torch.load(config.pretrain) model.load_state_dict(checkpoint['model_state_dict']) del checkpoint else: print(("=> no checkpoint found at '{}'".format(config.resume))) if config.swin_model.pretrain: if config.swin_model.pretrain_type == '2D_pretrain': pretrained_state_dict = inflate_weights(config.swin_model.pretrain,swin_model.module, tuple(config.swin_model.window_size), tuple(config.swin_model.patch_size)) swin_model.module.load_state_dict(pretrained_state_dict, strict=False) del pretrained_state_dict else: unexpected_keys = ['cls_head.fc_cls.weight', 'cls_head.fc_cls.bias'] pretrained_state_dict = torch.load(config.swin_model.pretrain, map_location='cpu') pretrained_state_dict = {k: v for k, v in pretrained_state_dict['state_dict'].items() if k not in unexpected_keys} # train的时候需要 pretrained_state_dict = {k[9:]: v for k, v in pretrained_state_dict.items()} swin_model.module.load_state_dict(pretrained_state_dict, strict=False) del pretrained_state_dict print("---------------------------------------------------swin_model_load_succes----------------------------------------------") # print("fix_text_parameters") if config.resume: if os.path.isfile(config.resume): print(("=> loading checkpoint '{}'".format(config.resume))) checkpoint = torch.load(config.resume) model.load_state_dict(checkpoint['model_state_dict']) swin_model.load_state_dict(checkpoint['swin_model']) start_epoch = checkpoint['epoch'] print(("=> loaded checkpoint '{}' (epoch {})" .format(config.resume, start_epoch))) del checkpoint else: print(("=> no checkpoint found at '{}'".format(config.pretrain))) classes, num_text_aug, text_dict = text_prompt(train_data) optimizer = _optimizer(config, model, swin_model) lr_scheduler = _lr_scheduler(config, optimizer) best_prec1 = 0.0 if config.solver.evaluate: prec1 = validate(start_epoch,val_loader, classes, device, model, config,num_text_aug, swin_model) return # for k,v in model.named_parameters(): # print('{}: {}'.format(k, v.requires_grad)) #text_encoder weight fixed for epoch in range(start_epoch, config.solver.epochs): model_image.train() model_text.train() swin_model.train() for kkk,(images,list_id) in enumerate(tqdm(train_loader)): if config.solver.type != 'monitor': if (kkk+1) == 1 or (kkk+1) % 10 == 0: lr_scheduler.step(epoch + kkk / len(train_loader)) optimizer.zero_grad() images = images.view((-1,config.data.num_segments,3)+images.size()[-2:]) b,t,c,h,w = images.size() text_id = numpy.random.randint(num_text_aug,size=len(list_id)) texts = torch.stack([text_dict[j][i,:] for i,j in zip(list_id,text_id)]) # images= images.to(device).view(-1,c,h,w ) # omit the Image.fromarray if the images already in PIL format, change this line to images=list_image if using preprocess inside the dataset class texts = texts.to(device) images = images.to(device).permute(0,2,1,3,4) # image_embedding = model_image(images) image_embedding = swin_model(images) text_embedding = model_text(texts) # print("*"*100) # print("text_embedding:{}".format(text_embedding.shape)) # print("*"*100) if config.network.fix_text: text_embedding.detach_() logit_scale = model.logit_scale.exp() logits_per_image, logits_per_text = create_logits(image_embedding,text_embedding,logit_scale) ground_truth = torch.tensor(gen_label(list_id),dtype=image_embedding.dtype,device=device) loss_imgs = loss_img(logits_per_image,ground_truth) loss_texts = loss_txt(logits_per_text,ground_truth) total_loss = (loss_imgs + loss_texts)/2 wandb.log({"train_total_loss": total_loss}) wandb.log({"train_loss_imgs": loss_imgs}) wandb.log({"train_loss_texts": loss_texts}) total_loss.backward() optimizer.step() # if device == "cpu": # optimizer.step() # else: # convert_models_to_fp32(model) # convert_models_to_fp32(swin_model) # optimizer.step() # clip.model.convert_weights(model) # clip.model.convert_weights(swin_model) if epoch % config.logging.eval_freq == 0: # and epoch>0 prec1 = validate(epoch,val_loader, classes, device, model,swin_model, config,num_text_aug) is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) print('Testing: {}/{}'.format(prec1,best_prec1)) print('Saving:') filename = "{}/last_model.pt".format(working_dir) epoch_saving(epoch, model, swin_model, optimizer, filename) if is_best: best_saving(working_dir, epoch, model, swin_model, optimizer) if __name__ == '__main__': main() ```
{ "source": "jiazhi412/Dataset-REPAIR", "score": 2 }
#### File: Dataset-REPAIR/utils/measure.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm def train(loader, epochs, model, optimizer, scheduler=None): model.train() with tqdm(range(1, epochs + 1)) as pbar: for _ in pbar: losses = [] corrects = 0 if scheduler is not None: scheduler.step() for x, y in loader: out = model(x) loss = F.cross_entropy(out, y) losses.append(loss.item()) corrects += out.max(1)[1].eq(y).sum().item() optimizer.zero_grad() loss.backward() optimizer.step() loss = sum(losses) / len(losses) acc = 100 * corrects / len(loader.dataset) pbar.set_postfix(loss='%.3f' % loss, acc='%.2f%%' % acc) return loss, acc def measure_bias(train_loader, test_loader, feat_fn, feat_dim, opt, verbose=True): epochs = opt['epochs'] lr = opt['lr'] device = opt['device'] # class counts train_labels = torch.tensor([data[1] for data in train_loader.dataset]).long().to(device) n_cls = int(train_labels.max()) + 1 # create models model = nn.Linear(feat_dim, n_cls).to(device) optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = optim.lr_scheduler.StepLR(optimizer, 15, 0.1) # training model.train() pbar = tqdm(range(1, epochs + 1)) if verbose else range(1, epochs + 1) for _ in pbar: losses = [] corrects = 0 scheduler.step() for x, y in train_loader: x, y = x.to(device), y.to(device) # linear classifier color = feat_fn(x) out = model(color) loss = F.cross_entropy(out, y) losses.append(loss.item()) corrects += out.max(1)[1].eq(y).sum().item() optimizer.zero_grad() loss.backward() optimizer.step() loss = sum(losses) / len(losses) acc = 100 * corrects / len(train_loader.dataset) if verbose: pbar.set_postfix(loss='%.3f' % loss, acc='%.2f%%' % acc) # testing model.eval() with torch.no_grad(): losses = [] corrects = 0 for x, y in test_loader: x, y = x.to(device), y.to(device) x = x.view(x.size(0), x.size(1), -1) out = model(feat_fn(x)) loss = F.cross_entropy(out, y) losses.append(loss.item()) corrects += out.max(1)[1].eq(y).sum().item() loss = sum(losses) / len(losses) acc = 100 * corrects / len(test_loader.dataset) # measure bias cls_count = torch.stack([train_labels == c for c in range(n_cls)]).sum(1).float() cls_w = cls_count[cls_count > 0] / cls_count.sum() entropy = -(cls_w * cls_w.log()).sum().item() bias = 1 - loss / entropy return bias, loss, acc, entropy def measure_generalization(train_loader, test_loaders, model, opt): epochs = opt['epochs'] lr = opt['lr'] device = opt['device'] # create models model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = optim.lr_scheduler.StepLR(optimizer, 20, 0.1) # training train(train_loader, epochs, model, optimizer, scheduler) # testing model.eval() test_losses = [] test_accs = [] with torch.no_grad(): for k, loader in enumerate(test_loaders): losses = [] corrects = 0 for x, y in loader: x, y = x.to(device), y.to(device) out = model(x) loss = F.cross_entropy(out, y) losses.append(loss.item()) corrects += out.max(1)[1].eq(y).sum().item() loss = sum(losses) / len(losses) test_losses.append(loss) acc = corrects / len(loader.dataset) test_accs.append(acc) return test_accs ```
{ "source": "jia-zh/News-Spider", "score": 3 }
#### File: News-Spider/NewsSpider/pipelines.py ```python import os import re class NewsspiderPipeline(object): def __init__(self): root_path = '/'.join(os.path.abspath(__file__).split('/')[:-2]) self.news_path = os.path.join(root_path, 'news') if not os.path.exists(self.news_path): os.makedirs(self.news_path) self.rep = {'<':'', '>':'', '/':'', '\\':'', '|':'', ':':'', '"':'', '*':'', '?':'', ' ':'', '-':'', '\n':'','\r':''} self.rep = dict((re.escape(k), v) for k, v in self.rep.items()) self.pattern = re.compile("|".join(self.rep.keys())) '''处理数据流''' def process_item(self, item, spider): keyword = item['keyword'] event_path = os.path.join(self.news_path, keyword) if not os.path.exists(event_path): os.makedirs(event_path) filename = os.path.join(event_path, self.pattern.sub(lambda m: self.rep[re.escape(m.group(0))], item['news_time'])[0:12] + '@' + self.pattern.sub(lambda m: self.rep[re.escape(m.group(0))], item['news_title'])) if len(filename) > 200: filename = filename[0:200] + "..." with open(filename, "w", encoding="utf-8") as f: f.write("标题:{0}\n".format(item['news_title'])) f.write("URL:{0}\n".format(item['news_url'])) f.write("发布时间:{0}\n".format(item['news_time'])) f.write("正文:{0}\n".format(item['news_content'])) f.close() ```
{ "source": "JiaZhou-PU/raven", "score": 2 }
#### File: framework/OutStreams/FilePrint.py ```python import os from utils import InputData, InputTypes import DataObjects from .OutStreamBase import OutStreamBase from ClassProperty import ClassProperty class FilePrint(OutStreamBase): """ Class for managing the printing of files as an output stream. """ ## Promoting these to static class variables, since they will not alter from ## object to object. The use of the @ClassProperty with only a getter makes ## the variables immutable (so long as no one touches the internally stored ## "_"-prefixed), so other objects don't accidentally modify them. _availableOutStreamTypes = ['csv', 'xml'] @ClassProperty def availableOutStreamTypes(cls): """ A class level constant that tells developers what outstreams are available from this class @ In, cls, the OutStreams class of which this object will be a type """ return cls._availableOutStreamTypes @classmethod def getInputSpecification(cls): """ Method to get a reference to a class that specifies the input data for class "cls". @ In, cls, the class for which we are retrieving the specification @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying the input of cls. """ spec = OutStreamBase.getInputSpecification() types = InputTypes.makeEnumType('FilePrintTypes', 'FilePrintTypes', cls._availableOutStreamTypes) spec.addSub(InputData.parameterInputFactory('type', contentType=types)) spec.addSub(InputData.parameterInputFactory('source', contentType=InputTypes.StringListType)) spec.addSub(InputData.parameterInputFactory('what', contentType=InputTypes.StringListType)) spec.addSub(InputData.parameterInputFactory('filename', contentType=InputTypes.StringType)) spec.addSub(InputData.parameterInputFactory('clusterLabel', contentType=InputTypes.StringType)) # these are in user manual or code, but don't appear to be used/documented ... # spec.addSub(InputData.parameterInputFactory('target', contentType=InputTypes.StringListType)) # spec.addSub(InputData.parameterInputFactory('directory', # contentType=InputTypes.StringListType)) return spec def __init__(self): """ Constructor @ In, None @ Out, None """ OutStreamBase.__init__(self) self.type = 'OutStreamFilePrint' self.printTag = 'OUTSTREAM PRINT' self.sourceName = [] self.sourceData = None self.what = None # dictionary of what indices have already been printed, so we don't duplicate writing efforts self.indexPrinted = {} # keys are filenames, which should be reset at the end of every step self.subDirectory = None # subdirectory where to store the outputs def _handleInput(self, spec): """ Loads the input specs for this object. @ In, spec, InputData.ParameterInput, input specifications @ Out, None """ typ = spec.findFirst('type') if typ is None: self.raiseAnError(IOError, f'OutStream.Print "{self.name}" is missing the "type" node!') self.options['type'] = typ.value source = spec.findFirst('source') if source is None: self.raiseAnError(IOError, f'OutStream.Print "{self.name}" is missing the "source" node!') self.sourceName = source.value # FIXME this is a terrible name what = spec.findFirst('what') if what is not None: self.what = what.value # [x.lower() for x in what.value] fname = spec.findFirst('filename') if fname is not None: self.filename = fname.value cluster = spec.findFirst('clusterLabel') if cluster is not None: self.options['clusterLabel'] = cluster.value # checks if self.options['type'] == 'csv' and self.what is not None: for target in [x.lower() for x in self.what]: if not target.startswith(('input', 'output', 'metadata')): self.raiseAnError(IOError, f'<what> requests must start with "input", "output", or "metadata"! See OutStream.Print "{self.name}"') def localGetInitParams(self): """ This method is called from the base function. It retrieves the initial characteristic params that need to be seen by the whole enviroment @ In, None @ Out, paramDict, dict, dictionary containing the parameter names as keys and each parameter's initial value as the dictionary values """ paramDict = {} for index in range(len(self.sourceName)): paramDict['Source Name ' + str(index) + ' :'] = self.sourceName[index] if self.what: for index, var in enumerate(self.what): paramDict['Variable Name ' + str(index) + ' :'] = var return paramDict def initialize(self, inDict): """ Function to initialize the OutStream. It basically looks for the "data" object and links it to the system @ In, inDict, dict, It contains all the Object are going to be used in the current step. The sources are searched into this. @ Out, None """ # the linking to the source is performed in the base class initialize method OutStreamBase.initialize(self, inDict) def addOutput(self): """ Calls output functions on desired instances in order to print out the linked dataObjects @ In, None @ Out, None """ dictOptions = {} dictOptions['filenameroot'] = self.name if len(self.filename) > 0: dictOptions['filenameroot'] = self.filename if self.subDirectory is not None: dictOptions['filenameroot'] = os.path.join(self.subDirectory,dictOptions['filenameroot']) if self.what: dictOptions['what'] = self.what if 'target' in self.options.keys(): dictOptions['target'] = self.options['target'] for index in range(len(self.sourceName)): try: empty = self.sourceData[index].isEmpty except AttributeError: empty = False if self.options['type'] == 'csv': filename = dictOptions['filenameroot'] rlzIndex = self.indexPrinted.get(filename,0) dictOptions['firstIndex'] = rlzIndex # clusterLabel lets the user print a point set as if it were a history, with input decided by clusterLabel if 'clusterLabel' in self.options: if type(self.sourceData[index]).__name__ != 'PointSet': self.raiseAWarning('Label clustering currently only works for PointSet data objects! Skipping for',self.sourceData[index].name) else: dictOptions['clusterLabel'] = self.options['clusterLabel'] try: rlzIndex = self.sourceData[index].write(filename,style='CSV',**dictOptions) except AttributeError: self.raiseAnError(NotImplementedError, 'No implementation for source type', self.sourceData[index].type, 'and output type "'+str(self.options['type'].strip())+'"!') finally: self.indexPrinted[filename] = rlzIndex elif self.options['type'] == 'xml': try: self.sourceData[index].printXML(dictOptions) except AttributeError: self.raiseAnError(NotImplementedError, 'No implementation for source type', self.sourceData[index].type, 'and output type "'+str(self.options['type'].strip())+'"!') def finalize(self): """ End-of-step operations for cleanup. @ In, None @ Out, None """ # clear history of printed realizations; start fresh for next step self.indexPrinted = {} ``` #### File: raven/framework/PostProcessorInterfaces.py ```python from __future__ import division, print_function, unicode_literals, absolute_import from __future__ import division, print_function, unicode_literals, absolute_import #End compatibility block for Python 3---------------------------------------------------------------- #External Modules------------------------------------------------------------------------------------ import os from glob import glob import inspect #External Modules End-------------------------------------------------------------------------------- #Internal Modules------------------------------------------------------------------------------------ from utils import utils #Internal Modules End-------------------------------------------------------------------------------- __moduleInterfaceList = [] startDir = os.path.join(os.path.dirname(__file__),'PostProcessorFunctions') for dirr,_,_ in os.walk(startDir): __moduleInterfaceList.extend(glob(os.path.join(dirr,"*.py"))) utils.add_path(dirr) __moduleImportedList = [] ''' Interfaced Post Processor Here all the Interfaced Post-Processors located in the raven/framework/PostProcessorFunctions folder are parsed and their instance is returned ''' __base = 'PostProcessor' __interFaceDict = {} for moduleIndex in range(len(__moduleInterfaceList)): if 'class' in open(__moduleInterfaceList[moduleIndex]).read(): __moduleImportedList.append(utils.importFromPath(__moduleInterfaceList[moduleIndex],False)) for key,modClass in inspect.getmembers(__moduleImportedList[-1], inspect.isclass): # in this way we can get all the class methods classMethods = [method for method in dir(modClass) if callable(getattr(modClass, method))] if 'run' in classMethods: __interFaceDict[key] = modClass __knownTypes = list(__interFaceDict.keys()) def interfaceClasses(): """ This returns the classes available @ In, None @ Out, interfaceClasses, list of classes available """ return list(__interFaceDict.values()) def knownTypes(): """ This function returns the types of interfaced post-processors available @ In, None, @ Out, __knownTypes, list, list of recognized post-processors """ return __knownTypes def returnPostProcessorInterface(Type,caller): """ This function returns interfaced post-processors interface @ In, Type, string, type of Interfaced PostProcessor to run @ In, caller, instance of the PostProcessor class @ Out, __interFaceDict[Type](), dict, interfaced PostProcessor dictionary """ if Type not in knownTypes(): caller.raiseAnError(NameError,'"%s" type unrecognized:' %__base,Type) return __interFaceDict[Type](caller.messageHandler) ``` #### File: framework/PostProcessors/FTStructure.py ```python from __future__ import division, print_function , unicode_literals, absolute_import #Internal Modules--------------------------------------------------------------- import MessageHandler from utils import utils from .FTGate import FTGate from utils import xmlUtils as xmlU #Internal Modules End----------------------------------------------------------- #External Modules--------------------------------------------------------------- import numpy as np import xml.etree.ElementTree as ET import copy import itertools from collections import OrderedDict #External Modules End----------------------------------------------------------- class FTStructure(object): """ This is the base class of the FT structure which actually handles FT structures which is used by the FTimporter and the FTmodel """ def __init__(self, inputs, topEventID): """ This method executes the postprocessor action. @ In, inputs, list, list of file objects @ Out, outcome, dict, dict containing the processed FT """ self.basicEvents = [] # List of Basic events of the FT self.houseEvents = {} # List of House events of the FT self.gateList = {} # Dict of Gates of the FT self.gateID = [] # list of Gates name self.topEventID = topEventID # ID of the FT output for fileID in inputs: faultTree = ET.parse(fileID.getPath() + fileID.getFilename()) faultTree = xmlU.findAllRecursive(faultTree,'opsa-mef') for gate in xmlU.findAllRecursive(faultTree[0], 'define-gate'): ftGate = FTGate(gate) self.gateList[gate.get('name')] = ftGate self.gateID.append(gate.get('name')) for basicEvent in xmlU.findAllRecursive(faultTree[0], 'basic-event'): self.basicEvents.append(basicEvent.get('name')) for houseEvent in xmlU.findAllRecursive(faultTree[0], 'define-house-event'): value = houseEvent.find('constant').get('value') if value in ['True','true']: value = 1. elif value in ['False','false']: value = 0. else: raise IOError('FTImporterPostProcessor Post-Processor ' + self.name + ': house event ' + str(basicEvent.get('name')) + ' has a not boolean value (True or False)') self.houseEvents[houseEvent.get('name')] = value if not self.topEventID in self.gateID: raise IOError('FTImporterPostProcessor: specified top event ' + str(self.topEventID) + ' is not contained in the fault-tree; available gates are: ' + str(self.gateID)) def returnDict(self): """ This method calculates all possible input combinations and the corresponding output values @ In, None @ Out, outcome, dict, dictionary containing """ self.FTsolver() outcome = self.constructData() return outcome def FTsolver(self): """ This method determines the ordered sequence of gates to compute in order to solve the full FT. The determined ordered sequence is stored in self.gateSequence. @ In, None @ Out, None """ self.gateSequence = [] availBasicEvents = copy.deepcopy(self.basicEvents) availBasicEvents = availBasicEvents + list(self.houseEvents.keys()) counter = 0 while True: complete=False for gate in self.gateList.keys(): if set(self.gateList[gate].returnArguments()) <= set(availBasicEvents): self.gateSequence.append(gate) availBasicEvents.append(gate) if set(availBasicEvents) == set(itertools.chain(self.basicEvents,self.gateID,self.houseEvents.keys())): complete=True break if counter > len(self.gateList.keys()): raise IOError('FTImporterPostProcessor Post-Processor ' + self.name + ': the provided FT cannot be computed') counter += 1 if complete: break def evaluateFT(self,combination): """ This method determines the outcome of the FT given a set of basic-event values @ In, combination, dict, dictionary containing values for all basic-events @ Out, values, dict, dictionary containing calculated values for all gates """ values = {} for gate in self.gateSequence: values[gate] = self.gateList[gate].evaluate(combination) combination[gate] = values[gate] return values def constructData(self): """ This method determines the outcome of the FT given a set of basic-event values @ In, None @ Out, outcome, dict, dictionary containing calculated values for all basic-events and the Top-event """ combinations = list(itertools.product([0,1],repeat=len(self.basicEvents))) outcome={} outcome={key:np.zeros(len(combinations)) for key in self.basicEvents} outcome[self.topEventID] = np.zeros(len(combinations)) for index,combination in enumerate(combinations): combinationDict = {key: combination[index] for index,key in enumerate(self.basicEvents)} for houseEvent in self.houseEvents.keys(): combinationDict[houseEvent] = self.houseEvents[houseEvent] out = self.evaluateFT(combinationDict) for key in self.basicEvents: outcome[key][index]=float(combinationDict[key]) outcome[self.topEventID][index] = out[self.topEventID] return outcome ``` #### File: unit_tests/TSA/testFourier.py ```python import os import sys import copy import numpy as np # add RAVEN to path frameworkDir = os.path.abspath(os.path.join(*([os.path.dirname(__file__)] + [os.pardir]*4 + ['framework']))) if frameworkDir not in sys.path: sys.path.append(frameworkDir) from utils.utils import find_crow find_crow(frameworkDir) from utils import xmlUtils from TSA import Fourier plot = False print('Module undergoing testing:') print(Fourier) print('') results = {"pass":0,"fail":0} def checkFloat(comment, value, expected, tol=1e-10, update=True): """ This method is aimed to compare two floats given a certain tolerance @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, tol, float, optional, the tolerance @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if same """ if np.isnan(value) and np.isnan(expected): res = True elif np.isnan(value) or np.isnan(expected): res = False else: res = abs(value - expected) <= tol if update: if not res: print("checking float",comment,'|',value,"!=",expected) results["fail"] += 1 else: results["pass"] += 1 return res def checkTrue(comment, res, update=True): """ This method is a pass-through for consistency and updating @ In, comment, string, a comment printed out if it fails @ In, res, bool, the tested value @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if test """ if update: if res: results["pass"] += 1 else: print("checking bool",comment,'|',res,'is not True!') results["fail"] += 1 return res def checkSame(comment, value, expected, update=True): """ This method is aimed to compare two identical things @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if same """ res = value == expected if update: if res: results["pass"] += 1 else: print("checking string",comment,'|',value,"!=",expected) results["fail"] += 1 return res def checkArray(comment, first, second, dtype, tol=1e-10, update=True): """ This method is aimed to compare two arrays @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, tol, float, optional, the tolerance @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if same """ res = True if len(first) != len(second): res = False print("checking answer",comment,'|','lengths do not match:',len(first),len(second)) else: for i in range(len(first)): if dtype == float: pres = checkFloat('',first[i],second[i],tol,update=False) elif dtype in (str,unicode): pres = checkSame('',first[i],second[i],update=False) if not pres: print('checking array',comment,'|','entry "{}" does not match: {} != {}'.format(i,first[i],second[i])) res = False if update: if res: results["pass"] += 1 else: results["fail"] += 1 return res def checkNone(comment, entry, update=True): """ Checks if entry is None. @ In, comment, string, a comment printed out if it fails @ In, entry, object, to test if against None @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if None """ res = entry is None if update: if res: results["pass"] += 1 else: print("checking answer",comment,'|','"{}" is not None!'.format(entry)) results["fail"] += 1 def checkFails(comment, errstr, function, update=True, args=None, kwargs=None): """ Checks if expected error occurs @ In, comment, string, a comment printed out if it fails @ In, errstr, str, expected fail message @ In, function, method, method to run to test for failure @ In, update, bool, optional, if False then don't update results counter @ In, args, list, arguments to pass to function @ In, kwargs, dict, keyword arguments to pass to function @ Out, res, bool, True if failed as expected """ print('Error testing ...') if args is None: args = [] if kwargs is None: kwargs = {} try: function(*args,**kwargs) res = False msg = 'Function call did not error!' except Exception as e: res = checkSame('',e.args[0],errstr,update=False) if not res: msg = 'Unexpected error message. \n Received: "{}"\n Expected: "{}"'.format(e.args[0],errstr) if update: if res: results["pass"] += 1 print(' ... end Error testing (PASSED)') else: print("checking error",comment,'|',msg) results["fail"] += 1 print(' ... end Error testing (FAILED)') print('') return res ###################################### # CONSTRUCTION # ###################################### def createFourierXML(targets, periods): xml = xmlUtils.newNode('Fourier', attrib={'target':','.join(targets)}) xml.append(xmlUtils.newNode('periods', text=','.join(str(k) for k in periods))) return xml def createFromXML(xml): fourier = Fourier() inputSpec = Fourier.getInputSpecification()() inputSpec.parseNode(xml) fourier.handleInput(inputSpec) return fourier def createFourier(targets, periods): xml = createFourierXML(targets, periods) fourier = createFromXML(xml) return fourier def createFourierSignal(amps, periods, phases, pivot, intercept=0, plot=False): if plot: import matplotlib.pyplot as plt fig, ax = plt.subplots() signal = np.zeros(len(pivot)) + intercept for k, period in enumerate(periods): new = amps[k] * np.sin(2 * np.pi / period * pivot + phases[k]) if plot: ax.plot(pivot, new, ':') signal += new if plot: ax.plot(pivot, signal, 'k-') plt.show() return signal ################### # Simple # ################### # generate signal targets = ['A', 'B', 'C'] pivot = np.arange(100) / 10. periods = [2, 5, 10] amps = [0.5, 1, 2] phasesA = [0, np.pi, 0] signalA = createFourierSignal(amps, periods, phasesA, pivot, plot=plot) phasesB = [np.pi, 0, np.pi/4] signalB = createFourierSignal(amps, periods, phasesB, pivot, plot=plot) phasesC = [np.pi, np.pi/4, -np.pi/4] interceptC = 2 signalC = createFourierSignal(amps, periods, phasesC, pivot, intercept=interceptC, plot=plot) signals = np.zeros((len(pivot), 3)) signals[:, 0] = signalA signals[:, 1] = signalB signals[:, 2] = signalC fourier = createFourier(targets, periods) params = fourier.characterize(signals, pivot, targets) # intercepts checkFloat('Signal A intercept', params['A']['intercept'], 0) checkFloat('Signal B intercept', params['B']['intercept'], 0) checkFloat('Signal C intercept', params['C']['intercept'], interceptC) # amplitudes checkFloat('Signal A period 0 amplitude', params['A']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal A period 1 amplitude', params['A']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal A period 2 amplitude', params['A']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal B period 0 amplitude', params['B']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal B period 1 amplitude', params['B']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal B period 2 amplitude', params['B']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal C period 0 amplitude', params['C']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal C period 1 amplitude', params['C']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal C period 2 amplitude', params['C']['coeffs'][periods[2]]['amplitude'], amps[2]) # phases # check absolute value of phase pi since -pi and pi are often converged on separately checkFloat('Signal A period 0 phase', params['A']['coeffs'][periods[0]]['phase'] , phasesA[0]) checkFloat('Signal A period 1 phase', abs(params['A']['coeffs'][periods[1]]['phase']), phasesA[1]) checkFloat('Signal A period 2 phase', params['A']['coeffs'][periods[2]]['phase'] , phasesA[2]) checkFloat('Signal B period 0 phase', abs(params['B']['coeffs'][periods[0]]['phase']), phasesB[0]) checkFloat('Signal B period 1 phase', params['B']['coeffs'][periods[1]]['phase'] , phasesB[1]) checkFloat('Signal B period 2 phase', params['B']['coeffs'][periods[2]]['phase'] , phasesB[2]) checkFloat('Signal C period 0 phase', abs(params['C']['coeffs'][periods[0]]['phase']), phasesC[0]) checkFloat('Signal C period 1 phase', params['C']['coeffs'][periods[1]]['phase'] , phasesC[1]) checkFloat('Signal C period 2 phase', params['C']['coeffs'][periods[2]]['phase'] , phasesC[2]) # recreate signals res = fourier.generate(params, pivot, None) for tg, target in enumerate(targets): checkArray(f'Signal {target} replication', res[:, tg], signals[:, tg], float) ##### now redo with non-simultaneous fitting params = fourier.characterize(signals, pivot, targets, simultFit=False) # intercepts checkFloat('Signal A intercept', params['A']['intercept'], 0) checkFloat('Signal B intercept', params['B']['intercept'], 0) checkFloat('Signal C intercept', params['C']['intercept'], interceptC) # amplitudes checkFloat('Signal A period 0 amplitude', params['A']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal A period 1 amplitude', params['A']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal A period 2 amplitude', params['A']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal B period 0 amplitude', params['B']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal B period 1 amplitude', params['B']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal B period 2 amplitude', params['B']['coeffs'][periods[2]]['amplitude'], amps[2]) checkFloat('Signal C period 0 amplitude', params['C']['coeffs'][periods[0]]['amplitude'], amps[0]) checkFloat('Signal C period 1 amplitude', params['C']['coeffs'][periods[1]]['amplitude'], amps[1]) checkFloat('Signal C period 2 amplitude', params['C']['coeffs'][periods[2]]['amplitude'], amps[2]) # phases # check absolute value of phase pi since -pi and pi are often converged on separately checkFloat('Signal A period 0 phase', params['A']['coeffs'][periods[0]]['phase'] , phasesA[0]) checkFloat('Signal A period 1 phase', abs(params['A']['coeffs'][periods[1]]['phase']), phasesA[1]) checkFloat('Signal A period 2 phase', params['A']['coeffs'][periods[2]]['phase'] , phasesA[2]) checkFloat('Signal B period 0 phase', abs(params['B']['coeffs'][periods[0]]['phase']), phasesB[0]) checkFloat('Signal B period 1 phase', params['B']['coeffs'][periods[1]]['phase'] , phasesB[1]) checkFloat('Signal B period 2 phase', params['B']['coeffs'][periods[2]]['phase'] , phasesB[2]) checkFloat('Signal C period 0 phase', abs(params['C']['coeffs'][periods[0]]['phase']), phasesC[0]) checkFloat('Signal C period 1 phase', params['C']['coeffs'][periods[1]]['phase'] , phasesC[1]) checkFloat('Signal C period 2 phase', params['C']['coeffs'][periods[2]]['phase'] , phasesC[2]) # recreate signals res = fourier.generate(params, pivot, None) for tg, target in enumerate(targets): checkArray(f'Signal {target} replication', res[:, tg], signals[:, tg], float) # check residual # -> generate random noise to add to signal, then check it is returned in residual r = np.random.rand(pivot.size, len(targets)) new = r + signals res = fourier.getResidual(new, params, pivot, None) for tg, target in enumerate(targets): checkArray(f'Signal {target} residual', res[:, tg], r[:, tg], float) print(results) sys.exit(results["fail"]) """ <TestInfo> <name>framework.unit_tests.TSA.Fourier</name> <author>talbpaul</author> <created>2021-01-05</created> <classesTested>TSA.Fourier</classesTested> <description> This test is a Unit Test for the Fourier TimeSeriesAnalyzer classes. </description> </TestInfo> """ ``` #### File: unit_tests/utils/testTreeStructure.py ```python from __future__ import division, print_function, unicode_literals, absolute_import import warnings warnings.simplefilter('default',DeprecationWarning) import os,sys import numpy as np frameworkDir = os.path.abspath(os.path.join(os.path.dirname(__file__),os.pardir,os.pardir,os.pardir,os.pardir,'framework')) print('framework:',frameworkDir) sys.path.append(frameworkDir) import MessageHandler mh = MessageHandler.MessageHandler() mh.initialize({'verbosity':'debug'}) from utils import TreeStructure as TS results = {"pass":0,"fail":0} #type comparison def checkAnswer(comment,value,expected,tol=1e-10,updateResults=True): """ This method is aimed to compare two floats given a certain tolerance @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, tol, float, optional, the tolerance @ In, updateResults, bool, optional, if True updates global results @ Out, None """ if abs(value - expected) > tol: print("checking answer",comment,value,"!=",expected) if updateResults: results["fail"] += 1 return False else: if updateResults: results["pass"] += 1 return True def checkSame(comment,value,expected,updateResults=True): """ This method is aimed to compare two floats given a certain tolerance @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, updateResults, bool, optional, if True updates global results @ Out, None """ if value != expected: print("checking answer",comment,value,"!=",expected) if updateResults: results["fail"] += 1 return False else: if updateResults: results["pass"] += 1 return True def checkArray(comment,check,expected,tol=1e-10): """ This method is aimed to compare two arrays of floats given a certain tolerance @ In, comment, string, a comment printed out if it fails @ In, check, list, the value to compare @ In, expected, list, the expected value @ In, tol, float, optional, the tolerance @ Out, None """ same=True if len(check) != len(expected): same=False else: for i in range(len(check)): same = same*checkAnswer(comment+'[%i]'%i,check[i],expected[i],tol,False) if not same: print("checking array",comment,"did not match!") results['fail']+=1 return False else: results['pass']+=1 return True def checkType(comment,value,expected,updateResults=True): """ This method compares the data type of two values @ In, comment, string, a comment printed out if it fails @ In, value, float, the value to compare @ In, expected, float, the expected value @ In, updateResults, bool, optional, if True updates global results @ Out, None """ if type(value) != type(expected): print("checking type",comment,value,'|',type(value),"!=",expected,'|',type(expected)) if updateResults: results["fail"] += 1 return False else: if updateResults: results["pass"] += 1 return True ############## # Node Tests # ############## # TODO not complete! #test equivalency (eq, neq, hash) ## test all same are same a = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib1':1,'attrib2':'2'},text='sampleText') b = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib1':1,'attrib2':'2'},text='sampleText') checkSame('Equivalency of nodes ==:',a==b,True) checkSame('Equivalency of nodes !=:',a!=b,False) ## test different tag b = TS.HierarchicalNode(mh,'diffTag',valuesIn={'attrib1':1,'attrib2':'2'},text='sampleText') checkSame('Inequivalent tag ==:',a==b,False) checkSame('Inequivalent tag !=:',a!=b,True) ## test different attribute name b = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib3':1,'attrib2':'2'},text='sampleText') checkSame('Inequivalent value name ==:',a==b,False) checkSame('Inequivalent value name !=:',a!=b,True) ## test different attribute value b = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib1':3,'attrib2':'2'},text='sampleText') checkSame('Inequivalent value name ==:',a==b,False) checkSame('Inequivalent value name !=:',a!=b,True) ## test different text value b = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib1':3,'attrib2':'2'},text='diffText') checkSame('Inequivalent value name ==:',a==b,False) checkSame('Inequivalent value name !=:',a!=b,True) ## test equivalent, only tags a = TS.HierarchicalNode(mh,'rightTag') b = TS.HierarchicalNode(mh,'rightTag') checkSame('Equivalency only tag ==:',a==b,True) checkSame('Equivalency only tag !=:',a!=b,False) ## test equivalent, only values a = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib1':1,'attrib2':'2'}) b = TS.HierarchicalNode(mh,'rightTag',valuesIn={'attrib1':1,'attrib2':'2'}) checkSame('Equivalency only values ==:',a==b,True) checkSame('Equivalency only values !=:',a!=b,False) ## test equivalent, only text a = TS.HierarchicalNode(mh,'rightTag',text='sampleText') b = TS.HierarchicalNode(mh,'rightTag',text='sampleText') checkSame('Equivalency only text ==:',a==b,True) checkSame('Equivalency only text !=:',a!=b,False) ############## # Tree Tests # ############## # TODO ################## # Metadata Tests # ################## # construction static = TS.StaticMetadataTree(mh,'myStaticData') dynamic = TS.DynamicMetadataTree(mh,'myDynamicData','timeParam') # test "dynamic" attribute set correctly checkSame('Static "dynamic" property correctly set:',static.getrootnode().get('dynamic'),'False') checkSame('Dynamic "dynamic" property correctly set:',dynamic.getrootnode().get('dynamic'),'True') # test message handler works (implicit test, no error means success) static.raiseADebug('Debug message in Static successful!') dynamic.raiseADebug('Debug message in Dynamic successful!') results['pass']+=2 #test adding scalar entries (implicit test, no error means success) static.addScalar('myTarget','myMetric',3.14159) results['pass']+=1 dynamic.addScalar('myTarget','myMetric',3.14159,pivotVal=0.1) #pivot value as float results['pass']+=1 dynamic.addScalar('myTarget','myMetric',299792358,pivotVal='0.2') #pivot value as string results['pass']+=1 #test finding pivotNode (dynamic only) a = TS.HierarchicalNode(mh,'timeParam',valuesIn={'value':0.2}) b = dynamic._findPivot(dynamic.getrootnode(),0.2) checkSame('Finding pivot node:',b,a) #test finding targetNode ## static a = TS.HierarchicalNode(mh,'myTarget') b = static._findTarget(static.getrootnode(),'myTarget') checkSame('Finding target (static):',b,a) ## dynamic a = TS.HierarchicalNode(mh,'myTarget') c = dynamic._findTarget(dynamic.getrootnode(),'myTarget',0.2) checkSame('Finding target (dynamic):',c,a) #test values recorded checkAnswer('Recorded data (static):',b.findBranch('myMetric').text,3.14159) c = dynamic._findTarget(dynamic.getrootnode(),'myTarget',0.1) checkAnswer('Recorded data (dynamic 1):',c.findBranch('myMetric').text,3.14159) c = dynamic._findTarget(dynamic.getrootnode(),'myTarget',0.2) checkAnswer('Recorded data (dynamic 2):',c.findBranch('myMetric').text,299792358) print('{0}ed: {2}, {1}ed: {3}'.format(*(list(str(r) for r in results.keys())+list(results.values())))) sys.exit(results["fail"]) """ <TestInfo> <name>framework.treeStructure</name> <author>talbpaul</author> <created>2016-11-01</created> <classesTested>utils.TreeStructure</classesTested> <description> This test performs Unit Tests for the TreeStructure classes It cannot be considered part of the active code but of the regression test system </description> <revisions> <revision author="talbpaul" date="2016-11-08">Relocated utils tests</revision> <revision author="alfoa" date="2017-01-21">Adding this test description.</revision> </revisions> </TestInfo> """ ```
{ "source": "jiazhuangle/auth-server", "score": 2 }
#### File: api_v1/endpoints/departments.py ```python from typing import Any, List from fastapi import APIRouter, Body, Depends, HTTPException from fastapi.encoders import jsonable_encoder from pydantic.networks import EmailStr from sqlalchemy.orm import Session from app import crud, models, schemas from app.api import deps from app.core.config import settings router = APIRouter() @router.get("/", response_model=List[schemas.Department]) def read_departments( db: Session = Depends(deps.get_db), skip: int = 0, limit: int = 100, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: """ Retrieve DEPARTMENTS. """ if current_user.is_superuser: departments = crud.department.get_multi(db, skip=skip, limit=limit) return departments else: raise HTTPException( status_code=400, detail="The user doesn't have enough privileges.", ) @router.post('/', response_model=schemas.Department) def create_department( *, db: Session = Depends(deps.get_db), department_in: schemas.DepartmentCreate, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: ''' CREATE a department. ''' if current_user.is_superuser: return crud.department.create(db, obj_in=department_in) else: raise HTTPException( status_code=400, detail="The user doesn't have enough privileges.", ) @router.get("/{department_id}", response_model=schemas.Department) def read_department_by_id( department_id: int, current_user: models.User = Depends(deps.get_current_active_user), db: Session = Depends(deps.get_db), ) -> Any: """ Get a specific department by id. """ department = crud.department.get(db, id=department_id) return department @router.put("/{department_id}", response_model=schemas.Department) def update_department( *, db: Session = Depends(deps.get_db), department_id: int, department_in: schemas.DepartmentUpdate, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: """ Update a user. """ department = crud.department.get(db, id=department_id) if not department: raise HTTPException( status_code=404, detail="The department does not exist in the system", ) user = crud.department.update(db, db_obj=department, obj_in=department_in) return user ``` #### File: api_v1/endpoints/projects.py ```python from typing import Any, List,Union from fastapi import APIRouter, Body, Depends, HTTPException from fastapi.encoders import jsonable_encoder from pydantic.networks import EmailStr from sqlalchemy.orm import Session from app import crud, models, schemas from app.api import deps from app.core.config import settings router = APIRouter() @router.get("/", response_model= List[schemas.Project], response_model_exclude=["user_list"]) def read_projects( db: Session = Depends(deps.get_db), skip: int = 0, limit: int = 100, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: """ Retrieve projects. """ if current_user.is_superuser: projects = crud.project.get_multi(db, skip=skip, limit=limit) return projects else: raise HTTPException( status_code=400, detail="The user doesn't have enough privileges.", ) @router.post('/', response_model=schemas.Project) def create_department( *, db: Session = Depends(deps.get_db), project_in: schemas.ProjectCreate, current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: ''' CREATE a project. ''' if current_user.is_superuser: return crud.project.create(db, obj_in=project_in) else: raise HTTPException( status_code=400, detail="The user doesn't have enough privileges.", ) @router.put("/{project_id}", response_model=schemas.Project) def update_project( project_id: int, project_in: schemas.ProjectUpdate, current_user: models.User = Depends(deps.get_current_active_user), db: Session = Depends(deps.get_db), ) -> Any: """ Get a specific user by id. """ project = crud.project.get(db, id=project_id) if not current_user.is_superuser: raise HTTPException( status_code=400, detail="The user doesn't have enough privileges" ) project = crud.project.update(db,db_obj=project,obj_in=project_in) return project ``` #### File: app/crud/crud_department.py ```python from typing import Any, Dict, Optional, Union from sqlalchemy.orm import Session from app.core.security import get_password_hash, verify_password from app.crud.base import CRUDBase from app.models import Department from app.schemas.department_schemas import DepartmentCreate, DepartmentUpdate class CRUDDepartment(CRUDBase[Department,DepartmentCreate,DepartmentUpdate]): def get_by_id(self,db:Session,*,id:int)->Optional[Department]: return db.query(Department).filter_by(id=id).first() def create(self, db: Session, *, obj_in: DepartmentCreate) -> Department: return super().create(db,obj_in=obj_in) def update( self, db: Session, *, db_obj: Department, obj_in: Union[DepartmentUpdate, Dict[str, Any]] ) -> Department: if isinstance(obj_in,dict): update_data=obj_in else: update_data=obj_in.dict(exclude_unset=True) return super().update(db,db_obj=db_obj,obj_in=update_data) department=CRUDDepartment(Department) ```
{ "source": "jiazhuangle/goalkeeper", "score": 2 }
#### File: app/api/routes.py ```python import base64 from flask import jsonify,g from app.api import bp from app.api.errors import bad_request from app.api.auth import token_auth from app.models import UserData @bp.route('/user', methods=['GET']) @token_auth.login_required def get_user(): return jsonify(g.current_user.to_dict()) ``` #### File: jiazhuangle/goalkeeper/goalkeeper.py ```python from app import create_app, db from app.models import User, UserData app = create_app() @app.shell_context_processor def make_shell_context(): return {'db': db, 'User': User, 'UserData': UserData } ```
{ "source": "jiazifa/blog", "score": 2 }
#### File: blog/app/views.py ```python from typing import Optional, Any, Dict, List, Tuple import os from flask import ( jsonify, request, Flask, g, current_app, render_template, send_from_directory, redirect, url_for, flash, ) import mistune from pygments import highlight from pygments.lexers import get_lexer_by_name from pygments.formatters import HtmlFormatter from flask.helpers import get_env from flask.views import MethodView from app import helpers logger = helpers.get_logger(__name__) def block_code(text, lang, inlinestyles=False, linenos=False): if not lang: text = text.strip() return u'<pre><code>%s</code></pre>\n' % mistune.escape(text) try: lexer = get_lexer_by_name(lang, stripall=True) formatter = HtmlFormatter( noclasses=inlinestyles, linenos=linenos ) code = highlight(text, lexer, formatter) if linenos: return '<div class="highlight">%s</div>\n' % code return code except: return '<pre class="%s"><code>%s</code></pre>\n' % ( lang, mistune.escape(text) ) class HighlightMixin(object): def block_code(self, text, lang): # renderer has an options inlinestyles = self.options.get('inlinestyles') return block_code(text, lang, inlinestyles, False) class TocRenderer(HighlightMixin, mistune.Renderer): pass def load_all_articles(dir_path: str) -> List[str]: all_files = os.listdir(dir_path) display_files = filter(lambda n: not n.startswith('.'), all_files) whole_paths = list(map(lambda n: os.path.join(dir_path, n), display_files)) return whole_paths def load_article_content(path: str) -> str: with open(path) as f: return f.read() def render_content_to_markdown(content: str) -> str: renderer = TocRenderer(linenos=True, inlinestyles=False) markdown = mistune.Markdown(escape=True, renderer=renderer) return markdown(content) def article_list() -> List[Dict[str, str]]: if "site" not in g: return jsonify({'e': 'no site'}) dir_path = g.site['target_dir'] whole_paths = load_all_articles(dir_path) payload: List[Dict[str, str]] = [] for path in whole_paths: filename = path.split('/')[-1].split('.')[0] title = filename.split('-')[-1] publish_date = "-".join(filename.split('-')[:-1]) payload.append( { 'path': path, 'filename': filename, 'title': title, 'description': publish_date, 'last_modified': '昨天' } ) return payload def favicon_ico(): return current_app.send_static_file("images/favicon.ico") def index(): payload = article_list() return render_template("index.html", title='tree', payload=payload) def article(title: str): a_list = article_list() ta = list(filter(lambda t: t['title'] == title, a_list))[0] content = load_article_content(ta['path']) paylaod = render_content_to_markdown(content) return render_template('detail.html', title=title, post={'title': title, 'content': paylaod}) def not_found(error: Exception) -> Tuple[str, int]: return render_template("404.html"), 404 def fetch_target_dir() -> Optional[str]: return os.getenv("TARGET_DIR") def load_site_config(): if "site" not in g: target = fetch_target_dir() if not target: return g.site = { 'target_dir': target, 'title': 'Tree', } def about_me(): return render_template("aboutme.html") def init_app(app: Flask) -> None: app.add_url_rule("/", view_func=index, methods=["GET"]) app.add_url_rule("/article/<string:title>", view_func=article, methods=["GET"]) app.add_url_rule("/favicon.ico", view_func=favicon_ico) app.add_url_rule("/aboutme", view_func=about_me, methods=["GET"]) app.register_error_handler(404, not_found) app.before_request(load_site_config) ```
{ "source": "jiazifa/CartoonExtractor", "score": 3 }
#### File: src/cartoon/cli.py ```python import os import io import re import sys import time import json import argparse import logging from importlib import import_module from argparse import ArgumentParser from typing import Tuple, Any, Dict, List, Callable, Optional, Union from urllib import parse, request, error import cartoon from cartoon.common import * sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8") SITES = { "fzdm": "fzdm", "jav468": "jav", "kuaikanmanhua": "kkmh", "meizi.info": "mz", "mzitu": "mztu", "177pic": "177pic" } # global var prefer_list: bool = False def url_to_module(url: str) -> Tuple[Any, str]: """ find module by url, we match with dic SITES Return: module name if matched """ r = parse.urlparse(url) domain = r.netloc safe_starts = ["www."] for start in safe_starts: if domain.startswith(start): domain = domain.replace(start, "") safe_ends: List[str] = [".com", ".cn", ".org", ".info"] for ends in safe_ends: if domain.endswith(ends): domain = domain.replace(ends, "") k = domain if k in SITES: return (import_module(".".join(["cartoon", "extractors", SITES[k]])), url) else: return (import_module(".".join(["cartoon", "extractors", "universal"])), url) def any_download(url: str, **kwargs): """ dowload a single html url use module if matched, otherwise we use universal downloader """ m, url = url_to_module(url) m.prefer_download(url) def any_download_playlist(url: str, **kwargs): """ dowload a list html url use module if matched, otherwise we use universal downloader """ m, url = url_to_module(url) m.prefer_download_list(url) def download_main( download: Callable[..., None], download_playlist: Callable[..., None], urls: List[str], ): for url in urls: if re.match(r"https?://", url) is None: url = "http://" + url if prefer_list: download_playlist(url) else: download(url) def parse_main(**kwargs): logging.basicConfig(format="[%(levelname)s] %(message)s") parser = ArgumentParser( prog="ct-get", usage="ct-get [OPTION] ... URL...", description="tool for cartoon downloader", ) # version info parser.add_argument( "-v", "--version", action="version", version=cartoon.__version__ ) # 命令分组, 便于分割 run_grp = parser.add_argument_group("Dry run options", "(no actual download)") run_grp.add_mutually_exclusive_group() run_grp.add_argument( "-i", "--info", action="store_true", help="Print extracted information with URLs", ) # 下载选项 download_grp = parser.add_argument_group("Download options") # debug 会输出一些信息 download_grp.add_argument( "-d", "--debug", action="store_true", help="Show traceback and other debug infomation", ) # 下载的是列表 download_grp.add_argument( "-l", "--playlist", action="store_true", help="prefer to download list" ) # 将args参数赋予URL parser.add_argument("URL", nargs="*", help=argparse.SUPPRESS) args = parser.parse_args() if args.debug: logging.getLogger().setLevel(logging.DEBUG) global prefer_list if args.playlist: prefer_list = True URLs: List[str] = [] URLs.extend(args.URL) download_main(any_download, any_download_playlist, URLs) def main(**kwargs): """ inner function """ parse_main(**kwargs) ``` #### File: cartoon/extractors/fzdm.py ```python import re from bs4 import BeautifulSoup from cartoon.common import * IMAGE_HOST = "http://p3.manhuapan.com/" HOST = "https://manhua.fzdm.com/" SITE_NAME = "风之动漫" def get_bs_element(content: str) -> BeautifulSoup: bs = BeautifulSoup(content, "html.parser") return bs def get_next_page_link(current: str, content: str) -> Optional[str]: bs = get_bs_element(content) a_s = bs.find_all("a", "pure-button-primary") a = list(filter(lambda tag: tag.string == "下一页", a_s)) if not a: return None node = a[0] if node.string == "下一页": path_spl = current.split("?")[0].split("/") path_spl.pop(-1) appended: str = node["href"] path_spl.append(appended) r = "/".join(path_spl) return r return None def get_image_name(content: str) -> Optional[str]: bs = get_bs_element(content) a = bs.find("a", attrs={"class": "button-success"}) return a.string def get_target_img_url(content: str) -> Optional[str]: pattern = r'var mhurl="([\w\/.]+)' result = match1(content, (pattern)) or [] target = result[0] if not target: return None return IMAGE_HOST + target def get_title(content: str) -> str: bs = get_bs_element(content) title: str = bs.title.get_text() title = title.replace(SITE_NAME, "").strip() return title def get_filename(img_url: str, title: str, filename: str) -> str: return filename + "." + img_url.split(".")[-1] def prefer_download_list(url: str): pass def prefer_download(url: str): print(url) content: Optional[str] = None content = str(get_content(url), encoding="utf-8") while content: target_url = get_target_img_url(content) title = get_title(content) filename = get_image_name(content) if target_url and filename: target_filename = get_filename(target_url, title, filename) url_save( target_url, target_filename, ) next_page = get_next_page_link(url, content) if not next_page: content = None else: url = next_page content = str(get_content(next_page), encoding="utf-8") ``` #### File: cartoon/extractors/jav.py ```python import re from bs4 import BeautifulSoup from cartoon.util import log from cartoon.common import * HOST = "https://www.jav468.com/" SITE_NAME = "_" def get_bs_element(content: str) -> BeautifulSoup: bs = BeautifulSoup(content, "html.parser") return bs def get_title(content: str) -> str: bs = get_bs_element(content) return bs.title.string def get_all_links_for_list(content: str) -> List[str]: bs = get_bs_element(content) result: List[str] = [] wrapper = bs.findAll("div", attrs={"class": "thumbnail"}) for div in wrapper: for child in div.children: if child.name == "a": result.append(child.attrs["href"]) return result def get_imgs_from_page(content: str) -> List[str]: bs = get_bs_element(content) wrapper = bs.find("figure", attrs={"class": "wp-block-image"}) result: List[str] = [] for child in wrapper.descendants: if child.name == "noscript": for chi in child.descendants: result.append(chi.attrs["src"]) return result def download_list(url: str): content: Optional[str] = str(get_content(url), encoding="utf-8") if not content: return all_link = get_all_links_for_list(content) for link in all_link: download_one(link) log.i("downloaded " + link) if url.endswith("/"): url = str(url[:-1]) items = url.split("/") page = items.pop(-1) newUrl = "/".join((items + [str(int(page) + 1)])) download_list(newUrl) def download_one(url: str): print(url) content: Optional[str] = None content = str(get_content(url), encoding="utf-8") images: List[str] = get_imgs_from_page(content) if len(images) > 300: return folder = get_title(content) safe_f = "".join( [c for c in folder if c.isalpha() or c.isdigit() or c == " "] ).rstrip() url_file_tuple: List[Tuple[str, str]] = [ (img, img.split("/")[-1]) for img in images ] urls_save(url_file_tuple, safe_f) prefer_download = download_one prefer_download_list = download_list ``` #### File: cartoon/extractors/mz.py ```python import re from bs4 import BeautifulSoup from cartoon.util import log from cartoon.common import * HOST = "http://meizi.info/" SITE_NAME = "_" def get_bs_element(content: str) -> BeautifulSoup: bs = BeautifulSoup(content, "html.parser") return bs def get_title(content: str) -> str: bs = get_bs_element(content) return bs.title.string def get_images_from_page(content: str) -> List[str]: result: List[str] = [] bs = get_bs_element(content) wrapper = bs.findAll("article", attrs={"class": "article-content"}) for div in wrapper: for child in div.descendants: if child.name == "img": result.append(child.attrs["src"]) return result def download_list(url: str): pass def download_one(url: str): print(url) content: str = str(get_content(url), encoding="utf-8") images: List[str] = get_images_from_page(content) folder = get_title(content) safe_f = "".join( [c for c in folder if c.isalpha() or c.isdigit() or c == " "] ).rstrip() url_file_tuple: List[Tuple[str, str]] = [ (img, img.split("/")[-1]) for img in images ] urls_save(url_file_tuple, safe_f) prefer_download = download_one prefer_download_list = download_list if __name__ == "__main__": url = "http://meizi.info/htm-data-7-1902-3441888.html" download_one(url) ``` #### File: cartoon/util/log.py ```python import os, sys import time def sprint(text: str, *colors) -> str: return text def println(text: str, *colors): sys.stdout.write(sprint(text, *colors) + "\n") def print_err(text: str, *colors): sys.stderr.write(sprint(text, *colors) + "\n") def print_log(text: str, *colors): sys.stderr.write(sprint(text, *colors) + "\n") def i(message: str): print_log(message) def yes_or_no(message: str) -> bool: ans = str(input("%s (y/N)" % message)).lower().strip() if ans == "y": return True return False class SimpleProgressBar: _displayed: bool = False _received: int = 0 _speed: str = '0' _bar: str = "" def __init__(self, totol_size: int): self.totol_size = totol_size self.last_updated = time.time() totol = round(self.totol_size / (1024 * 1024), 1) percent = (self._received + 0.01) / totol self._bar = "{percent}%% {recv}/{totol}MB" def update(self): self._displayed = True perecent = round(self._received * 100 / self.totol_size, 1) bar = self._bar.format(percent=str(perecent), recv=str(self._received), totol=str(self.totol_size)) sys.stdout.write("\r" + bar + "\r") sys.stdout.flush() def update_received(self, n: int): self._received += n time_diff = time.time() - self.last_updated bytes_ps = n / time_diff if time_diff else 0 if bytes_ps > 1024 ** 3: self._speed = "{:>4.0f} GB/s".format(bytes_ps / 1024 ** 3) elif bytes_ps >= 1024 ** 2: self.speed = '{:4.0f} MB/s'.format(bytes_ps / 1024 ** 2) elif bytes_ps >= 1024: self.speed = '{:4.0f} kB/s'.format(bytes_ps / 1024) else: self.speed = '{:4.0f} B/s'.format(bytes_ps) self.last_updated = time.time() self.update() def update_piece(self, n: int): self.current_piece = n def done(self): if self._displayed: print() self._displayed = False class CountProgressBar: _displayed: bool = False _received: int = 0 _speed: str = '0' _bar: str = "" def __init__(self, totol_count: int): self.totol_count = totol_count percent = (self._received + 0.01) / totol_count self._bar = "{percent}%% {recv}/{totol}" def update(self): self._displayed = True perecent = round(self._received * 100 / self.totol_size, 1) bar = self._bar.format(percent=str(perecent), recv=str(self._received), totol=str(self.totol_size)) sys.stdout.write("\r" + bar + "\r") sys.stdout.flush() def update_received(self, n: int): self._received += n self.update() def done(self): if self._displayed: print() self._displayed = False ```
{ "source": "jiazifa/dingTalkRobotHelper", "score": 2 }
#### File: jiazifa/dingTalkRobotHelper/app.py ```python import sys from flask import Flask, render_template, request from collections import namedtuple Robot = namedtuple('Robot', ['name', 'key', 'push_title', 'access_token', 'access_secret']) def parse_params(request): """ 从一个Request实例中解析params参数 Args: request: flask.request 实例对象 Return: 一个解析过的字典对象,如果没有解析出,则返回一个空的字典对象 """ r = request d = {} if r.method == "GET": if json:= r.args or r.get_json(): d = dict(json) if r.method == "POST": if json:= r.get_json() or r.args: d = dict(json) if not d: d = dict(r.values) return d def find_robot_by_key(robots, key): rs = list([Robot(r['name'], r['key'], r['push_title'], r['access_token'], r['access_secret']) for r in robots]) result = list(filter(lambda r: r.key == key, rs)) return result[-1] app = Flask(__name__, static_folder='static', template_folder='templates') config = { 'name': '钉钉小助手', 'robots': [{ 'name': '', 'key': '', 'push_title': '', 'access_token': '', 'access_secret': '', }] } try: import local_setting config.update(local_setting.config) except ImportError: pass @app.route('/') def index(): return render_template('index.html', config=config) @app.route('/execute', methods=["POST"]) def execute(): params = parse_params(request) key = str(params['key']) content = str(params['content']) atAll = bool(params['atAll']) robot = find_robot_by_key(config['robots'], key) if not robot: return {'status': 'error', 'msg': '未找到机器人'} try: from dingtalkchatbot.chatbot import DingtalkChatbot, ActionCard, FeedLink, CardItem new_webhook = 'https://oapi.dingtalk.com/robot/send?access_token=' + robot.access_token xiaoding = DingtalkChatbot(new_webhook, secret=robot.access_secret, pc_slide=True, fail_notice=False) xiaoding.send_markdown(title=robot.push_title, text=content, is_at_all=atAll) return {'status': 'ok', 'msg': '发送成功'} except ImportError: return {'status': 'error', 'msg': '请引入 dingtalkchatbot 模块'} except Exception as error: return {'status': 'error', 'msg': '发送失败' + str(error)} if __name__ == "__main__": app.run(debug=False, port=5000, host='0.0.0.0') ```
{ "source": "jiazifa/sky_main", "score": 2 }
#### File: app/utils/errors.py ```python from app.utils.response import response_error class ApiError: @classmethod def get_error(cls, error_code): raise NotImplementedError class CommonError(ApiError): @classmethod def get_error(cls, error_code: int=9999): switcher = { # 未知错误 9999: response_error(error_code=9999, msg="unknown_error", http_code=400), # 参数不全或错误 40000: response_error( error_code=40000, msg="args_missing_or_wrong", http_code=400 ), # token 过期 40204: response_error(error_code=40204, msg="token expired", http_code=400), # 需要权限 43000: response_error( error_code=43000, msg="need_permission", http_code=401 ), # 资源不存在 44000: response_error(error_code=44000, msg="url_not_found", http_code=404), } resp = switcher.get(error_code or 9999) assert resp != None return resp @classmethod def error_toast(cls, msg="error_message"): return response_error(error_code=40001, msg=msg, http_code=400) class UserError(CommonError): """ 用户模块下的错误类型包装 """ @classmethod def get_error(cls, error_code): switcher = { # 账号已存在 40200: response_error( error_code=40200, msg="account_exsist", http_code=400 ), # 无此账号,无法找出用户 40203: response_error(error_code=40203, msg="no_account", http_code=400), } return switcher.get(error_code) or super(UserError, cls).get_error(error_code) ``` #### File: app/utils/regex.py ```python import re from typing import Optional def is_emoji(content: str) -> bool: """ judge str is emoji Args: str type Return : Bool type , return True if is Emoji , else False """ if not content: return False if u"\U0001F600" <= content and content <= u"\U0001F64F": return True elif u"\U0001F300" <= content and content <= u"\U0001F5FF": return True elif u"\U0001F680" <= content and content <= u"\U0001F6FF": return True elif u"\U0001F1E0" <= content and content <= u"\U0001F1FF": return True else: return False def is_link(url: Optional[str]) -> bool: """ 验证是否是一个链接 Args: url: 需要验证的字符 Return: 如果是合法的链接,返回 True ,否则返回 False """ regex = r'(https?)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]' result: Optional[re.Match] = re.match(regex, url) return False if not result else True def is_phone(content: str) -> bool: """ 验证是否是一个手机号 Args: url: 需要验证的号码 Return: 如果是合法的,返回 True ,否则返回 False """ regex = r'1[3|4|5|7|8][0-9]{9}' result: Optional[re.Match] = re.match(regex, content) return False if not result else True def is_email(content: str) -> bool: """ 验证是否是一个邮箱 Args: url: 需要验证的邮箱 Return: 如果是合法的,返回 True ,否则返回 False """ regex = r'(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)' result: Optional[re.Match] = re.match(regex, content) return False if not result else True ``` #### File: app/utils/strings.py ```python import hashlib import random import datetime import time import re from .regex import is_emoji from typing import Dict, List, Optional def get_unix_time_tuple( date = datetime.datetime.now(), millisecond: bool = False ) -> str: """ get time tuple get unix time tuple, default `date` is current time Args: date: datetime, default is datetime.datetime.now() millisecond: if True, Use random three digits instead of milliseconds, default id False Return: a str type value, return unix time of incoming time """ time_tuple = time.mktime(date.timetuple()) time_tuple = round(time_tuple * 1000) if millisecond else time_tuple second = str(int(time_tuple)) return second def get_date_from_time_tuple(unix_time: str = get_unix_time_tuple(), formatter: str = '%Y-%m-%d %H:%M:%S') -> str: """ translate unix time tuple to time get time from unix time Args: unix_time: unix time tuple formatter: str time formatter Return: a time type value, return time of incoming unix_time """ if len(unix_time) == 13: unix_time = str(float(unix_time) / 1000) t = int(unix_time) time_locol = time.localtime(t) return time.strftime(formatter, time_locol) def getmd5(code: str) -> Optional[str]: """ return md5 value of incoming code get md5 from code Args: code: str value Return: return md5 value of code """ if code: md5string = hashlib.md5(code.encode('utf-8')) return md5string.hexdigest() return None def get_random_num(digit: int = 6) -> str: """ get a random num get random num Args: digit: digit of the random num, limit (1, 32) Return: return Generated random num """ if digit is None: digit = 1 digit = min(max(digit, 1), 32) # 最大支持32位 result = "" while len(result) < digit: append = str(random.randint(1, 9)) result = result + append return result def contain_emoji(content: str) -> bool: """ judge str contain emoji str Args: str type Return : Bool type, return True if contain Emoji, else False """ for c in content: if is_emoji(c): return True return False def get_domain(url: str) -> str: """ get domain from url by given Args: str type Return: str type, return domain if can get """ from urllib.parse import urlparse parsed_uri = urlparse(url) domain = '{uri.netloc}'.format(uri=parsed_uri) return domain def filter_all_img_src(content: str) -> List[str]: replace_pattern = r'<[img|IMG].*?>' # img标签的正则式 img_url_pattern = r'.+?src="(\S+)"' # img_url的正则式 replaced_img_url_list: List[str] = [] img_url_list = [] need_replace_list = re.findall(replace_pattern, content) # 找到所有的img标签 for tag in need_replace_list: imgs = re.findall(img_url_pattern, tag) if imgs: img_url_list.append(imgs[0]) # 找到所有的img_url return img_url_list ``` #### File: app/views/user.py ```python from typing import Optional, Dict from flask import request, current_app, g, Blueprint from app.utils import UserError, CommonError, NoResultFound, MultipleResultsFound from app.utils import response_error, response_succ from app.utils import get_random_num, get_unix_time_tuple, getmd5 from app.utils import session, parse_params, get_current_user, get_logger, redis_client from app.utils import login_require, get_token_from_request, is_phone, is_email from app.model import User, LoginRecordModel api = Blueprint("user", __name__) logger = get_logger(__name__) def register(): params = parse_params(request) email: str = params.get("email") password: str = params.get("password") q = session.query(User).filter(User.email == email, User.password == password) exsist_user = session.query(q.exists()).scalar() if exsist_user: return UserError.get_error(error_code=40200) user = User(email, password=password) try: session.add(user) session.commit() payload: Dict[str, int] = {"user_id": user.id} return response_succ(body=payload) except Exception as e: return CommonError.get_error(error_code=9999) def login(): params = parse_params(request) email: Optional[str] = params.get("email") password: Optional[str] = params.get("password") if not email or not password: return CommonError.get_error(error_code=40000) try: exsist_user: User = session.query(User).filter_by( email=email, password=password ).one() login_time: str = get_unix_time_tuple() log_ip: str = request.args.get("user_ip") or request.remote_addr record: LoginRecordModel = LoginRecordModel(exsist_user.id, log_ip) record.save() # update token token: str = getmd5("-".join([email, password, get_random_num(2)])) # 保存到redis中, 设置有效时间为7天 cache_key: str = exsist_user.get_cache_key time: int = 60 * 60 * 24 * 7 redis_client.client.set(cache_key, token, time) redis_client.client.set(token, cache_key, time) payload: Dict[str, any] = {"token": token, "user_id": exsist_user.id} return response_succ(body=payload) except NoResultFound: return UserError.get_error(40203) except Exception as e: logger.error(e) return CommonError.get_error(9999) @login_require def logout(): """ 登出 设置redis时间为过期 """ params = parse_params(request) token = get_token_from_request(request) user: User = get_current_user() cache_key: str = user.get_cache_key redis_client.client.delete(cache_key, token) return response_succ(body={}) @login_require def user_info(): """ 获得用户基本信息 需要登录权限 """ params = parse_params(request) user: User = get_current_user() payload: Dict[str, Any] = user.info_dict return response_succ(body=payload) @login_require def modify_user_info(): params = parse_params(request) user: User = get_current_user() # 用户昵称 nickname =params.get("nickname") phone = params.get("phone") sex = int(params.get("sex")) email = params.get("email") if nickname: user.nickname = nickname if phone: if is_phone(str(phone)) and len(phone) == 11: user.mobilephone = phone else: return CommonError.error_toast(msg="手机号码格式错误") if sex: if sex in (1, 0): user.sex = sex else: return CommonError.error_toast(msg="性别设置错误") if email: if is_email(email): user.email = email else: return CommonError.error_toast(msg="邮箱格式错误") user.save(commit=True) payload: Dict[str, Any] = user.info_dict return response_succ(body=payload) def mail_one_time_code(f: str): pass def setup_url_rule(api: Blueprint): # 注册 api.add_url_rule("/register", view_func=register, methods=["POST"]) # 登录 api.add_url_rule("/login", view_func=login, methods=["POST"]) # 修改信息 api.add_url_rule("/modify_info", view_func=modify_user_info, methods=["POST"]) # 获得用户信息 api.add_url_rule("/info", view_func=user_info, methods=["GET"]) # 登出 api.add_url_rule("/logout", view_func=logout, methods=["POST"]) setup_url_rule(api) ``` #### File: sky_main/tests/test_0user.py ```python import sys from os import path import json import pytest import random from flask import Flask from .helper import * # 将路径添加到 sys.path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) class TestUser: def setup_method(self): from app.utils import getmd5 self._email = DEFAULT_LOGIN_PARAMS.get("email") self._password = DEFAULT_LOGIN_PARAMS.get("password") def test_register_on_error(self, client): password: str = <PASSWORD> rv = client.post( "/user/register", json={"email": self._email, "password": self._password,} ) rv = client.post( "/user/register", json={"email": self._email, "password": <PASSWORD>,} ) assert rv.status_code == 400 def test_login(self, client): password = <PASSWORD> rv = client.post( "/user/login", json={"email": self._email, "password": self._password,} ) assert rv.status_code == 200 body = rv.json["data"] self._token = body.get("token") self._user_id = body.get("user_id") assert body.get("user_id") != None assert body.get("token") != None def test_info(self, client): token = get_token(client, DEFAULT_LOGIN_PARAMS) rv = client.get("/user/info", headers={"token": token}) assert rv.status_code == 200 body = rv.json["data"] assert body.get("email") == self._email assert body.get("account_status") == 1 assert body.get("user_id") != 0 def test_change_info(self, client): token = get_token(client, DEFAULT_LOGIN_PARAMS) nickname = random.choice(["测试1", "测试2", "测试3", "测试4"]) sex = 1 phone = '13859943743' rv = client.post("/user/modify_info", json={"nickname": nickname, "phone": phone, "sex": sex}, headers={"token": token}) print(rv.json) assert rv.status_code == 200 rv = client.get("/user/info", headers={"token": token}) body = rv.json["data"] print(body) assert body.get("email") == self._email assert body.get("account_status") == 1 assert body.get("user_id") == 1 assert body.get("nickname") == nickname assert body.get("sex") == sex assert body.get("phone") == phone ```
{ "source": "jiazifa/ToolHUB", "score": 3 }
#### File: ToolHUB/utils/helpers.py ```python from typing import Union, Dict import sys import logging LOGGERS: Dict[str, logging.Logger] = {} def get_logger(name: Union[None, str] = None) -> logging.Logger: """ 获得一个logger 实例,用来打印日志 Args: name: logger的名称 Return: 返回一个logger实例 """ global LOGGERS if not name: name = __name__ has = LOGGERS.get(name) if has: return has logger = logging.getLogger(name=name) stream_handler = logging.StreamHandler(sys.stdout) LOG_LEVEL = 'DEBUG' LOGGING_FORMATTER = "%(levelname)s - %(asctime)s - process: %(process)d - %(filename)s - %(name)s - %(lineno)d - %(module)s - %(message)s" # 每条日志输出格式 logger.setLevel(LOG_LEVEL) stream_handler.setLevel(LOG_LEVEL) formatter = logging.Formatter(LOGGING_FORMATTER) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) LOGGERS.setdefault(name, logger) return logger ``` #### File: ToolHUB/utils/parser.py ```python from lxml import etree from typing import Union def parser_first_text_or_content_if_could(html: etree._Element, query_path: str) -> Union[str, None]: """ 如果解析出的内容是一个数组,默认取的第一个 """ nodes = html.xpath(query_path) if not nodes: return None if len(nodes) > 0: desc = nodes[0] if hasattr(desc, 'text'): return str(desc.text) return str(desc) return None ```
{ "source": "jib1337/Rogue-MySql-Server", "score": 2 }
#### File: jib1337/Rogue-MySql-Server/RogueSQL.py ```python import socket import asyncore import asynchat import struct import logging import logging.handlers import argparse import os import sys import signal DEBUG = False PORT = 3306 LOG_FILE = 'rogueSQL.log' VERBOSE = False SAVE_FOLDER = os.sep.join(os.path.abspath(__file__).split(os.sep)[:-1]) + os.sep + 'Downloads' + os.sep ATTEMPTS = 3 # Logging stuff log = logging.getLogger(__name__) log.setLevel(logging.INFO) tmp_format = logging.handlers.WatchedFileHandler(LOG_FILE, 'ab') tmp_format.setFormatter(logging.Formatter("%(asctime)s:%(levelname)s:%(message)s")) log.addHandler( tmp_format ) parser = argparse.ArgumentParser(prog='RogueSQL', description='Rogue MySQL server') parser.add_argument("-p", metavar='port', help='port to run the server on', type=int) parser.add_argument("-f", metavar='filename', help="specify a single filename to retrieve") parser.add_argument("-l", metavar='filelist', help="path to file with list of files for download") parser.add_argument("-a", metavar='attempts', help='how many times to request a file before giving up', type=int) parser.add_argument("-v", action='store_true', help='toggle verbosity') parser.add_argument("-d", action='store_true', help='log debug messages') def handler(sig, frame): print('[+] Exiting now...') sys.exit(0) class LastPacket(Exception): pass class OutOfOrder(Exception): pass class mysql_packet(object): packet_header = struct.Struct('<HbB') packet_header_long = struct.Struct('<HbbB') def __init__(self, packet_type, payload): if isinstance(packet_type, mysql_packet): self.packet_num = packet_type.packet_num + 1 else: self.packet_num = packet_type self.payload = payload def __str__(self): payload_len = len(self.payload) if payload_len < 65536: header = mysql_packet.packet_header.pack(payload_len, 0, self.packet_num % 255) else: header = mysql_packet.packet_header.pack(payload_len & 0xFFFF, payload_len >> 16, 0, self.packet_num % 255) result = "{0}{1}".format( header, self.payload ) return result def __repr__(self): return repr(str(self)) @staticmethod def parse(raw_data): packet_num = ord(raw_data[0]) payload = raw_data[1:] return mysql_packet(packet_num, payload) class http_request_handler(asynchat.async_chat): def __init__(self, addr): asynchat.async_chat.__init__(self, sock=addr[0]) self.addr = addr[1] self.ibuffer = [] self.filenumber = 0 self.current_filename = '' self.set_terminator(3) self.state = 'LEN' self.sub_state = 'Auth' self.logined = False self.push( mysql_packet( 0, "".join(( '\x0a', # Protocol '5.6.28-0ubuntu0.14.04.1' + '\0', '\x2d\x00\x00\x00\x40\x3f\x59\x26\x4b\x2b\x34\x60\x00\xff\xf7\x08\x02\x00\x7f\x80\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x68\x69\x59\x5f\x52\x5f\x63\x55\x60\x64\x53\x52\x00\x6d\x79\x73\x71\x6c\x5f\x6e\x61\x74\x69\x76\x65\x5f\x70\x61\x73\x73\x77\x6f\x72\x64\x00', )) ) ) self.order = 1 self.states = ['LOGIN', 'CAPS', 'ANY'] def push(self, data): if DEBUG: log.debug('Pushed:', data) data = str(data) asynchat.async_chat.push(self, data) def collect_incoming_data(self, data): self.ibuffer.append(data) def found_terminator(self): data = "".join(self.ibuffer) self.ibuffer = [] if self.state == 'LEN': len_bytes = ord(data[0]) + 256*ord(data[1]) + 65536*ord(data[2]) + 1 if len_bytes < 65536: self.set_terminator(len_bytes) self.state = 'Data' else: self.state = 'MoreLength' elif self.state == 'MoreLength': if data[0] != '\0': self.push(None) self.close_when_done() else: self.state = 'Data' elif self.state == 'Data': packet = mysql_packet.parse(data) try: if self.order != packet.packet_num: raise OutOfOrder() else: self.order = packet.packet_num + 2 if packet.packet_num == 0: global prevFilename global failCount if packet.payload[0] == '\x03': # Set the current file self.current_filename = filelist[self.filenumber] if DEBUG: log.info('Previous request: %s; Next request: %s' % (prevFilename, self.current_filename)) if self.current_filename == prevFilename: # Means a failed request previously failCount += 1 if failCount != ATTEMPTS: print('[-] Moving on from this file in ' + str(ATTEMPTS - failCount) + ' attempt/s') else: print('[-] Moving on to next file') del filelist[self.filenumber] failCount = 0 if len(filelist) == 1: print('[+] End of file list reached') print('[+] Exiting now...') sys.exit(0) self.current_filename = filelist[self.filenumber] PACKET = mysql_packet( packet, '\xFB{0}'.format(self.current_filename) ) if DEBUG: log.info('Requesting for file: %s' % self.current_filename) print('[+] Requesting %s' % self.current_filename) prevFilename = self.current_filename self.set_terminator(3) self.state = 'LEN' self.sub_state = 'File' self.push(PACKET) elif packet.payload[0] == '\x1b': if DEBUG: log.info('SelectDB') self.push(mysql_packet( packet, '\xfe\x00\x00\x02\x00' )) raise LastPacket() elif packet.payload[0] in '\x02': self.push(mysql_packet( packet, '\0\0\0\x02\0\0\0' )) raise LastPacket() elif packet.payload == '\x00\x01': self.push(None) self.close_when_done() else: raise ValueError() else: # Recieved file handling if self.sub_state == 'File': if len(data) == 1: if packet.packet_num < 256 and self.filenumber < len(filelist) - 1: self.current_filename = filelist[self.filenumber] self.set_terminator(3) self.state = 'LEN' self.sub_state = 'File' self.push( mysql_packet(packet, '\xFB{0}'.format(self.current_filename)) ) else: self.push( mysql_packet(packet, '\0\0\0\x02\0\0\0') ) sys.exit(0) else: with open(SAVE_FOLDER + os.path.normpath(self.current_filename).split(os.sep)[-1], 'ab') as fl: fl.write(data) if self.current_filename not in obtained: print('[+] File %s obtained' % self.current_filename) obtained.add(self.current_filename) del filelist[self.filenumber] self.set_terminator(3) self.state = 'LEN' self.order = packet.packet_num + 1 elif self.sub_state == 'Auth': self.push(mysql_packet( packet, '\0\0\0\x02\0\0\0' )) raise LastPacket() else: raise ValueError('Unknown packet') except LastPacket: if DEBUG: log.info('Last packet') self.state = 'LEN' self.sub_state = None self.order = 0 self.set_terminator(3) except OutOfOrder: if DEBUG: log.warning('Packets out of order') self.push(None) self.close_when_done() else: if DEBUG: log.error('Unknown state') self.push('None') self.close_when_done() class mysql_listener(asyncore.dispatcher): def __init__(self, sock=None): asyncore.dispatcher.__init__(self, sock) if not sock: self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.set_reuse_addr() try: self.bind(('', PORT)) except socket.error: exit() self.listen(5) def handle_accept(self): pair = self.accept() if pair is not None: log.info('Data recieved from: %s' % pair[1][0]) print('[+] Data recieved from %s' % pair[1][0]) tmp = http_request_handler(pair) if __name__ == '__main__': filelist = list() obtained = set() failCount = 0 prevFilename = '' args = parser.parse_args() if args.d: DEBUG = args.d if args.l: try: filelist += filter(None, open(args.l, 'r').read().split('\n')) except IOError: print('[-] Error: List file not found') sys.exit(1) else: if not args.f: print('[-] Error: No files specified') sys.exit(1) else: filelist.append(args.f) if args.p: PORT = args.p if args.a: ATTEMPTS = args.a if args.v: VERBOSE = args.v if not os.path.exists(SAVE_FOLDER): os.mkdir(SAVE_FOLDER) filelist.append('') print('Rogue MySQL Server') print('[+] Target files:') for file in filelist: if file is not '': print('\t' + file) print('[+] Starting listener on port ' + str(PORT) + '... Ctrl+C to stop\n') listener = mysql_listener() signal.signal(signal.SIGINT, handler) asyncore.loop() ```
{ "source": "jibaku/blogging", "score": 2 }
#### File: blogging/blogging/actions.py ```python from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext from blogging.models import Post # Post Actions def make_published(modeladmin, request, queryset): """Mark the given posts as published.""" count = queryset.update(status=Post.PUBLISHED) message = ungettext( u'%(count)d post was successfully marked as published.', u'%(count)d posts were successfully marked as published', count ) % {'count': count} modeladmin.message_user(request, message) make_published.short_description = _(u"Mark selected stories as published") def make_draft(modeladmin, request, queryset): """Mark the given posts as draft.""" count = queryset.update(status=Post.DRAFT) message = ungettext( u'%(count)d post was successfully marked as draft.', u'%(count)d posts were successfully marked as draft', count ) % {'count': count} modeladmin.message_user(request, message) make_draft.short_description = _(u"Mark selected stories as draft") def make_selected(modeladmin, request, queryset): """Mark the given posts as selected.""" count = queryset.update(selected=True) message = ungettext( u'%(count)d post was successfully marked as selected.', u'%(count)d posts were successfully marked as selected', count ) % {'count': count} modeladmin.message_user(request, message) make_selected.short_description = _(u"Mark selected stories as selected") def make_post_type_action(key, name): """Create Post action to update post_type.""" func_name = 'define_as_{}'.format(name.lower()) def action_f(modeladmin, req, qset): count = qset.update(post_type=key) message = ungettext( u'%(count)d post was successfully marked as %(name)s.', u'%(count)d posts were successfully marked as %(name)s', count ) % {'count': count, 'name': name} modeladmin.message_user(req, message) action = action_f action.__name__ = func_name return (func_name, (action, func_name, "define selected as %s" % name)) # Category Actions def update_counters(modeladmin, request, queryset): """Update the counters for the given categories.""" count = 0 for category in queryset: category.update_counters() count += 1 message = ungettext( u'%(count)d category has been updated.', u'%(count)d categories had been updated.', count ) % {'count': count} modeladmin.message_user(request, message) update_counters.short_description = _(u"Update categories counters") ``` #### File: blogging/blogging/admin.py ```python from collections import OrderedDict from django.contrib import admin from blogging.actions import (make_draft, make_post_type_action, make_published, make_selected, update_counters) from blogging.models import Category, Picture, Post from blogging.settings import conf @admin.register(Picture) class PictureAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("name",)} list_display = ( 'name', 'site', 'description', 'image', ) list_filter = ('site',) search_fields = ('name', 'description') @admin.register(Category) class CategoryAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("name",)} list_display = ( 'name', 'site', 'visible_posts_count', 'all_posts_count', ) list_filter = ('site',) search_fields = ('name',) actions = [update_counters, ] @admin.register(Post) class PostAdmin(admin.ModelAdmin): list_display = ( 'title', 'author', 'status', 'published_on', 'selected', 'post_type', 'site' ) date_hierarchy = 'published_on' prepopulated_fields = {"slug": ("title",)} search_fields = ('excerpt', 'content', 'item__title') filter_horizontal = ["categories"] def get_actions(self, request): actions_list = [ ('make_published', (make_published, 'make_published', make_published.short_description)), ('make_draft', (make_draft, 'make_draft', make_draft.short_description)), ('make_selected', (make_selected, 'make_selected', make_selected.short_description)), ] for k, v in Post.CONTENT_TYPE_CHOICES: actions_list.append(make_post_type_action(k, v)) return OrderedDict(actions_list) def get_list_filter(self, request): if conf.get('POST_LIST_FILTER_BY_AUTHOR', True): return ['site', 'author', 'status', 'selected', 'categories'] else: return ['site', 'status', 'selected', 'categories'] def get_changeform_initial_data(self, request): return {'author': request.user.id} def formfield_for_manytomany(self, db_field, request, **kwargs): """ Monkey patching the form field for categories. TODO: Create a widget to manage it more easily """ field = super(PostAdmin, self).formfield_for_manytomany(db_field, request, **kwargs) field.queryset = field.queryset.order_by('site__domain') field.label_from_instance = lambda obj: "{site!s} - {name!s}".format(**{ 'site': obj.site, 'name': obj.name }) return field ``` #### File: blogging/blogging/context_processor.py ```python from blogging.models import Category, Post from django.conf import settings def categories(request): """Return the site categories.""" categories = Category.availables.all() return {'categories': categories} def latest_posts(request): """Return the latest posts.""" latest_items = Post.objects.published(site_id=settings.SITE_ID)[:5] return {'latest_posts': latest_items} def month_with_items(request): """Return the latest posts.""" months = Post.objects.published(site_id=settings.SITE_ID).dates('published_on', 'month') return {'month_with_items': months} def selected_items(request): """Return a list of selected items.""" selected_items = Post.objects.published(site_id=settings.SITE_ID).filter(selected=True) return {'selected_items': selected_items} ``` #### File: blogging/blogging/feeds.py ```python from django.conf import settings from django.contrib.sites.models import Site from django.contrib.syndication.views import Feed from django.shortcuts import get_object_or_404 from django.utils.translation import ugettext as _ from blogging.models import Category, Post # TODO: move it to the new blogging conf description_template = getattr(settings, 'BLOGGING_FEED_DESCRIPTION_TEMPLATE', "blogging/feeds/description.html") title_template = getattr(settings, 'BLOGGING_FEED_TITLE_TEMPLATE', "blogging/feeds/title.html") feed_title = getattr(settings, 'BLOGGING_FEED_TITLE', None) class LatestEntriesByCategory(Feed): description_template = description_template title_template = title_template def get_object(self, request, category_slug): site = Site.objects.get_current() return get_object_or_404(Category, slug=category_slug, site=site) def title(self, category): return category.name def link(self, obj): return obj.get_absolute_url() def description(self, category): return _(u"Latest published items from %s") % category def items(self, category): return Post.objects.published(site_id=settings.SITE_ID).filter(categories=category)[:20] class LatestEntries(Feed): description_template = description_template title_template = title_template link = "/" description = _(u"Latest published entries") def title(self): return feed_title or _(u"Latest entries") def items(self): return Post.objects.published(site_id=settings.SITE_ID)[:20] def item_pubdate(self, item): return item.published_on def item_author_name(self, item): return item.author.get_full_name() def item_categories(self, item): return item.categories.all() ```
{ "source": "jibaku/books", "score": 2 }
#### File: books/books/models.py ```python from __future__ import unicode_literals from django.contrib.sites.managers import CurrentSiteManager from django.contrib.sites.models import Site from django.db import models from django.db.models import Q from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ import datetime @python_2_unicode_compatible class Editor(models.Model): name = models.CharField(max_length=100) slug = models.SlugField(unique=True) class Meta: verbose_name = _('Editor') verbose_name_plural = _('Editors') def __str__(self): return self.name def cover_filename(instance, filename): return "books/%s.jpg" % instance.slug class BookManager(models.Manager): def published(self): now = datetime.datetime.now() queryset = self.filter(validated=True) queryset = queryset.filter(start_publication_on__lte=now) q = ( Q(end_publication_on__isnull=False) & Q(end_publication_on__gt=now) ) | Q(end_publication_on__isnull=True) queryset = queryset.filter(q) return queryset class SiteBookManager(CurrentSiteManager, BookManager): pass @python_2_unicode_compatible class Book(models.Model): site = models.ForeignKey(Site) validated = models.BooleanField(default=False) start_publication_on = models.DateTimeField(default=datetime.datetime.now) end_publication_on = models.DateTimeField(blank=True, null=True) lang = models.CharField(max_length=5) title = models.CharField(max_length=100) slug = models.SlugField(max_length=100, unique=True, db_index=True) authors = models.CharField(max_length=200) editor = models.ForeignKey(Editor) url = models.URLField(blank=True) affiliate_url = models.URLField(blank=True) isbn_10 = models.CharField(max_length=10, null=True, blank=True) isbn_13 = models.CharField(max_length=13, null=True, blank=True) asin = models.CharField(max_length=20, null=True, blank=True) description = models.TextField() cover = models.ImageField(upload_to=cover_filename, blank=True) objects = BookManager() on_site = SiteBookManager() class Meta: verbose_name = _('Book') verbose_name_plural = _('Books') def __str__(self): return self.title ``` #### File: books/books/views.py ```python from django.views.generic import ListView from django.views.generic import DetailView from books.models import Book class BooksList(ListView): def get_queryset(self): return Book.on_site.published() class BookDetail(DetailView): def get_queryset(self): return Book.on_site.published() ```
{ "source": "jibaku/django-textprocessor", "score": 2 }
#### File: textprocessor/templatetags/text_enhancer.py ```python import re import markdown from django.template.defaultfilters import stringfilter from django.utils.safestring import mark_safe from django import template register = template.Library() @register.filter @stringfilter def twitter_username(value): """Add a link to twitter for the twitter user reference in a string >>> twitter_username("Hello, @ev") u'Hello, <a href="http://twitter.com/ev">@ev</a>' """ def repl(m): return '<a href="http://twitter.com/%(username)s">@%(username)s</a>' % {'username': m.group(1)} return re.sub(r"@(\w+)", repl, value) @register.filter(name='markdown') @stringfilter def markdown_filter(value): html = markdown.markdown(value, output_format="html5") return mark_safe(html) ```
{ "source": "jibaku/photobooth", "score": 3 }
#### File: jibaku/photobooth/booth-pygame.py ```python import time import pygame from pygame.locals import K_ESCAPE, K_SPACE, QUIT, USEREVENT COUNTDOWN_DELAY = 4 def timerFunc(countdown, background): print("Timer CallBack", time.time()) print(countdown) print("--") # Display some text font = pygame.font.Font(None, 36) text = font.render(str(countdown), 1, (10, 10, 10)) textpos = text.get_rect() textpos.centerx = background.get_rect().centerx textpos.centery = background.get_rect().centery background.blit(text, textpos) if countdown == 0: print("SHOOT") def top_text(background): # Display some text font = pygame.font.Font(None, 36) text = font.render("space to shoot / esc to quit", 1, (10, 10, 10)) textpos = text.get_rect() textpos.centerx = background.get_rect().centerx background.blit(text, textpos) def main(): pygame.init() countdown = COUNTDOWN_DELAY stop_photobooth = False screen = pygame.display.set_mode((400, 300)) pygame.display.set_caption('Photobooth') # Fill background background = pygame.Surface(screen.get_size()) background = background.convert() background.fill((30, 250, 120)) top_text(background) # Blit everything to the screen screen.blit(background, (0, 0)) pygame.display.flip() while not stop_photobooth: background.fill((30, 250, 120)) top_text(background) for event in pygame.event.get(): # any other key event input if event.type == QUIT: stop_photobooth = True if event.type == USEREVENT+1: if countdown == -1: pygame.time.set_timer(USEREVENT+1, 0) countdown = COUNTDOWN_DELAY else: timerFunc(countdown, background) #calling the function wheever we get timer event. countdown -= 1 # get key current state keys = pygame.key.get_pressed() if keys[K_SPACE]: pygame.time.set_timer(USEREVENT+1, 1000) elif keys[K_ESCAPE]: print("quit") stop_photobooth = True screen.blit(background, (0, 0)) pygame.display.flip() if __name__ == "__main__": main() ```
{ "source": "jibaku/python-opengraph", "score": 3 }
#### File: python-opengraph/tests/test_opengraph.py ```python from __future__ import absolute_import, unicode_literals from unittest import TestCase from opengraph import OpenGraph from threading import local import responses data = local() class TestOpenGraph(TestCase): def setUp(self): # NOQA self.test_document = """ <html><head> <meta property="og:title" content="Test title"> </head><body></body></html> """ @responses.activate def test_loading_from_url(self): url = 'http://foo.bar.com/' responses.add( responses.GET, url, body=self.test_document, status=200, content_type='text/html') og = OpenGraph(url=url) self.assertEqual(og.title, 'Test title') def test_get_attr(self): og = OpenGraph(html=self.test_document) self.assertEqual(og.title, 'Test title') with self.assertRaises(AttributeError): og.attribute_does_not_exist def test_contains(self): og = OpenGraph(html=self.test_document) self.assertIn('title', og) def test_str_repr(self): og = OpenGraph(html=self.test_document) text_of_data = og.__data__.__str__() self.assertEqual(str(og), text_of_data) @responses.activate def test_loading_from_url(self): def http_callback(request): # Ugly, but using thread locals in order to capture the request # headers in the callback, to assert that it's being set correctly data.headers = request.headers return (200, {'content-type': 'text/html'}, self.test_document) url = 'http://foo.bar.com/' useragent = 'python-opengraph/0.0' responses.add_callback( responses.GET, url, callback=http_callback, content_type='text/html') og = OpenGraph(url=url, useragent=useragent) headers = data.headers self.assertEqual(og.title, 'Test title') self.assertEqual(headers['user-agent'], useragent) ```
{ "source": "jibaku/vycontrol", "score": 2 }
#### File: vycontrol/openvpn/views.py ```python from django.shortcuts import render from django.http import HttpResponse from django.template import loader from django.shortcuts import redirect from django.conf import settings from django.urls import reverse import vyos def index(request): if not request.user.is_authenticated: return redirect('%s?next=%s' % (reverse('registration-login'), request.path)) all_instances = vyos.instance_getall() hostname_default = vyos.get_hostname_prefered(request) template = loader.get_template('openvpn/list.html') context = { 'instances': all_instances, 'hostname_default': hostname_default, } return HttpResponse(template.render(context, request)) ``` #### File: vycontrol/vycontrol/vyos.py ```python import requests import json import pprint import sys from config.models import Instance from django.contrib.auth.models import Group from django.contrib.auth.models import User import perms def instance_getall(*args, **kwargs): return perms.instance_getall(*args, **kwargs) def get_hostname_prefered(*args, **kwargs): return perms.get_hostname_prefered(*args, **kwargs) def instance_getall_by_group(*args, **kwargs): return perms.instance_getall_by_group(*args, **kwargs) def repvar(s): return s.replace("-", "_") def get_url(hostname): # permcheck instance = Instance.objects.get(hostname=hostname) if instance.https == True: protocol = "https" else: protocol = "http" if (instance.port == None): instance.port = 443 url = protocol + "://" + instance.hostname + ":" + str(instance.port) return url def get_url_manage(hostname): url = get_url(hostname) + '/config-file' return url def get_url_configure(hostname): url = get_url(hostname) + '/configure' return url def get_url_show(hostname): url = get_url(hostname) + '/show' return url def get_url_retrieve(hostname): url = get_url(hostname) + '/retrieve' return url def get_key(hostname): # permcheck instance = Instance.objects.get(hostname=hostname) return instance.key def api(type, hostname, cmd): if type == "retrieve": url = get_url_retrieve(hostname) elif type == "manage": url = get_url_manage(hostname) elif type == "configure": url = get_url_configure(hostname) elif type == "show": url = get_url_show(hostname) else: return False pprint.pprint(cmd) print(json.dumps(cmd)) post = {'key': get_key(hostname), 'data': json.dumps(cmd)} print(post) try: resp = requests.post(url, verify=False, data=post, timeout=10) except requests.exceptions.ConnectionError: return False print(resp.status_code) pprint.pprint(resp) pprint.pprint(resp.json()) if resp.status_code != 200: # This means something went wrong. #raise ApiError('POST /tasks/ {}'.format(resp.status_code)) return False #for todo_item in resp.json(): #print('{} {}'.format(todo_item['id'], todo_item['summary'])) result1 = resp.json() print(result1['data']) #result2 = json.loads(result1['data']) pprint.pprint(result1) return result1['data'] def api_get(hostname, cmd): return api('retrieve', hostname, cmd) def api_show(hostname, cmd): return api('show', hostname, cmd) def api_set(hostname, cmd): return api('configure', hostname, cmd) def conntry(hostname): cmd = {"op": "showConfig", "path": ["interfaces"]} print(json.dumps(cmd)) post = {'key': get_key(hostname), 'data': json.dumps(cmd)} print(post) print(get_url_retrieve(hostname)) try: resp = requests.post(get_url_retrieve(hostname), verify=False, data=post, timeout=10) except requests.exceptions.ConnectionError: return False print(resp.status_code) if (resp.status_code == 200): return True pprint.pprint(resp) pprint.pprint(resp.json()) return False def get_firewall_all(hostname): cmd = {"op": "showConfig", "path": ["firewall"]} firewall_list = api_get(hostname, cmd) nfirewall_list = {} for f in firewall_list: s = repvar(f) nfirewall_list[s] = firewall_list[f] nfirewall_list[f] = firewall_list[f] return nfirewall_list def get_interfaces(hostname): cmd = {"op": "showConfig", "path": ["interfaces"]} result1 = api_get(hostname, cmd) return result1 def get_interfaces_all_names(hostname): interfaces = get_interfaces(hostname) all_names = [] for itype in interfaces: for iname in interfaces[itype]: all_names.append({ 'interface_name': iname, 'type': itype }) if 'vif' in interfaces[itype][iname]: for vif in interfaces[itype][iname]['vif']: all_names.append({ 'interface_name': iname, 'type': itype, 'vif': vif }) return all_names def get_interface(interface_type, interface_name, hostname): cmd = {"op": "showConfig", "path": ["interfaces", interface_type, interface_name]} result1 = api_get(hostname, cmd) return result1 def get_firewall(hostname, name): cmd = {"op": "showConfig", "path": ["firewall", "name", name]} result1 = api_get(hostname, cmd) return result1 def get_firewall_rule(hostname, name, rulenumber): cmd = {"op": "showConfig", "path": ["firewall", "name", name, "rule", rulenumber]} result1 = api_get(hostname, cmd) return result1 def set_config(hostname, cmd): #cmd = {"op": "set", "path": ["interface", interface_type, interface_name, "firewall", direction, "name", firewall_name]} result1 = api_set(hostname, cmd) return result1 def insert_firewall_rules(hostname, cmd): pprint.pprint(cmd) result1 = api_set(hostname, cmd) return result1 def get_route_static(hostname): cmd = {"op": "showConfig", "path": ["protocols","static","route"]} result1 = api_get(hostname, cmd) return result1 def set_firewall_syncookies_enable(hostname): cmd = {"op": "set", "path": ["firewall","syn-cookies",'enable']} result1 = api_set(hostname, cmd) return result1 def set_firewall_syncookies_disable(hostname): cmd = {"op": "set", "path": ["firewall","syn-cookies",'disable']} result1 = api_set(hostname, cmd) return result1 def set_firewall_allping_enable(hostname): cmd = {"op": "set", "path": ["firewall","all-ping",'enable']} result1 = api_set(hostname, cmd) return result1 def set_firewall_allping_disable(hostname): cmd = {"op": "set", "path": ["firewall","all-ping",'disable']} result1 = api_set(hostname, cmd) return result1 def get_firewall_portgroup(hostname): cmd = {"op": "showConfig", "path": ["firewall","group","port-group"]} result1 = api_get(hostname, cmd) return result1 def set_firewall_portgroup_del(hostname, group_name): cmd = {"op": "delete", "path": ["firewall","group",'port-group', group_name]} result1 = api_set(hostname, cmd) return result1 def set_firewall_portgroup_description(hostname, group_name, description): cmd = {"op": "set", "path": ["firewall","group",'port-group', group_name, "description", description]} result1 = api_set(hostname, cmd) return result1 def set_firewall_portgroup_add(hostname, group_name, port): cmd = {"op": "set", "path": ["firewall","group",'port-group', group_name, "port", port]} result1 = api_set(hostname, cmd) return result1 def set_firewall_portgroup_delete_port(hostname, group_name, port): cmd = {"op": "delete", "path": ["firewall","group",'port-group', group_name, "port", port]} result1 = api_set(hostname, cmd) return result1 def get_firewall_addressgroup(hostname): cmd = {"op": "showConfig", "path": ["firewall","group","address-group"]} result1 = api_get(hostname, cmd) return result1 def get_firewall_networkgroup(hostname): cmd = {"op": "showConfig", "path": ["firewall","group","network-group"]} result1 = api_get(hostname, cmd) return result1 def get_firewall_addressgroup_one(hostname, group_name): cmd = {"op": "showConfig", "path": ["firewall","group","address-group", group_name]} result1 = api_get(hostname, cmd) return result1 def get_firewall_networkgroup_one(hostname, group_name): cmd = {"op": "showConfig", "path": ["firewall","group","network-group", group_name]} result1 = api_get(hostname, cmd) return result1 def set_firewall_networkgroup_description(hostname, group_name, description): cmd = {"op": "set", "path": ["firewall","group",'network-group', group_name, "description", description]} result1 = api_set(hostname, cmd) return result1 def set_firewall_addressgroup_description(hostname, group_name, description): cmd = {"op": "set", "path": ["firewall","group",'address-group', group_name, "description", description]} result1 = api_set(hostname, cmd) return result1 def set_firewall_addressgroup_add(hostname, group_name, address): cmd = {"op": "set", "path": ["firewall","group",'address-group', group_name, "address", address]} result1 = api_set(hostname, cmd) return result1 def set_firewall_addressgroup_del(hostname, group_name): cmd = {"op": "delete", "path": ["firewall","group",'address-group', group_name]} result1 = api_set(hostname, cmd) return result1 def set_firewall_networkgroup_del(hostname, group_name): cmd = {"op": "delete", "path": ["firewall","group",'network-group', group_name]} result1 = api_set(hostname, cmd) return result1 def set_firewall_addressgroup_rangeadd(hostname, group_name, address_start, address_end): address = str(address_start) + "-" + str(address_end) cmd = {"op": "set", "path": ["firewall","group",'address-group', group_name, "address", address]} result1 = api_set(hostname, cmd) return result1 def set_firewall_addressgroup_description(hostname, group_name, description): cmd = {"op": "set", "path": ["firewall","group",'address-group', group_name, "description", description]} result1 = api_set(hostname, cmd) return result1 def set_firewall_networkgroup_add(hostname, group_name, network): cmd = {"op": "set", "path": ["firewall","group",'network-group', group_name, "network", network]} result1 = api_set(hostname, cmd) return result1 def set_firewall_networkgroup_description(hostname, group_name, description): cmd = {"op": "set", "path": ["firewall","group",'network-group', group_name, "description", description]} result1 = api_set(hostname, cmd) return result1 def delete_route_static(hostname, subnet, nexthop): #cmd = {"op": "delete", "path": ["protocols","static","route", subnet, "next-hop", nexthop]} cmd = {"op": "delete", "path": ["protocols","static","route", subnet]} result1 = api_set(hostname, cmd) return result1 def delete_route_rule(hostname, firewall_name, rule_name): cmd = {"op": "delete", "path": ["firewall", "name", firewall_name, "rule", rule_name]} result1 = api_set(hostname, cmd) return result1 def delete_firewall(hostname, name): cmd = {"op": "delete", "path": ["firewall","name", name]} result1 = api_set(hostname, cmd) return result1 def ip_route(hostname): cmd = {"op": "show", "path": ["ip","route"]} result1 = api_show(hostname, cmd) return result1 ``` #### File: vycontrol/wanlb/views.py ```python from django.shortcuts import render from django.http import HttpResponse from django.template import loader from django.shortcuts import redirect import vyos def index(request): all_instances = vyos.instance_getall() hostname_default = vyos.get_hostname_prefered(request) template = loader.get_template('wanlb/list.html') context = { 'instances': all_instances, 'hostname_default': hostname_default, } return HttpResponse(template.render(context, request)) ```
{ "source": "jibanCat/DigitalHumanities", "score": 3 }
#### File: DigitalHumanities/Han-Ji/Book.py ```python from collections import defaultdict, Counter ### WHY "defaultdict", INSTEAD OF THE REGULAR "dict" FUNCTION? from datetime import datetime from bs4 import BeautifulSoup import bs4 from urllib import request import urllib import time import random import re import os, sys import glob import logging import pandas as pd from pygments import highlight from pygments.formatters import HtmlFormatter from pygments.lexers import HtmlLexer # logging information logger = logging.getLogger() logger.setLevel(logging.DEBUG) class Book: """Han-Ji '<http://hanchi.ihp.sinica.edu.tw/ihp/hanji.htm>'_ Dataset. Attributes: flat_bodies (list): a list containing all htmls flat_passages (list): a list containing the text of all passages (i.e., every individual piece in a book). Users should define their own methods to organize the passages. flat_heads (list): a list containing all the text of the heads (i.e., the metadata at the top of each individual piece, like title and author). Users should define their own methods to organize the heads. flat_meta (list): a list containing all metadata (dictionary) extracted from bookmarks. User should define their own methods to extract metadata. paths (list): a list of paths extracted from the "bookmark" provided in the database. e.g., 集/總集/文選/卷第二十七 詩戊之一/樂府上/古樂府三首/飲馬長城窟行(P.1277) Args: bookname (string): the name of the book, default = '' date (string): the date you collected the book, default = None creator (string): the name of the creator who created the instance Methods: fetch_data(URL): fetch book bs4 obj from a start page URL of a Book in Han-Ji extract_paths(): extract paths from bookmark in self.flat_bodies list and append paths to self.paths write_htmls(path): write data into htmls on the disk in path load_htmls(path): load data from htmls on the disk in path char_word_counts(char, limits=(1,4)): count the number of occurances of the phrase attach with a certain character extract_rare_chars(driver_path, normalization=True): extract rare char in every passages. Note that this function would run for a long time. write_rare_chars(): writing self.flat_rare_chars to `{bookname}_rare_char.json` update_rare_chars(): replace rare char based on `{bookname}_rare_char.json` """ def __init__(self, bookname='', date=None, creator=None): self.flat_bodies = [] self.flat_passages = [] self.flat_heads = [] self.flat_meta = [] self.paths = [] self.author_bag = defaultdict(list) self.bookname = bookname try: self.date = datetime.strptime(date, '%Y-%m-%d') except (TypeError,AttributeError,ValueError) as e: logging.warning("No datetime input provided!") self.date = "" self.creator = creator self.description_dataframe = self._description_dataframe() def _highlight(self, html_code): from IPython.display import HTML formatter = HtmlFormatter(linenos=False, cssclass="source") html_highlight = highlight(html_code, HtmlLexer(), formatter) css_style = formatter.get_style_defs() html_template = """<style> {} </style> {} """.format(css_style, html_highlight) return HTML(html_template) def __getitem__(self, index): ''' Args: index (int): Index Returns: bs4 html object in the flat_bodies ''' return self._highlight( self._pretty_html( self.flat_bodies[index] ) ) def __len__(self): return len(self.flat_bodies) def _description_dataframe(self): types = ["meta", "path", "passages",] variables = ["flat_meta", "paths", "flat_passages",] methods = ["self.extract_meta", "self.extract_paths", "self.extract_passages"] current_lengths = [len(self.flat_meta), len(self.paths), len(self.flat_passages)] df = pd.DataFrame([types, variables, methods, current_lengths]).T df.columns = ['type', 'variable', 'method', 'current_length'] return df def __repr__(self): self.description_dataframe = self._description_dataframe() description = self.description_dataframe.to_string() return description def pretty_print(self, index, highlight=None): """pretty print the html source page in a Jupyter notebook cell output""" from IPython.display import HTML, display pretty_html_string = self._pretty_html( self.flat_bodies[index] ) if highlight: pretty_html_string = re.sub( r"({})".format(highlight), r'<font style="color: k; background-color: #ffff42">\1</font>', pretty_html_string ) return display(HTML(pretty_html_string)) def _pretty_html(self, soup): """cut off irrelevant content, such as side columns in the webpage, from the Han-Ji HTML source page. This procedure aims to save memory for the computer.""" span_id_fontstyle = str(soup.find("span", {"id": "fontstyle"})) path = str(soup.find('a', attrs={'class', 'gobookmark'})) HTML_string = """<html> <body> {} </body> </html> """.format("{}\n\t{}".format(path, span_id_fontstyle)) return HTML_string def fetch_data(self, URL, pages_limit=10000, print_bookmark=False, html_cutoff=False, BASE_URL='http://hanchi.ihp.sinica.edu.tw/ihpc/', sleep_range=(1, 3)): '''fetch book bs4 obj from a start page URL of a Book in Han-Ji Args: URL (string): the start page url from han-ji website page_limit (int): the limit of next pages you can scrape. default = 10000 print_bookmark (bool): print the bookmark while fetching the data. default = False html_cutoff (bool): cut off the irrelavant side column and tags in Han-Ji raw html files, to save memory usage. ''' for i in range(pages_limit): # use urllib.request to get the html content of the website req = request.Request(URL, headers={'User-Agent': 'Mozilla/5.0'}) page = request.urlopen(req) try: soup = BeautifulSoup(page, 'lxml') except bs4.FeatureNotFound as e: logging.warning("lxml parser not found, try to use html5lib") soup = BeautifulSoup(page, "html5lib") # show information on the screen if print_bookmark == True: logging.info("Start fetching {}. {}/{} epoch.".format( soup.find('a', attrs={'class', 'gobookmark'}).text, i + 1, pages_limit)) else: logging.info("Start fetching {}. {}/{} epoch.".format(URL, i + 1, pages_limit)) # check if the content is the same as previous page ### ? -> Response: this line is an ad-hoc solution for dealing with the first page while scraping. There must be a better way to do it. if i > 0: buffer = self.flat_bodies[-1].find_all('div', attrs={'style': True}) else: # use a dummy list for the buffer for the first page buffer = ['dummy'] # if the first and last elements in the buffer are the same as current page # delete page and save the current page. ### GOOD SOLUTION, BUT ARE WE SURE THERE ARE NO HIDDEN TRAPS IN USING THIS RULE? COULD TWO CONSECUTIVE BUT DIFFERENT POEMS HAVE THE SAME START AND END WORD? ### Response: the comparison here is for end and start sentences of a poem. ### It's quite unlikely two poems have the same start and end senetences, right? if (buffer[-1] == soup.find_all('div', attrs={'style': True})[-1]) and ( buffer[0] == soup.find_all('div', attrs={'style': True})[0]): logging.warning("This page is the same as the previous one, discard previous one and store the new one.") if html_cutoff == True: try: self.flat_bodies[-1] = BeautifulSoup( self._pretty_html(soup), 'lxml' ) except bs4.FeatureNotFound as e: logging.warning("lxml parser not found, try to use html5lib") self.flat_bodies[-1] = BeautifulSoup( self._pretty_html(soup), "html5lib") else: self.flat_bodies[-1] = soup else: # append to flat bodies if html_cutoff==True: try: self.flat_bodies.append( BeautifulSoup( self._pretty_html(soup), 'lxml')) except bs4.FeatureNotFound as e: logging.warning("lxml parser not found, try to use html5lib") self.flat_bodies.append( BeautifulSoup( self._pretty_html(soup), "html5lib")) else: self.flat_bodies.append(soup) # find the next page next_page = soup.find('img', {'src' : '/ihp/snext.gif'}) if next_page != None: url = next_page.find_parent()['href'] else: logging.info('No further next page. Stop fetching.') break URL = urllib.parse.urljoin(BASE_URL, url) time.sleep(random.randint(sleep_range[0], sleep_range[1])) def extract_all(self): '''do all extractions at one time''' pass def extract_paths(self): '''extract paths from bookmark in self.flat_bodies list and append paths to self.paths''' self.paths = [] for soup in self.flat_bodies: # extract "gobookmark" class path = soup.find('a', attrs={'class', 'gobookmark'}).text self.paths.append(path) def extract_meta(self): '''extract meta data from self.paths.''' pass def extract_passages(self): '''extract passages from the Book. Users should defined their own methods to organize the Book.''' pass def _sum_indent_and_padding(self, texts): '''returns the sum of indents and paddings in the texts.''' return [ sum([int(num[0]), int(num[1])]) for text in texts for num in re.findall(r'text-indent:(.*?)em;padding-left:(.*?)em;', text['style']) ] def _indent_and_padding(self, texts): '''Return the indent and padding tuples of indents and paddings in the texts.''' return [ (int(num[0]), int(num[1])) for text in texts for num in re.findall(r'text-indent:(.*?)em;padding-left:(.*?)em;', text['style']) ] def extract_rare_chars(self, driver_path, normalization=True): """Extract rare char in every passages. Note that this function would run for a long time. Args: driver_path (str) : the path to your selenium driver normalization (bool) : whether or not using normalization API in academia sinica, default = True. Updated: self.flat_rare_bag (list) : {"(components of rare chars)" : ("(UNICODE)", "(UTF-8)"), ...} After running this funciton, run >> self.write_rare_chars() to write a json. Therefore, you could just run >> self.update_rare_char() to update rare char in the next time without extracting rare char from web again. """ from rare_char_converter import rare_char_converter self.flat_rare_chars = [] for body in self.flat_bodies: while 1: try: time.sleep(random.randint(2, 5)) text = body.find("span", {"id":"fontstyle"}).text rare_char_bag = rare_char_converter(text, driver_path, normalization=True) self.flat_rare_chars.append(rare_char_bag) break except (TimeoutError, ConnectionResetError, urllib.error.URLError) as e: logging.warning("{}, wait for 10 secs.".format(e)) time.sleep(10) def write_rare_chars(self): import json with open("{}_rare_char.json".format(self.bookname), "w", encoding="utf-8") as file: json.dump(self.flat_rare_chars, file) def update_rare_chars(self): """Replace rare char based on `{bookname}_rare_char.json`""" import json try: with open("{}_rare_char.json".format(self.bookname), "r", encoding="utf-8") as file: self.flat_rare_chars = json.load(file) flat_htmls = [] for soup,rare_char in zip(self.flat_bodies, self.flat_rare_chars): html = str(soup) for components,(UICODE, char) in rare_char.items(): html = re.sub(components, char, html) try: flat_htmls.append(BeautifulSoup(html, "lxml")) except bs4.FeatureNotFound as e: logging.warning("lxml parser not found, try to use html5lib") flat_htmls.append(BeautifulSoup(html, "html5lib")) self.flat_bodies = flat_htmls except FileNotFoundError as e: logging.error("""[Error] {}_rare_char.json does not exist try to run these lines: \t>> self.extract_rare_chars() \t>> self.write_rare_chars()\n""".format(self.bookname)) def _regexf(self, char, num): return r"[^、。,?!:;「」〔〕『』]{" + str(num) + "}" + char def passage_generator(self): '''iterate over every passage regardless the hierarchical structure''' for passages in self.flat_passages: for p in passages: yield p def char_word_counts(self, char, limits=(1, 4)): ''' Count the number of occurances of the phrase attach with a certain character Args: char (str): the character you want to set as the last character in the phrase. limits (tuple): lower and upper limit for the characters before the `char`. Yield: collections.Counter object ''' return Counter(list(self._word_generator(char, limits))) def _word_generator(self, char, limits): lower, upper = limits for p in self.passage_generator(): for i in range(lower, upper): for match in re.finditer(self._regexf(char, i), p): yield match.group(0) def strip_tag(self, name, attrs={}): ''' Get rid of a tag (with certain attributes) from all pages in self.flat_bodies. Args: tag_name (str) : the tag you want to remove from the tree structure from all pages in self.flat_bodies attrs (dict) : a dict contains all attribute names and their corresponding value See also: bs4's find_all https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all ''' for body in self.flat_bodies: for sentence in body.find_all(name, attrs=attrs): sentence.extract() def strip_all_irrelevant_tags(self, connect_the_borken_lines=True, html_cutoff=True): ''' remove 標註, page number, and page dividers from the tree structure ''' if html_cutoff: flat_bodies = [] for item in self.flat_bodies: try: flat_bodies.append(BeautifulSoup(self._pretty_html(item), "lxml")) except bs4.FeatureNotFound as e: logging.warning("lxml parser not found, try to use html5lib") self.flat_bodies.append(BeautifulSoup(self._pretty_html(item), "html5lib")) self.flat_bodies = flat_bodies self.strip_tag("table", attrs={"class":"page"}) self.strip_tag("a", attrs={"href":"#"}) self.strip_tag("span", attrs={"style":"display:none;width:;height:;color:red;font-size:13px"}) self.strip_tag("center") logging.info("Remove 標註, page number, and page dividers from the tree structure.") if connect_the_borken_lines: self.connect_the_borken_lines() logging.info("Remove the new lines added by the page dividers, connect the paragraphs before and after the new lines.") def connect_the_borken_lines(self): ''' Remove the new lines added by the page dividers, connect the paragraphs before and after the new lines. This method must be run after the self.strip_all_irrelevant_tags. TODO: fix the borken new lines in the quoted paragraphs ''' # loop over body in flat_bodies: for i,item in enumerate(self.flat_bodies): # the item here is a bs4 object, so we need to convert it to a string string_item = str(item) # and then, substitute the regex pattern in the html source code in the item updated_string_item = re.sub( r'<\/div>([^\w]|\n)*?<div style="text-indent:0em;padding-left:0em;">', r"", string_item ) # and then, we need to update the variable, item (with regex substituted), back into the flat_bodies list. # Note that the updated_string_item has to be converted to bs4 object self.flat_bodies[i] = BeautifulSoup(updated_string_item, "lxml") def write_htmls(self, path='data/', html_cutoff=False): '''writing all htmls in flat_bodies to the folder data/ Args: path (str) : the path to the folder you want to write htmls files html_cutoff (bool) : whether or not you want to cut off irrelevant contents in Han-Ji webpage ''' try: os.makedirs(path) except OSError: pass for i,soup in enumerate(self.flat_bodies): filename = os.path.join(path, '{}_{}.html'.format( self.bookname, str(i).zfill(4))) with open(filename, 'w', encoding='utf-8') as file: if html_cutoff==True: file.write( self._pretty_html(soup) ) else: file.write(str(soup)) def load_htmls(self, path='data/', html_cutoff=False): '''loading all files with filename = "bookname_*.html" in path data/ ''' self.flat_bodies = [] i = 0 while 1: filename = os.path.join(path, '{}_{}.html'.format( self.bookname, str(i).zfill(4))) if os.path.isfile(filename): with open(filename, 'r', encoding='utf-8') as file: file_read = file.read() try: soup = BeautifulSoup(file_read, 'lxml') if html_cutoff==True: soup = BeautifulSoup( self._pretty_html(soup), "lxml" ) except bs4.FeatureNotFound as e: logging.warning("lxml parser not found, try to use html5lib") soup = BeautifulSoup(file_read, "html5lib") if html_cutoff==True: soup = BeautifulSoup( self._pretty_html(soup), "html5lib" ) self.flat_bodies.append( soup ) else: logging.info("Stop at loading {}.".format(filename)) break i += 1 logging.info("Total length of the data is {}.".format(len(self.flat_bodies))) ``` #### File: DigitalHumanities/Han-Ji/HanJi_csv2xml.py ```python import re import pandas as pd import argparse from lxml import etree def HanJi_csv2xml(df_head, df_passage): # construct root element root = etree.Element("lg", type="poem") # construct header and author author = etree.SubElement(root, "author") author.text = "".join([a for a in df_head.author if type(a) == str]) head = etree.SubElement(root, "head") for header, comment in zip(df_head.passage, df_head.comment): # add a child element, head, for our XML child_head = etree.SubElement(head, "l") child_head.text = header.replace("\u3000", "") # add a child element, comment in head, for our XML if type(comment) == str: child_head_comment = etree.SubElement(child_head, "comment") child_head_comment.text = comment # construct main text for passage, comment in zip(df_passage.passage, df_passage.comment): # add a child element, passage, for our XML child_passage = etree.SubElement(root, "l") child_passage.text = passage # add a child element, comment, for our XML child_child_comment = etree.SubElement(child_passage, "comment") child_child_comment.text = comment if type(comment) == str else "" return root def main(args): filename_passage = args.filename_passage # use re to scrpate the name of this poem filename_head = re.sub(r"_(.*?)_", r'_Head_', filename_passage) filename_XML = re.sub(r".csv", r'.xml', filename_passage) # loading DataFrames df_passage = pd.read_csv(filename_passage) df_head = pd.read_csv(filename_head) # create etree elemets from csv2xml function root = HanJi_csv2xml(df_head, df_passage) # writing xml file with open(filename_XML, "w", encoding="utf-8") as file: file.write( etree.tostring(root, encoding="unicode", pretty_print=True), ) if __name__ == "__main__": # argument parser, building flags parser = argparse.ArgumentParser() parser.add_argument('--filename_passage', type=str, help='The filename of passage for Han-ji csv you want to convert to xml.') args = parser.parse_args() main(args) ```
{ "source": "jibanCat/gp_dla_detection_dr16q_public", "score": 2 }
#### File: gp_dla_detection_dr16q_public/CDDF_analysis/solene_dlas.py ```python import numpy as np from astropy.io import fits def solene_eBOSS_cuts(z_qsos: int, zwarning: int, bal_prob: float) -> np.ndarray: """ DLA_CAT_SDSS_DR16.fits (Chabanier+21) ************************************************************************************* Results of the DLA search using the CNN from Parks+18 on the 263,201 QSO spectra from the SDSS-IV quasar catalog from DR16 (Lyke+20) with (1) 2 <= Z_QSO <= 6 (2) Z_WARNING != SKY (0), LITTLE_COVERAGE (1), UNPLUGGED (7), BAD_TARGET (8) or NODATA (9). (3) BAL_PROB = 0 """ # 1) Z_QSO ind = (2 <= z_qsos) & (z_qsos <= 6) # converting decimal ZWARNING to binary zwarning_b = [format(z, "b") for z in zwarning] # 2) ZWARNING: filtering based on Solene's condition solene_filter = [0, 1, 7, 8, 9] ind_z = np.ones(z_qsos.shape, dtype=np.bool_) for i,zw in enumerate(zwarning_b): for b in solene_filter: fiter_yes = bitget_string(zw, b) if fiter_yes: ind_z[i] = False break # 3) BAL prob ind_bal = (bal_prob == 0) ind = ind & ind_z & ind_bal return ind def bitget_string(z: str, bit: int): """ get the bit value at position bit:int, assume it's binary. """ if bit >= len(z): return False bit_str = z[::-1][bit] return bool(int(bit_str)) ```
{ "source": "jibanCat/gpy_dla_detection", "score": 3 }
#### File: gpy_dla_detection/examples/download_spectra.py ```python import os import numpy as np from gpy_dla_detection.read_spec import read_spec, retrieve_raw_spec def download_ho_2020_spectrum(num_quasars: int = 5): """ Download first N spectra from Ho-Bird-Garnett (2020) catalogue. """ assert num_quasars <= 100 # first 100 from catalogue plates = np.array([6173, 6177, 4354, 6498, 6177, 4216, 6182, 4296, 7134, 6877, 6177, 4277, 4415, 4216, 4216, 7167, 6177, 4354, 7144, 6177, 7147, 7144, 6511, 6511, 6151, 4216, 4535, 6182, 7034, 6177, 6151, 6498, 7147, 6182, 4354, 6177, 6177, 4354, 6879, 6151, 7144, 4354, 4277, 6879, 6498, 6182, 6879, 4535, 7167, 6879, 4535, 4216, 4216, 4415, 6182, 6511, 6207, 4216, 6177, 4296, 4277, 7034, 4277, 6152, 6172, 7033, 4216, 4277, 6498, 7033, 4415, 4535, 6877, 6170, 4296, 6498, 6513, 6177, 4535, 6151, 4216, 4296, 4296, 7147, 4535, 4296, 7167, 6172, 4535, 6172, 4216, 7147, 4296, 7167, 4216, 7147, 4296, 6177, 6879, 7034]) mjds = np.array([56238, 56268, 55810, 56565, 56268, 55477, 56190, 55499, 56566, 56544, 56268, 55506, 55831, 55477, 55477, 56604, 56268, 55810, 56564, 56268, 56574, 56564, 56540, 56540, 56265, 55477, 55860, 56190, 56564, 56268, 56265, 56565, 56574, 56190, 55810, 56268, 56268, 55810, 56539, 56265, 56564, 55810, 55506, 56539, 56565, 56190, 56539, 55860, 56604, 56539, 55860, 55477, 55477, 55831, 56190, 56540, 56239, 55477, 56268, 55499, 55506, 56564, 55506, 56164, 56269, 56565, 55477, 55506, 56565, 56565, 55831, 55860, 56544, 56240, 55499, 56565, 56543, 56268, 55860, 56265, 55477, 55499, 55499, 56574, 55860, 55499, 56604, 56269, 55860, 56269, 55477, 56574, 55499, 56604, 55477, 56574, 55499, 56268, 56539, 56564]) fiber_ids = np.array([528, 595, 646, 177, 608, 312, 652, 364, 594, 564, 648, 896, 554, 302, 292, 290, 384, 686, 752, 640, 860, 266, 92, 86, 88, 732, 680, 342, 358, 386, 936, 844, 171, 338, 702, 584, 393, 709, 439, 78, 221, 700, 872, 580, 838, 326, 436, 302, 259, 427, 361, 718, 276, 466, 642, 114, 134, 724, 360, 386, 862, 657, 106, 4, 643, 2, 290, 152, 157, 14, 580, 315, 440, 573, 390, 158, 892, 366, 316, 954, 280, 656, 630, 138, 734, 382, 796, 628, 304, 342, 756, 889, 398, 238, 248, 900, 392, 656, 405, 647]) for plate, mjd, fiber_id in zip( plates[:num_quasars], mjds[:num_quasars], fiber_ids[:num_quasars] ): filename = "spec-{}-{}-{}.fits".format(plate, mjd, str(fiber_id).zfill(4)) print(filename) if not os.path.exists(filename): retrieve_raw_spec(plate, mjd, fiber_id) # the spectrum at paper ``` #### File: gpy_dla_detection/gpy_dla_detection/bayesian_model_selection.py ```python from typing import List, Tuple, Union from itertools import chain import numpy as np from scipy.special import logsumexp from .null_gp import NullGP from .dla_gp import DLAGP from .subdla_gp import SubDLAGP class BayesModelSelect: """ Bayesian model selection: p(M | D) = P(M) * P(D | M) / ∑_i( P(M_i) * P(D | M_i) ) which reads: model posterior = model prior * model evidence / (sum of the model posteriors of all possible models) :attr model_list: a List of models we want to compute in Bayesian model selection. :attr all_max_dlas: a List of integers indicates number of DLAs to be computed for each model in the List. 0 for no DLA, which means NullGP, for max_dlas > 0, model evidences will be calculated from .dla_gp.DLAGP.log_model_evidences(max_dlas). :attr dla_model_ind: an integer indicates the index of DLA model in the model_list. This means all other models within model_list will be considered to be Default is 2. """ def __init__( self, all_max_dlas: List[int] = [0, 1, 4], dla_model_ind: int = 2, ): # a list of models, all have a base class of NullGP self.all_max_dlas = all_max_dlas self.dla_model_ind = dla_model_ind def model_selection( self, model_list: List[Union[NullGP, SubDLAGP, DLAGP]], z_qso: float ) -> np.ndarray: """ Calculate the log model evidences and priors for each model in the model_list. Default assumption is [null model, subDLA model, DLA model]. And always assume the first model is null model and the last one is DLA model. """ assert ~isinstance(model_list[0], DLAGP) assert isinstance(model_list[-1], DLAGP) assert isinstance(model_list[-1], NullGP) assert len(model_list) > self.dla_model_ind log_posteriors = [] log_priors = [] log_likelihoods = [] # prepare the model priors first, so we can get the null model prior for i, num_dlas in enumerate(self.all_max_dlas): # skip null model prior if num_dlas == 0: log_priors.append([np.nan]) continue # model priors log_priors_dla = model_list[i].log_priors(z_qso, num_dlas) log_priors.append(log_priors_dla) # null model prior is (1 - other model priors) log_priors = np.array(list(chain(*log_priors))) log_priors[0] = np.log(1 - np.exp(logsumexp(log_priors[1:]))) # calculating model evidences # [Prior] the indexing part of priors is tricky. Do the elementwise addition instead! for i, num_dlas in enumerate(self.all_max_dlas): # if this is null model if num_dlas == 0: # model evidence log_likelihood_no_dla = model_list[i].log_model_evidence() log_likelihoods.append([log_likelihood_no_dla]) # if this is for DLA model or subDLA model else: # model evidence log_likelihoods_dla = model_list[i].log_model_evidences(num_dlas) log_likelihoods.append(log_likelihoods_dla) # flatten the nested list : this is due to each element log_likelihoods = np.array(list(chain(*log_likelihoods))) # [Prior] elementwise addition log_posteriors = log_likelihoods + log_priors # [Prior] make sure prior assignment was correct assert np.abs((log_likelihoods[-1] + log_priors[-1]) - log_posteriors[-1]) < 1e-4 self.log_priors = log_priors self.log_likelihoods = log_likelihoods self.log_posteriors = log_posteriors return log_posteriors @property def dla_model_posterior_ind(self): """ Find the ind for DLA model posteriors in the log_posteriors array. Default is [no DLA, subDLA, 1 DLA, 2 DLA, 3 DLA, 4 DLA], corresponding to all_max_dlas = [0, 1, 4]. """ ind = np.zeros((self.log_posteriors.shape[0],), dtype=np.bool_) ind[-self.all_max_dlas[self.dla_model_ind] :] = True self._dla_model_posterior_ind = ind return self._dla_model_posterior_ind @property def model_posteriors(self): sum_log_posteriors = logsumexp(self.log_posteriors) return np.exp(self.log_posteriors - sum_log_posteriors) @property def model_evidences(self): sum_log_evidences = logsumexp(self.log_likelihoods) return np.exp(self.log_likelihoods - sum_log_evidences) @property def model_priors(self): sum_log_priors = logsumexp(self.log_priors) return np.exp(self.log_priors - sum_log_priors) @property def p_dla(self): model_posteriors = self.model_posteriors self._p_dla = np.sum(model_posteriors[self.dla_model_posterior_ind]) return self._p_dla @property def p_no_dla(self): return 1 - self.p_dla ``` #### File: gpy_dla_detection/gpy_dla_detection/dla_samples.py ```python import numpy as np import h5py from .set_parameters import Parameters from .model_priors import PriorCatalog class DLASamples: """ A class to generate and store the QMC samples for DLAs: theta = (z_dla, logNHI) = (redshift of DLA, column density of DLA) :attr offset_samples: used for z_dla samples :attr log_nhi_samples: log_nhi samples """ def __init__(self, params: Parameters, prior: PriorCatalog): self.params = params self.prior = prior # extract data-driven prior paramters self.num_dla_samples = params.num_dla_samples self.uniform_min_log_nhi = params.uniform_min_log_nhi self.uniform_max_log_nhi = params.uniform_max_log_nhi self.fit_min_log_nhi = params.fit_min_log_nhi self.fit_max_log_nhi = params.fit_max_log_nhi self.alpha = params.alpha def log_nhi_prior(self): NotImplementedError def z_dla_prior(self): NotImplementedError @property def offset_samples(self): NotImplementedError @property def log_nhi_samples(self): NotImplementedError @property def nhi_samples(self): NotImplementedError class DLASamplesMAT(DLASamples): """ Load DLA samples from .mat file, which is generated from Roman's generate_dla_samples.m. """ def __init__( self, params: Parameters, prior: PriorCatalog, dla_samples_file: str = "dla_samples_a03.mat", ): super().__init__(params, prior) dla_samples = h5py.File(dla_samples_file, "r") assert self.alpha == dla_samples["alpha"][0, 0] assert self.uniform_min_log_nhi == dla_samples["uniform_min_log_nhi"][0, 0] self._offset_samples = dla_samples["offset_samples"][:, 0] self._log_nhi_samples = dla_samples["log_nhi_samples"][:, 0] self._nhi_samples = dla_samples["nhi_samples"][:, 0] @property def offset_samples(self) -> np.ndarray: return self._offset_samples @property def log_nhi_samples(self) -> np.ndarray: return self._log_nhi_samples @property def nhi_samples(self) -> np.ndarray: return self._nhi_samples def sample_z_dlas(self, wavelengths: np.ndarray, z_qso: float) -> np.ndarray: sample_z_dlas = ( self.params.min_z_dla(wavelengths, z_qso) + ( self.params.max_z_dla(wavelengths, z_qso) - self.params.min_z_dla(wavelengths, z_qso) ) * self._offset_samples ) return sample_z_dlas ``` #### File: gpy_dla_detection/plottings/plot_raw_spectrum.py ```python from typing import Optional import os import re import numpy as np from matplotlib import pyplot as plt from ..read_spec import read_spec, read_spec_dr14q, file_loader, retrieve_raw_spec from ..set_parameters import Parameters def plot_raw_spectrum(filename: str, release: str = 'dr12q', z_qso: Optional[float] = None): ''' Plot the raw spectrum, the spectrum before normalisation. :param filename: filename of the fits file. Must follow the convention, "spec-{:d}-{:d}-{:04d}.fits".format(plate, mjd, fiber_id) :param release: either dr12q or dr14q :param z_qso: if known, plot an sub-axis with rest-frame wavelengths. ''' assert release in ("dr12q", "dr14q") # must follow the filename rule to extract plate, mjd, fiber_id = re.findall( r"spec-([0-9]+)-([0-9]+)-([0-9]+).fits", filename, )[0] if not os.path.exists(filename): retrieve_raw_spec(int(plate), int(mjd), int(fiber_id), release=release) # to prevent some people might tempt to load fits file # from other directories, here we re-specify the filename print("[Warning] file {} not found, re-download the file.".format(filename)) filename = file_loader(int(plate), int(mjd), int(fiber_id)) # read fits file if release == "dr12q": wavelengths, flux, noise_variance, pixel_mask = read_spec(filename) elif release == "dr14q": wavelengths, flux, noise_variance, pixel_mask = read_spec_dr14q(filename) else: raise Exception("must choose between dr12q or dr14q!") # plotting config fig, ax = plt.subplots(figsize=(16, 5)) ax.plot(wavelengths, flux, lw=0.25, label=r"$y(\lambda_{obs})$") ax.plot(wavelengths, noise_variance, lw=0.25, label=r"$\sigma^2(\lambda_{obs})$") ax.set_xlabel(r" Observed Wavelength [$\AA$]") ax.set_ylabel(r"Flux [$10^{-17}{erg}/s/{cm}^{2}/\AA$]") ax.set_title(r"{}".format(filename)) ax.set_ylim( np.quantile(flux, 0.005), np.quantile(flux, 0.995) ) ax.legend() # [z_qso] plot the rest-frame axis if z_qso known if z_qso != None: assert (0 < z_qso) and (z_qso < 99) ax2 = ax.secondary_xaxis('top', functions=( lambda x : Parameters.emitted_wavelengths(x, z_qso), lambda x : Parameters.observed_wavelengths(x, z_qso))) ax2.set_xlabel(r"Rest Wavelength [$\AA$]") ``` #### File: gpy_dla_detection/gpy_dla_detection/set_parameters.py ```python import numpy as np class Parameters: # physical constants lya_wavelength: float = 1215.6701 # Lyman alpha transition wavelength Å lyb_wavelength: float = 1025.7223 # Lyman beta transition wavelength Å lyman_limit: float = 911.7633 # Lyman limit wavelength Å speed_of_light: float = 299792458.0 # speed of light m s⁻¹ def __init__( self, # file loading parameters loading_min_lambda: float = 910.0, # range of rest wavelengths to load Å loading_max_lambda: float = 1217.0, # preprocessing parameters z_qso_cut: float = 2.15, # filter out QSOs with z less than this threshold min_num_pixels: int = 200, # minimum number of non-masked pixels # normalization parameters normalization_min_lambda: float = 1310.0, # range of rest wavelengths to use Å normalization_max_lambda: float = 1325.0, # for flux normalization # null model parameters min_lambda: float = 911.75, # range of rest wavelengths to Å max_lambda: float = 1215.75, # model dlambda: float = 0.25, # separation of wavelength grid Å k: int = 20, # rank of non-diagonal contribution max_noise_variance: float = 3.0 ** 2, # maximum pixel noise allowed during model training # optimization parameters initial_c_0: float = 0.1, # initial guess for c₀ initial_tau_0: float = 0.0023, # initial guess for τ₀ initial_beta: float = 3.65, # initial guess for β minFunc_options: dict = { # optimization options for model fitting "MaxIter": 2000, "MaxFunEvals": 4000, }, # DLA model parameters: parameter samples num_dla_samples: int = 10000, # number of parameter samples alpha: float = 0.97, # weight of KDE component in mixture uniform_min_log_nhi: float = 20.0, # range of column density samples [cm⁻²] uniform_max_log_nhi: float = 23.0, # from uniform distribution fit_min_log_nhi: float = 20.0, # range of column density samples [cm⁻²] fit_max_log_nhi: float = 22.0, # from fit to log PDF # model prior parameters prior_z_qso_increase: float = 30000.0, # use QSOs with z < (z_QSO + x) for prior # instrumental broadening parameters width: int = 3, # width of Gaussian broadening (# pixels) pixel_spacing: float = 1e-4, # wavelength spacing of pixels in dex # DLA model parameters: absorber range and model num_lines: int = 3, # number of members of the Lyman series to use max_z_cut: float = 3000.0, # max z_DLA = z_QSO - max_z_cut min_z_cut: float = 3000.0, # min z_DLA = z_Ly∞ + min_z_cut # Lyman-series array: for modelling the forests of Lyman series num_forest_lines: int = 31, ): self.loading_min_lambda = loading_min_lambda self.loading_max_lambda = loading_max_lambda self.z_qso_cut = z_qso_cut self.min_num_pixels = min_num_pixels self.normalization_min_lambda = normalization_min_lambda self.normalization_max_lambda = normalization_max_lambda self.min_lambda = min_lambda self.max_lambda = max_lambda self.dlambda = dlambda self.k = k self.max_noise_variance = max_noise_variance self.initial_c_0 = initial_c_0 self.initial_tau_0 = initial_tau_0 self.initial_beta = initial_beta self.minFunc_options = minFunc_options self.num_dla_samples = num_dla_samples self.alpha = alpha self.uniform_min_log_nhi = uniform_min_log_nhi self.uniform_max_log_nhi = uniform_max_log_nhi self.fit_min_log_nhi = fit_min_log_nhi self.fit_max_log_nhi = fit_max_log_nhi self.prior_z_qso_increase = self.kms_to_z(prior_z_qso_increase) self.width = width self.pixel_spacing = pixel_spacing self.num_lines = num_lines self.max_z_cut = self.kms_to_z(max_z_cut) self.min_z_cut = self.kms_to_z(min_z_cut) self.num_forest_lines = num_forest_lines @classmethod def kms_to_z(cls, kms: float) -> float: """ converts relative velocity in km s^-1 to redshift difference """ return (kms * 1000) / cls.speed_of_light @staticmethod def emitted_wavelengths(observed_wavelengths: np.ndarray, z: float) -> np.ndarray: """ utility functions for redshifting """ return observed_wavelengths / (1 + z) @staticmethod def observed_wavelengths(emitted_wavelengths: np.ndarray, z: float) -> np.ndarray: """ utility functions for redshifting """ return emitted_wavelengths * (1 + z) def max_z_dla(self, wavelengths: np.ndarray, z_qso: float) -> float: """ determines maximum z_DLA to search We only consider z_dla within the modelling range. """ rest_wavelengths = self.emitted_wavelengths(wavelengths, z_qso) ind = (rest_wavelengths >= self.min_lambda) & ( rest_wavelengths <= self.max_lambda ) return (np.max(wavelengths[ind]) / self.lya_wavelength - 1) - self.max_z_cut def min_z_dla(self, wavelengths: np.ndarray, z_qso: float) -> float: """ determines minimum z_DLA to search We only consider z_dla within the modelling range. """ rest_wavelengths = self.emitted_wavelengths(wavelengths, z_qso) ind = (rest_wavelengths >= self.min_lambda) & ( rest_wavelengths <= self.max_lambda ) return np.max( [ np.min(wavelengths[ind]) / self.lya_wavelength - 1, self.observed_wavelengths(self.lyman_limit, z_qso) / self.lya_wavelength - 1 + self.min_z_cut, ] ) def __repr__(self): """ print out the default pipeline parameters """ return str(self.__dict__) ``` #### File: gpy_dla_detection/gpy_dla_detection/subdla_gp.py ```python from typing import Tuple, Optional import numpy as np import h5py from .set_parameters import Parameters from .model_priors import PriorCatalog from .null_gp import NullGP from .voigt import voigt_absorption # this could be replaced to SubDLASamples in the future; # I import this is for the convenient of my autocomplete from .subdla_samples import SubDLASamplesMAT class SubDLAGP(NullGP): """ SubDLA GP model for QSO emission + DLA intervening: p(y | λ, σ², M, ω, c₀, τ₀, β, τ_kim, β_kim, z_dla, logNHI) additional two parameters (z_dla, logNHI) will control the position and the strength of the absorption intervening on the QSO emission. SubDLA parameter prior : logNHI ~ U(19.5, 20) Since the integration is not tractable, so we use QMC to approximate the model evidence. How many QMC samples will be defined in Parameters and DLASamples. :param rest_wavelengths: λ, the range of λ you model your GP on QSO emission :param mu: mu, the mean model of the GP. :param M: M, the low rank decomposition of the covariance kernel: K = MM^T. :param log_omega: log ω, the pixel-wise noise of the model. Used to model absorption noise. :param log_c_0: log c₀, the constant in the Lyman forest noise model, Lyman forest noise := s(z) = 1 - exp(-effective_optical_depth) + c_0. :param log_tau_0: log τ₀, the scale factor of effective optical depth in the absorption noise, effective_optical_depth := ∑ τ₀ fi1 λi1 / ( f21 λ21 ) * ( 1 + z_i1 )^β :param log_beta: log β, the exponent of the effective optical depth in the absorption noise. :param prev_tau_0: τ_kim, the scale factor of effective optical depth used in mean-flux suppression. :param prev_beta: β_kim, the exponent of the effective optical depth used in mean-flux suppression. Future: MCMC embedded in the class as an instance method. """ def __init__( self, params: Parameters, prior: PriorCatalog, dla_samples: SubDLASamplesMAT, rest_wavelengths: np.ndarray, mu: np.ndarray, M: np.ndarray, log_omega: np.ndarray, log_c_0: float, log_tau_0: float, log_beta: float, prev_tau_0: float = 0.0023, prev_beta: float = 3.65, min_z_separation: float = 3000.0, broadening: bool = True, ): super().__init__( params, prior, rest_wavelengths, mu, M, log_omega, log_c_0, log_tau_0, log_beta, prev_tau_0, prev_beta, ) self.min_z_separation = self.params.kms_to_z(min_z_separation) self.dla_samples = dla_samples self.broadening = broadening def log_model_evidences(self, max_dlas: int = 1) -> np.ndarray: """ marginalize out the DLA parameters, {(z_dla_i, logNHI_i)}_{i=1}^k_dlas, and return an array of log_model_evidences for 1:k DLA models Note: we provide an integration method here to reproduce the functionality in Ho-Bird-Garnett's code, but we encourage users to improve this sampling scheme to be more efficient with another external script by calling self.sample_log_likelihood_k_dlas directly. :param max_dlas: the number of DLAs we want to marginalise :return: [P(D | 1 DLA), ..., P(D | k DLAs)] """ # allocate the final log model evidences log_likelihoods_dla = np.empty((max_dlas,)) log_likelihoods_dla[:] = np.nan # base inds to store the QMC samples to be resampled according # the prior, which is the posterior of the previous run. base_sample_inds = np.zeros( (max_dlas - 1, self.params.num_dla_samples,), dtype=np.int32 ) # sorry, let me follow the convention of the MATLAB code here # could be changed to (max_dlas, num_dla_samples) in the future. sample_log_likelihoods = np.empty((self.params.num_dla_samples, max_dlas)) sample_log_likelihoods[:] = np.nan # prepare z_dla samples sample_z_dlas = self.dla_samples.sample_z_lls( self.this_wavelengths, self.z_qso ) # compute probabilities under DLA model for each of the sampled # (normalized offset, log(N HI)) pairs for num_dlas in range(max_dlas): # count from zero to max_dlas - 1 # [Need to be parallelized] # Roman's code has this part to be parallelized. for i in range(self.params.num_dla_samples): # query the 1st DLA parameter {z_dla, logNHI}_{i=1} from the # given DLA samples. z_dlas = np.array([sample_z_dlas[i]]) log_nhis = np.array([self.dla_samples.log_nhi_samples[i]]) nhis = np.array([self.dla_samples.nhi_samples[i]]) # query the 2:k DLA parameters {z_dla, logNHI}_{i=2}^k_dlas if num_dlas > 0: base_ind = base_sample_inds[:num_dlas, i] z_dlas_2_k = sample_z_dlas[base_ind] log_nhis_2_k = self.dla_samples.log_nhi_samples[base_ind] nhis_2_k = self.dla_samples.nhi_samples[base_ind] # append to samples to be applied on calculating the log likelihood z_dlas = np.append(z_dlas, z_dlas_2_k) log_nhis = np.append(log_nhis, log_nhis_2_k) nhis = np.append(nhis, nhis_2_k) del z_dlas_2_k, log_nhis_2_k, nhis_2_k # store the sample log likelihoods conditioned on k-DLAs sample_log_likelihoods[i, num_dlas] = self.sample_log_likelihood_k_dlas( z_dlas, nhis ) - np.log( self.params.num_dla_samples ) # additional occams razor # check if any pair of dlas in this sample is too close this has to # happen outside the parfor because "continue" slows things down # dramatically if num_dlas > 0: # all_z_dlas : (num_dlas, num_dla_samples) ind = base_sample_inds[:num_dlas, :] # (num_dlas - 1, num_dla_samples) all_z_dlas = np.concatenate( [sample_z_dlas[None, :], sample_z_dlas[ind]], axis=0 ) # (num_dlas, num_dla_samples) ind = np.any( np.diff(np.sort(all_z_dlas, axis=0), axis=0) < self.min_z_separation, axis=0, ) sample_log_likelihoods[ind, num_dlas] = np.nan # to prevent numerical underflow max_log_likelihood = np.nanmax(sample_log_likelihoods[:, num_dlas]) sample_probabilities = np.exp( sample_log_likelihoods[:, num_dlas] - max_log_likelihood ) log_likelihoods_dla[num_dlas] = ( max_log_likelihood + np.log(np.nanmean(sample_probabilities)) - np.log(self.params.num_dla_samples) * num_dlas ) # occams razor for more DLA parameters # no needs for re-sample the QMC samples for the last run if (num_dlas + 1) == max_dlas: break # if p(D | z_QSO, k DLA) is NaN, then # finish the loop. # It's usually because p(D | z_QSO, no DLA) is very high, so # the higher order DLA model likelihoods already underflowed if np.isnan(log_likelihoods_dla[num_dlas]): print( "Finish the loop earlier because NaN value in log p(D | z_QSO, {} DLAs)".format( num_dlas ) ) break # avoid nan values in the randsample weights nanind = np.isnan(sample_probabilities) W = sample_probabilities W[nanind] = 0.0 base_sample_inds[num_dlas, :] = np.random.choice( np.arange(self.params.num_dla_samples).astype(np.int32), size=self.params.num_dla_samples, replace=True, p=W / W.sum(), ) # store sample likelihoods for MAP value calculation # this could cause troubles for parallelization in the future self.sample_log_likelihoods = sample_log_likelihoods return log_likelihoods_dla def sample_log_likelihood_k_dlas( self, z_dlas: np.ndarray, nhis: np.ndarray ) -> float: """ Compute the log likelihood of k DLAs within a quasar spectrum: p(y | λ, σ², M, ω, c₀, τ₀, β, τ_kim, β_kim, {z_dla, logNHI}_{i=1}^k) :param z_dlas: an array of z_dlas you want to condition on :param nhis: an array of nhis you want to condition on """ assert len(z_dlas) == len(nhis) dla_mu, dla_M, dla_omega2 = self.this_dla_gp(z_dlas, nhis) sample_log_likelihood = self.log_mvnpdf_low_rank( self.y, dla_mu, dla_M, dla_omega2 + self.v ) return sample_log_likelihood def this_dla_gp( self, z_dlas: np.ndarray, nhis: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Compute the DLA GP model with k intervening DLA profiles onto the mean and covariance. :param z_dlas: (k_dlas, ), the redshifts of intervening DLAs :param nhis: (k_dlas, ), the column densities of intervening DLAs :return: (dla_mu, dla_M, dla_omega2) :return dla_mu: (n_points, ), the GP mean model with k_dlas DLAs intervening. :return dla_M: (n_points, k), the GP covariance with k_dlas DLAs intervening. :return dla_omega2: (n_points), the absorption noise with k_dlas DLAs intervening.S Note: the number of Voigt profile lines is controlled by self.params : Parameters, I prefer to not to allow users to change from the function arguments since that would easily cause inconsistent within a pipeline. But if a user want to change the num_lines, they can change via changing the instance attr of the self.params:Parameters like: self.params.num_lines = <the number of lines preferred to be used> This would happen when a user want to know whether the result would converge with increasing number of lines. """ assert len(z_dlas) == len(nhis) k_dlas = len(z_dlas) # to retain only unmasked pixels from computed absorption profile mask_ind = ~self.pixel_mask[self.ind_unmasked] # [broadening] use the padded wavelengths for convolution; # otherwise, should use unmasked wavelengths. if self.broadening: wavelengths = self.padded_wavelengths else: wavelengths = self.unmasked_wavelengths # absorption corresponding to this sample absorption = voigt_absorption( wavelengths, z_dla=z_dlas[0], nhi=nhis[0], num_lines=self.params.num_lines, broadening=self.broadening, # the switch for instrumental broadening controlled by instance attr ) # absorption corresponding to other DLAs in multiple DLA samples for j in range(1, k_dlas): absorption = absorption * voigt_absorption( wavelengths, z_dla=z_dlas[j], nhi=nhis[j], num_lines=self.params.num_lines, broadening=self.broadening, # the switch for instrumental broadening controlled by instance attr ) absorption = absorption[mask_ind] assert len(absorption) == len(self.this_mu) dla_mu = self.this_mu * absorption dla_M = self.this_M * absorption[:, None] dla_omega2 = self.this_omega2 * absorption ** 2 return dla_mu, dla_M, dla_omega2 def log_priors(self, z_qso: float, max_dlas: int) -> float: """ get the model prior of null model, this is defined to be: P(k DLA | zQSO) = P(at least k DLAs | zQSO) - P(at least (k + 1) DLAs | zQSO), where P(at least 1 DLA | zQSO) = M / N M : number of DLAs below this zQSO N : number of quasars below this zQSO and P(at least k DLA | zQSO) = (M / N)^k For subDLAs, we need to adjust the model prior with the ratio of the normalization factors: P(at least 1 subDLA | zQSO) = P(at least 1 DLA | zQSO) = Z_lls / Z_dla * M / N """ this_num_dlas, this_num_quasars = self.prior.less_ind(z_qso) p_dlas = ( self.dla_samples._Z_lls / self.dla_samples._Z_dla * (this_num_dlas / this_num_quasars) ** np.arange(1, max_dlas + 1) ) for i in range(max_dlas - 1): p_dlas[i] = p_dlas[i] - p_dlas[i + 1] log_priors_dla = np.log(p_dlas) return log_priors_dla class SubDLAGPMAT(SubDLAGP): """ Load learned model from .mat file The learned file is the same as DLAGP, the sample file is different. """ def __init__( self, params: Parameters, prior: PriorCatalog, dla_samples: SubDLASamplesMAT, min_z_separation: float = 3000.0, learned_file: str = "learned_qso_model_lyseries_variance_kim_dr9q_minus_concordance.mat", broadening: bool = True, ): with h5py.File(learned_file, "r") as learned: rest_wavelengths = learned["rest_wavelengths"][:, 0] mu = learned["mu"][:, 0] M = learned["M"][()].T log_omega = learned["log_omega"][:, 0] log_c_0 = learned["log_c_0"][0, 0] log_tau_0 = learned["log_tau_0"][0, 0] log_beta = learned["log_beta"][0, 0] super().__init__( params, prior, dla_samples, rest_wavelengths, mu, M, log_omega, log_c_0, log_tau_0, log_beta, prev_tau_0=0.0023, prev_beta=3.65, min_z_separation=min_z_separation, broadening=broadening, ) ``` #### File: gpy_dla_detection/tests/test_map.py ```python import time import numpy as np from .test_model import prepare_dla_model def test_DLA_MAP(): # test 1 dla_gp = prepare_dla_model(plate=5309, mjd=55929, fiber_id=362, z_qso=3.166) tic = time.time() max_dlas = 4 log_likelihoods_dla = dla_gp.log_model_evidences(max_dlas) toc = time.time() # very time consuming: ~ 4 mins for a single spectrum without parallelized. print("spent {} mins; {} seconds".format((toc - tic) // 60, (toc - tic) % 60)) catalog_MAP_log_nhis = np.array( [ [22.28420156, np.nan, np.nan, np.nan], [20.63417494, 22.28420156, np.nan, np.nan], [20.60601572, 22.28420156, 20.63417494, np.nan], [20.12721363, 22.28420156, 20.63417494, 20.36967609], ] ) catalog_MAP_z_dlas = np.array( [ [3.03175723, np.nan, np.nan, np.nan], [2.52182382, 3.03175723, np.nan, np.nan], [2.39393537, 3.03175723, 2.52182382, np.nan], [2.94786938, 3.03175723, 2.52182382, 2.38944805], ] ) mapind = np.nanargmax(log_likelihoods_dla) MAP_z_dla, MAP_log_nhi = dla_gp.maximum_a_posteriori() nanind = np.isnan(catalog_MAP_z_dlas[mapind]) assert np.all( np.abs(MAP_z_dla[mapind][~nanind] - catalog_MAP_z_dlas[mapind][~nanind]) < 1e-1 ) assert np.all( np.abs(MAP_log_nhi[mapind][~nanind] - catalog_MAP_log_nhis[mapind][~nanind]) < 1e-1 ) # test 2 dla_gp = prepare_dla_model(plate=3816, mjd=55272, fiber_id=76, z_qso=3.68457627) tic = time.time() max_dlas = 4 log_likelihoods_dla = dla_gp.log_model_evidences(max_dlas) toc = time.time() # very time consuming: ~ 4 mins for a single spectrum without parallelized. print("spent {} mins; {} seconds".format((toc - tic) // 60, (toc - tic) % 60)) catalog_MAP_log_nhis = np.array( [ [21.05371292, np.nan, np.nan, np.nan], [20.0073665, 20.94707037, np.nan, np.nan], [20.00838815, 20.94707037, 20.0073665, np.nan], [20.20539934, 20.94707037, 20.0073665, 20.0134955], ] ) catalog_MAP_z_dlas = np.array( [ [3.42520566, np.nan, np.nan, np.nan], [2.69422714, 3.42710284, np.nan, np.nan], [3.41452521, 3.42710284, 2.69422714, np.nan], [3.43813463, 3.42710284, 2.69422714, 3.41262802], ] ) mapind = np.nanargmax(log_likelihoods_dla) MAP_z_dla, MAP_log_nhi = dla_gp.maximum_a_posteriori() nanind = np.isnan(catalog_MAP_z_dlas[mapind]) assert np.all( np.abs(MAP_z_dla[mapind][~nanind] - catalog_MAP_z_dlas[mapind][~nanind]) < 1e-1 ) assert np.all( np.abs(MAP_log_nhi[mapind][~nanind] - catalog_MAP_log_nhis[mapind][~nanind]) < 1e-1 ) ``` #### File: gpy_dla_detection/tests/test_read_spec.py ```python import os from gpy_dla_detection.read_spec import read_spec, retrieve_raw_spec import numpy as np def test_read_spec(): if not os.path.exists("spec-7340-56825-0576.fits"): retrieve_raw_spec(7340, 56825, 576) # an arbitrary spectrum wavelengths, flux, noise_variance, pixel_mask = read_spec( "spec-7340-56825-0576.fits" ) assert min(wavelengths) > 1216 assert len(flux) == len(noise_variance) assert type(pixel_mask[0]) is np.bool_ ``` #### File: gpy_dla_detection/tests/test_voigt.py ```python import numpy as np from gpy_dla_detection.voigt import voigt_absorption, instrument_profile, width def test_instrumental_broadening(): # test 1 z_qso = 3.15 wavelengths = np.linspace(911, 1216, 1000) * (1 + z_qso) z_dla = 3.1 nhi = 10 ** 20.3 raw_profile = voigt_absorption( wavelengths, nhi, z_dla, num_lines=3, broadening=False ) # the convolution written in Roman's code profile = np.zeros((wavelengths.shape[0] - 2 * width,)) num_points = len(profile) # instrumental broadening for i in range(num_points): for k, j in enumerate(range(i, i + 2 * width + 1)): profile[i] += raw_profile[j] * instrument_profile[k] # numpy native convolution profile_numpy = np.convolve(raw_profile, instrument_profile, "valid") assert np.all(np.abs(profile - profile_numpy) < 1e-4) # test 2 z_qso = 5 wavelengths = np.linspace(911, 1216) * (1 + z_qso) z_dla = 4.5 nhi = 10 ** 21 raw_profile = voigt_absorption( wavelengths, nhi, z_dla, num_lines=5, broadening=False ) # the convolution written in Roman's code profile = np.zeros((wavelengths.shape[0] - 2 * width,)) num_points = len(profile) # instrumental broadening for i in range(num_points): for k, j in enumerate(range(i, i + 2 * width + 1)): profile[i] += raw_profile[j] * instrument_profile[k] # numpy native convolution profile_numpy = np.convolve(raw_profile, instrument_profile, "valid") assert np.all(np.abs(profile - profile_numpy) < 1e-4) ``` #### File: gpy_dla_detection/tests/test_zestimation.py ```python import os import re import time import numpy as np from .test_selection import filenames, z_qsos from gpy_dla_detection.read_spec import read_spec, retrieve_raw_spec from gpy_dla_detection.zqso_set_parameters import ZParameters from gpy_dla_detection.zqso_samples import ZSamples from gpy_dla_detection.zqso_gp import ZGPMAT def test_zestimation(nspec: int): filename = filenames[nspec] if not os.path.exists(filename): plate, mjd, fiber_id = re.findall( r"spec-([0-9]+)-([0-9]+)-([0-9]+).fits", filename, )[0] retrieve_raw_spec(int(plate), int(mjd), int(fiber_id)) params = ZParameters() z_qso_samples = ZSamples(params) wavelengths, flux, noise_variance, pixel_mask = read_spec(filename) z_qso_gp = ZGPMAT( params, z_qso_samples, learned_file="data/dr12q/processed/learned_zqso_only_model_outdata_full_dr9q_minus_concordance_norm_1176-1256.mat", ) tic = time.time() z_qso_gp.inference_z_qso(wavelengths, flux, noise_variance, pixel_mask) print("Z True : {:.3g}".format(z_qsos[nspec])) toc = time.time() print("spent {} mins; {} seconds".format((toc - tic) // 60, (toc - tic) % 60)) return z_qso_gp.z_map, z_qsos[nspec] def test_batch(num_quasars: int = 100): all_z_diffs = np.zeros((num_quasars,)) for nspec in range(num_quasars): z_map, z_true = test_zestimation(nspec) z_diff = z_map - z_true print("[Info] z_diff = z_map - z_true = {:.8g}".format(z_diff)) all_z_diffs[nspec] = z_diff print("[Info] abs(z_diff) < 0.5 = {:.4g}".format(accuracy(all_z_diffs, 0.5))) print("[Info] abs(z_diff) < 0.05 = {:.4g}".format(accuracy(all_z_diffs, 0.05))) # we got ~99% accuracy in https://arxiv.org/abs/2006.07343 # so at least we need to ensure ~98% here assert accuracy(all_z_diffs, 0.5) > 0.98 def accuracy(z_diff: np.ndarray, z_thresh: float): num_quasars = z_diff.shape[0] corrects = (np.abs(z_diff) < z_thresh).sum() return corrects / num_quasars ```
{ "source": "jibanCat/homework_helper", "score": 4 }
#### File: homework_helper/homework_helper/tex_reader.py ```python import re def load_tex(filepath): ''' Loading a .tex file from disk as a string. ''' with open(filepath, 'r') as file: tex = file.read() return tex.encode("unicode_escape").decode( ).replace("\\\\", "\\").replace(r"\n", r" ") def equation_pattern(): ''' Generate a regex pattern for LaTex equations. ''' # TODO: parse labels in the equation. pattern = re.compile(r"\\begin{equation}(.+?)\\end{equation}") return pattern def parse_equations(tex): ''' From tex to a list of equations. ''' pass ```
{ "source": "jibanCat/ISM_homework", "score": 2 }
#### File: ISM_homework/hw4/absorbers.py ```python import numpy as np from matplotlib import pyplot as plt from matplotlib import cm # get gradient from cmap colors cmap = cm.get_cmap("viridis") # redshift z = 2 save_figure = lambda filename : plt.savefig(filename, dpi=300, format="pdf") class Ion: # cgs units c = 3 * 10**10 def __init__(self, lrest, f, gamma, Wlrest): self.lrest = lrest self.f = f self.gamma = gamma self.Wlrest = Wlrest self.W = self.Wl2W(Wlrest, lrest) @staticmethod def Wl2W(Wl, l): return Wl / l @staticmethod def tau_0(f, l, b, N): ''' in cgs ''' return 1.497e-2 * f * l / b * N def approx_W_small(self, b, tau_0): ''' Approximated W if tau_0 < 1.25393 ''' W = np.sqrt(np.pi) * b / self.c * tau_0 / (1 + tau_0 / (2 * np.sqrt(2))) return W def approx_W_large(self, b, tau_0): ''' Approximated W if tau_0 > 1.25393 ''' term_ln_tau = (2 * b / self.c)**2 * np.log(tau_0 / np.log(2)) term_gamma = b / self.c * self.gamma * self.lrest / self.c * (tau_0 - 1.25393) / np.sqrt(2) return np.sqrt( term_ln_tau + term_gamma ) def calc_W(self, N, b): ''' calc W based on given N and b. N (array) b (float) ''' tau_0 = self.tau_0( self.f, self.lrest, b, N ) ind = tau_0 >= 1.25393 W = np.empty(ind.shape) W_small = self.approx_W_small(b, tau_0) W_large = self.approx_W_large(b, tau_0) W[ ind] = W_large[ind] W[~ind] = W_small[~ind] return W def do_loglog_plot(ion, N, all_b): ''' Plotting for C.O.G in 1(a) ''' # plot for different bs for i,b in enumerate(all_b): W = ion.calc_W(N, b) plt.loglog(N, W, label="b = {} km/s".format(b / 10**5), color=cmap(i / len(all_b))) plt.xlabel(r"$N_{\ell}$") plt.ylabel(r"$W$") plt.legend() def do_loglog_plot_Wlambda(ion, N, all_b): ''' Plotting for C.O.G in 1(a) ''' # plot for different bs for i,b in enumerate(all_b): W = ion.calc_W(N, b) Wl = W * ion.lrest * 10**8 # A plt.loglog(N, Wl, label="b = {} km/s".format(b / 10**5), color=cmap(i / len(all_b))) plt.xlabel(r"$N_{\ell}$") plt.ylabel(r"$W^{\mathrm{rest}}_\lambda$ $\AA$") plt.legend() # provided by the question all_b = np.array([1, 2, 3, 5, 10]) * 10**5 # cm/s log_NFe = np.linspace(12, 16, 100) log_NC = np.linspace(13, 17, 100) # unit convert NFe = 10**( log_NFe ) # cm^-2 NC = 10**( log_NC ) # cm^-2 ion_fe_1 = Ion(2382.7642 * 10**-8, 0.32, 3.13e8, 0.051) ion_fe_2 = Ion(2249.8768 * 10**-8, 0.00182, 3.31e8, 0.0047) ion_c = Ion(1334.5323 * 10**-8, 0.12780, 2.880e8, 0.060) # 1(a) do plots do_loglog_plot(ion_fe_1, NFe, all_b); save_figure("images/W_N_Fe_II_1.pdf"); plt.clf() do_loglog_plot(ion_fe_2, NFe, all_b); save_figure("images/W_N_Fe_II_2.pdf"); plt.clf() do_loglog_plot(ion_c, NC, all_b); save_figure( "images/W_N_C_II.pdf"); plt.clf() do_loglog_plot_Wlambda(ion_fe_1, NFe, all_b) plt.hlines(ion_fe_1.Wlrest, min(NFe), max(NFe)) save_figure("images/Wl_N_Fe_II_1.pdf"); plt.clf() do_loglog_plot_Wlambda(ion_fe_2, NFe, all_b) plt.hlines(ion_fe_2.Wlrest, min(NFe), max(NFe)) save_figure("images/Wl_N_Fe_II_2.pdf"); plt.clf() do_loglog_plot_Wlambda(ion_c, NC, all_b) plt.hlines(ion_c.Wlrest, min(NC), max(NC)) save_figure("images/Wl_N_C_II.pdf"); plt.clf() # 1(b) dv_Fe_1 = 2 * np.sqrt(np.log(2)) * 1.5 print("(dv)FeII_1 = {};".format(dv_Fe_1)) print("(dv)FeII_obs_1 = {};".format(dv_Fe_1 * (1 + z))) # 1(d) thermal broadening calc_T = lambda M_mH, dv : 1/2.15**2 * M_mH * dv**2 * 100 T_Fe_1 = calc_T(56, 2.5) print("At least T for Fe II {}.".format( T_Fe_1 )) # 1(e) Mfe = 56 MC = 12 b_fe = 2.5 b_C = np.sqrt(Mfe / MC) * b_fe print("b for CII by thermal: {}".format(b_C)) do_loglog_plot_Wlambda(ion_fe_1, NFe, all_b) plt.hlines(ion_fe_1.Wlrest, min(NFe), max(NFe)) save_figure("images/Wl_N_Fe_II_1_more_b.pdf"); plt.clf() ```
{ "source": "jibanCat/phys214_obsastro", "score": 3 }
#### File: phys214_obsastro/cosmos_hw/camb_change_neutrino.py ```python import numpy as np import camb from matplotlib import pyplot as plt from matplotlib.cm import get_cmap viridis = get_cmap("viridis") def change_neutrino(mnu): ''' mnu : neutrino mass (eV) other params set to Planck 2018 results ''' # setup six init params from the paper params = camb.CAMBparams() # the obj stores params params.set_cosmology( H0=67.4, ombh2=0.022383, omch2=0.122011, omk=0, tau=0.0543, mnu=mnu, neutrino_hierarchy='degenerate') params.InitPower.set_params( As=np.exp(3.0448) * 1e-10, ns=0.96605) params.set_for_lmax(2500, lens_potential_accuracy=0) # calculate the results of params results = camb.get_results( params) # get power spec power_spec = results.get_cmb_power_spectra( params, CMB_unit="muK", lmax=2500) return power_spec # a) Keep ΩMh2 , H0 and Ωbh2 constant and vary Ωk fig, ax = plt.subplots(1, 1, figsize = (10, 6)) for i in range(11): mnu = 0 + i * 0.1 power_spec = change_neutrino(mnu) total_cls = power_spec['total'] unlensed_total_cls = power_spec['unlensed_scalar'] ls = np.arange(total_cls.shape[0]) ax.plot(ls, unlensed_total_cls[:, 0] , color=viridis( i / 11), label=r'$m_\nu = {:.1g}$'.format(mnu)) ax.set_title(r'Change $m_\nu$') ax.set_xlim(0, 2500) ax.set_xlabel(r'$\ell$') ax.set_ylabel(r'$\mathcal{D}^{TT}_\ell$ [$\mu K^2$]') ax.legend() plt.savefig("images/change_neutrino.png", format='png', dpi=200) plt.show() ``` #### File: hw1/signal/calculator.py ```python import math as m import sympy as sp t = sp.symbols("t") # S/N ratio equation sn = lambda R_s, R_sky, RN, DN, npix, t : R_s * t / ( R_s * t + R_sky * t * npix + RN**2 * npix + DN * t * npix )**(1/2) def solve_SN_20(R_s, R_sky, RN, DN, npix, t): ''' Parameters ---- R_s : float, e/s from source R_sky : float, e/s/pix from sky RN : float, sqrt(e/s/pix) readout noise DN : float, e/s dark current noise npix : int, number of pixels t : sympy.symbol, time to solve Return: t_20 : the time for S/N reach 20 ''' expr = sn(R_s, R_sky, RN**(1/2), DN, npix, t) return sp.solve(sp.Eq(expr, 20), t)[0] ``` #### File: phys214_obsastro/hw2/generate_observation_run.py ```python from starlist.calc_time import LT2LMST from datetime import date, datetime, timedelta # set parameters init_year = 2020 init_month = 3 init_day = 22 init_hh = 18 init_mm = 0 init_ss = 0 initial_time = datetime(init_year, init_month, init_day, init_hh, init_mm, init_ss) # increment of time delta_mm = 10 # minutes # end time end_year = 2020 end_month = 3 end_day = 23 end_hh = 6 end_mm = 10 end_ss = 0 end_time = datetime(end_year, end_month, end_day, end_hh, end_mm, end_ss) def generate_time_interval(initial_time, end_time, delta_mm): ''' generate a list of time intervals with delta minutes ''' for i in range( int((end_time - initial_time).seconds // 60 // delta_mm) ): yield initial_time + timedelta(minutes=i * delta_mm) # generate a list for schedule local_time_list = list(generate_time_interval(initial_time, end_time, delta_mm)) local_mean_sidereal_time_list = [ LT2LMST(ls.year, ls.month, ls.day, ls.hour, ls.minute, ls.second) for ls in local_time_list ] def generate_schedule(local_time_list, local_mean_sidereal_time_list): ''' print the schedule, handle the format ''' column_names = ["LT", "LMST", "Target", "Exposure Time", "Comments"] markdown_sep = "---".join( ["|" for i in range(len(column_names) + 1)] ) schedule_list = [ "|{}|".format( "|".join( column_names ) ), markdown_sep ] for ls, lmst in zip(local_time_list, local_mean_sidereal_time_list): ls_str = "{:02d}:{:02d}".format( int(ls.hour), int(ls.minute) ) lmst_str = "{:02d}:{:02d}:{:05.2f}".format( int(lmst[0]), int(lmst[1]), lmst[2] ) row_str = "| {:<10} | {:<10} | | | |".format(ls_str, lmst_str) schedule_list.append(row_str) schedule_str = "\n".join( schedule_list ) print(schedule_str) return schedule_str ```
{ "source": "jibanCat/Square2Healpix", "score": 3 }
#### File: jibanCat/Square2Healpix/Tkinter_healpy.py ```python import sys if sys.version_info[0] > 2: from tkinter import * import tkinter.filedialog as tkFileDialog else: from Tkinter import * import tkFileDialog from PIL import Image, ImageTk import numpy as np import matplotlib.pyplot as plt from image2healpix import * import matplotlib #matplotlib.use("TkAgg") def select_image(): global panelA, panelB, entry1 path = tkFileDialog.askopenfilename() try: deg = float(entry1.get()) if not (0 < deg <= 180): print('Please enter a valid number between 0 - 180 deg.') except ValueError: print('Please enter a valid number between 0 - 180 deg.') if len(path) > 0: image_array, healpix, xsize = main(path, deg) # panel A image = image_array.reshape((xsize, xsize)) image = (image - image.min()) / (image.max() - image.min()) * 255 image = Image.fromarray(image.astype(np.uint8)).resize((400, 400)) image = ImageTk.PhotoImage(image) # panel B project = hp.mollview(healpix, xsize=400, return_projected_map=True) #plt.close() project[project == -np.inf] = project.max() project = (project - project.min()) / (project.max() - project.min()) * 255 project = Image.fromarray(project.astype(np.uint8)) project = ImageTk.PhotoImage(project) print('[Info] Creating panels') # inital panel if panelA is None or panelB is None: panelA = Label(image=image) panelA.image = image panelA.grid(row=2, column=0, padx=10, pady=10) panelB = Label(image=project,) panelB.healpix = healpix panelB.nside = hp.npix2nside(len(healpix)) panelB.image = project panelB.grid(row=2, column=1, padx=10, pady=10) # or update the panels else: panelA.configure(image=image) panelB.configure(image=project, ) panelA.image = image panelB.image = project panelB.healpix = healpix panelB.nside = hp.npix2nside(len(healpix)) def save_file(): global panelB output_file = tkFileDialog.asksaveasfilename() if output_file is None: return save('{}.fits'.format(output_file), panelB.healpix, write_alm=False) def save_alm_file(): global panelB output_file = tkFileDialog.asksaveasfilename() if output_file is None: return print('[Info] Saving the alms file ... take a little while to convert image file to alms') save(output_file + '.fits', panelB.healpix, panelB.nside, write_alm=True) root = Tk() root.title = 'Square image to HEALPix' panelA = None panelB = None Label1 = Label(root, text="deg of the square (0-180): ").grid(row=0, column=0, sticky=W) Label2 = Label(root, text="sqaure image array (1-D): ").grid(row=0, column=1, sticky=W) entry1 = Entry(root, ) entry1.grid(row=1, sticky=W) # create button save_button = Button(root, text="save the HEALPix map fits", command=save_file) #save_button.pack(side="bottom", fill="both", expand=True, padx="2", pady="2") save_button.grid(row=3, sticky=W) save_alm_button = Button(root, text="save the HEALPix alm (l,m,re,im)", command=save_alm_file) #save_alm_button.pack(side="bottom", fill="both", expand=True, padx="2", pady="2") save_alm_button.grid(row=4, sticky=W) button = Button(root, text="select", command=select_image) #button.pack(side="bottom", fill="both", expand=True, padx="10", pady="10") button.grid(row=1, column=1, sticky=W) root.mainloop() ```
{ "source": "Jibanprakash/tensorflow", "score": 2 }
#### File: python/kernel_tests/reader_dataset_ops_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import zlib import numpy as np from tensorflow.contrib.data.python.kernel_tests import dataset_serialization_test_base from tensorflow.contrib.data.python.ops import readers from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.data.ops import iterator_ops from tensorflow.python.data.ops import readers as core_readers from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.lib.io import python_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import string_ops from tensorflow.python.platform import test from tensorflow.python.util import compat class TextLineDatasetTestBase(test.TestCase): def _lineText(self, f, l): return compat.as_bytes("%d: %d" % (f, l)) def _createFiles(self, num_files, num_lines, crlf=False, compression_type=None): filenames = [] for i in range(num_files): fn = os.path.join(self.get_temp_dir(), "text_line.%d.txt" % i) filenames.append(fn) contents = [] for j in range(num_lines): contents.append(self._lineText(i, j)) # Always include a newline after the record unless it is # at the end of the file, in which case we include it if j + 1 != num_lines or i == 0: contents.append(b"\r\n" if crlf else b"\n") contents = b"".join(contents) if not compression_type: with open(fn, "wb") as f: f.write(contents) elif compression_type == "GZIP": with gzip.GzipFile(fn, "wb") as f: f.write(contents) elif compression_type == "ZLIB": contents = zlib.compress(contents) with open(fn, "wb") as f: f.write(contents) else: raise ValueError("Unsupported compression_type", compression_type) return filenames class TextLineDatasetSerializationTest( TextLineDatasetTestBase, dataset_serialization_test_base.DatasetSerializationTestBase): def _build_iterator_graph(self, test_filenames, compression_type=None): return core_readers.TextLineDataset( test_filenames, compression_type=compression_type, buffer_size=10) def testTextLineCore(self): compression_types = [None, "GZIP", "ZLIB"] num_files = 5 lines_per_file = 5 num_outputs = num_files * lines_per_file for compression_type in compression_types: test_filenames = self._createFiles( num_files, lines_per_file, crlf=True, compression_type=compression_type) # pylint: disable=cell-var-from-loop self.run_core_tests( lambda: self._build_iterator_graph(test_filenames, compression_type), lambda: self._build_iterator_graph(test_filenames), num_outputs) # pylint: enable=cell-var-from-loop class FixedLengthRecordReaderTestBase(test.TestCase): def setUp(self): super(FixedLengthRecordReaderTestBase, self).setUp() self._num_files = 2 self._num_records = 7 self._header_bytes = 5 self._record_bytes = 3 self._footer_bytes = 2 def _record(self, f, r): return compat.as_bytes(str(f * 2 + r) * self._record_bytes) def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "fixed_length_record.%d.txt" % i) filenames.append(fn) with open(fn, "wb") as f: f.write(b"H" * self._header_bytes) for j in range(self._num_records): f.write(self._record(i, j)) f.write(b"F" * self._footer_bytes) return filenames class FixedLengthRecordDatasetSerializationTest( FixedLengthRecordReaderTestBase, dataset_serialization_test_base.DatasetSerializationTestBase): def _build_iterator_graph(self, num_epochs, compression_type=None): filenames = self._createFiles() return core_readers.FixedLengthRecordDataset( filenames, self._record_bytes, self._header_bytes, self._footer_bytes).repeat(num_epochs) def testFixedLengthRecordCore(self): num_epochs = 5 num_outputs = num_epochs * self._num_files * self._num_records self.run_core_tests(lambda: self._build_iterator_graph(num_epochs), lambda: self._build_iterator_graph(num_epochs * 2), num_outputs) class TFRecordDatasetTestBase(test.TestCase): def setUp(self): super(TFRecordDatasetTestBase, self).setUp() self._num_files = 2 self._num_records = 7 self.test_filenames = self._createFiles() self.filenames = array_ops.placeholder(dtypes.string, shape=[None]) self.num_epochs = array_ops.placeholder_with_default( constant_op.constant(1, dtypes.int64), shape=[]) self.compression_type = array_ops.placeholder_with_default("", shape=[]) self.batch_size = array_ops.placeholder(dtypes.int64, shape=[]) repeat_dataset = core_readers.TFRecordDataset( self.filenames, self.compression_type).repeat(self.num_epochs) batch_dataset = repeat_dataset.batch(self.batch_size) iterator = iterator_ops.Iterator.from_structure(batch_dataset.output_types) self.init_op = iterator.make_initializer(repeat_dataset) self.init_batch_op = iterator.make_initializer(batch_dataset) self.get_next = iterator.get_next() def _record(self, f, r): return compat.as_bytes("Record %d of file %d" % (r, f)) def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "tf_record.%d.txt" % i) filenames.append(fn) writer = python_io.TFRecordWriter(fn) for j in range(self._num_records): writer.write(self._record(i, j)) writer.close() return filenames class TFRecordDatasetSerializationTest( TFRecordDatasetTestBase, dataset_serialization_test_base.DatasetSerializationTestBase): def _build_iterator_graph(self, num_epochs, batch_size=1, compression_type=None, buffer_size=None): filenames = self._createFiles() if compression_type is "ZLIB": zlib_files = [] for i, fn in enumerate(filenames): with open(fn, "rb") as f: cdata = zlib.compress(f.read()) zfn = os.path.join(self.get_temp_dir(), "tfrecord_%s.z" % i) with open(zfn, "wb") as f: f.write(cdata) zlib_files.append(zfn) filenames = zlib_files elif compression_type is "GZIP": gzip_files = [] for i, fn in enumerate(self.test_filenames): with open(fn, "rb") as f: gzfn = os.path.join(self.get_temp_dir(), "tfrecord_%s.gz" % i) with gzip.GzipFile(gzfn, "wb") as gzf: gzf.write(f.read()) gzip_files.append(gzfn) filenames = gzip_files return core_readers.TFRecordDataset( filenames, compression_type, buffer_size=buffer_size).repeat(num_epochs).batch(batch_size) def testTFRecordWithoutBufferCore(self): num_epochs = 5 batch_size = num_epochs num_outputs = num_epochs * self._num_files * self._num_records // batch_size # pylint: disable=g-long-lambda self.run_core_tests( lambda: self._build_iterator_graph(num_epochs, batch_size, buffer_size=0), lambda: self._build_iterator_graph(num_epochs * 2, batch_size), num_outputs) self.run_core_tests( lambda: self._build_iterator_graph(num_epochs, buffer_size=0), None, num_outputs * batch_size) # pylint: enable=g-long-lambda def testTFRecordWithBufferCore(self): num_epochs = 5 num_outputs = num_epochs * self._num_files * self._num_records self.run_core_tests(lambda: self._build_iterator_graph(num_epochs), lambda: self._build_iterator_graph(num_epochs * 2), num_outputs) def testTFRecordWithCompressionCore(self): num_epochs = 5 num_outputs = num_epochs * self._num_files * self._num_records self.run_core_tests( lambda: self._build_iterator_graph(num_epochs, compression_type="ZLIB"), lambda: self._build_iterator_graph(num_epochs * 2), num_outputs) self.run_core_tests( lambda: self._build_iterator_graph(num_epochs, compression_type="GZIP"), lambda: self._build_iterator_graph(num_epochs * 2), num_outputs) def _interleave(iterators, cycle_length): pending_iterators = iterators open_iterators = [] num_open = 0 for i in range(cycle_length): if pending_iterators: open_iterators.append(pending_iterators.pop(0)) num_open += 1 while num_open: for i in range(min(cycle_length, len(open_iterators))): if open_iterators[i] is None: continue try: yield next(open_iterators[i]) except StopIteration: if pending_iterators: open_iterators[i] = pending_iterators.pop(0) else: open_iterators[i] = None num_open -= 1 class ReadBatchFeaturesTest(test.TestCase): def setUp(self): super(ReadBatchFeaturesTest, self).setUp() self._num_files = 2 self._num_records = 7 self.test_filenames = self._createFiles() def _read_batch_features(self, filenames, num_epochs, batch_size, reader_num_threads=1, parser_num_threads=1, shuffle=False, shuffle_seed=None, drop_final_batch=False): self.filenames = filenames self.num_epochs = num_epochs self.batch_size = batch_size return readers.make_batched_features_dataset( file_pattern=self.filenames, batch_size=self.batch_size, features={ "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), "keywords": parsing_ops.VarLenFeature(dtypes.string) }, reader=core_readers.TFRecordDataset, num_epochs=self.num_epochs, shuffle=shuffle, shuffle_seed=shuffle_seed, reader_num_threads=reader_num_threads, parser_num_threads=parser_num_threads, drop_final_batch=drop_final_batch).make_one_shot_iterator( ).get_next() def _record(self, f, r): example = example_pb2.Example( features=feature_pb2.Features( feature={ "file": feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[f])), "record": feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[r])), "keywords": feature_pb2.Feature( bytes_list=feature_pb2.BytesList( value=self._get_keywords(f, r))) })) return example.SerializeToString() def _get_keywords(self, f, r): num_keywords = 1 + (f + r) % 2 keywords = [] for index in range(num_keywords): keywords.append(compat.as_bytes("keyword%d" % index)) return keywords def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "tf_record.%d.txt" % i) filenames.append(fn) writer = python_io.TFRecordWriter(fn) for j in range(self._num_records): writer.write(self._record(i, j)) writer.close() return filenames def _run_actual_batch(self, outputs, sess): file_op = outputs["file"] keywords_indices_op = outputs["keywords"].indices keywords_values_op = outputs["keywords"].values keywords_dense_shape_op = outputs["keywords"].dense_shape record_op = outputs["record"] return sess.run([ file_op, keywords_indices_op, keywords_values_op, keywords_dense_shape_op, record_op ]) def _next_actual_batch(self, sess): return self._run_actual_batch(self.outputs, sess) def _next_expected_batch(self, file_indices, batch_size, num_epochs, cycle_length=1): def _next_record(file_indices): for j in file_indices: for i in range(self._num_records): yield j, i def _next_record_interleaved(file_indices, cycle_length): return _interleave([_next_record([i]) for i in file_indices], cycle_length) file_batch = [] keywords_batch_indices = [] keywords_batch_values = [] keywords_batch_max_len = 0 record_batch = [] batch_index = 0 for _ in range(num_epochs): if cycle_length == 1: next_records = _next_record(file_indices) else: next_records = _next_record_interleaved(file_indices, cycle_length) for record in next_records: f = record[0] r = record[1] file_batch.append(f) record_batch.append(r) keywords = self._get_keywords(f, r) keywords_batch_values.extend(keywords) keywords_batch_indices.extend( [[batch_index, i] for i in range(len(keywords))]) batch_index += 1 keywords_batch_max_len = max(keywords_batch_max_len, len(keywords)) if len(file_batch) == batch_size: yield [ file_batch, keywords_batch_indices, keywords_batch_values, [batch_size, keywords_batch_max_len], record_batch ] file_batch = [] keywords_batch_indices = [] keywords_batch_values = [] keywords_batch_max_len = 0 record_batch = [] batch_index = 0 if file_batch: yield [ file_batch, keywords_batch_indices, keywords_batch_values, [len(file_batch), keywords_batch_max_len], record_batch ] def _verify_records(self, sess, batch_size, file_index=None, num_epochs=1, interleave_cycle_length=1): if file_index is not None: file_indices = [file_index] else: file_indices = range(self._num_files) for expected_batch in self._next_expected_batch( file_indices, batch_size, num_epochs, interleave_cycle_length): actual_batch = self._next_actual_batch(sess) for i in range(len(expected_batch)): self.assertAllEqual(expected_batch[i], actual_batch[i]) def testRead(self): for batch_size in [1, 2]: for num_epochs in [1, 10]: with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Basic test: read from file 0. self.outputs = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size) self._verify_records(sess, batch_size, 0, num_epochs=num_epochs) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Basic test: read from file 1. self.outputs = self._read_batch_features( filenames=self.test_filenames[1], num_epochs=num_epochs, batch_size=batch_size) self._verify_records(sess, batch_size, 1, num_epochs=num_epochs) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Basic test: read from both files. self.outputs = self._read_batch_features( filenames=self.test_filenames, num_epochs=num_epochs, batch_size=batch_size) self._verify_records(sess, batch_size, num_epochs=num_epochs) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) def testReadWithEquivalentDataset(self): features = { "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), } dataset = ( core_readers.TFRecordDataset(self.test_filenames) .map(lambda x: parsing_ops.parse_single_example(x, features)) .repeat(10).batch(2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer next_element = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for file_batch, _, _, _, record_batch in self._next_expected_batch( range(self._num_files), 2, 10): actual_batch = sess.run(next_element) self.assertAllEqual(file_batch, actual_batch["file"]) self.assertAllEqual(record_batch, actual_batch["record"]) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testReadWithFusedShuffleRepeatDataset(self): num_epochs = 5 total_records = num_epochs * self._num_records for batch_size in [1, 2]: # Test that shuffling with same seed produces the same result. with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: outputs1 = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size, shuffle=True, shuffle_seed=5) outputs2 = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size, shuffle=True, shuffle_seed=5) for _ in range(total_records // batch_size): batch1 = self._run_actual_batch(outputs1, sess) batch2 = self._run_actual_batch(outputs2, sess) for i in range(len(batch1)): self.assertAllEqual(batch1[i], batch2[i]) # Test that shuffling with different seeds produces a different order. with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: outputs1 = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size, shuffle=True, shuffle_seed=5) outputs2 = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size, shuffle=True, shuffle_seed=15) all_equal = True for _ in range(total_records // batch_size): batch1 = self._run_actual_batch(outputs1, sess) batch2 = self._run_actual_batch(outputs2, sess) for i in range(len(batch1)): all_equal = all_equal and np.array_equal(batch1[i], batch2[i]) self.assertFalse(all_equal) def testParallelReadersAndParsers(self): num_epochs = 5 for batch_size in [1, 2]: for reader_num_threads in [2, 4]: for parser_num_threads in [2, 4]: with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: self.outputs = self._read_batch_features( filenames=self.test_filenames, num_epochs=num_epochs, batch_size=batch_size, reader_num_threads=reader_num_threads, parser_num_threads=parser_num_threads) self._verify_records( sess, batch_size, num_epochs=num_epochs, interleave_cycle_length=reader_num_threads) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) def testDropFinalBatch(self): for batch_size in [1, 2]: for num_epochs in [1, 10]: with ops.Graph().as_default(): # Basic test: read from file 0. self.outputs = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size, drop_final_batch=True) for _, tensor in self.outputs.items(): if isinstance(tensor, ops.Tensor): # Guard against SparseTensor. self.assertEqual(tensor.shape[0], batch_size) class MakeCsvDatasetTest(test.TestCase): COLUMN_TYPES = [ dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64, dtypes.string ] COLUMNS = ["col%d" % i for i in range(len(COLUMN_TYPES))] DEFAULT_VALS = [[], [], [], [], ["NULL"]] DEFAULTS = [ constant_op.constant([], dtype=dtypes.int32), constant_op.constant([], dtype=dtypes.int64), constant_op.constant([], dtype=dtypes.float32), constant_op.constant([], dtype=dtypes.float64), constant_op.constant(["NULL"], dtype=dtypes.string) ] LABEL = COLUMNS[0] def setUp(self): super(MakeCsvDatasetTest, self).setUp() self._num_files = 2 self._num_records = 11 self._test_filenames = self._create_files() def _csv_values(self, fileno, recordno): return [ fileno, recordno, fileno * recordno * 0.5, fileno * recordno + 0.5, "record %d" % recordno if recordno % 2 == 1 else "", ] def _write_file(self, filename, rows): for i in range(len(rows)): if isinstance(rows[i], list): rows[i] = ",".join(str(v) if v is not None else "" for v in rows[i]) fn = os.path.join(self.get_temp_dir(), filename) f = open(fn, "w") f.write("\n".join(rows)) f.close() return fn def _create_file(self, fileno, header=True): rows = [] if header: rows.append(self.COLUMNS) for recno in range(self._num_records): rows.append(self._csv_values(fileno, recno)) return self._write_file("csv_file%d.csv" % fileno, rows) def _create_files(self): filenames = [] for i in range(self._num_files): filenames.append(self._create_file(i)) return filenames def _make_csv_dataset( self, filenames, defaults, column_names=COLUMNS, label_name=LABEL, select_cols=None, batch_size=1, num_epochs=1, shuffle=False, shuffle_seed=None, header=True, na_value="", ): return readers.make_csv_dataset( filenames, batch_size=batch_size, column_names=column_names, column_defaults=defaults, label_name=label_name, num_epochs=num_epochs, shuffle=shuffle, shuffle_seed=shuffle_seed, header=header, na_value=na_value, select_columns=select_cols, ) def _next_actual_batch(self, file_indices, batch_size, num_epochs, defaults): features = {col: list() for col in self.COLUMNS} for _ in range(num_epochs): for i in file_indices: for j in range(self._num_records): values = self._csv_values(i, j) for n, v in enumerate(values): if v == "": # pylint: disable=g-explicit-bool-comparison values[n] = defaults[n][0] values[-1] = values[-1].encode("utf-8") # Regroup lists by column instead of row for n, col in enumerate(self.COLUMNS): features[col].append(values[n]) if len(list(features.values())[0]) == batch_size: yield features features = {col: list() for col in self.COLUMNS} def _run_actual_batch(self, outputs, sess): features, labels = sess.run(outputs) batch = [features[k] for k in self.COLUMNS if k != self.LABEL] batch.append(labels) return batch def _verify_records( self, sess, dataset, file_indices, defaults=tuple(DEFAULT_VALS), label_name=LABEL, batch_size=1, num_epochs=1, ): iterator = dataset.make_one_shot_iterator() get_next = iterator.get_next() for expected_features in self._next_actual_batch(file_indices, batch_size, num_epochs, defaults): actual_features = sess.run(get_next) if label_name is not None: expected_labels = expected_features.pop(label_name) # Compare labels self.assertAllEqual(expected_labels, actual_features[1]) actual_features = actual_features[0] # Extract features dict from tuple for k in expected_features.keys(): # Compare features self.assertAllEqual(expected_features[k], actual_features[k]) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testMakeCSVDataset(self): defaults = self.DEFAULTS with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Basic test: read from file 0. dataset = self._make_csv_dataset(self._test_filenames[0], defaults) self._verify_records(sess, dataset, [0]) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Basic test: read from file 1. dataset = self._make_csv_dataset(self._test_filenames[1], defaults) self._verify_records(sess, dataset, [1]) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Read from both files. dataset = self._make_csv_dataset(self._test_filenames, defaults) self._verify_records(sess, dataset, range(self._num_files)) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Read from both files. Exercise the `batch` and `num_epochs` parameters # of make_csv_dataset and make sure they work. dataset = self._make_csv_dataset( self._test_filenames, defaults, batch_size=2, num_epochs=10) self._verify_records( sess, dataset, range(self._num_files), batch_size=2, num_epochs=10) def testMakeCSVDataset_withBadColumns(self): """Tests that exception is raised when input is malformed. """ dupe_columns = self.COLUMNS[:-1] + self.COLUMNS[:1] defaults = self.DEFAULTS # Duplicate column names with self.assertRaises(ValueError): self._make_csv_dataset( self._test_filenames, defaults, column_names=dupe_columns) # Label key not one of column names with self.assertRaises(ValueError): self._make_csv_dataset( self._test_filenames, defaults, label_name="not_a_real_label") def testMakeCSVDataset_withNoLabel(self): """Tests that CSV datasets can be created when no label is specified. """ defaults = self.DEFAULTS with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Read from both files. Make sure this works with no label key supplied. dataset = self._make_csv_dataset( self._test_filenames, defaults, batch_size=2, num_epochs=10, label_name=None) self._verify_records( sess, dataset, range(self._num_files), batch_size=2, num_epochs=10, label_name=None) def testMakeCSVDataset_withNoHeader(self): """Tests that datasets can be created from CSV files with no header line. """ defaults = self.DEFAULTS file_without_header = self._create_file( len(self._test_filenames), header=False) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( file_without_header, defaults, batch_size=2, num_epochs=10, header=False, ) self._verify_records( sess, dataset, [len(self._test_filenames)], batch_size=2, num_epochs=10, ) def testMakeCSVDataset_withTypes(self): """Tests that defaults can be a dtype instead of a Tensor for required vals. """ defaults = [d for d in self.COLUMN_TYPES[:-1]] defaults.append(constant_op.constant(["NULL"], dtype=dtypes.string)) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset(self._test_filenames, defaults) self._verify_records(sess, dataset, range(self._num_files)) def testMakeCSVDataset_withNoColNames(self): """Tests that datasets can be created when column names are not specified. In that case, we should infer the column names from the header lines. """ defaults = self.DEFAULTS with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Read from both files. Exercise the `batch` and `num_epochs` parameters # of make_csv_dataset and make sure they work. dataset = self._make_csv_dataset( self._test_filenames, defaults, column_names=None, batch_size=2, num_epochs=10) self._verify_records( sess, dataset, range(self._num_files), batch_size=2, num_epochs=10) def testMakeCSVDataset_withTypeInferenceMismatch(self): # Test that error is thrown when num fields doesn't match columns with self.assertRaises(ValueError): self._make_csv_dataset( self._test_filenames, column_names=self.COLUMNS + ["extra_name"], defaults=None, batch_size=2, num_epochs=10) def testMakeCSVDataset_withTypeInference(self): """Tests that datasets can be created when no defaults are specified. In that case, we should infer the types from the first N records. """ # Test that it works with standard test files (with header, etc) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( self._test_filenames, defaults=None, batch_size=2, num_epochs=10) self._verify_records( sess, dataset, range(self._num_files), batch_size=2, num_epochs=10, defaults=[[], [], [], [], [""]]) def testMakeCSVDataset_withTypeInferenceTricky(self): # Test on a deliberately tricky file (type changes as we read more rows, and # there are null values) fn = os.path.join(self.get_temp_dir(), "file.csv") expected_dtypes = [ dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float32, dtypes.string, dtypes.string ] col_names = ["col%d" % i for i in range(len(expected_dtypes))] rows = [[None, None, None, "NAN", "", "a"], [1, 2**31 + 1, 2**64, 123, "NAN", ""], ['"123"', 2, 2**64, 123.4, "NAN", '"cd,efg"']] expected = [[0, 0, 0, 0, "", "a"], [1, 2**31 + 1, 2**64, 123, "", ""], [123, 2, 2**64, 123.4, "", "cd,efg"]] for row in expected: row[-1] = row[-1].encode("utf-8") # py3 expects byte strings row[-2] = row[-2].encode("utf-8") # py3 expects byte strings self._write_file("file.csv", [col_names] + rows) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( fn, defaults=None, column_names=None, label_name=None, na_value="NAN", ) features = dataset.make_one_shot_iterator().get_next() # Check that types match for i in range(len(expected_dtypes)): print(features["col%d" % i].dtype, expected_dtypes[i]) assert features["col%d" % i].dtype == expected_dtypes[i] for i in range(len(rows)): assert sess.run(features) == dict(zip(col_names, expected[i])) def testMakeCSVDataset_withTypeInferenceAllTypes(self): # Test that we make the correct inference for all types with fallthrough fn = os.path.join(self.get_temp_dir(), "file.csv") expected_dtypes = [ dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64, dtypes.string, dtypes.string ] col_names = ["col%d" % i for i in range(len(expected_dtypes))] rows = [[1, 2**31 + 1, 1.0, 4e40, "abc", ""]] expected = [[ 1, 2**31 + 1, 1.0, 4e40, "abc".encode("utf-8"), "".encode("utf-8") ]] self._write_file("file.csv", [col_names] + rows) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( fn, defaults=None, column_names=None, label_name=None, na_value="NAN", ) features = dataset.make_one_shot_iterator().get_next() # Check that types match for i in range(len(expected_dtypes)): self.assertAllEqual(features["col%d" % i].dtype, expected_dtypes[i]) for i in range(len(rows)): self.assertAllEqual( sess.run(features), dict(zip(col_names, expected[i]))) def testMakeCSVDataset_withSelectColsError(self): data = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] col_names = ["col%d" % i for i in range(5)] fn = self._write_file("file.csv", [col_names] + data) with self.assertRaises(ValueError): # Mismatch in number of defaults and number of columns selected, # should raise an error self._make_csv_dataset( fn, defaults=[[0]] * 5, column_names=col_names, label_name=None, select_cols=[1, 3]) with self.assertRaises(ValueError): # Invalid column name should raise an error self._make_csv_dataset( fn, defaults=[[0]], column_names=col_names, label_name=None, select_cols=["invalid_col_name"]) def testMakeCSVDataset_withSelectCols(self): data = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] col_names = ["col%d" % i for i in range(5)] fn = self._write_file("file.csv", [col_names] + data) # If select_cols is specified, should only yield a subset of columns with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( fn, defaults=[[0], [0]], column_names=col_names, label_name=None, select_cols=[1, 3]) expected = [[1, 3], [6, 8]] features = dataset.make_one_shot_iterator().get_next() for i in range(len(data)): self.assertAllEqual( sess.run(features), dict(zip([col_names[1], col_names[3]], expected[i]))) # Can still do default inference with select_cols with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( fn, defaults=None, column_names=col_names, label_name=None, select_cols=[1, 3]) expected = [[1, 3], [6, 8]] features = dataset.make_one_shot_iterator().get_next() for i in range(len(data)): self.assertAllEqual( sess.run(features), dict(zip([col_names[1], col_names[3]], expected[i]))) # Can still do column name inference with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( fn, defaults=None, column_names=None, label_name=None, select_cols=[1, 3]) expected = [[1, 3], [6, 8]] features = dataset.make_one_shot_iterator().get_next() for i in range(len(data)): self.assertAllEqual( sess.run(features), dict(zip([col_names[1], col_names[3]], expected[i]))) # Can specify column names instead of indices with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = self._make_csv_dataset( fn, defaults=None, column_names=None, label_name=None, select_cols=[col_names[1], col_names[3]]) expected = [[1, 3], [6, 8]] features = dataset.make_one_shot_iterator().get_next() for i in range(len(data)): self.assertAllEqual( sess.run(features), dict(zip([col_names[1], col_names[3]], expected[i]))) def testMakeCSVDataset_withShuffle(self): total_records = self._num_files * self._num_records defaults = self.DEFAULTS for batch_size in [1, 2]: with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Test that shuffling with the same seed produces the same result dataset1 = self._make_csv_dataset( self._test_filenames, defaults, batch_size=batch_size, shuffle=True, shuffle_seed=5) dataset2 = self._make_csv_dataset( self._test_filenames, defaults, batch_size=batch_size, shuffle=True, shuffle_seed=5) outputs1 = dataset1.make_one_shot_iterator().get_next() outputs2 = dataset2.make_one_shot_iterator().get_next() for _ in range(total_records // batch_size): batch1 = self._run_actual_batch(outputs1, sess) batch2 = self._run_actual_batch(outputs2, sess) for i in range(len(batch1)): self.assertAllEqual(batch1[i], batch2[i]) with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: # Test that shuffling with a different seed produces different results dataset1 = self._make_csv_dataset( self._test_filenames, defaults, batch_size=batch_size, shuffle=True, shuffle_seed=5) dataset2 = self._make_csv_dataset( self._test_filenames, defaults, batch_size=batch_size, shuffle=True, shuffle_seed=6) outputs1 = dataset1.make_one_shot_iterator().get_next() outputs2 = dataset2.make_one_shot_iterator().get_next() all_equal = False for _ in range(total_records // batch_size): batch1 = self._run_actual_batch(outputs1, sess) batch2 = self._run_actual_batch(outputs2, sess) for i in range(len(batch1)): all_equal = all_equal and np.array_equal(batch1[i], batch2[i]) self.assertFalse(all_equal) class MakeTFRecordDatasetTest(TFRecordDatasetTestBase): def _next_expected_batch(self, file_indices, batch_size, num_epochs, cycle_length, drop_final_batch, use_parser_fn): def _next_record(file_indices): for j in file_indices: for i in range(self._num_records): yield j, i def _next_record_interleaved(file_indices, cycle_length): return _interleave([_next_record([i]) for i in file_indices], cycle_length) record_batch = [] batch_index = 0 for _ in range(num_epochs): if cycle_length == 1: next_records = _next_record(file_indices) else: next_records = _next_record_interleaved(file_indices, cycle_length) for f, r in next_records: record = self._record(f, r) if use_parser_fn: record = record[1:] record_batch.append(record) batch_index += 1 if len(record_batch) == batch_size: yield record_batch record_batch = [] batch_index = 0 if record_batch and not drop_final_batch: yield record_batch def _verify_records(self, sess, outputs, batch_size, file_index, num_epochs, interleave_cycle_length, drop_final_batch, use_parser_fn): if file_index is not None: file_indices = [file_index] else: file_indices = range(self._num_files) for expected_batch in self._next_expected_batch( file_indices, batch_size, num_epochs, interleave_cycle_length, drop_final_batch, use_parser_fn): actual_batch = sess.run(outputs) self.assertAllEqual(expected_batch, actual_batch) def _read_test(self, batch_size, num_epochs, file_index=None, num_parallel_reads=1, drop_final_batch=False, parser_fn=False): if file_index is None: file_pattern = self.test_filenames else: file_pattern = self.test_filenames[file_index] if parser_fn: fn = lambda x: string_ops.substr(x, 1, 999) else: fn = None with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: outputs = readers.make_tf_record_dataset( file_pattern=file_pattern, num_epochs=num_epochs, batch_size=batch_size, parser_fn=fn, num_parallel_reads=num_parallel_reads, drop_final_batch=drop_final_batch, shuffle=False).make_one_shot_iterator().get_next() self._verify_records( sess, outputs, batch_size, file_index, num_epochs=num_epochs, interleave_cycle_length=num_parallel_reads, drop_final_batch=drop_final_batch, use_parser_fn=parser_fn) with self.assertRaises(errors.OutOfRangeError): sess.run(outputs) def testRead(self): for batch_size in [1, 2]: for num_epochs in [1, 3]: # Basic test: read from file 0. self._read_test(batch_size, num_epochs, 0) # Basic test: read from file 1. self._read_test(batch_size, num_epochs, 1) # Basic test: read from both files. self._read_test(batch_size, num_epochs) # Basic test: read from both files, with parallel reads. self._read_test(batch_size, num_epochs, num_parallel_reads=8) def testDropFinalBatch(self): for batch_size in [1, 2, 10]: for num_epochs in [1, 3]: # Read from file 0. self._read_test(batch_size, num_epochs, 0, drop_final_batch=True) # Read from both files. self._read_test(batch_size, num_epochs, drop_final_batch=True) # Read from both files, with parallel reads. self._read_test(batch_size, num_epochs, num_parallel_reads=8, drop_final_batch=True) def testParserFn(self): for batch_size in [1, 2]: for num_epochs in [1, 3]: for drop_final_batch in [False, True]: self._read_test(batch_size, num_epochs, parser_fn=True, drop_final_batch=drop_final_batch) self._read_test(batch_size, num_epochs, num_parallel_reads=8, parser_fn=True, drop_final_batch=drop_final_batch) def _shuffle_test(self, batch_size, num_epochs, num_parallel_reads=1, seed=None): with ops.Graph().as_default() as g: with self.test_session(graph=g) as sess: dataset = readers.make_tf_record_dataset( file_pattern=self.test_filenames, num_epochs=num_epochs, batch_size=batch_size, num_parallel_reads=num_parallel_reads, shuffle=True, shuffle_seed=seed) iterator = dataset.make_initializable_iterator() next_element = iterator.get_next() sess.run(iterator.initializer) first_batches = [] try: while True: first_batches.append(sess.run(next_element)) except errors.OutOfRangeError: pass sess.run(iterator.initializer) second_batches = [] try: while True: second_batches.append(sess.run(next_element)) except errors.OutOfRangeError: pass self.assertEqual(len(first_batches), len(second_batches)) if seed is not None: # if you set a seed, should get the same results for i in range(len(first_batches)): self.assertAllEqual(first_batches[i], second_batches[i]) expected = [] for f in range(self._num_files): for r in range(self._num_records): expected.extend([self._record(f, r)] * num_epochs) for batches in (first_batches, second_batches): actual = [] for b in batches: actual.extend(b) self.assertAllEqual(sorted(expected), sorted(actual)) def testShuffle(self): for batch_size in [1, 2]: for num_epochs in [1, 3]: for num_parallel_reads in [1, 2]: # Test that all expected elements are produced self._shuffle_test(batch_size, num_epochs, num_parallel_reads) # Test that elements are produced in a consistent order if # you specify a seed. self._shuffle_test(batch_size, num_epochs, num_parallel_reads, seed=21345) if __name__ == "__main__": test.main() ``` #### File: python/keras/losses.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object from tensorflow.python.keras.utils.generic_utils import serialize_keras_object from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.util.tf_export import tf_export @tf_export('keras.metrics.mean_squared_error', 'keras.losses.mean_squared_error') def mean_squared_error(y_true, y_pred): return K.mean(math_ops.square(y_pred - y_true), axis=-1) @tf_export('keras.metrics.mean_absolute_error', 'keras.losses.mean_absolute_error') def mean_absolute_error(y_true, y_pred): return K.mean(math_ops.abs(y_pred - y_true), axis=-1) @tf_export('keras.metrics.mean_absolute_percentage_error', 'keras.losses.mean_absolute_percentage_error') def mean_absolute_percentage_error(y_true, y_pred): diff = math_ops.abs( (y_true - y_pred) / K.clip(math_ops.abs(y_true), K.epsilon(), None)) return 100. * K.mean(diff, axis=-1) @tf_export('keras.metrics.mean_squared_logarithmic_error', 'keras.losses.mean_squared_logarithmic_error') def mean_squared_logarithmic_error(y_true, y_pred): first_log = math_ops.log(K.clip(y_pred, K.epsilon(), None) + 1.) second_log = math_ops.log(K.clip(y_true, K.epsilon(), None) + 1.) return K.mean(math_ops.square(first_log - second_log), axis=-1) @tf_export('keras.metrics.squared_hinge', 'keras.losses.squared_hinge') def squared_hinge(y_true, y_pred): return K.mean( math_ops.square(math_ops.maximum(1. - y_true * y_pred, 0.)), axis=-1) @tf_export('keras.metrics.hinge', 'keras.losses.hinge') def hinge(y_true, y_pred): return K.mean(math_ops.maximum(1. - y_true * y_pred, 0.), axis=-1) @tf_export('keras.losses.categorical_hinge') def categorical_hinge(y_true, y_pred): pos = math_ops.reduce_sum(y_true * y_pred, axis=-1) neg = math_ops.reduce_max((1. - y_true) * y_pred, axis=-1) return math_ops.maximum(0., neg - pos + 1.) @tf_export('keras.losses.logcosh') def logcosh(y_true, y_pred): """Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly like the mean squared error, but will not be so strongly affected by the occasional wildly incorrect prediction. Arguments: y_true: tensor of true targets. y_pred: tensor of predicted targets. Returns: Tensor with one scalar loss entry per sample. """ def _logcosh(x): return x + nn.softplus(-2. * x) - math_ops.log(2.) return K.mean(_logcosh(y_pred - y_true), axis=-1) @tf_export('keras.metrics.categorical_crossentropy', 'keras.losses.categorical_crossentropy') def categorical_crossentropy(y_true, y_pred): return K.categorical_crossentropy(y_true, y_pred) @tf_export('keras.metrics.sparse_categorical_crossentropy', 'keras.losses.sparse_categorical_crossentropy') def sparse_categorical_crossentropy(y_true, y_pred): return K.sparse_categorical_crossentropy(y_true, y_pred) @tf_export('keras.metrics.binary_crossentropy', 'keras.losses.binary_crossentropy') def binary_crossentropy(y_true, y_pred): return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1) @tf_export('keras.metrics.kullback_leibler_divergence', 'keras.losses.kullback_leibler_divergence') def kullback_leibler_divergence(y_true, y_pred): y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) return math_ops.reduce_sum(y_true * math_ops.log(y_true / y_pred), axis=-1) @tf_export('keras.metrics.poisson', 'keras.losses.poisson') def poisson(y_true, y_pred): return K.mean(y_pred - y_true * math_ops.log(y_pred + K.epsilon()), axis=-1) @tf_export('keras.metrics.cosine_proximity', 'keras.losses.cosine_proximity') def cosine_proximity(y_true, y_pred): y_true = nn.l2_normalize(y_true, axis=-1) y_pred = nn.l2_normalize(y_pred, axis=-1) return -math_ops.reduce_sum(y_true * y_pred, axis=-1) # Aliases. mse = MSE = mean_squared_error mae = MAE = mean_absolute_error mape = MAPE = mean_absolute_percentage_error msle = MSLE = mean_squared_logarithmic_error kld = KLD = kullback_leibler_divergence cosine = cosine_proximity @tf_export('keras.losses.serialize') def serialize(loss): return serialize_keras_object(loss) @tf_export('keras.losses.deserialize') def deserialize(name, custom_objects=None): return deserialize_keras_object( name, module_objects=globals(), custom_objects=custom_objects, printable_module_name='loss function') @tf_export('keras.losses.get') def get(identifier): if identifier is None: return None if isinstance(identifier, six.string_types): identifier = str(identifier) return deserialize(identifier) if isinstance(identifier, dict): return deserialize(identifier) elif callable(identifier): return identifier else: raise ValueError('Could not interpret ' 'loss function identifier:', identifier) ```
{ "source": "Jibanul/CAP5610_MachineLearning", "score": 3 }
#### File: CAP5610_MachineLearning/Homework1/hw1.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import random from scipy.stats import chi2_contingency # import data train_df = pd.read_csv('/Users/mdjibanulhaquejiban/PhD_CRCV/Semesters/Spring2021/ML/HW/HW1/Titanic/train.csv') test_df = pd.read_csv('/Users/mdjibanulhaquejiban/PhD_CRCV/Semesters/Spring2021/ML/HW/HW1/Titanic/test.csv') combine = [train_df, test_df] ####################### ## Q1 print(train_df) print(train_df.describe()) print(train_df.info()) ## Q2-Q4 print(train_df.info()) ## Q5 print(train_df.info()) print(test_df.info()) ## Q6 print(train_df.head()) ## Q7 # create a sub-dataframe with only numerical features train_df_num = train_df[['Age', 'SibSp', 'Parch', 'Fare']] print(train_df_num.describe()) ## Q8 # create a sub-dataframe with only categorical features train_df_cat = train_df[['Survived', 'Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked', 'PassengerId']] train_df_cat = train_df_cat.astype('object') # print(train_df_cat.info()) train_df_cat.describe(include=[object]) ## Q9 contigency_table= pd.crosstab(train_df['Pclass'], train_df['Survived']) print('The contigency table:') print('\n') print(contigency_table) # Chi-Sq test chi2, p_value, deg_freedom, expected = chi2_contingency(contigency_table) print('\n') print('The test statistic is', chi2) print('\n') print('The p-value of the test is', p_value) print('\n') print('Degrees of freedom is', deg_freedom) print('\n') print('The expected frequencies, based on the marginal sums of the table. \n', expected) ## Q10 female = np.where((train_df['Sex']=='female')) female_survived = np.where((train_df['Sex']=='female') & (train_df['Survived'] == 1)) print("The ratio of female survivals in training set is", len(female_survived[0])/len(female[0])) ## Chi-Sq contigency_table= pd.crosstab(train_df['Sex'], train_df['Survived']) print('The contigency table:') print('\n') print(contigency_table) # Chi-Sq test chi2, p_value, deg_freedom, expected = chi2_contingency(contigency_table) print('\n') print('The test statistic is', chi2) print('\n') print('The p-value of the test is', p_value) ## Q11 survived_age = train_df.loc[np.where((train_df['Survived'] == 1))]['Age'] not_survived_age = train_df.loc[np.where((train_df['Survived'] == 0))]['Age'] # survived histogram survived_age.hist(bins=21, color='orange') plt.xlabel('Age') plt.ylabel('Frequency') plt.title('Distribution of Age of People who survived (= 1)') plt.show() plt.close() # not survived histogram not_survived_age.hist(bins=21, color='tomato') plt.xlabel('Age') plt.ylabel('Frequency') plt.title('Distribution of Age of People who did not survive (= 0)') plt.show() plt.close() ## Q12 # Create data not_survived_pclass1_age = train_df.loc[np.where((train_df['Pclass'] == 1) & (train_df['Survived'] == 0))]['Age'] not_survived_pclass2_age = train_df.loc[np.where((train_df['Pclass'] == 2) & (train_df['Survived'] == 0))]['Age'] not_survived_pclass3_age = train_df.loc[np.where((train_df['Pclass'] == 3) & (train_df['Survived'] == 0))]['Age'] survived_pclass1_age = train_df.loc[np.where((train_df['Pclass'] == 1) & (train_df['Survived'] == 1))]['Age'] survived_pclass2_age = train_df.loc[np.where((train_df['Pclass'] == 2) & (train_df['Survived'] == 1))]['Age'] survived_pclass3_age = train_df.loc[np.where((train_df['Pclass'] == 3) & (train_df['Survived'] == 1))]['Age'] # plot figures fig, axs = plt.subplots(3,2,figsize=(12,12)) fig.suptitle('Distributions of Age by Pclass and Survived') axs[0,0].hist(not_survived_pclass1_age, bins=21, color='tomato') axs[0,0].set_title('Pclass = 1 | Survived = 0') axs[1,0].hist(not_survived_pclass2_age, bins=21, color='tomato') axs[1,0].set_title('Pclass = 2 | Survived = 0') axs[2,0].hist(not_survived_pclass3_age, bins=21, color='tomato') axs[2,0].set_title('Pclass = 3 | Survived = 0') axs[0,1].hist(survived_pclass1_age, bins=21, color='orange') axs[0,1].set_title('Pclass = 1 | Survived = 1') axs[1,1].hist(survived_pclass2_age, bins=21, color='orange') axs[1,1].set_title('Pclass = 2 | Survived = 1') axs[2,1].hist(survived_pclass3_age, bins=21, color='orange') axs[2,1].set_title('Pclass = 3 | Survived = 1') plt.show() plt.close() # Count number of passengers by pclass train_df.groupby(['Pclass'])['PassengerId'].count() train_df.groupby(['Pclass', 'Survived'])['PassengerId'].count() ## Q13 train_df_q13 = train_df.groupby(['Embarked', 'Survived', 'Sex'])['Fare'].mean() # plot figures fig, axs = plt.subplots(3,2,figsize=(11,11)) fig.suptitle('Distributions of Average Fare by Embarked, Survived and Sex') axs[0,0].bar(['female', 'male'],train_df_q13[8:10].values, color='tomato') axs[0,0].set_title('Embarked = S | Survived = 0') axs[0,0].set_ylabel('Average Fare') axs[1,0].bar(['female', 'male'],train_df_q13[:2].values, color='tomato') axs[1,0].set_title('Embarked = C | Survived = 0') axs[1,0].set_ylabel('Average Fare') axs[2,0].bar(['female', 'male'],train_df_q13[4:6].values, color='tomato') axs[2,0].set_title('Embarked = Q | Survived = 0') axs[2,0].set_ylabel('Average Fare') axs[0,1].bar(['female', 'male'],train_df_q13[10:12].values, color='orange') axs[0,1].set_title('Embarked = S | Survived = 1') axs[1,1].bar(['female', 'male'],train_df_q13[2:4].values, color='orange') axs[1,1].set_title('Embarked = C | Survived = 1') axs[2,1].bar(['female', 'male'],train_df_q13[6:8].values, color='orange') axs[2,1].set_title('Embarked = Q | Survived = 1') plt.show() plt.close() train_df.groupby(['Embarked', 'Survived', 'Sex'])['Fare'].mean() train_df.groupby(['Embarked', 'Survived', 'Sex'])['PassengerId'].count() ## Q14 train_df.Ticket.duplicated().value_counts() ## Q15 train_df.Cabin.describe() test_df.Cabin.describe() ## Q16 train_df['Gender'] = np.where(train_df['Sex']== 'male', 0, 1) train_df.head(10) ## Q17 # calculate mean and standard deviation mean = train_df['Age'].mean() std = train_df['Age'].std() print('Mean', mean) print('Standard Deviation', std) print('\n') print('Estimated Missing Values in the Age feature.') # we can randomly pick a value between standard deviation and Mean from Uniform distribution # to impute missing values def missing_value_imputation(value): if np.isnan(value) == True: value = random.uniform(std, mean) else: value = value return value # call the above function train_df['Age'] = train_df['Age'].apply(missing_value_imputation) ## Q18 # find the most frequent value most_frequent_value = train_df['Embarked'].value_counts().idxmax() print('The most frequent value in Embarked:', most_frequent_value) print('\n') print('The training set with missing Embarked records') is_na = train_df["Embarked"].isna() print(train_df[is_na]["Embarked"]) # fill the missing records by the most frequent value train_df["Embarked"] = train_df["Embarked"].fillna(most_frequent_value) print('\n') print('The training set without missing Embarked records') print(train_df[is_na]["Embarked"]) ## Q19 # find the most frequent value mode = test_df['Fare'].mode() print('The most frequent value in Fare:', mode) print('\n') print('The test set with missing Fare records') is_na = test_df["Fare"].isna() print(test_df[is_na]["Fare"]) # fill the missing records by the most frequent value test_df["Fare"] = test_df["Fare"].fillna(mode[0]) print('\n') print('The test set without missing Fare records') print(test_df[is_na]["Fare"]) ## Q20 train_df['ordinal_fare'] = np.where(train_df['Fare'] <= 7.91, 0, (np.where(train_df['Fare'] <= 14.454, 1, (np.where(train_df['Fare'] <= 31.0, 2, 3))))) # print first 10 rows # print(train_df.head(10)) train_df[['PassengerId','Fare','ordinal_fare']].head(10) # reproduce the table in the question Avg = pd.DataFrame(train_df.groupby(['ordinal_fare'])['Survived'].mean()) Avg = pd.DataFrame(Avg) Avg #### The end #### ```
{ "source": "Jibanul/math_in_python", "score": 4 }
#### File: math_in_python/taylor_approximation_python/cos_function.py ```python import time import pylab as pl from IPython import display import numpy as np def taylor_approx(n): x = np.linspace(np.pi*(-3), np.pi*(3),100) # values of x from -3*pi to 3*pi approx = np.zeros(len(x), dtype=np.dtype('O')) for i in range(n): approx += ((-1)**i) * (x**(2*i)/np.math.factorial(2*i)) # taylor series of cos(x) pl.plot(x, np.cos(x)) pl.plot(x, approx) pl.ylim(-1.7,1.7) pl.legend(('cos() function', 'Taylor Approximation'), loc = 'upper right') pl.text(x = -8, y = 1.25, s = "n = " + str(i), fontsize=15) display.clear_output(wait=True) display.display(pl.gcf()) pl.clf() time.sleep(1.0) # pause 1 sec before ploting the next curve # call the function taylor_approx(n = 13) ```
{ "source": "jibarnum/pyspedas", "score": 2 }
#### File: pyspedas/maven/__init__.py ```python from .maven_load import load_data def maven_load(instruments=None, kp_instruments=None, start_date='2014-01-01', end_date='2020-01-01', update_prefs=False, only_update_prefs=False, local_dir=None, list_files=False, new_files=False, exclude_orbit_file=False, download_only=False, varformat=None, prefix='', suffix='', get_support_data=False, public=True): """ Main function for downloading MAVEN data and loading it into tplot variables (if applicable). Parameters: instruments: str/list of str Instruments from which you want to download data. This is where you can indicate that you want to download KP data (via 'kp-insitu' for KP in situ data or 'kp-iuvs' for KP iuvs data). kp_instruments: str/list of str Instruments from which you want to grab KP in situ data. Only needed if you're downloading KP in situ data, and is optional (if you don't specify, and you chose to download KP in situ data, KP in situ data will be downloaded for all instruments with in situ data). list_files: bool (True/False0 If true, lists the files instead of downloading them. new_files: bool (True/False) Checks downloaded files and only downloads those that haven't already been downloaded. start_date: str String that is the start date for downloading data (YYYY-MM-DD) end_date: str String that is the end date for downloading data (YYYY-MM-DD) update_prefs: bool (True/False) If true, updates where you want to store data locally only_update_prefs: bool (True/False) If true, *only* updates where to store dat alocally, doesn't download files. exclude_orbit_file: bool (True/False) If true, won't download the latest orbit tables. local_dir: str If indicated, specifies where to download files for a specific implementation of this function. download_only: bool (True/False) If True then files are downloaded only, if False then CDF files are also loaded into pytplot using cdf_to_tplot. varformat : str The file variable formats to load into tplot. Wildcard character "*" is accepted. By default, all variables are loaded in. prefix: str The tplot variable names will be given this prefix. By default, no prefix is added. suffix: str The tplot variable names will be given this suffix. By default, no suffix is added. get_support_data: bool Data with an attribute "VAR_TYPE" with a value of "support_data" will be loaded into tplot. By default, only loads in data with a "VAR_TYPE" attribute of "data". public: bool If True, downloads data from the MAVEN public website. If False, downloads data from the MAVEN private website (will ask for username/password). """ tvars = load_data(instruments=instruments, kp_instruments=kp_instruments, start_date=start_date, end_date=end_date, update_prefs=update_prefs, only_update_prefs=only_update_prefs, local_dir=local_dir, list_files=list_files, new_files=new_files, exclude_orbit_file=exclude_orbit_file, download_only=download_only, varformat=varformat, prefix=prefix, suffix=suffix, get_support_data=get_support_data, public=public) return tvars ``` #### File: pyspedas/maven/kp_to_tplot.py ```python import pytplot def kp_to_tplot(insitu): """Creates tplot variables from the insitu variable """ # Keep track of stored KP variables stored_variables = [] # initialize each instrument inst_list = ["EUV", "LPW", "STATIC", "SWEA", "SWIA", "MAG", "SEP", "NGIMS"] for instrument in inst_list: # for each observation for each instrument if insitu[instrument] is not None: for obs in insitu[instrument]: # create variable name obs_specific = "mvn_kp::" + instrument.lower() + "::" + obs.lower() # if NaN or string, continue if insitu[instrument][obs].isnull().all() or insitu[instrument][obs].dtype == 'O': continue # store data in tplot variable pytplot.store_data(obs_specific, data={'x': insitu['Time'], 'y': insitu[instrument][obs]}) if obs_specific not in stored_variables: stored_variables.append(obs_specific) return stored_variables ``` #### File: mms/eis/mms_eis_omni.py ```python import numpy as np from pytplot import get_data, store_data, options from ...utilities.tnames import tnames def mms_eis_omni(probe, species='proton', datatype='extof', suffix='', data_units='flux', data_rate='srvy'): probe = str(probe) species_str = datatype+'_'+species if data_rate == 'brst': prefix = 'mms'+probe+'_epd_eis_brst_' else: prefix = 'mms'+probe+'_epd_eis_' telescopes = tnames(pattern=prefix + species_str + '_*' + data_units + '_t?'+suffix) if len(telescopes) > 0: time, data, energies = get_data(telescopes[0]) flux_omni = np.zeros((len(time), len(energies))) for t in telescopes: time, data, energies = get_data(t) flux_omni = flux_omni + data store_data(prefix+species_str+'_'+data_units+'_omni'+suffix, data={'x': time, 'y': flux_omni/6., 'v': energies}) options(prefix+species_str+'_'+data_units+'_omni'+suffix, 'spec', 1) options(prefix+species_str+'_'+data_units+'_omni'+suffix, 'ylog', 1) options(prefix+species_str+'_'+data_units+'_omni'+suffix, 'zlog', 1) options(prefix+species_str+'_'+data_units+'_omni'+suffix, 'yrange', [14, 45]) options(prefix+species_str+'_'+data_units+'_omni'+suffix, 'Colormap', 'jet') print(prefix+species_str+'_'+data_units+'_omni'+suffix) ``` #### File: pyspedas/pyspedas/prefs.py ```python import os def get_prefs_filename(): dir_path = os.path.abspath(os.path.dirname(__file__)) fname = os.path.join(dir_path, 'spd_prefs_txt.py') print(fname) return fname def get_spedas_prefs(): """Get all the spedas preferences and return a directory""" fname = get_prefs_filename() print("Preferences file: " + fname) """Read preferences""" with open(fname, 'r') as f: content = f.readlines() content = [x.strip() for x in content] """Fill dictionary""" ans_dict = {} for line in content: if len(line) > 2 and line[0] != "#": terms = line.split('=') terms = [x.strip() for x in terms] if len(terms) == 2: if terms[0] != '' and terms[1] != '': ans_dict[terms[0].replace("'", "")] = terms[1].replace("'", "") f.closed return ans_dict def set_spedas_prefs(var_name, var_value): """Get all the spedas preferences and return a directory""" found = 0 if var_name == '' or var_value == '': return found fname = get_prefs_filename() print("Preferences file: " + fname) """Read preferences""" with open(fname, 'r') as f: content = f.readlines() content = [x.strip() for x in content] """Make change""" new_content = '' for line in content: new_line = line if len(line) > 2 and line[0] != "#": terms = line.split('=') terms = [x.strip() for x in terms] if len(terms) == 2: if terms[0] != '' and terms[1] != '': if terms[0] == var_name: new_line = var_name + "='" + var_value + "'" found = 1 new_line = new_line.replace(os.linesep, '\n').strip() if new_line != '': new_content += new_line + '\n' with open(fname, 'w') as f: f.write(new_content) f.closed return found ```
{ "source": "JibbleEinuxCODE/PassGenR", "score": 4 }
#### File: JibbleEinuxCODE/PassGenR/setup.py ```python import string import random # logo of this tool just print out ascii art. print('-------------------------------------------------------------------') print('██████  █████  ███████ ███████  ██████  ███████ ███  ██ ██████  ') print('██   ██ ██   ██ ██      ██      ██       ██      ████  ██ ██   ██ ') print('██████  ███████ ███████ ███████ ██  ███ █████  ██ ██  ██ ██████  ') print('██      ██   ██      ██      ██ ██  ██ ██     ██  ██ ██ ██   ██ ') print('██  ██  ██ ███████ ███████  ██████  ███████ ██   ████ ██  ██ ') print('-------------------------------------------------------------------') print('----------Hi everyone, Wellcome to password generate tool----------') print(' This tool create @Jibble Einux ') print(' follow on github,facebook: @JibbleEinuxCODE ') # this function make for creating a random authentication Code # and also create a random password # thats why you can make a easy password , strong password , semi-strong password and extra-strong password def get_random_string(length): letters = string.ascii_lowercase result_str = ''.join(random.choice(letters) for i in range(length)) print('\n') print('----------------------------------------------------') print('Your authentication code is generated: ' + result_str) print('----------------------------------------------------') print('You Can Find Your Password (if Yo forget password) with this Authentication Code.') passWord = (str(len(result_str)) + str(result_str[:2].lower()) + str(result_str[:1:-2].upper()) + "-" + str(result_str.count(result_str)) + str(result_str[:1].upper()) + "X" + "6" + "_" + "D" + str( result_str[0::3].lower()) + str(result_str.count(result_str)) + "X" + "f" + str(result_str[:4].lower()) + "+" + str(result_str[4::-1].upper())).strip().replace(" ", "") print('----------------------------------------------------') print('Your Password is: ' + passWord) print('----------------------------------------------------') # this function make for finding password if you forgotten # if you want to find your password you just enter your random authentication Code / custom authentication code # after giving your authentication code this function creating your password and it will be matched your old password # Because of when 1st time create your password with this authentication code this time will be same def find_password_string(): print('\n') result_str = input('Enter You Authentication Code: ') passWord = (str(len(result_str)) + str(result_str[:2].lower()) + str(result_str[:1:-2].upper()) + "-" + str(result_str.count(result_str)) + str(result_str[:1].upper()) + "X" + "6" + "_" + "D" + str( result_str[0::3].lower()) + str(result_str.count(result_str)) + "X" + "f" + str(result_str[:4].lower()) + "+" + str(result_str[4::-1].upper())).strip().replace(" ", "") print('----------------------------------------------------') print('Your Password is: ' + passWord) print('----------------------------------------------------') # this section creating for user can make her own authentication code thats why he can remember her authetication code # and people can easily find her password thats why make this section def custom_auth_Code(): print('\n') result_str = input('Enter You Custom Authentication Code: ') passWord = (str(len(result_str)) + str(result_str[:2].lower()) + str(result_str[:1:-2].upper()) + "-" + str(result_str.count(result_str)) + str(result_str[:1].upper()) + "X" + "6" + "_" + "D" + str( result_str[0::3].lower()) + str(result_str.count(result_str)) + "X" + "f" + str(result_str[:4].lower()) + "+" + str(result_str[4::-1].upper())).strip().replace(" ", "") print('----------------------------------------------------') print('Your Custom authentication code is: ' + result_str) print('----------------------------------------------------') print('You Can Easily Find/Re-create Your Password with this Authentication Code.') print('----------------------------------------------------') print('Your Password is: ' + passWord) print('----------------------------------------------------') # printing services # and details while True: print('\n') print('The services of PassGenR tool are:') print('1.Create a New random password') print('2.Create a New custom password') print('3.find your forgotten password') print('4.Contact me') print('type 99 for Exit ') print('Chose your service(1-4)') serviceChose = int(input('PassGenR >> ')) if serviceChose == 99: break # random password session if serviceChose == 1: print('There are some password typs:') print('1.Easy \n2.normal \n3.Strong \n4.Extra-Strong') print('Enter Your Password type(1-4): ') passwordType = int(input()) # condition for length of rangom password function parameter if passwordType == 1: get_random_string(8) elif passwordType == 2: get_random_string(12) elif passwordType == 3: get_random_string(16) else: get_random_string(20) # creating custom password session elif serviceChose == 2: print('You can make easily your authenticaion code') custom_auth_Code() # finding forgotten password session elif serviceChose == 3: find_password_string() # about session for myself elif serviceChose == 4: print('\n') print('Thank You for Using this tools') print('This tool create by Jibble Einux') print('Follow me:') print('----------------------------------------------------') print("Github: https://github.com/JibbleEinuxCODE ") print("Facebook: https://facebook.com/JibbleEinuxCODE ") print('----------------------------------------------------') else: continue # Thanks every one # Jibble Einux # www.facebook.com/JibbleEinuxCODE # Contract me: <EMAIL> ```
{ "source": "jibbo/master_thesis", "score": 2 }
#### File: evaluations/devartist/DevARTistWorker.py ```python from os import path from DeviceWorker import DeviceWorker from utils.apkdownload.download import ApkDownloader from utils.shellutils import adb_install, adb_shell, adb_uninstall class DevARTistWorker(DeviceWorker): def __init__(self, group=None, target=None, name="DeviceProcess", args=(), kwargs={}, control_channel=None, queue=None, report_queue=None, device_id=None, apk_folder='.', artist_package = 'saarland.cispa.artist.artistgui', artist_activity = 'ArtistMainActivity'): super(DevARTistWorker, self).__init__(group, target, name, args, kwargs, control_channel, queue, report_queue, device_id, apk_folder, artist_package, artist_activity) self.downloader = ApkDownloader() def process(self, task): # local import to avoid circular dependency from evaluations.trace_logging.TraceLoggingEvaluator import TraceLoggingEvaluator app = task.package seed = self.generate_monkey_seed() app_path = self.generate_app_path(app) self.start_task(task) try: # download app self.start_subtask(TraceLoggingEvaluator.SUBTASK_DOWNLOAD_APP) self.downloader.download_if_not_exist(app, self.apk_folder) # TODO let the download method directly return whether it worked or not download_succ = path.exists(app_path) self.conclude_subtask(download_succ) if not download_succ: self.log('App not downloaded. Abort.') return # install app for the first time self.start_subtask(TraceLoggingEvaluator.SUBTASK_INSTALL_APP_1) (success2, out2) = adb_install(app_path, device=self.device_id) self.log(out2) self.conclude_subtask(success2, include_logcat=True) if not success2: return # test uninstrumented app. We are interested in whether apps might be broken already BEFORE we instrument self.start_subtask(TraceLoggingEvaluator.SUBTASK_TEST_UNINSTRUMENTED) success3 = self.monkey_test(app, seed) self.conclude_subtask(success3, include_logcat=True) if not success3: return # clean (re)installation of app self.start_subtask(TraceLoggingEvaluator.SUBTASK_INSTALL_APP_2) (success4, out4) = adb_install(app_path, device=self.device_id) self.log(out4) self.conclude_subtask(success4, include_logcat=True) if not success4: return # instrument app self.start_subtask(TraceLoggingEvaluator.SUBTASK_INSTRUMENT) success5 = self.instrument(app) self.conclude_subtask(success5, include_logcat=True) if not success5: return # test instrumented app again with the same seed self.start_subtask(TraceLoggingEvaluator.SUBTASK_TEST_INSTRUMENTED) success6 = self.monkey_test(app, seed) self.conclude_subtask(success6, include_logcat=True) # always cleanup no matter where we finish finally: self.cleanup(task) # best effort cleanup since we do not know what apps and data are still on the device def cleanup(self, task): from evaluations.trace_logging.TraceLoggingEvaluator import TraceLoggingEvaluator self.start_subtask(TraceLoggingEvaluator.SUBTASK_CLEANUP) app_package = task.package self.log('Clean up for task ' + app_package) artist_succ, artist_out = adb_shell('am force-stop ' + self.artist_package, device=self.device_id) self.log(('un' if not artist_succ else '') + 'successfully stopped ARTistGUI') self.log(artist_out) app_succ, app_out = adb_uninstall(app_package, device=self.device_id) self.log(('un' if not app_succ else '') + 'successfully deinstalled ' + app_package + ': ') self.log(app_out) # delete all result files del_succ, del_out = adb_shell('rm ' + self.instrumentation_result_path() + '*', device=self.device_id) self.log(('un' if not del_succ else '') + 'successfully removed result files: ') self.log(del_out) # TODO in order to reliably report whether cleaning up worked, # we need to find out what needs to be cleaned up and then check if it worked. # Either we remember it during the processing or simply probe whether an app is installed or a file is present self.conclude_subtask(True, include_logcat=True) ```
{ "source": "Jibbow/research-paper-graph", "score": 3 }
#### File: main/controller/family_controller.py ```python from flask import request from flask_restplus import Resource from ..dto.relativeDto import RelativeDto from ..service.family_service import get_preceding, get_succeeding, get_entire api = RelativeDto.api _relative = RelativeDto.relative @api.route('/preceding/') class PrecedingFamily(Resource): """Handle a preceding paper family.""" @api.response(200, 'The preceding family of the paper has been listed.') @api.response(404, 'The paper has not been found.') @api.doc('List the preceding family of the paper.', params={'paper': 'Paper', 'distance': 'Distance', 'year': 'Year', 'citations': 'Citations'}) @api.marshal_with(_relative) def get(self): """List all preceding relatives of a paper.""" relative = request.args.get('paper') distance = request.args.get('distance') year = request.args.get('year') citations = request.args.get('citations') return get_preceding(relative, distance, year, citations) @api.route('/succeeding/') class SucceedingFamily(Resource): """Handle a succeeding paper family.""" @api.response(200, 'The succeeding family of the paper has been listed.') @api.response(404, 'The paper has not been found.') @api.doc('List the succeeding family of the paper.', params={'paper': 'Paper', 'distance': 'Distance', 'year': 'Year', 'citations': 'Citations'}) @api.marshal_with(_relative) def get(self): """List all succeeding relatives of a paper.""" relative = request.args.get('paper') distance = request.args.get('distance') year = request.args.get('year') citations = request.args.get('citations') return get_succeeding(relative, distance, year, citations) @api.route('/entire/') class EntireFamily(Resource): """Handle an entire paper family.""" @api.response(200, 'The entire family of the paper has been listed.') @api.response(404, 'The paper has not been found.') @api.doc('List the entire family of the paper.', params={'paper': 'Paper', 'distance': 'Distance', 'year': 'Year', 'citations': 'Citations'}) @api.marshal_with(_relative) def get(self): """List all preceding relatives of a paper.""" relative = request.args.get('paper') distance = request.args.get('distance') year = request.args.get('year') citations = request.args.get('citations') return get_entire(relative, distance, year, citations) ``` #### File: main/controller/paper_controller.py ```python from flask_restplus import Resource from flask import request from ..dto.paperDto import PaperDto from ..service.paper_service import post, get_all, get, search, delete_all, delete api = PaperDto.api _paper = PaperDto.paper @api.route('/') class Papers(Resource): """Handle all papers.""" @api.response(200, 'All papers have been listed.') @api.doc('List all papers.') @api.marshal_list_with(_paper, envelope='data') def get(self): """List all papers.""" return get_all() @api.response(201, 'The paper has been created.') @api.response(409, 'The paper already exists.') @api.doc('Create a new paper.') @api.expect(_paper, validate=True) def post(self): """Create a new paper.""" data = request.json return post(data=data) @api.response(200, 'All papers have been deleted.') @api.doc('Delete all papers.') @api.marshal_list_with(_paper, envelope='data') def delete(self): """Delete all papers.""" return delete_all() @api.route('/<title>') class Paper(Resource): """Handle one paper.""" @api.response(200, 'The paper has been found.') @api.response(404, 'The paper has not been found.') @api.doc('Display the paper with the title you are looking for.') @api.marshal_with(_paper) def get(self, title): """Display the paper with the title you are looking for.""" paper = get(title) if not paper: return api.abort(404) return paper @api.response(200, 'The paper has been deleted.') @api.response(404, 'The paper has not been found.') @api.doc('Delete the paper with the title you are looking for.') @api.marshal_with(_paper) def delete(self, title): """Delete the paper with the title you are looking for.""" paper = self.get(title) delete(title) return paper @api.route('/search/<keyword>') class KeywordPapers(Resource): """Handle all papers that contain a keyword.""" @api.response(200, 'All papers that contain the searched keyword have been listed.') @api.doc('List all papers that contain a searched keyword.') @api.marshal_list_with(_paper) def get(self, keyword): """List all papers that contain a searched keyword.""" return search(keyword) ``` #### File: app/test/test_config.py ```python import unittest from flask import current_app from flask_testing import TestCase from app import app class TestDevelopmentConfig(TestCase): """Tests the development configuration""" def create_app(self): """Create an app for development""" app.config.from_object('app.main.config.DevelopmentConfig') return app def test_app_is_development(self): """Check if the app is in development""" self.assertFalse(app.config['SECRET_KEY'] == 'my_precious') self.assertTrue(app.config['DEBUG'] is True) self.assertFalse(current_app is None) uri = 'postgresql://postgres@localhost/research' self.assertTrue( app.config['SQLALCHEMY_DATABASE_URI'] == uri ) class TestTestingConfig(TestCase): """Tests the testing configuration""" def create_app(self): """Create an App for test""" app.config.from_object('app.main.config.TestingConfig') return app def test_app_is_testing(self): """Check if the app is in test""" self.assertFalse(app.config['SECRET_KEY'] == 'my_precious') self.assertTrue(app.config['DEBUG']) uri = 'postgresql://postgres@localhost/research' self.assertTrue( app.config['SQLALCHEMY_DATABASE_URI'] == uri ) class TestProductionConfig(TestCase): """Tests the production configuration""" def create_app(self): """Create an app for production""" app.config.from_object('app.main.config.ProductionConfig') return app def test_app_is_production(self): """Check if the app is in production""" self.assertTrue(app.config['DEBUG'] is False) if __name__ == '__main__': unittest.main() ``` #### File: migrations/versions/9d48ba00567c_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '9d48ba00567c' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('author', sa.Column('id', sa.String(length=42), nullable=False), sa.Column('name', sa.String(length=255), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_table('paper', sa.Column('id', sa.String(length=42), nullable=False), sa.Column('title', sa.String(length=255), nullable=False), sa.Column('year', sa.Integer(), nullable=True), sa.Column('abstract', sa.Text(), nullable=False), sa.Column('citations', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('reference', sa.Column('id', sa.Integer(), nullable=False), sa.Column('from_paper', sa.String(length=42), nullable=True), sa.Column('to_paper', sa.String(length=42), nullable=True), sa.Column('isInfluential', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('write', sa.Column('id', sa.Integer(), nullable=False), sa.Column('paper', sa.String(length=42), nullable=True), sa.Column('author', sa.String(length=42), nullable=True), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('write') op.drop_table('reference') op.drop_table('paper') op.drop_table('author') # ### end Alembic commands ### ``` #### File: backend/scraper/__init__.py ```python import semanticscholar as ss import requests def scrape(): # pylint:disable=too-many-locals """Scrape research papers from the Semantic Scholar API""" # Determine the ids of all relevant research papers. papers = get_all_papers() for paperId in papers: # Get all relevant information for the paper: id, title, abstract, year paper = ss.paper(paperId) paperTitle = paper['title'] paperAbstract = paper['abstract'] paperYear = paper['year'] citations = paper['citations'] paperCitations = len(citations) # Put the given paper into the database. post_paper(paperId, paperTitle, paperAbstract, paperYear, paperCitations) # Get all relevant information for the author: id, name authors = paper['authors'] for author in authors: authorId = author['authorId'] authorName = author['name'] # Put the given author and writing relation into the database. post_author(authorId, authorName) post_write(paperId, authorId) # Get all references. # A reference is a paper that the current paper cites/uses. references = paper['references'] for reference in references: referenceId = reference['paperId'] referenceIsInfluential = reference['isInfluential'] post_reference(paperId, referenceId, referenceIsInfluential) # Get all citations. # A citation is a paper that cites/uses the given paper. for citation in citations: citationId = citation['paperId'] citationIsInfluential = citation['isInfluential'] post_reference(citationId, paperId, citationIsInfluential) def get_all_papers(): """Determine the ids of all relevant research papers.""" neumann = 143993045 valenzuela = 143990000 li = 144000000 grant = 144100000 kemper = 144122431 authorIds = [neumann, valenzuela, li, grant, kemper] paperIds = [] for authorId in authorIds: author = ss.author(authorId) papers = [] if author != {}: papers = author['papers'] for paper in papers: paperId = paper['paperId'] paperIds.append(paperId) return paperIds def post_paper(paper_id, paper_title, paper_abstract, paper_year, paper_citations): """Put the given paper into the database.""" data = {'id':paper_id, 'title':paper_title, 'abstract':paper_abstract, 'year':paper_year, 'citations':paper_citations } r = requests.post(url='http://127.0.0.1:5000/paper/', json=data) print(r.status_code) def post_author(author_id, author_name): """Post the given author into the database.""" data = {'id':author_id, 'name':author_name, } r = requests.post(url='http://127.0.0.1:5000/author/', json=data) print(r.status_code) def post_write(paper, author): """Post the given writing relation into the database.""" data = {'paper':paper, 'author':author, } r = requests.post(url='http://127.0.0.1:5000/write/', json=data) print(r.status_code) def post_reference(source, sink, isInfluential): """Post the given reference into the database.""" data = {'from_paper':source, 'to_paper':sink, 'is_influential': isInfluential, } r = requests.post(url='http://127.0.0.1:5000/reference/', json=data) print(r.status_code) scrape() ```
{ "source": "jibby0/service-auto-analyzer", "score": 2 }
#### File: commons/triggering_training/retraining_defect_type_triggering.py ```python import logging from commons.object_saving.object_saver import ObjectSaver from commons.triggering_training import abstract_triggering_training logger = logging.getLogger("analyzerApp.retraining_defect_type_triggering") class RetrainingDefectTypeTriggering(abstract_triggering_training.AbstractTrainingTrigger): def __init__(self, app_config, start_number=100, accumulated_difference=100): self.object_saver = ObjectSaver(app_config) self.start_number = start_number self.accumulated_difference = accumulated_difference def remove_triggering_info(self, train_info): self.object_saver.remove_project_objects( train_info["project_id"], ["defect_type_trigger_info"]) def get_triggering_info(self, train_info): return self.object_saver.get_project_object( train_info["project_id"], "defect_type_trigger_info", using_json=True) def save_triggering_info(self, trigger_info, train_info): self.object_saver.put_project_object( trigger_info, train_info["project_id"], "defect_type_trigger_info", using_json=True) def clean_defect_type_triggering_info(self, train_info, num_logs_with_defect_types): trigger_info = self.get_triggering_info(train_info) trigger_info["num_logs_with_defect_types_since_training"] = 0 trigger_info["num_logs_with_defect_types"] = num_logs_with_defect_types self.save_triggering_info(trigger_info, train_info) def should_model_training_be_triggered(self, train_info): trigger_info = self.get_triggering_info(train_info) if "num_logs_with_defect_types" not in trigger_info: trigger_info["num_logs_with_defect_types"] = 0 trigger_info["num_logs_with_defect_types"] += train_info["num_logs_with_defect_types"] if "num_logs_with_defect_types_since_training" not in trigger_info: trigger_info["num_logs_with_defect_types_since_training"] = 0 trigger_info["num_logs_with_defect_types_since_training"] += train_info["num_logs_with_defect_types"] self.save_triggering_info(trigger_info, train_info) return trigger_info["num_logs_with_defect_types"] >= self.start_number\ and trigger_info["num_logs_with_defect_types_since_training"] >= self.accumulated_difference ```
{ "source": "JibbyJames/coursera-data-scraper", "score": 3 }
#### File: JibbyJames/coursera-data-scraper/main.py ```python import json import time import urllib.request import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt def expand_list(df, list_column, new_column): lens_of_lists = df[list_column].apply(len) origin_rows = range(df.shape[0]) destination_rows = np.repeat(origin_rows, lens_of_lists) non_list_cols = ( [idx for idx, col in enumerate(df.columns) if col != list_column] ) expanded_df = df.iloc[destination_rows, non_list_cols].copy() expanded_df[new_column] = ( [item for items in df[list_column] for item in items] ) expanded_df.reset_index(inplace=True, drop=True) return expanded_df run_locally = True wait_length = 0.5 algolia_url = 'https://lua9b20g37-dsn.algolia.net/1/indexes/test_products?x-algolia-application-id=LUA9B20G37&x-algolia-api-key=dcc55281ffd7ba6f24c3a9b18288499b&hitsPerPage=1000&page=' product_pages = 4 ## Fetch the data ########################################################## if(run_locally): print(f"Reading courses from local file courses.json.") courses_df = pd.read_json('courses.json', orient='records') print(f"Reading courses from local file specializations.json.") specs_df = pd.read_json('specializations.json', orient='records') else: all_products_list = [] # Loop through each of the pages returned for the all products request for i in range(0, product_pages + 1): # Request data from algolia for current page with urllib.request.urlopen(f'{algolia_url}{i}') as url: print(f"Fetching coursera program data on page {i}.") page_data = json.loads(url.read().decode()) # Save page data to local json file. with open(f'all-products-{i}.json', 'w') as outfile: json.dump(page_data, outfile) # Merge all products data into single list. all_products_list = all_products_list + page_data['hits'] # Wait before scraping next data time.sleep(wait_length) # Convert raw products json data into datframe all_products_df = pd.DataFrame.from_dict(all_products_list) # Group Courses, and clean data before creating dict courses_df = all_products_df.loc[all_products_df['entityType'] == 'COURSE'].reset_index(drop=True) courses_df['id'] = courses_df.apply(lambda row: row['objectID'].replace('course~',''), axis=1) courses_df = courses_df.set_index('id') courses = courses_df.to_dict('index') # Group Specializations, and clean data before creating dict specs_df = all_products_df.loc[all_products_df['entityType'] == 'SPECIALIZATION'].reset_index(drop=True) specs_df['id'] = specs_df.apply(lambda row: row['objectID'].replace('s12n~',''), axis=1) specs_df = specs_df.set_index('id') specs = specs_df.to_dict('index') # Loop through all specializations to collect their courses loop_length = len(specs.keys()) for index, spec_id in enumerate(list(specs.keys())[:loop_length]): # Get specialization URL specs[spec_id]['courses'] = [] spec_row = specs[spec_id] slug = spec_row['objectUrl'].replace("/specializations/", "") print(f"[{index+1}/{loop_length}] - Fetching course data for \"{slug}\"") spec_url = f"https://www.coursera.org/api/onDemandSpecializations.v1?q=slug&slug={slug}&fields=courseIds,id" # Make a request to that URL with urllib.request.urlopen(spec_url) as url: # Parse the JSON response. spec_data = json.loads(url.read().decode()) course_ids = spec_data['elements'][0]['courseIds'] # Loop through each course for course_id in course_ids: # Check that we have a record of this course already from Algolia if course_id not in courses: print(f" - {course_id} - 404") else: # Initialize specs array for course if required. if 'specializations' not in courses[course_id].keys(): courses[course_id]['specializations'] = [] print(f" - {courses[course_id]['name']}") # Add Specialization to Course, and vice versa if spec_id not in courses[course_id]['specializations']: courses[course_id]['specializations'].append(spec_id) if course_id not in specs[spec_id]['courses']: specs[spec_id]['courses'].append(course_id) # Wait before scraping next data time.sleep(wait_length) # Convert back to DF and save to local JSON specs_df = pd.DataFrame.from_dict(specs, orient='index') specs_df.to_json('specializations.json') # Pricing Data for courses loop_length = len(courses.keys()) for index, course_id in enumerate(list(courses.keys())[:loop_length]): print(f"[{index+1}/{loop_length}] - Fetching price data for \"{courses[course_id]['name']}\"") courses[course_id]['price'] = 0 price_url = f"https://www.coursera.org/api/productPrices.v3/VerifiedCertificate~{course_id}~GBP~GB" try: with urllib.request.urlopen(price_url) as url: price_data = json.loads(url.read().decode()) courses[course_id]['price'] = price_data['elements'][0]['amount'] print(f'{courses[course_id]["name"]}: £{courses[course_id]["price"]}') except: print(f'{courses[course_id]["name"]}: ERROR - Not found') # Wait before scraping next data time.sleep(wait_length) # Convert back to DF and save to JSON courses_df = pd.DataFrame.from_dict(courses, orient='index') courses_df.to_json('courses.json') ## Aggregate metrics ########################################### # Add some fields for later use specs_df['partners_str'] = specs_df.apply(lambda x : 'Offered by ' + ' & '.join(x['partners']),axis=1) specs_df['specialization'] = specs_df['name'] + '\n' + specs_df['partners_str'] courses_df['partners_str'] = courses_df.apply(lambda x : 'Offered by ' + ' & '.join(x['partners']),axis=1) courses_df['course'] = courses_df['name'] + '\n' + courses_df['partners_str'] # Expand the lists we want to aggregate in the specializations table specs_df['courses'] = specs_df['courses'].apply(lambda d: d if isinstance(d, list) else []) specs_with_expanded_courses_df = expand_list(specs_df, 'courses', 'course_id') specs_with_expanded_partners_df = expand_list(specs_df, 'partners', 'partner_name') # Join to the courses dataframe for additional metrics and clean columns names. merged_specs_df = pd.merge(specs_with_expanded_courses_df, courses_df, left_on='course_id', right_index=True) aggd_specs_df = merged_specs_df.groupby('specialization', as_index=False).sum()[['specialization','avgLearningHours_y','price']] aggd_specs_df.rename(columns={'avgLearningHours_y': 'avgLearningHours', 'avgLearningHours_y': 'avgLearningHours'}, inplace=True) ## Plot some graphs ############################################ # Init Seaborn style sns.set(style="whitegrid") # What are some general stats on all specializations? fig, axes = plt.subplots(4, 1) sns.boxplot(x='enrollments', data=specs_df, ax=axes[0]) sns.boxplot(x='avgLearningHours', data=aggd_specs_df, ax=axes[1]) sns.boxplot(x='price', data=aggd_specs_df, ax=axes[2]) sns.boxplot(x='avgProductRating', data=specs_df, ax=axes[3]) # What are the most popular specializations? top_specs_enrollments = specs_df.nlargest(15,'enrollments') sns.barplot(x="enrollments", y="specialization", data=top_specs_enrollments) # What are the most popular courses? top_courses_enrollments = courses_df.nlargest(15,'enrollments') sns.barplot(x="enrollments", y="course", data=courses_df) # Are popular courses generally rated higher? (min number of enrollments) sns.scatterplot(x="enrollments", y="avgProductRating", data=specs_df) #courses_df.boxplot() # Do longer courses have fewer enrollments? # Scatter # Do more expensive courses have fewer enrollments? # Scatter # Is there an organisation that provides the best courses? # Does specialization duration have an impact on enrollments or reviews? # Does price? # What are the top ten courses by enrollments ```
{ "source": "jibe-b/bioshadock", "score": 2 }
#### File: jibe-b/bioshadock/builder.py ```python import sys import signal import os import time from io import BytesIO import logging import logging.config import requests import base64 import json import datetime import time from pymongo import MongoClient from bson import json_util from bson.json_util import loads from bson.objectid import ObjectId import redis import re import subprocess import tempfile import shutil import yaml from daemon import Daemon from docker import Client from git.repo.base import Repo from logentries import LogentriesHandler from clair.clair import Clair import copy from elasticsearch import Elasticsearch requests.packages.urllib3.disable_warnings() class BioshadockDaemon(Daemon): es = None db_mongo = None db_redis = None cli = None run_once = False def test(self, build, container_id): pass def analyse_with_clair(self, image_id): self.log.debug('Analyse '+image_id+' with Clair') cfg = { 'clair.host': self.config['clair']['host'], 'docker.connect': self.config['services']['docker']['connect'] } clair_analyse = Clair(cfg) layers = clair_analyse.analyse(image_id) layer_ids = [] for layer in layers: layer_ids.append(layer['id']) return layer_ids def stats(self): config_file = "config.yaml" if "BIOSHADOCK_CONFIG" in os.environ: config_file = os.environ["BIOSHADOCK_CONFIG"] self.config= None with open(config_file, 'r') as ymlfile: self.config = yaml.load(ymlfile) BioshadockDaemon.db_redis = redis.StrictRedis( host=self.config['services']['redis']['host'], port=self.config['services']['redis']['port'], db=self.config['services']['redis']['db'] ) queues = BioshadockDaemon.db_redis.hkeys('bioshadock:user:builds') print("Build usage:") for queue in queues: print("\t%s: %s, in queue: %d" % (queue, BioshadockDaemon.db_redis.hget('bioshadock:user:builds', queue), BioshadockDaemon.db_redis.llen('bioshadock:builds:' + queue))) sys.exit(0) def run(self): config_file = "config.yaml" if "BIOSHADOCK_CONFIG" in os.environ: config_file = os.environ["BIOSHADOCK_CONFIG"] self.config= None with open(config_file, 'r') as ymlfile: self.config = yaml.load(ymlfile) if self.config['log_config'] is not None: for handler in list(self.config['log_config']['handlers'].keys()): self.config['log_config']['handlers'][handler] = dict(self.config['log_config']['handlers'][handler]) logging.config.dictConfig(self.config['log_config']) log = logging.getLogger('builder') self.log = log ''' config = ConfigParser.ConfigParser() config.readfp(open(config_file)) self.config = config logging.config.fileConfig(config_file) log = logging.getLogger(__name__) self.log = log if config.has_option('app:main', 'logentries'): log.addHandler( LogentriesHandler(config.get('app:main', 'logentries'))) ''' log.warn("Starting a builder") do_squash = False if self.config['general']['squash']['use'] == 1: do_squash = True queue_counter = 0 while True: if os.path.exists('/tmp/bioshadocker-builder.stop'): log.warn('Request to exit: /tmp/bioshadocker-builder.stop') break log.debug("New build run") if BioshadockDaemon.db_mongo is None: mongo = MongoClient(self.config['services']['mongo']['url']) BioshadockDaemon.db_mongo = mongo[self.config['services']['mongo']['db']] if BioshadockDaemon.es is None: BioshadockDaemon.es = Elasticsearch(self.config['services']['elastic']['host'].split(',')) if BioshadockDaemon.db_redis is None: BioshadockDaemon.db_redis = redis.StrictRedis( host=self.config['services']['redis']['host'], port=self.config['services']['redis']['port'], db=self.config['services']['redis']['db'] ) if BioshadockDaemon.cli is None: timeout=1800 if self.config['services']['docker']['timeout']: timeout = self.config['services']['docker']['timeout'] if self.config['services']['docker']['connect']: BioshadockDaemon.cli = Client( base_url=self.config['services']['docker']['connect'], timeout=timeout ) else: BioshadockDaemon.cli = Client(timeout=timeout) if self.config['registry']['push'] == 0: log.debug('Local docker, not using registry') else: BioshadockDaemon.cli.login( username=self.config['registry']['auth']['user'], password=self.config['registry']['auth']['password'], email=self.config['registry']['auth']['email'], registry=self.config['registry']['service']) queues = BioshadockDaemon.db_redis.hkeys('bioshadock:user:builds') user_id = None if queue_counter >= len(queues): log.debug("Queue: go back to beginning") queue_counter = 0 build = None while build is None and queue_counter < len(queues): user_id = queues[queue_counter] log.debug("Queue:Check:%s" % (user_id)) build = BioshadockDaemon.db_redis.lpop('bioshadock:builds:' + user_id) queue_counter += 1 dockerfile = None if build is not None: log.info("Build queue: %s" % (user_id)) build = loads(build) log.info('Build request: ' + str(build['id'])) BioshadockDaemon.db_mongo['builds'].update( {'_id': ObjectId(build['build'])}, {'$set': {'progress': 'building'}}) dt = datetime.datetime.now() timestamp = time.mktime(dt.timetuple()) # log.debug(str(build)) dockerfile = build['dockerfile'] gitrepo = build['git'] do_git = False git_repo_dir = None # CWL is_cwl = False cwl_is_url = False cwl = None entrypoint = None description = None tags = [] size = None labels = [] layer_ids = [] clair_check = False if 'cwl_path' in build and build['cwl_path'] and build['cwl_path'] != 'none': is_cwl = True build['cwl_path'] = build['cwl_path'].encode('utf-8') if build['cwl_path'].startswith('http'): cwl_is_url = True try: r = requests.get(build['cwl_path']) cwl = r.text.encode('utf-8') except Exception as e: log.error( 'Could not get CWL: ' + str(build['cwl_path']) + " " + str(e)) git_repo_dir = None if gitrepo is not None and gitrepo and gitrepo != 'none': # dockerfile git_repo_dir = tempfile.mkdtemp(suffix='.git') do_git = True git_info = gitrepo.split('#') gitrepo = git_info[0] selectedbranch = 'master' subdir = None if len(git_info) > 1: branch_path = git_info[1].split(':') if branch_path[0]: selectedbranch = branch_path[0] if len(branch_path) > 1 and branch_path[1]: subdir = branch_path[1] log.debug("Temporary directory: " + str(gitrepo)) log.info("Using branch " + selectedbranch) log.info("Directory: " + str(subdir)) try: Repo.clone_from( gitrepo, git_repo_dir, branch=selectedbranch) if is_cwl and not cwl_is_url: if build['cwl_path'].startswith('/'): build['cwl_path'] = build['cwl_path'][1:] cwl_file = os.path.join( git_repo_dir, build['cwl_path']) if not os.path.exists(cwl_file): log.error( 'Could not get CWL: ' + str(build['cwl_path'])) else: with open(cwl_file, "r") as cwlFile: cwl = cwlFile.read().encode('utf-8') if subdir is not None: git_repo_dir = os.path.join(git_repo_dir, subdir) log.debug(str(git_repo_dir)) os.chdir(git_repo_dir) except Exception as e: logging.error('Git error: ' + str(e)) BioshadockDaemon.db_mongo['builds'].update({'_id': ObjectId( build[ 'build'])}, {'$set': {'progress': 'failed', 'response': [str(e)] } }) continue # if dockerfile: if not os.path.exists("Dockerfile"): log.debug("Overwrite Dockerfile") f = open('Dockerfile', 'w') f.write(dockerfile.encode('utf-8')) f.close() else: try: log.debug("Use git Dockerfile") with open("Dockerfile", "r") as gitDockerfile: dockerfile = gitDockerfile.read().encode('utf-8') except Exception as e: log.error('Failed to decode Docker file: '+str(e)) build['progress'] = 'failed' build['response'] = ['Failed to decode dockerfile: '+str(e)] BioshadockDaemon.db_mongo['builds'].update( {'_id': ObjectId(build['build'])}, build) continue f = BytesIO(dockerfile.encode('utf-8')) build_tag = '' info_tag = 'latest' if 'tag' in build and build['tag']: build_tag = ':' + build['tag'] info_tag = build['tag'] log.warn('Build: ' + str(build['id']) + ':' + str(info_tag)) response = [] container_inspect = None build_ok = False try: orig_build_tag = build_tag if do_squash: build_tag = ":squash" if do_git: response = [line for line in BioshadockDaemon.cli.build( path=git_repo_dir, rm=True, tag=self.config['registry']['service'] + "/" + build['id'] + build_tag, nocache=True, timeout=self.config['services']['docker']['timeout'])] else: response = [line for line in BioshadockDaemon.cli.build( fileobj=f, rm=True, tag=self.config['registry']['service'] + "/" + build['id'] + build_tag, nocache=True, timeout=self.config['services']['docker']['timeout'])] except Exception as e: log.error('Build error: ' + str(e)) response += [str(e)] try: container_inspect = BioshadockDaemon.cli.inspect_image( self.config['registry']['service'] + "/" + build['id'] + build_tag) build_ok = True except Exception as e: log.error('Inspect error: ' + str(e)) response += [str(e)] build['response'] = [] for res in response: try: json_res = json.loads(res) build['response'].append(json_res['stream']) except Exception as e: log.debug('Failed to decode json from stream output') build['response'].append(res) if build['response'] and build_ok: log.debug(str(response)) last = build['response'][len(build['response']) - 1] matches = re.search('Successfully built\s+(\w+)', last) if matches is None: build['status'] = False log.info('Build error: ' + str(build['id'])) else: log.info('Successful build: ' + str(build['id'])) build['status'] = True build['image_id'] = matches.group(1) tests = [] if container_inspect is not None: entrypoint = container_inspect['Config']['Entrypoint'] size = container_inspect['VirtualSize'] log.debug( str(container_inspect['Config']['Labels'])) for label in list(container_inspect['Config']['Labels'].keys()): label_elts = container_inspect[ 'Config']['Labels'][label] if label.lower().endswith('description'): description = label_elts if label.lower().endswith('tags'): tags = label_elts.split(',') if label_elts.startswith('{') or label_elts.startswith('['): try: label_elts = json.loads(label_elts) except Exception as e: log.debug( "Failed to decode JSON for " + str(build['id']) + ": " + str(label)) labels.append( {label.replace('.', '_'): label_elts}) if label == 'bioshadock.tests': tests = json.loads( base64.decodestring(label_elts)) if not tests and git_repo_dir and os.path.exists(os.path.join(git_repo_dir, 'test.yaml')): log.debug('Load test.yaml for ' + build['id'] + 'from git repo') with open(os.path.join(git_repo_dir, 'test.yaml'), 'r') as ymlfile: commands = yaml.load(ymlfile) tests = commands['test']['commands'] if tests: for test in tests: test_container = None try: build['response'].append( "Test: " + str(test) + "\n") log.debug("Execute test for " + self.config['registry']['service'] + "/" + build['id'] + build_tag + ": " + str(test)) if '"' in test: build['response'].append("Test:Skipping:test contains double quotes:"+test) log.debug("Test:Skipping:test contains double quotes:"+test) continue command='sh -c "'+test+'"' if git_repo_dir is not None: host_config = BioshadockDaemon.cli.create_host_config(binds={ git_repo_dir: { 'bind': '/repo', 'mode': 'rw', } }) test_container = BioshadockDaemon.cli.create_container( image=self.config['registry']['service'] + "/" + build['id'] + build_tag, command=command, host_config=host_config, environment=["R=R"]) else: test_container = BioshadockDaemon.cli.create_container( image=self.config['registry']['service'] + "/" + build['id'] + build_tag, command=command, environment=["R=R"]) response = BioshadockDaemon.cli.start( container=test_container.get('Id')) time.sleep(2) test_container_inspect = BioshadockDaemon.cli.inspect_container( test_container.get('Id')) if test_container_inspect['State']['ExitCode'] != 0: build['status'] = False build['response'].append( "Test result: Failed\n") else: build['response'].append( "Test result: Success\n") except Exception as e: log.error("failed to test container " + self.config['registry']['service'] + "/" + build['id'] + build_tag + ': '+str(e)) build['status'] = False build['response'].append("Test result: Failed\n") try: if test_container is not None: BioshadockDaemon.cli.remove_container( container=test_container.get('Id')) except Exception as e: log.error('Failed to remove test container '+str(test_container.get('Id'))+': '+str(e)) if not build['status']: break # p= subprocess.Popen(["docker", # "push", # config.get('app:main', 'service')+"/"+build['id']]) # docker save 49b5a7a88d5 | sudo docker-squash -t # jwilder/whoami:squash | docker load if do_squash and build['status']: log.debug("Squash image " + self.config['registry']['service'] + "/" + build['id'] + build_tag) log.debug("Save image") (squash_image_handler, squash_image_file) = tempfile.mkstemp(suffix='.squash.tar') (squashed_image_handler, squashed_image_file) = tempfile.mkstemp(suffix='.squashed.tar') p = subprocess.Popen(["docker", "save", #"-o", "image.tar", '-o', squash_image_file, self.config['registry']['service'] + "/" + build[ 'id'] + build_tag, ]) p.wait() log.debug("Squash image") p = subprocess.Popen( [self.config['general']['squash']['docker-squash'], #"-i", "image.tar", "-i", squash_image_file, #"-o", "squashed.tar", "-o", squashed_image_file, "-t", self.config['registry']['service'] + "/" + build['id'] + orig_build_tag, ]) p.wait() log.debug("Reload image") p = subprocess.Popen([ "docker", "load", "-i", squashed_image_file #"docker", "load", "-i", "squashed.tar" ]) p.wait() if os.path.exists(squash_image_file): os.remove(squash_image_file) if os.path.exists(squashed_image_file): os.remove(squashed_image_file) if build['status'] and self.config['clair']['use'] == 1: log.debug('Analyse with Clair') clair_check = True layer_ids = self.analyse_with_clair(self.config['registry']['service'] + "/" + build['id'] + orig_build_tag) if self.config['registry']['push'] == 0: log.debug("Skip image push, keep local " + self.config['registry']['service'] + "/" + build['id'] + orig_build_tag) try: if do_squash: log.debug("Remove squash image") BioshadockDaemon.cli.remove_image( self.config['registry']['service'] + "/" + build['id'] + ":squash") except Exception as e: log.error( "Failed to remove image " + build['id'] + " " + str(e)) else: if build['status']: log.warn("Push image " + self.config['registry']['service'] + "/" + build['id'] + orig_build_tag) try: response = [line for line in BioshadockDaemon.cli.push( self.config['registry']['service'] + "/" + build['id'] + orig_build_tag, stream=True)] except Exception as e: log.error( "Failed to push image: " + build['id'] + " " + str(e)) build['status'] = False build['response'].append( "Failed to push to registry") try: log.debug("Remove images for " + self.config['registry']['service'] + "/" + build['id']) if do_squash: log.debug("Remove squash image") BioshadockDaemon.cli.remove_image( self.config['registry']['service'] + "/" + build['id'] + ":squash") BioshadockDaemon.cli.remove_image( self.config['registry']['service'] + "/" + build['id'] + orig_build_tag) except Exception as e: log.error( "Failed to remove image " + build['id'] + " " + str(e)) else: build['status'] = False if is_cwl and cwl is None: build['response'].append("Failed to get CWL") build['timestamp'] = timestamp build['progress'] = 'over' if not build['status']: build['progress'] = 'failed' build['tag'] = info_tag meta_info = {'meta.Dockerfile': dockerfile, 'meta.cwl': cwl, 'meta.Entrypoint': entrypoint, 'meta.Dockerlabels': labels, 'meta.layers': layer_ids, 'meta.version.'+info_tag.replace('.','_')+'.layers': layer_ids, 'meta.clair': clair_check } if tags: meta_info['meta.tags'] = tags log.debug( "Update repository " + build['id'] + ": " + str(meta_info)) if description is not None: meta_info['meta.docker_description'] = description if size is not None: meta_info['meta.docker_tags.' + info_tag.replace('.','_')] = { 'size': int(size), 'last_updated': timestamp, 'tag': info_tag} if build['status']: meta_info['meta.last_updated'] = timestamp meta_info['meta.built'] = True BioshadockDaemon.db_mongo['builds'].update( {'_id': ObjectId(build['build'])}, build) BioshadockDaemon.db_mongo[ 'repository'].update({'id': build['id']}, {'$set': meta_info}) # Record specific tag info if build['status']: BioshadockDaemon.db_mongo['versions'].update( {'repo': build['id'], 'version': info_tag}, { 'repo': build['id'], 'version': info_tag, 'dockerfile': dockerfile, 'cwl': cwl }, upsert=True ) log.debug('Update indexation') updated_container = BioshadockDaemon.db_mongo['repository'].find_one({'id': build['id']}) es_repo = copy.deepcopy(updated_container) del es_repo['_id'] del es_repo['builds'] del es_repo['meta'] es_repo['meta'] = {'description': updated_container['meta']['description'], 'short_description': updated_container['meta']['short_description'], 'tags': updated_container['meta']['tags'] } BioshadockDaemon.es.index(index="bioshadock", doc_type='container', id=build['id'], body=es_repo) if do_git: cur_dir = os.path.dirname(os.path.realpath(__file__)) os.chdir(cur_dir) log.debug( "Cleaning directory " + cur_dir + " => " + git_repo_dir) shutil.rmtree(git_repo_dir) if self.run_once: break time.sleep(2) if __name__ == "__main__": pid_file = "/tmp/bioshadockbuilder.pid" if "BIOSHADOCK_PID" in os.environ: pid_file = os.environ["BIOSHADOCK_PID"] daemon = BioshadockDaemon(pid_file) if len(sys.argv) == 2: if 'start' == sys.argv[1]: daemon.start() elif 'stop' == sys.argv[1]: daemon.stop() elif 'restart' == sys.argv[1]: daemon.restart() elif 'run' == sys.argv[1]: daemon.run() elif 'once' == sys.argv[1]: daemon.run_once = True daemon.run() elif 'stats' == sys.argv[1]: daemon.stats() else: print "Unknown command" sys.exit(2) sys.exit(0) else: print "usage: %s start|stop|restart|run|once|stats" % sys.argv[0] sys.exit(2) ``` #### File: bioshadock/shadock/views.py ```python from pyramid.view import view_config from pyramid.response import Response from pyramid.httpexceptions import HTTPFound, HTTPNotFound, HTTPForbidden, HTTPUnauthorized, HTTPBadRequest import json import datetime import time import base64 import struct import re import urllib3 import copy import logging import string import random import tempfile import os import subprocess import bcrypt import smtplib from email.mime.text import MIMEText from bson import json_util from bson.json_util import dumps from bson.objectid import ObjectId from bson.errors import InvalidId import jwt from cryptography.hazmat.backends import default_backend from cryptography.x509 import load_pem_x509_certificate from cryptography.hazmat.primitives.serialization import ( load_pem_private_key, load_pem_public_key, load_ssh_public_key ) from cryptography.hazmat.primitives import serialization from basicauth import decode import pymongo from ldap3 import Server, Connection, AUTH_SIMPLE, STRATEGY_SYNC, STRATEGY_ASYNC_THREADED, SEARCH_SCOPE_WHOLE_SUBTREE, GET_ALL_INFO from bioshadock_biotools.parser import Parser from bioshadock_biotools.biotools import BioTools from clair.clair import Clair def notify_new_container_email(request, repo): if not request.registry.config['general']['mail']['smtp_host'] or not request.registry.config['general']['mail']['to']: logging.debug('No smtp or to email configuration, skipping mail notification') return to = request.registry.config['general']['mail']['to'] subject = 'New container created: ' + str(repo['id']) message = 'New container: ' + str(repo['id']) msg = MIMEText(message) msg['Subject'] = subject msg['From'] = request.registry.config['general']['mail']['from'] msg['To'] = request.registry.config['general']['mail']['to'] try: s = smtplib.SMTP(request.registry.config['general']['mail']['smtp_host'], request.registry.config['general']['mail']['smtp_port']) if request.registry.config['general']['mail']['tls']: s.starttls() if request.registry.config['general']['mail']['smtp_user']: s.login(request.registry.config['general']['mail']['smtp_user'], request.registry.config['general']['mail']['smtp_password']) s.sendmail(msg['From'], [msg['To']], msg.as_string()) s.quit() except Exception as e: logging.error('Email error: ' + str(e)) def build_container(request, build): request.registry.db_redis.hincrby('bioshadock:user:builds', build['user'], 1) request.registry.db_redis.rpush('bioshadock:builds:' + build['user'], dumps(build)) def is_admin(username, request): user = request.registry.db_mongo['users'].find_one({'id': username}) if user is None: return False if user['role'] == 'admin': return True return False def can_push_to_library(username, request): user = request.registry.db_mongo['users'].find_one({'id': username}) if user is None: return False if user['role'] == 'admin' or user['role'] == 'editor': return True return False def valid_user(username, password, request): if 'BIOSHADOCK_AUTH' in os.environ and os.environ['BIOSHADOCK_AUTH'] == 'fake': return True user = request.registry.db_mongo['users'].find_one({'id': username}) if user is None or 'password' not in user: # If user logged via social, no password available, use apikey for authentication on API if user is not None and 'type' in user and user['type'] == 'social': if user['apikey'] and user['apikey'] == password: return True ldap_dn = request.registry.config['ldap']['dn'] base_dn = 'ou=People,' + ldap_dn ldapfilter = "(&(|(uid=" + username + ")(mail=" + username + ")))" try: attrs = ['uid', 'mail'] con = Connection(request.registry.ldap_server, auto_bind=True, client_strategy=STRATEGY_SYNC, check_names=True) con.search(base_dn, ldapfilter, SEARCH_SCOPE_WHOLE_SUBTREE, attributes=attrs) if con.response: user_dn= None user_id = None for r in con.response: user_dn = str(r['dn']) user_id = r['attributes']['uid'] con.unbind() con = Connection(request.registry.ldap_server, auto_bind=True, read_only=True, client_strategy=STRATEGY_SYNC, user=user_dn, password=password, authentication=AUTH_SIMPLE, check_names=True) con.unbind() else: con.unbind() return False if user_dn is not None and user is None: role = 'contributor' if username in request.registry.admin: role = 'admin' apikey = ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(20)) request.registry.db_mongo['users'].insert({'id': username, 'role': role, 'apikey': apikey, 'type': 'ldap'}) except Exception as e: logging.error(str(e)) return False else: print "local user" if bcrypt.hashpw(password.encode('utf-8'), user['password'].encode('utf-8')) == user['password']: return True else: return False return True def is_logged(request): ''' Check if user is logged, return user info or None ''' if request.authorization is not None: try: (type, bearer) = request.authorization secret = request.registry.config['registry']['secret_passphrase'] # If decode ok and not expired user = jwt.decode(bearer, secret, audience='urn:bioshadock/auth') return user['user'] except Exception: return None return None @view_config(route_name='users', renderer='json', request_method='GET') def users(request): session_user = is_logged(request) if session_user is None: return HTTPForbidden('User not logged') users = request.registry.db_mongo['users'].find({}) res = [] for user in users: res.append(user) return res @view_config(route_name='user', renderer='json', request_method='POST') def user(request): session_user = is_logged(request) if session_user is None: return HTTPForbidden('User not logged') user = request.registry.db_mongo['users'].find_one({'id': request.matchdict['id']}) if user is None: return HTTPNotFound() if not is_admin(session_user['id'], request): return HTTPForbidden() if session_user['id'] == user['id']: return HTTPForbidden() form = json.loads(request.body, encoding=request.charset) user['role'] = form['role'] request.registry.db_mongo['users'].update({'id': user['id']},{'$set': {'role': user['role']}}) return user @view_config(route_name='config', renderer='json', request_method='GET') def config(request): config = { 'registry': request.registry.config['registry']['docker'], 'service': request.registry.config['registry']['service'], 'issuer': request.registry.config['registry']['issuer'] } return config @view_config(route_name='user_is_logged', renderer='json', request_method='GET') def user_is_logged(request): user = is_logged(request) if user is None: return HTTPNotFound('User not logged') else: return user @view_config(route_name='user_bind', renderer='json', request_method='POST') def user_bind(request): form = json.loads(request.body, encoding=request.charset) uid = form['uid'] password = form['password'] token = None if form and 'token' in form: token = form['token'] if token: secret = request.registry.config['registry']['secret_passphrase'] user = jwt.decode(token, secret, audience='urn:bioshadock/auth') uid = user['user']['id'] user = request.registry.db_mongo['users'].find_one({'id': uid}) if user is not None and 'type' in user and user['type'] == 'ldap': return HTTPUnauthorized('Trying to connect with the id of an existing user') if user is None: role = 'visitor' apikey = ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(20)) request.registry.db_mongo['users'].insert({'id': uid, 'role': role, 'apikey': apikey, 'type': 'social'}) else: if not valid_user(uid, password, request): return HTTPUnauthorized('Invalid credentials') user = request.registry.db_mongo['users'].find_one({'id': uid}) if not user: return HTTPUnauthorized('Invalid credentials') secret = request.registry.config['registry']['secret_passphrase'] del user['_id'] token = jwt.encode({'user': user, 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=3600), 'aud': 'urn:bioshadock/auth'}, secret) return { 'user': user, 'token': token } @view_config(route_name='search', renderer='json', request_method='GET') def search_es(request): q = request.params['q'] user = is_logged(request) conditions = [] key = "_all" value = q if ":" in q: elts = q.split(":") key = 'meta.' + elts[0] value = elts[1] query = [ {"term": {key: value}}] if user is None: query.append({"term": {"visible": True}}) else: conditions.append({"term": {"visible": True}}) conditions.append({"term": {"user": user['id']}}) conditions.append({"term": {"acl_push.members": user['id']}}) conditions.append({"term": {"acl_pull.members": user['id']}}) res = request.registry.es.search( index = "bioshadock", search_type = 'query_then_fetch', size = 1000, body = { "query" : { "filtered" : { "filter" : { "bool" : {"must": query, "should": conditions}, } } }, }) return res @view_config(route_name='containers_latest', renderer='json', request_method='GET') def containers_latest(request): repos = request.registry.db_mongo['repository'].find({'library': True},{'id': 1, 'description': 1}, sort=[('_id', pymongo.DESCENDING)], limit=20) library_containers = [] for container in repos: library_containers.append(container) return library_containers @view_config(route_name='containers_all', renderer='json', request_method='GET') def containers_all(request): light = False if 'light' in request.params: light = True user = is_logged(request) if user is None or not is_admin(user['id'], request): #return HTTPForbidden() repos = request.registry.db_mongo['repository'].find({'visible': True}) else: repos = request.registry.db_mongo['repository'].find() user_repos = [] for repo in repos: if 'builds' in repo: del repo['builds'] if 'Dockerfile' in repo['meta'] and repo['meta']['Dockerfile']: repo['meta']['Dockerfile'] = True else: repo['meta']['Dockerfile'] = False if light: if 'built' not in repo['meta']: repo['meta']['built'] = False if 'short_description' not in repo['meta']: repo['meta']['short_description'] = repo['meta']['description'] if 'git' not in repo['meta']: repo['meta']['git'] = None user_repos.append({ 'id': repo['id'], 'meta': { 'short_description': repo['meta']['short_description'], 'built': repo['meta']['built'], 'git': repo['meta']['git'], 'Dockerfile': repo['meta']['Dockerfile'] }, 'user': repo['user'], 'visible': repo['visible'] }) else: user_repos.append(repo) return user_repos @view_config(route_name='builds', renderer='json', request_method='GET') def builds(request): ''' Get all builds for container, remove response log to limit size ''' user = is_logged(request) if user is None: return HTTPForbidden() repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() builds = request.registry.db_mongo['builds'].find({'id': repo_id}, {'response': 0}) res = [] for build in builds: res.append(build) return res @view_config(route_name='build', renderer='json', request_method='GET') def build(request): ''' Get a build with complete response ''' user = is_logged(request) if user is None: return HTTPForbidden() build_id = request.matchdict['id'] build = request.registry.db_mongo['builds'].find_one({'_id': ObjectId(build_id)}) repo_id = build['id'] repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() return build @view_config(route_name='containers', renderer='json', request_method='GET') def containers(request): user = is_logged(request) if user is None: return HTTPForbidden() repos = request.registry.db_mongo['repository'].find({'$or': [{'user': user['id']}, {'acl_pull.members': user['id']}]}) user_repos = [] for repo in repos: if 'builds' in repo: del repo['builds'] if 'Dockerfile' in repo['meta'] and repo['meta']['Dockerfile']: repo['meta']['Dockerfile'] = True else: repo['meta']['Dockerfile'] = False user_repos.append(repo) return user_repos @view_config(route_name='container_manifest', renderer='json', request_method='POST') def container_manifest(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() form = json.loads(request.body, encoding=request.charset) token = form['token'] tag = form['tag'] http = urllib3.PoolManager() headers = {'Authorization': 'Bearer '+token, 'Accept': 'application/vnd.docker.distribution.manifest.v2+json'} r = http.request('GET', request.registry.config['registry']['docker']+'/v2/'+repo_id+'/manifests/'+tag, headers=headers) if r.status != 200: return Response('could not get the manifest', status_code = r.status) res = json.loads(r.data) docker_content_digest = None if 'Docker-Content-Digest' in r.headers: docker_content_digest = r.headers['Docker-Content-Digest'] else: docker_content_digest = res['manifests'][0]['digest'] res['Docker-Content-Digest'] = docker_content_digest return res @view_config(route_name='container_metaelixir', renderer='json') def container_metaelixir(request): repo_id = '/'.join(request.matchdict['id']) http = urllib3.PoolManager() r = http.request('GET', request.registry.config['elixir']['biotools_url']+'/api/tool/'+repo_id) if r.status != 200: return Response('could not get the metadata', status_code = r.status) return json.loads(r.data) @view_config(route_name='container_elixir', renderer='json') def container_elixir(request): ''' Update elixir from a container Dockerfile /container/elixir/x/y/z ''' if not request.registry.config['elixir']['script']: return HTTPForbidden('Not configured for Elixir updates') user = is_logged(request) if user is None: try: apikey = request.params['apikey'] user = request.registry.db_mongo['users'].find_one({'apikey': apikey}) if user is None: return HTTPForbidden() except Exception: return HTTPForbidden() repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() dockerFile = repo['meta']['Dockerfile'] if dockerFile is None or not dockerFile: return HTTPNotFound('No Dockerfile available') (tmpfh, tmpfilepath) = tempfile.mkstemp(prefix='elixir') tmpfile = open(tmpfilepath, 'w') tmpfile.write(dockerFile) tmpfile.close() (tmpfh, tmpxmlpath) = tempfile.mkstemp(prefix='elixir', suffix='.xml') softname = repo_id.split('/')[-1] resource = None try: parser = Parser(tmpfilepath) templFile = request.registry.config['elixir']['template'] if not templFile or not os.path.exists(templFile): return HTTPForbidden('Configuration error, missing template.xml') parser.parse(templFile, tmpxmlpath) username = request.registry.config['elixir']['login'] password = request.registry.config['elixir']['password'] biotools = BioTools({ act: 'update', resFile: tmpxmlpath, xmlTransportFormat: True }) resource = biotools.get_resource(options) jsonResp=biotools.execLoginCmd(username, password) if 'token' not in jsonResp: return HTTPForbidden('Could not authentify against bio.tools') jsonResp=biotools.execRegisterOrUpdateCmd(token, tmpxmlpath, "application/xml") except Exception as e: logging.error("Elixir bio.tools call error: "+str(e)) return {'msg': 'An error occured, please contact support team'} os.remove(tmpfilepath) os.remove(tmpxmlpath) affiliation = request.registry.config['elixir']['affiliation'] elixir_name = affiliation+'/'+softname if 'name' in resource and resource['name']: elixir_name = affiliation+'/'+resource['name'] request.registry.db_mongo['repository'].update({'_id': repo['_id']},{'$set': {'meta.elixir': elixir_name}}) return {'msg': 'Request executed', 'elixir': elixir_name} @view_config(route_name='container_tag', renderer='json') def container_tag(request): ''' Tags a container /container/tag/x/y/z/:tagid ''' user = is_logged(request) if user is None: try: apikey = request.params['apikey'] user = request.registry.db_mongo['users'].find_one({'apikey': apikey}) if user is None: return HTTPForbidden() except Exception: return HTTPForbidden() repo_elts = list(request.matchdict['id']) tag = repo_elts.pop() repo_id = '/'.join(repo_elts) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() user_id = user['id'] container = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if 'git' not in container['meta'] and not container['meta']['Dockerfile']: return HTTPForbidden() build = request.registry.db_mongo['builds'].insert({'id': repo_id, 'progress': 'waiting'}) newbuild = { 'id': repo_id, 'build': str(build), 'date': datetime.datetime.now(), 'dockerfile': container['meta']['Dockerfile'], 'git': None, 'cwl_path': container['meta']['cwl_path'], 'user': user_id, 'tag': tag } if 'git' in container['meta']: newbuild['git'] = container['meta']['git'] build_container(request, newbuild) # request.registry.db_redis.rpush('bioshadock:builds', dumps(newbuild)) return {'repo': repo_id, 'tag': tag} @view_config(route_name='container_git', renderer='json') def container_git(request): ''' trigger for a git rebuild, must container a Dockerfile in git repo or in container def ''' user = is_logged(request) if user is None: try: apikey = request.params['apikey'] user = request.registry.db_mongo['users'].find_one({'apikey': apikey}) if user is None: return HTTPForbidden() except Exception: return HTTPForbidden() repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() user_id = 'anonymous' if user is not None: user_id = user['id'] container = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if 'git' not in container['meta']: return HTTPForbidden() build = request.registry.db_mongo['builds'].insert({'id': repo_id, 'progress': 'waiting'}) newbuild = { 'id': repo_id, 'build': str(build), 'date': datetime.datetime.now(), 'dockerfile': container['meta']['Dockerfile'], 'git': container['meta']['git'], 'cwl_path': container['meta']['cwl_path'], 'user': user_id } build_container(request, newbuild) # request.registry.db_redis.rpush('bioshadock:builds', dumps(newbuild)) return {} @view_config(route_name='container_dockerfile', renderer='json', request_method='POST') def container_dockerfile(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() form = json.loads(request.body, encoding=request.charset) dockerfile = form['dockerfile'] if 'git' not in form: form['git'] = None request.registry.db_mongo['repository'].update({'id': repo_id},{'$set': {'meta.Dockerfile': dockerfile}}) build = request.registry.db_mongo['builds'].insert({'id': repo_id, 'progress': 'waiting'}) cwl_path = None if 'cwl_path' in repo['meta']: cwl_path = repo['meta']['cwl_path'] newbuild = { 'id': repo_id, 'build': str(build), 'date': datetime.datetime.now(), 'dockerfile': dockerfile, 'git': form['git'], 'user': user['id'], 'cwl_path': cwl_path } build_container(request, newbuild) # request.registry.db_redis.rpush('bioshadock:builds', dumps(newbuild)) return {} @view_config(route_name='container_tags', renderer='json', request_method='POST') def container_tags(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() form = json.loads(request.body, encoding=request.charset) token = form['token'] http = urllib3.PoolManager() headers = {'Authorization': 'Bearer '+token} r = http.request('GET', request.registry.config['registry']['service']+'/v2/'+repo_id+'/tags/list', headers=headers) if r.status != 200: return Response('could not get the manifest', status_code = r.status) return json.loads(r.data) @view_config(route_name='container', renderer='json', request_method='DELETE') def container_delete(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if user is None: return HTTPForbidden() if repo is None: return HTTPNotFound() if not (is_admin(user['id'], request) or repo['user'] == user['id'] or user['id'] in repo['acl_push']['members']): return HTTPForbidden() # Get digest from manifest Docker-Content-Digest sha256:95b09cb5b7cd38d73a7dc9618c34148559cf1ed3a0066c85d37e1d6cf4fb9004 # Send DELETE request DELETE /v2/<name>/manifests/<reference> # Commented, removing image seems to remove some layers used by other image # Delete from database but keep in ever growing registry ''' form = json.loads(request.body, encoding=request.charset) token = form['token'] tag = 'latest' if 'tag' in form: tag = form['tag'] http = urllib3.PoolManager() headers = {'Authorization': 'Bearer '+token, 'Accept': 'application/vnd.docker.distribution.manifest.v2+json'} r = http.request('GET', request.registry.config['registry']['docker']+'/v2/'+repo_id+'/manifests/'+tag, headers=headers) if r.status == 404: logging.warn('Registry could not get the manifest '+repo_id) else: res = json.loads(r.data) docker_content_digest = None if 'Docker-Content-Digest' in r.headers: docker_content_digest = r.headers['Docker-Content-Digest'] else: docker_content_digest = res['manifests'][0]['digest'] r = http.request('DELETE', request.registry.config['registry']['docker']+'/v2/'+repo_id+'/manifests/'+docker_content_digest, headers=headers) if r.status != 202: logging.error('Could not find or delete image ' + repo_id + 'in registry') ''' request.registry.db_mongo['repository'].remove({'id': repo_id}) request.registry.db_mongo['builds'].remove({'id': repo_id}) request.registry.db_mongo['versions'].remove({'repo': repo_id}) request.registry.es.delete(index="bioshadock", doc_type='container', id=repo_id) return repo @view_config(route_name='container', renderer='json', request_method='POST') def container_update(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if user is None: return HTTPForbidden() if repo is None: return HTTPNotFound() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_push']['members']: return HTTPForbidden() form = json.loads(request.body, encoding=request.charset) if 'git' not in form['meta']: form['meta']['git'] = None if 'elixir' not in form['meta']: form['meta']['elixir'] = None if 'cwl_path' not in form['meta']: form['meta']['cwl_path'] = None updates = { 'acl_push.members': form['acl_push']['members'], 'acl_pull.members': form['acl_pull']['members'], 'meta.description': form['meta']['description'], 'meta.short_description': form['meta']['short_description'], 'meta.tags': form['meta']['tags'], 'meta.terms': form['meta']['terms'], 'meta.git': form['meta']['git'], 'meta.elixir': form['meta']['elixir'], 'meta.cwl_path': form['meta']['cwl_path'], 'visible': form['visible'] } repo['acl_push']['members'] = form['acl_push']['members'] repo['acl_pull']['members'] = form['acl_pull']['members'] repo['meta']['description'] = form['meta']['description'] repo['meta']['tags'] = form['meta']['tags'] repo['meta']['terms'] = form['meta']['terms'] repo['meta']['cwl_path'] = form['meta']['cwl_path'] repo['visible'] = form['visible'] if is_admin(user['id'], request) or repo['user'] == user['id'] or user['id'] in repo['acl_push']['members']: repo['user_can_push'] = True else: repo['user_can_push'] = False request.registry.db_mongo['repository'].update({'id': repo_id}, {'$set': updates}) es_repo = copy.deepcopy(repo) del es_repo['_id'] del es_repo['builds'] request.registry.es.index(index="bioshadock", doc_type='container', id=repo_id, body=es_repo) return repo @view_config(route_name='clair_notification', renderer='json', request_method='POST') def clair_notification(request): ''' Receive a Clair notification about an update. Simply delete notification, no handling for the moment ''' form = json.loads(request.body, encoding=request.charset) notif = form['Notification']['Name'] ''' page = 1 limit = 100 # Get notification loop = True while loop: r = http.request('GET', equest.registry.settings['clair.host']+'/v1/notification/'+notif+'?page='+str(page)+'&limit='+str(limit)) if r.status != 200: loop = False res = json.loads(r.data) layers = res['Notification']['New']['LayersIntroducingVulnerability'] for layer in layers: # Find repo using layer and udpate notifications page += 1 ''' # Mark as read http = urllib3.PoolManager() http.request('DELETE', request.registry.config['clair']['host']+'/v1/notification/'+notif) return {} @view_config(route_name='container_vulnerabilities', renderer='json', request_method='GET') def container_vulnerabilities(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() # Get vulnerabilities from Clair if request.registry.config['clair']['use'] != 1: return HTTPForbidden() cfg = { 'clair.host': request.registry.config['clair']['host'], 'docker.connect': request.registry.config['services']['docker']['connect'] } image_vulnerabilities = Clair(cfg) version = None try: version = request.params['version'].replace('.', '_') except Exception: pass logging.debug('Search vulnerabilities for '+repo_id+':'+str(version)) if version is not None: if 'version' in repo['meta'] and version in repo['meta']['version']: layers = repo['meta']['version'][version]['layers'] else: return HTTPNotFound() if version is None: if 'layers' not in repo['meta'] or not repo['meta']['layers']: return HTTPNotFound() else: layers = repo['meta']['layers'] return image_vulnerabilities.get_layers_vulnerabilities(layers) @view_config(route_name='container', renderer='json', request_method='GET') def container(request): user = is_logged(request) repo_id = '/'.join(request.matchdict['id']) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() if not repo['visible']: if user is None: return HTTPForbidden() if not is_admin(user['id'], request) and repo['user'] != user['id'] and user['id'] not in repo['acl_pull']['members']: return HTTPForbidden() if user and (is_admin(user['id'], request) or repo['user'] == user['id'] or user['id'] in repo['acl_push']['members']): repo['user_can_push'] = True else: repo['user_can_push'] = False return repo @view_config(route_name='containers_new', renderer='json', request_method='POST') def containers_new(request): user = is_logged(request) if user is None: return HTTPForbidden() form = json.loads(request.body, encoding=request.charset) if 'git' not in form or not form['git']: form['git'] = None repo_id = form['name'] repo_name = repo_id.split('/') if len(repo_name) == 1: return HTTPForbidden("Invalid repository name, must match X/Y") if user_can_push(user['id'], repo_id, request): request.registry.db_mongo['repository'].update({'id': repo_id}, {'$set': {'meta.short_description': form['description'], 'meta.description': '', 'meta.Dockerfile': form['dockerfile'], 'meta.git': form['git'], 'meta.cwl_path': None, 'visible': form['visible'] in ['true', 1]} }) build = request.registry.db_mongo['builds'].insert({'id': repo_id, 'progress': 'waiting'}) newbuild = { 'id': repo_id, 'build': str(build), 'date': datetime.datetime.now(), 'dockerfile': form['dockerfile'], 'git': form['git'], 'user': user['id'], 'cwl_path': None } build_container(request, newbuild) # request.registry.db_redis.rpush('bioshadock:builds', dumps(newbuild)) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) es_repo = copy.deepcopy(repo) del es_repo['_id'] del es_repo['builds'] res = request.registry.es.index(index="bioshadock", doc_type='container', id=repo_id, body=es_repo) return repo else: return HTTPForbidden() @view_config(route_name='containers_search', renderer='json', request_method='POST') def containers_search(request): form = json.loads(request.body, encoding=request.charset) search = form['search'] user = is_logged(request) regx = re.compile(search, re.IGNORECASE) if user is None: repos = request.registry.db_mongo['repository'].find({'visible': True, 'id': regx}) else: repos = request.registry.db_mongo['repository'].find({'$or': [{'visible': True}, {'user': user['id']}, {'acl_pull.members': user['id']}], 'id': regx}) user_repos = [] for repo in repos: user_repos.append(repo) return user_repos @view_config(route_name='api_repositories_images_layer_access', renderer='json', request_method='GET') def api_repositories_images_layer_access(request): ''' Library repo /v1/repositories/{namespace}/{image}/layer/{id}/access ''' #print str(request) repo_id = str(request.matchdict['namespace'])+'/'+str(request.matchdict['image']) secret = request.registry.config['registry']['secret_passphrase'] token = None if request.authorization: (type, bearer) = request.authorization token = bearer.split(',')[0].replace('signature=','') try: msg = jwt.decode(token, secret) except Exception as e: print str(e) return HTTPForbidden(str(e)) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) return {'access':True} @view_config(route_name='api_library', renderer='json', request_method='DELETE') def api_library_delete(request): repo_id = None repo_id = 'library/'+ request.matchdict['image'] endpoints = request.registry.config['registry']['docker'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= None if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request) or not user_can_delete(username, repo_id, request): return HTTPForbidden() existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if existing_repo is None: return Response() token = jwt.encode({'repo': repo_id, 'user': username, 'acl': 'delete', 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=3600*24) }, secret) docker_token = "signature="+token+",repository=\""+repo_id+"\",access=write" headers = [("WWW-Authenticate", "Token "+docker_token.encode('utf8')), ("X-Docker-Endpoints", endpoints),("X-Docker-Token", docker_token.encode('utf8')) ] request.registry.db_mongo['repository'].remove({'id': repo_id}) request.response.headerlist.extend(headers) return Response('Accepted', status_code=202, headerlist=request.response.headerlist) @view_config(route_name='api_library', renderer='json', request_method='PUT') def api_library_push(request): ''' Library repo /v1/repositories/{image} ''' images = json.loads(request.body, encoding=request.charset) repo_id = None repo_id = 'library/'+ request.matchdict['image'] endpoints = request.registry.config['docker']['registry'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= None if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request) or not user_can_push(username, repo_id, request): return HTTPForbidden() existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) request.registry.db_mongo['repository'].update({'id': repo_id}, {"$set":{'images': images}}) (type, bearer) = request.authorization token = jwt.encode({'repo': repo_id, 'user': username, 'acl': 'write', 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=3600) }, secret) docker_token = "signature="+token+",repository=\""+repo_id+"\",access=write" headers = [("WWW-Authenticate", "Token "+docker_token.encode('utf8')), ("X-Docker-Endpoints", endpoints),("X-Docker-Token", docker_token.encode('utf8')) ] request.response.headerlist.extend(headers) return Response('Created', headerlist=request.response.headerlist) @view_config(route_name='api_library_images', renderer='json', request_method='GET') def api_library_images(request): ''' Library repo /v1/repositories/{image}/images ''' #images = json.loads(request.body, encoding=request.charset) repo_id = 'library/' + request.matchdict['image'] existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if existing_repo is None: return HTTPNotFound() endpoints = request.registry.config['registry']['docker'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= <PASSWORD> if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request): return HTTPForbidden() (type, bearer) = request.authorization token = jwt.encode({'repo': repo_id, 'user': username, 'acl': 'read', 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=3600) }, secret) docker_token = "signature="+token+",repository=\""+repo_id+"\",access=read" headers = [("WWW-Authenticate", "Token "+docker_token.encode('utf8')), ("X-Docker-Endpoints", endpoints),("X-Docker-Token", docker_token.encode('utf8')) ] request.registry.db_mongo['repository'].update({'id': repo_id},{"$inc": { "pulls": 1}}) request.response.headerlist.extend(headers) return Response(json.dumps(existing_repo['images']), headerlist=request.response.headerlist) @view_config(route_name='api_library_images', renderer='json', request_method='PUT') def api_library_images_push(request): images = json.loads(request.body, encoding=request.charset) repo_id = None repo_id = 'library/'+ request.matchdict['image'] endpoints = request.registry.config['registry']['docker'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= <PASSWORD> if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request): return HTTPForbidden() if images: existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if existing_repo is None: return HTTPNotFound() return {"access": True} else: return Response('',status_code=204) @view_config(route_name='api_library_auth', renderer='json', request_method='PUT') def api_library_auth(request): ''' Library repo /v1/repositories/{image}/auth ''' repo_id = 'library/'+str(request.matchdict['image']) secret = request.registry.config['registry']['secret_passphrase'] token = None if request.authorization: (type, bearer) = request.authorization token = bearer.split(',')[0].replace('signature=','') try: msg = jwt.decode(token, secret) if msg['acl'] == 'delete': return Reponse('') else: return HTTPForbidden() except Exception as e: print str(e) return HTTPForbidden(str(e)) else: return HTTPForbidden() @view_config(route_name='api_repositories_images_get', renderer='json', request_method='GET') def api_repositories_images(request): ''' Library repo /v1/repositories/{namespace}/{image}/images ''' repo_id = str(request.matchdict['namespace'])+'/'+str(request.matchdict['image']) secret = request.registry.config['registry']['secret_passphrase'] token = None if request.authorization: (type, bearer) = request.authorization token = bearer.split(',')[0].replace('signature=','') try: msg = jwt.decode(token, secret) except Exception as e: print str(e) return HTTPForbidden(str(e)) repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if repo is None: return HTTPNotFound() images = [] for image in repo['images']: images.append(image) return images @view_config(route_name='api_repositories_images_put', renderer='json', request_method='PUT') def api_repositories_images_push(request): ''' Library repo /v1/repositories/{namespace}/{image}/images ''' images = json.loads(request.body, encoding=request.charset) repo_id = None repo_id = request.matchdict['namespace'] + '/'+ request.matchdict['image'] endpoints = request.registry.config['registry']['docker'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= <PASSWORD> if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request): return HTTPForbidden() if images: existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if existing_repo is None: return HTTPNotFound() return {"access": True} else: return Response('',status_code=204) @view_config(route_name='api_library', renderer='json', request_method='DELETE') def api_library_delete(request): repo_id = None repo_id = request.matchdict['namespace'] + '/'+ request.matchdict['image'] endpoints = request.registry.config['registry']['docker'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= None if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request) or not user_can_delete(username, repo_id, request): return HTTPForbidden() existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) if existing_repo is None: return Response('') token = jwt.encode({'repo': repo_id, 'user': username, 'acl': 'delete', 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=3600) }, secret) docker_token = "signature="+token+",repository=\""+repo_id+"\",access=write" headers = [("WWW-Authenticate", "Token "+docker_token.encode('utf8')), ("X-Docker-Endpoints", endpoints),("X-Docker-Token", docker_token.encode('utf8')) ] request.registry.db_mongo['repository'].remove({'id': repo_id}) request.response.headerlist.extend(headers) return Response('Accepted', status_code=202, headerlist=request.response.headerlist) @view_config(route_name='api_repositories_auth', renderer='json', request_method='PUT') def api_repositories_auth(request): ''' Library repo /v1/repositories/{image}/auth ''' repo_id = request.matchdict['namespace'] + '/'+str(request.matchdict['image']) secret = request.registry.config['registry']['secret_passphrase'] token = None if request.authorization: (type, bearer) = request.authorization token = bearer.split(',')[0].replace('signature=','') try: msg = jwt.decode(token, secret) if msg['acl'] == 'delete': return Reponse('') else: return HTTPForbidden() except Exception as e: print str(e) return HTTPForbidden(str(e)) else: return HTTPForbidden() @view_config(route_name='api_repositories', renderer='json', request_method='PUT') def api_repositories_push(request): ''' Library repo /v1/repositories/{namespace}/{image} ''' images = json.loads(request.body, encoding=request.charset) repo_id = None repo_id = request.matchdict['namespace'] + '/'+ request.matchdict['image'] endpoints = request.registry.config['registry']['docker'] secret = request.registry.config['registry']['secret_passphrase'] username = None password= <PASSWORD> if request.authorization: (type, bearer) = request.authorization username, password = decode(bearer) if not valid_user(username, password, request) or not user_can_push(username, repo_id, request): return HTTPForbidden() existing_repo = request.registry.db_mongo['repository'].find_one({'id': repo_id}) request.registry.db_mongo['repository'].update({'id': repo_id}, {"$set":{'images': images}}) (type, bearer) = request.authorization token = jwt.encode({'repo': repo_id, 'user': username, 'acl': 'write', 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=3600) }, secret) docker_token = "signature="+token+",repository=\""+repo_id+"\",access=write" headers = [("WWW-Authenticate", "Token "+docker_token.encode('utf8')), ("X-Docker-Endpoints", endpoints),("X-Docker-Token", docker_token.encode('utf8')) ] request.response.headerlist.extend(headers) return Response('Created', headerlist=request.response.headerlist) @view_config(route_name='api_other', renderer='json') def api_other(request): print "#Other v1 Route: "+str(request.matchdict['api']) print str(request) return HTTPForbidden() @view_config(route_name='api2_other', renderer='json') def api2_other(request): print "#Other v2 Route: "+str(request.matchdict['api']) print str(request) return Response('OK') @view_config(route_name='api_ping', renderer='json') def api_ping(request): print str('ping') headers = [("X-Docker-Registry-Config", "local"), ("X-Docker-Registry-Standalone", "false") ] request.response.headerlist.extend(headers) return Response('OK', headerlist=request.response.headerlist) @view_config(route_name='api2_ping', renderer='json') def api2_ping(request): print str('ping') headers = [("X-Docker-Registry-Config", "local"), ("X-Docker-Registry-Standalone", "false") ] request.response.headerlist.extend(headers) return Response('OK', headerlist=request.response.headerlist) def to_bytes(n, length): return bytes( (n >> i*8) & 0xff for i in reversed(range(length))) def user_can_delete(username, repository, request): user_repo = repository repos = repository.split('/') #if len(repos) == 1: # user_repo = 'library/'+repository existing_repo = request.registry.db_mongo['repository'].find_one({'id': user_repo}) if existing_repo is not None: if existing_repo['user'] == username or is_admin(username, request): return True else: return False else: return False def user_can_push(username, repository, request): if username == 'anonymous': return False user_repo = repository is_library = False repos = repository.split('/') if len(repos) == 1: return False if repos[0] == 'library': if not can_push_to_library(username, request): return False #user_repo = 'library/'+repository is_library = True existing_repo = request.registry.db_mongo['repository'].find_one({'id': user_repo}) if existing_repo is not None: if existing_repo['user'] == username or username in existing_repo['acl_push']['members'] or username in request.registry.admin: return True else: return False else: user_db = request.registry.db_mongo['users'].find_one({'id': username}) if user_db is None: return False else: # Contributors can push only is specified if user_db['role'] == 'contributor' and request.registry.config['general']['contributor_can_push'] != 1: return False # Visitors cannot push if user_db['role'] == 'visitor': return False if not is_library or (is_library and can_push_to_library(username, request)): repo = { 'id' : user_repo, 'user': username, 'pulls': 0, 'visible': True, 'library': is_library, 'meta': { 'tags': [], 'terms': [], 'description': None, 'Dockerfile': None }, 'acl_push': { 'members': [], 'groups': [] }, 'acl_pull': { 'members': [], 'groups': [] }, 'builds': [] } request.registry.db_mongo['repository'].insert(repo) notify_new_container_email(request, repo) es_repo = copy.deepcopy(repo) del es_repo['_id'] del es_repo['builds'] res = request.registry.es.index(index="bioshadock", doc_type='container', id=user_repo, body=es_repo) return True else: return False def user_can_pull(username, repository, request): user_repo = repository repos = repository.split('/') #if len(repos) == 1: # user_repo = 'library/'+repository existing_repo = request.registry.db_mongo['repository'].find_one({'id': user_repo}) if existing_repo is not None: if existing_repo['user'] == username or username in existing_repo['acl_pull']['members'] or username in request.registry.admin: return True else: if existing_repo['visible']: return True else: return False else: return False @view_config(route_name='api2_token', renderer='json') def api2_token(request): account = None try: account = request.params['account'] except Exception: pass service = request.params['service'] scopes = None try: #scope = request.params['scope'] scopes = request.GET.getall('scope') except Exception: pass if request.authorization or request.authorization is None: # Login request if request.authorization is None: account = 'anonymous' if account != 'anonymous' and not is_logged(request): (bearer_type, bearer) = request.authorization username, password = decode(bearer) if username == 'anonymous': username = account elif not valid_user(username, password, request): logging.error("User authentication failure") return HTTPForbidden() else: username = account secret = None private_key = None passphrase = None if request.registry.config['certs']['private_key_passphrase']: passphrase = request.registry.config['certs']['private_key_passphrase'] with open(request.registry.config['certs']['private_key'], 'r') as content_file: private_key = load_pem_private_key(content_file.read().encode('utf-8'), password=<PASSWORD>, backend=default_backend()) pub_key = None pem = None exponent = None modulus = None with open(request.registry.config['certs']['public_key'], 'r') as content_file: pub_key = content_file.read().encode('utf-8') pub_key = load_pem_x509_certificate(pub_key, backend=default_backend()) pub_key = pub_key.public_key() pem = pub_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo) pub_numbers = pub_key.public_numbers() exponent = pub_numbers._e modulus= pub_numbers._n modulus = ('%%0%dx' % (256 << 1) % modulus).decode('hex')[-256:] exponent = ('%%0%dx' % (3 << 1) % exponent).decode('hex')[-3:] der = None with open(request.registry.config['certs']['cacert_der'], 'rb') as content_file: der = content_file.read() access = [] if scopes is not None: access = [] for scope in scopes: scope = scope.split(':') repo_type = scope[0] repository = scope[1] actions = scope[2].split(',') allowed_actions = [] for action in actions: if action == 'push' and user_can_push(username, repository, request): allowed_actions.append(action) if action == 'pull' and user_can_pull(username, repository, request): allowed_actions.append(action) request.registry.db_mongo['repository'].update({'id': repository},{"$inc": { "pulls": 1}}) if action == 'manifest' and user_can_pull(username, repository, request): allowed_actions.append('pull') access.append({ "type": repo_type, "name": repository, "actions": allowed_actions }) claims = {'iss': request.registry.config['registry']['issuer'], 'sub': username, 'aud': service, 'access': access, #'nbf': datetime.datetime.utcnow(), 'iat': datetime.datetime.utcnow(), 'exp': datetime.datetime.utcnow()+datetime.timedelta(seconds=3600*24), } token = jwt.encode(claims, private_key, algorithm='RS256', headers={'jwk': {'kty': 'RSA', 'alg': 'RS256', 'n': base64.urlsafe_b64encode(modulus), 'e': base64.urlsafe_b64encode(exponent), 'x5c': [base64.b64encode(der)] }} ) return {'token': token} return HTTPForbidden() @view_config(route_name='api_users', renderer='json') def api_users(request): user = json.loads(request.body, encoding=request.charset) user_id = None existing_user = request.registry.db_mongo['users'].find_one({'id': user_id}) if not existing_user: return HTTPForbidden("You must register first") return Response("User Created", status_code=201) @view_config(route_name='ga4gh_tools_query', renderer='json', request_method='GET') def ga4gh_tools_query(request): return HTTPNotFound() @view_config(route_name='ga4gh_tool_descriptor', renderer='json', request_method='GET') def ga4gh_tool_descriptor(request): if 'format' in request.params and request.params['format'].lower() != 'cwl': return HTTPNotFound() repo_id = request.matchdict['id'] elts = repo_id.split('@') repo_id = elts[0] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if 'cwl' not in repo['meta'] or not repo['meta']['cwl']: return HTTPNotFound() return { 'descriptor': repo['meta']['cwl'] } @view_config(route_name='ga4gh_tool_dockerfile', renderer='json', request_method='GET') def ga4gh_tool_dockerfile(request): repo_id = request.matchdict['id'] elts = repo_id.split('@') repo_id = elts[0] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if 'Dockerfile' not in repo['meta'] or not repo['meta']['Dockerfile']: return HTTPNotFound() return { 'dockerfile': repo['meta']['Dockerfile'] } ''' config.add_route('ga4gh_tools', '/api/ga4gh/v1/tools') config.add_route('ga4gh_tools_id', '/api/ga4gh/v1/tools/{id}') config.add_route('ga4gh_tools_id_versions', '/api/ga4gh/v1/tools/{id}/versions') config.add_route('ga4gh_tools_id_version', '/api/ga4gh/v1/tools/{id}/versions/{versionid}') config.add_route('ga4gh_tools_id_version_descriptor', '/api/ga4gh/v1/tools/{id}/versions/{versionid}/{type}/descriptor') config.add_route('ga4gh_tools_id_version_descriptor_file_relative_path', '/api/ga4gh/v1/tools/{id}/versions/{versionid}/{type}/descriptor/{relativepath}') config.add_route('ga4gh_tools_id_version_dockerfile', '/api/ga4gh/v1/tools/{id}/versions/{versionid}/dockerfile') config.add_route('ga4gh_metadata', '/api/ga4gh/v1/metadata') config.add_route('ga4gh_tool_classes', '/api/ga4gh/v1/tool-classes') ''' @view_config(route_name='ga4gh_metadata', renderer='json', request_method='GET') def ga4gh_metadata(request): return { 'version': '1.0', 'api-version': '1.0', 'country': 'FRA', 'friendly-name': 'bioshadock' } @view_config(route_name='ga4gh_tools_id', renderer='json', request_method='GET') def ga4gh_tools_id(request): repo_id = request.matchdict['id'] elts = repo_id.split('@') repo_id = elts[0] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if not repo: return HTTPNotFound() repo_versions = request.registry.db_mongo['versions'].find({'repo': repo['id']}) if not repo_versions: return HTTPNotFound() toolname = repo['id'].split('/')[-1:][0] tool = { 'url': 'https://'+request.registry.config['registry']['issuer']+ '/app/#/container/' + repo['id'], 'id': str(repo['_id'])+'@'+request.registry.config['registry']['service'], 'organization': request.registry.config['registry']['service'], 'toolname': toolname, 'tooltype': {}, 'description': repo['meta']['description'], 'author': repo['user'], 'meta-version': 'latest', 'versions': [] } # Versions versions = [] # Versions for repo_version in repo_versions: version = { 'id': repo_version['version'], 'name': repo_version['version'], 'meta-version': 'latest', 'url': 'https://'+request.registry.config['registry']['issuer']+ '/app/#/container/' + repo['id'], 'image': request.registry.config['registry']['service'] + '/' + repo['id'] + ':' + repo_version['version'], 'descriptor-type': [], 'dockerfile': False } if repo_version['cwl']: version['descriptor-type'] = ['CWL'] if repo_version['dockerfile']: version['dockerfile'] = {'dockerfile': True} versions.append(version) tool['versions'] = versions return tool @view_config(route_name='ga4gh_tools_id_versions', renderer='json', request_method='GET') def ga4gh_tools_id_versions(request): repo_id = request.matchdict['id'] elts = repo_id.split('@') repo_id = elts[0] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if not repo: return HTTPNotFound() repo_versions = request.registry.db_mongo['versions'].find({'repo': repo['id']}) if not repo_versions: return HTTPNotFound() versions = [] # Versions for repo_version in repo_versions: version = { 'id': repo_version['version'], 'name': repo_version['version'], 'meta-version': 'latest', 'url': 'https://'+request.registry.config['registry']['issuer']+ '/app/#/container/' + repo['id'], 'image': request.registry.config['registry']['service'] + '/' + repo['id'] + ':' + repo_version['version'], 'descriptor-type': [], 'dockerfile': False } if repo_version['cwl']: version['descriptor-type'] = ['CWL'] if repo_version['dockerfile']: version['dockerfile'] = {'dockerfile': True} versions.append(version) return versions @view_config(route_name='ga4gh_tools_id_version', renderer='json', request_method='GET') def ga4gh_tools_id_version(request): repo_id = request.matchdict['id'] elts = repo_id.split('@') repo_id = elts[0] repo_version_id = request.matchdict['versionid'] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if not repo: return HTTPNotFound() repo_version = request.registry.db_mongo['versions'].find_one({'repo': repo['id'], 'version': repo_version_id}) if not repo_version: return HTTPNotFound() version = { 'id': repo_version['version'], 'name': repo_version['version'], 'meta-version': 'latest', 'url': 'https://'+request.registry.config['registry']['issuer']+ '/app/#/container/' + repo['id'], 'image': request.registry.config['registry']['service'] + '/' + repo['id'] + ':' + repo_version['version'], 'descriptor-type': [], 'dockerfile': False } if repo_version['cwl']: version['descriptor-type'] = ['CWL'] if repo_version['dockerfile']: version['dockerfile'] = {'dockerfile': True} return version @view_config(route_name='ga4gh_tools_id_version_descriptor', renderer='json', request_method='GET') def ga4gh_tools_id_version_descriptor(request): if request.matchdict['type'] not in ['CWL', 'plain-CWL']: return HTTPNotFound() repo_id = request.matchdict['id'] repo_version = request.matchdict['versionid'] elts = repo_id.split('@') repo_id = elts[0] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if not repo: return HTTPForbidden() repo_version = request.registry.db_mongo['versions'].find_one({'repo': repo['id'], 'version': repo_version}) if not repo_version: return HTTPNotFound() if not repo_version['cwl']: return HTTPNotFound() return { 'type': 'CWL', 'descriptor': repo_version['cwl'] } @view_config(route_name='ga4gh_tools_id_version_descriptor_file_relative_path', renderer='json', request_method='GET') def ga4gh_tools_id_version_descriptor_file_relative_path(request): return HTTPNotFound() @view_config(route_name='ga4gh_tools_id_version_dockerfile', renderer='json', request_method='GET') def ga4gh_tools_id_version_dockerfile(request): repo_id = request.matchdict['id'] repo_version = request.matchdict['versionid'] elts = repo_id.split('@') repo_id = elts[0] repo = request.registry.db_mongo['repository'].find_one({'_id': ObjectId(repo_id), 'visible': True}) if not repo: return HTTPNotFound() repo_version = request.registry.db_mongo['versions'].find_one({'repo': repo['id'], 'version': repo_version}) if not repo_version: return HTTPNotFound() if not repo_version['dockerfile']: return HTTPNotFound() return { 'dockerfile': repo_version['dockerfile'] } @view_config(route_name='ga4gh_tool_classes', renderer='json', request_method='GET') def ga4gh_tool_classes(request): return HTTPNotFound() @view_config(route_name='ga4gh_tools', renderer='json', request_method='GET') def ga4gh_tools(request): repos = request.registry.db_mongo['repository'].find({'visible': True}) tools = [] offset= 0 if 'offset' in request.params: offset = int(request.params['offset']) limit = -1 if 'limit' in request.params: limit = int(request.params['limit']) index = 0 for repo in repos: toolname = repo['id'].split('/')[-1:][0] if 'cwl' not in repo['meta']: repo['meta']['cwl'] = None if 'id' in request.params: if request.params['id'] != str(repo['_id'])+'@'+request.registry.config['registry']['service']: continue if 'registry' in request.params: if request.params['registry'] != request.registry.config['registry']['service']: return [] if 'organization' in request.params: if request.params['organization'] != request.registry.config['registry']['service']: return [] if 'name' in request.params: if request.params['name'] != repo['id']: continue if 'toolname' in request.params: if request.params['toolname'] != toolname and request.params['toolname'] not in repo['meta']['tags']: continue if 'description' in request.params: if request.params['description'] not in repo['meta']['description']: continue if 'author' in request.params: if request.params['author'] != repo['user']: continue tool = { 'url': 'https://'+request.registry.config['registry']['issuer']+ '/app/#/container/' + repo['id'], 'id': str(repo['_id'])+'@'+request.registry.config['registry']['service'], 'organization': request.registry.config['registry']['service'], 'toolname': toolname, 'tooltype': {}, 'description': repo['meta']['description'], 'author': repo['user'], 'meta-version': 'latest', 'versions': [] } # Versions if 'docker_tags' in repo['meta']: for docker_tag in repo['meta']['docker_tags']: if 'tag' not in repo['meta']['docker_tags'][docker_tag]: repo['meta']['docker_tags'][docker_tag]['tag'] = 'latest' version = { 'id': repo['meta']['docker_tags'][docker_tag]['tag'], 'name': repo['meta']['docker_tags'][docker_tag]['tag'], 'meta-version': 'latest', 'url': 'https://'+request.registry.config['registry']['issuer']+ '/app/#/container/' + repo['id'], 'image': request.registry.config['registry']['service'] + '/' + repo['id'] + ':' + repo['meta']['docker_tags'][docker_tag]['tag'], 'descriptor-type': [], 'dockerfile': False } #repo_version = request.registry.db_mongo['versions'].find_one({'repo': repo['id'], 'version': repo['meta']['docker_tags'][docker_tag]['tag']}) if 'cwl_path' in repo['meta'] and repo['meta']['cwl_path']: version['descriptor-type'] = ['CWL'] if repo['meta']['Dockerfile']: version['dockerfile'] = {'dockerfile': True} tool['versions'].append(version) if limit == -1 or index < limit: if index >= offset and tool['versions']: tools.append(tool) index += 1 if limit >= 0 and index >= limit: break return tools @view_config(route_name='home', renderer='json') def my_view(request): if 'BIOSHADOCK_INSECURE' in os.environ: return HTTPFound(request.static_path('shadock:webapp/'+request.registry.runenv+'/')) if request.scheme == "http": return HTTPFound("https://" + request.host + "/" + request.static_path('shadock:webapp/'+request.registry.runenv+'/')) return HTTPFound(request.static_path('shadock:webapp/'+request.registry.runenv+'/')) @view_config( context='velruse.AuthenticationComplete', ) def login_complete_view(request): context = request.context user_id = None if context.profile['preferredUsername']: user_id = context.profile['preferredUsername'] else: user_id = context.profile['accounts'][0]['username'] result = { 'id': user_id, 'provider_type': context.provider_type, 'provider_name': context.provider_name, 'profile': context.profile, 'credentials': context.credentials, } secret = request.registry.config['registry']['secret_passphrase'] token = jwt.encode({'user': result, 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=36000), 'aud': 'urn:bioshadock/auth'}, secret) return HTTPFound(request.static_url('shadock:webapp/dist/')+"index.html#login?token="+token) ```
{ "source": "Jibinjohnkj/crawler", "score": 3 }
#### File: crawler/spider/utils.py ```python import requests from bs4 import BeautifulSoup from urllib.parse import urlparse, urljoin class Crawler: max_links = 25 def __init__(self, url, max_depth=1): self.max_depth = max_depth self.url = url self.pages_to_visit = [] def get_links(self): # If max_links reached return duplicate, limit_reached = self.check_if_duplicate_and_add(self.url) if limit_reached: return self.pages_to_visit self.links_spider(self.url, 1) return self.pages_to_visit def links_spider(self, url, current_depth): """ Recursively parse all links until max_depth is reached """ # Exit if max_depth reached if current_depth >= self.max_depth: return response = requests.head(url) # Ignore non html content if response.headers.get('Content-Type').split(';')[0] =='text/html': # Two loops for the same thing # This is a conscious choice. As we want the spider to crawl only if max_links not reached and # also avoid crawling duplicate links links = [] for link in self.parse_links(url): # Add to self.pages_to_visit, if max_links reached return duplicate, limit_reached = self.check_if_duplicate_and_add(link) if limit_reached: return if not duplicate: links.append(link) for link in links: self.links_spider(link, current_depth + 1) def parse_links(self, url): """ Given a url retrieve all links """ scheme, host = urlparse(self.url)[:2] response = requests.get(url) s = BeautifulSoup(response.text, "html.parser") # Get all links for link in s.findAll('a'): href = link.get('href') if href: # If links starts with '//', add scheme if href.startswith('//'): href = scheme + ':' + href # If links starts with '/', its in the same domain, so just add scheme and host if href.startswith('/'): yield scheme + '://' + host + href else: # Check if links are of the same domain href_host = urlparse(href)[1] if href_host == host: yield href def check_if_duplicate_and_add(self, url): """ Given a url, Check if duplicate, if not add to self.pages_to_visit. Also check if max_links reached """ duplicate = False for item in self.pages_to_visit: # Check if the url already exist in self.pages_to_visit after stripping unnecessary bits if self.__class__.process_url(url) == self.__class__.process_url(item): duplicate = True if duplicate: return True, False, else: # Safety precaution against timeout if len(self.pages_to_visit) < self.max_links: self.pages_to_visit.append(url) return False, False, else: return False, True, @staticmethod def process_url(url): """ Given a url, strip scheme, 'www' and ending '/' """ # Remove scheme before comparison if url.startswith('http://'): url = url.lstrip("http://") # Remove scheme before comparison if url.startswith('https://'): url = url.lstrip("https://") # Remove 'www' before comparison if url.startswith('www.'): url = url.lstrip("www.") # Remove ending '/' before comparison if url.endswith('/'): url = url.rstrip('/') return url def get_images(self): """ Get all images from self.url """ scheme, host = urlparse(self.url)[:2] response = requests.get(self.url) s = BeautifulSoup(response.text, "html.parser") for link in s.findAll('img'): src = link.get('src') if src: # If base64 encode images, skip if src.startswith('data:'): continue # If src start with '//', add scheme elif src.startswith('//'): yield scheme + ':' + src # If links starts with '/', add scheme and host elif src.startswith('/'): yield scheme + '://' + host + src else: yield src ```
{ "source": "jibinkmathew94/care", "score": 2 }
#### File: facility/models/patient_consultation.py ```python from django.db import models from multiselectfield import MultiSelectField from care.facility.models import CATEGORY_CHOICES, PatientBaseModel from care.facility.models.mixins.permissions.patient import PatientRelatedPermissionMixin from care.facility.models.patient_base import ADMIT_CHOICES, CURRENT_HEALTH_CHOICES, SYMPTOM_CHOICES, SuggestionChoices from care.users.models import User class PatientConsultation(PatientBaseModel, PatientRelatedPermissionMixin): SUGGESTION_CHOICES = [ (SuggestionChoices.HI, "HOME ISOLATION"), (SuggestionChoices.A, "ADMISSION"), (SuggestionChoices.R, "REFERRAL"), ] patient = models.ForeignKey("PatientRegistration", on_delete=models.CASCADE, related_name="consultations") facility = models.ForeignKey("Facility", on_delete=models.CASCADE, related_name="consultations") symptoms = MultiSelectField(choices=SYMPTOM_CHOICES, default=1, null=True, blank=True) other_symptoms = models.TextField(default="", blank=True) symptoms_onset_date = models.DateTimeField(null=True, blank=True) category = models.CharField(choices=CATEGORY_CHOICES, max_length=8, default=None, blank=True, null=True) examination_details = models.TextField(null=True, blank=True) existing_medication = models.TextField(null=True, blank=True) prescribed_medication = models.TextField(null=True, blank=True) suggestion = models.CharField(max_length=3, choices=SUGGESTION_CHOICES) referred_to = models.ForeignKey( "Facility", null=True, blank=True, on_delete=models.PROTECT, related_name="referred_patients", ) admitted = models.BooleanField(default=False) admitted_to = models.IntegerField(choices=ADMIT_CHOICES, default=None, null=True, blank=True) admission_date = models.DateTimeField(null=True, blank=True) discharge_date = models.DateTimeField(null=True, blank=True) bed_number = models.CharField(max_length=100, null=True, blank=True) def __str__(self): return f"{self.patient.name}<>{self.facility.name}" def save(self, *args, **kwargs): if not self.pk or self.referred_to is not None: # pk is None when the consultation is created # referred to is not null when the person is being referred to a new facility self.patient.facility = self.referred_to or self.facility self.patient.save() super(PatientConsultation, self).save(*args, **kwargs) class Meta: constraints = [ models.CheckConstraint( name="if_referral_suggested", check=~models.Q(suggestion=SuggestionChoices.R) | models.Q(referred_to__isnull=False), ), models.CheckConstraint( name="if_admitted", check=models.Q(admitted=False) | models.Q(admission_date__isnull=False), ), ] class DailyRound(PatientBaseModel): consultation = models.ForeignKey(PatientConsultation, on_delete=models.PROTECT, related_name="daily_rounds") temperature = models.DecimalField(max_digits=5, decimal_places=2, blank=True, default=0) temperature_measured_at = models.DateTimeField(null=True, blank=True) physical_examination_info = models.TextField(null=True, blank=True) additional_symptoms = MultiSelectField(choices=SYMPTOM_CHOICES, default=1, null=True, blank=True) other_symptoms = models.TextField(default="", blank=True) patient_category = models.CharField(choices=CATEGORY_CHOICES, max_length=8, default=None, blank=True, null=True) current_health = models.IntegerField(default=0, choices=CURRENT_HEALTH_CHOICES, blank=True) recommend_discharge = models.BooleanField(default=False, verbose_name="Recommend Discharging Patient") other_details = models.TextField(null=True, blank=True) @staticmethod def has_write_permission(request): return request.user.is_superuser or ( request.user.user_type >= User.TYPE_VALUE_MAP["Staff"] and ( request.user in PatientConsultation.objects.get( external_id=request.parser_context["kwargs"]["consultation_external_id"] ).facility.users.all() ) ) @staticmethod def has_read_permission(request): return request.user.is_superuser or ( request.user.user_type >= User.TYPE_VALUE_MAP["Staff"] and ( request.user in PatientConsultation.objects.get( external_id=request.parser_context["kwargs"]["consultation_external_id"] ).facility.users.all() ) ) def has_object_read_permission(self, request): return ( request.user.is_superuser or request.user in (self.consultation.facility.created_by, self.consultation.patient.created_by,) or request.user in self.consultation.patient.facility.users.all() ) def has_object_write_permission(self, request): return ( request.user.is_superuser or request.user in (self.consultation.facility.created_by, self.consultation.patient.created_by,) or request.user in self.consultation.facility.users.all() ) ``` #### File: facility/models/patient_sample.py ```python from django.db import models from care.facility.models import FacilityBaseModel, PatientRegistration from care.users.models import User SAMPLE_TYPE_CHOICES = [ (0, "UNKNOWN"), (1, "BA/ETA"), (2, "TS/NPS/NS"), (3, "Blood in EDTA"), (4, "Acute Sera"), (5, "Covalescent sera"), (6, "OTHER TYPE"), ] class PatientSample(FacilityBaseModel): SAMPLE_TEST_RESULT_MAP = {"POSITIVE": 1, "NEGATIVE": 2, "AWAITING": 3, "INVALID": 4} SAMPLE_TEST_RESULT_CHOICES = [(v, k) for k, v in SAMPLE_TEST_RESULT_MAP.items()] PATIENT_ICMR_CATEGORY = [ (0, "Cat 0"), (10, "Cat 1"), (20, "Cat 2"), (30, "Cat 3"), (40, "Cat 4"), (50, "Cat 5a"), (60, "Cat 5b"), ] SAMPLE_TEST_FLOW_MAP = { "REQUEST_SUBMITTED": 1, "APPROVED": 2, "DENIED": 3, "SENT_TO_COLLECTON_CENTRE": 4, "RECEIVED_AND_FORWARED": 5, "RECEIVED_AT_LAB": 6, "COMPLETED": 7, } SAMPLE_TEST_FLOW_CHOICES = [(v, k) for k, v in SAMPLE_TEST_FLOW_MAP.items()] SAMPLE_FLOW_RULES = { # previous rule # next valid rules "REQUEST_SUBMITTED": {"APPROVED", "DENIED",}, "APPROVED": {"SENT_TO_COLLECTON_CENTRE", "RECEIVED_AND_FORWARED", "RECEIVED_AT_LAB", "COMPLETED"}, "DENIED": {"REQUEST_SUBMITTED"}, "SENT_TO_COLLECTON_CENTRE": {"RECEIVED_AND_FORWARED", "RECEIVED_AT_LAB", "COMPLETED"}, "RECEIVED_AND_FORWARED": {"RECEIVED_AT_LAB", "COMPLETED"}, "RECEIVED_AT_LAB": {"COMPLETED"}, } patient = models.ForeignKey(PatientRegistration, on_delete=models.PROTECT) consultation = models.ForeignKey("PatientConsultation", on_delete=models.PROTECT) sample_type = models.IntegerField(choices=SAMPLE_TYPE_CHOICES, default=0) sample_type_other = models.TextField(default="") has_sari = models.BooleanField(default=False) has_ari = models.BooleanField(default=False) doctor_name = models.CharField(max_length=255, default="NO DOCTOR SPECIFIED") diagnosis = models.TextField(default="") diff_diagnosis = models.TextField(default="") etiology_identified = models.TextField(default="") is_atypical_presentation = models.BooleanField(default=False) atypical_presentation = models.TextField(default="") is_unusual_course = models.BooleanField(default=False) icmr_category = models.IntegerField(choices=PATIENT_ICMR_CATEGORY, default=0) icmr_label = models.CharField(max_length=200, default="") status = models.IntegerField(choices=SAMPLE_TEST_FLOW_CHOICES, default=SAMPLE_TEST_FLOW_MAP["REQUEST_SUBMITTED"]) result = models.IntegerField(choices=SAMPLE_TEST_RESULT_CHOICES, default=SAMPLE_TEST_RESULT_MAP["AWAITING"]) fast_track = models.TextField(default="") date_of_sample = models.DateTimeField(null=True, blank=True) date_of_result = models.DateTimeField(null=True, blank=True) @property def flow(self): try: return self.flow_prefetched except AttributeError: return self.patientsampleflow_set.order_by("-created_date") @staticmethod def has_write_permission(request): return request.user.is_superuser or request.user.user_type >= User.TYPE_VALUE_MAP["Staff"] @staticmethod def has_read_permission(request): return request.user.is_superuser or request.user.user_type >= User.TYPE_VALUE_MAP["Staff"] def has_object_read_permission(self, request): return ( request.user.is_superuser or request.user == self.consultation.facility.created_by or ( request.user.district == self.consultation.facility.district and request.user.user_type >= User.TYPE_VALUE_MAP["DistrictLabAdmin"] ) or ( request.user.state == self.consultation.facility.state and request.user.user_type >= User.TYPE_VALUE_MAP["StateLabAdmin"] ) or request.user in self.consultation.patient.facility.users.all() ) def has_object_update_permission(self, request): if not self.has_object_read_permission(request): return False if request.user.is_superuser: return True map_ = self.SAMPLE_TEST_FLOW_CHOICES if map_[self.status - 1][1] in ("REQUEST_SUBMITTED", "SENT_TO_COLLECTON_CENTRE"): return request.user.user_type >= User.TYPE_VALUE_MAP["DistrictLabAdmin"] elif map_[self.status - 1][1] in ("APPROVED", "DENIED"): return request.user.user_type >= User.TYPE_VALUE_MAP["Staff"] elif map_[self.status - 1][1] in ("RECEIVED_AND_FORWARED", "RECEIVED_AT_LAB"): return request.user.user_type >= User.TYPE_VALUE_MAP["StateLabAdmin"] # The view shall raise a 400 return True def has_object_destroy_permission(self, request): return request.user.is_superuser class PatientSampleFlow(FacilityBaseModel): patient_sample = models.ForeignKey(PatientSample, on_delete=models.PROTECT) status = models.IntegerField(choices=PatientSample.SAMPLE_TEST_FLOW_CHOICES) notes = models.CharField(max_length=255) created_by = models.ForeignKey(User, on_delete=models.PROTECT) ``` #### File: facility/summarisation/facility_capacity.py ```python from datetime import timedelta from celery.decorators import periodic_task from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rest_framework import status, viewsets from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from care.facility.api.serializers.facility import FacilitySerializer from care.facility.api.serializers.facility_capacity import FacilityCapacitySerializer from care.facility.models import FacilityCapacity from care.users.models import User class FacilityCapacitySummary(viewsets.ViewSet): permission_classes = (IsAuthenticated,) @method_decorator(cache_page(60 * 60 * 6)) def list(self, request, format=None): if request.user.user_type < User.TYPE_VALUE_MAP["DistrictLabAdmin"]: return Response({}, status=status.HTTP_403_FORBIDDEN) possible_filter_params = ["state", "local_body", "district"] filter_params = {} for filter_query in possible_filter_params: if request.GET.get(filter_query, False): filter_params["facility__" + filter_query] = int(request.GET[filter_query]) capacity_objects = FacilityCapacity.objects.filter(**filter_params).select_related( "facility", "facility__state", "facility__district", "facility__local_body" ) capacity_summary = {} for capacity_object in capacity_objects: facility_id = capacity_object.facility.id if facility_id not in capacity_summary: capacity_summary[facility_id] = FacilitySerializer(capacity_object.facility).data capacity_summary[facility_id]["availability"] = [] capacity_summary[facility_id]["availability"].append(FacilityCapacitySerializer(capacity_object).data) return Response(capacity_summary) @periodic_task(run_every=timedelta(seconds=1500)) def facilitySummary(): print("Testing Summarisation Again") ```
{ "source": "jibinmathew691993/PythonHackerrank", "score": 4 }
#### File: jibinmathew691993/PythonHackerrank/Swap Case.py ```python def swap_case(s): return "".join([char.lower() if char.isupper() else char.upper() for char in s]) if __name__ == '__main__': print(swap_case(input())) ```
{ "source": "jibinmathew69/katna", "score": 3 }
#### File: katna/Katna/image.py ```python import os import cv2 import numpy as np from Katna.decorators import FileDecorators from Katna.feature_list import FeatureList from Katna.filter_list import FilterList from Katna.crop_extractor import CropExtractor from Katna.crop_selector import CropSelector import Katna.config as config from Katna.decorators import DebugDecorators class UserFiltersEnum: """Enum class for filters""" text = "TextDetector" class Image(object): """Class for all image cropping operations :param object: base class inheritance :type object: class:`Object` """ def __init__(self, disable_text=True): """Constructor for image files""" featureList = FeatureList() filterList = FilterList() self.user_filters_enum = UserFiltersEnum() self.crop_extractor = CropExtractor() self.crop_selector = CropSelector() self.features = featureList.get_features() self.definedFilters = filterList.get_filters() def _get_crop_specs( self, image_height, image_width, ratio_height, ratio_width, is_height_small=True ): """Internal function to create the crop specs for a given aspect ratio :param image_height: height of image :type image_height: int, required :param image_width: width of image :type image_width: int, required :param ratio_height: aspect ratio height (eg. 3 from 4:3) :type ratio_height: int, required :param ratio_width: aspect ratio width (eg. 4 from 4:3) :type ratio_width: int, required :param is_height_small: parameter to check if crop dimension should be reduced wrt height[default=True] :type is_height_small: boolean, required :return: list of crop height and crop width :rtype:list of tuples """ # multiplication factor by which height/width of crop should be decreased to get crop specs multiply_by = 1 crop_list_tuple = [] # Calculating the height and width ratio wrt aspect ratio hr, wr = image_height / ratio_height, image_width / ratio_width # print("hr, wr",hr, wr) # Check if height is smaller than the width.If yes, interchange height and width. if not is_height_small: image_height, image_width = image_width, image_height hr, wr = wr, hr crop_height, crop_width = image_height, hr * ratio_width # Decreasing the height and width for crops while checking it don't get small by 1/(min) of image height/width while True: if not ( (crop_height >= (image_height // config.Image.min_image_to_crop_factor)) and ( crop_width >= (image_width // config.Image.min_image_to_crop_factor) ) ): break crop_height, crop_width = ( int(crop_height), int((ratio_width / ratio_height) * crop_height), ) crop_list_tuple.append((crop_height, crop_width)) crop_height /= multiply_by crop_height, crop_width = ( int(crop_height), int((ratio_width / ratio_height) * crop_height), ) multiply_by += config.Image.crop_height_reduction_factor_in_each_iteration return crop_list_tuple # Apply optional Debug mode decorator , If config=DEBUG is true this decorator # will populate internal variables of Image module.debug_images with debug images # Which you can see by opencv Imshow to check if every feature is working as expected @DebugDecorators.add_optional_debug_images_for_image_module def crop_image_from_cvimage( self, input_image, crop_width, crop_height, num_of_crops, filters=[], down_sample_factor=config.Image.down_sample_factor, ): """smartly crops the imaged based on the specification - width and height :param input_image: Input image :type input_image: numpy array, required :param crop_width: output crop width :type crop_width: int :param crop_height: output crop heigh :type crop_height: int :param num_of_crops: number of crops required :type num_of_crops: int :param filters: filters to be applied for cropping(only returns crops containing english text where the crop rectangle doesn't cut the text) :type filters: list (eg. ['text']) :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: crop list :rtype: list of structure crop_rect """ self.crop_extractor.down_sample_factor = down_sample_factor if ( input_image.shape[0] + 5 <= crop_height or input_image.shape[1] + 5 <= crop_width ): # print( # "Error: crop width or crop height larger than Image", # "input_image.shape", # input_image.shape, # "crop_width", # crop_width, # "crop_height", # crop_height, # ) return [] extracted_candidate_crops = self.crop_extractor.extract_candidate_crops( input_image, crop_width, crop_height, self.features ) # print(extracted_candidate_crops) # text: TextDetector # dummy: DummyDetector self.filters = [] for x in filters: try: self.filters.append(eval("self.user_filters_enum." + x)) except AttributeError as e: print(str(e)) # self.filters = [eval("user_filters_enum."+x) for x in filters] crops_list = self.crop_selector.select_candidate_crops( input_image, num_of_crops, extracted_candidate_crops, self.definedFilters, self.filters, ) return crops_list def _extract_crop_for_files_iterator( self, list_of_files, crop_width, crop_height, num_of_crops, filters, down_sample_factor, ): """Generator which yields crop data / error for filepaths in a list :param list_of_files: list of files to process for crop :type list_of_files: list, required :param crop_width: output crop width :type crop_width: int :param crop_height: output crop height :type crop_height: int :param num_of_crops: number of crops required :type num_of_crops: int :param filters: filters to be applied for cropping(checks if image contains english text and the crop rectangle doesn't cut the text) :type filters: list (eg. ['text']) :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :yield: dict containing error (if any), data ,and filepath of image processed :rtype: dict """ for filepath in list_of_files: print("Running for : ", filepath) try: crop_list = self._crop_image( filepath, crop_width, crop_height, num_of_crops, filters, down_sample_factor, ) yield {"crops": crop_list, "error": None,"filepath": filepath} except Exception as e: yield {"crops": crop_list, "error": e,"filepath": filepath} @FileDecorators.validate_dir_path def crop_image_from_dir( self, dir_path, crop_width, crop_height, num_of_crops, writer, filters=[], down_sample_factor=config.Image.down_sample_factor, ): """smartly crops all the images (inside a directory) based on the specification - width and height :param dir_path: Input Directory path :type dir_path: str, required :param crop_width: output crop width :type crop_width: int :param crop_height: output crop height :type crop_height: int :param num_of_crops: number of crops required :type num_of_crops: int :param writer: number of crops required :type writer: int :param filters: filters to be applied for cropping(checks if image contains english text and the crop rectangle doesn't cut the text) :type filters: list (eg. ['text']) :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: crop dict with key as filepath and crop list for the file :rtype: dict """ valid_files = [] all_crops = {} for path, subdirs, files in os.walk(dir_path): for filename in files: filepath = os.path.join(path, filename) if self._check_if_valid_image(filepath): valid_files.append(filepath) if len(valid_files) > 0: generator = self._extract_crop_for_files_iterator( valid_files, crop_width, crop_height, num_of_crops, filters, down_sample_factor ) for data in generator: file_path = data["filepath"] file_crops = data["crops"] error = data["error"] if error is None: writer.write(file_path, file_crops) print("Completed processing for : ", file_path) else: print("Error processing file : ", file_path) print(error) else: print("All the files in directory %s are invalid video files" % dir_path) def _crop_image( self, file_path, crop_width, crop_height, num_of_crops, filters=[], down_sample_factor=config.Image.down_sample_factor, ): """smartly crops the imaged based on the specification - width and height :param file_path: Input file path :type file_path: str, required :param crop_width: output crop width :type crop_width: int :param crop_height: output crop heigh :type crop_height: int :param num_of_crops: number of crops required :type num_of_crops: int :param filters: filters to be applied for cropping(checks if image contains english text and the crop rectangle doesn't cut the text) :type filters: list (eg. ['text']) :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: crop list :rtype: list of structure crop_rect """ imgFile = cv2.imread(file_path) crop_list = self.crop_image_from_cvimage( input_image=imgFile, crop_width=crop_width, crop_height=crop_height, num_of_crops=num_of_crops, filters=filters, down_sample_factor=down_sample_factor, ) return crop_list @FileDecorators.validate_file_path def crop_image( self, file_path, crop_width, crop_height, num_of_crops, writer, filters=[], down_sample_factor=config.Image.down_sample_factor, ): """smartly crops the imaged based on the specification - width and height :param file_path: Input file path :type file_path: str, required :param crop_width: output crop width :type crop_width: int :param crop_height: output crop heigh :type crop_height: int :param num_of_crops: number of crops required :type num_of_crops: int :param writer: writer object to process data :type writer: Writer, required :param filters: filters to be applied for cropping(checks if image contains english text and the crop rectangle doesn't cut the text) :type filters: list (eg. ['text']) :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: crop list :rtype: list of structure crop_rect """ crop_list = self._crop_image( file_path, crop_width, crop_height, num_of_crops, filters=[], down_sample_factor=config.Image.down_sample_factor ) writer.write(file_path, crop_list) @FileDecorators.validate_file_path def crop_image_with_aspect( self, file_path, crop_aspect_ratio, num_of_crops, writer, filters=[], down_sample_factor=8 ): """smartly crops the imaged based on the aspect ratio and returns number of specified crops for each crop spec found in the image with the specified aspect ratio :param file_path: Input file path :type file_path: str, required :param crop_aspect_ratio: output crop ratio :type crop_aspect_ratio: str (eg. '4:3') :param num_of_crops: number of crops required :type num_of_crops: int :param filters: filters to be applied for cropping(checks if image contains english text and the crop rectangle doesn't cut the text) :type filters: list (eg. ['text']) :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :param writer: writer to process the image :type num_of_crops: Writer, required :return: crop list :rtype: list of structure crop_rect """ imgFile = cv2.imread(file_path) image_height, image_width, _ = imgFile.shape ratio_width, ratio_height = map(int, crop_aspect_ratio.split(":")) crop_list = self._generate_crop_options_given_for_given_aspect_ratio( imgFile, image_width, image_height, ratio_width, ratio_height, num_of_crops=num_of_crops, filters=filters, down_sample_factor=down_sample_factor, ) sorted_list = sorted(crop_list, key=lambda x: float(x.score), reverse=True) crop_list = sorted_list[:num_of_crops] writer.write(file_path, crop_list) # @FileDecorators.validate_file_path def save_crop_to_disk(self, crop_rect, frame, file_path, file_name, file_ext, rescale=False): """saves an in-memory crop on drive. :param crop_rect: In-memory crop_rect. :type crop_rect: crop_rect, required :param frame: In-memory input image. :type frame: numpy.ndarray, required :param file_name: name of the image. :type file_name: str, required :param file_path: Folder location where files needs to be saved :type file_path: str, required :param file_ext: File extension indicating the file type for example - '.jpg' :type file_ext: str, required :return: None """ cropped_img = crop_rect.get_image_crop(frame) file_full_path = os.path.join(file_path, file_name + file_ext) cv2.imwrite(file_full_path, cropped_img) @FileDecorators.validate_file_path def resize_image( self, file_path, target_width, target_height, down_sample_factor=config.Image.down_sample_factor, ): """smartly resizes the image based on the specification - width and height :param file_path: Input file path :type file_path: str, required :param target_width: output image width :type target_width: int :param target_height: output image height :type target_height: int :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: resized image :rtype: cv_image """ if not self._check_if_valid_image(file_path): print("Error: Invalid Image, check image path: ", file_path) return imgFile = cv2.imread(file_path) input_image_height, input_image_width, _ = imgFile.shape target_image_aspect_ratio = target_width / target_height input_image_aspect_ratio = input_image_width / input_image_height if input_image_aspect_ratio == target_image_aspect_ratio: target_image = cv2.resize(imgFile, (target_width, target_height)) return target_image else: crop_list = self._generate_crop_options_given_for_given_aspect_ratio( imgFile, input_image_width, input_image_height, target_width, target_height, num_of_crops=1, filters=[], down_sample_factor=down_sample_factor, ) # From list of crop options sort and get best crop using crop score variables in each # crop option sorted_list = sorted(crop_list, key=lambda x: float(x.score), reverse=True) # Get top crop image resized_image = sorted_list[0].get_image_crop(imgFile) target_image = cv2.resize(resized_image, (target_width, target_height)) return target_image def resize_from_cvimage( self, cv_image, target_width, target_height, down_sample_factor=config.Image.down_sample_factor ): """smartly resizes a cv image based on the specification - width and height :param cv_image: Input cv_image :type cv_image: numpy.ndarray object , required :param target_width: output image width :type target_width: int :param target_height: output image height :type target_height: int :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: resized image :rtype: cv_image """ input_image_height, input_image_width, _ = cv_image.shape target_image_aspect_ratio = target_width / target_height input_image_aspect_ratio = input_image_width / input_image_height if input_image_aspect_ratio == target_image_aspect_ratio: target_image = cv2.resize(cv_image, (target_width, target_height)) return target_image else: crop_list = self._generate_crop_options_given_for_given_aspect_ratio( cv_image, input_image_width, input_image_height, target_width, target_height, num_of_crops=1, filters=[], down_sample_factor=down_sample_factor, ) sorted_list = sorted(crop_list, key=lambda x: float(x.score), reverse=True) resized_image = sorted_list[0].get_image_crop(cv_image) target_image = cv2.resize(resized_image, (target_width, target_height)) return target_image def _generate_crop_options_given_for_given_aspect_ratio( self, imgFile, input_image_width, input_image_height, target_width, target_height, num_of_crops, filters, down_sample_factor, ): """ Internal function to which for given aspect ratio (target_width/target_height) Generates ,scores and returns list of image crops :param imgFile: Input image :type imgFile: opencv image :param input_image_width: input image width :type input_image_width: int :param input_image_height: input image height :type input_image_height: int :param target_width: target aspect ratio width :type target_width: int :param target_height: target aspect ratio height :type target_height: int :param num_of_crops: number of crop needed in the end :type num_of_crops: int :param filters: filters :type filters: list of filters :param down_sample_factor: image down sample factor for optimizing processing time :type down_sample_factor: int :return: list of candidate crop rectangles as per input aspect ratio :rtype: list of CropRect """ crop_list_tuple, crop_list = [], [] # Calculate height ratio and width ratio of input and target image height_ratio, width_ratio = ( input_image_height / target_height, input_image_width / target_width, ) # Generate candidate crops, _get_crop_spec function changes it's behavior based # on whether height_ratio is greater or smaller than width ratio. if height_ratio <= width_ratio: crop_list_tuple += self._get_crop_specs( input_image_height, input_image_width, target_height, target_width, is_height_small=True, ) else: # elif width_ratio < height_ratio: crop_list_tuple += self._get_crop_specs( input_image_height, input_image_width, target_height, target_width, is_height_small=False, ) # For each of crop_specifications generated by _get_crop_spec() function # generate actual crop as well as give score to each of these crop for crop_height, crop_width in crop_list_tuple: crop_list += self.crop_image_from_cvimage( input_image=imgFile, crop_width=crop_width, crop_height=crop_height, num_of_crops=num_of_crops, filters=filters, down_sample_factor=down_sample_factor, ) return crop_list @FileDecorators.validate_dir_path def resize_image_from_dir( self, dir_path, target_width, target_height, down_sample_factor=config.Image.down_sample_factor, ): """smartly resizes all the images (inside a directory) based on the specification - width and height :param dir_path: Input Directory path :type dir_path: str, required :param target_width: output width :type target_width: int :param target_height: output height :type target_height: int :param down_sample_factor: number by which you want to reduce image height & width (use it if image is large or to fasten the process) :type down_sample_factor: int [default=8] :return: dict with key as filepath and resized image as in opencv format as value :rtype: dict """ all_resized_images = {} for path, subdirs, files in os.walk(dir_path): for filename in files: filepath = os.path.join(path, filename) image_file_path = os.path.join(path, filename) if self._check_if_valid_image(image_file_path): resized_image = self.resize_image( image_file_path, target_width, target_height, down_sample_factor ) all_resized_images[filepath] = resized_image else: print("Error: Not a valid image file:", image_file_path) return all_resized_images @FileDecorators.validate_file_path def save_image_to_disk(self, image, file_path, file_name, file_ext): """saves an in-memory image obtained from image resize on drive. :param image: In-memory input image. :type image: numpy.ndarray, required :param file_name: name of the image. :type file_name: str, required :param file_path: Folder location where files needs to be saved :type file_path: str, required :param file_ext: File extension indicating the file type for example - '.jpg' :type file_ext: str, required :return: None """ file_full_path = os.path.join(file_path, file_name + file_ext) cv2.imwrite(file_full_path, image) @FileDecorators.validate_file_path def _check_if_valid_image(self, file_path): """Function to check if given image file is a valid image compatible with opencv :param file_path: image filename :type file_path: str :return: Return True if valid image file else False :rtype: bool """ try: frame = cv2.imread(file_path) # Making sure video frame is not empty if frame is not None: return True else: return False except cv2.error as e: print("cv2.error:", e) return False except Exception as e: print("Exception:", e) return False ```
{ "source": "jiblime/mbedtls", "score": 2 }
#### File: tests/scripts/mbedtls_test.py ```python import re import os import binascii from mbed_host_tests import BaseHostTest, event_callback # pylint: disable=import-error class TestDataParserError(Exception): """Indicates error in test data, read from .data file.""" pass class TestDataParser(object): """ Parses test name, dependencies, test function name and test parameters from the data file. """ def __init__(self): """ Constructor """ self.tests = [] def parse(self, data_file): """ Data file parser. :param data_file: Data file path """ with open(data_file, 'r') as data_f: self.__parse(data_f) @staticmethod def __escaped_split(inp_str, split_char): """ Splits inp_str on split_char except when escaped. :param inp_str: String to split :param split_char: Split character :return: List of splits """ split_colon_fn = lambda x: re.sub(r'\\' + split_char, split_char, x) if len(split_char) > 1: raise ValueError('Expected split character. Found string!') out = list(map(split_colon_fn, re.split(r'(?<!\\)' + split_char, inp_str))) out = [x for x in out if x] return out def __parse(self, data_f): """ Parses data file using supplied file object. :param data_f: Data file object :return: """ for line in data_f: line = line.strip() if not line: continue # Read test name name = line # Check dependencies dependencies = [] line = next(data_f).strip() match = re.search('depends_on:(.*)', line) if match: dependencies = [int(x) for x in match.group(1).split(':')] line = next(data_f).strip() # Read test vectors line = line.replace('\\n', '\n') parts = self.__escaped_split(line, ':') function_name = int(parts[0]) args = parts[1:] args_count = len(args) if args_count % 2 != 0: err_str_fmt = "Number of test arguments({}) should be even: {}" raise TestDataParserError(err_str_fmt.format(args_count, line)) grouped_args = [(args[i * 2], args[(i * 2) + 1]) for i in range(int(len(args)/2))] self.tests.append((name, function_name, dependencies, grouped_args)) def get_test_data(self): """ Returns test data. """ return self.tests class MbedTlsTest(BaseHostTest): """ Host test for Mbed TLS unit tests. This script is loaded at run time by Greentea for executing Mbed TLS test suites. Each communication from the target is received in this object as an event, which is then handled by the event handler method decorated by the associated event. Ex: @event_callback('GO'). Target test sends requests for dispatching next test. It reads tests from the intermediate data file and sends test function identifier, dependency identifiers, expression identifiers and the test data in binary form. Target test checks dependencies , evaluate integer constant expressions and dispatches the test function with received test parameters. After test function is finished, target sends the result. This class handles the result event and prints verdict in the form that Greentea understands. """ # status/error codes from suites/helpers.function DEPENDENCY_SUPPORTED = 0 KEY_VALUE_MAPPING_FOUND = DEPENDENCY_SUPPORTED DISPATCH_TEST_SUCCESS = DEPENDENCY_SUPPORTED KEY_VALUE_MAPPING_NOT_FOUND = -1 # Expression Id not found. DEPENDENCY_NOT_SUPPORTED = -2 # Dependency not supported. DISPATCH_TEST_FN_NOT_FOUND = -3 # Test function not found. DISPATCH_INVALID_TEST_DATA = -4 # Invalid parameter type. DISPATCH_UNSUPPORTED_SUITE = -5 # Test suite not supported/enabled. def __init__(self): """ Constructor initialises test index to 0. """ super(MbedTlsTest, self).__init__() self.tests = [] self.test_index = -1 self.dep_index = 0 self.suite_passed = True self.error_str = dict() self.error_str[self.DEPENDENCY_SUPPORTED] = \ 'DEPENDENCY_SUPPORTED' self.error_str[self.KEY_VALUE_MAPPING_NOT_FOUND] = \ 'KEY_VALUE_MAPPING_NOT_FOUND' self.error_str[self.DEPENDENCY_NOT_SUPPORTED] = \ 'DEPENDENCY_NOT_SUPPORTED' self.error_str[self.DISPATCH_TEST_FN_NOT_FOUND] = \ 'DISPATCH_TEST_FN_NOT_FOUND' self.error_str[self.DISPATCH_INVALID_TEST_DATA] = \ 'DISPATCH_INVALID_TEST_DATA' self.error_str[self.DISPATCH_UNSUPPORTED_SUITE] = \ 'DISPATCH_UNSUPPORTED_SUITE' def setup(self): """ Setup hook implementation. Reads test suite data file and parses out tests. """ binary_path = self.get_config_item('image_path') script_dir = os.path.split(os.path.abspath(__file__))[0] suite_name = os.path.splitext(os.path.basename(binary_path))[0] data_file = ".".join((suite_name, 'datax')) data_file = os.path.join(script_dir, '..', 'mbedtls', suite_name, data_file) if os.path.exists(data_file): self.log("Running tests from %s" % data_file) parser = TestDataParser() parser.parse(data_file) self.tests = parser.get_test_data() self.print_test_info() else: self.log("Data file not found: %s" % data_file) self.notify_complete(False) def print_test_info(self): """ Prints test summary read by Greentea to detect test cases. """ self.log('{{__testcase_count;%d}}' % len(self.tests)) for name, _, _, _ in self.tests: self.log('{{__testcase_name;%s}}' % name) @staticmethod def align_32bit(data_bytes): """ 4 byte aligns input byte array. :return: """ data_bytes += bytearray((4 - (len(data_bytes))) % 4) @staticmethod def hex_str_bytes(hex_str): """ Converts Hex string representation to byte array :param hex_str: Hex in string format. :return: Output Byte array """ if hex_str[0] != '"' or hex_str[len(hex_str) - 1] != '"': raise TestDataParserError("HEX test parameter missing '\"':" " %s" % hex_str) hex_str = hex_str.strip('"') if len(hex_str) % 2 != 0: raise TestDataParserError("HEX parameter len should be mod of " "2: %s" % hex_str) data_bytes = binascii.unhexlify(hex_str) return data_bytes @staticmethod def int32_to_big_endian_bytes(i): """ Coverts i to byte array in big endian format. :param i: Input integer :return: Output bytes array in big endian or network order """ data_bytes = bytearray([((i >> x) & 0xff) for x in [24, 16, 8, 0]]) return data_bytes def test_vector_to_bytes(self, function_id, dependencies, parameters): """ Converts test vector into a byte array that can be sent to the target. :param function_id: Test Function Identifier :param dependencies: Dependency list :param parameters: Test function input parameters :return: Byte array and its length """ data_bytes = bytearray([len(dependencies)]) if dependencies: data_bytes += bytearray(dependencies) data_bytes += bytearray([function_id, len(parameters)]) for typ, param in parameters: if typ == 'int' or typ == 'exp': i = int(param, 0) data_bytes += b'I' if typ == 'int' else b'E' self.align_32bit(data_bytes) data_bytes += self.int32_to_big_endian_bytes(i) elif typ == 'char*': param = param.strip('"') i = len(param) + 1 # + 1 for null termination data_bytes += b'S' self.align_32bit(data_bytes) data_bytes += self.int32_to_big_endian_bytes(i) data_bytes += bytearray(param, encoding='ascii') data_bytes += b'\0' # Null terminate elif typ == 'hex': binary_data = self.hex_str_bytes(param) data_bytes += b'H' self.align_32bit(data_bytes) i = len(binary_data) data_bytes += self.int32_to_big_endian_bytes(i) data_bytes += binary_data length = self.int32_to_big_endian_bytes(len(data_bytes)) return data_bytes, length def run_next_test(self): """ Fetch next test information and execute the test. """ self.test_index += 1 self.dep_index = 0 if self.test_index < len(self.tests): name, function_id, dependencies, args = self.tests[self.test_index] self.run_test(name, function_id, dependencies, args) else: self.notify_complete(self.suite_passed) def run_test(self, name, function_id, dependencies, args): """ Execute the test on target by sending next test information. :param name: Test name :param function_id: function identifier :param dependencies: Dependencies list :param args: test parameters :return: """ self.log("Running: %s" % name) param_bytes, length = self.test_vector_to_bytes(function_id, dependencies, args) self.send_kv(''.join('{:02x}'.format(x) for x in length), ''.join('{:02x}'.format(x) for x in param_bytes)) @staticmethod def get_result(value): """ Converts result from string type to integer :param value: Result code in string :return: Integer result code. Value is from the test status constants defined under the MbedTlsTest class. """ try: return int(value) except ValueError: ValueError("Result should return error number. " "Instead received %s" % value) @event_callback('GO') def on_go(self, _key, _value, _timestamp): """ Sent by the target to start first test. :param _key: Event key :param _value: Value. ignored :param _timestamp: Timestamp ignored. :return: """ self.run_next_test() @event_callback("R") def on_result(self, _key, value, _timestamp): """ Handle result. Prints test start, finish required by Greentea to detect test execution. :param _key: Event key :param value: Value. ignored :param _timestamp: Timestamp ignored. :return: """ int_val = self.get_result(value) name, _, _, _ = self.tests[self.test_index] self.log('{{__testcase_start;%s}}' % name) self.log('{{__testcase_finish;%s;%d;%d}}' % (name, int_val == 0, int_val != 0)) if int_val != 0: self.suite_passed = False self.run_next_test() @event_callback("F") def on_failure(self, _key, value, _timestamp): """ Handles test execution failure. That means dependency not supported or Test function not supported. Hence marking test as skipped. :param _key: Event key :param value: Value. ignored :param _timestamp: Timestamp ignored. :return: """ int_val = self.get_result(value) if int_val in self.error_str: err = self.error_str[int_val] else: err = 'Unknown error' # For skip status, do not write {{__testcase_finish;...}} self.log("Error: %s" % err) self.run_next_test() ```
{ "source": "jibminJung/2021-2-OSSProj-PlusAlpha-9", "score": 3 }
#### File: 2021-2-OSSProj-PlusAlpha-9/data/Defs.py ```python import enum import math from sys import version class Images(enum.Enum): start = "./Image/StartImage.png" how_to_play = "./Image/howtoplay.png" about = "./Image/AboutPage.jpg" background_desert = "./Image/DESERT_modified_v3.jpg" background_antarctic = "./Image/Antarctic_modified_v2.jpg" enemy_scrophion = "./Image/scorphion1-1.png" enemy_cactus = "./Image/Catus.png" missile_missile2 = "./Image/MISSILE_2.png" weapon_target_missile = "./Image/Weapon/spaceMissiles_012.png" info_infi_1 = "./Image/Info_infi_1.png" info_infi_2 = "./Image/Info_infi_2.png" info_infi_3 = "./Image/Info_infi_3.png" info_infi_4 = "./Image/Info_infi_4.png" info_infi_5 = "./Image/Info_infi_5.png" info_stage_1 = "./Image/Info_stage_1.png" info_stage_2 = "./Image/Info_stage_2.png" info_stage_3 = "./Image/Info_stage_3.png" info_stage_4 = "./Image/Info_stage_4.png" info_stage_5 = "./Image/Info_stage_5.png" info_stage_6 = "./Image/Info_stage_6.png" info_items = "./Image/Info_items.png" info_controls = "./Image/Info_controls.jpg" class Scales(enum.Enum): default = (1, 1) small = (.6, .6) tiny = (.3, .3) class Color(enum.Enum): RED = (200,60,50) BLUE = (0,60,200) GREEN = (50,200,50) YELLOW = (255,255,0) WHITE = (255,255,255) TRANSPARENT = (255,255,255,128) GRAY = (220,220,220) BLACK = (0,0,0) class Default(enum.Enum): game = { "size": { "x":0, "y":0 } } sound = { "sfx":{ "volume":0.2 } } font = "./Font/DXHanlgrumStd-Regular.otf" character = { "size": { "x":100, "y":100 }, "invincible_period": 4.0, "missile":{ "min":1, "max":4, "speed":20, "speed_inc":1 }, "max_stats":{ "power":500, "fire_rate":0.3, "mobility":25 } } item = { "duration":10.0, "size":{ "x":50, "y":50 }, "sound": "./Sound/Item/speedup.wav", "velocity":5, "speedup":{ "spawn_rate": 0.004, "frames":[ "./Image/Items/SpeedUp/frame-1.png", "./Image/Items/SpeedUp/frame-2.png", "./Image/Items/SpeedUp/frame-3.png", "./Image/Items/SpeedUp/frame-4.png", "./Image/Items/SpeedUp/frame-5.png", "./Image/Items/SpeedUp/frame-1.png" ] }, "powerup":{ "spawn_rate": 0.004, "duration":10.0, "frames":[ "./Image/Items/PowerUp/frame-1.png", "./Image/Items/PowerUp/frame-2.png", "./Image/Items/PowerUp/frame-3.png", "./Image/Items/PowerUp/frame-4.png", "./Image/Items/PowerUp/frame-5.png", "./Image/Items/PowerUp/frame-1.png" ] }, "bomb":{ "spawn_rate": 0.004, "interval":1.0, "power":1000, "frames":[ "./Image/Items/Bomb/frame-1.png", "./Image/Items/Bomb/frame-2.png", "./Image/Items/Bomb/frame-3.png", "./Image/Items/Bomb/frame-4.png", "./Image/Items/Bomb/frame-5.png", "./Image/Items/Bomb/frame-1.png" ] }, "health":{ "spawn_rate": 0.002, "frames":[ "./Image/Items/Health/frame-1.png", "./Image/Items/Health/frame-2.png", "./Image/Items/Health/frame-3.png", "./Image/Items/Health/frame-4.png", "./Image/Items/Health/frame-1.png" ] }, "coin":{ "spawn_rate": 0.002, "frames":[ "./Image/Items/Coin/frame-1.png", "./Image/Items/Coin/frame-2.png", "./Image/Items/Coin/frame-3.png", "./Image/Items/Coin/frame-4.png", "./Image/Items/Coin/frame-5.png", "./Image/Items/Coin/frame-1.png" ] } } effect = { "speed": 0.4, "velocity": 5, "bomb":{ "duration": 7.0, "size":{ "x": 500, "y": 500 }, "frames": [ "./Image/Effects/Bomb/frame-1.png", "./Image/Effects/Bomb/frame-2.png", "./Image/Effects/Bomb/frame-3.png", "./Image/Effects/Bomb/frame-4.png", "./Image/Effects/Bomb/frame-5.png", "./Image/Effects/Bomb/frame-6.png", "./Image/Effects/Bomb/frame-7.png", "./Image/Effects/Bomb/frame-8.png", "./Image/Effects/Bomb/frame-9.png", "./Image/Effects/Bomb/frame-10.png", "./Image/Effects/Bomb/frame-11.png", "./Image/Effects/Bomb/frame-12.png", "./Image/Effects/Bomb/frame-13.png", "./Image/Effects/Bomb/frame-14.png", "./Image/Effects/Bomb/frame-15.png" ], "sound": "./Sound/Weapon/explosion.wav" }, "boom":{ "duration": 4.0, "size":{ "x": 150, "y": 150 }, "frames":[ "./Image/Effects/Boom/frame-1.png", "./Image/Effects/Boom/frame-2.png", "./Image/Effects/Boom/frame-3.png", "./Image/Effects/Boom/frame-4.png", "./Image/Effects/Boom/frame-5.png", "./Image/Effects/Boom/frame-6.png", ], "sound": "./Sound/destroyed.wav" }, "crosshair":{ "image": "./Image/Effects/Crosshair.png", "size": { "x": 120, "y": 120 }, "velocity": 5 } } animation = { "blink":{ "speed":0.05, "frame":0.2, "duration":4.0 }, "interval":10.0, "speed":0.5 } about = { "authors": [ "<NAME>", "<NAME>", "<NAME>", ], "open_source": { "IMAGES":{ "MillionthVector CC BY 4.0": "http://millionthvector.blogspot.com/p/free-sprites.html", "You're Perfect Studio CC0 1.0":"https://opengameart.org/content/space-shoter-crosshairs", "bevouliin.com CC0 1.0":"https://opengameart.org/content/shining-coin-shining-health-shining-power-up-sprite-sheets", "Felis Chaus CC0 1.0":"https://opengameart.org/content/fire-explosion", "9KeyStudio CC0 1.0":"https://opengameart.org/content/pixel-art-explosion-animation", "Icons made by Freepik":'https://www.freepik.com', "Flaticon":"https://www.flaticon.com/" }, "SOUNDS":{ "MATRIXXX_ CC0 1.0": "https://freesound.org/people/MATRIXXX_/sounds/441373/", "simoneyoh3998 CC0 1.0": "https://freesound.org/people/simoneyoh3998/sounds/500673/", "jalastram CC BY 3.0": "https://freesound.org/people/jalastram/sounds/317769/", "befig CC BY 3.0": "https://freesound.org/people/befig/sounds/455530/", "Royalty Free Music from Bensound":"www.bensound.com" }, "BASE CODE":{ "CSID-DGU/2021-1-OSSPC-MUHIRYO-4":"https://github.com/CSID-DGU/2021-1-OSSPC-MUHIRYO-4.git", "TimurKhayrullin/Ultimate-Antivirus":"https://github.com/TimurKhayrullin/Ultimate-Antivirus" } } } class Utils(): @classmethod def clamp(cls, val, n_min, n_max): return max(n_min, min(val, n_max)) @classmethod def get_distance(cls, a, b): return math.sqrt((b["x"] - a["x"])**2 + (b["y"] - a["y"])**2) ``` #### File: 2021-2-OSSProj-PlusAlpha-9/menu/DifficultySelectMenu.py ```python import pygame import pygame_menu from game.InfiniteGame import * from pygame_menu.utils import make_surface from menu.CharacterSelectMenu import * class DifficultySelectMenu: def __init__(self,screen): # 화면 받고 화면 크기 값 받기 self.screen = screen self.size = screen.get_size() menu_image = pygame_menu.baseimage.BaseImage(image_path='./Image/StartImage.png',drawing_mode=pygame_menu.baseimage.IMAGE_MODE_FILL) mytheme = pygame_menu.themes.THEME_ORANGE.copy() mytheme.background_color = menu_image self.menu = pygame_menu.Menu('Select Difficulty...', self.size[0], self.size[1], theme=mytheme) def to_menu(self): self.menu.disable() #메뉴 구성하고 보이기 def show(self): #캐릭터 선택 메뉴 구성 mode = [("EASY",InfiniteGame.EasyMode()),("HARD",InfiniteGame.HardMode())] self.mode_selector = self.menu.add.selector( title='Difficulty :\t', items=mode ) self.mode_selector.add_self_to_kwargs() # Callbacks will receive widget as parameter self.menu.add.button("Character Select ->",self.to_character_select_menu) self.menu.add.button("BACK",self.to_menu) self.menu.mainloop(self.screen, self.check_resize) def to_character_select_menu(self): #캐릭터 메뉴 시작 함수 selected_mode = self.mode_selector.get_value()[0][1] CharacterSelectMenu(self.screen,selected_mode).show() #menu mainloop에서 매번 체크 실행 def check_resize(self): if (self.size != self.screen.get_size()): #현재 사이즈와 저장된 사이즈 비교 후 다르면 변경 changed_screen_size = self.screen.get_size() #변경된 사이즈 ratio_screen_size = (changed_screen_size[0],changed_screen_size[0]*783/720) #y를 x에 비례적으로 계산 if(ratio_screen_size[0]<320): #최소 x길이 제한 ratio_screen_size = (494,537) if(ratio_screen_size[1]>783): #최대 y길이 제한 ratio_screen_size = (720,783) self.screen = pygame.display.set_mode(ratio_screen_size, pygame.RESIZABLE) window_size = self.screen.get_size() new_w, new_h = 1 * window_size[0], 1 * window_size[1] self.menu.resize(new_w, new_h) self.menu.get_current().resize(new_w, new_h) self.size = window_size self.menu._current._widgets_surface = make_surface(0,0) print(f'New menu size: {self.menu.get_size()}') ``` #### File: 2021-2-OSSProj-PlusAlpha-9/object/Effect.py ```python import time import pygame from data.Defs import * from object.Object import Object class Effect(Object): # 모든 효과는 해당 클래스를 상속 받음 # Attributes: # occurred : 효과 발생 시간 (float) # inc : 다음 애니메이션 프레임까지 지난 시간 (float) # anim_speed : 프레임 전환 속도 (float) def __init__(self, frames, frames_trans, size, velocity, anim_id): super().__init__("", size, velocity, frames, frames_trans, anim_id) self.occurred = time.time() self.inc = 0.0 self.anim_speed = Default.effect.value["speed"] # 화면 상에서 효과를 이동시키고 다음 애니메이션 프레임으로 전환 def move(self, game): if (game.size[0] != self.boundary[0]) or (game.size[1] != self.boundary[1]): self.on_resize(game) self.y += self.velocity self.inc += self.anim_speed self.inc = Utils.clamp(self.inc, 0.0, self.frame_count-1) self.current_frame = int(self.inc) self.img = self.frames[int(self.inc)] self.update_rect((self.x, self.y)) class Explosion(Effect): # 폭발 효과 객체 # Attributes : # duration : 애니메이션 지속 시간 def __init__(self, animation): super().__init__(animation.frames, animation.frames_trans, Default.effect.value["bomb"]["size"], Default.effect.value["velocity"], "bomb_effect") self.duration = Default.effect.value["bomb"]["duration"] # 폭발 효과 범위 내 있는 적과 보스에게 피해를 입힘 def move(self, game): super().move(game) # 애니메이션이 끝나면 소멸 if int(self.inc) >= self.frame_count-1: game.effect_list.remove(self) else: # 충돌하는 적을 파괴 for enemy in list(game.mobList): if self.check_crash(enemy): enemy.destroy(game) game.score += 10 # 충돌하는 보스 발사체 없앰 if hasattr(game, "stage"): if game.stage.is_boss_stage: for bullet in game.enemyBullets: if self.rect_collide(bullet.rect): if bullet in game.enemyBullets: game.enemyBullets.remove(bullet) class Boom(Effect): # 적 파괴 효과 def __init__(self, animation): super().__init__(animation.frames, animation.frames_trans, Default.effect.value["boom"]["size"], Default.effect.value["velocity"], "destroy_effect") self.duration = Default.effect.value["boom"]["duration"] # 애니메이션이 끝나면 소멸 def move(self, game): super().move(game) if int(self.inc) >= self.frame_count-1: game.effect_list.remove(self) ```
{ "source": "jibonaronno/OpenMV-openmv", "score": 4 }
#### File: examples/02-Board-Control/timer_control.py ```python import time from pyb import Pin, Timer def tick(timer): # we will receive the timer object when being called print("Timer callback") tim = Timer(4, freq=1) # create a timer object using timer 4 - trigger at 1Hz tim.callback(tick) # set the callback to our tick function while (True): time.sleep(1000) ``` #### File: unittest/script/00-rgb_to_lab.py ```python def unittest(data_path, temp_path): import image lab = image.rgb_to_lab((120, 200, 120)) return (lab[0] == 76 and lab[1] == -44 and lab[2] == 34) ``` #### File: unittest/script/01-lab_to_rgb.py ```python def unittest(data_path, temp_path): import image rgb = image.lab_to_rgb((76, -44, 34)) return (rgb[0] == 118 and rgb[1] == 207 and rgb[2] == 122) ``` #### File: unittest/script/09-find_blobs.py ```python def unittest(data_path, temp_path): import image thresholds = [(0, 100, 56, 95, 41, 74), # generic_red_thresholds (0, 100, -128, -22, -128, 99), # generic_green_thresholds (0, 100, -128, 98, -128, -16)] # generic_blue_thresholds # Load image img = image.Image("unittest/data/blobs.ppm", copy_to_fb=True) blobs = img.find_blobs(thresholds, pixels_threshold=2000, area_threshold=200) return blobs[0][0:-3] == (122, 41, 96, 81, 6228, 168, 82) and\ blobs[1][0:-3] == (44, 40, 77, 89, 5113, 80, 84) and\ blobs[2][0:-3] == (210, 40, 71, 82, 3890, 249, 76) ```
{ "source": "jibonaronno/Rhythm", "score": 3 }
#### File: jibonaronno/Rhythm/datalogger.py ```python import sys from os.path import join, dirname, abspath from machinesetup import MachineSetup import pprint from backfeed import Backfeed class DataLogger(object): def __init__(self, filename="log6.txt"): self.filename = filename def writeBlock(self, datalist): combined = "" if len(datalist) > 0: for data in datalist: combined += data with open(self.filename, "a+") as writer: writer.write(combined) ''' logger = DataLogger('log4.csv') lData = [] def getStreamData(line): if iCount < 10: iCount += 1 if len(line > 15): lData.append(line) else: iCount=0 logger.writeBlock(lData) lData.clear() if len(line > 15): lData.append(line) streamer = Backfeed('log2.txt') streamer.setCallback(getStreamData) streamer.StreamDirect() #streamer.Start(1) ''' ``` #### File: jibonaronno/Rhythm/derivative.py ```python import numpy import matplotlib.pyplot as plott import pprint import math def f(x): return numpy.tan(x) def f_diff(x): return 1/numpy.cos(x)**2 def centered(x, h): return (f(x+h) - f(x-h))/(2*h) def forward(x, h): return (f(x+h)-f(x))/h def _forward(x, h): return (math.sin(x+h)-math.sin(x))/h x0 = 0.2 h_vector = [10**(-temp) for temp in numpy.arange(0, 17, 0.1)] x_vector = [xvalue for xvalue in numpy.arange(0, numpy.pi, 0.1)] sin_arr = numpy.zeros(len(x_vector)) deriv = numpy.zeros(len(x_vector)) deriv2 = numpy.zeros(len(x_vector)) for index, _sin in enumerate(x_vector): sin_arr[index] = math.sin(_sin) vector_len = len(sin_arr) for index, _sin in enumerate(sin_arr): if index < (vector_len - 1): deriv[index] = forward(_sin, sin_arr[index+1]) deriv2[index] = _forward(x_vector[index], x_vector[index+1]) plott.plot(x_vector, sin_arr, label="_Sin_") plott.plot(x_vector, deriv2, label="_Derivative") #plott.loglog(x_vector, sin_arr, label="__Sin__") ''' forward_res = numpy.zeros(len(h_vector)) centered_res = numpy.zeros(len(h_vector)) true_res = numpy.zeros(len(h_vector)) for index, _h in enumerate(h_vector): forward_res[index] = forward(x0, _h) centered_res[index] = centered(x0, _h) true_res[index] = f_diff(x0) x_array = [idx for idx in range(len(h_vector))] x_arr = [idxx for idxx in numpy.arange(0, 17, 0.1)] plott.figure(dpi=100) #plott.loglog(x_array, true_res, label="true") #plott.loglog(x_array, forward_res, label="Forward") #plott.loglog(h_vector, abs(forward_res - true_res), label="Forward-true") #plott.loglog(h_vector, abs(centered_res - true_res), label="Centered") plott.loglog(x_arr, h_vector, label="h_vector") ''' plott.grid() plott.xlabel = "h" plott.ylabel = "Absolute Difference" plott.legend() plott.show() ``` #### File: jibonaronno/Rhythm/flowprocess.py ```python import math import sys from os.path import join, dirname, abspath import json import os from flowsetup import JsonFlowSetup import pprint import math from collections import deque class FlowProcess(object): def __init__(self): self.sum_of_volume = 0.0 try: config = JsonFlowSetup("flow.json") self.D_inlet = float(config.dict["D_inlet"]) self.D_orifice = float(config.dict["D_orifice"]) self.P_air = float(config.dict["P_air"]) self.kcal = float(config.dict["kcal"]) self.diameter_ratio = self.D_orifice / self.D_inlet self.orifice_area = (math.pi * (self.D_orifice * self.D_orifice)) / 4 self.inlet_area = (math.pi * (self.D_inlet * self.D_inlet)) / 4 self.CDD = self.orifice_area / self.inlet_area self.Korifice = self.orifice_area * math.sqrt(2/(self.P_air * (1-(self.diameter_ratio ** 4)))) * self.kcal except Exception as e: print("error in flowprocess") print(str(e)) self.flow = 0.0 def CalculateFlowConst(self, deltap): if deltap < 0: deltap = -deltap return -math.sqrt((math.pi ** 2) * ((12 / 1000) ** 4) / 1.225 * 100 * deltap) * 1000 else: return math.sqrt((math.pi ** 2) * ((12 / 1000) ** 4) / 1.225 * 100 * deltap) * 1000 def CalculateFlow(self, deltap): result = 0.0 d_result = 0.0 try: #if(deltap > 0): if True: #return self.CDD * self.Korifice * math.sqrt(deltap * 100) result = (self.CDD ** 2) * (self.Korifice ** 2) * (deltap * 100) if result > 0: self.flow = math.sqrt(result) self.Volume(self.flow) return math.sqrt(result) * 60000 elif result < 0: d_result = -result self.flow = -math.sqrt(d_result) self.Volume(self.flow) return -math.sqrt(d_result) * 60000 else: self.flow = 0.0 return 0.0 else: return 0.0 except Exception as e: print("Exception : flowprocess::CalculateFlow(...)") print(str(e)) return self.flow def sumofVolumes(self): pass flow_arr = deque() sum_of_rmsVolume = 0.0 def rootVolume(self, flow): rmsVolume = 0.0 self.flow_arr.append(flow) if len(self.flow_arr) > 2: self.flow_arr.popleft() rmsVolume = math.sqrt((((self.flow_arr[0] + self.flow_arr[1]) / 2) ** 2) * 6.25) if self.flow_arr[0] < 0: self.sum_of_rmsVolume -= rmsVolume else: self.sum_of_rmsVolume += rmsVolume return self.sum_of_rmsVolume else: return 0.0 def Volume(self, flow): self.sum_of_volume += flow return self.sum_of_volume ``` #### File: jibonaronno/Rhythm/flowsetup.py ```python import math import sys from os.path import join, dirname, abspath import json import os class JsonFlowSetup(object): def __init__(self , location): self.location = os.path.expandvars(location) self.load(self.location) #pprint.pprint(self.db[r'Columns']) def load(self , location): if os.path.exists(location): self._load() else: print("location missing") self.dict = {} return True def dumptojson(self): try: json.dump(self.dict , open(self.location, "w+")) return True except: return False def _load(self): self.dict = json.load(open(self.location , "r")) ``` #### File: jibonaronno/Rhythm/gcodegenerator.py ```python import math import sys from os.path import join, dirname, abspath from machinesetup import MachineSetup import pprint from jsonobject import JsonObject class GcodeGenerator(object): def __init__(self, vt, rr, ie, fio2, x_adj): self.vtfactor = 1.0 self.vt = vt self.rr = rr self.ie = ie self.fio2 = fio2 self.x_adj = x_adj self.ACC=1000 self.xmax = 75 #60 self.xamb = 40 #12 self.xrect = 30 self.xcon_offset = 5 self.vtmax = 5000 self.gcodebipap = "" self.bipapstep = 0 self.gcodebipap_back = "" self.machinesetup = MachineSetup() self.ACC = self.machinesetup.ACC self.xmax = self.machinesetup.xmax self.xamb = self.machinesetup.xamb self.xrect = self.machinesetup.xrect self.xcon_offset = self.machinesetup.xcon_offset self.vtmax = self.machinesetup.vtmax self.motor_i_min = self.machinesetup.motor_i_min self.presmm = self.machinesetup.presmm self.postsmm = self.machinesetup.postsmm self.home_sense = self.machinesetup.home_sense self.ipap_tol = self.machinesetup.ipap_tol self.vol_tol = self.machinesetup.vol_tol print(str(self.ACC) + "," + str(self.xmax) + "," + str(self.xamb) + "," + str(self.xrect) + "," + str(self.xcon_offset) + "," + str(self.vtmax)) self.calib_dict = {250:63.0, 300:68.0, 350:71.0, 400:73.0, 450:77.0, 500:86.0, 550:100.0} #self.calib_dict = {250:103.0, 300:108.0, 350:111.0, 400:113.0, 450:125.0, 500:126.0, 550:140.0} self.jsobj = '' self.loadVtTable() def loadVtTable(self): try: self.jsobj = JsonObject("vttable.json") pprint.pprint(self.jsobj.dict) except Exception as e: print('Exception at loadVtTable : ' + str(e)) def getAxisdistanceFromIpap(self, pparr, ipap): try: if len(pparr) > 0: for itm in pparr: if ipap == int(float(itm[1])) or ipap < int(float(itm[1])): return itm[0] return -1 except Exception as e: print("pospressure table is empty") pprint.pprint(e) return -1 def ComputeBipap(self, pparr, ipap): xmax = 5 xmax = self.getAxisdistanceFromIpap(pparr, ipap) print(f"Axis Distance :: {xmax}") if xmax == -1: self.ComputeCMV() print("Failed ComputeBipap()") else: self.ComputeMotion(xmax) print("ComputeMotion(xmax=" + str(xmax) + ") @ IPAP :: " + str(ipap) ) def ComputeMotion(self, xmax_bp): self.Dt = self.xmax - self.xrect self.xav = self.xrect * (self.vt / self.vtmax) '''xav will come from table as below''' self.xav = self.calib_dict[self.vt] self.Dp = xmax_bp #self.Dt + self.xav self.TDMS = 0 self.Kie = 1/self.ie self.BCT = 60*(1-0.24) / self.rr self.Ti = self.BCT / (1 + (1 / self.Kie)) self.Th = self.BCT - self.Ti self.midpart_ti=(1-self.ACC*self.Ti*self.Ti)/2 self.lastpart_ti=self.xav*self.xav/4 self.identifier_ti=math.sqrt(self.midpart_ti*self.midpart_ti-4*self.lastpart_ti) self.sol1_ti=(-1*self.midpart_ti+self.identifier_ti)/2 self.sol2_ti=(-1*self.midpart_ti-self.identifier_ti)/2 if self.sol1_ti>self.xav: if self.sol2_ti>self.xav: self.dsmall_ti=0.1 else: self.dsmall_ti=self.sol2_ti else: self.dsmall_ti=self.sol1_ti #print(self.identifier_ti) self.midpart_th=(1-self.ACC*self.Th*self.Th)/2 self.lastpart_th=self.xav*self.xav/4 self.identifier_th=math.sqrt(self.midpart_th*self.midpart_th-4*self.lastpart_th) self.sol1_th=(-1*self.midpart_th+self.identifier_th)/2 self.sol2_th=(-1*self.midpart_th-self.identifier_th)/2 if self.sol1_th>self.xav: if self.sol2_th>self.xav: self.dsmall_th=0.1 else: self.dsmall_th=self.sol2_th else: self.dsmall_th=self.sol1_th #self.ACC_inhale = (4 * self.xav) / (self.Ti * self.Ti) #self.ACC_exhale = (4 * self.xav) / (self.Th * self.Th) #self.Vi = self.ACC_inhale * (self.Ti / 2) * 60 #self.Vh = self.ACC_exhale * (self.Th / 2) * 60 self.vimax=math.sqrt(2*self.dsmall_ti*self.ACC) self.vhmax=math.sqrt(2*self.dsmall_th*self.ACC) self.ViAvg = self.vimax * 60 #print(self.ViAvg) self.Vi = self.ViAvg self.VhAvg = self.vhmax* 60 self.Vh = self.VhAvg xavv = 0 def ComputeCMV(self): self.xavv = self.x_adj self.Dt = self.xmax - self.xrect #self.xav = self.calib_dict[self.vt] #self.xav = self.xrect * (self.vt / self.vtmax) * self.vtfactor try: self.xav = self.calib_dict[self.vt] + self.xavv print('Dict : ' + str(self.calib_dict[self.vt])) except Exception as e: print('ComputeCMV - ' + str(e)) #self.xav = self.xavv #if self.xavv != 0: #self.xav = self.xrect * ((self.vt + self.x_adj) / self.vtmax) * self.vtfactor #Previous Dp self.Dp = self.Dt + self.xav self.Dp = self.xav self.TDMS = 0.5 self.Kie = 1/self.ie self.BCT = 60*(1-0.32) / self.rr self.Ti = self.BCT / (1 + (1 / self.Kie)) self.Th = self.BCT - self.Ti self.midpart_ti=(1-self.ACC*self.Ti*self.Ti)/2 self.lastpart_ti=self.xav*self.xav/4 self.identifier_ti=math.sqrt(self.midpart_ti*self.midpart_ti-4*self.lastpart_ti) self.sol1_ti=(-1*self.midpart_ti+self.identifier_ti)/2 self.sol2_ti=(-1*self.midpart_ti-self.identifier_ti)/2 if self.sol1_ti > self.xav: if self.sol2_ti > self.xav: self.dsmall_ti=0.1 else: self.dsmall_ti=self.sol2_ti else: self.dsmall_ti=self.sol1_ti #print(self.identifier_ti) self.midpart_th=(1-self.ACC*self.Th*self.Th)/2 self.lastpart_th=self.xav*self.xav/4 self.identifier_th=math.sqrt(self.midpart_th*self.midpart_th-4*self.lastpart_th) self.sol1_th=(-1*self.midpart_th+self.identifier_th)/2 self.sol2_th=(-1*self.midpart_th-self.identifier_th)/2 if self.sol1_th>self.xav: if self.sol2_th>self.xav: self.dsmall_th=0.1 else: self.dsmall_th=self.sol2_th else: self.dsmall_th=self.sol1_th #self.ACC_inhale = (4 * self.xav) / (self.Ti * self.Ti) #self.ACC_exhale = (4 * self.xav) / (self.Th * self.Th) #self.Vi = self.ACC_inhale * (self.Ti / 2) * 60 #self.Vh = self.ACC_exhale * (self.Th / 2) * 60 self.vimax=math.sqrt(2*self.dsmall_ti*self.ACC) self.vhmax=math.sqrt(2*self.dsmall_th*self.ACC) self.ViAvg = self.vimax * 60 #print(self.ViAvg) self.Vi = self.ViAvg self.VhAvg = self.vhmax* 60 self.Vh = self.VhAvg def ComputeCMV2(self): self.xavv = self.x_adj self.Dt = self.xmax - self.xrect initial_x = self.calib_dict[self.vt] #self.calib_dict[450] #self.xav = self.calib_dict[self.vt] #self.xav = self.xrect * (self.vt / self.vtmax) * self.vtfactor try: self.xav = initial_x + self.xavv print('Dict : ' + str(initial_x)) except Exception as e: print('ComputeCMV - ' + str(e)) #self.xav = self.xavv #if self.xavv != 0: #self.xav = self.xrect * ((self.vt + self.x_adj) / self.vtmax) * self.vtfactor self.Dp = self.Dt + self.xav # Mod self.Dp = self.xav self.TDMS = 50 self.Kie = 1/self.ie #self.BCT = 60*(1-(-0.5)) / self.rr self.BCT = 60*(1-0.32) / self.rr self.Ti = self.BCT / (1 + (1 / self.Kie)) self.Th = self.BCT - self.Ti print('Ti-{:f} Th-{:f} BCT-{:f}'.format(self.Ti, self.Th, self.BCT)) self.midpart_ti=(1-self.ACC*self.Ti*self.Ti)/2 self.lastpart_ti=self.xav*self.xav/4 self.identifier_ti=math.sqrt(self.midpart_ti*self.midpart_ti-4*self.lastpart_ti) self.sol1_ti=(-1*self.midpart_ti+self.identifier_ti)/2 self.sol2_ti=(-1*self.midpart_ti-self.identifier_ti)/2 if self.sol1_ti > self.xav: if self.sol2_ti > self.xav: self.dsmall_ti=0.1 else: self.dsmall_ti=self.sol2_ti else: self.dsmall_ti=self.sol1_ti #print(self.identifier_ti) self.midpart_th=(1-self.ACC*self.Th*self.Th)/2 self.lastpart_th=self.xav*self.xav/4 self.identifier_th=math.sqrt(self.midpart_th*self.midpart_th-4*self.lastpart_th) self.sol1_th=(-1*self.midpart_th+self.identifier_th)/2 self.sol2_th=(-1*self.midpart_th-self.identifier_th)/2 if self.sol1_th>self.xav: if self.sol2_th>self.xav: self.dsmall_th=0.1 else: self.dsmall_th=self.sol2_th else: self.dsmall_th=self.sol1_th #self.ACC_inhale = (4 * self.xav) / (self.Ti * self.Ti) #self.ACC_exhale = (4 * self.xav) / (self.Th * self.Th) #self.Vi = self.ACC_inhale * (self.Ti / 2) * 60 #self.Vh = self.ACC_exhale * (self.Th / 2) * 60 self.vimax=math.sqrt(2*self.dsmall_ti*self.ACC) self.vhmax=math.sqrt(2*self.dsmall_th*self.ACC) self.ViAvg = self.vimax * 60 #print(self.ViAvg) self.Vi = self.ViAvg self.VhAvg = self.vhmax* 60 self.Vh = self.VhAvg def GenerateCMV(self): self.ComputeCMV2() self.gcodeinit = "G21\r\nG80\r\nG90\r\nM92 X" + str(self.presmm) +" Y"+ str(self.presmm) +"\r\nG28 X0Y0 F500\r\nM92 X" + str(self.postsmm) + " Y" + str(self.postsmm) + "\r\nM906 X"+ str(self.motor_i_min) + " Y" + str(self.motor_i_min) +"\r\nM201 X"+str(self.ACC)+" Y"+str(self.ACC) self.gcodeprimary = "G21\r\nG80\r\nG90\r\nM92 X"+ str(self.presmm) +" Y"+ str(self.presmm) + "\r\nM914 X" + str(self.home_sense) + " Y" + str(self.home_sense) +"\r\nG28 X0Y0 F500\r\nM92 X"+ str(self.postsmm) +" Y"+ str(self.postsmm) + "\r\nM201 X"+str(self.ACC)+" Y"+str(self.ACC) + "\r\nM906 X"+ str(self.motor_i_min) + " Y" + str(self.motor_i_min) + "\r\nG01 X" + str(int(self.Dp)) + " Y" + str(int(self.Dp)) + " F500\r\n" + "G01 X" + str(int(self.Dt))+" Y"+str(int(self.Dt))+" F500\r\n" #self.gcodeprimary = "G21\r\nG80\r\nG90\r\nM92 X"+ str(self.presmm) +" Y"+ str(self.presmm) +"\r\nG28 X0Y0 F500\r\nM92 X"+ str(self.postsmm) +" Y"+ str(self.postsmm) + "\r\nM201 X"+str(self.ACC)+" Y"+str(self.ACC) + "\r\nG01 X" + str(int(self.Dp)) + " Y" + str(int(self.Dp)) + " F500\r\n" + "G01 X" + str(int(self.Dt))+" Y"+str(int(self.Dt))+" F500\r\n" #MOD self.gcodestr = "M107\r\nG01 X" + str(int(self.Dp))+" Y"+str(int(self.Dp))+" F"+str(int(self.ViAvg))+"\r\nM106 S255\r\nG04 P"+ str(self.TDMS) +"\r\n" +"G01 X"+str(int(self.Dt))+" Y"+str(int(self.Dt))+" F"+str(int(self.VhAvg))+"\r\n" #+"G04 P"+str(self.TDMS)+"\r\n" self.gcodestr = "G01 X" + str(int(self.Dp))+" Y"+str(int(self.Dp))+" F"+str(int(self.ViAvg))+" \r\nG01 X"+str(int(self.Dt))+" Y"+str(int(self.Dt))+" F"+str(int(self.VhAvg))+"\r\n" #self.gcodestr = "G01 X" + str(int(self.Dp))+" Y"+str(int(self.Dp))+" F"+str(int(self.ViAvg))+"\r\n" +"G01 X"+str(int(self.Dt))+" Y"+str(int(self.Dt))+" F"+str(int(self.VhAvg))+"\r\n" #print(self.gcodeinit) #print("\r\n") ##print("Gcode Primary : ") ##print(self.gcodeprimary) #self.gcodestr = "M201 X" + str(int(self.ACC_inhale)) + " Y" + str(int(self.ACC_exhale)) + "\r\n" + " G01 X" + str(int(self.Dp))+" Y"+str(int(self.Dp))+" F"+str(int(self.Vi))+"\r\n"+ "M201 X"+ str(int(self.ACC_exhale)) + " Y"+ str(int(self.ACC_exhale)) + "\r\n" +" G01 X"+str(int(self.Dt))+" Y"+str(int(self.Dt))+" F"+str(int(self.Vh))+"\r\n" #+"G04 P"+str(self.TDMS)+"\r\n" #with open('primary.gcode', 'w') as writer: #writer.write(self.gcodeprimary) def GenerateBiPAP(self, pparr, ipap): self.ComputeBipap(pparr, ipap) self.gcodeinit = "G21\r\nG80\r\nG90\r\nM92 X80 Y80\r\nG28 X0Y0 F500\r\nM92 X800 Y800\r\nM201 X"+str(self.ACC)+" Y"+str(self.ACC) self.gcodeprimary = "G21\r\nG80\r\nG90\r\nG28 X0Y0 F500\r\nM92 X800 Y800\r\nM201 X"+str(self.ACC)+" Y"+str(self.ACC)+"\r\nG01 X" + str(int(self.Dp)) + " Y" + str(int(self.Dp)) + " F500\r\n" + "G01 X" + str(int(self.Dt))+" Y"+str(int(self.Dt))+" F500\r\n" self.gcodestr = "M107\r\nG01 X" + str(int(self.Dp))+" Y"+str(int(self.Dp))+" F"+str(int(self.ViAvg))+"\r\nM106 S255\r\n" +"G01 X"+str(int(self.Dt))+" Y"+str(int(self.Dt))+" F"+str(int(self.VhAvg))+"\r\n" #+"G04 P"+str(self.TDMS)+"\r\n" ``` #### File: jibonaronno/Rhythm/kalman.py ```python from random import normalvariate ########################################################################## # "Real world" that we're trying to track class RealWorld: def __init__(self): self.position = 0.0 self.velocity = 0.5 self.time_step = 0.1 self.time = 0.0 self.measure = None # Noise on the measurements self.measurement_variance = 3.0 # If we want to kink the profile. self.change_after = 50 self.changed_velocity = -0.5 def measurement(self): if self.measure == None: self.measure = (self.position + normalvariate(0, self.measurement_variance)) return self.measure def step(self): self.time += self.time_step self.position += self.velocity * self.time_step if self.time >= self.change_after: self.velocity = self.changed_velocity self.measure = None world = RealWorld() ########################################################################## # Model # Estimates estimate_position = 0.0 estimate_velocity = 0.0 # Covariance matrix P_xx = 0.1 # Variance of the position P_xv = 0.1 # Covariance of position and velocity P_vv = 0.1 # Variance of the velocity ########################################################################## # Model parameters position_process_variance = 0.01 velocity_process_variance = 0.01 R = 30.0 # Measurement noise variance average_length = 30 data = [] print 'Time\tActual\tMeasurement\tPosition Estimate\tVelocity Estimate' for i in range(1000): world.step() measurement = world.measurement() # We need to boot strap the estimates for temperature and # rate if i == 0: # First measurement estimate_position = measurement elif i == 1: # Second measurement estimate_velocity = ( measurement - estimate_position ) / world.time_step estimate_position = measurement else: # Can apply model ################################################################## # Temporal update (predictive) estimate_position += estimate_velocity * world.time_step # Update covariance P_xx += world.time_step * ( 2.0 * P_xv + world.time_step * P_vv ) P_xv += world.time_step * P_vv P_xx += world.time_step * position_process_variance P_vv += world.time_step * velocity_process_variance ################################################################## # Observational update (reactive) vi = 1.0 / ( P_xx + R ) kx = P_xx * vi kv = P_xv * vi estimate_position += (measurement - estimate_position) * kx estimate_velocity += (measurement - estimate_position) * kv P_xx *= ( 1 - kx ) P_xv *= ( 1 - kx ) P_vv -= kv * P_xv print '\t'.join(str(x) for x in [world.time, world.position, measurement, estimate_position, estimate_velocity]) strx = "" for x in [world.time, world.position, measurement, estimate_position, estimate_velocity]: strx += str(x) + "," strx += "\n" with open("kalman.csv", "a+") as writer: writer.write(strx) ``` #### File: jibonaronno/Rhythm/mdiwindow.py ```python import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5 import QtWidgets, uic class MainWindow(QtWidgets.QMainWindow): count = 0 def __init__(self, parent = None): super(MainWindow, self).__init__(parent) self.mdi = QMdiArea() self.setCentralWidget(self.mdi) bar = self.menuBar() file = bar.addMenu("Subwindow") file.addAction("window1") file.addAction("text1") file.addAction("text2") file.triggered[QAction].connect(self.click) self.setWindowTitle("Multiple window using MDI") def click(self, q): print ("New sub window") if q.text() == "window1": MainWindow.count = MainWindow.count+1 sub = QMdiSubWindow() sub.setWidget(QTextEdit()) sub.setWindowTitle("subwindow"+str(MainWindow.count)) self.mdi.addSubWindow(sub) sub.show() if q.text() == "text1": self.mdi.cascadeSubWindows() if q.text() == "text2": self.mdi.tileSubWindows() def main(): app = QApplication(sys.argv) ex = MainWindow() ex.show() sys.exit(app.exec_()) if __name__ == '__main__': main() ``` #### File: jibonaronno/Rhythm/modes.py ```python import enum class MachineRunModes(enum.Enum): CMV = 1 BiPAP = 2 CPAP = 3 PS = 4 class BipapReturns(enum.Enum): Continue = 1 Stop = 2 class BipapLookup(object): def __init__(self): self.ipap = 8.0 def setIpap(self, ipap=0.0): self.ipap = ipap def lookUp(self, pressure=0.0): if pressure > self.ipap: return True else: return False ``` #### File: jibonaronno/Rhythm/timerthread.py ```python import sys import serial import pprint import time import enum import queue from queue import Queue from os.path import join, dirname, abspath from qtpy.QtCore import Slot, QTimer, QThread, Signal, QObject, Qt, QMutex class TimerThread(QObject): signal = Signal(str) def __init__(self, callback, milis): super().__init__() self.milis = milis self.signal.connect(callback) self.thread = QThread() self.timer = QTimer() #self.timer.timeout.connect(self.timeout) #self.timer.start(milis) self.thread.started.connect(self.init) def Start(self): self.thread.start() @Slot() def init(self): self.timer.timeout.connect(self.timeout) self.timer.start(self.milis) def timeout(self): self.signal.emit("tick") ```
{ "source": "jibonaronno/RP2040AudioRecord", "score": 2 }
#### File: jibonaronno/RP2040AudioRecord/dispatchers.py ```python import sys import serial from serial import Serial import pprint import time import enum import queue from queue import Queue from os.path import join, dirname, abspath from qtpy.QtCore import Slot, QTimer, QThread, Signal, QObject, Qt, QMutex class PrimaryThread(QObject): signal = Signal(str) def __init__(self, serialPort:Serial, cmdlist): self.serialPort = serialPort # self.json = JsonSettings("settings.json") self.codelist = cmdlist self.flagStop = False self.pause = False super().__init__() def Stop(self): self.flagStop = True @Slot() def run(self): unit = [] hexformat = '' inhex = '' in_waiting = 0 while True: try: if self.pause: time.sleep(100) continue jMessage = "" try: #if in_waiting != 0: #unit = self.serialPort.read(in_waiting) unit = self.serialPort.readline() hexformat = unit.decode('ascii') #for hx in unit: # hexformat = hexformat + '{0}'.format(hx) #self.signal.emit(str(hexformat)) self.signal.emit(str(hexformat)) except Exception as e: print('Ex in sensor Thread readline() 49 : ' + str(e)) ''' for hx in unit: hexformat = hexformat + '{0:02X} '.format(hx) if hx == 13: self.signal.emit(inhex + "- " + hexformat) hexformat = '' inhex = '' unit = b'' ''' except serial.SerialException as ex: print("Error In SerialException" + ex.strerror) self.signal.emit("Stopped") except Exception as e: pprint.pprint(e) self.signal.emit("Stopped") class SensorThread(QObject): signal = Signal(str) plst = [] def __init__(self, serialPort, que): self.pressureque = que self.serialport = serialPort self.flagStop = False self.jMessage = "" self._beep = False self.flag_sensorlimit_tx = False self.strdata = "" super().__init__() def Stop(self): self.flagStop = True def beep(self): self._beep = True def txsensordata(self, strdata): self.strdata = strdata self.flag_sensorlimit_tx = True @Slot() def run(self): in_waiting = '' jMessage = "" unit = '' itm = '' while 1: if self.flagStop: break try: in_waiting = self.serialport.in_waiting except Exception as e: print('Ex:0X07 : ' + str(e)) while in_waiting == 0: time.sleep(0.01) try: in_waiting = self.serialport.in_waiting except Exception as e: print('Ex:0x08 : ' + str(e)) try: unit = self.serialport.read(in_waiting) except Exception as e: print('Ex in sensor Thread readline() 527 : ' + str(e)) if len(unit) > 0: try: itm += unit.decode('ascii') except: pass if b'\n' in unit: jMessage = itm # .decode('ascii') itm = '' # jMessage += ',' + str(time.perf_counter()) self.plst = jMessage.split(",") self.signal.emit(jMessage) if self.pressureque.qsize() <= 0: self.pressureque.put(self.plst[0]) if self.flag_sensorlimit_tx: self.flag_sensorlimit_tx = False self.serialport.write(self.strdata.encode('utf-8')) time.sleep(0.5) ``` #### File: jibonaronno/RP2040AudioRecord/main.py ```python import sys import enum from os.path import join, dirname, abspath import queue import serial from serial import Serial import serial.tools.list_ports as port_list from qtpy import uic from qtpy.QtCore import Slot, QTimer, QThread, Signal, QObject, Qt from qtpy.QtWidgets import QApplication, QMainWindow, QMessageBox, QAction, QDialog, QTableWidgetItem, QLabel from pyqtgraph import PlotWidget import pyqtgraph as pg from collections import deque from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtGui import QPainter from PyQt5 import QtCore, QtSvg from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QPushButton, QListWidget, QListWidgetItem import math import os import numpy as np import random import qtmodern.styles import qtmodern.windows import time import json import pprint from portdetection import DetectDevices from dispatchers import PrimaryThread from mimic import Mimic from crud import CRUD from dataview import DataView from datetime import datetime ''' Database codes are in crud.py file. here the object name is db. Accessed by self.db. Implemented in sensordata(...) callback function. database file is flow.db . ''' _UI = join(dirname(abspath(__file__)), 'top.ui') _UI2 = join(dirname(abspath(__file__)), 'dashboard.ui') _UI3 = join(dirname(abspath(__file__)), 'commands.ui') ''' dev_address function_code reg_addr_high reg_addr-LOW, reg_qntt_high red_qntt_low crc_low crc_high ''' #08 04 00 00 00 02 71 52 _CMD_1 = [0x08, 0x04, 0x00, 0x00, 0x00, 0x02, 0x71, 0x52] _CMD_2 = [0x08, 0x04, 0x00, 0x00, 0x00, 0x02, 0x71, 0x52] _CMD_3 = [0x08, 0x04, 0x00, 0x22, 0x00, 0x02, 0xD1, 0x58] _CMD_4 = [0x08, 0x04, 0x00, 0x04, 0x00, 0x02, 0x30, 0x93] _CMD_5 = [0x08, 0x04, 0x00, 0x00, 0x00, 0x02, 0x71, 0x52] _CMD_6 = [0x08, 0x04, 0x00, 0x22, 0x00, 0x02, 0xD1, 0x58] _CMD_7 = [0x08, 0x04, 0x00, 0x00, 0x00, 0x02, 0x71, 0x52] _CMD_8 = [0x08, 0x04, 0x00, 0x04, 0x00, 0x02, 0x30, 0x93] _CMD_9 = [0x09, 0x04, 0x00, 0x00, 0x00, 0x02, 0x70, 0x83] _CMD_10 = [0x09, 0x04, 0x00, 0x00, 0x00, 0x02, 0x70, 0x83] _CMD_11 = [0x09, 0x04, 0x00, 0x22, 0x00, 0x02, 0xD0, 0x89] _CMD_12 = [0x09, 0x04, 0x00, 0x04, 0x00, 0x02, 0x31, 0x42] _CMD_13 = [0x09, 0x04, 0x00, 0x00, 0x00, 0x02, 0x31, 0x42] _CMD_14 = [0x09, 0x04, 0x00, 0x22, 0x00, 0x02, 0xD0, 0x89] _CMD_15 = [0x09, 0x04, 0x00, 0x00, 0x00, 0x02, 0x70, 0x83] _CMD_16 = [0x09, 0x04, 0x00, 0x04, 0x00, 0x02, 0x31, 0x42] _CMD_17 = [0x0A, 0x04, 0x00, 0x00, 0x00, 0x02, 0x70, 0xB0] _CMD_18 = [0x0A, 0x04, 0x00, 0x22, 0x00, 0x02, 0xD0, 0xBA] _CMD_19 = [0x0A, 0x04, 0x00, 0x04, 0x00, 0x02, 0x31, 0x71] class MainWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.widget = uic.loadUi(_UI, self) self.mimic = Mimic() self.window_title = "top" self.mimic = Mimic() self.ports = DetectDevices() self.selectedPort = "" self.lst = QListWidget() self.sensor = '' self.sensorThread = '' self.sensorThreadCreated = False self.sensorPortOpen = False self.sensorDataString = "" self.serialSensor = "" self.selectedPort = "" self.cmdlist = [] self.cmdlist.append(_CMD_1) self.cmdlist.append(_CMD_2) self.cmdlist.append(_CMD_3) self.cmdlist.append(_CMD_4) self.cmdlist.append(_CMD_5) self.cmdlist.append(_CMD_6) self.cmdlist.append(_CMD_7) self.cmdlist.append(_CMD_8) self.cmdlist.append(_CMD_9) self.cmdlist.append(_CMD_10) self.cmdlist.append(_CMD_11) self.cmdlist.append(_CMD_12) self.cmdlist.append(_CMD_13) self.cmdlist.append(_CMD_14) self.cmdlist.append(_CMD_15) self.cmdlist.append(_CMD_16) self.cmdlist.append(_CMD_17) self.cmdlist.append(_CMD_18) self.cmdlist.append(_CMD_19) #List only usb-ttl ports in self.portListBox QListWidget self.ports = list(port_list.comports()) for p in self.ports: #if "usb" in p[1]: self.portListBox.addItem(p[0]) self.btn1.setEnabled(False) self.btn2.setEnabled(True) #self.lst.selectedItems() # getting item changed signal self.portListBox.currentItemChanged.connect(self.portLstItemChanged) self.db = CRUD("flow.db") self.db.openDBHard() self.dtv = DataView() # renderer = QtSvg.QSvgRenderer('ico1.svg') # painter = QPainter(self.btn1) # painter.restore() # renderer.render(painter) # self.btn1.show() def portLstItemChanged(self, tm): print("Port Item Changed " + tm.text()) self.selectedPort = tm.text() if tm.text() != "": #if "USB" in tm.text(): self.btn1.setEnabled(True) def startSensorThread(self): if self.sensorPortOpen: if not self.sensorThreadCreated: self.sensor = PrimaryThread(self.serialSensor, self.cmdlist) self.sensorThread = QThread() self.sensorThread.started.connect(self.sensor.run) self.sensor.signal.connect(self.sensorData) self.sensor.moveToThread(self.sensorThread) self.sensorThread.start() self.sensorThreadCreated = True print("Starting Sensor Thread") def extractFlowData(self, starData=""): parts = starData.split(" ") res = "0000.00" if(len(parts) >= 18): #val = int('0x' + parts[15]+parts[16]+parts[17]+parts[18], base=16) val = int(parts[12]+parts[13], base=16) if val > 0: res = str(val/1000) else: res = 0 return res def extractSumData(self, starData=""): parts = starData.split(" ") res = "0000.00" if(len(parts) >= 18): val = int(parts[12]+parts[13], base=16) if val > 0: res = str(val/1000) else: res = 0 return res def extractPercentData(self, starData=""): parts = starData.split(" ") res = "0000.00" if (len(parts) >= 18): #val = int(parts[12] + parts[13] + parts[14] + parts[15], base=16) val = int(parts[12] + parts[13], base=16) if val > 0: res = str(val/1000) else: res = 0 return res #Data Received from thread. parts[12] is dev id. Not Applicable now. #12-13-2021 23:40:37 - [8, 4, 0, 0, 0, 2, 113, 82] - 08 04 04 00 1A 00 00 43 43 . Terminal data is shown as below #08 04 00 00 00 02 71 52 - 08 04 04 00 A1 00 00 43 43 # return data: dev id - F.code - Bytes Count - B3 B2 B1 B0 - CRC - CRC # 08 04 04 00 1A 00 00 - 43 - 43 def sendMeterDataFromSensorString(self, sensorString:str): parts = sensorString.split(" ") devid = 0 if(len(parts) >= 18): #print(parts[0] + " " +parts[9] + " " +parts[10] + " " +parts[11] + " " + parts[12]) if(int(parts[9], base=16) == 8): devid = 8 if(int(parts[3], base=16) == 0): self.mimic.meterFlow1 = self.extractFlowData(sensorString) self.mimic.AppendFlow1(float(self.extractFlowData(sensorString))) if(int(parts[3], base=16) == 34): self.mimic.meterSum1 = self.extractSumData(sensorString) if (int(parts[3], base=16) == 4): #self.mimic.meterSum1 = self.extractSumData(sensorString) print("PERCENT 1: " + sensorString) if (int(parts[9], base=16) == 9): devid = 9 if (int(parts[3], base=16) == 0): self.mimic.meterFlow2 = self.extractFlowData(sensorString) if (int(parts[3], base=16) == 34): self.mimic.meterSum2 = self.extractSumData(sensorString) if (int(parts[3], base=16) == 4): # self.mimic.meterSum1 = self.extractSumData(sensorString) print("PERCENT 2: " + sensorString) if (int(parts[9], base=16) == 10): devid = 10 if (int(parts[3], base=16) == 0): self.mimic.meterFlow3 = self.extractFlowData(sensorString) if (int(parts[3], base=16) == 34): self.mimic.meterSum3 = self.extractSumData(sensorString) if (int(parts[3], base=16) == 4): # self.mimic.meterSum1 = self.extractSumData(sensorString) print("PERCENT 3: " + sensorString) return devid def sensorData(self, data_stream): self.sensorDataString = data_stream #strdatetime = datetime.today().strftime('%m-%d-%Y %H:%M:%S') #Collect Present Date Time #print(strdatetime + " - " +self.sensorDataString) # #print(self.sensorDataString) self.msgListBox.addItem(self.sensorDataString) #Insert incomming data to local List Box try: self.mimic.AppendFlow1(float(self.sensorDataString)) except Exception as e: pass #devid = self.sendMeterDataFromSensorString(self.sensorDataString) #self.db.insert_meter_data([strdatetime, self.sensorDataString, str(devid)]) # Inserting data to database #self.mimic.repaint() if(self.msgListBox.count() > 10): self.msgListBox.clear() @Slot() def on_btn1_clicked(self): if self.selectedPort != "": if not self.sensorPortOpen: try: self.serialSensor = serial.Serial(self.selectedPort, baudrate=115200, timeout=2) self.sensorPortOpen = True except serial.SerialException as ex: self.sensorPortOpen = False print(ex.strerror) print("Error Opening Serial Port..........................................") finally: print("Serial Port Connected..........................") self.btn2.setEnabled(True) # self.mim = Mimic() # self.mim.setFixedHeight(100) # self.VL0.addWidget(self.mim) # self.setWindowTitle(self.window_title) #Show svg file svgwidget #self.svgwidget = QtSvg.QSvgWidget('ico1.svg') #comment self.VL1 = QVBoxLayout() #self.VL0.addWidget(self.svgwidget) #comment self.dash.show() @Slot() def on_btn2_clicked(self): #self.mimic.show() if self.sensorPortOpen: if not self.sensorThreadCreated: self.startSensorThread() self.mimic.show() @Slot() def on_btn3_clicked(self): ''' Example code to insert data in database #self.db.insert_meter_data_hard() ''' self.dtv.summery = True self.dtv.showNormal() @Slot() def on_btn4_clicked(self): self.dtv.summery = None self.dtv.showNormal() @Slot() def on_btnPause_clicked(self): if self.btnPause.text() == "Pause": self.btnPause.setText("Start") self.sensor.pause = True else: self.btnPause.setText("Pause") self.sensor.pause = False if __name__ == '__main__': app = QApplication(sys.argv) #qtmodern.styles.dark(app) qtmodern.styles.light(app) mw_class_instance = MainWindow() mw = qtmodern.windows.ModernWindow(mw_class_instance) #mw.showFullScreen() mw.showNormal() sys.exit(app.exec_()) ``` #### File: jibonaronno/RP2040AudioRecord/paraview.py ```python from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * ''' This class will show and set parameters for a selected object. A json structure will guide the parameter structure. Let the object name should be params. ''' class Paraview(QWidget): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) ```
{ "source": "JIboncb/Jibon", "score": 3 }
#### File: JIboncb/Jibon/main.py ```python import speech_recognition as sr import datetime import wikipedia import webbrowser import pyttsx3 import pywhatkit import pyjokes import rotatescreen import os import PyPDF2 from textblob import TextBlob import platform import calendar import cowsay from translate import Translator import sounddevice from scipy.io.wavfile import write from speedtest import Speedtest import psutil print('Initializing Julie') # variables section home = 'Panchagarh' live_in = 'Dinajpur' boss = 'Sir' ai_name = 'Julie' engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[1].id) # speak function def speak(text): engine.say(text) engine.runAndWait() # wishMe function def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak('Good morning sir') elif hour>=12 and hour<18: speak('Good afternoon sir') else: speak('Good evening sir') speak('How can I help you') # command taking function def takeCommand(): r = sr.Recognizer() with sr.Microphone() as source: print('Listening...') audio = r.listen(source) try : print('Recognizing...') query = r.recognize_google(audio, language= 'en-in') query = query.lower() print(f"User said: {query}\n") except Exception as e: print(e) print("Say that again please") return query # programme start speak('Initializing') speak(ai_name) wishMe() # if elif section while True: query = takeCommand() print(query) if 'wikipedia' in query: speak('Searching wikipedia...') query = query.replace('wikipedia', '') results = wikipedia.summary(query, sentences=2) print(results) speak(results) elif 'open youtube' in query.lower(): speak('Opening youtube') url = 'youtube.com' chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' webbrowser.get(chrome_path).open(url) elif 'open facebook' in query.lower(): speak('Opening facebook') url = 'facebook.com' chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' webbrowser.get(chrome_path).open(url) elif 'open google' in query.lower(): speak('Opening google') url = 'google.com' chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' webbrowser.get(chrome_path).open(url) elif 'open stackoverflow' in query.lower(): speak('Opening stackoverflow') url = 'stackoverflow.com' chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' webbrowser.get(chrome_path).open(url) elif 'joke' in query: speak(pyjokes.get_joke()) elif 'play' in query: song = query.replace('play', '') speak('playing ' + song) pywhatkit.playonyt(song) elif 'time' in query: time = datetime.datetime.now().strftime('%I:%M %p') speak('Current time is ' + time) elif 'who is' in query: speak('Searching wikipedia...') query = query.replace('who is', '') results = wikipedia.summary(query, sentences=2) print(results) speak(results) elif "where is" in query: query = query.replace("where is", "") location = query speak("User asked to Locate") speak(location) chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' webbrowser.get(chrome_path).open('https://www.google.com/maps/place/' + location) elif 'go on a date' in query: speak('sorry sir, I can not go with you, because i am an AI') elif 'who are you' in query: speak('i am an ai assistant created by Jibon') elif 'created you' in query: speak('i have been created by Jibon') elif 'are you single' in query: speak('I am finding the perfect one') elif 'be my girlfriend' in query: speak('Maybe you should give me some time') elif 'how are you' in query: speak("I am fine, Thank you") speak("How are you, Sir") elif 'fine' in query or "good" in query: speak("It's good to know that your fine") elif 'exit' in query or 'stop' in query: speak("Thanks for giving me your time") exit() elif 'search' in query or 'play' in query: query = query.replace("search", "") query = query.replace("play", "") webbrowser.open(query) elif "who i am" in query: speak("If you can talk then definitely your human.") elif "why you came to world" in query: speak("Thanks to Jibon. further It's a secret") elif ai_name in query: wishMe() speak(f"{ai_name} 1 point o in your service Mister") elif "can you help me" in query: speak("of course sir, it is my pleasure") elif "my favourite song" in query: speak("your favourite song is mood") elif 'hi' in query: speak('hello sir') elif 'rotate the screen' in query: speak('ok sir') screen = rotatescreen.get_primary_display() for i in range(13): time.sleep(1) screen.rotate_to(i * 90 % 360) elif 'what is your name' in query: speak('My friends call me') speak(ai_name) elif 'exit' in query or 'close' in query: speak('Thanks for giving me your time') exit() elif 'say whatever i write' in query: while True: engine = pyttsx3.init() voices = engine.getProperty('voices') engine.setProperty('voice', voices[1].id) text = input('Say something:') engine.say(text) engine.runAndWait() if 'stop' in text: exit() elif 'exit' in text: exit() elif 'my songs' in query: speak('Here you g with music') music_dir = 'links' songs = os.listdir(music_dir) print(songs) random = os.startfile(os.path.join(music_dir, songs[0])) elif 'reason for you' in query.lower(): speak("I was created as the first big project by <NAME>") elif 'how to hack' in query: speak("no sir, you didn't programmed me to do these things") elif 'good morning' in query: speak('Good morning sir') elif 'i love you' in query: speak("It's hard to understand") elif 'is love' in query: speak('It is the 7th sence that destroy all other sence') elif "why you came to world" in query: speak("Thanks to Jibon. further It's a secret") elif 'want to change your name' in query: speak('If you want to change my name you have to go to the variable section and change the ai name.') elif 'think about love' in query: speak('Love is an useless thing. It will distroy your life') elif 'where is my home' in query: speak(f'Your home is in {home}') elif 'i live' in query: speak(f'You live in {live_in}') elif 'know hacking' in query: speak("No, I don't") elif 'pdf reader' in query: speak('opening pdf reader') book = open("name.pdf", "rb") pdfReader = PyPDF2.PdfFileReader(book) pages = pdfReader.numPages print(pages) elif 'open spell checker' in query: a = input("Input text:") print('Your word:' + str(a)) b = TextBlob(a) print('Corrected text:' + str(b.correct())) elif 'system information' in query: myS = platform.uname() print(f'System: {myS.system}') print(f'Node name: {myS.node}') print(f'Release: {myS.release}') print(f'Version: {myS.version}') print(f'Machine: {myS.machine}') print(f'Processor: {myS.processor}') elif 'a pattern' in query: def pattern(n): for i in range(n): print((i+1)*'*') for i in range(n-1,0,-1): print(i*'*') pattern(5) elif 'open calendar' in query: try: speak('tell me the number of the year') y = int(takeCommand()) speak('Tell me the number of the month') m = int(takeCommand()) print(calendar.month(y, m)) except Exception as e: print(e) speak("Sorry sir, I didn't understand") elif 'cowsay' in query: cowsay.daemon(input('Enter word:')) elif 'record voice' in query: fs = 44100 sc = int(input("Enter the duration in seconds: ")) print("Recording...\n") recordVoice = sounddevice.rec(int(sc * fs),samplerate = fs, channels = 2) sounddevice.wait() write("out.wav",fs,recordVoice) print("Finished...\nPlease check it") elif 'check the internet speed' in query: st = Speedtest() speak("Checking speed....") print("Your connection's download speed is:", st.download()) speak("Your connection's download speed is:" + str(st.download())) print("Your connection's upload speed is:", st.upload()) speak("Your connection's upload speed is:" + str(st.upload())) elif "check battery percentage" in query: battery = psutil.sensors_battery() percent = str(battery.percent) print("Your battery is running on "+percent+"% battery level") speak("Your battery is running on "+percent+"% battery level") elif "open obs" in query: os.startfile("C:\\Program Files\\obs-studio\\bin\\64bit\\obs64.exe") elif 'open canva' in query: os.startfile("C:\\Users\\Dinesh\\AppData\\Local\\Programs\\Canva\\Canva.exe") else: pass ```
{ "source": "JibranKalia/tfx", "score": 2 }
#### File: components/evaluator/executor.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import apache_beam as beam import tensorflow as tf import tensorflow_model_analysis as tfma from typing import Any, Dict, List, Text from google.protobuf import json_format from tfx import types from tfx.components.base import base_executor from tfx.proto import evaluator_pb2 from tfx.types import artifact_utils from tfx.utils import io_utils from tfx.utils import path_utils class Executor(base_executor.BaseExecutor): """Generic TFX model evaluator executor.""" def _get_slice_spec_from_feature_slicing_spec( self, spec: evaluator_pb2.FeatureSlicingSpec ) -> List[tfma.slicer.SingleSliceSpec]: """Given a feature slicing spec, returns a List of SingleSliceSpecs. Args: spec: slice specification. Returns: List of corresponding SingleSliceSpecs. Always includes the overall slice, even if it was not specified in the given spec. """ result = [] for single_spec in spec.specs: columns = single_spec.column_for_slicing result.append(tfma.slicer.SingleSliceSpec(columns=columns)) # Always include the overall slice. if tfma.slicer.SingleSliceSpec() not in result: result.append(tfma.slicer.SingleSliceSpec()) return result def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Returns: None """ if 'model_exports' not in input_dict: raise ValueError('\'model_exports\' is missing in input dict.') if 'examples' not in input_dict: raise ValueError('\'examples\' is missing in input dict.') if 'output' not in output_dict: raise ValueError('\'output\' is missing in output dict.') self._log_startup(input_dict, output_dict, exec_properties) # Extract input artifacts model_exports_uri = artifact_utils.get_single_uri( input_dict['model_exports']) feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) output_uri = artifact_utils.get_single_uri(output_dict['output']) eval_model_path = path_utils.eval_model_path(model_exports_uri) tf.logging.info('Using {} for model eval.'.format(eval_model_path)) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=eval_model_path) tf.logging.info('Evaluating model.') with beam.Pipeline(argv=self._get_beam_pipeline_args()) as pipeline: # pylint: disable=expression-not-assigned (pipeline | 'ReadData' >> beam.io.ReadFromTFRecord( file_pattern=io_utils.all_files_pattern( artifact_utils.get_split_uri(input_dict['examples'], 'eval'))) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, slice_spec=slice_spec, output_path=output_uri)) tf.logging.info( 'Evaluation complete. Results written to {}.'.format(output_uri)) ``` #### File: airflow_workshop/notebooks/tfx_utils.py ```python import os import time import papermill as pm import tensorflow_data_validation as tfdv import tensorflow_model_analysis as tfma import utils from ml_metadata.metadata_store import metadata_store from ml_metadata.proto import metadata_store_pb2 class TFXArtifactTypes(object): """Constants for different TFX artifact type names.""" EXAMPLES = 'ExamplesPath' SCHEMA = 'SchemaPath' EXAMPLE_STATS = 'ExampleStatisticsPath' EXAMPLE_VALIDATION = 'ExampleValidationPath' TRANSFORMED_EXAMPLES = 'TransformPath' MODEL = 'ModelExportPath' MODEL_EVAL = 'ModelEvalPath' class TFXExecutionTypes(object): """Constants for different TFX execution type names.""" EXAMPLE_GEN = 'examples_gen' STATISTICS_GEN = 'statistics_gen' SCHEMA_GEN = 'schema_gen' EXAMPLE_VALIDATION = 'example_validation' TRANSFORM = 'transform' TRAINER = 'trainer' EVALUATOR = 'evaluator' class TFXReadonlyMetadataStore(utils.ReadonlyMetadataStore): """A TFX ml-metadata store that provides read-only methods for notebooks.""" @staticmethod def from_sqlite_db(filename_uri): """Returns a `TFXReadonlyMetadataStore` based off a SQLITE db uri. Args: filename_uri: A `str` indicating the path to the SQLITE db. Returns: A `TFXReadonlyMetadataStore` based off a SQLITE db uri. """ c = metadata_store_pb2.ConnectionConfig() c.sqlite.filename_uri = filename_uri return TFXReadonlyMetadataStore(metadata_store.MetadataStore(c)) def display_tfma_analysis(self, model_id, slicing_column=None): """Displays TFMA metrics for `model_id` sliced by `slicing_column`. Args: model_id: A `int` indicating the id of a `TFXArtifactTypes.MODEL` artifact slicing_column: (Optional) A `str` indicating the slicing column for the TFMA metrics. Returns: A SlicingMetricsViewer object if in Jupyter notebook; None if in Colab. """ tfma_artifact = self.get_dest_artifact_of_type( model_id, TFXArtifactTypes.MODEL_EVAL) if tfma_artifact: return tfma.view.render_slicing_metrics( tfma.load_eval_result(tfma_artifact.uri), slicing_column=slicing_column) def compare_tfma_analysis(self, model_id, other_model_id): """Compares TFMA metrics for `model_id` and `other_model_id`. Args: model_id: A `int` indicating the id of a `TFXArtifactTypes.MODEL` artifact other_model_id: A `int` indicating the id of another `TFXArtifactTypes.MODEL` artifact. Returns: A TimeSeriesViewer object if in Jupyter notebook; None if in Colab. """ tfma_artifact, other_tfma_artifact = ( self.get_dest_artifact_of_type(model_id, TFXArtifactTypes.MODEL_EVAL), self.get_dest_artifact_of_type(other_model_id, TFXArtifactTypes.MODEL_EVAL) ) if tfma_artifact and other_tfma_artifact: eval_results = tfma.make_eval_results( [ tfma.load_eval_result(tfma_artifact.uri), tfma.load_eval_result(other_tfma_artifact.uri) ], tfma.constants.MODEL_CENTRIC_MODE) return tfma.view.render_time_series( eval_results, tfma.slicer.slicer.SingleSliceSpec()) def display_stats_for_examples(self, examples_id): """Displays stats for `examples_id`. Args: examples_id: A `int` indicating the id of a `TFXArtifactTypes.EXAMPLES` artifact. """ stats_artifact = self.get_dest_artifact_of_type( examples_id, TFXArtifactTypes.EXAMPLE_STATS) if stats_artifact: tfdv.visualize_statistics( tfdv.load_statistics(os.path.join(stats_artifact.uri, 'stats_tfrecord'))) def compare_stats_for_examples(self, examples_id, other_examples_id, name='', other_name=''): """Compares stats for `examples_id` and `other_examples_id`. Args: examples_id: A `int` indicating the id of one `TFXArtifactTypes.EXAMPLES` artifact. other_examples_id: A `int` indicating the id of another `TFXArtifactTypes.EXAMPLES` artifact. name: (Optional) A `str` indicating the label to use for stats of `examples_id`. other_name: (Optional) A `str` indicating the label to use for stats of `other_examples_id`. """ stats_artifact, other_stats_artifact = ( self.get_dest_artifact_of_type( examples_id, TFXArtifactTypes.EXAMPLE_STATS), self.get_dest_artifact_of_type( other_examples_id, TFXArtifactTypes.EXAMPLE_STATS) ) if stats_artifact and other_stats_artifact: tfdv.visualize_statistics( tfdv.load_statistics(stats_artifact.uri), rhs_statistics=tfdv.load_statistics(other_stats_artifact.uri), lhs_name=name, rhs_name=other_name) def display_examples_stats_for_model(self, model_id): """Displays stats for examples used to train `model_id`.""" examples_artifact = self.get_source_artifact_of_type( model_id, TFXArtifactTypes.EXAMPLES) if examples_artifact: self.display_stats_for_examples(examples_artifact.id) def compare_examples_stats_for_models(self, model_id, other_model_id): """Compares stats for examples to train `model_id` & `other_model_id`.""" examples_artifact, other_examples_artifact = ( self.get_source_artifact_of_type(model_id, TFXArtifactTypes.EXAMPLES), self.get_source_artifact_of_type( other_model_id, TFXArtifactTypes.EXAMPLES) ) if examples_artifact and other_examples_artifact: self.compare_stats_for_examples( examples_artifact.id, other_examples_artifact.id, name='model_'+str(model_id), other_name='model_'+str(other_model_id)) def display_tensorboard(self, model_id, *other_model_ids): """Returns a Tensorboard link for `model_id` and `other_model_ids`. Args: model_id: A `int` indicating the id of a `TFXArtifactTypes.MODEL` artifact. *other_model_ids: (Optional) A list of `int` indicating the ids of other `TFXArtifactTypes.MODEL` artifacts to also include in the Tensorboard invocation for comparison. """ model_ids = [model_id] + list(other_model_ids) model_artifacts = self.metadata_store.get_artifacts_by_id(model_ids) model_ids_str = '-'.join([str(m) for m in model_ids]) log_file = os.path.join( os.environ['HOME'], 'tensorboard_model_{}_log.txt'.format(model_ids_str), ) output_notebook_path = os.path.join( os.environ['HOME'], 'spawn_tensorboard_{}_output.ipynb'.format(model_ids_str), ) tensorboard_logdir = ','.join([ 'model_{}:{}'.format(m.id, m.uri) for m in model_artifacts ]) pm.execute_notebook( 'spawn_tensorboard.ipynb', output_notebook_path, parameters=dict(tb_logdir=tensorboard_logdir, tb_run_log=log_file), progress_bar=False) time.sleep(5) # Give it some time for log_filename to be flushed. with open(log_file) as f: for l in f: if 'TensorBoard' in l: # "TensorBoard 1.12.2 at http://... (Press CTRL+C to quit)" return l.split(' ')[3] ``` #### File: examples/chicago_taxi/chicago_taxi_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from tensorflow.python.lib.io import file_io # pylint: disable=g-direct-tensorflow-import from tfx.examples.chicago_taxi import preprocess from tfx.examples.chicago_taxi import process_tfma from tfx.examples.chicago_taxi import tfdv_analyze_and_validate from tfx.examples.chicago_taxi.trainer import task as trainer_task _DATA_DIR_PATH = os.path.join(os.path.dirname(__file__), 'data') _TRAINER_OUTPUT_DIR = 'train_output' _TRAIN_DATA_FILE_PREFIX = 'transformed_train_data' _EVAL_DATA_FILE_PREFIX = 'transformed_eval_data' class TaxiTest(tf.test.TestCase): """Unit test for taxi util.""" def setUp(self): super(TaxiTest, self).setUp() self._working_dir = os.path.join( os.environ.get('TEST_UNDECLARED_OUTPUTS_DIR', self.get_temp_dir()), self._testMethodName) file_io.recursive_create_dir(self._working_dir) def testPipeline(self): # TODO(b/113256925): Split this test to test preprocess and training # separately. Possibly using tft_unit to test the result of transform_data. stats_file = os.path.join(self._working_dir, 'train_stats') tfdv_analyze_and_validate.compute_stats( input_handle=os.path.join(_DATA_DIR_PATH, 'train/data.csv'), stats_path=stats_file) schema_file = os.path.join(self._working_dir, 'schema.pbtxt') tfdv_analyze_and_validate.infer_schema(stats_file, schema_file) transform_output_path = os.path.join(self._working_dir, 'transform_output') preprocess.transform_data( os.path.join(_DATA_DIR_PATH, 'train/data.csv'), outfile_prefix=_TRAIN_DATA_FILE_PREFIX, working_dir=transform_output_path, schema_file=schema_file) preprocess.transform_data( input_handle=os.path.join(_DATA_DIR_PATH, 'eval/data.csv'), outfile_prefix=_EVAL_DATA_FILE_PREFIX, working_dir=transform_output_path, transform_dir=transform_output_path, schema_file=schema_file) hparams = tf.contrib.training.HParams( train_steps=100, eval_steps=50, job_dir=self._working_dir, output_dir=os.path.join(self._working_dir, _TRAINER_OUTPUT_DIR), tf_transform_dir=transform_output_path, train_files=os.path.join(transform_output_path, '{}-*'.format(_TRAIN_DATA_FILE_PREFIX)), eval_files=os.path.join(transform_output_path, '{}-*'.format(_EVAL_DATA_FILE_PREFIX)), schema_file=schema_file) # TODO(b/113256925): Test the result of run_experiment. trainer_task.run_experiment(hparams) # Find where Trainer wrote the eval model eval_model_dir = os.path.join(self._working_dir, _TRAINER_OUTPUT_DIR, trainer_task.EVAL_MODEL_DIR) # Appends the directory name where the model was exported to (some number). eval_model_dir = os.path.join(eval_model_dir, os.listdir(eval_model_dir)[0]) # The data under eval_model was produced by test_train. # TODO(b/113256925): Test the result of process_tfma. process_tfma.process_tfma( eval_result_dir=self._working_dir, input_csv=os.path.join(_DATA_DIR_PATH, 'eval/data.csv'), eval_model_dir=eval_model_dir, schema_file=schema_file) if __name__ == '__main__': tf.test.main() ``` #### File: tfx/orchestration/component_launcher.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from typing import Any, Dict, List, Text, Type from ml_metadata.proto import metadata_store_pb2 from tfx import types from tfx.components.base import base_component from tfx.components.base import base_driver from tfx.components.base import base_executor from tfx.components.base import executor_spec from tfx.orchestration import data_types from tfx.orchestration import metadata from tfx.orchestration import publisher class BaseComponentLauncher(object): """Responsible for launching driver, executor and publisher of component.""" # pyformat: disable def __init__(self, component_info: data_types.ComponentInfo, driver_class: Type[base_driver.BaseDriver], component_executor_spec: executor_spec.ExecutorSpec, input_dict: Dict[Text, types.Channel], output_dict: Dict[Text, types.Channel], exec_properties: Dict[Text, Any], pipeline_info: data_types.PipelineInfo, driver_args: data_types.DriverArgs, metadata_connection_config: metadata_store_pb2.ConnectionConfig, additional_pipeline_args: Dict[Text, Any]): # pyformat: enable """Initialize a ComponentLauncher. Args: component_info: ComponentInfo of the component. driver_class: The driver class to run for this component. component_executor_spec: The executor spec to specify what to execute when launching this component. input_dict: Dictionary of input artifacts consumed by this component. output_dict: Dictionary of output artifacts produced by this component. exec_properties: Dictionary of execution properties. pipeline_info: An instance of data_types.PipelineInfo that holds pipeline properties. driver_args: An instance of data_types.DriverArgs that holds component specific driver args. metadata_connection_config: ML metadata connection config. additional_pipeline_args: Additional pipeline args, includes, - beam_pipeline_args: Beam pipeline args for beam jobs within executor. Executor will use beam DirectRunner as Default. """ self._pipeline_info = pipeline_info self._component_info = component_info self._driver_args = driver_args self._driver_class = driver_class self._component_executor_spec = component_executor_spec self._input_dict = input_dict self._output_dict = output_dict self._exec_properties = exec_properties self._metadata_connection_config = metadata_connection_config self._additional_pipeline_args = additional_pipeline_args def _run_driver(self, input_dict: Dict[Text, types.Channel], output_dict: Dict[Text, types.Channel], exec_properties: Dict[Text, Any] ) -> data_types.ExecutionDecision: """Prepare inputs, outputs and execution properties for actual execution.""" tf.logging.info('Run driver for %s', self._component_info.component_id) with metadata.Metadata(self._metadata_connection_config) as m: driver = self._driver_class(metadata_handler=m) execution_decision = driver.pre_execution( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, driver_args=self._driver_args, pipeline_info=self._pipeline_info, component_info=self._component_info) return execution_decision # TODO(jyzhao): consider returning an execution result. def _run_executor(self, execution_id: int, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Execute underlying component implementation.""" tf.logging.info('Run executor for %s', self._component_info.component_id) executor_context = base_executor.BaseExecutor.Context( beam_pipeline_args=self._additional_pipeline_args.get( 'beam_pipeline_args'), tmp_dir=os.path.join(self._pipeline_info.pipeline_root, '.temp', ''), unique_id=str(execution_id)) # TODO(hongyes): move this check to a specific method which can overrided # by subclasses. if not isinstance(self._component_executor_spec, executor_spec.ExecutorClassSpec): raise TypeError( 'component_executor_spec must be an instance of ExecutorClassSpec.') # Type hint of component will cause not-instantiable error as # ExecutorClassSpec.executor_class is Type[BaseExecutor] which has an # abstract function. executor = self._component_executor_spec.executor_class( executor_context) # type: ignore executor.Do(input_dict, output_dict, exec_properties) def _run_publisher(self, use_cached_results: bool, execution_id: int, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]]) -> None: """Publish execution result to ml metadata.""" tf.logging.info('Run publisher for %s', self._component_info.component_id) with metadata.Metadata(self._metadata_connection_config) as m: p = publisher.Publisher(metadata_handler=m) p.publish_execution( execution_id=execution_id, input_dict=input_dict, output_dict=output_dict, use_cached_results=use_cached_results) def launch(self) -> int: """Execute the component, includes driver, executor and publisher. Returns: The execution id of the launch. """ execution_decision = self._run_driver(self._input_dict, self._output_dict, self._exec_properties) if not execution_decision.use_cached_results: self._run_executor(execution_decision.execution_id, execution_decision.input_dict, execution_decision.output_dict, execution_decision.exec_properties) self._run_publisher(execution_decision.use_cached_results, execution_decision.execution_id, execution_decision.input_dict, execution_decision.output_dict) return execution_decision.execution_id # TODO(ajaygopinathan): Combine with BaseComponentLauncher once we either: # - have a way to serialize/deserialize components, or # - have a clean way to use factory methods to create this class. class ComponentLauncher(BaseComponentLauncher): """Responsible for launching driver, executor and publisher of component. Convenient subclass when given a concrete component to launch. """ def __init__(self, component: base_component.BaseComponent, pipeline_info: data_types.PipelineInfo, driver_args: data_types.DriverArgs, metadata_connection_config: metadata_store_pb2.ConnectionConfig, additional_pipeline_args: Dict[Text, Any]): """Initialize a ComponentLauncher. Args: component: The component to launch. pipeline_info: An instance of data_types.PipelineInfo that holds pipeline properties. driver_args: An instance of data_types.DriverArgs that holds component specific driver args. metadata_connection_config: ML metadata connection config. additional_pipeline_args: Additional pipeline args, includes, - beam_pipeline_args: Beam pipeline args for beam jobs within executor. Executor will use beam DirectRunner as Default. """ component_info = data_types.ComponentInfo( component_type=component.component_type, component_id=component.component_id) super(ComponentLauncher, self).__init__( component_info=component_info, driver_class=component.driver_class, component_executor_spec=component.executor_spec, input_dict=component.inputs.get_all(), output_dict=component.outputs.get_all(), exec_properties=component.exec_properties, pipeline_info=pipeline_info, driver_args=driver_args, metadata_connection_config=metadata_connection_config, additional_pipeline_args=additional_pipeline_args) ``` #### File: orchestration/kubeflow/container_entrypoint.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import logging import os import sys import tensorflow as tf from typing import Any, Dict, Text from ml_metadata.proto import metadata_store_pb2 from tfx.orchestration import component_launcher from tfx.orchestration import data_types from tfx.orchestration.kubeflow.proto import kubeflow_pb2 from tfx.types import artifact_utils from tfx.types import channel from tfx.utils import import_utils from tfx.utils import json_utils from google.protobuf import json_format def _get_config_value(config_value: kubeflow_pb2.ConfigValue) -> Text: value_from = config_value.WhichOneof('value_from') if value_from is None: raise ValueError('No value set in config value: {}'.format(config_value)) if value_from == 'value': return config_value.value return os.getenv(config_value.environment_variable) # TODO(ajaygopinathan): Add unit tests for these helper functions. def _get_metadata_connection_config( kubeflow_metadata_config: kubeflow_pb2.KubeflowMetadataConfig ) -> metadata_store_pb2.ConnectionConfig: """Constructs a metadata connection config. Args: kubeflow_metadata_config: Configuration parameters to use for constructing a valid metadata connection config in a Kubeflow cluster. Returns: A metadata_store_pb2.ConnectionConfig object. """ connection_config = metadata_store_pb2.ConnectionConfig() connection_config.mysql.host = _get_config_value( kubeflow_metadata_config.mysql_db_service_host) connection_config.mysql.port = int( _get_config_value(kubeflow_metadata_config.mysql_db_service_port)) connection_config.mysql.database = _get_config_value( kubeflow_metadata_config.mysql_db_name) connection_config.mysql.user = _get_config_value( kubeflow_metadata_config.mysql_db_user) connection_config.mysql.password = _get_config_value( kubeflow_metadata_config.mysql_db_password) return connection_config def _make_channel_dict(artifact_dict: Dict[Text, Text] ) -> Dict[Text, channel.Channel]: """Makes a dictionary of artifact channels from a dictionary of artifacts. Args: artifact_dict: Dictionary of artifacts. Returns: Dictionary of artifact channels. Raises: RuntimeError: If list of artifacts is malformed. """ channel_dict = {} for name, artifact_list in artifact_dict.items(): if not artifact_list: raise RuntimeError( 'Found empty list of artifacts for input/output named {}: {}'.format( name, artifact_list)) type_name = artifact_list[0].type_name channel_dict[name] = channel.Channel( type_name=type_name, artifacts=artifact_list) return channel_dict def _make_additional_pipeline_args(json_additional_pipeline_args: Text ) -> Dict[Text, Any]: """Constructs additional_pipeline_args for ComponentLauncher. Currently, this mainly involves parsing and constructing `beam_pipeline_args`. Args: json_additional_pipeline_args: JSON serialized dictionary of additional pipeline args. Returns: Dictionary containing `additional_pipeline_args`. """ additional_pipeline_args = json.loads(json_additional_pipeline_args) # Ensure beam pipelines args has a setup.py file so we can use # DataflowRunner. beam_pipeline_args = additional_pipeline_args.get('beam_pipeline_args', []) module_dir = os.environ['TFX_SRC_DIR'] setup_file = os.path.join(module_dir, 'setup.py') tf.logging.info('Using setup_file \'%s\' to capture TFX dependencies', setup_file) beam_pipeline_args.append('--setup_file={}'.format(setup_file)) additional_pipeline_args['beam_pipeline_args'] = beam_pipeline_args return additional_pipeline_args def main(): # Log to the container's stdout so Kubeflow Pipelines UI can display logs to # the user. logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--pipeline_name', type=str, required=True) parser.add_argument('--pipeline_root', type=str, required=True) parser.add_argument('--kubeflow_metadata_config', type=str, required=True) parser.add_argument('--additional_pipeline_args', type=str, required=True) parser.add_argument('--component_id', type=str, required=True) parser.add_argument('--component_type', type=str, required=True) parser.add_argument('--driver_class_path', type=str, required=True) parser.add_argument('--executor_spec', type=str, required=True) parser.add_argument('--inputs', type=str, required=True) parser.add_argument('--outputs', type=str, required=True) parser.add_argument('--exec_properties', type=str, required=True) parser.add_argument('--enable_cache', action='store_true') args = parser.parse_args() inputs = artifact_utils.parse_artifact_dict(args.inputs) input_dict = _make_channel_dict(inputs) outputs = artifact_utils.parse_artifact_dict(args.outputs) output_dict = _make_channel_dict(outputs) exec_properties = json.loads(args.exec_properties) driver_class = import_utils.import_class_by_path(args.driver_class_path) executor_spec = json_utils.loads(args.executor_spec) kubeflow_metadata_config = kubeflow_pb2.KubeflowMetadataConfig() json_format.Parse(args.kubeflow_metadata_config, kubeflow_metadata_config) connection_config = _get_metadata_connection_config(kubeflow_metadata_config) component_info = data_types.ComponentInfo( component_type=args.component_type, component_id=args.component_id) driver_args = data_types.DriverArgs(enable_cache=args.enable_cache) additional_pipeline_args = _make_additional_pipeline_args( args.additional_pipeline_args) launcher = component_launcher.BaseComponentLauncher( component_info=component_info, driver_class=driver_class, component_executor_spec=executor_spec, input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, pipeline_info=data_types.PipelineInfo( pipeline_name=args.pipeline_name, pipeline_root=args.pipeline_root, run_id=os.environ['WORKFLOW_ID']), driver_args=driver_args, metadata_connection_config=connection_config, additional_pipeline_args=additional_pipeline_args) launcher.launch() if __name__ == '__main__': main() ```
{ "source": "JibRay/runsPlot", "score": 3 }
#### File: JibRay/runsPlot/runsPlot.py ```python from mpl_toolkits import mplot3d import numpy as np import matplotlib.pyplot as plt from matplotlib import cm #from matplotlib.ticker import LinearLocator, FormatStrFormatter import argparse import datetime from datetime import date #============================================================================ # Globals version = 4 #Input file field index values. TYPE = 0 TIME_STAMP = 1 DISTANCE = 4 TIME = 6 #============================================================================ # Classes # A class to hold a run event. class Event: def __init__(self, _timeStamp, _distance, _pace): self.timeStamp = _timeStamp # date. self.day = 0 # Day count from first run. self.distance = _distance # In miles. self.pace = _pace # In minutes per mile. # A class to hold all the runs. class Runs: def __init__(self): self.inputEvents = np.array([], dtype = Event) self.day = [] self.distance = [] self.pace = [] def length(self): return len(self.inputEvents) # For each run in the file at path, load date, distance and pace. Pace is # computed from distance and time. def load(self, path): values = [] self.__init__() with open(path) as inputFile: # Skip the header line. inputFile.readline() for line in inputFile: text = self.removeQuotesAndCommas(line) values = text.split(',') # Load only running events. if values[TYPE] == 'Running': # From values, get date, distance in miles. runDate = date.fromisoformat(values[TIME_STAMP].split()[0]) runDistance = float(values[DISTANCE]) # To get run pace, first convert time (hh:mm:ss) to minutes, then # compute pace (minutes/mile). h, m, s = values[TIME].split(':') t = 60.0 * float(h) + float(m) + (float(s) / 60.0) runPace = t / runDistance # Exclude outliers. if runDistance >= 2.0 and runDistance <= 27.0 \ and runPace > 4.0 and runPace < 20.0: self.inputEvents = np.append(self.inputEvents, \ Event(runDate, runDistance, runPace)) # Computer the day numbers. firstDay = self.inputEvents[len(self.inputEvents) - 1].timeStamp for event in self.inputEvents: event.day = (event.timeStamp - firstDay).days def fitPlane(self): # Create the arrays needed for the fit. self.day = [] self.distance = [] self.pace = [] for event in self.inputEvents: self.day.append(event.day); self.distance.append(event.distance); self.pace.append(event.pace); tmp_A = [] tmp_b = [] for i in range(len(self.day)): tmp_A.append([self.day[i], self.distance[i], 1]) tmp_b.append(self.pace[i]) b = np.matrix(tmp_b).T A = np.matrix(tmp_A) self.fit = (A.T * A).I * A.T *b errors = b - A * self.fit residual = np.linalg.norm(errors) print("solution:") print(" %f x + %f y + %f = z" %(self.fit[0], self.fit[1], self.fit[2])) # print("errors:") # print(" ", errors) print("residual:") print(" ", residual) def plot(self): fig = plt.figure() ax = plt.subplot(111, projection = '3d') ax.scatter(self.day, self.distance, self.pace, color = 'b') xlim = ax.get_xlim() ylim = ax.get_ylim() X, Y = np.meshgrid(np.arange(xlim[0], xlim[1]), \ np.arange(ylim[0], ylim[1])) Z = np.zeros(X.shape) for r in range(X.shape[0]): for c in range(X.shape[1]): Z[r,c] = self.fit[0] * X[r,c] + self.fit[1] * Y[r,c] + self.fit[2] ax.plot_wireframe(X, Y, Z, color = 'y') ax.set_xlabel('Days since ' + \ self.inputEvents[len(self.inputEvents)-1].timeStamp.strftime("%m-%d-%Y")) ax.set_ylabel('Distance - miles') ax.set_zlabel('Pace - min/mile') plt.show() # Remove commas embedded in quoted strings. Remove quotes from strings. # Return the modified string. def removeQuotesAndCommas(self, inputText): inQuotes = False outputText = '' for c in inputText: if inQuotes: if c == '"': inQuotes = False elif c != ',': outputText += c else: if c == '"': inQuotes = True else: outputText += c return outputText #============================================================================ # Functions def displayVersion(): print("runsPlot version " + str(version)) quit() #============================================================================ # Main program parser = argparse.ArgumentParser(description = \ "Plot pace vs time and length of run") parser.add_argument('inputFile', type = str, help = 'Input file path') parser.add_argument('-v', '--version', action = 'store_true', \ help = 'Display version and quit') args = parser.parse_args() if args.version: displayVersion() runs = Runs() runs.load(args.inputFile) print("Total number of runs = ", runs.length()) runs.fitPlane() runs.plot() ```
{ "source": "jibsen/tmcolorconv", "score": 2 }
#### File: jibsen/tmcolorconv/tmcolorconv.py ```python import argparse import collections import math import operator import plistlib import re # Generated using mkconvmatrix.py GenericRGBtosRGB = [[1.0252482, -0.0265428, 0.0012946], [0.0193970, 0.9480316, 0.0325714], [-0.0017702, -0.0014426, 1.0032128]] def mat_vec_mul(M, v): """Multiply matrix by vector.""" return [sum(map(operator.mul, r, v)) for r in M] def str_to_color(s): """Convert hex string to color value.""" if len(s) == 3: s = ''.join(c + c for c in s) values = bytes.fromhex(s) # Scale from [0-255] to [0-1] return [c / 255.0 for c in values] def color_to_str(C): """Convert color value to hex string.""" # Scale from [0-1] to [0-255] V = [int(round(c * 255)) for c in C] # Clamp values to [0-255] for i in range(len(V)): V[i] = max(min(V[i], 255), 0) return '#{:02X}{:02X}{:02X}'.format(V[0], V[1], V[2]) def alpha_blend(color, base, alpha): """Blend color and base based on alpha.""" return [c * alpha + b * (1 - alpha) for c, b in zip(color, base)] def sRGB_compand(c): if c <= 0.0031308: return 12.92 * c else: return 1.055 * math.pow(c, 1 / 2.4) - 0.055 def convert_color(Vin, gamma): """Convert color Vin from Generic RGB to sRGB.""" # Linearize v = [math.pow(c, gamma) for c in Vin] v_srgb = mat_vec_mul(GenericRGBtosRGB, v) # sRGB companding Vout = list(map(sRGB_compand, v_srgb)) return Vout def convert_scheme(scheme, gamma, blend_alpha): """Convert colors in scheme from Generic RGB to sRGB. Args: scheme: tmTheme loaded through plistlib. gamma (float): Gamma value of colors. blend_alpha (bool): If True, colors with alpha are blended, otherwise the alpha value is copied. Returns: Converted scheme. """ bg = [0, 0, 0] fg = [0, 0, 0] if gamma == 2.2: gamma = 563 / 256.0 elif gamma == 1.8: gamma = 461 / 256.0 for idx, entry in enumerate(scheme['settings']): for k, v in entry['settings'].items(): # Match 6 digit hex color with optional alpha match = re.match('#([0-9a-fA-F]{6})([0-9a-fA-F]{2})?', v) # Match 3 digit hex color if not match: match = re.match('#([0-9a-fA-F]{3})', v) if match: color = str_to_color(match.group(1)) alpha_str = match.group(2) # Blend alpha if present if blend_alpha and alpha_str: alpha = int(alpha_str, 16) / 255.0 alpha_str = None if k in ('background', 'lineHighlight', 'selection'): color = alpha_blend(color, bg, alpha) else: color = alpha_blend(color, fg, alpha) # Update fg and bg if in editor settings if idx == 0: if k == 'foreground': fg = color elif k == 'background': bg = color # Update hex color in scheme color_str = color_to_str(convert_color(color, gamma)) color_str += alpha_str or '' scheme['settings'][idx]['settings'][k] = color_str return scheme if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert Generic RGB to sRGB.') parser.add_argument('infile', type=argparse.FileType('rb'), help='input tmTheme file') parser.add_argument('outfile', type=argparse.FileType('wb'), help='output tmTheme file') parser.add_argument('-g', '--gamma', type=float, default=1.8, help='input gamma (default 1.8)') parser.add_argument('-b', action='store_true', help='blend alpha') args = parser.parse_args() scheme = plistlib.load(args.infile, dict_type=collections.OrderedDict) if scheme.get('colorSpaceName') == 'sRGB': print('Warning: colorSpaceName key is already sRGB') else: scheme['colorSpaceName'] = 'sRGB' convert_scheme(scheme, args.gamma, args.b) plistlib.dump(scheme, args.outfile, sort_keys=False) ```
{ "source": "jic198/mpmorph", "score": 3 }
#### File: mpmorph/fireworks/powerups.py ```python from mpmorph.firetasks.dbtasks import VaspMDToDb, TrajectoryDBTask from mpmorph.firetasks.glue_tasks import PreviousStructureTask, SaveStructureTask, \ PassPVTask from mpmorph.firetasks.mdtasks import RescaleVolumeTask, ConvergeTask, PVRescaleTask, \ DiffusionTask __author__ = '<NAME> and <NAME>' __maintainer__ = "<NAME>" __email__ = "<EMAIL>" def add_diffusion_task(fw, **kwargs): spawner_task = DiffusionTask(**kwargs) fw.tasks.append(spawner_task) return fw def add_converge_task(fw, **kwargs): """ This powerup adds the convergence task onto a MD firework, which turns a workflow into a dynamic workflow. This firetask will check to ensure the specified parameters (Usually pressure and Energy) are converged within the specified thresholds. :param fw: :param kwargs: :return: """ spawner_task = ConvergeTask(**kwargs) fw.tasks.append(spawner_task) return fw def aggregate_trajectory(fw, **kwargs): """ This firetask will add a task which converts a series of MD runs into a trajectory object :param fw: :param kwargs: :return: """ fw.tasks.append(TrajectoryDBTask(**kwargs)) return fw def add_cont_structure(fw): prev_struct_task = PreviousStructureTask() insert_i = 2 for (i, task) in enumerate(fw.tasks): if task.fw_name == "{{atomate.vasp.firetasks.run_calc.RunVaspCustodian}}": insert_i = i break fw.tasks.insert(insert_i, prev_struct_task) return fw def add_pass_structure(fw, **kwargs): save_struct_task = SaveStructureTask(**kwargs) fw.tasks.append(save_struct_task) return fw def add_pass_pv(fw, **kwargs): pass_pv_task = PassPVTask(**kwargs) fw.tasks.append(pass_pv_task) return fw def add_pv_volume_rescale(fw): insert_i = 2 for (i, task) in enumerate(fw.tasks): if task.fw_name == "{{atomate.vasp.firetasks.run_calc.RunVaspCustodian}}": insert_i = i break fw.tasks.insert(insert_i, PVRescaleTask()) return fw def add_rescale_volume(fw, **kwargs): rsv_task = RescaleVolumeTask(**kwargs) insert_i = 2 for (i, task) in enumerate(fw.tasks): if task.fw_name == "{{atomate.vasp.firetasks.run_calc.RunVaspCustodian}}": insert_i = i break fw.tasks.insert(insert_i, rsv_task) return fw def replace_pass_structure(fw, **kwargs): # look for rescale_volume task replaced = False fw_dict = fw.to_dict() for i in range(len(fw_dict['spec']['_tasks'])): if fw_dict['spec']['_tasks'][i]["_fw_name"] == '{{mpmorph.firetasks.glue_tasks.SaveStructureTask}}': del fw_dict['spec']['_tasks'][i]["_fw_name"] fw.tasks[i] = SaveStructureTask(**kwargs) replaced = True break # TODO: Replace with real error handling if replaced == False: print("error, no SaveStructureTask to replace") return return fw def replace_vaspmdtodb(fw): # look for vaspdb task replaced = False fw_dict = fw.to_dict() for i in range(len(fw_dict['spec']['_tasks'])): if fw_dict['spec']['_tasks'][i]["_fw_name"] == '{{atomate.vasp.firetasks.parse_outputs.VaspToDb}}': del fw_dict['spec']['_tasks'][i]["_fw_name"] fw.tasks[i] = VaspMDToDb(**fw_dict['spec']['_tasks'][i]) replaced = True break # TODO: Replace with real error handling if replaced == False: print("error, no vasptodb to replace") return return fw ``` #### File: mpmorph/workflows/quench.py ```python import numpy as np from atomate.vasp.fireworks.core import OptimizeFW from fireworks import Workflow from mpmorph.fireworks import powerups from mpmorph.fireworks.core import StaticFW, MDFW from mpmorph.util import recursive_update __author__ = '<NAME> and <NAME>' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' def get_quench_wf(structures, temperatures={}, priority=None, quench_type="slow_quench", cool_args={}, hold_args={}, quench_args={}, descriptor="", **kwargs): fw_list = [] temp = {"start_temp": 3000, "end_temp": 500, "temp_step": 500} if temp is None else temp cool_args = {"md_params": {"nsteps": 200}} if cool_args is None else cool_args hold_args = {"md_params": {"nsteps": 500}} if hold_args is None else hold_args quench_args = {} if quench_args is None else quench_args for (i, structure) in enumerate(structures): _fw_list = [] if quench_type == "slow_quench": for temp in np.arange(temperatures["start_temp"], temperatures["end_temp"], -temperatures["temp_step"]): # get fw for cool step use_prev_structure = False if len(_fw_list) > 0: use_prev_structure = True _fw = get_MDFW(structure, t, t - temp["temp_step"], name="snap_" + str(i) + "_cool_" + str(t - temp["temp_step"]), args=cool_args, parents=[_fw_list[-1]] if len(_fw_list) > 0 else [], priority=priority, previous_structure=use_prev_structure, insert_db=True, **kwargs) _fw_list.append(_fw) # get fw for hold step _fw = get_MDFW(structure, t - temp["temp_step"], t - temp["temp_step"], name="snap_" + str(i) + "_hold_" + str(t - temp["temp_step"]), args=hold_args, parents=[_fw_list[-1]], priority=priority, previous_structure=True, insert_db=True, **kwargs) _fw_list.append(_fw) if quench_type in ["slow_quench", "mp_quench"]: # Relax OptimizeFW and StaticFW run_args = {"run_specs": {"vasp_input_set": None, "vasp_cmd": ">>vasp_cmd<<", "db_file": ">>db_file<<", "spec": {"_priority": priority} }, "optional_fw_params": {"override_default_vasp_params": {}} } run_args = recursive_update(run_args, quench_args) _name = "snap_" + str(i) fw1 = OptimizeFW(structure=structure, name=_name + descriptor + "_optimize", parents=[_fw_list[-1]] if len(_fw_list) > 0 else [], **run_args["run_specs"], **run_args["optional_fw_params"], max_force_threshold=None) if len(_fw_list) > 0: fw1 = powerups.add_cont_structure(fw1) fw1 = powerups.add_pass_structure(fw1) fw2 = StaticFW(structure=structure, name=_name + descriptor + "_static", parents=[fw1], **run_args["run_specs"], **run_args["optional_fw_params"]) fw2 = powerups.add_cont_structure(fw2) fw2 = powerups.add_pass_structure(fw2) _fw_list.extend([fw1, fw2]) fw_list.extend(_fw_list) name = structure.composition.reduced_formula + descriptor + "_quench" wf = Workflow(fw_list, name=name) return wf def get_MDFW(structure, start_temp, end_temp, name="molecular dynamics", priority=None, job_time=None, args={}, **kwargs): run_args = {"md_params": {"nsteps": 500}, "run_specs": {"vasp_input_set": None, "vasp_cmd": ">>vasp_cmd<<", "db_file": ">>db_file<<", "wall_time": 40000}, "optional_fw_params": {"override_default_vasp_params": {}, "spec": {}}} run_args["optional_fw_params"]["override_default_vasp_params"].update( {'user_incar_settings': {'ISIF': 1, 'LWAVE': False, 'PREC': 'Low'}}) run_args = recursive_update(run_args, args) _mdfw = MDFW(structure=structure, name=name, **run_args["md_params"], **run_args["run_specs"], **run_args["optional_fw_params"], **kwargs) return _mdfw ```
{ "source": "jicaiyunshang/jicaiauto", "score": 2 }
#### File: test/WebTest/test_Jicai_WebUI.py ```python __author__ = 'Tser' __email__ = '<EMAIL>' __project__ = 'jicaiauto' __script__ = 'testJicai.py' __create_time__ = '2020/7/15 23:34' from jicaiauto.jicaiauto import web_action from jicaiauto.utils.jicaiautoEmail import send_email from jicaiauto.data.GLO_VARS import PUBLIC_VARS from jicaiauto.config.config import EMAILCONFIG from os import path from time import sleep import pytest emil = { 'sender' : '<EMAIL>', 'receiver' : '<EMAIL>', 'smtpserver': 'smtp.163.com', 'smtp_port' : 25, 'username' : 'username', 'password' : 'password', 'subject' : '吉彩云尚自动化测试报告', 'report' : 'report.html' } PUBLIC_VARS.update(emil) @pytest.mark.jicai_web def test_manzhai_Case1(browser): web_action(browser, cmd='打开', loc='', data='http://www.baidu.com') web_action(browser, '输入', '//*[@id="kw"]', '小白科技') web_action(browser, '点击', '//*[@id="su"]') web_action(browser, '停止时间', data=3) web_action(browser, '标题', contains_assert='小白') @pytest.mark.jicai_web def test_manzhai_Case2(browser): web_action(browser, cmd='打开', loc='', data='https://www.baidu.com') web_action(browser, '输入', '//*[@id="kw"]', '吉彩云尚') web_action(browser, '点击', '//*[@id="su"]') web_action(browser, '停止时间', data=3) web_action(browser, '标题', contains_assert='吉彩-') web_action(browser, '关闭') @pytest.mark.last def test_last(): ''' 本次结束测试结束,发送邮件 ''' print('测试结束了,发个邮件吧') sleep(5) _emil = EMAILCONFIG() _cur_path = path.abspath(path.curdir) print(PUBLIC_VARS) print(_emil) if 'report' in PUBLIC_VARS.keys() and '' != PUBLIC_VARS['report']: if path.isfile(_cur_path + '/' + PUBLIC_VARS['report']): send_email(_cur_path + '/' + PUBLIC_VARS['report']) elif '' != _emil.report: if path.isfile(_cur_path + '/' + _emil.report): send_email(_cur_path + '/' + _emil.report) @pytest.mark.run(order=1) def test_first(): print('测试开始了') ``` #### File: jicaiauto/utils/jicaiautodb.py ```python __author__ = 'Tser' __email__ = '<EMAIL>' __project__ = 'jicaiauto' __script__ = 'init_db.py' __create_time__ = '2020/7/2 21:45' from sqlite3 import connect from jicaiauto.config.config import DBCONFIG class DB(object): def __init__(self): self.conn = connect(DBCONFIG().dbpath) self.cur = self.conn.cursor() def select(self, sql=None, parames=None, *args, **kwargs): return self.cur.execute(sql).fetchall() def update(self, sql=None, parames=None, *args, **kwargs): self.cur.execute(sql) self.conn.commit() def __del__(self): self.cur.close() self.conn.close() ```
{ "source": "jicarretero/lcp", "score": 3 }
#### File: lcp/api/error_handler.py ```python from falcon.errors import HTTPBadRequest as HTTP_Bad_Request from falcon.errors import HTTPInternalServerError as HTTP_Internal_Server_Error from falcon.errors import HTTPUnsupportedMediaType as HTTP_Unsupported_Media_Type from lib.response import Bad_Request_Response, Internal_Server_Error_Response, Unsupported_Media_Type_Response class Base_Handler(object): @classmethod def handler(cls, req, resp, ex, params): cls.response(exception=ex).apply(resp) resp.complete = True @classmethod def get(cls): return cls.error, cls.handler class Bad_Request_Handler(Base_Handler): error = HTTP_Bad_Request response = Bad_Request_Response class Internal_Server_Error_Handler(Base_Handler): error = HTTP_Internal_Server_Error response = Internal_Server_Error_Response class Unsupported_Media_Type_Handler(Base_Handler): error = HTTP_Unsupported_Media_Type response = Unsupported_Media_Type_Response ``` #### File: lcp/api/middleware.py ```python class Negotiation_Middleware(object): def process_request(self, req, resp): resp.content_type = req.content_type ``` #### File: lcp/extra/extra_utils.py ```python from urllib.parse import urlparse HTTP_SCHEME = "http" HTTPS_SCHEME = "https" class UrlSchemaData: def __init__(self, url): r = urlparse(url) self.scheme = r.scheme self.netloc = r.netloc self.port = 0 self.host = "" self.https = False self.get_port() def get_port(self): try: self.host, port = self.netloc.split(":", 1) self.port = int(port) except ValueError: self.host = self.netloc if self.scheme == HTTPS_SCHEME: self.port = 443 else: self.port = 80 if self.scheme == HTTPS_SCHEME: self.https = True ``` #### File: lcp/resource/config.py ```python import subprocess as sp import time from os.path import expanduser as expand_user from resource.base import Base_Resource from docstring import docstring from lib.http import HTTP_Method from lib.parser import json_parser, property_parser, xml_parser, yaml_parser from lib.response import Bad_Request_Response, Base_Response, Content_Response, No_Content_Response, Not_Found_Response from schema.config import (Config_Action_Response_Schema, Config_Parameter_Response_Schema, Config_Request_Schema, Config_Resource_Response_Schema) from utils.datetime import datetime_to_str from utils.exception import extract_info from utils.json import loads from utils.sequence import is_list, wrap File_Not_Found_Error = FileNotFoundError class Config_Resource(Base_Resource): tag = {'name': 'config', 'description': 'Configuration at run-time.'} routes = '/config', parsers = {'json': json_parser, 'properties': property_parser, 'xml': xml_parser, 'yaml': yaml_parser} @docstring(source='config/post.yaml') def on_post(self, req, resp): req_data = req.media or {} resp_data, valid = Config_Request_Schema(many=is_list(req_data), method=HTTP_Method.POST).validate(data=req_data) if valid: req_data_wrap = wrap(req_data) if len(req_data_wrap) > 0: for config in req_data_wrap: for cfg, cfg_list in config.items(): for data in wrap(cfg_list): output = {} if cfg == 'actions': output = self.__actions(data) schema = Config_Action_Response_Schema elif cfg == 'parameters': output = self.__parameters(data) schema = Config_Parameter_Response_Schema elif cfg == 'resources': output = self.__resources(data) schema = Config_Resource_Response_Schema if isinstance(output, Base_Response): output.add(resp) else: output_data = data.copy() id = output_data.pop('id', None) output.update(id=id, data=output_data, timestamp=datetime_to_str()) resp_data, valid = schema(many=False, method=HTTP_Method.POST, unknown='INCLUDE').validate(data=output) if valid: Content_Response(output).add(resp) else: resp_data.add(resp) else: msg = 'No content to apply configurations with the {{request}}' No_Content_Response(msg, request=req_data).apply(resp) else: resp_data.apply(resp) def __actions(self, data): cmd = data.get('cmd', None) daemon = data.get('daemon', False) output_format = data.get('output_format', 'plain') output = {'type': 'action'} run = ' '.join([cmd] + wrap(data.get('args', []))) start = time.time() proc = self.__run_cmd(cmd=run, daemon=daemon, output=output) if daemon: output.update(error=False, return_code=0) else: output.update(error=proc.returncode != 0, return_code=proc.returncode, duration=time.time() - start) self.__set_std(proc.stdout, output, 'stdout', output_format) self.__set_std(proc.stderr, output, 'stderr', output_format) return output def __parameters(self, data): schema = data.get('schema', None) source = data.get('source', None) path = wrap(data.get('path', [])) value = data.get('value', None) output = {'type': 'parameter'} try: source = expand_user(source) output.update(self.parsers.get(schema)(schema, source, path, value)) return output except File_Not_Found_Error as e: msg = f'Source {source} not found' self.log.exception(msg, e) return Not_Found_Response(msg, e, type='parameter', data=data) except Exception as e: msg = f'Source {source} not accessible' self.log.exception(msg, e) return Bad_Request_Response(e, message=msg, type='parameter', data=data) def __resources(self, data): path = data.get('path', None) content = data.get('content', None) output = {'type': 'resource'} try: fix_path = expand_user(path) with open(fix_path, "w") as file: file.write(content) output.update(path=path, content=content) return output except FileNotFoundError as e: msg = f'Path {path} not found' self.log.exception(msg, e) return Not_Found_Response(msg, e, type='resource', data=data) except Exception as e: msg = f'Path {path} not accessible' self.log.exception(msg, e) return Bad_Request_Response(e, message=msg, type='resource', data=data) def __set_std(self, data, output, key, output_format): if data: data = data.strip() if output_format == 'plain': output[key] = data elif output_format == 'lines': output[key] = data.splitlines() else: try: output[key] = loads(data) except Exception as e: msg = f'Not valid JSON for {key}' self.log.exception(msg, e) output.update(description=msg, exception=extract_info(e)) output[key] = data def __run_cmd(self, cmd, daemon, output): if not daemon: return sp.run(cmd, check=False, shell=True, stdout=sp.PIPE, stderr=sp.PIPE, universal_newlines=True) else: return sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE, start_new_session=True) ``` #### File: lcp/resource/security_functions.py ```python from schema.security_functions import Agent as AgentSchema from schema.security_functions import AgentType from docstring import docstring from resource.base import Base_Resource import json from marshmallow.exceptions import ValidationError from falcon import HTTP_CREATED, HTTP_NOT_ACCEPTABLE, HTTP_NOT_FOUND, HTTP_PRECONDITION_FAILED from extra.lcp_config import LCPConfig from extra.controller import LCPController class SecurityFunction(Base_Resource): tag = {'name': 'Agents', 'description': 'Describes the Agent types and Agent instances.'} routes = '/agent/instance', def __init__(self): pass @docstring(source='Agents/GetAgentInstanceResource.yml') def on_get(self, req, resp): # resp_data, valid = SecurityFunctionSchema(method=HTTP_Method.GET) \ # .validate(data={}) resp.body = json.dumps(LCPConfig().agents) @docstring(source='Agents/PostAgentInstanceResource.yml') def on_post(self, req, resp): # resp_data, valid = AgentSchema(method=HTTP_Method.POST) \ # .validate(data={}) payload = req.media if isinstance(req.media, list) else [req.media] try: ag_schema = AgentSchema(many=True) ag_schema.load(payload) controller = LCPController() for e in payload: try: controller.set_agent_instance(e) except KeyError: resp.body = '{"error": "agent_type "' + e['type'] + ' not found"}' resp.status = HTTP_NOT_FOUND return resp.status = HTTP_CREATED except ValidationError as e: resp.body = json.dumps(e.messages) req.status = HTTP_NOT_ACCEPTABLE class SecurityFunctionbyId(Base_Resource): tag = {'name': 'Agents', 'description': 'Describes the Agent types and Agent instances.'} routes = '/agent/instance/{id}', def __init__(self): pass @docstring(source='Agents/PutAgentInstanceResource.yml') def on_put(self, req, resp, id): req.status = HTTP_NOT_FOUND @docstring(source='Agents/DeleteAgentInstanceResource.yml') def on_delete(self, req, resp, id): req.status = HTTP_NOT_FOUND class AgentTypeResource(Base_Resource): tag = {'name': 'Agents', 'description': 'Describes the Agent types and Agent instances.'} routes = '/agent/type', @docstring(source="Agents/GetAgentTypeResource.yml") def on_get(self, req, resp): resp.body = json.dumps(LCPConfig().agent_types) @docstring(source="Agents/PostAgentTypeResource.yml") def on_post(self, req, resp): payload = req.media if isinstance(req.media, list) else [req.media] controller = LCPController() try: at_schema = AgentType(many=True) d = at_schema.validate(payload) if d[1] == False: raise ValidationError("Not acceptable") for e in payload: controller.set_agent_type(e) resp.status = HTTP_CREATED except ValidationError as e: resp.body = json.dumps(e.messages) req.status = HTTP_NOT_ACCEPTABLE class AgentTypeResourcebyId(Base_Resource): tag = {'name': 'Agents', 'description': 'Describes the Agent types and Agent instances.'} routes = '/agent/type/{id}', def __init__(self): pass @docstring(source="Agents/PutAgentTypeResource.yml") def on_put(self, req, resp, id): req.status = HTTP_NOT_FOUND @docstring(source="Agents/DeleteAgentTypeResource.yml") def on_delete(self, req, resp, id): req.status = HTTP_NOT_FOUND ``` #### File: lcp/resource/self_data.py ```python from extra.lcp_config import LCPConfig from docstring import docstring from resource.base import Base_Resource from schema.hardware_definitions import BaremetalServer as BaremetalServerSchema from schema.hardware_definitions import ExecutionEnvironment from lib.http import HTTP_Method from falcon import HTTP_NOT_ACCEPTABLE, HTTP_CREATED, HTTP_NOT_FOUND, HTTP_INTERNAL_SERVER_ERROR from marshmallow import ValidationError from schema.lcp_schemas import LCPDescription import json from extra.hw_helpers.host_info import HostInfoToLcpHelper from extra.controller import LCPController class DescribeDeployment(Base_Resource): tag = {'name': 'self', 'description': 'This method does the initial configuration'} routes = '/self/deployment', @docstring(source="self/self_deployment.yaml") def on_get(self, req, resp): lcp_config = LCPConfig() r = {"executionType": lcp_config.exec_env_type, "environment": lcp_config.deployment} resp.body = json.dumps(r) @docstring(source="self/post_self_deployment.yaml") def on_post(self, req, resp): resp_Data, valid = ExecutionEnvironment(method=HTTP_Method.GET) \ .validate(req.media) payload = req.media try: cfg = LCPConfig() ee_schema = ExecutionEnvironment(many=False) ee_schema.load(payload) cfg.setDeployment(payload) resp.status = HTTP_CREATED except ValidationError as e: resp.body = json.dumps(e.messages) req.status = HTTP_NOT_ACCEPTABLE class DescribeSelf(Base_Resource): data = {} tag = {'name': 'self', 'description': 'Returns description of self LCP.'} routes = '/self', @docstring(source="self/get.yaml") def on_get(self, req, resp): # TODO: Organizar este codigo bien, con el esquema que corresponda! resp_Data, valid = BaremetalServerSchema(method=HTTP_Method.GET) \ .validate(data={}) lcp = json.dumps(LCPConfig().lcp) if lcp == "null": resp.body = None resp.status = HTTP_NOT_FOUND else: resp.body = lcp payload = req.media if isinstance(req.media, list) else [req.media] class InitialSelfConfiguration(Base_Resource): data = {} tag = {'name': 'self', 'description': 'Initial configuration for the LCP'} routes = '/self/configuration', @docstring(source="self/post.yaml") def on_post(self, req, resp): resp_Data, valid = LCPDescription(method=HTTP_Method.POST) \ .validate(data={}) payload = req.media try: controller = LCPController() ic_schema = LCPDescription(many=False) ic_schema.load(payload) res = controller.set_self_initial_configuration(payload) resp.status = HTTP_CREATED except ValidationError as e: resp.body = json.dumps(e.messages) resp.status = HTTP_NOT_ACCEPTABLE ``` #### File: lcp/test/cloud_infrastructure_test.py ```python from falcon import testing from api import api from reader.arg import Arg_Reader from about import project, title, version import os import json from schema.cloudschema import CloudSchema from resource.cloud_resource import CloudInfrastructure from resource.software_definition import SoftwareDefinition as SoftwareDefinitionResource from marshmallow.exceptions import ValidationError from test_utils import * from test.testbase import LCPTestBase class TestMyApp(LCPTestBase): def _getSecurityFucntionExample(self): json_file = os.path.dirname(__file__) + \ "/examples/security-function-example.json" with open(json_file) as f: file_data = f.read() return json.loads(file_data) def test_cloud_infrastructure(self): cl_dict = loadExampleFile("cloud-infrastructure-example.json") cloud_schema = CloudSchema(many=False) try: d = cloud_schema.load(cl_dict) assert True except ValidationError as ve: print(ve) assert False def test_get_cloud_infrastructure(self): cl_dict = loadExampleFile("cloud-infrastructure-example.json") headers = getAuthorizationHeaders() CloudInfrastructure.data = [] result = self.simulate_get("/cloud", headers=headers) assert (result.status == "200 OK") body = result.json assert (type(body) is list) assert len(body) == 0 CloudInfrastructure.data.append(cl_dict) result = self.simulate_get("/cloud", headers=headers) assert result.status == "200 OK" body = result.json assert type(body) is list assert len(body) == 1 try: cloud_schema = CloudSchema(many=True) cloud_schema.load(body) assert True except ValidationError as ve: print(ve) assert False ``` #### File: lcp/test/testbase.py ```python from utils.log import Log from falcon import testing from api import api from reader.arg import Arg_Reader from about import title, version from extra.lcp_config import LCPConfig from extra.clients_starter import end_client_threads class LCPTestBase(testing.TestCase): log = None def setUp(self): super(LCPTestBase, self).setUp() LCPConfig.__drop_it__("examples/LCPConfig.yaml") lcp = LCPConfig() lcp.reset() lcp.testing = True self.db = Arg_Reader.read() if LCPTestBase.log is None: Log.init(config="../"+self.db.log_config) LCPTestBase.log = Log.get('api') self.app = api(title=title, version=version) def tearDown(self) -> None: end_client_threads() ``` #### File: lcp/utils/json.py ```python import json from datetime import datetime def __converter(obj): if isinstance(obj, datetime): return obj.__str__() def dumps(data, *args, **kwargs): return json.dumps(data, *args, default=__converter, **kwargs) def loads(data, *args, **kwargs): return json.loads(data, *args, **kwargs) ```
{ "source": "jicarretero/SimpleDataModelsImplementation", "score": 2 }
#### File: GuardAgent/swagger_client/GuardAgentSecurityContext.py ```python class GuardAgentSecurityContext(object): class __GuardAgentSecurityContext: def __init__(self): # self._time_between_probes=Configuration("time_between_probes", "int", "Time consumed between probing in seconds", "60") # self._time_between_pings=Configuration("time_between_pings","int", "time ellapsed between two pings in seconds", "60") # self.configurations=Configurations([self._time_between_probes, self._time_between_pings]) pass def to_dict(self): return self.configurations.to_dict() def to_str(self): return self.configurations.to_str() def time_between_probes(self,tbp: int=None): if tbp is None: return int(self._time_between_probes._value) else: self._time_between_probes._value = str(tbp) def time_between_pings(self,tbp: int=None): if tbp is None: return int(self._time_between_pings._value) else: self._time_between_pings._value = str(tbp) instance=None def __new__(cls, *args, **kwargs): if GuardAgentSecurityContext.instance is None: GuardAgentSecurityContext.instance = GuardAgentSecurityContext.__GuardAgentSecurityContext() return GuardAgentSecurityContext.instance def __getattr__(self, name): return getattr(self.instance, name) def __setattr__(self, name): return setattr(self.instance, name) ```
{ "source": "JIC-CSB/arctool", "score": 2 }
#### File: arctool/arctool/cli.py ```python import sys import os import getpass import click from dtool import ( DataSet, Project, DtoolTypeError, NotDtoolObject, ) from arctool import __version__ from arctool.utils import ( README_SCHEMA, readme_yml_is_valid, new_archive_dataset, ) from arctool.archive import ( ArchiveDataSet, ArchiveFile, ArchiveFileBuilder, compress_archive, ) from arctool.slurm import generate_slurm_script from dtool.clickutils import create_project, generate_descriptive_metadata from fluent import sender logger = sender.FluentSender('arctool', host='v0679', port=24224) @click.group() @click.version_option(version=__version__) @click.option('--fluentd-host', envvar='FLUENTD_HOST', default='v0679') def cli(fluentd_host): logger = sender.FluentSender('arctool', host=fluentd_host, port=24224) message = {'api-version': __version__, 'command_line': sys.argv, 'unix_username': getpass.getuser()} logger.emit('cli_command', message) @cli.group(invoke_without_command=True) @click.pass_context @click.option('--staging_path', help='Path to staging area where new project will be created', default='.', type=click.Path(exists=True)) def new(ctx, staging_path): # ctx is passed in via @click.pass_context # Makes default behaviour for 'arctool new' be create dataset if ctx.invoked_subcommand is None: try: project = Project.from_path(staging_path) project_path = staging_path except NotDtoolObject: project = create_project(staging_path) project_path = os.path.join(staging_path, project.name) except DtoolTypeError: raise(click.UsageError("Don't create a project in a dataset")) cli_new_dataset(project_path) @new.command() @click.option('--staging_path', help='Path to staging area where new project will be created', default='.', type=click.Path(exists=True)) def project(staging_path): create_project(staging_path) @new.command() @click.option('--staging_path', help='Path to staging area where new archive will be created', default='.', type=click.Path(exists=True)) def dataset(staging_path): cli_new_dataset(staging_path) def cli_new_dataset(staging_path): staging_path = os.path.abspath(staging_path) click.secho('Starting new archive in: ', nl=False) click.secho(staging_path, fg='green') logger.emit('pre_new_archive', {'staging_path': staging_path}) descriptive_metadata = generate_descriptive_metadata( README_SCHEMA, staging_path) dataset, dataset_path, readme_path = new_archive_dataset( staging_path, descriptive_metadata) click.secho('Created new archive in: ', nl=False) click.secho(dataset_path, fg='green') log_data = {'metadata': descriptive_metadata, 'archive_path': dataset_path, 'dataset_uuid': dataset.uuid} logger.emit('new', log_data) archive_data_path = os.path.join(dataset_path, dataset.data_directory) click.secho('Now:') click.secho(' 1. Edit {}'.format(readme_path), fg='yellow') click.secho(' 2. Move archive data into {}'.format(archive_data_path), fg='yellow') click.secho('Then: ', nl=False) click.secho('arctool manifest create {}'.format(dataset_path), fg='cyan') @cli.group() def manifest(): pass @manifest.command() @click.argument('path', 'Path to archive dataset directory.', type=click.Path(exists=True)) def create(path): archive_dataset = ArchiveDataSet.from_path(path) log_data = {'uuid': archive_dataset.uuid, 'path': path} logger.emit('pre_create_manifest', log_data) archive_dataset.update_manifest() click.secho('Created manifest', fg='green') log_data = {'uuid': archive_dataset.uuid, 'manifest': archive_dataset.manifest} logger.emit('post_create_manifest', log_data) click.secho('Next: ', nl=False) click.secho('arctool archive create {}'.format(path), fg='cyan') @cli.group() def archive(): pass @archive.command() # NOQA @click.argument('path', 'Path to dataset directory.', type=click.Path(exists=True)) def create(path): path = os.path.abspath(path) dataset = DataSet.from_path(path) log_data = {'path': path, 'dataset_uuid': dataset.uuid} logger.emit('pre_create_archive', log_data) readme_path = dataset.abs_readme_path click.secho('Validating readme at: ', nl=False) click.secho(readme_path, fg='green') readme_str = open(readme_path, "r").read() if not readme_yml_is_valid(readme_str): click.secho("Not valid", fg='red') sys.exit(2) archive_builder = ArchiveFileBuilder.from_path(path) hacked_path = os.path.join(path, "..") tar_file_path = archive_builder.persist_to_tar(hacked_path) # tar_file_path = dtool.arctool.initialise_archive(path) # def show_func(item): # if item is None: # return '' # return str(item['path']) # with click.progressbar(manifest_filedict, # length=tot_size, # item_show_func=show_func) as bar: # for entry in bar: # rpath = os.path.join('archive', entry['path']) # append_to_tar_archive(path, rpath) # bar.update(entry['size']) click.secho('Archiving data at: ', nl=False) click.secho(path, fg='green') click.secho('Created archive: ', nl=False) click.secho(tar_file_path, fg='green') archive_size = os.stat(tar_file_path).st_size post_tar_log = {'dataset_uuid': dataset.uuid, 'archive_size': archive_size, 'output_tar_path': tar_file_path} logger.emit('post_create_archive', post_tar_log) click.secho('Next: ', nl=False) click.secho('arctool archive compress {}'.format(tar_file_path), fg='cyan') @archive.command() @click.option('--cores', '-c', default=4, help='Number of CPU cores to use.') @click.option('--slurm', '-s', is_flag=True, default=False, help='Rather than running compression, generate SLURM script.') @click.argument('path', 'Path to uncompressed archive (tar) file.', type=click.Path(exists=True)) def compress(path, cores, slurm): path = os.path.abspath(path) archive = ArchiveFile.from_file(path) if not slurm: click.secho('Compressing archive: ', nl=False) click.secho(path, fg='green') pre_log = {'dataset_uuid': archive.admin_metadata["uuid"], 'archive_path': path, 'cores': cores, 'tar_size': os.stat(path).st_size} logger.emit('pre_compress_archive', pre_log) compressed_archive_path = compress_archive(path, n_threads=cores) click.secho('Created compressed file: ', nl=False) click.secho(compressed_archive_path, fg='green') post_log = {'dataset_uuid': archive.admin_metadata["uuid"], 'compressed_archive_path': compressed_archive_path, 'gzip_size': os.stat(compressed_archive_path).st_size} logger.emit('post_compress_archive', post_log) click.secho('Now:') click.secho(' Move {} to archive storage'.format( compressed_archive_path), fg='yellow') # WARNING - be VERY careful automating this to submit the job - if the # logic fails, the job will repeatedly submit itself forever! else: job_parameters = dict(n_cores=cores, partition="rg-sv") command_string = "arctool archive compress -c {} {}".format(cores, path) submit_string = generate_slurm_script(command_string, job_parameters) print(submit_string) @cli.group() def verify(): pass @verify.command() @click.argument('path', 'Path to compressed archive.', type=click.Path(exists=True)) def summary(path): archive_file = ArchiveFile.from_file(path) summary_data = archive_file.summarise() size_in_gibi = float(summary_data['total_size']) / (2 ** 30) click.secho("Archive contains", nl=False) click.secho(" {} ".format(summary_data['n_files']), fg='green', nl=False) click.secho("files.") click.secho("Total uncompressed archive size is", nl=False) click.secho(" {:.2f} GiB".format(size_in_gibi), fg='green', nl=False) click.secho(".") @verify.command() @click.argument('path', 'Path to compressed archive.', type=click.Path(exists=True)) def full(path): click.secho("Performing full verification on:", nl=False) click.secho(" {}".format(path), fg='green') archive_file = ArchiveFile.from_path(path) result = archive_file.verify_all() click.secho("Verification ", nl=False) if result: click.secho("passed", fg='green') else: click.secho("failed", fg='red') if __name__ == "__main__": cli() ``` #### File: arctool/tests/__init__.py ```python import os import shutil import tempfile from distutils.dir_util import copy_tree import contextlib import pytest from dtool import DescriptiveMetadata _HERE = os.path.dirname(__file__) TEST_INPUT_DATA = os.path.join(_HERE, "data", "basic", "input") TEST_DESCRIPTIVE_METADATA = DescriptiveMetadata([ ("project_name", u"my_project"), ("dataset_name", u"brassica_rnaseq_reads"), ("confidential", False), ("personally_identifiable_information", False), ("owner_name", u"<NAME>"), ("owner_email", u"<EMAIL>"), ("unix_username", u"namey"), ("archive_date", u"2017-01-01"), ]) @contextlib.contextmanager def remember_cwd(): cwd = os.getcwd() try: yield finally: os.chdir(cwd) @pytest.fixture def chdir_fixture(request): d = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(d) @request.addfinalizer def teardown(): os.chdir(curdir) shutil.rmtree(d) @pytest.fixture def tmp_dir_fixture(request): d = tempfile.mkdtemp() @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def local_tmp_dir_fixture(request): d = tempfile.mkdtemp(dir=_HERE) @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def tmp_archive(request): from arctool.archive import ( ArchiveDataSet, ArchiveFileBuilder) from arctool.archive import compress_archive d = tempfile.mkdtemp() @request.addfinalizer def teardown(): shutil.rmtree(d) archive_directory_path = os.path.join(d, "brassica_rnaseq_reads") os.mkdir(archive_directory_path) archive_ds = ArchiveDataSet("brassica_rnaseq_reads") archive_ds.persist_to_path(archive_directory_path) # Move some data into the archive. archive_input_path = os.path.join(TEST_INPUT_DATA, 'archive') archive_output_path = os.path.join(archive_directory_path, 'archive') copy_tree(archive_input_path, archive_output_path) archive_builder = ArchiveFileBuilder.from_path(archive_directory_path) tar_path = archive_builder.persist_to_tar(d) compress_archive(tar_path) return tar_path + '.gz' ``` #### File: arctool/tests/test_slurm_api.py ```python def test_generate_slurm_submission_script(): from arctool.slurm import generate_slurm_script job_parameters = {'n_cores': 8, 'partition': 'rg-sv'} command_string = "arctool archive compress -c 8 /tmp/staging/mytar.tar" actual_script = generate_slurm_script(command_string, job_parameters) actual = actual_script.split('\n')[-1] expected = 'arctool archive compress -c 8 /tmp/staging/mytar.tar' assert expected == actual, (expected, actual) ```
{ "source": "JIC-CSB/datademo", "score": 2 }
#### File: datademo/datademo/cli.py ```python import os import json import click import dtool import pygments import pygments.lexers import pygments.formatters from datademo import __version__ dataset_path_option = click.argument( 'path', 'Path to dataset directory', default=".", type=click.Path(exists=True)) project_path_option = click.argument( 'path', 'Path to project directory', default=".", type=click.Path(exists=True)) @click.group() @click.version_option(version=__version__) def cli(): pass ############################################################################# # datademo dataset ############################################################################# @cli.group() def dataset(): pass @dataset.command() @dataset_path_option def identifiers(path): dataset = dtool.DataSet.from_path(path) click.secho("\n".join(dataset.identifiers)) @dataset.command() @dataset_path_option def paths(path): dataset = dtool.DataSet.from_path(path) paths = [dataset.item_path_from_hash(identifier) for identifier in dataset.identifiers] click.secho('\n'.join(paths)) @dataset.command() @dataset_path_option def manifest(path): dataset = dtool.DataSet.from_path(path) formatted_json = json.dumps(dataset.manifest, indent=2) colorful_json = pygments.highlight( formatted_json, pygments.lexers.JsonLexer(), pygments.formatters.TerminalFormatter()) click.secho(colorful_json, nl=False) @dataset.command() @dataset_path_option def summary(path): dataset = dtool.DataSet.from_path(path) file_list = dataset.manifest["file_list"] total_size = sum([f["size"] for f in file_list]) json_lines = [ "{", ' "Name": "{}",'.format(dataset.name), ' "Creator": "{}",'.format(dataset.creator_username), ' "Number of files": {},'.format(len(file_list)), ' "Total size": {}'.format(total_size), "}", ] formatted_json = "\n".join(json_lines) colorful_json = pygments.highlight( formatted_json, pygments.lexers.JsonLexer(), pygments.formatters.TerminalFormatter()) click.secho(colorful_json, nl=False) @dataset.command() @dataset_path_option def verify(path): all_good = True dataset = dtool.DataSet.from_path(path) manifest_data_paths = [] for i in dataset.identifiers: fpath = dataset.item_path_from_hash(i) manifest_data_paths.append(fpath) if not os.path.isfile(fpath): click.secho("Missing file: {}".format(fpath), fg="red") all_good = False continue calculated_hash = dataset._structural_metadata.hash_generator(fpath) if i != calculated_hash: click.secho("Altered file: {}".format(fpath), fg="red") all_good = False continue abs_data_directory = os.path.join(path, dataset.data_directory) existing_data_paths = [] for root, dirs, files in os.walk(abs_data_directory): for f in files: fpath = os.path.abspath(os.path.join(root, f)) existing_data_paths.append(fpath) new_data_fpaths = set(existing_data_paths) - set(manifest_data_paths) for fpath in new_data_fpaths: all_good = False click.secho("Unknown file: {}".format(fpath), fg="yellow") if all_good: click.secho("All good :)".format(fpath), fg="green") ############################################################################# # datademo project ############################################################################# @cli.group() def project(): pass @project.command() # NOQA @project_path_option def summary(path): # NOQA project = dtool.Project.from_path(path) num_datasets = 0 num_files = 0 tot_size = 0 child_paths = [os.path.join(path, p) for p in os.listdir(path)] child_dirs = [d for d in child_paths if os.path.isdir(d)] for d in child_dirs: try: dataset = dtool.DataSet.from_path(d) except (dtool.DtoolTypeError, dtool.NotDtoolObject): continue file_list = dataset.manifest["file_list"] size = sum([f["size"] for f in file_list]) num_datasets += 1 num_files += len(file_list) tot_size += size json_lines = [ "{", ' "Name": "{}",'.format(project.descriptive_metadata["project_name"]), ' "Number of datasets": {},'.format(num_datasets), ' "Number of files": {},'.format(num_files), ' "Total size": {}'.format(tot_size), "}", ] formatted_json = "\n".join(json_lines) colorful_json = pygments.highlight( formatted_json, pygments.lexers.JsonLexer(), pygments.formatters.TerminalFormatter()) click.secho(colorful_json, nl=False) ``` #### File: datademo/tests/test_datademo_package.py ```python def test_version_is_string(): import datademo assert isinstance(datademo.__version__, str) ``` #### File: datademo/tests/test_datademo_project_cli.py ```python import subprocess from . import project_fixture # NOQA def test_dataset_summary(project_fixture): # NOQA import json cmd = ["datademo", "project", "summary", project_fixture] summary_str = subprocess.check_output(cmd).decode("utf-8") summary = json.loads(summary_str) expected = { "Name": "crop_yield", "Number of datasets": 3, "Number of files": 9, "Total size": 105, } assert summary == expected ```
{ "source": "JIC-CSB/dirods", "score": 2 }
#### File: dirods/tests/__init__.py ```python import os import shutil import tempfile import pytest _HERE = os.path.dirname(__file__) @pytest.fixture def chdir_fixture(request): d = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(d) @request.addfinalizer def teardown(): os.chdir(curdir) shutil.rmtree(d) @pytest.fixture def tmp_dir_fixture(request): d = tempfile.mkdtemp() @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def local_tmp_dir_fixture(request): d = tempfile.mkdtemp(dir=_HERE) @request.addfinalizer def teardown(): shutil.rmtree(d) return d ```
{ "source": "JIC-CSB/dserve", "score": 2 }
#### File: dserve/dserve/__init__.py ```python import os from flask import ( Flask, jsonify, send_file, abort, request, ) from flask_cors import CORS, cross_origin app = Flask(__name__) cors = CORS(app) @app.route("/") @cross_origin() def root(): content = { "_links": { "self": {"href": "/"}, "items": {"href": "/items"}, "overlays": {"href": "/overlays"} }, "uuid": app._dataset._admin_metadata["uuid"], "dtool_version": app._dataset._admin_metadata["dtool_version"], "name": app._dataset._admin_metadata["name"], "creator_username": app._dataset._admin_metadata["creator_username"], } return jsonify(content) def items_root(): items = [] for i in app._dataset.manifest["file_list"]: item = { "_links": {"self": {"href": "/items/{}".format(i["hash"])}}, "identifier": i["hash"], } items.append(item) content = { "_links": { "self": {"href": "/items"}, }, "_embedded": { "items": items, } } return jsonify(content) def specific_item(identifier): try: app._dataset.item_from_identifier(identifier) except KeyError: abort(404) content = { "_links": { "self": {"href": "/items/{}".format(identifier)}, "content": {"href": "/items/{}/raw".format(identifier)}, "overlays": {"href": "/items/{}/overlays".format(identifier)}, }, } overlays = app._dataset.access_overlays() for overlay_name, overlay in overlays.items(): content[overlay_name] = overlay[identifier] return jsonify(content) @app.route("/items") @app.route("/items/<identifier>") @cross_origin() def items(identifier=None): if identifier is None: return items_root() else: return specific_item(identifier) @app.route("/items/<identifier>/raw") @cross_origin() def raw_item(identifier): try: item = app._dataset.item_from_identifier(identifier) except KeyError: abort(404) item_path = os.path.join( app._dataset._abs_path, app._dataset.data_directory, item["path"] ) return send_file(item_path, item["mimetype"]) @app.route("/items/<identifier>/overlays") @cross_origin() def item_overlays(identifier): try: app._dataset.item_from_identifier(identifier) except KeyError: abort(404) content = { "_links": { "self": {"href": "/items/{}/overlays".format(identifier)}, }, } overlays = app._dataset.access_overlays() for overlay_name in overlays.keys(): href = "/overlays/{}/{}".format(overlay_name, identifier) content["_links"][overlay_name] = {"href": href} return jsonify(content) @app.route("/overlays/<overlay>/<identifier>", methods=["GET", "PUT"]) @cross_origin() def item_overlay_content(overlay, identifier): overlays = app._dataset.access_overlays() try: requested_overlay = overlays[overlay] requested_overlay[identifier] except KeyError: abort(404) if request.method == "PUT": if not request.is_json: abort(422) new_value = request.get_json() requested_overlay[identifier] = new_value try: app._dataset.persist_overlay( overlay, requested_overlay, overwrite=True) except KeyError: abort(405) return "", 201 elif request.method == "GET": value = requested_overlay[identifier] return jsonify(value) def overlay_root(): overlays = app._dataset.access_overlays() content = { "_links": { "self": {"href": "/overlays"}}, } for overlay_name in overlays.keys(): value = {"href": "/overlays/{}".format(overlay_name)} content["_links"][overlay_name] = value return jsonify(content) def specific_overlay(overlay_name): overlays = app._dataset.access_overlays() try: overlay = overlays[overlay_name] except KeyError: abort(404) return jsonify(overlay) def creaate_new_overlay(overlay_name): empty_overlay = app._dataset.empty_overlay() try: app._dataset.persist_overlay(overlay_name, empty_overlay) except IOError: abort(409) return "", 201 @app.route("/overlays") @app.route("/overlays/<overlay_name>", methods=["GET", "PUT"]) @cross_origin() def overalys(overlay_name=None): if overlay_name is None: return overlay_root() else: if request.method == "PUT": return creaate_new_overlay(overlay_name) elif request.method == "GET": return specific_overlay(overlay_name) ```
{ "source": "JIC-CSB/dtoolai", "score": 3 }
#### File: dtoolai/dtoolai/data.py ```python import logging import torch.utils.data import dtoolcore import numpy as np from PIL import Image class WrappedDataSet(torch.utils.data.Dataset): """Subclass of pytorch Dataset that provides dtool DataSet methods. This class mostly provides methods that consumers of DataSets require, and passes those methods onto its internal DataSet object. Args: uri: URI for enclosed dtool DataSet. """ def __init__(self, uri): self.dataset = dtoolcore.DataSet.from_uri(uri) def put_overlay(self, overlay_name, overlay): self.dataset.put_overlay(overlay_name, overlay) def get_annotation(self, annotation_name): return self.dataset.get_annotation(annotation_name) @property def name(self): return self.dataset.name @property def uri(self): return self.dataset.uri @property def uuid(self): return self.dataset.uuid def scaled_float_array_to_pil_image(array): """Convert an array of floats to a PIL image. Args: array (np.ndarray): Array representing an image. Expected to be float and normalised between 0 and 1. Returns: A PIL Image object created from the array """ intarray = (255 * array).astype(np.uint8) if len(array.shape) > 3: raise ValueError(f"Can't handle array of shape {array.shape}") if len(array.shape) == 2: return Image.fromarray(intarray) elif len(array.shape) == 3: intarray = np.transpose(intarray, (1, 2, 0)) channels = intarray.shape[2] if channels == 1: return Image.fromarray(intarray.squeeze()) elif channels == 3: return Image.fromarray(intarray) else: raise ValueError(f"Can't handle image with {channels} channels") else: raise ValueError(f"Can't handle array with shape {array.shape}") def coerce_to_fixed_size_rgb(im, target_dim): """Convert a PIL image to a fixed size and 3 channel RGB format.""" if im.mode not in ['RGB', 'L']: raise Exception(f"Unknown image mode: {im.mode}") resized_im = im.resize(target_dim) if im.mode is 'RGB': return resized_im return resized_im.convert('RGB') class ImageDataSet(WrappedDataSet): """Class allowing a collection of images annotated with categories to be used as both a Pytorch Dataset and a dtool DataSet.""" def __init__(self, uri, usetype='train'): super().__init__(uri) self.loaded_images = {} self.cat_lookup = self.dataset.get_overlay('category') self.cat_encoding = self.dataset.get_annotation('category_encoding') self.image_dim = 256, 256 try: usetype_overlay = self.dataset.get_overlay('usetype') self.identifiers = [ idn for idn in self.dataset.identifiers if usetype_overlay[idn] == usetype ] except dtoolcore.DtoolCoreKeyError: self.identifiers = self.dataset.identifiers self.idn_lookup = {n: idn for n, idn in enumerate(self.identifiers)} def __len__(self): return len(self.identifiers) def __getitem__(self, index): idn = self.idn_lookup[index] if idn not in self.loaded_images: logging.debug(f"Loading {self.dataset.item_content_abspath(idn)}") im = Image.open(self.dataset.item_content_abspath(idn)) resized_converted = coerce_to_fixed_size_rgb(im, self.image_dim) channels_first = np.moveaxis(np.array(resized_converted), 2, 0) self.loaded_images[idn] = channels_first.astype(np.float32) / 255 return self.loaded_images[idn], self.cat_encoding[self.cat_lookup[idn]] @property def input_channels(self): return 3 @property def dim(self): return self.image_dim[0] class TensorDataSet(WrappedDataSet): """Class that allows numpy arrays to be accessed as both a pytorch Dataset and a dtool DataSet.""" def __init__(self, uri): super().__init__(uri) tensor_file_idn = self.dataset.get_annotation("tensor_file_idn") npy_fpath = self.dataset.item_content_abspath(tensor_file_idn) self.X = np.load(npy_fpath, mmap_mode=None) labels_idn = dtoolcore.utils.generate_identifier("labels.npy") labels_fpath = self.dataset.item_content_abspath(labels_idn) self.y = np.load(labels_fpath, mmap_mode=None) self.image_dim = self.dataset.get_annotation("image_dimensions") self.tensor = self.X self.labels = self.y def __len__(self): return self.tensor.shape[0] def __getitem__(self, index): raw = self.tensor[index] scaledfloat = raw.astype(np.float32) / 255 label = self.labels[index] return scaledfloat.reshape(*self.image_dim), int(label) @property def input_channels(self): """The number of channels each tensor provides.""" return self.image_dim[0] @property def dim(self): """The linear dimensions of the tensor, e.g. it is dim x dim in shape. """ return self.image_dim[1] def create_tensor_dataset_from_arrays( output_base_uri, output_name, data_array, label_array, image_dim, readme_content ): """Create a dtool DataSet with the necessary annotations to be used as a TensorDataSet. Args: output_base_uri: The base URI where the dataset will be created. output_name: The name for the output dataset. data_array (ndarray): The numpy array holding data. label_array (ndarray): The numpy array holding labels. image_dim (tuple): Dimensions to which input images should be reshaped. readme_content (string): Content that will be used to create README.yml in the created dataset. Returns: URI: The URI of the created dataset """ with dtoolcore.DataSetCreator(output_name, output_base_uri) as qds: data_fpath = qds.prepare_staging_abspath_promise('data.npy') np.save(data_fpath, data_array) labels_fpath = qds.prepare_staging_abspath_promise('labels.npy') np.save(labels_fpath, label_array) data_idn = dtoolcore.utils.generate_identifier('data.npy') qds.put_annotation("tensor_file_idn", data_idn) qds.put_annotation("image_dimensions", image_dim) qds.put_annotation("dtoolAI.inputtype", "TensorDataSet") qds.put_readme(readme_content) return qds.uri ``` #### File: scripts/utils/copy_annotation.py ```python import click import dtoolcore @click.command() @click.argument('source_ds_uri') @click.argument('dest_ds_uri') @click.argument('annotation_name') def main(source_ds_uri, dest_ds_uri, annotation_name): source_ds = dtoolcore.DataSet.from_uri(source_ds_uri) dest_ds = dtoolcore.DataSet.from_uri(dest_ds_uri) annotation = source_ds.get_annotation(annotation_name) dest_ds.put_annotation(annotation_name, annotation) if __name__ == "__main__": main() ``` #### File: scripts/utils/summarise_tensor_dataset.py ```python from collections import Counter import click from dtoolai.data import TensorDataSet @click.command() @click.argument('dataset_uri') def main(dataset_uri): tds = TensorDataSet(dataset_uri) print(f"Dataset has {len(tds)} items") print(Counter(tds.labels)) if __name__ == "__main__": main() ```
{ "source": "JIC-CSB/dtool-cli", "score": 2 }
#### File: dtool-cli/tests/test_dtool_cli_module.py ```python from click.testing import CliRunner def test_version_is_string(): import dtool_cli assert isinstance(dtool_cli.__version__, str) def test_dtool(): from dtool_cli.cli import dtool runner = CliRunner() result = runner.invoke(dtool) assert result.exit_code == 0 ```
{ "source": "JIC-CSB/dtoolcore", "score": 2 }
#### File: dtoolcore/dtoolcore/utils.py ```python import os import errno import getpass import hashlib import json import platform import binascii import base64 import datetime import re import socket import logging try: from urlparse import urlparse, urlunparse except ImportError: from urllib.parse import urlparse, urlunparse logger = logging.getLogger(__name__) IS_WINDOWS = False if platform.system() == "Windows": IS_WINDOWS = True DEFAULT_CONFIG_PATH = os.path.expanduser("~/.config/dtool/dtool.json") DEFAULT_CACHE_PATH = os.path.expanduser("~/.cache/dtool") MAX_NAME_LENGTH = 80 NAME_VALID_CHARS_LIST = ["0-9", "a-z", "A-Z", "-", "_", "."] NAME_VALID_CHARS_STR = "".join(NAME_VALID_CHARS_LIST) NAME_VALID_CHARS_REGEX = re.compile(r"^[{}]+$".format(NAME_VALID_CHARS_STR)) def windows_to_unix_path(win_path): """Return Unix path.""" logger.debug("In windows_to_unix_path...") logger.debug("windows_to_unix_path.input_win_path: {}".format(win_path)) unix_path = win_path.replace("\\", "/") # Deal with Windows path defect where path has incorrect starting /, e.g. # /C:/some/path. if IS_WINDOWS and len(unix_path) >=2 and unix_path[0] == "/" and unix_path[2] == ":": # NOQA unix_path = unix_path[1:] logger.debug("windows_to_unix_path.return: {}".format(unix_path)) return unix_path def unix_to_windows_path(unix_path): """Return Windows path.""" logger.debug("In unix_to_windows_path...") logger.debug("unix_to_windows_path.input_unix_path: {}".format(unix_path)) # Deal with Windows path defect where path has incorrect starting /, e.g. # /C:/some/path. if IS_WINDOWS and len(unix_path) >= 2 and unix_path[0] == "/" and unix_path[2] == ":": # NOQA unix_path = unix_path[1:] win_path = unix_path.replace("/", "\\") logger.debug("unix_to_windows_path.return: {}".format(win_path)) return win_path def generous_parse_uri(uri): """Return a urlparse.ParseResult object with the results of parsing the given URI. This has the same properties as the result of parse_uri. When passed a relative path, it determines the absolute path, sets the scheme to file, the netloc to localhost and returns a parse of the result. """ logger.debug("In generous_pase_uri...") logger.debug("generous_pase_uri.input_uri: {}".format(uri)) parse_result = urlparse(uri) IS_WINDOWS_DRIVE_LETTER = len(parse_result.scheme) == 1 if parse_result.scheme == '' or IS_WINDOWS_DRIVE_LETTER: abspath = os.path.abspath(parse_result.path) fixed_uri = "file://{}{}".format( socket.gethostname(), abspath ) if IS_WINDOWS: abspath = windows_to_unix_path(abspath) if IS_WINDOWS_DRIVE_LETTER: abspath = parse_result.scheme.upper() + abspath[1:] fixed_uri = "file:///{}".format(abspath) parse_result = urlparse(fixed_uri) logger.debug("generouse_pase_uri.return: {}".format(parse_result)) return parse_result def sanitise_uri(uri): """Return fully qualified uri from the input, which might be a relpath.""" logger.debug("In sanitise_uri...") logger.debug("sanitise_uri.input_uri: {}".format(uri)) logger.debug("sanitise_uri.calling.utils.generouse_parse_uri") uri = urlunparse(generous_parse_uri(uri)) logger.debug("sanitise_uri.return: {}".format(uri)) return uri def cross_platform_getuser(is_windows, no_username_in_env): """Return the username or "unknown". The function returns "unknown" if the platform is windows and the username environment variable is not set. """ if is_windows and no_username_in_env: return "unknown" return getpass.getuser() def getuser(): """Return the username.""" is_windows = platform.system() == "Windows" no_username_in_env = os.environ.get("USERNAME") is None return cross_platform_getuser(is_windows, no_username_in_env) def _get_config_dict_from_file(config_path=None): """Return value if key exists in file. Return empty string ("") if key or file does not exist. """ if config_path is None: config_path = DEFAULT_CONFIG_PATH # Default (empty) content will be used if config file does not exist. config_content = {} # If the config file exists we use that content. if os.path.isfile(config_path): with open(config_path) as fh: config_content = json.load(fh) return config_content def write_config_value_to_file(key, value, config_path=None): """Write key/value pair to config file. """ if config_path is None: config_path = DEFAULT_CONFIG_PATH # Get existing config. config = _get_config_dict_from_file(config_path) # Add/update the key/value pair. config[key] = value # Create parent directories if they are missing. mkdir_parents(os.path.dirname(config_path)) # Write the content with open(config_path, "w") as fh: json.dump(config, fh, sort_keys=True, indent=2) # Set 600 permissions on the config file. os.chmod(config_path, 33216) return get_config_value_from_file(key, config_path) def get_config_value_from_file(key, config_path=None, default=None): """Return value if key exists in file. Return default if key not in config. """ config = _get_config_dict_from_file(config_path) if key not in config: return default return config[key] def get_config_value(key, config_path=None, default=None): """Get a configuration value. Preference: 1. From environment 2. From JSON configuration file supplied in ``config_path`` argument 3. The default supplied to the function :param key: name of lookup value :param config_path: path to JSON configuration file :param default: default fall back value :returns: value associated with the key """ if config_path is None: config_path = DEFAULT_CONFIG_PATH # Start by setting default value value = default # Update from config file value = get_config_value_from_file( key=key, config_path=config_path, default=value ) # Update from environment variable value = os.environ.get(key, value) return value def sha1_hexdigest(input_string): """Return hex digest of the sha1sum of the input_string.""" byte_string = input_string.encode() return hashlib.sha1(byte_string).hexdigest() def base64_to_hex(input_string): """Retun the hex encoded version of the base64 encoded input string.""" return binascii.hexlify(base64.b64decode(input_string)).decode() def generate_identifier(handle): """Return identifier from a ProtoDataSet handle.""" return sha1_hexdigest(handle) def mkdir_parents(path): """Create the given directory path. This includes all necessary parent directories. Does not raise an error if the directory already exists. :param path: path to create """ try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST: pass else: raise def timestamp(datetime_obj): """Return Unix timestamp as float. The number of seconds that have elapsed since January 1, 1970. """ start_of_time = datetime.datetime(1970, 1, 1) diff = datetime_obj - start_of_time return diff.total_seconds() def name_is_valid(name): """Return True if the dataset name is valid. The name can only be 80 characters long. Valid characters: Alpha numeric characters [0-9a-zA-Z] Valid special characters: - _ . """ # The name can only be 80 characters long. if len(name) > MAX_NAME_LENGTH: return False return bool(NAME_VALID_CHARS_REGEX.match(name)) def relpath_to_handle(relpath, is_windows=False): """Return handle from relpath. Handles are Unix style relpaths. Converts Windows relpath to Unix style relpath. Strips "./" prefix. """ if is_windows: relpath = windows_to_unix_path(relpath) if relpath.startswith("./"): relpath = relpath[2:] return relpath def handle_to_osrelpath(handle, is_windows=False): """Return OS specific relpath from handle.""" directories = handle.split("/") if is_windows: return "\\".join(directories) return "/".join(directories) ```
{ "source": "JIC-CSB/dtool-irods", "score": 2 }
#### File: dtool-irods/tests/__init__.py ```python import os import shutil import tempfile import string import random from contextlib import contextmanager import pytest from dtoolcore import generate_admin_metadata from dtool_irods.storagebroker import ( _mkdir, _rm_if_exists, IrodsStorageBroker, ) _HERE = os.path.dirname(__file__) TEST_SAMPLE_DATA = os.path.join(_HERE, "data") TEST_ZONE = "/jic_overflow/dtool-testing" @contextmanager def tmp_env_var(key, value): os.environ[key] = value yield del os.environ[key] @contextmanager def tmp_directory(): d = tempfile.mkdtemp() yield d shutil.rmtree(d) def random_string( size=9, chars=string.ascii_uppercase + string.ascii_lowercase + string.digits ): return ''.join(random.choice(chars) for _ in range(size)) @pytest.fixture def chdir_fixture(request): d = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(d) @request.addfinalizer def teardown(): os.chdir(curdir) shutil.rmtree(d) @pytest.fixture def tmp_dir_fixture(request): d = tempfile.mkdtemp() @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def local_tmp_dir_fixture(request): d = tempfile.mkdtemp(dir=_HERE) @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def tmp_uuid_and_uri(request): admin_metadata = generate_admin_metadata("test_dataset") uuid = admin_metadata["uuid"] base_uri = "irods:" + TEST_ZONE uri = IrodsStorageBroker.generate_uri("test_dataset", uuid, base_uri) @request.addfinalizer def teardown(): _, irods_path = uri.split(":", 1) _rm_if_exists(irods_path) return (uuid, uri) @pytest.fixture def tmp_irods_base_uri_fixture(request): collection = os.path.join(TEST_ZONE, random_string()) _mkdir(collection) @request.addfinalizer def teardown(): _rm_if_exists(collection) return "irods:" + collection ``` #### File: dtool-irods/tests/test_IrodsStorageBroker_list_dataset_uris.py ```python from . import tmp_irods_base_uri_fixture # NOQA def test_list_dataset_uris(tmp_irods_base_uri_fixture): # NOQA import dtoolcore from dtool_irods.storagebroker import IrodsStorageBroker assert [] == IrodsStorageBroker.list_dataset_uris( base_uri=tmp_irods_base_uri_fixture, config_path=None ) # Create two datasets to be copied. expected_uris = [] for name in ["test_ds_1", "test_ds_2"]: admin_metadata = dtoolcore.generate_admin_metadata(name) proto_dataset = dtoolcore.generate_proto_dataset( admin_metadata=admin_metadata, base_uri=tmp_irods_base_uri_fixture ) proto_dataset.create() expected_uris.append(proto_dataset.uri) actual_uris = IrodsStorageBroker.list_dataset_uris( base_uri=tmp_irods_base_uri_fixture, config_path=None ) assert set(expected_uris) == set(actual_uris) ``` #### File: dtool-irods/tests/test_self_description.py ```python import os from . import tmp_uuid_and_uri # NOQA def test_writing_of_dtool_structure_file(tmp_uuid_and_uri): # NOQA from dtoolcore import ProtoDataSet, generate_admin_metadata from dtoolcore.utils import generous_parse_uri from dtool_irods.storagebroker import _path_exists, _get_obj, __version__ # Create a proto dataset. uuid, dest_uri = tmp_uuid_and_uri name = "test_dtool_structure_file" admin_metadata = generate_admin_metadata(name) admin_metadata["uuid"] = uuid proto_dataset = ProtoDataSet( uri=dest_uri, admin_metadata=admin_metadata, config_path=None ) proto_dataset.create() # Check that the ".dtool/structure.json" file exists. expected_irods_path = os.path.join( generous_parse_uri(dest_uri).path, ".dtool", "structure.json" ) assert _path_exists(expected_irods_path) expected_content = { "data_directory": ["data"], "dataset_readme_relpath": ["README.yml"], "dtool_directory": [".dtool"], "admin_metadata_relpath": [".dtool", "dtool"], "structure_metadata_relpath": [".dtool", "structure.json"], "dtool_readme_relpath": [".dtool", "README.txt"], "manifest_relpath": [".dtool", "manifest.json"], "overlays_directory": [".dtool", "overlays"], "annotations_directory": [".dtool", "annotations"], "tags_directory": [".dtool", "tags"], "metadata_fragments_directory": [".dtool", "tmp_fragments"], "storage_broker_version": __version__, } actual_content = _get_obj(expected_irods_path) assert expected_content == actual_content def test_writing_of_dtool_readme_file(tmp_uuid_and_uri): # NOQA from dtoolcore import ProtoDataSet, generate_admin_metadata from dtoolcore.utils import generous_parse_uri from dtool_irods.storagebroker import _path_exists, _get_text # Create a proto dataset. uuid, dest_uri = tmp_uuid_and_uri name = "test_dtool_readme_file" admin_metadata = generate_admin_metadata(name) admin_metadata["uuid"] = uuid proto_dataset = ProtoDataSet( uri=dest_uri, admin_metadata=admin_metadata, config_path=None ) proto_dataset.create() # Check that the ".dtool/README.txt" file exists. expected_irods_path = os.path.join( generous_parse_uri(dest_uri).path, ".dtool", "README.txt" ) assert _path_exists(expected_irods_path) actual_content = _get_text(expected_irods_path) assert actual_content.startswith("README") ```
{ "source": "JIC-CSB/dtoolsid", "score": 3 }
#### File: dtoolsid/dtoolsid/illumina.py ```python import os import gzip from dtoolsid.utils import is_file_extension_in_list def parse_fastq_title_line(fastq_title_line): def illumina_bool(x): if x == "Y": return True if x == "N": return False raise(ValueError) component_names = [ ("instrument", str), ("run_number", int), ("flowcell_id", str), ("lane", int), ("tile", int), ("x_pos", int), ("y_pos", int), ("read", int), ("is_filtered", illumina_bool), ("control_number", int), ("index_sequence", str) ] assert fastq_title_line[0] == '@' words = fastq_title_line[1:].split(" ") assert len(words) == 2 components = words[0].split(":") + words[1].split(":") assert len(components) == len(component_names) # We were going through a functional phase return { name: cast_func(component) for (name, cast_func), component in zip(component_names, components) } def extract_metadata_from_fastq_file_object(fh): first_line = fh.readline().strip() try: first_line = first_line.decode('utf-8') except AttributeError: pass return parse_fastq_title_line(first_line) def extract_metadata_from_fastq_file(filename): try: with open(filename) as fh: metadata = extract_metadata_from_fastq_file_object(fh) except UnicodeDecodeError: with gzip.open(filename, 'rb') as fh: metadata = extract_metadata_from_fastq_file_object(fh) return metadata def create_illumina_metadata_overlay(dataset): """Create overlay derived from Illumina FQ metadata, and write it to dataset.""" illumina_metadata_overlay = dataset.empty_overlay() for identifier in dataset.identifiers: abspath = dataset.abspath_from_identifier(identifier) if is_file_extension_in_list(abspath, ['fq', 'fq.gz']): metadata = extract_metadata_from_fastq_file(abspath) illumina_metadata_overlay[identifier] = metadata dataset.persist_overlay( "illumina_metadata", illumina_metadata_overlay ) ``` #### File: dtoolsid/tests/__init__.py ```python import os import shutil import tempfile import pytest import dtoolcore _HERE = os.path.dirname(__file__) ILLUMINA_DATASET_PATH = os.path.join(_HERE, 'data', 'illumina_test_data') @pytest.fixture def chdir_fixture(request): d = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(d) @request.addfinalizer def teardown(): os.chdir(curdir) shutil.rmtree(d) @pytest.fixture def tmp_dir_fixture(request): d = tempfile.mkdtemp() @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def local_tmp_dir_fixture(request): d = tempfile.mkdtemp(dir=_HERE) @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def tmp_illumina_dataset(request): d = tempfile.mkdtemp() subd = os.path.join(d, 'sub') shutil.copytree(ILLUMINA_DATASET_PATH, subd) @request.addfinalizer def teatdown(): shutil.rmtree(d) return dtoolcore.DataSet.from_path(subd) @pytest.fixture def tmp_illumina_dataset_directory(request): d = tempfile.mkdtemp() subd = os.path.join(d, 'sub') shutil.copytree(ILLUMINA_DATASET_PATH, subd) @request.addfinalizer def teatdown(): shutil.rmtree(d) return subd @pytest.fixture def dataset_fixture(request): d = tempfile.mkdtemp() dataset = dtoolcore.DataSet("test", "data") dataset.persist_to_path(d) for s in ["hello", "world"]: fname = s + ".txt" fpath = os.path.join(d, "data", fname) with open(fpath, "w") as fh: fh.write(s) dataset.update_manifest() @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def collection_fixture(request): collection_path = tempfile.mkdtemp() collection = dtoolcore.Collection() collection.persist_to_path(collection_path) for ds_name in ["rice", "wheat", "barley"]: ds_path = os.path.join(collection_path, ds_name) os.mkdir(ds_path) dataset = dtoolcore.DataSet(ds_name, "data") dataset.persist_to_path(ds_path) for s in ["sow", "grow", "harvest"]: fname = s + ".txt" fpath = os.path.join(ds_path, "data", fname) with open(fpath, "w") as fh: fh.write("{} {}\n".format(s, ds_name)) dataset.update_manifest() @request.addfinalizer def teardown(): shutil.rmtree(collection_path) return collection_path ``` #### File: dtoolsid/tests/test_illumina.py ```python from . import tmp_illumina_dataset # NOQA def test_tmp_dataset_fixture(tmp_illumina_dataset): # NOQA assert len(tmp_illumina_dataset.identifiers) == 4 def check_fastq_read_1_sample_result(result): assert result["instrument"] == "ST-E00317" assert result["run_number"] == 319 assert result["flowcell_id"] == "HJMGJALXX" assert result["lane"] == 2 assert result["tile"] == 1101 assert result["x_pos"] == 7750 assert result["y_pos"] == 1309 assert result["read"] == 1 assert result["is_filtered"] is False assert result["control_number"] == 0 assert result["index_sequence"] == "NGTCACTA" def test_parse_fastq_title_line(): sample_title_line = \ "@ST-E00317:319:HJMGJALXX:2:1101:7750:1309 1:N:0:NGTCACTA" from dtoolsid.illumina import parse_fastq_title_line result = parse_fastq_title_line(sample_title_line) check_fastq_read_1_sample_result(result) def test_parse_fastq_title_line_sample_num_edge_case(): from dtoolsid.illumina import parse_fastq_title_line sample_title_line = \ "@ST-E00317:319:HJMGJALXX:2:1101:7750:1309 1:N:0:NGTCACTA" result = parse_fastq_title_line(sample_title_line) assert result["index_sequence"] == "NGTCACTA" sample_title_line = \ "@ST-E00317:319:HJMGJALXX:2:1101:7750:1309 1:N:0:2" result = parse_fastq_title_line(sample_title_line) assert result["index_sequence"] == "2" def test_extract_metadata_from_fastq_file_object(tmp_illumina_dataset): # NOQA from dtoolsid.illumina import extract_metadata_from_fastq_file_object fastq_file_identifier = "42889f278935f206dcf2772c81a055b338844c48" fastq_filename = tmp_illumina_dataset.abspath_from_identifier( fastq_file_identifier ) with open(fastq_filename) as fh: result = extract_metadata_from_fastq_file_object(fh) check_fastq_read_1_sample_result(result) def test_extract_metadata_from_fastq_file(tmp_illumina_dataset): # NOQA from dtoolsid.illumina import extract_metadata_from_fastq_file # Test plaintext fastq file fastq_file_identifier = "42889f278935f206dcf2772c81a055b338844c48" fastq_filename = tmp_illumina_dataset.abspath_from_identifier( fastq_file_identifier ) result = extract_metadata_from_fastq_file(fastq_filename) check_fastq_read_1_sample_result(result) # Test a gzipped fastq file fastq_gz_file_identifier = "40ed0c9553797c66cfa07cefb37af9086a5da66b" fastq_gz_filename = tmp_illumina_dataset.abspath_from_identifier( fastq_gz_file_identifier ) result = extract_metadata_from_fastq_file(fastq_gz_filename) check_fastq_read_1_sample_result(result) def test_create_illumina_metadata_overlay(tmp_illumina_dataset): # NOQA from dtoolsid.illumina import create_illumina_metadata_overlay create_illumina_metadata_overlay(tmp_illumina_dataset) overlays = tmp_illumina_dataset.access_overlays() assert "illumina_metadata" in overlays first_identifier = "42889f278935f206dcf2772c81a055b338844c48" first_metadata = overlays["illumina_metadata"][first_identifier] check_fastq_read_1_sample_result(first_metadata) first_gz_identifier = "40ed0c9553797c66cfa07cefb37af9086a5da66b" first_gz_metadata = overlays["illumina_metadata"][first_gz_identifier] check_fastq_read_1_sample_result(first_gz_metadata) ```
{ "source": "JIC-CSB/dtoolutils", "score": 2 }
#### File: dtoolutils/tests/__init__.py ```python import os import shutil import tempfile import pytest _HERE = os.path.dirname(__file__) TEST_SAMPLE_DATASET = os.path.join(_HERE, "data", "sample_data") @pytest.fixture def chdir_fixture(request): d = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(d) @request.addfinalizer def teardown(): os.chdir(curdir) shutil.rmtree(d) @pytest.fixture def tmp_dir_fixture(request): d = tempfile.mkdtemp() @request.addfinalizer def teardown(): shutil.rmtree(d) return d @pytest.fixture def tmp_dataset_fixture(request): from dtoolcore import DataSet d = tempfile.mkdtemp() dataset_path = os.path.join(d, 'sample_data') shutil.copytree(TEST_SAMPLE_DATASET, dataset_path) @request.addfinalizer def teardown(): shutil.rmtree(d) return DataSet.from_path(dataset_path) @pytest.fixture def local_tmp_dir_fixture(request): d = tempfile.mkdtemp(dir=_HERE) @request.addfinalizer def teardown(): shutil.rmtree(d) return d ```
{ "source": "JIC-CSB/jicagile", "score": 2 }
#### File: jicagile/tests/git_integration_tests.py ```python import unittest import os import os.path import shutil from subprocess import Popen, PIPE import tempfile import mock CUR_DIR = os.getcwd() class GitIntegrationTests(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.mkdtemp() if not os.path.isdir(self.tmp_dir): os.mkdir(self.tmp_dir) os.chdir(self.tmp_dir) def tearDown(self): os.chdir(CUR_DIR) shutil.rmtree(self.tmp_dir) def test_edit_without_git(self): import jicagile from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["add", "Basic task", "1"]) cli.run(args) backlog_dir = os.path.join(self.tmp_dir, "backlog") task_fpath = os.path.join(backlog_dir, "basic-task.yml") team = jicagile.config.Team() team.add_member("TO", "Tjelvar", "Olsson") team.add_member("MH", "Matthew", "Hartley") cli.project.team = team themes = jicagile.config.Themes() themes.add_member("admin", "grants, appraisals, etc") cli.project.themes = themes args = cli.parse_args(["edit", task_fpath, "-s", "3", "-p", "TO", "-e", "admin"]) cli.run(args) task_from_file = jicagile.Task.from_file(task_fpath) self.assertEqual(task_from_file["title"], "Basic task") self.assertEqual(task_from_file["storypoints"], 3) self.assertEqual(task_from_file["primary_contact"], "TO") self.assertEqual(task_from_file["theme"], "admin") @mock.patch('subprocess.Popen') def test_edit_with_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock import jicagile from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["add", "Basic task", "1"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = False # We are not testing integration here. cli.run(args) backlog_dir = os.path.join(self.tmp_dir, "backlog") task_fpath = os.path.join(backlog_dir, "basic-task.yml") args = cli.parse_args(["edit", task_fpath, "-s", "3"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = True # We are testing integration here. cli.run(args) patch_popen.assert_called_with(["git", "add", task_fpath]) def test_edit_title_without_git(self): import jicagile from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["add", "Basic task", "1"]) cli.run(args) backlog_dir = os.path.join(self.tmp_dir, "backlog") org_task_fpath = os.path.join(backlog_dir, "basic-task.yml") new_task_fpath = os.path.join(backlog_dir, "complicated-task.yml") self.assertTrue(os.path.isfile(org_task_fpath)) self.assertFalse(os.path.isfile(new_task_fpath)) args = cli.parse_args(["edit", org_task_fpath, "-t", "Complicated task"]) cli.run(args) self.assertFalse(os.path.isfile(org_task_fpath)) self.assertTrue(os.path.isfile(new_task_fpath)) task_from_file = jicagile.Task.from_file(new_task_fpath) self.assertEqual(task_from_file["title"], "Complicated task") @mock.patch('subprocess.Popen') def test_edit_title_with_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock import jicagile from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["add", "Basic task", "1"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = False # Just creating a task to work with not testing git integration. cli.run(args) backlog_dir = os.path.join(self.tmp_dir, "backlog") org_task_fpath = os.path.join(backlog_dir, "basic-task.yml") new_task_fpath = os.path.join(backlog_dir, "complicated-task.yml") self.assertTrue(os.path.isfile(org_task_fpath)) self.assertFalse(os.path.isfile(new_task_fpath)) args = cli.parse_args(["edit", org_task_fpath, "-t", "Complicated task"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = True # This is where we test git integration. cli.run(args) calls = [mock.call(["git", "add", org_task_fpath]), mock.call(["git", "mv", org_task_fpath, new_task_fpath])] self.assertEqual(patch_popen.call_args_list, calls) def test_is_git_repo(self): from jicagile.cli import CLI cli = CLI() self.assertFalse(cli.is_git_repo) process = Popen(["git", "init"], stdout=PIPE, stderr=PIPE) stdout, stderr = process.communicate() self.assertTrue(cli.is_git_repo) @mock.patch('subprocess.Popen') def test_add_without_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["add", "Simple task", "1"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = False cli.run(args) patch_popen.assert_not_called() @mock.patch('subprocess.Popen') def test_add_with_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["add", "Simple task", "1"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = True cli.run(args) fpath = os.path.join(".", "backlog", "simple-task.yml") patch_popen.assert_called_with(["git", "add", fpath]) @mock.patch('subprocess.Popen') def test_mv_without_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["mv", "path/to/move", "/dest/"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = False cli.run(args) patch_popen.assert_called_with(["mv", "path/to/move", "/dest/"]) @mock.patch('subprocess.Popen') def test_mv_with_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["mv", "path/to/move", "/dest/"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = True cli.run(args) patch_popen.assert_called_with(["git", "mv", "path/to/move", "/dest/"]) @mock.patch('subprocess.Popen') def test_theme_without_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["theme", "add", "admin", "stuff to do"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = False cli.run(args) patch_popen.assert_not_called() @mock.patch('subprocess.Popen') def test_theme_with_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["theme", "add", "admin", "stuff to do"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = True cli.run(args) fpath = os.path.join(".", ".themes.yml") patch_popen.assert_called_with(["git", "add", fpath]) @mock.patch('subprocess.Popen') def test_teammember_without_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["teammember", "add", "TO", "Tjelvar", "Olsson"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = False cli.run(args) patch_popen.assert_not_called() @mock.patch('subprocess.Popen') def test_teammember_with_git(self, patch_popen): process_mock = mock.MagicMock() attrs = {"communicate.return_value": None} process_mock.configure(**attrs) patch_popen.return_value = process_mock from jicagile.cli import CLI cli = CLI() args = cli.parse_args(["teammember", "add", "TO", "Tjelvar", "Olsson"]) with mock.patch("jicagile.cli.CLI.is_git_repo", new_callable=mock.PropertyMock) as mock_is_git_repo: mock_is_git_repo.return_value = True cli.run(args) fpath = os.path.join(".", ".team.yml") patch_popen.assert_called_with(["git", "add", fpath]) ``` #### File: jicagile/tests/Theme_unit_tests.py ```python import unittest class ThemeUnitTests(unittest.TestCase): def test_initialisation(self): import jicagile.config themes = jicagile.config.Themes() self.assertEqual(len(themes), 0) def test_theme_member_initialisation(self): import jicagile.config theme = jicagile.config.Themes.Member("img", "bioimage analysis") self.assertEqual(theme.lookup, "img") self.assertEqual(theme.description, "bioimage analysis") def test_add_member_to_themes(self): import jicagile themes = jicagile.config.Themes() themes.add_member(lookup="img", description="bioimage analysis") self.assertEqual(len(themes), 1) self.assertTrue(isinstance(themes.member("img"), jicagile.config.Themes.Member)) ```