metadata
dict
text
stringlengths
60
3.49M
{ "source": "JieFeng-cse/robosuite-soft", "score": 2 }
#### File: robosuite/myown/test.py ```python from dm_control import mjcf from dm_control import composer import numpy as np import sys from dm_control import viewer import robosuite as suite env = suite.make( env_name='Lift', robots='Sawyer', has_renderer=False, has_offscreen_renderer=False, ignore_done=True, use_camera_obs=False, control_freq=100, ) env.reset() env_xml = env.model.get_xml() cloth = """ <mujoco model="parent"> <worldbody> <composite type="grid" count="9 9 1" spacing="0.05" offset="0.7 0 1.0"> <geom size=".02"/> </composite> </worldbody> </mujoco>""" world = mjcf.from_xml_string(env_xml) cloth = mjcf.from_xml_string(cloth) class MyEntity(composer.ModelWrapperEntity): def _build(self, mjcf_model): self._mjcf_model = mjcf_model self._mjcf_root = mjcf_model cloth_entity = MyEntity(cloth) world_entity = MyEntity(world) world_entity.attach(cloth_entity) task = composer.NullTask(world_entity) task.control_timestep = 0.02 env = composer.Environment(task) viewer.launch(env) action_spec = env.action_spec() null_action = np.zeros(action_spec.shape, action_spec.dtype) num_steps = 1000 for _ in range(num_steps): env.step(null_action) ``` #### File: robosuite/wrappers/gym_wrapper.py ```python import numpy as np from gym import spaces from gym.core import Env from robosuite.wrappers import Wrapper class GymWrapper(Wrapper, Env): """ Initializes the Gym wrapper. Mimics many of the required functionalities of the Wrapper class found in the gym.core module Args: env (MujocoEnv): The environment to wrap. keys (None or list of str): If provided, each observation will consist of concatenated keys from the wrapped environment's observation dictionary. Defaults to proprio-state and object-state. Raises: AssertionError: [Object observations must be enabled if no keys] """ def __init__(self, env, keys=None): # Run super method super().__init__(env=env) # Create name for gym robots = "".join([type(robot.robot_model).__name__ for robot in self.env.robots]) self.name = robots + "_" + type(self.env).__name__ # Get reward range self.reward_range = (0, self.env.reward_scale) if keys is None: keys = [] # Add object obs if requested if self.env.use_object_obs: keys += ["object-state"] # Add image obs if requested if self.env.use_camera_obs: keys += [f"{cam_name}_image" for cam_name in self.env.camera_names] # Iterate over all robots to add to state for idx in range(len(self.env.robots)): keys += ["robot{}_proprio-state".format(idx)] self.keys = keys # Gym specific attributes self.env.spec = None self.metadata = None # set up observation and action spaces obs = self.env.reset() self.modality_dims = {key: obs[key].shape for key in self.keys} flat_ob = self._flatten_obs(obs) self.obs_dim = flat_ob.size high = np.inf * np.ones(self.obs_dim) low = -high self.observation_space = spaces.Box(low=low, high=high) low, high = self.env.action_spec self.action_space = spaces.Box(low=low, high=high) def _flatten_obs(self, obs_dict, verbose=False): """ Filters keys of interest out and concatenate the information. Args: obs_dict (OrderedDict): ordered dictionary of observations verbose (bool): Whether to print out to console as observation keys are processed Returns: np.array: observations flattened into a 1d array """ ob_lst = [] for key in self.keys: if key in obs_dict: if verbose: print("adding key: {}".format(key)) ob_lst.append(np.array(obs_dict[key]).flatten()) return np.concatenate(ob_lst) def reset(self): """ Extends env reset method to return flattened observation instead of normal OrderedDict. Returns: np.array: Flattened environment observation space after reset occurs """ ob_dict = self.env.reset() return self._flatten_obs(ob_dict) def step(self, action): """ Extends vanilla step() function call to return flattened observation instead of normal OrderedDict. Args: action (np.array): Action to take in environment Returns: 4-tuple: - (np.array) flattened observations from the environment - (float) reward from the environment - (bool) whether the current episode is completed or not - (dict) misc information """ ob_dict, reward, done, info = self.env.step(action) # if len(ob_dict) > 0: # observation = ob_dict['object-state'] # cloth_pos = observation[:3] # corner1 = observation[3:6] # corner2 = observation[6:9] # corner3 = observation[9:12] # corner4 = observation[12:15] # dis1 = np.linalg.norm(corner1-cloth_pos) # dis2 = np.linalg.norm(corner2-cloth_pos) # dis3 = np.linalg.norm(corner3-cloth_pos) # dis4 = np.linalg.norm(corner4-cloth_pos) # dis_sum = dis1+dis2+dis3+dis4 # if dis_sum < 0.34: #9*9 # done = True # print("unstable stage, too close: ", dis_sum) # print("corner1: ", corner1) # print("corner2: ", corner2) # print("corner3: ", corner3) # print("corner4: ", corner4) return self._flatten_obs(ob_dict), reward, done, info def seed(self, seed=None): """ Utility function to set numpy seed Args: seed (None or int): If specified, numpy seed to set Raises: TypeError: [Seed must be integer] """ # Seed the generator if seed is not None: try: np.random.seed(seed) except: TypeError("Seed must be an integer type!") def compute_reward(self, achieved_goal, desired_goal, info): """ Dummy function to be compatible with gym interface that simply returns environment reward Args: achieved_goal: [NOT USED] desired_goal: [NOT USED] info: [NOT USED] Returns: float: environment reward """ # Dummy args used to mimic Wrapper interface return self.env.reward() ```
{ "source": "JIEGE666/alimama-common-performance-platform-acp", "score": 2 }
#### File: src/res_manager/host.py ```python class Host: def __init__(self, ip, query=None, totalRes=None, availableRes=None, status=None): self.ip = ip self.query = query self.totalRes = totalRes self.availableRes = availableRes self.status = status ``` #### File: src/task/task.py ```python import sys import time import json import os path = os.path.split(os.path.realpath(__file__))[0] sys.path.append(path+"/..") from common.util import * from common.zk import * from agent import * class Task: def __init__(self, id, target, qps, source, query_path, query_type, option, status): self.task_id = id self.target = target self.qps = qps self.source = source self.query_path = query_path self.status = status self.option = option self.query_type = query_type @classmethod def create_task(self, target, qps, source, query_path, query_type, option): status = "start" time.sleep(0.002) id = "t" + str(int(round(time.time()*1000))) task = Task(id, target, qps, source, query_path, query_type, option, status) task.create_in_zk() return task @classmethod def delete_task(self, task_id): task = Task.get_task(task_id) task.delete_in_zk() @classmethod def get_task(self, task_id): path = CONF.task_path + "/" + task_id zk = ZK(CONF.zk_address) root = zk.get_node(path) if not root: return None else: task = Task.get_task_by_zknode(root) return task @classmethod def get_all_task(self): zk = ZK(CONF.zk_address) root = zk.get_node(CONF.task_path) task_list = [] for child in root.list_children(): task = Task.get_task_by_zknode(child) task_list.append(task) return task_list @classmethod def get_task_by_zknode(self, node): status = node.get_value() info_node = node.get_child("info") info = json.loads(info_node.get_value()) id = node.get_name() target = info["target"] qps = info["qps"] source = info["source"] query_path = info["query_path"] option = info["option"] query_type = info["query_type"] task = Task(id, target, qps, source, query_path, query_type, option, status) return task def get_status(self): return self.status def get_id(self): return self.task_id def get_current_qps(self): total_qps = 0 for agent in self.get_all_agent(): info = agent.get_agent_info() agent_qps = int(info["qps"]) total_qps += agent_qps return total_qps def get_task_info(self): info = {} info["target"] = self.target info["qps"] = self.qps info["source"] = self.source info["query_path"] = self.query_path info["option"] = self.option info["query_type"] = self.query_type return info def add_agent(self, host, agent_id, max_qps, resource_num): agent = Agent(self.task_id, agent_id, host, self.target, "1", self.source, self.query_path, self.query_type, self.option, str(max_qps), str(resource_num)) agent.create_in_zk() return agent def get_all_agent(self): zk = ZK(CONF.zk_address) path = "%s/%s/resource/" % (CONF.task_path, self.task_id) root = zk.get_node(path) agent_list = [] for host_node in root.list_children(): for agent_node in host_node.list_children(): info_node = agent_node.get_child("info") try: info = json.loads(info_node.get_value()) except Exception,e: print e continue target = info["target"] qps = info["qps"] source = info["source"] query_path = info["query_path"] query_type = info["query_type"] option = info["option"] max_qps = info["max_qps"] resource_num = info["resource_num"] agent = Agent(self.task_id, agent_node.get_name(), host_node.get_name(), target, qps, source, query_path, query_type, option, max_qps, resource_num) agent_list.append(agent) return agent_list def set_status(self, status): self.status = status zk = ZK(CONF.zk_address) path = CONF.task_path + "/" + self.task_id root = zk.get_node(path) root.set_value(status) def set_qps(self, qps): self.qps = qps zk = ZK(CONF.zk_address) path = CONF.task_path + "/" + self.task_id + "/info" node = zk.get_node(path) node.set_value(json.dumps(self.get_task_info())) def set_agent_qps(self, qps): QPS_INDEX= 10 for agent in self.get_all_agent(): dic = agent.get_agent_info() #CONF.log.error("current conf:") #CONF.log.error(json.dumps(dic)) # CONF.log.error("\n\n") # agent.set_qps(str(QPS_INDEX)) # QPS_INDEX = QPS_INDEX+10 agent.set_qps(str(qps)) def delete_all_agent(self): agent_list = self.get_all_agent() for agent in agent_list: agent.delete_in_zk() def create_in_zk(self): zk = ZK(CONF.zk_address) root = zk.get_node(CONF.task_path) t_node = root.add_child(self.task_id, self.status) t_node.add_child("resource") info_node = t_node.add_child("info", json.dumps(self.get_task_info())) def delete_in_zk(self): zk = ZK(CONF.zk_address) path = CONF.task_path + "/" + self.task_id node = zk.get_node(path) lock = node.get_lock() lock.acquire(timeout=0.002) node.delete() lock.release() ``` #### File: src/test/test_log.py ```python import sys sys.path.append("..") from common.util import * def test(): logging.warning("AAA") logging.error("BBB") test() ```
{ "source": "jiegeng321/Simple-classification-and-regression-framework", "score": 3 }
#### File: jiegeng321/Simple-classification-and-regression-framework/models.py ```python import math import torch import torch.nn as nn from torchvision import datasets, models, transforms def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, layers, block=BasicBlock, num_classes=4): self.inplanes = 32 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 32, layers[0]) self.layer2 = self._make_layer(block, 64, layers[1], stride=2) #self.layer3 = self._make_layer(block, 64, layers[2], stride=2) self.layer3 = self._make_layer(block, 128, layers[2], stride=2) #self.layer4 = self._make_layer(block, 256, layers[3], stride=2) self.avgpool = nn.AvgPool2d(9, stride=1) self.fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(128 * block.expansion, num_classes), nn.Softmax(dim=1) ) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): #print(self.inplanes) downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) #x = self.layer3(x) x = self.layer3(x) #x = self.layer4(x) #x = self.layer5(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = False def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True, pretrain_model=None,layers=[1,1,1]): # 初始化将在此if语句中设置的这些变量。 # 每个变量都是模型特定的。 model_ft = None # input_size = 224 if model_name == "resnet": model_ft = models.resnet18(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(num_ftrs, num_classes), nn.Softmax(dim=1) ) # input_size = 384 elif model_name == "my_resnet": model_ft = ResNet(layers, num_classes=num_classes) if pretrain_model: model_ft.load_state_dict(torch.load(pretrain_model)) # input_size = 224 elif model_name == "efficientnet": model_ft = models.efficientnet_b0(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) print(model_ft) num_ftrs = model_ft.classifier[1].in_features model_ft.classifier[1] = nn.Sequential( nn.Linear(num_ftrs, num_classes), nn.Softmax(dim=1) ) elif model_name == "alexnet": model_ft = models.alexnet(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Sequential( nn.Linear(num_ftrs, num_classes), nn.Softmax(dim=1) ) # input_size = 224 elif model_name == "vgg": model_ft = models.vgg11_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Sequential( nn.Linear(num_ftrs, num_classes), nn.Softmax(dim=1) ) # input_size = 224 elif model_name == "squeezenet": model_ft = models.squeezenet1_0(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1)) model_ft.num_classes = num_classes # input_size = 224 elif model_name == "densenet": model_ft = models.densenet121(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier.in_features model_ft.classifier = nn.Linear(num_ftrs, num_classes) # input_size = 224 elif model_name == "inception": """ Inception v3 Be careful, expects (299,299) sized images and has auxiliary output """ model_ft = models.inception_v3(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) # 处理辅助网络 num_ftrs = model_ft.AuxLogits.fc.in_features model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes) # 处理主要网络 num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) # input_size = 299 else: print("Invalid model name, exiting...") exit() return model_ft if __name__ == '__main__': #model = ResNet([1,1,1],num_classes=2) model = initialize_model(model_name="alexnet", num_classes=2, feature_extract=False, use_pretrained=True, pretrain_model=None,layers=[1,1,1]) x = torch.randn(1, 3, 144, 144) result = model(x) # print(result.shape) print(result) #print(model) #print(model.state_dict()) # for i, j in model.state_dict().items(): # print(i, j) ``` #### File: jiegeng321/Simple-classification-and-regression-framework/tools.py ```python import os import shutil def is_img(img_name): return True if str(img_name).split(".")[-1].lower() in ["jpg","png","jpeg","gif"] and str(img_name)[0] != "." else False def check_dir(path,delete=False): if not os.path.exists(path): os.makedirs(path) else: if delete: shutil.rmtree(path) os.makedirs(path) ```
{ "source": "jiegev5/pytorch-CycleGAN-for-audio", "score": 2 }
#### File: pytorch-CycleGAN-for-audio/scripts/save_spec_cyclegan_train.py ```python import librosa import numpy as np import os import sys import time from glob import glob def compute_mfcc(y): n_fft = 320 win_length = n_fft hop_length = int(n_fft/2) window = 'hamming' D = librosa.stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window) data, phase = librosa.magphase(D) # S = log(S+1) data = np.log1p(data) ## adding z-score normalize mean = np.mean(data) std = np.std(data) data = (data - mean)/std data = data/(np.abs(data).max()) print(f'mean is {mean}, std is {std}, shape is {data.shape}') return data.reshape(1, -1, 601) in_len = 16000*6 normalize = False for_cyclegan = True dict_ = { "/your/path/to/audio folder":\ "/your/path/to/destination" } s = time.time() for key in dict_.keys(): root = key target_root = dict_[key] if not os.path.exists(target_root): os.mkdir(target_root) train_target_path = os.path.join(target_root,'trainA') test_target_path = os.path.join(target_root,'testA') if not os.path.exists(train_target_path): os.mkdir(train_target_path) if not os.path.exists(test_target_path): os.mkdir(test_target_path) audio_list = glob(root+'/*.wav') for num in range(len(audio_list)): audio = audio_list[num] data = librosa.core.load(audio, sr=16000)[0] data = np.pad(data, (0, max(0, in_len - len(data))), "constant") # pad to 1s mfcc = compute_mfcc(data) # sys.exit() chk = np.sum(mfcc) if np.isnan(chk): print(f'mean = {mfcc.mean()} min = {mfcc.min()} max = {mfcc.max()}') continue else: name = audio.split('/')[-1].split('.')[0] + '.npy' if num < len(audio_list)*0.9: new_name = os.path.join(train_target_path,name) else: new_name = os.path.join(test_target_path,name) print(num,"saving ",name) np.save(new_name,mfcc) e = time.time() print("processing time (min): ",(e-s)/60) ```
{ "source": "jieggii/dnevnikru-bot", "score": 3 }
#### File: dnevnikru-bot/app/fmt.py ```python from datetime import datetime from typing import List from app.config import config from app.dnevnikru import Hometask, Timetable def get_pretty_date(date: datetime) -> str: return date.strftime("%d.%m") def get_pretty_timetable(timetable: Timetable) -> str: response = f"Расписание на {get_pretty_date(timetable.date)}:\n" for lesson in timetable.lessons: response += f"{lesson}. {timetable.lessons[lesson]}\n" return response def get_pretty_hometasks(hometasks: List[Hometask]) -> str: response = "Список домашних заданий:\n" for i, task in enumerate(hometasks): response += f"{i+1}. {task.subject} (на {get_pretty_date(task.date)}): {task.task}\n\n" return response def get_my_mention() -> str: return f"[club{config.Bot.GROUP_ID}|@{config.Bot.DOMAIN}]" ``` #### File: app/routers/chat.py ```python import logging from vkwave.bots import BotEvent, DefaultRouter, SimpleBotEvent from vkwave.bots.core.dispatching import filters from app import fmt from app.config import config from app.dnevnikru import dnevnikru from app.filters import CommandsFilter, InviteMeFilter, OnlyMentionMe, PeerIDsFilter logger = logging.getLogger(__name__) router = DefaultRouter( [ filters.MessageFromConversationTypeFilter("from_chat"), PeerIDsFilter(config.Bot.PEER_IDS), ] ) reg = router.registrar invite_me_filter = InviteMeFilter() only_mention_me_filter = OnlyMentionMe() @reg.with_decorator(invite_me_filter) async def handle_invite_me(event: BotEvent): event = SimpleBotEvent(event) await event.answer( "Привет-с! Я бот для классной беседы, с моей помощью вы сможете узнать расписание и дз.\n" f"Чтобы узнать список команд -- пишите @{config.Bot.DOMAIN}" ) @reg.with_decorator(only_mention_me_filter | CommandsFilter("help", "помощь", "команды")) async def handle_help(event: BotEvent): event = SimpleBotEvent(event) await event.answer( "Список моих команд:\n" "/help -- список команд\n" "/ht -- список ДЗ\n" "/today -- расписание на сегодня\n" "/tomorrow -- расписание на завтра\n" ) @reg.with_decorator(CommandsFilter("ht", "дз")) async def handle_ht(event): event = SimpleBotEvent(event) hometasks = await dnevnikru.get_hometasks() response = fmt.get_pretty_hometasks(hometasks) await event.answer(response) @reg.with_decorator(CommandsFilter("today", "сегодня", "td")) async def handle_today(event): event = SimpleBotEvent(event) timetable = await dnevnikru.get_timetable_today() response = fmt.get_pretty_timetable(timetable) await event.answer(response) @reg.with_decorator(CommandsFilter("tomorrow", "завтра", "tm")) async def handle_tomorrow(event): event = SimpleBotEvent(event) timetable = await dnevnikru.get_timetable_tomorrow() response = fmt.get_pretty_timetable(timetable) await event.answer(response) ```
{ "source": "jieggii/giving-tuesday-bot", "score": 2 }
#### File: app/db/db.py ```python from tortoise import Tortoise from app.config import config async def init(): await Tortoise.init( { "connections": { "default": { "engine": "tortoise.backends.asyncpg", "credentials": { "host": config.PG.HOST, "port": config.PG.PORT, "user": config.PG.USER, "password": config.PG.PASSWORD, "database": config.PG.DATABASE, }, } }, "apps": {"models": {"models": ["app.db.models"], "default_connection": "default"}}, } ), await Tortoise.generate_schemas() ```
{ "source": "jieggii/vktoken", "score": 3 }
#### File: vktoken/cli/args.py ```python from argparse import ArgumentParser from vktoken import BUILTIN_APPS, __version__ def get_arg_parser(): parser = ArgumentParser( description="Tool for getting VK access token.", prog="vktoken", ) parser.add_argument( "-V", "--version", action="version", version=f"%(prog)s {__version__}", ) parser.add_argument("login", type=str, help="VK account login (mobile phone or email)") parser.add_argument( "password", type=str, help="VK account password (will be prompted safely if not indicated)", nargs="?", ) parser.add_argument( "--app", type=str, choices=[key for key in BUILTIN_APPS.keys()], help="builtin app to be used to auth", nargs="?", ) app = parser.add_argument_group( "app arguments (can't be used if `--app` was used; must be used both at once)" ) app.add_argument("-cid", "--client-id", type=str, nargs="?", help="app client id") app.add_argument("-cs", "--client-secret", type=str, nargs="?", help="app client secret") return parser ``` #### File: vktoken/cli/log.py ```python import sys def log_error(message: str, *, fatal: bool = False): print(f"Error: {message}", file=sys.stderr) if fatal: sys.exit(-1) def log_info(message: str): print(message, file=sys.stdout) ```
{ "source": "jieggii/witless", "score": 3 }
#### File: witless/api/util.py ```python def convert_size(size: str): if size in ["any", "любое"]: return 0 elif size in ["sm", "small", "маленькое", "короткое"]: return 1 elif size in ["md", "medium", "среднее"]: return 2 elif size in ["lg", "large", "большое", "длинное"]: return 3 else: raise ValueError(f"Unknown size {size}") def remove_duplicates(array): return list(set(array)) ```
{ "source": "jiegillet/project-euler", "score": 3 }
#### File: project-euler/Python/Euler 31 - 40.py ```python import math def permutations(list): if len(list)==1: return [list] p=permutations(list[1:]) L=len(p) p*=len(list) for i in range(len(list)): for j in range(L): p[i*L+j]=p[i*L+j][0:i]+[list[0]]+p[i*L+j][i:] return p def primes_until(k): primes=[2,3] n=3 while n+2<k: n+=2 p=True for p in primes: if p*p>n: break if n%p==0: p=False; break if p: primes.append(n) return primes def is_in_ordered(x,l): imin,imax=0,len(l)-1 while imax-imin>1: imid=(imax+imin)/2 if x==l[imid]: return True elif x>l[imid]: imin=imid else: imax=imid return x==l[imin] or x==l[imax] def primes_sieve(k): primes=[True]*k primes[0],primes[1]=False,False for i in range(4,k,2): primes[i]=False n=3 while n<k: if primes[n]: for i in range(2*n,k,n): primes[i]=False else: pass n+=2 return primes # # Problem 31 # s=200 # a=0 # tot=0 # for p200 in range(s/200+1): # a=200*p200 # for p100 in range((s-a)/100+1): # a=200*p200+p100*100 # for p50 in range((s-a)/50+1): # a=200*p200+p100*100+p50*50 # for p20 in range((s-a)/20+1): # a=200*p200+p100*100+p50*50+p20*20 # for p10 in range((s-a)/10+1): # a=200*p200+p100*100+p50*50+p20*20+p10*10 # for p5 in range((s-a)/5+1): # a=200*p200+p100*100+p50*50+p20*20+p10*10+p5*5 # tot+=(s-a)/2+1 # print tot # # Problem 32 # perm=permutations(range(1,10)) # l={} # for p in perm : # if int(''.join(map(str,p[:2])))*int(''.join(map(str,p[2:5])))==int(''.join(map(str,p[5:]))): # print ''.join(map(str,p[:2])),''.join(map(str,p[2:5])),''.join(map(str,p[5:])) # l[int(''.join(map(str,p[5:])))]=0 # if p[0]*int(''.join(map(str,p[1:5])))==int(''.join(map(str,p[5:]))): # print p[0],''.join(map(str,p[1:5])),''.join(map(str,p[5:])) # l[int(''.join(map(str,p[5:])))]=0 # print sum([k for k in l]) # # Problem 33 # for num in range(1,10): # for den in range(num+1,10): # for dig in range(1,10): # if den*(10*num+dig)==num*(10*dig+den) or den*(10*dig+num)==num*(10*den+dig) or den*(10*num+dig)==num*(10*den+dig) or den*(10*dig+num)==num*(10*dig+den): # print num,den, dig # # final answer, pen and paper: 100 # # Problem 34 # fact=[math.factorial(i) for i in range(10)] # s=0 # for i in range(10,1000000): # if sum([fact[int(k)] for k in str(i)])==i: # s+=i # print i # print s # # Problem 35 # def rot(n): # dig=str(n) # return list(set([ int(''.join(dig[i:]+dig[:i])) for i in range(len(dig))])) # # lim=1000000 # primes=primes_sieve(lim) # c=0 # for p in range(lim): # if not primes[p]: # pass # else: # r=rot(p) # if all( primes[d] for d in r): # c+=len(r) # for d in r: # primes[d]=False # print c # # Problem 36 # c=0 # for i in range(1,1000000,2): # if str(i)==str(i)[::-1] and "{0:b}".format(i)=="{0:b}".format(i)[::-1]: # c+=i # print i,"{0:b}".format(i) # print c # # Problem 37 # def is_truncable(n,primes): # if n<10: # return False # n2=str(n) # return all([is_in_ordered(int(''.join(n2[i:])),primes) for i in range(len(n2))]+[is_in_ordered(int(''.join(n2[:i])),primes) for i in range(1,len(n2))]) # # primes=primes_until(1000000) # s=0 # for p in primes: # if is_truncable(p,primes): # s+=p # print p # print "sum is %d"%(s) # # Problem 38 # def are_pandigital(l): # Is a list of number l pandigital? # return ''.join(sorted(''.join(map(str,l))))=='123456789' # # pan=[] # for i in range(1,10000): # p=[i] # c=1 # while sum([len(str(k)) for k in p])<9: # c+=1 # p+=[c*i] # if sum([len(str(k)) for k in p])==9 and are_pandigital(p): # pan.append(int(''.join(map(str,p)))) # print pan # print max(pan) # # Problem 39 # smax,pmax=0,0 # for p in range(2,1000,2): # sol=0 # for c in range(3,p/2): # for a in range(1,c-2): # if a**2+(p-c-a)**2==c**2: # sol+=1 # if sol>smax: # smax,pmax=sol,p # print pmax # Problem 40 n='0' i=0 while len(n)<1E6+1: i+=1 n+=str(i) print int(n[1])*int(n[10])*int(n[100])*int(n[1000])*int(n[10000])*int(n[100000])*int(n[1000000]) ```
{ "source": "jieguangzhou/AIChallenger_SentimentAnalysis", "score": 3 }
#### File: AIChallenger_SentimentAnalysis/hah_classification/data.py ```python from collections import Counter import logging import random import numpy as np import jieba from hah_classification.develop.IO import read_file, write_file import pandas as pd import os logger = logging.getLogger(__file__) logger.setLevel(logging.INFO) PAD_IDX = 0 UNK_IDX = 1 COLUMNS = ['location_traffic_convenience', 'location_distance_from_business_district', 'location_easy_to_find', 'service_wait_time', 'service_waiters_attitude', 'service_parking_convenience', 'service_serving_speed', 'price_level', 'price_cost_effective', 'price_discount', 'environment_decoration', 'environment_noise', 'environment_space', 'environment_cleaness', 'dish_portion', 'dish_taste', 'dish_look', 'dish_recommendation', 'others_overall_experience', 'others_willing_to_consume_again'] def segment(sentence): return [i for i in sentence if i.strip()] def load_vocab(vocab_path): """ 读取词典 """ vocab = {token: index for index, token in enumerate(read_file(vocab_path, deal_function=lambda x: x.strip() if x != '\n' else x))} logger.info('load vocab (size:%s) to %s' % (len(vocab), vocab_path)) return vocab def save_vocab(vocab, vocab_path): """ 保存词典 """ sorted_vocab = sorted(vocab.items(), key=lambda x: x[1]) write_file(sorted_vocab, vocab_path, deal_function=lambda x: x[0] + '\n') logger.info('save vocab (size:%s) to %s' % (len(vocab), vocab_path)) def load_data(data_path, vocab_path, label_vocab_path, create_vocab=False, create_label_vocab=False, min_freq=1, vocab_size=None, return_label_vocab=False): msg = 'load data from %s, ' % data_path data_set = pd.read_csv(data_path) vocab_ = Counter() if create_vocab else load_vocab(vocab_path) label_vocab = {} if create_label_vocab else load_vocab(label_vocab_path) sequences, lengths = [], [] for content in data_set.iloc[:, 1]: tokens = segment(content) if create_vocab: vocab_.update(tokens) sequences.append(tokens) lengths.append(len(tokens)) if create_vocab: vocab = {'<PAD>': PAD_IDX, '<UNK>': UNK_IDX} # vocab_size 必须大于2 print('ori vocab size %s' % len(vocab_)) vocab_size = max(vocab_size or len(vocab_), 2) - 2 logger.info('create vocab, min freq: %s, vocab_size: %s' % (min_freq, vocab_size)) for token, count in vocab_.most_common(vocab_size): if not token: continue if count < min_freq: break else: vocab[token] = len(vocab) save_vocab(vocab, vocab_path) else: vocab = vocab_ columns = data_set.columns.values.tolist()[2:] dict_labels = {} dict_label_vocab = {} for col in columns: labels = [str(i) for i in data_set[col]] col_vocab_path = label_vocab_path + '.' + col if create_label_vocab: label_vocab = {vocab: index for index, vocab in enumerate(sorted(set(labels)))} save_vocab(label_vocab, col_vocab_path) else: label_vocab = load_vocab(col_vocab_path) if not return_label_vocab: labels = list(map(lambda x: label_vocab[x], labels)) dict_labels[col] = np.array(labels) dict_label_vocab[col] = label_vocab if create_label_vocab: save_vocab(label_vocab, label_vocab_path) sequences = [[vocab.get(token, UNK_IDX) for token in sequence] for sequence in sequences] msg += 'total : %s' % len(sequences) logger.info(msg) if return_label_vocab: return np.array(sequences), dict_labels, np.array(lengths), dict_label_vocab else: return np.array(sequences), dict_labels, np.array(lengths) def load_muti_label_data(data_path, vocab_path, create_vocab=False, min_freq=1, vocab_size=None): msg = 'load data from %s, ' % data_path data_set = pd.read_csv(data_path) vocab_ = Counter() if create_vocab else load_vocab(vocab_path) sequences, lengths = [], [] for content in data_set.iloc[:, 1]: tokens = segment(content) if create_vocab: vocab_.update(tokens) sequences.append(tokens) lengths.append(len(tokens)) if create_vocab: vocab = {'<PAD>': PAD_IDX, '<UNK>': UNK_IDX} # vocab_size 必须大于2 print('ori vocab size %s' % len(vocab_)) vocab_size = max(vocab_size or len(vocab_), 2) - 2 logger.info('create vocab, min freq: %s, vocab_size: %s' % (min_freq, vocab_size)) for token, count in vocab_.most_common(vocab_size): if not token: continue if count < min_freq: break else: vocab[token] = len(vocab) save_vocab(vocab, vocab_path) else: vocab = vocab_ labels = data_set[COLUMNS].values + 2 sequences = [[vocab.get(token, UNK_IDX) for token in sequence] for sequence in sequences] msg += 'total : %s' % len(sequences) logger.info(msg) return np.array(sequences), labels, np.array(lengths) def batch_iter(sequences, labels, lengths, batch_size=64, reverse=False, cut_length=None, shuffle=True): """ 将数据集分成batch输出 :param sequences: 文本序列 :param labels: 类别 :param lengths: 文本长度 :param reverse: 是否reverse文本 :param cut_length: 截断文本 :return: """ # 打乱数据 data_num = len(sequences) indexs = list(range(len(sequences))) if shuffle: random.shuffle(indexs) batch_start = 0 shuffle_sequences = sequences[indexs] shuffle_labels = labels[indexs] shuffle_lengths = lengths[indexs] while batch_start < data_num: batch_end = batch_start + batch_size batch_sequences = shuffle_sequences[batch_start:batch_end] batch_labels = shuffle_labels[batch_start:batch_end] batch_lengths = shuffle_lengths[batch_start:batch_end] if isinstance(cut_length, int): # 截断数据 batch_sequences = [sequence[:cut_length] for sequence in batch_sequences] batch_lengths = np.where(batch_lengths > cut_length, cut_length, batch_lengths) # padding长度 batch_max_length = batch_lengths.max() batch_padding_sequences = [] for sequence, length in zip(batch_sequences, batch_lengths): sequence += [PAD_IDX] * (batch_max_length - length) if reverse: sequence.reverse() batch_padding_sequences.append(sequence) batch_padding_sequences = np.array(batch_padding_sequences) yield batch_padding_sequences, batch_labels, batch_lengths batch_start = batch_end if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s') vocab_path = '../data/vocab.txt' label_vocab_path = '../cnews/label.txt' data_set = load_data('../data/sentiment_analysis_validationset.csv', vocab_path, label_vocab_path, create_vocab=True, create_label_vocab=True, vocab_size=5000) # num = 0 # for sequences, labels, lengths in batch_iter(*data_set, batch_size=64): # print(sequences.shape[1], lengths.max(), sequences.shape[1] == lengths.max()) ``` #### File: AIChallenger_SentimentAnalysis/hah_classification/main.py ```python import tensorflow as tf import argparse import os from sklearn.metrics import f1_score import numpy as np os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from hah_classification.models.model import ClassificationModel from hah_classification.opt import * from hah_classification.data import batch_iter, load_muti_label_data from hah_classification.develop.timer import Timer from hah_classification.develop.IO import check_path from hah_classification.utils import save_opt message = 'step:{0:6}, train loss:{1:6.2}, train accuarcy:{2:7.2%}, val loss :{3:6.2}, val accuary:{4:7.2%}, val f1:{5:6.2}, cost:{6}' def create_classification_model(class_first, class_second, filter_num, kernel_sizes, skip, layer_num, vocab_size, embedding_size, class_num, learning_rate, keep_drop_prob=1.0, embedding_path=None, inference=False): if not inference: with tf.variable_scope('Fasttext', reuse=tf.AUTO_REUSE): train_model = ClassificationModel(class_first, class_second, filter_num, kernel_sizes, skip, layer_num, vocab_size, embedding_size, class_num, learning_rate, keep_drop_prob=keep_drop_prob, is_train=True, embedding_path=embedding_path) else: train_model = None with tf.variable_scope('Fasttext', reuse=tf.AUTO_REUSE): inference_model = ClassificationModel(class_first, class_second, filter_num, kernel_sizes, skip, layer_num, vocab_size, embedding_size, class_num, learning_rate, keep_drop_prob=keep_drop_prob, is_train=False, embedding_path=None) return train_model, inference_model def get_feed_dict(model, sequences, labels, lengths): feed_dict = {model.input_sequences: sequences, model.input_labels: labels, model.input_lengths: lengths} return feed_dict def evaluate(sess, model, dataset, batch_size=64, reverse=False, cut_length=None): """评估模型在特定数据集上的loss和accuracy""" total_num = len(dataset[0]) total_loss = 0 total_accuracy = 0 correct_labels = None predict_labels = None for sequences, labels, lengths in batch_iter(*dataset, batch_size=batch_size, reverse=reverse, cut_length=cut_length, shuffle=False): loss, accuracy, predict_label = sess.run([model.loss, model.accuracy, model.class_labels], feed_dict=get_feed_dict(model, sequences, labels, lengths)) if correct_labels is None: correct_labels = labels predict_labels = predict_label else: correct_labels = np.concatenate([correct_labels, labels]) predict_labels = np.concatenate([predict_labels, predict_label]) batch_num = len(labels) total_loss += batch_num * loss total_accuracy += batch_num * accuracy all_f1 = [] for correct_label, predict_label in zip(correct_labels.T, predict_labels.T): f1 = f1_score(correct_label, predict_label, average='macro') all_f1.append(f1) mean_f1 = sum(all_f1) / len(all_f1) return total_loss / total_num, total_accuracy / total_num, mean_f1 def create_model(opt, inference=False): train_model, inference_model = create_classification_model(opt.class_first, opt.class_second, opt.filter_num, opt.kernel_sizes, opt.skip, opt.layer_num, opt.vocab_size, opt.embedding_size, opt.class_num, opt.learning_rate, keep_drop_prob=opt.keep_drop_prob, embedding_path=opt.embedding_path, inference=inference) if not inference: inference_model.print_parms() return train_model, inference_model def train(opt): save_path = os.path.join(opt.save_path) check_path(save_path, create=True) print('create model') train_model, inference_model = create_model(opt) save_opt(opt, save_path) # 读取train集和val集,并给予训练集合创建词典 print('load data set') train_dataset = load_muti_label_data(opt.train_data, opt.vocab_path, create_vocab=True, vocab_size=opt.vocab_size) val_dataset = load_muti_label_data(opt.val_data, opt.vocab_path) config = tf.ConfigProto() config.gpu_options.allow_growth = True saver = tf.train.Saver(max_to_keep=1) timer = Timer() best_f1 = 0 with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(save_path) if ckpt: print('load model from : %s' % ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) tensorboard_path = os.path.join(save_path, 'tensorborad') summary_writer = tf.summary.FileWriter(tensorboard_path, sess.graph) for epoch in range(opt.epoch_num): epoch_key = 'Epoch: %s' % (epoch + 1) print(epoch_key) timer.mark(epoch_key) total_loss, total_accuracy, total_num = 0, 0, 0 train_batch_data = batch_iter(*train_dataset, batch_size=opt.batch_size, reverse=opt.reverse, cut_length=opt.cut_length) for sequences, labels, lengths in train_batch_data: loss, accuracy, global_step, _ = sess.run( [train_model.loss, train_model.accuracy, train_model.global_step, train_model.optimize], feed_dict=get_feed_dict(train_model, sequences, labels, lengths)) batch_num = len(labels) total_num += batch_num total_loss += batch_num * loss total_accuracy += batch_num * accuracy if global_step % opt.print_every_step == 0: train_loss = total_loss / total_num train_accuary = total_accuracy / total_num val_loss, val_accuary, f1 = evaluate(sess, inference_model, val_dataset, batch_size=opt.batch_size, reverse=opt.reverse, cut_length=opt.cut_length) summary = tf.Summary(value=[ tf.Summary.Value(tag='train_loss', simple_value=train_loss), tf.Summary.Value(tag='train_accuary', simple_value=train_accuary), tf.Summary.Value(tag='val_loss', simple_value=val_loss), tf.Summary.Value(tag='val_accuary', simple_value=val_accuary), tf.Summary.Value(tag='val_f1', simple_value=f1), ]) summary_writer.add_summary(summary, global_step) cost_time = timer.cost_time() print(message.format(global_step, train_loss, train_accuary, val_loss, val_accuary, f1, cost_time)) if f1 > best_f1: best_f1 = f1 saver.save(sess, os.path.join(save_path, inference_model.name), global_step=global_step) total_loss, total_accuracy, total_num = 0, 0, 0 val_loss, val_accuary, val_f1 = evaluate(sess, inference_model, val_dataset, batch_size=opt.batch_size, reverse=opt.reverse, cut_length=opt.cut_length) if val_f1 > best_f1: saver.save(sess, os.path.join(save_path, inference_model.name)) cost_time = timer.cost_time() print('val accuary:{0:7.2%}, val f1:{1:6.2}, cost:{2}'.format(val_accuary, val_f1, cost_time)) if __name__ == '__main__': parser = argparse.ArgumentParser() add_nn_opt(parser) add_cnn_opt(parser) add_train_opt(parser) add_data_opt(parser) opt = parser.parse_args() train(opt) ``` #### File: hah_classification/models/model.py ```python import tensorflow as tf from hah_classification.models.nn_factory import init_embedding, muti_class_attention, muti_layer_conv, fc class ClassificationModel: def __init__(self, class_first, class_second, filter_num, kernel_sizes, skip, layer_num, vocab_size, embedding_size, class_num, learning_rate, keep_drop_prob=1.0, is_train=False, embedding_path=None): self.class_first = class_first self.class_second = class_second self.filter_num = filter_num self.kernel_sizes = kernel_sizes self.skip = skip self.layer_num = layer_num self.vocab_size = vocab_size self.embedding_size = embedding_size self.class_num = class_num self.learning_rate = learning_rate self.keep_drop_prob = keep_drop_prob if is_train else 1.0 self.is_train = is_train self.embedding_path = embedding_path self.build() self.name = self.__class__.__name__ def build(self): self._build_placeholder() self._build_embedding(self.vocab_size, self.embedding_size, self.embedding_path) input_sequences_emb = tf.nn.embedding_lookup(self.embedding, self.input_sequences) input_sequences_emb = tf.layers.dropout(input_sequences_emb, rate=1 - self.keep_drop_prob, training=self.is_train) conv_out = muti_layer_conv(input_sequences_emb, self.filter_num, self.skip, self.layer_num) first_outs = muti_class_attention(conv_out, self.class_first) outputs = [] for first_out, class_num in zip(first_outs, self.class_second): seconds_outs = muti_class_attention(conv_out, class_num, concat_inputs=first_out) for second_out in seconds_outs: outputs.append(fc(second_out, self.class_num)) losses = [] class_pros = [] class_labels = [] labels = tf.unstack(self.input_labels, axis=1) for output, label in zip(outputs, labels): loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output, labels=label)) class_pro = tf.nn.softmax(output, axis=1) class_label = tf.expand_dims(tf.argmax(class_pro, axis=1, output_type=tf.int32), axis=1) index = tf.stack([tf.range(tf.shape(class_label)[0])[:, None], class_label], axis=2) class_pro = tf.gather_nd(class_pro, index) losses.append(loss) class_pros.append(class_pro) class_labels.append(class_label) self.loss = tf.reduce_sum(losses) self.class_pros = tf.concat(class_pros, axis=1) self.class_labels = tf.concat(class_labels, axis=1) correct_pred = tf.equal(self.class_labels, self.input_labels) self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) if self.is_train: self._build_optimize(self.loss, self.learning_rate) def inference(self, sequences, lengths): labels, class_pro = self.session.run([self.class_labels, self.class_pros], feed_dict={self.input_sequences: sequences, self.input_lengths: lengths}) return labels, class_pro def to_inference(self, model_path): ckpt = tf.train.get_checkpoint_state(model_path) config = tf.ConfigProto() config.gpu_options.allow_growth = True self.session = tf.Session(config=config) saver = tf.train.Saver(max_to_keep=1) saver.restore(self.session, ckpt.model_checkpoint_path) print('use_inference') def _build_placeholder(self, batch_size=None, sequence_length=None): """ 构建placeholder :param batch_size: 默认为None,即动态batch_size :param sequence_length: 序列长度 """ with tf.name_scope('input_placeholder'): self.input_sequences = tf.placeholder(tf.int32, [batch_size, sequence_length], 'input_sequences') self.input_labels = tf.placeholder(tf.int32, [batch_size, sum(self.class_second)]) self.input_lengths = tf.placeholder(tf.int32, [batch_size], 'input_lengths') def _build_embedding(self, vocab_size, embedding_size, embedding_path): with tf.device('/cpu:0'): self.embedding = init_embedding(vocab_size, embedding_size, embedding_path) def _build_optimize(self, loss, learning_rate, optimizer='adam'): self.global_step = tf.Variable(0, trainable=False, name="Global_Step") if optimizer.lower() == 'adam': Optimizer = tf.train.AdamOptimizer else: Optimizer = tf.train.GradientDescentOptimizer self.optimize = Optimizer(learning_rate=learning_rate).minimize(loss, global_step=self.global_step) def print_parms(self): print('\n', '-' * 20) print('%s : parms' % self.name) for var in tf.trainable_variables(): print(var.name, var.shape) print('-' * 20, '\n') ``` #### File: hah_classification/models/nn_factory.py ```python import tensorflow as tf from tensorflow.contrib import rnn def init_embedding(vocab_size, embedding_size, embedding_path=None, name='embedding'): embedding = tf.get_variable(name, [vocab_size, embedding_size]) return embedding def rnn_factory(num_units, layer_num, cell_type='lstm', input_keep_prob=1.0, output_keep_prob=1.0): if cell_type.lower() == 'lstm': cell_func = rnn.BasicLSTMCell elif cell_type.lower() == 'gru': cell_func = rnn.GRUCell else: cell_func = rnn.RNNCell cells = [cell_func(num_units) for _ in range(layer_num)] drop_func = lambda cell: rnn.DropoutWrapper(cell, input_keep_prob=input_keep_prob, output_keep_prob=output_keep_prob) cell = rnn.MultiRNNCell(list(map(drop_func, cells))) return cell def muti_layer_conv(inputs, filter_num, skip=1, layer_num=1): out = inputs for i in range(layer_num): with tf.variable_scope('CNN_%s'%(i+1)): out = tf.layers.conv1d(out, filter_num, skip, padding='same') if i > 0: out = inputs + out # out = tf.tanh(out) return out def muti_class_attention(inputs, class_num, concat_inputs=None): attention = tf.nn.softmax(tf.layers.conv1d(inputs, class_num, 1, padding='same', activation=tf.nn.relu), axis=2) inputs_reshape = tf.transpose(inputs, [0, 2, 1]) attention_out = tf.matmul(inputs_reshape, attention) outputs = [] for output in tf.unstack(attention_out, axis=2): if concat_inputs is not None: output = tf.concat([output, concat_inputs], axis=1) outputs.append(output) return outputs def fc(inputs, class_num): # fc = tf.layers.dense(inputs, class_num, activation=tf.nn.relu) output = tf.layers.dense(inputs, class_num) return output ``` #### File: AIChallenger_SentimentAnalysis/hah_classification/predict.py ```python import argparse import pandas as pd import numpy as np import os from hah_classification.utils import load_opt from hah_classification.opt import add_train_opt from hah_classification.main import create_model from hah_classification.data import load_muti_label_data, batch_iter, COLUMNS def main(opt): base_dataset = load_muti_label_data(opt.test_data, opt.vocab_path) result_data = pd.read_csv(opt.test_data) _, model = create_model(opt, inference=True) model.to_inference(os.path.join(opt.save_path)) predict_labels = None for sequences, labels, lengths in batch_iter(*base_dataset, batch_size=opt.batch_size, reverse=opt.reverse, cut_length=opt.cut_length, shuffle=False): predict_label, _ = model.inference(sequences, lengths) if predict_labels is None: predict_labels = predict_label else: predict_labels = np.concatenate([predict_labels, predict_label]) result_data[COLUMNS] = predict_labels - 2 model.session.close() result_data.to_csv(os.path.join(opt.save_path, 'test_data_predict_out.csv'), encoding="utf_8", index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() add_train_opt(parser) save_path = parser.parse_args().save_path opt = load_opt(save_path) opt.test_data = 'data/sentiment_analysis_testa.csv' main(opt) ``` #### File: AIChallenger_SentimentAnalysis/hah_classification/utils.py ```python import pickle import os def save_opt(opt, path): pickle.dump(opt, open(os.path.join(path, 'opt'), 'wb')) def load_opt(path): opt = pickle.load(open(os.path.join(path, 'opt'), 'rb')) return opt ```
{ "source": "jieguangzhou/TextClassification", "score": 3 }
#### File: text_classification/models_tf/fasttext.py ```python import tensorflow as tf from text_classification.models_tf.model import BinaryClassificationModel class FastText(BinaryClassificationModel): def __init__(self, vocab_size, embedding_size, class_num, learning_rate, keep_drop_prob=1.0, is_train=False, embedding_path=None): self.vocab_size = vocab_size self.embedding_size = embedding_size self.class_num = class_num self.learning_rate = learning_rate self.keep_drop_prob = keep_drop_prob if is_train else 1.0 self.is_train = is_train self.embedding_path = embedding_path super(FastText, self).__init__() def build(self): self._build_placeholder() self._build_embedding(self.vocab_size, self.embedding_size, self.embedding_path) input_sequences_emb = tf.nn.embedding_lookup(self.embedding, self.input_sequences) self.output = tf.reduce_mean(input_sequences_emb, axis=1) self._build_output(self.output, self.class_num, self.keep_drop_prob) if self.is_train: self._build_optimize(self.loss, self.learning_rate) ``` #### File: text_classification/models_tf/textrnn.py ```python import tensorflow as tf from text_classification.models_tf.nn_factory import rnn_factory from text_classification.models_tf.model import BinaryClassificationModel class TextRNN(BinaryClassificationModel): """ TextRNN """ def __init__(self, num_units, layer_num, vocab_size, embedding_size, class_num, learning_rate, keep_drop_prob=1.0, cell_type='lstm', bidirectional=False, is_train=False, embedding_path=None): self.num_units = num_units self.layer_num = layer_num self.vocab_size = vocab_size self.embedding_size = embedding_size self.class_num = class_num self.learning_rate = learning_rate self.keep_drop_prob = keep_drop_prob if is_train else 1.0 self.cell_type = cell_type self.bidirectional = bidirectional self.is_train = is_train self.embedding_path = embedding_path super(TextRNN, self).__init__() def build(self): self._build_placeholder() self._build_embedding(self.vocab_size, self.embedding_size, self.embedding_path) input_sequences_emb = tf.nn.embedding_lookup(self.embedding, self.input_sequences) with tf.variable_scope('Rnn'): cell_fw = rnn_factory(self.num_units, self.layer_num, self.cell_type, output_keep_prob=self.keep_drop_prob) if self.bidirectional: cell_bw = rnn_factory(self.num_units, self.layer_num, self.cell_type, output_keep_prob=self.keep_drop_prob) rnn_outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, input_sequences_emb, sequence_length=self.input_lengths, dtype=tf.float32) self.outputs = tf.concat(rnn_outputs, axis=2) else: self.outputs, _ = tf.nn.dynamic_rnn(cell_fw, input_sequences_emb, dtype=tf.float32) self.outputs_last_step = self.outputs[:, -1, :] self._build_output(self.outputs_last_step, class_num=self.class_num) if self.is_train: self._build_optimize(self.loss, self.learning_rate) ```
{ "source": "jiegun314/Antares", "score": 3 }
#### File: Antares/antares/crt_inv_display.py ```python from crt_inv_calculation import CurrentInventoryCalculation as CIC from crt_inv_calculation import TraumaCurrentInventoryCalculation as TU_CIC from tabulate import tabulate import public_function as pb_func import pandas as pd class CurrentInventoryDisplay: bu_name = "" db_path = "../data/_DB/" backorder_path = "../data/_Backorder/" inventory_path = "../data/_INV_Export/" source_file_path = "../data/_Source_Data/" oneclick_path = "L:\\COMPASS\\Oneclick Inventory Report\\Output\\" currency_rate = 7.0842 def __init__(self): pass def display_code_status(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Single Code Inventory===") # 获取日期 code_name = input("Input Material Code: ").upper() # check if this code exist in material master while not CodeCalculation.check_code(code_name): code_name = input("Wrong code, please re-input: ").upper() # start to get inventory data from oneclick database str_input = input("Please input date (YYYYMMDD) OR press Enter to get most fresh date: ") table_name = CodeCalculation.get_newest_date() if str_input == "" else "INV" + str_input # check if this date exist in newest oneclick file while not CodeCalculation.check_date_availability(table_name): print("!!Error - Wrong date, Please re-input! ") str_input = input("Please input date (YYYYMMDD) OR press Enter to get most fresh date: ") table_name = CodeCalculation.get_newest_date() if str_input == "" else "INV" + str_input print("===== <Result of %s> =====" % table_name.lstrip("INV")) code_inv_output = CodeCalculation.get_code_inv(code_name, table_name) print(tabulate(code_inv_output, headers="firstrow", floatfmt=",.0f", tablefmt="github")) def display_mapping_inventory(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Inventory Status Mapping with Lists===") # get data file file_fullname = self.__class__.source_file_path + "Data_Mapping.txt" try: fo = open(file_fullname, "r") except FileNotFoundError: print("!Error, please make sure you have put Data_Mapping.txt under _Source_Data folder") return code_list = [item.strip() for item in fo.readlines()] # get the date inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") if inventory_date == "": table_name = CodeCalculation.get_newest_date() else: table_name = "INV" + inventory_date if not CodeCalculation.check_date_availability(table_name): print("!Error, please make sure you input the correct date.") return inventory_result = CodeCalculation.inventory_mapping(code_list, table_name) print(tabulate(inventory_result, headers="firstrow", tablefmt="github", showindex=range(1, len(inventory_result)))) def display_h5_inv_detail(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Hierarchy_5 Inventory Detail List===") # Get H5 Name h5_input = input("Input Hierarchy_5 Name : ") h5_name = pb_func.get_available_h5_name(h5_input, self.__class__.bu_name) # if not right h5 name, return if h5_name == "NULL": print("No such Hierarchy_5 name and please try again!~") return # get the date inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") table_name = CodeCalculation.get_newest_date() if inventory_date == "" else "INV" + inventory_date [inventory_result, total_inv_value] = CodeCalculation.get_h5_inv_detail(h5_name, table_name) print("Total Inventory Value of " + h5_name + " is %s" % (format(total_inv_value, ",.0f"))) print(tabulate(inventory_result, headers="firstrow", tablefmt="github", showindex=range(1, len(inventory_result)), floatfmt=",.0f")) def display_current_backorder(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Current Backorder List===") # 获取日期 inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") table_name = CodeCalculation.get_newest_date() if inventory_date == "" else "INV" + inventory_date print("===== <Result of %s> =====" % table_name.lstrip("INV")) backorder_result = CodeCalculation.get_current_bo(table_name) print(tabulate(backorder_result, headers="firstrow", tablefmt="github", showindex=range(1, len(backorder_result)), floatfmt=",.0f")) def display_backorder_trend(self): # print title print("===Display Backorder Trend===") print(">> Calculation ongoing, please wait~") CodeCalculation = CIC(self.__class__.bu_name) CodeCalculation.generate_backorder_trend() print(">> Done, the chart is opened in web browser.") # display aging backorder list def display_aging_backorder(self): # print title print("===Display Aging Backorder===") # set exception list with abnormal backorder information exception_list = pb_func.get_exception_list(self.__class__.bu_name, "Aging_Backorder") CodeCalculation = CIC(self.__class__.bu_name) [aging_backorder_list, mapping_days] = CodeCalculation.generate_aging_backorder_list(exception_list) print("---Aging Backorder List within %s days---" % mapping_days) print(tabulate(aging_backorder_list, headers="firstrow", tablefmt="psql")) # display inventory alert with low inventory def display_low_inventory_alert(self): # print title print("===Display Low Inventory Alert===") # get low inventory result CodeCalculation = CIC(self.__class__.bu_name) low_inventory_list = CodeCalculation.get_low_inventory_alert() print(tabulate(low_inventory_list, headers="keys", tablefmt="psql", showindex="always", floatfmt=(".0f", ".0f", ".1f", ".1f", ".0f", ".1f", ".0f", ".0f", ".0f"))) def display_current_inventory(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Current Inventory List by Hierarchy_5===") # 获取日期 inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") table_name = CodeCalculation.get_newest_date() if inventory_date == "" else "INV" + inventory_date print("===== <Result of %s> =====" % table_name.lstrip("INV")) inventory_result, summary_result = CodeCalculation.get_current_inventory(table_name) print(tabulate(inventory_result, headers="firstrow", tablefmt="psql", showindex=range(1, len(inventory_result)), floatfmt=",.0f")) total_available_stock_value, total_useful_stock_value, total_stock_value = summary_result print("Total Available Stock Value: RMB - %s, USD - %s" % (format(total_available_stock_value, ",.0f"), format(total_available_stock_value / self.__class__.currency_rate, ",.0f"))) print("Total Useful Stock Value: RMB - %s, USD - %s" % (format(total_useful_stock_value, ',.0f'), format(total_useful_stock_value / self.__class__.currency_rate, ',.0f'))) print("Total Stock Value: RMB - %s, USD - %s" % (format(total_stock_value, ',.0f'), format(total_stock_value / self.__class__.currency_rate, ',.0f'))) def export_inventory_data(self): CodeCalculation = CIC(self.__class__.bu_name) # print title print("===Export Inventory Detail List===") # get data inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") table_name = CodeCalculation.get_newest_date() if inventory_date == "" else "INV" + inventory_date df = CodeCalculation.export_inventory_data(table_name) if isinstance(df, pd.DataFrame): inventory_file = self.__class__.inventory_path + self.__class__.bu_name \ + "_Inventory_" + table_name[3:] + ".xlsx" df.to_excel(inventory_file, index=False) print("Inventory detail exported to " + inventory_file) else: print("Error. No data in that day, please choose the correct date") def export_backorder_data(self): CodeCalculation = CIC(self.__class__.bu_name) # print title print("===Export Backorder Detail List===") # get data inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") table_name = CodeCalculation.get_newest_date() if inventory_date == "" else "INV" + inventory_date df = CodeCalculation.export_backorder_data(table_name) if isinstance(df, pd.DataFrame): backorder_file = self.__class__.backorder_path + self.__class__.bu_name \ + "_Backorder_" + table_name[3:] + ".xlsx" df.to_excel(backorder_file, index=False) print("Backorder detail exported to " + backorder_file) else: print("Error. No data in that day, please choose the correct date") def display_code_inventory_trend(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Single Code Available Stock Trend===") code_name = input("Input Material Code: ") if CodeCalculation.check_code(code_name): CodeCalculation.generate_code_inv_trend(code_name) else: print("!!Error - This Material Code does NOT exist, Please re-input! ") def display_h5_inventory_trend(self, chart_type='single_line'): CodeCalculation = CIC(self.__class__.bu_name) print("===Hierarchy_5 Available Stock Trend===") # 获取H5名称 h5_input = input("Input Hierarchy_5 Name: ") if h5_input == "" or h5_input.upper() == "ALL": h5_result = "ALL" else: h5_result = pb_func.get_available_h5_name(h5_input, self.__class__.bu_name) # if not right h5 name, return if h5_result != "NULL": if chart_type == 'single_line': CodeCalculation.generate_h5_inventory_trend(h5_result) elif chart_type == 'double_line': CodeCalculation.generate_h5_inventory_trend_two_dimension(h5_result) else: print("!!Error, No such Hierarchy_5 name. Please try again!") return def display_pending_trend(self, chart_type='value'): print("===Display Pending Inventory Trend for %s===" % self.__class__.bu_name) CodeCalculation = CIC(self.__class__.bu_name) CodeCalculation.generate_pending_trend(chart_type) pass def synchronize_oneclick_data(self): CodeCalculation = CIC(self.__class__.bu_name) lst_xcpt = ['20190118', ] print("===Sync Current Inventory Data from OneClick===") sync_result = CodeCalculation.inv_data_sync(90, lst_xcpt) if sync_result == "ERROR": print("!Error, the sharefolder cannot be opened. Make sure you've connected to JNJ network and try again.") else: print(">> Synchronization succeed!") print(">> %s days succeed, %s days fail. Updated to %s" % (sync_result[0], sync_result[1], sync_result[2])) def sync_ned_inventory(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Sync Current NED Inventory Data===") sync_result = CodeCalculation.sync_ned_inventory() if sync_result: print(">> Synchronization succeed!") else: print(">> Synchronization fail") pass def command_list(self): cmd_list_dict = {"inv": self.display_current_inventory, "inv_export": self.export_inventory_data, "inv_alert": self.display_low_inventory_alert, "bo": self.display_current_backorder, "bo_export": self.export_backorder_data, "pending": self.display_pending_trend, "pending -q": (self.display_pending_trend, "quantity"), "check": self.display_code_status, "trend": self.display_code_inventory_trend, "h5_trend": self.display_h5_inventory_trend, "h5_trend_q": (self.display_h5_inventory_trend, 'double_line'), "h5_detail": self.display_h5_inv_detail, "bo_trend": self.display_backorder_trend, "mapping": self.display_mapping_inventory, "aging": self.display_aging_backorder, "sync": self.synchronize_oneclick_data, "ned_sync":self.sync_ned_inventory, "help": self.show_command_list } cmd_code = input("cmd >> crt_inv >> ") while cmd_code.upper() != "EXIT": if cmd_code in cmd_list_dict: if isinstance(cmd_list_dict[cmd_code], tuple): cmd_list_dict[cmd_code][0](cmd_list_dict[cmd_code][1]) else: cmd_list_dict[cmd_code]() else: print("!!ERROR: Wrong CMD code. Plz input correct cmd code, or type \"exit\" to quit.") cmd_code = input("cmd >> crt_inv >> ") print("==============================<Back to Main Menu>==============================") # Display command list @staticmethod def show_command_list(): import public_function public_function.display_command_list("current_inventory_command") class TraumaCurrentInventoryDisplay(CurrentInventoryDisplay): def __init__(self): super().__init__() self.__class__.bu_name = "TU" def display_code_status(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Single Code Inventory===") # 获取日期 code_name = input("Input Material Code: ").upper() # check if this code exist in material master while not CodeCalculation.check_code(code_name): code_name = input("Wrong code, please re-input: ").upper() # start to get inventory data from oneclick database str_input = input("Please input date (YYYYMMDD) OR press Enter to get most fresh date: ") table_name = CodeCalculation.get_newest_date() if str_input == "" else "INV" + str_input # check if this date exist in newest oneclick file while not CodeCalculation.check_date_availability(table_name): print("!!Error - Wrong date, Please re-input! ") str_input = input("Please input date (YYYYMMDD) OR press Enter to get most fresh date: ") table_name = CodeCalculation.get_newest_date() if str_input == "" else "INV" + str_input print("===== <Result of %s> =====" % table_name.lstrip("INV")) code_inv_output = CodeCalculation.get_code_inv_with_ned(code_name, table_name) print(tabulate(code_inv_output, headers="firstrow", floatfmt=",.0f", tablefmt="github")) def display_mapping_inventory(self): CodeCalculation = CIC(self.__class__.bu_name) print("===Inventory Status Mapping with Lists===") # get data file file_fullname = self.__class__.source_file_path + "Data_Mapping.txt" try: fo = open(file_fullname, "r") except FileNotFoundError: print("!Error, please make sure you have put Data_Mapping.txt under _Source_Data folder") return code_list = [item.strip() for item in fo.readlines()] # get the date inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") if inventory_date == "": table_name = CodeCalculation.get_newest_date() else: table_name = "INV" + inventory_date if not CodeCalculation.check_date_availability(table_name): print("!Error, please make sure you input the correct date.") return inventory_result = CodeCalculation.inventory_mapping_with_ned_inv(code_list, table_name) print(tabulate(inventory_result, headers="firstrow", tablefmt="github", showindex=range(1, len(inventory_result)))) def display_current_backorder(self): code_calculation = TU_CIC() # code_calculation = CIC('TU') print("===Current Backorder List===") # 获取日期 inventory_date = input("Inventory Data (YYYYMMDD, Press Enter to get newest) : ") table_name = code_calculation.get_newest_date() if inventory_date == "" else "INV" + inventory_date print("===== <Result of %s> =====" % table_name.lstrip("INV")) backorder_result = code_calculation.get_current_bo(table_name) print(tabulate(backorder_result, headers="firstrow", tablefmt="github", showindex=range(1, len(backorder_result)), floatfmt=",.0f")) class PowerToolCurrentInventoryDisplay(CurrentInventoryDisplay): def __init__(self): super().__init__() self.__class__.bu_name = "PT" def display_low_inventory_alert(self): print("!!Warning. This function is not available for PT.") class CMFTCurrentInventoryDisplay(CurrentInventoryDisplay): def __init__(self): super().__init__() self.__class__.bu_name = "CMF" def display_low_inventory_alert(self): print("!!Warning. This function is not available for CMFT.") class JointCurrentInventoryDisplay(CurrentInventoryDisplay): def __init__(self): super().__init__() self.__class__.bu_name = "JT" def display_low_inventory_alert(self): print("!!Warning. This function is not available for Joint.") class MitekCurrentInventoryDisplay(CurrentInventoryDisplay): def __init__(self): super().__init__() self.__class__.bu_name = "MT" def display_low_inventory_alert(self): print("!!Warning. This function is not available for Mitek.") class SpineCurrentInventoryDisplay(CurrentInventoryDisplay): def __init__(self): super().__init__() self.__class__.bu_name = "Spine" def display_low_inventory_alert(self): print("!!Warning. This function is not available for Spine.") if __name__ == "__main__": test = TraumaCurrentInventoryDisplay() test.display_current_backorder() # test.inv_data_sync(50) ``` #### File: Antares/antares/data_display.py ```python import json import sqlite3 import time import calculation from tabulate import tabulate import public_function as pb_func import draw_chart as chart class DataDisplay: bu_name = "" user_name = "" def __init__(self, bu, name): self.__class__.bu_name = bu self.__class__.user_name = name def get_current_month(self): return time.strftime("%Y-%m", time.localtime()) @staticmethod def show_command_list(): pb_func.display_command_list("public_command") # 数据的表格化输出 def format_output(self, data): print(tabulate(data, tablefmt="psql", headers="firstrow", floatfmt=",.0f")) # 显示单个代码销量数据 def show_code_sales_data(self, month_number=12): # print title print("---- %sM Sales List for Single Code---" % month_number) material_code = input("Material code: ").upper() if not pb_func.check_code_availability(self.__class__.bu_name, material_code): print("!!ERROR, This code does NOT exist.") return else: # Get master data infocheck = calculation.InfoCheck(self.__class__.bu_name) mm_result = infocheck.get_single_code_all_master_data(material_code, ['Description'])[0] print(material_code, ": ", mm_result) self.format_output(self.list_code_sales_data(material_code, month_number)) # display sales for single code def list_code_sales_data(self, material_code, month_number): infocheck = calculation.InfoCheck(self.__class__.bu_name) # generate month list sales_title = ["Month", "GTS", "LPSales", "IMS"] sales_output = [infocheck.get_time_list(self.get_current_month(), 0 - month_number)] # get sales data sale_type = ["GTS", "LPSales", "IMS"] for sales_item in sale_type: sales_output.append(infocheck.get_code_sales(sales_item, material_code, month_number)) return pb_func.add_table_index(sales_output, sales_title) # 显示单个代码历史库存量 def show_code_historical_inventory(self, month_number=12): # Print title print("---- -Historical Inventory for Single Code---") material_code = input("Material code: ").upper() # 读取Master Data infocheck = calculation.InfoCheck(self.__class__.bu_name) if not pb_func.check_code_availability(self.__class__.bu_name, material_code): print("!!ERROR, This code does NOT exist.") return else: mm_result = infocheck.get_single_code_all_master_data(material_code, ['Description'])[0] print(material_code, ": ", mm_result) # Generate date list self.format_output(self.list_code_historical_inventory(material_code, month_number)) # generate code level historical inventory quantity and month def list_code_historical_inventory(self, material_code, month_number): infocheck = calculation.InfoCheck(self.__class__.bu_name) month_list = infocheck.get_time_list(self.get_current_month(), 0-month_number) jnj_inventory_quantity = infocheck.get_code_inventory(material_code, "JNJ", month_number) lp_inventory_quantity = infocheck.get_code_inventory(material_code, "LP", month_number) gts_quantity = infocheck.get_code_sales("GTS", material_code, month_number) lpsales_quantity = infocheck.get_code_sales("LPSales", material_code, month_number) jnj_inventory_month = infocheck.get_inventory_month(jnj_inventory_quantity, gts_quantity, month_number) lp_inventory_month = infocheck.get_inventory_month(lp_inventory_quantity, lpsales_quantity, month_number) inventory_output = [month_list, jnj_inventory_quantity, jnj_inventory_month, lp_inventory_quantity, lp_inventory_month] inventory_title = ["Month", "JNJ_INV", "JNJ_INV_Mth", "LP_INV", "LP_INV_Mth"] return pb_func.add_table_index(inventory_output, inventory_title) # 显示单个代码全部信息 def show_code_all_info(self, month_number=12): # 打印标题 print("---- Overall Information for Single Code---") material_code = input("Material code: ").strip().upper() infocheck = calculation.InfoCheck(self.__class__.bu_name) master_data_list = ['Description', 'Chinese_Description', 'Hierarchy_4', 'Hierarchy_5', 'Sales_Status', 'Purchase_Status', 'Standard_Cost', 'SAP_Price', 'Ranking', 'MRP_Type', 'Reorder_Point', 'Phoenix_Status', 'Phoenix_Discontinuation_Date', 'Phoenix_Obsolescence_Date', 'GTIN', 'RAG'] master_data_result = infocheck.get_single_code_all_master_data(material_code, master_data_list) if master_data_result: print("======= <Detail Information> =======") for i in range(len(master_data_list)): if master_data_list[i] == 'RAG': print("---- <RAG Information> ----") rag_result = json.loads(master_data_result[i]) for j in range(len(rag_result)): print(rag_result[str(j+1)]['REGLICNO'], " - ", rag_result[str(j+1)]['REGAPDATE'], " - ", rag_result[str(j+1)]['REGEXDATE'], " - ", rag_result[str(j+1)]['LIFEYEAR']) else: print(master_data_list[i], " - ", master_data_result[i]) print("======= <Sales & Inventory Information> =======") # 开始输出销售量 print("--%s Months Historical Sales Data --" % month_number) self.format_output(self.list_code_sales_data(material_code, month_number)) # 开始输出库存历史量 print("--%s Months Historical Inventory Data --" % month_number) self.format_output(self.list_code_historical_inventory(material_code, month_number)) # 显示Statistical Forecast print("--Next 12 Months Statistical Forecast--") forecast_quantity = infocheck.get_code_forecast(material_code, "Statistical", 12) if forecast_quantity != "Fail": self.format_output(forecast_quantity) # 显示Final Forecast print("--Next 12 Months Final Forecast--") forecast_quantity = infocheck.get_code_forecast(material_code, "Final", 12) if forecast_quantity != "Fail": self.format_output(forecast_quantity) # 显示ESO self.display_material_eso(material_code, "code") print("-----------END-----------") else: print("!! Error. This code does not exist.") return # get hierarchy_5 name def get_h5_name(self): h5_input = input("Please input Hierarchy_5 name: ") h5_name = "ALL" if h5_input.upper() == "ALL" else pb_func.get_available_h5_name(h5_input, self.__class__.bu_name) return h5_name # get sales data for one Hierarchy_5 def get_h5_sales_data(self, h5_name, month_number): h5_info_check = calculation.InfoCheck(self.__class__.bu_name) print("====================================================================") print("--24 Month Historical Sales Data for %s--" % h5_name) price_type = ("Standard_Cost", "SAP_Price") sales_type = ("GTS", "LPSales", "IMS") for price_item in price_type: # Print price title print("-With %s-" % price_item) # Add Month list sales_title = ["Month", "GTS", "LPSales", "IMS"] h5_sales_result = [h5_info_check.get_time_list(self.get_current_month(), 0 - month_number)] # get data for sales_item in sales_type: h5_sales_result.append(h5_info_check.get_h5_sales_data(sales_item, price_item, h5_name, month_number)) self.format_output(pb_func.add_table_index(h5_sales_result, sales_title)) # show sales data for one Hierarchy_5 def show_h5_sales_data(self, month_number=12): h5_name = self.get_h5_name() if h5_name != "NULL": self.get_h5_sales_data(h5_name, month_number) else: print("!!Error, Wrong Hierarchy_5 Name, Please Check!") # get inventory data for one Hierarchy_5: def get_h5_inventory(self, h5_name, month_number): h5_info_check = calculation.InfoCheck(self.__class__.bu_name) # Print title print("====================================================================") print("--%s Month Historical Inventory for %s (RMB)--" % (month_number, h5_name)) # price_type = ("Standard_Cost", "SAP_Price") inv_type = ("JNJ", "LP") inv_std_cost_title = ["Month", "JNJ", "LP"] inv_sap_price_title = ["Month", "JNJ", "JNJ_Mth", "LP", "LP_Mth"] # print with Standard Cost print("-With Standard_Cost-") h5_inv_result = [h5_info_check.get_time_list(self.get_current_month(), 0 - month_number)] for inv_item in inv_type: h5_inv_result.append(h5_info_check.get_h5_inventory_data(inv_item, "Standard_Cost", h5_name, month_number)) self.format_output(pb_func.add_table_index(h5_inv_result, inv_std_cost_title)) # print with SAP Price print("-With SAP Price-") h5_inv_result = [h5_info_check.get_time_list(self.get_current_month(), 0 - month_number)] inv_parameter = [["JNJ", "GTS"], ["LP", "LPSales"]] for para_item in inv_parameter: [inv_type, sale_type] = para_item # get sales data h5_sales_result = h5_info_check.get_h5_sales_data(sale_type, "SAP_Price", h5_name, month_number) # generate inventory value and inventory month h5_inv_output = h5_info_check.get_h5_inventory_data(inv_type, "SAP_Price", h5_name, month_number) h5_inv_month = h5_info_check.get_inventory_month(h5_inv_output, h5_sales_result, month_number) h5_inv_result.extend([h5_inv_output, h5_inv_month]) self.format_output(pb_func.add_table_index(h5_inv_result, inv_sap_price_title)) def show_h5_inventory(self, month_number=12): h5_name = self.get_h5_name() if h5_name != "NULL": self.get_h5_inventory(h5_name, month_number) else: print("!!Error, Wrong Hierarchy_5 Name, Please Check!") # display forecast for one Hierarchy_5 def show_h5_forecast(self, h5_name, fcst_type, month_quntity=12): print("== %s Forecast for %s ==" % (fcst_type, h5_name)) forecast_calculation = calculation.InfoCheck(self.__class__.bu_name) month_list = forecast_calculation.get_time_list(self.get_current_month(), month_quntity) forecast_result = forecast_calculation.get_h5_forecast(h5_name, fcst_type, month_quntity) forecast_output = pb_func.add_table_index([month_list, forecast_result], ["Month", "Value (SAP Price)"]) self.format_output(forecast_output) pass # Show all information of one Hierarchy_5 def show_h5_all_info(self, month_number=12, forecast_month=12): h5_name = self.get_h5_name() if h5_name != "NULL": self.get_h5_sales_data(h5_name, month_number) self.get_h5_inventory(h5_name, month_number) self.show_h5_forecast(h5_name, "Statistical", forecast_month) self.show_h5_forecast(h5_name, "Final", forecast_month) self.display_material_eso(h5_name, "h5") else: print("!!Error, Wrong Hierarchy_5 Name, Please Check!") # 显示单个代码的ESO def show_code_eso(self): code_name = input("Input Material Code: ").upper() self.display_material_eso(code_name, eso_type="code") # display eso for single code def display_material_eso(self, material_code, eso_type): info_check = calculation.InfoCheck(self.__class__.bu_name) eso_result = info_check.get_material_eso(material_code, eso_type) if eso_type == "code": eso_output = [["Cycle", ], ["E_Qty", ], ["SM_Qty", ], ["O_Qty", ], ["ESO_Qty", ], ["Total_ESO_Value", ]] else: eso_output = [["Cycle", ], ["NPI_Reverse_ESO", ], ["Total_ESO_Value", ]] for item in eso_result: for index in range(0, len(eso_output)): eso_output[index].append(item[index]) self.format_output(eso_output) # 显示单个代码的综合图表 def show_code_chart(self): print("==Single Code General Chart==") material_code = input("Material code: ").upper() # 验证代码是否存在 if not pb_func.check_code_availability(self.__class__.bu_name, material_code): print("!! This code does no exist, please try again.") return # 读取销量数据 infocheck = calculation.InfoCheck(self.__class__.bu_name) sales_list = ("GTS", "LPSales", "IMS") sales_output = [] for index in range(0, 3): sales_output.append(infocheck.get_code_sales(sales_list[index], material_code, 24)) # 读取final forecast code_forecast = infocheck.get_code_forecast(material_code, "Final", 12)[1] # 读取库存数据 historical_jnj_inv = infocheck.get_code_inventory(material_code, "JNJ", 24) historical_lp_inv = infocheck.get_code_inventory(material_code, "LP", 24) historical_inv = [historical_jnj_inv, historical_lp_inv] self.draw_sales_inv_fcst_chart(material_code, sales_output, historical_inv, code_forecast, 12, "code") # 显示H5的综合图表 def show_h5_chart(self): # 打印标题 print("==Hierarchy_5 General Chart==") h5_name = self.get_h5_name() if h5_name == "NULL": return h5_info_check = calculation.InfoCheck(self.__class__.bu_name) # 读取数据 # 读取历史销量 sales_type = ("GTS", "LPSales", "IMS") h5_sales_result = [] for sales_item in sales_type: h5_sales_result.append(h5_info_check.get_h5_sales_data(sales_item, "SAP_Price", h5_name, 24)) # 读取库存量 inv_type = ("JNJ", "LP") h5_inv_result = [] for inv_item in inv_type: h5_inv_result.append(h5_info_check.get_h5_inventory_data(inv_item, "SAP_Price", h5_name, 24)) # 读取final forecast h5_forecast = h5_info_check.get_h5_forecast(h5_name, "Final", 12) # Generate the chart with 12 months forecast chart_name = self.__class__.bu_name if h5_name == 'ALL' else h5_name self.draw_sales_inv_fcst_chart(chart_name, h5_sales_result, h5_inv_result, h5_forecast, 12, "h5") pass # 画综合图 def draw_sales_inv_fcst_chart(self, name, sales_data, inv_data, fcst_data, fcst_month, data_type): # get integer format of all sales data sales_gts = list(map(int, sales_data[0])) sales_lpsales = list(map(int, sales_data[1])) sales_ims = list(map(int, sales_data[2])) jnj_inv, lp_inv = inv_data # set blank and zero list lst_blank, lst_zero = [], [] for index in range(0, 12): lst_blank.append(None) lst_zero.append(0) # get inventory month jnj_inv_month = calculation.InfoCheck.get_inventory_month(jnj_inv, sales_gts, 24, blank_type=1) lp_inv_month = calculation.InfoCheck.get_inventory_month(lp_inv, sales_lpsales, 24, blank_type=1) # fulfill sales and inventory data with blank in future 12 months sales_gts.extend(lst_blank) sales_lpsales.extend(lst_blank) sales_ims.extend(lst_blank) jnj_inv_month.extend(lst_blank) lp_inv_month.extend(lst_blank) # fulfill forecast data with blank in historical 24 months final_fcst_data = lst_blank + lst_blank + fcst_data # link fcst data with gts final_fcst_data[23] = sales_gts[23] # start to generate chart # generate full month list infocheck = calculation.InfoCheck(self.__class__.bu_name) historical_month_list = infocheck.get_time_list(self.get_current_month(), -24) final_month_list = historical_month_list + infocheck.get_time_list(self.get_current_month(), fcst_month) # draw the chart chart.all_in_one_echart(name, final_month_list, jnj_inv_month, lp_inv_month, sales_gts, sales_lpsales, sales_ims, final_fcst_data, data_type) print("--The chart is generated, you can also find it under ../data/_Charter --") if __name__ == "__main__": test = DataDisplay("TU", "Jeffrey") test.show_code_historical_inventory() ``` #### File: Antares/antares/gui_design.py ```python import wx import wx.xrc import wx.adv ########################################################################### ## Class DragonFrame ########################################################################### class DragonFrame ( wx.Frame ): def __init__( self, parent ): wx.Frame.__init__ ( self, parent, id = wx.ID_ANY, title = u"Project Dragon GUI v0609", pos = wx.DefaultPosition, size = wx.Size( 1280,800 ), style = wx.CAPTION|wx.CLOSE_BOX|wx.MINIMIZE_BOX|wx.TAB_TRAVERSAL ) self.SetSizeHints( wx.DefaultSize, wx.DefaultSize ) bSizer1 = wx.BoxSizer( wx.VERTICAL ) self.ntbkOneclick = wx.Notebook( self, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.NB_TOP ) self.pnlOneclick = wx.Panel( self.ntbkOneclick, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL ) bSizer4 = wx.BoxSizer( wx.VERTICAL ) bSizer5 = wx.BoxSizer( wx.HORIZONTAL ) bSizer5.SetMinSize( wx.Size( -1,80 ) ) bSizer5.Add( ( 20, 0), 0, wx.EXPAND, 5 ) self.btnSync = wx.BitmapButton( self.pnlOneclick, wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, wx.BU_AUTODRAW|wx.BORDER_NONE ) self.btnSync.SetBitmap( wx.Bitmap( u".icon/sync_black.png", wx.BITMAP_TYPE_ANY ) ) self.btnSync.SetBitmapCurrent( wx.Bitmap( u".icon/sync_blue.png", wx.BITMAP_TYPE_ANY ) ) self.btnSync.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOW ) ) self.btnSync.SetToolTip( u"Sync Inventory with oneclick file" ) bSizer5.Add( self.btnSync, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer5.Add( ( 20, 0), 0, wx.EXPAND, 5 ) self.m_staticline7 = wx.StaticLine( self.pnlOneclick, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.LI_VERTICAL ) bSizer5.Add( self.m_staticline7, 0, wx.EXPAND |wx.ALL, 5 ) bSizer5.Add( ( 20, 0), 0, wx.EXPAND, 5 ) rdbxCalculationTypeChoices = [ u"by Code", u"by Hierarchy" ] self.rdbxCalculationType = wx.RadioBox( self.pnlOneclick, wx.ID_ANY, u"Calculation Type", wx.DefaultPosition, wx.Size( -1,88 ), rdbxCalculationTypeChoices, 1, wx.RA_SPECIFY_COLS ) self.rdbxCalculationType.SetSelection( 0 ) bSizer5.Add( self.rdbxCalculationType, 0, wx.ALL|wx.ALIGN_BOTTOM, 5 ) bSizer5.Add( ( 10, 20), 0, wx.EXPAND, 5 ) bSizer9 = wx.BoxSizer( wx.VERTICAL ) bSizer101 = wx.BoxSizer( wx.HORIZONTAL ) self.m_staticText2 = wx.StaticText( self.pnlOneclick, wx.ID_ANY, u"Material / H5 Name: ", wx.DefaultPosition, wx.Size( -1,15 ), wx.ALIGN_CENTER_HORIZONTAL ) self.m_staticText2.Wrap( -1 ) self.m_staticText2.SetMaxSize( wx.Size( -1,30 ) ) bSizer101.Add( self.m_staticText2, 0, wx.ALIGN_CENTER_HORIZONTAL|wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer101.Add( ( 280, 0), 0, wx.EXPAND, 5 ) self.chkbxWholeBU = wx.CheckBox( self.pnlOneclick, wx.ID_ANY, u"BU Level", wx.DefaultPosition, wx.DefaultSize, 0 ) bSizer101.Add( self.chkbxWholeBU, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer9.Add( bSizer101, 1, wx.EXPAND, 5 ) bSizer11 = wx.BoxSizer( wx.HORIZONTAL ) self.txtMaterialCode = wx.TextCtrl( self.pnlOneclick, wx.ID_ANY, wx.EmptyString, wx.DefaultPosition, wx.Size( 120,80 ), wx.TE_MULTILINE ) bSizer11.Add( self.txtMaterialCode, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) lstbxCodeSelectionChoices = [] self.lstbxCodeSelection = wx.ListBox( self.pnlOneclick, wx.ID_ANY, wx.DefaultPosition, wx.Size( 350,80 ), lstbxCodeSelectionChoices, wx.LB_NEEDED_SB|wx.LB_SINGLE ) bSizer11.Add( self.lstbxCodeSelection, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer9.Add( bSizer11, 0, wx.EXPAND, 5 ) bSizer5.Add( bSizer9, 0, wx.EXPAND, 5 ) bSizer5.Add( ( 30, 0), 0, wx.EXPAND, 5 ) bSizer71 = wx.BoxSizer( wx.VERTICAL ) bSizer71.SetMinSize( wx.Size( 0,60 ) ) bSizer71.Add( ( 1, 25), 0, wx.EXPAND, 5 ) self.chkbxToday = wx.CheckBox( self.pnlOneclick, wx.ID_ANY, u"Today", wx.DefaultPosition, wx.DefaultSize, 0 ) bSizer71.Add( self.chkbxToday, 0, wx.ALL|wx.ALIGN_CENTER_HORIZONTAL, 5 ) bSizer71.Add( ( 0, 5), 0, wx.EXPAND, 5 ) self.dtpkDate = wx.adv.DatePickerCtrl( self.pnlOneclick, wx.ID_ANY, wx.DefaultDateTime, wx.Point( 0,0 ), wx.Size( 110,30 ), wx.adv.DP_DROPDOWN|wx.BORDER_SUNKEN ) bSizer71.Add( self.dtpkDate, 0, wx.ALL, 5 ) bSizer5.Add( bSizer71, 0, wx.EXPAND, 5 ) bSizer5.Add( ( 25, 0), 0, wx.EXPAND, 5 ) self.btnCodeSubmit = wx.BitmapButton( self.pnlOneclick, wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, wx.BU_AUTODRAW|wx.BORDER_NONE ) self.btnCodeSubmit.SetBitmap( wx.Bitmap( u".icon/submit.png", wx.BITMAP_TYPE_ANY ) ) self.btnCodeSubmit.SetBitmapCurrent( wx.Bitmap( u".icon/submit_green.png", wx.BITMAP_TYPE_ANY ) ) self.btnCodeSubmit.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOW ) ) self.btnCodeSubmit.SetToolTip( u"Submit" ) bSizer5.Add( self.btnCodeSubmit, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer5.Add( ( 20, 0), 0, wx.EXPAND, 5 ) self.btnReset = wx.BitmapButton( self.pnlOneclick, wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, wx.BU_AUTODRAW|wx.BORDER_NONE ) self.btnReset.SetBitmap( wx.Bitmap( u".icon/reset.png", wx.BITMAP_TYPE_ANY ) ) self.btnReset.SetBitmapCurrent( wx.Bitmap( u".icon/reset_red.png", wx.BITMAP_TYPE_ANY ) ) self.btnReset.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOW ) ) self.btnReset.SetToolTip( u"Reset Input" ) bSizer5.Add( self.btnReset, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer4.Add( bSizer5, 0, wx.EXPAND, 5 ) self.m_staticline1 = wx.StaticLine( self.pnlOneclick, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.LI_HORIZONTAL ) bSizer4.Add( self.m_staticline1, 0, wx.EXPAND |wx.ALL, 5 ) bSizer6 = wx.BoxSizer( wx.VERTICAL ) bSizer6.SetMinSize( wx.Size( -1,30 ) ) bSizer8 = wx.BoxSizer( wx.HORIZONTAL ) self.btnInventoryExport = wx.BitmapButton( self.pnlOneclick, wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, wx.BU_AUTODRAW|wx.BORDER_NONE ) self.btnInventoryExport.SetBitmap( wx.Bitmap( u".icon/inventory_export.png", wx.BITMAP_TYPE_ANY ) ) self.btnInventoryExport.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOW ) ) self.btnInventoryExport.SetToolTip( u"Export Inventory" ) bSizer8.Add( self.btnInventoryExport, 0, wx.ALL, 5 ) self.btnBackorderExport = wx.BitmapButton( self.pnlOneclick, wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, wx.BU_AUTODRAW|wx.BORDER_NONE ) self.btnBackorderExport.SetBitmap( wx.Bitmap( u".icon/backorder_export.png", wx.BITMAP_TYPE_ANY ) ) self.btnBackorderExport.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOW ) ) self.btnBackorderExport.SetToolTip( u"Export Backorder" ) bSizer8.Add( self.btnBackorderExport, 0, wx.ALL, 5 ) self.m_staticline6 = wx.StaticLine( self.pnlOneclick, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.LI_VERTICAL ) self.m_staticline6.SetFont( wx.Font( wx.NORMAL_FONT.GetPointSize(), wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL, False, wx.EmptyString ) ) bSizer8.Add( self.m_staticline6, 0, wx.EXPAND |wx.ALL, 5 ) bSizer8.Add( ( 20, 0), 0, wx.EXPAND, 5 ) self.m_staticText41 = wx.StaticText( self.pnlOneclick, wx.ID_ANY, u"Log:", wx.DefaultPosition, wx.DefaultSize, 0 ) self.m_staticText41.Wrap( -1 ) bSizer8.Add( self.m_staticText41, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) self.txtLog = wx.TextCtrl( self.pnlOneclick, wx.ID_ANY, wx.EmptyString, wx.DefaultPosition, wx.Size( 800,-1 ), wx.TE_CENTER|wx.TE_READONLY|wx.BORDER_SUNKEN ) self.txtLog.SetForegroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_CAPTIONTEXT ) ) self.txtLog.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_INFOBK ) ) bSizer8.Add( self.txtLog, 0, wx.ALL|wx.ALIGN_CENTER_VERTICAL, 5 ) bSizer8.Add( ( 200, 0), 0, wx.EXPAND, 5 ) self.btnOutputDownload = wx.BitmapButton( self.pnlOneclick, wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, wx.BU_AUTODRAW|wx.BORDER_NONE ) self.btnOutputDownload.SetBitmap( wx.Bitmap( u".icon/data_download.png", wx.BITMAP_TYPE_ANY ) ) self.btnOutputDownload.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOW ) ) self.btnOutputDownload.SetToolTip( u"Download data in the list" ) bSizer8.Add( self.btnOutputDownload, 0, wx.ALL, 5 ) bSizer6.Add( bSizer8, 1, wx.EXPAND, 5 ) bSizer4.Add( bSizer6, 0, wx.EXPAND, 5 ) self.m_staticline2 = wx.StaticLine( self.pnlOneclick, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.LI_HORIZONTAL ) bSizer4.Add( self.m_staticline2, 0, wx.EXPAND |wx.ALL, 5 ) bSizer7 = wx.BoxSizer( wx.VERTICAL ) self.listCtrlOutput = wx.ListCtrl( self.pnlOneclick, wx.ID_ANY, wx.DefaultPosition, wx.Size( 1275,-1 ), wx.LC_REPORT|wx.LC_VRULES ) bSizer7.Add( self.listCtrlOutput, 1, wx.ALL|wx.ALIGN_CENTER_HORIZONTAL, 5 ) bSizer4.Add( bSizer7, 1, wx.EXPAND, 5 ) self.pnlOneclick.SetSizer( bSizer4 ) self.pnlOneclick.Layout() bSizer4.Fit( self.pnlOneclick ) self.ntbkOneclick.AddPage( self.pnlOneclick, u"Oneclick", False ) bSizer1.Add( self.ntbkOneclick, 1, wx.EXPAND |wx.ALL, 5 ) self.SetSizer( bSizer1 ) self.Layout() self.statusBar = self.CreateStatusBar( 2, wx.STB_SIZEGRIP, wx.ID_ANY ) self.m_menubar1 = wx.MenuBar( 0 ) self.menuFile = wx.Menu() self.mExit = wx.MenuItem( self.menuFile, wx.ID_ANY, u"Exit", wx.EmptyString, wx.ITEM_NORMAL ) self.menuFile.Append( self.mExit ) self.m_menubar1.Append( self.menuFile, u"File" ) self.menuAbout = wx.Menu() self.showAbout = wx.MenuItem( self.menuAbout, wx.ID_ANY, u"About", wx.EmptyString, wx.ITEM_NORMAL ) self.menuAbout.Append( self.showAbout ) self.m_menubar1.Append( self.menuAbout, u"About" ) self.SetMenuBar( self.m_menubar1 ) self.m_toolBar1 = self.CreateToolBar( wx.TB_HORIZONTAL, wx.ID_ANY ) self.m_toolBar1.SetToolBitmapSize( wx.Size( 20,20 ) ) self.m_toolBar1.SetToolPacking( 0 ) self.m_toolBar1.AddSeparator() self.mDisplayCurrentInventory = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/current_day.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"Display current inventory", wx.EmptyString, None ) self.m_toolBar1.AddSeparator() self.mCurrentBackorder = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/backorder.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"Display current backorder", wx.EmptyString, None ) self.mBackorderTrend = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bo_trend.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"display trend of backorder value", wx.EmptyString, None ) self.mAgingBackorder = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/aging_backorder.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"display aging backorder", wx.EmptyString, None ) self.m_toolBar1.AddSeparator() self.mPendingInventory = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/pending.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"Display trend for pending inventory value", wx.EmptyString, None ) self.mLowABInventory = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/low_inventory.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"Display low inventory for Rank A, B products", wx.EmptyString, None ) self.m_toolBar1.AddSeparator() self.mInvTrend = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/inventory_trend.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_NORMAL, u"Display inventory trend with selected name", wx.EmptyString, None ) self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.m_toolBar1.AddSeparator() self.mTU = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bu_TU.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_RADIO, u"Trauma", wx.EmptyString, None ) self.mCMFT = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bu_CMFT.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_RADIO, u"CMFT", wx.EmptyString, None ) self.mPT = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bu_PT.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_RADIO, u"PowerTool", wx.EmptyString, None ) self.mJT = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bu_JT.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_RADIO, u"Joint", wx.EmptyString, None ) self.mSpine = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bu_Spine.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_RADIO, u"Spine", wx.EmptyString, None ) self.mMT = self.m_toolBar1.AddLabelTool( wx.ID_ANY, u"tool", wx.Bitmap( u".icon/bu_MT.png", wx.BITMAP_TYPE_ANY ), wx.NullBitmap, wx.ITEM_RADIO, u"Mitek", wx.EmptyString, None ) self.m_toolBar1.Realize() self.Centre( wx.BOTH ) # Connect Events self.btnSync.Bind( wx.EVT_BUTTON, self.sync_inventory ) self.chkbxWholeBU.Bind( wx.EVT_CHECKBOX, self.bu_level_selected ) self.lstbxCodeSelection.Bind( wx.EVT_LEFT_DCLICK, self.display_h5_inventory ) self.chkbxToday.Bind( wx.EVT_CHECKBOX, self.set_date_as_today ) self.dtpkDate.Bind( wx.adv.EVT_DATE_CHANGED, self.set_checking_date ) self.btnCodeSubmit.Bind( wx.EVT_BUTTON, self.codeSubmit ) self.btnReset.Bind( wx.EVT_BUTTON, self.clear_input ) self.btnInventoryExport.Bind( wx.EVT_BUTTON, self.export_inventory ) self.btnBackorderExport.Bind( wx.EVT_BUTTON, self.export_backorder ) self.btnOutputDownload.Bind( wx.EVT_BUTTON, self.export_listed_data ) self.listCtrlOutput.Bind( wx.EVT_LIST_ITEM_ACTIVATED, self.click_item_in_list ) self.Bind( wx.EVT_MENU, self.exit_dragon, id = self.mExit.GetId() ) self.Bind( wx.EVT_MENU, self.show_about_dialog, id = self.showAbout.GetId() ) self.Bind( wx.EVT_TOOL, self.get_current_inventory_list, id = self.mDisplayCurrentInventory.GetId() ) self.Bind( wx.EVT_TOOL, self.get_current_bo_list, id = self.mCurrentBackorder.GetId() ) self.Bind( wx.EVT_TOOL, self.display_backorder_trend, id = self.mBackorderTrend.GetId() ) self.Bind( wx.EVT_TOOL, self.display_aging_backorder, id = self.mAgingBackorder.GetId() ) self.Bind( wx.EVT_TOOL, self.display_pending_inventory, id = self.mPendingInventory.GetId() ) self.Bind( wx.EVT_TOOL, self.display_low_AB_inventory, id = self.mLowABInventory.GetId() ) self.Bind( wx.EVT_TOOL, self.display_inventory_trend, id = self.mInvTrend.GetId() ) self.Bind( wx.EVT_TOOL, self.select_bu_TU, id = self.mTU.GetId() ) self.Bind( wx.EVT_TOOL, self.select_bu_CMFT, id = self.mCMFT.GetId() ) self.Bind( wx.EVT_TOOL, self.select_bu_PT, id = self.mPT.GetId() ) self.Bind( wx.EVT_TOOL, self.select_bu_JT, id = self.mJT.GetId() ) self.Bind( wx.EVT_TOOL, self.select_bu_SP, id = self.mSpine.GetId() ) self.Bind( wx.EVT_TOOL, self.select_bu_MT, id = self.mMT.GetId() ) def __del__( self ): pass # Virtual event handlers, overide them in your derived class def sync_inventory( self, event ): event.Skip() def bu_level_selected( self, event ): event.Skip() def display_h5_inventory( self, event ): event.Skip() def set_date_as_today( self, event ): event.Skip() def set_checking_date( self, event ): event.Skip() def codeSubmit( self, event ): event.Skip() def clear_input( self, event ): event.Skip() def export_inventory( self, event ): event.Skip() def export_backorder( self, event ): event.Skip() def export_listed_data( self, event ): event.Skip() def click_item_in_list( self, event ): event.Skip() def exit_dragon( self, event ): event.Skip() def show_about_dialog( self, event ): event.Skip() def get_current_inventory_list( self, event ): event.Skip() def get_current_bo_list( self, event ): event.Skip() def display_backorder_trend( self, event ): event.Skip() def display_aging_backorder( self, event ): event.Skip() def display_pending_inventory( self, event ): event.Skip() def display_low_AB_inventory( self, event ): event.Skip() def display_inventory_trend( self, event ): event.Skip() def select_bu_TU( self, event ): event.Skip() def select_bu_CMFT( self, event ): event.Skip() def select_bu_PT( self, event ): event.Skip() def select_bu_JT( self, event ): event.Skip() def select_bu_SP( self, event ): event.Skip() def select_bu_MT( self, event ): event.Skip() ########################################################################### ## Class dlgAbout ########################################################################### class dlgAbout ( wx.Dialog ): def __init__( self, parent ): wx.Dialog.__init__ ( self, parent, id = wx.ID_ANY, title = u"About", pos = wx.DefaultPosition, size = wx.Size( 400,260 ), style = wx.DEFAULT_DIALOG_STYLE|wx.STAY_ON_TOP ) self.SetSizeHints( wx.DefaultSize, wx.DefaultSize ) bSizer11 = wx.BoxSizer( wx.HORIZONTAL ) bSizer13 = wx.BoxSizer( wx.VERTICAL ) bSizer13.Add( ( 0, 10), 0, wx.EXPAND, 5 ) bSizer14 = wx.BoxSizer( wx.HORIZONTAL ) self.bitmapLogo = wx.StaticBitmap( self, wx.ID_ANY, wx.Bitmap( u".icon/logo.png", wx.BITMAP_TYPE_ANY ), wx.DefaultPosition, wx.Size( -1,-1 ), 0 ) bSizer14.Add( self.bitmapLogo, 0, wx.ALL, 5 ) bSizer15 = wx.BoxSizer( wx.VERTICAL ) self.txtCtrlAbout = wx.TextCtrl( self, wx.ID_ANY, u"The program is GUI only for Project Dragon, to collect and centralize data from oneclick and display historical business information.", wx.DefaultPosition, wx.Size( 200,120 ), wx.TE_MULTILINE|wx.TE_NO_VSCROLL|wx.TE_READONLY|wx.BORDER_NONE ) self.txtCtrlAbout.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_BTNFACE ) ) bSizer15.Add( self.txtCtrlAbout, 0, wx.ALL, 5 ) bSizer15.Add( ( 0, 0), 1, wx.EXPAND, 5 ) self.txtAuthor = wx.StaticText( self, wx.ID_ANY, u"by <NAME>", wx.DefaultPosition, wx.DefaultSize, 0 ) self.txtAuthor.Wrap( -1 ) bSizer15.Add( self.txtAuthor, 0, wx.ALL|wx.ALIGN_RIGHT, 5 ) bSizer15.Add( ( 0, 0), 1, wx.EXPAND, 5 ) self.btnAboutClose = wx.Button( self, wx.ID_ANY, u"OK", wx.DefaultPosition, wx.DefaultSize, 0 ) bSizer15.Add( self.btnAboutClose, 0, wx.ALL|wx.ALIGN_CENTER_HORIZONTAL, 5 ) bSizer14.Add( bSizer15, 1, wx.EXPAND, 5 ) bSizer13.Add( bSizer14, 1, wx.EXPAND, 5 ) bSizer13.Add( ( 0, 0), 1, wx.EXPAND, 5 ) bSizer11.Add( bSizer13, 1, wx.EXPAND, 5 ) self.SetSizer( bSizer11 ) self.Layout() self.Centre( wx.BOTH ) # Connect Events self.btnAboutClose.Bind( wx.EVT_BUTTON, self.close_about_dialog ) def __del__( self ): pass # Virtual event handlers, overide them in your derived class def close_about_dialog( self, event ): event.Skip() ```
{ "source": "jiegzhan/build-elasticsearch-index", "score": 3 }
#### File: jiegzhan/build-elasticsearch-index/search_index.py ```python import sys import pandas as pd from pprint import pprint from elasticsearch import Elasticsearch host = [{'host': 'localhost', 'port': 9200}] index_name, index_type = 'news_index', 'news_type' es = Elasticsearch(host) def match_all(): """Match all the documents in the index""" query = {'query': {'match_all': {}}} return query def search_index(query): requests = [] header = {'index': index_name, 'doc_type': index_type} requests.extend([header, query]) result = es.msearch(body=requests)['responses'][0] pprint(result) if __name__ == '__main__': search_index(match_all()) ```
{ "source": "JiehangXie/E4_cvxEDA", "score": 3 }
#### File: JiehangXie/E4_cvxEDA/AccelerometerFeatureExtractionScript.py ```python import numpy as np import pandas as pd import scipy.signal as scisig import os import matplotlib.pyplot as plt from load_files import getInputLoadFile, getOutputPath, get_user_input DEBUG = True SAMPLING_RATE = 8 ONE_MINUTE_S = 60 THIRTY_MIN_S = ONE_MINUTE_S*30 SECONDS_IN_DAY = 24*60*60 STILLNESS_MOTION_THRESHOLD = .1 PERCENT_STILLNESS_THRESHOLD = .95 STEP_DIFFERENCE_THRESHOLD = 0.3 def computeAllAccelerometerFeatures(data, time_frames): if DEBUG: print("\t\tcomputing motion...") motion = computeMotion(data['AccelX'], data['AccelY'], data['AccelZ']) if DEBUG: print("\t\tcomputing steps...") steps = computeSteps(motion) if DEBUG: print("\t\tcomputing stillness...") stillness = computeStillness(motion) features = [] for time_frame in time_frames: start = time_frame[0] end = time_frame[1] start1Hz = int(start / SAMPLING_RATE) end1Hz = end if end == -1 else int(end / SAMPLING_RATE) if DEBUG: print("\t\tcomputing features for time frame. Start index: "+ str(start)+ " end index: "+ str(end)) time_frame_feats = computeAccelerometerFeaturesOverOneTimeFrame(motion[start:end], steps[start:end], stillness[start1Hz:end1Hz]) features.append(time_frame_feats) return features, steps, motion def computeMotion(acc1, acc2, acc3): '''Aggregates 3-axis accelerometer signal into a single motion signal''' return np.sqrt(np.array(acc1)**2 + np.array(acc2)**2 + np.array(acc3)**2) def computeSteps(motion): '''Determines the location of steps from the aggregated accelerometer signal. Signal is low-pass filtered, then minimums are located in the signal. For each min, if the max absolute derivative (first difference) immediately surrounding it is greater than a threshold, it is counted as a step. Args: motion: root mean squared 3 axis acceleration Returns: steps: binary array at 8Hz which is 1 everywhere there is a step''' filtered_signal = filterSignalFIR(motion, 2, 256) diff = filtered_signal[1:]-filtered_signal[:-1] mins = scisig.argrelextrema(filtered_signal, np.less)[0] steps = [0] * len(filtered_signal) for m in mins: if m <= 4 or m >= len(diff) - 4: continue if max(abs(diff[m-4:m+4])) > STEP_DIFFERENCE_THRESHOLD: steps[m] = 1.0 return steps def filterSignalFIR(eda, cutoff=0.4, numtaps=64): f = cutoff/(SAMPLING_RATE/2.0) FIR_coeff = scisig.firwin(numtaps,f) return scisig.lfilter(FIR_coeff,1,eda) def computeStillness(motion): '''Locates periods in which the person is still or motionless. Total acceleration must be less than a threshold for 95 percent of one minute in order for that minute to count as still Args: motion: an array containing the root mean squared acceleration Returns: A 1Hz array that is 1 for each second belonging to a still period, 0 otherwise ''' diff = motion[1:]-motion[:-1] momentary_stillness = diff < STILLNESS_MOTION_THRESHOLD np.append(momentary_stillness,0) # to ensure list is the same size as the full day signal num_minutes_in_day = 24*60 #create array indicating whether person was still or not for each second of the day #to be still the momentary_stillness signal must be true for more than 95% of the minute #containing that second second_stillness = [0]*SECONDS_IN_DAY for i in range(num_minutes_in_day): hours_start = int(i / 60) mins_start = i % 60 hours_end = int((i+1) / 60) mins_end = (i+1) % 60 start_idx = getIndexFromTimestamp(hours_start, mins_start) end_idx = getIndexFromTimestamp(hours_end, mins_end) this_minute = momentary_stillness[start_idx:end_idx] minute_stillness = sum(this_minute) > PERCENT_STILLNESS_THRESHOLD*(60*SAMPLING_RATE) second_idx = int(start_idx/8) for si in range(second_idx,second_idx+60): second_stillness[si] = float(minute_stillness) return second_stillness def computeAccelerometerFeaturesOverOneTimeFrame(motion, steps, stillness): ''' Computes all available features for a time period. Incoming signals are assumed to be from only that time period. Args: motion: 8Hz root mean squared 3 axis acceleration steps: 8Hz binary signal that is 1 if there is a step stillness: 1Hz 1 if the person was still during this second, 0 otherwise Returns: A list of features containing (in order): -Step count number of steps detected -mean step time during movement average number of samples between two steps (aggregated first to 1 minute, then we take the mean of only the parts of this signal occuring during movement) -percent stillness percentage of time the person spent nearly motionless ''' features = [] features.extend(computeStepFeatures(steps,stillness)) features.append(countStillness(stillness)) return features def computeStepFeatures(steps,stillness): '''Counts the total number of steps over a given period, as well as the average time between steps (meant to approximate walking speed) Args: steps: an binary array at 8 Hz that is 1 every time there is a step Returns: sum: the number of steps in a period median time: average number of samples between two steps''' sum_steps = float(sum(steps)) step_indices = np.nonzero(steps)[0] diff = step_indices[1:]-step_indices[:-1] #ensure length of step difference array is the same so we can get the actual locations of step differences timed_step_diff = np.empty(len(steps)) * np.nan timed_step_diff[step_indices[:len(diff)]] = diff signal_length_1s = len(stillness) signal_length_1min = int(signal_length_1s / 60) # if there aren't enough steps during this period, cannot accurately compute mean step diff if len(timed_step_diff) < signal_length_1min: return [sum_steps, np.nan] agg_stillness = aggregateSignal(stillness, signal_length_1min, 'max') agg_step_diff = aggregateSignal(timed_step_diff, signal_length_1min, 'mean') movement_indices = [i for i in range(len(agg_stillness)) if agg_stillness[i] == 0.0] step_diff_during_movement = agg_step_diff[movement_indices] return [sum_steps,round(np.nanmean(step_diff_during_movement),10)] def countStillness(stillness): '''Counts the total percentage of time spent still over a period Args: stillness: an binary array at 1Hz that is 1 if that second is part of a still period Returns: the percentage time spent still over a period''' return float(sum(stillness)) / float(len(stillness)) def aggregateSignal(signal, new_signal_length, agg_method='sum'): new_signal = np.zeros(new_signal_length) samples_per_bucket = int(len(signal) / new_signal_length) #the new signal length must be large enough that there is at least 1 sample per bucket assert(samples_per_bucket > 0) for i in range(new_signal_length): if agg_method == 'sum': new_signal[i] = np.nansum(signal[i*samples_per_bucket:(i+1)*samples_per_bucket]) elif agg_method == 'percent': new_signal[i] = np.nansum(signal[i*samples_per_bucket:(i+1)*samples_per_bucket]) / samples_per_bucket elif agg_method == 'mean': new_signal[i] = np.nanmean(signal[i*samples_per_bucket:(i+1)*samples_per_bucket]) elif agg_method == 'max': new_signal[i] = np.nanmax(signal[i*samples_per_bucket:(i+1)*samples_per_bucket]) return new_signal def getIndexFromTimestamp(hours, mins=0): return ((hours * 60) + mins) * 60 * SAMPLING_RATE def inputTimeFrames(): '''Allows user to choose the time frames over which they compute accelerometer features.''' time_frames = [] print("Accelerometer features can be extracted over different time periods.") cont = get_user_input("If you would like to enter a time period over which to compute features, enter 'y', or press enter to compute features over the entire file.") while cont == 'y' or cont == 'Y': start = int(get_user_input("Enter the starting hour of the time period (hour 0 is when the file starts):")) end = int(get_user_input("Enter the ending hour of the time period (hour 0 is when the file starts; use -1 for the end of the file):")) start = getIndexFromTimestamp(int(start)) if end != -1: end = getIndexFromTimestamp(int(end)) time_frames.append([start,end]) print("Great! Now computing features for the following time periods:"+ str(time_frames)) cont = get_user_input("To add another time period, enter 'y'. To finish, press enter.") if len(time_frames) == 0: time_frames = [[0,-1]] # the whole file return time_frames def saveFeaturesToFile(features, time_frames, output_file): of = open(output_file, 'w') of.write("Time period start hour, Time period end hour, Step count, Mean step time during movement, Percent stillness\n") tf_i = 0 for tf in time_frames: output_str = str(tf[0]) + ' , ' + str(tf[1]) for feat in features[tf_i]: output_str += ' , ' + str(feat) tf_i += 1 of.write(output_str + '\n') of.close() print("Saved features to file"+ output_file) # draws a graph of the data with the peaks marked on it # assumes that 'data' dataframe already contains the 'peaks' column def plotSteps(data, x_seconds, sampleRate = SAMPLING_RATE): if x_seconds: time_m = np.arange(0,len(data))/float(sampleRate) realign = 128/(sampleRate) else: time_m = np.arange(0,len(data))/(sampleRate*60.) realign = 128/(sampleRate*60.) data_min = data['motion'].min() data_max = data['motion'].max() #Plot the data with the Peaks marked plt.figure(1,figsize=(20, 5)) plt.plot(time_m,data['motion']) for i in range(len(data)): if data.iloc[i]["steps"]==1: x_loc = time_m[i] - realign plt.plot([x_loc,x_loc],[data_min,data_max],"k") step_height = data_max * 1.15 #data['steps_plot'] = data['steps'] * step_height #plt.plot(time_m,data['steps_plot'],'k') plt.xlim([0,time_m[-1]]) plt.ylim([data_min-.1,data_max+.1]) plt.title('Motion with Detected "Steps" marked') plt.ylabel('g') if x_seconds: plt.xlabel('Time (s)') else: plt.xlabel('Time (min)') plt.show() if __name__ == "__main__": print("This script will extract features related to accelerometer data.") data, filepath_confirm = getInputLoadFile() output_path = getOutputPath() time_frames = inputTimeFrames() features, steps, motion = computeAllAccelerometerFeatures(data, time_frames) data["steps"] = steps data["motion"] = motion saveFeaturesToFile(features, time_frames, output_path) print("") plot_ans = get_user_input("Do you want to plot the detected steps? (y/n): ") if 'y' in plot_ans: secs_ans = get_user_input("Would you like the x-axis to be in seconds or minutes? (sec/min): ") if 'sec' in secs_ans: x_seconds=True else: x_seconds=False plotSteps(data, x_seconds) else: print("\tOkay, script will not produce a plot") ```
{ "source": "JiehangXie/PaddleSpeech", "score": 3 }
#### File: cc-cedict/local/parser.py ```python import json import sys # usage: bin ccedict dump.json with open(sys.argv[1], 'rt') as file: text = file.read() lines = text.split('\n') dict_lines = list(lines) def parse_line(line): parsed = {} if line == '': dict_lines.remove(line) return 0 if line.startswith('#'): return 0 if line.startswith('%'): return 0 line = line.rstrip('/') line = line.split('/') if len(line) <= 1: return 0 english = line[1] char_and_pinyin = line[0].split('[') characters = char_and_pinyin[0] characters = characters.split() traditional = characters[0] simplified = characters[1] pinyin = char_and_pinyin[1] pinyin = pinyin.rstrip() pinyin = pinyin.rstrip("]") parsed['traditional'] = traditional parsed['simplified'] = simplified parsed['pinyin'] = pinyin parsed['english'] = english list_of_dicts.append(parsed) def remove_surnames(): for x in range(len(list_of_dicts) - 1, -1, -1): if "surname " in list_of_dicts[x]['english']: if list_of_dicts[x]['traditional'] == list_of_dicts[x + 1][ 'traditional']: list_of_dicts.pop(x) def main(): #make each line into a dictionary print("Parsing dictionary . . .") for line in dict_lines: parse_line(line) #remove entries for surnames from the data (optional): print("Removing Surnames . . .") remove_surnames() print("Saving to database (this may take a few minutes) . . .") with open(sys.argv[2], 'wt') as fout: for one_dict in list_of_dicts: json_str = json.dumps(one_dict) fout.write(json_str + "\n") print('Done!') list_of_dicts = [] parsed_dict = main() ``` #### File: st1/local/espnet_json_to_manifest.py ```python import argparse import json def main(args): with open(args.json_file, 'r') as fin: data_json = json.load(fin) with open(args.manifest_file, 'w') as fout: for key, value in data_json['utts'].items(): value['utt'] = key fout.write(json.dumps(value, ensure_ascii=False)) fout.write("\n") if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--json-file', type=str, default=None, help="espnet data json file.") parser.add_argument( '--manifest-file', type=str, default='manifest.train', help='manifest data json line file.') args = parser.parse_args() main(args) ``` #### File: paddleaudio/features/window.py ```python import math from typing import List from typing import Tuple from typing import Union import paddle from paddle import Tensor __all__ = [ 'get_window', ] def _cat(a: List[Tensor], data_type: str) -> Tensor: l = [paddle.to_tensor(_a, data_type) for _a in a] return paddle.concat(l) def _acosh(x: Union[Tensor, float]) -> Tensor: if isinstance(x, float): return math.log(x + math.sqrt(x**2 - 1)) return paddle.log(x + paddle.sqrt(paddle.square(x) - 1)) def _extend(M: int, sym: bool) -> bool: """Extend window by 1 sample if needed for DFT-even symmetry""" if not sym: return M + 1, True else: return M, False def _len_guards(M: int) -> bool: """Handle small or incorrect window lengths""" if int(M) != M or M < 0: raise ValueError('Window length M must be a non-negative integer') return M <= 1 def _truncate(w: Tensor, needed: bool) -> Tensor: """Truncate window by 1 sample if needed for DFT-even symmetry""" if needed: return w[:-1] else: return w def general_gaussian(M: int, p, sig, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a window with a generalized Gaussian shape. This function is consistent with scipy.signal.windows.general_gaussian(). """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0 w = paddle.exp(-0.5 * paddle.abs(n / sig)**(2 * p)) return _truncate(w, needs_trunc) def general_hamming(M: int, alpha: float, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a generalized Hamming window. This function is consistent with scipy.signal.windows.general_hamming() """ return general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype) def taylor(M: int, nbar=4, sll=30, norm=True, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Taylor window. The Taylor window taper function approximates the Dolph-Chebyshev window's constant sidelobe level for a parameterized number of near-in sidelobes. Parameters: M(int): window size nbar, sil, norm: the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) # Original text uses a negative sidelobe level parameter and then negates # it in the calculation of B. To keep consistent with other methods we # assume the sidelobe level parameter to be positive. B = 10**(sll / 20) A = _acosh(B) / math.pi s2 = nbar**2 / (A**2 + (nbar - 0.5)**2) ma = paddle.arange(1, nbar, dtype=dtype) Fm = paddle.empty((nbar - 1, ), dtype=dtype) signs = paddle.empty_like(ma) signs[::2] = 1 signs[1::2] = -1 m2 = ma * ma for mi in range(len(ma)): numer = signs[mi] * paddle.prod(1 - m2[mi] / s2 / (A**2 + (ma - 0.5)**2 )) if mi == 0: denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1:]) elif mi == len(ma) - 1: denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi]) else: denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi]) * paddle.prod(1 - m2[ mi] / m2[mi + 1:]) Fm[mi] = numer / denom def W(n): return 1 + 2 * paddle.matmul( Fm.unsqueeze(0), paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2. + 0.5) / M)) w = W(paddle.arange(0, M, dtype=dtype)) # normalize (Note that this is not described in the original text [1]) if norm: scale = 1.0 / W((M - 1) / 2) w *= scale w = w.squeeze() return _truncate(w, needs_trunc) def general_cosine(M: int, a: float, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a generic weighted sum of cosine terms window. This function is consistent with scipy.signal.windows.general_cosine(). """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype) w = paddle.zeros((M, ), dtype=dtype) for k in range(len(a)): w += a[k] * paddle.cos(k * fac) return _truncate(w, needs_trunc) def hamming(M: int, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Hamming window. The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to minimize the nearest side lobe. Parameters: M(int): window size sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ return general_hamming(M, 0.54, sym, dtype=dtype) def hann(M: int, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Hann window. The Hann window is a taper formed by using a raised cosine or sine-squared with ends that touch zero. Parameters: M(int): window size sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ return general_hamming(M, 0.5, sym, dtype=dtype) def tukey(M: int, alpha=0.5, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Tukey window. The Tukey window is also known as a tapered cosine window. Parameters: M(int): window size sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) if alpha <= 0: return paddle.ones((M, ), dtype=dtype) elif alpha >= 1.0: return hann(M, sym=sym) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M, dtype=dtype) width = int(alpha * (M - 1) / 2.0) n1 = n[0:width + 1] n2 = n[width + 1:M - width - 1] n3 = n[M - width - 1:] w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1)))) w2 = paddle.ones(n2.shape, dtype=dtype) w3 = 0.5 * (1 + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha / (M - 1)))) w = paddle.concat([w1, w2, w3]) return _truncate(w, needs_trunc) def kaiser(M: int, beta: float, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters: M(int): window size. beta(float): the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True Returns: Tensor: the window tensor """ raise NotImplementedError() def gaussian(M: int, std: float, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Gaussian window. The Gaussian widows has a Gaussian shape defined by the standard deviation(std). Parameters: M(int): window size. std(float): the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0 sig2 = 2 * std * std w = paddle.exp(-n**2 / sig2) return _truncate(w, needs_trunc) def exponential(M: int, center=None, tau=1., sym: bool=True, dtype: str='float64') -> Tensor: """Compute an exponential (or Poisson) window. Parameters: M(int): window size. tau(float): the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if sym and center is not None: raise ValueError("If sym==True, center must be None.") if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) if center is None: center = (M - 1) / 2 n = paddle.arange(0, M, dtype=dtype) w = paddle.exp(-paddle.abs(n - center) / tau) return _truncate(w, needs_trunc) def triang(M: int, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a triangular window. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype) if M % 2 == 0: w = (2 * n - 1.0) / M w = paddle.concat([w, w[::-1]]) else: w = 2 * n / (M + 1.0) w = paddle.concat([w, w[-2::-1]]) return _truncate(w, needs_trunc) def bohman(M: int, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Bohman window. The Bohman window is the autocorrelation of a cosine window. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1]) w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin( math.pi * fac) w = _cat([0, w, 0], dtype) return _truncate(w, needs_trunc) def blackman(M: int, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ return general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype) def cosine(M: int, sym: bool=True, dtype: str='float64') -> Tensor: """Compute a window with a simple cosine shape. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + .5)) return _truncate(w, needs_trunc) def get_window(window: Union[str, Tuple[str, float]], win_length: int, fftbins: bool=True, dtype: str='float64') -> Tensor: """Return a window of a given length and type. Parameters: window(str|(str,float)): the type of window to create. win_length(int): the number of samples in the window. fftbins(bool): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Returns: The window represented as a tensor. """ sym = not fftbins args = () if isinstance(window, tuple): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, str): if window in ['gaussian', 'exponential']: raise ValueError("The '" + window + "' window needs one or " "more parameters -- pass a tuple.") else: winstr = window else: raise ValueError("%s as window type is not supported." % str(type(window))) try: winfunc = eval(winstr) except KeyError as e: raise ValueError("Unknown window type.") from e params = (win_length, ) + args kwargs = {'sym': sym} return winfunc(*params, dtype=dtype, **kwargs) ``` #### File: paddlespeech/cli/log.py ```python import functools import logging __all__ = [ 'logger', ] class Logger(object): def __init__(self, name: str=None): name = 'PaddleSpeech' if not name else name self.logger = logging.getLogger(name) log_config = { 'DEBUG': 10, 'INFO': 20, 'TRAIN': 21, 'EVAL': 22, 'WARNING': 30, 'ERROR': 40, 'CRITICAL': 50, 'EXCEPTION': 100, } for key, level in log_config.items(): logging.addLevelName(level, key) if key == 'EXCEPTION': self.__dict__[key.lower()] = self.logger.exception else: self.__dict__[key.lower()] = functools.partial(self.__call__, level) self.format = logging.Formatter( fmt='[%(asctime)-15s] [%(levelname)8s] - %(message)s') self.handler = logging.StreamHandler() self.handler.setFormatter(self.format) self.logger.addHandler(self.handler) self.logger.setLevel(logging.DEBUG) self.logger.propagate = False def __call__(self, log_level: str, msg: str): self.logger.log(log_level, msg) logger = Logger() ``` #### File: transformer/bin/cacu_perplexity.py ```python import sys import configargparse def get_parser(): """Get default arguments.""" parser = configargparse.ArgumentParser( description="The parser for caculating the perplexity of transformer language model ", config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--rnnlm", type=str, default=None, help="RNNLM model file to read") parser.add_argument( "--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read") parser.add_argument( "--vocab_path", type=str, default=None, help="vocab path to for token2id") parser.add_argument( "--bpeprefix", type=str, default=None, help="The path of bpeprefix for loading") parser.add_argument( "--text_path", type=str, default=None, help="The path of text file for testing ") parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpu to use, 0 for using cpu instead") parser.add_argument( "--dtype", choices=("float16", "float32", "float64"), default="float32", help="Float precision (only available in --api v2)", ) parser.add_argument( "--output_dir", type=str, default=".", help="The output directory to store the sentence PPL") return parser def main(args): parser = get_parser() args = parser.parse_args(args) from paddlespeech.s2t.exps.lm.transformer.lm_cacu_perplexity import run_get_perplexity run_get_perplexity(args) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: frontend/augmentor/augmentation.py ```python import json import os from collections.abc import Sequence from inspect import signature from pprint import pformat import numpy as np from paddlespeech.s2t.frontend.augmentor.base import AugmentorBase from paddlespeech.s2t.utils.dynamic_import import dynamic_import from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = ["AugmentationPipeline"] import_alias = dict( volume="paddlespeech.s2t.frontend.augmentor.impulse_response:VolumePerturbAugmentor", shift="paddlespeech.s2t.frontend.augmentor.shift_perturb:ShiftPerturbAugmentor", speed="paddlespeech.s2t.frontend.augmentor.speed_perturb:SpeedPerturbAugmentor", resample="paddlespeech.s2t.frontend.augmentor.resample:ResampleAugmentor", bayesian_normal="paddlespeech.s2t.frontend.augmentor.online_bayesian_normalization:OnlineBayesianNormalizationAugmentor", noise="paddlespeech.s2t.frontend.augmentor.noise_perturb:NoisePerturbAugmentor", impulse="paddlespeech.s2t.frontend.augmentor.impulse_response:ImpulseResponseAugmentor", specaug="paddlespeech.s2t.frontend.augmentor.spec_augment:SpecAugmentor", ) class AugmentationPipeline(): """Build a pre-processing pipeline with various augmentation models.Such a data augmentation pipeline is oftern leveraged to augment the training samples to make the model invariant to certain types of perturbations in the real world, improving model's generalization ability. The pipeline is built according the the augmentation configuration in json string, e.g. .. code-block:: [ { "type": "noise", "params": {"min_snr_dB": 10, "max_snr_dB": 20, "noise_manifest_path": "datasets/manifest.noise"}, "prob": 0.0 }, { "type": "speed", "params": {"min_speed_rate": 0.9, "max_speed_rate": 1.1}, "prob": 1.0 }, { "type": "shift", "params": {"min_shift_ms": -5, "max_shift_ms": 5}, "prob": 1.0 }, { "type": "volume", "params": {"min_gain_dBFS": -10, "max_gain_dBFS": 10}, "prob": 0.0 }, { "type": "bayesian_normal", "params": {"target_db": -20, "prior_db": -20, "prior_samples": 100}, "prob": 0.0 } ] This augmentation configuration inserts two augmentation models into the pipeline, with one is VolumePerturbAugmentor and the other SpeedPerturbAugmentor. "prob" indicates the probability of the current augmentor to take effect. If "prob" is zero, the augmentor does not take effect. Params: preprocess_conf(str): Augmentation configuration in `json file` or `json string`. random_seed(int): Random seed. Raises: ValueError: If the augmentation json config is in incorrect format". """ SPEC_TYPES = {'specaug'} def __init__(self, preprocess_conf: str, random_seed: int=0): self._rng = np.random.RandomState(random_seed) self.conf = {'mode': 'sequential', 'process': []} if preprocess_conf: if os.path.isfile(preprocess_conf): # json file with open(preprocess_conf, 'r') as fin: json_string = fin.read() else: # json string json_string = preprocess_conf process = json.loads(json_string) self.conf['process'] += process self._augmentors, self._rates = self._parse_pipeline_from('all') self._audio_augmentors, self._audio_rates = self._parse_pipeline_from( 'audio') self._spec_augmentors, self._spec_rates = self._parse_pipeline_from( 'feature') logger.info( f"Augmentation: {pformat(list(zip(self._augmentors, self._rates)))}") def __call__(self, xs, uttid_list=None, **kwargs): if not isinstance(xs, Sequence): is_batch = False xs = [xs] else: is_batch = True if isinstance(uttid_list, str): uttid_list = [uttid_list for _ in range(len(xs))] if self.conf.get("mode", "sequential") == "sequential": for idx, (func, rate) in enumerate( zip(self._augmentors, self._rates), 0): if self._rng.uniform(0., 1.) >= rate: continue # Derive only the args which the func has try: param = signature(func).parameters except ValueError: # Some function, e.g. built-in function, are failed param = {} _kwargs = {k: v for k, v in kwargs.items() if k in param} try: if uttid_list is not None and "uttid" in param: xs = [ func(x, u, **_kwargs) for x, u in zip(xs, uttid_list) ] else: xs = [func(x, **_kwargs) for x in xs] except Exception: logger.fatal("Catch a exception from {}th func: {}".format( idx, func)) raise else: raise NotImplementedError( "Not supporting mode={}".format(self.conf["mode"])) if is_batch: return xs else: return xs[0] def transform_audio(self, audio_segment): """Run the pre-processing pipeline for data augmentation. Note that this is an in-place transformation. :param audio_segment: Audio segment to process. :type audio_segment: AudioSegmenet|SpeechSegment """ for augmentor, rate in zip(self._audio_augmentors, self._audio_rates): if self._rng.uniform(0., 1.) < rate: augmentor.transform_audio(audio_segment) def transform_feature(self, spec_segment): """spectrogram augmentation. Args: spec_segment (np.ndarray): audio feature, (D, T). """ for augmentor, rate in zip(self._spec_augmentors, self._spec_rates): if self._rng.uniform(0., 1.) < rate: spec_segment = augmentor.transform_feature(spec_segment) return spec_segment def _parse_pipeline_from(self, aug_type='all'): """Parse the config json to build a augmentation pipelien.""" assert aug_type in ('audio', 'feature', 'all'), aug_type audio_confs = [] feature_confs = [] all_confs = [] for config in self.conf['process']: all_confs.append(config) if config["type"] in self.SPEC_TYPES: feature_confs.append(config) else: audio_confs.append(config) if aug_type == 'audio': aug_confs = audio_confs elif aug_type == 'feature': aug_confs = feature_confs elif aug_type == 'all': aug_confs = all_confs else: raise ValueError(f"Not support: {aug_type}") augmentors = [ self._get_augmentor(config["type"], config["params"]) for config in aug_confs ] rates = [config["prob"] for config in aug_confs] return augmentors, rates def _get_augmentor(self, augmentor_type, params): """Return an augmentation model by the type name, and pass in params.""" class_obj = dynamic_import(augmentor_type, import_alias) assert issubclass(class_obj, AugmentorBase) try: obj = class_obj(self._rng, **params) except Exception: raise ValueError("Unknown augmentor type [%s]." % augmentor_type) return obj ``` #### File: s2t/io/sampler.py ```python import math import numpy as np from paddle import distributed as dist from paddle.io import BatchSampler from paddle.io import DistributedBatchSampler from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = [ "SortagradDistributedBatchSampler", "SortagradBatchSampler", ] def _batch_shuffle(indices, batch_size, epoch, clipped=False): """Put similarly-sized instances into minibatches for better efficiency and make a batch-wise shuffle. 1. Sort the audio clips by duration. 2. Generate a random number `k`, k in [0, batch_size). 3. Randomly shift `k` instances in order to create different batches for different epochs. Create minibatches. 4. Shuffle the minibatches. :param indices: indexes. List of int. :type indices: list :param batch_size: Batch size. This size is also used for generate a random number for batch shuffle. :type batch_size: int :param clipped: Whether to clip the heading (small shift) and trailing (incomplete batch) instances. :type clipped: bool :return: Batch shuffled mainifest. :rtype: list """ rng = np.random.RandomState(epoch) shift_len = rng.randint(0, batch_size - 1) batch_indices = list(zip(* [iter(indices[shift_len:])] * batch_size)) rng.shuffle(batch_indices) batch_indices = [item for batch in batch_indices for item in batch] assert clipped is False if not clipped: res_len = len(indices) - shift_len - len(batch_indices) # when res_len is 0, will return whole list, len(List[-0:]) = len(List[:]) if res_len != 0: batch_indices.extend(indices[-res_len:]) batch_indices.extend(indices[0:shift_len]) assert len(indices) == len( batch_indices ), f"_batch_shuffle: {len(indices)} : {len(batch_indices)} : {res_len} - {shift_len}" return batch_indices class SortagradDistributedBatchSampler(DistributedBatchSampler): def __init__(self, dataset, batch_size, num_replicas=None, rank=None, shuffle=False, drop_last=False, sortagrad=False, shuffle_method="batch_shuffle"): """Sortagrad Sampler for multi gpus. Args: dataset (paddle.io.Dataset): batch_size (int): batch size for one gpu num_replicas (int, optional): world size or numbers of gpus. Defaults to None. rank (int, optional): rank id. Defaults to None. shuffle (bool, optional): True for do shuffle, or else. Defaults to False. drop_last (bool, optional): whether drop last batch which is less than batch size. Defaults to False. sortagrad (bool, optional): True, do sortgrad in first epoch, then shuffle as usual; or else. Defaults to False. shuffle_method (str, optional): shuffle method, "instance_shuffle" or "batch_shuffle". Defaults to "batch_shuffle". """ super().__init__(dataset, batch_size, num_replicas, rank, shuffle, drop_last) self._sortagrad = sortagrad self._shuffle_method = shuffle_method def __iter__(self): num_samples = len(self.dataset) indices = np.arange(num_samples).tolist() indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # sort (by duration) or batch-wise shuffle the manifest if self.shuffle: if self.epoch == 0 and self._sortagrad: logger.info( f'rank: {dist.get_rank()} dataset sortagrad! epoch {self.epoch}' ) else: logger.info( f'rank: {dist.get_rank()} dataset shuffle! epoch {self.epoch}' ) if self._shuffle_method == "batch_shuffle": # using `batch_size * nrank`, or will cause instability loss and nan or inf grad, # since diff batch examlpe length in batches case instability loss in diff rank, # e.g. rank0 maxlength 20, rank3 maxlength 1000 indices = _batch_shuffle( indices, self.batch_size * self.nranks, self.epoch, clipped=False) elif self._shuffle_method == "instance_shuffle": np.random.RandomState(self.epoch).shuffle(indices) else: raise ValueError("Unknown shuffle method %s." % self._shuffle_method) assert len( indices ) == self.total_size, f"batch shuffle examples error: {len(indices)} : {self.total_size}" # slice `self.batch_size` examples by rank id def _get_indices_by_batch_size(indices): subsampled_indices = [] last_batch_size = self.total_size % (self.batch_size * self.nranks) assert last_batch_size % self.nranks == 0 last_local_batch_size = last_batch_size // self.nranks for i in range(self.local_rank * self.batch_size, len(indices) - last_batch_size, self.batch_size * self.nranks): subsampled_indices.extend(indices[i:i + self.batch_size]) indices = indices[len(indices) - last_batch_size:] subsampled_indices.extend( indices[self.local_rank * last_local_batch_size:( self.local_rank + 1) * last_local_batch_size]) return subsampled_indices if self.nranks > 1: indices = _get_indices_by_batch_size(indices) assert len(indices) == self.num_samples _sample_iter = iter(indices) batch_indices = [] for idx in _sample_iter: batch_indices.append(idx) if len(batch_indices) == self.batch_size: logger.debug( f"rank: {dist.get_rank()} batch index: {batch_indices} ") yield batch_indices batch_indices = [] if not self.drop_last and len(batch_indices) > 0: yield batch_indices def __len__(self): num_samples = self.num_samples num_samples += int(not self.drop_last) * (self.batch_size - 1) return num_samples // self.batch_size class SortagradBatchSampler(BatchSampler): def __init__(self, dataset, batch_size, shuffle=False, drop_last=False, sortagrad=False, shuffle_method="batch_shuffle"): """Sortagrad Sampler for one gpu. Args: dataset (paddle.io.Dataset): batch_size (int): batch size for one gpu shuffle (bool, optional): True for do shuffle, or else. Defaults to False. drop_last (bool, optional): whether drop last batch which is less than batch size. Defaults to False. sortagrad (bool, optional): True, do sortgrad in first epoch, then shuffle as usual; or else. Defaults to False. shuffle_method (str, optional): shuffle method, "instance_shuffle" or "batch_shuffle". Defaults to "batch_shuffle". """ self.dataset = dataset assert isinstance(batch_size, int) and batch_size > 0, \ "batch_size should be a positive integer" self.batch_size = batch_size assert isinstance(shuffle, bool), \ "shuffle should be a boolean value" self.shuffle = shuffle assert isinstance(drop_last, bool), \ "drop_last should be a boolean number" self.drop_last = drop_last self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0)) self.total_size = self.num_samples self._sortagrad = sortagrad self._shuffle_method = shuffle_method def __iter__(self): num_samples = len(self.dataset) indices = np.arange(num_samples).tolist() indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # sort (by duration) or batch-wise shuffle the manifest if self.shuffle: if self.epoch == 0 and self._sortagrad: logger.info(f'dataset sortagrad! epoch {self.epoch}') else: logger.info(f'dataset shuffle! epoch {self.epoch}') if self._shuffle_method == "batch_shuffle": indices = _batch_shuffle( indices, self.batch_size, self.epoch, clipped=False) elif self._shuffle_method == "instance_shuffle": np.random.RandomState(self.epoch).shuffle(indices) else: raise ValueError("Unknown shuffle method %s." % self._shuffle_method) assert len( indices ) == self.total_size, f"batch shuffle examples error: {len(indices)} : {self.total_size}" assert len(indices) == self.num_samples _sample_iter = iter(indices) batch_indices = [] for idx in _sample_iter: batch_indices.append(idx) if len(batch_indices) == self.batch_size: logger.debug( f"rank: {dist.get_rank()} batch index: {batch_indices} ") yield batch_indices batch_indices = [] if not self.drop_last and len(batch_indices) > 0: yield batch_indices self.epoch += 1 def __len__(self): num_samples = self.num_samples num_samples += int(not self.drop_last) * (self.batch_size - 1) return num_samples // self.batch_size ``` #### File: training/extensions/evaluator.py ```python from typing import Dict import paddle from paddle import distributed as dist from paddle.io import DataLoader from paddle.nn import Layer from . import extension from ..reporter import DictSummary from ..reporter import ObsScope from ..reporter import report from ..timer import Timer from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() class StandardEvaluator(extension.Extension): trigger = (1, 'epoch') default_name = 'validation' priority = extension.PRIORITY_WRITER name = None def __init__(self, model: Layer, dataloader: DataLoader): # it is designed to hold multiple models models = {"main": model} self.models: Dict[str, Layer] = models self.model = model # dataloaders self.dataloader = dataloader def evaluate_core(self, batch): # compute self.model(batch) # you may report here return def evaluate_sync(self, data): # dist sync `evaluate_core` outputs if data is None: return numerator, denominator = data if dist.get_world_size() > 1: numerator = paddle.to_tensor(numerator) denominator = paddle.to_tensor(denominator) # the default operator in all_reduce function is sum. dist.all_reduce(numerator) dist.all_reduce(denominator) value = numerator / denominator value = float(value) else: value = numerator / denominator # used for `snapshort` to do kbest save. report("VALID/LOSS", value) logger.info(f"Valid: all-reduce loss {value}") def evaluate(self): # switch to eval mode for model in self.models.values(): model.eval() # to average evaluation metrics summary = DictSummary() for batch in self.dataloader: observation = {} with ObsScope(observation): # main evaluation computation here. with paddle.no_grad(): self.evaluate_sync(self.evaluate_core(batch)) summary.add(observation) summary = summary.compute_mean() # switch to train mode for model in self.models.values(): model.train() return summary def __call__(self, trainer=None): # evaluate and report the averaged metric to current observation # if it is used to extend a trainer, the metrics is reported to # to observation of the trainer # or otherwise, you can use your own observation with Timer("Eval Time Cost: {}"): summary = self.evaluate() for k, v in summary.items(): report(k, v) ``` #### File: training/extensions/__init__.py ```python from typing import Callable from .extension import Extension def make_extension(trigger: Callable=None, default_name: str=None, priority: int=None, finalizer: Callable=None, initializer: Callable=None, on_error: Callable=None): """Make an Extension-like object by injecting required attributes to it. """ if trigger is None: trigger = Extension.trigger if priority is None: priority = Extension.priority def decorator(ext): ext.trigger = trigger ext.default_name = default_name or ext.__name__ ext.priority = priority ext.finalize = finalizer ext.on_error = on_error ext.initialize = initializer return ext return decorator ``` #### File: s2t/training/reporter.py ```python import contextlib import math from collections import defaultdict OBSERVATIONS = None @contextlib.contextmanager def ObsScope(observations): # make `observation` the target to report to. # it is basically a dictionary that stores temporary observations global OBSERVATIONS old = OBSERVATIONS OBSERVATIONS = observations try: yield finally: OBSERVATIONS = old def get_observations(): global OBSERVATIONS return OBSERVATIONS def report(name, value): # a simple function to report named value # you can use it everywhere, it will get the default target and writ to it # you can think of it as std.out observations = get_observations() if observations is None: return else: observations[name] = value class Summary(): """Online summarization of a sequence of scalars. Summary computes the statistics of given scalars online. """ def __init__(self): self._x = 0.0 self._x2 = 0.0 self._n = 0 def add(self, value, weight=1): """Adds a scalar value. Args: value: Scalar value to accumulate. It is either a NumPy scalar or a zero-dimensional array (on CPU or GPU). weight: An optional weight for the value. It is a NumPy scalar or a zero-dimensional array (on CPU or GPU). Default is 1 (integer). """ self._x += weight * value self._x2 += weight * value * value self._n += weight def compute_mean(self): """Computes the mean.""" x, n = self._x, self._n return x / n def make_statistics(self): """Computes and returns the mean and standard deviation values. Returns: tuple: Mean and standard deviation values. """ x, n = self._x, self._n mean = x / n var = self._x2 / n - mean * mean std = math.sqrt(var) return mean, std class DictSummary(): """Online summarization of a sequence of dictionaries. ``DictSummary`` computes the statistics of a given set of scalars online. It only computes the statistics for scalar values and variables of scalar values in the dictionaries. """ def __init__(self): self._summaries = defaultdict(Summary) def add(self, d): """Adds a dictionary of scalars. Args: d (dict): Dictionary of scalars to accumulate. Only elements of scalars, zero-dimensional arrays, and variables of zero-dimensional arrays are accumulated. When the value is a tuple, the second element is interpreted as a weight. """ summaries = self._summaries for k, v in d.items(): w = 1 if isinstance(v, tuple): v = v[0] w = v[1] summaries[k].add(v, weight=w) def compute_mean(self): """Creates a dictionary of mean values. It returns a single dictionary that holds a mean value for each entry added to the summary. Returns: dict: Dictionary of mean values. """ return { name: summary.compute_mean() for name, summary in self._summaries.items() } def make_statistics(self): """Creates a dictionary of statistics. It returns a single dictionary that holds mean and standard deviation values for every entry added to the summary. For an entry of name ``'key'``, these values are added to the dictionary by names ``'key'`` and ``'key.std'``, respectively. Returns: dict: Dictionary of statistics of all entries. """ stats = {} for name, summary in self._summaries.items(): mean, std = summary.make_statistics() stats[name] = mean stats[name + '.std'] = std return stats ``` #### File: s2t/transform/add_deltas.py ```python import numpy as np def delta(feat, window): assert window > 0 delta_feat = np.zeros_like(feat) for i in range(1, window + 1): delta_feat[:-i] += i * feat[i:] delta_feat[i:] += -i * feat[:-i] delta_feat[-i:] += i * feat[-1] delta_feat[:i] += -i * feat[0] delta_feat /= 2 * sum(i**2 for i in range(1, window + 1)) return delta_feat def add_deltas(x, window=2, order=2): """ Args: x (np.ndarray): speech feat, (T, D). Return: np.ndarray: (T, (1+order)*D) """ feats = [x] for _ in range(order): feats.append(delta(feats[-1], window)) return np.concatenate(feats, axis=1) class AddDeltas(): def __init__(self, window=2, order=2): self.window = window self.order = order def __repr__(self): return "{name}(window={window}, order={order}".format( name=self.__class__.__name__, window=self.window, order=self.order) def __call__(self, x): return add_deltas(x, window=self.window, order=self.order) ``` #### File: exps/fastspeech2/voice_cloning.py ```python import argparse import os from pathlib import Path import numpy as np import paddle import soundfile as sf import yaml from yacs.config import CfgNode from paddlespeech.t2s.frontend.zh_frontend import Frontend from paddlespeech.t2s.models.fastspeech2 import FastSpeech2 from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator from paddlespeech.t2s.models.parallel_wavegan import PWGInference from paddlespeech.t2s.modules.normalizer import ZScore from paddlespeech.vector.exps.ge2e.audio_processor import SpeakerVerificationPreprocessor from paddlespeech.vector.models.lstm_speaker_encoder import LSTMSpeakerEncoder def voice_cloning(args, fastspeech2_config, pwg_config): # speaker encoder p = SpeakerVerificationPreprocessor( sampling_rate=16000, audio_norm_target_dBFS=-30, vad_window_length=30, vad_moving_average_width=8, vad_max_silence_length=6, mel_window_length=25, mel_window_step=10, n_mels=40, partial_n_frames=160, min_pad_coverage=0.75, partial_overlap_ratio=0.5) print("Audio Processor Done!") speaker_encoder = LSTMSpeakerEncoder( n_mels=40, num_layers=3, hidden_size=256, output_size=256) speaker_encoder.set_state_dict(paddle.load(args.ge2e_params_path)) speaker_encoder.eval() print("GE2E Done!") with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) odim = fastspeech2_config.n_mels model = FastSpeech2( idim=vocab_size, odim=odim, **fastspeech2_config["model"]) model.set_state_dict( paddle.load(args.fastspeech2_checkpoint)["main_params"]) model.eval() vocoder = PWGGenerator(**pwg_config["generator_params"]) vocoder.set_state_dict(paddle.load(args.pwg_checkpoint)["generator_params"]) vocoder.remove_weight_norm() vocoder.eval() print("model done!") frontend = Frontend(phone_vocab_path=args.phones_dict) print("frontend done!") stat = np.load(args.fastspeech2_stat) mu, std = stat mu = paddle.to_tensor(mu) std = paddle.to_tensor(std) fastspeech2_normalizer = ZScore(mu, std) stat = np.load(args.pwg_stat) mu, std = stat mu = paddle.to_tensor(mu) std = paddle.to_tensor(std) pwg_normalizer = ZScore(mu, std) fastspeech2_inference = FastSpeech2Inference(fastspeech2_normalizer, model) fastspeech2_inference.eval() pwg_inference = PWGInference(pwg_normalizer, vocoder) pwg_inference.eval() output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) input_dir = Path(args.input_dir) sentence = args.text input_ids = frontend.get_input_ids(sentence, merge_sentences=True) phone_ids = input_ids["phone_ids"][0] for name in os.listdir(input_dir): utt_id = name.split(".")[0] ref_audio_path = input_dir / name mel_sequences = p.extract_mel_partials(p.preprocess_wav(ref_audio_path)) # print("mel_sequences: ", mel_sequences.shape) with paddle.no_grad(): spk_emb = speaker_encoder.embed_utterance( paddle.to_tensor(mel_sequences)) # print("spk_emb shape: ", spk_emb.shape) with paddle.no_grad(): wav = pwg_inference( fastspeech2_inference(phone_ids, spk_emb=spk_emb)) sf.write( str(output_dir / (utt_id + ".wav")), wav.numpy(), samplerate=fastspeech2_config.fs) print(f"{utt_id} done!") # Randomly generate numbers of 0 ~ 0.2, 256 is the dim of spk_emb random_spk_emb = np.random.rand(256) * 0.2 random_spk_emb = paddle.to_tensor(random_spk_emb) utt_id = "random_spk_emb" with paddle.no_grad(): wav = pwg_inference(fastspeech2_inference(phone_ids, spk_emb=spk_emb)) sf.write( str(output_dir / (utt_id + ".wav")), wav.numpy(), samplerate=fastspeech2_config.fs) print(f"{utt_id} done!") def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="") parser.add_argument( "--fastspeech2-config", type=str, help="fastspeech2 config file.") parser.add_argument( "--fastspeech2-checkpoint", type=str, help="fastspeech2 checkpoint to load.") parser.add_argument( "--fastspeech2-stat", type=str, help="mean and standard deviation used to normalize spectrogram when training fastspeech2." ) parser.add_argument( "--pwg-config", type=str, help="parallel wavegan config file.") parser.add_argument( "--pwg-checkpoint", type=str, help="parallel wavegan generator parameters to load.") parser.add_argument( "--pwg-stat", type=str, help="mean and standard deviation used to normalize spectrogram when training parallel wavegan." ) parser.add_argument( "--phones-dict", type=str, default="phone_id_map.txt", help="phone vocabulary file.") parser.add_argument( "--text", type=str, default="每当你觉得,想要批评什么人的时候,你切要记着,这个世界上的人,并非都具备你禀有的条件。", help="text to synthesize, a line") parser.add_argument( "--ge2e_params_path", type=str, help="ge2e params path.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu=0, use cpu.") parser.add_argument( "--input-dir", type=str, help="input dir of *.wav, the sample rate will be resample to 16k.") parser.add_argument("--output-dir", type=str, help="output dir.") args = parser.parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") with open(args.fastspeech2_config) as f: fastspeech2_config = CfgNode(yaml.safe_load(f)) with open(args.pwg_config) as f: pwg_config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(fastspeech2_config) print(pwg_config) voice_cloning(args, fastspeech2_config, pwg_config) if __name__ == "__main__": main() ``` #### File: t2s/modules/pqmf.py ```python import numpy as np import paddle import paddle.nn.functional as F from paddle import nn from scipy.signal import kaiser def design_prototype_filter(taps=62, cutoff_ratio=0.142, beta=9.0): """Design prototype filter for PQMF. This method is based on `A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`_. Parameters ---------- taps : int The number of filter taps. cutoff_ratio : float Cut-off frequency ratio. beta : float Beta coefficient for kaiser window. Returns ---------- ndarray Impluse response of prototype filter (taps + 1,). .. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`: https://ieeexplore.ieee.org/abstract/document/681427 """ # check the arguments are valid assert taps % 2 == 0, "The number of taps mush be even number." assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0." # make initial filter omega_c = np.pi * cutoff_ratio with np.errstate(invalid="ignore"): h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / ( np.pi * (np.arange(taps + 1) - 0.5 * taps)) h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form # apply kaiser window w = kaiser(taps + 1, beta) h = h_i * w return h class PQMF(nn.Layer): """PQMF module. This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_. .. _`Near-perfect-reconstruction pseudo-QMF banks`: https://ieeexplore.ieee.org/document/258122 """ def __init__(self, subbands=4, taps=62, cutoff_ratio=0.142, beta=9.0): """Initilize PQMF module. The cutoff_ratio and beta parameters are optimized for #subbands = 4. See dicussion in https://github.com/kan-bayashi/ParallelWaveGAN/issues/195. Parameters ---------- subbands : int The number of subbands. taps : int The number of filter taps. cutoff_ratio : float Cut-off frequency ratio. beta : float Beta coefficient for kaiser window. """ super().__init__() h_proto = design_prototype_filter(taps, cutoff_ratio, beta) h_analysis = np.zeros((subbands, len(h_proto))) h_synthesis = np.zeros((subbands, len(h_proto))) for k in range(subbands): h_analysis[k] = ( 2 * h_proto * np.cos((2 * k + 1) * (np.pi / (2 * subbands)) * ( np.arange(taps + 1) - (taps / 2)) + (-1)**k * np.pi / 4)) h_synthesis[k] = ( 2 * h_proto * np.cos((2 * k + 1) * (np.pi / (2 * subbands)) * ( np.arange(taps + 1) - (taps / 2)) - (-1)**k * np.pi / 4)) # convert to tensor self.analysis_filter = paddle.to_tensor( h_analysis, dtype="float32").unsqueeze(1) self.synthesis_filter = paddle.to_tensor( h_synthesis, dtype="float32").unsqueeze(0) # filter for downsampling & upsampling updown_filter = paddle.zeros( (subbands, subbands, subbands), dtype="float32") for k in range(subbands): updown_filter[k, k, 0] = 1.0 self.updown_filter = updown_filter self.subbands = subbands # keep padding info self.pad_fn = nn.Pad1D(taps // 2, mode='constant', value=0.0) def analysis(self, x): """Analysis with PQMF. Parameters ---------- x : Tensor Input tensor (B, 1, T). Returns ---------- Tensor Output tensor (B, subbands, T // subbands). """ x = F.conv1d(self.pad_fn(x), self.analysis_filter) return F.conv1d(x, self.updown_filter, stride=self.subbands) def synthesis(self, x): """Synthesis with PQMF. Parameters ---------- x : Tensor Input tensor (B, subbands, T // subbands). Returns ---------- Tensor Output tensor (B, 1, T). """ x = F.conv1d_transpose( x, self.updown_filter * self.subbands, stride=self.subbands) return F.conv1d(self.pad_fn(x), self.synthesis_filter) # when converting dygraph to static graph, can not use self.pqmf.synthesis directly def forward(self, x): return self.synthesis(x) ``` #### File: modules/transformer/embedding.py ```python import math import paddle from paddle import nn class PositionalEncoding(nn.Layer): """Positional encoding. Parameters ---------- d_model : int Embedding dimension. dropout_rate : float Dropout rate. max_len : int Maximum input length. reverse : bool Whether to reverse the input position. type : str dtype of param """ def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32", reverse=False): """Construct an PositionalEncoding object.""" super().__init__() self.d_model = d_model self.reverse = reverse self.xscale = math.sqrt(self.d_model) self.dropout = nn.Dropout(p=dropout_rate) self.pe = None self.dtype = dtype self.extend_pe(paddle.expand(paddle.zeros([1]), (1, max_len))) def extend_pe(self, x): """Reset the positional encodings.""" x_shape = paddle.shape(x) pe = paddle.zeros([x_shape[1], self.d_model]) if self.reverse: position = paddle.arange( x_shape[1] - 1, -1, -1.0, dtype=self.dtype).unsqueeze(1) else: position = paddle.arange( 0, x_shape[1], dtype=self.dtype).unsqueeze(1) div_term = paddle.exp( paddle.arange(0, self.d_model, 2, dtype=self.dtype) * -(math.log(10000.0) / self.d_model)) pe[:, 0::2] = paddle.sin(position * div_term) pe[:, 1::2] = paddle.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe def forward(self, x: paddle.Tensor): """Add positional encoding. Parameters ---------- x : paddle.Tensor Input tensor (batch, time, `*`). Returns ---------- paddle.Tensor Encoded tensor (batch, time, `*`). """ self.extend_pe(x) T = paddle.shape(x)[1] x = x * self.xscale + self.pe[:, :T] return self.dropout(x) class ScaledPositionalEncoding(PositionalEncoding): """Scaled positional encoding module. See Sec. 3.2 https://arxiv.org/abs/1809.08895 Parameters ---------- d_model : int Embedding dimension. dropout_rate : float Dropout rate. max_len : int Maximum input length. dtype : str dtype of param """ def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32"): """Initialize class.""" super().__init__( d_model=d_model, dropout_rate=dropout_rate, max_len=max_len, dtype=dtype) x = paddle.ones([1], dtype=self.dtype) self.alpha = paddle.create_parameter( shape=x.shape, dtype=self.dtype, default_initializer=nn.initializer.Assign(x)) def reset_parameters(self): """Reset parameters.""" self.alpha = paddle.ones([1]) def forward(self, x): """Add positional encoding. Parameters ---------- x : paddle.Tensor Input tensor (batch, time, `*`). Returns ---------- paddle.Tensor Encoded tensor (batch, time, `*`). """ self.extend_pe(x) T = paddle.shape(x)[1] x = x + self.alpha * self.pe[:, :T] return self.dropout(x) class RelPositionalEncoding(nn.Layer): """Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix B in https://arxiv.org/abs/1901.02860 Parameters ---------- d_model : int Embedding dimension. dropout_rate : float Dropout rate. max_len : int Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32"): """Construct an PositionalEncoding object.""" super().__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = nn.Dropout(p=dropout_rate) self.pe = None self.dtype = dtype self.extend_pe(paddle.expand(paddle.zeros([1]), (1, max_len))) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if paddle.shape(self.pe)[1] >= paddle.shape(x)[1] * 2 - 1: return # Suppose `i` means to the position of query vecotr and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). x_shape = paddle.shape(x) pe_positive = paddle.zeros([x_shape[1], self.d_model]) pe_negative = paddle.zeros([x_shape[1], self.d_model]) position = paddle.arange(0, x_shape[1], dtype=self.dtype).unsqueeze(1) div_term = paddle.exp( paddle.arange(0, self.d_model, 2, dtype=self.dtype) * -(math.log(10000.0) / self.d_model)) pe_positive[:, 0::2] = paddle.sin(position * div_term) pe_positive[:, 1::2] = paddle.cos(position * div_term) pe_negative[:, 0::2] = paddle.sin(-1 * position * div_term) pe_negative[:, 1::2] = paddle.cos(-1 * position * div_term) # Reserve the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pe_positive = paddle.flip(pe_positive, [0]).unsqueeze(0) pe_negative = pe_negative[1:].unsqueeze(0) pe = paddle.concat([pe_positive, pe_negative], axis=1) self.pe = pe def forward(self, x: paddle.Tensor): """Add positional encoding. Parameters ---------- x : paddle.Tensor Input tensor (batch, time, `*`). Returns ---------- paddle.Tensor Encoded tensor (batch, time, `*`). """ self.extend_pe(x) x = x * self.xscale T = paddle.shape(x)[1] pe_size = paddle.shape(self.pe) pos_emb = self.pe[:, pe_size[1] // 2 - T + 1:pe_size[1] // 2 + T, ] return self.dropout(x), self.dropout(pos_emb) ``` #### File: t2s/modules/upsample.py ```python from typing import Any from typing import Dict from typing import List from typing import Optional from paddle import nn from paddle.nn import functional as F from paddlespeech.t2s.modules.activation import get_activation class Stretch2D(nn.Layer): def __init__(self, w_scale: int, h_scale: int, mode: str="nearest"): """Strech an image (or image-like object) with some interpolation. Parameters ---------- w_scale : int Scalar of width. h_scale : int Scalar of the height. mode : str, optional Interpolation mode, modes suppored are "nearest", "bilinear", "trilinear", "bicubic", "linear" and "area",by default "nearest" For more details about interpolation, see `paddle.nn.functional.interpolate <https://www.paddlepaddle.org.cn/documentation/docs/en/api/paddle/nn/functional/interpolate_en.html>`_. """ super().__init__() self.w_scale = w_scale self.h_scale = h_scale self.mode = mode def forward(self, x): """ Parameters ---------- x : Tensor Shape (N, C, H, W) Returns ------- Tensor Shape (N, C, H', W'), where ``H'=h_scale * H``, ``W'=w_scale * W``. The stretched image. """ out = F.interpolate( x, scale_factor=(self.h_scale, self.w_scale), mode=self.mode) return out class UpsampleNet(nn.Layer): """A Layer to upsample spectrogram by applying consecutive stretch and convolutions. Parameters ---------- upsample_scales : List[int] Upsampling factors for each strech. nonlinear_activation : Optional[str], optional Activation after each convolution, by default None nonlinear_activation_params : Dict[str, Any], optional Parameters passed to construct the activation, by default {} interpolate_mode : str, optional Interpolation mode of the strech, by default "nearest" freq_axis_kernel_size : int, optional Convolution kernel size along the frequency axis, by default 1 use_causal_conv : bool, optional Whether to use causal padding before convolution, by default False If True, Causal padding is used along the time axis, i.e. padding amount is ``receptive field - 1`` and 0 for before and after, respectively. If False, "same" padding is used along the time axis. """ def __init__(self, upsample_scales: List[int], nonlinear_activation: Optional[str]=None, nonlinear_activation_params: Dict[str, Any]={}, interpolate_mode: str="nearest", freq_axis_kernel_size: int=1, use_causal_conv: bool=False): super().__init__() self.use_causal_conv = use_causal_conv self.up_layers = nn.LayerList() for scale in upsample_scales: stretch = Stretch2D(scale, 1, interpolate_mode) assert freq_axis_kernel_size % 2 == 1 freq_axis_padding = (freq_axis_kernel_size - 1) // 2 kernel_size = (freq_axis_kernel_size, scale * 2 + 1) if use_causal_conv: padding = (freq_axis_padding, scale * 2) else: padding = (freq_axis_padding, scale) conv = nn.Conv2D( 1, 1, kernel_size, padding=padding, bias_attr=False) self.up_layers.extend([stretch, conv]) if nonlinear_activation is not None: # for compatibility nonlinear_activation = nonlinear_activation.lower() nonlinear = get_activation(nonlinear_activation, **nonlinear_activation_params) self.up_layers.append(nonlinear) def forward(self, c): """ Parameters ---------- c : Tensor Shape (N, F, T), spectrogram Returns ------- Tensor Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled spectrogram """ c = c.unsqueeze(1) for f in self.up_layers: if self.use_causal_conv and isinstance(f, nn.Conv2D): c = f(c)[:, :, :, c.shape[-1]] else: c = f(c) return c.squeeze(1) class ConvInUpsampleNet(nn.Layer): """A Layer to upsample spectrogram composed of a convolution and an UpsampleNet. Parameters ---------- upsample_scales : List[int] Upsampling factors for each strech. nonlinear_activation : Optional[str], optional Activation after each convolution, by default None nonlinear_activation_params : Dict[str, Any], optional Parameters passed to construct the activation, by default {} interpolate_mode : str, optional Interpolation mode of the strech, by default "nearest" freq_axis_kernel_size : int, optional Convolution kernel size along the frequency axis, by default 1 aux_channels : int, optional Feature size of the input, by default 80 aux_context_window : int, optional Context window of the first 1D convolution applied to the input. It related to the kernel size of the convolution, by default 0 If use causal convolution, the kernel size is ``window + 1``, else the kernel size is ``2 * window + 1``. use_causal_conv : bool, optional Whether to use causal padding before convolution, by default False If True, Causal padding is used along the time axis, i.e. padding amount is ``receptive field - 1`` and 0 for before and after, respectively. If False, "same" padding is used along the time axis. """ def __init__(self, upsample_scales: List[int], nonlinear_activation: Optional[str]=None, nonlinear_activation_params: Dict[str, Any]={}, interpolate_mode: str="nearest", freq_axis_kernel_size: int=1, aux_channels: int=80, aux_context_window: int=0, use_causal_conv: bool=False): super().__init__() self.aux_context_window = aux_context_window self.use_causal_conv = use_causal_conv and aux_context_window > 0 kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1 self.conv_in = nn.Conv1D( aux_channels, aux_channels, kernel_size=kernel_size, bias_attr=False) self.upsample = UpsampleNet( upsample_scales=upsample_scales, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, interpolate_mode=interpolate_mode, freq_axis_kernel_size=freq_axis_kernel_size, use_causal_conv=use_causal_conv) def forward(self, c): """ Parameters ---------- c : Tensor Shape (N, F, T), spectrogram Returns ------- Tensors Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled spectrogram """ c_ = self.conv_in(c) c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_ return self.upsample(c) ``` #### File: unit/tts/test_reporter.py ```python import numpy as np from paddlespeech.t2s.training.reporter import report from paddlespeech.t2s.training.reporter import scope from paddlespeech.t2s.training.reporter import Summary def test_reporter_scope(): first = {} second = {} third = {} with scope(first): report("first_begin", 1) with scope(second): report("second_begin", 2) with scope(third): report("third_begin", 3) report("third_end", 4) report("seconf_end", 5) report("first_end", 6) assert first == {'first_begin': 1, 'first_end': 6} assert second == {'second_begin': 2, 'seconf_end': 5} assert third == {'third_begin': 3, 'third_end': 4} print(first) print(second) print(third) def test_summary(): summary = Summary() summary.add(1) summary.add(2) summary.add(3) state = summary.make_statistics() print(state) np.testing.assert_allclose( np.array(list(state)), np.array([2.0, np.std([1, 2, 3])])) ``` #### File: PaddleSpeech/utils/compute_statistics.py ```python import argparse import logging from pathlib import Path import jsonlines import numpy as np from sklearn.preprocessing import StandardScaler from tqdm import tqdm from paddlespeech.t2s.datasets.data_table import DataTable def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Compute mean and variance of dumped raw features.") parser.add_argument( "--metadata", type=str, help="json file with id and file paths ") parser.add_argument( "--field-name", type=str, help="name of the field to compute statistics for.") parser.add_argument( "--output", type=str, help="path to save statistics. if not provided, " "stats will be saved in the above root directory with name stats.npy") def str2bool(str): return True if str.lower() == 'true' else False parser.add_argument( "--use-relative-path", type=str2bool, default=False, help="whether use relative path in metadata") parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") args = parser.parse_args() # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) elif args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) logging.warning('Skip DEBUG/INFO messages') # check directory existence if args.output is None: args.output = Path( args.metadata).parent.with_name(args.field_name + "_stats.npy") else: args.output = Path(args.output) args.output.parent.mkdir(parents=True, exist_ok=True) with jsonlines.open(args.metadata, 'r') as reader: metadata = list(reader) if args.use_relative_path: # if use_relative_path in preprocess, covert it to absolute path here metadata_dir = Path(args.metadata).parent for item in metadata: item["feats"] = str(metadata_dir / item["feats"]) dataset = DataTable( metadata, fields=[args.field_name], converters={args.field_name: np.load}, ) logging.info(f"The number of files = {len(dataset)}.") # calculate statistics scaler = StandardScaler() for datum in tqdm(dataset): # StandardScalar supports (*, num_features) by default scaler.partial_fit(datum[args.field_name]) stats = np.stack([scaler.mean_, scaler.scale_], axis=0) np.save(str(args.output), stats.astype(np.float32), allow_pickle=False) if __name__ == "__main__": main() ``` #### File: utils/fst/ctc_token_fst_corrected.py ```python import argparse def il(n): """ilabel""" return n + 1 def ol(n): """olabel""" return n + 1 def s(n): """state""" return n def main(args): with open(args.token_file) as f: lines = f.readlines() # token count w/0 <blank> <eps> phone_count = 0 disambig_count = 0 for line in lines: sp = line.strip().split() phone = sp[0] if phone == '<eps>' or phone == '<blank>': continue if phone.startswith('#'): disambig_count += 1 else: phone_count += 1 # 1. add start state # first token is <blank>:0 print('0 0 {} 0'.format(il(0))) # 2. 0 -> i, i -> i, i -> 0 # non-blank token start from 1 for i in range(1, phone_count + 1): # eating `token` print('0 {} {} {}'.format(s(i), il(i), ol(i))) # remove repeating `token` print('{} {} {} 0'.format(s(i), s(i), il(i))) # skip ending <blank> `token` print('{} 0 {} 0'.format(s(i), il(0))) # 3. i -> other phone # non-blank token to other non-blank token for i in range(1, phone_count + 1): for j in range(1, phone_count + 1): if i != j: print('{} {} {} {}'.format(s(i), s(j), il(j), ol(j))) # 4. add disambiguous arcs on every final state # blank and non-blank token maybe ending with disambiguous `token` for i in range(0, phone_count + 1): for j in range(phone_count + 2, phone_count + disambig_count + 2): print('{} {} {} {}'.format(s(i), s(i), 0, j)) # 5. every i is final state # blank and non-blank `token` are final state for i in range(0, phone_count + 1): print(s(i)) if __name__ == "__main__": parser = argparse.ArgumentParser( description='FST: CTC Token unfold FST transducer') parser.add_argument( '--token_file', required=True, help='e2e model token file. line: token(char/phone/spm/disambigous)') args = parser.parse_args() main(args) ``` #### File: utils/fst/ctc_token_fst.py ```python import argparse def main(args): """Token Transducer""" # <eps> entry print('0 1 <eps> <eps>') # skip begining and ending <blank> print('1 1 <blank> <eps>') print('2 2 <blank> <eps>') # <eps> exit print('2 0 <eps> <eps>') # linking `token` between node 1 and node 2 with open(args.token_file, 'r') as fin: node = 3 for entry in fin: fields = entry.strip().split(' ') phone = fields[0] if phone == '<eps>' or phone == '<blank>': continue elif '#' in phone: # disambiguous phone # `token` maybe ending with disambiguous symbol print('{} {} {} {}'.format(0, 0, '<eps>', phone)) else: # eating `token` print('{} {} {} {}'.format(1, node, phone, phone)) # remove repeating `token` print('{} {} {} {}'.format(node, node, phone, '<eps>')) # leaving `token` print('{} {} {} {}'.format(node, 2, '<eps>', '<eps>')) node += 1 # Fianl node print('0') if __name__ == '__main__': parser = argparse.ArgumentParser( description='FST: CTC Token FST transducer') parser.add_argument( '--token_file', required=True, help='e2e model token file. line: token(char/phone/spm/disambigous)') args = parser.parse_args() main(args) ``` #### File: utils/fst/prepare_dict.py ```python import argparse def main(args): # load `unit` or `vocab` file unit_table = set() with open(args.unit_file, 'r') as fin: for line in fin: unit = line.strip() unit_table.add(unit) def contain_oov(units): for unit in units: if unit not in unit_table: return True return False # load spm model bpemode = args.bpemodel if bpemode: import sentencepiece as spm sp = spm.SentencePieceProcessor() sp.Load(sys.bpemodel) # used to filter polyphone lexicon_table = set() with open(args.in_lexicon, 'r') as fin, \ open(args.out_lexicon, 'w') as fout: for line in fin: word = line.split()[0] if word == 'SIL' and not bpemode: # `sil` might be a valid piece in bpemodel continue elif word == '<SPOKEN_NOISE>': continue else: # each word only has one pronunciation for e2e system if word in lexicon_table: continue if bpemode: pieces = sp.EncodeAsPieces(word) if contain_oov(pieces): print('Ignoring words {}, which contains oov unit'. format(''.join(word).strip('▁'))) continue chars = ' '.join( [p if p in unit_table else '<unk>' for p in pieces]) else: # ignore words with OOV if contain_oov(word): print('Ignoring words {}, which contains oov unit'. format(word)) continue # Optional, append ▁ in front of english word # we assume the model unit of our e2e system is char now. if word.encode('utf8').isalpha() and '▁' in unit_table: word = '▁' + word chars = ' '.join(word) # word is a char list fout.write('{} {}\n'.format(word, chars)) lexicon_table.add(word) if __name__ == '__main__': parser = argparse.ArgumentParser( description='FST: preprae e2e(char/spm) dict') parser.add_argument( '--unit_file', required=True, help='e2e model unit file(lang_char.txt/vocab.txt). line: char/spm_pices' ) parser.add_argument( '--in_lexicon', required=True, help='raw lexicon file. line: word ph0 ... phn') parser.add_argument( '--out_lexicon', required=True, help='output lexicon file. line: word char0 ... charn') parser.add_argument('--bpemodel', default=None, help='bpemodel') args = parser.parse_args() print(args) main(args) ```
{ "source": "JiehangXie/PASSL", "score": 2 }
#### File: passl/solver/lr_scheduler.py ```python import math import paddle import numpy as np from paddle.optimizer.lr import MultiStepDecay, LRScheduler from paddle.optimizer.lr import CosineAnnealingDecay from paddle.optimizer.lr import LinearWarmup from .builder import LRSCHEDULERS, build_lr_scheduler, build_lr_scheduler_simclr from .byol_lr_scheduler import ByolLRScheduler LRSCHEDULERS.register(LinearWarmup) LRSCHEDULERS.register(MultiStepDecay) LRSCHEDULERS.register(CosineAnnealingDecay) LRSCHEDULERS.register(ByolLRScheduler) class Cosine(LRScheduler): """ Cosine learning rate decay lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1) Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs """ def __init__(self, learning_rate, T_max, warmup_steps, eta_min=0, last_epoch=1, verbose=False): super(Cosine, self).__init__(learning_rate, last_epoch=last_epoch, verbose=verbose) self.T_max = T_max self.warmup_steps = warmup_steps self.eta_min = eta_min self.last_epoch = last_epoch def get_lr(self): if self.last_epoch == 0: return self.base_lr elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0: return self.last_lr + (self.base_lr - self.eta_min) * (1 - math.cos( math.pi / self.T_max)) / 2 return self.eta_min + 0.5 * ( self.base_lr - self.eta_min) * ( 1 + np.cos(np.pi * self.last_epoch / (self.T_max - self.warmup_steps))) LRSCHEDULERS.register() class CosineWarmup(LinearWarmup): """ Cosine learning rate decay with warmup [0, warmup_epoch): linear warmup [warmup_epoch, epochs): cosine decay Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs warmup_epoch(int): epoch num of warmup """ def __init__(self, learning_rate, warmup_steps, start_lr, end_lr, T_max, eta_min=0, last_epoch=-1, verbose=False): #start_lr = 0.0 lr_sch = Cosine(learning_rate, T_max, warmup_steps, eta_min=eta_min, last_epoch=last_epoch, verbose=verbose) super(CosineWarmup, self).__init__( learning_rate=lr_sch, warmup_steps=warmup_steps, start_lr=start_lr, last_epoch=last_epoch, end_lr=end_lr) self.update_specified = False @LRSCHEDULERS.register() class Cosinesimclr(LRScheduler): def __init__(self, learning_rate, T_max, last_epoch=-1, verbose=False): self.T_max = T_max super(Cosinesimclr, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): return self.base_lr* (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2 @LRSCHEDULERS.register() class simclrCosineWarmup(LinearWarmup): def __init__(self, lr, warmup_steps, T_max, current_iter, last_epoch=-1, warmup_epoch=10, **kwargs): warmup_steps = warmup_steps T_max = T_max start_lr = 0.0 lr = lr lr_sch = Cosinesimclr(lr, T_max, last_epoch=-1) super(simclrCosineWarmup, self).__init__( learning_rate=lr_sch, warmup_steps=warmup_steps, start_lr=start_lr, last_epoch=last_epoch, end_lr=lr) self.update_specified = False LRSCHEDULERS.register(Cosine) LRSCHEDULERS.register(CosineWarmup) ```
{ "source": "JIeHb/roulette-tg-bot", "score": 3 }
#### File: roulette-tg-bot/modules/utils.py ```python import json from modules.db_manager import unauth_users, auth_users def is_fefu_email(email): email = email.strip() if email.count('@dvfu.ru') + email.count('@students.dvfu.ru') == 1: email = email.split('@')[0] if email.count('.') + email.count('_') == 1: for i in range(len(email)): if (ord(email[i])<97 or ord(email[i])>122) and email[i]!='.' and email[i]!='_': return False return True return False def is_full_name(name): data = name.lower().title().split() if len(data) != 3: return False for i in data: if not i.isalpha(): return False return data with open('group_list.json', encoding='utf-8') as f: groups = json.load(f)['data'] def check_group(group): return group in groups ```
{ "source": "JieHong-Liu/ig_photo_downloader", "score": 3 }
#### File: JieHong-Liu/ig_photo_downloader/ig.py ```python import requests from bs4 import BeautifulSoup from selenium import webdriver import time from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By # A subprogram that check wether any pic is the same, make sure that there is no pic is the same as new pic. def check(img_list, new_pic): for i in img_list: if i == new_pic: return 0 return 1 def ig_download(): driver = webdriver.Chrome() id = input('Enter the id you want to download: ') # if you don't have account you can input '0' user_id = input('Enter your account: ') user_password = input('Enter your password: ') annoymus = 0 # initial the annoymus variable # if you don't want to login your account, only you can download is the public accounts. if user_id == '0' and user_password == '0': annoymus = 1 # open the url if(not annoymus): # if you want to login, goto the login page. driver.get( 'https://www.instagram.com/accounts/login/?source=private_profile') try: # login part WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.NAME, "username")) ) login_user = driver.find_element_by_name('username') login_user.send_keys(user_id) login_password = driver.find_element_by_name('password') login_password.send_keys(<PASSWORD>) WebDriverWait(driver, 10).until( EC.presence_of_element_located(( By.XPATH, '//*[@id="loginForm"]/div/div[3]/button') )) login = driver.find_element_by_xpath( '//*[@id="loginForm"]/div/div[3]/button') login.click() # sometimes the page will ask me to save the password WebDriverWait(driver, 10).until( EC.presence_of_element_located( (By.XPATH, "/html/body/div[1]/section/main/div/div/div/section/div/button")) ) save = driver.find_element_by_xpath( "/html/body/div[1]/section/main/div/div/div/section/div/button") save.click() # open the notification window WebDriverWait(driver, 10).until( EC.presence_of_element_located( (By.XPATH, "/html/body/div[4]/div/div/div/div[3]/button[2]")) ) later = driver.find_element_by_xpath( "/html/body/div[4]/div/div/div/div[3]/button[2]") later.click() finally: print("finished login") driver.get("https://www.instagram.com/"+id+"/") driver.maximize_window() # write the html.txt time.sleep(1) # wait it to ready soup = BeautifulSoup(driver.page_source, 'lxml') numbers = soup.find_all('span', class_='g47SY') # posts print("This id has " + str(numbers[0].text) + " posts. ") # followers print("This id has " + str(numbers[1].text) + " followers. ") # following print("This id is following " + str(numbers[2].text) + " people") time.sleep(1) img_list = [] # list of saving image soup = BeautifulSoup(driver.page_source, 'lxml') time.sleep(1) # wait it to ready div_list = [] div_list = soup.find_all('div', class_='KL4Bh') if (not len(div_list)): print('This ID is private! ') driver.close() else: print('The download is going to start : ') i = 1 # make sure that the scrolling is enough for j in range(0, int(int(numbers[0].text) / 10)): soup = BeautifulSoup(driver.page_source, 'lxml') time.sleep(1) # wait it to ready div_list = soup.find_all('div', class_='KL4Bh') for div in div_list: # check if there is any pic is the same. if check(img_list, div.img.get('src')): # print the post which is downloaded print(div.img.get('src')) with open(id+'['+str(i)+'].jpg', 'wb') as file: download = requests.get(div.img.get('src')) file.write(download.content) # save to image list img_list.append(div.img.get('src')) i = i + 1 driver.execute_script( 'window.scrollTo(0, document.body.scrollHeight);') time.sleep(1) print("Download finished!") ig_download() ```
{ "source": "jiehuan/m2cgen", "score": 2 }
#### File: tests/assemblers/test_linear_lightning.py ```python from lightning.classification import AdaGradClassifier from lightning.regression import AdaGradRegressor from m2cgen import assemblers, ast from tests import utils def test_regression(): estimator = AdaGradRegressor(random_state=1) utils.get_regression_model_trainer()(estimator) assembler = assemblers.SklearnLinearModelAssembler(estimator) actual = assembler.assemble() feature_weight_mul = [ ast.BinNumExpr( ast.FeatureRef(0), ast.NumVal(-0.08558826944690746), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(1), ast.NumVal(0.0803724696787377), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(2), ast.NumVal(-0.03516743076774846), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(3), ast.NumVal(0.26469178947134087), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(4), ast.NumVal(0.15651985221012488), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(5), ast.NumVal(1.5186399078028587), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(6), ast.NumVal(0.10089874009193693), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(7), ast.NumVal(-0.011426237067026246), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(8), ast.NumVal(0.0861987777487293), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(9), ast.NumVal(-0.0057791506839322574), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(10), ast.NumVal(0.3357752757550913), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(11), ast.NumVal(0.020189965076849486), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(12), ast.NumVal(-0.7390647599317609), ast.BinNumOpType.MUL), ] expected = assemblers.utils.apply_op_to_expressions( ast.BinNumOpType.ADD, ast.NumVal(0.0), *feature_weight_mul) assert utils.cmp_exprs(actual, expected) def test_binary_class(): estimator = AdaGradClassifier(random_state=1) utils.get_binary_classification_model_trainer()(estimator) assembler = assemblers.SklearnLinearModelAssembler(estimator) actual = assembler.assemble() feature_weight_mul = [ ast.BinNumExpr( ast.FeatureRef(0), ast.NumVal(0.16218889967390476), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(1), ast.NumVal(0.10012761963766906), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(2), ast.NumVal(0.6289276652681673), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(3), ast.NumVal(0.17618420156072845), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(4), ast.NumVal(0.0010492096607182045), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(5), ast.NumVal(-0.0029135563693806913), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(6), ast.NumVal(-0.005923882409142498), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(7), ast.NumVal(-0.0023293599172479755), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(8), ast.NumVal(0.0020808828960210517), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(9), ast.NumVal(0.0009846430705550103), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(10), ast.NumVal(0.0010399810925427265), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(11), ast.NumVal(0.011203056917272093), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(12), ast.NumVal(-0.007271351370867731), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(13), ast.NumVal(-0.26333437096804224), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(14), ast.NumVal(1.8533543368532444e-05), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(15), ast.NumVal(-0.0008266341686278445), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(16), ast.NumVal(-0.0011090316301215724), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(17), ast.NumVal(-0.0001910857095336291), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(18), ast.NumVal(0.00010735116208006556), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(19), ast.NumVal(-4.076097659514017e-05), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(20), ast.NumVal(0.15300712110146406), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(21), ast.NumVal(0.06316277258339074), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(22), ast.NumVal(0.495291178977687), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(23), ast.NumVal(-0.29589136204657845), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(24), ast.NumVal(0.000771932729567487), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(25), ast.NumVal(-0.011877978242492428), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(26), ast.NumVal(-0.01678004536869617), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(27), ast.NumVal(-0.004070431062579625), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(28), ast.NumVal(0.001158641497209262), ast.BinNumOpType.MUL), ast.BinNumExpr( ast.FeatureRef(29), ast.NumVal(0.00010737287732588742), ast.BinNumOpType.MUL), ] expected = assemblers.utils.apply_op_to_expressions( ast.BinNumOpType.ADD, ast.NumVal(0.0), *feature_weight_mul) assert utils.cmp_exprs(actual, expected) def test_multi_class(): estimator = AdaGradClassifier(random_state=1) utils.get_classification_model_trainer()(estimator) assembler = assemblers.SklearnLinearModelAssembler(estimator) actual = assembler.assemble() expected = ast.VectorVal([ ast.BinNumExpr( ast.BinNumExpr( ast.BinNumExpr( ast.BinNumExpr( ast.NumVal(0.0), ast.BinNumExpr( ast.FeatureRef(0), ast.NumVal(0.09686334892116512), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(1), ast.NumVal(0.32572202133211947), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(2), ast.NumVal(-0.48444233646554424), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(3), ast.NumVal(-0.219719145605816), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.BinNumExpr( ast.BinNumExpr( ast.BinNumExpr( ast.NumVal(0.0), ast.BinNumExpr( ast.FeatureRef(0), ast.NumVal(-0.1089136473832088), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(1), ast.NumVal(-0.16956003333433572), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(2), ast.NumVal(0.0365531256007199), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(3), ast.NumVal(-0.01016100116780896), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.BinNumExpr( ast.BinNumExpr( ast.BinNumExpr( ast.NumVal(0.0), ast.BinNumExpr( ast.FeatureRef(0), ast.NumVal(-0.16690339219780817), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(1), ast.NumVal(-0.19466284646233858), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(2), ast.NumVal(0.2953585236360389), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD), ast.BinNumExpr( ast.FeatureRef(3), ast.NumVal(0.21288203082531384), ast.BinNumOpType.MUL), ast.BinNumOpType.ADD)]) assert utils.cmp_exprs(actual, expected) ``` #### File: tests/assemblers/test_meta.py ```python import pytest from sklearn.dummy import DummyRegressor from sklearn.linear_model import RANSACRegressor from sklearn.tree import DecisionTreeRegressor from m2cgen import ast from m2cgen.assemblers import RANSACModelAssembler from tests.utils import cmp_exprs def test_ransac_custom_base_estimator(): base_estimator = DecisionTreeRegressor(random_state=1, max_depth=1) estimator = RANSACRegressor(base_estimator=base_estimator, random_state=1) estimator.fit([[1], [2]], [1, 2]) assembler = RANSACModelAssembler(estimator) actual = assembler.assemble() expected = ast.IfExpr( ast.CompExpr( ast.FeatureRef(0), ast.NumVal(1.5), ast.CompOpType.LTE), ast.NumVal(1.0), ast.NumVal(2.0)) assert cmp_exprs(actual, expected) def test_ransac_unknown_base_estimator(): base_estimator = DummyRegressor() estimator = RANSACRegressor(base_estimator=base_estimator, random_state=1) estimator.fit([[1], [2], [3]], [1, 2, 3]) assembler = RANSACModelAssembler(estimator) with pytest.raises(NotImplementedError, match="Model 'sklearn_DummyRegressor' is not supported"): assembler.assemble() ``` #### File: e2e/executors/python.py ```python from m2cgen.assemblers import get_assembler_cls from m2cgen.interpreters import PythonInterpreter from tests.e2e.executors.base import BaseExecutor from tests.utils import write_content_to_file class PythonExecutor(BaseExecutor): def __init__(self, model): self.model_name = "score" self.model = model self.interpreter = PythonInterpreter() assembler_cls = get_assembler_cls(model) self.model_ast = assembler_cls(model).assemble() self.script_path = None def predict(self, X): scope = {} exec(compile(self.script_path.read_bytes(), self.script_path, mode='exec'), scope) # Use .tolist() since we want to use raw list of floats. return scope['score'](X.tolist()) def prepare(self): model_code = self.interpreter.interpret(self.model_ast) self.script_path = self._resource_tmp_dir / f"{self.model_name}.py" write_content_to_file(model_code, self.script_path) ``` #### File: m2cgen/tests/test_cli.py ```python import io import sys from unittest import mock from _pytest import capture from m2cgen import __version__, cli from tests.utils import verify_python_model_is_expected def _get_mock_args( indent=4, function_name=None, namespace=None, module_name=None, package_name=None, class_name=None, infile=None, language=None ): return mock.MagicMock( indent=indent, function_name=function_name, namespace=namespace, module_name=module_name, package_name=package_name, class_name=class_name, infile=infile, language=language, recursion_limit=cli.MAX_RECURSION_DEPTH) def test_file_as_input(tmp_path): f = tmp_path / "hello.txt" f.write_text("123") input_args = ["-l", "python", str(f)] args = cli.parse_args(input_args) assert args.language == "python" assert isinstance(args.infile, io.BufferedReader) assert args.infile.name == str(f) def test_stdin_as_input(request): input_args = ["--language", "python"] args = cli.parse_args(input_args) assert args.language == "python" # Since pytest by default captures stdin, but sometimes we need to disable # it (primarily for using (i)pdb), we have 2 different strategies to verify # that stdin was returned as infile. capturemanager = request.config.pluginmanager.getplugin("capturemanager") if capturemanager.is_globally_capturing(): assert isinstance(args.infile, capture.DontReadFromInput) else: assert args.infile.name == "<stdin>" @mock.patch.object(sys, "exit") def test_language_is_required(mocked_exit): mocked_stderr = io.StringIO() with mock.patch.object(sys, "stderr", new=mocked_stderr): cli.parse_args([]) assert "the following arguments are required: --language" in mocked_stderr.getvalue() mocked_exit.assert_called_with(2) def test_generate_code(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="python") generated_code = cli.generate_code(mock_args) verify_python_model_is_expected( generated_code, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], expected_output=-44.40540274041321) def test_function_name(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="python", function_name="predict") generated_code = cli.generate_code(mock_args).strip() assert generated_code.startswith("def predict") def test_function_name_csharp_default(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="c_sharp") generated_code = cli.generate_code(mock_args).strip() assert 'public static double Score' in generated_code def test_class_name(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="java", class_name="TestClassName") generated_code = cli.generate_code(mock_args).strip() assert generated_code.startswith("public class TestClassName") def test_package_name(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="java", package_name="foo.bar.baz") generated_code = cli.generate_code(mock_args).strip() assert generated_code.startswith("package foo.bar.baz;") def test_module_name(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="visual_basic", module_name="TestModule") generated_code = cli.generate_code(mock_args).strip() assert generated_code.startswith("Module TestModule") def test_namespace(pickled_model): mock_args = _get_mock_args(infile=pickled_model, language="c_sharp", namespace="Tests.ML") generated_code = cli.generate_code(mock_args).strip() assert "namespace Tests.ML {" in generated_code def test_indent(pickled_model): mock_args = _get_mock_args(infile=pickled_model, indent=0, language="c_sharp") generated_code = cli.generate_code(mock_args).strip() assert generated_code.startswith(""" namespace ML { public static class Model { public static double Score(double[] input) { return ( """.strip()) @mock.patch.object(sys, "exit") def test_version(mocked_exit): mocked_stdout = io.StringIO() with mock.patch.object(sys, "stdout", new=mocked_stdout): cli.parse_args(["-v"]) assert mocked_stdout.getvalue().strip() == f"m2cgen {__version__}" def test_unsupported_args_are_ignored(pickled_model): mock_args = _get_mock_args( infile=pickled_model, language="python", class_name="TestClassName", package_name="foo.bar.baz") generated_code = cli.generate_code(mock_args) verify_python_model_is_expected( generated_code, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], expected_output=-44.40540274041321) ```
{ "source": "JiehuaYang/DLCA", "score": 2 }
#### File: JiehuaYang/DLCA/train.py ```python import argparse import os import time import numpy as np import data from importlib import import_module import shutil from utils.log_utils import * import sys import torch from torch.nn import DataParallel from torch.backends import cudnn from torch.utils.data import DataLoader from torch import optim from torch.autograd import Variable parser = argparse.ArgumentParser(description='ca detection') parser.add_argument('--model', '-m', metavar='MODEL', default='model.network', help='model') parser.add_argument('-j', '--workers', default=32, type=int, metavar='N', help='number of data loading workers (default: 32)') parser.add_argument('--epochs', default=500, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=12, type=int, metavar='N', help='mini-batch size (default: 16)') parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--save-freq', default='1', type=int, metavar='S', help='save frequency') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--input', default='', type=str, metavar='SAVE', help='directory to save train images (default: none)') parser.add_argument('--output', default='', type=str, metavar='SAVE', help='directory to save checkpoint (default: none)') parser.add_argument('--test', default=0, type=int, metavar='TEST', help='1 do test evaluation, 0 not') parser.add_argument('--gpu', default='2, 3', type=str, metavar='N', help='use gpu') def main(): global args args = parser.parse_args() start_epoch = args.start_epoch data_dir = args.input save_dir = args.output train_name = [] for name in os.listdir(data_dir): if name.endswith("nii.gz"): name = name.split(".")[-3] train_name.append(name) torch.manual_seed(0) model = import_module(args.model) config, net, loss, get_pbb = model.get_model() if args.resume: checkpoint = torch.load(args.resume) if start_epoch == 0: start_epoch = checkpoint['epoch'] + 1 net.load_state_dict(checkpoint['state_dict']) else: if start_epoch == 0: start_epoch = 1 if not os.path.exists(save_dir): os.makedirs(save_dir) logfile = os.path.join(save_dir, 'log') if args.test != 1: sys.stdout = Logger(logfile) pyfiles = [f for f in os.listdir('./') if f.endswith('.py')] for f in pyfiles: shutil.copy(f, os.path.join(save_dir, f)) net = net.cuda() loss = loss.cuda() cudnn.benchmark = True net = DataParallel(net) dataset = data.TrainDetector( data_dir, train_name, config) train_loader = DataLoader( dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) optimizer = torch.optim.SGD( net.parameters(), args.lr, momentum=0.9, weight_decay=args.weight_decay) def get_lr(epoch): if epoch <= 80:#args.epochs * 0.8: lr = args.lr elif epoch <= 120:#args.epochs * 0.9: lr = 0.1 * args.lr else: lr = 0.01 * args.lr return lr loss_total_l, loss_class_l, loss_regress_l, tpr_l, tnr_l = [], [], [], [], [] for epoch in range(start_epoch, args.epochs + 1): print("epoch",epoch) loss_total,loss_class,loss_regress,tpr,tnr = train(train_loader, net, loss, epoch, optimizer, get_lr, args.save_freq, save_dir) loss_total_l.append(loss_total) loss_class_l.append(loss_class) loss_regress_l.append(loss_regress) tpr_l.append(tpr) tnr_l.append(tnr) plot(save_dir + 'train_curves.png', loss_total_l, loss_class_l, loss_regress_l, tpr_l, tnr_l) np.savez(save_dir + 'train_curves.npz', loss_total = np.array(loss_total_l), loss_class = np.array(loss_class_l), loss_regress = np.array(loss_regress_l), tpr = np.array(tpr_l), tnr = np.array(tnr_l)) def train(data_loader, net, loss, epoch, optimizer, get_lr, save_freq, save_dir): start_time = time.time() net.train() lr = get_lr(epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr metrics = [] for i, (data, target, coord) in enumerate(data_loader): data = Variable(data.cuda(async=True)) target = Variable(target.cuda(async=True)) coord = Variable(coord.cuda(async=True)) output = net(data, coord) loss_output = loss(output, target) optimizer.zero_grad() loss_output[0].backward() optimizer.step() loss_output[0] = loss_output[0].item() print("loss:\033[1;35m{}\033[0m, class:{}, reg:{},".format(loss_output[0],loss_output[1],loss_output[2])) metrics.append(loss_output) if epoch % save_freq == 0: state_dict = net.module.state_dict() for key in state_dict.keys(): state_dict[key] = state_dict[key].cpu() torch.save({ 'epoch': epoch, 'save_dir': save_dir, 'state_dict': state_dict, 'args': args}, os.path.join(save_dir, '%03d.ckpt' % epoch)) end_time = time.time() metrics = np.asarray(metrics, np.float32) tpr = 100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]) tnr = 100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]) loss_total = np.mean(metrics[:, 0]) loss_class = np.mean(metrics[:, 1]) loss_regress = [np.mean(metrics[:, 2]), np.mean(metrics[:, 3]), np.mean(metrics[:, 4]), np.mean(metrics[:, 5])] print("metrics",metrics[:, 6]) print('Epoch %03d (lr %.5f)' % (epoch, lr)) print('Train: tpr %3.2f, tnr %3.2f, total pos %d, total neg %d, time %3.2f' % ( 100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]), 100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]), np.sum(metrics[:, 7]), np.sum(metrics[:, 9]), end_time - start_time)) print('loss %2.4f, classify loss %2.4f, regress loss %2.4f, %2.4f, %2.4f, %2.4f' % ( np.mean(metrics[:, 0]), np.mean(metrics[:, 1]), np.mean(metrics[:, 2]), np.mean(metrics[:, 3]), np.mean(metrics[:, 4]), np.mean(metrics[:, 5]))) return loss_total, loss_class, loss_regress, tpr, tnr if __name__ == '__main__': main() ```
{ "source": "JieJayCao/ET-BERT", "score": 3 }
#### File: ET-BERT/datasets/dataset_cleanning.py ```python from ml_classifier import unlabel_data def deal_label(): lower_label = [23,24,35,44,76,94,95] lower_label.extend([22,28,52,62,67,102,104]) lower_label.sort() return lower_label def deal_finetuning(excluding_label): dataset_path = "I:\\datasets\\cstnet-tls1.3\\" save_dataset_path = dataset_path with open(dataset_path+"train_dataset.tsv",'r') as f: train_data = f.read().split('\n')[1:] with open(dataset_path+"valid_dataset.tsv",'r') as f: valid_data = f.read().split('\n')[1:] with open(dataset_path+"test_dataset.tsv",'r') as f: test_data = f.read().split('\n')[1:] for label_number in excluding_label: train_pop_index = [] valid_pop_index = [] test_pop_index = [] for index in range(len(train_data)): if str(label_number)+'\t' in train_data[index]: train_pop_index.append(index) for counter,index in enumerate(train_pop_index): index = index - counter train_data.pop(index) for index in range(len(valid_data)): if str(label_number)+'\t' in valid_data[index]: valid_pop_index.append(index) for counter,index in enumerate(valid_pop_index): index = index - counter valid_data.pop(index) for index in range(len(test_data)): if str(label_number)+'\t' in test_data[index]: test_pop_index.append(index) for counter,index in enumerate(test_pop_index): index = index - counter test_data.pop(index) label_number = 120 count = 0 while label_number > 105: for index in range(len(train_data)): data = train_data[index] if str(label_number)+'\t' in data: new_data = data.replace(str(label_number)+'\t',str(excluding_label[count])+'\t') train_data[index] = new_data for index in range(len(valid_data)): if str(label_number)+'\t' in valid_data[index]: new_data = valid_data[index].replace(str(label_number)+'\t',str(excluding_label[count])+'\t') valid_data[index] = new_data for index in range(len(test_data)): if str(label_number)+'\t' in test_data[index]: new_data = test_data[index].replace(str(label_number)+'\t',str(excluding_label[count])+'\t') test_data[index] = new_data label_number -= 1 count += 1 with open(save_dataset_path+"train_dataset.tsv",'w') as f: f.write("label\ttext_a\n") for data in train_data: f.write(data+'\n') with open(save_dataset_path+"valid_dataset.tsv",'w') as f: f.write("label\ttext_a\n") for data in valid_data: f.write(data+'\n') with open(save_dataset_path+"test_dataset.tsv",'w') as f: f.write("label\ttext_a\n") for data in test_data: f.write(data+'\n') deal_result = input("please delete the last blank line in %s and input '1'"%(save_dataset_path+"test_dataset.tsv")) if deal_result == '1': unlabel_data(save_dataset_path+"test_dataset.tsv") return 0 def deal_test(excluding_label): dataset_path = "I:\\unused_IP_samples\\encrypted_dataset\\" test_data_path = dataset_path + "test_dataset.tsv" with open(test_data_path,'r') as f: test_data = f.read().split('\n')[1:] for label_number in excluding_label: test_pop_index = [] for index in range(len(test_data)): if str(label_number)+'\t' in test_data[index]: test_pop_index.append(index) for counter,index in enumerate(test_pop_index): index = index - counter test_data.pop(index) label_number = 120 count = 0 while label_number > 105: for index in range(len(test_data)): if str(label_number) + '\t' in test_data[index]: new_data = test_data[index].replace(str(label_number)+'\t', str(excluding_label[count])+'\t') test_data[index] = new_data label_number -= 1 count += 1 with open(dataset_path + "new_106\\"+"test_dataset.tsv",'w') as f: f.write("label\ttext_a\n") for data in test_data: f.write(data+'\n') deal_result = input("please delete the last blank line in %s and input '1'" % (dataset_path + "new_106\\test_dataset.tsv")) if deal_result == '1': unlabel_data(dataset_path + "new_106\\test_dataset.tsv") return 0 if __name__ == '__main__': excluding_laebl = deal_label() deal_finetuning(excluding_laebl) #deal_test(excluding_laebl) ```
{ "source": "JieJhih/onos", "score": 2 }
#### File: tools/build/onos-upload-artifacts.py ```python from subprocess import call import tempfile import hashlib import requests, os import xml.etree.ElementTree, shutil import time SONATYPE_USER=os.environ.get("SONATYPE_USER") SONATYPE_PASSWORD=<PASSWORD>("<PASSWORD>YPE_PASSWORD") SONATYPE_PROFILE=os.environ.get("SONATYPE_PROFILE") CREATE_REPO_REQUEST_TEMPLATE = '''\ <promoteRequest> <data> <description>%(description)</description> </data> </promoteRequest> ''' CLOSE_REPO_REQUEST_TEMPLATE = '''\ <promoteRequest> <data> <description>%(description)</description> <stagedRepositoryId>%(repo_id)</stagedRepositoryId> </data> </promoteRequest> ''' CLOSE_RETRY_ATTEMPTS = 12 * 2 def hashlib_compute(hash, input_file, output_file): with open(input_file, 'rb') as f: for block in iter(lambda: f.read(100000), b''): hash.update(block) md5_string = hash.hexdigest() output = open(output_file, "w") output.write(md5_string + "\n") f.close() output.close() def generate_metadata_files(input_file, dest): # create a temporary directory to hold the metadata files global tempdir base_metadata_filename = tempdir + "/" + os.path.basename(dest) files = [] # generate the signature file signature_filename = base_metadata_filename + ".asc" call(["gpg", "--armor", "--detach-sig", "--output", signature_filename, input_file]) files.append(signature_filename) # generate the md5 checksum file md5_filename = base_metadata_filename + ".md5" md5 = hashlib.md5() hashlib_compute(md5, input_file, md5_filename) files.append(md5_filename) # generate the SHA checksum file sha1_filename = base_metadata_filename + ".sha1" sha1 = hashlib.sha1() hashlib_compute(sha1, input_file, sha1_filename) files.append(sha1_filename) # generate the base artifact base_artifact_filename = base_metadata_filename shutil.copyfile(input_file, base_artifact_filename) files.append(base_artifact_filename) return files def create_staging_repo(description): if destination_repo_url is None: return None create_request = CREATE_REPO_REQUEST_TEMPLATE.replace("%(description)", description) url = "https://" + destination_repo_url + "/service/local/staging/profiles" + "/" + SONATYPE_PROFILE + "/start" headers = {'Content-Type': 'application/xml'} r = requests.post(url, create_request, headers=headers, auth=(SONATYPE_USER, SONATYPE_PASSWORD)) root = xml.etree.ElementTree.fromstring(r.text) repo_id = root.find("data").find("stagedRepositoryId").text return repo_id def close_staging_repo(description, repo_id): if destination_repo_url is None: return close_request = CLOSE_REPO_REQUEST_TEMPLATE.replace("%(description)", description).replace("%(repo_id)", repo_id) url = "https://" + destination_repo_url + "/service/local/staging/profiles" + "/" + SONATYPE_PROFILE + "/finish" headers = {'Content-Type': 'application/xml'} r = requests.post(url, close_request, headers=headers, auth=(SONATYPE_USER, SONATYPE_PASSWORD)) def wait_for_staging_repo(description, repo_id): if destination_repo_url is None: return base_url = "https://" + destination_repo_url + "/service/local/staging/profiles" + "/" + SONATYPE_PROFILE close_request = CLOSE_REPO_REQUEST_TEMPLATE.replace("%(description)", description).replace("%(repo_id)", repo_id) url = base_url + "/finish" headers = {'Content-Type': 'application/xml'} repo_query_url = "https://oss.sonatype.org/service/local/staging/repository/" + repo_id attempt = 1 print ("waiting for repo to close...") while True: r = requests.get(repo_query_url, close_request, headers=headers, auth=(SONATYPE_USER, SONATYPE_PASSWORD)) root = xml.etree.ElementTree.fromstring(r.text) transitioning = root.find("transitioning").text if transitioning != "true": break if attempt == CLOSE_RETRY_ATTEMPTS: print ("Unable to close repo") sys.exit(1) attempt = attempt + 1 time.sleep(5) print ("Repo closed successfully") def stage_file(file, repo_id, dest): filename_in_repo = os.path.dirname(dest) + "/" + os.path.basename(file) if destination_repo_url is not None: # deploy to Nexus repo upload_base = "https://" + destination_repo_url + "/service/local/staging/deployByRepositoryId" url = upload_base + "/" + repo_id + "/" + filename_in_repo headers = {'Content-Type': 'application/xml'} with open(file, 'rb') as f: r = requests.post(url, data=f.read(), headers=headers, auth=(SONATYPE_USER, SONATYPE_PASSWORD)) if r.status_code != 201: print (r.status_code) print (r.text) sys.exit(1) else: # deploy to local repo file_in_local_repo = os.path.expanduser(local_maven_repo + "/" + filename_in_repo) dir_in_local_repo = os.path.dirname(file_in_local_repo) if not os.path.isdir(dir_in_local_repo): os.makedirs(dir_in_local_repo) shutil.copyfile(src, file_in_local_repo) def stage_files(files, dest): for file in files: stage_file(file=file, repo_id=repo_id, dest=dest) def upload_file(src, dest): print ("publishing: " + dest.replace("org/onosproject", "")) files = generate_metadata_files(src, dest) stage_files(files, dest) if __name__ == '__main__': import sys if len(sys.argv) < 2: print 'USAGE: upload-maven-artifacts catalog-file-name [nexus root url]' sys.exit(1) input_list_file = sys.argv[1] local_maven_repo = None destination_repo_url = None if len(sys.argv) == 3: destination_repo_url = sys.argv[2] else: local_maven_repo = os.environ.get("MAVEN_REPO") if local_maven_repo is None: local_maven_repo = "~/.m2/repository" if destination_repo_url is not None: if SONATYPE_USER is None: print "Environment variable SONATYPE_USER must be set" sys.exit(1) if SONATYPE_PASSWORD is None: print "Environment variable SONATYPE_PASSWORD must be set" sys.exit(1) if SONATYPE_PROFILE is None: print "Environment variable SONATYPE_PROFILE must be set" sys.exit(1) print ("Uploading to remote repo: " + destination_repo_url) else: print ("Installing in local repo: " + local_maven_repo) list_file = open(input_list_file, "r") lines = list_file.readlines() list_file.close() tempdir = tempfile.mkdtemp(prefix="upload-maven-artifacts-") description = "test repo" repo_id = create_staging_repo(description) for line in lines: s = line.split() src = s[0] dest = s[1] upload_file(src, dest) close_staging_repo(repo_id=repo_id, description=description) wait_for_staging_repo(repo_id=repo_id, description=description) shutil.rmtree(tempdir) ```
{ "source": "jiejiang/courier", "score": 2 }
#### File: courier/issue_order/context_processors.py ```python from models import Route def routes(request): return { 'routes': Route.objects.order_by('name') } ``` #### File: courier/issue_order/models.py ```python from __future__ import unicode_literals import os, json, re from collections import OrderedDict from math import ceil from django.contrib.postgres.fields import JSONField from django.db.models.signals import post_save, pre_delete, post_delete from django.dispatch import receiver from django.forms.models import model_to_dict from django.http.request import QueryDict from django.utils.translation import ugettext_lazy as _ from django.db import models from django.db.models import Sum, Count COURIER_SYSTEMS = ( ('jixun', _(u"吉讯CC线")), ('postal', _(u"邮政BC线")), ('yunda', _(u"韵达CC线")), ('heshan', _(u"鹤山CC线")), ('xian', _(u"西安CC线")), ) COURIER_SYSTEMS_MAP = {key: value for key, value in COURIER_SYSTEMS} class PickupOption: SELF_SERVE = 'self_serve' PICKUP_REQUIRED = 'pickup_required' COMPANY_PICKUP = 'company_pickup' DPD_PICKUP = 'dpd_pickup' class CourierBatch(models.Model): STATUS = ( (0, _(u"等待")), (1, _(u"成功")), (2, _(u"失败")), (3, _(u"删除")), ) user = models.ForeignKey("auth.User", related_name="courier_batches", on_delete=models.CASCADE) uuid = models.CharField(_(u"UUID"), max_length=64, null=True, blank=True, unique=True, db_index=True) percentage = models.CharField(_("Percentage"), null=True, blank=True, max_length=16) status = models.CharField(_("Status"), null=True, blank=True, max_length=32, db_index=True) creation_time = models.DateTimeField(_("Creation Time"), auto_now_add=True, null=True, blank=True) system = models.CharField(_("System Name"), max_length=32, db_index=True, null=False, blank=False, choices=COURIER_SYSTEMS) rate = models.DecimalField(_("Rate per Package"), null=True, blank=True, max_digits=10, decimal_places=2) credit = models.DecimalField(_("Credit"), null=True, blank=True, max_digits=10, decimal_places=2) state = models.IntegerField(_("State"), null=False, blank=False, db_index=True, default=2) message = models.TextField(_("Message"), null=True, blank=True) num_order = models.IntegerField(_("Number of Orders"), null=True, blank=True) @property def system_name(self): return COURIER_SYSTEMS_MAP[self.system] if self.system in COURIER_SYSTEMS_MAP else "N/A" class Profile(models.Model): user = models.OneToOneField("auth.User") credit = models.DecimalField(default=0, max_digits=10, decimal_places=2) locked_credit = models.DecimalField(default=0, max_digits=10, decimal_places=2) #deprecated #credit order helper context PICKUP_CHOICES = ( (PickupOption.SELF_SERVE, _(u'自送曼城仓库')), (PickupOption.PICKUP_REQUIRED, _(u'上门取件')), ) pickup_option = models.CharField(choices=PICKUP_CHOICES, default=PickupOption.SELF_SERVE, max_length=64) pickup_address = models.ForeignKey("Address", on_delete=models.PROTECT, related_name='+', null=True) @property def system_number(self): return CourierRate.objects.filter(user=self.user).count() @property def valid_order_number(self): obj = CourierBatch.objects.filter(user=self.user, state=CourierBatch.STATUS[1][0])\ .aggregate(models.Sum('num_order')) return obj['num_order__sum'] if 'num_order__sum' in obj and obj['num_order__sum'] is not None else 0 class CourierRate(models.Model): user = models.ForeignKey("auth.User", on_delete=models.CASCADE) system = models.CharField(_("System Name"), max_length=32, db_index=True, null=False, blank=False, choices=COURIER_SYSTEMS) rate = models.DecimalField(_("Rate per Package"), null=False, blank=False, max_digits=10, decimal_places=2) class Meta: unique_together = ('user', 'system') class GroupPrice(models.Model): group = models.ForeignKey("auth.Group", on_delete=models.CASCADE, related_name="prices") system = models.CharField(_(u"线路"), max_length=32, db_index=True, null=False, blank=False, choices=COURIER_SYSTEMS) price_4_pieces_high = models.DecimalField(_(u"4罐包含1/2段"), null=True, blank=True, max_digits=10, decimal_places=2) price_4_pieces_low = models.DecimalField(_(u"4罐只包含3/4段"), null=True, blank=True, max_digits=10, decimal_places=2) price_6_pieces_high = models.DecimalField(_(u"6罐单价介于22与13磅之间"), null=True, blank=True, max_digits=10, decimal_places=2) price_6_pieces_low = models.DecimalField(_(u"6罐单价低于13磅(含)"), null=True, blank=True, max_digits=10, decimal_places=2) @property def details(self): return COURIER_SYSTEMS_MAP[self.system] + ": " + \ " / ".join(map(lambda x: str(x), (self.price_4_pieces_high, self.price_4_pieces_low, self.price_6_pieces_high, self.price_6_pieces_low))) class Meta: unique_together = ('group', 'system') class Address(models.Model): GB = 'GB' CN = 'CN' COUNTRY_CHOICES = ( (GB, u'UK'), (CN, u'中国'), ) user = models.ForeignKey("auth.User", on_delete=models.CASCADE) is_template = models.BooleanField(default=False) country = models.CharField(max_length=32, choices=COUNTRY_CHOICES) post_code = models.CharField(max_length=32) contact_name = models.CharField(max_length=64) address_line_1 = models.CharField(max_length=64) address_line_2 = models.CharField(max_length=64, blank=True, null=True) province = models.CharField(max_length=32, blank=True, null=True) city = models.CharField(max_length=32) district = models.CharField(max_length=32, blank=True, null=True) contact_number = models.CharField(max_length=32) id_number = models.CharField(max_length=32, blank=True, null=True) alias = models.CharField(max_length=32, blank=True, null=True) def __str__(self): text = '' if self.country == self.GB: text = u", ".join( (self.contact_name, self.address_line_1, self.city, self.post_code, self.get_country_display(), 'Tel:%s' % self.contact_number)) elif self.country == self.CN: text = " ".join( (self.contact_name, "".join((self.get_country_display(), self.province, self.city, self.district, self.address_line_1)), u'邮编:%s' % self.post_code, u'电话:%s' % self.contact_number, u'证件:%s' % self.id_number)) if self.alias: text = (u'%s (%s)' % (self.alias, text)) return text.encode('utf-8') @classmethod def get_sender_address_templates(cls, user): return cls.objects.filter(user=user, is_template=True, country=Address.GB) @classmethod def get_receiver_address_template(cls, user): return cls.objects.filter(user=user, is_template=True, country=Address.CN) class PricingRule(models.Model): name = models.CharField(max_length=32) config = JSONField() def __unicode__(self): return self.name @property def default_price(self): return float(self.config['default_price']) def normalize_input(self, data, user): package = {} if isinstance(data, basestring): package = json.loads(data) def get_value(obj, field, convert): value = obj.get(field, '') return convert(value) if value is not None and value != '' else 0 for field in ('length', 'width', 'height'): package[field] = get_value(package, field, int) package['gross_weight'] = get_value(package, 'gross_weight', float) for i in xrange(len(package.get('item_set', []))): if package['item_set'][i].get('count', ''): package['item_set'][i]['count'] = int(package['item_set'][i]['count']) elif isinstance(data, Package): package = model_to_dict(data) package['item_set'] = [model_to_dict(item) for item in data.item_set.all()] else: raise NotImplementedError('input not supported yet') #common fields for field in ('sender_address', 'receiver_address'): if package.get(field, ''): package[field] = Address.objects.filter(pk=int(package.get(field)), user=user).first() return package def make_package_price(self, data, user): if not data: raise Exception, "Empty input" package = self.normalize_input(data, user) if self.config.get('type') == 'flat': return self.default_price elif self.config.get('type') == 'weight_based': levels = int(self.config.get('levels')) volumetric_weight = Package.calculate_volumetric_weight(package['length'], package['width'], package['height']) weight = volumetric_weight if volumetric_weight > package['gross_weight'] else package['gross_weight'] price = None for i in range(levels): if weight <= float(self.config.get('level_%d' % i)): price = float(self.config.get('level_%d_price' % i)) break if price is None: price = float(self.config.get('extra_price_per_kg')) \ * ceil(weight - self.config.get('level_%d' % (levels-1))) \ + float(self.config.get('level_%d_price' % (levels-1))) return price else: raise NotImplementedError('type not supported') class Route(models.Model): system = models.CharField(max_length=32, db_index=True, null=False, blank=False, choices=COURIER_SYSTEMS) code = models.CharField(max_length=64, db_index=True, null=False, blank=False) name = models.CharField(max_length=64) slug = models.SlugField(max_length=64, db_index=True, null=False, blank=False, unique=True) max_items_per_package = models.PositiveIntegerField(blank=True, null=True) max_weight_per_package = models.DecimalField(blank=True, null=True, max_digits=4, decimal_places=1) pricing_rule = models.ForeignKey(PricingRule, on_delete=models.SET_NULL, null=True, blank=True) is_online = models.BooleanField(default=True, blank=False) def __unicode__(self): return self.name class Meta: unique_together = ('system', 'code',) class CourierOrder(models.Model): class STATUS: CREATED = 'created' PAID = 'paid' SUBMITTED = 'submitted' GENERATED = 'generated' FAILED = 'failed' CANCELLED = 'cancelled' STATUS_CHOICES = ( (STATUS.CREATED, u'已下单'), (STATUS.PAID, u'已支付'), (STATUS.SUBMITTED, u'已提交'), (STATUS.GENERATED, u'已生成'), (STATUS.FAILED, u'系统错误'), (STATUS.CANCELLED, u'已取消'), ) user = models.ForeignKey("auth.User", on_delete=models.CASCADE) route = models.ForeignKey(Route, on_delete=models.PROTECT, null=False, blank=False) status = models.CharField(max_length=16, db_index=True, null=False, blank=False, choices=STATUS_CHOICES, default=STATUS.CREATED) last_update = models.DateTimeField(auto_now_add=True) price = models.DecimalField(null=True, blank=True, max_digits=8, decimal_places=2) def calculate_price(self): # get pricing rule, TODO choose user specific pricing rule if not self.route.pricing_rule: raise Exception, "no route pricing available" pricing_rule = self.route.pricing_rule self.price = sum([package.calculate_price(pricing_rule) for package in self.package_set.all()]) self.save() return self.price class Package(models.Model): order = models.ForeignKey(CourierOrder, on_delete=models.CASCADE) sender_address = models.ForeignKey(Address, on_delete=models.PROTECT, related_name='+', null=True) receiver_address = models.ForeignKey(Address, on_delete=models.PROTECT, related_name='+', null=True) gross_weight = models.DecimalField(max_digits=4, decimal_places=1) length = models.PositiveIntegerField() width = models.PositiveIntegerField() height = models.PositiveIntegerField() price = models.DecimalField(null=True, blank=True, max_digits=8, decimal_places=2) @classmethod def calculate_volumetric_weight(cls, length, width, height): return length * width * height / 5000. def calculate_price(self, pricing_rule): self.price = pricing_rule.make_package_price(self, self.order.user) self.save() return self.price @property def effective_gross_weight(self): volumetric_weight = self.calculate_volumetric_weight(self.length, self.width, self.height) return volumetric_weight if volumetric_weight > self.gross_weight else self.gross_weight @receiver(post_delete, sender=Package) def __on_delete_package(**kwargs): package = kwargs.get('instance') if package.sender_address: package.sender_address.delete() if package.receiver_address: package.receiver_address.delete() class Item(models.Model): package = models.ForeignKey(Package, on_delete=models.CASCADE) name = models.CharField(max_length=128) count = models.PositiveIntegerField(default=1) __CN_ADDRESSES = None def get_cn_addresses(province_name=None, city_name=None): global __CN_ADDRESSES if __CN_ADDRESSES is None: __cn_address_json = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "order_api", "json", "cities.json") with open(__cn_address_json) as f: data = json.load(f) __CN_ADDRESSES = OrderedDict() for province in data: province_data = OrderedDict() for city in province['contains']: city_data = [] for district in city['contains']: city_data.append(district['name']) province_data[city['name']] = city_data __CN_ADDRESSES[province['name']] = province_data if province_name is not None: if city_name is not None: return __CN_ADDRESSES.get(province_name, {}).get(city_name, []) else: return __CN_ADDRESSES.get(province_name, {}).keys() else: return __CN_ADDRESSES.keys() def get_courier_cart_stats(user): orders = CourierOrder.objects.filter(user=user, status=CourierOrder.STATUS.CREATED) stats = orders.aggregate(total_order_price=Sum('price')) if stats['total_order_price'] is None: stats['total_order_price'] = 0 stats['total_package_count'] = 0 stats['total_gross_weight'] = 0 for order in orders: for package in order.package_set.all(): stats['total_package_count'] += 1 stats['total_gross_weight'] += package.effective_gross_weight return stats def calculate_cost_with_pickup(pickup_type, pickup_address, cart_stats): ret = { 'total_price': None, 'pickup_price': None, 'pickup_option': PickupOption.PICKUP_REQUIRED, } if pickup_type == PickupOption.SELF_SERVE: ret['total_price'] = cart_stats['total_order_price'] ret['pickup_price'] = 0 ret['pickup_option'] = PickupOption.SELF_SERVE else: if pickup_address is None or pickup_address.country != Address.GB or not pickup_address.post_code: #set to none to disable checkout pass else: if re.match(r'^M\d', pickup_address.post_code, flags=re.I): ret['pickup_price'] = 3 if cart_stats['total_package_count'] < 5 else 0 ret['pickup_option'] = PickupOption.COMPANY_PICKUP else: ret['pickup_price'] = 10 if cart_stats['total_gross_weight'] > 20: ret['pickup_price'] += ceil(cart_stats['total_gross_weight'] - 20) * 0.4 ret['pickup_option'] = PickupOption.DPD_PICKUP ret['total_price'] = ret['pickup_price'] + cart_stats['total_order_price'] return ret ``` #### File: courier/issue_order/products.py ```python import redis, time, sys, json, ast from mezzanine.conf import settings from courier_systems import query_products r = redis.StrictRedis(host='localhost', port=6379, db=0) __value_timeout = 60 * 10 __lock_timeout = 10 __refresh_wait = 2 __max_retry = 10 def __obtain_lock(lock_key): cur_time = int(time.time()) my_timeout = cur_time + __lock_timeout + 1 if r.setnx(lock_key, my_timeout): return True else: last_timeout = int(r.get(lock_key)) if last_timeout >= cur_time: return False new_timeout = int(r.getset(lock_key, my_timeout)) if new_timeout == last_timeout: return True return False def __release_lock(lock_key): r.delete(lock_key) def query_product_info(system, code): system_config = settings.COURIER_SYSTEMS[system] params = { 'url_base': system_config['url_base'], 'user_name': system_config['user_name'], 'password': <PASSWORD>['password'], 'code': code, } return query_products(**params) def __get_product_info(system, code): value_key, lock_key = 'courier:%s:%s:products:value' % (system, code), 'courier:%s:%s:products:lock' % (system, code) value = r.get(value_key) if value is None: if __obtain_lock(lock_key): try: value = query_product_info(system, code) r.setex(value_key, __value_timeout, json.dumps(value)) except Exception, inst: import traceback traceback.print_exc(sys.stderr) print >> sys.stderr, "Failed to obtain access token: %s" % str(inst) finally: __release_lock(lock_key) else: value = json.loads(value) return value def get_product_info(route): product_info = None retry = 0 while product_info is None: product_info = __get_product_info(route.system, route.code) if product_info is None: retry += 1 if retry > __max_retry: raise Exception, "Maximum number to retry service" time.sleep(__refresh_wait) return product_info if product_info is not None else {} ``` #### File: courier/issue_order/validators.py ```python import os from django.utils.translation import ugettext as _ from django.core.exceptions import ValidationError def validate_file_extension(value): ext = os.path.splitext(value.name)[1] # [0] returns path+filename valid_extensions = ['.xlsx', '.xls', '.xlt'] if not ext.lower() in valid_extensions: raise ValidationError(_(u'文件后缀名不支持')) ``` #### File: courier/order_api/admin.py ```python from django.contrib import admin from django.contrib.admin.options import InlineModelAdmin from django.contrib.admin.utils import flatten_fieldsets from django.contrib.auth.models import User from django.contrib.auth.forms import UserChangeForm from mezzanine.core.admin import TabularDynamicInlineAdmin from order_api.models import Product, Request, Profile, Package, PackageItem, Route def api_profile(self): if not hasattr(self, '_api_profile'): self._api_profile = Profile.objects.create(user=self) self._api_profile.save() return self._api_profile User.api_profile = property(lambda self: api_profile(self)) class ProductAdmin(admin.ModelAdmin): list_display = ('name', 'barcode', 'internal_name', 'unit_price', 'is_enabled') class PackageAdmin(TabularDynamicInlineAdmin): model = Package ordering = ('id',) fields = ('tracking_no', 'cost', 'sender_name', 'sender_phone_number', 'sender_address', 'receiver_name', 'receiver_phone_number', 'receiver_address', 'receiver_city', 'receiver_post_code', 'receiver_id_number', 'items_detail') def get_readonly_fields(self, request, obj=None): return self.fields def has_add_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class RequestAdmin(admin.ModelAdmin): inlines = (PackageAdmin, ) list_display = ('request_no', 'creation_date', 'owner', 'status', 'system', 'test_mode', 'total_cost') readonly_fields = ['total_cost', 'status'] def get_readonly_fields(self, request, obj=None): return list(self.readonly_fields) + \ [field.name for field in obj._meta.fields] + \ [field.name for field in obj._meta.many_to_many] def has_add_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class RouteAdmin(admin.ModelAdmin): list_display = ('name', 'code', 'is_enabled') admin.site.register(Product, ProductAdmin) admin.site.register(Request, RequestAdmin) admin.site.register(Route, RouteAdmin) ``` #### File: courier/order_api/serializers.py ```python from rest_framework import serializers import six from order_api.models import Product, Request, Package, PackageItem, Route class ProductSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField(view_name="product-detail", lookup_field='barcode') name = serializers.ReadOnlyField() barcode = serializers.ReadOnlyField() class Meta: model = Product fields = ('url', 'name', 'barcode') class RouteSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField(view_name="route-detail", lookup_field='code') code = serializers.ReadOnlyField() name = serializers.ReadOnlyField() class Meta: model = Route fields = ('url', 'code', 'name') class PackageItemSerializer(serializers.ModelSerializer): name = serializers.ChoiceField(choices=Product.objects.values_list('name', flat=True), source="product.name", required=False) barcode = serializers.ChoiceField(choices=Product.objects.values_list('barcode', flat=True), source="product.barcode", required=False) count = serializers.IntegerField() class Meta: model = PackageItem fields = ('name', 'barcode', 'count') class TrackingNoHyperlinkedIdentityField(serializers.HyperlinkedIdentityField): def __init__(self, *args, **kwargs): return super(TrackingNoHyperlinkedIdentityField, self).__init__(*args, **kwargs) def to_representation(self, value): if not value.tracking_no: return None return super(TrackingNoHyperlinkedIdentityField, self).to_representation(value) class RequestHyperlinkedIdentityField(serializers.HyperlinkedIdentityField): def __init__(self, *args, **kwargs): return super(RequestHyperlinkedIdentityField, self).__init__(*args, **kwargs) def to_representation(self, value): if value.status_code <> Request.StatusCode.SUCCEEDED: return None return super(RequestHyperlinkedIdentityField, self).to_representation(value) class PackageSerializer(serializers.ModelSerializer): package_no = serializers.CharField(source="external_package_no", required=False) url = TrackingNoHyperlinkedIdentityField(view_name="package-detail", lookup_field='slug') tracking_no = serializers.ReadOnlyField() waybill = TrackingNoHyperlinkedIdentityField(view_name="waybill-detail", lookup_field='slug') request = serializers.HyperlinkedIdentityField(view_name="request-detail", lookup_field="request_no") items = PackageItemSerializer(many=True, source="packageitem_set") cost = serializers.ReadOnlyField() class Meta: model = Package fields = ('url', 'package_no', 'tracking_no', 'waybill', 'request', 'sender_name', 'sender_phone_number', 'sender_address', 'receiver_name', 'receiver_phone_number', 'receiver_address', 'receiver_city', 'receiver_post_code', 'receiver_id_number', 'weight', 'length', 'width', 'height', 'items', 'cost') class RequestSerializer(serializers.HyperlinkedModelSerializer): route_code_choices = Route.objects.values_list('code', flat=True) order_no = serializers.CharField(source="external_order_no", required=False) url = serializers.HyperlinkedIdentityField(view_name="request-detail", lookup_field='request_no') route_code = serializers.ChoiceField(required=False, choices=route_code_choices, source='route.code') test_mode = serializers.ReadOnlyField() request_no = serializers.ReadOnlyField() waybills = RequestHyperlinkedIdentityField(view_name="request-waybill-detail", lookup_field='request_no') creation_date = serializers.DateTimeField(read_only=True) status = serializers.ReadOnlyField() error_msg = serializers.ReadOnlyField() packages = PackageSerializer(many=True) total_cost = serializers.ReadOnlyField() class Meta: model = Request fields = ('url', 'order_no', 'route_code', 'test_mode', 'request_no', 'waybills', 'creation_date', 'status', 'error_msg', 'packages', 'total_cost') lookup_field = "request_no" class WaybillSerializer(serializers.ModelSerializer): tracking_no = serializers.ReadOnlyField() waybill = TrackingNoHyperlinkedIdentityField(view_name="waybill-detail", lookup_field='slug') package = TrackingNoHyperlinkedIdentityField(view_name="package-detail", lookup_field='slug') class Meta: model = Package fields = ('tracking_no', 'waybill', 'package') ``` #### File: courier/sample_ticket/forms.py ```python import os from django.utils.translation import ugettext as _ from django.core.exceptions import ValidationError from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit, Layout, Fieldset, ButtonHolder, Div, Field, HTML def validate_file_extension(value): ext = os.path.splitext(value.name)[1] valid_extensions = ['.xlsx', '.xls', '.xlt'] if not ext.lower() in valid_extensions: raise ValidationError(_(u'文件后缀名不支持')) class SampleTicketForm(forms.Form): files = forms.FileField(label=_(u"上传文件"), widget=forms.ClearableFileInput(attrs={'multiple': True}), validators=[validate_file_extension,]) is_jixun = forms.BooleanField(label=_(u"吉讯线小票"), required=False) def __init__(self, *args, **kwargs): super(SampleTicketForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_class = 'form-horizontal' self.helper.label_class = 'col-lg-4' self.helper.field_class = 'col-lg-8' self.helper.layout = Layout( 'files', 'is_jixun', ButtonHolder( Submit('submit', _(u"上传"), css_class='btn btn-success btn-lg btn-block'), ) ) ```
{ "source": "jiejiang/inventory", "score": 2 }
#### File: app/admin/views.py ```python __author__ = 'jie' import os, zipfile import pandas as pd from markupsafe import Markup from flask import redirect, url_for, flash, current_app from flask_admin.contrib import sqla from flask_admin.menu import MenuLink from flask_admin.model.form import InlineFormAdmin from sqlalchemy import func, desc, or_ from flask_user import current_user from flask_admin.actions import action from wtforms.validators import ValidationError from .. import db from . import admin from ..models import Order, Job, ProductInfo, ProductCountInfo, Retraction, Route from ..util import time_format class LoginRequiredModelView(sqla.ModelView): def is_accessible(self): return current_user.is_authenticated def inaccessible_callback(self, name, **kwargs): return redirect(url_for("user.login")) class JobAdmin(LoginRequiredModelView): can_delete = False can_edit = False can_create = False def _show_status(view, context, model, name): return model.status_string def _show_item_count(view, context, model, name): #return model.orders.count() #cannot use this because the case of order number re-use job_file = os.path.join(current_app.config['DOWNLOAD_FOLDER'], model.uuid, model.uuid + '.zip') if not os.path.exists(job_file): return "%d (orders)" % model.orders.count() try: with zipfile.ZipFile(job_file) as z: customs_df = pd.read_excel(z.open(u"江门申报单.xlsx"), converters={ u"企业运单编号": lambda x: str(x), u"收件人省市区代码": lambda x: str(x), u"收件人电话": lambda x: str(x), u"收件人证件号码": lambda x: str(x), u"发货人省市区代码": lambda x: str(x), u"发货人电话": lambda x: str(x), u"商品备案号": lambda x: str(x), u"发货人电话": lambda x: str(x), u'计量单位': lambda x: str(x), }) return len(customs_df.index) except Exception, inst: return "%d (orders)" % model.orders.count() column_formatters = { 'status': _show_status, 'creation_time': lambda v, c, m, p: time_format(m.creation_time), 'completion_time': lambda v, c, m, p: time_format(m.completion_time), 'item_count': _show_item_count, } class SuccessJobAdmin(JobAdmin): list_template = "admin/job/list.html" column_searchable_list = ('uuid', 'creation_time', 'issuer') column_exclude_list = ('percentage', 'message') column_default_sort = ('completion_time', True) column_list = ('uuid', 'status', 'completion_time', 'item_count', 'version', 'issuer') def get_query(self): return self.session.query(self.model).filter(self.model.status == Job.Status.COMPLETED) def get_count_query(self): return self.session.query(func.count('*')).filter(self.model.status == Job.Status.COMPLETED) class FailedJobAdmin(JobAdmin): column_default_sort = ('creation_time', True) column_list = ('uuid', 'status', 'creation_time', 'percentage', 'message', 'issuer') def get_query(self): return self.session.query(self.model).filter(or_(self.model.status == Job.Status.FAILED, self.model.status == Job.Status.DELETED)) def get_count_query(self): return self.session.query(func.count('*')).filter(or_(self.model.status == Job.Status.FAILED, self.model.status == Job.Status.DELETED)) class OrderAdmin(LoginRequiredModelView): def _show_type(view, context, model, name): return model.type_name column_formatters = { 'type': _show_type, 'upload_time': lambda v, c, m, p: time_format(m.upload_time), 'used_time': lambda v, c, m, p: time_format(m.used_time), } column_searchable_list = ('order_number', 'receiver_id_number', 'receiver_name') column_exclude_list = ('job',) form_excluded_columns = ('job',) column_details_exclude_list = ('job',) class UsedOrderAdmin(OrderAdmin): list_template = "admin/order/list.html" can_create = False can_delete = False can_edit = False can_view_details = True column_default_sort = ('used_time', True) def get_query(self): return self.session.query(self.model).filter(self.model.used == True) def get_count_query(self): return self.session.query(func.count('*')).filter(self.model.used == True) @action('reuse', u"弃用单号", u"您确定需要弃用这些单号?") def action_approve(self, ids): try: order_numbers = [] query = Order.query.filter(Order.id.in_(ids)).order_by(desc(Order.used_time)) for order in query.all(): order_numbers.append(order.order_number) if order.retraction_id: raise Exception, u"无法弃用已提取单号: %s" % order.order_number order.discard() db.session.commit() flash(u"如下单号已经弃用:[%s]" % ", ".join(order_numbers)) except Exception, inst: flash(u"无法弃用单号:[%s]。错误如下:\n%s" % (", ".join(order_numbers), str(inst)), "error") class UnusedOrderAdmin(OrderAdmin): can_create = False can_edit = False column_default_sort = ('order_number', False) def get_query(self): return self.session.query(self.model).filter(self.model.used==False, self.model.type == Order.Type.XIAN) def get_count_query(self): return self.session.query(func.count('*')).filter(self.model.used == False, self.model.type == Order.Type.XIAN) class UnretractedOrderAdmin(OrderAdmin): can_create = False can_edit = False can_delete = False can_view_details = True column_default_sort = ('used_time', True) def get_query(self): return self.session.query(self.model).filter(self.model.used==True, self.model.retraction_id == None) def get_count_query(self): return self.session.query(func.count('*')).filter(self.model.used==True, self.model.retraction_id == None) class RetractedOrderAdmin(OrderAdmin): can_create = False can_edit = False can_delete = False can_view_details = True column_default_sort = ('used_time', True) def get_query(self): return self.session.query(self.model).filter(self.model.used==True, self.model.retraction_id <> None) def get_count_query(self): return self.session.query(func.count('*')).filter(self.model.used==True, self.model.retraction_id <> None) class ProductCountInfoInlineModelForm(InlineFormAdmin): column_labels = dict(count=u"箱件数", gross_weight_per_box=u"每箱毛重(KG)") class ProductInfoAdmin(LoginRequiredModelView): #inline_models = [(ProductCountInfo, dict(form_columns=['count']))] #inline_models = (ProductCountInfoInlineModelForm(ProductCountInfo),) column_list = ( 'name', 'net_weight', 'gross_weight', 'unit_price', 'unit_per_item', 'tax_code', 'full_name', 'report_name', 'waybill_name', 'routes', 'deprecated') column_labels = dict(name=u"商品名称", net_weight=u"每件净重(KG)", count_infos=u"箱件数 / 毛重 -- 已作废", price_per_kg=u"每千克价格(KG) -- 已作废", full_name=u"全称(设置后无法修改)", deprecated=u"弃用", unit_price=u"单价", gross_weight=u"每件毛重(KG)", tax_code=u"商品税号", billing_unit=u"计费单位", billing_unit_code=u"计费单位代码", unit_per_item=u"单个物品申报数量", specification=u"规格/型号", bc_product_code=u"BC商品编码", bc_specification=u"BC商品规格型号", bc_second_quantity=u"BC第二数量", bc_measurement_unit=u"BC计量单位", bc_second_measurement_unit=u"BC第二计量单位", report_name=u"报单中显示名称", ticket_name=u"小票名称", ticket_price=u"小票单价", waybill_name=u"面单中显示名称", routes=u'线路', dutiable_as_any_4_pieces=u"4罐包含一个及以上该产品则报税", non_dutiable_as_all_6_pieces=u"6罐全是该产品则不报税") can_view_details = True column_default_sort = ('name', False) column_searchable_list = ('name', 'full_name', 'report_name') form_excluded_columns = ('price_per_kg', 'count_infos') def _show_count_infos(view, context, model, name): return Markup(model.count_info_string) column_formatters = { 'count_infos': _show_count_infos, } def on_model_change(self, form, model, is_created): model.name = "".join(model.name.strip().split()) if not is_created: if form.full_name.object_data <> form.full_name.data: model.full_name = form.full_name.object_data else: model.full_name = "".join(model.full_name.strip().split()) def ticket_name_max_length(form, field): if field.data and len(field.data) > 30: raise ValidationError(u"小票名称最长30字符") form_args = dict( ticket_name=dict(validators=[ticket_name_max_length]) ) class RetractionAdmin(LoginRequiredModelView): list_template = "admin/retraction/list.html" can_create = False can_edit = False can_delete = False column_searchable_list = ('uuid', 'timestamp') column_default_sort = ('timestamp', True) column_formatters = { 'timestamp': lambda v, c, m, p: time_format(m.timestamp), } class RouteAdmin(LoginRequiredModelView): column_labels = dict(name=u"名称", code=u"编码", products=u'包含产品') column_list = ('name', 'code', 'products') admin.add_view(SuccessJobAdmin(Job, db.session, endpoint="admin.success_jobs", name=u"生成订单")) admin.add_view(RetractionAdmin(Retraction, db.session, endpoint="admin.success_retraction", name=u"提取订单")) admin.add_view(RouteAdmin(Route, db.session, endpoint="admin.route", name=u"线路管理")) admin.add_view(ProductInfoAdmin(ProductInfo, db.session, endpoint="admin.product_info", name=u"商品信息")) admin.add_view(UnusedOrderAdmin(Order, db.session, endpoint="admin.unused_standard_order", name=u"未使用订单")) admin.add_view(UsedOrderAdmin(Order, db.session, endpoint="admin.used_order", name=u"已生成订单")) admin.add_view(UnretractedOrderAdmin(Order, db.session, endpoint="admin.unretracted_order", name=u"未提取订单")) admin.add_view(RetractedOrderAdmin(Order, db.session, endpoint="admin.retracted_order", name=u"已提取订单")) admin.add_view(FailedJobAdmin(Job, db.session, endpoint="admin.failed_jobs", name=u"错误记录")) admin.add_link(MenuLink(name=u"回到主界面", endpoint="front_end.index")) ``` #### File: app/main/jobs.py ```python __author__ = 'jie' import time import sys import datetime import os import shutil import zipfile from flask_rq import job from .. import app, db from ..models import Job from postorder import xls_to_orders batch_order_queue = app.config['BATCH_ORDER_QUEUE'] @job(batch_order_queue) def batch_order(job_id, input_file, workdir, test_mode=False): with app.app_context(): job = Job.query.filter(Job.uuid == job_id).first() outfile = os.path.join(workdir, job_id + '.zip') outdir = os.path.join(workdir, 'output') tmpdir = os.path.join(workdir, 'tmpdir') curdir = os.getcwd() if not os.path.exists(outdir): os.makedirs(outdir) if not os.path.exists(tmpdir): os.makedirs(tmpdir) try: if not job: raise Exception, "Failed to find job: %d" % job_id job.status = Job.Status.PROCESSING db.session.commit() def percent_callback(percent): percent = int(percent) if percent > job.percentage: job.percentage = percent # db.session.commit() xls_to_orders(input_file, outdir, tmpdir, percent_callback, job, test_mode) outfile = os.path.abspath(outfile) os.chdir(outdir) zf = zipfile.ZipFile( outfile, "w", compression=zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk("."): if root <> ".": zf.write(root) for filename in files: filepath = os.path.join(root, filename) zf.write(filepath, arcname=filepath.decode('utf8')) zf.close() job.completion_time = datetime.datetime.utcnow() job.status = Job.Status.COMPLETED db.session.commit() except Exception, inst: db.session.rollback() import traceback traceback.print_exc(sys.stderr) job.message = "Format error: %s" % inst.message.encode('utf8') job.status = Job.Status.FAILED db.session.commit() finally: os.chdir(curdir) if os.path.exists(tmpdir): shutil.rmtree(tmpdir) if os.path.exists(outdir): shutil.rmtree(outdir) ``` #### File: app/main/postorder.py ```python import cStringIO, json import re, math, random import sys import os import shutil import zipfile import datetime from cStringIO import StringIO from optparse import OptionParser from jinja2 import Environment, FileSystemLoader import pandas as pd import barcode from barcode.writer import ImageWriter from weasyprint import HTML, CSS from wand.image import Image from wand.color import Color from PyPDF2 import PdfFileMerger, PdfFileReader, PdfFileWriter from sqlalchemy import desc, asc, Index, UniqueConstraint, and_ from openpyxl import load_workbook from openpyxl.utils.dataframe import dataframe_to_rows from flask import current_app from pdf2image import convert_from_path, convert_from_bytes from faker import Faker from unidecode import unidecode from ..models import City, Order, ProductInfo from .. import db from ..util import time_to_filename Code128 = barcode.get_barcode_class('code128') PROVINCE_INFO_MAP = { u"湖南": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"广西": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"海南": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"江西": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"福建": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"湖北": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"江苏": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"上海": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"浙江": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"河北": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"安徽": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"河南": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"山东": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"山西": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"陕西": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"贵州": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"云南": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"重庆": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"四川": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"北京": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"天津": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"辽宁": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"黑龙江": {'ticket_initial': 9, 'package_type': u"快递包裹"}, u"广东": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"内蒙古": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"甘肃": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"青海": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"宁夏": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"吉林": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"西藏": {'ticket_initial': 1, 'package_type': u"快递包裹"}, u"新疆": {'ticket_initial': 1, 'package_type': u"快递包裹"}, } PROVINCE_NAMES = [City.normalize_province(name) for name in PROVINCE_INFO_MAP.keys()] ADDRESS_LIMIT_FIXTURES = [u'维吾尔自治区', u'壮族自治区', u'回族自治区', u'古自治区', u'自治区', u'特别行政区', u'省', u'市', u'盟', u'县', u'区'] ITEM_NAME_RE = re.compile( ur"^.*?((([123一二三])|([4四]))段|(\d+)g)$", flags=re.U | re.I) ITEM_NAME_MAP_INFO = { u"爱他美1段": { "net_weight": 0.9, "gross_weights": { 4: 4.35, 6: 7, }, "price_per_kg": 89.06, "full_name": u"爱他美奶粉1段900g", }, u"爱他美2段": { "net_weight": 0.9, "gross_weights": { 4: 4.35, 6: 7, }, "price_per_kg": 89.06, "full_name": u"爱他美奶粉2段900g", }, u"爱他美3段": { "net_weight": 0.9, "gross_weights": { 4: 4.35, 6: 7, }, "price_per_kg": 89.06, "full_name": u"爱他美奶粉3段900g", }, u"爱他美4段": { "net_weight": 0.8, "gross_weights": { 4: 3.90, 6: 6, }, "price_per_kg": 86.50, "full_name": u"爱他美奶粉4段800g", }, u"牛栏1段": { "net_weight": 0.9, "gross_weights": { 4: 4.35, 6: 7, }, "price_per_kg": 89.06, "full_name": u"牛栏奶粉1段900g", }, u"牛栏2段": { "net_weight": 0.9, "gross_weights": { 4: 4.35, 6: 7, }, "price_per_kg": 86.50, "full_name": u"牛栏奶粉2段900g", }, u"牛栏3段": { "net_weight": 0.9, "gross_weights": { 4: 4.35, 6: 7, }, "price_per_kg": 86.50, "full_name": u"牛栏奶粉3段900g", }, u"牛栏4段": { "net_weight": 0.8, "gross_weights": { 4: 3.90, 6: 6, }, "price_per_kg": 94.30, "full_name": u"牛栏奶粉4段800g", }, } TAX_CODE_MAP = { '01010700': (u'奶粉', u'罐'), } def calculate_item_info(n_row, item_name, item_count): item_name = "".join(item_name.strip().split()).decode("utf8") if not item_name in ITEM_NAME_MAP_INFO: raise Exception, u"第%d行包含未注册商品名称: %s" % (n_row + 1, item_name) info = ITEM_NAME_MAP_INFO[item_name] if not item_count in info["gross_weights"]: raise Exception, u"第%d行商品[%s]包含未注册数量:%d" % ( n_row + 1, item_name, item_count) return info["net_weight"] * item_count * info["price_per_kg"], info["net_weight"] * item_count, \ info["gross_weights"][item_count], info["price_per_kg"], \ info["full_name"] if "full_name" in info else item_name def calculate_item_info_from_db(n_row, item_name, item_count): item_name = "".join(item_name.strip().split()).decode("utf8") search_result = ProductInfo.find_product_and_weight(item_name, item_count) if not search_result: raise Exception, u"第%d行包含未注册商品名称和箱件数 %s[%d件]" % ( n_row + 1, item_name, item_count) product_info, gross_weight_per_box = search_result return product_info.net_weight * item_count * product_info.price_per_kg, product_info.net_weight * item_count, \ gross_weight_per_box, product_info.price_per_kg, \ product_info.full_name if product_info.full_name else item_name def calculate_item_info_from_db_without_product_info(n_row, item_name, item_count): item_name = "".join(item_name.strip().split()).decode("utf8") product_info = ProductInfo.query.filter(and_(ProductInfo.name==item_name, ProductInfo.deprecated==False)).first() if not product_info: raise Exception, u"第%d行包含未注册商品: %s" % (n_row + 1, item_name) # from sqlalchemy import inspect # for c in inspect(product_info).mapper.column_attrs: # print c.key, getattr(product_info, c.key) if product_info.unit_price is None or product_info.gross_weight is None or product_info.unit_per_item is None \ or product_info.tax_code is None or product_info.billing_unit is None \ or product_info.billing_unit_code is None or product_info.specification is None \ or not product_info.full_name: raise Exception, u"第%d行商品 [%s] 注册信息不完整" % (n_row + 1, item_name) waybill_name = product_info.waybill_name if product_info.waybill_name else product_info.full_name return product_info.unit_price * product_info.unit_per_item * item_count, product_info.net_weight * item_count, \ product_info.gross_weight * item_count, product_info.unit_price, \ product_info.full_name, \ product_info.net_weight, product_info.tax_code, product_info.billing_unit, product_info.billing_unit_code, \ product_info.unit_per_item, product_info.specification, waybill_name class NoTextImageWriter(ImageWriter): def __init__(self): super(NoTextImageWriter, self).__init__() def _paint_text(self, xpos, ypos): pass def random_date(): now = datetime.datetime.now() start = now + datetime.timedelta(days=-21) end = now + datetime.timedelta(days=-1) delta = end - start int_delta = (delta.days * 24 * 60 * 60) + delta.seconds random_second = random.randrange(int_delta) candidate = start + datetime.timedelta(seconds=random_second) if 8 <= candidate.hour <= 18: pass else: candidate = candidate.replace(hour=random.randrange(8, 18)) return candidate TICKET_SELECTIONS = [ { 'template': 'tickets/tesco.html', 'images': ['static/img/tickets/TESCO-1.jpg', 'static/img/tickets/TESCO-2.jpg'], 'serial_number_len': 13 }, { 'template': 'tickets/asda.html', 'images': ['static/img/tickets/ASDA-1.jpg',], 'serial_number_len': 13 }, { 'template': 'tickets/morrisons.html', 'images': ['static/img/tickets/Morrisons-1.jpg', 'static/img/tickets/Morrisons-2.jpg', ], 'serial_number_len': 13 }, { 'template': 'tickets/quality_safe.html', 'images': ['static/img/tickets/QualitySafe-1.jpg', 'static/img/tickets/QualitySafe-2.jpg', ], 'serial_number_len': 8 }, ] def generate_tickets_from_mapping_file(input_xlsx, mapping_xlsx, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) if os.path.isdir(input_xlsx): input_xlsxs = map(lambda x:os.path.join(input_xlsx, x), filter(lambda x:x.lower().endswith('.xlsx'), os.listdir(input_xlsx))) else: input_xlsxs = [input_xlsx] input_dfs = [pd.read_excel(input_xlsx, skiprows=[0, ], converters={ u'分运单号': lambda x: str(x), u'物品名称': lambda x: str(x), }) for input_xlsx in input_xlsxs] input_df = pd.concat(input_dfs) print >> sys.stderr, "%d total tracking numbers" % len(input_df[u'分运单号'].drop_duplicates().index) mapping_df = pd.read_excel(mapping_xlsx, converters={ u'物品名称': lambda x: str(x), u'小票名称': lambda x: str(x), u'小票价格': lambda x: float(x), }) duplicates = mapping_df.groupby(u'物品名称').filter(lambda x: len(x) > 1).drop_duplicates(subset=u'物品名称') if len(duplicates) > 0: print >> sys.stderr, duplicates raise Exception, "duplicates" combined_df = pd.merge(input_df, mapping_df, on=u'物品名称', how='left') unregisted_products = set() for column in (u"小票名称", u"小票价格"): null_valued = pd.isnull(combined_df[column]) if null_valued.any(): product_name_null_valued = combined_df[null_valued][u'物品名称'].drop_duplicates() \ .map(lambda x: str(x)).tolist() unregisted_products |= set(product_name_null_valued) if len(unregisted_products) > 0: with open(os.path.join(output_dir, 'products.txt'), 'w') as f: for product in sorted(unregisted_products): print >> f, product raise Exception, "contains unregisted product" for input_xlsx, input_df in zip(input_xlsxs, input_dfs): print >> sys.stderr, "processing: ", input_xlsx print >> sys.stderr, "%d tracking numbers" % len(input_df[u'分运单号'].drop_duplicates().index) combined_df = pd.merge(input_df, mapping_df, on=u'物品名称', how='left') ticket_info = { 'groups': combined_df[[u'分运单号', u"小票名称", u'件数', u"小票价格"]].groupby(u'分运单号'), 'item_column': u"小票名称", 'count_column': u'件数', 'price_column': u"小票价格", } ticket_dir = os.path.join(output_dir, os.path.splitext(os.path.basename(input_xlsx))[0]) if not os.path.exists(ticket_dir): os.makedirs(ticket_dir) generate_tickets(ticket_info, ticket_dir, suffix='.jpg') if os.path.exists(ticket_dir): shutil.make_archive(ticket_dir, 'zip', ticket_dir) shutil.rmtree(ticket_dir) def generate_tickets(ticket_info, ticket_dir, suffix='.jpg'): item_column = ticket_info['item_column'] count_column = ticket_info['count_column'] price_column = ticket_info['price_column'] faker = Faker() def format_number(x): if isinstance(x, float) or isinstance(x, int): return "%.2f" % x return map(lambda x:"%.2f" % x, x) def random_context(selections): supermarket = random.choice(selections) supermarket['image'] = random.choice(supermarket['images']) return supermarket generated_count = 0 for name, group in ticket_info['groups']: filename = os.path.join(ticket_dir, name + suffix) env = Environment(loader=FileSystemLoader('templates')) total = 0 total_items = 0 for price, count in zip(group[price_column], group[count_column]): total += price * count total_items += count paid = int(math.ceil(total / 10.0)) * 10 change = paid - total context = random_context(TICKET_SELECTIONS) context.update({ 'breakdown': zip(group[item_column], group[count_column], format_number(group[price_column])), 'total': format_number(total), 'paid': format_number(paid), 'change': format_number(change), 'points': int(total * 100), 'timestamp': random_date(), 'serial_number': faker.ean(length=context['serial_number_len']), 'total_items': total_items, }) template = env.get_template(context['template']) output_from_parsed_template = template.render(context) png_data = HTML(string=output_from_parsed_template, base_url='.').write_png( stylesheets=["static/css/ticket_style.css"], resolution=150) im = Image(blob=png_data) im.trim(Color('white')) im.format = 'jpeg' im.trim(Color('black')) im.save(filename=filename) generated_count += 1 print >> sys.stderr, "%d tickets generated" % generated_count def generate_pdf(ticket_number, filename, context, tmpdir): if not os.path.exists(tmpdir): os.makedirs(tmpdir) bot_image = os.path.join(tmpdir, 'bot_barcode_trim.png') top_image = os.path.join(tmpdir, 'top_barcode_trim.png') if os.path.exists(bot_image): os.remove(bot_image) if os.path.exists(top_image): os.remove(top_image) Code128(ticket_number, writer=NoTextImageWriter()).save(os.path.join(tmpdir, 'top_barcode'), options={ 'module_height': 5, 'text_distance': 0.5, 'quiet_zone': 1, 'dpi': 1200, 'font_size': 20, }) im = Image(filename=os.path.join(tmpdir, 'top_barcode.png')) im.trim() im.save(filename=top_image) Code128(ticket_number, writer=NoTextImageWriter()).save(os.path.join(tmpdir, 'bot_barcode'), options={ 'module_height': 5, 'text_distance': 0.5, 'quiet_zone': 1, 'dpi': 1200, 'font_size': 20, }) im = Image(filename=os.path.join(tmpdir, 'bot_barcode.png')) im.trim() im.save(filename=bot_image) if not os.path.exists(top_image) or not os.path.exists(bot_image): raise Exception, "Image failed to create" env = Environment(loader=FileSystemLoader('templates')) template = env.get_template('barcode_fast_track.html') context['time'] = datetime.datetime.now() context['bot_image'] = bot_image context['top_image'] = top_image output_from_parsed_template = template.render(context) # # with codecs.open(filename + ".html", "wb", encoding='utf8') as fh: # fh.write(output_from_parsed_template) HTML(string=output_from_parsed_template, base_url='.').write_pdf( filename, stylesheets=["static/css/style.css"]) def fetch_ticket_number(n_row, receiver_city): city_name = "".join(receiver_city.strip().split()) cities = City.find_province_path(city_name) if not cities: raise Exception, "Cannot find province: %s at row %d" % ( city_name, n_row) if not cities[0].name in PROVINCE_INFO_MAP: raise Exception, "Post to province %s is not supported: %s at row %d" % ( city_name, n_row) info = PROVINCE_INFO_MAP[cities[0].name] order = Order.pick_unused() if order is None: raise Exception, u"订单号不足" province_name, municipal_name, address_header = City.normalize_province_path( cities) return info['package_type'], order, province_name, municipal_name, address_header def process_row(n_row, in_row, barcode_dir, tmpdir, job=None, ticket_number_generator=None): p_data = [] sender_name = in_row[u'发件人名字'] sender_phone = in_row[u'发件人电话号码'] sender_address = in_row[u'发件人地址'] receiver_name = in_row[u'收件人名字(中文)'] receiver_mobile = in_row[u'收件人手机号(11位数)'] receiver_address = in_row[u'收件人地址(无需包括省份和城市)'] receiver_city = in_row[u'收件人城市(中文)'] receiver_post_code = in_row[u'收件人邮编'] n_package = in_row.get(u'物品种类数量', None) if not n_package: n_package = in_row.get(u'包裹数量', None) package_weight = in_row[u'包裹重量(公斤)'] length = in_row[u'长(厘米)'] width = in_row[u'宽(厘米)'] height = in_row[u'高(厘米)'] id_number = in_row[u'身份证号(EMS需要)'] for check_field in (sender_name, sender_phone, sender_address, receiver_name, receiver_mobile, receiver_address, receiver_city, receiver_post_code, id_number): if pd.isnull(check_field) or not isinstance(check_field, basestring) or not check_field.strip(): raise Exception, u"第%d行数据不完整,请更正" % n_row if pd.isnull(n_package) or not isinstance(n_package, int) or n_package < 1: raise Exception, u"第%d行 物品种类数量 或者 包裹数量 异常" % n_row sender_name = "".join(sender_name.split()) sender_address = "".join(sender_address.split()) sender_phone = "".join(sender_phone.split()) receiver_name = "".join(receiver_name.split()) receiver_mobile = "".join(receiver_mobile.split()) receiver_address = "".join(receiver_address.split()) receiver_city = "".join(receiver_city.split()) receiver_post_code = "".join(receiver_post_code.split()) id_number = "".join(id_number.split()) package_type, order, receiver_province, receiver_municipal, receiver_address_header = \ fetch_ticket_number(n_row, receiver_city) receiver_city = receiver_municipal receiver_address = receiver_address_header + receiver_address pc_text = receiver_province + receiver_municipal receiver_province_city_font_size = "3" if len( pc_text) <= 10 else "2.5" if len(pc_text) <= 15 else "2" if not ticket_number_generator: order.used = True order.used_time = datetime.datetime.utcnow() order.sender_address = ", ".join( (sender_name, sender_address, sender_phone)) order.receiver_address = ", ".join( (receiver_address, receiver_city, receiver_post_code)) order.receiver_mobile = receiver_mobile order.receiver_id_number = id_number order.receiver_name = receiver_name if job: order.job = job job.version = "v3" ticket_number = order.order_number else: ticket_number = ticket_number_generator.next() full_address = "".join(filter( lambda x: x.strip(), (receiver_province, receiver_city, receiver_address))) p_data_list = [] item_names = [] total_price = 0 total_item_count = 0 total_net_weight = 0 total_gross_weight = 0 for i in xrange(n_package): suffix = "" if i == 0 else ".%d" % i item_name = in_row[u'申报物品%d(英文)' % (i + 1)] item_count = in_row[u'数量%s' % suffix] unit_price = in_row[u'物品单价(英镑)%s' % suffix] if item_name is None or pd.isnull(item_name): raise Exception, u"第%d行第%d个商品名称为空" % (n_row, i + 1) item_name = str(item_name).strip() sub_total_price, net_weight, gross_weight, unit_price, item_full_name, net_weight_per_item, tax_code, \ billing_unit, billing_unit_code, unit_per_item, specification, waybill_name \ = calculate_item_info_from_db_without_product_info(n_row, item_name, item_count) item_names.append(u"%s\u2736%d" % (waybill_name, item_count)) total_price += sub_total_price total_item_count += item_count total_net_weight += net_weight total_gross_weight += gross_weight p_data_list.append([ ticket_number, sender_name, sender_address, sender_phone, receiver_name, receiver_mobile, receiver_city if receiver_city else receiver_province, receiver_post_code, full_address, item_full_name, item_count, sub_total_price, gross_weight, item_full_name, net_weight, unit_price, u"CNY", id_number, City.denormalize_province(receiver_province), City.denormalize_municipality(receiver_city if receiver_city else receiver_province) ]) # for p in p_data_list: # p[10] = total_item_count # p[11] = total_price # p[12] = total_gross_weight # p_data.append(p) p_data = p_data_list total_price = "%.2f" % total_price if total_price.endswith(".00") and len(total_price) > 3: total_price = total_price[:-3] item_names = ", ".join(item_names) generate_pdf(ticket_number, os.path.join( barcode_dir, '%s.pdf' % ticket_number), locals(), tmpdir) return ticket_number, pd.DataFrame(p_data, columns=[ u'快件单号', u'发件人', u'发件人地址', u'电话号码', u'收件人', u'电话号码.1', u'城市', u'邮编', u'收件人地址', u'内件名称', u'数量', u'总价(元)', u'毛重(KG)', u'物品名称', u'数量.1', u'单价', u'币别', u'备注', 'province', 'city' ]) def normalize_columns(in_df): in_df.columns = map(lambda x: "".join(x.strip().split()), in_df.columns) def xls_to_orders(input, output, tmpdir, percent_callback=None, job=None, test_mode=False): if percent_callback: percent_callback(0) in_df = pd.read_excel(input, converters={ u'发件人电话号码': lambda x: str(x), u'收件人邮编': lambda x: str(x), u'收件人手机号\n(11位数)': lambda x: str(x), u'身份证号\n(EMS需要)': lambda x: str(x), u'收件人手机号(11位数)': lambda x: str(x), u'身份证号(EMS需要)': lambda x: str(x), u'包裹数量': lambda x: int(x), u'物品种类数量': lambda x: int(x), }) if 'MAX_ORDER_PER_BATCH' in current_app.config \ and len(in_df.index) > current_app.config['MAX_ORDER_PER_BATCH']: raise Exception, u"该批次个数(%d)超过最大订单数: %d" % \ (len(in_df.index), current_app.config['MAX_ORDER_PER_BATCH']) normalize_columns(in_df) package_columns = [u"报关单号", u'总运单号', u'袋号', u'快件单号', u'发件人', u'发件人地址', u'电话号码', u'收件人', u'电话号码.1', u'城市', u'邮编', u'收件人地址', u'内件名称', u'数量', u'总价(元)', u'毛重(KG)', u'税号', u'物品名称', u'品牌', u'数量.1', u'单位', u'单价', u'币别', u'备注', 'province', 'city'] package_df = pd.DataFrame([], columns=package_columns) package_data = [package_df] barcode_dir = os.path.join(output, "barcode") if not os.path.exists(barcode_dir): os.makedirs(barcode_dir) ticket_numbers = [] ticket_number_set = set() test_ticket_number_generator = None if test_mode: def ticket_number_generator(): start_number = 1 while True: yield "TEST%s" % str(start_number).zfill(8) start_number += 1 test_ticket_number_generator = ticket_number_generator() if job: job.version = "test_mode" for index, in_row in in_df.iterrows(): ticket_number, p_data = process_row( index, in_row, barcode_dir, tmpdir, job, test_ticket_number_generator) if ticket_number in ticket_number_set: raise Exception, u"同批次单号%s重复,请联系客服!" % ticket_number ticket_number_set.add(ticket_number) ticket_numbers.append(ticket_number) package_data.append(p_data) if percent_callback: percent_callback(int(index * 100.0 / len(in_df.index))) waybills = [] total_page_number = 0 merger = PdfFileMerger() for ticket_number in ticket_numbers: pdf_file = os.path.join(barcode_dir, "%s.pdf" % ticket_number) if not os.path.exists(pdf_file): raise Exception, "Failed to generate pdf: %s" % ticket_number pdf_file_reader = PdfFileReader(file(pdf_file, 'rb')) page_number = pdf_file_reader.getNumPages() waybills.append({ 'tracking_no': ticket_number, 'start_page': total_page_number, 'end_page' : total_page_number + page_number, }) total_page_number += page_number merger.append(pdf_file_reader) merger.write(os.path.join(output, u"面单.pdf".encode('utf8'))) with open(os.path.join(output, "waybills.json"), 'w') as outfile: json.dump(waybills, outfile) shutil.rmtree(barcode_dir) package_final_df = pd.concat(package_data, ignore_index=True) package_final_df[u'税号'] = '01010700' package_final_df[u'单位'] = u'千克' package_final_df.index += 1 package_final_df.to_excel(os.path.join(output, u"机场报关单.xlsx".encode('utf8')), columns=package_columns, index_label="NO") if percent_callback: percent_callback(100) def read_order_numbers(inxlsx): columns = [u'提取单号', u'分运单号', u'快件单号', u'物流运单编号'] df = pd.read_excel(inxlsx, converters={ key: lambda x: str(x) for key in columns }) column = None for key in columns: if key in df: column = key if not column: raise Exception, u"输入Excel格式错误" order_numbers = df[column].unique() if len(order_numbers) <= 0: raise Exception, u"输入[%s]列为空" % column return order_numbers def generate_customs_df(route_config, version, package_df): route_name = route_config['name'] if version <> "v3": raise Exception, "Version not supported for generate_customs_df: %s" % version package_df["Sequence"] = range(1, len(package_df.index) + 1) customs_columns = [u'分运单号', u'申报类型', u'物品名称', u'英文物品名称', u'商品编码', u'净重(KG)', u'毛重(KG)', u'规格/型号', u'产销城市', u'币制', u'申报数量', u'申报总价', u'申报计量单位', u'收件人', u'收件人城市', u'收件人地址', u'收件人电话', u'发件人国家', u'发件人', u'英文发件人', u'发件人城市', u'英文发件人城市', u'英文经停城市', u'发件人地址', u'英文发件人地址', u'发件人电话', u'收发件人证件类型', u'收发件人证件号', u'包装种类', u'是否含木质包装', u'是否为旧物品', u'是否为低温运输', u'生产国别', u'贸易国别'] customs_df = pd.DataFrame([], columns=customs_columns) for column, p_column in ((u'分运单号', u'快件单号'), (u'物品名称', u'内件名称'), (u'数量', u'数量'), (u'毛重(KG)', u'毛重(KG)'), (u'收件人', u'收件人'), (u'收发件人证件号', u'备注'), (u'收件人城市', u'city'), (u'收件人地址', u'收件人地址'), (u'收件人电话', u'电话号码.1'), (u'发件人', u'发件人'), (u'英文发件人', u'发件人'), (u'发件人地址', u'发件人地址'), (u'英文发件人地址', u'发件人地址'), (u'发件人电话', u'电话号码'), ('Sequence', 'Sequence')): customs_df[column] = package_df[p_column] #fill in bc product info product_info_df = pd.read_sql_query(ProductInfo.query.filter(ProductInfo.full_name.in_( tuple(set(customs_df[u'物品名称'].map(lambda x: str(x)).tolist())))).statement, db.session.bind) columns_to_delete = product_info_df.columns product_info_df.rename(columns={'full_name': u'物品名称'}, inplace=True) customs_df = pd.merge(customs_df, product_info_df, on=u'物品名称') product_info_columns = [(u"申报单价", "unit_price"), (u"商品编码", "tax_code"), (u"规格/型号", "specification"), (u"申报计量单位", "billing_unit_code")] # check if any is empty for column, _column in product_info_columns \ + [(u"单个物品申报数量", "unit_per_item"), (u"小票名称", "ticket_name"), (u"小票价格", "ticket_price")]: null_valued = pd.isnull(customs_df[_column]) if null_valued.any(): product_name_null_valued = customs_df[null_valued][u'物品名称'].drop_duplicates() \ .map(lambda x: str(x)).tolist() raise Exception, u"如下商品的注册信息未包含必须字段[%s]: %s" % \ (column, ", ".join(product_name_null_valued)) ticket_info = { 'groups': customs_df[[u'分运单号', "ticket_name", u'数量', "ticket_price"]].groupby(u'分运单号'), 'item_column': 'ticket_name', 'count_column': u'数量', 'price_column': 'ticket_price', } for column, p_column in product_info_columns: customs_df[column] = customs_df[p_column] def customs_column_filter(row): row[u"物品名称"] = row[u"物品名称"] if pd.isnull(row["report_name"]) else row["report_name"] row[u"英文物品名称"] = row["ticket_name"] row[u"净重(KG)"] = row[u"数量"] * row["net_weight"] row[u'申报数量'] = row[u'数量'] * row["unit_per_item"] row[u'申报总价'] = row[u'申报数量'] * row[u"申报单价"] row[u'英文发件人'] = unidecode(row[u'发件人']) row[u'英文发件人地址'] = unidecode(row[u'发件人地址']) return row customs_df = customs_df.apply(customs_column_filter, axis=1) for column in columns_to_delete: if column in customs_df: del customs_df[column] customs_df.sort_values(by=["Sequence"], inplace=True) #fixed items customs_df[u"申报类型"] = "B" customs_df[u"产销城市"] = u"曼彻斯特" customs_df[u"币制"] = "142" customs_df[u"发件人国家"] = "303" customs_df[u"发件人城市"] = "曼彻斯特" customs_df[u"英文发件人城市"] = "Manchester" customs_df[u"收发件人证件类型"] = "1" customs_df[u"包装种类"] = "2" customs_df[u"是否含木质包装"] = "0" customs_df[u"是否为旧物品"] = "0" customs_df[u"是否为低温运输"] = "0" customs_df[u"生产国别"] = "303" customs_df[u"贸易国别"] = "303" #sort customs_df.sort_values(by=["Sequence"], inplace=True) del customs_df["Sequence"] del package_df["Sequence"] del customs_df[u"申报单价"] del customs_df[u"数量"] return customs_df, ticket_info def generate_summary_wb(customs_df): def summary_each_tax_code(group): tax_code_column = group[u'商品编码'].unique() assert(len(tax_code_column) == 1) tax_code = tax_code_column[0] name, unit = TAX_CODE_MAP.get(tax_code, ('', '')) return pd.Series({ u'序号': '', u'商品编号': tax_code, u'物品名称': name, u'件数(纸箱)': len(group[u'分运单号'].unique()), u'重量': group[u'毛重(KG)'].sum(), u'数量': group[u'数量'].sum(), u'单位': unit, u'币制': 'RMB', u'价值': '', u'备注': '', }) columns = (u'序号', u'商品编号', u'物品名称', u'件数(纸箱)', u'重量', u'数量', u'单位', u'币制', u'价值', u'备注') summary_df = customs_df.groupby(u'商品编码').apply(summary_each_tax_code) summary_df = summary_df.reindex(columns=columns) summary_df[u'序号'] = range(1, len(summary_df.index)+1) summary_df = summary_df.append(summary_df.sum(numeric_only=True), ignore_index=True) for key, value in ((u'序号', ''), (u'商品编号', u'合计')): summary_df.iloc[-1, summary_df.columns.get_loc(key)] = value wb = load_workbook(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'summary_header.xlsx')) ws = wb[u'汇总清单'] row_count = 0 for r in dataframe_to_rows(summary_df, index=False, header=False): row_count += 1 ws.append(r) return wb def map_full_name_to_report_name(data_df, column_name): if not column_name in data_df.columns: raise Exception, "%s not in header" % column_name product_info_df = pd.read_sql_query(ProductInfo.query.filter(ProductInfo.full_name.in_( tuple(set(data_df[column_name].map(lambda x: str(x)).tolist())))).statement, db.session.bind) columns_to_delete = product_info_df.columns product_info_df.rename(columns={'full_name': column_name}, inplace=True) data_df = pd.merge(data_df, product_info_df, on=column_name) data_df[column_name] = data_df.apply(lambda row:row['report_name'] if row['report_name'] else row[column_name], axis=1) for column in columns_to_delete: if column in data_df: del data_df[column] return data_df def remap_customs_df(customs_final_df): wb = load_workbook(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'cc_header.xlsx')) ws = wb[u"申报单格式"] row_count = 0 for r in dataframe_to_rows(customs_final_df, index=False, header=False): row_count += 1 ws.append(r) # merge cell for this one # base_index = 7 # last_value = 0 # last_row_num = None # columns = (1, 2, 4, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26) #for row_num in range(base_index, base_index + row_count): # rd = ws.row_dimensions[row_num] # rd.height = 50 # is_last_row = (row_num == base_index + row_count - 1) # # package_index = int(ws.cell(row=row_num, column=1).value) # assert (package_index > 0) # if last_value <= 0: # last_value = package_index # last_row_num = row_num # else: # if is_last_row or last_value != package_index: # if row_num > last_row_num + 1 or (is_last_row and row_num > last_row_num and last_value == package_index): # start_row = last_row_num # end_row = row_num if is_last_row else row_num - 1 # for _row_num in range(start_row, end_row): # for column in columns: # first_value = ws.cell(row=_row_num, column=column).value # second_value = ws.cell(row=end_row, column=column).value # assert ((isinstance(first_value, float) and isinstance(second_value, float) and # math.isnan(first_value) and math.isnan(second_value)) # or (first_value == second_value)) # for column in columns: # ws.merge_cells(start_row=start_row, start_column=column, # end_row=end_row, end_column=column) # last_value = package_index # last_row_num = row_num return wb def retract_from_order_numbers(download_folder, order_numbers, output, route_config, retraction=None): route_name = route_config['name'] route_code = route_config['code'] if not output is None: waybill_dir = os.path.join(output, u"面单") ticket_dir = os.path.join(output, u"小票") if not os.path.exists(waybill_dir): os.makedirs(waybill_dir) if not os.path.exists(ticket_dir): os.makedirs(ticket_dir) # find all jobs and job to order number map receiver_sig_to_order_numbers = {} all_order_numbers = set() uuid_to_order_numbers = {} job_versions = {} for i, order_number in enumerate(order_numbers): order_number = str(order_number).strip() if order_number in all_order_numbers: continue else: all_order_numbers.add(order_number) order = Order.find_by_order_number(order_number) if not order: raise Exception, u"第%d行包含未上载订单号: %s" % (i + 1, order_number) if not order.used: raise Exception, u"第%d行包含未使用订单号: %s" % (i + 1, order_number) if order.discarded_time: raise Exception, u"第%d行包含弃用订单号: %s" % (i + 1, order_number) if retraction is not None and retraction.is_redo: #normal if order.retraction is None: raise Exception, u"第%d行订单号还未被提取: %s" % (i + 1, order_number) else: #normal if retraction is not None and order.retraction is not None: raise Exception, u"第%d行订单号已被提取: %s, 提取信息为: Uuid [%s], 时间 [%s]" % \ (i + 1, order_number, order.retraction.uuid, time_to_filename(order.retraction.timestamp)) receiver_sig = order.receiver_id_number if not receiver_sig in receiver_sig_to_order_numbers: receiver_sig_to_order_numbers[receiver_sig] = [] if len(receiver_sig_to_order_numbers[receiver_sig]) >= route_config['max_order_number_per_receiver']: raise Exception, u"单个收件人超过最大订单数(%d): 第%d行订单(%s)与[ %s ]包含相同证件号码(%s), 收件人: %s" % \ (route_config['max_order_number_per_receiver'], i + 1, order_number, " / ".join(["第%d行订单(%s)" % (x + 1, y) for x, y in receiver_sig_to_order_numbers[receiver_sig]]), receiver_sig, order.receiver_name) receiver_sig_to_order_numbers[receiver_sig].append((i, order_number)) uuid = str(order.job.uuid) if not uuid in uuid_to_order_numbers: uuid_to_order_numbers[uuid] = set() uuid_to_order_numbers[uuid].add(order_number) job_versions[uuid] = order.job.version if order.job.version else "v1" if retraction and not retraction.is_redo: order.retraction = retraction version_to_dfs = {} for uuid, order_number_set in uuid_to_order_numbers.items(): version = job_versions[uuid] if not version in version_to_dfs: version_to_dfs[version] = {'package_dfs': [], 'customs_dfs' : []} package_dfs = version_to_dfs[version]['package_dfs'] job_file = os.path.join(download_folder, uuid, uuid + '.zip') if not os.path.exists(job_file): raise Exception, u"历史数据丢失:%s" % uuid with zipfile.ZipFile(job_file) as z: if version == "v3": package_df = pd.read_excel(z.open(u"机场报关单.xlsx"), index_col=0, converters={ u'快件单号': lambda x: str(x), u'电话号码': lambda x: str(x), u'电话号码.1': lambda x: str(x), u'邮编': lambda x: str(x), u'税号': lambda x: str(x), u'备注': lambda x: str(x), }) sub_package_df = package_df[ package_df[u"快件单号"].isin(order_number_set)] #output waybill if output: waybills = json.load(z.open('waybills.json')) pdf_data = StringIO(z.open(u"面单.pdf").read()) pdf_data.seek(0) pdf = PdfFileReader(pdf_data) page_count = pdf.getNumPages() for waybill in waybills: if waybill['tracking_no'] in order_number_set: if waybill['end_page'] > page_count or waybill['start_page'] >= page_count: raise Exception, "Waybill page length %d-%d larger than pdf length %d" % \ (waybill['start_page'], waybill['end_page'], page_count) out_pdf = PdfFileWriter() for i in xrange(waybill['start_page'], waybill['end_page']): out_pdf.addPage(pdf.getPage(i)) pdf_content = StringIO() out_pdf.write(pdf_content) pdf_content.seek(0) images = convert_from_bytes(pdf_content.read(), dpi=50) if images: images[0].save(os.path.join(waybill_dir, waybill['tracking_no'] + '.jpg')) else: raise Exception, "No jpg waybill generated for %s" % waybill['tracking_no'] else: raise Exception, "Version not supported %s" % version package_dfs.append(sub_package_df) for version, data in version_to_dfs.iteritems(): package_dfs = data['package_dfs'] def validate_route(package_df): if version == "v3": product_col = u"内件名称" order_number_col = u'快件单号' count_col = u'数量' else: raise Exception, "Version not supported: %s" % version products_exclude = route_config['products_exclude'] if 'products_exclude' in route_config else [] for product_exclude in products_exclude: product_exclude = product_exclude.strip() if product_exclude: excluded = package_df[product_col].str.contains(product_exclude) if excluded.any(): order_numbers_excluded = package_df[excluded][order_number_col].map(lambda x:str(x)).tolist() raise Exception, u"如下订单号包含违禁产品[%s]: %s" % \ (product_exclude, ", ".join(order_numbers_excluded)) package_final_df = pd.concat(package_dfs, ignore_index=True) package_final_df.index += 1 validate_route(package_final_df) if output: if version == "v3": customs_final_df, ticket_info = generate_customs_df(route_config, version, package_final_df) generate_tickets(ticket_info, ticket_dir) wb = remap_customs_df(customs_final_df) wb.save(os.path.join(output, u"西安申报单.xlsx".encode('utf8'))) del package_final_df["province"] del package_final_df["city"] package_final_df.to_excel(os.path.join( output, u"机场报关单.xlsx".encode('utf8')), index_label="NO") #summary_wb = generate_summary_wb(customs_final_df) #summary_wb.save(os.path.join(output, u"提单号+物品汇总清单.xlsx".encode('utf8'))) if os.path.exists(waybill_dir): shutil.make_archive(waybill_dir, 'zip', waybill_dir) shutil.rmtree(waybill_dir) if os.path.exists(ticket_dir): shutil.make_archive(ticket_dir, 'zip', ticket_dir) shutil.rmtree(ticket_dir) else: raise Exception, "Version not supported too %s" % version return package_final_df def is_dutiable(package_df, product_col, pieces): dutiable = False is_dutiable_category = False if pieces == 4: dutiable = True if package_df['dutiable_as_any_4_pieces'].any() else False is_dutiable_category = package_df[product_col].str.contains(u'奶粉', regex=False).all(skipna=False) elif pieces == 6: # do use None value dutiable = False if package_df['non_dutiable_as_all_6_pieces'].all(skipna=False) \ and len(package_df[product_col].unique()) == 1 else True is_dutiable_category = True return dutiable, is_dutiable_category def load_order_info(download_folder, order, route_config): version = order.job.version if order.job.version else "v1" if version <> "v3": raise Exception, "Error: Version" route_code = route_config['code'] product_col = u"内件名称" uuid = str(order.job.uuid) job_file = os.path.join(download_folder, uuid, uuid + '.zip') if not os.path.exists(job_file): raise Exception, "Error: Missing File" with zipfile.ZipFile(job_file) as z: package_df = pd.read_excel(z.open(u"机场报关单.xlsx"), index_col=0, converters={ u'快件单号': lambda x: str(x), u'电话号码': lambda x: str(x), u'电话号码.1': lambda x: str(x), u'邮编': lambda x: str(x), u'税号': lambda x: str(x), u'备注': lambda x: str(x), }) sub_package_df = package_df[package_df[u"快件单号"] == order.order_number] if len(sub_package_df.index) <= 0: raise Exception, "Error: Empty Record" products_exclude = route_config['products_exclude'] if 'products_exclude' in route_config else [] if products_exclude: for product_exclude in products_exclude: product_exclude = product_exclude.strip() if product_exclude: excluded = sub_package_df[product_col].str.contains(product_exclude) if excluded.any(): raise Exception, "Error: Product Excluded" pieces = sub_package_df[u"数量"].sum() product_info_df = pd.read_sql_query(ProductInfo.query.filter(ProductInfo.full_name.in_( tuple(set(sub_package_df[u'内件名称'].map(lambda x: str(x)).tolist())))).statement, db.session.bind) product_info_df.rename(columns={'full_name': u'内件名称'}, inplace=True) sub_package_df = pd.merge(sub_package_df, product_info_df, on=u'内件名称') dutiable, is_dutiable_category = is_dutiable(sub_package_df, u'内件名称', pieces) return sub_package_df, pieces, dutiable, is_dutiable_category if __name__ == "__main__": parser = OptionParser() parser.add_option("-i", "--input", dest="input", metavar="FILE", help="input file") parser.add_option("-o", "--output", dest="output", metavar="DIR", help="output dir") parser.add_option("-t", "--tmpdir", dest="tmpdir", metavar="DIR", help="tmpdir dir") (options, args) = parser.parse_args() if not options.input or not options.output or not options.tmpdir: parser.print_help(sys.stderr) exit(1) if not os.path.exists(options.output): os.makedirs(options.output) try: try: xls_to_orders(options.input, options.output, options.tmpdir) db.session.commit() except Exception, inst: db.session.rollback() raise inst except Exception, inst: import traceback traceback.print_exc(sys.stderr) print >> sys.stderr, inst.message.encode('utf-8') ``` #### File: migrations/versions/0d7ed6e97606_.py ```python revision = '0d7ed6e97606' down_revision = '<KEY>' from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('product_info', sa.Column('billing_unit', sa.String(length=32), nullable=True)) op.add_column('product_info', sa.Column('billing_unit_code', sa.String(length=32), nullable=True)) op.add_column('product_info', sa.Column('gross_weight', sa.Float(), nullable=True)) op.add_column('product_info', sa.Column('tax_code', sa.String(length=64), nullable=True)) op.add_column('product_info', sa.Column('unit_per_item', sa.Float(), nullable=True)) op.add_column('product_info', sa.Column('unit_price', sa.Float(), nullable=True)) op.alter_column('product_info', 'price_per_kg', existing_type=postgresql.DOUBLE_PRECISION(precision=53), nullable=True) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.alter_column('product_info', 'price_per_kg', existing_type=postgresql.DOUBLE_PRECISION(precision=53), nullable=False) op.drop_column('product_info', 'unit_price') op.drop_column('product_info', 'unit_per_item') op.drop_column('product_info', 'tax_code') op.drop_column('product_info', 'gross_weight') op.drop_column('product_info', 'billing_unit_code') op.drop_column('product_info', 'billing_unit') ### end Alembic commands ### ```
{ "source": "jiejieji/Todolist", "score": 2 }
#### File: flutterapi/myapp/views.py ```python from django.shortcuts import render from django.http import JsonResponse from rest_framework.response import Response from rest_framework.decorators import api_view from rest_framework import status from .serializers import TodolistSerializer from .models import Todolist #GET Data @api_view(['GET']) def all_todolist(request): alltodolist = Todolist.objects.all() #ดึงข้อมูลจาก model Todolist serializer = TodolistSerializer(alltodolist,many=True) return Response(serializer.data, status=status.HTTP_200_OK) # POST Data (save data to database) @api_view(['POST']) def post_todolist(request): if request.method == 'POST': serializer = TodolistSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data,status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_404_NOT_FOUND) @api_view(['PUT']) def update_todolist(request,TID): # localhost:8000/api/update-todolist/13 todo = Todolist.objects.get(id=TID) if request.method == 'PUT': data = {} serializer = TodolistSerializer(todo,data=request.data) if serializer.is_valid(): serializer.save() data['status'] = 'update' return Response(data=data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status.HTTP_404_NOT_FOUND) @api_view(['DELETE']) def delete_todolist(request,TID): todo = Todolist.objects.get(id=TID) if request.method == 'DELETE': delete = todo.delete() data = {} if delete: data['status'] = 'delete' statuscode = status.HTTP_200_OK else: data['status'] = 'Failed' statuscode = status.HTTP_400_BAD_REQUEST return Response(data=data, status=statuscode) data = [ { "title":"เบอร์เกอร์หมู", "subtitle":"เป็นอาหารชนิดหนึ่งที่ถือว่าอยู่ในประเภทเดียวกับแซนด์วิช", "image_url":"https://raw.githubusercontent.com/jiejieji/BasicAPI/main/hamber.jpg", "detail":"แฮมเบอร์เกอร์ (อังกฤษ: hamburger) หรือเรียกสั้น ๆ ว่า เบอร์เกอร์ (burger) เป็นอาหารชนิดหนึ่งที่ถือว่าอยู่ในประเภทเดียวกับแซนด์วิช ประกอบด้วยเนื้อสัตว์ปรุงแล้วที่มีลักษณะเป็นแผ่นสอดไส้อยู่ตรงกลาง อาทิ เนื้อวัว เนื้อหมู เนื้อปลาทอด หรือเป็นเนื้อสัตว์หลายประเภทผสมกัน ประกบบนล่างด้วยขนมปังแผ่นกลม /n/nมีการสอดไส้ด้วยผักชนิดต่างๆ เช่น มะเขือเทศ ผักกาดหอม หอมหัวใหญ่ ชีสและเครื่องปรุงรสอื่น เช่น มัสตาร์ด มายองเนส ซอสมะเขือเทศ เป็นต้น แฮมเบอร์เกอร์เป็นอาหารที่ได้รับความนิยมและแพร่หลายไปทั่วโลก" }, { "title":"เบอร์เกอร์ไก่", "subtitle":"เป็นอาหารชนิดหนึ่งที่ถือว่าอยู่ในประเภทเดียวกับแซนด์วิช", "image_url":"https://raw.githubusercontent.com/jiejieji/BasicAPI/main/chicken-burger.jpg", "detail":"แฮมเบอร์เกอร์ (อังกฤษ: hamburger) หรือเรียกสั้น ๆ ว่า เบอร์เกอร์ (burger) เป็นอาหารชนิดหนึ่งที่ถือว่าอยู่ในประเภทเดียวกับแซนด์วิช ประกอบด้วยเนื้อสัตว์ปรุงแล้วที่มีลักษณะเป็นแผ่นสอดไส้อยู่ตรงกลาง อาทิ เนื้อวัว เนื้อหมู เนื้อปลาทอด หรือเป็นเนื้อสัตว์หลายประเภทผสมกัน ประกบบนล่างด้วยขนมปังแผ่นกลม /n/nมีการสอดไส้ด้วยผักชนิดต่างๆ เช่น มะเขือเทศ ผักกาดหอม หอมหัวใหญ่ ชีสและเครื่องปรุงรสอื่น เช่น มัสตาร์ด มายองเนส ซอสมะเขือเทศ เป็นต้น แฮมเบอร์เกอร์เป็นอาหารที่ได้รับความนิยมและแพร่หลายไปทั่วโลก" }, { "title":"ชีสเบอร์เกอร์", "subtitle":"เป็นอาหารชนิดหนึ่งที่ถือว่าอยู่ในประเภทเดียวกับแซนด์วิช", "image_url":"https://raw.githubusercontent.com/jiejieji/BasicAPI/main/burger.jpg", "detail":"แฮมเบอร์เกอร์ (อังกฤษ: hamburger) หรือเรียกสั้น ๆ ว่า เบอร์เกอร์ (burger) เป็นอาหารชนิดหนึ่งที่ถือว่าอยู่ในประเภทเดียวกับแซนด์วิช ประกอบด้วยเนื้อสัตว์ปรุงแล้วที่มีลักษณะเป็นแผ่นสอดไส้อยู่ตรงกลาง อาทิ เนื้อวัว เนื้อหมู เนื้อปลาทอด หรือเป็นเนื้อสัตว์หลายประเภทผสมกัน ประกบบนล่างด้วยขนมปังแผ่นกลม /n/nมีการสอดไส้ด้วยผักชนิดต่างๆ เช่น มะเขือเทศ ผักกาดหอม หอมหัวใหญ่ ชีสและเครื่องปรุงรสอื่น เช่น มัสตาร์ด มายองเนส ซอสมะเขือเทศ เป็นต้น แฮมเบอร์เกอร์เป็นอาหารที่ได้รับความนิยมและแพร่หลายไปทั่วโลก" } ] def Home(request): return JsonResponse(data=data,safe=False,json_dumps_params={'ensure_ascii': False}) ```
{ "source": "jiejiekuawoshuai/jieji-8rKxeQws", "score": 3 }
#### File: app/api/decorators.py ```python from functools import wraps from flask import g from .errors import forbidden # permission_required装饰器 def permission_required(permission): # 通过形参实现了一个装饰器类。对于不同针对性的装饰器,都可以调用这个函数的实现,而只需要做最小的改动(传递形参) def decorator(f): # 使用functools模块提供的@wraps装饰器可以避免避免被装饰函数的特殊属性被更改,比如函数名称__name__被更改 # 如果不使用这个模块,则会导致函数名被替换从而导致端点(端点的默认值是函数名)出错 @wraps(f) def decorated_function(*args, **kwargs): # *args表示任何多个无名参数,它是一个tuple # **kwargs表示关键字参数,它是一个dict # 这个装饰器方法把原函数的形参继承了。因此实际上相当于在原函数开头增加了这个函数的内容 if not g.current_user.can(permission): # current_user是从内存中取(服务端),然后permission就会根据我们 # 实际需要验证的permission进行形参到实参的转化 return forbidden('Insufficient permissions') return f(*args, **kwargs) # 结束判断,把参数传递给原函数(此处的f()即是原函数(更具体的权限验证装饰器),只是f是个丑陋的形参而已) return decorated_function return decorator ```
{ "source": "jiejieTop/pyqt5", "score": 3 }
#### File: pyqt5/wit/wit.py ```python import time from PyQt5.QtCore import pyqtSlot from PyQt5.QtWidgets import QMainWindow from PyQt5 import QtCore, QtGui, QtWidgets from Ui_wit import Ui_MainWindow from Tencent import WISG from Tencent_send import TencentSend from PyQt5.QtCore import QTimer class MainWindow(QMainWindow, Ui_MainWindow): """ Class documentation goes here. """ def __init__(self, parent=None): """ Constructor @param parent reference to the parent widget @type QWidget """ self.data = { 'pn':'null', 'pg':'null', 'bn':0, 'time':0, 'lv':0, 'speed':0, 'led':0, 'beep':0, 'sm':0, 'call':0, 'dn':'null' } super(MainWindow, self).__init__(parent) self.setupUi(self) @pyqtSlot() def on_pushButton_clicked(self): if(self.data['led'] == 0): self.data['led'] = 1 else: self.data['led'] = 0 tencent_send.send_data(self.data) pass @pyqtSlot() def on_pushButton_2_clicked(self): if(self.data['beep'] == 0): self.data['beep'] = 1 else: self.data['beep'] = 0 tencent_send.send_data(self.data) pass @pyqtSlot() def on_pushButton_9_clicked(self): self.data['pn'] = self.LineEdit.text() self.data['pg'] = self.LineEdit_2.text() self.data['dn'] = self.LineEdit_4.text() self.data['bn'] = int(self.LineEdit_3.text()) self.data['lv'] = int(self.LineEdit_5.text()) self.data['speed'] = int(self.LineEdit_6.text()) self.data['time'] = int(self.LineEdit_7.text()) self.data['call'] = int(self.LineEdit_8.text()) self.data['led'] = int(self.LineEdit_9.text()) self.data['beep'] =int( self.LineEdit_10.text()) print(self.data) tencent_send.send_data(self.data) self.update_data(self.data) print("更新信息") pass @pyqtSlot() def on_pushButton_10_clicked(self): self.LineEdit.setText('') self.LineEdit_2.setText('') self.LineEdit_3.setText('') self.LineEdit_4.setText('') self.LineEdit_5.setText('') self.LineEdit_6.setText('') self.LineEdit_7.setText('') self.LineEdit_8.setText('') self.LineEdit_9.setText('') self.LineEdit_10.setText('') #self.show_tencent_data() print("清除信息") pass def show_tencent_data(self, show_data): print("-----------") print(show_data) print("-----------") self.update_data(show_data) pass def update_data(self, updata): self.data = updata self.LineEdit.setText(str(self.data['pn'])) self.LineEdit_2.setText(str(self.data['pg'])) self.LineEdit_3.setText(str(self.data['bn'])) self.LineEdit_4.setText(str(self.data['dn'])) self.LineEdit_5.setText(str(self.data['lv'])) self.LineEdit_6.setText(str(self.data['speed'])) self.LineEdit_7.setText(str(self.data['time'])) self.LineEdit_8.setText(str(self.data['call'])) self.LineEdit_9.setText(str(self.data['led'])) self.LineEdit_10.setText(str(self.data['beep'])) if(self.data['call']): ui.graphicsView.setVisible(True) else: ui.graphicsView.setVisible(False) pass def timer_init(self): self.timer = QTimer(self) #初始化一个定时器 self.timer.timeout.connect(self.operate) #计时结束调用operate()方法 self.timer.start(5000) #设置计时间隔并启动 pass def operate(self): data = tencent.extract_data() self.show_tencent_data(data) pass if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) ui = MainWindow() # 隐藏呼叫 ui.graphicsView.setVisible(False) ui.setWindowIcon(QtGui.QIcon('./images/IOTOS.ico')) ui.setWindowTitle("智慧医疗终端") # 设置窗口背景图片 ui.setStyleSheet("#MainWindow{border-image:url(./images/python.jpg);}") tencent = WISG() tencent_send = TencentSend() ui.timer_init() ui.show() sys.exit(app.exec_()) ```
{ "source": "jiejohn/robotframework", "score": 2 }
#### File: robot/model/control.py ```python import warnings from robot.utils import setter, py3to2 from .body import Body, BodyItem from .keyword import Keywords from .tags import Tags @py3to2 @Body.register class For(BodyItem): type = BodyItem.FOR_TYPE body_class = Body repr_args = ('variables', 'flavor', 'values') __slots__ = ['variables', 'flavor', 'values'] def __init__(self, variables=(), flavor='IN', values=(), parent=None): self.variables = variables self.flavor = flavor self.values = values self.parent = parent self.body = None @setter def body(self, body): return self.body_class(self, body) @property def keywords(self): """Deprecated since Robot Framework 4.0. Use :attr:`body` instead.""" return Keywords(self, self.body) @keywords.setter def keywords(self, keywords): Keywords.raise_deprecation_error() @property def source(self): return self.parent.source if self.parent is not None else None def visit(self, visitor): visitor.visit_for(self) def __str__(self): variables = ' '.join(self.variables) values = ' '.join(self.values) return u'FOR %s %s %s' % (variables, self.flavor, values) # TODO: Remove deprecated Keyword related properties in RF 4.1/5.0. @property def name(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'For.name' is deprecated since Robot Framework 4.0. " "Access 'variables', 'flavor' or 'values' directly or " "use 'str()' to get a string representation.", UserWarning) return '%s %s [ %s ]' % (' | '.join(self.variables), self.flavor, ' | '.join(self.values)) @property def doc(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'For.doc' is deprecated since Robot Framework 4.0.", UserWarning) return '' @property def args(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'For.args' is deprecated since Robot Framework 4.0.", UserWarning) return () @property def assign(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'For.assign' is deprecated since Robot Framework 4.0.", UserWarning) return () @property def tags(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'For.tags' is deprecated since Robot Framework 4.0.", UserWarning) return Tags() @property def timeout(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'For.timeout' is deprecated since Robot Framework 4.0.", UserWarning) return None @py3to2 @Body.register class If(BodyItem): body_class = Body inactive = object() repr_args = ('condition',) __slots__ = ['condition', '_orelse'] def __init__(self, condition=None, parent=None): self.condition = condition self.parent = parent self.body = None self._orelse = None @setter def body(self, body): return self.body_class(self, body) @property # Cannot use @setter because it would create orelses recursively. def orelse(self): if self._orelse is None and self: self._orelse = type(self)(condition=self.inactive, parent=self) return self._orelse @orelse.setter def orelse(self, orelse): if orelse is None: self._orelse = None elif not isinstance(orelse, type(self)): raise TypeError("Only %s objects accepted, got %s." % (type(self).__name__, type(orelse).__name__)) else: orelse.parent = self self._orelse = orelse @property def source(self): return self.parent.source if self.parent is not None else None @property def type(self): if self.condition is self.inactive: return None if not isinstance(self.parent, If): return self.IF_TYPE if self.condition: return self.ELSE_IF_TYPE return self.ELSE_TYPE def visit(self, visitor): if self: visitor.visit_if(self) def __str__(self): if not self: return u'None' if not isinstance(self.parent, If): return u'IF %s' % self.condition if self.condition: return u'ELSE IF %s' % self.condition return u'ELSE' def __repr__(self): return BodyItem.__repr__(self) if self else 'If(condition=INACTIVE)' def __bool__(self): return self.condition is not self.inactive # TODO: Remove deprecated Keyword related properties in RF 4.1/5.0. @property def name(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'If.name' is deprecated since Robot Framework 4.0. " "Access 'condition' directly or use 'str()' to get " "a string representation.", UserWarning) return self.condition @property def doc(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'If.doc' is deprecated since Robot Framework 4.0.", UserWarning) return '' @property def args(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'If.args' is deprecated since Robot Framework 4.0.", UserWarning) return () @property def assign(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'If.assign' is deprecated since Robot Framework 4.0.", UserWarning) return () @property def tags(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'If.tags' is deprecated since Robot Framework 4.0.", UserWarning) return Tags() @property def timeout(self): """Deprecated since Robot Framework 4.0.""" warnings.warn("'If.timeout' is deprecated since Robot Framework 4.0.", UserWarning) return None ```
{ "source": "jie-json/swift-corelibs-foundation-master", "score": 2 }
#### File: swift-corelibs-foundation-master/lib/workspace.py ```python from subprocess import call from config import Configuration from path import Path import os class Workspace: projects = [] def __init__(self, projects): self.projects = projects def configure(self): if Configuration.current.system_root is None: Configuration.current.system_root = Path("./sysroots/" + Configuration.current.target.triple) if Configuration.current.toolchain is None: Configuration.current.toolchain = Path("./toolchains/" + Configuration.current.target.triple) if Configuration.current.bootstrap_directory is None: Configuration.current.bootstrap_directory = Path("./bootstrap") for project in self.projects: working_dir = Configuration.current.source_root.path_by_appending(project).absolute() cmd = [Configuration.current.command[0], "--target", Configuration.current.target.triple] if Configuration.current.system_root is not None: cmd.append("--sysroot=" + Configuration.current.system_root.relative(working_dir)) if Configuration.current.toolchain is not None: cmd.append("--toolchain=" + Configuration.current.toolchain.relative(working_dir)) if Configuration.current.bootstrap_directory is not None: cmd.append("--bootstrap=" + Configuration.current.bootstrap_directory.relative(working_dir)) if Configuration.current.verbose: cmd.append("--verbose") print "cd " + working_dir print " " + " ".join(cmd) status = call(cmd, cwd=working_dir) if status != 0: exit(status) # pass the exit value along if one of the sub-configurations fails def generate(self): generated = "" for project in self.projects: generated += """ build """ + os.path.basename(project) + """: BuildProject project = """ + project + """ """ generated += """ build all: phony | """ + " ".join(reversed(self.projects)) + """ default all """ return generated ```
{ "source": "JiekaiJia/Deeplearning", "score": 3 }
#### File: JiekaiJia/Deeplearning/cifar.py ```python import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data.dataloader import DataLoader from torch.utils.data.sampler import SubsetRandomSampler import torchvision from torchvision.datasets import CIFAR10 from torchvision.transforms import ToTensor from torchvision.utils import make_grid def split_indices(n, vld_pct, seed=2021): """This function is used to split the data into train and validation. Args: n: the number of train data vld_pct: the percentage of validation data seed: keep the random results same each time calling the function Returns: the indexes of 2 divided datasets(train indices, validation indices). """ n_vld = int(vld_pct*n) # Determine size of validation set np.random.seed(seed) # Set the random seed(for reproducibility) idxs = np.random.permutation(n) # Create random permutation of 0 to n-1 return idxs[n_vld:], idxs[:n_vld] # Pick the first n_vld indices for validation set def get_data_loader(data_set, batch_size): """This function generate the batch data for every epoch.""" train_indices, vld_indices = split_indices(len(data_set), 0.2) train_sampler = SubsetRandomSampler(train_indices) train_ld = DataLoader(data_set, batch_size, sampler=train_sampler) vld_sampler = SubsetRandomSampler(vld_indices) vld_ld = DataLoader(data_set, batch_size, sampler=vld_sampler) return train_ld, vld_ld def get_default_device(): """Pick GPU if available, else CPU.""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensors to the chosen device.""" if isinstance(data, (list, tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader: """Wrap a data loader to move data to a device.""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a data batch after moving it to device.""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches.""" return len(self.dl) def loss_batch(model, loss_func, xb, yb, opt=None, metric=None): """Calculates the loss and metric value for a batch of data, and optionally performs gradient descent if an optimizer is provided.""" preds = model(xb) loss = loss_func(preds, yb) if opt is not None: loss.backward() # Compute gradients opt.step() # Update parameters opt.zero_grad() # Reset gradients metric_result = None if metric is not None: metric_result = metric(preds, yb) # Compute the metric return loss.item(), len(xb), metric_result def evaluate(model, loss_func, valid_dl, metric=None): """""" with torch.no_grad(): # Pass each batch through the model results = [loss_batch(model, loss_func, xb, yb, metric=metric) for xb, yb in valid_dl] losses, nums, metrics = zip(*results) # Separate losses, counts and metrics total = np.sum(nums) # Total size of the dataset avg_loss = np.sum(np.multiply(losses, nums)) / total avg_metric = None if metric is not None: avg_metric = np.sum(np.multiply(metrics, nums)) / total return avg_loss, total, avg_metric def fit(epochs, lr, model, loss_func, train_dl, vld_dl, metric=None, opt=None): """""" train_losses, vld_losses, vld_metrics = [], [], [] if opt is None: opt = torch.optim.SGD opt = opt(model.parameters(), lr=lr) for epoch in range(epochs): model.train() for xb, yb in train_dl: # Training train_loss, _, _ = loss_batch(model, loss_func, xb, yb, opt) model.eval() result = evaluate(model, loss_func, vld_dl, metric) # Evaluation vld_loss, total, vld_metric = result vld_losses.append(vld_loss) # Record the loss & metric vld_metrics.append(vld_metric) train_losses.append(train_loss) # print progress if metric is None: print('Epoch [{}/{}], train_loss: {:.4f}, validation_loss: {:.4f}' .format(epoch+1, epochs, train_loss, vld_loss) ) else: print('Epoch [{}/{}], train_loss: {:.4f}, validation_loss: {:.4f}, {}: {:.4f}' .format(epoch+1, epochs, train_loss, vld_loss, metric.__name__, vld_metric) ) return train_losses, vld_losses, vld_metrics def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) # Return the max value in each row return torch.sum(preds == labels).item() / len(preds) def show_example(img, label): print('Label: ', dataset.classes[label], '('+str(label)+')') plt.imshow(img.permute(1, 2, 0)) plt.show() def show_batch(dl): for imgs, labels in dl: fig, ax = plt.subplots(figsize=(10, 10)) ax.set_xticks([]) ax.set_yticks([]) ax.imshow(make_grid(imgs, 10).permute(1, 2, 0)) # Make a grid of images with 10 rows plt.show() break class CiFarModel(nn.Module): """Feedforward neural network with 1 hidden layer.""" def __init__(self): super().__init__() self.network = nn.Sequential( nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(), nn.MaxPool2d(2, 2), # output: bs*16*16*16 nn.Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(), nn.MaxPool2d(2, 2), # output: bs*16*8*8 nn.Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(), nn.MaxPool2d(2, 2), # output: bs*16*4*4 nn.Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(), nn.MaxPool2d(2, 2), # output: bs*16*2*2 nn.Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(), nn.MaxPool2d(2, 2), # output: bs*16*1*1 nn.Flatten(), # output: bs*16 nn.Linear(16, 10) # output: bs*10 ) def forward(self, train_x): return self.network(train_x) def plot_metric(metric_values): """Plot metric values in a line graph.""" plt.plot(metric_values, '-x') plt.xlabel('epoch') plt.ylabel('accuracy') plt.title('Accuracy vs. No. of epochs') def plot_losses(train_losses, vld_losses): plt.plot(train_losses, '-x') plt.plot(vld_losses, '-x') plt.xlabel('epoch') plt.ylabel('loss') plt.legend(['Training', 'Validation']) plt.title('Loss vs. No. of epochs') simple_model = nn.Sequential( nn.Conv2d(3, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.MaxPool2d(2, 2) ) dataset = CIFAR10(root='../data/', train=True, download=True, transform=ToTensor()) test_dataset = CIFAR10(root='../data/', train=False, transform=ToTensor()) device = get_default_device() train_loader, vld_loader = get_data_loader(dataset, 100) train_loader = DeviceDataLoader(train_loader, device) vld_loader = DeviceDataLoader(vld_loader, device) model = CiFarModel() to_device(model, device) num_epochs = 10 opt_fn = torch.optim.Adam lr = 0.005 train_losses1, vld_losses1, metrics1 = fit(num_epochs, lr, model, F.cross_entropy, train_loader, vld_loader, accuracy, opt_fn) # for images, labels in train_loader: # print('images.shape:', images.shape) # out = simple_model(images) # print('out.shape:', out.shape) # break # model2 = CiFarModel() # torch.save(model.state_dict(), 'cifar10.pth') # model2.load_state_dict(torch.load('cifar10.pth')) ```
{ "source": "JiekaiJia/KI-in-Medizin", "score": 2 }
#### File: JiekaiJia/KI-in-Medizin/metrics.py ```python from sklearn.metrics import ( classification_report, confusion_matrix, f1_score ) import torch from utils import get_all_preds def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.sum(preds == labels).item() / len(preds) def f1_score_(outputs, labels): _, preds = torch.max(outputs, dim=1) return f1_score(labels.cpu(), preds.cpu(), average='weighted') def f1_score_binary(outputs, labels): TP = 0 # Richtig Positive TN = 0 # Richtig Negative FP = 0 # Falsch Positive FN = 0 # Falsch Negative _, preds = torch.max(outputs, dim=1) preds = preds.cpu().numpy().tolist() labels = labels.cpu().numpy().tolist() for label, pred in zip(labels, preds): if label == 1 and pred == 1: TP = TP + 1 if label == 0 and pred != 1: TN = TN + 1 if label == 0 and pred == 1: FP = FP + 1 if label == 1 and pred != 1: FN = FN + 1 try: F1 = TP / (TP + 1/2*(FP+FN)) except ZeroDivisionError: return 1 return F1 def report(model, vld_loader): model.eval() with torch.no_grad(): preds, targets = get_all_preds(model, vld_loader) print('Classification report :') print(classification_report(targets, preds)) print('Confusion matrix:') print(confusion_matrix(targets, preds)) ``` #### File: JiekaiJia/KI-in-Medizin/utils.py ```python import numpy as np import torch from torch.utils.data.dataloader import DataLoader from torch.utils.data.sampler import SubsetRandomSampler from tqdm import tqdm class_distribution = [59.68, 8.68, 28.55, 3.08] # 2017 class_distribution = [59.22, 8.65, 28.80, 3.33] def split_indices(n, vld_pct, labels, compensation_factor, random_state=None): """This function is used to split the data into train and validation. Args: n: the number of train data vld_pct: the percentage of validation data random_state: keep the random results same each time calling the function Returns: the indexes of 2 divided datasets(train indices, validation indices). """ n_vld = int(vld_pct*n) # Determine size of validation set if random_state: np.random.seed(random_state) # Set the random seed(for reproducibility) idxs = np.random.permutation(n) # Create random permutation of 0 to n-1 split_sets = [idxs[:n_vld], idxs[n_vld:2*n_vld], idxs[2*n_vld:3*n_vld], idxs[3*n_vld:4*n_vld], idxs[4*n_vld:]] train_sets = [] vld_sets = [] for k in range(5): train_set = np.concatenate((split_sets[k], split_sets[(k+1)%5], split_sets[(k+2)%5], split_sets[(k+3)%5])) masks = [labels[train_set, i].astype(bool) for i in range(labels.shape[1])] sets = [train_set[mask] for mask in masks] lst = [] for idx, set_ in enumerate(sets): scale = int(100 * compensation_factor / class_distribution[idx]) + 1 set_ = np.tile(set_, scale) set_ = set_.reshape([-1, 1]) lst.append(set_) train_set = np.vstack(lst) train_set = train_set.squeeze() np.random.shuffle(train_set) train_sets.append(train_set) vld_sets.append(split_sets[k-1]) if n_vld == 0: train_sets = [] vld_sets = [] train_set = idxs masks = [labels[:, i].astype(bool) for i in range(labels.shape[1])] sets = [train_set[mask] for mask in masks] lst = [] for idx, set_ in enumerate(sets): scale = int(100 * compensation_factor / class_distribution[idx]) + 1 set_ = np.tile(set_, scale) set_ = set_.reshape([-1, 1]) lst.append(set_) train_set = np.vstack(lst) train_set = train_set.squeeze() np.random.shuffle(train_set) train_sets.append(train_set) vld_sets.append(idxs) return train_sets, vld_sets # Pick the first n_vld indices for validation set def get_data_loader(train_dataset, vld_dataset, batch_size, onehot_labels, compensation_factor): """This function generate the batch data for every epoch.""" train_indices, vld_indices = split_indices(len(train_dataset), 0, onehot_labels, compensation_factor, random_state=2021) train_lds = [] vld_lds = [] for train_idx, vld_idx in zip(train_indices, vld_indices): train_sampler = SubsetRandomSampler(train_idx) train_ld = DataLoader(train_dataset, batch_size, sampler=train_sampler) vld_ld = DataLoader(vld_dataset, batch_size, sampler=vld_idx) train_lds.append(train_ld) vld_lds.append(vld_ld) return train_lds, vld_lds def get_default_device(): """Pick GPU if available, else CPU.""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensors to the chosen device.""" if isinstance(data, (list, tuple)): return [to_device(x, device) if not isinstance(x, str) else x for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader: """Wrap a data loader to move data to a device.""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a data batch after moving it to device.""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches.""" return len(self.dl) @torch.no_grad() def get_all_preds(model, loader): """Output model's predictions and targets. :param model: :param loader: :return: """ device = get_default_device() all_preds = to_device(torch.tensor([]), device) all_labels = to_device(torch.tensor([]), device) all_names = [] for batch in tqdm(loader): signals, labels = batch preds = model(signals) try: all_labels = torch.cat((all_labels, labels), dim=0) except TypeError: all_names.extend(labels) all_preds = torch.cat( (all_preds, preds) , dim=0 ) _, predicted = torch.max(all_preds, dim=1) if all_names: return predicted.cpu(), all_names return predicted.cpu(), all_labels.cpu() class EarlyStopping: """Early stopping to stop the training when the loss does not improve after certain epochs.""" def __init__(self, patience=100, mode='max'): """ :param patience: how many epochs to wait before stopping when loss is not improving """ self.patience = patience self.mode = mode self.counter = 0 self.best_metric = None self.early_stop = False def __call__(self, val_metric): if self.best_metric is None: self.best_metric = val_metric elif self.best_metric > val_metric: if self.mode == 'max': self.counter += 1 else: self.best_metric = val_metric elif self.best_metric < val_metric: if self.mode == 'max': self.best_metric = val_metric else: self.counter += 1 else: self.counter += 1 print(f'INFO: Early stopping counter {self.counter} of {self.patience}') if self.counter >= self.patience: print('INFO: Early stopping') self.early_stop = True def load_model(model, path, evaluation=False): """Load the saved model.""" device = get_default_device() model.load_state_dict(torch.load(path, map_location=torch.device(device))) if evaluation: # If the model is used to evaluation, the requires grad should be disabled. for parameter in model.parameters(): parameter.requires_grad = False return model device = get_default_device() def get_length(data): # data shape [b, c, t, f] shape = list(data.shape) maps, _ = torch.max(torch.abs(data), 1) # data shape [b, t, f] used = torch.sign(maps) used = used.int() t_range = torch.arange(0, shape[2], device=device).unsqueeze(1) ranged = t_range * used length, _ = torch.max(ranged, 1) # data shape [b, f] length, _ = torch.max(length, 1) # data shape [b] length = length + 1 return length def set_zeros(data, length): shape = list(data.shape) # generate data shape matrix with time range with padding r = torch.arange(0, shape[1], device=device) r = torch.unsqueeze(r, 0) r = torch.unsqueeze(r, 2) r = r.repeat(shape[0], 1, shape[2]) # generate data shape matrix with time range without padding l = torch.unsqueeze(length, 1) l = torch.unsqueeze(l, 2) l = l.repeat(1, shape[1], shape[2]) # when col_n smaller than length mask entry is true mask = torch.lt(r, l) # when col_n larger than length, set input to zero output = torch.where(mask, data, torch.zeros_like(data)) return output def class_penalty(class_distribution, class_penalty=0.2): eq_w = [1 for _ in class_distribution] occ_w = [100/r for r in class_distribution] c = class_penalty weights = [[e * (1-c) + o * c for e,o in zip(eq_w, occ_w)]] class_weights = torch.Tensor(weights) return class_weights.to(device) ```
{ "source": "JiekaiJia/pettingzoo_comunication", "score": 2 }
#### File: JiekaiJia/pettingzoo_comunication/utils.py ```python import numpy as np from pettingzoo.utils.conversions import to_parallel_wrapper from pettingzoo.utils.wrappers import AssertOutOfBoundsWrapper, OrderEnforcingWrapper from ray.rllib.env import PettingZooEnv from ray.rllib.env.wrappers.pettingzoo_env import ParallelPettingZooEnv from supersuit import pad_action_space_v0, pad_observations_v0 from comm_channel import ParallelCommWrapper, CommWrapper def main_comm_env(base_env, comm_dict): """Wrap the communication channel into Pettingzoo main environment, and padding the environment.""" def comm_env(**kwargs): raw_env = base_env.raw_env(**kwargs) # Set all agents to silent for agent in raw_env.world.agents: agent.silent = True env = AssertOutOfBoundsWrapper(raw_env) env = OrderEnforcingWrapper(env) env = CommWrapper(env, comm_dict) env = pad_observations_v0(env) env = pad_action_space_v0(env) env = _PettingZooEnv(env) return env return comm_env def main_env(base_env): """Padding the environment.""" def env(**kwargs): env = base_env.env(**kwargs) env = pad_observations_v0(env) env = pad_action_space_v0(env) env = _PettingZooEnv(env) return env return env def parallel_comm_env(base_env, comm_dict): """Wrap the communication channel into Pettingzoo parallel environment, and padding the environment.""" def comm_env(**kwargs): raw_env = base_env.raw_env(**kwargs) # Set all agents to silent for agent in raw_env.world.agents: agent.silent = True env = AssertOutOfBoundsWrapper(raw_env) env = OrderEnforcingWrapper(env) env = to_parallel_wrapper(env) env = ParallelCommWrapper(env, comm_dict) env = pad_observations_v0(env) env = pad_action_space_v0(env) env = _ParallelPettingZooEnv(env) return env return comm_env def parallel_env(base_env): """Padding the parallel environment.""" def env(**kwargs): env = base_env.parallel_env(**kwargs) env = pad_observations_v0(env) env = pad_action_space_v0(env) env = _ParallelPettingZooEnv(env) return env return env class _PettingZooEnv(PettingZooEnv): def __init__(self, env): super().__init__(env) def step(self, action_dict): # Ensure the input actions are discrete number. for k, v in action_dict.items(): if isinstance(v, (np.int64, np.int32, np.int16, np.int8, int)): pass elif not v: pass else: action_dict[k] = np.argmax(v) return super().step(action_dict) class _ParallelPettingZooEnv(ParallelPettingZooEnv): def __init__(self, env): super().__init__(env) def step(self, action_dict): # Ensure the input actions are discrete number. for k, v in action_dict.items(): if isinstance(v, (np.int64, np.int32, np.int16, np.int8, int)): pass else: action_dict[k] = np.argmax(v) return super().step(action_dict) def init_comm_dict(env): return {'comm_bits': 0, 'receivers': {agent: [] for agent in env.possible_agents}} ```
{ "source": "JiekangHuang/am7020_raspberry", "score": 3 }
#### File: JiekangHuang/am7020_raspberry/am7020_mqtt.py ```python from time import time, sleep, ctime from sim7020.sim7020_nb import SIM7020NB from sim7020.sim7020_mqtt import SIM7020MQTT apn = "twm.nbiot" band = 28 MQTT_BROKER = "test.mosquitto.org" PORT = 1883 MQTT_USERNAME = "" MQTT_PASSWORD = "" TEST_TOPIC = "temp/humidity" UPLOAD_INTERVAL = 60 nb = SIM7020NB("/dev/ttyS0", 115200, 18) mqtt = SIM7020MQTT(nb) def nbConnect(): print("Initializing modem...") while((not nb.init() or (not nb.nbiotConnect(apn, band)))): print(".") print("Waiting for network...") while(not nb.waitForNetwork()): print(".") sleep(5) print(" success") def reConnBroker(): if(not mqtt.chkConnBroker()): print("Connecting to", MQTT_BROKER, end="...") if(mqtt.connBroker(MQTT_BROKER, PORT, mqtt_id="MY_AM7020_TEST_MQTTID")): print(" success") print("subscribe: ", TEST_TOPIC, end="") if(mqtt.subscribe(TEST_TOPIC, callback1)): print(" success") else: print(" fail") else: print(" fail") def callback1(msg): print(TEST_TOPIC, ":", msg) def main(): nbConnect() reConnBroker() chk_net_timer = 0 pub_data_timer = 0 while(True): if(time() > chk_net_timer): chk_net_timer = time() + 10 if(not nb.chkNet()): nbConnect() reConnBroker() if(time() > pub_data_timer): pub_data_timer = time() + UPLOAD_INTERVAL print("publish: ", ctime(), end="") if(mqtt.publish(TEST_TOPIC, str(ctime()))): print(" success") else: print(" Fail") mqtt.procSubs() main() ``` #### File: JiekangHuang/am7020_raspberry/iot_am7020.py ```python from time import time, sleep from sim7020.sim7020_nb import SIM7020NB from sim7020.sim7020_mqtt import SIM7020MQTT from tsl2561 import TSL2561 tsl = TSL2561(debug=True) apn = "twm.nbiot" band = 28 MQTT_BROKER = "io.adafruit.com" PORT = 1883 MQTT_USERNAME = "Zack_Huang" MQTT_PASSWORD = "<PASSWORD>" # topics LUX = "Zack_Huang/feeds/pi3.lux" UPLOAD_INTERVAL = 60 nb = SIM7020NB("/dev/ttyS0", 115200, 18) mqtt = SIM7020MQTT(nb) def nbConnect(): print("Initializing modem...") while((not nb.init() or (not nb.nbiotConnect(apn, band)))): print(".") print("Waiting for network...") while(not nb.waitForNetwork()): print(".") sleep(5) print("success") def reConnBroker(): if(not mqtt.chkConnBroker()): print("Connecting to", MQTT_BROKER, "...") if(mqtt.connBroker(MQTT_BROKER, PORT, username=MQTT_USERNAME, password=MQTT_PASSWORD, mqtt_id="MY_AM7020_TEST_MQTTID")): print("success") else: print("fail") def pubAdafruitIO(topic, msg): print("publish {} to {}".format(msg, topic)) if(mqtt.publish(topic, msg)): print("success") else: print("Fail") def main(): nbConnect() reConnBroker() chk_net_timer = 0 pub_data_timer = 0 get_lux_timer = 0 lux = 0 while(True): if(time() > get_lux_timer): get_lux_timer = time() + 5 lux = tsl.lux() if(time() > chk_net_timer): chk_net_timer = time() + 10 if(not nb.chkNet()): nbConnect() reConnBroker() if(time() > pub_data_timer): pub_data_timer = time() + UPLOAD_INTERVAL pubAdafruitIO(LUX, lux) mqtt.procSubs() main() ``` #### File: am7020_raspberry/sim7020/sim7020_modem.py ```python import serial from time import time, sleep from gpiozero import LED GSM_OK = "OK\r\n" GSM_ERROR = "ERROR\r\n" class SIM7020Modem: def __init__(self, port, baudrate, reset_pin, dump_at_cmd=False): self._at = serial.Serial(port, baudrate, timeout=0.05) self._reset_pin = LED(reset_pin) self.dump_at_cmd = dump_at_cmd def atWrite(self, cmd): if(self.dump_at_cmd): print(cmd, end="") cmd = bytes(cmd, 'utf-8') self._at.write(cmd) def atRead(self, numChars=1): try: cmd = self._at.read(numChars).decode("utf-8") if(self.dump_at_cmd): print(cmd, end="") return cmd except (KeyboardInterrupt, SystemExit): raise except: print("decode error !") return "" def restart(self): self._reset_pin.off() sleep(0.5) self._reset_pin.on() sleep(5) def testAT(self, timeout_s=10): startTime = time() while(time() - startTime < timeout_s): self.sendAT() if(self.waitResponse(0.2) == 1): return True sleep(0.1) return False def streamWrite(self, *args): cmd = "" for arg in args: cmd += str(arg) self.atWrite(cmd) def sendAT(self, *args): cmd = "AT" for arg in args: cmd += str(arg) cmd += "\r\n" self.atWrite(cmd) def streamRead(self): self.atRead() def streamGetLength(self, numChars, timeout_s=1): startTime = time() data = "" while(time() - startTime < timeout_s): data += self.atRead(numChars) if(data != "" and len(data) == numChars): return data def streamGetIntBefore(self, lastChar, timeout_s=1): startTime = time() data = "" while(time() - startTime < timeout_s): data += self.atRead() if(data != "" and data.endswith(lastChar)): return int(data[:-1]) return -9999 def streamGetStringBefore(self, lastChar, timeout_s=1): startTime = time() data = "" while(time() - startTime < timeout_s): data += self.atRead() if(data != "" and data.endswith(lastChar)): return data[:-1] return "" def streamSkipUntil(self, c, timeout_s=1): startTime = time() while(time() - startTime < timeout_s): ch = self.atRead() if(ch == c): return True return False def waitResponse(self, timeout_s=1, r1=GSM_OK, r2=GSM_ERROR, r3=None, r4=None, r5=None): index = 0 startTime = time() data = "" while(True): data += self.atRead() if(r1 and data.endswith(r1)): index = 1 break elif(r2 and data.endswith(r2)): index = 2 break elif(r3 and data.endswith(r3)): index = 3 break elif(r4 and data.endswith(r4)): index = 4 break elif(r5 and data.endswith(r5)): index = 5 break if(time()-startTime > timeout_s): break return index ```
{ "source": "JiekangHuang/VMX_Pi_Example", "score": 2 }
#### File: java/python_script/WTD_Barcode.py ```python from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler from networktables import NetworkTables from networktables.util import ntproperty import threading import os # Create the barcodes file f = open('/home/pi/barcodes.txt', 'w') f.close() # Create thread to make sure networktables is connected cond = threading.Condition() notified = [False] # Create a listener def connectionListener(connected, info): with cond: notified[0] = True cond.notify() # Instantiate NetworkTables NetworkTables.initialize(server="10.12.34.2") NetworkTables.addConnectionListener(connectionListener, immediateNotify=True) # Wait until connected with cond: if not notified[0]: cond.wait() # Create the vision Table ntBarcodeData = ntproperty('/Vision/barcodeData', "null") ntBarcodeType = ntproperty('/Vision/barcodeType', "null") ntReadBarcode = ntproperty('/Vision/readBarcode', False) # Get Table table = NetworkTables.getTable('Vision') # Create the system handler class MyHandler(FileSystemEventHandler): def on_modified(self, event): try: file = open('./barcodes.txt', 'r') table.putString('barcodeData', file.readline()) table.putString('barcodeType', file.readline()) file.close() except: pass # when file is not created yet event_handler = MyHandler() observer = Observer() observer.schedule(event_handler, path='./barcodes.txt', recursive=False) observer.start() # The forever loop while(True): if table.getBoolean('readBarcode', False) == True: table.putBoolean('readBarcode', False) os.system('python3 /home/pi/readBarcode.py') try: pass except KeyboardInterrupt: observer.stop() ```
{ "source": "jiekeshi/CovTesting_Replication", "score": 2 }
#### File: CovTesting_Replication/Comparison of Attack Images/attack.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import argparse import sys, logging import time from datetime import datetime import pytz import numpy as np import warnings warnings.filterwarnings("ignore", message=r"Passing", category=FutureWarning) import tensorflow.keras as keras from tensorflow.keras import backend as K ## load mine trained model from tensorflow.keras.models import load_model import art from art.estimators.classification import TensorFlowV2Classifier from art.attacks.evasion import FastGradientMethod from art.attacks.evasion import CarliniLInfMethod from art.attacks.evasion import ProjectedGradientDescent from art.attacks.evasion import BasicIterativeMethod from art.attacks.evasion import SaliencyMapMethod from art.attacks.evasion import AutoProjectedGradientDescent from art.attacks.evasion import DeepFool, NewtonFool from art.attacks.evasion import SquareAttack, SpatialTransformation from art.attacks.evasion import ShadowAttack, Wasserstein import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from tensorflow.python.client import device_lib def get_available_gpus(): local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU'] ## custom time zone for logger def customTime(*args): utc_dt = pytz.utc.localize(datetime.utcnow()) converted = utc_dt.astimezone(pytz.timezone("Singapore")) return converted.timetuple() os.environ["CUDA_VISIBLE_DEVICES"] = "0" ## [original from FSE author] for solving some specific problems, don't care # config = tf.compat.v1.ConfigProto() # config.gpu_options.allow_growth = True # sess = tf.compat.v1.Session(config=config) # VERBOSE = False VERBOSE = True DATA_DIR = "../data/" MODEL_DIR = "../models/" MNIST = "mnist" CIFAR = "cifar" SVHN = "svhn" DATASET_NAMES = [MNIST, CIFAR, SVHN] BIM = "bim" CW = "cw" FGSM = "fgsm" JSMA = "jsma" PGD = "pgd" APGD = "apgd" DF = "deepfool" NF = "newtonfool" SA = "squareattack" SHA = "shadowattack" ST = "spatialtransformation" WA = "wasserstein" ATTACK_NAMES = [APGD, BIM, CW, DF, FGSM, JSMA, NF, PGD, SA, SHA, ST, WA] ## Note: already tried APGD, but it doesn't work optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) def train_step(model, images, labels): with tf.GradientTape() as tape: predictions = model(images, training=True) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=True) ## classifier paramaters ## depend to the dataset used classifier_params = {} for dataset_name in DATASET_NAMES : classifier_params[dataset_name] = {"loss_object": loss_object, "train_step": train_step} classifier_params[MNIST]["nb_classes"] = 10 classifier_params[MNIST]["input_shape"] = (28, 28, 1) classifier_params[MNIST]["clip_values"] = (-0.5, 0.5) classifier_params[CIFAR]["nb_classes"] = 10 classifier_params[CIFAR]["input_shape"] = (32, 32, 3) classifier_params[SVHN]["nb_classes"] = 10 classifier_params[SVHN]["input_shape"] = (32, 32, 3) classifier_params[SVHN]["clip_values"] = (-0.5, 0.5) ## attack parameters for generating adversarial images ## Note: I use the same format with FSE paper, i.e. params[<attack>][<dataset>] ## we may change the format into params[<dataset>][<attack>] ## to track the consistent epsilon for each dataset attack_params = {} ## TO DO: read the paper for each attack ## make sure to use the correct parameters ## for each combination of attack and dataset # empty means using the original parameters for ART attack_params[APGD] = {} for dataset_name in DATASET_NAMES: attack_params[APGD][dataset_name] = {"loss_type": "cross_entropy"} attack_params[CW] = {} for dataset_name in DATASET_NAMES : attack_params[CW][dataset_name] = {} attack_params[DF] = {} for dataset_name in DATASET_NAMES: attack_params[DF][dataset_name] = {"batch_size": 256} attack_params[NF] = {} for dataset_name in DATASET_NAMES: attack_params[NF][dataset_name] = {"batch_size": 256} attack_params[JSMA] = {} for dataset_name in DATASET_NAMES: attack_params[JSMA][dataset_name] = {} attack_params[SA] = {} for dataset_name in DATASET_NAMES: attack_params[SA][dataset_name] = {} attack_params[SHA] = {} for dataset_name in DATASET_NAMES: attack_params[SHA][dataset_name] = {"batch_size": 1} attack_params[ST] = {} for dataset_name in DATASET_NAMES: attack_params[ST][dataset_name] = {} attack_params[WA] = {} for dataset_name in DATASET_NAMES: attack_params[WA][dataset_name] = {} attack_params[PGD] = {} attack_params[PGD][MNIST] = {'eps': .3, 'eps_step': .03, 'max_iter': 20 } attack_params[PGD][CIFAR] = {'eps': 16. / 255., 'eps_step': 2. / 255., 'max_iter': 30 } attack_params[PGD][SVHN] = {'eps': 8. / 255., 'eps_step': 0.01, 'max_iter': 30 } # use the same epsilon used in pgd attack_params[BIM] = {} attack_params[BIM][MNIST] = {'eps': .3 } attack_params[BIM][CIFAR] = {'eps': 16. / 255. } attack_params[BIM][SVHN] = {'eps': 8. / 255. } # use the same epsilon used in pgd attack_params[FGSM] = {} attack_params[FGSM][MNIST] = {'eps': .3 } attack_params[FGSM][CIFAR] = {'eps': 16. / 255. } attack_params[FGSM][SVHN] = {'eps': 8. / 255. } def call_function_by_attack_name(attack_name): if attack_name not in ATTACK_NAMES: print('Unsupported attack: {}'.format(attack_name)) sys.exit(1) return { APGD: AutoProjectedGradientDescent, BIM: BasicIterativeMethod, CW: CarliniLInfMethod, DF: DeepFool, FGSM: FastGradientMethod, JSMA: SaliencyMapMethod, NF: NewtonFool, PGD: ProjectedGradientDescent, SA: SquareAttack, SHA: ShadowAttack, ST: SpatialTransformation, WA: Wasserstein }[attack_name] # integrate all attack method in one function and only construct graph once def gen_adv_data(model, x, y, attack_name, dataset_name, batch_size=2048): logging.getLogger().setLevel(logging.CRITICAL) classifier_param = classifier_params[dataset_name] classifier = TensorFlowV2Classifier(model=model, **classifier_param) attack_param = attack_params[attack_name][dataset_name] if attack_name not in [ST] : if "batch_size" not in attack_param : attack_param["batch_size"] = batch_size if attack_name not in [FGSM, BIM] : ## some attacks don't have verbose parameter, e.g. bim attack_param["verbose"] = VERBOSE attack = call_function_by_attack_name(attack_name)(classifier, **attack_param) data_num = x.shape[0] adv_x = attack.generate(x=x, y=y) logging.getLogger().setLevel(logging.INFO) return adv_x # the data is in range(-.5, .5) def load_data(dataset_name): assert dataset_name in DATASET_NAMES x_train = np.load(DATA_DIR + dataset_name + '/benign/x_train.npy') y_train = np.load(DATA_DIR + dataset_name + '/benign/y_train.npy') x_test = np.load(DATA_DIR + dataset_name + '/benign/x_test.npy') y_test = np.load(DATA_DIR + dataset_name + '/benign/y_test.npy') return x_train, y_train, x_test, y_test def softmax(x): exp_x = np.exp(x) return exp_x / np.sum(exp_x) def accuracy(model, x, labels): assert (x.shape[0] == labels.shape[0]) num = x.shape[0] y = model.predict(x) y = y.argmax(axis=-1) labels = labels.argmax(axis=-1) idx = (labels == y) return 100 * np.sum(idx) / num if __name__ == '__main__': parser = argparse.ArgumentParser(description='Attack for DNN') parser.add_argument( '--dataset', help="Model Architecture", type=str, default="mnist") parser.add_argument( '--model', help="Model Architecture", type=str, default="lenet1") parser.add_argument( '--attack', help="Adversarial examples", type=str, default="fgsm") parser.add_argument( '--batch_size', help="batch size for generating adversarial examples", type=int, default=1024) args = parser.parse_args() dataset_name = args.dataset model_name = args.model attack_name = args.attack ## Prepare directory for saving adversarial images and logging adv_dir = "{}{}/adv/{}/{}/".format( DATA_DIR, dataset_name, model_name, attack_name) if not os.path.exists(adv_dir): os.makedirs(adv_dir) logging.basicConfig( format='[%(asctime)s] - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.INFO, handlers=[ logging.FileHandler( os.path.join(adv_dir, 'output.log')), logging.StreamHandler() ]) logging.Formatter.converter = customTime logger = logging.getLogger("adversarial_images_generation") ## Load benign images from mnist, cifar, or svhn x_train, y_train, x_test, y_test = load_data(dataset_name) ## Load keras pretrained model for the specific dataset model_path = "{}{}/{}.h5".format(MODEL_DIR, dataset_name, model_name) model = load_model(model_path) model.summary() logger.info("") logger.info("Generating Adversarial Images") logger.info("Use GPU: {}".format(len(get_available_gpus()) > 0)) if len(get_available_gpus()) > 0 : logger.info("Available GPUs: {}".format(get_available_gpus())) logger.info("Dataset: {}".format(dataset_name)) logger.info("Model: {}".format(model_name)) logger.info("Attack: {}".format(attack_name)) ## Check the accuracy of the original model on benign images acc = accuracy(model, x_test, y_test) logger.info("Model accuracy on benign images: {:.2f}%".format(acc)) ## Generate adversarial images x_adv = gen_adv_data(model, x_test, y_test, attack_name, dataset_name, args.batch_size) ## Check the accuracy of the original model on adversarial images acc = accuracy(model, x_adv, y_test) logger.info("Model accuracy on adversarial images: {:.2f}%".format(acc)) ## Save the adversarial images into external file x_adv_path = "{}x_test.npy".format(adv_dir) np.save(x_adv_path, x_adv) ## Note: y_test will exactly be the same with the benign y_test ## thus it's not a must to save the y_test y_adv_path = "{}y_test.npy".format(adv_dir) np.save(y_adv_path, y_test) logger.info("Adversarial images are saved at {}".format(adv_dir)) ``` #### File: CovTesting_Replication/Comparison of Attack Images/mutators.py ```python from __future__ import print_function from importlib import reload import sys import cv2 import numpy as np import random import time import copy reload(sys) # sys.setdefaultencoding('utf8') # keras 1.2.2 tf:1.2.0 class Mutators(): def image_translation(img, params): rows, cols, ch = img.shape # rows, cols = img.shape # M = np.float32([[1, 0, params[0]], [0, 1, params[1]]]) M = np.float32([[1, 0, params], [0, 1, params]]) dst = cv2.warpAffine(img, M, (cols, rows)) return dst def image_scale(img, params): # res = cv2.resize(img, None, fx=params[0], fy=params[1], interpolation=cv2.INTER_CUBIC) rows, cols, ch = img.shape res = cv2.resize(img, None, fx=params, fy=params, interpolation=cv2.INTER_CUBIC) res = res.reshape((res.shape[0],res.shape[1],ch)) y, x, z = res.shape if params > 1: # need to crop startx = x // 2 - cols // 2 starty = y // 2 - rows // 2 return res[starty:starty + rows, startx:startx + cols] elif params < 1: # need to pad sty = (rows - y) // 2 stx = (cols - x) // 2 return np.pad(res, [(sty, rows - y - sty), (stx, cols - x - stx), (0, 0)], mode='constant', constant_values=0) return res def image_shear(img, params): rows, cols, ch = img.shape # rows, cols = img.shape factor = params * (-1.0) M = np.float32([[1, factor, 0], [0, 1, 0]]) dst = cv2.warpAffine(img, M, (cols, rows)) return dst def image_rotation(img, params): rows, cols, ch = img.shape # rows, cols = img.shape M = cv2.getRotationMatrix2D((cols / 2, rows / 2), params, 1) dst = cv2.warpAffine(img, M, (cols, rows), flags=cv2.INTER_AREA) return dst def image_contrast(img, params): alpha = params new_img = cv2.multiply(img, np.array([alpha])) # mul_img = img*alpha # new_img = cv2.add(mul_img, beta) # new_img = img*alpha + beta return new_img def image_brightness(img, params): beta = params new_img = cv2.add(img, beta) # new_img = img*alpha + beta return new_img def image_blur(img, params): # print("blur") blur = [] if params == 1: blur = cv2.blur(img, (3, 3)) if params == 2: blur = cv2.blur(img, (4, 4)) if params == 3: blur = cv2.blur(img, (5, 5)) if params == 4: blur = cv2.GaussianBlur(img, (3, 3), 0) if params == 5: blur = cv2.GaussianBlur(img, (5, 5), 0) if params == 6: blur = cv2.GaussianBlur(img, (7, 7), 0) if params == 7: blur = cv2.medianBlur(img, 3) if params == 8: blur = cv2.medianBlur(img, 5) # if params == 9: # blur = cv2.blur(img, (6, 6)) if params == 9: blur = cv2.bilateralFilter(img, 6, 50, 50) # blur = cv2.bilateralFilter(img, 9, 75, 75) return blur def image_pixel_change(img, params): # random change 1 - 5 pixels from 0 -255 img_shape = img.shape img1d = np.ravel(img) arr = np.random.randint(0, len(img1d), params) for i in arr: img1d[i] = np.random.randint(0, 256) new_img = img1d.reshape(img_shape) return new_img def image_noise(img, params): if params == 1: # Gaussian-distributed additive noise. row, col, ch = img.shape mean = 0 var = 0.1 sigma = var ** 0.5 gauss = np.random.normal(mean, sigma, (row, col, ch)) gauss = gauss.reshape(row, col, ch) noisy = img + gauss return noisy.astype(np.uint8) elif params == 2: # Replaces random pixels with 0 or 1. s_vs_p = 0.5 amount = 0.004 out = np.copy(img) # Salt mode num_salt = np.ceil(amount * img.size * s_vs_p) coords = [np.random.randint(0, i, int(num_salt)) for i in img.shape] out[tuple(coords)] = 1 # Pepper mode num_pepper = np.ceil(amount * img.size * (1. - s_vs_p)) coords = [np.random.randint(0, i, int(num_pepper)) for i in img.shape] out[tuple(coords)] = 0 return out elif params == 3: # Multiplicative noise using out = image + n*image,where n is uniform noise with specified mean & variance. row, col, ch = img.shape gauss = np.random.randn(row, col, ch) gauss = gauss.reshape(row, col, ch) noisy = img + img * gauss return noisy.astype(np.uint8) ``` #### File: jiekeshi/CovTesting_Replication/correlation.py ```python from scipy.stats import ttest_ind, kendalltau, pearsonr, spearmanr, mannwhitneyu, wilcoxon import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl from numpy import mean from numpy import var, std from math import sqrt def func(a, b): Lens = len(a) ties_onlyin_x = 0 ties_onlyin_y = 0 con_pair = 0 dis_pair = 0 for i in range(Lens - 1): for j in range(i + 1, Lens): test_tying_x = np.sign(a[i] - a[j]) test_tying_y = np.sign(b[i] - b[j]) panduan = test_tying_x * test_tying_y if panduan == 1: con_pair += 1 elif panduan == -1: dis_pair += 1 if test_tying_y == 0 and test_tying_x != 0: ties_onlyin_y += 1 elif test_tying_x == 0 and test_tying_y != 0: ties_onlyin_x += 1 if (con_pair + dis_pair + ties_onlyin_x) * (dis_pair + con_pair + ties_onlyin_y) == 0: k = 10**-1 else: k = (con_pair + dis_pair + ties_onlyin_x) * (dis_pair + con_pair + ties_onlyin_y) Kendallta1 = (con_pair - dis_pair) / np.sqrt(k) return Kendallta1 import numpy as np # nc_1 = [] # nc_3 = [] # nc_5 = [] # nc_7 = [] # nc_9 = [] # tknc = [] # tknp = [] # kmnc = [] # nbc = [] # snac = [] # for i in range(0, 11): # with open("./mnist/lenet1/improve/coverage_result_" + str(i) + ".txt") as f: # results = f.read() # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # tknc.append(float(results.split("\n")[8].split(" ")[1])) # tknp.append(float(results.split("\n")[9].split(" ")[1])) # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # nbc.append(float(results.split("\n")[11].split(" ")[1])) # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./mnist/lenet1/no_improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./mnist/lenet4/improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./mnist/lenet5/improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./svhn/svhn_first/improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./svhn/svhn_model/improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./svhn/svhn_model/no_improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./svhn/svhn_second/no_improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 10]: # # with open("./cifar/resnet20/no_improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # for i in [0, 8]: # # with open("./cifar/resnet20/improve/coverage_result_" + str(i) + ".txt") as f: # # results = f.read() # # nc_1.append(float(results.split("\n")[3].split(" ")[1])) # # nc_3.append(float(results.split("\n")[4].split(" ")[1])) # # nc_5.append(float(results.split("\n")[5].split(" ")[1])) # # nc_7.append(float(results.split("\n")[6].split(" ")[1])) # # nc_9.append(float(results.split("\n")[7].split(" ")[1])) # # tknc.append(float(results.split("\n")[8].split(" ")[1])) # # tknp.append(float(results.split("\n")[9].split(" ")[1])) # # kmnc.append(float(results.split("\n")[10].split(" ")[1])) # # nbc.append(float(results.split("\n")[11].split(" ")[1])) # # snac.append(float(results.split("\n")[12].split(" ")[1])) # # norm_nc_1 = [num/nc_1[0] for num in nc_1] # # norm_nc_3 = [num/nc_3[0] for num in nc_3] # # norm_nc_5 = [num/nc_5[0] for num in nc_5] # # norm_nc_7 = [num/nc_7[0] for num in nc_7] # # norm_nc_9 = [num/nc_9[0] for num in nc_9] # # norm_tknc = [num/tknc[0] for num in tknc] # # norm_tknp = [num/tknp[0] for num in tknp] # # norm_kmnc = [num/kmnc[0] for num in kmnc] # # norm_nbc = [num/nbc[0] for num in nbc] # # norm_snac = [num/snac[0] for num in snac] # # mnist_data_1 = [norm_nc_1, norm_nc_3, norm_nc_5, norm_nc_7, norm_nc_9, norm_tknc, norm_tknp, norm_kmnc, norm_nbc, norm_snac] nc_1 = [] nc_3 = [] nc_5 = [] nc_7 = [] nc_9 = [] tknc = [] tknp = [] kmnc = [] nbc = [] snac = [] for i in range(0, 11): with open("./coverage_results/mnist/lenet1/improve/coverage_result_" + str(i) + ".txt") as f: results = f.read() nc_1.append(float(results.split("\n")[3].split(" ")[1])) nc_3.append(float(results.split("\n")[4].split(" ")[1])) nc_5.append(float(results.split("\n")[5].split(" ")[1])) nc_7.append(float(results.split("\n")[6].split(" ")[1])) nc_9.append(float(results.split("\n")[7].split(" ")[1])) tknc.append(float(results.split("\n")[8].split(" ")[1])) tknp.append(float(results.split("\n")[9].split(" ")[1])) kmnc.append(float(results.split("\n")[10].split(" ")[1])) nbc.append(float(results.split("\n")[11].split(" ")[1])) snac.append(float(results.split("\n")[12].split(" ")[1])) norm_nc_1 = [num/nc_1[0] for num in nc_1] norm_nc_3 = [num/nc_3[0] for num in nc_3] norm_nc_5 = [num/nc_5[0] for num in nc_5] norm_nc_7 = [num/nc_7[0] for num in nc_7] norm_nc_9 = [num/nc_9[0] for num in nc_9] norm_tknc = [num/tknc[0] for num in tknc] norm_tknp = [num/tknp[0] for num in tknp] norm_kmnc = [num/kmnc[0] for num in kmnc] norm_nbc = [num/nbc[0] for num in nbc] norm_snac = [num/snac[0] for num in snac] mnist_data_1 = [norm_nc_1, norm_nc_3, norm_nc_5, norm_nc_7, norm_nc_9, norm_tknc, norm_tknp, norm_kmnc, norm_nbc, norm_snac] # mr = [] # acac = [] # actc = [] # alp_l0 = [] # alp_l2 = [] # alp_li = [] # ass = [] # psd = [] # nte = [] # rgb = [] # ric = [] # for i in range(0, 11): # with open("./RQ2_results/robustness_results/mnist/lenet1/improve/robustness_metrics_" + str(i) + ".txt") as f: # results = f.read() # mr.append(float(results.split("\n")[3].split(" ")[1])) # acac.append(float(results.split("\n")[4].split(" ")[1])) # actc.append(float(results.split("\n")[5].split(" ")[1])) # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # ass.append(float(results.split("\n")[9].split(" ")[1])) # psd.append(float(results.split("\n")[10].split(" ")[1])) # nte.append(float(results.split("\n")[11].split(" ")[1])) # rgb.append(float(results.split("\n")[12].split(" ")[1])) # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in [0, 10]: # # with open("./robustness_results/mnist/lenet1/no_improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in range(0, 11): # # with open("./robustness_results/rb/Untitled/mnist/lenet4/improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in [0, 10]: # # with open("./robustness_results/rb/Untitled/mnist/lenet5/improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in [0, 10]: # # with open("./robustness_results/rb/Untitled/cifar/resnet20/no_improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # for i in range(0, 11): # with open("./robustness_results/rb/Untitled/cifar/resnet20/improve/robustness_metrics_" + str(i) + ".txt") as f: # results = f.read() # mr.append(float(results.split("\n")[3].split(" ")[1])) # acac.append(float(results.split("\n")[4].split(" ")[1])) # actc.append(float(results.split("\n")[5].split(" ")[1])) # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # ass.append(float(results.split("\n")[9].split(" ")[1])) # psd.append(float(results.split("\n")[10].split(" ")[1])) # nte.append(float(results.split("\n")[11].split(" ")[1])) # rgb.append(float(results.split("\n")[12].split(" ")[1])) # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in [0, 10]: # # with open("./robustness_results/rb/Untitled/svhn/svhn_first/improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # for i in range(0, 11): # with open("./robustness_results/rb/Untitled/svhn/svhn_model/improve/robustness_metrics_" + str(i) + ".txt") as f: # results = f.read() # mr.append(float(results.split("\n")[3].split(" ")[1])) # acac.append(float(results.split("\n")[4].split(" ")[1])) # actc.append(float(results.split("\n")[5].split(" ")[1])) # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # ass.append(float(results.split("\n")[9].split(" ")[1])) # psd.append(float(results.split("\n")[10].split(" ")[1])) # nte.append(float(results.split("\n")[11].split(" ")[1])) # rgb.append(float(results.split("\n")[12].split(" ")[1])) # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in [0, 10]: # # with open("./robustness_results/rb/Untitled/svhn/svhn_model/no_improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # # for i in [0, 10]: # # with open("./robustness_results/rb/Untitled/svhn/svhn_second/no_improve/robustness_metrics_" + str(i) + ".txt") as f: # # results = f.read() # # mr.append(float(results.split("\n")[3].split(" ")[1])) # # acac.append(float(results.split("\n")[4].split(" ")[1])) # # actc.append(float(results.split("\n")[5].split(" ")[1])) # # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # # ass.append(float(results.split("\n")[9].split(" ")[1])) # # psd.append(float(results.split("\n")[10].split(" ")[1])) # # nte.append(float(results.split("\n")[11].split(" ")[1])) # # rgb.append(float(results.split("\n")[12].split(" ")[1])) # # ric.append(float(results.split("\n")[13].split(" ")[1])) # norm_mr = [num/mr[5] for num in mr] # norm_acac = [num/acac[5] for num in acac] # norm_actc = [num/actc[5] for num in actc] # norm_alp_l0 = [num/alp_l0[5] for num in alp_l0] # norm_alp_l2 = [num/alp_l2[5] for num in alp_l2] # norm_alp_li = [num/alp_li[5] for num in alp_li] # norm_ass = [num/ass[5] for num in ass] # norm_psd = [num/psd[5] for num in psd] # norm_nte = [num/nte[5] for num in nte] # norm_rgb = [num/rgb[5] for num in rgb] # norm_ric = [num/ric[5] for num in ric] # mnist_data_rb = [norm_mr, norm_acac, norm_actc, norm_alp_l0, norm_alp_l2, norm_alp_li, norm_ass, norm_psd, norm_nte, norm_rgb, norm_ric] mr = [] acac = [] actc = [] alp_l0 = [] alp_l2 = [] alp_li = [] ass = [] psd = [] nte = [] rgb = [] ric = [] for i in range(0, 11): with open("./robustness_results/mnist/lenet1/improve/robustness_metrics_" + str(i) + ".txt") as f: results = f.read() mr.append(float(results.split("\n")[3].split(" ")[1])) acac.append(float(results.split("\n")[4].split(" ")[1])) actc.append(float(results.split("\n")[5].split(" ")[1])) alp_l0.append(float(results.split("\n")[6].split(" ")[1])) alp_l2.append(float(results.split("\n")[7].split(" ")[1])) alp_li.append(float(results.split("\n")[8].split(" ")[1])) ass.append(float(results.split("\n")[9].split(" ")[1])) psd.append(float(results.split("\n")[10].split(" ")[1])) nte.append(float(results.split("\n")[11].split(" ")[1])) rgb.append(float(results.split("\n")[12].split(" ")[1])) ric.append(float(results.split("\n")[13].split(" ")[1])) # for i in range(0, 11): # with open("./robustness_results/rb/Untitled/svhn/svhn_model/no_improve/robustness_metrics_" + str(i) + ".txt") as f: # results = f.read() # mr.append(float(results.split("\n")[3].split(" ")[1])) # acac.append(float(results.split("\n")[4].split(" ")[1])) # actc.append(float(results.split("\n")[5].split(" ")[1])) # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # ass.append(float(results.split("\n")[9].split(" ")[1])) # psd.append(float(results.split("\n")[10].split(" ")[1])) # nte.append(float(results.split("\n")[11].split(" ")[1])) # rgb.append(float(results.split("\n")[12].split(" ")[1])) # ric.append(float(results.split("\n")[13].split(" ")[1])) # for i in range(0, 11): # with open("./robustness_results/rb/Untitled/cifar/resnet20/no_improve/robustness_metrics_" + str(i) + ".txt") as f: # results = f.read() # mr.append(float(results.split("\n")[3].split(" ")[1])) # acac.append(float(results.split("\n")[4].split(" ")[1])) # actc.append(float(results.split("\n")[5].split(" ")[1])) # alp_l0.append(float(results.split("\n")[6].split(" ")[1])) # alp_l2.append(float(results.split("\n")[7].split(" ")[1])) # alp_li.append(float(results.split("\n")[8].split(" ")[1])) # ass.append(float(results.split("\n")[9].split(" ")[1])) # psd.append(float(results.split("\n")[10].split(" ")[1])) # nte.append(float(results.split("\n")[11].split(" ")[1])) # rgb.append(float(results.split("\n")[12].split(" ")[1])) # ric.append(float(results.split("\n")[13].split(" ")[1])) norm_mr = [num/mr[5] for num in mr] norm_acac = [num/acac[5] for num in acac] norm_actc = [num/actc[5] for num in actc] norm_alp_l0 = [num/alp_l0[5] for num in alp_l0] norm_alp_l2 = [num/alp_l2[5] for num in alp_l2] norm_alp_li = [num/alp_li[5] for num in alp_li] norm_ass = [num/ass[5] for num in ass] norm_psd = [num/psd[5] for num in psd] norm_nte = [num/nte[5] for num in nte] norm_rgb = [num/rgb[5] for num in rgb] norm_ric = [num/ric[5] for num in ric] mnist_data_rb_1 = [norm_mr, norm_acac, norm_actc, norm_alp_l0, norm_alp_l2, norm_alp_li, norm_ass, norm_psd, norm_nte, norm_rgb, norm_ric] # Define a list of markevery cases and color cases to plot cases = ["NC(0.1)", "NC(0.1)", "NC(0.1)", "NC(0.1)", "NC(0.1)", "TKNC", "TKNP", "KMNC", "NBC", "SNAC"] colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.rcParams['font.serif'] = 'Times' mpl.rcParams['text.usetex'] = True # Set the plot curve with markers and a title fig, ax = plt.subplots(figsize=(11, 8), tight_layout=True) ax.plot(norm_nc_1, marker='.', label=str(cases[0]), linewidth=3) ax.plot(norm_nc_3, marker='*', label=str(cases[1]), linewidth=3) ax.plot(norm_nc_5, marker='o', label=str(cases[2]), linewidth=3) ax.plot(norm_nc_7, marker='+', label=str(cases[3]), linewidth=3) ax.plot(norm_nc_9, marker='v', label=str(cases[4]), linewidth=3) ax.plot(norm_tknc, marker='^', label=str(cases[5]), linewidth=3) ax.plot(norm_tknp, marker='<', label=str(cases[6]), linewidth=3) ax.plot(norm_kmnc, marker='>', label=str(cases[7]), linewidth=3) ax.plot(norm_nbc, marker='s', label=str(cases[8]), linewidth=3) ax.plot(norm_snac, marker='D', label=str(cases[9]), linewidth=3) plt.legend(bbox_to_anchor=(0.01, 0.99), loc='upper left', borderaxespad=0., fontsize=21, ncol=2) plt.xticks(np.arange(0, 11), ["$D_0$", "$D_1$", "$D_2$", "$D_3$", "$D_4$", "$D_5$", "$D_6$", "$D_7$", "$D_8$", "$D_9$", "$D_{10}$"], fontsize=25) plt.yticks(np.arange(0.985, 1.120, 0.015), fontsize=25) # plt.xlabels(["$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$"]) plt.ylabel('Relative Coverage', fontsize=31) plt.savefig("./fig1.pdf") plt.show() # Define a list of markevery cases and color cases to plot cases = ["MR", "ACAC", "ACTC", "ALP\_L0", "ALP\_L2", "ALP\_Li", "ASS", "PSD", "NTE", "RGB", "RIC"] colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#17bce2'] # import matplotlib mpl.rcParams['text.usetex'] = True fig, ax = plt.subplots(figsize=(11, 8), tight_layout=True) ax.plot(norm_mr, marker='.', label=str(cases[0]), linewidth=3) ax.plot(norm_acac, marker='*', label=str(cases[1]), linewidth=3) ax.plot(norm_actc, marker='o', label=str(cases[2]), linewidth=3) ax.plot(norm_alp_l0, marker='+', label=str(cases[3]), linewidth=3) ax.plot(norm_alp_l2, marker='v', label=str(cases[4]), linewidth=3) ax.plot(norm_alp_li, marker='^', label=str(cases[5]), linewidth=3) ax.plot(norm_ass, marker='<', label=str(cases[6]), linewidth=3) ax.plot(norm_psd, marker='>', label=str(cases[7]), linewidth=3) ax.plot(norm_nte, marker='s', label=str(cases[8]), linewidth=3) ax.plot(norm_rgb, marker='D', label=str(cases[9]), linewidth=3) ax.plot(norm_ric, marker='D', label=str(cases[10]), linewidth=3) plt.legend(bbox_to_anchor=(0.98, 0.98), loc='upper right', borderaxespad=0., fontsize=21, ncol=2) plt.xticks(np.arange(0, 11), ["$D_0$", "$D_1$", "$D_2$", "$D_3$", "$D_4$", "$D_5$", "$D_6$", "$D_7$", "$D_8$", "$D_9$", "$D_{10}$"], fontsize=25) plt.yticks(np.arange(0.875, 1.385, 0.05), fontsize=25) # plt.xlabels(["$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$", "$-1$"]) plt.ylabel('Model Quality', fontsize=31) plt.savefig("./fig2.pdf") plt.show() exit() # # print(len(mnist_data_1[0]), len(mnist_data_rb[0])) # exit() # results = [] # # calculate Kendallta # # for metric_1 in mnist_data_1: # # tmp = [] # # print("\n") # # for metric_2 in mnist_data_rb: # # Kendallta, p_value = kendalltau(np.array(metric_1), np.array(metric_2)) # # # p_value = ttest_ind(np.array(metric_1), np.array(metric_2)).pvalue # # # print(round(p_value,4), end=" ") # # # print(metric_1, metric_2) # # v = func(np.array(metric_1), np.array(metric_2)) # # tmp.append(round(v, 2)) # # results.append(tmp) def cohend(d1, d2): # calculate the size of samples n1, n2 = len(d1), len(d2) # print(n2, n1) # calculate the variance of the samples s1, s2 = std(d1), std(d2) # calculate the pooled standard deviation s = sqrt(((n1 - 1) * s1 **2 + (n2 - 1) * s2 **2) / (n1 + n2 - 2)) # calculate the means of the samples u1, u2 = mean(d1), mean(d2) # print(u2, u1) # calculate the effect size return (u2 - u1) / s results = [] for metric_1, metric_2 in zip(mnist_data_rb, mnist_data_rb_1): p_value = mannwhitneyu(metric_1, metric_2).pvalue cd = cohend(metric_1, metric_2) results.append(p_value) print(results) # exit() # # create hot picture in Seaborn # f, ax = plt.subplots(figsize=(12, 12.5)) # mpl.rcParams['text.usetex'] = True # plt.rcParams['font.serif'] = 'Times' # label_y = ["MR", "ACAC", # "ACTC", # "ALP-L0", # "ALP-L2", # "ALP-Li", # "ASS", # "PSD", # "NTE", # "RGB", # "RIC"] # # label_y = ["NC(0.1)", # # "NC(0.3)", # # "NC(0.5)", # # "NC(0.7)", # # "NC(0.9)", # # "TKNC", # # "TKNP", # # "KMNC", # # "NBC", # # "SNAC"] # label_x = ["NC(0.1)", # "NC(0.3)", # "NC(0.5)", # "NC(0.7)", # "NC(0.9)", # "TKNC", # "TKNP", # "KMNC", # "NBC", # "SNAC"] # # mask = np.zeros_like(np.array(results), dtype=np.bool) # # mask[np.triu_indices_from(mask)] = True # # print(type(mask)) # heatmap = sns.heatmap(np.array(results), # square=True, # # mask = mask, # cmap='coolwarm', # cbar_kws={'shrink': 0.7, 'ticks': [-1, -.5, 0, 0.5, 1]}, # vmin=-1, # vmax=1, # annot=True, # annot_kws={'size': 20}, # xticklabels = label_y, # yticklabels = label_x) # # ax.set_xticks(np.arange(len(label_y)), labels=label_y) # # ax.set_yticks(np.arange(len(label_x)), labels=label_x) # cax = plt.gcf().axes[-1] # cax.tick_params(labelsize=18) # # # plt.setp(label_y, rotation = 45) # # # plt.setp(label_x, rotation = 45) # plt.setp(ax.get_xticklabels(), rotation=45, ha="right", # rotation_mode="anchor") # plt.setp(ax.get_yticklabels(), rotation=45, ha="right", # rotation_mode="anchor") # # cb = heatmap.figure.colorbar(heatmap.collections[0]) # # cb.ax.tick_params(length = 0.001, width=2, labelsize=10) # # sns.set_style({'yticklabels.top': True}) # plt.xticks(fontsize=20) # plt.yticks(fontsize=20) # plt.savefig('./fig6.pdf', bbox_inches='tight') # plt.show() # \begin{table*}[!t] # \caption{Misclassifcation rates for different test generation methods.} # \begin{center} # \begin{tabular}{|c|c|cccccc|} # \hline # \multirow{2}{*}{Datasets} & \multirow{2}{*}{Models} & \multicolumn{6}{c|}{Misclassification Rate } \\ \cline{3-8} # & & \multicolumn{1}{c|}{Benign} & \multicolumn{1}{c|}{Diff} & \multicolumn{1}{c|}{Non-Diff} & \multicolumn{1}{c|}{DH} & \multicolumn{1}{c|}{FGSM} & \multicolumn{1}{c|}{PGD} \\ \hline # \hline\multirow{3}{*}{MNIST} & LeNet-1 & 1.33\% & 49.26\% & 48.45\% & 48.65\% & 90.59\% & 100.00\% \\ # & LeNet-4 & 1.38\% & 45.51\% & 43.11\% & 44.50\% & 80.78\% & 99.98\% \\ # & LeNet-5 & 1.02\% & 42.97\% & 42.10\% & 43.05\% & 64.52\% & 99.70\% \\ # \hline\multirow{3}{*}{CIFAR} & VGG-16 & 7.20\% & 79.05\% & 80.78\% & 79.77\% & 68.24\% & 98.90\% \\ # & ResNet-20 & 8.26\% & 68.13\% & 65.22\% & 66.37\% & 82.68\% & 100.00\% \\ # & ResNet-56 & 7.24\% & 62.64\% & 65.34\% & 64.08\% & 70.71\% & 100.00\% \\ # \hline\multirow{3}{*}{SVHN} & SADL-1 & 10.30\% & 23.97\% & 30.61\% & 27.27\% & 83.96\% & 99.99\% \\ # & SADL-2 & 12.28\% & 24.17\% & 22.04\% & 22.89\% & 91.73\% & 99.94\% \\ # & SADL-3 & 7.43\% & 20.90\% & 16.71\% & 18.45\% & 88.80\% & 100.00\% \\ # \hline \multirow{3}{*}{EuroSAT} & VGG-16 & 3.50\% & 50.09\% & 40.93\% & 45.15\% & 88.76\% & 97.72\% \\ # & ResNet-20 & 2.89\% & 48.69\% & 54.06\% & 51.61\% & 88.74\% & 99.41\% \\ # & ResNet-32 & 2.78\% & 46.94\% & 48.87\% & 48.11\% & 88.22\% & 99.17\% \\ # & ResNet-56 & 3.65\% & 44.72\% & 34.89\% & 39.26\% & 85.50\% & 99.72\% \\ # \hline # \end{tabular} # \label{tab:mr_on_attack} # \end{center} # \end{table*} # fgsm = [90.59, 80.78, 64.52, 68.24, 82.68, 70.71, 83.96, 91.73, 80.80, 88.76, 88.74, 88.22, 85.50] # pgd = [100.00, 99.98, 99.70, 98.90, 100.00, 100.00, 99.99, 99.94, 100.00, 97.72, 99.41, 99.17, 99.72] # diff = [49.26, 45.51, 42.97, 79.05, 68.13, 62.64, 23.97, 24.17, 20.90, 50.09, 48.69, 46.94, 44.72] # non_diff = [48.45, 43.11, 42.10, 80.78, 65.22, 65.34, 30.61, 22.04, 16.71, 40.93, 54.06, 48.87, 34.89] # dh = [48.65, 44.50, 43.05, 79.77, 66.37, 64.08, 27.27, 22.89, 18.45, 45.15, 51.61, 48.11, 39.26] # # for metric_1, metric_2 in zip(diff, non_diff): # # # for i in metric_1: # # metric_2.append(i) # # print(metric_2) # p_value_1 = mannwhitneyu(fgsm+fgsm+fgsm+pgd+pgd+pgd, diff+non_diff+dh+diff+non_diff+dh).pvalue # # p_value_2 = mannwhitneyu(, diff+non_diff+dh).pvalue # # p_value_1 = mannwhitneyu(dh, non_diff).pvalue # # p_value_2 = ttest_ind(pgd+pgd+pgd, diff+non_diff+dh).pvalue # # cd = cohend(metric_1, metric_2) # print(p_value_1) # \begin{table*}[] # % \caption{Accuracy of defended models.} # % \begin{center} # % \begin{tabular}{|c|c|cccccc|} # % \hline # % \multirow{2}{*}{Datasets} & \multirow{2}{*}{Models} & \multicolumn{6}{c|}{Accuracy } \\ \cline{3-8} # % & & \multicolumn{1}{c|}{Benign} & \multicolumn{1}{c|}{D} & \multicolumn{1}{c|}{N} & \multicolumn{1}{c|}{DH} & \multicolumn{1}{c|}{FGSM} & \multicolumn{1}{c|}{PGD} \\ \hline # % \hline\multirow{6}{*}{MNIST} & LN5 & 98.98\%(+0.00\%) & 57.03\%(+0.00\%) & 57.90\%(+0.00\%) & 56.95\%(+0.00\%) & 35.48\%(+0.00\%) & 0.30\%(0.00\%) \\ # % & LN5-D & 98.69\%(-0.29\%) & 55.23\%(-1.80\%) & 55.16\%(-2.74\%) & 55.12\%(-1.83\%) & 42.24\%(+6.76\%) & 0.89\%(+0.59\%) \\ # % & LN5-N & 98.60\%(-0.38\%) & 54.71\%(-2.32\%) & 50.30\%(-7.60\%) & 52.38\%(-4.57\%) & 30.41\%(-5.07\%) & 0.02\%(-0.28\%) \\ # % & LN5-DH & 98.80\%(-0.18\%) & 55.63\%(-1.40\%) & 52.93\%(-4.97\%) & 53.95\%(-3.00\%) & 36.41\%(+0.93\%) & 0.01\%(-0.29\%) \\ # % & LN5-FGSM & 97.77\%(-1.21\%) & 59.35\%(+2.32\%) & 63.48\%(+5.58\%) & 61.71\%(+4.76\%) & 86.03\%(+50.55\%) & 22.22\%(+21.92\%) \\ # % & LN5-PGD & 97.04\%(-1.94\%) & 60.37\%(+3.34\%) & 61.55\%(+3.65\%) & 61.03\%(+4.08\%) & 68.70\%(+33.22\%) & 33.75\%(+33.45\%) \\ # % \hline\multirow{6}{*}{CIFAR} & V16 & 92.80\%(+0.00\%) & 20.95\%(+0.00\%) & 19.22\%(+0.00\%) & 20.23\%(+0.00\%) & 31.76\%(+0.00\%) & 1.10\%(0.00\%) \\ # % & V16-D & 86.34\%(-6.46\%) & 30.76\%(+9.81\%) & 27.31\%(+8.09\%) & 28.53\%(+8.30\%) & 14.50\%(-17.26\%) & 0.15\%(-0.95\%) \\ # % & V16-N & 77.72\%(-15.08\%) & 23.67\%(+2.72\%) & 26.85\%(+7.63\%) & 25.44\%(+5.21\%) & 13.32\%(-18.44\%) & 0.45\%(-0.65\%) \\ # % & V16-DH & 88.22\%(-4.58\%) & 28.35\%(+7.40\%) & 28.84\%(+9.62\%) & 28.87\%(+8.64\%) & 17.39\%(-14.37\%) & 0.48\%(-0.62\%) \\ # % & V16-FGSM & 84.28\%(-8.52\%) & 10.00\%(-10.95\%) & 9.97\%(-9.25\%) & 9.99\%(-10.24\%) & 30.56\%(-1.20\%) & 8.35\%(+7.25\%) \\ # % & V16-PGD & 87.83\%(-4.97\%) & 10.50\%(-10.45\%) & 10.18\%(-9.04\%) & 10.72\%(-9.51\%) & 54.67\%(+22.91\%) & 40.78\%(+39.68\%) \\ # % \hline\multirow{6}{*}{SVHN} & S3 & 92.57\%(+0.00\%) & 79.10\%(+0.00\%) & 83.29\%(+0.00\%) & 81.55\%(+0.00\%) & 11.20\%(+0.00\%) & 0.00\%(0.00\%) \\ # % & S3-D & 93.77\%(+1.20\%) & 77.92\%(-1.18\%) & 77.87\%(-5.43\%) & 78.20\%(-3.35\%) & 30.60\%(+19.40\%) & 3.88\%(+3.88\%) \\ # % & S3-N & 94.49\%(+1.92\%) & 79.49\%(+0.40\%) & 81.21\%(-2.08\%) & 80.35\%(-1.19\%) & 38.64\%(+27.44\%) & 3.33\%(+3.33\%) \\ # % & S3-DH & 94.24\%(+1.67\%) & 79.19\%(+0.10\%) & 81.13\%(-2.16\%) & 79.99\%(-1.56\%) & 29.49\%(+18.29\%) & 4.48\%(+4.48\%) \\ # % & S3-FGSM & 92.28\%(-0.29\%) & 78.35\%(-0.75\%) & 82.63\%(-0.67\%) & 80.81\%(-0.74\%) & 84.30\%(+73.09\%) & 13.53\%(+13.53\%) \\ # % & S3-PGD & 87.74\%(-4.83\%) & 74.90\%(-4.20\%) & 76.49\%(-6.80\%) & 75.80\%(-5.75\%) & 59.67\%(+48.46\%) & 50.57\%(+50.57\%) \\ # % \hline\multirow{6}{*}{EuroSAT} & RN20 & 97.11\%(+0.00\%) & 51.31\%(+0.00\%) & 45.94\%(+0.00\%) & 48.39\%(+0.00\%) & 11.26\%(+0.00\%) & 0.59\%(0.00\%) \\ # % & RN20-D & 89.46\%(-7.65\%) & 50.00\%(-1.31\%) & 45.52\%(-0.43\%) & 48.52\%(+0.13\%) & 10.69\%(-0.57\%) & 1.96\%(+1.37\%) \\ # % & RN20-N & 93.76\%(-3.35\%) & 52.24\%(+0.93\%) & 44.54\%(-1.41\%) & 48.19\%(-0.20\%) & 14.69\%(+3.43\%) & 1.83\%(+1.24\%) \\ # % & RN20-DH & 93.28\%(-3.83\%) & 53.07\%(+1.76\%) & 45.41\%(-0.54\%) & 49.20\%(+0.81\%) & 7.85\%(-3.41\%) & 0.22\%(-0.37\%) \\ # % & RN20-FGSM & 22.70\%(-74.41\%) & 14.65\%(-36.67\%) & 14.28\%(-31.67\%) & 14.59\%(-33.80\%) & 25.81\%(+14.56\%) & 0.02\%(-0.57\%) \\ # % & RN20-PGD & 26.26\%(-70.85\%) & 15.44\%(-35.87\%) & 15.30\%(-30.65\%) & 15.30\%(-33.09\%) & 22.87\%(+11.61\%) & 22.57\%(+21.98\%) \\ # % \hline # % \end{tabular} # % \end{center} # % \label{tab:rq4} # % \end{table*} # adv = [98.69, 98.60, 98.80, 97.77, 97.04, 86.34, 77.72, 88.22, 84.28, 87.83, 93.77, 94.49, 94.24, 92.28, 87.74, 89.46, 93.76, 93.28, 22.70, 33.87, 93.91, 93.33, 85.70, 42.69, 39.19] # n_a = [98.98, 98.98, 98.98, 98.98, 98.98, 92.80, 92.80, 92.80, 92.80, 92.80, 92.57, 92.57, 92.57, 92.57, 92.57, 97.11, 97.11, 97.11, 97.11, 97.11, 96.35, 96.35, 96.35, 96.35, 96.35] # print(mannwhitneyu(adv, n_a).pvalue, mean(adv) - mean(n_a), cohend(adv, n_a)) ``` #### File: CovTesting_Replication/Model Accuracy under Different Scenarios/generate_dataset.py ```python import tensorflow_datasets as tfds import numpy as np import os import argparse DATA_DIR = "../data/" ## convert array of indices to 1-hot encoded numpy array def convert_label_to_one_hot_encoding(index_labels): one_hot_labels = np.zeros((index_labels.size, index_labels.max()+1)) one_hot_labels[np.arange(index_labels.size), index_labels] = 1 return one_hot_labels if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dataset", default='eurosat', type=str) args = parser.parse_args() # please check this link to browse more datasets # https://www.tensorflow.org/datasets/catalog/fashion_mnist # choices = ["fashion_mnist", "eurosat", "oxford_flowers102", "mnist", "cifar10"] dataset_name = args.dataset # batch_size=-1 to get the full dataset in NumPy arrays from the returned tf.Tensor object if dataset_name == "fashion_mnist" or dataset_name == "oxford_flowers102": dataset_train = tfds.load( name=dataset_name, split=tfds.Split.TRAIN, batch_size=-1) dataset_test = tfds.load( name=dataset_name, split=tfds.Split.TEST, batch_size=-1) elif dataset_name == "food101": dataset_train = tfds.load( name=dataset_name, split=tfds.Split.TRAIN, batch_size=-1) dataset_test = tfds.load( name=dataset_name, split=tfds.Split.VALIDATION, batch_size=-1) elif dataset_name == "eurosat": dataset_train = tfds.load( name=dataset_name, split="train[:80%]", batch_size=-1) dataset_test = tfds.load( name=dataset_name, split="train[80%:]", batch_size=-1) else: dataset_train = tfds.load( name=dataset_name, split=tfds.Split.TRAIN, batch_size=-1) dataset_test = tfds.load( name=dataset_name, split=tfds.Split.TEST, batch_size=-1) # tfds.as_numpy return a generator that yields NumPy array records out of a tf.data.Dataset dataset_train = tfds.as_numpy(dataset_train) dataset_test = tfds.as_numpy(dataset_test) # seperate the x and y x_train, y_train = dataset_train["image"], dataset_train["label"] x_test, y_test = dataset_test["image"], dataset_test["label"] y_train = convert_label_to_one_hot_encoding(y_train) y_test = convert_label_to_one_hot_encoding(y_test) os.makedirs(os.path.join( DATA_DIR, dataset_name + "/benign/"), exist_ok=True) np.save(os.path.join(DATA_DIR, dataset_name + "/benign/x_train.npy"), x_train) np.save(os.path.join(DATA_DIR, dataset_name + "/benign/y_train.npy"), y_train) np.save(os.path.join(DATA_DIR, dataset_name + "/benign/x_test.npy"), x_test) np.save(os.path.join(DATA_DIR, dataset_name + "/benign/y_test.npy"), y_test) print("\n\nCHECK STANDARD\n") print(dataset_name) print(x_train.shape) print(y_train.shape) print(y_train[0]) ## Check format/standard with the previous dataset from helper import load_data x_train, y_train, x_test, y_test = load_data("mnist") print("") print("mnist") print(x_train.shape) print(y_train.shape) print(y_train[0]) x_train, y_train, x_test, y_test = load_data("cifar") print("") print("cifar") print(x_train.shape) print(y_train.shape) print(y_train[0]) ``` #### File: CovTesting_Replication/Model Accuracy under Different Scenarios/helper.py ```python import time import os import numpy as np from mutators import Mutators import random import copy import shutil from keras import backend as K DATA_DIR = "../data/" MODEL_DIR = "../models/" # helper function def get_layer_i_output(model, i, data): layer_model = K.function([model.layers[0].input], [model.layers[i].output]) ret = layer_model([data])[0] num = data.shape[0] ret = np.reshape(ret, (num, -1)) return ret class Coverage: def __init__(self, model, x_train, y_train, x_test, y_test, x_adv): self.model = model self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test self.x_adv = x_adv # find scale factors and min num def scale(self, layers, batch=1024): data_num = self.x_adv.shape[0] factors = dict() for i in layers: begin, end = 0, batch max_num, min_num = np.NINF, np.inf while begin < data_num: layer_output = get_layer_i_output(self.model, i, self.x_adv[begin:end]) tmp = layer_output.max() max_num = tmp if tmp > max_num else max_num tmp = layer_output.min() min_num = tmp if tmp < min_num else min_num begin += batch end += batch factors[i] = (max_num - min_num, min_num) return factors # 1 Neuron Coverage def NC(self, layers, threshold=0., batch=1024): factors = self.scale(layers, batch=batch) neuron_num = 0 for i in layers: out_shape = self.model.layers[i].output.shape neuron_num += np.prod(out_shape[1:]) neuron_num = int(neuron_num) activate_num = 0 data_num = self.x_adv.shape[0] for i in layers: neurons = np.prod(self.model.layers[i].output.shape[1:]) buckets = np.zeros(neurons).astype('bool') begin, end = 0, batch while begin < data_num: layer_output = get_layer_i_output(self.model, i, self.x_adv[begin:end]) # scale the layer output to (0, 1) layer_output -= factors[i][1] layer_output /= factors[i][0] col_max = np.max(layer_output, axis=0) begin += batch end += batch buckets[col_max > threshold] = True activate_num += np.sum(buckets) # print('NC:\t{:.3f} activate_num:\t{} neuron_num:\t{}'.format(activate_num / neuron_num, activate_num, neuron_num)) return activate_num / neuron_num, activate_num, neuron_num # 2 k-multisection neuron coverage, neuron boundary coverage and strong activation neuron coverage def KMNC(self, layers, k=10, batch=1024): neuron_num = 0 for i in layers: out_shape = self.model.layers[i].output.shape neuron_num += np.prod(out_shape[1:]) neuron_num = int(neuron_num) covered_num = 0 l_covered_num = 0 u_covered_num = 0 for i in layers: neurons = np.prod(self.model.layers[i].output.shape[1:]) print(neurons) begin, end = 0, batch data_num = self.x_train.shape[0] neuron_max = np.full(neurons, np.NINF).astype('float') neuron_min = np.full(neurons, np.inf).astype('float') while begin < data_num: layer_output_train = get_layer_i_output(self.model, i, self.x_train[begin:end]) batch_neuron_max = np.max(layer_output_train, axis=0) batch_neuron_min = np.min(layer_output_train, axis=0) neuron_max = np.maximum(batch_neuron_max, neuron_max) neuron_min = np.minimum(batch_neuron_min, neuron_min) begin += batch end += batch buckets = np.zeros((neurons, k + 2)).astype('bool') interval = (neuron_max - neuron_min) / k # print(interval[8], neuron_max[8], neuron_min[8]) begin, end = 0, batch data_num = self.x_adv.shape[0] while begin < data_num: layer_output_adv = get_layer_i_output(model, i, self.x_adv[begin: end]) layer_output_adv -= neuron_min layer_output_adv /= (interval + 10 ** (-100)) layer_output_adv[layer_output_adv < 0.] = -1 layer_output_adv[layer_output_adv >= k / 1.0] = k layer_output_adv = layer_output_adv.astype('int') # index 0 for lower, 1 to k for between, k + 1 for upper layer_output_adv = layer_output_adv + 1 for j in range(neurons): uniq = np.unique(layer_output_adv[:, j]) # print(layer_output_adv[:, j]) buckets[j, uniq] = True begin += batch end += batch covered_num += np.sum(buckets[:, 1:-1]) u_covered_num += np.sum(buckets[:, -1]) l_covered_num += np.sum(buckets[:, 0]) print('KMNC:\t{:.3f} covered_num:\t{}'.format(covered_num / (neuron_num * k), covered_num)) print( 'NBC:\t{:.3f} l_covered_num:\t{}'.format((l_covered_num + u_covered_num) / (neuron_num * 2), l_covered_num)) print('SNAC:\t{:.3f} u_covered_num:\t{}'.format(u_covered_num / neuron_num, u_covered_num)) return covered_num / (neuron_num * k), (l_covered_num + u_covered_num) / ( neuron_num * 2), u_covered_num / neuron_num, covered_num, l_covered_num, u_covered_num, neuron_num * k # 3 top-k neuron coverage def TKNC(self, layers, k=2, batch=1024): def top_k(x, k): ind = np.argpartition(x, -k)[-k:] return ind[np.argsort((-x)[ind])] neuron_num = 0 for i in layers: out_shape = self.model.layers[i].output.shape neuron_num += np.prod(out_shape[1:]) neuron_num = int(neuron_num) pattern_num = 0 data_num = self.x_adv.shape[0] for i in layers: pattern_set = set() begin, end = 0, batch while begin < data_num: layer_output = get_layer_i_output(self.model, i, self.x_adv[begin:end]) topk = np.argpartition(layer_output, -k, axis=1)[:, -k:] topk = np.sort(topk, axis=1) # or in order # topk = np.apply_along_axis[lambda x: top_k(layer_output, k), 1, layer_output] for j in range(topk.shape[0]): pattern_set.add(tuple(topk[j])) begin += batch end += batch pattern_num += len(pattern_set) print( 'TKNC:\t{:.3f} pattern_num:\t{} neuron_num:\t{}'.format(pattern_num / neuron_num, pattern_num, neuron_num)) return pattern_num / neuron_num, pattern_num, neuron_num # 4 top-k neuron patterns def TKNP(self, layers, k=2, batch=1024): def top_k(x, k): ind = np.argpartition(x, -k)[-k:] return ind[np.argsort((-x)[ind])] def to_tuple(x): l = list() for row in x: l.append(tuple(row)) return tuple(l) pattern_set = set() layer_num = len(layers) data_num = self.x_adv.shape[0] patterns = np.zeros((data_num, layer_num, k)) layer_cnt = 0 for i in layers: neurons = np.prod(self.model.layers[i].output.shape[1:]) begin, end = 0, batch while begin < data_num: layer_output = get_layer_i_output(self.model, i, self.x_adv[begin:end]) topk = np.argpartition(layer_output, -k, axis=1)[:, -k:] topk = np.sort(topk, axis=1) # or in order # topk = np.apply_along_axis[lambda x: top_k(layer_output, k), 1, layer_output] patterns[begin:end, layer_cnt, :] = topk begin += batch end += batch layer_cnt += 1 for i in range(patterns.shape[0]): pattern_set.add(to_tuple(patterns[i])) pattern_num = len(pattern_set) print('TKNP:\t{:.3f}'.format(pattern_num)) return pattern_num def all(self, layers, batch=100): self.NC(layers, batch=batch) self.KMNC(layers, batch=batch) self.TKNC(layers, batch=batch) self.TKNP(layers, batch=batch) class AttackEvaluate: # model does not have softmax layer def __init__(self, model, ori_x, ori_y, adv_x): self.model = model # get the raw data self.nature_samples = ori_x self.labels_samples = ori_y # get the adversarial examples self.adv_samples = adv_x # self.adv_labels = np.load('{}{}_AdvLabels.npy'.format(self.AdvExamplesDir, self.AttackName)) predictions = model.predict(self.adv_samples) def soft_max(x): return np.exp(x) / np.sum(np.exp(x), axis=0) tmp_soft_max = [] for i in range(len(predictions)): tmp_soft_max.append(soft_max(predictions[i])) self.softmax_prediction = np.array(tmp_soft_max) # help function def successful(self, adv_softmax_preds, nature_true_preds): if np.argmax(adv_softmax_preds) != np.argmax(nature_true_preds): return True else: return False # 1 MR:Misclassification Rate def misclassification_rate(self): cnt = 0 for i in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[i], nature_true_preds=self.labels_samples[i]): cnt += 1 mr = cnt / len(self.adv_samples) print('MR:\t\t{:.1f}%'.format(mr * 100)) return mr # 2 ACAC: average confidence of adversarial class def avg_confidence_adv_class(self): cnt = 0 conf = 0 for i in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[i], nature_true_preds=self.labels_samples[i]): cnt += 1 conf += np.max(self.softmax_prediction[i]) print('ACAC:\t{:.3f}'.format(conf / cnt)) return conf / cnt # 3 ACTC: average confidence of true class def avg_confidence_true_class(self): true_labels = np.argmax(self.labels_samples, axis=1) cnt = 0 true_conf = 0 for i in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[i], nature_true_preds=self.labels_samples[i]): cnt += 1 true_conf += self.softmax_prediction[i, true_labels[i]] print('ACTC:\t{:.3f}'.format(true_conf / cnt)) return true_conf / cnt # 4 ALP: Average L_p Distortion def avg_lp_distortion(self): ori_r = np.round(self.nature_samples * 255) adv_r = np.round(self.adv_samples * 255) NUM_PIXEL = int(np.prod(self.nature_samples.shape[1:])) pert = adv_r - ori_r dist_l0 = 0 dist_l2 = 0 dist_li = 0 cnt = 0 for i in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[i], nature_true_preds=self.labels_samples[i]): cnt += 1 dist_l0 += (np.linalg.norm(np.reshape(pert[i], -1), ord=0) / NUM_PIXEL) dist_l2 += np.linalg.norm(np.reshape(self.nature_samples[i] - self.adv_samples[i], -1), ord=2) dist_li += np.linalg.norm(np.reshape(self.nature_samples[i] - self.adv_samples[i], -1), ord=np.inf) adv_l0 = dist_l0 / cnt adv_l2 = dist_l2 / cnt adv_li = dist_li / cnt print('**ALP:**\n\tL0:\t{:.3f}\n\tL2:\t{:.3f}\n\tLi:\t{:.3f}'.format(adv_l0, adv_l2, adv_li)) return adv_l0, adv_l2, adv_li # 5 ASS: Average Structural Similarity def avg_SSIM(self): ori_r_channel = np.round(self.nature_samples * 255).astype(dtype=np.float32) adv_r_channel = np.round(self.adv_samples * 255).astype(dtype=np.float32) totalSSIM = 0 cnt = 0 """ For SSIM function in skimage: http://scikit-image.org/docs/dev/api/skimage.measure.html multichannel : bool, optional If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged. """ for i in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[i], nature_true_preds=self.labels_samples[i]): cnt += 1 totalSSIM += SSIM(X=ori_r_channel[i], Y=adv_r_channel[i], multichannel=True) print('ASS:\t{:.3f}'.format(totalSSIM / cnt)) return totalSSIM / cnt # 6: PSD: Perturbation Sensitivity Distance def avg_PSD(self): psd = 0 cnt = 0 for outer in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[outer], nature_true_preds=self.labels_samples[outer]): cnt += 1 image = self.nature_samples[outer] pert = abs(self.adv_samples[outer] - self.nature_samples[outer]) # my patch image = np.transpose(image, (1, 2, 0)) pert = np.transpose(pert, (1, 2, 0)) for idx_channel in range(image.shape[0]): image_channel = image[idx_channel] pert_channel = pert[idx_channel] image_channel = np.pad(image_channel, 1, 'reflect') pert_channel = np.pad(pert_channel, 1, 'reflect') for i in range(1, image_channel.shape[0] - 1): for j in range(1, image_channel.shape[1] - 1): psd += pert_channel[i, j] * (1.0 - np.std(np.array( [image_channel[i - 1, j - 1], image_channel[i - 1, j], image_channel[i - 1, j + 1], image_channel[i, j - 1], image_channel[i, j], image_channel[i, j + 1], image_channel[i + 1, j - 1], image_channel[i + 1, j], image_channel[i + 1, j + 1]]))) print('PSD:\t{:.3f}'.format(psd / cnt)) return psd / cnt # 7 NTE: Noise Tolerance Estimation def avg_noise_tolerance_estimation(self): nte = 0 cnt = 0 for i in range(len(self.adv_samples)): if self.successful(adv_softmax_preds=self.softmax_prediction[i], nature_true_preds=self.labels_samples[i]): cnt += 1 sort_preds = np.sort(self.softmax_prediction[i]) nte += sort_preds[-1] - sort_preds[-2] print('NTE:\t{:.3f}'.format(nte / cnt)) return nte / cnt # 8 RGB: Robustness to Gaussian Blur def robust_gaussian_blur(self, radius=0.5): total = 0 num_gb = 0 for i in range(len(self.adv_samples)): if np.argmax(self.softmax_prediction[i]) != np.argmax(self.labels_samples[i]): total += 1 adv_sample = self.adv_samples[i] gb_sample = gaussian_blur_transform(AdvSample=adv_sample, radius=radius) gb_pred = self.model.predict(np.expand_dims(np.array(gb_sample), axis=0)) if np.argmax(gb_pred) != np.argmax(self.labels_samples[i]): num_gb += 1 print('RGB:\t{:.3f}'.format(num_gb / total)) return num_gb, total, num_gb / total # 9 RIC: Robustness to Image Compression def robust_image_compression(self, quality=50): total = 0 num_ic = 0 # prepare the save dir for the generated image(png or jpg) image_save = os.path.join('./tmp', 'image') if os.path.exists(image_save): shutil.rmtree(image_save) os.mkdir(image_save) # print('\nNow, all adversarial examples are saved as PNG and then compressed using *Guetzli* in the {} fold ......\n'.format(image_save)) for i in range(len(self.adv_samples)): if np.argmax(self.softmax_prediction[i]) != np.argmax(self.labels_samples[i]): total += 1 adv_sample = self.adv_samples[i] ic_sample = image_compress_transform(IndexAdv=i, AdvSample=adv_sample, dir_name=image_save, quality=quality) ic_sample = np.expand_dims(ic_sample, axis=0) ic_pred = self.model.predict(np.array(ic_sample)) if np.argmax(ic_pred) != np.argmax(self.labels_samples[i]): num_ic += 1 print('RIC:\t{:.3f}'.format(num_ic / total)) return num_ic, total, num_ic / total def all(self): self.misclassification_rate() self.avg_confidence_adv_class() self.avg_confidence_true_class() self.avg_lp_distortion() self.avg_SSIM() self.avg_PSD() self.avg_noise_tolerance_estimation() self.robust_gaussian_blur() self.robust_image_compression(1) def mutate(img, dataset): # ref_img is the reference image, img is the seed # cl means the current state of transformation # 0 means it can select both of Affine and Pixel transformations # 1 means it only select pixel transformation because an Affine transformation has been used before # l0_ref, linf_ref: if the current seed is mutated from affine transformation, we will record the l0, l_inf # between initial image and the reference image. i.e., L0(s_0,s_{j-1}) L_inf(s_0,s_{j-1}) in Equation 2 of the paper # tyr_num is the maximum number of trials in Algorithm 2 transformations = [Mutators.image_translation, Mutators.image_scale, Mutators.image_shear, Mutators.image_rotation, Mutators.image_contrast, Mutators.image_brightness, Mutators.image_blur, Mutators.image_pixel_change, Mutators.image_noise] # these parameters need to be carefullly considered in the experiment # to consider the feedbacks params = [] params.append(list(range(-3, 3))) # image_translation params.append(list(map(lambda x: x * 0.1, list(range(7, 12))))) # image_scale params.append(list(map(lambda x: x * 0.1, list(range(-6, 6))))) # image_shear params.append(list(range(-50, 50))) # image_rotation params.append(list(map(lambda x: x * 0.1, list(range(5, 13))))) # image_contrast params.append(list(range(-20, 20))) # image_brightness params.append(list(range(1, 10))) # image_blur params.append(list(range(1, 10))) # image_pixel_change params.append(list(range(1, 4))) # image_noise classA = [7, 8] # pixel value transformation classB = [0, 1, 2, 3, 4, 5, 6] # Affine transformation x, y, z = img.shape random.seed(time.time()) tid = random.sample(classA + classB, 1)[0] # tid = 7 # Randomly select one transformation Line-7 in Algorithm2 transformation = transformations[tid] params = params[tid] # Randomly select one parameter Line 10 in Algo2 param = random.sample(params, 1)[0] # Perform the transformation Line 11 in Algo2 # plt.imshow(img + 0.5) # plt.show() if dataset == 'cifar': # # for cifar dataset img_new = transformation(img, param) # img_new = np.round(img_new) img_new = img_new.reshape(img.shape) else: image = np.uint8(np.round((img + 0.5) * 255)) img_new = transformation(copy.deepcopy(image), param)/ 255.0 - 0.5 # img_new = np.round(img_new) img_new = img_new.reshape(img.shape) # Otherwise the mutation is failed. Line 20 in Algo 2 return img_new # the data is in range(-.5, .5) def load_data(dataset_name): assert (dataset_name.upper() in ['MNIST', 'CIFAR', 'SVHN', 'FASHION_MNIST', 'OXFORD_FLOWERS102']) dataset_name = dataset_name.lower() x_train = np.load(DATA_DIR + dataset_name + '/benign/x_train.npy') y_train = np.load(DATA_DIR + dataset_name + '/benign/y_train.npy') x_test = np.load(DATA_DIR + dataset_name + '/benign/x_test.npy') y_test = np.load(DATA_DIR + dataset_name + '/benign/y_test.npy') return x_train, y_train, x_test, y_test def check_data_path(dataset_name): assert os.path.exists(DATA_DIR + dataset_name + '/benign/x_train.npy') assert os.path.exists(DATA_DIR + dataset_name + '/benign/y_train.npy') assert os.path.exists(DATA_DIR + dataset_name + '/benign/x_test.npy') assert os.path.exists(DATA_DIR + dataset_name + '/benign/y_test.npy') def softmax(x): exp_x = np.exp(x) return exp_x / np.sum(exp_x) def compare_nc(model, x_train, y_train, x_test, y_test, x_new, x_old, layer): l = [0, layer] coverage1 = Coverage(model, x_train, y_train, x_test, y_test, np.expand_dims(x_new, axis=0)) nc1, _, _ = coverage1.NC(l, threshold=0.75, batch=1024) coverage2 = Coverage(model, x_train, y_train, x_test, y_test, np.expand_dims(x_old, axis=0)) nc2, _, _ = coverage2.NC(l, threshold=0.75, batch=1024) if nc1 > nc2: return True else: return False # the data is in range(-.5, .5) def load_data(dataset_name): assert (dataset_name.upper() in ['MNIST', 'CIFAR', 'SVHN', 'EUROSAT', 'FASHION_MNIST', 'OXFORD_FLOWERS102']) dataset_name = dataset_name.lower() x_train = np.load(DATA_DIR + dataset_name + '/benign/x_train.npy') y_train = np.load(DATA_DIR + dataset_name + '/benign/y_train.npy') x_test = np.load(DATA_DIR + dataset_name + '/benign/x_test.npy') y_test = np.load(DATA_DIR + dataset_name + '/benign/y_test.npy') return x_train, y_train, x_test, y_test def retrain(model, X_train, Y_train, X_test, Y_test, batch_size=128, epochs=50): model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) # training without data augmentation model.fit( X_train, Y_train, epochs=epochs, batch_size=batch_size, shuffle=True, verbose=1, validation_data=(X_test, Y_test) ) return model # (row, col, channel) def gaussian_blur_transform(AdvSample, radius): if AdvSample.shape[2] == 3: sample = np.round((AdvSample + 0.5) * 255) image = Image.fromarray(np.uint8(sample)) gb_image = image.filter(ImageFilter.GaussianBlur(radius=radius)) gb_image = np.array(gb_image).astype('float32') / 255.0 - 0.5 # print(gb_image.shape) return gb_image else: sample = np.round((AdvSample + 0.5) * 255) sample = np.squeeze(sample, axis=2) image = Image.fromarray(np.uint8(sample)) gb_image = image.filter(ImageFilter.GaussianBlur(radius=radius)) gb_image = np.expand_dims(np.array(gb_image).astype('float32'), axis=-1) / 255.0 - 0.5 # print(gb_image.shape) return gb_image # use PIL Image save instead of guetzli def image_compress_transform(IndexAdv, AdvSample, dir_name, quality=50): if AdvSample.shape[2] == 3: sample = np.round((AdvSample + .5) * 255) image = Image.fromarray(np.uint8(sample)) saved_adv_image_path = os.path.join(dir_name, '{}th-adv.jpg'.format(IndexAdv)) image.save(saved_adv_image_path, format='JPEG', quality=quality) IC_image = Image.open(saved_adv_image_path).convert('RGB') IC_image = np.array(IC_image).astype('float32') / 255.0 - .5 return IC_image else: sample = np.round((AdvSample + .5) * 255) sample = np.squeeze(sample, axis=2) image = Image.fromarray(np.uint8(sample), mode='L') saved_adv_image_path = os.path.join(dir_name, '{}th-adv.jpg'.format(IndexAdv)) image.save(saved_adv_image_path, format='JPEG', quality=quality) IC_image = Image.open(saved_adv_image_path).convert('L') IC_image = np.expand_dims(np.array(IC_image).astype('float32'), axis=-1) / 255.0 - .5 return IC_image # # (row, col, channel) # def gaussian_blur_transform(AdvSample, radius): # if AdvSample.shape[2] == 3: # sample = np.round(AdvSample) # # image = Image.fromarray(np.uint8(sample)) # gb_image = image.filter(ImageFilter.GaussianBlur(radius=radius)) # gb_image = np.array(gb_image).astype('float32') # # print(gb_image.shape) # # return gb_image # else: # sample = np.round(AdvSample) # sample = np.squeeze(sample, axis=2) # image = Image.fromarray(np.uint8(sample)) # gb_image = image.filter(ImageFilter.GaussianBlur(radius=radius)) # gb_image = np.expand_dims(np.array(gb_image).astype('float32'), axis=-1) # # print(gb_image.shape) # return gb_image # # # # # use PIL Image save instead of guetzli # def image_compress_transform(IndexAdv, AdvSample, dir_name, quality=50): # if AdvSample.shape[2] == 3: # sample = np.round(AdvSample) # image = Image.fromarray(np.uint8(sample)) # saved_adv_image_path = os.path.join(dir_name, '{}th-adv.jpg'.format(IndexAdv)) # image.save(saved_adv_image_path, format='JPEG', quality=quality) # IC_image = Image.open(saved_adv_image_path).convert('RGB') # IC_image = np.array(IC_image).astype('float32') # return IC_image # else: # sample = np.round(AdvSample) # sample = np.squeeze(sample, axis=2) # image = Image.fromarray(np.uint8(sample), mode='L') # saved_adv_image_path = os.path.join(dir_name, '{}th-adv.jpg'.format(IndexAdv)) # image.save(saved_adv_image_path, format='JPEG', quality=quality) # IC_image = Image.open(saved_adv_image_path).convert('L') # IC_image = np.expand_dims(np.array(IC_image).astype('float32'), axis=-1) # return IC_image ``` #### File: CovTesting_Replication/Model Accuracy under Different Scenarios/run_adv_train.py ```python import sys sys.path.append('..') import parameters as param from utils import get_available_gpus import multiprocessing from multiprocessing import Pool, Process, Queue, Manager import os import tensorflow as tf def train(gpu_id): while True: if not q.empty(): attack_name, dataset, model_name = q.get() cmd = 'CUDA_VISIBLE_DEVICES=' + gpu_id + ' python adv_train.py --dataset ' + dataset + ' --model ' + model_name + ' --attack ' + attack_name + ' --nb_epochs 200 --batch_size 256' os.system(cmd) else: print("Finished") return if __name__=='__main__': # datasets = ['cifar', 'mnist', 'svhn', 'eurosat'] # model_dict = { # 'mnist': ['lenet1', 'lenet4', 'lenet5'], # 'cifar': ['vgg16', 'resnet20', 'resnet56'], # 'svhn' : ['svhn_model', 'svhn_second', 'svhn_first'], # 'eurosat': ['resnet20', 'resnet56'] # } datasets = ['cifar', 'mnist', 'svhn', 'eurosat'] model_dict = { 'mnist': ['lenet5'], 'cifar': ['vgg16'], 'svhn' : ['svhn_second'], 'eurosat': ['resnet56'] } attack_names = ['fgsm', 'pgd', 'deepfool', 'bim', 'apgd','cw'] ### add combinations into queues manager = multiprocessing.Manager() q = manager.Queue() for attack_name in attack_names: for dataset in datasets: for model_name in model_dict[dataset]: q.put((attack_name, dataset, model_name)) p_list = [] for i in range(len(get_available_gpus())): gpu_id = i p = multiprocessing.Process(target=train, args=(str(gpu_id), )) p_list.append(p) p.start() for i in p_list: i.join() print("All processed finished.") ```
{ "source": "jiekeshi/OpenVocabCodeNLM", "score": 3 }
#### File: OpenVocabCodeNLM/data/split.py ```python import re import json import time import string import logging import argparse import multiprocessing as mp manager = mp.Manager() q_to_store = manager.Queue() from tqdm import tqdm from spiral import ronin keywords = json.load(open("keywords.json")) def identifier_split(line): split_data = [] for tok in line.strip().split(" "): if tok in keywords["keywords"] or tok.isdigit() or tok in string.punctuation or tok[0] in string.punctuation: split_data.append(tok) continue split_words = [] tok = re.split("([a-zA-Z0-9]+|\W+)", tok) for s in tok: if not s == "": if (s.isalnum() or s.isalpha()) and len(s)>2: for _ in ronin.split(s): split_words.append(_) else: split_words.append(s) if len(split_words) >= 2: for i, w in enumerate(split_words): if i < len(split_words) - 1: split_data.append(w) split_data.append("</w>") else: split_data.append(w) elif len(split_words) > 0: split_data.append(split_words[0]) # return " ".join(split_data) # # for i in split_data: # # print(i) q_to_store.put(" ".join(split_data)) def main(): parser = argparse.ArgumentParser() parser.add_argument("--input_fp", "-i") parser.add_argument("--out_fp", "-o") args = parser.parse_args() with open(args.input_fp, "r") as f, \ open(args.out_fp, "w") as fout: logging.info("Start to process files...") lines = f.readlines() pbar = tqdm(total=len(lines)) update = lambda *args: pbar.update() start_time = time.time() pool = mp.Pool(mp.cpu_count()) for line in lines: # all_tokens.append(identifier_split(line, args.split)) pool.apply_async(identifier_split, args=(line,), callback=update) pool.close() pool.join() logging.info("Time cost: {} s".format(str(time.time()-start_time))) logging.info("Start to write files...") while not q_to_store.empty(): single_data = q_to_store.get() if len(single_data): fout.write(single_data + "\n") logging.info("Done") if __name__ == "__main__": main() ```
{ "source": "JIEKEXIAN/DE-GAN", "score": 2 }
#### File: DE-GAN/losses/loss.py ```python import keras.backend as K import sys sys.path.append('..') from lib.config import * from keras.losses import binary_crossentropy opt = args() def rec_M_loss(y_true,y_pred): return K.mean(binary_crossentropy(y_true,y_pred)) def rec_f_loss(y_true,y_pred): return K.mean(K.abs(y_true-y_pred)) def rec_l_loss(y_true,y_pred): return K.mean(binary_crossentropy(y_true,y_pred)) def rec_Sita_loss(x_real,x_rec,fg): loss = K.mean(K.abs((x_real-x_rec)*(fg+0.5*(1-fg)))) return loss def loss_code_adv_discriminator(y_true,y_pred,label_true,label_fake): loss1 = binary_crossentropy(label_true,y_true) loss2 = binary_crossentropy(label_fake,y_pred) loss = loss1 + loss2 return K.mean(loss) def loss_code_adv_generator(label_true,y_true): loss = binary_crossentropy(label_true,y_true) return K.mean(loss) def loss_adv_gen_loss(label_true,y_true): loss = binary_crossentropy(label_true,y_true) return K.mean(loss) def loss_adv_dis_loss(label_true,y_true,label_fake,y_pred): loss1 = binary_crossentropy(label_true, y_true) loss2 = binary_crossentropy(label_fake, y_pred) loss = loss1 + loss2 return K.mean(loss) def loss_patch_adv_gen(label_true,y_true): return K.mean(binary_crossentropy(label_true,y_true)) def loss_patch_adv_dis(label_true,y_true,label_fake,y_pred): loss1 = K.mean(binary_crossentropy(label_true,y_true)) loss2 = K.mean(binary_crossentropy(label_fake,y_pred)) loss = loss1 + loss2 return loss def loss_all(y_true,vae_out,generator_out): [image, batch_mask, batch_part, batch_landmark, batch_fg] = y_true [Cw_z_f, Cw_z_l, Cw_z_M, M_f, X_f, X_l] = vae_out [D_fake_patch, D_fake_global, image_out] = generator_out label_f = K.ones_like(Cw_z_f) label_M = K.ones_like(Cw_z_M) label_l = K.ones_like(Cw_z_l) label_p = K.ones_like(D_fake_patch) label_g = K.ones_like(D_fake_global) rec_m_loss = rec_M_loss(batch_mask,M_f) rec_F_loss = rec_f_loss(batch_part,X_f) rec_L_loss = rec_l_loss(batch_landmark,X_l) rec_sita_loss = rec_Sita_loss(image,image_out,batch_fg) lat_f_loss = loss_code_adv_generator(label_f,Cw_z_f) lat_l_loss = loss_code_adv_generator(label_l,Cw_z_l) lat_m_loss = loss_code_adv_generator(label_M,Cw_z_M) adv_patch_g_loss = loss_patch_adv_gen(label_p,D_fake_patch) adv_global_g_loss = loss_adv_gen_loss(label_g,D_fake_global) all_loss = 4000*(rec_F_loss+rec_sita_loss+rec_m_loss)\ +2000*rec_L_loss+30*(lat_f_loss+lat_m_loss+lat_l_loss)+30*adv_patch_g_loss+20*adv_global_g_loss return all_loss def loss_part_all(y_true,vae_out,generator_out): [image, batch_part, batch_fg] = y_true [Cw_z_f, X_f] = vae_out [D_fake_patch, D_fake_global, image_out] = generator_out label_f = K.ones_like(Cw_z_f) label_p = K.ones_like(D_fake_patch) label_g = K.ones_like(D_fake_global) rec_F_loss = rec_f_loss(batch_part, X_f) rec_sita_loss = rec_Sita_loss(image,image_out,batch_fg) lat_f_loss = loss_code_adv_generator(label_f,Cw_z_f) adv_patch_g_loss = loss_patch_adv_gen(label_p,D_fake_patch) adv_global_g_loss = loss_adv_gen_loss(label_g,D_fake_global) all_loss = 4000*(rec_sita_loss+rec_F_loss)+30*lat_f_loss+30*adv_patch_g_loss+20*adv_global_g_loss return all_loss def loss_mask_all(y_true,vae_out,generator_out): [image, batch_mask, batch_fg] = y_true [Cw_z_f, M_f] = vae_out [D_fake_patch, D_fake_global, image_out] = generator_out label_f = K.ones_like(Cw_z_f) label_p = K.ones_like(D_fake_patch) label_g = K.ones_like(D_fake_global) rec_m_loss = rec_M_loss(batch_mask,M_f) rec_sita_loss = rec_Sita_loss(image,image_out,batch_fg) lat_f_loss = loss_code_adv_generator(label_f,Cw_z_f) adv_patch_g_loss = loss_patch_adv_gen(label_p,D_fake_patch) adv_global_g_loss = loss_adv_gen_loss(label_g,D_fake_global) all_loss = 4000*(rec_sita_loss+rec_m_loss)+30*lat_f_loss+30*adv_patch_g_loss+20*adv_global_g_loss return all_loss ``` #### File: DE-GAN/model/Unet_model.py ```python from keras.layers import Conv2DTranspose,Conv2D,Input,concatenate,Reshape from keras import Model def unet(): inputs = Input(shape=(256, 256, 3)) # z = Input(shape=(512,)) # z_in = Reshape(target_shape=(16, 16, 2))(z) z = Input(shape=(256,)) z_in = Reshape(target_shape=(16, 16,1))(z) conv1 = Conv2D(32, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(inputs) conv1 = Conv2D(32, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(conv1) conv2 = Conv2D(64, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv1) conv2 = Conv2D(64, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(conv2) conv3 = Conv2D(128, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv2) conv3 = Conv2D(128, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(conv3) conv4 = Conv2D(256, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv3) conv4 = Conv2D(256, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(conv4) conv5 = Conv2D(512, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv4) conv5 = Conv2D(512, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(conv5) concat0 = concatenate([conv5, z_in], axis=-1) deconv_4 = Conv2DTranspose(256, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(concat0) concat1 = concatenate([conv4, deconv_4], axis=-1) conv7_1 = Conv2D(256, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(concat1) deconv_3 = Conv2DTranspose(128, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv7_1) concat2 = concatenate([conv3, deconv_3], axis=-1) conv8_1 = Conv2D(128, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(concat2) deconv_2 = Conv2DTranspose(64, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv8_1) concat3 = concatenate([conv2,deconv_2],axis=-1) #128 conv9_1 = Conv2D(64, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(concat3) deconv_1 = Conv2DTranspose(32, kernel_size=3, strides=(2, 2), padding='same', activation='relu')(conv9_1) concat4 = concatenate([conv1,deconv_1],axis=-1) conv10_1 = Conv2D(32, kernel_size=3, strides=(1, 1), padding='same', activation='relu')(concat4) result = Conv2D(3, kernel_size=3, strides=(1, 1), padding='same', activation='sigmoid')(conv10_1) unet_model = Model([inputs,z],result) return unet_model ```
{ "source": "jielaizhang/datavis", "score": 3 }
#### File: datavis/datastats/determine_imageCentre.py ```python import docopt import astropy.io.fits as fits import sys __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2020-06-017" def print_verbose_string(printme,verbose=False,underscores=False): if verbose: if underscores: print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) else: print(f"VERBOSE: {printme}",file=sys.stdout) def determine_imageCentre(fitsfile,verbose=False): '''Determine the pixel coordinates of the image center.''' # read in fits header h = fits.getheader(fitsfile) X = h['NAXIS1'] Y = h['NAXIS2'] xcenter = X/2. ycenter = Y/2. if verbose: print(f'The x,y centers in pixel coords are: {xcenter},{ycenter}') return xcenter, ycenter ####################### BODY OF PROGRAM STARTS HERE ######################## if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] if debugmode: print(arguments) fitsfile = arguments['<fitsfile>'] _,_=determine_imageCentre(fitsfile,verbose=verbose) ``` #### File: datavis/datastats/embed_relativezps.py ```python import docopt import numpy as np import os from glob import glob import pandas as pd import corner import matplotlib.pyplot as plt import pylab import astropy.io.ascii as ascii from datetime import datetime import ntpath # from Jielai modules from datavis.ascii.match_catalogs import match_catalogs __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2020-10-13" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" ######################################### # ======= House Keeping Functions ======= ######################################### '''These functions standardise verbose, debug printing''' def print_verbose_string(printme,verbose=False,underscores=False): if verbose: if underscores: print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) print(f"VERBOSE: {printme}",file=sys.stdout) print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) else: print(f"VERBOSE: {printme}",file=sys.stdout) def print_debug_string(printme,debugmode=False,underscores=False): if debugmode: if underscores: print("-" * len(f"DEBUG : {printme}"),file=sys.stdout) print(f"DEBUG : {printme}",file=sys.stdout) print("-" * len(f"DEBUG : {printme}"),file=sys.stdout) else: print(f"DEBUG : {printme}",file=sys.stdout) '''These functions help organise or delete files''' def clearit(fnames,debugmode=False): for fname in fnames: if os.path.isfile(fname): os.remove(fname) printme = f'Temporary file deleted: {fname}.' print_debug_string(printme,debugmode=debugmode) return None ######################################### # =========== Other Functions =========== ######################################### def do_header_update(f,key,value,comment,quietmode=False): d,h = fits.getdata(f,header=True) if not quietmode: if key in h: oldval = h[key] print(f'{f}: {key}: {oldval}-->{value}') else: print(f'{f}: new key- {key}: {value}') h[key] = (value, comment) fits.writeto(f,d,header=h) return None def embed_relativezp(ref_fits_file,other_fits_file,update_header=False, verbose=False,debugmode=False,quietmode=False): # See Jupyter Notebook KNe_02_JielaiZhang_RelativePhotometry. # See makeScript_modheadRelativeZPs.py return ############################################################## ####################### Main Function ######################## ############################################################## def embed_relativezps(ref_fits_file,other_fits_files,update_header=False, verbose=False,debugmode=False,quietmode=False): keyzp = 'ZPREL' short_ref_name = ref_fits_file[-60:] comment = f'ZP referenced to: {short_ref_name}' # Embed in fits header ZPREL = 0 for ref file if update_header: do_header_update(ref_fits_file,keyzp,0.0,comment,quietmode=quietmode) # For each input other_fits_files, calculate relative photometry and update header for f in other_fits_files: return None ############################################################################ ####################### BODY OF PROGRAM STARTS HERE ######################## ############################################################################ if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] quietmode = arguments['--quietmode'] if debugmode: print(arguments) ref_fits_file = arguments['<ref>'] other_fits_files = arguments['<others>'] update_header = arguments['--update'] _ = embed_relativezps(ref_fits_file,other_fits_files,update_header=update_header, verbose=verbose,debugmode=debugmode,quietmode=quietmode) ``` #### File: datavis/fits/convolve.py ```python import docopt import astropy.io.fits as fits import numpy as np import sys, os import scipy.signal as signal import astropy.wcs as wcs def convolve(saveloc, fitsfile, initres, finalres, inputres_pixel=False, inputres_arcsec=True, overwrite=False, verbose=False): # Check initial resolution is lower than final if initres > finalres: sys.exit('sys.exit Error: init_res must be a smaller number than final_res') # Load in source data and header information data,header = fits.getdata(fitsfile,header = True) # nan to zero data[np.isnan(data)] = 0 # number of x and y pixels x = header['NAXIS2'] y = header['NAXIS1'] highres = initres lowres = finalres if inputres_arcsec: if inputres_pixel: sys.exit('Please input either pixel or arcsec as the input resolutions, not both.') # get the pixelsize in arcsec, where the value is in degree*3600(arcsec/degree) #pixelsize = header['CDELT2']*3600 w = wcs.WCS(header) pixelsizes = wcs.utils.proj_plane_pixel_scales(w)*60*60 pixelsize = pixelsizes[0] # FWHM of current image FWHM_highres_pix = highres/pixelsize # FWHM of desired resolution FWHM_lowres_pix = lowres/pixelsize # FWHM calulated for the gaussian of convolution kernel FWHM_kernel_pix = np.sqrt(FWHM_lowres_pix**2 - FWHM_highres_pix**2) elif inputres_pixel: FWHM_highres_pix = highres FWHM_lowres_pix = lowres # FWHM calulated for the gaussian of convolution kernel FWHM_kernel_pix = np.sqrt(FWHM_lowres_pix**2 - FWHM_highres_pix**2) else: sys.exit('Please indicate whether the input resolutions are in pixel or arcsec units') # gaussian consant to convert sigma to FWHM 2*sqrt(2ln(2)) constant = 2*np.sqrt(2*np.log(2)) # sigma for the gaussian of convolution kernel sigma = FWHM_kernel_pix/constant # making the 2-D image of the convolution kernel by making 2, 1-D gaussian # and normalized by the gaussian normalization factor gauss1 = signal.general_gaussian(x,1, sigma)/((sigma)*np.sqrt(2*np.pi)) gauss2 = signal.general_gaussian(y,1, sigma)/((sigma)*np.sqrt(2*np.pi)) # combine these two to create 2D image kernel = np.outer(gauss1, gauss2) # convolve the image using signal.fftconvolve premade function and kernel convolved = signal.fftconvolve(data, kernel, mode='same') # change the resolution if it's there header['FWHM'] = (lowres, '[arcsec] Resolution of the map') # saves as the fits file if overwrite: fits.writeto(saveloc, convolved, header,overwrite=True) elif os.path.isfile(saveloc): print('******* ERROR *******') print(saveloc + ' already exists!') print('---------------------') sys.exit("sys.exit Error: Remove or rename "+saveloc+" before using this script again") else: fits.writeto(saveloc, convolved, header) print("Convolving done. File is saved in "+saveloc+". \n") ####################### BODY OF PROGRAM STARTS HERE ######################## if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] if verbose: print(arguments) saveloc = arguments['--out'] fitsfile = arguments['<fitsfile>'] initres = float(arguments['<init_res>']) finalres = float(arguments['<final_rez>']) inputres_pixel = arguments['pixel'] inputres_arcsec = arguments['arcsec'] overwrite = arguments['--overwrite'] convolve(saveloc, fitsfile, initres, finalres, inputres_pixel=inputres_pixel, inputres_arcsec=inputres_arcsec, overwrite=overwrite, verbose=verbose) ``` #### File: datavis/fits/subtract_images.py ```python import docopt import astropy.io.fits as fits import numpy as np import sys, os, ntpath from pathlib import Path # Jielai Zhang's modules from datavis.fits.subtract_image import subtract_image __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2020-06-22" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" ######################################### # ======= House Keeping Functions ======= ######################################### '''These functions standardise verbose, debug printing''' def print_verbose_string(printme,verbose=False,underscores=False): if verbose: if underscores: print("@" * len(f"VERBOSE: {printme}"),file=sys.stdout) print(f"VERBOSE: {printme}",file=sys.stdout) print("@" * len(f"VERBOSE: {printme}"),file=sys.stdout) else: print(f"VERBOSE: {printme}",file=sys.stdout) def print_debug_string(printme,debugmode=False,underscores=False): if debugmode: if underscores: print("@" * len(f"DEBUG : {printme}"),file=sys.stdout) print(f"DEBUG : {printme}",file=sys.stdout) print("@" * len(f"DEBUG : {printme}"),file=sys.stdout) else: print(f"DEBUG : {printme}",file=sys.stdout) '''These functions help organise or delete files''' def clearit(fname): if os.path.isfile(fname): os.remove(fname) return None ############################################################## ####################### Main Function ######################## ############################################################## def subtract_images(template,fitsfiles,savedir='./',badpixmapsave=False,overwrite=False,sextractorloc='/opt/local/bin/source-extractor',verbose=False,debugmode=False): # Start array to save subtracted images subtracted_images = [] badpixmap_images = [] paths_savedimages = [] paths_savedbadpixmapimages = [] # For each fitspath in fitsfiles, do template - fitspath for fitspath in fitsfiles: print_verbose_string(f'Operating on {fitspath}.',underscores=True,verbose=verbose) # Determine saveloc for subtracted image based on input savedir and input file name fname = ntpath.basename(fitspath) fname_stub = Path(fname).stem saveloc = savedir + os.path.sep + fname_stub + '_sub.fits' # Assume path to saved badpixmap if badpixmapsave is True. if badpixmapsave: badpixsaveloc = saveloc.replace('.fits','_badpixmap.fits') # Do image subtraction subtracted_image, badpixmap = subtract_image(template,fitspath,saveloc=saveloc,overwrite=overwrite,sextractorloc=sextractorloc,verbose=verbose,debugmode=debugmode) # Append to array of subtracted images subtracted_images.append(subtracted_image) badpixmap_images.append(badpixmap) # Append to array of subtracted image and badpixmap saved file locations. paths_savedimages.append(saveloc) if badpixmapsave: paths_savedbadpixmapimages.append(badpixsaveloc) # After all is done, print out all saved files again: print('\nSummarise what is saved:') if badpixmapsave: for f,b in zip(paths_savedimages,badpixmapsave): print(f'SAVED :{f},{b}') else: for f in paths_savedimages: print(f'SAVED :{f}') return subtracted_images ############################################################################ ####################### BODY OF PROGRAM STARTS HERE ######################## ############################################################################ if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] if debugmode: print(arguments) template = arguments['<template>'] fitsfiles = arguments['<fitsfiles>'] savedir = arguments['--save'] badpixmapsave = arguments['--badpixmapsave'] overwrite = arguments['--overwrite'] sextractorloc = arguments['--sextractor'] _ = subtract_images(template,fitsfiles,savedir=savedir,badpixmapsave=badpixmapsave,overwrite=overwrite,sextractorloc=sextractorloc,verbose=verbose,debugmode=debugmode) ``` #### File: datavis/misc/correct_photometry.py ```python import docopt import pandas as pd import astropy.io.ascii as ascii from astropy import units as u import numpy as np from datavis.ascii.match_catalogs import match_catalogs_df __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2021-06-13" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" ######################################### # ======= House Keeping Functions ======= ######################################### ############################################################## ####################### Main Function ######################## ############################################################## def correct_photometry(f_ref_cat,f_sci_cat,savedir=None, radius_threshold=1.0*u.arcsec, REF_RA_KEY='RA',REF_DEC_KEY='DEC',REF_PHOTOM_KEY='gmag', SCI_RA_KEY='X_WORLD',SCI_DEC_KEY='Y_WORLD',SCI_PHOTOM_KEY='MAG_AUTO', verbose=False,debugmode=False,quietmode=False): # Read in Catalogues cat_ref = ascii.read(f_ref_cat) cat_sci = ascii.read(f_sci_cat) df_ref = pd.DataFrame(cat_ref.as_array()) df_sci = pd.DataFrame(cat_sci.as_array()) # Match catalogues by RA and DEC df_ref_matched, df_sci_matched = match_catalogs_df(df_ref, df_sci,radius_threshold=radius_threshold, ref_RA_KEY=REF_RA_KEY,ref_DEC_KEY=REF_DEC_KEY, sci_RA_KEY=SCI_RA_KEY,sci_DEC_KEY=SCI_DEC_KEY) if debugmode: print(f'DEBUG: The number of ref+sci matched sources = {len(df_ref_matched)}') # Calculate ZP try: ref_mags = np.array([float(x) for x in df_ref_matched[REF_PHOTOM_KEY]]) except: ref_mags_temp = np.array(df_ref_matched[REF_PHOTOM_KEY]) for ii,v in enumerate(ref_mags_temp): if v == 'NA': ref_mags_temp[ii] = np.nan ref_mags = np.array([float(x) for x in ref_mags_temp]) sci_mags = np.array([float(x) for x in df_sci_matched[SCI_PHOTOM_KEY]]) zps = ref_mags - sci_mags if debugmode: print(f'DEBUG: The average {SCI_PHOTOM_KEY} of matched sci sources is {np.nanmean(sci_mags)}') print(f'DEBUG: The average {REF_PHOTOM_KEY} of matched ref sources is {np.nanmean(ref_mags)}') print(f'DEBUG: The average of the difference is: {np.nanmean(zps)}') print(f'DEBUG: The median of the difference is: {np.nanmedian(zps)}') print('DEBUG: Use the median difference to correct photometry.') ZP = np.nanmedian(zps) # Calculate corrected photometry new_sci_mag = df_sci[SCI_PHOTOM_KEY]+ZP if debugmode: print(f'DEBUG: The median science magnitude is: {np.median(new_sci_mag)}') # Save new catalogue file_ext = f_sci_cat.split('.')[-1] if savedir==None: f_save = f_sci_cat.replace('.'+file_ext,'_CORRECTED.'+file_ext) else: fname = ntpath.basename(f_sci_cat) f_save = savedir+os.sep+fname.replace('.'+file_ext,'_CORRECTED.'+file_ext) df_sci[SCI_PHOTOM_KEY] = new_sci_mag header_string = '' for k in np.array(df_sci.keys()): header_string=header_string+k+' ' np.savetxt(f_save, df_sci.values, fmt='%f',header=header_string) if not quietmode: print(f'Saved: {f_save}') return f_save ############################################################################ ####################### BODY OF PROGRAM STARTS HERE ######################## ############################################################################ if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] quietmode = arguments['--quietmode'] if debugmode: print(arguments) savedir = arguments['--out'] f_ref_cat = arguments['<reference_cat>'] f_sci_cat = arguments['<science_cat>'] radius_threshold = float(arguments['--RADIUS_THRESHOLD'])*u.arcsec REF_RA_KEY = arguments['--REF_RA_KEY'] REF_DEC_KEY = arguments['--REF_DEC_KEY'] REF_PHOTOM_KEY = arguments['--REF_PHOTOM_KEY'] SCI_RA_KEY = arguments['--SCI_RA_KEY'] SCI_DEC_KEY = arguments['--SCI_DEC_KEY'] SCI_PHOTOM_KEY = arguments['--SCI_PHOTOM_KEY'] _ = correct_photometry(f_ref_cat,f_sci_cat,savedir=savedir, radius_threshold=radius_threshold, REF_RA_KEY=REF_RA_KEY,REF_DEC_KEY=REF_DEC_KEY,REF_PHOTOM_KEY=REF_PHOTOM_KEY, SCI_RA_KEY=SCI_RA_KEY,SCI_DEC_KEY=SCI_DEC_KEY,SCI_PHOTOM_KEY=SCI_PHOTOM_KEY, verbose=verbose,debugmode=debugmode,quietmode=quietmode) ``` #### File: datavis/misc/get_angularsep.py ```python import docopt import astropy.units as u from astropy.coordinates import SkyCoord # dataexplore modules from misc.radec import hms2deg, dms2deg, deg2hms, deg2dms __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2021-01-14" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" ############################################################## ####################### Main Functions ####################### ############################################################## def get_angularsep(RA1,DEC1,RA2,DEC2,verbose=False,debugmode=False,quietmode=False): # check if input format is ok # do this later # convert all to decimal if ':' in 'RA1': ra1 = hms2deg(RA1) else: ra1 = float(RA1) if ':' in 'RA2': ra2 = hms2deg(RA2) else: ra2 = float(RA2) if ':' in 'DEC1': dec1 = dms2deg(DEC1) else: dec1 = float(DEC1) if ':' in 'DEC2': dec2 = dms2deg(DEC2) else: dec2 = float(DEC2) # Calculate angular separation c1 = SkyCoord(ra1*u.deg, dec1*u.deg, frame='icrs') c2 = SkyCoord(ra2*u.deg, dec2*u.deg, frame='icrs') angular_sep = c1.separation(c2) print(f'{angular_sep.deg:.4f} deg |', angular_sep, f'| {angular_sep.arcsec:.3f} arcsec') return angular_sep ############################################################################ ####################### BODY OF PROGRAM STARTS HERE ######################## ############################################################################ if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] quietmode = arguments['--quietmode'] if debugmode: print(arguments) RADEC1 = arguments['<RADEC1>'] RA1, DEC1 = RADEC1.split(',') RADEC2 = arguments['<RADEC2>'] RA2, DEC2 = RADEC2.split(',') _ = get_angularsep(RA1,DEC1,RA2,DEC2,verbose=verbose,debugmode=debugmode,quietmode=quietmode) ``` #### File: datavis/misc/radec.py ```python import docopt import astropy.io.fits as fits import numpy as np import sys, os, ntpath from pathlib import Path __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2020-08-06" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" ######################################### # ======= House Keeping Functions ======= ######################################### '''These functions standardise verbose, debug printing''' def print_verbose_string(printme,verbose=False,underscores=False): if verbose: if underscores: print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) print(f"VERBOSE: {printme}",file=sys.stdout) print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) else: print(f"VERBOSE: {printme}",file=sys.stdout) def print_debug_string(printme,debugmode=False,underscores=False): if debugmode: if underscores: print("-" * len(f"DEBUG : {printme}"),file=sys.stdout) print(f"DEBUG : {printme}",file=sys.stdout) print("-" * len(f"DEBUG : {printme}"),file=sys.stdout) else: print(f"DEBUG : {printme}",file=sys.stdout) '''These functions help organise or delete files''' def clearit(fnames,debugmode=False): for fname in fnames: if os.path.isfile(fname): os.remove(fname) printme = f'Temporary file deleted: {fname}.' print_debug_string(printme,debugmode=debugmode) return None ############################################################## #################### other RADEC Functions ################### ############################################################## def minussignornot(x): if x >= 0: sign = '' if x < 0: sign = '-' return sign def hms2deg(ras): '''hms format: e.g. 12:23:34.32''' ras_deg = [] for ra in ras: try: rh, rm, rs = [float(r) for r in ra.split(':')] except: rh, rm = [float(r) for r in ra.split(':')] rs = 0.0 ra_deg = rh*15 + rm/4 + rs/240 ras_deg.append(ra_deg) return ras_deg def dms2deg(decs): '''dms format: e.g. 12:23:34.32 or -12:23:34.32 ''' decs_deg = [] for dec in decs: try: dd, dm, ds = [float(d) for d in dec.split(':')] except: dd, dm = [float(d) for d in dec.split(':')] ds = 0.0 if dd < 0: sign = -1 else: sign = 1 dec_deg = dd + sign*dm/60 + sign*ds/3600 decs_deg.append(dec_deg) return decs_deg def deg2dms(decs): decs_dms = [] for dec in decs: dec = float(dec) pmsign = minussignornot(dec) dec = abs(dec) d = np.floor(dec) m = np.floor((dec-d)*60.) s = ((dec-d)*60.-m)*60. dms = f'{pmsign}{int(d)}:{int(m)}:{s}' decs_dms.append(dms) return decs_dms def deg2hms(ras): ras_hms = [] for ra in ras: ra = np.float(ra) h = np.floor(ra/15) m = np.floor( (ra/15 - h)*60. ) s = ((ra/15 - h)*60. -m)*60. hms = f'{int(h)}:{int(m)}:{s}' ras_hms.append(hms) return ras_hms ############################################################## ####################### Main Functions ####################### ############################################################## def sexagesimal2deg(RA,DEC,verbose=False,debugmode=False,quietmode=False): [ra] = hms2deg([RA]) [dec] = dms2deg([DEC]) print(ra,dec) return None def deg2sexagecimal(RA,DEC,verbose=False,debugmode=False,quietmode=False): [ra] = deg2hms([RA]) [dec] = deg2dms([DEC]) print(ra,dec) return None ############################################################################ ####################### BODY OF PROGRAM STARTS HERE ######################## ############################################################################ if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] quietmode = arguments['--quietmode'] if debugmode: print(arguments) input_deg = arguments['deci2sexa'] input_sexagecimal = arguments['sexa2deci'] RADEC = arguments['<RADEC>'] RA, DEC = RADEC.split(',') if input_sexagecimal: _ = sexagesimal2deg(RA,DEC,verbose=verbose,debugmode=debugmode,quietmode=quietmode) if input_deg: _ = deg2sexagecimal(RA,DEC,verbose=verbose,debugmode=debugmode,quietmode=quietmode) ``` #### File: jielaizhang/datavis/template.py ```python import docopt import astropy.io.fits as fits import numpy as np import sys, os import ntpath from pathlib import Path from datetime import datetime import string import random import pandas as pd import astropy.io.ascii as ascii import copy __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __date__ = "2021-06-07" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" ######################################### # ======= House Keeping Functions ======= ######################################### '''These functions standardise verbose, debug printing''' def print_verbose_string(printme,verbose=False,underscores=False): if verbose: if underscores: print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) print(f"VERBOSE: {printme}",file=sys.stdout) print("-" * len(f"VERBOSE: {printme}"),file=sys.stdout) else: print(f"VERBOSE: {printme}",file=sys.stdout) def print_debug_string(printme,debugmode=False,underscores=False): if debugmode: if underscores: print("-" * len(f"DEBUG : {printme}"),file=sys.stdout) print(f"DEBUG : {printme}",file=sys.stdout) print("-" * len(f"DEBUG : {printme}"),file=sys.stdout) else: print(f"DEBUG : {printme}",file=sys.stdout) '''These functions help organise or delete files''' def clearit(fnames,debugmode=False): for fname in fnames: if os.path.isfile(fname): os.remove(fname) printme = f'Temporary file deleted: {fname}.' print_debug_string(printme,debugmode=debugmode) return None ############################################################## ####################### Main Function ######################## ############################################################## def XXX(verbose=False,debugmode=False,quietmode=False): # Determine save directory savedir = os.sep.join(saveloc.split(os.sep)[0:-1]) + os.sep # Determine saveloc for subtracted image based on input savedir and input file name fname = ntpath.basename(fitspath) fname_stub = Path(fname).stem stub = Path(ntpath.basename(fitspath)).stem saveloc = savedir + os.path.sep + fname_stub + '_sub.fits' # Convert to dt dt = datetime.strptime(sunset_CT.iso, '%Y-%m-%d %H:%M:%S.%f') #2020-10-23 16:01:22.058 # Random string S=5 # number of characters in random string ran = ''.join(random.choices(string.ascii_uppercase + string.digits, k = S)) # Make temporoary random directory temp_dir = './temporary_'+ran os.makedirs(temp_dir) # Saving fits file fits.writeto(output,stellar_mask) printme = f'SAVED : {output}' print(printme) # Reading in csvs a = ascii.read(f) df = pd.DataFrame(a.as_array()) new_df = df[df['column']>3] # Plot fig = plt.figure() ax = fig.add_subplot(1,1,1) # plot something here if xyaxislims: if ~np.isfinite(xmin): xmin = ax.get_xlim()[0] if ~np.isfinite(xmax): xmax = ax.get_xlim()[1] if ~np.isfinite(ymin): ymin = ax.get_ylim()[0] if ~np.isfinite(ymax): ymax = ax.get_ylim()[1] plt.ylim([ymin,ymax]) plt.xlim([xmin,xmax]) return None ############################################################################ ####################### BODY OF PROGRAM STARTS HERE ######################## ############################################################################ if __name__ == "__main__": # Read in input arguments arguments = docopt.docopt(__doc__) verbose = arguments['--verbose'] debugmode = arguments['--debug'] quietmode = arguments['--quietmode'] if debugmode: print(arguments) saveloc = arguments['--out'] input_add = arguments['add'] input_subtract = arguments['subtract'] blah = arguments['<blah>'] xyaxislims = arguments['--boundonaxis'] if xyaxislims: xmin,xmax,ymin,ymax = np.array(xyaxislims.split(',')).astype(np.float) _ = XXX(verbose=verbose,debugmode=debugmode,quietmode=quietmode) ```
{ "source": "jielaizhang/obstools", "score": 3 }
#### File: obstools/followup/create_VLTfindingchartInputs.py ```python import docopt import numpy as np from astropy.table import Table from astropy import wcs from astropy.wcs import WCS from astropy.io import fits import os import datetime as dt import os from astropy.nddata.utils import Cutout2D from astroquery.vizier import Vizier from astropy.coordinates import Angle def create_finding_chart_inputs(RA,DEC, field,source_name, templateimage_path, findingchartdir='/fred/oz100/FINDING_CHARTS/', verbose=False, debugmode=False): print('\n#############################################') print('Creating files needed to create finding chart image for RA: {} DEC: {}'.format(RA,DEC)) print('#############################################\n') # Let's keep things organized, so always put the outputs of this script here: outputdir = findingchartdir+'/'+field+'/'+source_name+'/' if verbose: print('Template image used: {}\n'.format(templateimage_path)) if not os.path.exists(outputdir): os.makedirs(outputdir, 0o755) else: pass with fits.open(templateimage_path) as hdu: size = 1370 w = WCS(hdu[0].header) head = hdu[0].header date = dt.datetime.strptime(head['DATE'], '%Y-%m-%dT%H:%M:%S') xlim = head['NAXIS1'] ylim = head['NAXIS2'] pixcrd_im = np.array([[xlim, ylim]], np.float_) world_im = w.wcs_pix2world(pixcrd_im, 1) pixx_im, pixy_im = world_im[0][0], world_im[0][1] pixcrd = np.array([[RA, DEC]], np.float_) worldpix = w.wcs_world2pix(pixcrd, 1) pixx, pixy = worldpix[0][0], worldpix[0][1] cutout = Cutout2D(hdu[0].data, (pixx, pixy), size, wcs= w) hdu[0].data = cutout.data hdu[0].header['CRPIX1'] = cutout.wcs.wcs.crpix[0] hdu[0].header['CRPIX2'] = cutout.wcs.wcs.crpix[1] outfile_large = outputdir +'/'+ source_name+'6arcmin.fits' hdu.writeto(outfile_large, overwrite = True) print('========SAVED===Large fits cutout file saved: \n {}'.format(outfile_large)) with fits.open(templateimage_path) as hdu: size = 457 w = WCS(hdu[0].header) head = hdu[0].header date = dt.datetime.strptime(head['DATE'], '%Y-%m-%dT%H:%M:%S') xlim = head['NAXIS1'] ylim = head['NAXIS2'] pixcrd_im = np.array([[xlim, ylim]], np.float_) world_im = w.wcs_pix2world(pixcrd_im, 1) pixx_im, pixy_im = world_im[0][0], world_im[0][1] pixcrd = np.array([[RA, DEC]], np.float_) worldpix = w.wcs_world2pix(pixcrd, 1) pixx, pixy = worldpix[0][0], worldpix[0][1] cutout = Cutout2D(hdu[0].data, (pixx, pixy), size, wcs= w) hdu[0].data = cutout.data hdu[0].header['CRPIX1'] = cutout.wcs.wcs.crpix[0] hdu[0].header['CRPIX2'] = cutout.wcs.wcs.crpix[1] outfile_small = outputdir + '/' + source_name+'2arcmin.fits' hdu.writeto(outfile_small, overwrite = True) print('========SAVED===Small fits cutout file saved: \n {}'.format(outfile_small)) # Create a catalog of sources within the field of view. if debugmode: print('Starting to search for GAIA sources') GAIA_DR2 = "I/345" RA_DEC = str(f'{RA} {DEC}') result = Vizier.query_region(RA_DEC, radius=Angle('120"'), catalog=GAIA_DR2) GAIA_DR2 = Table() GAIA_DR2['RA'] = result[0]['RA_ICRS'] GAIA_DR2['DEC'] = result[0]['DE_ICRS'] GAIA_DR2['Gmag'] = result[0]['Gmag'] GAIA_DR2['BPmag'] = result[0]['BPmag'] GAIA_DR2['RPmag'] = result[0]['RPmag'] outfile_cat = outputdir + '/' + source_name + '_gaia_star_cat.ascii' GAIA_DR2.write(outfile_cat, format='ascii', overwrite=True) print('========SAVED===Small cutout star catalog saved: \n {}'.format(outfile_cat)) print('\nTo Create Finding Chart, run the following in terminal:') print('--pa 0.0 (position angle of slit)') print("--PI '<NAME>'") print("--RunID '0103.D-0625(A)' (Take from proposal, VLT)") print("--OBname Transient1 (Observation Block or Target Name)") print("--fitswaveband g-band (for background image)") print('RADEC={},{}'.format(RA,DEC)) print('largefits={}'.format(outfile_large)) print('smallfits={}'.format(outfile_small)) print('catfile={}'.format(outfile_cat)) print('outfile={}'.format(outputdir+'/'+source_name+'_finding_chart.jpg')) print('python ~/src/dwftools/FOLLOWUP/create_VLTfindingchart.py $RADEC $largefits $smallfits $catfile -o $outfile') print('\n#############################################') print('# YOUR FINDING CHART INPUTS ARE DONE') print('# FIND THEM HERE: {}'.format(outputdir)) print('#############################################\n') if __name__ == "__main__": ## read in arguments arguments = docopt.docopt(__doc__, options_first=True) # Mandatory arguments RA = arguments['<RA>'] DEC = arguments['<DEC>'] field = arguments['<field>'] source_name = arguments['<source_name>'] templateimage_path = arguments['<templateimage_path>'] # Optional arguments verbose = arguments['--verbose'] debugmode = arguments['--debug'] findingchartdir = arguments['--findingchartdir'] if debugmode: print(arguments) create_finding_chart_inputs(RA,DEC, field,source_name, templateimage_path, findingchartdir=findingchartdir, verbose=verbose,debugmode=debugmode) ``` #### File: obstools/followup/create_VLTfindingchart.py ```python import docopt import os import numpy as np import astropy.io.fits as fits import matplotlib.pyplot as plt import aplpy import astropy.visualization as astrovis from astropy import wcs import astropy import pandas as pd from pandas.plotting import table def draw_line(plot, theta, length, ra, dec, color='b', linewidth=1, alpha=0.7): theta = theta*np.pi/180.0 length = length/2.0 dx = np.sin(theta)*length/(np.cos(dec*np.pi/180.0)*60.0) dy = np.cos(theta)*length/60.0 coords = np.array([[ra+dx, ra-dx], [dec+dy, dec-dy]]) plot.show_lines([coords], color=color, linewidth=linewidth, alpha=alpha) return plot def read_cat_gaia(f_cat,number_fstars,verbose=False): # Read in catalog cat = np.genfromtxt(f_cat,names=True,skip_header=0) catRA = cat['RA'] catDec = cat['DEC'] catG = cat['Gmag'] catB = cat['BPmag'] catR = cat['RPmag'] # Sort catalog entries by g-band mag catG_sorted = np.sort(catG) catB_sorted = [x for _,x in sorted(zip(catG,catB))] catR_sorted = [x for _,x in sorted(zip(catG,catR))] catRA_sorted = [x for _,x in sorted(zip(catG,catRA))] catDec_sorted = [x for _,x in sorted(zip(catG,catDec))] # Pick X brightest stars catG_sorted_top = catG_sorted[0:number_refstars] catB_sorted_top = catB_sorted[0:number_refstars] catR_sorted_top = catR_sorted[0:number_refstars] catRA_sorted_top = catRA_sorted[0:number_refstars] catDec_sorted_top = catDec_sorted[0:number_refstars] # Calculate other information required catGR_sorted_top = catG_sorted_top-catR_sorted_top RAoffset_arcsec = (np.array(catRA_sorted_top)-ra)*60.*60. DECoffset_arcsec = (np.array(catDec_sorted_top)-dec)*60.*60. return catG_sorted_top,catGR_sorted_top,catRA_sorted_top,catDec_sorted_top,RAoffset_arcsec,DECoffset_arcsec def create_refstardf(catRA, catDec, catg, catgr, RAoffset_arcsec, DECoffset_arcsec, catalog='gaia', verbose=False): # Define file number_refstars = len(catRA) gband_name = 'mag (gaia G)' color_name = 'color (gaia G-R)' if number_refstars > 0: labels = ['#'+str(x+1) for x in range(number_refstars)] d = {'Label': labels, 'RA': catRA, 'DEC': catDec, gband_name:catg, color_name:catgr, 'RAoffset (arcsec)':RAoffset_arcsec, 'DECoffset (arcsec)':DECoffset_arcsec } else: d = {'Label':['x'], 'RA':['x'], 'DEC':['x'], gband_name:['x'], color_name:['x'], 'RAoffset (arcsec)':['x'], 'DECoffset (arcsec':['x']} print('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') print('ISSUE: There were no reference stars found in the catalog entry\n') df_stars = pd.DataFrame(data=d) return df_stars def create_OBinfodf(PI='<NAME>',RunID='?',OBname='Transient1',fitsband='g-band',pa=0.0,verbose=False): # Define info table # Table of Observing Block information d = {'Item': ['Observing Run ID', 'PI name', 'OB/ Target Name','slit PA (deg)','image wavelength band'], 'Entry':[RunID,PI,OBname,pa,fitsband]} df_info = pd.DataFrame(data=d) return df_info def make_chart(ra,dec,f_6arcmin,f_2arcmin,df_stars,df_info,catRA,catDec,pa=0.0,saveloc='./finding_chart.jpg',verbose=False): color='red' fig = plt.figure(figsize=(12,24)) # ====== 6 arcmin image === # Load fits d, h = fits.getdata(f_6arcmin,header=True) # Visualize fits interval = astrovis.ZScaleInterval() vmin,vmax=interval.get_limits(d) img = aplpy.FITSFigure(f_6arcmin, figure=fig, subplot=[0.1,0.6,0.9,0.4]) img.show_grayscale(stretch='linear', vmin=vmin, vmax=vmax) # Mark RA and DEC target img.show_markers([ra],[dec],coords_frame='world',s=10) # Add scalebar scalebar_length = 1./60. #arcmin img.add_scalebar(length=scalebar_length) img.scalebar.set_label('1 arcmin') img.scalebar.set_linewidth(3) img.scalebar.set_font_size(15) img.scalebar.set_font_weight('medium') # Draw box for 2'x2' zoom in boxsize_arcsec=2.*60 w = wcs.WCS(h) [[x1,y1]]=w.wcs_world2pix([ [ra,dec] ], 1) pixelscale_arcsec = astropy.wcs.utils.proj_plane_pixel_scales(w)*60.*60. boxsize_pixel = boxsize_arcsec/pixelscale_arcsec[0] img.show_rectangles([x1], [y1], boxsize_pixel, boxsize_pixel, coords_frame='pixel',edgecolor='red',linewidth=2) # ====== 2 arc min image === # Visualize image img2 = aplpy.FITSFigure(f_2arcmin, figure=fig, subplot=[0.1,0.2,0.9,0.4]) img2.show_grayscale(stretch='linear', vmin=vmin, vmax=vmax) # Draw slit draw_line(img2,0.,4,ra,dec,color='red') # Draw scalebar scalebar_length = 10./60./60. #arcmin img2.add_scalebar(length=scalebar_length) img2.scalebar.set_label('10 arcsec') img2.scalebar.set_linewidth(3) img2.scalebar.set_font_size(15) img2.scalebar.set_font_weight('medium') # Mark RA and DEC target img2.show_markers([ra],[dec],coords_frame='world',s=100,edgecolor=color,linewidth=2) img2.add_label(ra+0.006,dec+0.0006,'TARGET',color=color,size='xx-large',weight='bold') # Show acquisition specific reference stars number_refstars = len(catRA) labels = ['#'+str(x+1) for x in range(number_refstars)] for refstar_ra,refstar_dec,label in zip(catRA, catDec, labels): img2.show_markers([refstar_ra],[refstar_dec],coords_frame='world',s=10,edgecolor=color,linewidth=3) img2.add_label(refstar_ra+0.002,refstar_dec+0.0002,label,color=color,size='xx-large',weight='bold') # ====== Tables to be printed === # Table of acquisition reference stars ax2 = fig.add_axes([0.1,0.1,0.9,0.06]) ax2.xaxis.set_visible(False) # hide the x axis ax2.yaxis.set_visible(False) # hide the y axis table(ax2, df_stars, rowLabels=['']*df_stars.shape[0], loc='center') # where df is your data frame # Table of information needed to be printed ax3 = fig.add_axes([0.1,0.05,0.9,0.04]) ax3.xaxis.set_visible(False) # hide the x axis ax3.yaxis.set_visible(False) # hide the y axis table(ax3, df_info, rowLabels=['']*df_info.shape[0], loc='center') # where df is your data frame # Save figure fig.savefig(saveloc, bbox_inches='tight') full_path = os.path.abspath(saveloc) print('Finding chart saved: ',full_path) scpcommand='scp <EMAIL>:'+full_path+' ./finding_chart.jpg' print(scpcommand) scpcommand='scp <EMAIL>:'+full_path+' '+full_path.split('/')[-1] print(scpcommand) return scpcommand def create_VLTfindingchart(ra,dec,f_6arcmin,f_2arcmin,f_catgaia,pa=0.0,number_refstars=8, PI='<NAME>',RunID='?',OBname='Transient1',fitsband='g-band', saveloc='./finding_chart.jpg', verbose=False): # Read in catalog catG,catGR,catRA,catDec,RAoffset_arcsec,DECoffset_arcsec = read_cat_gaia(f_catgaia,number_refstars,verbose=verbose) # Create pd table for acquisition specific reference stars df_stars = create_refstardf(catRA, catDec, catG, catGR, RAoffset_arcsec, DECoffset_arcsec, catalog='gaia', verbose=verbose) # Create pd table of information df_info = create_OBinfodf(PI=PI,RunID=RunID,OBname=OBname,fitsband=fitsband,pa=pa,verbose=verbose) # Create finding chart scpcommand = make_chart(ra,dec,f_6arcmin,f_2arcmin,df_stars,df_info,catRA,catDec,pa=pa,saveloc=saveloc,verbose=verbose) # Finish up print('#################################') print('Congrats, finding chart made! ') print('\nUse this to get your finding chart on whatever computer you want!\n') print(scpcommand) print('#################################') return None ####################### BODY OF PROGRAM STARTS HERE ######################## if __name__ == "__main__": # Read in arguments arguments = docopt.docopt(__doc__) # Mandatory arguments RADEC = arguments['<RADEC>'] ra = float(RADEC.split(',')[0]) dec = float(RADEC.split(',')[1]) f_6arcmin = arguments['<6arcminfits>'] f_2arcmin = arguments['<2arcminfits>'] f_catgaia = arguments['<catgaia>'] # Optional arguments verbose = arguments['--verbose'] debugmode = arguments['--debug'] saveloc = arguments['--out'] pa = float(arguments['--pa']) number_refstars = int(arguments['--norefstars']) PI = arguments['--PI'] RunID = arguments['--RunID'] OBname = arguments['--OBname'] fitsband = arguments['--fitswaveband'] if debugmode: print(arguments) create_VLTfindingchart(ra,dec,f_6arcmin,f_2arcmin,f_catgaia,pa=pa,number_refstars=number_refstars, PI=PI,RunID=RunID,OBname=OBname,fitsband=fitsband, saveloc=saveloc, verbose=verbose) ```
{ "source": "jielinxu/pymilvus", "score": 3 }
#### File: pymilvus/examples/example.py ```python from milvus import Milvus, Prepare, IndexType, Status import time # Milvus server IP address and port. # You may need to change _HOST and _PORT accordingly. _HOST = '127.0.0.1' _PORT = '19530' def main(): milvus = Milvus() # Connect to Milvus server # You may need to change _HOST and _PORT accordingly param = {'host': _HOST, 'port': _PORT} status = milvus.connect(**param) # Create table demo_table if it dosen't exist. table_name = 'demo_table' if not milvus.has_table(table_name): param = { 'table_name': table_name, 'dimension': 16, 'index_type': IndexType.FLAT, 'store_raw_vector': False } milvus.create_table(Prepare.table_schema(**param)) # Show tables in Milvus server _, tables = milvus.show_tables() # Describe demo_table _, table = milvus.describe_table(table_name) # create 10 vectors with 16 dimension vector_list = [ [0.66, 0.01, 0.29, 0.64, 0.75, 0.94, 0.26, 0.79, 0.61, 0.11, 0.25, 0.50, 0.74, 0.37, 0.28, 0.63], [0.77, 0.65, 0.57, 0.68, 0.29, 0.93, 0.17, 0.15, 0.95, 0.09, 0.78, 0.37, 0.76, 0.21, 0.42, 0.15], [0.61, 0.38, 0.32, 0.39, 0.54, 0.93, 0.09, 0.81, 0.52, 0.30, 0.20, 0.59, 0.15, 0.27, 0.04, 0.37], [0.33, 0.03, 0.87, 0.47, 0.79, 0.61, 0.46, 0.77, 0.62, 0.70, 0.85, 0.01, 0.30, 0.41, 0.74, 0.98], [0.19, 0.80, 0.03, 0.75, 0.22, 0.49, 0.52, 0.91, 0.40, 0.91, 0.79, 0.08, 0.27, 0.16, 0.07, 0.24], [0.44, 0.36, 0.16, 0.88, 0.30, 0.79, 0.45, 0.31, 0.45, 0.99, 0.15, 0.93, 0.37, 0.25, 0.78, 0.84], [0.33, 0.37, 0.59, 0.66, 0.76, 0.11, 0.19, 0.38, 0.14, 0.37, 0.97, 0.50, 0.08, 0.69, 0.16, 0.67], [0.68, 0.97, 0.20, 0.13, 0.30, 0.16, 0.85, 0.21, 0.26, 0.17, 0.81, 0.96, 0.18, 0.40, 0.13, 0.74], [0.11, 0.26, 0.44, 0.91, 0.89, 0.79, 0.98, 0.91, 0.09, 0.45, 0.07, 0.88, 0.71, 0.35, 0.97, 0.41], [0.17, 0.54, 0.61, 0.58, 0.25, 0.63, 0.65, 0.71, 0.26, 0.80, 0.28, 0.77, 0.69, 0.02, 0.63, 0.60], ] vectors = Prepare.records(vector_list) # Insert vectors into demo_table status, ids = milvus.add_vectors(table_name=table_name, records=vectors) # Get demo_table row count status, result = milvus.get_table_row_count(table_name) # Wait for 6 seconds, since Milvus server persist vector data every 5 seconds by default. # You can set data persist interval in Milvus config file. time.sleep(6) # Use the 3rd vector for similarity search query_list = [ vector_list[3] ] query_vectors = Prepare.records(query_list) # execute vector similarity search param = { 'table_name': table_name, 'query_records': query_vectors, 'top_k': 1, } status, results = milvus.search_vectors(**param) if results[0][0].score == 100.0 or result[0][0].id == ids[3]: print('Query result is correct') else: print('Query result isn\'t correct') # Delete demo_table status = milvus.delete_table(table_name) # Disconnect from Milvus status = milvus.disconnect() if __name__ == '__main__': main() ```
{ "source": "JIElite/RL-gridworld", "score": 2 }
#### File: RL-gridworld/agent/utils.py ```python def soft_update_network(target, source, tau): for target_param, source_param in zip(target.parameters(), source.parameters()): target_param.data.copy_( target_param.data * (1 - tau) + source_param.data * tau ) def hard_update_network(target, source): target.load_state_dict(source.state_dict()) ``` #### File: RL-gridworld/env/env.py ```python from abc import abstractmethod import tkinter as tk from .agent import GridAgent from .grid import EmptyGrid class Environment: def __init__(self, render=False): self.renderable = render self.renderer = None self.action_space = None self.state_space = None self.agent = None @abstractmethod def __compute_reward(self, state, action): pass @abstractmethod def __is_terminal(self): pass @abstractmethod def __init_render(self): pass @abstractmethod def reset(self): pass @abstractmethod def step(self, action): pass @abstractmethod def get_state(self): pass def set_action_space(self, action_space): self.action_space = action_space def get_action_space(self): return self.action_space, self.action_space.shape def set_state_space(self, state_space): self.state_space = state_space def get_state_space(self): return self.state_space, self.state_space.shape def render(self): if not self.renderer: raise ValueError else: self.renderer.update() class GridWorld(Environment): def __init__(self, grid_size=(10, 10), unit_size=40, render=False): super(GridWorld, self).__init__(render=render) self.maze_grids = [] self.start_pos = (0, 0) self.goal_pos_list = [] self.grid_size = grid_size self.unit_size = unit_size self.canvas = None self.__init__render() @abstractmethod def init_start_pos(self): pass @abstractmethod def init_goal_pos(self): pass @abstractmethod def init_grid_world(self): pass def __init__render(self): if self.renderable: self.renderer = tk.Tk() self.renderer.title(self.__class__.__name__) self.renderer.geometry('{0}x{1}'.format( self.grid_size[0]*self.unit_size, self.grid_size[1]*self.unit_size, )) self.canvas = tk.Canvas(self.renderer, bg='white', height=self.grid_size[1]*self.unit_size, width=self.grid_size[0]*self.unit_size ) self.canvas.pack() def draw_grid_worlds(self): # draw grid line for c in range(0, self.grid_size[0] * self.unit_size, self.unit_size): x0, y0, x1, y1 = c, 0, c, self.grid_size[1] * self.unit_size self.canvas.create_line(x0, y0, x1, y1) for r in range(0, self.grid_size[1] * self.unit_size, self.unit_size): x0, y0, x1, y1 = 0, r, self.grid_size[0] * self.unit_size, r self.canvas.create_line(x0, y0, x1, y1) # fill differernt grids for y in range(self.grid_size[1]): for x in range(self.grid_size[0]): self.maze_grids[y][x].render(self.canvas, self.unit_size) def init_empty_grids(self): for y in range(self.grid_size[1]): self.maze_grids.append([]) for x in range(self.grid_size[0]): self.maze_grids[y].append(EmptyGrid(x, y)) def set_grid_size(self, grid_size): self.grid_size = grid_size def get_grid_size(self): return self.grid_size def set_unit_size(self, unit_size): self.unit_size = unit_size def get_unit_size(self): return self.unit_size def get_state(self): if isinstance(self.agent, GridAgent): return self.agent.get_current_state() else: raise ValueError('Attribute self.agent does not GridAgent.') ``` #### File: RL-gridworld/maze/demo_maze.py ```python from .simple_maze import SimpleMaze class Maze2(SimpleMaze): def __init__(self, grid_size=(10, 10), unit_size=40, render=False): super(Maze2, self).__init__(grid_size, unit_size, render) def init_start_pos(self): self.start_pos = (0, 0) def init_wall_pos(self): self.wall_pos_list = [(1, 1), (1, 2), (2, 1), (6, 6), (7, 7), (8, 8), (1, 8)] def init_goal_pos(self): self.goal_pos_list = [(5, 7), (9, 1)] ```
{ "source": "jielness/motor_lib", "score": 3 }
#### File: motor_lib/motor_lib/motor_lib.py ```python from serial import Serial from struct import pack from time import sleep class Motor: def __init__(self, serial='COM4', type1='CEM-FPM', type2='CEM-FPM'): self.mtype = ('CEM-FPM', 'EM-FPM') self.PSClib = [24153.6, 37781.28] self.state = 0 self.motor1_pos = 0 self.motor2_pos = 0 self.motor1_angle = 0 self.motor2_angle = 0 if type1 == self.mtype[0]: self.SPC1 = self.PSClib[0] elif type1 == self.mtype[1]: self.SPC1 = self.PSClib[1] else: self.SPC1 = self.PSClib[0] if type2 == self.mtype[0]: self.SPC2 = self.PSClib[0] elif type2 == self.mtype[1]: self.SPC2 = self.PSClib[1] else: self.SPC2 = self.PSClib[0] self.motor = Serial(serial, 9600, timeout=0.5) self.state = 1 temp_str = '' while temp_str != 'END\r\n': temp_str = self.motor.readline().decode('ascii') sleep(0.5) self.get_pos(1) self.get_pos(2) print('Please connect Mr.Liu if you meet problem or want to buy it.') print('Wechat: jilness, Tel: 18868112367') print('Motor Connected!') def run(self, motor_num=1, angle=0, ifprint=False, ): if motor_num == 1: steps = int(angle * self.SPC1 / 360) cmd = 'a'.encode('ascii') + pack('i', steps) elif motor_num == 2: steps = int(angle * self.SPC2 / 360) cmd = 'b'.encode('ascii') + pack('i', steps) else: return 0 self.sendcmd(cmd) self.get_pos(motor_num, ifprint) if ifprint: print('Motor Rotation finished!') return 1 def run_continue(self, motor_num=1, state=1,): if state == 1: if motor_num == 1: cmd = ('e'.encode('ascii') + pack('i', 0)) elif motor_num == 2: cmd = ('h'.encode('ascii') + pack('i', 0)) else: return 0 self.sendcmd(cmd) return 1 elif state == -1: if motor_num == 1: cmd = ('f'.encode('ascii') + pack('i', 0)) elif motor_num == 2: cmd = ('i'.encode('ascii') + pack('i', 0)) else: return 0 self.sendcmd(cmd) return 1 elif state == 0: if motor_num == 1: cmd = ('g'.encode('ascii') + pack('i', 0)) elif motor_num == 2: cmd = ('j'.encode('ascii') + pack('i', 0)) else: return 0 self.sendcmd(cmd) if motor_num == 1: self.get_pos(1) elif motor_num == 2: self.get_pos(2) else: return 0 return 1 else: return 0 def reset(self, motor_num=1, ifprint=False, ): if motor_num == 1: self.run(motor_num, -self.motor1_angle, ifprint) elif motor_num == 2: self.run(motor_num, -self.motor2_angle, ifprint) def get_pos(self, motor_num=1, ifprint=False, ): if motor_num == 1: cmd = 'c'.encode('ascii') + pack('i', 0) elif motor_num == 2: cmd = 'd'.encode('ascii') + pack('i', 0) else: return 0 value = self.sendcmd(cmd) pos = value[0] if len(pos): if motor_num == 1: self.motor1_pos = int(pos) self.motor1_angle = 360 * self.motor1_pos / self.SPC1 elif motor_num == 2: self.motor2_pos = int(pos) self.motor2_angle = 360 * self.motor2_pos / self.SPC2 if ifprint: if motor_num == 1: print(f'Motor 1 position: {self.motor1_angle}') elif motor_num == 2: print(f'Motor 2 position: {self.motor2_angle}') return 1 def save_pos(self, ifprint=False, ): cmd = 'k'.encode('ascii') + pack('i', 0) self.sendcmd(cmd) if ifprint: print(f'Save Position to EEPROM!') def clear_pos(self, motor_num=1, ifprint=False, ): if motor_num == 1: cmd = 'l'.encode('ascii') + pack('i', 0) elif motor_num == 2: cmd = 'm'.encode('ascii') + pack('i', 0) else: return 0 self.sendcmd(cmd) if ifprint: print(f'Clear Motor {motor_num} Data!') return 1 def sendcmd(self, cmd): self.motor.write(cmd) value = list() temp_str = '' while temp_str != 'END\r\n': temp_str = self.motor.readline().decode('ascii') if len(temp_str) != 0 and temp_str != 'END\r\n': value.append(temp_str.split()[0]) return value def disconnect(self, ): if self.state == 1: self.save_pos(True) self.motor.close() self.state = 0 def __del__(self): if self.state == 1: self.save_pos(True) self.motor.close() self.state = 0 ```
{ "source": "JielongZ/3D-UNet-PyTorch-Implementation", "score": 3 }
#### File: JielongZ/3D-UNet-PyTorch-Implementation/get_image_patches.py ```python import os import glob import json import SimpleITK as sitk from utils import label_converter def fetch_data_path(data_dir): """ Fetch all data path :param data_dir: the root folder where data stored :return: data path (pet_path, ct_path, mask_path), dtype: tuple """ data_paths = list() paths_list = glob.glob(os.path.join(os.path.dirname(__file__), data_dir, "*")) for i, subject_dir in enumerate(paths_list): if i < 10: pet_path = os.path.join(subject_dir, "STS_00" + str(i + 1) + "_PT_COR_16.tiff") ct_path = os.path.join(subject_dir, "STS_00" + str(i + 1) + "_CT_COR_16.tiff") mask_path = os.path.join(subject_dir, "STS_00" + str(i + 1) + "_MASS_PET_COR_16.tiff") data_paths.append((pet_path, ct_path, mask_path)) else: pet_path = os.path.join(subject_dir, "STS_0" + str(i + 1) + "_PT_COR_16.tiff") ct_path = os.path.join(subject_dir, "STS_0" + str(i + 1) + "_CT_COR_16.tiff") mask_path = os.path.join(subject_dir, "STS_0" + str(i + 1) + "_MASS_PET_COR_16.tiff") data_paths.append((pet_path, ct_path, mask_path)) return data_paths def get_data(data_path): """ use (pet_path, ct_path, mask_path) to get corresponding image array :param data_path: path consists of (pet_path, ct_path, mask_path) :return: a list of corresponding image path """ pet_path, ct_path, mask_path = data_path pet_img = sitk.GetArrayFromImage(sitk.ReadImage(pet_path)) ct_img = sitk.GetArrayFromImage(sitk.ReadImage(ct_path)) mask = sitk.GetArrayFromImage(sitk.ReadImage(mask_path)) mask = label_converter(mask) return [pet_img, ct_img, mask] def get_img_patch_idxs(img, overlap_stepsize): """ This function is used to get patch indices of a single image The patch indices generated here are used to crop one image into patches :param img: the single image :param overlap_stepsize: the overlap step size to generate patches :return: patch indices """ patch_idxs = [] depth, height, width = img.shape patch_depth, patch_height, patch_width = 128, 128, 128 depth_range = list(range(0, depth - patch_depth + 1, overlap_stepsize)) height_range = list(range(0, height - patch_height + 1, overlap_stepsize)) width_range = list(range(0, width - patch_width + 1, overlap_stepsize)) if (depth - patch_depth) % overlap_stepsize != 0: depth_range.append(depth - patch_depth) if (height - patch_height) % overlap_stepsize != 0: height_range.append(height - patch_height) if (width - patch_width) % overlap_stepsize != 0: width_range.append(width - patch_width) for d in depth_range: for h in height_range: for w in width_range: patch_idxs.append((d, h, w)) return patch_idxs def crop_image(data_path, output_path, overlap_stepsize): """ Cropping volumetric images into various patches with fixed size, e.g. (96, 96, 96) :param data_path: the complete data path for original data :param output_path: the output root folder for cropped images :param overlap_stepsize: the overlap step size used for cropping images :return: data paths and patches dict that stores number of patches for a single volumetric image and indices for that image """ patch_dict = dict() patch_depth, patch_height, patch_width = 128, 128, 128 no_sample = len(data_path) for i in range(no_sample): pet_path, ct_path, mask_path = data_path[i] subject = os.path.basename(os.path.dirname(pet_path)) print("Start Processing subject {}".format(subject)) pet, ct, mask = get_data(data_path=data_path[i]) patch_idxs = get_img_patch_idxs(img=pet, overlap_stepsize=overlap_stepsize) total_no_of_patch_idxs = len(patch_idxs) patch_dict[subject] = (total_no_of_patch_idxs, mask_path, patch_idxs) for j in range(len(patch_idxs)): d, h, w = patch_idxs[j] cropped_pet = sitk.GetImageFromArray(pet[d: d + patch_depth, h: h + patch_height, w: w + patch_width]) cropped_ct = sitk.GetImageFromArray(ct[d: d + patch_depth, h: h + patch_height, w: w + patch_width]) cropped_mask = sitk.GetImageFromArray(mask[d: d + patch_depth, h: h + patch_height, w: w + patch_width]) subject_dir = os.path.basename(os.path.dirname(pet_path)) if not os.path.exists(os.path.join(output_path, subject_dir, "PET")) or \ not os.path.exists(os.path.join(output_path, subject_dir, "CT")) or \ not os.path.exists(os.path.join(output_path, subject_dir, "MASK")): os.makedirs(os.path.join(output_path, subject_dir, "PET")) os.makedirs(os.path.join(output_path, subject_dir, "CT")) os.makedirs(os.path.join(output_path, subject_dir, "MASK")) sitk.WriteImage(cropped_pet, os.path.join(os.path.join(output_path, os.path.basename(os.path.dirname(pet_path)), "PET"), os.path.splitext(os.path.basename(pet_path))[0] + "_" + str(j + 1) + os.path.splitext(os.path.basename(pet_path))[1])) sitk.WriteImage(cropped_ct, os.path.join(os.path.join(output_path, os.path.basename(os.path.dirname(ct_path)), "CT"), os.path.splitext(os.path.basename(ct_path))[0] + "_" + str(j + 1) + os.path.splitext(os.path.basename(ct_path))[1])) sitk.WriteImage(cropped_mask, os.path.join(os.path.join(output_path, os.path.basename(os.path.dirname(mask_path)), "MASK"), os.path.splitext(os.path.basename(mask_path))[0] + "_" + str(j + 1) + os.path.splitext(os.path.basename(mask_path))[1])) with open("patches_dict.json", "w") as f: json.dump(patch_dict, f) return data_path, patch_dict if __name__ == "__main__": ps = fetch_data_path("data") dp, pd = crop_image(ps, "./processed", overlap_stepsize=64) ``` #### File: JielongZ/3D-UNet-PyTorch-Implementation/train.py ```python import torch from torch.nn import CrossEntropyLoss from unet3d_model.unet3d import UnetModel, Trainer from unet3d_model.tmp import UNet from unet3d_model.loss import DiceLoss from data_gen import get_data_paths, data_gen, batch_data_gen def train_main(data_folder, in_channels, out_channels, learning_rate, no_epochs): """ Train module :param data_folder: data folder :param in_channels: the input channel of input images :param out_channels: the final output channel :param learning_rate: set learning rate for training :param no_epochs: number of epochs to train model :return: None """ model = UNet(in_dim=in_channels, out_dim=out_channels, num_filters=16) optim = torch.optim.Adam(params=model.parameters(), lr=learning_rate) criterion = DiceLoss() trainer = Trainer(data_dir=data_folder, net=model, optimizer=optim, criterion=criterion, no_epochs=no_epochs) trainer.train(data_paths_loader=get_data_paths, dataset_loader=data_gen, batch_data_loader=batch_data_gen) if __name__ == "__main__": data_dir = "./processed" train_main(data_folder=data_dir, in_channels=1, out_channels=1, learning_rate=0.0001, no_epochs=10) ```
{ "source": "jielyu/animations", "score": 3 }
#### File: leetcode/e001_100/q1338.py ```python from manimlib.imports import * from itertools import chain class BasicScene(Scene): pass class Problem(BasicScene): def construct(self): t = TextMobject('Problem') self.play(Write(t)) class Solution01(BasicScene): def construct(self): t = TextMobject('Solution01') self.play(Write(t)) ``` #### File: src/test/test_mobject.py ```python from manimlib.imports import * class TextExample(Scene): """文本对象测试实例""" def construct(self): title1 = TextMobject("Hello, world") title2 = TextMobject("你好,中国") title1.move_to(UL) title2.move_to(DR) self.play(Write(title1)) self.wait() self.play(Write(title2)) self.wait() self.remove(title1) self.wait() class PositionExample(Scene): """对象位置操作实例""" def construct(self): # to_edge t1 = TextMobject("to\_edge(UP)") t1.to_edge(UP) self.play(Write(t1)) t2 = TextMobject("to\_edge(DOWN)") t2.to_edge(DOWN) self.play(Write(t2)) t3 = TextMobject("to\_edge(LEFT)") t3.to_edge(LEFT) self.play(Write(t3)) t4 = TextMobject("to\_edge(RIGHT)") t4.to_edge(RIGHT) self.play(Write(t4)) self.remove(t1, t2, t3, t4) self.wait() # to_corner t1 = TextMobject("to\_corner(UL)") t1.to_corner(UL) self.play(Write(t1)) t2 = TextMobject("to\_corner(UR)") t2.to_corner(UR) self.play(Write(t2)) t3 = TextMobject("to\_corner(DR)") t3.to_corner(DR) self.play(Write(t3)) t4 = TextMobject("to\_corner(DL)") t4.to_corner(DL) self.play(Write(t4)) self.remove(t1, t2, t3, t4) self.wait() # move_to t1 = TextMobject("move\_to()") t1.move_to(UL) self.play(Write(t1)) t1.move_to(UR) self.play(Write(t1)) t1.move_to(DR) self.play(Write(t1)) t1.move_to(DL) self.play(Write(t1)) t1.move_to(UL) self.play(Write(t1)) self.wait() self.remove(t1) self.wait() # next_to t1 = TextMobject("Text") t2 = TexMobject("next\_to(Text)") t2.next_to(3*RIGHT) self.play(Write(t1)) self.play(Write(t2)) self.wait() self.remove(t1, t2) self.wait() # shift t1 = TextMobject("shift()") t1.shift(3*LEFT) self.play(Write(t1)) t1.shift(3*RIGHT) self.play(Write(t1)) self.wait() self.remove(t1) self.wait() # rotate t1 = TextMobject('rotate()') for i in range(8): t1.rotate(PI/4) self.play(Write(t1)) self.wait() self.wait() self.remove(t1) self.wait() # flip t1 = TextMobject('flip') t1.flip(UP) self.play(Write(t1)) t1.flip(LEFT) self.play(Write(t1)) t1.flip(RIGHT) self.play(Write(t1)) t1.flip(DOWN) self.play(Write(t1)) self.wait() self.remove(t1) self.wait() class SizeTextExample(Scene): """改变文本大小测试实例""" def construct(self): textHuge = TextMobject("{\\Huge Huge Text 012.\\#!?} Text") texthuge = TextMobject("{\\huge huge Text 012.\\#!?} Text") textLARGE = TextMobject("{\\LARGE LARGE Text 012.\\#!?} Text") textLarge = TextMobject("{\\Large Large Text 012.\\#!?} Text") textlarge = TextMobject("{\\large large Text 012.\\#!?} Text") textNormal = TextMobject("{\\normalsize normal Text 012.\\#!?} Text") textsmall = TextMobject("{\\small small Text 012.\\#!?} Texto normal") textfootnotesize = TextMobject("{\\footnotesize footnotesize Text 012.\\#!?} Text") textscriptsize = TextMobject("{\\scriptsize scriptsize Text 012.\\#!?} Text") texttiny = TextMobject("{\\tiny tiny Texto 012.\\#!?} Text normal") textHuge.to_edge(UP) texthuge.next_to(textHuge,DOWN,buff=0.1) textLARGE.next_to(texthuge,DOWN,buff=0.1) textLarge.next_to(textLARGE,DOWN,buff=0.1) textlarge.next_to(textLarge,DOWN,buff=0.1) textNormal.next_to(textlarge,DOWN,buff=0.1) textsmall.next_to(textNormal,DOWN,buff=0.1) textfootnotesize.next_to(textsmall,DOWN,buff=0.1) textscriptsize.next_to(textfootnotesize,DOWN,buff=0.1) texttiny.next_to(textscriptsize,DOWN,buff=0.1) self.add(textHuge, texthuge, textLARGE, textLarge, textlarge, textNormal, textsmall, textfootnotesize, textscriptsize, texttiny) self.wait(3) class TextArrayExample(Scene): """文本数组测试实例""" def construct(self): t = TexMobject("A", "{B", "\\over", "C}", "D", "E") t[0].set_color(RED) t[1].set_color(ORANGE) t[2].set_color(YELLOW) t[3].set_color(GREEN) t[4].set_color(BLUE) t[5].set_color(BLUE) self.play(Write(t)) self.wait(2) t.shift(LEFT*2) self.play(Write(t)) self.wait() class VGroupExample(Scene): """向量组测试实例""" def construct(self): text1 = TextMobject("text1") text2 = TextMobject("text2 text2") text3 = TextMobject("text3 text3 text3") textgroup = VGroup(text1,text2,text3) textgroup.arrange( UP, aligned_edge = LEFT, buff=0.4 ) self.add(textgroup) self.wait() class ShapeExample(Scene): """常用几何形状实例""" def construct(self): # Dot dot = Dot(radius=1, color=YELLOW) dot.move_to(LEFT*3) self.play(Write(dot)) self.wait() self.remove(dot) # Circle c = Circle(color=BLUE) c.move_to(RIGHT*3) self.play(Write(c)) self.wait() self.remove(c) # Annulus a = Annulus() a.move_to(UP*3) self.play(Write(a)) self.wait() self.remove(a) # Rectangle rect = Rectangle() rect.move_to(DOWN*3) self.play(Write(rect)) self.wait() self.remove(rect) # Square rect = Square() rect.move_to(UL*3) self.play(Write(rect)) self.wait() self.remove(rect) # Ellipse e = Ellipse() e.move_to(UR*3) self.play(Write(e)) self.wait() self.remove(e) # Arc arc = Arc() arc.move_to(DR*3) self.play(Write(arc)) self.wait() self.remove(arc) # Line l = Line() self.play(Write(l)) self.wait() self.remove(l) class Shape3DExample(ThreeDScene): """三维对象例程""" def construct(self): # Sphere s = Sphere() s.move_to(LEFT*3) self.play(Write(s)) self.wait() self.remove(s) # Cube c = Cube() c.move_to(RIGHT*3) self.play(Write(c)) self.wait() self.remove(c) # Prism p = Prism() p.move_to(UP) self.play(Write(p)) self.wait() self.remove(p) # ParametricSurface axes = ThreeDAxes() cylinder = ParametricSurface( lambda u, v: np.array([ np.cos(TAU * v), np.sin(TAU * v), 2 * (1 - u) ]), resolution=(6, 32)).fade(0.5) #Resolution of the surfaces paraboloid = ParametricSurface( lambda u, v: np.array([ np.cos(v)*u, np.sin(v)*u, u**2 ]),v_max=TAU, checkerboard_colors=[PURPLE_D, PURPLE_E], resolution=(10, 32)).scale(2) para_hyp = ParametricSurface( lambda u, v: np.array([ u, v, u**2-v**2 ]),v_min=-2,v_max=2,u_min=-2,u_max=2,checkerboard_colors=[BLUE_D, BLUE_E], resolution=(15, 32)).scale(1) cone = ParametricSurface( lambda u, v: np.array([ u*np.cos(v), u*np.sin(v), u ]),v_min=0,v_max=TAU,u_min=-2,u_max=2,checkerboard_colors=[GREEN_D, GREEN_E], resolution=(15, 32)).scale(1) hip_one_side = ParametricSurface( lambda u, v: np.array([ np.cosh(u)*np.cos(v), np.cosh(u)*np.sin(v), np.sinh(u) ]),v_min=0,v_max=TAU,u_min=-2,u_max=2,checkerboard_colors=[YELLOW_D, YELLOW_E], resolution=(15, 32)) ellipsoid=ParametricSurface( lambda u, v: np.array([ 1*np.cos(u)*np.cos(v), 2*np.cos(u)*np.sin(v), 0.5*np.sin(u) ]),v_min=0,v_max=TAU,u_min=-PI/2,u_max=PI/2,checkerboard_colors=[TEAL_D, TEAL_E], resolution=(15, 32)).scale(2) sphere = ParametricSurface( lambda u, v: np.array([ 1.5*np.cos(u)*np.cos(v), 1.5*np.cos(u)*np.sin(v), 1.5*np.sin(u) ]),v_min=0,v_max=TAU,u_min=-PI/2,u_max=PI/2,checkerboard_colors=[RED_D, RED_E], resolution=(15, 32)).scale(2) self.set_camera_orientation(phi=75 * DEGREES) self.begin_ambient_camera_rotation(rate=0.2) self.add(axes) self.play(Write(sphere)) self.wait() self.play(ReplacementTransform(sphere,ellipsoid)) self.wait() self.play(ReplacementTransform(ellipsoid,cone)) self.wait() self.play(ReplacementTransform(cone,hip_one_side)) self.wait() self.play(ReplacementTransform(hip_one_side,para_hyp)) self.wait() self.play(ReplacementTransform(para_hyp,paraboloid)) self.wait() self.play(ReplacementTransform(paraboloid,cylinder)) self.wait() self.play(FadeOut(cylinder)) self.remove(axes, sphere, ellipsoid, cone, hip_one_side, para_hyp, paraboloid, cylinder) # ParametricFunction curve1=ParametricFunction( lambda u : np.array([ 1.2*np.cos(u), 1.2*np.sin(u), u/2 ]),color=RED,t_min=-TAU,t_max=TAU, ) curve2=ParametricFunction( lambda u : np.array([ 1.2*np.cos(u), 1.2*np.sin(u), u ]),color=RED,t_min=-TAU,t_max=TAU, ) curve1.set_shade_in_3d(True) curve2.set_shade_in_3d(True) axes = ThreeDAxes() self.add(axes) self.set_camera_orientation(phi=80 * DEGREES,theta=-60*DEGREES) self.begin_ambient_camera_rotation(rate=0.1) self.play(ShowCreation(curve1)) self.wait() self.play(Transform(curve1,curve2), rate_func=there_and_back,run_time=3) self.wait() ```
{ "source": "jielyu/fresh_attempt", "score": 2 }
#### File: fresh_attempt/test_python/test_vispy.py ```python import numpy as np from vispy import gloo from vispy import app from vispy.util.transforms import perspective, translate, rotate from vispy.gloo.util import _screenshot # Create vertices n, p = 100, 150 data = np.zeros(p * n, [('a_position', np.float32, 2), ('a_color', np.float32, 4), ('a_rotation', np.float32, 4)]) trail = .5 * np.pi data['a_position'][:, 0] = np.resize(np.linspace(0, trail, n), p * n) data['a_position'][:, 0] += np.repeat(np.random.uniform(0, 2 * np.pi, p), n) data['a_position'][:, 1] = np.repeat(np.linspace(0, 2 * np.pi, p), n) data['a_color'] = 1, 1, 1, 1 data['a_color'] = np.repeat( np.random.uniform(0.75, 1.00, (p, 4)).astype(np.float32), n, axis=0) data['a_color'][:, 3] = np.resize(np.linspace(0, 1, n), p * n) data['a_rotation'] = np.repeat( np.random.uniform(0, 2 * np.pi, (p, 4)).astype(np.float32), n, axis=0) vert = """ #version 120 uniform mat4 u_model; uniform mat4 u_view; uniform mat4 u_projection; uniform float u_size; uniform float u_clock; attribute vec2 a_position; attribute vec4 a_color; attribute vec4 a_rotation; varying vec4 v_color; mat4 build_rotation(vec3 axis, float angle) { axis = normalize(axis); float s = sin(angle); float c = cos(angle); float oc = 1.0 - c; return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0); } void main (void) { v_color = a_color; float x0 = 1.5; float z0 = 0.0; float theta = a_position.x + u_clock; float x1 = x0*cos(theta) + z0*sin(theta); float y1 = 0.0; float z1 = (z0*cos(theta) - x0*sin(theta))/2.0; mat4 R = build_rotation(a_rotation.xyz, a_rotation.w); gl_Position = u_projection * u_view * u_model * R * vec4(x1,y1,z1,1); gl_PointSize = 8.0 * u_size * sqrt(v_color.a); } """ frag = """ #version 120 varying vec4 v_color; varying float v_size; void main() { float d = 2*(length(gl_PointCoord.xy - vec2(0.5,0.5))); gl_FragColor = vec4(v_color.rgb, v_color.a*(1-d)); } """ class Canvas(app.Canvas): def __init__(self): app.Canvas.__init__(self, keys='interactive') self.size = 800, 800 self.program = gloo.Program(vert, frag) self.view = np.eye(4, dtype=np.float32) self.model = np.eye(4, dtype=np.float32) self.projection = np.eye(4, dtype=np.float32) self.translate = 4.5 #translate(self.view, 0, 0, -self.translate) self.view = translate([0, 0, -self.translate]) self.program.bind(gloo.VertexBuffer(data)) self.program['u_model'] = self.model self.program['u_view'] = self.view self.program['u_size'] = 5 / self.translate gloo.set_state('translucent', depth_test=False) self.program['u_clock'] = 0.0 def on_resize(self, event): width, height = event.size gloo.set_viewport(0, 0, width, height) self.projection = perspective(45.0, width / float(height), 1.0, 1000.0) self.program['u_projection'] = self.projection def animation(self, t): """ Added for animation with MoviePy """ self.program['u_clock'] = 2*t gloo.clear('red') self.program.draw('points') return _screenshot((0, 0, self.size[0], self.size[1]))[:,:,:3] if __name__ == '__main__': from moviepy.editor import VideoClip canvas = Canvas() canvas.show() clip = VideoClip(canvas.animation, duration=np.pi).resize(0.3) clip.write_videofile('atom3.mp4', fps=20) #clip.write_gif('atom3.gif', fps=20, opt='OptimizePlus') ```
{ "source": "jielyugt/calibration", "score": 3 }
#### File: scripts/calibration/cal_methods.py ```python import numpy as np from scipy.optimize import minimize from sklearn.metrics import log_loss import pandas as pd import time from sklearn.metrics import log_loss, brier_score_loss from tensorflow.keras.losses import categorical_crossentropy from os.path import join import sklearn.metrics as metrics # Imports to get "utility" package import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath("utility") ) ) ) from utility.unpickle_probs import unpickle_probs from utility.evaluation import ECE, MCE def softmax(x): """ Compute softmax values for each sets of scores in x. Parameters: x (numpy.ndarray): array containing m samples with n-dimensions (m,n) Returns: x_softmax (numpy.ndarray) softmaxed values for initial (m,n) array """ e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=1, keepdims=1) class HistogramBinning(): """ Histogram Binning as a calibration method. The bins are divided into equal lengths. The class contains two methods: - fit(probs, true), that should be used with validation data to train the calibration model. - predict(probs), this method is used to calibrate the confidences. """ def __init__(self, M=15): """ M (int): the number of equal-length bins used """ self.bin_size = 1./M # Calculate bin size self.conf = [] # Initiate confidence list self.upper_bounds = np.arange(self.bin_size, 1+self.bin_size, self.bin_size) # Set bin bounds for intervals def _get_conf(self, conf_thresh_lower, conf_thresh_upper, probs, true): """ Inner method to calculate optimal confidence for certain probability range Params: - conf_thresh_lower (float): start of the interval (not included) - conf_thresh_upper (float): end of the interval (included) - probs : list of probabilities. - true : list with true labels, where 1 is positive class and 0 is negative). """ # Filter labels within probability range filtered = [x[0] for x in zip(true, probs) if x[1] > conf_thresh_lower and x[1] <= conf_thresh_upper] nr_elems = len(filtered) # Number of elements in the list. if nr_elems < 1: return 0 else: # In essence the confidence equals to the average accuracy of a bin conf = sum(filtered)/nr_elems # Sums positive classes return conf def fit(self, probs, true): """ Fit the calibration model, finding optimal confidences for all the bins. Params: probs: probabilities of data true: true labels of data """ conf = [] # Got through intervals and add confidence to list for conf_thresh in self.upper_bounds: temp_conf = self._get_conf((conf_thresh - self.bin_size), conf_thresh, probs = probs, true = true) conf.append(temp_conf) self.conf = conf # Fit based on predicted confidence def predict(self, probs): """ Calibrate the confidences Param: probs: probabilities of the data (shape [samples, classes]) Returns: Calibrated probabilities (shape [samples, classes]) """ # Go through all the probs and check what confidence is suitable for it. for i, prob in enumerate(probs): idx = np.searchsorted(self.upper_bounds, prob) probs[i] = self.conf[idx] return probs class TemperatureScaling(): def __init__(self, temp = 1, maxiter = 50, solver = "BFGS"): """ Initialize class Params: temp (float): starting temperature, default 1 maxiter (int): maximum iterations done by optimizer, however 8 iterations have been maximum. """ self.temp = temp self.maxiter = maxiter self.solver = solver def _loss_fun(self, x, probs, true): # Calculates the loss using log-loss (cross-entropy loss) scaled_probs = self.predict(probs, x) loss = log_loss(y_true=true, y_pred=scaled_probs) return loss # Find the temperature def fit(self, logits, true): """ Trains the model and finds optimal temperature Params: logits: the output from neural network for each class (shape [samples, classes]) true: one-hot-encoding of true labels. Returns: the results of optimizer after minimizing is finished. """ true = true.flatten() # Flatten y_val opt = minimize(self._loss_fun, x0 = 1, args=(logits, true), options={'maxiter':self.maxiter}, method = self.solver) self.temp = opt.x[0] return opt def predict(self, logits, temp = None): """ Scales logits based on the temperature and returns calibrated probabilities Params: logits: logits values of data (output from neural network) for each class (shape [samples, classes]) temp: if not set use temperatures find by model or previously set. Returns: calibrated probabilities (nd.array with shape [samples, classes]) """ if not temp: return softmax(logits/self.temp) else: return softmax(logits/temp) def evaluate(probs, y_true, verbose = False, normalize = False, bins = 15): """ Evaluate model using various scoring measures: Error Rate, ECE, MCE, NLL, Brier Score Params: probs: a list containing probabilities for all the classes with a shape of (samples, classes) y_true: a list containing the actual class labels verbose: (bool) are the scores printed out. (default = False) normalize: (bool) in case of 1-vs-K calibration, the probabilities need to be normalized. bins: (int) - into how many bins are probabilities divided (default = 15) Returns: (error, ece, mce, loss, brier), returns various scoring measures """ preds = np.argmax(probs, axis=1) # Take maximum confidence as prediction if normalize: confs = np.max(probs, axis=1)/np.sum(probs, axis=1) # Check if everything below or equal to 1? else: confs = np.max(probs, axis=1) # Take only maximum confidence accuracy = metrics.accuracy_score(y_true, preds) * 100 error = 100 - accuracy # Calculate ECE ece = ECE(confs, preds, y_true, bin_size = 1/bins) # Calculate MCE mce = MCE(confs, preds, y_true, bin_size = 1/bins) loss = log_loss(y_true=y_true, y_pred=probs) y_prob_true = np.array([probs[i, idx] for i, idx in enumerate(y_true)]) # Probability of positive class brier = brier_score_loss(y_true=y_true, y_prob=y_prob_true) # Brier Score (MSE) if verbose: print("Accuracy:", accuracy) print("Error:", error) print("ECE:", ece) print("MCE:", mce) print("Loss:", loss) print("brier:", brier) return (error, ece, mce, loss, brier) def cal_results(fn, path, files, m_kwargs = {}, approach = "all"): """ Calibrate models scores, using output from logits files and given function (fn). There are implemented to different approaches "all" and "1-vs-K" for calibration, the approach of calibration should match with function used for calibration. TODO: split calibration of single and all into separate functions for more use cases. Params: fn (class): class of the calibration method used. It must contain methods "fit" and "predict", where first fits the models and second outputs calibrated probabilities. path (string): path to the folder with logits files files (list of strings): pickled logits files ((logits_val, y_val), (logits_test, y_test)) m_kwargs (dictionary): keyword arguments for the calibration class initialization approach (string): "all" for multiclass calibration and "1-vs-K" for 1-vs-K approach. Returns: df (pandas.DataFrame): dataframe with calibrated and uncalibrated results for all the input files. """ df = pd.DataFrame(columns=["Name", "Error", "ECE", "MCE", "Loss", "Brier"]) total_t1 = time.time() for i, f in enumerate(files): name = "_".join(f.split("_")[1:-1]) print(name) t1 = time.time() FILE_PATH = join(path, f) (logits_val, y_val), (logits_test, y_test) = unpickle_probs(FILE_PATH) if approach == "all": y_val = y_val.flatten() model = fn(**m_kwargs) model.fit(logits_val, y_val) probs_val = model.predict(logits_val) probs_test = model.predict(logits_test) error, ece, mce, loss, brier = evaluate(softmax(logits_test), y_test, verbose=True) # Test before scaling error2, ece2, mce2, loss2, brier2 = evaluate(probs_test, y_test, verbose=False) print("Error %f; ece %f; mce %f; loss %f, brier %f" % evaluate(probs_val, y_val, verbose=False, normalize=True)) else: # 1-vs-k models probs_val = softmax(logits_val) # Softmax logits probs_test = softmax(logits_test) K = probs_test.shape[1] # Go through all the classes for k in range(K): # Prep class labels (1 fixed true class, 0 other classes) y_cal = np.array(y_val == k, dtype="int")[:, 0] # Train model model = fn(**m_kwargs) model.fit(probs_val[:, k], y_cal) # Get only one column with probs for given class "k" probs_val[:, k] = model.predict(probs_val[:, k]) # Predict new values based on the fittting probs_test[:, k] = model.predict(probs_test[:, k]) # Replace NaN with 0, as it should be close to zero # TODO is it needed? idx_nan = np.where(np.isnan(probs_test)) probs_test[idx_nan] = 0 idx_nan = np.where(np.isnan(probs_val)) probs_val[idx_nan] = 0 # Get results for test set error, ece, mce, loss, brier = evaluate(softmax(logits_test), y_test, verbose=True, normalize=False) error2, ece2, mce2, loss2, brier2 = evaluate(probs_test, y_test, verbose=False, normalize=True) print("Error %f; ece %f; mce %f; loss %f, brier %f" % evaluate(probs_val, y_val, verbose=False, normalize=True)) df.loc[i*2] = [name, error, ece, mce, loss, brier] df.loc[i*2+1] = [(name + "_calib"), error2, ece2, mce2, loss2, brier2] t2 = time.time() print("Time taken:", (t2-t1), "\n") total_t2 = time.time() print("Total time taken:", (total_t2-total_t1)) return df ``` #### File: scripts/dan_nlp/preprocess.py ```python from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical import pickle as pkl import numpy as np class PreProcessor: def __init__(self,INPUT_FILE,WE_FILE): self.input_file = INPUT_FILE self.we_file = WE_FILE def tokenize(self): data = pkl.load(open(self.input_file,"rb")) self.train_data = np.array(data["train"]) self.val_data = np.array(data["dev"]) questions = np.array(["".join(self.train_data[i,0]) for i in range(self.train_data.shape[0])]) questions_val = np.array(["".join(self.val_data[i,0]) for i in range(self.val_data.shape[0])]) print(questions[0]) #questions = np.array([self.train_data[i,0] for i in range(self.train_data.shape[0])]) #questions_val = np.array([self.train_data[i,0] for i in range(self.val_data.shape[0])]) tokenizer = Tokenizer() tokenizer.fit_on_texts(questions) self.sequences = tokenizer.texts_to_sequences(questions) self.sequences_val = tokenizer.texts_to_sequences(questions_val) self.word_index = tokenizer.word_index print("Found %s unique tokens" %(len(self.word_index))) def make_data(self): self.MAX_SEQUENCE_LENGTH = max([len(self.sequences[i]) for i in range(len(self.sequences))]) data = pad_sequences(self.sequences,maxlen=self.MAX_SEQUENCE_LENGTH) data_val = pad_sequences(self.sequences_val,maxlen=self.MAX_SEQUENCE_LENGTH) answers_train = set(self.train_data[:,1]) answers_val = set(self.val_data[:,1]) answers = answers_train.union(answers_val) labels_index = {} # labels_index["Henry IV of France"] answers_index = {} # answers_index[0] for i,j in enumerate(answers): labels_index[j] = i answers_index[i] = j labels = np.zeros((len(self.sequences),1)) labels_val = np.zeros((len(self.sequences_val),1)) for i in range(len(self.sequences)): labels[i] = labels_index[self.train_data[i,1]] for i in range(len(self.sequences_val)): labels_val[i] = labels_index[self.val_data[i,1]] labels = to_categorical(labels,num_classes=len(answers)) labels_val = to_categorical(labels_val,num_classes=len(answers)) print("Shape of data tensor: " +str(data.shape)) print("Shape of label tensor: " +str(labels.shape)) return data, labels, data_val, labels_val def get_word_embedding_matrix(self,EMBEDDING_DIM=100): embeddings_index = {} if self.we_file == "rand": return None f = open(self.we_file) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() print('Found %s word vectors.' % len(embeddings_index)) self.embedding_matrix = np.zeros((len(self.word_index)+1, EMBEDDING_DIM)) for word, i in self.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. self.embedding_matrix[i] = embedding_vector return self.embedding_matrix if __name__ == "__main__": pass ``` #### File: scripts/lenet/eval_model_c100.py ```python import keras import numpy as np from keras import optimizers from keras.datasets import cifar10, cifar100 from keras.models import Sequential from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D from keras.callbacks import LearningRateScheduler, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from sklearn.model_selection import train_test_split import pickle # Imports to get "utility" package import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath("utility") ) ) ) from utility.evaluation import evaluate_model batch_size = 128 epochs = 200 iterations = 45000 // batch_size num_classes10 = 10 num_classes100 = 100 weight_decay = 0.0001 seed = 333 N = 1 weights_file_10 = "../../models/lenet_5_c10.h5" weights_file_100 = "../../models/lenet_5_c100.h5" # Model based on LeNet article. def build_model(n=1, num_classes = 10): """ parameters: n: (int) scaling for model (n times filters in Conv2D and nodes in Dense) """ model = Sequential() model.add(Conv2D(n*6, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay), input_shape=(32,32,3))) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(Conv2D(n*16, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay))) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(Flatten()) model.add(Dense(n*120, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) )) model.add(Dense(n*84, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) )) model.add(Dense(num_classes, activation = 'softmax', kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay) )) sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) return model def color_preprocessing(x_train,x_test): x_train = x_train.astype('float32') x_test = x_test.astype('float32') mean = [125.307, 122.95, 113.865] std = [62.9932, 62.0887, 66.7048] for i in range(3): x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i] x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i] return x_train, x_test if __name__ == '__main__': print("Evaluate CIFAR.100 - LeNet") # load data (x_train, y_train), (x_test, y_test) = cifar100.load_data() x_train, x_test = color_preprocessing(x_train, x_test) x_train45, x_val, y_train45, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=seed) # random_state = seed y_train45 = keras.utils.to_categorical(y_train45, num_classes100) y_val = keras.utils.to_categorical(y_val, num_classes100) y_test = keras.utils.to_categorical(y_test, num_classes100) # build network model = build_model(n = N, num_classes = num_classes100) evaluate_model(model, weights_file_100, x_test, y_test, bins = 15, verbose = True, pickle_file = "probs_lenet5_c100", x_val = x_val, y_val = y_val) ``` #### File: scripts/resnet_imgnet/image_gen_extended.py ```python from __future__ import print_function import numpy as np import re from scipy import linalg import scipy.ndimage as ndi from six.moves import range import os import sys import threading import copy import inspect import types import keras.backend as K from keras.utils.generic_utils import Progbar def random_rotation(x, rg, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): theta = np.pi / 180 * np.random.uniform(-rg, rg) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_shift(x, wrg, hrg, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): h, w = x.shape[row_index], x.shape[col_index] tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_shear(x, intensity, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): shear = np.random.uniform(-intensity, intensity) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_zoom(x, zoom_range, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): if len(zoom_range) != 2: raise Exception('zoom_range should be a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_barrel_transform(x, intensity): # TODO pass def random_channel_shift(x, intensity, channel_index=0): x = np.rollaxis(x, channel_index, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index+1) return x def transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def apply_transform(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.): x = np.rollaxis(x, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index+1) return x def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def array_to_img(x, dim_ordering=K.image_dim_ordering(), mode=None, scale=True): from PIL import Image x = x.copy() if dim_ordering == 'th': x = x.transpose(1, 2, 0) if scale: x += max(-np.min(x), 0) x /= np.max(x) x *= 255 if x.shape[2] == 3 and mode == 'RGB': return Image.fromarray(x.astype('uint8'), mode) elif x.shape[2] == 1 and mode == 'L': return Image.fromarray(x[:, :, 0].astype('uint8'), mode) elif mode: return Image.fromarray(x, mode) else: raise Exception('Unsupported array shape: ', x.shape) def img_to_array(img, dim_ordering=K.image_dim_ordering()): if dim_ordering not in ['th', 'tf']: raise Exception('Unknown dim_ordering: ', dim_ordering) # image has dim_ordering (height, width, channel) x = np.asarray(img, dtype='float32') if len(x.shape) == 3: if dim_ordering == 'th': x = x.transpose(2, 0, 1) elif len(x.shape) == 2: if dim_ordering == 'th': x = x.reshape((1, x.shape[0], x.shape[1])) else: x = x.reshape((x.shape[0], x.shape[1], 1)) else: raise Exception('Unsupported image shape: ', x.shape) return x def load_img(path, target_mode=None, target_size=None): from PIL import Image img = Image.open(path) if target_mode: img = img.convert(target_mode) if target_size: img = img.resize((target_size[1], target_size[0])) return img def list_pictures(directory, ext='jpg|jpeg|bmp|png'): return [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and re.match('([\w]+\.(?:' + ext + '))', f)] def pil_image_reader(filepath, target_mode=None, target_size=None, dim_ordering=K.image_dim_ordering(), **kwargs): img = load_img(filepath, target_mode=target_mode, target_size=target_size) return img_to_array(img, dim_ordering=dim_ordering) def standardize(x, dim_ordering='th', rescale=False, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, mean=None, std=None, samplewise_std_normalization=False, zca_whitening=False, principal_components=None, featurewise_standardize_axis=None, samplewise_standardize_axis=None, fitting=False, verbose=0, config={}, **kwargs): ''' # Arguments featurewise_center: set input mean to 0 over the dataset. samplewise_center: set each sample mean to 0. featurewise_std_normalization: divide inputs by std of the dataset. samplewise_std_normalization: divide each input by its std. featurewise_standardize_axis: axis along which to perform feature-wise center and std normalization. samplewise_standardize_axis: axis along which to to perform sample-wise center and std normalization. zca_whitening: apply ZCA whitening. ''' if fitting: if config.has_key('_X'): # add data to _X array config['_X'][config['_iX']] = x config['_iX'] +=1 if verbose and config.has_key('_fit_progressbar'): config['_fit_progressbar'].update(config['_iX'], force=(config['_iX']==fitting)) # the array (_X) is ready to fit if config['_iX'] >= fitting: X = config['_X'].astype('float32') del config['_X'] del config['_iX'] if featurewise_center or featurewise_std_normalization: featurewise_standardize_axis = featurewise_standardize_axis or 0 if type(featurewise_standardize_axis) is int: featurewise_standardize_axis = (featurewise_standardize_axis, ) assert 0 in featurewise_standardize_axis, 'feature-wise standardize axis should include 0' if featurewise_center: mean = np.mean(X, axis=featurewise_standardize_axis, keepdims=True) config['mean'] = np.squeeze(mean, axis=0) X -= mean if featurewise_std_normalization: std = np.std(X, axis=featurewise_standardize_axis, keepdims=True) config['std'] = np.squeeze(std, axis=0) X /= (std + 1e-7) if zca_whitening: flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3])) sigma = np.dot(flatX.T, flatX) / flatX.shape[1] U, S, V = linalg.svd(sigma) config['principal_components'] = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T) if verbose: del config['_fit_progressbar'] else: # start a new fitting, fitting = total sample number config['_X'] = np.zeros((fitting,)+x.shape) config['_iX'] = 0 config['_X'][config['_iX']] = x config['_iX'] +=1 if verbose: config['_fit_progressbar'] = Progbar(target=fitting, verbose=verbose) return x if rescale: x *= rescale # x is a single image, so it doesn't have image number at index 0 if dim_ordering == 'th': channel_index = 0 if dim_ordering == 'tf': channel_index = 2 samplewise_standardize_axis = samplewise_standardize_axis or channel_index if type(samplewise_standardize_axis) is int: samplewise_standardize_axis = (samplewise_standardize_axis, ) if samplewise_center: x -= np.mean(x, axis=samplewise_standardize_axis, keepdims=True) if samplewise_std_normalization: x /= (np.std(x, axis=samplewise_standardize_axis, keepdims=True) + 1e-7) if verbose: if (featurewise_center and mean is None) or (featurewise_std_normalization and std is None) or (zca_whitening and principal_components is None): print('WARNING: feature-wise standardization and zca whitening will be disabled, please run "fit" first.') if featurewise_center: if mean is not None: x -= mean if featurewise_std_normalization: if std is not None: x /= (std + 1e-7) if zca_whitening: if principal_components is not None: flatx = np.reshape(x, (x.size)) whitex = np.dot(flatx, principal_components) x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2])) return x def center_crop(x, center_crop_size, **kwargs): centerw, centerh = x.shape[1]//2, x.shape[2]//2 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2 return x[:, centerw-halfw:centerw+halfw,centerh-halfh:centerh+halfh] def random_crop(x, random_crop_size, sync_seed=None, **kwargs): np.random.seed(sync_seed) w, h = x.shape[1], x.shape[2] rangew = (w - random_crop_size[0]) // 2 rangeh = (h - random_crop_size[1]) // 2 offsetw = 0 if rangew == 0 else np.random.randint(rangew) offseth = 0 if rangeh == 0 else np.random.randint(rangeh) return x[:, offsetw:offsetw+random_crop_size[0], offseth:offseth+random_crop_size[1]] def random_transform(x, dim_ordering='th', rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, sync_seed=None, **kwargs): ''' # Arguments rotation_range: degrees (0 to 180). width_shift_range: fraction of total width. height_shift_range: fraction of total height. shear_range: shear intensity (shear angle in radians). zoom_range: amount of zoom. if scalar z, zoom will be randomly picked in the range [1-z, 1+z]. A sequence of two can be passed instead to select this range. channel_shift_range: shift range for each channels. fill_mode: points outside the boundaries are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'nearest'. cval: value used for points outside the boundaries when fill_mode is 'constant'. Default is 0. horizontal_flip: whether to randomly flip images horizontally. vertical_flip: whether to randomly flip images vertically. rescale: rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation). ''' np.random.seed(sync_seed) x = x.astype('float32') # x is a single image, so it doesn't have image number at index 0 if dim_ordering == 'th': img_channel_index = 0 img_row_index = 1 img_col_index = 2 if dim_ordering == 'tf': img_channel_index = 2 img_row_index = 0 img_col_index = 1 # use composition of homographies to generate final transform that needs to be applied if rotation_range: theta = np.pi / 180 * np.random.uniform(-rotation_range, rotation_range) else: theta = 0 rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) if height_shift_range: tx = np.random.uniform(-height_shift_range, height_shift_range) * x.shape[img_row_index] else: tx = 0 if width_shift_range: ty = np.random.uniform(-width_shift_range, width_shift_range) * x.shape[img_col_index] else: ty = 0 translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if shear_range: shear = np.random.uniform(-shear_range, shear_range) else: shear = 0 shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) if np.isscalar(zoom_range): zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: zoom_range = [zoom_range[0], zoom_range[1]] else: raise Exception('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix) h, w = x.shape[img_row_index], x.shape[img_col_index] transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_index, fill_mode=fill_mode, cval=cval) if channel_shift_range != 0: x = random_channel_shift(x, channel_shift_range, img_channel_index) if horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, img_col_index) if vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, img_row_index) # TODO: # barrel/fisheye np.random.seed() return x class ImageDataGenerator(object): '''Generate minibatches with real-time data augmentation. # Arguments featurewise_center: set input mean to 0 over the dataset. samplewise_center: set each sample mean to 0. featurewise_std_normalization: divide inputs by std of the dataset. samplewise_std_normalization: divide each input by its std. featurewise_standardize_axis: axis along which to perform feature-wise center and std normalization. samplewise_standardize_axis: axis along which to to perform sample-wise center and std normalization. zca_whitening: apply ZCA whitening. rotation_range: degrees (0 to 180). width_shift_range: fraction of total width. height_shift_range: fraction of total height. shear_range: shear intensity (shear angle in radians). zoom_range: amount of zoom. if scalar z, zoom will be randomly picked in the range [1-z, 1+z]. A sequence of two can be passed instead to select this range. channel_shift_range: shift range for each channels. fill_mode: points outside the boundaries are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'nearest'. cval: value used for points outside the boundaries when fill_mode is 'constant'. Default is 0. horizontal_flip: whether to randomly flip images horizontally. vertical_flip: whether to randomly flip images vertically. rescale: rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation). dim_ordering: 'th' or 'tf'. In 'th' mode, the channels dimension (the depth) is at index 1, in 'tf' mode it is at index 3. It defaults to the `image_dim_ordering` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "th". seed: random seed for reproducible pipeline processing. If not None, it will also be used by `flow` or `flow_from_directory` to generate the shuffle index in case of no seed is set. ''' def __init__(self, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, featurewise_standardize_axis=None, samplewise_standardize_axis=None, zca_whitening=False, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, dim_ordering=K.image_dim_ordering(), seed=None, verbose=1): self.config = copy.deepcopy(locals()) self.config['config'] = self.config self.config['mean'] = None self.config['std'] = None self.config['principal_components'] = None self.config['rescale'] = rescale if dim_ordering not in {'tf', 'th'}: raise Exception('dim_ordering should be "tf" (channel after row and ' 'column) or "th" (channel before row and column). ' 'Received arg: ', dim_ordering) self.__sync_seed = self.config['seed'] or np.random.randint(0, np.iinfo(np.int32).max) self.default_pipeline = [] self.default_pipeline.append(random_transform) self.default_pipeline.append(standardize) self.set_pipeline(self.default_pipeline) self.__fitting = False self.fit_lock = threading.Lock() @property def sync_seed(self): return self.__sync_seed @property def fitting(self): return self.__fitting @property def pipeline(self): return self.__pipeline def sync(self, image_data_generator): self.__sync_seed = image_data_generator.sync_seed return (self, image_data_generator) def set_pipeline(self, p): if p is None: self.__pipeline = self.default_pipeline elif type(p) is list: self.__pipeline = p else: raise Exception('invalid pipeline.') def flow(self, X, y=None, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): return NumpyArrayIterator( X, y, self, batch_size=batch_size, shuffle=shuffle, seed=seed, dim_ordering=self.config['dim_ordering'], save_to_dir=save_to_dir, save_prefix=save_prefix, save_mode=save_mode, save_format=save_format) def flow_from_directory(self, directory, color_mode=None, target_size=None, image_reader='pil', reader_config=None, read_formats=None, classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): if reader_config is None: reader_config={'target_mode':'RGB', 'target_size':(256,256)} if read_formats is None: read_formats={'png','jpg','jpeg','bmp'} return DirectoryIterator( directory, self, color_mode=color_mode, target_size=target_size, image_reader=image_reader, reader_config=reader_config, read_formats=read_formats, classes=classes, class_mode=class_mode, dim_ordering=self.config['dim_ordering'], batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_mode=save_mode, save_format=save_format) def process(self, x): # get next sync_seed np.random.seed(self.__sync_seed) self.__sync_seed = np.random.randint(0, np.iinfo(np.int32).max) self.config['fitting'] = self.__fitting self.config['sync_seed'] = self.__sync_seed for p in self.__pipeline: x = p(x, **self.config) return x def fit_generator(self, generator, nb_iter): '''Fit a generator # Arguments generator: Iterator, generate data for fitting. nb_iter: Int, number of iteration to fit. ''' with self.fit_lock: try: self.__fitting = nb_iter*generator.batch_size for i in range(nb_iter): next(generator) finally: self.__fitting = False def fit(self, X, rounds=1): '''Fit the pipeline on a numpy array # Arguments X: Numpy array, the data to fit on. rounds: how many rounds of fit to do over the data ''' X = np.copy(X) with self.fit_lock: try: self.__fitting = rounds*X.shape[0] for r in range(rounds): for i in range(X.shape[0]): self.process(X[i]) finally: self.__fitting = False class Iterator(object): def __init__(self, N, batch_size, shuffle, seed): self.N = N self.batch_size = batch_size self.shuffle = shuffle self.seed = seed self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_generator = self._flow_index(N, batch_size, shuffle, seed) def reset(self): self.batch_index = 0 def _flow_index(self, N, batch_size=32, shuffle=False, seed=None): # ensure self.batch_index is 0 self.reset() while 1: if self.batch_index == 0: self.index_array = np.arange(N) if shuffle: if seed is not None: np.random.seed(seed + self.total_batches_seen) self.index_array = np.random.permutation(N) if seed is not None: np.random.seed() current_index = (self.batch_index * batch_size) % N if N >= current_index + batch_size: current_batch_size = batch_size self.batch_index += 1 else: current_batch_size = N - current_index self.batch_index = 0 self.total_batches_seen += 1 yield (self.index_array[current_index: current_index + current_batch_size], current_index, current_batch_size) def __add__(self, it): assert self.N == it.N assert self.batch_size == it.batch_size assert self.shuffle == it.shuffle seed = self.seed or np.random.randint(0, np.iinfo(np.int32).max) it.total_batches_seen = self.total_batches_seen self.index_generator = self._flow_index(self.N, self.batch_size, self.shuffle, seed) it.index_generator = it._flow_index(it.N, it.batch_size, it.shuffle, seed) if (sys.version_info > (3, 0)): iter_zip = zip else: from itertools import izip iter_zip = izip return iter_zip(self, it) def __iter__(self): # needed if we want to do something like: # for x, y in data_gen.flow(...): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) class NumpyArrayIterator(Iterator): def __init__(self, X, y, image_data_generator, batch_size=32, shuffle=False, seed=None, dim_ordering=K.image_dim_ordering(), save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): if y is not None and len(X) != len(y): raise Exception('X (images tensor) and y (labels) ' 'should have the same length. ' 'Found: X.shape = %s, y.shape = %s' % (np.asarray(X).shape, np.asarray(y).shape)) self.X = X self.y = y self.image_data_generator = image_data_generator self.dim_ordering = dim_ordering self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_mode = save_mode self.save_format = save_format seed = seed or image_data_generator.config['seed'] super(NumpyArrayIterator, self).__init__(X.shape[0], batch_size, shuffle, seed) def __add__(self, it): if isinstance(it, NumpyArrayIterator): assert self.X.shape[0] == it.X.shape[0] if isinstance(it, DirectoryIterator): assert self.X.shape[0] == it.nb_sample it.image_data_generator.sync(self.image_data_generator) return super(NumpyArrayIterator, self).__add__(it) def next(self): # for python 2.x. # Keeps under lock only the mechanism which advances # the indexing of each batch # see http://anandology.com/blog/using-iterators-and-generators/ with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) # The transformation of images is not under thread lock so it can be done in parallel batch_x = None for i, j in enumerate(index_array): x = self.X[j] x = self.image_data_generator.process(x) if i == 0: batch_x = np.zeros((current_batch_size,) + x.shape) batch_x[i] = x if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.dim_ordering, mode=self.save_mode, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) if self.y is None: return batch_x batch_y = self.y[index_array] return batch_x, batch_y class DirectoryIterator(Iterator): def __init__(self, directory, image_data_generator, color_mode=None, target_size=None, image_reader="pil", read_formats=None, reader_config=None, dim_ordering=K.image_dim_ordering, classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): self.directory = directory self.image_data_generator = image_data_generator self.image_reader = image_reader if self.image_reader == 'pil': self.image_reader = pil_image_reader if read_formats is None: read_formats = {'png','jpg','jpeg','bmp'} if reader_config is None: reader_config = {'target_mode': 'RGB', 'target_size':None} self.reader_config = reader_config # TODO: move color_mode and target_size to reader_config if color_mode == 'rgb': self.reader_config['target_mode'] = 'RGB' elif color_mode == 'grayscale': self.reader_config['target_mode'] = 'L' if target_size: self.reader_config['target_size'] = target_size self.dim_ordering = dim_ordering self.reader_config['dim_ordering'] = dim_ordering if class_mode not in {'categorical', 'binary', 'sparse', None}: raise ValueError('Invalid class_mode:', class_mode, '; expected one of "categorical", ' '"binary", "sparse", or None.') self.class_mode = class_mode self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_mode = save_mode self.save_format = save_format seed = seed or image_data_generator.config['seed'] # first, count the number of samples and classes self.nb_sample = 0 if not classes: classes = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): classes.append(subdir) # if no class is found, add '' for scanning the root folder if class_mode is None and len(classes) == 0: classes.append('') self.nb_class = len(classes) self.class_indices = dict(zip(classes, range(len(classes)))) for subdir in classes: subpath = os.path.join(directory, subdir) for fname in os.listdir(subpath): is_valid = False for extension in read_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.nb_sample += 1 print('Found %d images belonging to %d classes.' % (self.nb_sample, self.nb_class)) # second, build an index of the images in the different class subfolders self.filenames = [] self.classes = np.zeros((self.nb_sample,), dtype='int32') i = 0 for subdir in classes: subpath = os.path.join(directory, subdir) for fname in os.listdir(subpath): is_valid = False for extension in read_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.classes[i] = self.class_indices[subdir] self.filenames.append(os.path.join(subdir, fname)) i += 1 assert len(self.filenames)>0, 'No valid file is found in the target directory.' self.reader_config['class_mode'] = self.class_mode self.reader_config['classes'] = self.classes self.reader_config['filenames'] = self.filenames self.reader_config['directory'] = self.directory self.reader_config['nb_sample'] = self.nb_sample self.reader_config['seed'] = seed self.reader_config['sync_seed'] = self.image_data_generator.sync_seed super(DirectoryIterator, self).__init__(self.nb_sample, batch_size, shuffle, seed) if inspect.isgeneratorfunction(self.image_reader): self._reader_generator_mode = True self._reader_generator = [] # set index batch_size to 1 self.index_generator = self._flow_index(self.N, 1 , self.shuffle, seed) else: self._reader_generator_mode = False def __add__(self, it): if isinstance(it, DirectoryIterator): assert self.nb_sample == it.nb_sample assert len(self.filenames) == len(it.filenames) assert np.alltrue(self.classes == it.classes) assert self.image_reader == it.image_reader if inspect.isgeneratorfunction(self.image_reader): self._reader_generator = [] it._reader_generator = [] if isinstance(it, NumpyArrayIterator): assert self.nb_sample == self.X.shape[0] it.image_data_generator.sync(self.image_data_generator) return super(DirectoryIterator, self).__add__(it) def next(self): self.reader_config['sync_seed'] = self.image_data_generator.sync_seed if self._reader_generator_mode: sampleCount = 0 batch_x = None _new_generator_flag = False while sampleCount<self.batch_size: for x in self._reader_generator: _new_generator_flag = False if x.ndim == 2: x = np.expand_dims(x, axis=0) x = self.image_data_generator.process(x) self.reader_config['sync_seed'] = self.image_data_generator.sync_seed if sampleCount == 0: batch_x = np.zeros((self.batch_size,) + x.shape) batch_x[sampleCount] = x sampleCount +=1 if sampleCount >= self.batch_size: break if sampleCount >= self.batch_size or _new_generator_flag: break with self.lock: index_array, _, _ = next(self.index_generator) fname = self.filenames[index_array[0]] self._reader_generator = self.image_reader(os.path.join(self.directory, fname), **self.reader_config) assert isinstance(self._reader_generator, types.GeneratorType) _new_generator_flag = True else: with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) # The transformation of images is not under thread lock so it can be done in parallel batch_x = None # build batch of image data for i, j in enumerate(index_array): fname = self.filenames[j] x = self.image_reader(os.path.join(self.directory, fname), **self.reader_config) if x.ndim == 2: x = np.expand_dims(x, axis=0) x = self.image_data_generator.process(x) if i == 0: batch_x = np.zeros((current_batch_size,) + x.shape) batch_x[i] = x # optionally save augmented images to disk for debugging purposes if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.dim_ordering, mode=self.save_mode, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) # build batch of labels if self.class_mode == 'sparse': batch_y = self.classes[index_array] elif self.class_mode == 'binary': batch_y = self.classes[index_array].astype('float32') elif self.class_mode == 'categorical': batch_y = np.zeros((len(batch_x), self.nb_class), dtype='float32') for i, label in enumerate(self.classes[index_array]): batch_y[i, label] = 1. else: return batch_x return batch_x, batch_y ``` #### File: scripts/resnet_sd/eval_model_c10.py ```python import numpy as np import collections import pickle from resnet_sd import resnet_sd_model from sklearn.model_selection import train_test_split from keras.models import Model from keras.optimizers import SGD from keras.datasets import cifar10 from keras.utils import np_utils # Imports to get "utility" package import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath("utility") ) ) ) from utility.evaluation import evaluate_model # Per channel mean and std normalization def color_preprocessing(x_train, x_val, x_test): x_train = x_train.astype('float32') x_val = x_val.astype('float32') x_test = x_test.astype('float32') mean = np.mean(x_train, axis=(0,1,2)) # Per channel mean std = np.std(x_train, axis=(0,1,2)) x_train = (x_train - mean) / std x_val = (x_val - mean) / std x_test = (x_test - mean) / std return x_train, x_val, x_test if __name__ == '__main__': # constants img_rows, img_cols = 32, 32 img_channels = 3 nb_epochs = 500 batch_size = 128 nb_classes = 10 seed = 333 weights_file = "../../models/resnet_110_SD_c10.hdf5" # data (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Data splitting (get additional 5k validation set) # Sklearn to split x_train45, x_val, y_train45, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=seed) # random_state = seed x_train45, x_val, x_test = color_preprocessing(x_train45, x_val, x_test) # Mean per channel y_train45 = np_utils.to_categorical(y_train45, nb_classes) # 1-hot vector y_val = np_utils.to_categorical(y_val, nb_classes) y_test = np_utils.to_categorical(y_test, nb_classes) # building and training net model = resnet_sd_model(img_shape = (32,32), img_channels = 3, layers = 110, nb_classes = nb_classes, verbose = True) evaluate_model(model, weights_file, x_test, y_test, bins = 15, verbose = True, pickle_file = "probs_resnet110_SD_c10", x_val = x_val, y_val = y_val) ```
{ "source": "jielyu/ml-models", "score": 2 }
#### File: src/dataset/mscoco.py ```python import os import io import itertools import json import tempfile import time import cv2 import numpy as np import torch from torch.utils.data.dataloader import default_collate import torchvision from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from loguru import logger import contextlib from loguru import logger from tqdm import tqdm import matplotlib.pyplot as plt from dataset.datasets_wrapper import Dataset class COCODataset(Dataset): """ COCO dataset class. """ COCO_CLASSES = ( "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ) def __init__( self, data_dir=None, json_file="instances_train2017.json", name="train2017", img_size=(416, 416), preproc=None, cache=False, dataset_name="MSCOCO-dataset", ): """ COCO dataset initialization. Annotation data are read into memory by COCO API. Args: data_dir (str): dataset root directory json_file (str): COCO json file name name (str): COCO data name (e.g. 'train2017' or 'val2017') img_size (int): target image size after pre-processing preproc: data augmentation strategy dataset_name: name of dataset folder """ super().__init__(img_size) if data_dir is None: data_dir = os.path.join("dataset", dataset_name) else: data_dir = os.path.join(data_dir, dataset_name) self.data_dir = data_dir self.json_file = json_file self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file)) self.ids = self.coco.getImgIds() self.class_ids = sorted(self.coco.getCatIds()) cats = self.coco.loadCats(self.coco.getCatIds()) self._classes = tuple([c["name"] for c in cats]) self.imgs = None self.name = name self.img_size = img_size self.preproc = preproc self.annotations = self._load_coco_annotations() if cache: self._cache_images() def __len__(self): return len(self.ids) def __del__(self): del self.imgs def _load_coco_annotations(self): return [self.load_anno_from_ids(_ids) for _ids in self.ids] def _cache_images(self): logger.warning( "\n********************************************************************************\n" "You are using cached images in RAM to accelerate training.\n" "This requires large system RAM.\n" "Make sure you have 200G+ RAM and 136G available disk space for training COCO.\n" "********************************************************************************\n" ) max_h = self.img_size[0] max_w = self.img_size[1] cache_file = self.data_dir + "/img_resized_cache_" + self.name + ".array" if not os.path.exists(cache_file): logger.info( "Caching images for the first time. This might take about 20 minutes for COCO" ) self.imgs = np.memmap( cache_file, shape=(len(self.ids), max_h, max_w, 3), dtype=np.uint8, mode="w+", ) from tqdm import tqdm from multiprocessing.pool import ThreadPool NUM_THREADs = min(8, os.cpu_count()) loaded_images = ThreadPool(NUM_THREADs).imap( lambda x: self.load_resized_img(x), range(len(self.annotations)), ) pbar = tqdm(enumerate(loaded_images), total=len(self.annotations)) for k, out in pbar: self.imgs[k][: out.shape[0], : out.shape[1], :] = out.copy() self.imgs.flush() pbar.close() else: logger.warning( "You are using cached imgs! Make sure your dataset is not changed!!\n" "Everytime the self.input_size is changed in your exp file, you need to delete\n" "the cached data and re-generate them.\n" ) logger.info("Loading cached imgs...") self.imgs = np.memmap( cache_file, shape=(len(self.ids), max_h, max_w, 3), dtype=np.uint8, mode="r+", ) def load_anno_from_ids(self, id_): im_ann = self.coco.loadImgs(id_)[0] width = im_ann["width"] height = im_ann["height"] anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False) annotations = self.coco.loadAnns(anno_ids) objs = [] for obj in annotations: x1 = np.max((0, obj["bbox"][0])) y1 = np.max((0, obj["bbox"][1])) x2 = np.min((width, x1 + np.max((0, obj["bbox"][2])))) y2 = np.min((height, y1 + np.max((0, obj["bbox"][3])))) if obj["area"] > 0 and x2 >= x1 and y2 >= y1: obj["clean_bbox"] = [x1, y1, x2, y2] objs.append(obj) num_objs = len(objs) res = np.zeros((num_objs, 5)) for ix, obj in enumerate(objs): cls = self.class_ids.index(obj["category_id"]) res[ix, 0:4] = obj["clean_bbox"] res[ix, 4] = cls r = min(self.img_size[0] / height, self.img_size[1] / width) res[:, :4] *= r img_info = (height, width) resized_info = (int(height * r), int(width * r)) file_name = ( im_ann["file_name"] if "file_name" in im_ann else "{:012}".format(id_) + ".jpg" ) return (res, img_info, resized_info, file_name) def load_anno(self, index): return self.annotations[index][0] def load_resized_img(self, index): img = self.load_image(index) r = min(self.img_size[0] / img.shape[0], self.img_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) return resized_img def load_image(self, index): file_name = self.annotations[index][3] img_file = os.path.join(self.data_dir, self.name, file_name) img = cv2.imread(img_file) assert img is not None return img def pull_item(self, index): id_ = self.ids[index] res, img_info, resized_info, _ = self.annotations[index] if self.imgs is not None: pad_img = self.imgs[index] img = pad_img[: resized_info[0], : resized_info[1], :].copy() else: img = self.load_resized_img(index) return img, res.copy(), img_info, np.array([id_]) @Dataset.mosaic_getitem def __getitem__(self, index): """ One image / label pair for the given index is picked up and pre-processed. Args: index (int): data index Returns: img (numpy.ndarray): pre-processed image padded_labels (torch.Tensor): pre-processed label data. The shape is :math:`[max_labels, 5]`. each label consists of [class, xc, yc, w, h]: class (float): class index. xc, yc (float) : center of bbox whose values range from 0 to 1. w, h (float) : size of bbox whose values range from 0 to 1. info_img : tuple of h, w. h, w (int): original shape of the image img_id (int): same as the input index. Used for evaluation. """ img, target, img_info, img_id = self.pull_item(index) if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim) return img, target, img_info, img_id def time_synchronized(): """pytorch-accurate time""" if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def postprocess( prediction, num_classes, conf_thre=0.7, nms_thre=0.45, class_agnostic=False ): box_corner = prediction.new(prediction.shape) box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 prediction[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(prediction))] for i, image_pred in enumerate(prediction): # If none are remaining => process next image if not image_pred.size(0): continue # Get score and class with highest confidence class_conf, class_pred = torch.max( image_pred[:, 5 : 5 + num_classes], 1, keepdim=True ) conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze() # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) detections = torch.cat((image_pred[:, :5], class_conf, class_pred.float()), 1) detections = detections[conf_mask] if not detections.size(0): continue if class_agnostic: nms_out_index = torchvision.ops.nms( detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre, ) else: nms_out_index = torchvision.ops.batched_nms( detections[:, :4], detections[:, 4] * detections[:, 5], detections[:, 6], nms_thre, ) detections = detections[nms_out_index] if output[i] is None: output[i] = detections else: output[i] = torch.cat((output[i], detections)) return output def xyxy2xywh(bboxes): bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] return bboxes class COCOEvaluator: """ COCO AP Evaluation class. All the data in the val2017 dataset are processed and evaluated by COCO API. """ def __init__( self, dataloader, img_size, confthre, nmsthre, num_classes, testdev=False ): """ Args: dataloader (Dataloader): evaluate dataloader. img_size (int): image size after preprocess. images are resized to squares whose shape is (img_size, img_size). confthre (float): confidence threshold ranging from 0 to 1, which is defined in the config file. nmsthre (float): IoU threshold of non-max supression ranging from 0 to 1. """ self.dataloader = dataloader self.img_size = img_size self.confthre = confthre self.nmsthre = nmsthre self.num_classes = num_classes self.testdev = testdev def evaluate( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.FloatTensor if torch.cuda.is_available(): tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] progress_bar = tqdm inference_time = 0 nms_time = 0 n_samples = max(len(self.dataloader) - 1, 1) for cur_iter, (imgs, _, info_imgs, ids) in enumerate( progress_bar(self.dataloader) ): with torch.no_grad(): imgs = imgs.type(tensor_type) # skip the the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs)[0] if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start outputs = postprocess( outputs, self.num_classes, self.confthre, self.nmsthre ) if is_time_record: nms_end = time_synchronized() nms_time += nms_end - infer_end data_list.extend(self.convert_to_coco_format(outputs, info_imgs, ids)) statistics = torch.FloatTensor([inference_time, nms_time, n_samples]) if torch.cuda.is_available(): statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples]) eval_results = self.evaluate_prediction(data_list, statistics) return eval_results def convert_to_coco_format(self, outputs, info_imgs, ids): data_list = [] for (output, img_h, img_w, img_id) in zip( outputs, info_imgs[0], info_imgs[1], ids ): if output is None: continue output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize scale = min( self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) ) bboxes /= scale bboxes = xyxy2xywh(bboxes) cls = output[:, 6] scores = output[:, 4] * output[:, 5] for ind in range(bboxes.shape[0]): label = self.dataloader.dataset.class_ids[int(cls[ind])] pred_data = { "image_id": int(img_id), "category_id": label, "bbox": bboxes[ind].numpy().tolist(), "score": scores[ind].numpy().item(), "segmentation": [], } # COCO json format data_list.append(pred_data) return data_list def evaluate_prediction(self, data_dict, statistics): logger.info("Evaluate in main process...") annType = ["segm", "bbox", "keypoints"] inference_time = statistics[0].item() nms_time = statistics[1].item() n_samples = statistics[2].item() a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size) time_info = ", ".join( [ "Average {} time: {:.2f} ms".format(k, v) for k, v in zip( ["forward", "NMS", "inference"], [a_infer_time, a_nms_time, (a_infer_time + a_nms_time)], ) ] ) info = time_info + "\n" # Evaluate the Dt (detection) json comparing with the ground truth if len(data_dict) > 0: cocoGt = self.dataloader.dataset.coco # TODO: since pycocotools can't process dict in py36, write data to json file. if self.testdev: json.dump(data_dict, open("./yolox_testdev_2017.json", "w")) cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json") else: _, tmp = tempfile.mkstemp() json.dump(data_dict, open(tmp, "w")) cocoDt = cocoGt.loadRes(tmp) cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) cocoEval.evaluate() cocoEval.accumulate() redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() info += redirect_string.getvalue() return cocoEval.stats[0], cocoEval.stats[1], info else: return 0, 0, info ```
{ "source": "jielyu/notebook", "score": 3 }
#### File: code/bg28/bg28_cover.py ```python from manimlib.imports import * class Cover(Scene): def construct(self): t = TextMobject(*[c for c in 'KERAS']) t.scale(3) for idx, c in enumerate(t): if idx % 2 == 0: c.set_color(BLUE) else: c.set_color(GREEN) self.play(Write(t)) ``` #### File: code/bg44/bg44_cover.py ```python from manimlib.imports import * class Cover(Scene): def construct(self): tf_text = TextMobject('TF', '2.0') tf_text.shift(UP) tf_text[0].set_color(BLUE) tf_text[1].set_color(YELLOW) tf_text.scale(3.0) np_text = TextMobject(*[c for c in 'IMAGE']) for idx, c in enumerate(np_text): if idx % 2 == 0: c.set_color(BLUE) else: c.set_color(GREEN) np_text.shift(0.5*DOWN+1*LEFT) np_text.scale(0.6) ft_text = TextMobject(*[c for c in 'FineTune']) for idx, c in enumerate(ft_text): if idx % 2 == 0: c.set_color(BLUE) else: c.set_color(GREEN) ft_text.shift(0.5*DOWN+1*RIGHT) ft_text.scale(0.6) self.play(Write(tf_text)) self.play(Write(np_text)) self.play(Write(ft_text)) c = Circle() c.shift(0.5*DOWN+1*LEFT) c.scale(0.8) self.play(Write(c)) c2 = Circle() c2.shift(0.5*DOWN+1*RIGHT) c2.scale(0.8) self.play(Write(c2)) ``` #### File: code/bg55/bg55_cover.py ```python from manimlib.imports import * class Cover(Scene): def construct(self): t = TextMobject('分词工具') t.scale(2) #t.shift(UP) t.set_color(BLUE) self.play(Write(t)) name = TextMobject('jieba') name.shift(2*UL) name.scale(2) name.set_color(GREEN) c = Circle() c.move_to(name) self.play(Write(name),Write(c)) name = TextMobject('SnowNLP') name.shift(2*UR) name.scale(2) name.set_color(GREEN) c = Circle() c.move_to(name) self.play(Write(name),Write(c)) name = TextMobject('thulac') name.shift(2*DL) name.scale(2) name.set_color(GREEN) c = Circle() c.move_to(name) self.play(Write(name),Write(c)) name = TextMobject('pyltp') name.shift(2*DR) name.scale(2) name.set_color(GREEN) c = Circle() c.move_to(name) self.play(Write(name),Write(c)) ``` #### File: code/bg76/bg76_cover.py ```python from manimlib.imports import * class Cover(Scene): CONFIG={ "camera_config": { "background_color": "#F6F6F6", }, } def construct(self): t = TextMobject(*[c for c in [r'Github\\', 'Action']]) t.scale(3) for idx, c in enumerate(t): if idx % 2 == 0: c.set_color(BLUE) else: c.set_color(GREEN) t.shift(UP) t[0].shift(LEFT) t[1].shift(RIGHT) self.play(Write(t)) rect = Rectangle(height=1.5, width=5) rect.move_to(t[1].get_center()) rect.set_color(RED) self.play(Write(rect)) rect = Rectangle(height=1.7, width=5.2) rect.move_to(t[1].get_center()) rect.set_color(BLACK) self.play(Write(rect)) icon_path = '~/VideoStudio/CNBlueGeek/notebook/src/images/bg76/github-icon.jpg' img = Image.open(os.path.expanduser(icon_path)) img = np.asarray(img) img_obj = ImageMobject(img) img_obj.move_to(t.get_center()+DOWN*3+LEFT) #img_obj.scale(0.5) #img_obj.shift(2*DOWN) self.play(Write(t)) self.play(Animation(img_obj)) ``` #### File: code/bg78/bg78_cover.py ```python from manimlib.imports import * class Cover(Scene): def construct(self): t = TextMobject('?', r' \% 3 = 0') t[0].set_color(RED) t.scale(3) t.shift(UP*2.0) self.play(Write(t)) ct = [] for i in range(3): c1 = Circle() t1 = TextMobject(str(i)) t1.move_to(c1.get_center()) ct1 = VGroup(c1, t1) ct1.shift(DOWN*0.3) ct.append(ct1) ct[0].shift((LEFT+DOWN)*1.414) ct[2].shift((RIGHT+DOWN)*1.414) ct[1].set_color(GREEN) ct[2].set_color(BLUE) self.play(*[Write(x) for x in ct]) ```
{ "source": "jie-ma-ai/FedBase", "score": 2 }
#### File: jie-ma-ai/FedBase/result_analysis.py ```python import glob import pickle from fedbase.utils.visualize import * import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from pathlib import Path import os import numpy as np import warnings import json warnings.filterwarnings("ignore") from platform import system def plt_maximize(): # See discussion: https://stackoverflow.com/questions/12439588/how-to-maximize-a-plt-show-window-using-python backend = plt.get_backend() cfm = plt.get_current_fig_manager() if backend == "wxAgg": cfm.frame.Maximize(True) elif backend == "TkAgg": if system() == "Windows": cfm.window.state("zoomed") # This is windows only else: cfm.resize(*cfm.window.maxsize()) elif backend == "QT4Agg": cfm.window.showMaximized() elif callable(getattr(cfm, "full_screen_toggle", None)): if not getattr(cfm, "flag_is_max", None): cfm.full_screen_toggle() cfm.flag_is_max = True else: raise RuntimeError("plt_maximize() is not implemented for current backend:", backend) # # change name # # Function to rename multiple files # def main(): # folder = "./log/log_groupwise/" # for count, filename in enumerate(os.listdir(folder)): # # dst = f"Hostel {str(count)}.jpg" # src =f"{folder}/{filename}" # foldername/filename, if .py file is outside folder # # dst =f"{folder}/{dst}" # # rename() function will # # rename all the files # try: # os.rename(src, src.replace('cfl_fashion_mnist_5', 'WCFL_5_fashion_mnist_5')) # except: # pass # # Driver Code # main() # print(a) # folder = './log/log_groupwise/' folder = './log/' for dataset in ['fashion_mnist', 'cifar10']: # for noniid in ['class_2','dirichlet_0.1','dirichlet_0.5','dirichlet_1']: for noniid in ['2_class','0.1_dirichlet','10_dirichlet','3_class']: # for noniid in ['0.1','6']: # central method = 'central' file_list = glob.glob(folder+ method + '_' +'*'+dataset+'*') if len(file_list)>0: acc= [] for i in file_list: with open(i, 'rb') as f: log = json.load(f) # print(len(log['server'])) acc.append(log['node']['0']) # if len(log['server'])<=101: # acc.append(log['server'] acc_df = pd.DataFrame(acc) # print(acc_df) acc_df_n = pd.DataFrame() for i in acc_df.columns: acc_df_tmp = acc_df[[i]] acc_df_tmp.loc[:,'round'] = i+1 acc_df_tmp['test acc'] = acc_df_tmp[i].apply(lambda x: x[0]) acc_df_tmp['test macro f1'] = acc_df_tmp[i].apply(lambda x: x[1]) acc_df_n = pd.concat([acc_df_n, acc_df_tmp], axis=0) # print(acc_df_n) print(method, dataset, round(np.mean(acc_df_n[acc_df_n['round'] >=98]['test acc'])*100,2), round(np.std(acc_df_n[acc_df_n['round'] >=98]['test acc'])*100,2)\ , round(np.mean(acc_df_n[acc_df_n['round'] >=98]['test macro f1'])*100,2), round(np.std(acc_df_n[acc_df_n['round'] >=98]['test macro f1'])*100,2)) sns.lineplot(x=acc_df_n["round"], y=acc_df_n["test acc"], label = method) # others # for method in ['Local', 'Fedavg', 'Ditto', 'WCFL_3', 'WCFL_5', 'WCFL_10']: # for method in ['local', 'fedavg', 'fedavg_finetune', 'ditto', 'fedprox', 'wecfl_3', 'wecfl_5', 'wecfl_10', 'ifca_3', 'ifca_5', 'ifca_10', 'fesem_3', 'fesem_5', 'fesem_10',\ # 'wecfl_3_0.95', 'wecfl_5_0.95', 'wecfl_10_0.95', 'ifca_3_0.95', 'ifca_5_0.95', 'ifca_10_0.95', 'fesem_3_0.95', 'fesem_5_0.95', 'fesem_10_0.95']: for method in [ 'fedavg', 'ifca_3', 'ifca_5', 'ifca_10','fesem_3', 'fesem_5', 'fesem_10', 'wecfl_3', 'wecfl_5', 'wecfl_10']: # for method in ['Fedavg', 'Ditto', 'Local', 'WCFL_5', 'WCFL_10']: # for method in ['fedavg', 'ditto', 'local', 'cfl']: file_list = glob.glob(folder+ method + '_' +dataset+'*'+ noniid +'*') if len(file_list)>0: acc= [] for i in file_list: with open(i, 'rb') as f: log = json.load(f) # print(len(log['server'])) # acc.append(log['node']['0']) if len(log['server'])<=101: acc.append(log['server']) acc_df = pd.DataFrame(acc) # print(acc_df) acc_df_n = pd.DataFrame() for i in acc_df.columns: acc_df_tmp = acc_df[[i]] acc_df_tmp.loc[:,'round'] = i+1 acc_df_tmp['test acc'] = acc_df_tmp[i].apply(lambda x: x[0]) acc_df_tmp['test macro f1'] = acc_df_tmp[i].apply(lambda x: x[1]) # print(acc_df_tmp) # acc_df_tmp = acc_df_tmp.rename(columns={i : 'test acc'}) acc_df_n = pd.concat([acc_df_n, acc_df_tmp], axis=0) # print(acc_df_n) print(method, dataset, noniid, round(np.mean(acc_df_n[acc_df_n['round'] >=98]['test acc'])*100,2), round(np.std(acc_df_n[acc_df_n['round'] >=98]['test acc'])*100,2)\ , round(np.mean(acc_df_n[acc_df_n['round'] >=98]['test macro f1'])*100,2), round(np.std(acc_df_n[acc_df_n['round'] >=98]['test macro f1'])*100,2)) sns.lineplot(x=acc_df_n["round"], y=acc_df_n["test acc"], label = method) # sns.lineplot(x=acc_df_n["round"], y=acc_df_n["test macro f1"], label = method) sns.set_theme(style="darkgrid") plt.title(dataset+'_'+noniid) # plt.show() local_file = './vis/' + dataset+'_'+noniid +'.png' Path(local_file).parent.mkdir(parents=True, exist_ok=True) plt_maximize() plt.savefig(local_file) plt.close() ```
{ "source": "jie-ma-ai/TSC_jie", "score": 3 }
#### File: TSC_jie/utils/data_clean_up.py ```python import numpy as np import torch def data_loader(input_path, dataset_name): train_dataset = np.loadtxt(f'{input_path}/{dataset_name}/{dataset_name}_TRAIN.txt') test_dataset = np.loadtxt(f'{input_path}/{dataset_name}/{dataset_name}_TEST.txt') # train dataset clean up x_train, y_train = train_dataset[:, 1:], train_dataset[:, 0] x_train = fill_nan_0_min(x_train) # input_size = x_train.shape[1] # test dataset clean up x_test, y_test = test_dataset[:, 1:], test_dataset[:, 0] x_test = fill_nan_0_min(x_test) # category y y = np.concatenate((y_train, y_test)) y = one_hot(y) y_train = y[: y_train.shape[0], :] y_test = y[-y_test.shape[0]:, :] # output_size = y_train.shape[1] # numpy to tensor to torch dataloarder x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) # training_set = TensorDataset(x_train, y_train) # train_loader = DataLoader(training_set, batch_size, shuffle=True) x_test = torch.from_numpy(x_test) y_test = torch.from_numpy(y_test) # test_set = TensorDataset(x_test, y_test) # test_loader = DataLoader(test_set, batch_size, shuffle=False) print(x_train.shape, y_train.shape, x_test.shape, y_test.shape) return x_train, y_train, x_test, y_test def fill_nan_0_min(arr): mask = np.isnan(arr) print('#NA: ', len(mask[mask == True])) # arr = np.where(~mask, arr, [0]) # arr = np.where(~mask, arr, min(arr.min(), [0])) arr[mask] = 0 arr[mask] = min(arr.min(), 0) return arr def one_hot(arr): uni = np.unique(arr) out = np.zeros((arr.shape[0], uni.shape[0])) for i in range(uni.shape[0]): out[arr == uni[i], i] = 1 return out def one_hot_reverse(arr): out = torch.zeros(arr.shape[0]) for i in range(arr.shape[0]): out[i] = torch.argmax(arr[i, :]) return out # a = np.array([[np.nan, -1, 2, np.nan, 3, np.nan], [np.nan, -1, 2, np.nan, 3, np.nan]]) # print(fill_nan_0_min(a)) # b = np.array([0,1, 2, 2,4, 4]) # print(one_hot(b)) # print(data_loader(r'd:/project_git/TSC_jie/data/Univariate_arff', 'Car', 10)) ```
{ "source": "JieMEI1994/machine-learning-from-scratches", "score": 4 }
#### File: deep learning/function/activation_function.py ```python import numpy as np class sigmoid: def forward(self, Z): A = 1.0 / (1.0 + np.exp(-Z)) return A def backward(self, dA, A): dZ = A * (1 - A) * dA return dZ class tanh: def forward(self, Z): A = np.tanh(Z) return A def backward(self, dA, A): dZ = (1.0 - np.square(A)) * dA return dZ class relu: def forward(self, Z): A = np.maximum(Z, 0) return A def backward(self, dA, Z): dZ = dA dZ[Z < 0] = 0 return dZ ``` #### File: deep learning/function/linear_function.py ```python import numpy as np class linear: def forward(self, X, W, b): Z = np.dot(X, W) + b return Z def backward(self, dZ, X, W, b, m): dW = (1.0 / m) * np.dot(X.T, dZ) db = (1.0 / m) * np.sum(dZ, axis=0, keepdims=True) dX = np.dot(dZ, W.T) return dX, dW, db ``` #### File: deep learning/function/model.py ```python import numpy as np from initialization_function import initialization from linear_function import linear from activation_function import relu from dropout_function import dropout from output_function import softmax from regularization_function import l2 from optimization_function import adam import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import sys sys.path.append("C:\\Users\\jmei\\Documents\\Code\\machine learning from scratch\\utili") from preprocess import one_hot_vector class vanilla_nural_network: def __init__(self, hidden_layer_dims): self.layer_dims = hidden_layer_dims self.W = [] self.b = [] self.loss = [] self.accuracy = [] def train(self, X, Y, iteration, learning_rate, lambd = 0, keep_prob = 1, interrupt_threshold = 0.1, print_loss = True): # import function init = initialization(self.layer_dims) lin = linear() act = relu() drop = dropout(keep_prob) classifier = softmax() regulator = l2(lambd) optimizer = adam(learning_rate) # initialization counter = 0 train_X, validation_X, train_Y, validation_Y = train_test_split(X, Y, test_size=0.2, shuffle=True) self.W, self.b = init.he() # iteration for i in range(iteration): m = Y.shape[0] # forward A = train_X cache = [[None, A, None]] for l in range(len(self.layer_dims)-1): Z = lin.forward(A, self.W[l], self.b[l]) A = act.forward(Z) A, D = drop.forward(A) cache.append([Z, A, D]) # loss prob = classifier.forward(A) loss_tmp1 = classifier.loss(train_Y, prob) loss_tmp2 = regulator.loss(self.W, m) loss_tmp = loss_tmp1 + loss_tmp2 self.loss.append(loss_tmp) # validation accuracy pred = self.predict(validation_X) pred = one_hot_vector.decoder(pred) acc_tmp = np.mean(validation_Y == pred) self.accuracy.append(acc_tmp) # print if print_loss and i % 1000 == 0: print("Iteration %i, Loss: %f, Accuracy: %.f%%" %(i, loss_tmp, acc_tmp*100)) if loss_tmp <= interrupt_threshold: print("Iteration %i, Loss: %f <= Threshold: %f" %(i, loss_tmp, interrupt_threshold)) return # backward dA = classifier.backward(train_Y, prob) for l in range(len(self.layer_dims)-1, 1, -1): dA = drop.backward(dA, cache[l][2]) dZ = act.backward(dA, cache[l][0]) dA, dW, db = lin.backward(dZ, cache[l-1][1], self.W[l-1], self.b[l-1], m) dW += regulator.backward(self.W[l-1], m) # update counter += 1 self.W[l-1], self.b[l-1] = optimizer.update([self.W[l-1], self.b[l-1]], [dW, db], counter) def predict(self, X): lin = linear() act = relu() classifier = softmax() A = X for l in range(len(self.layer_dims)-1): Z = lin.forward(A, self.W[l], self.b[l]) A = act.forward(Z) Y_het = classifier.forward(A) return Y_het def plot(self): plt.figure() plt.grid() plt.plot(self.loss) ``` #### File: deep learning/function/output_function.py ```python import numpy as np class softmax: def forward(self, A): A = np.exp(A - np.max(A, axis=1, keepdims=True)) Y_het = A / np.sum(A, axis=1, keepdims=True) return Y_het def loss(self, Y, Y_het): m = Y.shape[0] np.clip(Y_het, 1e-100, 1-(1e-100)) log_likelihood = -np.log(Y_het[range(m), Y]) loss = (1.0 / m) * np.sum(log_likelihood) loss = np.squeeze(loss) return loss def backward(self, Y, Y_het): m = Y.shape[0] Y_het[range(m), Y] -= 1 dA = (1.0 / m) * Y_het return dA ``` #### File: deep learning/function/padding_function.py ```python import numpy as np class padding: def __init__(self): pass def zero(self, X, pad): """ :return: numpy array of shape (m, n_H+2*pad, n_W+2*pad, n_C) """ X_pad = np.pad(X, ((0,0),(pad,pad),(pad,pad),(0,0)), 'constant', constant_values = 0) return X_pad def constant(self, X, pad,const): """ :param const: integer of the value of pad :return: numpy array of shape (m, n_H+2*pad, n_W+2*pad, n_C) """ X_pad = np.pad(X, ((0, 0), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=const) return X_pad ``` #### File: machine-learning-from-scratches/reinfoecement learning (to do)/MontaCarlo.py ```python import numpy as np import pandas as pd class MontaCarloAgent: def __init__(self, actions, learning_rate = 0.01, discount_rate = 0.9, greedy_rate = 0.9): # actions is a set of action self.actions = actions self.alpha = learning_rate self.gamma = discount_rate self.epsilon = greedy_rate self.q_table = pd.DataFrame(columns=self.actions) def check_state_exist(self, state): if state not in self.q_table.index: # append new state to q table self.q_table = self.q_table.append(pd.Series( [0]*len(self.actions), index=self.q_table.columns, name=state,)) def pick_action(self, observation): self.check_state_exist(observation) # e-greedy selection if np.random.uniform() < self.epsilon: state_action = self.q_table.ix[observation, :] # some actions have same value # randomly permute(置换) a sequence, or return a permuted range state_action = state_action.reindex(np.random.permutation(state_action.index)) action = state_action.argmax() else: action = np.random.choice(self.actions) return action def learn(self, state, action, reward, next_state): self.check_state_exist(next_state) q_predict = self.q_table.ix[state, action] if next_state != 'terminal': q_target = reward + self.gamma * self.q_table.ix[next_state, :].max() else: q_target = reward error = q_target - q_predict self.q_table.ix[state, action] += self.alpha * error ``` #### File: machine-learning-from-scratches/utili/loss_function.py ```python import numpy as np class mse: def forward(self, A): Y_het = A return Y_het def loss(self, Y, Y_het): loss = np.mean(np.power((Y - Y_het), 2)) loss = np.squeeze(loss) return loss def backward(self, Y, Y_het): dA = Y - Y_het return dA class rmse: def forward(self, A): Y_het = A return Y_het def loss(self, Y, Y_het): loss = np.sqrt(np.mean(np.power((Y - Y_het), 2))) loss = np.squeeze(loss) return loss def backward(self, Y, Y_het): dA = Y - Y_het return dA class cross_entropy: def forward(self, A): Y_het = A return Y_het def loss(self, Y, Y_het): m = Y.shape[0] log_likelihood = np.multiply(np.log(Y_het), Y) + np.multiply((1 - Y), np.log(1 - Y_het)) loss = - np.sum(logprobs) / m loss = np.squeeze(loss) return loss def backward(self, Y, Y_het): dA = - (np.divide(Y, Y_het) - np.divide(1 - Y, 1 - Y_het)) return dA ```
{ "source": "jie-mei/NLI", "score": 3 }
#### File: NLI/src/embed.py ```python from abc import ABC, abstractmethod import os import typing as t import gensim from gensim.scripts.glove2word2vec import glove2word2vec import numpy as np import spacy from util.log import exec_log as log class OOVError(Exception): """ This error indicates the querying word is out-of-vocabulary. """ pass class WordEmbedding(ABC): """ An abstract collection of embeded words. Attributes: dim: The number of dimensions for each embedding vector. """ def __init__(self, dim: int, vocab: t.Set[str] = set()) -> None: self.dim = dim @abstractmethod def get(self, word: str) -> np.ndarray: """ Get the embedding of the given word. """ pass class IndexedWordEmbedding(WordEmbedding): """ A collection of embedding words with unique IDs for looking up. Attributes: ids (Dict[str, int]): A mapping from word to id. embeds (np.array): A two dimentional array, where `embed[i]` stores the embedding for the word with id `i`. """ def __init__(self, vocab: t.List[str], embedding: WordEmbedding, oov_embed_fn: t.Callable[[str], np.ndarray], ) -> None: super(IndexedWordEmbedding, self).__init__(embedding.dim) # Copy embeddings from the given word embedding object. self.__ids, self.__embeds = {}, None # type: t.Dict[str, int], np.ndarray self.__is_oov = [False] * len(vocab) if vocab: embeds = [] # type: t.List[str] for wid, w in enumerate(vocab): try: embed = embedding.get(w) except OOVError: embed = oov_embed_fn(w) self.__is_oov[wid] = True self.__ids[w] = wid embeds.append(embed) self.__embeds = np.vstack(embeds) def get_embeddings(self) -> np.ndarray: return self.__embeds def get_id(self, word: str) -> int: try: return self.__ids[word] except KeyError as e: raise type(e)(str(e) + ' This embedding object is incompetible with the query.') def __get_word_id(self, word: t.Union[str, int]) -> int: return word if isinstance(word, int) else self.get_id(word) def is_oov(self, word: t.Union[str, int]) -> bool: return self.__is_oov[self.__get_word_id(word)] def get(self, word: t.Union[str, int]) -> np.array: return self.__embeds[self.__get_word_id(word)] class PretrainedEmbedding(WordEmbedding): """ Pretrained word embeddings. """ def __init__(self, path, dim, binary): super(PretrainedEmbedding, self).__init__(dim) self.path = path self.__binary = binary self.__model = None log.info('Read pretrained %s embedding from file: %s' % (self.__class__.__name__, self.path)) self.__model = gensim.models.KeyedVectors.load_word2vec_format( self.path, binary=self.__binary) def get(self, word): if not self.__model: self.__load_model() if word in self.__model.vocab: return self.__model.word_vec(word) else: raise OOVError class Word2Vec(PretrainedEmbedding): def __init__(self, path='/home/jmei/data/GoogleNews-vectors-negative300.bin', dim=300, binary=True, **kwargs): super(Word2Vec, self).__init__(path, dim, binary, **kwargs) class GloVe(PretrainedEmbedding): def __init__(self, path='/home/jmei/data/glove.840B.300d.txt', dim=300, binary=False, **kwargs): # Preprocess the original GloVe data to allow using the gensim API. gensim_path = '{}.gensim.txt'.format(path[:-4]) if not os.path.exists(gensim_path): glove2word2vec(path, gensim_path) super(GloVe, self).__init__(gensim_path, dim, binary, **kwargs) class FastText(PretrainedEmbedding): def __init__(self, path='/home/xjiang/data/crawl-300d-2M.vec', dim=300, binary=False, **kwargs): super(FastText, self).__init__(path, dim, binary, **kwargs) class GloVeNorm(GloVe): def __init__(self, glove_path='/home/jmei/data/glove.840B.300d.txt', path='/home/jmei/data/glove.840B.300d.norm.txt', dim=300, binary=False, **kwargs): if not os.path.exists(path): # Preprocess the original GloVe data to allow using the gensim API. log.info('Generate normalized GloVe embeddings to file: %s' % path) with open(glove_path, 'r') as in_file: with open(path, 'w') as out_file: for l in in_file: fields = l.split(' ') name = fields[:-300] embed = list(map(float, fields[-300:])) embed_norm = embed / np.linalg.norm(embed) out_file.write(' '.join(name) + ' ' + ' '.join(map(str, embed_norm)) + '\n') super(GloVeNorm, self).__init__(path, dim, binary, **kwargs) class SpacyGloVe(WordEmbedding): def __init__(self): super(GloVe, self).__init__(300) self.nlp = spacy.load('en_vectors_web_lg') def get(self, word): return self.nlp.vocab.get_vector(word) def init(embedding_name: str, *args, **kwargs) -> PretrainedEmbedding: """ Construct a pretrained word embedding object given its name. """ return globals()[embedding_name](*args, **kwargs) ``` #### File: NLI/src/_eval_data.py ```python import data import numpy as np LIMIT = 20 def _print_word_embed(dataset, word): embed = dataset.word_embedding wid = embed.get_id(word) wemb = embed.get(word) is_oov = embed.is_oov(word) size = np.linalg.norm(wemb) print('%10d %20s %s %4.2f %s' % (wid, word, 'OOV' if is_oov else ' ', size, wemb[:3])) def print_embed(data_cls, mode, embed_cls, seed): dataset = data.load_dataset(data_cls, mode, embed_cls, seed) print(dataset.x1_words[0]) embed = dataset.word_embedding for i, (word, wid) in enumerate(embed._IndexedWordEmbedding__ids.items()): if i < LIMIT: wemb = embed.get(word) is_oov = embed.is_oov(word) size = np.linalg.norm(wemb) print('%10d %20s %s %4.2f %s' % (wid, word, 'OOV' if is_oov else ' ', size, wemb[:3])) if '<EOS>' in embed._IndexedWordEmbedding__ids: _print_word_embed(dataset, '<EOS>') if '<BOS>' in embed._IndexedWordEmbedding__ids: _print_word_embed(dataset, '<BOS>') def print_tag(data_cls, mode, embed_cls, seed): dataset = data.load_dataset(data_cls, mode, embed_cls, seed) for i in range(3): words = dataset.x2_words[i] tags = dataset.x2_feats[i][1] print([(w, t) for w, t in zip(words, tags)]) if __name__ == '__main__': # Print print_tag('SNLI', 'test', 'GloVe', 6523) print() print_tag('SNLI', 'test', 'GloVeNorm', 6523) print() print_tag('SNLI', 'train', 'GloVeNorm', 6523) print() print() print() ``` #### File: src/nn/base.py ```python from abc import ABC import tensorflow as tf import numpy as np import data from util.display import ReprMixin from util.log import exec_log as log WORD_SEQ_LEN = 16 class Model(ReprMixin, ABC): """ A base NN model to conduct pairwised text analysis. """ def __init__(self): with tf.name_scope('input'): self.handle = tf.placeholder(tf.string, shape=[], name='handle') self.data_iterator = tf.data.Iterator.from_string_handle( string_handle=self.handle, output_types=(tf.int32,) * 11, output_shapes=(tf.TensorShape([None, None]), tf.TensorShape([None, None]), tf.TensorShape([None]), tf.TensorShape([None]), tf.TensorShape([None]), tf.TensorShape([None, None, WORD_SEQ_LEN]), tf.TensorShape([None, None, WORD_SEQ_LEN]), tf.TensorShape([None, None, 4]), tf.TensorShape([None, None, 4]), tf.TensorShape([None, None]), tf.TensorShape([None, None]))) iter_next = self.data_iterator.get_next() self.x1 = tf.identity(iter_next[0], name='id1') self.x2 = tf.identity(iter_next[1], name='id2') self.y = tf.identity(iter_next[2], name='y') self.len1 = tf.identity(iter_next[3], name='len1') self.len2 = tf.identity(iter_next[4], name='len2') self.char1 = tf.identity(iter_next[5], name='char1') self.char2 = tf.identity(iter_next[6], name='char2') self.temp1 = tf.identity(iter_next[7], name='temp1') self.temp2 = tf.identity(iter_next[8], name='temp2') self.tag1 = tf.identity(iter_next[9], name='tag1') self.tag2 = tf.identity(iter_next[10], name='tag2') self.keep_prob = tf.placeholder(tf.float32, shape=[]) self.is_training = tf.placeholder(tf.bool, shape=[]) def count_parameters(self): total = 0 for var in tf.trainable_variables(): num = 1 for dim in var.get_shape(): num *= int(dim) total += num return total class SoftmaxCrossEntropyMixin(ABC): def evaluate_and_loss(self, y_hat): with tf.name_scope('predict'): probs = tf.nn.softmax(y_hat) self.prediction = tf.argmax(probs, axis=1, output_type=tf.int32) with tf.name_scope('accuracy'): self.performance = tf.reduce_mean( tf.cast(tf.equal(self.prediction, self.y), tf.float32)) with tf.name_scope('loss'): #labels = tf.one_hot(self.y, self._class_num, dtype=tf.float32) ce_loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=y_hat, labels=self.y)) rglz_loss = tf.reduce_sum(tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES)) self.loss = tf.add(ce_loss, rglz_loss) class WeightedSoftmaxCrossEntropyMixin(ABC): def evaluate_and_loss(self, y_hat, y_weights): with tf.name_scope('predict'): probs = tf.nn.softmax(y_hat) self.prediction = tf.argmax(probs, axis=1, output_type=tf.int32) with tf.name_scope('accuracy'): self.performance = tf.reduce_mean( tf.cast(tf.equal(self.prediction, self.y), tf.float32)) with tf.name_scope('loss'): y_w = tf.constant(y_weights, dtype=tf.float32, name='class_weights') #labels = tf.one_hot(self.y, self._class_num, dtype=tf.float32) ce_loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=y_hat * y_w, labels=self.y)) rglz_loss = tf.reduce_sum(tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES)) self.loss = tf.add(ce_loss, rglz_loss) ``` #### File: src/nn/decomposable.py ```python import typing as t import numpy as np import tensorflow as tf import embed import op import data from nn.base import Model, SoftmaxCrossEntropyMixin from util.log import exec_log as log class Decomposable(SoftmaxCrossEntropyMixin, Model): def __init__(self, embeddings: embed.IndexedWordEmbedding, class_num: int, project_dim: int = 200, intra_attention: bool = False, bias_init: float = 0, ) -> None: super(Decomposable, self).__init__() self.project_dim = project_dim self.intra_attention = intra_attention self.bias_init = bias_init self._class_num = class_num self.keep_prob = tf.placeholder(tf.float32, shape=[]) with tf.variable_scope('embed') as s: embed = tf.constant(embeddings.get_embeddings(), dtype=tf.float32, name='embeddings') x1, x2 = map(lambda x: tf.gather(embed, x), [self.x1, self.x2]) project = lambda x: self.linear(x, self.project_dim, bias=False) x1, x2 = map(project, [x1, x2]) x1, x2 = self.intra(x1, x2) if intra_attention else (x1, x2) with tf.variable_scope('attent') as s: sim = self.attention(x1, x2) self.attent_map = sim # for visualization alpha = tf.matmul(tf.nn.softmax(tf.matrix_transpose(sim)), x1) beta = tf.matmul(tf.nn.softmax(sim), x2) with tf.variable_scope('compare') as s: v1 = self.forward(tf.concat([x1, beta ], 2)) v2 = self.forward(tf.concat([x2, alpha], 2)) with tf.variable_scope('aggregate') as s: v1 = tf.reduce_sum(v1, axis=1) v2 = tf.reduce_sum(v2, axis=1) y_hat = self.forward(tf.concat([v1, v2], 1)) y_hat = self.linear(y_hat, dim=self._class_num) self.evaluate_and_loss(y_hat) def linear(self, inputs: tf.Tensor, dim: int, bias=True): return op.linear(inputs, dim, keep_prob=1.0, activation_fn=None, bias=bias) def forward(self, inputs: tf.Tensor, scope: t.Union[str, tf.VariableScope] = None, ): scope = scope if scope else 'forward' op_kwargs = { 'keep_prob': self.keep_prob, 'activation_fn': tf.nn.relu } with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): t = op.linear(inputs, dim=self.project_dim, scope='linear-1', **op_kwargs) t = op.linear(t, scope='linear-2', **op_kwargs) return t def post_project(self, x1, x2): return x1, x2 def attention(self, x1: tf.Tensor, x2: tf.Tensor, scope: t.Union[str, tf.VariableScope] = None, ): """ Inputs: [batch, seq_len_1, embed_dim] [batch, seq_len_2, embed_dim] Returns: [batch, seq_len_1, seq_len_2] """ with tf.name_scope('attention') as s: x1 = self.forward(x1) x2 = self.forward(x2) return tf.matmul(x1, tf.matrix_transpose(x2)) def intra(self, x1, x2): """ Intra-attention layer. """ with tf.variable_scope('intra') as s: def attent(x): with tf.variable_scope('distance_bias', reuse=tf.AUTO_REUSE): idx = tf.range(0, tf.shape(x)[1], 1) dist = tf.abs(tf.expand_dims(idx, 0) - tf.expand_dims(idx, 1)) bias = tf.get_variable('bias', [1]) bias *= tf.cast(dist >= 10, tf.float32) bias = tf.expand_dims(bias, 0) att = self.attention(x, x) pan = tf.nn.softmax(att + bias) xp = tf.einsum('bik,bkj->bij', pan, x) return tf.concat([x, xp], 2) return map(attent, [x1, x2]) class DecomposableMod(SoftmaxCrossEntropyMixin, Model): def __init__(self, embeddings: embed.IndexedWordEmbedding, class_num: int, project_dim: int = 200, intra_attention: bool = False, bias_init: float = 0, char_filer_width: int = 5, char_embed_dim: int = 8, char_conv_dim: int = 100, lstm_unit: int = 300, ) -> None: super(DecomposableMod, self).__init__() self._class_num = class_num self.project_dim = project_dim self.intra_attention = intra_attention self.bias_init = bias_init self.lstm_unit = lstm_unit self.char_filter_width = char_filer_width self.char_embed_dim = char_embed_dim self.char_conv_dim = char_conv_dim self.keep_prob = tf.placeholder(tf.float32, shape=[]) with tf.variable_scope('embed', reuse=tf.AUTO_REUSE) as s: # Word pretrained embeddings (300D) word_embed = tf.constant(embeddings.get_embeddings(), dtype=tf.float32, name='word_embed') word_embed1, word_embed2 = map(lambda x: tf.gather(word_embed, x), [self.x1, self.x2]) # Tag one-hot embeddings (72D) #def embed_tags(x_ids, x_tags): # tag_weight = op.get_variable('tag_weight', # shape=(data.SNLI.TAGS, 1)) # x_tags = x_tags[:,:tf.shape(x_ids)[1]] # return tf.gather(tag_weight, x_tags) # # shape: [batch, seq_len, 1] #tag_embed1, tag_embed2 = map(embed_tags, # *zip((self.x1, self.tag1), (self.x2, self.tag2))) def embed_tags(x_ids, x_tags, x_len): x_tags *= tf.sequence_mask(x_len, tf.shape(x_tags)[1], dtype=tf.int32) # shape: [batch, seq_len] tag_embed = tf.one_hot(x_tags, data.SNLI.TAGS, dtype=tf.float32, name='tag_embed') return tag_embed[:,:tf.shape(x_ids)[1]] tag_embed1, tag_embed2 = map(embed_tags, *zip((self.x1, self.tag1, self.len1), (self.x2, self.tag2, self.len2))) # Merge embeddings #x1 = tf.concat([word_embed1, char_embed1, tag_embed1], 2) #x2 = tf.concat([word_embed2, char_embed2, tag_embed2], 2) x1 = tf.concat([word_embed1, tag_embed1], 2) x2 = tf.concat([word_embed2, tag_embed2], 2) #x1 = word_embed1 * tag_embed1 #x2 = word_embed2 * tag_embed2 #import pdb; pdb.set_trace() x1, x2 = self.intra(x1, x2) if intra_attention else (x1, x2) with tf.variable_scope('encode', reuse=tf.AUTO_REUSE) as s: def lstm_encode(x): # shape: [batch, seq_len, embed_dim] (outputs_fw, outputs_bw), (states_fw, states_bw) = \ tf.nn.bidirectional_dynamic_rnn( cell_fw=tf.nn.rnn_cell.LSTMCell(self.lstm_unit), cell_bw=tf.nn.rnn_cell.LSTMCell(self.lstm_unit), inputs=x, dtype=tf.float32) outputs = tf.concat([outputs_fw, outputs_bw], 2) return tf.nn.dropout(outputs, self.keep_prob) # shape: [batch, seq_len, embed_dim * 2] x1, x2 = map(lstm_encode, [x1, x2]) with tf.variable_scope('attent') as s: #sim = self.attention(x1, x2) sim = tf.matmul(x1, tf.matrix_transpose(x2)) alpha = tf.matmul(tf.nn.softmax(tf.matrix_transpose(sim)), x1) beta = tf.matmul(tf.nn.softmax(sim), x2) with tf.variable_scope('compare') as s: v1 = self.forward(tf.concat([x1, beta ], 2)) v2 = self.forward(tf.concat([x2, alpha], 2)) with tf.variable_scope('aggregate') as s: v1 = tf.reduce_sum(v1, axis=1) v2 = tf.reduce_sum(v2, axis=1) y_hat = self.forward(tf.concat([v1, v2], 1)) y_hat = self.linear(y_hat, dim=self._class_num) self.evaluate_and_loss(y_hat) def linear(self, inputs: tf.Tensor, dim: int, bias=True): return op.linear(inputs, dim, keep_prob=1.0, activation_fn=None, bias=bias) def forward(self, inputs: tf.Tensor, scope: t.Union[str, tf.VariableScope] = None, ): scope = scope if scope else 'forward' op_kwargs = { 'keep_prob': self.keep_prob, 'activation_fn': tf.nn.relu } with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): t = op.linear(inputs, dim=self.project_dim, scope='linear-1', **op_kwargs) t = op.linear(t, scope='linear-2', **op_kwargs) return t def post_project(self, x1, x2): return x1, x2 def attention(self, x1: tf.Tensor, x2: tf.Tensor, scope: t.Union[str, tf.VariableScope] = None, ): """ Inputs: [batch, seq_len_1, embed_dim] [batch, seq_len_2, embed_dim] Returns: [batch, seq_len_1, seq_len_2] """ with tf.name_scope('attention') as s: x1 = self.forward(x1) x2 = self.forward(x2) return tf.matmul(x1, tf.matrix_transpose(x2)) def intra(self, x1, x2): """ Intra-attention layer. """ with tf.variable_scope('intra') as s: def attent(x): with tf.variable_scope('distance_bias', reuse=tf.AUTO_REUSE): idx = tf.range(0, tf.shape(x)[1], 1) dist = tf.abs(tf.expand_dims(idx, 0) - tf.expand_dims(idx, 1)) bias = tf.get_variable('bias', [1]) bias *= tf.cast(dist >= 10, tf.float32) bias = tf.expand_dims(bias, 0) att = self.attention(x, x) pan = tf.nn.softmax(att + bias) xp = tf.einsum('bik,bkj->bij', pan, x) return tf.concat([x, xp], 2) return map(attent, [x1, x2]) ``` #### File: src/nn/diin.py ```python import typing as t import numpy as np import tensorflow as tf import embed import data import op import nn from nn.base import Model, SoftmaxCrossEntropyMixin from util.log import exec_log as log from util.debug import * class DIIN(SoftmaxCrossEntropyMixin, Model): def __init__(self, embeddings: embed.IndexedWordEmbedding, class_num: int, scale_l1: float = 0.0, scale_l2: float = 0.000001, encode_dim: int = 300, fact_intr_dim: int = 10, fact_proj_dim: int = -1, char_filer_width: int = 5, char_embed_dim: int = 8, char_conv_dim: int = 100, lstm_unit: int = 300, ) -> None: super(DIIN, self).__init__() self._class_num = class_num self.scale_l1 = scale_l1 self.scale_l2 = scale_l2 self.encode_dim = encode_dim self.fact_proj_dim = fact_proj_dim self.fact_intr_dim = fact_intr_dim self.char_filter_width = char_filer_width self.char_embed_dim = char_embed_dim self.char_conv_dim = char_conv_dim self.lstm_unit = lstm_unit self.keep_prob = tf.placeholder(tf.float32, shape=[]) batch_size = tf.shape(self.x1)[0] padded_len1 = tf.shape(self.x1)[1] padded_len2 = tf.shape(self.x2)[1] op_kwargs = {'scale_l1': self.scale_l1, 'scale_l2': self.scale_l2, 'keep_prob': self.keep_prob} with tf.variable_scope('embed') as s: # Word pretrained embeddings (300D) word_embed = tf.constant(embeddings.get_embeddings(), dtype=tf.float32, name='word_embed') word_embed1, word_embed2 = map(lambda x: tf.gather(word_embed, x), [self.x1, self.x2]) # Character convolutional embeddings (`char_conv_dim`D) char_embed = op.get_variable('char_embed', shape=(256, char_embed_dim)) char_filter = op.get_variable('char_filter', shape=(1, self.char_filter_width, self.char_embed_dim, self.char_conv_dim)) def embed_chars(x_char): embed = tf.gather(char_embed, x_char) # shape: [batch, seq_len, word_len, embed_dim] conv = tf.nn.conv2d(embed, char_filter, [1, 1, 1, 1], 'VALID') # shape: [batch, seq_len, word_len - filter_width + 1, conv_dim] return tf.reduce_max(conv, 2) # shape: [batch, seq_len, conv_dim] char_embed1, char_embed2 = map(embed_chars, [self.char1, self.char2]) # Tag one-hot embeddings (72D) def embed_tags(x_ids, x_tags, x_len): x_tags *= tf.sequence_mask(x_len, tf.shape(x_tags)[1], dtype=tf.int32) # shape: [batch, seq_len] tag_embed = tf.one_hot(x_tags, data.SNLI.TAGS, dtype=tf.float32, name='char_embed') return tag_embed[:,:tf.shape(x_ids)[1]] tag_embed1, tag_embed2 = map(embed_tags, *zip((self.x1, self.tag1, self.len1), (self.x2, self.tag2, self.len2))) # Merge embeddings x1 = tf.concat([word_embed1, char_embed1, tag_embed1], 2) x2 = tf.concat([word_embed2, char_embed2, tag_embed2], 2) with tf.variable_scope('encode') as s: # Highway encoding def highway_encode(x): x = op.highway(x, scope='hw-1', dim=self.encode_dim, **op_kwargs) x = op.highway(x, scope='hw-2', dim=self.encode_dim, **op_kwargs) return x x1, x2 = map(highway_encode, [x1, x2]) # shape: [batch, seq_len, encode_dim] # Self-attention def self_attent(x, padded_len): t1 = tf.tile(tf.expand_dims(x, 2), [1, 1, tf.shape(x)[1], 1]) t2 = tf.tile(tf.expand_dims(x, 1), [1, tf.shape(x)[1], 1, 1]) # shape: [batch, seq_len, seq_len, encode_dim] t = tf.reshape(tf.concat([t1, t2, t1 * t2], 3), [batch_size, padded_len ** 2, 3 * self.encode_dim]) # shape: [batch, seq_len^2, 3 * encode_dim] att = op.linear(t, dim=1, bias=None, activation_fn=None) # shape: [batch, seq_len^2, 1] att = tf.reshape(att, [batch_size, padded_len, padded_len]) # shape: [batch, seq_len, seq_len] soft_align = tf.einsum('bik,bkj->bij', tf.nn.softmax(att), x) return op.gated_fuse(x, soft_align) # shape: [batch, seq_len, encode_dim] x1, x2 = map(lambda x, l: self_attent(x, l), *zip((x1, padded_len1), (x2, padded_len2))) with tf.variable_scope('interact') as s: inter = tf.expand_dims(x1, 2) * tf.expand_dims(x2, 1) # shape: [batch, seq_len1, seq_len2, encode_dim] with tf.variable_scope('extract') as s: # Dense Net feats = op.conv2d(inter, self.encode_dim * 0.3, 1) # shape: [batch, seq_len1, seq_len2, encode_dim] feats = self.dense_block(feats, 'dense-block-1') feats = self.dense_trans(feats, 'dense-trans-1') feats = self.dense_block(feats, 'dense-block-2') feats = self.dense_trans(feats, 'dense-trans-2') feats = self.dense_block(feats, 'dense-block-3') feats = self.dense_trans(feats, 'dense-trans-3') shape = tf.shape(feats) feats = tf.reshape(feats, [shape[0], shape[1] * shape[2] * shape[3]]) self.evaluate_and_loss(feats) def dense_block(self, feats, scope, num_layers: int = 8, growth_rate: int = 20, kernel_size: int = 3): with tf.variable_scope(scope): for i in range(num_layers): new_feats = op.conv2d(feats, growth_rate, (kernel_size, kernel_size), scope='conv2d-%d' % i) feats = tf.concat([feats, new_feats], 3) return feats def dense_trans(self, feats, scope, transition_rate: float = 0.5,): with tf.variable_scope(scope): out_dim = int(int(feats.shape[-1]) * transition_rate) feats = op.conv2d(feats, out_dim, 1, activation_fn=None) feats = tf.nn.max_pool(feats, [1,2,2,1], [1,2,2,1], 'VALID') return feats ``` #### File: src/nn/esim.py ```python import typing as t import numpy as np import tensorflow as tf import embed import data import op import nn from nn.base import Model, WeightedSoftmaxCrossEntropyMixin from util.log import exec_log as log from util.debug import * class ESIM(WeightedSoftmaxCrossEntropyMixin, Model): def __init__(self, embeddings: embed.IndexedWordEmbedding, class_num: int, scale_l1: float = 0.0, scale_l2: float = 0.0, lstm_unit: int = 300, seq_len: int = 0, char_filer_width: int = 5, char_embed_dim: int = 8, char_conv_dim: int = 100, class_weights: t.List[float] = [1.1, 1, 1], ) -> None: super(ESIM, self).__init__() self._class_num = class_num self.class_weights = class_weights self.scale_l1 = scale_l1 self.scale_l2 = scale_l2 self.lstm_unit = lstm_unit self.seq_len = seq_len self.char_filter_width = char_filer_width self.char_embed_dim = char_embed_dim self.char_conv_dim = char_conv_dim op_kwargs = {'scale_l1': self.scale_l1, 'scale_l2': self.scale_l2, 'keep_prob': self.keep_prob, 'drop_after': False} with tf.variable_scope('embed') as s: def set_seq_len(x): x_len = tf.shape(x)[1] return tf.cond( tf.less(self.seq_len, x_len), lambda: x[:,:self.seq_len], lambda: tf.pad(x, [[0, 0], [0, self.seq_len - x_len]])) if self.seq_len > 0: x1, x2 = map(set_seq_len, [self.x1, self.x2]) else: x1, x2 = self.x1, self.x2 #embed_init_var = embeddings.get_embeddings() #embed = op.get_variable('embeddings', # shape=embed_init_var.shape, # initializer=tf.constant_initializer(embed_init_var)) #embed = tf.constant(embeddings.get_embeddings(), # dtype=tf.float32, # name='embeddings') #x1, x2 = map(lambda x: tf.gather(embed, x), [x1, x2]) # Word pretrained embeddings (300D) word_embed = tf.constant(embeddings.get_embeddings(), dtype=tf.float32, name='word_embed') word_embed1, word_embed2 = map(lambda x: tf.gather(word_embed, x), [self.x1, self.x2]) embed_dim = word_embed.get_shape()[-1] # Character convolutional embeddings (`char_conv_dim`D) char_embed = op.get_variable('char_embed', shape=(256, char_embed_dim)) char_filter = op.get_variable('char_filter', shape=(1, self.char_filter_width, self.char_embed_dim, self.char_conv_dim)) def embed_chars(x_char): embed = tf.gather(char_embed, x_char) # shape: [batch, seq_len, word_len, embed_dim] conv = tf.nn.conv2d(embed, char_filter, [1, 1, 1, 1], 'VALID') # shape: [batch, seq_len, word_len - filter_width + 1, conv_dim] return tf.reduce_max(conv, 2) # shape: [batch, seq_len, conv_dim] char_embed1, char_embed2 = map(embed_chars, [self.char1, self.char2]) # Tag one-hot embeddings (72D) def embed_tags(x_ids, x_tags, x_len): x_tags *= tf.sequence_mask(x_len, tf.shape(x_tags)[1], dtype=tf.int32) # shape: [batch, seq_len] tag_embed = tf.one_hot(x_tags, data.SNLI.TAGS, dtype=tf.float32, name='char_embed') return tag_embed[:,:tf.shape(x_ids)[1]] tag_embed1, tag_embed2 = map(embed_tags, *zip((self.x1, self.tag1, self.len1), (self.x2, self.tag2, self.len2))) # Merge embeddings #x1 = tf.concat([word_embed1, char_embed1, tag_embed1], 2) #x2 = tf.concat([word_embed2, char_embed2, tag_embed2], 2) x1 = tf.concat([word_embed1, char_embed1], 2) x2 = tf.concat([word_embed2, char_embed2], 2) x1 = self.unfold_tree(x1, self.temp1, self.tag1, self.len1, 'x1') x2 = self.unfold_tree(x2, self.temp2, self.tag2, self.len2, 'x2') with tf.variable_scope('encode', reuse=tf.AUTO_REUSE) as s: x1, x2 = map(lambda x: tf.nn.dropout(x, self.keep_prob), [x1, x2]) #import pdb; pdb.set_trace() x1, x2 = map(self.bilstm, [x1, x2]) # shape: [batch, seq_len, embed_dim * 2] with tf.variable_scope('attent') as s: sim = tf.matmul(x1, tf.matrix_transpose(x2)) alpha = tf.matmul(tf.nn.softmax(tf.matrix_transpose(sim)), x1) beta = tf.matmul(tf.nn.softmax(sim), x2) x1 = tf.concat([x1, beta, x1 * beta, x1 - beta ], 2) x2 = tf.concat([x2, alpha, x2 * alpha, x2 - alpha], 2) # shape: [batch, seq_len, embed_dim * 8] with tf.variable_scope('decode', reuse=tf.AUTO_REUSE) as s: x1, x2 = map(lambda x: op.linear(x, dim=embed_dim, **op_kwargs), [x1, x2]) # NOTE: dropout here in the author's code # shape: [batch, seq_len, embed_dim] x1, x2 = map(self.bilstm, [x1, x2]) # shape: [batch, seq_len, embed_dim * 2] with tf.variable_scope('aggregate') as s: def pool(x): return tf.concat([ tf.reduce_sum(x, axis=1), tf.reduce_max(x, axis=1) ], 1) y_hat = op.linear(tf.concat([pool(x1), pool(x2)], 1), dim=embed_dim, activation_fn=tf.nn.tanh, scope='linear-1', **op_kwargs) # shape: [batch, embed_dim * 8] y_hat = op.linear(y_hat, dim=self._class_num, activation_fn=None, scope='linear-2', **op_kwargs) # shape: [batch, class_num] self.evaluate_and_loss(y_hat, self.class_weights) def bilstm(self, x): # shape: [batch, seq_len, embed_dim] if self.seq_len > 0: # Static RNN #lstm = tf.contrib.cudnn_rnn.CudnnLSTM(1, self.lstm_unit, # direction='bidirectional') #return tf.transpose(lstm(tf.transpose(x, [1, 0, 2]))[0], [1, 0, 2]) x_seq = tf.unstack( tf.reshape(x, [-1, self.seq_len, x.get_shape()[-1]]), axis=1) out, _, _ = tf.nn.static_bidirectional_rnn( cell_fw=tf.contrib.rnn.LSTMBlockCell(self.lstm_unit), cell_bw=tf.contrib.rnn.LSTMBlockCell(self.lstm_unit), inputs=x_seq, dtype=tf.float32) return tf.stack(out, axis=1) else: # Dynamic RNN (outputs_fw, outputs_bw), (states_fw, states_bw) = \ tf.nn.bidirectional_dynamic_rnn( cell_fw=tf.contrib.rnn.LSTMBlockCell(self.lstm_unit), cell_bw=tf.contrib.rnn.LSTMBlockCell(self.lstm_unit), inputs=x, dtype=tf.float32) return tf.concat([outputs_fw, outputs_bw], 2) # shape: [batch, seq_len, embed_dim * 2] def unfold_tree(self, embed: tf.Tensor, # 3D: [batch, seq_len, embed_dim] temp: tf.Tensor, # 3D: [batch, temp_len, temp_size] tag: tf.Tensor, # 2D: [batch, seq_len + temp_len] len_: tf.Tensor, # 1D: [batch] suffix: str): with tf.name_scope('unfold_tree_%s' % suffix): batch_size = tf.shape(embed)[0] # Create a container of size (x.len + temp.len + 1) for the # unfoldered tree embeddings, where one zero embedding # vector is padded at head. tree = tf.pad(embed, [[0, 0], [1, tf.shape(temp)[1]], [0, 0]]) # NOTE: This is a trick to have a fixed embedding dimension in the # construction time. This is used for initializing variables (e.g. # in a linear transofrmation layer). tree = tf.reshape(tree, [batch_size, -1, embed.get_shape()[-1]]) # shape: [batch, 1 + seq_len + temp_len, embed_dim] # Add batch index to each template position. temp = tf.expand_dims(temp, -1) bidx = tf.tile(tf.reshape(tf.range(batch_size), [-1, 1, 1, 1]), [1, tf.shape(temp)[1], tf.shape(temp)[2], 1]) temp = tf.concat([bidx, temp], axis=3) # shape: [batch, temp_len, temp_size, 2] temp = tf.cast(temp, tf.float32) # NOTE: register tf.gather in GPU. # Pad a leading 0 to align with the unfolded tree tag = tf.pad(tag, [[0, 0], [1, 0]]) tag = tf.cast(tag, tf.float32) # NOTE: register tf.gather in GPU. # shape: [batch, 1 + tag_len] # NOTE: tag_len <= seq_len + temp_len # find the next available position (zero embedding) top = tf.expand_dims(len_ + 1, -1) # shape: [batch, 1] i = tf.constant(1) def loop_cond(i, tree, temp, tag, batch_size): return tf.less(i, tf.shape(temp)[1]) def loop_body(i, tree, temp, tag, batch_size): c_idx = tf.gather(temp, i, axis=1) c_idx = tf.cast(c_idx, tf.int32) # NOTE: restore type # shape: [batch, temp_size, 2] p_idx = tf.concat( [tf.expand_dims(tf.range(batch_size), -1), top + i], axis=1) # shape: [batch, 2] p_tag = tf.gather_nd(tag, p_idx) p_tag = tf.cast(p_tag, tf.int32) # NOTE: restore type # shape: [batch] c_embed = tf.gather_nd(tree, c_idx) # shape: [batch, temp_size, embed_dim] c_tag = tf.gather_nd(tag, c_idx) c_tag = tf.cast(c_tag, tf.int32) # NOTE: restore type # shape: [batch, temp_size] p_embed = self.merge_fn(c_embed, c_tag, p_tag) tree += tf.scatter_nd( indices=p_idx, updates=p_embed, shape=tf.shape(tree)) i += 1 return [i, tree, temp, tag, batch_size] _, x_loop, _, _, _ = tf.while_loop(loop_cond, loop_body, [i, tree, temp, tag, batch_size], parallel_iterations=1) return x_loop def merge_fn(self, c_embeds: tf.Tensor, # 3D: [batch, temp_size, embed_dim] c_tags: tf.Tensor, # 2D: [batch, temp_size] p_tags: tf.Tensor # 1D: [batch] )-> tf.Tensor: # 2D: [batch, embed_dim] return tf.reduce_mean(c_embeds, axis=1) ``` #### File: src/nn/ngram.py ```python from abc import ABC, abstractmethod import typing as t import numpy as np import tensorflow as tf import embed from nn.decomposable import Decomposable class Ngram(Decomposable, ABC): def __init__(self, ngram_size: t.Union[int, t.List[int]] = [2, 3], **kwargs )-> None: self.ngram_size = ngram_size \ if isinstance(ngram_size, list) else [ngram_size] super(Ngram, self).__init__(**kwargs) def post_project(self, x1: tf.Tensor, x2: tf.Tensor): for size in self.ngram_size: x1_ngram, x2_ngram = self.ngram_embed(x1, x2, size) x1 = tf.concat([x1, x1_ngram], 1) x2 = tf.concat([x2, x2_ngram], 1) return x1, x2 @abstractmethod def ngram_embed(self, x1: tf.Tensor, x2: tf.Tensor, ngram_size: int, weight_stddev: float = 0.01 )-> tf.Tensor: pass class ConvNgram(Ngram): def ngram_embed(self, x1: tf.Tensor, x2: tf.Tensor, ngram_size: int, weight_stddev: float = 0.01, )-> tf.Tensor: def ngram_embed_impl(x): t = tf.expand_dims(x, -1) t = tf.layers.conv2d(t, filters=int(t.shape[2]), kernel_size=(ngram_size, t.shape[2]), kernel_initializer=tf.initializers.truncated_normal( stddev=weight_stddev), name='%d-gram-conv' % ngram_size, reuse=tf.AUTO_REUSE) t = tf.nn.relu(t) t = tf.squeeze(t, [2]) return t return map(ngram_embed_impl, [x1, x2]) class TagConvNgram(ConvNgram): def __init__(self, tags_num: int = 45, **kwargs)-> None: self.tags_num = tags_num super(TagConvNgram, self).__init__(**kwargs) def post_project(self, x1: tf.Tensor, x2: tf.Tensor): tag_weight = tf.get_variable('tag_weight', shape=(self.tags_num, 100), dtype=tf.float32, initializer=tf.initializers.truncated_normal(stddev=0.01)) #initializer=tf.initializers.constant(1)) x1 = tf.concat([x1, tf.gather(tag_weight, self.tag1)], 2) x2 = tf.concat([x2, tf.gather(tag_weight, self.tag2)], 2) x1_ngrams, x2_ngrams = [x1], [x2] for size in self.ngram_size: with tf.name_scope('%d-gram-embed' % size): x1_ngram, x2_ngram = self.ngram_embed(x1, x2, size) x1_ngrams += x1_ngram, x2_ngrams += x2_ngram, x1 = tf.concat(x1_ngrams, 1) x2 = tf.concat(x2_ngrams, 1) return x1, x2 class TagGatedConvNgram(ConvNgram): def __init__(self, tags_num: int = 45, **kwargs)-> None: self.tags_num = tags_num super(TagGatedConvNgram, self).__init__(**kwargs) def post_project(self, x1: tf.Tensor, x2: tf.Tensor): tag_weight = tf.get_variable('tag_weight', shape=(self.tags_num, 1), dtype=tf.float32, #initializer=tf.initializers.truncated_normal(stddev=0.01)) initializer=tf.initializers.constant(1)) x1 *= tf.gather(tag_weight, self.tag1) x2 *= tf.gather(tag_weight, self.tag2) for size in [n for n in self.ngram_size if n > 1]: x1_ngram, x2_ngram = self.ngram_embed(x1, x2, size) x1 = tf.concat([x1, x1_ngram], 1) x2 = tf.concat([x2, x2_ngram], 1) return x1, x2 ``` #### File: NLI/src/op.py ```python import typing as t import tensorflow as tf DEFAULT_VAR_INIT = tf.variance_scaling_initializer() DEFAULT_SCALE_L1 = 0.0 DEFAULT_SCALE_L2 = 0.0 def get_variable( name: str, initializer: t.Callable = DEFAULT_VAR_INIT, scale_l1: float = DEFAULT_SCALE_L1, scale_l2: float = DEFAULT_SCALE_L2, dtype: tf.DType = tf.float32, **kwargs): """ Get an existing tf.Variable with these parameters or create a new one. This function calls `tf.get_variable` while overriding some default parameters. All ops using variables MUST use this function for consistency. """ return tf.get_variable(name, initializer=initializer, regularizer=tf.contrib.layers.l1_l2_regularizer(scale_l1, scale_l2), dtype=dtype, **kwargs) def conv2d( inputs, num_outputs, kernel_size, padding='SAME', weight_initializer: t.Callable = DEFAULT_VAR_INIT, biases_initializer: t.Callable = DEFAULT_VAR_INIT, scale_l1: float = DEFAULT_SCALE_L1, scale_l2: float = DEFAULT_SCALE_L2, reuse=tf.AUTO_REUSE, activation_fn=tf.nn.relu, scope='conv2d'): """ Conduct an N-D convolution (1 <= N <=3). This function calls `tf.contrib.layers.conv2d` while overriding some default parameters in order to be consistant with `get_variable`. """ return tf.contrib.layers.conv2d(inputs, num_outputs, kernel_size, padding=padding, weights_initializer=weight_initializer, weights_regularizer=tf.contrib.layers.l1_l2_regularizer( scale_l1, scale_l2), biases_initializer=biases_initializer, biases_regularizer=tf.contrib.layers.l1_l2_regularizer( scale_l1, scale_l2), reuse=reuse, activation_fn=activation_fn, scope=scope) def linear( inputs: tf.Tensor, dim: int = -1, activation_fn: t.Callable = tf.nn.relu, bias: bool = True, drop_after: bool = True, keep_prob: float = 1.0, scope: t.Union[str, tf.VariableScope] = None, reuse: bool = tf.AUTO_REUSE, **kwargs): """ Inputs: 3D-Tensor [batch, seq_len, input_dim], or 2D-Tensor [batch, input_dim] Returns: 3D-Tensor [batch, seq_len, dim], or 2D-Tensor [batch, dim] """ dim = dim if dim > 0 else int(inputs.shape[-1]) t = tf.nn.dropout(inputs, keep_prob) if not drop_after else inputs with tf.variable_scope(scope if scope else 'linear', reuse=reuse): t_shape = tf.shape(t) w = get_variable('weight', shape=[t.get_shape()[-1], dim], **kwargs) output_rank = len(t.get_shape()) if output_rank == 3: t = tf.reshape(t, [-1, t.shape[2]]) t = tf.matmul(t, w) if bias: b = get_variable('bias', shape=[dim], **kwargs) t += b t = activation_fn(t) if activation_fn else t if output_rank == 3: t = tf.reshape(t, [-1, t_shape[1], dim]) t = tf.nn.dropout(t, keep_prob) if drop_after else t return t def highway( inputs: tf.Tensor, scope: t.Union[str, tf.VariableScope] = None, reuse: bool = tf.AUTO_REUSE, **kwargs): """ Inputs: 3D-Tensor [batch, seq_len, input_dim], or 2D-Tensor [batch, input_dim] Returns: 3D-Tensor [batch, seq_len, dim], or 2D-Tensor [batch, dim] """ with tf.variable_scope(scope if scope else 'highway', reuse=reuse): trans = linear(inputs, scope='trans', **kwargs) gate = linear(inputs, scope='gate', activation_fn=tf.sigmoid, **kwargs) if inputs.shape[-1] != gate.shape[-1]: # Additional afine transformation to project input into the shape inputs = linear(inputs, scope='affine', **kwargs) return gate * trans + (1 - gate) * inputs def gated_fuse( t1: tf.Tensor, t2: tf.Tensor, scope: t.Union[str, tf.VariableScope] = None, reuse: bool = tf.AUTO_REUSE, **kwargs ): """ Inputs: 3D-Tensor [batch, seq_len, t1_dim] Returns: 3D-Tensor [batch, seq_len, t1_dim] """ with tf.variable_scope(scope if scope else 'gated-fuse', reuse=reuse): proj = lambda inputs, scope: linear(inputs, dim=t1.shape[-1], scope=scope, activation_fn=None, **kwargs) # NOTE: two tensors are concated in the paper with tf.variable_scope('trans'): trans = tf.nn.relu(proj(t1, 'linear1') + proj(t2, 'linear2')) with tf.variable_scope('gate'): gate = tf.sigmoid(proj(t1, 'linear1') + proj(t2, 'linear2')) return gate * trans + (1 - gate) * t1 def lstm( inputs: tf.Tensor, seq_len: int, hidden_size: int, num_layers: int = 1, cell_type: str = 'gru', dynamic: bool = False, bidirectional: bool = False, scope: t.Union[str, tf.VariableScope] = None, reuse: bool = tf.AUTO_REUSE ): # type and shape check if not isinstance(seq_len, int): if len(seq_len.get_shape()) == 2: seq_len = tf.squeeze(seq_len, axis=1) if seq_len.dtype.is_floating: seq_len = tf.cast(seq_len, tf.int32) if len(inputs.get_shape()) == 4: inputs = tf.squeeze(inputs, axis=3) with tf.variable_scope(scope if scope else cell_type, reuse=reuse): with tf.name_scope('multilayer-rnn'): cell = _get_multi_rnn_cell(hidden_size, num_layers=num_layers, cell_type=cell_type, bidirectional=bidirectional) rnn_outputs = _get_rnn_outputs(cell, inputs, seq_len, dynamic=dynamic, bidirectional=bidirectional) return rnn_outputs def _get_multi_rnn_cell(hidden_size, num_layers=1, cell_type='gru', bidirectional=False): cell_types = {'lstm': tf.nn.rnn_cell.LSTMCell, 'gru': tf.nn.rnn_cell.GRUCell} cell = cell_types.get(cell_type, None) rnn_params = {'num_units': hidden_size, 'activation': tf.nn.relu} if cell_type == 'lstm': rnn_params['use_peepholes'] = True cell_fw = tf.contrib.rnn.MultiRNNCell( [cell(**rnn_params) for _ in range(num_layers)]) if bidirectional is False: return cell_fw else: cell_bw = tf.contrib.rnn.MultiRNNCell( [cell(**rnn_params) for _ in range(num_layers)]) return cell_fw, cell_bw def _get_rnn_outputs(cell, inputs, seq_len, dynamic=True, bidirectional=False): if dynamic is True: if bidirectional is True: (cell_fw, cell_bw) = cell outputs, state = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, tf.cast(inputs, tf.float32), sequence_length=seq_len, time_major=False, dtype='float32') output_fw, output_bw = outputs outputs = tf.concat(axis=2, values=[output_fw, output_bw]) else: outputs, state = tf.nn.dynamic_rnn(cell, tf.cast(inputs, tf.float32), sequence_length=seq_len, time_major=False, dtype='float32') else: inputs = tf.unstack(inputs, axis=1) inputs = [tf.cast(i, tf.float32) for i in inputs] outputs, output_state_fw, output_state_bw = \ tf.nn.static_bidirectional_rnn( cell_fw, cell_bw, inputs, sequence_length=seq_len, dtype='float32') outputs = tf.stack(outputs, axis=1) return outputs ``` #### File: src/util/build.py ```python import os import glob from typing import List, Dict, Union BUILD_DIR = './build' def parse_args(sys_argv: List[str]) -> Dict[str, Union[str, int, float, bool]]: """ Parse command line arguments to dictionary. The numeric values are auto convert to the according types. """ kwargs = {} # type: Dict[str, Union[str, int, float, bool]] if len(sys_argv) > 1: for arg in sys_argv[1:]: k = arg.split("=")[0][2:] v = arg.split("=")[1] # type: Union[str, int, float, bool] if v == 'True': v = True elif v == 'False': v = False else: try: v = int(v) except ValueError: try: v = float(v) except ValueError: pass kwargs[k] = v return kwargs def get_model_path(model_name: str) -> str: return './build/models/{}'.format(model_name) def get_new_default_model_path() -> str: """ Get a model name 'modeli' with the minimum positive i and do not exist in the build directory. """ model_path = get_model_path('model') if not os.path.isdir(model_path): return model_path i = 1 while True: if not os.path.isdir(model_path + str(i)): return model_path + str(i) i += 1 def get_last_default_model_path() -> str: """ Get a model path 'modeli' with the maximum i that exists in the build directory. """ for p in reversed(sorted(glob.glob(get_model_path('*')))): if os.path.isdir(p): return p return get_model_path('model') def get_log_path(model_path: str) -> str: """ Get the pathname to the log path. """ return os.path.join(model_path, 'log') def get_save_path(model_path: str) -> str: """ Get the pathname to the save file. """ return os.path.join(model_path, 'model') def get_saved_model(model_path: str, step: int = None) -> str: #print('{}/*.index'.format(model_path)) #print(glob.glob('{}/*.index'.format(model_path))) saved_path = '{}/model-{}*.index'.format(model_path, step if step else '') # load the lastest trained model offset = len(model_path) + 7 idx_file = sorted(glob.glob(saved_path), key=lambda name: int(name[offset:name.rfind('.')]))[-1] return os.path.splitext(idx_file)[0] ``` #### File: src/util/debug.py ```python import tensorflow as tf def tf_Print(input_, data, **kwargs): kwargs = {'summarize': 2**30, 'first_n': 1, **kwargs} return tf.Print(input_, data, **kwargs) ``` #### File: src/util/layers.py ```python import tensorflow as tf def lstm(inputs, seq_len, hidden_size, num_layers=1, cell_type='gru', bidirectional=False): # type and shape check if not isinstance(seq_len, int): if len(seq_len.get_shape()) == 2: seq_len = tf.squeeze(seq_len, axis=1) if seq_len.dtype.is_floating: seq_len = tf.cast(seq_len, tf.int32) if len(inputs.get_shape()) == 4: inputs = tf.squeeze(inputs, axis=3) with tf.name_scope('multilayer-rnn'): cell = _get_multi_rnn_cell(hidden_size, num_layers=num_layers, cell_type=cell_type, bidirectional=bidirectional) rnn_outputs = _get_rnn_outputs(cell, inputs, seq_len, bidirectional=bidirectional) return rnn_outputs def _get_multi_rnn_cell(hidden_size, num_layers=1, cell_type='gru', bidirectional=False): cell_types = {'lstm': tf.nn.rnn_cell.LSTMCell, 'gru': tf.nn.rnn_cell.GRUCell} cell = cell_types.get(cell_type, None) rnn_params = {'num_units': hidden_size, 'activation': tf.nn.relu} if cell_type == 'lstm': rnn_params['use_peepholes'] = True cell_fw = tf.contrib.rnn.MultiRNNCell( [cell(**rnn_params) for _ in range(num_layers)]) if bidirectional is False: return cell_fw else: cell_bw = tf.contrib.rnn.MultiRNNCell( [cell(**rnn_params) for _ in range(num_layers)]) return cell_fw, cell_bw def _get_rnn_outputs(cell, inputs, seq_len, dynamic=True, bidirectional=False): if dynamic is True: if bidirectional is True: (cell_fw, cell_bw) = cell outputs, state = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, tf.cast(inputs, tf.float32), sequence_length=seq_len, time_major=False, dtype='float32') output_fw, output_bw = outputs outputs = tf.concat(axis=2, values=[output_fw, output_bw]) else: outputs, state = tf.nn.dynamic_rnn( cell, tf.cast(inputs, tf.float32), sequence_length=seq_len, time_major=False, dtype='float32') else: inputs = tf.unstack(inputs, axis=1) inputs = [tf.cast(i, tf.float32) for i in inputs] (outputs, output_state_fw, output_state_bw) = tf.nn.static_bidirectional_rnn( cell_fw, cell_bw, inputs, sequence_length=seq_len, dtype='float32') outputs = tf.stack(outputs, axis=1) return outputs ```
{ "source": "jie-meng/toolscripts", "score": 3 }
#### File: toolscripts/excel/convert-text2num.py ```python from openpyxl import load_workbook def is_int(s): try: int(s) return True except ValueError: return None def is_float(s): try: float(s) return True except ValueError: return None def process_sheet(sheet): for row in sheet.iter_rows(): for cell in row: if type(cell.value) == str: if is_int(cell.value) != None: print('cell {0} converted to int {1}'.format(cell, cell.value)) cell.value = int(cell.value) elif is_float(cell.value) != None: print('cell {0} converted float {1}'.format(cell, cell.value)) cell.value = float(cell.value) def process_workbook(source, dest): wb = load_workbook(source) for sheet in wb.worksheets: process_sheet(sheet) wb.save(dest) if __name__ == "__main__": print('please input source xlsx file path:') source = input() print('please input dest xlsx file path:') dest = input() process_workbook(source, dest) print('\ndone!') ```
{ "source": "jiemichong/visionarycaptionsv1", "score": 3 }
#### File: src/application/text_to_viz.py ```python from domain.viz.domain import Domain, project from domain.text.operator_lang import OperatorLang, Peak, MoreThan, LessThan, NoOp class TextToViz(object): def __init__(self, phrases, histogram): self.phrases = phrases self.histogram = histogram self.viz_domain = self.histogram.domain() self.phrase_min = 0 self.phrase_max = 3000 self.phrase_domain = Domain(self.phrase_min, self.phrase_max) def run(self): for phrase in self.phrases: op = self.phrase_to_op(phrase) if type(op) is Peak: spike = self.histogram.mode() print(op, op.value) print("KH: I'm not sure if this is the coordinate that we want to plot.", self.project(op.value), spike.height) print("Carmen: need a radius. Maybe something like bar width * 3") elif type(op) is MoreThan: print(op, op.value) print("KH: Is this the x-range that we want to plot for 'more than'?", self.project(op.value), self.project(self.phrase_max)) print("Carmen: OK-ish.") elif type(op) is LessThan: print(op, op.value) print("KH: Is this the x-range that we want to plot for 'less than'?", self.project(self.phrase_min), self.project(op.value)) print("Carmen: x should starts around 542. width should be around 490") print() return def project(self, value): return project(value, self.phrase_domain, self.viz_domain) def phrase_to_op(self, phrase) -> OperatorLang: if Peak.match(phrase): op = Peak(phrase) elif MoreThan.match(phrase): op = MoreThan(phrase) elif LessThan.match(phrase): op = LessThan(phrase) else: op = NoOp(phrase) return op ``` #### File: domain/text/operator_lang.py ```python class OperatorLang(object): keywords = [] def __init__(self): pass @classmethod def match(cls, phrase): return any([keyword in phrase for keyword in cls.keywords]) class NoOp(OperatorLang): def __init__(self, phrase): self.phrase = phrase def __str__(self): return "NoOp({self.phrase})".format(self=self) class LessThan(OperatorLang): keywords = ["fewer"] @property def value(self): digits = [float(s) for s in self.phrase.split() if s.isdigit()] return max(digits) def __init__(self, phrase): self.phrase = phrase def __str__(self): return "LessThan({self.phrase})".format(self=self) class MoreThan(OperatorLang): keywords = ["more"] @property def value(self): digits = [float(s) for s in self.phrase.split() if s.isdigit()] return max(digits) def __init__(self, phrase): self.phrase = phrase def __str__(self): return "MoreThan({self.phrase})".format(self=self) class Peak(OperatorLang): keywords = ["spike", "max", "mode"] @property def value(self): digits = [float(s) for s in self.phrase.split() if s.isdigit()] return digits[0] def __init__(self, phrase): self.phrase = phrase def __str__(self): return "Peak({self.phrase})".format(self=self) ``` #### File: domain/text/test_emphasis.py ```python from src.domain.viz.circle import Circle from src.domain.text.emphasis import Emphasis def test_emphasis(): phrase = "test phrase" shape = Circle(100, 100, 10) emphasis = Emphasis(phrase, shape) assert emphasis.phrase == phrase assert emphasis.shape.type == "circle" assert emphasis.shape.x == 100 assert emphasis.shape.y == 100 assert emphasis.shape.r == 10 circle_dict = { "phrase": "The spike around 1000 calories", "shape": { "type": "circle", "x": 339, "y": 460, "r": 45 } } rect_dict = { "phrase": "fewer than 650 calories such as a cheese-free burrito bowl", "shape": { "type": "rectangle", "x": 2, "y": 0, "w": 220, "h": 500 } } def test_emphasis_from_dict(): circle_emph = Emphasis.from_dict(circle_dict) assert circle_emph.phrase == circle_dict["phrase"] assert circle_emph.shape.x == circle_dict["shape"]["x"] assert circle_emph.shape.y == circle_dict["shape"]["y"] assert circle_emph.shape.r == circle_dict["shape"]["r"] rect_emph = Emphasis.from_dict(rect_dict) assert rect_emph.phrase == rect_dict["phrase"] assert rect_emph.shape.x == rect_dict["shape"]["x"] assert rect_emph.shape.y == rect_dict["shape"]["y"] assert rect_emph.shape.width == rect_dict["shape"]["w"] assert rect_emph.shape.height == rect_dict["shape"]["h"] ```
{ "source": "jieming2002/models-quiz8", "score": 2 }
#### File: models-quiz8/research/inference.py ```python import argparse import os import numpy as np import tensorflow as tf from matplotlib import pyplot as plt from PIL import Image from utils import visualization_utils as vis_util from utils import label_map_util if tf.__version__ < '1.4.0': raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') NUM_CLASSES = 5 def parse_args(check=True): parser = argparse.ArgumentParser() parser.add_argument('--output_dir', type=str, required=True) parser.add_argument('--dataset_dir', type=str, required=True) FLAGS, unparsed = parser.parse_known_args() return FLAGS, unparsed if __name__ == '__main__': FLAGS, unparsed = parse_args() PATH_TO_CKPT = os.path.join(FLAGS.output_dir, 'exported_graphs/frozen_inference_graph.pb') PATH_TO_LABELS = os.path.join(FLAGS.dataset_dir, 'labels_items.txt') detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) test_img_path = os.path.join(FLAGS.dataset_dir, 'test.jpg') with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') image = Image.open(test_img_path) image_np = load_image_into_numpy_array(image) image_np_expanded = np.expand_dims(image_np, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) print('skye boxes=', boxes) # scores[0][0] = 0.99 # Output.png 上面没有预测结果信息. 准确率太低?是的。最后的框是会有个准确率阈值的。 print('skye scores=',scores) print('skye classes=', classes) print('skye category_index=', category_index) image_np = vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) plt.imsave(os.path.join(FLAGS.output_dir, 'output.png'), image_np) ``` #### File: object_detection/meta_architectures/ssd_meta_arch.py ```python from abc import abstractmethod import re import tensorflow as tf from object_detection.core import box_list from object_detection.core import box_predictor as bpredictor from object_detection.core import model from object_detection.core import standard_fields as fields from object_detection.core import target_assigner from object_detection.utils import shape_utils from object_detection.utils import visualization_utils slim = tf.contrib.slim class SSDFeatureExtractor(object): """SSD Feature Extractor definition.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable=True, reuse_weights=None): """Constructor. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops. batch_norm_trainable: Whether to update batch norm parameters during training or not. When training with a small batch size (e.g. 1), it is desirable to disable batch norm update and use pretrained batch norm params. reuse_weights: whether to reuse variables. Default is None. """ self._is_training = is_training self._depth_multiplier = depth_multiplier self._min_depth = min_depth self._pad_to_multiple = pad_to_multiple self._conv_hyperparams = conv_hyperparams self._batch_norm_trainable = batch_norm_trainable self._reuse_weights = reuse_weights @abstractmethod def preprocess(self, resized_inputs): """Preprocesses images for feature extraction (minus image resizing). Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ pass @abstractmethod def extract_features(self, preprocessed_inputs): """Extracts features from preprocessed inputs. This function is responsible for extracting feature maps from preprocessed images. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ pass class SSDMetaArch(model.DetectionModel): """SSD Meta-architecture definition.""" def __init__(self, is_training, anchor_generator, box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_loss_weight, localization_loss_weight, normalize_loss_by_num_matches, hard_example_miner, add_summaries=True): """SSDMetaArch Constructor. TODO: group NMS parameters + score converter into a class and loss parameters into a class and write config protos for postprocessing and losses. Args: is_training: A boolean indicating whether the training version of the computation graph should be constructed. anchor_generator: an anchor_generator.AnchorGenerator object. box_predictor: a box_predictor.BoxPredictor object. box_coder: a box_coder.BoxCoder object. feature_extractor: a SSDFeatureExtractor object. matcher: a matcher.Matcher object. region_similarity_calculator: a region_similarity_calculator.RegionSimilarityCalculator object. image_resizer_fn: a callable for image resizing. This callable always takes a rank-3 image tensor (corresponding to a single image) and returns a rank-3 image tensor, possibly with new spatial dimensions. See builders/image_resizer_builder.py. non_max_suppression_fn: batch_multiclass_non_max_suppression callable that takes `boxes`, `scores` and optional `clip_window` inputs (with all other inputs already set) and returns a dictionary hold tensors with keys: `detection_boxes`, `detection_scores`, `detection_classes` and `num_detections`. See `post_processing. batch_multiclass_non_max_suppression` for the type and shape of these tensors. score_conversion_fn: callable elementwise nonlinearity (that takes tensors as inputs and returns tensors). This is usually used to convert logits to probabilities. classification_loss: an object_detection.core.losses.Loss object. localization_loss: a object_detection.core.losses.Loss object. classification_loss_weight: float localization_loss_weight: float normalize_loss_by_num_matches: boolean hard_example_miner: a losses.HardExampleMiner object (can be None) add_summaries: boolean (default: True) controlling whether summary ops should be added to tensorflow graph. """ super(SSDMetaArch, self).__init__(num_classes=box_predictor.num_classes) self._is_training = is_training # Needed for fine-tuning from classification checkpoints whose # variables do not have the feature extractor scope. self._extract_features_scope = 'FeatureExtractor' self._anchor_generator = anchor_generator self._box_predictor = box_predictor self._box_coder = box_coder self._feature_extractor = feature_extractor self._matcher = matcher self._region_similarity_calculator = region_similarity_calculator # TODO: handle agnostic mode and positive/negative class weights unmatched_cls_target = None unmatched_cls_target = tf.constant([1] + self.num_classes * [0], tf.float32) self._target_assigner = target_assigner.TargetAssigner( self._region_similarity_calculator, self._matcher, self._box_coder, positive_class_weight=1.0, negative_class_weight=1.0, unmatched_cls_target=unmatched_cls_target) self._classification_loss = classification_loss self._localization_loss = localization_loss self._classification_loss_weight = classification_loss_weight self._localization_loss_weight = localization_loss_weight self._normalize_loss_by_num_matches = normalize_loss_by_num_matches self._hard_example_miner = hard_example_miner self._image_resizer_fn = image_resizer_fn self._non_max_suppression_fn = non_max_suppression_fn self._score_conversion_fn = score_conversion_fn self._anchors = None self._add_summaries = add_summaries @property def anchors(self): if not self._anchors: raise RuntimeError('anchors have not been constructed yet!') if not isinstance(self._anchors, box_list.BoxList): raise RuntimeError('anchors should be a BoxList object, but is not.') return self._anchors def preprocess(self, inputs): """Feature-extractor specific preprocessing. See base class. Args: inputs: a [batch, height_in, width_in, channels] float tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: a [batch, height_out, width_out, channels] float tensor representing a batch of images. Raises: ValueError: if inputs tensor does not have type tf.float32 """ if inputs.dtype is not tf.float32: raise ValueError('`preprocess` expects a tf.float32 tensor') with tf.name_scope('Preprocessor'): # TODO: revisit whether to always use batch size as the number of parallel # iterations vs allow for dynamic batching. resized_inputs = tf.map_fn(self._image_resizer_fn, elems=inputs, dtype=tf.float32) return self._feature_extractor.preprocess(resized_inputs) def predict(self, preprocessed_inputs): """Predicts unpostprocessed tensors from input tensor. This function takes an input batch of images and runs it through the forward pass of the network to yield unpostprocessesed predictions. A side effect of calling the predict method is that self._anchors is populated with a box_list.BoxList of anchors. These anchors must be constructed before the postprocess or loss functions can be called. Args: preprocessed_inputs: a [batch, height, width, channels] image tensor. Returns: prediction_dict: a dictionary holding "raw" prediction tensors: 1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors, box_code_dimension] containing predicted boxes. 2) class_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, num_classes+1] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). 3) feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i]. 4) anchors: 2-D float tensor of shape [num_anchors, 4] containing the generated anchors in normalized coordinates. """ with tf.variable_scope(None, self._extract_features_scope, [preprocessed_inputs]): feature_maps = self._feature_extractor.extract_features( preprocessed_inputs) feature_map_spatial_dims = self._get_feature_map_spatial_dims(feature_maps) image_shape = tf.shape(preprocessed_inputs) self._anchors = self._anchor_generator.generate( feature_map_spatial_dims, im_height=image_shape[1], im_width=image_shape[2]) (box_encodings, class_predictions_with_background ) = self._add_box_predictions_to_feature_maps(feature_maps) predictions_dict = { 'box_encodings': box_encodings, 'class_predictions_with_background': class_predictions_with_background, 'feature_maps': feature_maps, 'anchors': self._anchors.get() } return predictions_dict def _add_box_predictions_to_feature_maps(self, feature_maps): """Adds box predictors to each feature map and returns concatenated results. Args: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Returns: box_encodings: 3-D float tensor of shape [batch_size, num_anchors, box_code_dimension] containing predicted boxes. class_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, num_classes+1] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). Raises: RuntimeError: if the number of feature maps extracted via the extract_features method does not match the length of the num_anchors_per_locations list that was passed to the constructor. RuntimeError: if box_encodings from the box_predictor does not have shape of the form [batch_size, num_anchors, 1, code_size]. """ num_anchors_per_location_list = ( self._anchor_generator.num_anchors_per_location()) if len(feature_maps) != len(num_anchors_per_location_list): raise RuntimeError('the number of feature maps must match the ' 'length of self.anchors.NumAnchorsPerLocation().') box_encodings_list = [] cls_predictions_with_background_list = [] for idx, (feature_map, num_anchors_per_location ) in enumerate(zip(feature_maps, num_anchors_per_location_list)): box_predictor_scope = 'BoxPredictor_{}'.format(idx) box_predictions = self._box_predictor.predict(feature_map, num_anchors_per_location, box_predictor_scope) box_encodings = box_predictions[bpredictor.BOX_ENCODINGS] cls_predictions_with_background = box_predictions[ bpredictor.CLASS_PREDICTIONS_WITH_BACKGROUND] box_encodings_shape = box_encodings.get_shape().as_list() if len(box_encodings_shape) != 4 or box_encodings_shape[2] != 1: raise RuntimeError('box_encodings from the box_predictor must be of ' 'shape `[batch_size, num_anchors, 1, code_size]`; ' 'actual shape', box_encodings_shape) box_encodings = tf.squeeze(box_encodings, axis=2) box_encodings_list.append(box_encodings) cls_predictions_with_background_list.append( cls_predictions_with_background) num_predictions = sum( [tf.shape(box_encodings)[1] for box_encodings in box_encodings_list]) num_anchors = self.anchors.num_boxes() anchors_assert = tf.assert_equal(num_anchors, num_predictions, [ 'Mismatch: number of anchors vs number of predictions', num_anchors, num_predictions ]) with tf.control_dependencies([anchors_assert]): box_encodings = tf.concat(box_encodings_list, 1) class_predictions_with_background = tf.concat( cls_predictions_with_background_list, 1) return box_encodings, class_predictions_with_background def _get_feature_map_spatial_dims(self, feature_maps): """Return list of spatial dimensions for each feature map in a list. Args: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i]. Returns: a list of pairs (height, width) for each feature map in feature_maps """ feature_map_shapes = [ shape_utils.combined_static_and_dynamic_shape( feature_map) for feature_map in feature_maps ] return [(shape[1], shape[2]) for shape in feature_map_shapes] def postprocess(self, prediction_dict): """Converts prediction tensors to final detections. This function converts raw predictions tensors to final detection results by slicing off the background class, decoding box predictions and applying non max suppression and clipping to the image window. See base class for output format conventions. Note also that by default, scores are to be interpreted as logits, but if a score_conversion_fn is used, then scores are remapped (and may thus have a different interpretation). Args: prediction_dict: a dictionary holding prediction tensors with 1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors, box_code_dimension] containing predicted boxes. 2) class_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, num_classes+1] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions. Returns: detections: a dictionary containing the following fields detection_boxes: [batch, max_detections, 4] detection_scores: [batch, max_detections] detection_classes: [batch, max_detections] detection_keypoints: [batch, max_detections, num_keypoints, 2] (if encoded in the prediction_dict 'box_encodings') num_detections: [batch] Raises: ValueError: if prediction_dict does not contain `box_encodings` or `class_predictions_with_background` fields. """ if ('box_encodings' not in prediction_dict or 'class_predictions_with_background' not in prediction_dict): raise ValueError('prediction_dict does not contain expected entries.') with tf.name_scope('Postprocessor'): box_encodings = prediction_dict['box_encodings'] class_predictions = prediction_dict['class_predictions_with_background'] detection_boxes, detection_keypoints = self._batch_decode(box_encodings) detection_boxes = tf.expand_dims(detection_boxes, axis=2) class_predictions_without_background = tf.slice(class_predictions, [0, 0, 1], [-1, -1, -1]) detection_scores = self._score_conversion_fn( class_predictions_without_background) clip_window = tf.constant([0, 0, 1, 1], tf.float32) additional_fields = None if detection_keypoints is not None: additional_fields = { fields.BoxListFields.keypoints: detection_keypoints} (nmsed_boxes, nmsed_scores, nmsed_classes, _, nmsed_additional_fields, num_detections) = self._non_max_suppression_fn( detection_boxes, detection_scores, clip_window=clip_window, additional_fields=additional_fields) detection_dict = {'detection_boxes': nmsed_boxes, 'detection_scores': nmsed_scores, 'detection_classes': nmsed_classes, 'num_detections': tf.to_float(num_detections)} if (nmsed_additional_fields is not None and fields.BoxListFields.keypoints in nmsed_additional_fields): detection_dict['detection_keypoints'] = nmsed_additional_fields[ fields.BoxListFields.keypoints] return detection_dict def loss(self, prediction_dict, scope=None): """Compute scalar loss tensors with respect to provided groundtruth. Calling this function requires that groundtruth tensors have been provided via the provide_groundtruth function. Args: prediction_dict: a dictionary holding prediction tensors with 1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors, box_code_dimension] containing predicted boxes. 2) class_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, num_classes+1] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions. scope: Optional scope name. Returns: a dictionary mapping loss keys (`localization_loss` and `classification_loss`) to scalar tensors representing corresponding loss values. """ with tf.name_scope(scope, 'Loss', prediction_dict.values()): keypoints = None if self.groundtruth_has_field(fields.BoxListFields.keypoints): keypoints = self.groundtruth_lists(fields.BoxListFields.keypoints) (batch_cls_targets, batch_cls_weights, batch_reg_targets, batch_reg_weights, match_list) = self._assign_targets( self.groundtruth_lists(fields.BoxListFields.boxes), self.groundtruth_lists(fields.BoxListFields.classes), keypoints) if self._add_summaries: self._summarize_input( self.groundtruth_lists(fields.BoxListFields.boxes), match_list) num_matches = tf.stack( [match.num_matched_columns() for match in match_list]) location_losses = self._localization_loss( prediction_dict['box_encodings'], batch_reg_targets, ignore_nan_targets=True, weights=batch_reg_weights) # print('skye location_losses=', location_losses) # print('skye location_losses.shape=', location_losses.shape) cls_losses = self._classification_loss( prediction_dict['class_predictions_with_background'], batch_cls_targets, weights=batch_cls_weights) if self._hard_example_miner: (localization_loss, classification_loss) = self._apply_hard_mining( location_losses, cls_losses, prediction_dict, match_list) if self._add_summaries: self._hard_example_miner.summarize() else: if self._add_summaries: class_ids = tf.argmax(batch_cls_targets, axis=2) flattened_class_ids = tf.reshape(class_ids, [-1]) flattened_classification_losses = tf.reshape(cls_losses, [-1]) self._summarize_anchor_classification_loss( flattened_class_ids, flattened_classification_losses) localization_loss = tf.reduce_sum(location_losses) classification_loss = tf.reduce_sum(cls_losses) # Optionally normalize by number of positive matches normalizer = tf.constant(1.0, dtype=tf.float32) if self._normalize_loss_by_num_matches: normalizer = tf.maximum(tf.to_float(tf.reduce_sum(num_matches)), 1.0) with tf.name_scope('localization_loss'): localization_loss = ((self._localization_loss_weight / normalizer) * localization_loss) with tf.name_scope('classification_loss'): classification_loss = ((self._classification_loss_weight / normalizer) * classification_loss) loss_dict = { 'localization_loss': localization_loss, 'classification_loss': classification_loss } return loss_dict def _summarize_anchor_classification_loss(self, class_ids, cls_losses): positive_indices = tf.where(tf.greater(class_ids, 0)) positive_anchor_cls_loss = tf.squeeze( tf.gather(cls_losses, positive_indices), axis=1) visualization_utils.add_cdf_image_summary(positive_anchor_cls_loss, 'PositiveAnchorLossCDF') negative_indices = tf.where(tf.equal(class_ids, 0)) negative_anchor_cls_loss = tf.squeeze( tf.gather(cls_losses, negative_indices), axis=1) visualization_utils.add_cdf_image_summary(negative_anchor_cls_loss, 'NegativeAnchorLossCDF') def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list, groundtruth_keypoints_list=None): """Assign groundtruth targets. Adds a background class to each one-hot encoding of groundtruth classes and uses target assigner to obtain regression and classification targets. Args: groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4] containing coordinates of the groundtruth boxes. Groundtruth boxes are provided in [y_min, x_min, y_max, x_max] format and assumed to be normalized and clipped relative to the image window with y_min <= y_max and x_min <= x_max. groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of shape [num_boxes, num_classes] containing the class targets with the 0th index assumed to map to the first non-background class. groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape [num_boxes, num_keypoints, 2] Returns: batch_cls_targets: a tensor with shape [batch_size, num_anchors, num_classes], batch_cls_weights: a tensor with shape [batch_size, num_anchors], batch_reg_targets: a tensor with shape [batch_size, num_anchors, box_code_dimension] batch_reg_weights: a tensor with shape [batch_size, num_anchors], match_list: a list of matcher.Match objects encoding the match between anchors and groundtruth boxes for each image of the batch, with rows of the Match objects corresponding to groundtruth boxes and columns corresponding to anchors. """ groundtruth_boxlists = [ box_list.BoxList(boxes) for boxes in groundtruth_boxes_list ] groundtruth_classes_with_background_list = [ tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT') for one_hot_encoding in groundtruth_classes_list ] if groundtruth_keypoints_list is not None: for boxlist, keypoints in zip( groundtruth_boxlists, groundtruth_keypoints_list): boxlist.add_field(fields.BoxListFields.keypoints, keypoints) return target_assigner.batch_assign_targets( self._target_assigner, self.anchors, groundtruth_boxlists, groundtruth_classes_with_background_list) def _summarize_input(self, groundtruth_boxes_list, match_list): """Creates tensorflow summaries for the input boxes and anchors. This function creates four summaries corresponding to the average number (over images in a batch) of (1) groundtruth boxes, (2) anchors marked as positive, (3) anchors marked as negative, and (4) anchors marked as ignored. Args: groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4] containing corners of the groundtruth boxes. match_list: a list of matcher.Match objects encoding the match between anchors and groundtruth boxes for each image of the batch, with rows of the Match objects corresponding to groundtruth boxes and columns corresponding to anchors. """ num_boxes_per_image = tf.stack( [tf.shape(x)[0] for x in groundtruth_boxes_list]) pos_anchors_per_image = tf.stack( [match.num_matched_columns() for match in match_list]) neg_anchors_per_image = tf.stack( [match.num_unmatched_columns() for match in match_list]) ignored_anchors_per_image = tf.stack( [match.num_ignored_columns() for match in match_list]) tf.summary.scalar('Input/AvgNumGroundtruthBoxesPerImage', tf.reduce_mean(tf.to_float(num_boxes_per_image))) tf.summary.scalar('Input/AvgNumPositiveAnchorsPerImage', tf.reduce_mean(tf.to_float(pos_anchors_per_image))) tf.summary.scalar('Input/AvgNumNegativeAnchorsPerImage', tf.reduce_mean(tf.to_float(neg_anchors_per_image))) tf.summary.scalar('Input/AvgNumIgnoredAnchorsPerImage', tf.reduce_mean(tf.to_float(ignored_anchors_per_image))) def _apply_hard_mining(self, location_losses, cls_losses, prediction_dict, match_list): """Applies hard mining to anchorwise losses. Args: location_losses: Float tensor of shape [batch_size, num_anchors] representing anchorwise location losses. cls_losses: Float tensor of shape [batch_size, num_anchors] representing anchorwise classification losses. prediction_dict: p a dictionary holding prediction tensors with 1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors, box_code_dimension] containing predicted boxes. 2) class_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, num_classes+1] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions. match_list: a list of matcher.Match objects encoding the match between anchors and groundtruth boxes for each image of the batch, with rows of the Match objects corresponding to groundtruth boxes and columns corresponding to anchors. Returns: mined_location_loss: a float scalar with sum of localization losses from selected hard examples. mined_cls_loss: a float scalar with sum of classification losses from selected hard examples. """ class_predictions = tf.slice( prediction_dict['class_predictions_with_background'], [0, 0, 1], [-1, -1, -1]) decoded_boxes, _ = self._batch_decode(prediction_dict['box_encodings']) decoded_box_tensors_list = tf.unstack(decoded_boxes) class_prediction_list = tf.unstack(class_predictions) decoded_boxlist_list = [] for box_location, box_score in zip(decoded_box_tensors_list, class_prediction_list): decoded_boxlist = box_list.BoxList(box_location) decoded_boxlist.add_field('scores', box_score) decoded_boxlist_list.append(decoded_boxlist) return self._hard_example_miner( location_losses=location_losses, cls_losses=cls_losses, decoded_boxlist_list=decoded_boxlist_list, match_list=match_list) def _batch_decode(self, box_encodings): """Decodes a batch of box encodings with respect to the anchors. Args: box_encodings: A float32 tensor of shape [batch_size, num_anchors, box_code_size] containing box encodings. Returns: decoded_boxes: A float32 tensor of shape [batch_size, num_anchors, 4] containing the decoded boxes. decoded_keypoints: A float32 tensor of shape [batch_size, num_anchors, num_keypoints, 2] containing the decoded keypoints if present in the input `box_encodings`, None otherwise. """ combined_shape = shape_utils.combined_static_and_dynamic_shape( box_encodings) batch_size = combined_shape[0] tiled_anchor_boxes = tf.tile( tf.expand_dims(self.anchors.get(), 0), [batch_size, 1, 1]) tiled_anchors_boxlist = box_list.BoxList( tf.reshape(tiled_anchor_boxes, [-1, 4])) decoded_boxes = self._box_coder.decode( tf.reshape(box_encodings, [-1, self._box_coder.code_size]), tiled_anchors_boxlist) decoded_keypoints = None if decoded_boxes.has_field(fields.BoxListFields.keypoints): decoded_keypoints = decoded_boxes.get_field( fields.BoxListFields.keypoints) num_keypoints = decoded_keypoints.get_shape()[1] decoded_keypoints = tf.reshape( decoded_keypoints, tf.stack([combined_shape[0], combined_shape[1], num_keypoints, 2])) decoded_boxes = tf.reshape(decoded_boxes.get(), tf.stack( [combined_shape[0], combined_shape[1], 4])) return decoded_boxes, decoded_keypoints def restore_map(self, from_detection_checkpoint=True): """Returns a map of variables to load from a foreign checkpoint. See parent class for details. Args: from_detection_checkpoint: whether to restore from a full detection checkpoint (with compatible variable names) or to restore from a classification checkpoint for initialization prior to training. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ variables_to_restore = {} for variable in tf.global_variables(): if variable.op.name.startswith(self._extract_features_scope): var_name = variable.op.name if not from_detection_checkpoint: var_name = (re.split('^' + self._extract_features_scope + '/', var_name)[-1]) variables_to_restore[var_name] = variable return variables_to_restore ```
{ "source": "jiemingChen/ArmControl", "score": 2 }
#### File: panda_simulation/script/compensa.py ```python import PyKDL as kdl from urdf_parser_py.urdf import URDF from pykdl_utils.kdl_parser import kdl_tree_from_urdf_model from pykdl_utils.kdl_kinematics import KDLKinematics import rospy import numpy as np from math import sin, cos, sqrt from sensor_msgs.msg import JointState from std_msgs.msg import Float64 from pdb import set_trace model_file = "/home/jieming/catkin_ws/src/panda_simulation/franka_description/robots/model.urdf" jt_positions = kdl.JntArray(7) jt_velocities = kdl.JntArray(7) flag=0 def callback(data): global flag if(flag==0): print('first callback') flag =1 for i in range(7): jt_positions[i] = data.position[i] jt_velocities[i] = data.velocity[i] def main(): #ros configure rospy.init_node('inv_dyn', anonymous=True) rate = rospy.Rate(2000) # 1000hz rospy.Subscriber("/robot1/joint_states", JointState, callback) pub = rospy.Publisher('/robot1/panda_joint1_controller/command', Float64, queue_size=10) pub2 = rospy.Publisher('/robot1/panda_joint2_controller/command', Float64, queue_size=10) pub3 = rospy.Publisher('/robot1/panda_joint3_controller/command', Float64, queue_size=10) pub4 = rospy.Publisher('/robot1/panda_joint4_controller/command', Float64, queue_size=10) pub5 = rospy.Publisher('/robot1/panda_joint5_controller/command', Float64, queue_size=10) pub6 = rospy.Publisher('/robot1/panda_joint6_controller/command', Float64, queue_size=10) pub7 = rospy.Publisher('/robot1/panda_joint7_controller/command', Float64, queue_size=10) #kdl configure robot = URDF.from_xml_file(model_file) tree = kdl_tree_from_urdf_model(robot) chain = tree.getChain("panda_link0", "panda_link8") grav_vector = kdl.Vector(0, 0, -9.8) dyn_kdl = kdl.ChainDynParam(chain, grav_vector) kdl_kin = KDLKinematics(robot, "panda_link0", "panda_link8") grav_matrix = kdl.JntArray(7) coriolis = kdl.JntArray(7) goal_pose = kdl.Vector(0.1, 0, 0.9) print('start') #main while not rospy.is_shutdown(): rate.sleep() #if flag==0: # continue jt_positions[0]=0; jt_positions[1]=-0.785; jt_positions[2] = 0; jt_positions[3]=-2.356; jt_positions[4]=0; jt_positions[5] = 1.57; jt_positions[6]=0.785 dyn_kdl.JntToGravity(jt_positions, grav_matrix) dyn_kdl.JntToCoriolis(jt_positions, jt_velocities, coriolis) J = kdl_kin.jacobian(list(jt_positions)) cur_pose = kdl_kin.forward(list(jt_positions)) print(cur_pose) print(coriolis) print(grav_matrix) print(J) set_trace() pos_error = np.array([ [goal_pose[0]-cur_pose[0,3]], [goal_pose[1]-cur_pose[1,3]], [goal_pose[2]-cur_pose[2,3]], [0], [0], [0]])*100 vel_error = -2*(J.dot(list(jt_velocities))).reshape((6,1)) error = pos_error + vel_error #error = kdl.Vector(goal_pose[0]-cur_pose[0,3], goal_pose[1]-cur_pose[1,3], goal_pose[2]-cur_pose[2,3], 0, 0, 0)*100 tau_task = J.T.dot(error) #u = [grav_matrix[i]+coriolis[i]+tau_task[i] for i in range(grav_matrix.rows())] u = [grav_matrix[i]+coriolis[i] for i in range(grav_matrix.rows())] pub.publish( u[0]) pub2.publish(u[1]) pub3.publish(u[2]) pub4.publish(u[3]) pub5.publish(u[4]) pub6.publish(u[5]) pub7.publish(u[6]) main() #print grav_matrix #gravity_compensating_jt_torques = [grav_matrix[i] for i in range(grav_matrix.rows())] #print gravity_compensating_jt_torques #print tree.getNrOfSegments() ###8 #print tree.getNrOfSegments() ###8 #kdl_kin = KDLKinematics(robot, "panda_link0", "panda_link8") #q = [1, 1, 3.1415926/2, -0.5, 0, 0, 0] #q = [0, 0, 0, 0, 0, 0, 0] #pose = kdl_kin.forward(q) #print pose #J = kdl_kin.jacobian(q) #print J #kdl_kin = KDLKinematics(robot, "panda_link0", "panda_link8") #q = [1, 1, 3.1415926/2, -0.5, 0, 0, 0] #q = [0, 0, 0, 0, 0, 0, 0] #pose = kdl_kin.forward(q) #print pose #J = kdl_kin.jacobian(q) #print J ```
{ "source": "jiena76/X11-Core", "score": 3 }
#### File: hardware/motor_control/__init__.py ```python def MotorControl(*args, **kwargs): try: from MotorControl import MotorControl as MotorControl return MotorControl(*args, **kwargs) except Exception as e: print "Failed to Initialize Hardware Motor Control (I2C PWM Device)" print "Error: %s" % e.message print "Using Mock Motor Control" from MotorControl_Mock import MotorControl as MotorControl_Mock return MotorControl_Mock() ``` #### File: hardware/motor_control/MotorControl_Mock.py ```python class MotorControl(object): def __init__(self, *args, **kwargs): pass def set(self, *args, **kwargs): pass def kill(self, *args, **kwargs): pass ``` #### File: movement/hardware/Thrusters_Mock.py ```python from BaseThrusters import BaseThrusters class Thrusters(BaseThrusters): def __init__(self): pass def set(self, values): pass def get(self): pass def stop(self): pass ``` #### File: movement/mapper/BaseMapper.py ```python from abc import ABCMeta, abstractmethod class BaseMapper(object): """ Abstract Base Class for a thrust mapper. It should implement one method, calculate that takes in a desired thrust and a list of disabled thrusters. """ __metaclass__ = ABCMeta @abstractmethod def calculate(self, desired_thrust, disabled_thrusters=[]): pass ``` #### File: rov/movement/structs_movement.py ```python class thrusters_struct(): def __init__(self, thruster_values): """Takes in an array of thruster values and returns a class that wraps all of the values in easy to read mnemonics and provides some very useful helper classes""" self.__all_thrusters = thruster_values def hor_front_left(self): return self.__all_thrusters[0] def hor_front_right(self): return self.__all_thrusters[1] def hor_back_left(self): return self.__all_thrusters[2] def hor_back_right(self): return self.__all_thrusters[3] def vert_front_left(self): return self.__all_thrusters[4] def vert_front_right(self): return self.__all_thrusters[5] def vert_back_left(self): return self.__all_thrusters[6] def vert_back_right(self): return self.__all_thrusters[7] def __iter__(self): """Allows for iterations over all of the thrusters""" return iter(self.__all_thrusters) def __sub__(self, other): """Subtracts the right thruster from the left thruster and returns a new thruster_struct class""" return thrusters_struct([a - b for a, b in zip(self.__all_thrusters, other.all_thrusters)]) def __getitem__(self, index): """Allows array like lookups of the class so previous code will still work. Basically, you can still treat this class as a list and the code will still work""" return self.__all_thrusters[index] def get_vert_thruster_values(self): """Returns all of the vertical thrusters""" return self.__all_thrusters[4:8] def get_horr_thruster_valeus(self): """Returns all of the horizontal thrusters""" return self.__all_thrusters[0:4] def normalize(self): """Normalizes all thruster values so that the largest thruster value becomes 1 with all other thruster values scaled accordingly""" max_value = max([abs(x) for x in self.__all_thrusters]) # Only normalize the thruster values if one of them is over 1.0 if max_value > 1: self.__all_thrusters = [float(x) / max_value for x in self.__all_thrusters] def stop(self): """Turns all thruster values to zero""" self.__all_thrusters = [0 for _ in self.__all_thrusters] if __name__ == "__main__": a = [1, 2, 3, 4, 5, 6, 7, 8] thrusters = thrusters_struct(a) thrusters2 = thrusters_struct([11, 12, 13, 14, 15, 16, 17, 18]) print thrusters[0] a[0] = 9 print thrusters[0] a = [8, 7, 6, 5, 4, ] """for thruster in thrusters: print thruster thrusters3 = thrusters2 - thrusters for thruster in thrusters3: print thruster print thrusters[7] for thruster in thrusters.get_horr_thruster_valeus(): print "horr: " + str(thruster) for thruster in thrusters.get_vert_thruster_values(): print "vert: " + str(thruster) thrusters.normalize() for thruster in thrusters: print thruster thrusters.stop() for thruster in thrusters: print thruster #thrusters4 = thrusters_struct([-2, -1, -0.5, 0, 0.5, 1, 0.5, 0]) #thrusters4.normalize() #for thruster in thrusters4: # print thruster""" ``` #### File: movement/tests/test_algorithm_handler.py ```python import pytest import time from rov.movement.controls.Algorithm_Handler import Master_Algorithm_Handler from random import * buffer = 0.005 # last time lt = time.time() data = {'sensors': { 'imu' : { 'linear_acceleration' : { 'x' : 1, 'y' : 1 }, 'euler' : { 'roll': 1, 'pitch': 1, 'yaw': 1 } }, 'pressure' : { 'pressure': 1 } } } def rand(): return (random() / 5.0) + 0.9 def rand2(): return random() * 0.001 - 0.0005 def update_data(user_input, data, lt): dt = time.time() - lt lt = time.time() data['sensors']['imu']['linear_acceleration']['x'] += user_input[0] * dt * rand() + rand2() data['sensors']['imu']['linear_acceleration']['y'] += user_input[1] * dt * rand() + rand2() data['sensors']['pressure']['pressure'] += user_input[2] * dt * rand() + rand2() data['sensors']['imu']['euler']['roll'] += user_input[3] * dt * rand() + rand2() data['sensors']['imu']['euler']['pitch'] += user_input[4] * dt * rand() + rand2() data['sensors']['imu']['euler']['yaw'] += user_input[5] * dt * rand() + rand2() if data['sensors']['imu']['euler']['roll'] > 360: data['sensors']['imu']['euler']['roll'] -= 360 elif data['sensors']['imu']['euler']['roll'] < 0: data['sensors']['imu']['euler']['roll'] += 360 @pytest.fixture() def position(data): position = [0,0,0,0,0,0] position[0] = data['sensors']['imu']['linear_acceleration']['x'] position[1] = data['sensors']['imu']['linear_acceleration']['y'] position[2] = data['sensors']['pressure']['pressure'] position[3] = data['sensors']['imu']['euler']['roll'] position[4] = data['sensors']['imu']['euler']['pitch'] position[5] = data['sensors']['imu']['euler']['yaw'] return position @pytest.fixture() def sensor_data(): return data['sensors'] def test_returns_empty_user_input_if_deactivated(): # initializes a control algorithm with the desired position of 4 for the z parameter pass def test_activate_and_deactivate_functionality(): # initializes a control algorithm with the desired position of 4 for the z parameter frozen = [1,2,1,2,1,2] user_input = [0,0,0,0,0,0] mah = Master_Algorithm_Handler(frozen, sensor_data()) for i in range(100): time.sleep(buffer) update_data(mah.master(user_input, frozen), data, lt) time.sleep(buffer) user_input = [0.5, 0.1, 0.2, 0.3, 0.4, 0.5] mah = Master_Algorithm_Handler(frozen, sensor_data()) for i in range(100): time.sleep(buffer) update_data(mah.master(user_input, frozen), data, lt) for i in range(6): time.sleep(buffer) frozen = [2,1,2,1,2,1] user_input = [0.5, 0.1, 0.2, 0.3, 0.21, 0.14] for i in range(100): time.sleep(buffer) update_data(mah.master(user_input, frozen), data, lt) for i in range(6): time.sleep(buffer) mah.master(user_input, frozen)[i] frozen = [1,2,1,2,1,2] user_input = [0.5, 0.1, 0.2, 0.3, 0.21, 0.14] for i in range(100): time.sleep(buffer) update_data(mah.master(user_input, frozen), data, lt) for i in range(6): time.sleep(buffer) mah.master(user_input, frozen)[i] frozen = [3,3,3,3,3,3] user_input = [0.5, 0.1, 0.2, 0.3, 0.21, 0.14] for i in range(100): time.sleep(buffer) update_data(mah.master(user_input, frozen), data, lt) for i in range(6): time.sleep(buffer) mah.master(user_input, frozen)[i] mah.plot_data() ``` #### File: sensors/imu/IMU_Mock.py ```python from math import sin, pi class IMU(object): """Mock IMU class """ def __init__(self): self.accel_x = 0 self.accel_y = 0 self.accel_z = 0 self.pitch = 0 self.roll = 0 self.yaw = 0 self._angle = 0 def update(self): self._angle += 1 self.roll = sin(self._angle * (pi)/180.0) @property def data(self): return { 'euler': { 'yaw': self.yaw, 'roll': self.roll, 'pitch': self.pitch, }, 'gyro': { 'x': 0, 'y': 0, 'z': 0, }, 'acceleration': { 'x': self.accel_x, 'y': self.accel_y, 'z': self.accel_z, }, 'linear_acceleration': { 'x': 0, 'y': 0, 'z': 0, }, 'temp': 0, } ``` #### File: sensors/imu/__init__.py ```python def IMU(): try: from BNO055 import BNO055 return BNO055() except Exception as e: print "Failed to Initialize Sparkfun IMU" print "Error: %s" % e.message print "Using Mock IMU" from IMU_Mock import IMU as IMU_Mock return IMU_Mock() ``` #### File: X11-Core/tests/rovclass.py ```python from rovcontroller import ROVControl, getDefaultPackets import unittest ROVIP = "localhost" CMDPORT = 1944 class CanDevice(object): def __init__(self, name, conconfig=""): if type(name) != str: raise TypeError("Name needs to be a string") self.name = name def connect(self): # Connect the can device pass def disconnect(self): # disconnect the can device pass class RovInterface(object): def __init__(self, ip, port, devices=[], neton = True): if neton: self._netInter = ROVControl(ip, port) else: self._netInter = None if any([type(d) != CanDevice for d in devices]): raise TypeError("list is not can devices") self._devices = {d.name: d for d in devices} @property def dev(self): return self._devices @property def lsdev(self): return self._devices.iterkeys() def sendPacket(self,packet): if self._netInter != None: self._netInter.getFlask(packet) def readPacket(self): if self._netInter != None: return self._devices.getClient() else: return {} def killRov(self): #kill the rov for d in self._devices.itervalues(): d.disconnect() class RovTest(unittest.TestCase): def setUp(self): d1 = CanDevice("d1") d2 = CanDevice("d2") d3 = CanDevice("d3") self.rovI = RovInterface(ROVIP,CMDPORT,[d1,d2,d3],neton=False) def tearDown(self): self.rovI.killRov() ``` #### File: X11-Core/tests/rovtest.py ```python import unittest ROVIP = "localhost" ROVPORT = 5000 class CanDevice(object): def __init__(self,name,canConfFile=""): if type(name) != str: raise TypeError("Name needs to be a string you idiot") self.name = name def connect(self): pass def disconnect(self): pass def destroyDevice(self): pass class ROVInterface(object): def __init__(self,rovip,port,devices = []): self.sockInt = None #ROVControl(rovip,port) if any([type(d) != CanDevice for d in devices]): raise TypeError("Devices need to be CAN devices") self._devices = {d.name:d for d in devices} for d in self._devices.itervalues(): d.connect() def sendPacket(self,packet): self.sockInt.getFlask(packet) def recvPacket(self): return self.sockInt.getClient() @property def dev(self): return self._devices @property def lsdev(self): return list(self._devices.iterkeys()) def killrov(self): pass class ROVTest(unittest.TestCase): def setUp(self): # Turn on the rov # Connect peripherals to the ROV d1 = CanDevice("d1") d2 = CanDevice("d2") d3 = CanDevice("d3") self.rovI = ROVInterface(ROVIP,ROVPORT,[d1,d2,d3]) def tearDown(self): # Turn off rov self.rovI.killrov() ```
{ "source": "Jie-OY/-", "score": 3 }
#### File: Jie-OY/-/app.py ```python from flask import Flask, render_template, jsonify, request from utils import wise app = Flask(__name__) def format(text): d = dict() r = text.split('\n') for t in r: if t is not '': l = t.split() d[l[0]] = l[1:] return d def output(d): s = '' for k, v in d.items(): str = k + '->' + '|'.join(v) s += str +'\n' return s @app.route('/') def index(): return render_template('index.html') @app.route('/eliminate', methods=['POST']) def eliminate(): G = request.json.get('G', None) d = format(G) print(d) result = wise(d) finally_result = output(result) return jsonify(G_r=finally_result) if __name__ == '__main__': app.run(host='127.0.0.1', port=5000, debug=True) ``` #### File: Jie-OY/-/utils.py ```python import copy from collections import defaultdict # G = {'A': ['abc', 'ab', 'abcd', 'a', 'b', 'bc', 'B']} # G['B'] = ['Ab', 'Ac'] # print(G) VN_dict = defaultdict(int) G_c = None result = dict() def eliminate_common_factor(VN, exp_list): # G: {'A': ['abc', 'ab', 'abcd', 'a', 'b', 'bc', 'B']} index_dict = get_common_factor(exp_list) if have_common_factor(index_dict): for k, v in index_dict.items(): len_k = len(k) tmp_list = [] if len(v) != 1: for i in v: exp = exp_list[i][len_k:] tmp_list.append(exp if exp else 'ε') new_VN = generate_VN(VN) exp_list.append(k + new_VN) # 加入aA' G_c[new_VN] = tmp_list # 将新生成的规则添加进G_c文法中 remove_exp(index_dict, exp_list) # print('VN:', VN) result[VN] = exp_list # print('result:', result) G_c.pop(VN) def remove_exp(index_dict, exp_list): l = [] for v in index_dict.values(): if len(v) != 1: l.extend(v) # 在对一个list进行pop操作时,必须是按逆序来删除。 # 即,先删下标大的元素,再删下标小的元素,否则 会越界。 l = sorted(l, reverse=True) for index in l: exp_list.pop(index) def get_common_factor_aux(exp_list): """ 对于 G = {'A': 'abc ab abcd a b bc'} :param exp_list: 文法G中每条产生式右部的集和的列表形式:['abc', 'ab', 'abcd', 'a', 'b', 'bc'] :return: 类型为字典,key为首字符,value为所在index:{'b': [4, 5], 'a': [0, 1, 2, 3]}) """ d = defaultdict(list) for index, exp in enumerate(exp_list): d[exp[0]].append(index) return d def get_common_factor(exp_list): d = get_common_factor_aux(exp_list) index = 1 d_copy = copy.deepcopy(d) for k, v in d.items(): new_k = copy.deepcopy(k) k_copy = copy.deepcopy(k) while True: try: c = exp_list[v[0]][index] except Exception as e: break for i in v: try: char = exp_list[i][index] except: break if char == c: pass else: break else: new_k = k_copy + c d_copy[new_k] = v del d_copy[k_copy] index += 1 k_copy = copy.deepcopy(new_k) continue if new_k == k_copy: break return d_copy def have_common_factor(d): for v in d.values(): if len(v) != 1: return True else: return False def generate_VN(VN): VN_dict[VN[0]] += 1 return VN[0] + VN_dict[VN[0]] * "'" def wise(G): global G_c, VN_dict, result VN_dict = defaultdict(int) G_c = copy.deepcopy(G) result = dict() while True: size = len(result) try: for k, v in G.items(): eliminate_common_factor(k, v) except Exception as e: raise e G = copy.deepcopy(G_c) if size == len(result): break return result if __name__ == '__main__': G = {'A': ['abc', 'ab', 'abcd', 'a', 'b', 'bc', 'B']} G_c = copy.deepcopy(G) while True: size = len(result) try: for k, v in G.items(): eliminate_common_factor(k, v) except Exception as e: raise e G = copy.deepcopy(G_c) if size == len(result): break print(result) ```
{ "source": "jiep/liboqs", "score": 2 }
#### File: scripts/copy_from_upstream/update_pqclean_alg_docs.py ```python import argparse import os import subprocess import yaml import inspect parser = argparse.ArgumentParser() parser.add_argument("--liboqs-root", default=os.path.join("..", "..")) parser.add_argument("-w", "--write-changes", dest="write_changes", action='store_true') parser.add_argument("-v", "--verbosity", type=int) args = parser.parse_args() if args.verbosity: DEBUG = args.verbosity else: DEBUG = 0 if not args.write_changes: print("--write-changes not set; changes will not be written out.") def shell(command, expect=0): subprocess_stdout = None if DEBUG > 0 else subprocess.DEVNULL ret = subprocess.run(command, stdout=subprocess_stdout, stderr=subprocess_stdout) if ret.returncode != expect: raise Exception("'{}' failed with error {}. Expected {}.".format(" ".join(command), ret, expect)) def load_yaml(filename, encoding='utf-8'): with open(filename, mode='r', encoding=encoding) as fh: return yaml.safe_load(fh.read()) def store_yaml(filename, contents, encoding='utf-8'): with open(filename, mode='w', encoding=encoding) as fh: yaml.dump(contents, fh, sort_keys=False, allow_unicode=True) def fetch_upstream(upstream_info): work_dir_root = os.path.join(args.liboqs_root, 'scripts', 'copy_from_upstream', 'repos') os.makedirs(work_dir_root, exist_ok=True) work_dir = os.path.join(work_dir_root, upstream_info['name']) work_dotgit = os.path.join(work_dir, '.git') if not os.path.exists(work_dotgit): shell(['git', 'init', work_dir]) shell(['git', '--git-dir', work_dotgit, 'remote', 'add', 'origin', upstream_info['git_url']]) shell(['git', '--git-dir', work_dotgit, '--work-tree', work_dir, 'remote', 'set-url', 'origin', upstream_info['git_url']]) shell(['git', '--git-dir', work_dotgit, '--work-tree', work_dir, 'fetch', '--depth=1', 'origin', upstream_info['git_commit']]) shell(['git', '--git-dir', work_dotgit, '--work-tree', work_dir, 'reset', '--hard', upstream_info['git_commit']]) return work_dir def rhs_if_not_equal(lhs, rhs, not_equal_msg): if lhs != rhs: if DEBUG > 0: caller = inspect.getframeinfo(inspect.stack()[1][0]) print("Line {}: Discrepancy in {}: lhs: {}, rhs: {}".format(caller.lineno, not_equal_msg, lhs, rhs)) return rhs return lhs def update_pqclean_kem_alg_docs(kems, upstream_info, pqclean_root, meta_yaml_path_template): for kem in kems: if kem['upstream_location'] == 'pqclean': oqs_yaml_path = os.path.join(args.liboqs_root, 'docs', 'algorithms', 'kem', '{}.yml'.format(kem['name'])) if os.path.isfile(oqs_yaml_path): oqs_yaml = load_yaml(oqs_yaml_path) else: continue # We assume that the ordering of "parameter-sets" # in the OQS YAML files matches that of copy_from_upstream.yml for index, scheme in enumerate(kem['schemes']): if DEBUG > 0: print("Examining {}'s META.yml.".format(scheme['pretty_name_full'])) pqclean_meta_path = os.path.join(pqclean_root, meta_yaml_path_template.format_map(scheme)) pqclean_yaml = load_yaml(pqclean_meta_path) oqs_yaml['type'] = rhs_if_not_equal(oqs_yaml['type'], pqclean_yaml['type'], "type") oqs_yaml['principal-submitters'] = rhs_if_not_equal(oqs_yaml['principal-submitters'], pqclean_yaml['principal-submitters'], "principal-submitters") upstream_base_url = upstream_info['git_url'][:-len(".git")] oqs_yaml['upstream'] = rhs_if_not_equal(oqs_yaml['upstream'], "{}/commit/{}".format(upstream_base_url, upstream_info['git_commit']), "upstream") if 'auxiliary-submitters' in pqclean_yaml: oqs_yaml['auxiliary-submitters'] = rhs_if_not_equal(oqs_yaml['auxiliary-submitters'] if 'auxiliary-submitters' in oqs_yaml else '', pqclean_yaml['auxiliary-submitters'], "auxiliary-submitters") oqs_scheme_yaml = oqs_yaml['parameter-sets'][index] # TODO: PQClean and liboqs pretty-naming conventions for the # following algorithms are out of sync. if kem['name'] == 'classic_mceliece' or kem['name'] == 'hqc' or kem['name'] == 'ntru' or kem['name'] == 'saber': oqs_scheme_yaml['name'] = rhs_if_not_equal(oqs_scheme_yaml['name'], scheme['pretty_name_full'], "scheme pretty name") else: oqs_scheme_yaml['name'] = rhs_if_not_equal(oqs_scheme_yaml['name'], pqclean_yaml['name'], "scheme pretty name") oqs_scheme_yaml['claimed-nist-level'] = rhs_if_not_equal(oqs_scheme_yaml['claimed-nist-level'], pqclean_yaml['claimed-nist-level'], "claimed-nist-level") oqs_scheme_yaml['claimed-security'] = rhs_if_not_equal(oqs_scheme_yaml['claimed-security'], pqclean_yaml['claimed-security'], "claimed-security") oqs_scheme_yaml['length-public-key'] = rhs_if_not_equal(oqs_scheme_yaml['length-public-key'], pqclean_yaml['length-public-key'], "length-public-key") oqs_scheme_yaml['length-ciphertext'] = rhs_if_not_equal(oqs_scheme_yaml['length-ciphertext'], pqclean_yaml['length-ciphertext'], "length-ciphertext") oqs_scheme_yaml['length-secret-key'] = rhs_if_not_equal(oqs_scheme_yaml['length-secret-key'], pqclean_yaml['length-secret-key'], "legnth-secret-key") oqs_scheme_yaml['length-shared-secret'] = rhs_if_not_equal(oqs_scheme_yaml['length-shared-secret'], pqclean_yaml['length-shared-secret'], "length-shared-secret") for impl_index, impl in enumerate(oqs_scheme_yaml['implementations']): for pqclean_impl in pqclean_yaml['implementations']: if impl['upstream-id'] == pqclean_impl['name']: break if 'supported_platforms' in pqclean_impl: impl['supported-platforms'] = rhs_if_not_equal(impl['supported-platforms'], pqclean_impl['supported_platforms'], "supported-platforms") else: impl['supported-platforms'] = rhs_if_not_equal(impl['supported-platforms'], "all", "supported-platforms") oqs_scheme_yaml['implementations'][impl_index] = impl oqs_yaml['parameter-sets'][index] = oqs_scheme_yaml if args.write_changes: store_yaml(oqs_yaml_path, oqs_yaml) def update_pqclean_sig_alg_docs(sigs, upstream_info, pqclean_root, meta_yaml_path_template): for sig in sigs: if sig['upstream_location'] == 'pqclean': oqs_yaml_path = os.path.join(args.liboqs_root, 'docs', 'algorithms', 'sig', '{}.yml'.format(sig['name'])) if os.path.isfile(oqs_yaml_path): oqs_yaml = load_yaml(oqs_yaml_path) else: continue # We assume that the ordering of "parameter-sets" # in the OQS YAML files matches that of copy_from_upstream.yml for index, scheme in enumerate(sig['schemes']): if DEBUG > 0: print("Examining {}'s META.yml.".format(scheme['pretty_name_full'])) pqclean_meta_path = os.path.join(pqclean_root, meta_yaml_path_template.format_map(scheme)) pqclean_yaml = load_yaml(pqclean_meta_path) oqs_yaml['type'] = rhs_if_not_equal(oqs_yaml['type'], pqclean_yaml['type'], "type") oqs_yaml['principal-submitters'] = rhs_if_not_equal(oqs_yaml['principal-submitters'], pqclean_yaml['principal-submitters'], "principal-submitters") upstream_base_url = upstream_info['git_url'][:-len(".git")] oqs_yaml['upstream'] = rhs_if_not_equal(oqs_yaml['upstream'], "{}/commit/{}".format(upstream_base_url, upstream_info['git_commit']), "upstream") if 'auxiliary-submitters' in pqclean_yaml: oqs_yaml['auxiliary-submitters'] = rhs_if_not_equal(oqs_yaml['auxiliary-submitters'] if 'auxiliary-submitters' in oqs_yaml else '', pqclean_yaml['auxiliary-submitters'], "auxiliary-submitters") oqs_scheme_yaml = oqs_yaml['parameter-sets'][index] # TODO: PQClean and liboqs pretty-naming conventions for the # following algorithms are out of sync. if sig['name'] == 'sphincs' or sig['name'] == 'rainbow': oqs_scheme_yaml['name'] = rhs_if_not_equal(oqs_scheme_yaml['name'], scheme['pretty_name_full'], "scheme pretty name") else: oqs_scheme_yaml['name'] = rhs_if_not_equal(oqs_scheme_yaml['name'], pqclean_yaml['name'], "scheme pretty name") oqs_scheme_yaml['claimed-nist-level'] = rhs_if_not_equal(oqs_scheme_yaml['claimed-nist-level'], pqclean_yaml['claimed-nist-level'], "claimed-nist-level") oqs_scheme_yaml['claimed-security'] = rhs_if_not_equal(oqs_scheme_yaml['claimed-security'], 'EUF-CMA', "claimed-security") oqs_scheme_yaml['length-public-key'] = rhs_if_not_equal(oqs_scheme_yaml['length-public-key'], pqclean_yaml['length-public-key'], "length-public-key") oqs_scheme_yaml['length-secret-key'] = rhs_if_not_equal(oqs_scheme_yaml['length-secret-key'], pqclean_yaml['length-secret-key'], "legnth-secret-key") oqs_scheme_yaml['length-signature'] = rhs_if_not_equal(oqs_scheme_yaml['length-signature'], pqclean_yaml['length-signature'], "length-signature") for impl_index, impl in enumerate(oqs_scheme_yaml['implementations']): for pqclean_impl in pqclean_yaml['implementations']: if impl['upstream-id'] == pqclean_impl['name']: break if 'supported_platforms' in pqclean_impl: impl['supported-platforms'] = rhs_if_not_equal(impl['supported-platforms'], pqclean_impl['supported_platforms'], "supported-platforms") else: impl['supported-platforms'] = rhs_if_not_equal(impl['supported-platforms'], "all", "supported-platforms") oqs_scheme_yaml['implementations'][impl_index] = impl oqs_yaml['parameter-sets'][index] = oqs_scheme_yaml if args.write_changes: store_yaml(oqs_yaml_path, oqs_yaml) instructions = load_yaml( os.path.join(args.liboqs_root, 'scripts', 'copy_from_upstream', 'copy_from_upstream.yml'), encoding='utf-8') for upstream in instructions['upstreams']: if upstream['name'] == 'pqclean': pqclean_info = upstream break pqclean_root = fetch_upstream(pqclean_info) update_pqclean_kem_alg_docs(instructions['kems'], pqclean_info, pqclean_root, pqclean_info['kem_meta_path']) update_pqclean_sig_alg_docs(instructions['sigs'], pqclean_info, pqclean_root, pqclean_info['sig_meta_path']) ```
{ "source": "jiep/unicode-similarity", "score": 2 }
#### File: jiep/unicode-similarity/similarity.py ```python import numpy as np import os import sys from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input from keras.applications import VGG16 from sklearn.metrics.pairwise import cosine_similarity import argparse from pathlib import Path import errno def remove_extension(x): return x.split('.')[0] def file_exists(path): return Path(path).is_file() def dir_exists(path): return Path(path).is_dir() def print_error(type, file): print(FileNotFoundError(errno.ENOENT, 'The {} {} does not exist'.format(type, file))) def similarity_pairs(dir, output, verbose=False): latin_characters = [format(i + 32, '05x') for i in range(96)] unicode_characters = sorted(os.listdir(dir)) model = VGG16(include_top=False, weights='imagenet') with open(output, 'a') as file: to_file = ' ' + ' '.join(list(map(remove_extension, unicode_characters))) + '\n' file.write(to_file) for i, latin_character in enumerate(latin_characters): with open(output, 'a') as file: to_file = latin_character for j, unicode_chracter in enumerate(unicode_characters): latin_path = os.path.join(dir, latin_character) + ".png" latin_img = load_img(latin_path) unicode_path = os.path.join(dir, unicode_chracter) unicode_img = load_img(unicode_path) latin_pred = model.predict(latin_img).reshape(1, -1) unicode_pred = model.predict(unicode_img).reshape(1, -1) sim = similarity(latin_pred, unicode_pred) to_file = to_file + ' ' + str(sim) if verbose: print(('Similarity between ' '{} and {}: {}').format(latin_character, remove_extension( unicode_chracter), sim)) to_file = to_file + '\n' file.write(to_file) to_file = '' def similarity(x, y): return np.asscalar(cosine_similarity(x, y)) def load_img(path): img = image.load_img(path, target_size=(224, 224), grayscale=False, interpolation='bilinear') x = image.img_to_array(img) x = preprocess_input(x) x = np.expand_dims(x, axis=0) return x def main(): parser = argparse.ArgumentParser(description='Compute the similarity ' 'between Unicode and latin ' 'characters by using ' 'transfer learning.') parser.add_argument('-i', '--images', default='images') parser.add_argument('-o', '--output', default='similarities.txt') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() images = args.images output = args.output verbose = args.verbose if file_exists(output): print('Removing {}...'.format(output)) os.remove(output) if not dir_exists(images): print_error('directory', images) sys.exit(1) similarity_pairs(images, output, verbose) if __name__ == '__main__': main() ``` #### File: jiep/unicode-similarity/threshold.py ```python from pathlib import Path import numpy as np import pickle import argparse import errno import sys def file_exists(path): return Path(path).is_file() def dir_exists(path): return Path(path).is_dir() def remove_extension(x): return x.split('.')[0] def print_error(type, file): print(FileNotFoundError(errno.ENOENT, 'The {} {} does not exist'.format(type, file))) def calculate_threshold(similarity, output='confusables', threshold=0.8, verbose=False): lines = [line.rstrip('\n') for line in open(similarity)] unicode_characters = np.asarray(lines[0].split(' ')[1:]) data = {} data['threshold'] = threshold data['characters'] = {} for l in lines[1:]: line = l.split(' ') latin = line[0] del line[0] similarity_row = np.asarray(line, dtype=np.float) indexes = np.where(similarity_row >= threshold) data['characters'][latin] = unicode_characters[np.asarray(indexes[0])]\ .tolist() chars = unicode_characters[np.asarray(indexes[0])].tolist() if(verbose): print('[{}] {}: {}'.format(len(chars), latin, ','.join(chars))) output = '{}-{}.pickle'.format(output, int(threshold*100)) with open(output, 'wb') as f: pickle.dump(data, f) def main(): parser = argparse.ArgumentParser(description='Filter Unicode characters ' 'based on a given threshold ' 'between 0 and 1 ' 'and a similarity matrix') parser.add_argument('-s', '--similarity', default='similarities.txt') parser.add_argument('-t', '--threshold', default=0.8, type=float) parser.add_argument('-o', '--output', default='confusables') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() similarity = args.similarity threshold = args.threshold output = args.output verbose = args.verbose if not file_exists(similarity): print_error('file', similarity) sys.exit(1) calculate_threshold(similarity, output, threshold, verbose) if __name__ == '__main__': main() ```
{ "source": "jiep/v2d-cli", "score": 3 }
#### File: deep_confusables/utils/files.py ```python from pathlib import Path DIR_NAME = '.unicode' def file_exists(path): file = Path(path) return file.is_file() def dir_exists(path): file = Path(path) return file.is_dir() def create_home_directory(): home = Path.home() full_path = home.joinpath(DIR_NAME) full_path.mkdir(exist_ok=True, parents=True) def join(file): return home_directory().joinpath(file) def exists_file_home(file): return file_exists(home_directory().joinpath(file)) def exists_dir_home(dir): return dir_exists(home_directory().joinpath(dir)) def home_directory(): return Path.home().joinpath(DIR_NAME) ```
{ "source": "jie/pyapp_skeleton", "score": 3 }
#### File: pyapp_skeleton/libs/email_libs.py ```python import logging import smtplib from email.mime.text import MIMEText from email.mime.image import MIMEImage # from email.mime.multipart import MIMEMultipart from exchangelib import DELEGATE, Account, Credentials, Configuration, Message, \ Mailbox, HTMLBody, FileAttachment logger = logging.getLogger(__name__) def send_email(display, username, password, host, port, sendto, title, content, ssl=False, timeout=10, debug=0): if not isinstance(sendto, list): sendto = [sendto] me = "%s<%s>" % (display, username) msg = MIMEText(content, 'html', 'utf-8') msg['Subject'] = title msg['From'] = me msg['To'] = ';'.join(sendto) if ssl: server = smtplib.SMTP_SSL('%s:%d' % (host, port), timeout=timeout) else: server = smtplib.SMTP('%s:%d' % (host, port), timeout=timeout) server.set_debuglevel(debug) server.login(username, password) server.sendmail(me, sendto, msg.as_string()) server.quit() def addimg(src, imgid): fp = open(src, 'rb') msgImage = MIMEImage(fp.read()) fp.close() msgImage.add_header('Content-ID', imgid) return msgImage def send_with_exchange(username, password, server, address, content, subject='', to_recipients=[], attachements=[]): credentials = Credentials(username=username, password=password) config = Configuration(server=server, credentials=credentials) account = Account( primary_smtp_address=address, autodiscover=False, config=config, credentials=credentials, access_type=DELEGATE) _to_recipients = [] for item in to_recipients: _to_recipients.append(Mailbox(email_address=item['email'])) m = Message( account=account, subject=subject, body=HTMLBody(content), to_recipients=_to_recipients) if attachements: for item in attachements: with open(item['src'], 'rb') as f: img_attach = FileAttachment(name=item['name'], content=f.read()) m.attach(img_attach) m.send() ``` #### File: pyapp_skeleton/libs/service.py ```python import tornado import os import logging from dragonlib.web.micro_service import MicroService as MyMicroService logger = logging.getLogger(__name__) class MicroService(MyMicroService): def init_database(self): pass def start(self): port = self.port or self.getSetting('PORT') self.application.listen(port, xheaders=True) print('@starting development: %s' % port) tornado.ioloop.IOLoop.instance().start() def init_logger(self): super(MicroService, self).init_logger() # if self.getSetting('SENTRY_URL') and self.getSetting('DEPLOY') == 'production': # import sentry_sdk # sentry_sdk.init(self.getSetting('SENTRY_URL')) ```
{ "source": "jiepy/pydata", "score": 3 }
#### File: pydata/pyscripts/GetOS.py ```python import os import platform from collections import OrderedDict def os_version(): Info=platform.uname() distr=platform.linux_distribution() print '-' * 50 print u" OS 类型 : %s " % Info[0] print u" OS 版本 : %s_%s_%s " % (distr[0],distr[1],distr[2]) print u" OS 主机名 : %s " % Info[1] print u" OS 内核版本 : %s " % Info[2] print '' def meminfo(): ''' Return the information in /proc/meminfo as a dictionary ''' meminfo=OrderedDict() with open('/proc/meminfo') as f: for line in f: meminfo[line.split(':')[0]] = line.split(':')[1].strip() return meminfo """ print out the /proc/cpuinfo file """ def cpuinfo(): cpuinfo=OrderedDict() procinfo=OrderedDict() nprocs=0 with open('/proc/cpuinfo') as f: for line in f: if not line.strip(): cpuinfo['porc%s' % nprocs] = procinfo nprocs=nprocs+1 procinfo=OrderedDict() else: if len(line.split(':')) == 2: procinfo[line.split(':')[0].strip()]=line.split(':')[1].strip() else: procinfo[line.split(':')[0].strip()] = '' return cpuinfo def load_stat(): loadavg = {} f = open("/proc/loadavg") con=f.read().split() f.close() loadavg['lavg_1']=con[0] loadavg['lavg_5']=con[1] loadavg['lavg_15']=con[2] return loadavg def uptime_stat(): uptime = {} f = open('/proc/uptime') ut=f.read().split() f.close() all_sec=float(ut[0]) MINUTE,HOUR,DAY = 60,3600,86400 uptime['day'] = int(all_sec / DAY) uptime['hour'] = int((all_sec % DAY ) / HOUR) uptime['minute'] = int((all_sec % HOUR) / MINUTE) uptime['second'] = int(all_sec % MINUTE) uptime['Free rate'] = float(ut[1]) / float(ut[0]) return uptime """ List of all process IDs currently active """ def process_list(): pids=[] for subdir in os.listdir('/proc'): if subdir.isdigit(): pids.append(subdir) return pids if __name__ == '__main__': os_version() cpuinfo = cpuinfo() for processor in cpuinfo.keys(): print "Cpu ___型号 : %s" % (cpuinfo[processor]['model name']) break ln=len(cpuinfo) print 'Cpu逻辑核心数: %s\n' % ln meminfo=meminfo() total=int(meminfo['MemTotal'].split()[0]) free=int(meminfo['MemFree'].split()[0]) buffers=int(meminfo['Buffers'].split()[0]) cached=int(meminfo['Cached'].split()[0]) swap=int(meminfo['SwapTotal'].split()[0]) MEMUsedPerc=100 * float('%0.2f' % (float(total-free-buffers-cached)/total)) print '''内存使用情况 : 内存使用率 : %s%% 物理内存 : %s M 空闲内存 : %s M Swap 总空间 : %s M\n''' % (MEMUsedPerc,total/1024,free/1024,swap/1024) up_stat = uptime_stat() print '系统运行时间 : %s天%s小时%s分%s秒' \ % (up_stat['day'],up_stat['hour'],\ up_stat['minute'],up_stat['second']) print '服务器空闲率 : %s%%' % (float('%0.2f'%up_stat['Free rate'])*100) load=load_stat() print 'load average : %s | %s | %s' % \ (load['lavg_1'],load['lavg_5'],load['lavg_15']) pids = process_list() print 'OS 总进程数 : %s' % (len(pids)) print '-' * 50 ```
{ "source": "jieqin-ai/AMR", "score": 3 }
#### File: AMR/net/resnet50_amr.py ```python import torch import torch.nn as nn import torch.nn.functional as F from misc import torchutils from net import resnet50 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.resnet50 = resnet50.resnet50(pretrained=True, strides=(2, 2, 2, 1)) self.stage1 = nn.Sequential(self.resnet50.conv1, self.resnet50.bn1, self.resnet50.relu, self.resnet50.maxpool, self.resnet50.layer1) self.stage2 = nn.Sequential(self.resnet50.layer2) self.stage3 = nn.Sequential(self.resnet50.layer3) self.stage4 = nn.Sequential(self.resnet50.layer4) self.classifier = nn.Conv2d(2048, 20, 1, bias=False) self.resnet50_2 = resnet50.resnet50(pretrained=True, use_amm=True, strides=(2, 2, 2, 1)) self.stage2_1 = nn.Sequential(self.resnet50_2.conv1, self.resnet50_2.bn1, self.resnet50_2.relu, self.resnet50_2.maxpool, self.resnet50_2.layer1) self.stage2_2 = nn.Sequential(self.resnet50_2.layer2) self.stage2_3 = nn.Sequential(self.resnet50_2.layer3) self.stage2_4 = nn.Sequential(self.resnet50_2.layer4) self.classifier2 = nn.Conv2d(2048, 20, 1, bias=False) self.backbone = nn.ModuleList([self.stage1, self.stage2, self.stage3, self.stage4]) self.backbone2 = nn.ModuleList([self.stage2_1, self.stage2_2, self.stage2_3, self.stage2_4]) self.newly_added = nn.ModuleList([self.classifier, self.classifier2]) def forward(self, x): x_ori = x.clone() # # branch1 x = self.stage1(x).detach() x = self.stage2(x).detach() x = self.stage3(x).detach() x = self.stage4(x).detach() cam = F.conv2d(x, self.classifier.weight) cam = F.relu(cam) cam = cam[0] + cam[1].flip(-1) x = torchutils.gap2d(x, keepdims=True) x = self.classifier(x).detach() x = x.view(-1, 20) # # branch2 x2 = self.stage2_1(x_ori).detach() x2 = self.stage2_2(x2) x2 = self.stage2_3(x2) x2 = self.stage2_4(x2) cam2 = F.conv2d(x2, self.classifier2.weight) cam2 = F.relu(cam2) cam2 = cam2[0] + cam2[1].flip(-1) x2 = torchutils.gap2d(x2, keepdims=True) x2 = self.classifier2(x2) x2 = x2.view(-1, 20) return x, cam, x2, cam2 def train(self, mode=True): for p in self.resnet50.conv1.parameters(): p.requires_grad = False for p in self.resnet50.bn1.parameters(): p.requires_grad = False for p in self.resnet50_2.conv1.parameters(): p.requires_grad = False for p in self.resnet50_2.bn1.parameters(): p.requires_grad = False def trainable_parameters(self): return (list(self.backbone.parameters()), list(self.backbone2.parameters()), list(self.newly_added.parameters())) class CAM(Net): def __init__(self): super(CAM, self).__init__() def forward(self, x, step=1): x_ori = x.clone() # branch1 if step == 1: x = self.stage1(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) cam1 = F.conv2d(x, self.classifier.weight) return cam1 # # branch2 if step == 2: x2 = self.stage2_1(x_ori) x2 = self.stage2_2(x2) x2 = self.stage2_3(x2) x2 = self.stage2_4(x2) cam2 = F.conv2d(x2, self.classifier2.weight) return cam2 ```
{ "source": "JieqingShi/CarND-Advanced-Lane-Lines", "score": 3 }
#### File: JieqingShi/CarND-Advanced-Lane-Lines/lane_find.py ```python import numpy as np import cv2 def hist(img): """ Find histogram (aka sum of pixel values) of binary image from bottom half of image Returns: histogram: sum of pixel values of bottom half of pictures """ bottom_half = img[img.shape[0]//2:,:] # 0:img.shape[0]//2 is the top half histogram = bottom_half.sum(axis=0) return histogram def fit_poly(img_shape, leftx, lefty, rightx, righty): """ Fit polynomial of second degree on image of size img_shape for left lane and right lane x and y coordinates Returns: left_fitx: x-values of fitted polynomial curve for left lane right_fitx: x-values of fitted polynomial curve for right lane ploty: y-values of fitted polynomial curve (same for left and right lane) """ left_fit = np.polyfit(lefty, leftx, deg=2) right_fit = np.polyfit(righty, rightx, deg=2) # Generate x and y values for plotting ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) ### TO-DO: Calc both polynomials using ploty, left_fit and right_fit ### left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] return left_fitx, right_fitx, ploty def find_lanes_from_scratch(binary_warped, nwindows=9, margin=100, minpix=50, draw_lanes=True): """ Detects lane pixels from scratch using sliding windows on the histogram peaks of the binary filtered image Returns: left_fitx: x-values of fitted polynomial curve of detected left-lane right_fitx: x-values of fitted polynomial curve of detected right-lane left_fit: parameters of fitted polynomial of second order of left lane right_fit: parameters of fitted polynomial of second order of right lane ploty: y-values of fitted polynomial curve (same for left and right) out_img: image with marked pixels and sliding windows for left and right lane detected_flag: boolean flag, always True """ # Find histogram peaks histogram = hist(binary_warped) out_img = np.dstack((binary_warped, binary_warped, binary_warped)) # create output image to draw on (not necessary) midpoint = np.int(histogram.shape[0]//2) # 640 leftx_base = np.argmax(histogram[:midpoint]) # find index of left peak (indicates ll) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # find index of right peak (indicates rl) # Sliding windows window_height = np.int(binary_warped.shape[0]//nwindows) # 80 nonzero = binary_warped.nonzero() # a tuple for x and y nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) leftx_current = leftx_base rightx_current = rightx_base left_lane_inds = [] right_lane_inds = [] for window in range(nwindows): # index 0 to 8 win_y_low = binary_warped.shape[0] - (window+1)*window_height win_y_high = binary_warped.shape[0] - window*window_height win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin if draw_lanes: cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2) # bottom left to top right, in green, with thickness 2 cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2) good_left_inds = ((nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high) & (nonzeroy >= win_y_low ) & (nonzeroy < win_y_high)).nonzero()[0] good_right_inds = ((nonzerox >= win_xright_low) & (nonzerox < win_xright_high) & (nonzeroy >= win_y_low ) & (nonzeroy < win_y_high)).nonzero()[0] left_lane_inds.append(good_left_inds) # indices right_lane_inds.append(good_right_inds) if len(good_left_inds) > minpix: leftx_current = int(np.mean(nonzerox[good_left_inds])) # print(leftx_current) if len(good_right_inds) > minpix: rightx_current = int(np.mean(nonzerox[good_right_inds])) # Find indices of left and right lane lines left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit polynomial of second degree left_fit = np.polyfit(lefty, leftx, deg=2) right_fit = np.polyfit(righty, rightx, deg=2) ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0]) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] detected_flag = True # Visualize if draw_lanes: out_img[lefty, leftx] = [255, 0, 0] out_img[righty, rightx] = [0, 0, 255] for index in range(out_img.shape[0]-1): cv2.line(out_img, (int(left_fitx[index]), int(ploty[index])), (int(left_fitx[index+1]), int(ploty[index+1])), (255,255,0), 3) cv2.line(out_img, (int(right_fitx[index]), int(ploty[index])), (int(right_fitx[index+1]), int(ploty[index+1])), (255,255,0), 3) return left_fitx, right_fitx, left_fit, right_fit, ploty, out_img, detected_flag def find_lanes_from_prior(binary_warped, left_fit, right_fit, margin=100, draw_lanes=True): """ Detects lane pixels by searching in margin around previous lane line position Returns: left_fitx: x-values of fitted polynomial curve of detected left-lane right_fitx: x-values of fitted polynomial curve of detected right-lane left_fit: parameters of fitted polynomial of second order of left lane (no modification done; passed directly from input) right_fit: parameters of fitted polynomial of second order of right lane (no modification done; passed directly from input) ploty: y-values of fitted polynomial curve (same for left and right) out_img: image with marked pixels and sliding windows for left and right lane detected_flag: boolean flag; is True if lane lines are found, False if not found """ nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) left_lane_inds = ((nonzerox >= left_fit[0]*nonzeroy**2 + left_fit[1]*nonzeroy + left_fit[2] - margin) & (nonzerox < left_fit[0]*nonzeroy**2 + left_fit[1]*nonzeroy + left_fit[2] + margin)).nonzero()[0] right_lane_inds = ((nonzerox >= right_fit[0]*nonzeroy**2 + right_fit[1]*nonzeroy + right_fit[2] - margin) & (nonzerox < right_fit[0]*nonzeroy**2 + right_fit[1]*nonzeroy + right_fit[2] + margin)).nonzero()[0] # Again, extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Create an image to draw on and an image to show the selection window out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 if leftx.size == 0 or rightx.size == 0: detected_flag = False return None, None, None, None, None, out_img, False # super ugly else: detected_flag = True # Fit new polynomials left_fitx, right_fitx, ploty = fit_poly(binary_warped.shape, leftx, lefty, rightx, righty) ## Visualization ## if draw_lanes: window_img = np.zeros_like(out_img) left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255,0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255,0)) out_img = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] for index in range(out_img.shape[0]-1): cv2.line(out_img, (int(left_fitx[index]), int(ploty[index])), (int(left_fitx[index+1]), int(ploty[index+1])), (255,255,0), 3) cv2.line(out_img, (int(right_fitx[index]), int(ploty[index])), (int(right_fitx[index+1]), int(ploty[index+1])), (255,255,0), 3) return left_fitx, right_fitx, left_fit, right_fit, ploty, out_img, detected_flag def measure_curvature(ploty, left_fitx, right_fitx): """ Calculates the curvature of polynomial functions in meters. Returns: left_curverad: curvature of left lane line right_curverad: curvature of right lane line """ ym_per_pix = 30/720 # meters per pixel in y dimension xm_per_pix = 3.7/700 # meters per pixel in x dimension left_fitx = left_fitx[::-1] right_fitx = right_fitx[::-1] left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2) right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2) y_eval = np.max(ploty) left_curverad = (1+(2*left_fit_cr[0]*y_eval*ym_per_pix+left_fit_cr[1])**2)**(3/2)/(2*np.abs(left_fit_cr[0])) right_curverad = (1+(2*right_fit_cr[0]*y_eval*ym_per_pix+right_fit_cr[1])**2)**(3/2)/(2*np.abs(right_fit_cr[0])) return left_curverad, right_curverad def measure_offset(left_fitx, right_fitx, midpoint=640): """ Calculates offset from center of image from positions of left and right lane lines Returns: offset: offset from center """ return (midpoint-(right_fitx[-1]+left_fitx[-1])/2)*3.7/700 ```
{ "source": "jieqiong-pang/DSCI560-HW5", "score": 3 }
#### File: jieqiong-pang/DSCI560-HW5/resulting.py ```python import pandas as pd from bokeh.plotting import figure, curdoc from bokeh.models import HoverTool, Title from bokeh.transform import factor_cmap from bokeh.models import ColumnDataSource, FactorRange from bokeh.layouts import column, row from bokeh.models.widgets import Select # region 1. question a # set up data latimes_agency_totals = pd.read_csv("latimes-state-totals.csv") latimes_agency_totals = latimes_agency_totals[ (latimes_agency_totals["date"] >= "2020-08-01") & (latimes_agency_totals["date"] <= "2020-08-31")] latimes_agency_totals['date_time'] = pd.to_datetime(latimes_agency_totals['date']) # set up plot p1 = figure( tools='crosshair,pan,box_zoom', y_axis_label='New Coronavirus cases', x_axis_label='datetime', x_axis_type='datetime', plot_width=1030, plot_height=500, ) p1.title.text = "New Coronavirus Cases in California in August" p1.title.align = "center" p1.title.text_font_size = "20px" p1.align = "center" p1.add_layout(Title(text=" download data from 'https://github.com/datadesk/california-coronavirus-data' (" "latimes-state-totals.csv) in GitHub", text_font_style="italic"), 'above') p1.add_layout(Title(text="Source: provided by local public health agencies; published by " "'latimes.com/coronavirustracker'", text_font_style="italic"), 'above') p1.add_layout(Title(text="Date of last update: 2020-10-15", text_font_style="italic"), 'above') p1.line('date_time', 'new_confirmed_cases', source=latimes_agency_totals) p1.circle('date_time', 'new_confirmed_cases', source=latimes_agency_totals, fill_color="blue", size=5) p1.add_tools(HoverTool( tooltips=[ ('date', '@date_time{%Y-%m-%d}'), ('new cases', '@new_confirmed_cases'), ], formatters={ '@date_time': 'datetime', })) # endregion # region 2. question b data = pd.read_csv("cdph-race-ethnicity.csv") race_total = data.loc[data['age'] == 'all'] race_total = race_total[["date", "race", "confirmed_cases_percent", "deaths_percent", "population_percent"]] total = race_total[["date", "race", "confirmed_cases_percent", "deaths_percent", "population_percent"]] races = sorted(set(total["race"].tolist())) death = total["deaths_percent"].tolist() case = total["confirmed_cases_percent"].tolist() population = total["population_percent"].tolist() bar2 = ['confirmed_cases', 'population'] bar3 = ['death', 'population'] date = sorted(set(race_total['date']), reverse=True) # set up data x2 = [(race, bar) for race in races for bar in bar2] y2 = sum(zip(case, population), ()) source2 = ColumnDataSource(data=dict(x=x2, y=y2)) # set up plot p2 = figure(x_range=FactorRange(*x2), plot_height=550,plot_width=1030, y_axis_label='percent', x_axis_label='race', toolbar_location=None, tools="") p2.title.text = "Confirmed_case% VS Population%" p2.title.align = "center" p2.title.text_font_size = "20px" p2.add_layout(Title(text=" published by 'latimes.com/coronavirustracker'; download data from " "'https://github.com/datadesk/california-coronavirus-data' (cdph-race-ethnicity.csv) in " "GitHub", text_font_style="italic"), 'above') p2.add_layout(Title(text="Source: provided by the California Department of Public Health " "'https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Race-Ethnicity.aspx';", text_font_style="italic"), 'above') p2.add_layout(Title(text="Date of last update: 2020-10-14", text_font_style="italic"), 'above') r2 = p2.vbar(x='x', top='y', width=0.9, source=source2, line_color="white", fill_color=factor_cmap('x', palette=["#c9d9d3", "#718dbf"], factors=bar2, start=1, end=2)) p2.y_range.start = 0 p2.x_range.range_padding = 0.1 p2.xaxis.major_label_orientation = 0.8 p2.xgrid.grid_line_color = None p2.add_tools(HoverTool( tooltips=[ ('confirmed_case', '@x'), ('population', '@y'), ])) # set up widgets select1 = Select(title="Confirmed case date:", value=date[0], options=date, width=105) # set up callbacks def update2(attrname, old, new): selected_data = race_total[race_total['date'] == select1.value] a = selected_data['confirmed_cases_percent'] b = selected_data["population_percent"] y = sum(zip(a, b), ()) r2.data_source.data['y'] = y select1.on_change('value', update2) # endregion # region 3. question c # set up data x3 = [(race, bar) for race in races for bar in bar3] y3 = sum(zip(death, population), ()) source3 = ColumnDataSource(data=dict(x=x3, y=y3)) # set up plot p3 = figure(x_range=FactorRange(*x3), plot_height=550,plot_width=1030, y_axis_label='percent', x_axis_label='race', toolbar_location=None, tools="") p3.title.text = "Death% VS Population%" p3.title.align = "center" p3.title.text_font_size = "20px" p3.add_layout(Title(text=" published by 'latimes.com/coronavirustracker'; download data from " "'https://github.com/datadesk/california-coronavirus-data' (cdph-race-ethnicity.csv) in " "GitHub", text_font_style="italic"), 'above') p3.add_layout(Title(text="Source: provided by the California Department of Public Health " "'https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Race-Ethnicity.aspx';", text_font_style="italic"), 'above') p3.add_layout(Title(text="Date of last update: 2020-10-14", text_font_style="italic"), 'above') r3 = p3.vbar(x='x', top='y', width=0.9, source=source3, line_color="white", fill_color=factor_cmap('x', palette=["#c9d9d3", "#718dbf"], factors=bar3, start=1, end=2)) p3.y_range.start = 0 p3.x_range.range_padding = 0.1 p3.xaxis.major_label_orientation = 0.8 p3.xgrid.grid_line_color = None p3.add_tools(HoverTool( tooltips=[ ('death', '@x'), ('population', '@y'), ])) # set up widgets select2 = Select(title="Death date:", value=date[0], options=date, width=105) # set up callbacks def update3(attrname, old, new): selected_data = race_total[race_total['date'] == select2.value] a = selected_data['deaths_percent'] b = selected_data["population_percent"] y = sum(zip(a, b), ()) r3.data_source.data['y'] = y select2.on_change('value', update3) # endregion # set up layouts and add to document curdoc().add_root(column(p1)) curdoc().add_root(row(p2, select1)) curdoc().add_root(row(p3, select2)) ```
{ "source": "jieqiu0630/ProMP", "score": 2 }
#### File: ProMP/run_scripts/pro-mp_run_mario.py ```python from meta_policy_search.baselines.linear_baseline import LinearFeatureBaseline from meta_policy_search.envs.point_envs.point_env_2d_corner import MetaPointEnvCorner from meta_policy_search.envs.normalized_env import normalize from meta_policy_search.meta_algos.pro_mp import ProMP from meta_policy_search.meta_trainer import Trainer from meta_policy_search.samplers.meta_sampler import MetaSampler from meta_policy_search.samplers.meta_sample_processor import MetaSampleProcessor from meta_policy_search.policies.meta_gaussian_mlp_policy import MetaGaussianMLPPolicy from meta_policy_search.policies.conv import MAMLGaussianMLPPolicy from meta_policy_search.utils import logger from meta_policy_search.utils.utils import set_seed, ClassEncoder import numpy as np import tensorflow as tf import os import json import argparse import time # Import for mario from railrl.torch.metac.gcg.make_env import make_env meta_policy_search_path = '/'.join(os.path.realpath(os.path.dirname(__file__)).split('/')[:-1]) def main(config): set_seed(config['seed']) baseline = globals()[config['baseline']]() #instantiate baseline env = make_env(config['env_id'], config) # import pdb; pdb.set_trace()# env = globals()[config['env']]() # instantiate env # env = normalize(env) # apply normalize wrapper to env print("MARIO obs shape", env.observation_space.shape) policy = MAMLGaussianMLPPolicy( 'conv', obs_dim=int(np.prod(env.observation_space.shape)), action_dim=int(np.prod(env.action_space.shape)), meta_batch_size=config['meta_batch_size'], hidden_sizes=config['hidden_sizes'], ) sampler = MetaSampler( env=env, policy=policy, rollouts_per_meta_task=config['rollouts_per_meta_task'], # This batch_size is confusing meta_batch_size=config['meta_batch_size'], max_path_length=config['max_path_length'], parallel=config['parallel'], ) sample_processor = MetaSampleProcessor( baseline=baseline, discount=config['discount'], gae_lambda=config['gae_lambda'], normalize_adv=config['normalize_adv'], ) algo = ProMP( policy=policy, inner_lr=config['inner_lr'], meta_batch_size=config['meta_batch_size'], num_inner_grad_steps=config['num_inner_grad_steps'], learning_rate=config['learning_rate'], num_ppo_steps=config['num_promp_steps'], clip_eps=config['clip_eps'], target_inner_step=config['target_inner_step'], init_inner_kl_penalty=config['init_inner_kl_penalty'], adaptive_inner_kl_penalty=config['adaptive_inner_kl_penalty'], ) trainer = Trainer( algo=algo, policy=policy, env=env, sampler=sampler, sample_processor=sample_processor, n_itr=config['n_itr'], num_inner_grad_steps=config['num_inner_grad_steps'], ) trainer.train() if __name__=="__main__": idx = int(time.time()) parser = argparse.ArgumentParser(description='ProMP: Proximal Meta-Policy Search') parser.add_argument('--config_file', type=str, default='', help='json file with run specifications') parser.add_argument('--dump_path', type=str, default=meta_policy_search_path + '/data/pro-mp/run_%d' % idx) args = parser.parse_args() if args.config_file: # load configuration from json file with open(args.config_file, 'r') as f: config = json.load(f) else: # use default config config = { 'seed': 1, 'baseline': 'LinearFeatureBaseline', 'env_id': 'mariomultilevel', # sampler config 'rollouts_per_meta_task': 2, 'max_path_length': 10, 'parallel': True, # sample processor config 'discount': 0.99, 'gae_lambda': 1, 'normalize_adv': True, # policy config 'hidden_sizes': (64, 64), 'learn_std': True, # whether to learn the standard deviation of the gaussian policy # ProMP config 'inner_lr': 0.1, # adaptation step size 'learning_rate': 1e-3, # meta-policy gradient step size 'num_promp_steps': 5, # number of ProMp steps without re-sampling 'clip_eps': 0.3, # clipping range 'target_inner_step': 0.01, 'init_inner_kl_penalty': 5e-4, 'adaptive_inner_kl_penalty': False, # whether to use an adaptive or fixed KL-penalty coefficient 'n_itr': 1001, # number of overall training iterations 'meta_batch_size': 40, # number of sampled meta-tasks per iterations 'num_inner_grad_steps': 1, # number of inner / adaptation gradient steps # Mario config "env_kwargs" : { "screen_size": 20, "grayscale_obs": False, "frame_skip": 1, "lifelong": False, "max_lives": 1, "scramble_action_freq": 0, "frame_stack": 1, "action_stack": 0, "default_level": 0, "shuffle_env_actions": True, "shuffle_envs": False, "singletask": True }, "algo_kwargs":{ "batch_size":8, "adapt_batch_size": 64, "meta_batch_size":26, "test_size": 6, "mpc_horizon":5, "window_len": 200, "min_num_steps_before_training": 1000, "min_num_steps_before_adapting": 7, "num_expl_steps_per_train_loop": 100, "max_path_length":1000, "eval_freq": 10, "outer_update_steps":20, "inner_update_steps":4, "adapt_freq": 1, "num_adapt_steps": 5, "num_epochs":10000, "inner_lr":1e-3, "inner_opt_name": "SGD", "adapt_opt_name": "SGD", "adapt_inner_lr": 1e-3, "debug":False, "use_consecutive_batch": False, "reset_meta_model": True, "adapt_same_batch": False, "train_same_batch": True, "shuffle_actions": False, "explore_if_stuck": False, "shuffle_env_actions": False, "adapt_from_replay": False, "test_buffer_size": 550, "save_buffer": True }, "trainer_kwargs":{ "learning_rate":1e-4, "discount":0.99, "data_type": "uint8", "opt_name": "Adam", "optimizer_kwargs": { "weight_decay": 0 }, "bayesian": False }, "controller_kwargs": { "num_simulated_paths":500, "cem_steps":3 }, "reward_predictor_kwargs":{ "reward_type":"categorical", "num_bins":41 }, "replay_buffer_kwargs":{ "max_replay_buffer_size":20000 }, "adaptive_replay_buffer_kwargs":{ "max_replay_buffer_size":10 }, "extra_args": { "prior_sigma_1": 0.001, "prior_pi": 1.0, "posterior_rho_init": -6 }, "model_kwargs": { "data_type": "uint8", "reward_scale": 10.0, "bayesian": False, "conv_norm_type": "layer" }, "log_comet": True, "debug": False, "use_gpu": True, } # configure logger logger.configure(dir=args.dump_path, format_strs=['stdout', 'log', 'csv'], snapshot_mode='last_gap') # dump run configuration before starting training json.dump(config, open(args.dump_path + '/params.json', 'w'), cls=ClassEncoder) # start the actual algorithm main(config) ```
{ "source": "jiequancui/LBGAT", "score": 2 }
#### File: jiequancui/LBGAT/auto_attack_eval.py ```python from __future__ import print_function import os import argparse import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torch.autograd import Variable import torch.optim as optim from torchvision import datasets, transforms from models.wideresnet import * from autoattack.autoattack import AutoAttack parser = argparse.ArgumentParser(description='PyTorch CIFAR PGD Attack Evaluation') parser.add_argument('--test-batch-size', type=int, default=64, metavar='N', help='input batch size for testing (default: 200)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--epsilon', default=0.031, help='perturbation') parser.add_argument('--num-steps', default=20, type=int, help='perturb number of steps') parser.add_argument('--step-size', default=0.003, help='perturb step size') parser.add_argument('--random', default=True, help='random initialization for PGD') parser.add_argument('--model-path', default='./checkpoints/model_cifar_wrn.pt', help='model for white-box attack evaluation') parser.add_argument('--source-model-path', default='./checkpoints/model_cifar_wrn.pt', help='source model for black-box attack evaluation') parser.add_argument('--target-model-path', default='./checkpoints/model_cifar_wrn.pt', help='target model for black-box attack evaluation') parser.add_argument('--white-box-attack', default=True, help='whether perform white-box attack') parser.add_argument('--mark', default=None, type=str, help='log file name') parser.add_argument('--widen_factor', default=None, type=int, help='widen_factor for wideresnet') parser.add_argument('--num_classes', default=10, type=int, help='cifar10 or cifar100') parser.add_argument('--dataparallel', default=False, type=bool, help='whether model is trained with dataparallel') args = parser.parse_args() # settings use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} # set up data loader transform_test = transforms.Compose([transforms.ToTensor(),]) if args.num_classes == 100: testset = torchvision.datasets.CIFAR100(root='./data/cifar100', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs) else: testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs) def _pgd_whitebox(model, X, y, adversary, epsilon=args.epsilon, num_steps=args.num_steps, step_size=args.step_size): out = model(X) err = (out.data.max(1)[1] != y.data).float().sum() X_pgd = adversary.run_standard_evaluation(X, y, bs=X.size(0)) err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum() return err, err_pgd def eval_adv_test_whitebox(model, device, test_loader, adverary): """ evaluate model by white-box attack """ model.eval() robust_err_total = 0 natural_err_total = 0 for data, target in test_loader: data, target = data.to(device), target.to(device) # pgd attack X, y = Variable(data, requires_grad=True), Variable(target) err_natural, err_robust = _pgd_whitebox(model, X, y, adverary) robust_err_total += err_robust natural_err_total += err_natural open("Logs/"+args.mark,"a+").write("robust_err_total: "+str(robust_err_total)+"\n") open("Logs/"+args.mark,"a+").write("natural_err_total: "+str(natural_err_total)+"\n") def main(): if args.white_box_attack: # white-box attack open("Logs/"+args.mark,"a+").write('pgd white-box attack\n') model = WideResNet(num_classes=args.num_classes, widen_factor=args.widen_factor) if args.dataparallel: model = nn.DataParallel(model).to(device) else: model = model.to(device) model.load_state_dict(torch.load(args.model_path)) adversary = AutoAttack(model, norm='Linf', eps=args.epsilon, version='standard', log_path = "Logs/"+args.mark) adversary.seed = 0 eval_adv_test_whitebox(model, device, test_loader, adversary) if __name__ == '__main__': main() ```
{ "source": "jieralice13/forte", "score": 2 }
#### File: examples/biobert_ner/bio_ner_predictor.py ```python from typing import Dict, List, Optional, Type, Tuple, Any import numpy as np import torch from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, ) from forte.common.configuration import Config from forte.common.resources import Resources from forte.data.data_pack import DataPack from forte.data.ontology import Annotation from forte.data.types import DataRequest from forte.processors.base.batch_processor import FixedSizeBatchProcessor from ft.onto.base_ontology import Sentence, EntityMention, Subword class BioBERTNERPredictor(FixedSizeBatchProcessor): """ An Named Entity Recognizer fine-tuned on BioBERT Note that to use :class:`BioBERTNERPredictor`, the :attr:`ontology` of :class:`Pipeline` must be an ontology that include ``ft.onto.base_ontology.Subword`` and ``ft.onto.base_ontology.Sentence``. """ def __init__(self): super().__init__() self.resources = None self.device = None self.ft_configs = None self.model_config = None self.model = None self.tokenizer = None @staticmethod def _define_context() -> Type[Annotation]: return Sentence @staticmethod def _define_input_info() -> DataRequest: input_info: DataRequest = { Subword: [], Sentence: [], } return input_info def initialize(self, resources: Resources, configs: Config): super().initialize(resources, configs) if resources.get("device"): self.device = resources.get("device") else: self.device = torch.device('cuda') if torch.cuda.is_available() \ else torch.device('cpu') self.resources = resources self.ft_configs = configs model_path = self.ft_configs.model_path self.model_config = AutoConfig.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModelForTokenClassification.from_pretrained( model_path, from_tf=bool(".ckpt" in model_path), config=self.model_config ) self.model.to(self.device) @torch.no_grad() def predict(self, data_batch: Dict[str, Dict[str, List[str]]]) \ -> Dict[str, Dict[str, List[np.array]]]: sentences = data_batch['context'] subwords = data_batch['Subword'] inputs = self.tokenizer(sentences, return_tensors="pt", padding=True) inputs = {key: value.to(self.device) for key, value in inputs.items()} input_shape = inputs['input_ids'].shape if input_shape[1] > 512: # TODO: Temporarily work around the length problem. # The real solution should further split up the sentences to make # the sentences shorter. labels_idx = inputs['input_ids'].new_full( input_shape, 2, device='cpu')[:, 1:-1].numpy() else: outputs = self.model(**inputs)[0].cpu().numpy() score = np.exp(outputs) / np.exp(outputs).sum(-1, keepdims=True) labels_idx = score.argmax(axis=-1)[:, 1:-1] # Remove placeholders. pred: Dict = {"Subword": {"ner": [], "tid": []}} for i in range(len(subwords["tid"])): tids = subwords["tid"][i] ner_tags = [] for j in range(len(tids)): ner_tags.append(self.model.config.id2label[labels_idx[i, j]]) pred["Subword"]["ner"].append(np.array(ner_tags)) pred["Subword"]["tid"].append(np.array(tids)) return pred def _complete_entity(self, subword_entities: List[Dict[str, Any]], data_pack: DataPack, tids: List[int]) -> Tuple[int, int]: """ Complete entity span from predicted subword entities Start from the first subword with predicted entity. If this entity is a subword (e.g. "##on"), then move on to the previous subword until it's no longer a subword (e.g. "br") """ first_idx: int = subword_entities[0]['idx'] first_tid = subword_entities[0]['tid'] while first_idx > 0 and not data_pack.get_entry( first_tid).is_first_segment: first_idx -= 1 first_tid = tids[first_idx] last_idx: int = subword_entities[-1]['idx'] while last_idx < len(tids) - 1 and not data_pack.get_entry( tids[last_idx + 1]).is_first_segment: last_idx += 1 return first_idx, last_idx def _compose_entities(self, entities: List[Dict[str, Any]], data_pack: DataPack, tids: List[int]) -> List[Tuple[int, int]]: """ Composes entity spans from subword entity predictions Label Syntax: A "B" label indicates the beginning of an entity, an "I" label indicates the continuation of an entity, and an "O" label indicates the absence of an entity. Example: with - br - ##on - ##chi - ##oli - ##tis - . O - B - I - I - I - I - O Due to possible instabilities of the model on out-of-distribution data, sometimes the prediction may not follow the label format. Example 1: with - br - ##on - ##chi - ##oli - ##tis - . O - B - I - O - I - O - O Example 2: with - br - ##on - ##chi - ##oli - ##tis - . O - O - O - I - I - I - O This method takes entity predictions of subwords and recovers the set of complete entities, defined by the indices of their beginning and ending subwords. (begin_idx, end_idx) """ complete_entities: List[Tuple[int, int]] = [] subword_entities: List[Dict[str, Any]] = [] for entity in entities: subword = data_pack.get_entry(entity['tid']) if entity['label'] == 'B' and subword.is_first_segment: # Flush the existing entity and start a new entity if subword_entities: complete_entity = \ self._complete_entity(subword_entities, data_pack, tids) complete_entities.append(complete_entity) subword_entities = [entity] else: # Continue accumuulating subword entities subword_entities.append(entity) if subword_entities: complete_entity = self._complete_entity(subword_entities, data_pack, tids) complete_entities.append(complete_entity) return complete_entities def pack(self, data_pack: DataPack, output_dict: Optional[Dict[str, Dict[str, List[Any]]]] = None): """ Write the prediction results back to datapack. by writing the predicted ner to the original subwords and convert predictions to something that makes sense in a word-by-word segmentation """ if output_dict is None: return for i in range(len(output_dict["Subword"]["tid"])): tids = output_dict["Subword"]["tid"][i] labels = output_dict["Subword"]["ner"][i] # Filter to labels not in `self.ft_configs.ignore_labels` entities = [dict(idx=idx, label=label, tid=tid) for idx, (label, tid) in enumerate(zip(labels, tids)) if label not in self.ft_configs.ignore_labels] entity_groups = self._compose_entities(entities, data_pack, tids) # Add NER tags and create EntityMention ontologies. for first_idx, last_idx in entity_groups: first_token: Subword = data_pack.get_entry( # type: ignore tids[first_idx]) begin = first_token.span.begin last_token: Subword = data_pack.get_entry( # type: ignore tids[last_idx]) end = last_token.span.end entity = EntityMention(data_pack, begin, end) entity.ner_type = self.ft_configs.ner_type @classmethod def default_configs(cls): r"""Default config for NER Predictor""" configs = super().default_configs() # TODO: Batcher in NER need to be update to use the sytem one. configs["batcher"] = {"batch_size": 10} more_configs = {'model_path': None, 'ner_type': 'BioEntity', 'ignore_labels': ['O']} configs.update(more_configs) return configs ``` #### File: data_augmentation/data_select/data_select_and_augment_example.py ```python import argparse import logging import yaml from forte.data.multi_pack import MultiPack from forte.pipeline import Pipeline from forte.processors.base.data_selector_for_da import RandomDataSelector from forte.processors.nltk_processors import NLTKWordTokenizer, NLTKPOSTagger from forte.data.selector import AllPackSelector from forte.data.caster import MultiPackBoxer from forte.processors.data_augment import ReplacementDataAugmentProcessor logging.root.setLevel(logging.INFO) def main(): parser = argparse.ArgumentParser() parser.add_argument("--config_file", default="./config.yml", help="Config YAML filepath") args = parser.parse_args() # loading config config = yaml.safe_load(open(args.config_file, "r")) nlp: Pipeline[MultiPack] = Pipeline() nlp.set_reader(RandomDataSelector(), config=config["data_selector_config"]) nlp.add(component=MultiPackBoxer(), config=config["boxer_config"]) nlp.add(component=NLTKWordTokenizer(), selector=AllPackSelector()) nlp.add(component=NLTKPOSTagger(), selector=AllPackSelector()) nlp.add(component=ReplacementDataAugmentProcessor(), config=config["da_processor_config"]) nlp.initialize() for _, m_pack in enumerate(nlp.process_dataset()): aug_pack = m_pack.get_pack('augmented_input') logging.info(aug_pack.text) if __name__ == "__main__": main() ``` #### File: examples/gpt2/multipack_pipeline_gpt2.py ```python import json from termcolor import colored from forte.data.multi_pack import MultiPack from forte.pipeline import Pipeline from ft.onto.base_ontology import Token, Sentence def create_pipeline(config_path: str) -> Pipeline[MultiPack]: pl = Pipeline[MultiPack]() pl.init_from_config_path(config_path) print("\nFinished loading\n") return pl if __name__ == '__main__': # This line adds a reader and 3 processors in to the pipeline # 1. forte.data.readers.MultiPackSentenceReader # 2. forte.processors.TextGenerationProcessor # 3. forte.processors.nltk_processors.NLTKWordTokenizer # 4. forte.processors.nltk_processors.NLTKPOSTagger nlp = create_pipeline('sample_multipack_pipeline_gpt.yml') nlp.initialize() input_dir = "data/" multipack: MultiPack = nlp.process_one(input_dir) input_pack_name = "input_src" output_pack_name = "output_tgt" src_cnt = len(list(multipack.get_pack(input_pack_name).get(Sentence))) tgt_cnt = len(list(multipack.get_pack(output_pack_name).get(Sentence))) link_cnt = multipack.num_links print(f'sentence_cnt: src{src_cnt}, tgt{tgt_cnt}, link_cnt{link_cnt}') with open("multipack_output.txt", "w+") as fout: input_pack = multipack.get_pack(input_pack_name) output_pack = multipack.get_pack(output_pack_name) for context, gen_sentence in zip(input_pack.get(Sentence), output_pack.get(Sentence)): print(colored("Initial Context", "green"), context.text) print(colored("Generated Sentence", "green"), gen_sentence.text) print("======================TAGS======================") for token in output_pack.get(entry_type=Token, range_annotation=gen_sentence): print(colored("Token", "red"), token.text, colored("POS Tag", "red"), token.pos) print("======================END======================") parsed = json.loads(multipack.serialize()) fout.write(json.dumps(parsed, indent=4)) ``` #### File: data/extractors/seqtagging_extractor.py ```python import logging from typing import Tuple, List, Dict, Union, Optional, Iterable, Type from torch import Tensor from forte.common.configuration import Config from forte.data.converter.feature import Feature from forte.data.data_pack import DataPack from forte.data.base_extractor import BaseExtractor from forte.data.extractors.utils import bio_tagging, add_entry_to_pack from forte.data.ontology import Annotation from forte.utils import get_class logger = logging.getLogger(__name__) __all__ = [ "BioSeqTaggingExtractor" ] class BioSeqTaggingExtractor(BaseExtractor): r"""BioSeqTaggingExtractor will the feature by performing BIO encoding for the attribute of entry and aligning to the tagging_unit entry. Most of the time, a user will not need to call this class explicitly, they will be called by the framework. Args: config: An instance of `Dict` or :class:`~forte.common.configuration.Config`. See :meth:`default_configs` for available options and default values. """ def initialize(self, config: Union[Dict, Config]): # pylint: disable=attribute-defined-outside-init super().initialize(config=config) if self.config.attribute is None: raise AttributeError("attribute is required " "in BioSeqTaggingExtractor.") if not self.config.tagging_unit: raise AttributeError("tagging_unit is required in " "BioSeqTaggingExtractor.") self.attribute: str = self.config.attribute self.tagging_unit: Type[Annotation] = \ get_class(self.config.tagging_unit) self.is_bert: bool = self.config.is_bert @classmethod def default_configs(cls): r"""Returns a dictionary of default hyper-parameters. Here: entry_type (str). Required. The string to the ontology type that the extractor will get feature from, e.g: `"ft.onto.base_ontology.EntityMention"`. attribute (str): Required. The attribute name of the entry from which labels are extracted. tagging_unit (str): Required. The tagging label will align to the tagging_unit Entry, e.g: `"ft.onto.base_ontology.Token"`. "vocab_method" (str) What type of vocabulary is used for this extractor. `raw`, `indexing`, `one-hot` are supported, default is `indexing`. Check the behavior of vocabulary under different setting in :class:`~forte.data.vocabulary.Vocabulary` "need_pad" (bool) Whether the `<PAD>` element should be added to vocabulary. And whether the feature need to be batched and padded. Default is True. When True, pad_value has to be set. "vocab_use_unk" (bool) Whether the `<UNK>` element should be added to vocabulary. Default is true. "pad_value" (int) ID assigned to pad. It should be integer smaller than 0. Default is 0. "vocab_unk_id" (int) ID assigned to unk. It should be integer smaller than 0. Default is 1. is_bert (bool) It indicates whether Bert model is used. If true, padding will be added to the beginning and end of a sentence corresponding to the special tokens ([CLS], [SEP]) used in Bert. Default is False. For example, the config can be: .. code-block:: python { "entry_type": "ft.onto.base_ontology.EntityMention", "attribute": "ner_type", "tagging_unit": "ft.onto.base_ontology.Token" } The extractor will extract the BIO NER tags for instances. A possible feature can be: .. code-block:: python [[None, "O"], ["LOC", "B"], ["LOC", "I"], [None, "O"], [None, "O"], ["PER", "B"], [None, "O"]] """ config = super().default_configs() config.update({"attribute": None, "tagging_unit": "", "is_bert": False}) return config @classmethod def _bio_variance(cls, tag): r"""Return the BIO-schemed augmented tagging scheme, for example, if the `tag` is "person", the output would be `B-person`, `I-person`, `O-person`. Currently only supports B, I, O label. Args: tag (str): Tag name. """ return [(tag, "B"), (tag, "I"), (None, "O")] def predefined_vocab(self, predefined: Iterable): r"""Add predefined tags into the vocabulary. i.e. One can construct the tag vocabulary without exploring the training data. Args: predefined (Iterable[str]): A set of pre-defined tags. """ for tag in predefined: for element in self._bio_variance(tag): self.add(element) def update_vocab(self, pack: DataPack, instance: Annotation): r"""Add all the tag from one instance into the vocabulary. Args: pack (DataPack): The datapack that contains the current instance. instance (Annotation): The instance from which the extractor will extractor feature. """ for entry in pack.get(self._entry_type, instance): attribute = getattr(entry, self.attribute) for tag_variance in self._bio_variance(attribute): self.add(tag_variance) def extract(self, pack: DataPack, instance: Annotation) -> Feature: r"""Extract the sequence tagging feature of one instance. If the vocabulary of this extractor is set, then the extracted tag sequences will be converted to the tag ids (int). Args: pack (DataPack): The datapack that contains the current instance. instance (Annotation): The instance from which the extractor will extractor feature. Returns (Feature): a feature that contains the extracted data. """ instance_tagged: List[Tuple[Optional[str], str]] = \ bio_tagging(pack, instance, self.tagging_unit, self._entry_type, self.attribute) pad_value = self.get_pad_value() if self.vocab: # Use the vocabulary to map data into representation. vocab_mapped: List[Union[int, List[int]]] = [] for pair in instance_tagged: vocab_mapped.append(self.element2repr(pair)) raw_data: List = vocab_mapped if self.is_bert: raw_data = [pad_value] + raw_data + [pad_value] else: # When vocabulary is not available, use the original data. raw_data = instance_tagged meta_data = {"pad_value": pad_value, "dim": 1, "dtype": int if self.vocab else tuple} return Feature(data=raw_data, metadata=meta_data, vocab=self.vocab) def pre_evaluation_action(self, pack: DataPack, instance: Annotation): r"""This function is performed on the pack before the evaluation stage, allowing one to perform some actions before the evaluation. By default, this function will remove tags in the instance. You can overwrite this function by yourself. Args: pack (DataPack): The datapack that contains the current instance. instance (Annotation): The instance on which the extractor performs the pre-evaluation action. """ for entry in pack.get(self._entry_type, instance): pack.delete_entry(entry) def add_to_pack(self, pack: DataPack, instance: Annotation, prediction: List[int]): r"""Add the prediction for attribute to the instance. We make following assumptions for prediction. 1. If we encounter "I" while its tag is different from the previous tag, we will consider this "I" as a "B" and start a new tag here. 2. We will truncate the prediction it according to the number of entry. If the prediction contains `<PAD>` element, this should remove them. Args: pack (DataPack): The datapack that contains the current instance. instance (Annotation): The instance to which the extractor add prediction. prediction (Iterable[Union[int, Any]]): This is the output of the model, which contains the index for attributes of one instance. """ instance_tagging_unit: List[Annotation] = \ list(pack.get(self.tagging_unit, instance)) if self.is_bert: prediction = prediction[1:-1] prediction = prediction[:len(instance_tagging_unit)] if isinstance(prediction, Tensor): prediction = prediction.cpu().numpy() tags = [self.id2element(x) for x in prediction] tag_start = None tag_end = None tag_type = None for entry, tag in zip(instance_tagging_unit, tags): if tag[1] == "O" or tag[1] == "B" or \ (tag[1] == "I" and tag[0] != tag_type): if tag_type: entity_mention = add_entry_to_pack(pack, self._entry_type, tag_start, tag_end) setattr(entity_mention, self.attribute, tag_type) tag_start = entry.begin tag_end = entry.end tag_type = tag[0] else: tag_end = entry.end # Handle the final tag if tag_type and tag_start and tag_end: entity_mention = add_entry_to_pack(pack, self._entry_type, tag_start, tag_end) setattr(entity_mention, self.attribute, tag_type) ``` #### File: data/readers/openie_reader.py ```python import logging import os from typing import Iterator, List from forte.common.configuration import Config from forte.common.exception import ProcessorConfigError from forte.common.resources import Resources from forte.data.data_pack import DataPack from forte.data.data_utils_io import dataset_path_iterator from forte.data.base_reader import PackReader from ft.onto.base_ontology import Sentence, RelationLink, EntityMention __all__ = [ "OpenIEReader" ] class OpenIEReader(PackReader): r""":class:`OpenIEReader` is designed to read in the Open IE dataset used by Open Information Extraction task. The related paper can be found `here <https://gabrielstanovsky.github.io/assets/papers/emnlp16a/paper.pdf>`__. The related source code for generating this dataset can be found `here <https://github.com/gabrielStanovsky/oie-benchmark>`__. To use this Reader, you must follow the dataset format. Each line in the dataset should contain following fields: .. code-block:: none <sentence>\t<predicate_head>\t<full_predicate>\t<arg1>\t<arg2>.... You can also find the dataset format `here <https://github.com/gabrielStanovsky/oie-benchmark/tree/master/oie_corpus>`__. """ def initialize(self, resources: Resources, configs: Config): super().initialize(resources, configs) if configs.oie_file_extension is None: raise ProcessorConfigError( "Configuration oie_file_extension not provided.") def _collect(self, *args, **kwargs) -> Iterator[str]: # pylint: disable = unused-argument r"""Should be called with param ``oie_directory`` which is a path to a folder containing json files. Args: args: args[0] is the directory to the open ie files. kwargs: Returns: Iterator over files in the path with oie extensions. """ oie_directory: str = args[0] oie_file_extension: str = self.configs.oie_file_extension logging.info("Reading dataset from %s with extension %s", oie_directory, oie_file_extension) return dataset_path_iterator(oie_directory, oie_file_extension) def _cache_key_function(self, oie_file: str) -> str: return os.path.basename(oie_file) def _parse_pack(self, file_path: str) -> Iterator[DataPack]: pack: DataPack = DataPack() text: str = "" offset: int = 0 with open(file_path, "r", encoding="utf8") as f: for line in f: line = line.strip() if line != "": oie_component: List[str] = line.split("\t") # Add sentence. sentence = oie_component[0] text += sentence + "\n" Sentence(pack, offset, offset + len(sentence)) # Find argument 1. arg1_begin = sentence.find(oie_component[3]) + offset arg1_end = arg1_begin + len(oie_component[3]) arg1: EntityMention = EntityMention( pack, arg1_begin, arg1_end) # Find argument 2. arg2_begin = sentence.find(oie_component[4]) + offset arg2_end = arg2_begin + len(oie_component[4]) arg2: EntityMention = EntityMention( pack, arg2_begin, arg2_end) head_relation = RelationLink(pack, arg1, arg2) head_relation.rel_type = oie_component[2] offset += len(sentence) + 1 self.set_text(pack, text) pack.pack_name = os.path.basename(file_path) yield pack @classmethod def default_configs(cls): config: dict = super().default_configs() # Add OIE dataset file extension. The default is '.oie' config.update({ 'oie_file_extension': 'oie' }) return config ``` #### File: processors/base/base_processor.py ```python from abc import abstractmethod, ABC from typing import Any, Dict, Set from forte.data.base_pack import PackType from forte.data.selector import DummySelector from forte.pipeline_component import PipelineComponent from forte.utils.utils_processor import record_types_and_attributes_check __all__ = [ "BaseProcessor", ] class BaseProcessor(PipelineComponent[PackType], ABC): r"""Base class inherited by all kinds of processors such as trainer, predictor and evaluator. """ def __init__(self): super().__init__() self.selector = DummySelector() def record(self, record_meta: Dict[str, Set[str]]): r"""Method to add output record of the current processor to :attr:`forte.data.data_pack.Meta.record`. The key of the record should be the entry type and values should be attributes of the entry type. All the information would be used for consistency checking purpose if :meth:`~forte.pipeline.Pipeline.enforce_consistency` is enabled for the pipeline. Args: record_meta: The field in the datapack for type record that need to fill in for consistency checking. """ pass @classmethod def expected_types_and_attributes(cls) -> Dict[str, Set[str]]: r"""Method to add expected types and attributes for the input of the current processor which would be checked before running the processor if :meth:`~forte.pipeline.Pipeline.enforce_consistency` was enabled for the pipeline. """ return {} def check_record(self, input_pack: PackType): # pylint: disable=protected-access r"""Method to check type consistency if :meth:`~forte.pipeline.Pipeline.enforce_consistency` is enabled for the pipeline. If any expected type or its attribute does not exist in the datapack record of the previous pipeline component, an error of :class:`~forte.common.exception.ExpectedRecordNotFound` will be raised. Args: input_pack: The input datapack. """ if self._check_type_consistency: expectation = self.expected_types_and_attributes() record_types_and_attributes_check(expectation, input_pack) def write_record(self, input_pack: PackType): r"""Method to write records of the output type of the current processor to the datapack. The key of the record should be the entry type and values should be attributes of the entry type. All the information would be used for consistency checking purpose if :meth:`~forte.pipeline.Pipeline.enforce_consistency` is enabled for the pipeline. Args: input_pack: The input datapack. """ # pylint: disable=protected-access self.record(input_pack._meta.record) def process(self, input_pack: PackType): self.check_record(input_pack) # Set the component for recording purpose. self._process(input_pack) self.write_record(input_pack) @abstractmethod def _process(self, input_pack: PackType): r"""The main function of the processor. The implementation should process the ``input_pack``, and conduct operations such as adding entries into the pack, or produce some side-effect such as writing data into the disk. Args: input_pack: The input datapack. """ raise NotImplementedError @classmethod def default_configs(cls) -> Dict[str, Any]: r"""Returns a `dict` of configurations of the processor with default values. Used to replace the missing values of input ``configs`` during pipeline construction. """ config = super().default_configs() config.update({ 'selector': { 'type': 'forte.data.selector.DummySelector', 'args': None, 'kwargs': {} }, 'overwrite': False, }) return config ``` #### File: data_augment/algorithms/distribution_replacement_op.py ```python import random from typing import Tuple, Union, Dict, Any from forte.common.configuration import Config from forte.data.ontology import Annotation from forte.processors.data_augment.algorithms.text_replacement_op \ import TextReplacementOp from forte.processors.data_augment.algorithms.sampler import Sampler __all__ = [ "DistributionReplacementOp", ] class DistributionReplacementOp(TextReplacementOp): r""" This class is a replacement op to replace the input word with a new word that is sampled by a sampler from a distribution. Args: sampler: The sampler that samples a word from a distribution. configs: The config should contain `prob`, The probability of whether to replace the input, it should fall in [0, 1]. """ def __init__(self, sampler: Sampler, configs: Union[Config, Dict[str, Any]]): super().__init__(configs) self.sampler = sampler def replace(self, input_anno: Annotation) -> Tuple[bool, str]: r""" This function replaces a word by sampling from a distribution. Args: input_anno (Annotation): The input annotation. Returns: A tuple of two values, where the first element is a boolean value indicating whether the replacement happens, and the second element is the replaced word. """ if random.random() > self.configs.prob: return False, input_anno.text word: str = self.sampler.sample() return True, word ``` #### File: data_augment/algorithms/eda_processors.py ```python from math import ceil import random from typing import List, Dict from forte.common.configuration import Config from forte.common.resources import Resources from forte.data.data_pack import DataPack from forte.data.multi_pack import MultiPack from forte.processors.data_augment import ReplacementDataAugmentProcessor from forte.utils.utils import get_class, create_class_with_kwargs __all__ = [ "RandomSwapDataAugmentProcessor", "RandomInsertionDataAugmentProcessor", "RandomDeletionDataAugmentProcessor", ] english_stopwords = [ 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"] class RandomSwapDataAugmentProcessor(ReplacementDataAugmentProcessor): r""" Data augmentation processor for the Random Swap operation. Randomly choose two words in the sentence and swap their positions. Do this n times, where n = alpha * input length. """ def _augment(self, input_pack: MultiPack, aug_pack_names: List[str]): augment_entry = get_class(self.configs["augment_entry"]) for pack_name in aug_pack_names: data_pack: DataPack = input_pack.get_pack(pack_name) annotations = list(data_pack.get(augment_entry)) if len(annotations) > 0: replace_map: Dict = {} for _ in range(ceil(self.configs['alpha'] * len(annotations))): swap_idx = random.sample(range(len(annotations)), 2) new_idx_0 = swap_idx[1] if swap_idx[1] not in replace_map \ else replace_map[swap_idx[1]] new_idx_1 = swap_idx[0] if swap_idx[0] not in replace_map \ else replace_map[swap_idx[0]] replace_map[swap_idx[0]] = new_idx_0 replace_map[swap_idx[1]] = new_idx_1 pid: int = data_pack.pack_id for idx in replace_map: self._replaced_annos[pid] \ .add((annotations[idx].span, annotations[replace_map[idx]].text)) @classmethod def default_configs(cls): """ Returns: A dictionary with the default config for this processor. Additional keys for Random Swap: - alpha: 0 <= alpha <= 1. indicates the percent of the words in a sentence that are changed. The processor will perform the Random Swap operation (input length * alpha) times. """ config = super().default_configs() config.update({ 'augment_entry': "ft.onto.base_ontology.Token", 'other_entry_policy': { # to use Texar hyperparams 'kwargs' must accompany with 'type' 'type': '', "kwargs": { "ft.onto.base_ontology.Document": "auto_align", "ft.onto.base_ontology.Sentence": "auto_align" } }, 'alpha': 0.1, 'augment_pack_names': { 'type': '', 'kwargs': { 'input_src': 'augmented_input_src' } } }) return config class RandomInsertionDataAugmentProcessor(ReplacementDataAugmentProcessor): r""" Data augmentation processor for the Random Insertion operation. Find a random synonym of a random word in the sentence that is not a stop word. Insert that synonym into a random position in the sentence. Do this n times, where n = alpha * input length. """ def initialize(self, resources: Resources, configs: Config): super().initialize(resources, configs) # pylint: disable=attribute-defined-outside-init self.stopwords = set(configs['stopwords']) def _augment(self, input_pack: MultiPack, aug_pack_names: List[str]): replacement_op = create_class_with_kwargs( self.configs["data_aug_op"], class_args={ "configs": self.configs["data_aug_op_config"]["kwargs"] } ) augment_entry = get_class(self.configs["augment_entry"]) for pack_name in aug_pack_names: data_pack: DataPack = input_pack.get_pack(pack_name) annotations = [] pos = [0] for anno in data_pack.get(augment_entry): if anno.text not in self.stopwords: annotations.append(anno) pos.append(anno.end) if len(annotations) > 0: for _ in range(ceil(self.configs['alpha'] * len(annotations))): src_anno = random.choice(annotations) _, replaced_text = replacement_op.replace(src_anno) insert_pos = random.choice(pos) if insert_pos > 0: replaced_text = " " + replaced_text else: replaced_text = replaced_text + " " self._insert(replaced_text, data_pack, insert_pos) @classmethod def default_configs(cls): """ Returns: A dictionary with the default config for this processor. By default, we use Dictionary Replacement with Wordnet to get synonyms to insert. Additional keys for Random Swap: - alpha: 0 <= alpha <= 1. indicates the percent of the words in a sentence that are changed. The processor will perform the Random Insertion operation (input length * alpha) times. - stopwords: a list of stopword for the language. """ config = super().default_configs() config.update({ 'augment_entry': "ft.onto.base_ontology.Token", 'other_entry_policy': { 'type': '', 'kwargs': { "ft.onto.base_ontology.Document": "auto_align", "ft.onto.base_ontology.Sentence": "auto_align" } }, 'data_aug_op': "forte.processors.data_augment.algorithms." "dictionary_replacement_op.DictionaryReplacementOp", 'data_aug_op_config': { 'type': '', "kwargs": { "dictionary_class": ( "forte.processors.data_augment." "algorithms.dictionary.WordnetDictionary" ), "prob": 1.0, "lang": "eng", }, }, 'alpha': 0.1, 'augment_pack_names': { 'type': '', 'kwargs': { 'input_src': 'augmented_input_src' } }, 'stopwords': english_stopwords, }) return config class RandomDeletionDataAugmentProcessor(ReplacementDataAugmentProcessor): r""" Data augmentation processor for the Random Insertion operation. Randomly remove each word in the sentence with probability alpha. """ def _augment(self, input_pack: MultiPack, aug_pack_names: List[str]): augment_entry = get_class(self.configs["augment_entry"]) for pack_name in aug_pack_names: data_pack: DataPack = input_pack.get_pack(pack_name) for anno in data_pack.get(augment_entry): if random.random() < self.configs['alpha']: self._delete(anno) @classmethod def default_configs(cls): """ Returns: A dictionary with the default config for this processor. Additional keys for Random Deletion: - alpha: 0 <= alpha <= 1. The probability to delete each word. """ config = super().default_configs() config.update({ 'augment_entry': "ft.onto.base_ontology.Token", 'other_entry_policy': { 'type': '', "kwargs": { "ft.onto.base_ontology.Document": "auto_align", "ft.onto.base_ontology.Sentence": "auto_align" } }, "data_aug_op_config": { 'type': '', 'kwargs': {} }, "alpha": 0.1, 'augment_pack_names': { 'type': '', 'kwargs': { 'input_src': 'augmented_input_src' } } }) return config ``` #### File: forte/data/selector_test.py ```python import unittest from forte.data.multi_pack import MultiPack from forte.data.selector import ( NameMatchSelector, RegexNameMatchSelector, FirstPackSelector, AllPackSelector) class SelectorTest(unittest.TestCase): def setUp(self) -> None: self.multi_pack = MultiPack() data_pack1 = self.multi_pack.add_pack(ref_name="pack1") data_pack2 = self.multi_pack.add_pack(ref_name="pack2") data_pack3 = self.multi_pack.add_pack(ref_name="pack_three") data_pack1.pack_name = "1" data_pack2.pack_name = "2" data_pack3.pack_name = "Three" def test_name_match_selector(self) -> None: selector = NameMatchSelector(select_name="pack1") packs = selector.select(self.multi_pack) doc_ids = ["1"] for doc_id, pack in zip(doc_ids, packs): self.assertEqual(doc_id, pack.pack_name) def test_regex_name_match_selector(self) -> None: selector = RegexNameMatchSelector(select_name="^.*\\d$") packs = selector.select(self.multi_pack) doc_ids = ["1", "2"] for doc_id, pack in zip(doc_ids, packs): self.assertEqual(doc_id, pack.pack_name) def test_first_pack_selector(self) -> None: selector = FirstPackSelector() packs = list(selector.select(self.multi_pack)) self.assertEqual(len(packs), 1) self.assertEqual(packs[0].pack_name, "1") def test_all_pack_selector(self) -> None: selector = AllPackSelector() packs = selector.select(self.multi_pack) doc_ids = ["1", "2", "Three"] for doc_id, pack in zip(doc_ids, packs): self.assertEqual(doc_id, pack.pack_name) if __name__ == '__main__': unittest.main() ```
{ "source": "jieran233/WenYan", "score": 3 }
#### File: jieran233/WenYan/main.py ```python import requests import json from urllib.parse import quote import time import plugin_daily as daily import plugin_news as news import plugin_rss as rss # 发送留言方法 def submit(content, classesId, toAccountIds, toAccountIdsName, toAccountId_id_show, toAccountId_name_show, captcha, geli_yuser, geli_yschool, geli_session, remember_usr): url = "https://apps.32k12.com/ecloud/ymessage/create.do" payload = "id=&status=1&r_classesId="+classesId+"&q_eq_type_i=2&toAccountId_name=&toAccountId_id=&toAccountIds="+toAccountIds+"&toAccountIdsName="+quote(toAccountIdsName,'utf-8')+"&toAccountId_id_show="+quote(toAccountId_id_show,'utf-8')+"&toAccountId_name_show="+quote(toAccountId_name_show,'utf-8')+"&app_code_1612184765242=99&content="+quote(content,'utf-8')+"&attachmentId=" headers = {'accept':"application/json, text/javascript, */*; q=0.01", 'accept-encoding':"gzip, deflate, br", 'accept-language':"zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6", 'content-type':"application/x-www-form-urlencoded; charset=UTF-8", 'cookie':"captcha="+captcha+"; geli-yuser="+geli_yuser+"; geli-yschool="+geli_yschool+"; geli-session="+geli_session+"; remember_usr="+remember_usr, 'dnt':"1", 'origin':"https://apps.32k12.com", 'referer':"https://apps.32k12.com/ecloud/ymessage/create.do?placeValuesBefore", 'sec-fetch-dest':"empty", 'sec-fetch-mode':"cors", 'sec-fetch-site':"same-origin", 'user-agent':"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36 Edg/87.0.664.41", 'x-requested-with':"XMLHttpRequest"} response = requests.request("POST", url, data=payload, headers=headers) return(response.text) # # 按指定长度分段切割字符串或列表 # # 参考资料 https://blog.csdn.net/qq_26373925/article/details/101135611 # def cut(obj, sec): # return [obj[i:i+sec] for i in range(0,len(obj),sec)] # 填写参数 classesId = "135797" toAccountIds = "6899229" toAccountIdsName = "岳锦天同学" toAccountId_id_show = "6899229;" toAccountId_name_show = "岳锦天同学;" # 填写Cookie captcha = "21983c78d4c60cc1196b669a1776f4972171532-32518228328752101"#[该Cookie需保持最新(浏览会话结束时到期)] geli_yuser = "4851022" geli_yschool = "4214" geli_session = "55bc823aaa73840eefbe451fc15c3370"#[该Cookie需保持最新(浏览会话结束时到期)] remember_usr = "13910137227" # 填写发送内容(手动分条) contents = ["早上好,又是新的一天~ || 每日一言:"+daily.hitokoto()+" || "+daily.tenki('石家庄')+" || "+daily.covid19('河北')+" || "+daily.covid19('北京'), "百度风云榜实时热点:"+rss.baidutop(), "今日新番放送:"+rss.bangumi()[:250], "蓝点网资讯:"+rss.landiannews(), "酷安图文编辑精选:"+rss.coolapkpy(), "StuartRiki_KeyTV的B站动态:"+rss.keytvnews(), "历史上的今天:"+news.eventHistory()] # 发送留言并输出返回结果 for i in range(0,len(contents)): # 倒序分条发送 j = len(contents)-i-1 num = '('+str(j+1)+'/'+str(len(contents))+')' print(num) print(submit(num+contents[j], classesId, toAccountIds, toAccountIdsName, toAccountId_id_show, toAccountId_name_show, captcha, geli_yuser, geli_yschool, geli_session, remember_usr)) # 延时1秒,防止顺序错误或被服务端ban time.sleep(1) # # 服务端要求内容长度必须在1到500个字符之间 # # 处理发送内容,大于500字符则分条发送 # if len(content.encode()) > 500: # print("[info] 发送内容大于500字符,将采用分条发送") # content_parts = cut(content.encode(),500) # # print(content_parts) # for i in range(0,len(content_parts)-1): # print(content_parts[i].decode()) # # print("发送消息 (part"+str(i)+"/"+str(len(content_parts))+"):"+submit(, classesId, toAccountIds, toAccountIdsName, toAccountId_id_show, toAccountId_name_show, captcha, geli_yuser, geli_yschool, geli_session, remember_usr)) # else: # print("[info] 发送内容获取完毕,即将发送") # print(submit(content, classesId, toAccountIds, toAccountIdsName, toAccountId_id_show, toAccountId_name_show, captcha, geli_yuser, geli_yschool, geli_session, remember_usr)) ```
{ "source": "Jie-Re/GraphGallery", "score": 3 }
#### File: examples/Defense/defense_poisoning.py ```python import graphgallery as gg import graphgallery.functional as gf import tensorflow as tf import numpy as np import torch import torch.nn as nn import torch.nn.functional as F gg.set_backend("th") def forward(A, X, target, w1, w2): A = gf.normalize_adj_tensor(A) h1 = F.relu(A @ X @ w1) h2 = A @ h1 @ w2 out = h2[target] return out.view(1, -1) def defense(graph, budget, eps, target): """ Defender Model @param graph: clean graph or attacked graph @param budget: maximum number of modification @param eps: calibration constant @param target: target node @return: graph after defensive perturbation """ trainer = gg.gallery.nodeclas.GCN(device='cpu', seed=100).make_data(graph).build() trainer.fit(splits.train_nodes, splits.val_nodes) w1, w2 = trainer.model.parameters() w1 = w1.t() w2 = w2.t() A = gf.astensor(graph.A) X = gf.astensor(graph.x) A = nn.Parameter(A.to_dense()) t = gf.astensor(target) C = graph.num_classes loss_fn = nn.CrossEntropyLoss() edges = [] for _ in range(int(budget)): out = forward(A, X, t, w1, w2) coeff = F.softmax(out / eps, dim=-1).view(-1) loss = 0 for c in torch.arange(C): loss += loss_fn(out, torch.tensor([c])) * coeff[c] adj_grad = torch.autograd.grad(loss.sum(), A, create_graph=False)[0] # 计算梯度最大值对应的边 N = adj_grad.size(0) # gradient ascent # if A_ij is 1 then the edge should be removed # if A_ij is 0 then the edge should be added # if adj_grad_ij > 0 then the edge would be added # if adj_grad_ij < 0 then the edge would be removed adj_grad *= 1 - 2 * A adj_grad = adj_grad[t] I = adj_grad.argmax() # row = I.floor_divide(N) row = t col = I.fmod(N) A[row, col] = A[col, row] = 1 - A[row, col] edges.append([row.item(), col.item()]) defense_g = graph.from_flips(edge_flips=edges) return defense_g """ Data Preprocessing """ data = gg.datasets.NPZDataset('cora', root='~/GraphData/datasets', transform='standardize') graph = data.graph splits = data.split_nodes(random_state=15) """ Attacker Model """ # GCN for attacker trainer_a = gg.gallery.nodeclas.GCN(device='cpu', seed=42).make_data(graph).build() trainer_a.fit(splits.train_nodes, splits.val_nodes) w1_a, w2_a = trainer_a.model.parameters() w1_a = w1_a.t() w2_a = w2_a.t() # attacker model W_a = w1_a @ w2_a W_a = gf.tensoras(W_a) attacker = gg.attack.targeted.Nettack(graph).process(W_a) # attacker = gg.attack.targeted.FGSM(graph).process(trainer) """ Generate attacked_g, clean_defended_g, attacked_defended_g """ # set target, budget, eps # target = np.random.choice(splits.test_nodes, 1)[0] # target = 1000 # target-loop, write the result out to the file with open("changeof_clean_attacked.txt", "w") as f: # clean_change = [] # attacked_change = [] for target in splits.test_nodes: budget = 1 eps = 1 # true label target_label = graph.node_label[target] # attacked_g attacker.set_max_perturbations() attacker.reset() attacker.attack(target, direct_attack=True, structure_attack=True, feature_attack=False) attack_g = attacker.g print(f'{attacker.num_budgets} edges has been modified.') # clean_defended_g clean_defended_g = defense(graph, budget, eps, target) # attacked_defended_g attacked_defended_g = defense(attack_g, budget, eps, target) """ Prediction """ # clean graph trainer = gg.gallery.nodeclas.GCN(seed=1234567).make_data(graph).build() his = trainer.fit(splits.train_nodes, splits.val_nodes, verbose=0, epochs=100) clean_predict = trainer.predict(target, transform="softmax") clean_label = np.argmax(clean_predict) # attacked graph trainer = gg.gallery.nodeclas.GCN(seed=1234567).make_data(attack_g).build() his = trainer.fit(splits.train_nodes, splits.val_nodes, verbose=0, epochs=100) attacked_predict = trainer.predict(target, transform="softmax") attacked_label = np.argmax(attacked_predict) # clean defended graph trainer = gg.gallery.nodeclas.GCN(seed=1234567).make_data(clean_defended_g).build() his = trainer.fit(splits.train_nodes, splits.val_nodes, verbose=0, epochs=100) clean_defended_predict = trainer.predict(target, transform="softmax") clean_defended_label = np.argmax(clean_defended_predict) # attacked defended graph trainer = gg.gallery.nodeclas.GCN(seed=1234567).make_data(attacked_defended_g).build() his = trainer.fit(splits.train_nodes, splits.val_nodes, verbose=0, epochs=100) attacked_defended_predict = trainer.predict(target, transform="softmax") attacked_defended_label = np.argmax(attacked_defended_predict) # clean_change.append(clean_predict[clean_label]-clean_defended_predict[clean_defended_label]) # attacked_change.append(attacked_predict[attacked_label]-attacked_defended_predict[attacked_defended_label]) f.write(f"{clean_predict[clean_label]-clean_defended_predict[clean_defended_label],attacked_predict[attacked_label]-attacked_defended_predict[attacked_defended_label]}\n") ``` #### File: graphgallery/attack/flip_attacker.py ```python import numpy as np import scipy.sparse as sp from graphgallery import functional as gf from .attacker import Attacker class FlipAttacker(Attacker): def __init__(self, graph, device="cpu", seed=None, name=None, **kwargs): super().__init__(graph, device=device, seed=seed, name=name, **kwargs) assert not graph.multiple self.nattr_flips = None self.eattr_flips = None self.adj_flips = None @property def A(self): adj_flips = self.edge_flips if self.modified_adj is None: if adj_flips is not None: self.modified_adj = gf.flip_adj(self.graph.adj_matrix, adj_flips) else: self.modified_adj = self.graph.adj_matrix adj = self.modified_adj if gf.is_anytensor(adj): adj = gf.tensoras(adj) if isinstance(adj, np.ndarray): adj = sp.csr_matrix(adj) elif sp.isspmatrix(adj): adj = adj.tocsr(copy=False) else: raise TypeError(adj) return adj @property def x(self): return self.nx @property def nx(self): attr_flips = self.nx_flips if self.modified_nx is None: if attr_flips is not None: self.modified_nx = gf.flip_attr(self.graph.node_attr, attr_flips) else: self.modified_nx = self.graph.node_attr x = self.modified_nx if sp.isspmatrix(x): x = x.A elif gf.is_anytensor(x): x = gf.tensoras(x) elif not isinstance(x, np.ndarray): raise TypeError(x) return x @property def ex(self): # TODO return None @property def d(self): if self.modified_degree is None: self.modified_degree = self.A.sum(1).A1.astype(self.intx) return self.modified_degree @property def edge_flips(self): flips = self.adj_flips if flips is None or len(flips) == 0: return None if isinstance(flips, dict): flips = list(flips.keys()) return np.asarray(flips, dtype="int64") @property def nx_flips(self): flips = self.nattr_flips if flips is None or len(flips) == 0: return None if isinstance(flips, dict): flips = list(flips.keys()) return np.asarray(flips, dtype="int64") @property def ex_flips(self): # TODO return None @property def flips(self): # TODO return gf.BunchDict(edge_flips=self.edge_flips, nx_flips=self.nx_flips) def show(self): flips = self.edge_flips if flips is not None and len(flips) != 0: row, col = flips.T w = self.graph.adj_matrix[row, col].A1 added = (w == 0) removed = (w > 0) print(f"Flip {flips.shape[0]} edges, where {added.sum()} are added, {removed.sum()} are removed.") diff = self.graph.node_label[row[added]] != self.graph.node_label[col[added]] ratio = diff.sum() / diff.size if diff.size else 0. print(f"For added edges, {ratio:.2%} of them belong to different classes.") same = self.graph.node_label[row[removed]] == self.graph.node_label[col[removed]] ratio = same.sum() / same.size if same.size else 0. print(f"For removed edges, {ratio:.2%} of them belong to the same class.") else: print("No edge flips found.") # TODO: nattr_flips ``` #### File: targeted/common/nettack.py ```python import warnings import numpy as np import scipy.sparse as sp from numba import njit import graphgallery as gg from graphgallery import functional as gf from graphgallery.attack.targeted import Common from graphgallery.utils import tqdm from numba.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning warnings.simplefilter('ignore', category=NumbaDeprecationWarning) warnings.simplefilter('ignore', category=NumbaPendingDeprecationWarning) from ..targeted_attacker import TargetedAttacker @Common.register() class Nettack(TargetedAttacker): """ Nettack class used for poisoning attacks on node classification models. Copyright (C) 2018 <NAME> Technical University of Munich """ # nettack can conduct feature attack _allow_feature_attack = True def process(self, W_surrogate, reset=True): self.W = W_surrogate sparse_x = sp.csr_matrix(self.graph.node_attr) self.cooc_matrix = sparse_x.T @ sparse_x self.sparse_x = sparse_x if reset: self.reset() return self def reset(self): super().reset() self.modified_adj = self.graph.adj_matrix.copy() self.modified_nx = self.sparse_x.copy() self.adj_norm = gf.normalize_adj(self.modified_adj) self.adj_flips = [] self.nattr_flips = [] self.influence_nodes = [] self.potential_edges = [] self.cooc_constraint = None return self def compute_cooccurrence_constraint(self, nodes): """ Co-occurrence constraint as described in the paper. Parameters ---------- nodes: np.array Nodes whose features are considered for change Returns ------- np.array [len(nodes), num_attrs], dtype bool Binary matrix of dimension len(nodes) x num_attrs. A 1 in entry n,d indicates that we are allowed to add feature d to the features of node n. """ num_nodes, num_attrs = self.modified_nx.shape words_graph = self.cooc_matrix - sp.diags(self.cooc_matrix.diagonal()) words_graph.eliminate_zeros() # words_graph.setdiag(0) words_graph.data = words_graph.data > 0 word_degrees = words_graph.sum(0).A1 inv_word_degrees = np.reciprocal(word_degrees.astype(float) + 1e-8) sd = np.zeros(num_nodes) for n in range(num_nodes): n_idx = self.modified_nx[n, :].nonzero()[1] sd[n] = np.sum(inv_word_degrees[n_idx.tolist()]) scores_matrix = sp.lil_matrix((num_nodes, num_attrs)) for n in nodes: common_words = words_graph.multiply(self.modified_nx[n]) idegs = inv_word_degrees[common_words.nonzero()[1]] nnz = common_words.nonzero()[0] scores = np.array( [idegs[nnz == ix].sum() for ix in range(num_attrs)]) scores_matrix[n] = scores self.cooc_constraint = sp.csr_matrix( scores_matrix - 0.5 * sd[:, None] > 0) def gradient_wrt_x(self, label): """ Compute the gradient of the logit belonging to the class of the input label with respect to the input features. Parameters ---------- label: int Class whose logits are of interest Returns ------- np.array [num_nodes, num_attrs] matrix containing the gradients. """ return (self.adj_norm @ self.adj_norm)[self.target].T @ sp.coo_matrix( self.W[:, label].reshape(1, -1)) def compute_logits(self): """ Compute the logits of the surrogate model, i.e. linearized GCN. Returns ------- np.array, [num_nodes, num_classes] The log probabilities for each node. """ return (self.adj_norm @ self.adj_norm @ self.modified_nx @ self.W)[self.target].ravel() def strongest_wrong_class(self, logits): """ Determine the incorrect class with largest logits. Parameters ---------- logits: np.array, [num_nodes, num_classes] The input logits Returns ------- np.array, [num_nodes, L] The indices of the wrong labels with the highest attached log probabilities. """ target_label_onehot = np.eye(self.num_classes)[self.target_label] return (logits - 1000 * target_label_onehot).argmax() def feature_scores(self): """ Compute feature scores for all possible feature changes. """ if self.cooc_constraint is None: self.compute_cooccurrence_constraint(self.influence_nodes) logits = self.compute_logits() best_wrong_class = self.strongest_wrong_class(logits) gradient = self.gradient_wrt_x( self.target_label) - self.gradient_wrt_x(best_wrong_class) surrogate_loss = logits[self.target_label] - logits[best_wrong_class] gradients_flipped = (gradient * -1).tolil() gradients_flipped[self.modified_nx.nonzero()] *= -1 X_influencers = sp.lil_matrix(self.modified_nx.shape) X_influencers[self.influence_nodes] = self.modified_nx[ self.influence_nodes] gradients_flipped = gradients_flipped.multiply( (self.cooc_constraint + X_influencers) > 0) nnz_ixs = np.array(gradients_flipped.nonzero()).T sorting = np.argsort(gradients_flipped[tuple(nnz_ixs.T)]).A1 sorted_ixs = nnz_ixs[sorting] grads = gradients_flipped[tuple(nnz_ixs[sorting].T)] scores = surrogate_loss - grads return sorted_ixs[::-1], scores.A1[::-1] def struct_score(self, a_hat_uv, XW): """ Compute structure scores, cf. Eq. 15 in the paper Parameters ---------- a_hat_uv: sp.sparse_matrix, shape [P, 2] Entries of matrix A_hat^2_u for each potential edge (see paper for explanation) XW: np.array, shape [num_nodes, num_classes], dtype float The class logits for each node. Returns ------- np.array [P,] The struct score for every row in a_hat_uv """ logits = a_hat_uv @ XW label_onehot = np.eye(self.num_classes)[self.target_label] best_wrong_class_logits = (logits - 1000 * label_onehot).max(1) logits_for_correct_class = logits[:, self.target_label] struct_scores = logits_for_correct_class - best_wrong_class_logits return struct_scores def compute_XW(self): """ Shortcut to compute the dot product of X and W Returns ------- x @ W: np.array, shape [num_nodes, num_classes] """ return self.modified_nx @ self.W def get_attacker_nodes(self, n=5, add_additional_nodes=False): """ Determine the influencer nodes to attack node i based on the weights W and the attributes X. Parameters ---------- n: int, default: 5 The desired number of attacker nodes. add_additional_nodes: bool, default: False if True and the degree of node i (d_u) is < n, we select n-d_u additional attackers, which should get connected to u afterwards (outside this function). Returns ------- np.array, shape [n,]: The indices of the attacker nodes. optional: np.array, shape [n - degree(n)] if additional_nodes is True, we separately return the additional attacker node indices """ assert n < self.num_nodes - 1, "number of influencers cannot be >= number of nodes in the graph!" # neighbors = self.modified_adj[self.target].nonzero()[1] neighbors = self.modified_adj[self.target].indices # assert self.target not in neighbors potential_edges = np.column_stack((np.tile(self.target, len(neighbors)), neighbors)).astype("int32") # The new A_hat_square_uv values that we would get if we removed the edge from u to each of the neighbors, respectively a_hat_uv = self.compute_new_a_hat_uv(potential_edges) XW = self.compute_XW() # compute the struct scores for all neighbors struct_scores = self.struct_score(a_hat_uv, XW) if len(neighbors) >= n: # do we have enough neighbors for the number of desired influencers? influence_nodes = neighbors[np.argsort(struct_scores)[:n]] if add_additional_nodes: return influence_nodes, np.array([]) return influence_nodes else: influence_nodes = neighbors if add_additional_nodes: # Add additional influencers by connecting them to u first. # Compute the set of possible additional influencers, i.e. all nodes except the ones # that are already connected to u. poss_add_infl = np.setdiff1d(np.setdiff1d(np.arange(self.num_nodes), neighbors), self.target) n_possible_additional = len(poss_add_infl) n_additional_attackers = n - len(neighbors) possible_edges = np.column_stack((np.tile(self.target, n_possible_additional), poss_add_infl)).astype("int32") # Compute the struct_scores for all possible additional influencers, and choose the one # with the best struct score. a_hat_uv_additional = self.compute_new_a_hat_uv(possible_edges) additional_struct_scores = self.struct_score(a_hat_uv_additional, XW) additional_influencers = poss_add_infl[np.argsort(additional_struct_scores)[-n_additional_attackers::]] return influence_nodes, additional_influencers else: return influence_nodes def compute_new_a_hat_uv(self, potential_edges): """ Compute the updated A_hat_square_uv entries that would result from inserting/deleting the input edges, for every edge. Parameters ---------- potential_edges: np.array, shape [P,2], dtype int The edges to check. Returns ------- sp.sparse_matrix: updated A_hat_square_u entries, a sparse PxN matrix, where P is len(possible_edges). """ edges = np.transpose(self.modified_adj.nonzero()) edges_set = {tuple(e) for e in edges} A_hat_sq = self.adj_norm @ self.adj_norm values_before = A_hat_sq[self.target].toarray()[0] node_ixs = np.unique(edges[:, 0], return_index=True)[1].astype("int32") twohop_ixs = np.transpose(A_hat_sq.nonzero()) degrees = self.modified_adj.sum(0).A1 + 1 # Ignore warnings: # NumbaPendingDeprecationWarning: # Encountered the use of a type that is scheduled for deprecation: type 'reflected set' found for argument 'edges_set' of function 'compute_new_a_hat_uv'. # For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-reflection-for-list-and-set-types with warnings.catch_warnings(record=True): warnings.filterwarnings( 'ignore', '.*Encountered the use of a type that is scheduled for deprecation*' ) ixs, vals = compute_new_a_hat_uv(edges, node_ixs, edges_set, twohop_ixs, values_before, degrees, potential_edges, self.target) ixs_arr = np.array(ixs) a_hat_uv = sp.coo_matrix((vals, (ixs_arr[:, 0], ixs_arr[:, 1])), shape=[len(potential_edges), self.num_nodes]) return a_hat_uv def attack(self, target, num_budgets=None, direct_attack=True, structure_attack=True, feature_attack=False, n_influencers=5, ll_constraint=True, ll_cutoff=0.004, disable=False): super().attack(target, num_budgets, direct_attack, structure_attack, feature_attack) if feature_attack and not self.graph.is_binary(): raise RuntimeError( "Currently only attack binary node attributes are supported") if ll_constraint and self.allow_singleton: raise RuntimeError( '`ll_constraint` is failed when `allow_singleton=True`, please set `attacker.allow_singleton=False`.' ) logits_start = self.compute_logits() best_wrong_class = self.strongest_wrong_class(logits_start) if structure_attack and ll_constraint: # Setup starting values of the likelihood ratio test. degree_sequence_start = self.degree current_degree_sequence = self.degree.astype('float64') d_min = 2 S_d_start = np.sum( np.log(degree_sequence_start[degree_sequence_start >= d_min])) current_S_d = np.sum( np.log( current_degree_sequence[current_degree_sequence >= d_min])) n_start = np.sum(degree_sequence_start >= d_min) current_n = np.sum(current_degree_sequence >= d_min) alpha_start = compute_alpha(n_start, S_d_start, d_min) log_likelihood_orig = compute_log_likelihood( n_start, alpha_start, S_d_start, d_min) if len(self.influence_nodes) == 0: if not direct_attack: # Choose influencer nodes infls, add_infls = self.get_attacker_nodes( n_influencers, add_additional_nodes=True) self.influence_nodes = np.concatenate((infls, add_infls)) # Potential edges are all edges from any attacker to any other node, except the respective # attacker itself or the node being attacked. self.potential_edges = np.row_stack([ np.column_stack( (np.tile(infl, self.num_nodes - 2), np.setdiff1d(np.arange(self.num_nodes), np.array([self.target, infl])))) for infl in self.influence_nodes ]) else: # direct attack influencers = [self.target] self.potential_edges = np.column_stack( (np.tile(self.target, self.num_nodes - 1), np.setdiff1d(np.arange(self.num_nodes), self.target))) self.influence_nodes = np.array(influencers) self.potential_edges = self.potential_edges.astype("int32") for it in tqdm(range(self.num_budgets), desc='Peturbing Graph', disable=disable): if structure_attack: # Do not consider edges that, if removed, result in singleton edges in the graph. if not self.allow_singleton: filtered_edges = gf.singleton_filter(self.potential_edges, self.modified_adj).astype("int32") else: filtered_edges = self.potential_edges if ll_constraint: # Update the values for the power law likelihood ratio test. deltas = 2 * (1 - self.modified_adj[tuple( filtered_edges.T)].A.ravel()) - 1 d_edges_old = current_degree_sequence[filtered_edges] d_edges_new = current_degree_sequence[ filtered_edges] + deltas[:, None] new_S_d, new_n = update_Sx(current_S_d, current_n, d_edges_old, d_edges_new, d_min) new_alphas = compute_alpha(new_n, new_S_d, d_min) new_ll = compute_log_likelihood(new_n, new_alphas, new_S_d, d_min) alphas_combined = compute_alpha(new_n + n_start, new_S_d + S_d_start, d_min) new_ll_combined = compute_log_likelihood( new_n + n_start, alphas_combined, new_S_d + S_d_start, d_min) new_ratios = -2 * new_ll_combined + 2 * ( new_ll + log_likelihood_orig) # Do not consider edges that, if added/removed, would lead to a violation of the # likelihood ration Chi_square cutoff value. powerlaw_filter = filter_chisquare(new_ratios, ll_cutoff) filtered_edges = filtered_edges[powerlaw_filter] # Compute new entries in A_hat_square_uv a_hat_uv_new = self.compute_new_a_hat_uv(filtered_edges) # Compute the struct scores for each potential edge struct_scores = self.struct_score(a_hat_uv_new, self.compute_XW()) best_edge_ix = struct_scores.argmin() best_edge_score = struct_scores.min() best_edge = filtered_edges[best_edge_ix] if feature_attack: # Compute the feature scores for each potential feature perturbation feature_ixs, feature_scores = self.feature_scores() best_feature_ix = feature_ixs[0] best_feature_score = feature_scores[0] if structure_attack and feature_attack: # decide whether to choose an edge or feature to change if best_edge_score < best_feature_score: change_structure = True else: change_structure = False elif structure_attack: change_structure = True elif feature_attack: change_structure = False if change_structure: # perform edge perturbation u, v = best_edge modified_adj = self.modified_adj.tolil(copy=False) modified_adj[(u, v)] = modified_adj[( v, u)] = 1 - modified_adj[(u, v)] self.modified_adj = modified_adj.tocsr(copy=False) self.adj_norm = gf.normalize_adj(modified_adj) self.adj_flips.append((u, v)) if ll_constraint: # Update likelihood ratio test values current_S_d = new_S_d[powerlaw_filter][best_edge_ix] current_n = new_n[powerlaw_filter][best_edge_ix] current_degree_sequence[best_edge] += deltas[ powerlaw_filter][best_edge_ix] else: modified_nx = self.modified_nx.tolil(copy=False) modified_nx[tuple( best_feature_ix)] = 1 - modified_nx[tuple(best_feature_ix)] self.modified_nx = modified_nx.tocsr(copy=False) self.nattr_flips.append(tuple(best_feature_ix)) return self @njit def connected_after(u, v, connected_before, delta): if u == v: if delta == -1: return False else: return True else: return connected_before @njit def compute_new_a_hat_uv(edge_ixs, node_nb_ixs, edges_set, twohop_ixs, values_before, degs, potential_edges, u): """ Compute the new values [A_hat_square]_u for every potential edge, where u is the target node. C.f. Theorem 5.1 equation 17. Parameters ---------- edge_ixs: np.array, shape [E,2], where E is the number of edges in the graph. The indices of the nodes connected by the edges in the input graph. node_nb_ixs: np.array, shape [num_nodes,], dtype int For each node, this gives the first index of edges associated to this node in the edge array (edge_ixs). This will be used to quickly look up the neighbors of a node, since numba does not allow nested lists. edges_set: set((e0, e1)) The set of edges in the input graph, i.e. e0 and e1 are two nodes connected by an edge twohop_ixs: np.array, shape [T, 2], where T is the number of edges in A_tilde^2 The indices of nodes that are in the twohop neighborhood of each other, including self-loops. values_before: np.array, shape [num_nodes,], the values in [A_hat]^2_uv to be updated. degs: np.array, shape [num_nodes,], dtype int The degree of the nodes in the input graph. potential_edges: np.array, shape [P, 2], where P is the number of potential edges. The potential edges to be evaluated. For each of these potential edges, this function will compute the values in [A_hat]^2_uv that would result after inserting/removing this edge. u: int The target node Returns ------- return_ixs: List of tuples The ixs in the [P, num_nodes] matrix of updated values that have changed return_values: """ num_nodes = degs.shape[0] twohop_u = twohop_ixs[twohop_ixs[:, 0] == u, 1] nbs_u = edge_ixs[edge_ixs[:, 0] == u, 1] nbs_u_set = set(nbs_u) return_ixs = [] return_values = [] for ix in range(len(potential_edges)): edge = potential_edges[ix] edge_set = set(edge) degs_new = degs.copy() delta = -2 * ((edge[0], edge[1]) in edges_set) + 1 degs_new[edge] += delta nbs_edge0 = edge_ixs[edge_ixs[:, 0] == edge[0], 1] nbs_edge1 = edge_ixs[edge_ixs[:, 0] == edge[1], 1] affected_nodes = set(np.concatenate((twohop_u, nbs_edge0, nbs_edge1))) affected_nodes = affected_nodes.union(edge_set) a_um = edge[0] in nbs_u_set a_un = edge[1] in nbs_u_set a_un_after = connected_after(u, edge[0], a_un, delta) a_um_after = connected_after(u, edge[1], a_um, delta) for v in affected_nodes: a_uv_before = v in nbs_u_set a_uv_before_sl = a_uv_before or v == u if v in edge_set and u in edge_set and u != v: if delta == -1: a_uv_after = False else: a_uv_after = True else: a_uv_after = a_uv_before a_uv_after_sl = a_uv_after or v == u from_ix = node_nb_ixs[v] to_ix = node_nb_ixs[v + 1] if v < num_nodes - 1 else len(edge_ixs) node_nbs = edge_ixs[from_ix:to_ix, 1] node_nbs_set = set(node_nbs) a_vm_before = edge[0] in node_nbs_set a_vn_before = edge[1] in node_nbs_set a_vn_after = connected_after(v, edge[0], a_vn_before, delta) a_vm_after = connected_after(v, edge[1], a_vm_before, delta) mult_term = 1 / np.sqrt(degs_new[u] * degs_new[v]) sum_term1 = np.sqrt(degs[u] * degs[v]) * values_before[v] - a_uv_before_sl / degs[u] - a_uv_before / \ degs[v] sum_term2 = a_uv_after / degs_new[v] + a_uv_after_sl / degs_new[u] sum_term3 = -((a_um and a_vm_before) / degs[edge[0]]) + ( a_um_after and a_vm_after) / degs_new[edge[0]] sum_term4 = -((a_un and a_vn_before) / degs[edge[1]]) + ( a_un_after and a_vn_after) / degs_new[edge[1]] new_val = mult_term * (sum_term1 + sum_term2 + sum_term3 + sum_term4) return_ixs.append((ix, v)) return_values.append(new_val) return return_ixs, return_values def compute_alpha(n, S_d, d_min): """ Approximate the alpha of a power law distribution. Parameters ---------- n: int or np.array of int Number of entries that are larger than or equal to d_min S_d: float or np.array of float Sum of log degrees in the distribution that are larger than or equal to d_min d_min: int The minimum degree of nodes to consider Returns ------- alpha: float The estimated alpha of the power law distribution """ return n / (S_d - n * np.log(d_min - 0.5)) + 1 def update_Sx(S_old, n_old, d_old, d_new, d_min): """ Update on the sum of log degrees S_d and n based on degree distribution resulting from inserting or deleting a single edge. Parameters ---------- S_old: float Sum of log degrees in the distribution that are larger than or equal to d_min. n_old: int Number of entries in the old distribution that are larger than or equal to d_min. d_old: np.array, shape [num_nodes,] dtype int The old degree sequence. d_new: np.array, shape [num_nodes,] dtype int The new degree sequence d_min: int The minimum degree of nodes to consider Returns ------- new_S_d: float, the updated sum of log degrees in the distribution that are larger than or equal to d_min. new_n: int, the updated number of entries in the old distribution that are larger than or equal to d_min. """ old_in_range = d_old >= d_min new_in_range = d_new >= d_min d_old_in_range = np.multiply(d_old, old_in_range) d_new_in_range = np.multiply(d_new, new_in_range) new_S_d = S_old - np.log(np.maximum(d_old_in_range, 1)).sum(1) + np.log( np.maximum(d_new_in_range, 1)).sum(1) new_n = n_old - np.sum(old_in_range, 1) + np.sum(new_in_range, 1) return new_S_d, new_n def compute_log_likelihood(n, alpha, S_d, d_min): """ Compute log likelihood of the powerlaw fit. Parameters ---------- n: int Number of entries in the old distribution that are larger than or equal to d_min. alpha: float The estimated alpha of the power law distribution S_d: float Sum of log degrees in the distribution that are larger than or equal to d_min. d_min: int The minimum degree of nodes to consider Returns ------- float: the estimated log likelihood """ return n * np.log(alpha) + n * alpha * np.log(d_min) + (alpha + 1) * S_d def filter_chisquare(ll_ratios, cutoff): return ll_ratios < cutoff ``` #### File: targeted/common/node_embedding_attack.py ```python import numpy as np from numba import njit import scipy.sparse as sp import scipy.linalg as spl import tensorflow as tf from graphgallery import functional as gf from graphgallery.attack.targeted import Common from graphgallery.attack.utils.estimate_utils import ( estimate_loss_with_delta_eigenvals, estimate_loss_with_perturbation_gradient) from ..targeted_attacker import TargetedAttacker @Common.register() class NodeEmbeddingAttack(TargetedAttacker): def process(self, K=50, reset=True): self.nodes_set = set(range(self.num_nodes)) adj_matrix = self.graph.adj_matrix deg_matrix = sp.diags(self.degree, dtype=adj_matrix.dtype) if K: self.vals_org, self.vecs_org = sp.linalg.eigsh(adj_matrix, k=K, M=deg_matrix) else: self.vals_org, self.vecs_org = spl.eigh(adj_matrix.toarray(), deg_matrix.toarray()) if reset: self.reset() return self def attack(self, target, num_budgets=None, dim=32, window_size=5, direct_attack=True, structure_attack=True, feature_attack=False): super().attack(target, num_budgets, direct_attack, structure_attack, feature_attack) num_budgets = self.num_budgets num_nodes = self.num_nodes adj = self.graph.adj_matrix if direct_attack: influence_nodes = [target] candidates = np.column_stack( (np.tile(target, num_nodes - 1), list(self.nodes_set - set([target])))) else: influence_nodes = adj[target].indices candidates = np.row_stack([ np.column_stack((np.tile(infl, num_nodes - 2), list(self.nodes_set - set([target, infl])))) for infl in influence_nodes ]) if not self.allow_singleton: candidates = gf.singleton_filter(candidates, adj) delta_w = 1. - 2 * adj[candidates[:, 0], candidates[:, 1]].A1 loss_for_candidates = estimate_loss_with_delta_eigenvals( candidates, delta_w, self.vals_org, self.vecs_org, self.num_nodes, dim, window_size) self.adj_flips = candidates[loss_for_candidates.argsort() [-num_budgets:]] return self ``` #### File: targeted/tensorflow/fgsm.py ```python import numpy as np import tensorflow as tf from tensorflow.keras.losses import sparse_categorical_crossentropy import graphgallery as gg from graphgallery import functional as gf from graphgallery.utils import tqdm from graphgallery.attack.targeted import TensorFlow from ..targeted_attacker import TargetedAttacker @TensorFlow.register() class FGSM(TargetedAttacker): def process(self, surrogate, reset=True): if isinstance(surrogate, gg.gallery.nodeclas.Trainer): surrogate = surrogate.model with tf.device(self.device): self.surrogate = surrogate self.loss_fn = sparse_categorical_crossentropy self.x_tensor = gf.astensor(self.graph.node_attr) if reset: self.reset() return self def reset(self): super().reset() self.modified_degree = self.degree.copy() with tf.device(self.device): modified_adj = tf.Variable(self.graph.adj_matrix.A, dtype=self.floatx) self.modified_adj = modified_adj self.adj_changes = tf.zeros_like(modified_adj) return self def attack(self, target, num_budgets=None, direct_attack=True, structure_attack=True, feature_attack=False, disable=False): super().attack(target, num_budgets, direct_attack, structure_attack, feature_attack) if not direct_attack: raise NotImplementedError( f'{self.name} does NOT support indirect attack.') target_index, target_label = gf.astensors([self.target], self.target_label) adj_matrix = self.graph.adj_matrix for it in tqdm(range(self.num_budgets), desc='Peturbing Graph', disable=disable): with tf.device(self.device): gradients = self.compute_gradients(self.modified_adj, self.adj_changes, target_index, target_label) modified_row = tf.gather(self.modified_adj, target_index) gradients = (gradients * (-2 * modified_row + 1)).numpy().ravel() sorted_index = np.argsort(-gradients) for index in sorted_index: u = target v = index % adj_matrix.shape[0] exist = adj_matrix[u, v] if exist and not self.allow_singleton and ( self.modified_degree[u] <= 1 or self.modified_degree[v] <= 1): continue if not self.is_modified(u, v): self.adj_flips[(u, v)] = it self.flip_edge(u, v, exist) break return self @tf.function def compute_gradients(self, modified_adj, adj_changes, target_index, target_label): with tf.GradientTape() as tape: tape.watch(adj_changes) adj = modified_adj + adj_changes adj_norm = gf.normalize_adj_tensor(adj) logit = self.surrogate([self.x_tensor, adj_norm]) logit = tf.gather(logit, target_index) loss = self.loss_fn(target_label, logit, from_logits=True) gradients = tape.gradient(loss, adj_changes) return gradients def flip_edge(self, u, v, exist): weight = 1. - exist delta_d = 2. * weight - 1. self.modified_adj[u, v].assign(weight) self.modified_adj[v, u].assign(weight) self.modified_degree[u] += delta_d self.modified_degree[v] += delta_d ``` #### File: untargeted/tensorflow/metattack.py ```python import warnings import numpy as np import tensorflow as tf from tensorflow.keras.initializers import glorot_uniform, zeros from tensorflow.keras.optimizers import Adam from tensorflow.keras.activations import softmax, relu from tensorflow.keras.losses import SparseCategoricalCrossentropy import graphgallery as gg from graphgallery import functional as gf from graphgallery.utils import tqdm # from graphadv.utils.graph_utils import likelihood_ratio_filter from graphgallery.attack.untargeted import TensorFlow from ..untargeted_attacker import UntargetedAttacker class BaseMeta(UntargetedAttacker): """Base model for Mettack.""" # mettack can also conduct feature attack _allow_feature_attack = True def process(self, train_nodes, unlabeled_nodes, self_training_labels, hids, use_relu, reset=True): self.ll_ratio = None with tf.device(self.device): self.train_nodes = gf.astensor(train_nodes, dtype=self.intx) self.unlabeled_nodes = gf.astensor(unlabeled_nodes, dtype=self.intx) self.labels_train = gf.astensor(self.graph.node_label[train_nodes], dtype=self.intx) self.self_training_labels = gf.astensor(self_training_labels, dtype=self.intx) self.adj_tensor = gf.astensor(self.graph.adj_matrix.A, dtype=self.floatx) self.x_tensor = gf.astensor(self.graph.node_attr, dtype=self.floatx) self.build(hids=hids) self.use_relu = use_relu self.loss_fn = SparseCategoricalCrossentropy(from_logits=True) self.adj_changes = tf.Variable(tf.zeros_like(self.adj_tensor)) self.x_changes = tf.Variable(tf.zeros_like(self.x_tensor)) if reset: self.reset() return self def reset(self): super().reset() self.adj_flips = [] self.nattr_flips = [] with tf.device(self.device): self.adj_changes.assign(tf.zeros_like(self.adj_tensor)) self.x_changes.assign(tf.zeros_like(self.x_tensor)) return self def filter_potential_singletons(self, modified_adj): """ Computes a mask for entries potentially leading to singleton nodes, i.e. one of the two nodes corresponding to the entry have degree 1 and there is an edge between the two nodes. Returns ------- tf.Tensor shape [N, N], float with ones everywhere except the entries of potential singleton nodes, where the returned tensor has value 0. """ N = self.num_nodes degrees = tf.reduce_sum(modified_adj, axis=1) degree_one = tf.equal(degrees, 1) resh = tf.reshape(tf.tile(degree_one, [N]), [N, N]) l_and = tf.logical_and(resh, tf.equal(modified_adj, 1)) logical_and_symmetric = tf.logical_or(l_and, tf.transpose(l_and)) flat_mask = 1. - tf.cast(logical_and_symmetric, self.floatx) return flat_mask # def log_likelihood_constraint(self, adj, modified_adj, ll_cutoff): # """ # Computes a mask for entries that, if the edge corresponding to the entry is added/removed, would lead to the # log likelihood constraint to be violated. # """ # t_d_min = tf.constant(2., dtype=self.floatx) # t_possible_edges = tf.constant(np.array( # np.triu(np.ones([self.num_nodes, self.num_nodes]), # k=1).nonzero()).T, # dtype=self.intx) # allowed_mask, current_ratio = likelihood_ratio_filter( # t_possible_edges, modified_adj, adj, t_d_min, ll_cutoff) # return allowed_mask, current_ratio @tf.function def get_perturbed_adj(self, adj, adj_changes): adj_changes_square = adj_changes - tf.linalg.band_part(adj_changes, 0, 0) adj_changes_sym = adj_changes_square + tf.transpose(adj_changes_square) clipped_adj_changes = self.clip(adj_changes_sym) return adj + clipped_adj_changes @tf.function def get_perturbed_x(self, x, x_changes): return x + self.clip(x_changes) def forward(self, x, adj): h = x for w in self.weights[:-1]: h = adj @ h @ w if self.use_relu: h = relu(h) return adj @ h @ self.weights[-1] def structure_score(self, modified_adj, adj_grad, ll_constraint=None, ll_cutoff=None): adj_meta_grad = adj_grad * (-2. * modified_adj + 1.) # Make sure that the minimum entry is 0. adj_meta_grad -= tf.reduce_min(adj_meta_grad) # if not self.allow_singleton: # # Set entries to 0 that could lead to singleton nodes. # singleton_mask = self.filter_potential_singletons(modified_adj) # adj_meta_grad *= singleton_mask # if ll_constraint: # allowed_mask, self.ll_ratio = self.log_likelihood_constraint( # modified_adj, self.adj_tensor, ll_cutoff) # adj_meta_grad = adj_meta_grad * allowed_mask return tf.reshape(adj_meta_grad, [-1]) def feature_score(self, modified_nx, x_grad): x_meta_grad = x_grad * (-2. * modified_nx + 1.) x_meta_grad -= tf.reduce_min(x_meta_grad) return tf.reshape(x_meta_grad, [-1]) def clip(self, matrix): clipped_matrix = tf.clip_by_value(matrix, -1., 1.) return clipped_matrix @TensorFlow.register() class Metattack(BaseMeta): def process(self, train_nodes, unlabeled_nodes, self_training_labels, hids=[16], lr=0.1, epochs=100, momentum=0.9, lambda_=0., use_relu=True, reset=True): self.lr = lr self.epochs = epochs self.momentum = momentum self.lambda_ = lambda_ if lambda_ not in (0., 0.5, 1.): raise ValueError( 'Invalid value of `lambda_`, allowed values [0: (meta-self), 1: (meta-train), 0.5: (meta-both)].' ) return super().process(train_nodes=train_nodes, unlabeled_nodes=unlabeled_nodes, self_training_labels=self_training_labels, hids=hids, use_relu=use_relu, reset=reset) def build(self, hids): hids = gf.repeat(hids) weights, w_velocities = [], [] zeros_initializer = zeros() pre_hid = self.num_attrs for hid in hids + [self.num_classes]: shape = (pre_hid, hid) # use zeros_initializer temporary to save time weight = tf.Variable(zeros_initializer(shape=shape, dtype=self.floatx)) w_velocity = tf.Variable(zeros_initializer(shape=shape, dtype=self.floatx)) weights.append(weight) w_velocities.append(w_velocity) pre_hid = hid self.weights, self.w_velocities = weights, w_velocities def initialize(self): w_initializer = glorot_uniform() zeros_initializer = zeros() for w, wv in zip(self.weights, self.w_velocities): w.assign(w_initializer(w.shape, dtype=self.floatx)) wv.assign(zeros_initializer(wv.shape, dtype=self.floatx)) @tf.function def train_step(self, x, adj, index, labels): with tf.GradientTape() as tape: output = self.forward(x, adj) logit = tf.gather(output, index) loss = self.loss_fn(labels, logit) weight_grads = tape.gradient(loss, self.weights) return weight_grads def inner_train(self, x, adj): self.initialize() adj_norm = gf.normalize_adj_tensor(adj) for it in range(self.epochs): weight_grads = self.train_step(x, adj_norm, self.train_nodes, self.labels_train) for v, g in zip(self.w_velocities, weight_grads): v.assign(self.momentum * v + g) for w, v in zip(self.weights, self.w_velocities): w.assign_sub(self.lr * v) @tf.function def meta_grad(self): modified_adj, modified_nx = self.adj_tensor, self.x_tensor adj_tensor, x_tensor = self.adj_tensor, self.x_tensor persistent = self.structure_attack and self.feature_attack with tf.GradientTape(persistent=persistent) as tape: if self.structure_attack: modified_adj = self.get_perturbed_adj(adj_tensor, self.adj_changes) if self.feature_attack: modified_nx = self.get_perturbed_x(x_tensor, self.x_changes) adj_norm = gf.normalize_adj_tensor(modified_adj) output = self.forward(modified_nx, adj_norm) logit_labeled = tf.gather(output, self.train_nodes) logit_unlabeled = tf.gather(output, self.unlabeled_nodes) loss_labeled = self.loss_fn(self.labels_train, logit_labeled) loss_unlabeled = self.loss_fn(self.self_training_labels, logit_unlabeled) attack_loss = self.lambda_ * loss_labeled + (1 - self.lambda_) * loss_unlabeled adj_grad, x_grad = None, None if self.feature_attack: x_grad = tape.gradient(attack_loss, self.x_changes) if self.structure_attack: adj_grad = tape.gradient(attack_loss, self.adj_changes) return x_grad, adj_grad def attack(self, num_budgets=0.05, structure_attack=True, feature_attack=False, ll_constraint=False, ll_cutoff=0.004, disable=False): super().attack(num_budgets, structure_attack, feature_attack) if ll_constraint: raise NotImplementedError( "`log_likelihood_constraint` has not been well tested." " Please set `ll_constraint=False` to achieve a better performance." ) if feature_attack and not self.graph.is_binary(): raise ValueError( "Attacks on the node features are currently only supported for binary attributes." ) with tf.device(self.device): modified_adj, modified_nx = self.adj_tensor, self.x_tensor adj_tensor, x_tensor = self.adj_tensor, self.x_tensor adj_changes, x_changes = self.adj_changes, self.x_changes adj_flips, nattr_flips = self.adj_flips, self.nattr_flips self.inner_train(modified_nx, modified_adj) for it in tqdm(range(self.num_budgets), desc='Peturbing Graph', disable=disable): if structure_attack: modified_adj = self.get_perturbed_adj(adj_tensor, adj_changes) if feature_attack: modified_nx = self.get_perturbed_x(x_tensor,x_changes) self.inner_train(modified_nx, modified_adj) x_grad, adj_grad = self.meta_grad() adj_meta_score = tf.constant(0.0) x_meta_score = tf.constant(0.0) if structure_attack: adj_meta_score = self.structure_score(modified_adj, adj_grad, ll_constraint, ll_cutoff) if feature_attack: x_meta_score = self.feature_score(modified_nx, x_grad) if tf.reduce_max(adj_meta_score) >= tf.reduce_max(x_meta_score) and structure_attack: adj_meta_argmax = tf.argmax(adj_meta_score) row, col = divmod(adj_meta_argmax.numpy(), self.num_nodes) adj_changes[row, col].assign(-2. * modified_adj[row, col] + 1.) adj_changes[col, row].assign(-2. * modified_adj[col, row] + 1.) adj_flips.append((row, col)) elif tf.reduce_max(adj_meta_score) < tf.reduce_max(x_meta_score) and feature_attack: x_meta_argmax = tf.argmax(x_meta_score) row, col = divmod(x_meta_argmax.numpy(), self.num_attrs) x_changes[row, col].assign(-2 * modified_nx[row, col] + 1) nattr_flips.append((row, col)) else: warnings.warn(f"Do nothing at iter {it}. adj_meta_score={adj_meta_score}, x_meta_score={x_meta_score}", UserWarning) @TensorFlow.register() class MetaApprox(BaseMeta): def process(self, train_nodes, unlabeled_nodes, self_training_labels, hids=[16], lr=0.1, epochs=100, lambda_=0., use_relu=True): self.lr = lr self.epochs = epochs self.lambda_ = lambda_ if lambda_ not in (0., 0.5, 1.): raise ValueError( 'Invalid value of `lambda_`, allowed values [0: (meta-self), 1: (meta-train), 0.5: (meta-both)].' ) return super().process(train_nodes=train_nodes, unlabeled_nodes=unlabeled_nodes, self_training_labels=self_training_labels, hids=hids, use_relu=use_relu) def build(self, hids): hids = gf.repeat(hids) weights = [] zeros_initializer = zeros() pre_hid = self.num_attrs for hid in hids + [self.num_classes]: shape = (pre_hid, hid) # use zeros_initializer temporary to save time weight = tf.Variable(zeros_initializer(shape=shape, dtype=self.floatx)) weights.append(weight) pre_hid = hid self.weights = weights self.adj_grad_sum = tf.Variable(tf.zeros_like(self.adj_tensor)) self.x_grad_sum = tf.Variable(tf.zeros_like(self.x_tensor)) self.optimizer = Adam(self.lr, epsilon=1e-8) def initialize(self): w_initializer = glorot_uniform() zeros_initializer = zeros() for w in self.weights: w.assign(w_initializer(w.shape, dtype=self.floatx)) if self.structure_attack: self.adj_grad_sum.assign(zeros_initializer(self.adj_grad_sum.shape, dtype=self.floatx)) if self.feature_attack: self.x_grad_sum.assign(zeros_initializer(self.x_grad_sum.shape, dtype=self.floatx)) # reset optimizer for var in self.optimizer.variables(): var.assign(tf.zeros_like(var)) @tf.function def meta_grad(self): self.initialize() modified_adj, modified_nx = self.adj_tensor, self.x_tensor adj_tensor, x_tensor = self.adj_tensor, self.x_tensor adj_grad_sum, x_grad_sum = self.adj_grad_sum, self.x_grad_sum optimizer = self.optimizer for it in tf.range(self.epochs): with tf.GradientTape(persistent=True) as tape: if self.structure_attack: modified_adj = self.get_perturbed_adj(adj_tensor, self.adj_changes) if self.feature_attack: modified_nx = self.get_perturbed_x(x_tensor, self.x_changes) adj_norm = gf.normalize_adj_tensor(modified_adj) output = self.forward(modified_nx, adj_norm) logit_labeled = tf.gather(output, self.train_nodes) logit_unlabeled = tf.gather(output, self.unlabeled_nodes) loss_labeled = self.loss_fn(self.labels_train, logit_labeled) loss_unlabeled = self.loss_fn(self.self_training_labels, logit_unlabeled) attack_loss = self.lambda_ * loss_labeled + (1 - self.lambda_) * loss_unlabeled adj_grad, x_grad = None, None gradients = tape.gradient(loss_labeled, self.weights) optimizer.apply_gradients(zip(gradients, self.weights)) if self.structure_attack: adj_grad = tape.gradient(attack_loss, self.adj_changes) adj_grad_sum.assign_add(adj_grad) if self.feature_attack: x_grad = tape.gradient(attack_loss, self.x_changes) x_grad_sum.assign_add(x_grad) del tape return x_grad_sum, adj_grad_sum def attack(self, num_budgets=0.05, structure_attack=True, feature_attack=False, ll_constraint=False, ll_cutoff=0.004, disable=False): super().attack(num_budgets, structure_attack, feature_attack) if ll_constraint: raise NotImplementedError( "`log_likelihood_constraint` has not been well tested." " Please set `ll_constraint=False` to achieve a better performance." ) if feature_attack and not self.graph.is_binary(): raise ValueError( "Attacks on the node features are currently only supported for binary attributes." ) with tf.device(self.device): modified_adj, modified_nx = self.adj_tensor, self.x_tensor adj_tensor, x_tensor = self.adj_tensor, self.x_tensor adj_changes, x_changes = self.adj_changes, self.x_changes adj_flips, nattr_flips = self.adj_flips, self.nattr_flips for it in tqdm(range(self.num_budgets), desc='Peturbing Graph', disable=disable): x_grad, adj_grad = self.meta_grad() adj_meta_score = tf.constant(0.0) x_meta_score = tf.constant(0.0) if structure_attack: modified_adj = self.get_perturbed_adj(adj_tensor, adj_changes) adj_meta_score = self.structure_score(modified_adj, adj_grad, ll_constraint, ll_cutoff) if feature_attack: modified_nx = self.get_perturbed_x(x_tensor, x_changes) x_meta_score = self.feature_score(modified_nx, feature_grad) if tf.reduce_max(adj_meta_score) >= tf.reduce_max(x_meta_score) and structure_attack: adj_meta_argmax = tf.argmax(adj_meta_score) row, col = divmod(adj_meta_argmax.numpy(), self.num_nodes) adj_changes[row, col].assign(-2. * modified_adj[row, col] + 1.) adj_changes[col, row].assign(-2. * modified_adj[col, row] + 1.) adj_flips.append((row, col)) elif tf.reduce_max(adj_meta_score) < tf.reduce_max(x_meta_score) and feature_attack: x_meta_argmax = tf.argmax(x_meta_score) row, col = divmod(x_meta_argmax.numpy(), self.num_attrs) x_changes[row, col].assign(-2 * modified_nx[row, col] + 1) nattr_flips.append((row, col)) else: warnings.warn(f"Do nothing at iter {it}. adj_meta_score={adj_meta_score}, x_meta_score={x_meta_score}", UserWarning) return self ``` #### File: graphgallery/data/reader.py ```python import numpy as np import scipy.sparse as sp from graphgallery import functional as gf from sklearn.preprocessing import LabelEncoder from .io import read_csv, read_json class Reader: @staticmethod def read_graphs(filepath): graphs = read_json(filepath) graphs = [gf.edge_to_sparse_adj(graphs[str(i)]) for i in range(len(graphs))] return graphs @staticmethod def read_edges(filepath, src='id_1', dst='id_2'): data = read_csv(filepath) row = data[src].to_numpy() col = data[dst].to_numpy() N = max(row.max(), col.max()) + 1 graph = sp.csr_matrix((np.ones(row.shape[0], dtype=np.float32), (row, col)), shape=(N, N)) return graph @staticmethod def read_csv_features(filepath): data = read_csv(filepath) row = np.array(data["node_id"]) col = np.array(data["feature_id"]) values = np.array(data["value"]) node_count = max(row) + 1 feature_count = max(col) + 1 shape = (node_count, feature_count) features = sp.csr_matrix((values, (row, col)), shape=shape) return features @staticmethod def read_json_features(filepath): data = read_json(filepath) rows = [] cols = [] for k, v in data.items(): k = int(k) rows += [k] * len(v) cols += v N = max(rows) + 1 M = max(cols) + 1 features = sp.csr_matrix((np.ones(len(rows), dtype=np.float32), (rows, cols)), shape=(N, M)) return features @staticmethod def read_target(filepath, return_target=True): data = read_csv(filepath) if return_target: return data["target"].to_numpy() else: return data ``` #### File: graphgallery/functional/random.py ```python import random import torch import numpy as np import graphgallery as gg import tensorflow as tf __all__ = ["random_seed"] def random_seed(seed=None, backend=None): backend = gg.backend(backend) np.random.seed(seed) random.seed(seed) if backend == "tensorflow": tf.random.set_seed(seed) else: torch.manual_seed(seed) torch.cuda.manual_seed(seed) # torch.cuda.manual_seed_all(seed) ``` #### File: functional/sparse/neighbor_sampler.py ```python import numpy as np import scipy.sparse as sp import numba from numba import njit from ..base_transforms import SparseTransform from ..transform import Transform from ..sparse import add_selfloops, eliminate_selfloops @Transform.register() class NeighborSampler(SparseTransform): def __init__(self, max_degree: int = 25, selfloop: bool = True, add_dummy: bool = True): super().__init__() self.collect(locals()) def __call__(self, adj_matrix: sp.csr_matrix): return neighbor_sampler(adj_matrix, max_degree=self.max_degree, selfloop=self.selfloop, add_dummy=self.add_dummy) @njit def sample(indices, indptr, max_degree=25, add_dummy=True): N = len(indptr) - 1 if add_dummy: M = numba.int32(N) + np.zeros((N+1, max_degree), dtype=np.int32) else: M = np.zeros((N, max_degree), dtype=np.int32) for n in range(N): neighbors = indices[indptr[n]:indptr[n + 1]] size = neighbors.size if size > max_degree: neighbors = np.random.choice(neighbors, max_degree, replace=False) elif size < max_degree: neighbors = np.random.choice(neighbors, max_degree, replace=True) M[n] = neighbors return M def neighbor_sampler(adj_matrix: sp.csr_matrix, max_degree: int = 25, selfloop: bool=True, add_dummy=True): if selfloop: adj_matrix = add_selfloops(adj_matrix) else: adj_matrix = eliminate_selfloops(adj_matrix) M = sample(adj_matrix.indices, adj_matrix.indptr, max_degree=max_degree, add_dummy=add_dummy) np.random.shuffle(M.T) return M ``` #### File: gallery/embedding/laplacianeigenmaps.py ```python import numpy as np import scipy.sparse as sp from sklearn import preprocessing from utils import normalized_laplacian_matrix class LaplacianEigenmaps: r"""An implementation of `"Laplacian Eigenmaps" <https://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering>`_ from the NIPS '01 paper "Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering". The procedure extracts the eigenvectors corresponding to the largest eigenvalues of the graph Laplacian. These vectors are used as the node embedding. """ def __init__(self, dimensions: int = 32, seed: int = None): self.dimensions = dimensions self.seed = seed def fit(self, graph: sp.csr_matrix): """ Fitting a Laplacian EigenMaps model. """ L_tilde = normalized_laplacian_matrix(graph) _, self._embedding = sp.linalg.eigsh(L_tilde, k=self.dimensions, which='SM', return_eigenvectors=True) def get_embedding(self, normalize=True) -> np.array: """Getting the node embedding.""" embedding = self._embedding if normalize: embedding = preprocessing.normalize(embedding) return embedding ``` #### File: gallery/embedding/nmfadmm.py ```python import numpy as np import scipy.sparse as sp from sklearn import preprocessing class NMFADMM: r"""An implementation of `"NMF-ADMM" <http://statweb.stanford.edu/~dlsun/papers/nmf_admm.pdf>`_ from the ICASSP '14 paper "Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization with the Beta-Divergence". The procedure learns an embedding of the normalized adjacency matrix with by using the alternating direction method of multipliers to solve a non negative matrix factorization problem. """ def __init__(self, dimensions: int = 32, iterations: int = 100, rho: float = 1.0, seed: int = None): self.dimensions = dimensions self.iterations = iterations self.rho = rho self.seed = seed def _init_weights(self): """ Initializing model weights. """ self._W = np.random.uniform(-0.1, 0.1, (self._V.shape[0], self.dimensions)) self._H = np.random.uniform(-0.1, 0.1, (self.dimensions, self._V.shape[1])) X_i, Y_i = np.nonzero(self._V) scores = self._W[X_i] * self._H[:, Y_i].T + np.random.uniform(0, 1, (self.dimensions, )) values = np.sum(scores, axis=-1) self._X = sp.coo_matrix((values, (X_i, Y_i)), shape=self._V.shape) self._W_plus = np.random.uniform(0, 0.1, (self._V.shape[0], self.dimensions)) self._H_plus = np.random.uniform(0, 0.1, (self.dimensions, self._V.shape[1])) self._alpha_X = sp.coo_matrix((np.zeros(values.shape[0]), (X_i, Y_i)), shape=self._V.shape) self._alpha_W = np.zeros(self._W.shape) self._alpha_H = np.zeros(self._H.shape) def _update_W(self): """ Updating user_1 matrix. """ left = np.linalg.pinv(self._H.dot(self._H.T) + np.eye(self.dimensions)) right_1 = self._X.dot(self._H.T).T + self._W_plus.T right_2 = (1.0 / self.rho) * (self._alpha_X.dot(self._H.T).T - self._alpha_W.T) self.W = left.dot(right_1 + right_2).T def _update_H(self): """ Updating user_2 matrix. """ left = np.linalg.pinv(self._W.T.dot(self._W) + np.eye(self.dimensions)) right_1 = self._X.T.dot(self._W).T + self._H_plus right_2 = (1.0 / self.rho) * (self._alpha_X.T.dot(self._W).T - self._alpha_H) self._H = left.dot(right_1 + right_2) def _update_X(self): """ Updating user_1-user_2 matrix. """ iX, iY = np.nonzero(self._V) values = np.sum(self._W[iX] * self._H[:, iY].T, axis=-1) scores = sp.coo_matrix((values - 1, (iX, iY)), shape=self._V.shape) left = self.rho * scores - self._alpha_X right = (left.power(2) + 4.0 * self.rho * self._V).power(0.5) self._X = (left + right) / (2 * self.rho) def _update_W_plus(self): """ Updating positive primal user_1 factors. """ self._W_plus = np.maximum(self._W + (1 / self.rho) * self._alpha_W, 0) def _update_H_plus(self): """ Updating positive primal user_2 factors. """ self._H_plus = np.maximum(self._H + (1 / self.rho) * self._alpha_H, 0) def _update_alpha_X(self): """ Updating target matrix dual. """ iX, iY = np.nonzero(self._V) values = np.sum(self._W[iX] * self._H[:, iY].T, axis=-1) scores = sp.coo_matrix((values, (iX, iY)), shape=self._V.shape) self._alpha_X = self._alpha_X + self.rho * (self._X - scores) def _update_alpha_W(self): """ Updating user dual factors. """ self._alpha_W = self._alpha_W + self.rho * (self._W - self._W_plus) def _update_alpha_H(self): """ Updating item dual factors. """ self._alpha_H = self._alpha_H + self.rho * (self._H - self._H_plus) def _create_base_matrix(self, graph): """ Creating the normalized adjacency matrix. """ degree = graph.sum(1).A1 D_inverse = sp.diags(1.0 / degree, format="csr") A_hat = D_inverse @ graph return A_hat def fit(self, graph: sp.csr_matrix): """ Fitting an NMF model on the normalized adjacency matrix with ADMM. """ self._V = self._create_base_matrix(graph) self._init_weights() for _ in range(self.iterations): self._update_W() self._update_H() self._update_X() self._update_W_plus() self._update_H_plus() self._update_alpha_X() self._update_alpha_W() self._update_alpha_H() def get_embedding(self, normalize=True) -> np.array: """Getting the node embedding.""" embedding = np.concatenate([self._W_plus, self._H_plus.T], axis=1) if normalize: embedding = preprocessing.normalize(embedding) return embedding ``` #### File: gallery/nodeclas/__init__.py ```python from .trainer import Trainer from .registered_models import (TensorFlow, PyTorch, PyG, DGL_PyTorch, DGL_TensorFlow, Common, MAPPING) import graphgallery from functools import partial def is_enabled(model: str) -> bool: """Return true if the model is enabled by the current backend. Parameters ---------- model : str The model name. Returns ------- bool True if the model is enabled by the current backend. """ return model in enabled_models() def enabled_models(with_common=True): """Return the models in the gallery enabled by the current backend. Parameters ---------- with_common : bool Whether to return common models (framework-agnostic). Returns ------- graphgallry.functional.BuhcnDict A dict of models enabled by the current backend. """ return get_registry() + Common graphgallery.load_models(__name__, mapping=MAPPING) get_registry = partial(graphgallery.get_registry, mapping=MAPPING) models = enabled_models ``` #### File: tensorflow/experimental/gcna.py ```python import tensorflow as tf from graphgallery.sequence import FullBatchSequence from graphgallery import functional as gf from graphgallery.gallery.nodeclas import TensorFlow from graphgallery.nn.models import get_model from ..gcn import GCN @TensorFlow.register() class GCNA(GCN): """ GCN + node attribute matrix Implementation of Graph Convolutional Networks(GCN) concated with node attribute matrix. """ def model_step(self, hids=[16], acts=['relu'], dropout=0.5, weight_decay=5e-4, lr=0.01, bias=False): model = get_model("GCNA", self.backend) model = model(self.graph.num_node_attrs, self.graph.num_node_classes, hids=hids, acts=acts, dropout=dropout, weight_decay=weight_decay, lr=lr, bias=bias) return model ``` #### File: nodeclas/tensorflow/fastgcn.py ```python import tensorflow as tf from graphgallery.sequence import FastGCNBatchSequence from graphgallery import functional as gf from graphgallery.gallery.nodeclas import TensorFlow from graphgallery.gallery.nodeclas import Trainer from graphgallery.nn.models import get_model @TensorFlow.register() class FastGCN(Trainer): """ Implementation of Fast Graph Convolutional Networks (FastGCN). `FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling <https://arxiv.org/abs/1801.10247>` Tensorflow 1.x implementation: <https://github.com/matenure/FastGCN> """ def custom_setup(self): cfg = self.cfg.fit cfg.batch_size = 256 cfg.rank = 100 cfg = self.cfg.evaluate cfg.batch_size = None cfg.rank = None def data_step(self, adj_transform="normalize_adj", attr_transform=None): graph = self.graph adj_matrix = gf.get(adj_transform)(graph.adj_matrix) node_attr = gf.get(attr_transform)(graph.node_attr) node_attr = adj_matrix @ node_attr X, A = gf.astensor(node_attr, device=self.data_device), adj_matrix # ``A`` and ``X`` are cached for later use self.register_cache(X=X, A=A) def model_step(self, hids=[32], acts=['relu'], dropout=0.5, weight_decay=5e-4, lr=0.01, bias=False): model = get_model("FastGCN", self.backend) model = model(self.graph.num_node_attrs, self.graph.num_node_classes, hids=hids, acts=acts, dropout=dropout, weight_decay=weight_decay, lr=lr, bias=bias) return model def train_loader(self, index): cfg = self.cfg.fit labels = self.graph.node_label[index] adj_matrix = self.graph.adj_matrix[index][:, index] adj_matrix = self.transform.adj_transform(adj_matrix) X = tf.gather(self.cache.X, index) sequence = FastGCNBatchSequence([X, adj_matrix], labels, batch_size=cfg.batch_size, rank=cfg.rank, device=self.data_device) return sequence def test_loader(self, index): cfg = self.cfg.evaluate labels = self.graph.node_label[index] A = self.cache.A[index] sequence = FastGCNBatchSequence([self.cache.X, A], labels, batch_size=cfg.batch_size, rank=cfg.rank, device=self.data_device) return sequence ``` #### File: tensorflow/conv/arma.py ```python from tensorflow.keras import activations, constraints, initializers, regularizers from tensorflow.keras import backend as K from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Layer class ARMAConv(Layer): r""" An Auto-Regressive Moving Average convolutional layer (ARMA) from the paper [Graph Neural Networks with convolutional ARMA filters](https://arxiv.org/abs/1901.01343) **Mode**: single, disjoint, mixed, batch. This layer computes: $$ \X' = \frac{1}{K} \sum\limits_{k=1}^K \bar\X_k^{(T)}, $$ where \(K\) is the order of the ARMA\(_K\) filter, and where: $$ \bar \X_k^{(t + 1)} = \sigma \left(\tilde \A \bar \X^{(t)} \W^{(t)} + \X \V^{(t)} \right) $$ is a recursive approximation of an ARMA\(_1\) filter, where \( \bar \X^{(0)} = \X \) and $$ \tilde \A = \D^{-1/2} \A \D^{-1/2}. $$ **Input** - Node features of shape `([batch], n_nodes, n_node_features)`; - Normalized and rescaled Laplacian of shape `([batch], n_nodes, n_nodes)`; can be computed with `spektral.utils.convolution.normalized_laplacian` and `spektral.utils.convolution.rescale_laplacian`. **Output** - Node features with the same shape as the input, but with the last dimension changed to `units`. Parameters: - `units`: number of output units; - `order`: order of the full ARMA\(_K\) filter, i.e., the number of parallel stacks in the layer; - `iterations`: number of iterations to compute each ARMA\(_1\) approximation; - `share_weights`: share the weights in each ARMA\(_1\) stack. - `gcn_activation`: gcn_activation function to compute each ARMA\(_1\) stack; - `dropout_rate`: dropout rate for skip connection; - `activation`: activation function; - `use_bias`: bool, add a bias vector to the output; - `kernel_initializer`: initializer for the weights; - `bias_initializer`: initializer for the bias vector; - `kernel_regularizer`: regularization applied to the weights; - `bias_regularizer`: regularization applied to the bias vector; - `activity_regularizer`: regularization applied to the output; - `kernel_constraint`: constraint applied to the weights; - `bias_constraint`: constraint applied to the bias vector. """ def __init__( self, units, order=1, iterations=1, share_weights=False, gcn_activation="elu", activation=None, dropout=0.75, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs ): super().__init__(**kwargs) self.units = units self.iterations = iterations self.order = order self.share_weights = share_weights self.use_bias = use_bias self.activation = activations.get(activation) self.gcn_activation = activations.get(gcn_activation) self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = Dropout(dropout) def build(self, input_shape): assert len(input_shape) >= 2 F = input_shape[0][-1] # Create weights for parallel stacks # self.kernels[k][i] refers to the k-th stack, i-th iteration self.kernels = [] for k in range(self.order): kernel_stack = [] current_shape = F for i in range(self.iterations): kernel_stack.append( self.create_weights( current_shape, F, self.units, "ARMA_GCS_{}{}".format(k, i) ) ) current_shape = self.units if self.share_weights and i == 1: # No need to continue because all weights will be shared break self.kernels.append(kernel_stack) self.built = True def call(self, inputs): x, a = inputs output = [] for k in range(self.order): output_k = x for i in range(self.iterations): output_k = self.gcs([output_k, x, a], k, i) output.append(output_k) output = K.stack(output, axis=-1) output = K.mean(output, axis=-1) output = self.activation(output) return output def create_weights(self, input_dim, input_dim_skip, units, name): """ Creates a set of weights for a GCN with skip connections. :param input_dim: dimension of the input space :param input_dim_skip: dimension of the input space for the skip connection :param units: dimension of the output space :param name: name of the layer :return: - kernel_1, from input space of the layer to output space - kernel_2, from input space of the skip connection to output space - bias, bias vector on the output space if use_bias=True, None otherwise. """ kernel_1 = self.add_weight( shape=(input_dim, units), name=name + "_kernel_1", initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) kernel_2 = self.add_weight( shape=(input_dim_skip, units), name=name + "_kernel_2", initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) bias = None if self.use_bias: bias = self.add_weight( shape=(units,), name=name + "_bias", initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) return kernel_1, kernel_2, bias def gcs(self, inputs, stack, iteration): """ Creates a graph convolutional layer with a skip connection. :param inputs: list of input Tensors, namely - input node features - input node features for the skip connection - normalized adjacency matrix; :param stack: int, current stack (used to retrieve kernels); :param iteration: int, current iteration (used to retrieve kernels); :return: output node features. """ x, x_skip, a = inputs itr = 1 if self.share_weights and iteration >= 1 else iteration kernel_1, kernel_2, bias = self.kernels[stack][itr] output = K.dot(x, kernel_1) output = K.dot(a, output) skip = K.dot(x_skip, kernel_2) skip = self.dropout(skip) output += skip if self.use_bias: output = K.bias_add(output, bias) output = self.gcn_activation(output) return output def get_config(self): config = { "units": self.units, "iterations": self.iterations, "order": self.order, "share_weights": self.share_weights, "activation": activations.serialize(self.activation), "gcn_activation": activations.serialize(self.gcn_activation), 'kernel_initializer': initializers.serialize( self.kernel_initializer), 'bias_initializer': initializers.serialize( self.bias_initializer), 'kernel_regularizer': regularizers.serialize( self.kernel_regularizer), 'bias_regularizer': regularizers.serialize( self.bias_regularizer), 'activity_regularizer': regularizers.serialize( self.activity_regularizer), 'kernel_constraint': constraints.serialize( self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), } base_config = super().get_config() return {**base_config, **config} ``` #### File: models/pytorch/gat.py ```python import torch.nn as nn from torch import optim from graphgallery.nn.models import TorchKeras from graphgallery.nn.layers.pytorch import GATConv, SparseGATConv, Sequential, activations from graphgallery.nn.metrics.pytorch import Accuracy class GAT(TorchKeras): def __init__(self, in_features, out_features, hids=[8], num_heads=[8], acts=['elu'], dropout=0.6, weight_decay=5e-4, lr=0.01, bias=True): super().__init__() head = 1 conv = [] conv.append(nn.Dropout(dropout)) for hid, num_head, act in zip(hids, num_heads, acts): conv.append(SparseGATConv(in_features * head, hid, attn_heads=num_head, reduction='concat', bias=bias)) conv.append(activations.get(act)) conv.append(nn.Dropout(dropout)) in_features = hid head = num_head conv.append(SparseGATConv(in_features * head, out_features, attn_heads=1, reduction='average', bias=bias)) conv = Sequential(*conv) self.conv = conv self.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam([dict(params=conv[1].parameters(), weight_decay=weight_decay), dict(params=conv[2:].parameters(), weight_decay=0.)], lr=lr), metrics=[Accuracy()]) def forward(self, x, adj): return self.conv(x, adj) ``` #### File: models/pytorch/latgcn.py ```python import torch import torch.nn as nn from torch import optim from graphgallery.nn.models import TorchKeras from graphgallery.nn.layers.pytorch import GCNConv, Sequential, activations from graphgallery.nn.metrics.pytorch import Accuracy class LATGCN(TorchKeras): def __init__(self, in_features, out_features, num_nodes, *, gamma=0.01, eta=0.1, hids=[16], acts=['relu'], dropout=0.2, weight_decay=5e-4, lr=0.01, bias=False): super().__init__() assert hids, "LATGCN requires hidden layers" conv = [] conv.append(nn.Dropout(dropout)) for hid, act in zip(hids, acts): conv.append(GCNConv(in_features, hid, bias=bias)) conv.append(activations.get(act)) conv.append(nn.Dropout(dropout)) in_features = hid conv.append(GCNConv(in_features, out_features, bias=bias)) conv = Sequential(*conv) self.zeta = nn.Parameter(torch.randn(num_nodes, hids[0])) self.conv1 = conv[:3] # includes dropout, ReLU and the first GCN layer self.conv2 = conv[3:] # remainder self.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam([dict(params=self.conv1.parameters(), weight_decay=weight_decay), dict(params=self.conv2.parameters(), weight_decay=0.)], lr=lr), metrics=[Accuracy()]) self.zeta_opt = optim.Adam([self.zeta], lr=lr) self.gamma = gamma self.eta = eta def forward(self, x, adj): h = self.conv1(x, adj) logit = self.conv2(h, adj) if self.training: self.zeta.data = clip_by_norm(self.zeta, self.eta) hp = h + self.zeta logitp = self.conv2(hp, adj) reg_loss = torch.norm(logitp - logit) return logit, reg_loss else: return logit def train_step_on_batch(self, x, y, out_weight=None, device="cpu"): self.train() optimizer = self.optimizer loss_fn = self.loss metrics = self.metrics if not isinstance(x, (list, tuple)): x = [x] x = [_x.to(device) if hasattr(_x, 'to') else _x for _x in x] y = y.to(device) zeta_opt = self.zeta_opt for _ in range(20): zeta_opt.zero_grad() _, reg_loss = self(*x) reg_loss = -reg_loss reg_loss.backward() zeta_opt.step() optimizer.zero_grad() out, reg_loss = self(*x) if out_weight is not None: out = out[out_weight] loss = loss_fn(out, y) + self.gamma * reg_loss loss.backward() optimizer.step() for metric in metrics: metric.update_state(y.cpu(), out.detach().cpu()) results = [loss.cpu().detach()] + [metric.result() for metric in metrics] return dict(zip(self.metrics_names, results)) @torch.no_grad() def clip_by_norm(tensor, clip_norm): l2_norm = torch.norm(tensor, p=2, dim=1).view(-1, 1) tensor = tensor * clip_norm / l2_norm return tensor ``` #### File: models/pytorch/mlp.py ```python import torch.nn as nn from torch import optim from graphgallery.nn.models import TorchKeras from graphgallery.nn.metrics.pytorch import Accuracy from graphgallery.nn.layers.pytorch import activations class MLP(TorchKeras): def __init__(self, in_features, out_features, hids=[16], acts=['relu'], dropout=0.5, weight_decay=5e-4, lr=0.01, bias=False): super().__init__() lin = [] lin.append(nn.Dropout(dropout)) for hid, act in zip(hids, acts): lin.append(nn.Linear(in_features, hid, bias=bias)) lin.append(activations.get(act)) lin.append(nn.Dropout(dropout)) in_features = hid lin.append(nn.Linear(in_features, out_features, bias=bias)) lin = nn.Sequential(*lin) self.lin = lin self.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam([dict(params=lin[1].parameters(), weight_decay=weight_decay), dict(params=lin[2:].parameters(), weight_decay=0.), ], lr=lr), metrics=[Accuracy()]) def forward(self, x): return self.lin(x) ```
{ "source": "jieru-hu/hydra", "score": 2 }
#### File: hydra/hydra/types.py ```python import warnings from dataclasses import dataclass from enum import Enum from typing import TYPE_CHECKING, Any, Callable from omegaconf import MISSING TaskFunction = Callable[[Any], Any] if TYPE_CHECKING: from hydra._internal.callbacks import Callbacks from hydra.core.config_loader import ConfigLoader @dataclass class HydraContext: config_loader: "ConfigLoader" callbacks: "Callbacks" @dataclass class TargetConf: """ This class is going away in Hydra 1.2. You should no longer extend it or annotate with it. instantiate will work correctly if you pass in a DictConfig object or any dataclass that has the _target_ attribute. """ _target_: str = MISSING def __post_init__(self) -> None: # DEPRECATED: remove in 1.2 msg = "\nTargetConf is deprecated since Hydra 1.1 and will be removed in Hydra 1.2." warnings.warn(message=msg, category=UserWarning) class RunMode(Enum): RUN = 1 MULTIRUN = 2 class ConvertMode(Enum): """ConvertMode for instantiate, controls return type. A config is either config or instance-like (`_target_` field). If instance-like, instantiate resolves the callable (class or function) and returns the result of the call on the rest of the parameters. If "none", config-like configs will be kept as is. If "partial", config-like configs will be converted to native python containers (list and dict), unless they are structured configs ( dataclasses or attr instances). If "all", config-like configs will all be converted to native python containers (list and dict). """ # Use DictConfig/ListConfig NONE = "none" # Convert the OmegaConf config to primitive container, Structured Configs are preserved PARTIAL = "partial" # Fully convert the OmegaConf config to primitive containers (dict, list and primitives). ALL = "all" def __eq__(self, other: Any) -> Any: if isinstance(other, ConvertMode): return other.value == self.value elif isinstance(other, str): return other.upper() == self.name.upper() else: return NotImplemented ```
{ "source": "jieru-hu/hydra-torch", "score": 2 }
#### File: hydra-configs-torch/tests/test_instantiate_data.py ```python import pytest from hydra.utils import get_class, instantiate from omegaconf import OmegaConf import torch.utils.data as data import torch from typing import Any dummy_tensor = torch.tensor((1, 1)) dummy_dataset = data.dataset.TensorDataset(dummy_tensor) dummy_sampler = data.Sampler(data_source=dummy_dataset) @pytest.mark.parametrize( "modulepath, classname, cfg, passthrough_args, passthrough_kwargs, expected", [ pytest.param( "utils.data.dataloader", "DataLoader", {"batch_size": 4}, [], {"dataset": dummy_dataset}, data.DataLoader(batch_size=4, dataset=dummy_dataset), id="DataLoaderConf", ), pytest.param( "utils.data.dataset", "Dataset", {}, [], {}, data.Dataset(), id="DatasetConf", ), pytest.param( "utils.data.dataset", "ChainDataset", {}, [], {"datasets": [dummy_dataset, dummy_dataset]}, data.ChainDataset(datasets=[dummy_dataset, dummy_dataset]), id="ChainDatasetConf", ), pytest.param( "utils.data.dataset", "ConcatDataset", {}, [], {"datasets": [dummy_dataset, dummy_dataset]}, data.ConcatDataset(datasets=[dummy_dataset, dummy_dataset]), id="ConcatDatasetConf", ), pytest.param( "utils.data.dataset", "IterableDataset", {}, [], {}, data.IterableDataset(), id="IterableDatasetConf", ), # TODO: investigate asterisk in signature instantiation limitation # pytest.param( # "utils.data.dataset", # "TensorDataset", # {}, # [], # {"tensors":[dummy_tensor]}, # data.TensorDataset(dummy_tensor), # id="TensorDatasetConf", # ), pytest.param( "utils.data.dataset", "Subset", {}, [], {"dataset": dummy_dataset, "indices": [0]}, data.Subset(dummy_dataset, 0), id="SubsetConf", ), pytest.param( "utils.data.sampler", "Sampler", {}, [], {"data_source": dummy_dataset}, data.Sampler(data_source=dummy_dataset), id="SamplerConf", ), pytest.param( "utils.data.sampler", "BatchSampler", {"batch_size": 4, "drop_last": False}, [], {"sampler": dummy_sampler}, data.BatchSampler(sampler=dummy_sampler, batch_size=4, drop_last=False), id="BatchSamplerConf", ), pytest.param( "utils.data.sampler", "RandomSampler", {}, [], {"data_source": dummy_dataset}, data.RandomSampler(data_source=dummy_dataset), id="RandomSamplerConf", ), pytest.param( "utils.data.sampler", "SequentialSampler", {}, [], {"data_source": dummy_dataset}, data.SequentialSampler(data_source=dummy_dataset), id="SequentialSamplerConf", ), pytest.param( "utils.data.sampler", "SubsetRandomSampler", {"indices": [1]}, [], {}, data.SubsetRandomSampler(indices=[1]), id="SubsetRandomSamplerConf", ), pytest.param( "utils.data.sampler", "WeightedRandomSampler", {"weights": [1], "num_samples": 1}, [], {}, data.WeightedRandomSampler(weights=[1], num_samples=1), id="WeightedRandomSamplerConf", ), # TODO: investigate testing distributed instantiation # pytest.param( # "utils.data.distributed", # "DistributedSampler", # {}, # [], # {"dataset": dummy_dataset}, # data.DistributedSampler(group=dummy_group,dataset=dummy_dataset), # id="DistributedSamplerConf", # ), ], ) def test_instantiate_classes( modulepath: str, classname: str, cfg: Any, passthrough_args: Any, passthrough_kwargs: Any, expected: Any, ) -> None: full_class = f"hydra_configs.torch.{modulepath}.{classname}Conf" schema = OmegaConf.structured(get_class(full_class)) cfg = OmegaConf.merge(schema, cfg) obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs) assert isinstance(obj, type(expected)) ```
{ "source": "jieru-hu/omegaconf", "score": 2 }
#### File: omegaconf/tests/test_basic_ops_list.py ```python import re from textwrap import dedent from typing import Any, List, Optional from pytest import mark, param, raises from omegaconf import MISSING, AnyNode, DictConfig, ListConfig, OmegaConf, flag_override from omegaconf._utils import nullcontext from omegaconf.errors import ( ConfigTypeError, InterpolationKeyError, InterpolationToMissingValueError, KeyValidationError, MissingMandatoryValue, UnsupportedValueType, ValidationError, ) from omegaconf.nodes import IntegerNode, StringNode from tests import Color, IllegalType, User def test_list_value() -> None: c = OmegaConf.create("a: [1,2]") assert {"a": [1, 2]} == c def test_list_of_dicts() -> None: v = [dict(key1="value1"), dict(key2="value2")] c = OmegaConf.create(v) assert c[0].key1 == "value1" assert c[1].key2 == "value2" @mark.parametrize("default", [None, 0, "default"]) @mark.parametrize( ("cfg", "key"), [ (["???"], 0), ([DictConfig(content="???")], 0), ([ListConfig(content="???")], 0), ], ) def test_list_get_return_default(cfg: List[Any], key: int, default: Any) -> None: c = OmegaConf.create(cfg) val = c.get(key, default_value=default) assert val is default @mark.parametrize("default", [None, 0, "default"]) @mark.parametrize( ("cfg", "key", "expected"), [ (["found"], 0, "found"), ([None], 0, None), ([DictConfig(content=None)], 0, None), ([ListConfig(content=None)], 0, None), ], ) def test_list_get_do_not_return_default( cfg: List[Any], key: int, expected: Any, default: Any ) -> None: c = OmegaConf.create(cfg) val = c.get(key, default_value=default) assert val == expected @mark.parametrize( "input_, expected, expected_no_resolve, list_key", [ param([1, 2], [1, 2], [1, 2], None, id="simple"), param(["${1}", 2], [2, 2], ["${1}", 2], None, id="interpolation"), param( [ListConfig(None), ListConfig("${.2}"), [1, 2]], [None, ListConfig([1, 2]), ListConfig([1, 2])], [None, ListConfig("${.2}"), ListConfig([1, 2])], None, id="iter_over_lists", ), param( [DictConfig(None), DictConfig("${.2}"), {"a": 10}], [None, DictConfig({"a": 10}), DictConfig({"a": 10})], [None, DictConfig("${.2}"), DictConfig({"a": 10})], None, id="iter_over_dicts", ), param( ["???", ListConfig("???"), DictConfig("???")], raises(MissingMandatoryValue), ["???", ListConfig("???"), DictConfig("???")], None, id="iter_over_missing", ), param( { "defaults": [ {"optimizer": "adam"}, {"dataset": "imagenet"}, {"foo": "${defaults.0.optimizer}_${defaults.1.dataset}"}, ] }, [ OmegaConf.create({"optimizer": "adam"}), OmegaConf.create({"dataset": "imagenet"}), OmegaConf.create({"foo": "adam_imagenet"}), ], [ OmegaConf.create({"optimizer": "adam"}), OmegaConf.create({"dataset": "imagenet"}), OmegaConf.create( {"foo": "${defaults.0.optimizer}_${defaults.1.dataset}"} ), ], "defaults", id="str_interpolation", ), ], ) def test_iterate_list( input_: Any, expected: Any, expected_no_resolve: Any, list_key: str ) -> None: c = OmegaConf.create(input_) if list_key is not None: lst = c.get(list_key) else: lst = c def test_iter(iterator: Any, expected_output: Any) -> None: if isinstance(expected_output, list): items = [x for x in iterator] assert items == expected_output for idx in range(len(items)): assert type(items[idx]) is type(expected_output[idx]) # noqa else: with expected_output: for _ in iterator: pass test_iter(iter(lst), expected) test_iter(lst._iter_ex(resolve=False), expected_no_resolve) def test_iterate_list_with_missing_interpolation() -> None: c = OmegaConf.create([1, "${10}"]) itr = iter(c) assert 1 == next(itr) with raises(InterpolationKeyError): next(itr) def test_iterate_list_with_missing() -> None: c = OmegaConf.create([1, "???"]) itr = iter(c) assert 1 == next(itr) with raises(MissingMandatoryValue): next(itr) def test_items_with_interpolation() -> None: c = OmegaConf.create(["foo", "${0}"]) assert c == ["foo", "foo"] @mark.parametrize( ["cfg", "key", "expected_out", "expected_cfg"], [ param([1, 2, 3], 0, 1, [2, 3]), param([1, 2, 3], None, 3, [1, 2]), param(["???", 2, 3], 0, None, [2, 3]), param([1, None, 3], 1, None, [1, 3]), ], ) def test_list_pop( cfg: List[Any], key: Optional[int], expected_out: Any, expected_cfg: Any ) -> None: c = OmegaConf.create(cfg) val = c.pop() if key is None else c.pop(key) assert val == expected_out assert c == expected_cfg validate_list_keys(c) @mark.parametrize( ["cfg", "key", "exc"], [ param([1, 2, 3], 100, IndexError), param(["${4}", 2, 3], 0, InterpolationKeyError), param(["${1}", "???", 3], 0, InterpolationToMissingValueError), ], ) def test_list_pop_errors(cfg: List[Any], key: int, exc: type) -> None: c = OmegaConf.create(cfg) with raises(exc): c.pop(key) assert c == cfg validate_list_keys(c) def test_list_pop_on_unexpected_exception_not_modifying() -> None: src = [1, 2, 3, 4] c = OmegaConf.create(src) with raises(ConfigTypeError): c.pop("foo") # type: ignore assert c == src def test_in_list() -> None: c = OmegaConf.create([10, 11, {"a": 12}]) assert 10 in c assert 11 in c assert {"a": 12} in c assert "blah" not in c def test_in_with_interpolation() -> None: c = OmegaConf.create({"a": ["${b}"], "b": 10}) assert 10 in c.a @mark.parametrize( ("lst", "expected"), [ param( ListConfig(content=None), raises( TypeError, match="Cannot check if an item is in a ListConfig object representing None", ), id="ListConfig(None)", ), param( ListConfig(content="???"), raises( MissingMandatoryValue, match="Cannot check if an item is in missing ListConfig", ), id="ListConfig(???)", ), ], ) def test_not_in_special_lists(lst: Any, expected: Any) -> None: with expected: "foo" not in lst def test_list_config_with_list() -> None: c = OmegaConf.create([]) assert isinstance(c, ListConfig) def test_list_config_with_tuple() -> None: c = OmegaConf.create(()) assert isinstance(c, ListConfig) def test_items_on_list() -> None: c = OmegaConf.create([1, 2]) with raises(AttributeError): c.items() def test_list_enumerate() -> None: src: List[Optional[str]] = ["a", "b", "c", "d"] c = OmegaConf.create(src) for i, v in enumerate(c): assert src[i] == v assert v is not None src[i] = None for v in src: assert v is None def test_list_delitem() -> None: c = OmegaConf.create([1, 2, 3]) assert c == [1, 2, 3] del c[0] assert c == [2, 3] with raises(IndexError): del c[100] validate_list_keys(c) @mark.parametrize( "lst,expected", [ (OmegaConf.create([1, 2]), 2), (ListConfig(content=None), 0), (ListConfig(content="???"), 0), (ListConfig(content="${foo}"), 0), (ListConfig(content="${foo}", parent=DictConfig({"foo": [1, 2]})), 0), ], ) def test_list_len(lst: Any, expected: Any) -> None: assert len(lst) == expected def test_nested_list_assign_illegal_value() -> None: c = OmegaConf.create({"a": [None]}) with raises( UnsupportedValueType, match=re.escape( dedent( """\ Value 'IllegalType' is not a supported primitive type full_key: a[0]""" ) ), ): c.a[0] = IllegalType() def test_list_append() -> None: c = OmegaConf.create([]) c.append(1) c.append(2) c.append({}) c.append([]) assert c == [1, 2, {}, []] validate_list_keys(c) @mark.parametrize( "lc,element,expected", [ param( ListConfig(content=[], element_type=int), "foo", raises( ValidationError, match=re.escape("Value 'foo' could not be converted to Integer"), ), id="append_str_to_list[int]", ), param( ListConfig(content=[], element_type=int, is_optional=False), None, raises( ValidationError, match=re.escape("Non optional field cannot be assigned None"), ), id="append_None_to_list[int]", ), param( ListConfig(content=[], element_type=Color), "foo", raises( ValidationError, match=re.escape( "Invalid value 'foo', expected one of [RED, GREEN, BLUE]" ), ), id="append_str_to_list[Color]", ), param( ListConfig(content=[], element_type=User), "foo", raises( ValidationError, match=re.escape( "Invalid type assigned: str is not a subclass of User. value: foo" ), ), id="append_str_to_list[User]", ), param( ListConfig(content=[], element_type=User), {"name": "Bond", "age": 7}, raises( ValidationError, match=re.escape( "Invalid type assigned: dict is not a subclass of User. value: {'name': 'Bond', 'age': 7}" ), ), id="list:convert_dict_to_user", ), param( ListConfig(content=[], element_type=User), {}, raises( ValidationError, match=re.escape( "Invalid type assigned: dict is not a subclass of User. value: {}" ), ), id="list:convert_empty_dict_to_user", ), ], ) def test_append_invalid_element_type( lc: ListConfig, element: Any, expected: Any ) -> None: with expected: lc.append(element) def test_assign_none_to_non_optional() -> None: cfg = ListConfig(content=["abc"], element_type=str, is_optional=False) with raises(ValidationError): cfg[0] = None @mark.parametrize( "lc,element,expected", [ param( ListConfig(content=[], element_type=int), "10", 10, id="list:convert_str_to_int", ), param( ListConfig(content=[], element_type=float), "10", 10.0, id="list:convert_str_to_float", ), param( ListConfig(content=[], element_type=Color), "RED", Color.RED, id="list:convert_str_to_float", ), ], ) def test_append_convert(lc: ListConfig, element: Any, expected: Any) -> None: lc.append(element) value = lc[-1] assert value == expected assert type(value) == type(expected) @mark.parametrize( "index, expected", [(slice(1, 3), [11, 12]), (slice(0, 3, 2), [10, 12]), (-1, 13)] ) def test_list_index(index: Any, expected: Any) -> None: c = OmegaConf.create([10, 11, 12, 13]) assert c[index] == expected @mark.parametrize( "cfg, expected", [ (OmegaConf.create([1, 2, 3]), ["0", "1", "2"]), (ListConfig(content="???"), []), (ListConfig(content=None), []), ], ) def test_list_dir(cfg: Any, expected: Any) -> None: assert dir(cfg) == expected def validate_list_keys(c: Any) -> None: # validate keys are maintained for i in range(len(c)): assert c._get_node(i)._metadata.key == i @mark.parametrize( "input_, index, value, expected, expected_node_type, expectation", [ (["a", "b", "c"], 1, 100, ["a", 100, "b", "c"], AnyNode, None), ( ["a", "b", "c"], 1, IntegerNode(100), ["a", 100, "b", "c"], IntegerNode, None, ), (["a", "b", "c"], 1, "foo", ["a", "foo", "b", "c"], AnyNode, None), ( ["a", "b", "c"], 1, StringNode("foo"), ["a", "foo", "b", "c"], StringNode, None, ), ( ListConfig(element_type=int, content=[]), 0, "foo", None, None, ValidationError, ), ( ListConfig(element_type=int, content=[], is_optional=False), 0, None, None, None, ValidationError, ), ], ) def test_insert( input_: List[str], index: int, value: Any, expected: Any, expected_node_type: type, expectation: Any, ) -> None: c = OmegaConf.create(input_) if expectation is None: c.insert(index, value) assert c == expected assert type(c._get_node(index)) == expected_node_type else: with raises(expectation): c.insert(index, value) validate_list_keys(c) @mark.parametrize( "lst,idx,value,expectation", [ (ListConfig(content=None), 0, 10, raises(TypeError)), (ListConfig(content="???"), 0, 10, raises(MissingMandatoryValue)), ], ) def test_insert_special_list(lst: Any, idx: Any, value: Any, expectation: Any) -> None: with expectation: lst.insert(idx, value) @mark.parametrize( "src, append, result", [ ([], [], []), ([1, 2], [3], [1, 2, 3]), ([1, 2], ("a", "b", "c"), [1, 2, "a", "b", "c"]), ], ) def test_extend(src: List[Any], append: List[Any], result: List[Any]) -> None: lst = OmegaConf.create(src) lst.extend(append) assert lst == result @mark.parametrize( "src, remove, result, expectation", [ ([10], 10, [], nullcontext()), ([], "oops", None, raises(ValueError)), ([0, dict(a="blah"), 10], dict(a="blah"), [0, 10], nullcontext()), ([1, 2, 1, 2], 2, [1, 1, 2], nullcontext()), ], ) def test_remove(src: List[Any], remove: Any, result: Any, expectation: Any) -> None: with expectation: lst = OmegaConf.create(src) assert isinstance(lst, ListConfig) lst.remove(remove) assert lst == result @mark.parametrize("src", [[], [1, 2, 3], [None, dict(foo="bar")]]) @mark.parametrize("num_clears", [1, 2]) def test_clear(src: List[Any], num_clears: int) -> None: lst = OmegaConf.create(src) for i in range(num_clears): lst.clear() assert lst == [] @mark.parametrize( "src, item, expected_index, expectation", [ ([], 20, -1, raises(ValueError)), ([10, 20], 10, 0, nullcontext()), ([10, 20], 20, 1, nullcontext()), ], ) def test_index( src: List[Any], item: Any, expected_index: int, expectation: Any ) -> None: with expectation: lst = OmegaConf.create(src) assert lst.index(item) == expected_index def test_index_with_range() -> None: lst = OmegaConf.create([10, 20, 30, 40, 50]) assert lst.index(x=30) == 2 assert lst.index(x=30, start=1) == 2 assert lst.index(x=30, start=1, end=3) == 2 with raises(ValueError): lst.index(x=30, start=3) with raises(ValueError): lst.index(x=30, end=2) @mark.parametrize( "src, item, count", [([], 10, 0), ([10], 10, 1), ([10, 2, 10], 10, 2), ([10, 2, 10], None, 0)], ) def test_count(src: List[Any], item: Any, count: int) -> None: lst = OmegaConf.create(src) assert lst.count(item) == count def test_sort() -> None: c = OmegaConf.create(["bbb", "aa", "c"]) c.sort() assert ["aa", "bbb", "c"] == c c.sort(reverse=True) assert ["c", "bbb", "aa"] == c c.sort(key=len) assert ["c", "aa", "bbb"] == c c.sort(key=len, reverse=True) assert ["bbb", "aa", "c"] == c def test_insert_throws_not_changing_list() -> None: c = OmegaConf.create([]) iv = IllegalType() with raises(ValueError): c.insert(0, iv) assert len(c) == 0 assert c == [] with flag_override(c, "allow_objects", True): c.insert(0, iv) assert c == [iv] def test_append_throws_not_changing_list() -> None: c = OmegaConf.create([]) iv = IllegalType() with raises(ValueError): c.append(iv) assert len(c) == 0 assert c == [] validate_list_keys(c) with flag_override(c, "allow_objects", True): c.append(iv) assert c == [iv] def test_hash() -> None: c1 = OmegaConf.create([10]) c2 = OmegaConf.create([10]) assert hash(c1) == hash(c2) c2[0] = 20 assert hash(c1) != hash(c2) @mark.parametrize( "in_list1, in_list2,in_expected", [ ([], [], []), ([1, 2], [3, 4], [1, 2, 3, 4]), (["x", 2, "${0}"], [5, 6, 7], ["x", 2, "x", 5, 6, 7]), ], ) class TestListAdd: def test_list_plus( self, in_list1: List[Any], in_list2: List[Any], in_expected: List[Any] ) -> None: list1 = OmegaConf.create(in_list1) list2 = OmegaConf.create(in_list2) expected = OmegaConf.create(in_expected) ret = list1 + list2 assert ret == expected def test_list_plus_eq( self, in_list1: List[Any], in_list2: List[Any], in_expected: List[Any] ) -> None: list1 = OmegaConf.create(in_list1) list2 = OmegaConf.create(in_list2) expected = OmegaConf.create(in_expected) list1 += list2 assert list1 == expected def test_deep_add() -> None: cfg = OmegaConf.create({"foo": [1, 2, "${bar}"], "bar": "xx"}) lst = cfg.foo + [10, 20] assert lst == [1, 2, "xx", 10, 20] def test_set_with_invalid_key() -> None: cfg = OmegaConf.create([1, 2, 3]) with raises(KeyValidationError): cfg["foo"] = 4 # type: ignore @mark.parametrize( "lst,idx,expected", [ (OmegaConf.create([1, 2]), 0, 1), (ListConfig(content=None), 0, TypeError), (ListConfig(content="???"), 0, MissingMandatoryValue), ], ) def test_getitem(lst: Any, idx: Any, expected: Any) -> None: if isinstance(expected, type): with raises(expected): lst.__getitem__(idx) else: assert lst.__getitem__(idx) == expected @mark.parametrize( "sli", [ (slice(None, None, None)), (slice(1, None, None)), (slice(-1, None, None)), (slice(None, 1, None)), (slice(None, -1, None)), (slice(None, None, 1)), (slice(None, None, -1)), (slice(1, None, -2)), (slice(None, 1, -2)), (slice(1, 3, -1)), (slice(3, 1, -1)), ], ) def test_getitem_slice(sli: slice) -> None: lst = [1, 2, 3] olst = OmegaConf.create([1, 2, 3]) expected = lst[sli.start : sli.stop : sli.step] assert olst.__getitem__(sli) == expected @mark.parametrize( "lst,idx,expected", [ (OmegaConf.create([1, 2]), 0, 1), (OmegaConf.create([1, 2]), "foo", KeyValidationError), (OmegaConf.create([1, "${2}"]), 1, InterpolationKeyError), (OmegaConf.create(["???", "${0}"]), 1, InterpolationToMissingValueError), (ListConfig(content=None), 0, TypeError), (ListConfig(content="???"), 0, MissingMandatoryValue), ], ) def test_get(lst: Any, idx: Any, expected: Any) -> None: if isinstance(expected, type): with raises(expected): lst.get(idx) else: assert lst.__getitem__(idx) == expected def test_getattr() -> None: src = ["a", "b", "c"] cfg = OmegaConf.create(src) with raises(AttributeError): getattr(cfg, "foo") assert getattr(cfg, "0") == src[0] assert getattr(cfg, "1") == src[1] assert getattr(cfg, "2") == src[2] def test_shallow_copy() -> None: cfg = OmegaConf.create([1, 2]) c = cfg.copy() assert cfg == c cfg[0] = 42 assert cfg[0] == 42 assert c[0] == 1 def test_shallow_copy_missing() -> None: cfg = ListConfig(content=MISSING) c = cfg.copy() c._set_value([1]) assert c[0] == 1 assert cfg._is_missing() def test_shallow_copy_none() -> None: cfg = ListConfig(content=None) c = cfg.copy() c._set_value([1]) assert c[0] == 1 assert cfg._is_none() @mark.parametrize("flag", ["struct", "readonly"]) def test_listconfig_creation_with_parent_flag(flag: str) -> None: parent = OmegaConf.create([]) parent._set_flag(flag, True) d = [1, 2, 3] cfg = ListConfig(d, parent=parent) assert cfg == d ```
{ "source": "JierunChen/TVConv", "score": 2 }
#### File: od_oc_segmentation/dataloaders/fundus_dataloader.py ```python from __future__ import print_function, division import os from PIL import Image import numpy as np from torch.utils.data import Dataset from od_oc_segmentation.utils.Utils import Path from glob import glob import random import copy class FundusSegmentation(Dataset): """ Fundus segmentation dataset including 5 domain dataset one for test others for training """ def __init__(self, base_dir=Path.db_root_dir('fundus'), phase='train', splitid=[2, 3, 4], transform=None, state='train' ): """ :param base_dir: path to VOC dataset directory :param split: train/val :param transform: transform to apply """ # super().__init__() self.state = state self._base_dir = base_dir self.image_list = [] self.phase = phase self.image_pool = {'DGS':[], 'REF':[], 'RIM':[], 'REF_val':[]} self.label_pool = {'DGS':[], 'REF':[], 'RIM':[], 'REF_val':[]} self.img_name_pool = {'DGS':[], 'REF':[], 'RIM':[], 'REF_val':[]} self.flags_DGS = ['gd', 'nd'] self.flags_REF = ['g', 'n'] self.flags_RIM = ['G', 'N', 'S'] self.flags_REF_val = ['V'] self.splitid = splitid SEED = 1212 random.seed(SEED) for id in splitid: self._image_dir = os.path.join(self._base_dir, 'Domain'+str(id), phase, 'ROIs/image/') print('==> Loading {} data from: {}'.format(phase, self._image_dir)) imagelist = glob(self._image_dir + '*.png') for image_path in imagelist: gt_path = image_path.replace('image', 'mask') self.image_list.append({'image': image_path, 'label': gt_path}) self.transform = transform self._read_img_into_memory() for key in self.image_pool: if len(self.image_pool[key]) < 1: del self.image_pool[key] del self.label_pool[key] del self.img_name_pool[key] break for key in self.image_pool: if len(self.image_pool[key]) < 1: del self.image_pool[key] del self.label_pool[key] del self.img_name_pool[key] break for key in self.image_pool: if len(self.image_pool[key]) < 1: del self.image_pool[key] del self.label_pool[key] del self.img_name_pool[key] break # Display stats print('-----Total number of images in {}: {:d}'.format(phase, len(self.image_list))) def __len__(self): max = -1 for key in self.image_pool: if len(self.image_pool[key])>max: max = len(self.image_pool[key]) return max def __getitem__(self, index): if self.phase != 'test': sample = [] for key in self.image_pool: domain_code = list(self.image_pool.keys()).index(key) index = np.random.choice(len(self.image_pool[key]), 1)[0] _img = self.image_pool[key][index] _target = self.label_pool[key][index] _img_name = self.img_name_pool[key][index] anco_sample = {'image': _img, 'label': _target, 'img_name': _img_name, 'dc': domain_code} if self.transform is not None: anco_sample = self.transform(anco_sample) sample.append(anco_sample) else: sample = [] for key in self.image_pool: domain_code = list(self.image_pool.keys()).index(key) _img = self.image_pool[key][index] _target = self.label_pool[key][index] _img_name = self.img_name_pool[key][index] anco_sample = {'image': _img, 'label': _target, 'img_name': _img_name, 'dc': domain_code} if self.transform is not None: anco_sample = self.transform(anco_sample) sample=anco_sample return sample def _read_img_into_memory(self): img_num = len(self.image_list) for index in range(img_num): basename = os.path.basename(self.image_list[index]['image']) Flag = "NULL" if basename[0:2] in self.flags_DGS: Flag = 'DGS' elif basename[0] in self.flags_REF: Flag = 'REF' elif basename[0] in self.flags_RIM: Flag = 'RIM' elif basename[0] in self.flags_REF_val: Flag = 'REF_val' else: print("[ERROR:] Unknown dataset!") return 0 if self.splitid[0] == '4': # self.image_pool[Flag].append(Image.open(self.image_list[index]['image']).convert('RGB').resize((256, 256), Image.LANCZOS)) self.image_pool[Flag].append(Image.open(self.image_list[index]['image']).convert('RGB').crop((144, 144, 144+512, 144+512)).resize((256, 256), Image.LANCZOS)) _target = np.asarray(Image.open(self.image_list[index]['label']).convert('L')) _target = _target[144:144+512, 144:144+512] _target = Image.fromarray(_target) else: self.image_pool[Flag].append( Image.open(self.image_list[index]['image']).convert('RGB').resize((256, 256), Image.LANCZOS)) # self.image_pool[Flag].append(Image.open(self.image_list[index]['image']).convert('RGB')) _target = Image.open(self.image_list[index]['label']) if _target.mode is 'RGB': _target = _target.convert('L') if self.state != 'prediction': _target = _target.resize((256, 256)) # print(_target.size) # print(_target.mode) self.label_pool[Flag].append(_target) # if self.split[0:4] in 'test': _img_name = self.image_list[index]['image'].split('/')[-1] self.img_name_pool[Flag].append(_img_name) def __str__(self): # return 'Fundus(phase=' + self.phase+str(args.datasetTest[0]) + ')' return 'Fundus(phase=' + self.phase + ')' if __name__ == '__main__': import custom_transforms as tr from .utils import decode_segmap from torch.utils.data import DataLoader from torchvision import transforms import matplotlib.pyplot as plt composed_transforms_tr = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomSized(512), tr.RandomRotate(15), tr.ToTensor()]) voc_train = FundusSegmentation(split='train1', transform=composed_transforms_tr) dataloader = DataLoader(voc_train, batch_size=5, shuffle=True, num_workers=2) for ii, sample in enumerate(dataloader): for jj in range(sample["image"].size()[0]): img = sample['image'].numpy() gt = sample['label'].numpy() tmp = np.array(gt[jj]).astype(np.uint8) segmap = tmp img_tmp = np.transpose(img[jj], axes=[1, 2, 0]).astype(np.uint8) plt.figure() plt.title('display') plt.subplot(211) plt.imshow(img_tmp) plt.subplot(212) plt.imshow(segmap) break plt.show(block=True) ``` #### File: od_oc_segmentation/networks/baseline.py ```python from .baseline_utils import IntermediateLayerGetter from .baseline_deeplab import DeepLabHead, DeepLabHeadV3Plus, DeepLabV3 from .baseline_mobilenetv2 import mobilenet_v2 def _segm_mobilenet(atom, name, backbone_name, num_classes, output_stride, pretrained_backbone, **kwargs): if output_stride == 8: aspp_dilate = [12, 24, 36] else: aspp_dilate = [6, 12, 18] backbone = mobilenet_v2(pretrained=pretrained_backbone, output_stride=output_stride) # rename layers backbone.low_level_features = backbone.features[0:4] backbone.high_level_features = backbone.features[4:-1] backbone.features = None backbone.classifier = None inplanes = 320 low_level_planes = 24 if name == 'deeplabv3plus': return_layers = {'high_level_features': 'out', 'low_level_features': 'low_level'} classifier = DeepLabHeadV3Plus(atom, inplanes, low_level_planes, num_classes, aspp_dilate, **kwargs) elif name == 'deeplabv3': return_layers = {'high_level_features': 'out'} classifier = DeepLabHead(inplanes, num_classes, aspp_dilate, **kwargs) backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) model = DeepLabV3(backbone, classifier) return model def _load_model(atom, arch_type, backbone, num_classes, output_stride, pretrained_backbone, **kwargs): if backbone == 'mobilenetv2': model = _segm_mobilenet(atom, arch_type, backbone, num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone, **kwargs) else: raise NotImplementedError return model def deeplabv3plus_mobilenet(atom, num_classes=21, output_stride=8, pretrained_backbone=True, **kwargs): """Constructs a DeepLabV3+ model with a MobileNetv2 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model(atom, 'deeplabv3plus', 'mobilenetv2', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone, **kwargs) ```
{ "source": "JieShenAI/jshen", "score": 3 }
#### File: src/jspider/JProxy.py ```python import pickle import random from dataclasses import dataclass, field import datetime from net import send_request import requests import logging from JTime import now from pathlib import Path def format_proxy(ip: str, port: str) -> dict: ip_port = "%s:%s" % (ip.strip(), port.strip()) proxy = { "http://": ip_port, "https://": ip_port } return proxy def is_alive(ip, port): """Check if a proxy is alive or not @return: True if alive, False otherwise 很费时间,评价某个代理是否可用的标准是 timeout超时 """ proxy = format_proxy(ip, port) try: requests.get('http://www.baidu.com', proxies=proxy, timeout=3) return True except: return False @dataclass(order=True) class JProxy: """ 每天上午,9点更新代理池 对代理池,构建一个类: * ip * port * 使用的次数 功能: * 在某个时间段,专门去检查死亡的代理是否还活着 * 在爬取之前,再检查某个代理是否活着 * get_proxy方法返回一个活着的ip。 """ # ip: str = field(default=None, compare=False) port: str = field(default=None, compare=False) cnt: int = field(default=0, compare=True) born: datetime = field(default=None, compare=False) def get_proxy_66ip(url_, proxy_impl): """ 66代理网页,某一页代理ip的爬取 http://www.66ip.cn/index.html """ soup = send_request(url_) center_tag = soup.select('div[align="center"]')[1] tr_tag = center_tag.find_all('tr') for tr in tr_tag[1::]: tmp = tr.find_all('td')[:2:] ip = tmp[0].string.strip() port = tmp[1].string.strip() if is_alive(ip, port): proxy_impl.add(ip, JProxy(port, 0, now)) def get_proxys(proxy_impl, end_page): """ 66代理网页,代理ip的爬取 这个网站可能会挂,或者网页格式会变化,若出错try,except把错误抛出去 """ _66ip = "http://www.66ip.cn/index.html" try: get_proxy_66ip(_66ip, proxy_impl) for p in range(2, end_page + 1): url_ = f"http://www.66ip.cn/{p}.html" get_proxy_66ip(url_, proxy_impl) except Exception as e: logging.error(e.args) class ProxyImpl: def __init__(self, grave_obj_path: str): self.__item: dict[str:JProxy] = dict() self.__grave_obj_path = grave_obj_path self.grave: ProxyGrave = load_proxy_grave(grave_obj_path) def __getitem__(self, ip): return self.__item.get(ip) def __iter__(self): return self.__item def add(self, ip: str, proxy_: JProxy) -> None: # 已有的代理,不作处理 if ip in self.__item: return # 增加新的代理,没有比对grave中死掉的代理 self.__item[ip] = proxy_ def get_random_proxy(self) -> dict: """ 随机获取某个代理, 待处理:如果代理的列表是空,这个异常的处理 """ ip = random.choice(list(self.__item.keys())) return self.get(ip) def get(self, ip) -> dict: """ 通过ip获取某个指定的代理 """ tmp: JProxy = self.__item[ip] return format_proxy(ip, tmp.port) def push_grave(self, ip): """ 由于某个代理加入时,不会在grave中检查是否已经存在; 故,当某个这个代理死亡的时候,需要在grave中检测。若端口不一样,用新端口覆盖掉旧端口 字典删除 """ # 删除的元素必须存在 if ip in self.__item.keys(): self.grave.receive(ip, self.__item[ip]) # 立即保存到本地 pickle.dump(self.grave, open(self.__grave_obj_path, 'wb')) del self.__item[ip] def __repr__(self): return self.__item.__repr__() def __len__(self): return len(self.__item) class ProxyGrave: """ 没有实质上的用处,只是记录使用过的代理和次数 对于死亡的代理,会立即从变量中移除,故需要立刻写入grave文件中,避免程序崩溃造成的数据丢失 未来功能: 从grave中取出代理,有的代理在未来可能可以重新使用 """ def __init__(self): self.__items: dict[str:JProxy] = dict() def __repr__(self): return self.__items.__repr__() def receive(self, ip: str, jp: JProxy): if ip not in self.__items: self.__items[ip] = jp else: # 有的代理可能会更换端口 self.__items[ip].port = jp.port # 代理的请求次数加起来 self.__items[ip].cnt += jp.cnt def load_proxy_grave(obj_path: str) -> ProxyGrave: """ 若没有这个文件,那直接创建,返回一个空对象 """ p = Path(obj_path) if not p.exists(): p.parent.mkdir(parents=True, exist_ok=True) p.touch() return ProxyGrave() try: return pickle.load(open(p, 'rb')) except: return ProxyGrave() if __name__ == '__main__': grave_obj_path = r"D:\github\work\spider\gov_bx\code\obj\grave.obj" proxy_impl = ProxyImpl(grave_obj_path) get_proxys(proxy_impl, 5) print(proxy_impl) ```
{ "source": "JieShenAI/leetcode", "score": 3 }
#### File: leetcode/jshen/leetcode.py ```python class leetcode_test(): def __init__(self, func): self.func = func self.data_set = [] def add_parameter(self, result, **kwargs): self.data_set.append((result, kwargs)) def test(self): for (result, kwargs) in self.data_set: ans = self.func(**kwargs) if result == ans: continue else: print(f"error: input: {kwargs}") print(f"expect: {result}, but get: {ans}") if __name__ == '__main__': pass ``` #### File: leetcode/jshen/spider.py ```python from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains import time import os def sleep(t=0.3): time.sleep(t) class jselenium: def __init__(self, driver_path): self.driver = webdriver.Chrome(driver_path) def hover_by_xpath(self, xpath_str): element_to_hover_over = self.driver.find_element_by_xpath(xpath_str) ActionChains(self.driver).move_to_element(element_to_hover_over).perform() sleep() def hover_by_css(self, css_selector): element_to_hover_over = self.driver.find_element_by_css_selector(css_selector) ActionChains(self.driver).move_to_element(element_to_hover_over).perform() sleep() def click_by_xpath(self, xpath_str): self.driver.find_element_by_xpath(xpath_str).click() sleep() def main_windows_scroll(self, y, x=0): js = f"window.scrollTo({x}, {y})" self.driver.execute_script(js) def windows_scroll_by_class(self, class_name, id, offset): """ 把省窗口,滚动条下滑到offset :param offset: :return: """ js = f'document.getElementsByClassName("{class_name}")[{id}].scrollTop={offset}' self.driver.execute_script(js) sleep() def __del__(self): # self.driver.quit(),无法关闭chromedriver,会导致内存泄露。即使程序结束,chromedriver也会一直占用内存; # bug说明: https://github.com/SeleniumHQ/selenium/issues/8571 # pass sleep(2) try: self.driver.quit() except: # dos命令杀死chromedriver进程即可 os.system("taskkill /F /im chromedriver.exe") ```
{ "source": "jieshenboy/HeadTogetherOfKOG", "score": 3 }
#### File: com/getPictures/getHeroHeader.py ```python import urllib.request import json import os def getHeroHeader(): response = urllib.request.urlopen("http://pvp.qq.com/web201605/js/herolist.json") hero_json = json.loads(response.read()) hero_num = len(hero_json) # print(hero_num) save_dir = './heroavatar/' if not os.path.exists(save_dir): os.mkdir(save_dir) for i in range(hero_num): # avatar_name = hero_json[i]['ename'] save_file_name = save_dir + hero_json[i]['cname'] + '-' + str(hero_json[i]['ename']) + '.jpg' # print(save_file_name) avatar_url = 'http://game.gtimg.cn/images/yxzj/img201606/heroimg/' + str(hero_json[i]['ename']) + '/' + str(hero_json[i]['ename']) + '.jpg' # print(avatar_url) if not os.path.exists(save_file_name): urllib.request.urlretrieve(avatar_url, save_file_name) ``` #### File: com/joinPictures/joinHeroHeader.py ```python import math import PIL.Image as Image import os #打开拼接画板 def joinPictures(): ls = os.listdir('D:/heroavatar') each_size = int(math.sqrt(float(640*640)/len(ls)))#每个图像的面积像素 lines = int(640/each_size)#每个图像的边长像素 image = Image.new('RGBA', (640, 640)) x = 0 y = 0 for i in range(0,len(ls)): try: img = Image.open('./heroavatar'+'/'+ls[i]) except IOError: print("Error") else: img = img.resize((each_size, each_size), Image.ANTIALIAS) image.paste(img, (x * each_size, y * each_size)) x += 1 if x == lines: x = 0 y += 1 image.save('./heroavatar' + "/" + "all.png") ```
{ "source": "jieshenboy/jeckstockpick", "score": 3 }
#### File: jeckstockpick/lMechanize/getHeaders.py ```python def getHeaders(fileName): headers = [] headerList = ['User-Agent','Cookie'] with open(fileName, 'r') as fp: for line in fp.readlines(): name, value = line.split(':', 1) if name in headerList: headers.append((name.strip(), value.strip())) return headers if __name__=="__main__": headers = getHeaders('headersRaw.txt') print(headers) ``` #### File: jeckstockpick/lsys/testSys.py ```python import sys class ShowSysModule(object): """ 这个类用于展示python标准库中的sys模块 """ def __init__(self): print(u'sys模块最常用的功能是获取程序的参数') self.getArg() print(u'其次就是获取当前系统的平台') self.getOS() def getArg(self): print(u'开始获取参数的个数') print(u'当前参数有 %d 个' %len(sys.argv)) print(u'这些参数分别是 %s' %sys.argv) def getOS(self): print(u'当前系统为:%s' %sys.platform) if __name__=="__main__": ssm = ShowSysModule() ``` #### File: qiushi/middlewares/customMiddlewares.py ```python from scrapy.contrib.downloadermiddleware.useragent import UserAgentMiddleware class CustomUserAgent(UserAgentMiddleware): def process_request(self, request, spider): ua = 'Mozilla/5.0 (Windows NT 6.1;WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/563.3' request.headers.setdefault('User-Agent', ua) class CustomProxy(object): def process_request(self, request, spider): request.meta['proxy'] = '172.16.58.3:8123' ``` #### File: weather/weather/pipelines.py ```python import time import os.path import urllib2 class WeatherPipeline(object): def process_item(self, item, spider): today = time.strftime('%Y-%m-%d', time.localtime()) fileName = today+'.txt' with open(fileName, 'a') as fp: fp.write(item['cityDate'].encode('utf8') + '\t') fp.write(item['week'].encode('utf8')+ '\t') imgName = os.path.basename(item['img']) fp.write(imgName, '\t') if os.path.exists(imgName): pass else: with open(imgName, 'wb') as fp: response = urllib2.urlopen(item['img']) fp.write(response.read()) fp.write(item['weather'].encode('utf8') + '\t') fp.write(item['wind'].encode('utf8') + '\n\n') time.sleep(1) return item ```
{ "source": "Jie-su/WGAN-GP", "score": 3 }
#### File: WGAN-GP/model/wgan_64.py ```python import torch import torch.nn as nn from common_net import LeakyReLUINSConv2d, ReLUBNNConvTranspose2d from configuration import * # Generator for 64x64 input size image class Generator(nn.Module): def __init__(self, hidden_dim=BASE_CHANNAL_DIM, noise_size=100): super(Generator, self).__init__() self.hidden_dim = hidden_dim self.noise_size = noise_size # Project random noise to input size self.projector = nn.Sequential( nn.Linear(self.noise_size, 4 * 4 * 8 * self.hidden_dim), nn.BatchNorm1d(4 * 4 * 8 * self.hidden_dim), nn.ReLU(True), ) # Deconvolution block self.deconv = nn.Sequential( # 128 * 8 x 4 x 4 -> 128 * 4 x 8 x 8 ReLUBNNConvTranspose2d(8 * self.hidden_dim, 4 * self.hidden_dim, kernel_size=5, stride=2, padding=2), # 128 * 4 x 8 x 8 -> 128 * 2 x 16 x 16 ReLUBNNConvTranspose2d(4 * self.hidden_dim, 2 * self.hidden_dim, kernel_size=5, stride=2, padding=2), # 128 * 2 x 16 x 16 -> 128 x 32 x 32 ReLUBNNConvTranspose2d(2 * self.hidden_dim, 1 * self.hidden_dim, kernel_size=5, stride=2, padding=2), # 128 x 32 x 32 -> 3 x 64 x 64 nn.ConvTranspose2d(self.hidden_dim, 3, 2, stride=2), nn.Tanh(), ) def forward(self, input): # Feedforward process output = self.projector(input) output = output.view(-1, 8 * self.hidden_dim, 4, 4) output = self.deconv(output) return output # Discriminator for 64x64 input images class Discriminator(nn.Module): def __init__(self, hidden_dim=BASE_CHANNAL_DIM, input_channel=3): super(Discriminator, self).__init__() self.hidden_dim = hidden_dim self.input_channel = input_channel # Convolutional block self.conv_block = nn.Sequential( # 3 x 64 x 64 -> 128 x 32 x 32 nn.Conv2d(self.input_channel, self.hidden_dim, 5, 2, padding=2), nn.LeakyReLU(0.2), # 128 x 32 x 32 -> 256 x 16 x 16 LeakyReLUINSConv2d(self.hidden_dim, 2 * self.hidden_dim, 5, 2, padding=2), # 256 x 16 x 16 -> 512 x 8 x 8 LeakyReLUINSConv2d(2 * self.hidden_dim, 4 * self.hidden_dim, 5, 2, padding=2), # 512 x 8 x 8 -> 1024 x 4 x 4 LeakyReLUINSConv2d(4 * self.hidden_dim, 8 * self.hidden_dim, 5, 2, padding=2), # 1024 x 4 x 4 -> 1 x 1 x 1 nn.Conv2d(8 * self.hidden_dim, 1, 4, 1, padding=0), ) def forward(self, input): output = self.conv_block(input) return output.view(-1) ``` #### File: Jie-su/WGAN-GP/utils.py ```python import torch import torch.nn as nn import time import os def time2str(): time_id = str(int(time.time())) return time_id def build_dirs(path): try: os.makedirs(path) except OSError as e: print(e) ``` #### File: Jie-su/WGAN-GP/wgan_gp_train.py ```python from model.wgan_64 import Discriminator, Generator import configuration as conf from utils import build_dirs, time2str from init import gaussian_weights_init import torch import torchvision from torchvision import transforms from torch.autograd import Variable from torch.autograd import grad import os from os.path import join import argparse import tensorboardX # Parameter setting parser = argparse.ArgumentParser(description='WGAN-GP Training') parser.add_argument('--workers', default=0, type=int, metavar='N', help='number of data loading workers (default: 0)') parser.add_argument('--epochs', default=conf.NUM_EPOCHS, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('-b', '--batch-size', default=conf.TRAIN_BATCH_SIZE, type=int, metavar='N', help='mini-batch size (default: {})'.format(conf.TRAIN_BATCH_SIZE), dest='batch_size') parser.add_argument('--lr', '--learning-rate', default=conf.LEARNING_RATE, type=float, metavar='LR', help='initial learning rate', dest='learning_rate') parser.add_argument('--mi', '--max-iterations', default=conf.MAX_ITERATIONS, type=int, metavar='MI', help='Maximum iteration number', dest='max_iterations') parser.add_argument('--resume', default=0, type=int, metavar='check', help='0 set as no resume and 1 set as resume') parser.add_argument('--n_critic', default=5, type=int, metavar='NC', help='number of critic training', dest='number_critic') parser.add_argument('--gp-lambda', default=10, type=int, metavar='gp', help='weight of gradient penalty', dest='gp_lambda') # Main control script def main(): args = parser.parse_args() # initialize global path global_path = os.path.dirname(os.path.realpath(__file__)) conf.global_path = global_path print('the global path: '.format(global_path)) # configure the logging path. conf.time_id = time2str() conf.logging_path = join(global_path, './logs', conf.time_id) conf.writting_path = join(conf.logging_path, './logging') # configure checkpoint for images and models. conf.image_directory = join( conf.logging_path, conf.IMAGE_SAVING_DIRECTORY) conf.model_directory = join( conf.logging_path, conf.MODEL_SAVEING_DIRECTORY) build_dirs(conf.image_directory) build_dirs(conf.model_directory) build_dirs(conf.writting_path) conf.writer = tensorboardX.SummaryWriter(conf.writting_path) # Setting parameters conf.max_epochs = args.epochs print('number epochs: {}'.format(conf.max_epochs)) conf.num_data_workers = args.workers print('number of workers: {}'.format(conf.num_data_workers)) conf.lr = args.learning_rate print('learning rate: {}'.format(conf.lr)) conf.batch_size = args.batch_size print('batch size: {}'.format(conf.batch_size)) conf.max_iterations = args.max_iterations print('max number of iterations: {}'.format(conf.max_iterations)) conf.n_critic = args.number_critic print('number of critic training: {}'.format(conf.n_critic)) conf.gp_lambda = args.gp_lambda print('gradient penalty weight: {}'.format(conf.gp_lambda)) train(conf) # Dataset loading def loading_data(conf): print("Loading dataset....") # Dataset = AWA_Dataset(join(conf.global_path, conf.DATA_ROOT)) transformation = torchvision.transforms.Compose( [transforms.Resize(64), transforms.ToTensor(), transforms.Normalize(mean=[0.5] * 3, std=[0.5] * 3)]) Dataset = torchvision.datasets.CIFAR10('./dataset/cifar10', train=True, transform=transformation, download=True) train_loader = torch.utils.data.DataLoader( dataset=Dataset, batch_size=conf.batch_size, shuffle=True, num_workers=conf.num_data_workers) print("Dataset length: {}".format(len(Dataset))) conf.data_set_len = len(Dataset) return train_loader # Training initialization(Model Initialization) def init_models(conf): # Setup Models print("Setup Models ......") Generator_Model = Generator() Discriminator_Model = Discriminator() # Model weight initialization print("Weight initialization......") Generator_Model.apply(gaussian_weights_init) Discriminator_Model.apply(gaussian_weights_init) model = Generator_Model, Discriminator_Model # Uploading the model into GPU if torch.cuda.is_available(): Generator_Model.cuda() Discriminator_Model.cuda() # Setup the optimizers print("Optimization Setup.......") GeneratorOptimizor = torch.optim.Adam( Generator_Model.parameters(), lr=conf.lr, betas=(0.5, 0.999)) DiscriminatorOptimizor = torch.optim.Adam( Discriminator_Model.parameters(), lr=conf.lr, betas=(0.5, 0.999)) optimizer = GeneratorOptimizor, DiscriminatorOptimizor # Fixing noise fix_noise = torch.randn(conf.batch_size, conf.NOISE_SIZE) return model, optimizer, fix_noise def train(conf): # Loading datasets train_loader = loading_data(conf) # Initialize Model model, optimizer, fix_noise = init_models(conf) Generator_Model, Discriminator_Model = model GeneratorOptimizor, DiscriminatorOptimizor = optimizer conf.iterations = 0 # Begin training Process print("Begin Training Process........\n") for epoch in range(0, conf.max_epochs): Discriminator_Model.train() for it, (image, _) in enumerate(train_loader): Generator_Model.train() if image.size(0) != conf.batch_size: continue conf.iterations += 1 if conf.iterations >= conf.max_iterations: return stop_flag = train_one_iteration(conf, image, Generator_Model, GeneratorOptimizor, Discriminator_Model, DiscriminatorOptimizor, fix_noise) if (it + 1) % 1 == 0: print("Epoch: (%3d) (%5d/%5d)" % (epoch, it + 1, len(train_loader))) if stop_flag: return def train_one_iteration(conf, image, Generator_Model, GeneratorOptimizor, Discriminator_Model, DiscriminatorOptimizor, fix_noise): # Copy data to the gpu if torch.cuda.is_available(): image = Variable(image.cuda()) fix_noise = Variable(fix_noise.cuda()) else: image = Variable(image) fix_noise = Variable(fix_noise) # Discriminator Update dis_update(conf, Generator_Model, Discriminator_Model, DiscriminatorOptimizor, image) # Generator Update if conf.iterations % conf.n_critic == 0: gen_update(conf, Generator_Model, Discriminator_Model, GeneratorOptimizor, DiscriminatorOptimizor) if (conf.iterations + 1) % 100 == 0: Generator_Model.eval() gen_image = Generator_Model(fix_noise) # Save the output images img_name = conf.image_directory + "/gen_image_" + str(conf.iterations + 1) + ".jpg" torchvision.utils.save_image((gen_image.data + 1) / 2, img_name) # # Save the input images # img_name = conf.image_directory + "/input_image.jpg" # torchvision.utils.save_image((image.data), img_name) # Generator update def dis_update(conf, Generator_Model, Discriminator_Model, DiscriminatorOptimizor, image): # Discriminator Update function DiscriminatorOptimizor.zero_grad() # Generate random noise noise = torch.randn(conf.batch_size, conf.NOISE_SIZE) if torch.cuda.is_available(): noise = Variable(noise.cuda()) else: noise = Variable(noise) # Get output from Generator output = Generator_Model(noise) # Feed forward Discriminator fake_image_output = Discriminator_Model(output.detach()) real_image_output = Discriminator_Model(image) # Calculate Wasserstein-1 Distance w_distance = real_image_output.mean() - fake_image_output.mean() # Calculate Gradient Penalty g_penalty = gradient_penalty(image.data, output.data, Discriminator_Model) dis_loss = -w_distance + g_penalty * conf.gp_lambda # loss backprobagation dis_loss.backward(retain_graph=True) DiscriminatorOptimizor.step() conf.writer.add_scalar('D/wd', w_distance.data.cpu().numpy(), global_step=conf.iterations) conf.writer.add_scalar('D/gp', g_penalty.data.cpu().numpy(), global_step=conf.iterations) conf.writer.add_scalar('D/total', w_distance.data.cpu().numpy() + g_penalty.data.cpu().numpy(), global_step=conf.iterations) # Generator update def gen_update(conf, Generator_Model, Discriminator_Model, GeneratorOptimizor, DiscriminatorOptimizor): # Generator Update function # Optimizor setup GeneratorOptimizor.zero_grad() DiscriminatorOptimizor.zero_grad() # Generate random noise noise = torch.randn(conf.batch_size, conf.NOISE_SIZE) if torch.cuda.is_available(): noise = Variable(noise.cuda()) else: noise = Variable(noise) # Get output from Generator output = Generator_Model(noise) # Feed Forward to Discriminator fake_image_output = Discriminator_Model(output) # Generator loss Calculation gen_loss = -fake_image_output.mean() # Loss backprobagation gen_loss.backward() GeneratorOptimizor.step() conf.writer.add_scalars('G', {"g_loss": gen_loss.data.cpu().numpy()}, global_step=conf.iterations) # Gradient Penalty Calculation def gradient_penalty(x, y, f): # interpolation shape = [x.size(0)] + [1] * (x.dim() - 1) if torch.cuda.is_available(): alpha = torch.rand(shape).cuda() else: alpha = torch.rand(shape) z = x + alpha * (y - x) # gradient penalty if torch.cuda.is_available(): z = Variable(z, requires_grad=True).cuda() else: z = Variable(z, requires_grad=True) o = f(z) if torch.cuda.is_available(): g = grad(o, z, grad_outputs=torch.ones(o.size()).cuda(), create_graph=True)[0].view(z.size(0), -1) else: g = grad(o, z, grad_outputs=torch.ones(o.size()), create_graph=True)[0].view(z.size(0), -1) gp = ((g.norm(p=2, dim=1) - 1) ** 2).mean() return gp # Main Running control if __name__ == '__main__': main() ```
{ "source": "jietang1750/GuessWords", "score": 4 }
#### File: jietang1750/GuessWords/quadWords.py ```python import json def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. # Press the green button in the gutter to run the script. if __name__ == '__main__': print_hi('PyCharm') # See PyCharm help at https://www.jetbrains.com/help/pycharm/ def replaceCharacterInString(strWord,strChar,n): tmpWord = '' if n <= len(strWord) and len(strChar) == 1: for i in range(0,len(strWord)): if i != n - 1: tmpWord = tmpWord + strWord[i] else: tmpWord = tmpWord + strChar elif len(strChar) == 1: tmpWord =word + strChar else: tmpWord = word + strChar return(tmpWord) def isWord(word,dictionary): if word in dictionary[word[0]]: return True else: return False def clue(pool,confirmedChars,dictionary): word = '' wordList = [] i = 0 for i0 in range(0, len(pool[0])): word0 = pool[0][i0] # print("1",i1,word) for i1 in range(0, len(pool[1])): word1 = word0 + pool[1][i1] # print("2", i2, word) for i2 in range(0, len(pool[2])): word2 = word1 + pool[2][i2] # print("3", i3, word) for i3 in range(0, len(pool[3])): word3 = word2 + pool[3][i3] # print("4", i4, word) for i4 in range(0, len(pool[4])): word4 = word3 + pool[4][i4] word = word4 bConfirm = True for k in range(0, len(confirmedChars)): tmpChar = confirmedChars[k] if (tmpChar not in word) and bConfirm: bConfirm = False # print("no", i1, i2, i3, i4, i5, word) break if bConfirm: bWord = isWord(word, dict) # print("yes", i1, i2, i3, i4, i5, word) # print(wordList,word) if bWord: i += 1 wordList.append(word) return(wordList) def list2dict(wordList): wordDict = {} for word in wordList: if word[0] not in wordDict.keys(): wordDict[word[0]] = [] wordDict[word[0]].append(word) return wordDict def formPool(whiteChar,yellowChar,greenChar): pool=[] conChar = '' yPool = decompChar(yellowChar) gPool = decompChar(greenChar) # print ("gPool",gPool) # print ("yPool",yPool) for k in range (1,6): tmpPool1 = whiteChar for n in yPool.keys(): for tmpChar in yPool[n]: if tmpChar not in tmpPool1: tmpPool1 = tmpPool1 + tmpChar if tmpChar not in conChar: conChar = conChar + tmpChar for n in gPool.keys(): for tmpChar in gPool[n]: if tmpChar not in tmpPool1: tmpPool1 = tmpPool1 + tmpChar if tmpChar not in conChar: conChar = conChar + tmpChar if k in gPool.keys(): tmpPool1 = gPool[k] if tmpPool1 not in conChar: conChar = conChar + tmpPool1 if k in yPool.keys(): for tmpChar in yPool[k]: if tmpChar in tmpPool1: tmpPool2 = tmpPool1.replace(tmpChar,'') tmpPool1 = tmpPool2 pool.append(tmpPool1) return (pool,conChar) def decompChar(strColChar): colChar ={} for i in range(1,len(strColChar)+1): tmpChar = strColChar[i-1] if tmpChar.isnumeric(): nCol = int(tmpChar) #print (nCol) if nCol not in colChar.keys(): colChar[nCol] = '' # print("numb", tmpChar) else: if tmpChar not in colChar[nCol]: colChar[nCol] = colChar[nCol] + tmpChar # print("alpha", tmpChar) return (colChar) def removeCharFromWChar(wChar,word): tmpPool = wChar for tmpChar in word: if tmpChar in tmpPool: tmpPool1 = tmpPool.replace(tmpChar,'') tmpPool = tmpPool1 # print(tmpChar,tmpPool,tmpPool1) return(tmpPool) def scoreWord(word,wChar): tmpWord = '' score = 0 for tmpChar in word: if tmpChar not in tmpWord: tmpWord = tmpWord + tmpChar if tmpChar in wChar: score += 1 if tmpChar in 'etaionshr': score += 1 return score def inChar (msg,myChar): tmpChar = input(msg) tmpLen = len(tmpChar) if tmpLen > 0: if tmpChar[0].isnumeric() or tmpChar[0] == 'z': if tmpChar[0:2] == 'zz': if tmpLen > 2: myChar = tmpChar[2-len(tmpChar):] else: myChar = '' else: myChar = myChar + tmpChar return (myChar) else: return(myChar) else: return(myChar) wCharDefault = 'qypfgjzxbn' yCharDefault = '2u5s' gCharDefault = '1s4l5k' filename = "dictionary5.json" with open(filename, 'r') as file: dict = json.load(file) file.close n = int(input("Your Quordle Round\n")) wChar = 'abcdefghijklmnopqrstuvwxyz' if n > 1: wChar = input("White Keys, like: "+ wChar +"\n") yChar = {} gChar = {} pool = {} confirmedChars = {} for nQuard in range (1,5): yChar[nQuard] = '' gChar[nQuard] = '' bSuccess = {} for nQuard in range(1, 5): bSuccess[nQuard] = False for k in range (n,10): newList = [] for nQuard in range (1,5): if not bSuccess[nQuard]: if k > 1: msg = str(nQuard) + ", Yellow Tiles, like, " + yChar[nQuard] + ":" yCharIn = inChar(msg, yChar[nQuard]) msg = str(nQuard) + ", Green Tiles, like, " + gChar[nQuard] + ":" gCharIn = inChar(msg, gChar[nQuard]) else: yCharIn = '' gCharIn = '' yChar[nQuard] = yCharIn gChar[nQuard] = gCharIn #print('yChar', yChar[nQuard]) #print('gChar', gChar[nQuard]) #if wChar == '': # wChar = wCharDefault #if yChar == '': # yChar = yCharDefault #if gChar == '': # gChar = gCharDefault (pool[nQuard],confirmedChars[nQuard]) = formPool(wChar,yChar[nQuard],gChar[nQuard]) # print(k, nQuard,pool[nQuard]) # print(k, nQuard, confirmedChars[nQuard]) for nQuard in range(1, 5): if not bSuccess[nQuard]: if k > 1: # print(pool[nQuard]) # print(confirmedChars[nQuard]) bGuess = True for n in range(1,nQuard): if pool[n] == pool[nQuard] and confirmedChars[n] == confirmedChars[nQuard]: bGuess = False wordList = [] break if bGuess: print("Guessing " + str(nQuard) + "...") wordList = clue(pool[nQuard],confirmedChars[nQuard],dict) #dict = list2dict(wordList) nLen = len(wordList) print (nLen, "words found.") i=0 tmpWord = {} for word in wordList: i += 1 score = scoreWord(word,wChar) if nLen <= 2: score = 51 - nLen # print (word, score) tmpWord = {"score": score,"guess":word} newList.append(tmpWord) i=0 for singleWord in sorted(newList,key = lambda i:(-i['score'],i['guess'])): print(i+1,singleWord["guess"], singleWord["score"]) i = i+1 if i >= 5: break if k <= 9: guessWord = input ("Round " + str(k) +" Guess: ") nSuccess = int(input("Is it the correct Guess? Enter 1, 2, 3 or 4.")) if nSuccess >= 1 and nSuccess <= 4: bSuccess[nSuccess] = True bSuccessCombined = True for nQuard in range (1,5): bSuccessCombined = bSuccessCombined and bSuccess[nQuard] if bSuccessCombined: break else: wChar = removeCharFromWChar(wChar,guessWord) # print(wChar) ```
{ "source": "jieter/black", "score": 2 }
#### File: black/tests/test_black.py ```python import asyncio from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from functools import partial from io import BytesIO, TextIOWrapper import os from pathlib import Path import re import sys from tempfile import TemporaryDirectory from typing import Any, BinaryIO, Generator, List, Tuple, Iterator import unittest from unittest.mock import patch, MagicMock from click import unstyle from click.testing import CliRunner import black ll = 88 ff = partial(black.format_file_in_place, line_length=ll, fast=True) fs = partial(black.format_str, line_length=ll) THIS_FILE = Path(__file__) THIS_DIR = THIS_FILE.parent EMPTY_LINE = "# EMPTY LINE WITH WHITESPACE" + " (this comment will be removed)" def dump_to_stderr(*output: str) -> str: return "\n" + "\n".join(output) + "\n" def read_data(name: str, data: bool = True) -> Tuple[str, str]: """read_data('test_name') -> 'input', 'output'""" if not name.endswith((".py", ".pyi", ".out", ".diff")): name += ".py" _input: List[str] = [] _output: List[str] = [] base_dir = THIS_DIR / "data" if data else THIS_DIR with open(base_dir / name, "r", encoding="utf8") as test: lines = test.readlines() result = _input for line in lines: line = line.replace(EMPTY_LINE, "") if line.rstrip() == "# output": result = _output continue result.append(line) if _input and not _output: # If there's no output marker, treat the entire file as already pre-formatted. _output = _input[:] return "".join(_input).strip() + "\n", "".join(_output).strip() + "\n" @contextmanager def cache_dir(exists: bool = True) -> Iterator[Path]: with TemporaryDirectory() as workspace: cache_dir = Path(workspace) if not exists: cache_dir = cache_dir / "new" with patch("black.CACHE_DIR", cache_dir): yield cache_dir @contextmanager def event_loop(close: bool) -> Iterator[None]: policy = asyncio.get_event_loop_policy() old_loop = policy.get_event_loop() loop = policy.new_event_loop() asyncio.set_event_loop(loop) try: yield finally: policy.set_event_loop(old_loop) if close: loop.close() class BlackRunner(CliRunner): """Modify CliRunner so that stderr is not merged with stdout. This is a hack that can be removed once we depend on Click 7.x""" def __init__(self, stderrbuf: BinaryIO) -> None: self.stderrbuf = stderrbuf super().__init__() @contextmanager def isolation(self, *args: Any, **kwargs: Any) -> Generator[BinaryIO, None, None]: with super().isolation(*args, **kwargs) as output: try: hold_stderr = sys.stderr sys.stderr = TextIOWrapper(self.stderrbuf, encoding=self.charset) yield output finally: sys.stderr = hold_stderr class BlackTestCase(unittest.TestCase): maxDiff = None def assertFormatEqual(self, expected: str, actual: str) -> None: if actual != expected and not os.environ.get("SKIP_AST_PRINT"): bdv: black.DebugVisitor[Any] black.out("Expected tree:", fg="green") try: exp_node = black.lib2to3_parse(expected) bdv = black.DebugVisitor() list(bdv.visit(exp_node)) except Exception as ve: black.err(str(ve)) black.out("Actual tree:", fg="red") try: exp_node = black.lib2to3_parse(actual) bdv = black.DebugVisitor() list(bdv.visit(exp_node)) except Exception as ve: black.err(str(ve)) self.assertEqual(expected, actual) @patch("black.dump_to_file", dump_to_stderr) def test_empty(self) -> None: source = expected = "" actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) def test_empty_ff(self) -> None: expected = "" tmp_file = Path(black.dump_to_file()) try: self.assertFalse(ff(tmp_file, write_back=black.WriteBack.YES)) with open(tmp_file, encoding="utf8") as f: actual = f.read() finally: os.unlink(tmp_file) self.assertFormatEqual(expected, actual) @patch("black.dump_to_file", dump_to_stderr) def test_self(self) -> None: source, expected = read_data("test_black", data=False) actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) self.assertFalse(ff(THIS_FILE)) @patch("black.dump_to_file", dump_to_stderr) def test_black(self) -> None: source, expected = read_data("../black", data=False) actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) self.assertFalse(ff(THIS_DIR / ".." / "black.py")) def test_piping(self) -> None: source, expected = read_data("../black", data=False) stderrbuf = BytesIO() result = BlackRunner(stderrbuf).invoke( black.main, ["-", "--fast", f"--line-length={ll}"], input=source ) self.assertEqual(result.exit_code, 0) self.assertFormatEqual(expected, result.output) black.assert_equivalent(source, result.output) black.assert_stable(source, result.output, line_length=ll) def test_piping_diff(self) -> None: diff_header = re.compile( rf"(STDIN|STDOUT)\t\d\d\d\d-\d\d-\d\d " rf"\d\d:\d\d:\d\d\.\d\d\d\d\d\d \+\d\d\d\d" ) source, _ = read_data("expression.py") expected, _ = read_data("expression.diff") config = THIS_DIR / "data" / "empty_pyproject.toml" stderrbuf = BytesIO() args = ["-", "--fast", f"--line-length={ll}", "--diff", f"--config={config}"] result = BlackRunner(stderrbuf).invoke(black.main, args, input=source) self.assertEqual(result.exit_code, 0) actual = diff_header.sub("[Deterministic header]", result.output) actual = actual.rstrip() + "\n" # the diff output has a trailing space self.assertEqual(expected, actual) @patch("black.dump_to_file", dump_to_stderr) def test_setup(self) -> None: source, expected = read_data("../setup", data=False) actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) self.assertFalse(ff(THIS_DIR / ".." / "setup.py")) @patch("black.dump_to_file", dump_to_stderr) def test_function(self) -> None: source, expected = read_data("function") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_function2(self) -> None: source, expected = read_data("function2") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_expression(self) -> None: source, expected = read_data("expression") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) def test_expression_ff(self) -> None: source, expected = read_data("expression") tmp_file = Path(black.dump_to_file(source)) try: self.assertTrue(ff(tmp_file, write_back=black.WriteBack.YES)) with open(tmp_file, encoding="utf8") as f: actual = f.read() finally: os.unlink(tmp_file) self.assertFormatEqual(expected, actual) with patch("black.dump_to_file", dump_to_stderr): black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) def test_expression_diff(self) -> None: source, _ = read_data("expression.py") expected, _ = read_data("expression.diff") tmp_file = Path(black.dump_to_file(source)) diff_header = re.compile( rf"{re.escape(str(tmp_file))}\t\d\d\d\d-\d\d-\d\d " rf"\d\d:\d\d:\d\d\.\d\d\d\d\d\d \+\d\d\d\d" ) stderrbuf = BytesIO() try: result = BlackRunner(stderrbuf).invoke( black.main, ["--diff", str(tmp_file)] ) self.assertEqual(result.exit_code, 0) finally: os.unlink(tmp_file) actual = result.output actual = diff_header.sub("[Deterministic header]", actual) actual = actual.rstrip() + "\n" # the diff output has a trailing space if expected != actual: dump = black.dump_to_file(actual) msg = ( f"Expected diff isn't equal to the actual. If you made changes " f"to expression.py and this is an anticipated difference, " f"overwrite tests/expression.diff with {dump}" ) self.assertEqual(expected, actual, msg) @patch("black.dump_to_file", dump_to_stderr) def test_fstring(self) -> None: source, expected = read_data("fstring") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_string_quotes(self) -> None: source, expected = read_data("string_quotes") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) mode = black.FileMode.NO_STRING_NORMALIZATION not_normalized = fs(source, mode=mode) self.assertFormatEqual(source, not_normalized) black.assert_equivalent(source, not_normalized) black.assert_stable(source, not_normalized, line_length=ll, mode=mode) @patch("black.dump_to_file", dump_to_stderr) def test_slices(self) -> None: source, expected = read_data("slices") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_comments(self) -> None: source, expected = read_data("comments") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_comments2(self) -> None: source, expected = read_data("comments2") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_comments3(self) -> None: source, expected = read_data("comments3") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_comments4(self) -> None: source, expected = read_data("comments4") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_comments5(self) -> None: source, expected = read_data("comments5") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_cantfit(self) -> None: source, expected = read_data("cantfit") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_import_spacing(self) -> None: source, expected = read_data("import_spacing") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_composition(self) -> None: source, expected = read_data("composition") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_empty_lines(self) -> None: source, expected = read_data("empty_lines") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_string_prefixes(self) -> None: source, expected = read_data("string_prefixes") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_python2(self) -> None: source, expected = read_data("python2") actual = fs(source) self.assertFormatEqual(expected, actual) # black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_python2_unicode_literals(self) -> None: source, expected = read_data("python2_unicode_literals") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_stub(self) -> None: mode = black.FileMode.PYI source, expected = read_data("stub.pyi") actual = fs(source, mode=mode) self.assertFormatEqual(expected, actual) black.assert_stable(source, actual, line_length=ll, mode=mode) @patch("black.dump_to_file", dump_to_stderr) def test_fmtonoff(self) -> None: source, expected = read_data("fmtonoff") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_fmtonoff2(self) -> None: source, expected = read_data("fmtonoff2") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_remove_empty_parentheses_after_class(self) -> None: source, expected = read_data("class_blank_parentheses") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) @patch("black.dump_to_file", dump_to_stderr) def test_new_line_between_class_and_code(self) -> None: source, expected = read_data("class_methods_new_line") actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, line_length=ll) def test_report_verbose(self) -> None: report = black.Report(verbose=True) out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.out", out), patch("black.err", err): report.done(Path("f1"), black.Changed.NO) self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "f1 already well formatted, good job.") self.assertEqual(unstyle(str(report)), "1 file left unchanged.") self.assertEqual(report.return_code, 0) report.done(Path("f2"), black.Changed.YES) self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "reformatted f2") self.assertEqual( unstyle(str(report)), "1 file reformatted, 1 file left unchanged." ) report.done(Path("f3"), black.Changed.CACHED) self.assertEqual(len(out_lines), 3) self.assertEqual(len(err_lines), 0) self.assertEqual( out_lines[-1], "f3 wasn't modified on disk since last run." ) self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged." ) self.assertEqual(report.return_code, 0) report.check = True self.assertEqual(report.return_code, 1) report.check = False report.failed(Path("e1"), "boom") self.assertEqual(len(out_lines), 3) self.assertEqual(len(err_lines), 1) self.assertEqual(err_lines[-1], "error: cannot format e1: boom") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged, " "1 file failed to reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f3"), black.Changed.YES) self.assertEqual(len(out_lines), 4) self.assertEqual(len(err_lines), 1) self.assertEqual(out_lines[-1], "reformatted f3") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "1 file failed to reformat.", ) self.assertEqual(report.return_code, 123) report.failed(Path("e2"), "boom") self.assertEqual(len(out_lines), 4) self.assertEqual(len(err_lines), 2) self.assertEqual(err_lines[-1], "error: cannot format e2: boom") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.path_ignored(Path("wat"), "no match") self.assertEqual(len(out_lines), 5) self.assertEqual(len(err_lines), 2) self.assertEqual(out_lines[-1], "wat ignored: no match") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f4"), black.Changed.NO) self.assertEqual(len(out_lines), 6) self.assertEqual(len(err_lines), 2) self.assertEqual(out_lines[-1], "f4 already well formatted, good job.") self.assertEqual( unstyle(str(report)), "2 files reformatted, 3 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.check = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, " "2 files would fail to reformat.", ) def test_report_quiet(self) -> None: report = black.Report(quiet=True) out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.out", out), patch("black.err", err): report.done(Path("f1"), black.Changed.NO) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual(unstyle(str(report)), "1 file left unchanged.") self.assertEqual(report.return_code, 0) report.done(Path("f2"), black.Changed.YES) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual( unstyle(str(report)), "1 file reformatted, 1 file left unchanged." ) report.done(Path("f3"), black.Changed.CACHED) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged." ) self.assertEqual(report.return_code, 0) report.check = True self.assertEqual(report.return_code, 1) report.check = False report.failed(Path("e1"), "boom") self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 1) self.assertEqual(err_lines[-1], "error: cannot format e1: boom") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged, " "1 file failed to reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f3"), black.Changed.YES) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 1) self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "1 file failed to reformat.", ) self.assertEqual(report.return_code, 123) report.failed(Path("e2"), "boom") self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 2) self.assertEqual(err_lines[-1], "error: cannot format e2: boom") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.path_ignored(Path("wat"), "no match") self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f4"), black.Changed.NO) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 3 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.check = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, " "2 files would fail to reformat.", ) def test_report_normal(self) -> None: report = black.Report() out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.out", out), patch("black.err", err): report.done(Path("f1"), black.Changed.NO) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual(unstyle(str(report)), "1 file left unchanged.") self.assertEqual(report.return_code, 0) report.done(Path("f2"), black.Changed.YES) self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "reformatted f2") self.assertEqual( unstyle(str(report)), "1 file reformatted, 1 file left unchanged." ) report.done(Path("f3"), black.Changed.CACHED) self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "reformatted f2") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged." ) self.assertEqual(report.return_code, 0) report.check = True self.assertEqual(report.return_code, 1) report.check = False report.failed(Path("e1"), "boom") self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 1) self.assertEqual(err_lines[-1], "error: cannot format e1: boom") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged, " "1 file failed to reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f3"), black.Changed.YES) self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 1) self.assertEqual(out_lines[-1], "reformatted f3") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "1 file failed to reformat.", ) self.assertEqual(report.return_code, 123) report.failed(Path("e2"), "boom") self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 2) self.assertEqual(err_lines[-1], "error: cannot format e2: boom") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.path_ignored(Path("wat"), "no match") self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f4"), black.Changed.NO) self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 3 files left unchanged, " "2 files failed to reformat.", ) self.assertEqual(report.return_code, 123) report.check = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, " "2 files would fail to reformat.", ) def test_is_python36(self) -> None: node = black.lib2to3_parse("def f(*, arg): ...\n") self.assertFalse(black.is_python36(node)) node = black.lib2to3_parse("def f(*, arg,): ...\n") self.assertTrue(black.is_python36(node)) node = black.lib2to3_parse("def f(*, arg): f'string'\n") self.assertTrue(black.is_python36(node)) source, expected = read_data("function") node = black.lib2to3_parse(source) self.assertTrue(black.is_python36(node)) node = black.lib2to3_parse(expected) self.assertTrue(black.is_python36(node)) source, expected = read_data("expression") node = black.lib2to3_parse(source) self.assertFalse(black.is_python36(node)) node = black.lib2to3_parse(expected) self.assertFalse(black.is_python36(node)) def test_get_future_imports(self) -> None: node = black.lib2to3_parse("\n") self.assertEqual(set(), black.get_future_imports(node)) node = black.lib2to3_parse("from __future__ import black\n") self.assertEqual({"black"}, black.get_future_imports(node)) node = black.lib2to3_parse("from __future__ import multiple, imports\n") self.assertEqual({"multiple", "imports"}, black.get_future_imports(node)) node = black.lib2to3_parse("from __future__ import (parenthesized, imports)\n") self.assertEqual({"parenthesized", "imports"}, black.get_future_imports(node)) node = black.lib2to3_parse( "from __future__ import multiple\nfrom __future__ import imports\n" ) self.assertEqual({"multiple", "imports"}, black.get_future_imports(node)) node = black.lib2to3_parse("# comment\nfrom __future__ import black\n") self.assertEqual({"black"}, black.get_future_imports(node)) node = black.lib2to3_parse('"""docstring"""\nfrom __future__ import black\n') self.assertEqual({"black"}, black.get_future_imports(node)) node = black.lib2to3_parse("some(other, code)\nfrom __future__ import black\n") self.assertEqual(set(), black.get_future_imports(node)) node = black.lib2to3_parse("from some.module import black\n") self.assertEqual(set(), black.get_future_imports(node)) def test_debug_visitor(self) -> None: source, _ = read_data("debug_visitor.py") expected, _ = read_data("debug_visitor.out") out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.out", out), patch("black.err", err): black.DebugVisitor.show(source) actual = "\n".join(out_lines) + "\n" log_name = "" if expected != actual: log_name = black.dump_to_file(*out_lines) self.assertEqual( expected, actual, f"AST print out is different. Actual version dumped to {log_name}", ) def test_format_file_contents(self) -> None: empty = "" with self.assertRaises(black.NothingChanged): black.format_file_contents(empty, line_length=ll, fast=False) just_nl = "\n" with self.assertRaises(black.NothingChanged): black.format_file_contents(just_nl, line_length=ll, fast=False) same = "l = [1, 2, 3]\n" with self.assertRaises(black.NothingChanged): black.format_file_contents(same, line_length=ll, fast=False) different = "l = [1,2,3]" expected = same actual = black.format_file_contents(different, line_length=ll, fast=False) self.assertEqual(expected, actual) invalid = "return if you can" with self.assertRaises(ValueError) as e: black.format_file_contents(invalid, line_length=ll, fast=False) self.assertEqual(str(e.exception), "Cannot parse: 1:7: return if you can") def test_endmarker(self) -> None: n = black.lib2to3_parse("\n") self.assertEqual(n.type, black.syms.file_input) self.assertEqual(len(n.children), 1) self.assertEqual(n.children[0].type, black.token.ENDMARKER) @unittest.skipIf(os.environ.get("SKIP_AST_PRINT"), "user set SKIP_AST_PRINT") def test_assertFormatEqual(self) -> None: out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.out", out), patch("black.err", err): with self.assertRaises(AssertionError): self.assertFormatEqual("l = [1, 2, 3]", "l = [1, 2, 3,]") out_str = "".join(out_lines) self.assertTrue("Expected tree:" in out_str) self.assertTrue("Actual tree:" in out_str) self.assertEqual("".join(err_lines), "") def test_cache_broken_file(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace: cache_file = black.get_cache_file(black.DEFAULT_LINE_LENGTH, mode) with cache_file.open("w") as fobj: fobj.write("this is not a pickle") self.assertEqual(black.read_cache(black.DEFAULT_LINE_LENGTH, mode), {}) src = (workspace / "test.py").resolve() with src.open("w") as fobj: fobj.write("print('hello')") result = CliRunner().invoke(black.main, [str(src)]) self.assertEqual(result.exit_code, 0) cache = black.read_cache(black.DEFAULT_LINE_LENGTH, mode) self.assertIn(src, cache) def test_cache_single_file_already_cached(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace: src = (workspace / "test.py").resolve() with src.open("w") as fobj: fobj.write("print('hello')") black.write_cache({}, [src], black.DEFAULT_LINE_LENGTH, mode) result = CliRunner().invoke(black.main, [str(src)]) self.assertEqual(result.exit_code, 0) with src.open("r") as fobj: self.assertEqual(fobj.read(), "print('hello')") @event_loop(close=False) def test_cache_multiple_files(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace, patch( "black.ProcessPoolExecutor", new=ThreadPoolExecutor ): one = (workspace / "one.py").resolve() with one.open("w") as fobj: fobj.write("print('hello')") two = (workspace / "two.py").resolve() with two.open("w") as fobj: fobj.write("print('hello')") black.write_cache({}, [one], black.DEFAULT_LINE_LENGTH, mode) result = CliRunner().invoke(black.main, [str(workspace)]) self.assertEqual(result.exit_code, 0) with one.open("r") as fobj: self.assertEqual(fobj.read(), "print('hello')") with two.open("r") as fobj: self.assertEqual(fobj.read(), 'print("hello")\n') cache = black.read_cache(black.DEFAULT_LINE_LENGTH, mode) self.assertIn(one, cache) self.assertIn(two, cache) def test_no_cache_when_writeback_diff(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace: src = (workspace / "test.py").resolve() with src.open("w") as fobj: fobj.write("print('hello')") result = CliRunner().invoke(black.main, [str(src), "--diff"]) self.assertEqual(result.exit_code, 0) cache_file = black.get_cache_file(black.DEFAULT_LINE_LENGTH, mode) self.assertFalse(cache_file.exists()) def test_no_cache_when_stdin(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir(): result = CliRunner().invoke(black.main, ["-"], input="print('hello')") self.assertEqual(result.exit_code, 0) cache_file = black.get_cache_file(black.DEFAULT_LINE_LENGTH, mode) self.assertFalse(cache_file.exists()) def test_read_cache_no_cachefile(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir(): self.assertEqual(black.read_cache(black.DEFAULT_LINE_LENGTH, mode), {}) def test_write_cache_read_cache(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace: src = (workspace / "test.py").resolve() src.touch() black.write_cache({}, [src], black.DEFAULT_LINE_LENGTH, mode) cache = black.read_cache(black.DEFAULT_LINE_LENGTH, mode) self.assertIn(src, cache) self.assertEqual(cache[src], black.get_cache_info(src)) def test_filter_cached(self) -> None: with TemporaryDirectory() as workspace: path = Path(workspace) uncached = (path / "uncached").resolve() cached = (path / "cached").resolve() cached_but_changed = (path / "changed").resolve() uncached.touch() cached.touch() cached_but_changed.touch() cache = {cached: black.get_cache_info(cached), cached_but_changed: (0.0, 0)} todo, done = black.filter_cached( cache, {uncached, cached, cached_but_changed} ) self.assertEqual(todo, {uncached, cached_but_changed}) self.assertEqual(done, {cached}) def test_write_cache_creates_directory_if_needed(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir(exists=False) as workspace: self.assertFalse(workspace.exists()) black.write_cache({}, [], black.DEFAULT_LINE_LENGTH, mode) self.assertTrue(workspace.exists()) @event_loop(close=False) def test_failed_formatting_does_not_get_cached(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace, patch( "black.ProcessPoolExecutor", new=ThreadPoolExecutor ): failing = (workspace / "failing.py").resolve() with failing.open("w") as fobj: fobj.write("not actually python") clean = (workspace / "clean.py").resolve() with clean.open("w") as fobj: fobj.write('print("hello")\n') result = CliRunner().invoke(black.main, [str(workspace)]) self.assertEqual(result.exit_code, 123) cache = black.read_cache(black.DEFAULT_LINE_LENGTH, mode) self.assertNotIn(failing, cache) self.assertIn(clean, cache) def test_write_cache_write_fail(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir(), patch.object(Path, "open") as mock: mock.side_effect = OSError black.write_cache({}, [], black.DEFAULT_LINE_LENGTH, mode) @event_loop(close=False) def test_check_diff_use_together(self) -> None: with cache_dir(): # Files which will be reformatted. src1 = (THIS_DIR / "data" / "string_quotes.py").resolve() result = CliRunner().invoke(black.main, [str(src1), "--diff", "--check"]) self.assertEqual(result.exit_code, 1, result.output) # Files which will not be reformatted. src2 = (THIS_DIR / "data" / "composition.py").resolve() result = CliRunner().invoke(black.main, [str(src2), "--diff", "--check"]) self.assertEqual(result.exit_code, 0, result.output) # Multi file command. result = CliRunner().invoke( black.main, [str(src1), str(src2), "--diff", "--check"] ) self.assertEqual(result.exit_code, 1, result.output) def test_no_files(self) -> None: with cache_dir(): # Without an argument, black exits with error code 0. result = CliRunner().invoke(black.main, []) self.assertEqual(result.exit_code, 0) def test_broken_symlink(self) -> None: with cache_dir() as workspace: symlink = workspace / "broken_link.py" try: symlink.symlink_to("nonexistent.py") except OSError as e: self.skipTest(f"Can't create symlinks: {e}") result = CliRunner().invoke(black.main, [str(workspace.resolve())]) self.assertEqual(result.exit_code, 0) def test_read_cache_line_lengths(self) -> None: mode = black.FileMode.AUTO_DETECT with cache_dir() as workspace: path = (workspace / "file.py").resolve() path.touch() black.write_cache({}, [path], 1, mode) one = black.read_cache(1, mode) self.assertIn(path, one) two = black.read_cache(2, mode) self.assertNotIn(path, two) def test_single_file_force_pyi(self) -> None: reg_mode = black.FileMode.AUTO_DETECT pyi_mode = black.FileMode.PYI contents, expected = read_data("force_pyi") with cache_dir() as workspace: path = (workspace / "file.py").resolve() with open(path, "w") as fh: fh.write(contents) result = CliRunner().invoke(black.main, [str(path), "--pyi"]) self.assertEqual(result.exit_code, 0) with open(path, "r") as fh: actual = fh.read() # verify cache with --pyi is separate pyi_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, pyi_mode) self.assertIn(path, pyi_cache) normal_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, reg_mode) self.assertNotIn(path, normal_cache) self.assertEqual(actual, expected) @event_loop(close=False) def test_multi_file_force_pyi(self) -> None: reg_mode = black.FileMode.AUTO_DETECT pyi_mode = black.FileMode.PYI contents, expected = read_data("force_pyi") with cache_dir() as workspace: paths = [ (workspace / "file1.py").resolve(), (workspace / "file2.py").resolve(), ] for path in paths: with open(path, "w") as fh: fh.write(contents) result = CliRunner().invoke(black.main, [str(p) for p in paths] + ["--pyi"]) self.assertEqual(result.exit_code, 0) for path in paths: with open(path, "r") as fh: actual = fh.read() self.assertEqual(actual, expected) # verify cache with --pyi is separate pyi_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, pyi_mode) normal_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, reg_mode) for path in paths: self.assertIn(path, pyi_cache) self.assertNotIn(path, normal_cache) def test_pipe_force_pyi(self) -> None: source, expected = read_data("force_pyi") result = CliRunner().invoke(black.main, ["-", "-q", "--pyi"], input=source) self.assertEqual(result.exit_code, 0) actual = result.output self.assertFormatEqual(actual, expected) def test_single_file_force_py36(self) -> None: reg_mode = black.FileMode.AUTO_DETECT py36_mode = black.FileMode.PYTHON36 source, expected = read_data("force_py36") with cache_dir() as workspace: path = (workspace / "file.py").resolve() with open(path, "w") as fh: fh.write(source) result = CliRunner().invoke(black.main, [str(path), "--py36"]) self.assertEqual(result.exit_code, 0) with open(path, "r") as fh: actual = fh.read() # verify cache with --py36 is separate py36_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, py36_mode) self.assertIn(path, py36_cache) normal_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, reg_mode) self.assertNotIn(path, normal_cache) self.assertEqual(actual, expected) @event_loop(close=False) def test_multi_file_force_py36(self) -> None: reg_mode = black.FileMode.AUTO_DETECT py36_mode = black.FileMode.PYTHON36 source, expected = read_data("force_py36") with cache_dir() as workspace: paths = [ (workspace / "file1.py").resolve(), (workspace / "file2.py").resolve(), ] for path in paths: with open(path, "w") as fh: fh.write(source) result = CliRunner().invoke( black.main, [str(p) for p in paths] + ["--py36"] ) self.assertEqual(result.exit_code, 0) for path in paths: with open(path, "r") as fh: actual = fh.read() self.assertEqual(actual, expected) # verify cache with --py36 is separate pyi_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, py36_mode) normal_cache = black.read_cache(black.DEFAULT_LINE_LENGTH, reg_mode) for path in paths: self.assertIn(path, pyi_cache) self.assertNotIn(path, normal_cache) def test_pipe_force_py36(self) -> None: source, expected = read_data("force_py36") result = CliRunner().invoke(black.main, ["-", "-q", "--py36"], input=source) self.assertEqual(result.exit_code, 0) actual = result.output self.assertFormatEqual(actual, expected) def test_include_exclude(self) -> None: path = THIS_DIR / "data" / "include_exclude_tests" include = re.compile(r"\.pyi?$") exclude = re.compile(r"/exclude/|/\.definitely_exclude/") report = black.Report() sources: List[Path] = [] expected = [ Path(path / "b/dont_exclude/a.py"), Path(path / "b/dont_exclude/a.pyi"), ] this_abs = THIS_DIR.resolve() sources.extend( black.gen_python_files_in_dir(path, this_abs, include, exclude, report) ) self.assertEqual(sorted(expected), sorted(sources)) def test_empty_include(self) -> None: path = THIS_DIR / "data" / "include_exclude_tests" report = black.Report() empty = re.compile(r"") sources: List[Path] = [] expected = [ Path(path / "b/exclude/a.pie"), Path(path / "b/exclude/a.py"), Path(path / "b/exclude/a.pyi"), Path(path / "b/dont_exclude/a.pie"), Path(path / "b/dont_exclude/a.py"), Path(path / "b/dont_exclude/a.pyi"), Path(path / "b/.definitely_exclude/a.pie"), Path(path / "b/.definitely_exclude/a.py"), Path(path / "b/.definitely_exclude/a.pyi"), ] this_abs = THIS_DIR.resolve() sources.extend( black.gen_python_files_in_dir( path, this_abs, empty, re.compile(black.DEFAULT_EXCLUDES), report ) ) self.assertEqual(sorted(expected), sorted(sources)) def test_empty_exclude(self) -> None: path = THIS_DIR / "data" / "include_exclude_tests" report = black.Report() empty = re.compile(r"") sources: List[Path] = [] expected = [ Path(path / "b/dont_exclude/a.py"), Path(path / "b/dont_exclude/a.pyi"), Path(path / "b/exclude/a.py"), Path(path / "b/exclude/a.pyi"), Path(path / "b/.definitely_exclude/a.py"), Path(path / "b/.definitely_exclude/a.pyi"), ] this_abs = THIS_DIR.resolve() sources.extend( black.gen_python_files_in_dir( path, this_abs, re.compile(black.DEFAULT_INCLUDES), empty, report ) ) self.assertEqual(sorted(expected), sorted(sources)) def test_invalid_include_exclude(self) -> None: for option in ["--include", "--exclude"]: result = CliRunner().invoke(black.main, ["-", option, "**()(!!*)"]) self.assertEqual(result.exit_code, 2) def test_preserves_line_endings(self) -> None: with TemporaryDirectory() as workspace: test_file = Path(workspace) / "test.py" for nl in ["\n", "\r\n"]: contents = nl.join(["def f( ):", " pass"]) test_file.write_bytes(contents.encode()) ff(test_file, write_back=black.WriteBack.YES) updated_contents: bytes = test_file.read_bytes() self.assertIn(nl.encode(), updated_contents) # type: ignore if nl == "\n": self.assertNotIn(b"\r\n", updated_contents) # type: ignore def test_assert_equivalent_different_asts(self) -> None: with self.assertRaises(AssertionError): black.assert_equivalent("{}", "None") def test_symlink_out_of_root_directory(self) -> None: path = MagicMock() root = THIS_DIR child = MagicMock() include = re.compile(black.DEFAULT_INCLUDES) exclude = re.compile(black.DEFAULT_EXCLUDES) report = black.Report() # `child` should behave like a symlink which resolved path is clearly # outside of the `root` directory. path.iterdir.return_value = [child] child.resolve.return_value = Path("/a/b/c") child.is_symlink.return_value = True try: list(black.gen_python_files_in_dir(path, root, include, exclude, report)) except ValueError as ve: self.fail("`get_python_files_in_dir()` failed: {ve}") path.iterdir.assert_called_once() child.resolve.assert_called_once() child.is_symlink.assert_called_once() # `child` should behave like a strange file which resolved path is clearly # outside of the `root` directory. child.is_symlink.return_value = False with self.assertRaises(ValueError): list(black.gen_python_files_in_dir(path, root, include, exclude, report)) path.iterdir.assert_called() self.assertEqual(path.iterdir.call_count, 2) child.resolve.assert_called() self.assertEqual(child.resolve.call_count, 2) child.is_symlink.assert_called() self.assertEqual(child.is_symlink.call_count, 2) def test_shhh_click(self) -> None: try: from click import _unicodefun # type: ignore except ModuleNotFoundError: self.skipTest("Incompatible Click version") if not hasattr(_unicodefun, "_verify_python3_env"): self.skipTest("Incompatible Click version") # First, let's see if Click is crashing with a preferred ASCII charset. with patch("locale.getpreferredencoding") as gpe: gpe.return_value = "ASCII" with self.assertRaises(RuntimeError): _unicodefun._verify_python3_env() # Now, let's silence Click... black.patch_click() # ...and confirm it's silent. with patch("locale.getpreferredencoding") as gpe: gpe.return_value = "ASCII" try: _unicodefun._verify_python3_env() except RuntimeError as re: self.fail(f"`patch_click()` failed, exception still raised: {re}") if __name__ == "__main__": unittest.main(module="test_black") ```
{ "source": "jieter/python-loradecrypt", "score": 3 }
#### File: python-loradecrypt/tests/test_crypto.py ```python import unittest from lora.crypto import generate_appskey, loramac_decrypt class TestCrypto(unittest.TestCase): def test_loramac_decrypt(self): key = "271E403DF4225EEF7E90836494A5B345" dev_addr = "000015E4" payloads = ((0, "73100b90"), (1, "68d388f0"), (2, "0a12e808"), (3, "e3413bee")) expected = "cafebabe" for sequence_counter, payload_hex in payloads: plaintext_ints = loramac_decrypt(payload_hex, sequence_counter, key, dev_addr) plaintext_hex = "".join("{:02x}".format(x) for x in plaintext_ints) self.assertEquals(plaintext_hex, expected) def test_appskey(self): key = generate_appskey() self.assertEquals(len(key), 32) self.assertNotEquals(key, generate_appskey()) self.assertNotEquals(generate_appskey(), generate_appskey()) ```
{ "source": "JieTrancender/crawl_code", "score": 3 }
#### File: JieTrancender/crawl_code/crawl_story.py ```python import array import re import requests from bs4 import BeautifulSoup from tqdm import tqdm from cn2an import cn2an import time import numpy as np def get_content(url): r = requests.get(url = url) html = r.text bs = BeautifulSoup(html, 'lxml') texts = bs.find('div', id = 'content') content = texts.text.strip().split('\xa0'*4) return content if __name__ == '__main__': book_name = '诡秘之主.txt' host = 'https://www.xinbiquge.org' url = host + '/xiaoshuo/1bm.html' r = requests.get(url = url) html = r.text bs = BeautifulSoup(html, 'lxml') listmain = bs.find('div', class_ = 'listmain') chapters = listmain.find_all('a') chapterList = [] multi = {} for chapter in chapters: url = host + chapter.get('href') if chapter.string: result = re.match('(\d+)(.*)', chapter.string) chapter_id = 1 if result == None: result = re.match('第(.*?)章(.*)', chapter.string) chapter_id = cn2an(result.group(1)) chapter_id = str(chapter_id) else: chapter_id = result.group(1) if not chapter_id in multi: chapter_name = result.group(2) multi[chapter_id] = True chapterList.append([chapter_id, chapter_name, url]) chapterList.sort(key=lambda chapter: int(chapter[0])) for chapter in tqdm(chapterList): content = get_content(chapter[2]) with open(book_name, 'a', encoding='utf-8') as f: f.write(chapter[1]) f.write('\n'.join(content)) time.sleep(10) ```
{ "source": "jietui/django_project", "score": 3 }
#### File: practice/booktest/models.py ```python from django.db import models from django.db.models import F, Q from django.db.models import Sum, Min, Max, Avg, Count # Create your models here. # 自定义图书管理器 class BookInfoManager(models.Manager): def all(self): return super(BookInfoManager, self).all().filter(is_delete=False) def create_book(self, title, pub_date, read=0, comment=0, is_delete=False): book = self.model() book.btitle = title book.bpub_date = pub_date book.bread = read book.bcomment = comment book.is_delete = is_delete book.save() return book class BookInfo(models.Model): # 模型中定义管理器 books = BookInfoManager() btitle = models.CharField(max_length=20, verbose_name='名称') bpub_date = models.DateField(verbose_name='发布日期') bread = models.IntegerField(default=0, verbose_name='阅读量') bcomment = models.IntegerField(default=0, verbose_name='评论量') is_delete = models.BooleanField(default=False, verbose_name='逻辑删除') class Meta: db_table = 'tb_books' verbose_name = '图书' verbose_name_plural = verbose_name def __str__(self): return self.btitle class HeroInfo(models.Model): GENDER_CHOICES = ( (0, 'famale'), (1, 'male') ) hname = models.CharField(max_length=20, verbose_name='名称') hgender = models.SmallIntegerField(choices=GENDER_CHOICES, default=0, verbose_name='性别') hcomment = models.CharField(max_length=200, null=True, verbose_name='描述信息') hbook = models.ForeignKey(BookInfo, on_delete=models.CASCADE, verbose_name='图书') is_delete = models.BooleanField(default=False, verbose_name='逻辑删除') class Meta: db_table = 'tb_heroes' verbose_name = "英雄" verbose_name_plural = verbose_name def __str__(self): return self.hname ``` #### File: practice/users/views.py ```python from django.http import HttpResponse from django.shortcuts import render from django.urls import reverse # Create your views here. def index(request): url = reverse('users:index') print(url) return HttpResponse('hello world') ```
{ "source": "JiEumKim/github", "score": 3 }
#### File: github/gnlse/envelopes.py ```python import numpy as np class Envelope(object): def A(T): raise NotImplementedError() class SechEnvelope(Envelope): """Amplitude envelope of hyperbolic secant pulse. Attributes ---------- Pmax : float Peak power, [W]. FWHM : float Pulse duration Full-Width Half-Maximum. """ def __init__(self, Pmax, FWHM): self.name = 'Hyperbolic secant envelope' self.Pmax = Pmax self.FWHM = FWHM def A(self, T): """ Parameters ---------- T : ndarray, (n, ) Time vector Returns ------- ndarray, (n, ) Amplitude envelope of hyperbolic secant pulse in time. """ m = 2 * np.log(1 + np.sqrt(2)) return np.sqrt(self.Pmax) * 2 / (np.exp(m * T / self.FWHM) + np.exp(-m * T / self.FWHM)) class GaussianEnvelope(Envelope): """Amplitude envelope of gaussian pulse. Attributes ---------- Pmax : float Peak power [W]. FWHM : float Pulse duration Full-Width Half-Maximum. """ def __init__(self, Pmax, FWHM): self.name = 'Gaussian envelope' self.Pmax = Pmax self.FWHM = FWHM def A(self, T): """ Parameters ---------- T : ndarray, (n, ) Time vector. Returns ------- ndarray, (n, ) Amplitude envelope of gaussian pulse in time. """ m = 4 * np.log(2) return np.sqrt(self.Pmax) * np.exp(-m * .5 * T**2 / self.FWHM**2) class LorentzianEnvelope(Envelope): """Amplitude envelope of lorentzian pulse. Attributes ---------- Pmax : float Peak power [W]. FWHM : float Pulse duration Full-Width Half-Maximum. """ def __init__(self, Pmax, FWHM): self.name = 'Lorentzian envelope' self.Pmax = Pmax self.FWHM = FWHM def A(self, T): """ Parameters ---------- T : ndarray, (n, ) Time vector. Returns ------- ndarray, (n, ) Amplitude envelope of lorentzian pulse in time. """ m = 2 * np.sqrt(np.sqrt(2) - 1) return np.sqrt(self.Pmax) / (1 + (m * T / self.FWHM)**2) class CWEnvelope(Envelope): """Amplitude envelope of continious wave with or without some temporal noise. Attributes ---------- Pmax : float Peak power [W]. Pn : float, optional Peak power for noise [W]. """ def __init__(self, Pmax, Pn=0): self.name = 'Continious Wave' self.Pmax = Pmax self.Pn = Pn def A(self, T): """ Parameters ---------- T : ndarray, (n, ) Time vector. Returns ------- ndarray, (n, ) Amplitude envelope of continious wave in time. """ cw = np.fft.ifft(np.sqrt(self.Pmax) * np.ones(np.size(T))) noise = 0 if self.Pn: noise = np.sqrt(self.Pn ) * np.exp( 1j * 2 * np.pi * np.random.rand(np.size(T))) return np.fft.fft(cw + noise) ``` #### File: github/gnlse/gnlse.py ```python import numpy as np import scipy.integrate import pyfftw import tqdm from gnlse.common import c from gnlse.import_export import write_mat, read_mat class GNLSESetup: """ Model inputs for the ``GNLSE`` class. Attributes ---------- resolution : int Number of points on the computational grid. Determines time resolution and bandwidth. Avoid numbers with large prime factors. time_window : float [ps] Width of the time window. wavelength : float [nm] Central wavelength of the input impulse. fiber_length : float [m] Length of the simulated optical fiber. z_saves : int Number of snapshots to save along the fiber. Larger numbers require more memory to store the result. nonlinearity : float [1/W/m] Effective nonlinearity. impulse_model : Envelope Input impulse envelope model. dispersion_model : Dispersion, optional Fiber dispersion model or ``None`` to model a dispersionless fiber. raman_model : function, optional Raman scattering model or ``None`` if the effect is to be neglected. self_steepning : bool, optional Whether to include the effect of self-steepening. Disabled by default. rtol : float, optional Relative tolerance passed to the ODE solver. atol : float, optional Absolute tolerance passed to the ODE solver. method : str, optional Integration method passed to the ODE solver. """ def __init__(self): self.resolution = None self.time_window = None self.wavelength = None self.fiber_length = None self.z_saves = 200 self.nonlinearity = 0 self.impulse_model = None self.dispersion_model = None self.raman_model = None self.self_steepening = False self.rtol = 1e-3 self.atol = 1e-4 self.method = 'RK45' class Solution: """ Represents a solution to a GNLSE problem. Attributes ---------- t : ndarray, (n,) Time domain grid. W : ndarray, (n,) Absolute angular frequency grid. Z : ndarray (m,) Points at which intermediate steps were saved. At : ndarray, (n, m) Intermediate steps in the time domain. AW : ndarray, (n, m) Intermediate steps in the frequency domain. """ def __init__(self, t=None, W=None, Z=None, At=None, AW=None, Aty=None, AWy=None): self.t = t self.W = W self.Z = Z self.At = At self.AW = AW # aditional solutions in case of two-mode example self.Aty = Aty self.AWy = AWy def to_file(self, path): """ Saves a solution to a file. Parameters ---------- path : str Path to file. """ data = {'t': self.t, 'W': self.W, 'Z': self.Z, 'At': self.At, 'AW': self.AW} write_mat(data, path) def from_file(self, path): """ Load a solution from file. Parameters ---------- path : str Path to file. """ data = read_mat(path) self.t = data['t'] self.W = data['W'] self.Z = data['Z'] self.At = data['At'] self.AW = data['AW'] class GNLSE: """ Models propagation of an optical impulse in a fiber by integrating the generalized non-linear Schrödinger equation. Attributes ---------- setup : GNLSESetup Model inputs in the form of a ``GNLSESetup`` object. """ def __init__(self, setup): if not isinstance(setup, GNLSESetup): raise TypeError("setup is not an instance of GNLSESetup") if setup.resolution is None: raise ValueError("'resolution' not set") if setup.time_window is None: raise ValueError("'time_window' not set") if setup.wavelength is None: raise ValueError("'wavelength' not set") if setup.fiber_length is None: raise ValueError("'fiber_length' not set") if setup.impulse_model is None: raise ValueError("'impulse_model' not set") # simulation parameters self.fiber_length = setup.fiber_length self.z_saves = setup.z_saves self.rtol = setup.rtol self.atol = setup.atol self.method = setup.method self.N = setup.resolution # Time domain grid self.t = np.linspace(-setup.time_window / 2, setup.time_window / 2, self.N) # Relative angular frequency grid self.V = 2 * np.pi * np.arange(-self.N / 2, self.N / 2 ) / (self.N * (self.t[1] - self.t[0])) # Central angular frequency [10^12 rad] w_0 = (2.0 * np.pi * c) / setup.wavelength self.Omega = self.V + w_0 # Absolute angular frequency grid if setup.self_steepening and np.abs(w_0) > np.finfo(float).eps: W = self.V + w_0 else: W = np.full(self.V.shape, w_0) self.W = np.fft.fftshift(W) # Nonlinearity if hasattr(setup.nonlinearity, 'gamma'): # in case in of frequency dependent nonlinearity gamma, self.scale = setup.nonlinearity.gamma(self.V + w_0) self.gamma = gamma / w_0 self.gamma = np.fft.fftshift(self.gamma) self.scale = np.fft.fftshift(self.scale) else: # in case in of direct introduced value self.gamma = setup.nonlinearity / w_0 self.scale = 1 # Raman scattering self.RW = None if setup.raman_model: self.fr, RT = setup.raman_model(self.t) if np.abs(self.fr) < np.finfo(float).eps: self.RW = None else: self.RW = self.N * np.fft.ifft( np.fft.fftshift(np.transpose(RT))) # Dispersion operator if setup.dispersion_model: self.D = setup.dispersion_model.D(self.V) else: self.D = np.zeros(self.V.shape) # Input impulse if hasattr(setup.impulse_model, 'A'): self.A = setup.impulse_model.A(self.t) else: self.A = setup.impulse_model def run(self): """ Solve one mode GNLSE equation described by the given ``GNLSESetup`` object. Returns ------- setup : Solution Simulation results in the form of a ``Solution`` object. """ dt = self.t[1] - self.t[0] self.D = np.fft.fftshift(self.D) x = pyfftw.empty_aligned(self.N, dtype="complex128") X = pyfftw.empty_aligned(self.N, dtype="complex128") plan_forward = pyfftw.FFTW(x, X) plan_inverse = pyfftw.FFTW(X, x, direction="FFTW_BACKWARD") progress_bar = tqdm.tqdm(total=self.fiber_length, unit='m') def rhs(z, AW): """ The right hand side of the differential equation to integrate. """ progress_bar.n = round(z, 3) progress_bar.update(0) x[:] = AW * np.exp(self.D * z) At = plan_forward().copy() IT = np.abs(At)**2 if self.RW is not None: X[:] = IT plan_inverse() x[:] *= self.RW plan_forward() RS = dt * self.fr * X X[:] = At * ((1 - self.fr) * IT + RS) M = plan_inverse() else: X[:] = At * IT M = plan_inverse() rv = 1j * self.gamma * self.W * M * np.exp( -self.D * z) return rv Z = np.linspace(0, self.fiber_length, self.z_saves) solution = scipy.integrate.solve_ivp( rhs, t_span=(0, self.fiber_length), y0=np.fft.ifft(self.A) * self.scale, t_eval=Z, rtol=self.rtol, atol=self.atol, method=self.method) AW = solution.y.T progress_bar.close() # Transform the results into the time domain At = np.zeros(AW.shape, dtype=AW.dtype) for i in range(len(AW[:, 0])): AW[i, :] *= np.exp(np.transpose( self.D) * Z[i]) / self.scale At[i, :] = np.fft.fft(AW[i, :]) AW[i, :] = np.fft.fftshift(AW[i, :]) * self.N * dt return Solution(self.t, self.Omega, Z, At, AW) ``` #### File: github/gnlse/nonlinearity.py ```python import numpy as np from scipy import interpolate from gnlse.common import c class Nonlinearity(object): def gamma(V): """Calculate nonlinear coefficient for given frequency grid created during simulation Parameters ---------- V : ndarray, (N) Frequency vector Returns ------- ndarray, (N) Nonlinear coefficient in frequency domain """ raise NotImplementedError('Nonlinearity not implemented') class NonlinearityFromEffectiveArea(Nonlinearity): """Calculate the nonlinearity coefficient in frequency domain based on modified gnlse example form <NAME>, "Mode profile dispersion in the generalized nonlinear Schrödinger equation," Opt. Express 15, 16110-16123 (2007). Attributes ---------- neff : ndarray (N) Effective refractive index Aeff : ndarray (N) Effective mode area lambdas : ndarray (N) Wavelength corresponding to refractive index central_wavelength : float Wavelength corresponding to pump wavelength in nm n2 : float Nonlinear index of refraction in m^2/W """ def __init__(self, neff, Aeff, lambdas, central_wavelength, n2=2.7e-20): # refractive indices self.neff = neff # efective mode area in m^-2 self.Aeff = Aeff # wavelengths for neffs in nm self.lambdas = lambdas # central frequency in 1/ps [THz] self.w0 = (2.0 * np.pi * c) / central_wavelength # nonlinear index of refraction in m^2/W self.n2 = n2 def gamma(self, V): # Central frequency [1/ps = THz] omega = 2 * np.pi * c / self.lambdas # Extrapolate effective mode area for a frequency vector Aeff_interp = interpolate.interp1d(omega, self.Aeff, kind='cubic', fill_value="extrapolate") # Extrapolate effective mode area for a frequency vector neff_interp = interpolate.interp1d(omega, self.neff, kind='cubic', fill_value="extrapolate") # Refractive index neff = neff_interp(V + self.w0) # and at central frequency n0 = neff_interp(self.w0) # Efective mode area Aeff = Aeff_interp(V + self.w0) # and at central frequency [1/m^2] Aeff0 = Aeff_interp(self.w0) gamma = self.n2 * self.w0 \ * n0 / c / 1e-9 / neff / np.sqrt(Aeff * Aeff0) return gamma, np.power(Aeff0 / Aeff, 1. / 4) ```
{ "source": "Jieun-Enna/KoreanRecipeGPT", "score": 4 }
#### File: ratsnlp/nlpbook/data_utils.py ```python import torch def data_collator(features): """ Very simple data collator that: - simply collates batches of dict-like objects - Performs special handling for potential keys named: - `label`: handles a single value (int or float) per object - `label_ids`: handles a list of values per object - does not do any additional preprocessing i.e., Property names of the input object will be used as corresponding inputs to the model. See glue and ner for example of how it's useful. """ # In this function we'll make the assumption that all `features` in the batch # have the same attributes. # So we will look at the first element as a proxy for what attributes exist # on the whole batch. if not isinstance(features[0], dict): features = [vars(f) for f in features] first = features[0] batch = {} # Special handling for labels. # Ensure that tensor is created with the correct type # (it should be automatically the case, but let's make sure of it.) if "label" in first and first["label"] is not None: label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"] dtype = torch.long if isinstance(label, int) else torch.float batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype) elif "label_ids" in first and first["label_ids"] is not None: if isinstance(first["label_ids"], torch.Tensor): batch["labels"] = torch.stack([f["label_ids"] for f in features]) else: dtype = torch.long if type(first["label_ids"][0]) is int else torch.float batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype) # Handling of all other possible keys. # Again, we will use the first element to figure out which key/values are not None for this model. for k, v in first.items(): if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): if isinstance(v, torch.Tensor): batch[k] = torch.stack([f[k] for f in features]) else: batch[k] = torch.tensor([f[k] for f in features], dtype=torch.long) return batch ``` #### File: ratsnlp/nlpbook/metrics.py ```python import torch def accuracy(preds, labels, ignore_index=None): with torch.no_grad(): assert preds.shape[0] == len(labels) correct = torch.sum(preds == labels) total = torch.sum(torch.ones_like(labels)) if ignore_index is not None: # 모델이 맞춘 것 가운데 ignore index에 해당하는 것 제외 correct -= torch.sum(torch.logical_and(preds == ignore_index, preds == labels)) # accuracy의 분모 가운데 ignore index에 해당하는 것 제외 total -= torch.sum(labels == ignore_index) return correct.to(dtype=torch.float) / total.to(dtype=torch.float) ``` #### File: ratsnlp/nlpbook/utils.py ```python import os import sys import tqdm import logging import requests from transformers import HfArgumentParser REMOTE_DATA_MAP = { "nsmc": { "train": { "web_url": "https://github.com/e9t/nsmc/raw/master/ratings_train.txt", "fname": "train.txt", }, "val": { "web_url": "https://github.com/e9t/nsmc/raw/master/ratings_test.txt", "fname": "val.txt", }, }, "klue-nli": { "train": { "googledrive_file_id": "18LhrHaPEW0VITMPfnwKXJ6bNuklBdi4U", "fname": "klue_nli_train.json", }, "val": { "googledrive_file_id": "1UKIDAFOFuDSah7A66FZXSA8XUWUHhBAd", "fname": "klue_nli_dev.json", } }, "ner": { "train": { "googledrive_file_id": "1RP764owqs1kZeHcjFnCX7zXt2EcjGY1i", "fname": "train.txt", }, "val": { "googledrive_file_id": "1bEPNWT5952rD3xjg0LfJBy3hLHry3yUL", "fname": "val.txt", }, }, "korquad-v1": { "train": { "web_url": "https://korquad.github.io/dataset/KorQuAD_v1.0_train.json", "fname": "KorQuAD_v1.0_train.json", }, "val": { "web_url": "https://korquad.github.io/dataset/KorQuAD_v1.0_dev.json", "fname": "KorQuAD_v1.0_dev.json", } } } REMOTE_MODEL_MAP = { "kogpt2": { "merges": { "googledrive_file_id": "19-vpk-RAPhmIM1pPJ66F2Kbj4dW5V5sV", "fname": "merges.txt", }, "vocab": { "googledrive_file_id": "19vjuxYOmlNTfg8kYKOPOUlZERm-QoTnj", "fname": "vocab.json", }, "model": { "googledrive_file_id": "1dDGtsMy1NsfpuvgX8XobBsCYyctn5Xex", "fname": "pytorch_model.bin", }, "config": { "googledrive_file_id": "1z6obNRWPHoVrMzT9THElblebdovuDLUZ", "fname": "config.json", }, }, } GOOGLE_DRIVE_URL = "https://docs.google.com/uc?export=download" logger = logging.getLogger("ratsnlp") # pylint: disable=invalid-name def save_response_content(response, save_path): with open(save_path, "wb") as f: content_length = response.headers.get("Content-Length") total = int(content_length) if content_length is not None else None progress = tqdm.tqdm( unit="B", unit_scale=True, total=total, initial=0, desc="Downloading", disable=bool(logger.getEffectiveLevel() == logging.NOTSET), ) for chunk in response.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) f.write(chunk) progress.close() def get_valid_path(cache_dir, save_fname, make_dir=True): # 캐시 디렉토리 절대 주소 확인 if cache_dir.startswith("~"): cache_dir = os.path.expanduser(cache_dir) else: cache_dir = os.path.abspath(cache_dir) if make_dir: os.makedirs(cache_dir, exist_ok=True) valid_save_path = os.path.join(cache_dir, save_fname) return valid_save_path def google_download(file_id, save_fname, cache_dir="~/cache", force_download=False): def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None valid_save_path = get_valid_path(cache_dir, save_fname) # 캐시 파일이 있으면 캐시 사용 if os.path.exists(valid_save_path) and not force_download: logger.info(f"cache file({valid_save_path}) exists, using cache!") return valid_save_path # init a HTTP session session = requests.Session() # make a request response = session.get(GOOGLE_DRIVE_URL, params={'id': file_id}, stream=True) # get confirmation token token = get_confirm_token(response) if token: params = {'id': file_id, 'confirm': token} response = session.get(GOOGLE_DRIVE_URL, params=params, stream=True) # download to disk save_response_content(response, valid_save_path) return valid_save_path def web_download(url, save_fname, cache_dir="~/cache", proxies=None, etag_timeout=10, force_download=False): """ download function. 허깅페이스와 SK T-BRAIN 다운로드 함수 참고. https://github.com/huggingface/transformers/blob/master/src/transformers/file_utils.py https://github.com/SKTBrain/KoBERT/blob/master/kobert/utils.py """ valid_save_path = get_valid_path(cache_dir, save_fname) # 캐시 파일이 있으면 캐시 사용 if os.path.exists(valid_save_path) and not force_download: logger.info(f"cache file({valid_save_path}) exists, using cache!") return valid_save_path # url 유효성 체크 # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. etag = None try: response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout) if response.status_code == 200: etag = response.headers.get("ETag") except (EnvironmentError, requests.exceptions.Timeout): pass if etag is None: raise ValueError(f"not valid URL({url}), cannot download resources") response = requests.get(url, stream=True) save_response_content(response, valid_save_path) return valid_save_path def download_downstream_dataset(args): data_name = args.downstream_corpus_name.lower() if data_name in REMOTE_DATA_MAP.keys(): cache_dir = os.path.join(args.downstream_corpus_root_dir, data_name) for value in REMOTE_DATA_MAP[data_name].values(): if "web_url" in value.keys(): web_download( url=value["web_url"], save_fname=value["fname"], cache_dir=cache_dir, force_download=args.force_download, ) else: google_download( file_id=value["googledrive_file_id"], save_fname=value["fname"], cache_dir=cache_dir, force_download=args.force_download ) else: raise ValueError(f"not valid data name({data_name}), cannot download resources") def download_pretrained_model(args, config_only=False): pretrained_model_name = args.pretrained_model_name.lower() if pretrained_model_name in REMOTE_MODEL_MAP.keys(): for key, value in REMOTE_MODEL_MAP[pretrained_model_name].items(): if not config_only or (config_only and key == "config"): if "web_url" in value.keys(): web_download( url=value["web_url"], save_fname=value["fname"], cache_dir=args.pretrained_model_cache_dir, force_download=args.force_download, ) else: google_download( file_id=value["googledrive_file_id"], save_fname=value["fname"], cache_dir=args.pretrained_model_cache_dir, force_download=args.force_download, ) else: raise ValueError(f"not valid model name({pretrained_model_name}), cannot download resources") def set_logger(args): import torch if torch.cuda.is_available(): stream_handler = logging.StreamHandler() formatter = logging.Formatter( fmt="%(levelname)s:%(name)s:%(message)s", ) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.setLevel(logging.INFO) logger.info("Training/evaluation parameters %s", args) def set_seed(args): if args.seed is not None: # 향후 pytorch-lightning의 seed_everything까지 확장 from transformers import set_seed set_seed(args.seed) print(f"set seed: {args.seed}") else: print("not fixed seed") def load_arguments(argument_class, json_file_path=None): parser = HfArgumentParser(argument_class) if json_file_path is not None: args, = parser.parse_json_file(json_file=json_file_path) elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"): args, = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: args, = parser.parse_args_into_dataclasses() return args ```
{ "source": "jieunyoo/directional-pixel-detectors", "score": 2 }
#### File: directional-pixel-detectors/2D_models/angleOnlyModel.py ```python from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler import tensorflow as tf from tensorflow.keras import datasets, layers, models import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D import os #import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd from pandas import read_csv import math import seaborn as sns import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.callbacks import CSVLogger from keras.callbacks import EarlyStopping, ModelCheckpoint df1 = pd.read_csv('recon650k.csv') df2 = pd.read_csv('labels650k.csv') X = df1.values y = df2.values n = 650000 X = np.reshape(X, (n,13,21,1)) #df2.head() df2.drop('x-entry', axis=1, inplace=True) df2.drop('y-entry', axis=1, inplace=True) df2.drop('z-entry', axis=1, inplace=True) df2.drop('n_x', axis=1, inplace=True) df2.drop('n_y', axis=1, inplace=True) df2.drop('n_z', axis=1, inplace=True) df2.drop('number_eh_pairs', axis=1, inplace=True) #df2.drop('cotAlpha', axis=1, inplace=True) #df2.drop('cotBeta', axis=1, inplace=True) print(df2.head()) #df2.shape #reset y since you dropped columns y = df2.values df2.head() #https://keras.io/api/callbacks/#csvlogger #from https://keras.io/guides/writing_your_own_callbacks/ class CustomCallback(keras.callbacks.Callback): def on_train_begin(self, logs=None): keys = list(logs.keys()) print("Starting training; got log keys: {}".format(keys)) def on_train_end(self, logs=None): keys = list(logs.keys()) print("Stop training; got log keys: {}".format(keys)) def on_epoch_begin(self, epoch, logs=None): keys = list(logs.keys()) print("Start epoch {} of training; got log keys: {}".format(epoch, keys)) def on_epoch_end(self, epoch, logs=None): keys = list(logs.keys()) print("End epoch {} of training; got log keys: {}".format(epoch, keys)) def on_test_begin(self, logs=None): keys = list(logs.keys()) print("Start testing; got log keys: {}".format(keys)) def on_test_end(self, logs=None): keys = list(logs.keys()) print("Stop testing; got log keys: {}".format(keys)) def on_predict_begin(self, logs=None): keys = list(logs.keys()) print("Start predicting; got log keys: {}".format(keys)) def on_predict_end(self, logs=None): keys = list(logs.keys()) print("Stop predicting; got log keys: {}".format(keys)) def on_train_batch_begin(self, batch, logs=None): keys = list(logs.keys()) print("...Training: start of batch {}; got log keys: {}".format(batch, keys)) def on_train_batch_end(self, batch, logs=None): keys = list(logs.keys()) print("...Training: end of batch {}; got log keys: {}".format(batch, keys)) def on_test_batch_begin(self, batch, logs=None): keys = list(logs.keys()) print("...Evaluating: start of batch {}; got log keys: {}".format(batch, keys)) def on_test_batch_end(self, batch, logs=None): keys = list(logs.keys()) print("...Evaluating: end of batch {}; got log keys: {}".format(batch, keys)) # def on_predict_batch_begin(self, batch, logs=None): # keys = list(logs.keys()) # print("...Predicting: start of batch {}; got log keys: {}".format(batch, keys)) # def on_predict_batch_end(self, batch, logs=None): # keys = list(logs.keys()) # print("...Predicting: end of batch {}; got log keys: {}".format(batch, keys)) X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.20, random_state = 0) print(X.shape, y.shape) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) #scale input data scaler = StandardScaler() X_train = scaler.fit_transform(X_train.reshape(-1, X_train.shape[-1])).reshape(X_train.shape) X_test = scaler.transform(X_test.reshape(-1, X_test.shape[-1])).reshape(X_test.shape) #make a simple model model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), strides=(2, 2), activation='relu', input_shape=(13, 21, 1))) model.add(layers.MaxPooling2D(2, 2)) model.add(layers.Conv2D(64, (3, 3), strides=(2, 2), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dropout(0.1)) model.add(layers.Dense(2, activation='linear')) model.summary() checkpoint_path = "cp.ckpt" # Create a callback that saves the model's weights # currently, model weights are saved for each training # to do - update for early stopping cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1) #https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping #patience: Number of epochs with no improvement after which training will be stopped earlyStop_callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=20) csv_logger = CSVLogger('log.csv', append=True, separator=';') batch_size = 64 epochs = 200 model.compile(loss=keras.losses.MeanSquaredError(), optimizer='adam', metrics=['mean_squared_error']) history = model.fit( X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(X_test, y_test), callbacks=[cp_callback, csv_logger, earlyStop_callback], ) res = model.evaluate( X_test, y_test, batch_size=batch_size, ) predictions = model.predict(X_test, batch_size=batch_size, callbacks=[CustomCallback()]) #save model # serialize model to JSON model_json = model.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) #save full model in hd5 format model.save('my_model.h5') print(len(predictions)) df_predict = pd.DataFrame(predictions, columns=['cotAlpha', 'cotBeta']) print(df_predict) df_predict.head() trueLabels = pd.DataFrame(y_test, columns=['cotAlpha', 'cotBeta']) plt.plot(history.history['loss'], label='train_loss') plt.plot(history.history['val_loss'], label='val_loss') plt.savefig('loss.png') plt.plot(history.history['mean_squared_error'], label = 'MSE') plt.savefig('mse.png') df_predict.to_csv('predictions.csv') trueLabels.to_csv('trueLabels.csv') ``` #### File: directional-pixel-detectors/3D_NN_cotBeta_models/bigDataGenTest.py ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import math from numpy import asarray from numpy import savetxt import os def parseFile(filein,nevents): with open(filein) as f: lines = f.readlines() header = lines.pop(0).strip() pixelstats = lines.pop(0).strip() print("Header: ", header) print("Pixelstats: ", pixelstats) clusterctr = 0 b_getclusterinfo = False cluster_truth =[] timeslice = 0 # instantiate 4-d np array [cluster number, time slice, pixel row, pixel column] cur_slice = [] cur_cluster = [] events = [] for line in lines: #uncomment line.strip() to get the print out of each one #print(line.strip()) ## Get cluster truth information if "<cluster>" in line: # save the last time slice too if timeslice > 0: cur_cluster.append(cur_slice) cur_slice = [] timeslice = 0 b_getclusterinfo = True # save the last cluster if clusterctr > 0: # print("len of cur_cluster = ", len(cur_cluster)) events.append(cur_cluster) cur_cluster = [] #print("New cluster ",clusterctr) clusterctr += 1 # Let's just look at the first 10 clusters for now if clusterctr > nevents: break continue if b_getclusterinfo: cluster_truth.append(line.strip().split()) b_getclusterinfo = False ## Put cluster information into np array if "time slice" in line: print("time slice ", timeslice, ", ", line.strip()) print("Length of cur_slice = ", len(cur_slice)) if timeslice > 0 and timeslice < 8: cur_cluster.append(cur_slice) cur_slice = [] timeslice += 1 continue if timeslice > 0 and b_getclusterinfo == False: cur_row = line.strip().split() # print(len(cur_row)) cur_slice.append([10*float(item) for item in cur_row]) print("Number of clusters = ", clusterctr) print(cluster_truth) print("Number of events = ",len(events)) print("Number of time slices in cluster = ", len(events[0])) arr_truth = np.array(cluster_truth) arr_events = np.array( events ) #convert into pandas DF df = {} #truth quantities - all are dumped to DF df = pd.DataFrame(arr_truth, columns = ['x-entry', 'y-entry','z-entry', 'n_x', 'n_y', 'n_z', 'number_eh_pairs']) df['n_x']=df['n_x'].astype(float) df['n_y']=df['n_y'].astype(float) df['n_z']=df['n_z'].astype(float) df['cotBeta'] = df['n_y']/df['n_z'] df.drop('x-entry', axis=1, inplace=True) df.drop('y-entry', axis=1, inplace=True) df.drop('z-entry', axis=1, inplace=True) df.drop('n_x', axis=1, inplace=True) df.drop('n_y', axis=1, inplace=True) df.drop('n_z', axis=1, inplace=True) df.drop('number_eh_pairs', axis=1, inplace=True) df.to_csv("labelsTest.csv", index=False) return arr_events, arr_truth def main(): #arr_events, arr_truth = parseFile(filein="pixel_clusters_d00000.out", nevents=10) #use for test arr_events, arr_truth = parseFile(filein="pixel_clusters_d16112.out", nevents=10) print("The shape of the event array: ", arr_events.shape) print("The ndim of the event array: ", arr_events.ndim) print("The dtype of the event array: ", arr_events.dtype) print("The size of the event array: ", arr_events.size) print("The max value in the array is: ", np.amax(arr_events)) # print("The shape of the truth array: ", arr_truth.shape) for i, e in enumerate(arr_events): #integrated_cluster = np.sum(e,axis=0) print("event number = ", i) print("event array shape = ", e.shape) os.chdir('/Users/jieunyoo/april12_3dCNN/figures-test') path=os.getcwd() os.mkdir('cluster'+str(i)) os.chdir('cluster'+str(i)) max_val = np.amax(e) for j,s in enumerate(e): np.save('event{0:006d}_frame{1:02d}.npy'.format(i,j),s) path_parent = os.path.dirname(os.getcwd()) os.chdir(path_parent) if __name__ == "__main__": main() # See PyCharm help at https://www.jetbrains.com/help/pycharm/ ```
{ "source": "jieunyoo/hangulapp", "score": 2 }
#### File: migrations/versions/4c744e3adbf0_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '4c744e3adbf0' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('quizquestions1', sa.Column('question', sa.String(), nullable=True), sa.Column('option1', sa.String(), nullable=True), sa.Column('option2', sa.String(), nullable=True), sa.Column('option3', sa.String(), nullable=True), sa.Column('option4', sa.String(), nullable=True), sa.Column('answer', sa.String(), nullable=True), sa.Column('category', sa.String(), nullable=True), sa.Column('questionid', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('questionid') ) op.create_table('roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=64), nullable=True), sa.Column('default', sa.Boolean(), nullable=True), sa.Column('permissions', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) op.create_index(op.f('ix_roles_default'), 'roles', ['default'], unique=False) op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('email', sa.String(length=64), nullable=True), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('role_id', sa.Integer(), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.Column('confirmed', sa.Boolean(), nullable=True), sa.Column('name', sa.String(length=64), nullable=True), sa.Column('location', sa.String(length=64), nullable=True), sa.Column('about_me', sa.Text(), nullable=True), sa.Column('member_since', sa.DateTime(), nullable=True), sa.Column('last_seen', sa.DateTime(), nullable=True), sa.Column('avatar_hash', sa.String(length=32), nullable=True), sa.Column('memberlevel', sa.Integer(), nullable=True), sa.Column('memberexpirationdate', sa.DateTime(), nullable=True), sa.Column('quizcount', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['role_id'], ['roles.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) op.create_index(op.f('ix_users_username'), 'users', ['username'], unique=True) op.create_table('quizzes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('quizscore', sa.Integer(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('answered', sa.PickleType(), nullable=True), sa.Column('countquestions', sa.Integer(), nullable=True), sa.Column('quizname', sa.String(length=128), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_quizzes_timestamp'), 'quizzes', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_quizzes_timestamp'), table_name='quizzes') op.drop_table('quizzes') op.drop_index(op.f('ix_users_username'), table_name='users') op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_table('users') op.drop_index(op.f('ix_roles_default'), table_name='roles') op.drop_table('roles') op.drop_table('quizquestions1') # ### end Alembic commands ### ```
{ "source": "jievince/nebula-python", "score": 2 }
#### File: nebula-python/nebula/AsyncClient.py ```python import asyncio from .Common import * from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from graph import AsyncGraphService class AsyncGraphClient(object): def __init__(self, ip, port, loop = None): """Initializer Arguments: empty Returns: empty """ self._loop = loop or asyncio.get_event_loop() transport = TSocket.TSocket(ip, port) transport = TTransport.TBufferedTransport(transport) protocol = TBinaryProtocol.TBinaryProtocol(transport) transport.open() self._client = AsyncGraphService.Client(protocol) self._iprot = protocol self._session_id = 0 self._reqid_callback = {} def get_loop(self): return self._loop def authenticate(self, user, password): """authenticate to graph server Arguments: - user: the user name - password: the <PASSWORD> Returns: AuthResponse: the response of graph AuthResponse's attributes: - error_code - session_id - error_msg """ if self._client is None: raise AuthException("No client") try: fut = self._client.authenticate(user, password) (fname, mtype, rseqid) = self._iprot.readMessageBegin() self._client.recv_authenticate(self._iprot, mtype, rseqid) resp = fut.result() if resp.error_code == 0: self._session_id = resp.session_id return resp except Exception as x: raise AuthException("Auth failed: {}".format(x)) @asyncio.coroutine def async_execute(self, statement, callback=None): """execute statement to graph server Arguments: - statement: the statement Returns: SimpleResponse: the response of graph SimpleResponse's attributes: - error_code - error_msg """ if self._client is None: raise ExecutionException("No client") try: fut = self._client.execute(self._session_id, statement) if callback is None: return self._reqid_callback[self._client._seqid] = callback yield from (asyncio.sleep(0)) (fname, mtype, rseqid) = self._iprot.readMessageBegin() self._client.recv_execute(self._iprot, mtype, rseqid) resp = fut.result() cb = self._reqid_callback.get(rseqid) if cb is not None: callback(SimpleResponse(resp.error_code, resp.error_msg)) self._reqid_callback.pop(rseqid) except Exception as x: raise ExecutionException("Execute `{}' failed: {}".format(statement, x)) @asyncio.coroutine def async_execute_query(self, statement, callback=None): """execute query statement to graph server Arguments: - statement: the statement Returns: ExecutionResponse: the response of graph ExecutionResponse's attributes: - error_code - latency_in_us - error_msg - column_names - rows - space_name """ if self._client is None: raise ExecutionException("No client") try: fut = self._client.execute(self._session_id, statement) if callback is None: return self._reqid_callback[self._client._seqid] = callback yield from (asyncio.sleep(0)) (fname, mtype, rseqid) = self._iprot.readMessageBegin() self._client.recv_execute(self._iprot, mtype, rseqid) resp = fut.result() cb = self._reqid_callback.get(rseqid) if cb is not None: callback(resp) self._reqid_callback.pop(rseqid) except Exception as x: raise ExecutionException("Execute `{}' failed: {}".format(statement, x)) def sign_out(self): """sign out: Users should call sign_out when catch the exception or exit """ if self._client is None: return try: if self._session_id != 0: self._client.signout(self._session_id) except Exception as x: raise Exception("SignOut failed: {}".format(x)) def is_none(self): """is_none: determine if the client creation was successful Returns: True or False """ return self._client is None ``` #### File: nebula-python/nebula/Common.py ```python class AuthException(Exception): def __init__(self, message): Exception.__init__(self, message) self.message = message class ExecutionException(Exception): def __init__(self, message): Exception.__init__(self, message) self.message = message class SimpleResponse: """ Attributes: - error_code - error_msg """ def __init__(self, code, msg): self.error_code = code self.error_msg = msg ``` #### File: nebula-python/tests/test_client.py ```python import pytest import sys import os import time import threading sys.path.insert(0, '../') from graph import ttypes from nebula.ConnectionPool import ConnectionPool from nebula.Client import GraphClient from nebula.Common import * def get_port(): return 3699 def create_pool(port): return ConnectionPool('127.0.0.1', port) @pytest.fixture(scope='module') def get_pool(): return create_pool(get_port()) @pytest.fixture(scope='function') def get_client(get_pool): return GraphClient(get_pool) def check_result(rows, expect): if len(rows) != len(expect): print('len(rows)[%d] != len(expect)[%d]' % (len(rows), len(expect))) return False for row, i in zip(rows, range(0, len(expect))): for col, j in zip(row.columns, range(0, len(expect[i]))): if col.getType() == ttypes.ColumnValue.__EMPTY__: print('ERROR: type is empty') return False if col.getType() == ttypes.ColumnValue.BOOL_VAL: if col.get_bool_val() != expect[i][j]: print('result: %d, expect: %d' % (col.get_bool_val(), expect[i][j])) return False continue if col.getType() == ttypes.ColumnValue.INTEGER: if col.get_integer() != expect[i][j]: print('result: %d, expect: %d' % (col.get_integer(), expect[i][j])) return False continue if col.getType() == ttypes.ColumnValue.ID: if col.get_id() != expect[i][j]: print('result: %d, expect: %d' % (col.get_id(), expect[i][j])) return False continue if col.getType() == ttypes.ColumnValue.STR: if col.get_str().decode('utf-8') != expect[i][j]: print('result: %s, expect: %s' % (col.get_str().decode('utf-8'), expect[i][j])) return False continue if col.getType() == ttypes.ColumnValue.DOUBLE_PRECISION: if col.get_double_precision() != expect[i][j]: print('result: %d, expect: %d' % (col.get_double_precision(), expect[i][j])) return False continue if col.getType() == ttypes.ColumnValue.TIMESTAMP: if col.get_timestamp() != expect[i][j]: print('result: %d, expect: %d' % (col.get_timestamp(), expect[i][j])) return False continue print('ERROR: Type unsupported') return False return True def test_create_schema(get_client): try: client = get_client if client is None: assert False return resp = client.authenticate('user', 'password') assert resp.error_code == 0, resp.error_msg client.execute('DROP SPACE space1') resp = client.execute('CREATE SPACE space1') assert resp.error_code == 0, resp.error_msg time.sleep(5) count = 0 while count < 100: resp = client.execute('USE space1') if resp.error_code == 0: break print(resp.error_msg) count += 1 resp = client.execute('CREATE TAG person(name string, age int)') assert resp.error_code == 0, resp.error_msg client.execute('CREATE EDGE like(likeness double)') assert resp.error_code == 0, resp.error_msg time.sleep(12) resp = client.execute_query('SHOW TAGS') assert resp.error_code == 0, resp.error_msg assert len(resp.rows) == 1, resp.error_msg assert resp.rows[0].columns[1].get_str().decode('utf-8') == 'person', resp.error_msg resp = client.execute_query('SHOW EDGES') assert resp.error_code == 0, resp.error_msg assert len(resp.rows) == 1, resp.error_msg assert resp.rows[0].columns[1].get_str().decode('utf-8') == 'like', resp.error_msg time.sleep(10) client.sign_out() except Exception as ex: print(ex) client.sign_out() assert False def test_insert_data(get_client): try: client = get_client if client is None: assert False, "client is None" return resp = client.authenticate('user', 'password') assert resp.error_code == 0, resp.error_msg resp = client.execute('USE space1') assert resp.error_code == 0, resp.error_msg time.sleep(1) resp = client.execute('INSERT VERTEX person(name, age) VALUES 1:(\'Bob\', 10)') assert resp.error_code == 0, resp.error_msg resp = client.execute('INSERT VERTEX person(name, age) VALUES 2:(\'Lily\', 9)') assert resp.error_code == 0, resp.error_msg resp = client.execute('INSERT VERTEX person(name, age) VALUES 3:(\'Tom\', 10)') assert resp.error_code == 0, resp.error_msg resp = client.execute('INSERT EDGE like(likeness) VALUES 1->2:(80.0)') assert resp.error_code == 0, resp.error_msg resp = client.execute('INSERT EDGE like(likeness) VALUES 1->3:(90.0)') assert resp.error_code == 0, resp.error_msg client.sign_out() except Exception as ex: print(ex) client.sign_out() assert False def test_query_data(get_client): try: client = get_client if client is None: assert False return resp = client.authenticate('user', 'password') if resp.error_code != 0: print("ERROR: %s" % resp.error_msg) assert resp.error_code == 0 time.sleep(1) resp = client.execute('USE space1') assert resp.error_code == 0 resp = client.execute_query('GO FROM 1 OVER like YIELD $$.person.name, ' '$$.person.age, like.likeness') assert resp.error_code == 0 assert len(resp.rows) == 2 expect_result = [['Lily', 9, 80.0], ['Tom', 10, 90.0]] assert check_result(resp.rows, expect_result) client.sign_out() except Exception as ex: print(ex) client.sign_out() assert False def test_multi_thread(): # Test multi thread connection_pool = ConnectionPool('127.0.0.1', get_port()) global success_flag success_flag = True def main_test(): client = None global success_flag try: client = GraphClient(connection_pool) if client.is_none(): print("ERROR: None client") success_flag = False return space_name = 'space_' + threading.current_thread().getName() resp = client.authenticate('user', 'password') if resp.error_code != 0: raise AuthException('Auth failed') client.execute('DROP SPACE %s' % space_name) resp = client.execute('CREATE SPACE %s' % space_name) if resp.error_code != 0: raise ExecutionException('CREATE SPACE failed') time.sleep(3) count = 0 while count < 100: resp = client.execute('USE %s' % space_name) if resp.error_code == 0: break print(resp.error_msg) count += 1 resp = client.execute('USE %s' % space_name) if resp.error_code != 0: raise ExecutionException('USE SPACE failed') client.sign_out() except Exception as x: print(x) client.sign_out() success_flag = False return thread1 = threading.Thread(target=main_test, name='thread1') thread2 = threading.Thread(target=main_test, name='thread2') thread3 = threading.Thread(target=main_test, name='thread3') thread4 = threading.Thread(target=main_test, name='thread4') thread1.start() thread2.start() thread3.start() thread4.start() thread1.join() thread2.join() thread3.join() thread4.join() connection_pool.close() assert success_flag ```
{ "source": "jiewufd/Quant", "score": 3 }
#### File: jiewufd/Quant/data_prepare.py ```python import numpy as np import pandas as pd import collect as clct import constants import db_operations as dbop def _check_int(arg): if type(arg) != int: raise ValueError("{} is not a int".format(arg)) def _check_iterable(arg): if not hasattr(arg, "__iter__"): raise ValueError("{} is not iterable".format(arg)) def _make_iterable(arg): if type(arg) == str or not hasattr(arg, "__iter__"): return [arg] else: return arg def _prefix(prefix, df: pd.DataFrame, copy=False): if copy: df = df.copy() df.columns = list(map(lambda col: str(prefix) + "_" + col, df.columns)) return df def _move(days, df: pd.DataFrame, cols=None, prefix=True): _check_int(days) if cols is None: cols = df.columns cols = _make_iterable(cols) if days > 0: pre = "p{}mv".format(abs(days)) df_mv = df[cols].iloc[days:].copy() df_mv.index = df.index[:-days] else: pre = "f{}mv".format(abs(days)) df_mv = df[cols].iloc[:days].copy() df_mv.index = df.index[-days:] if prefix: return _prefix(pre, df_mv) else: return df_mv def _rolling(rolling_type, days, df: pd.DataFrame, cols, move=0, has_prefix=True): _check_int(days) cols = _make_iterable(cols) period = abs(days) if rolling_type == "max": df_rolling = df[cols].rolling(window=abs(days)).max() elif rolling_type == "min": df_rolling = df[cols].rolling(window=abs(days)).min() elif rolling_type == "mean": df_rolling = df[cols].rolling(window=abs(days)).max() else: raise ValueError( "rolling_type='{}' is not supported.".format(rolling_type)) if move != 0: df_rolling = _move(move, df_rolling) n = len(df_rolling) idxes = df_rolling.index if days > 0: pre = "f" + str(abs(days)) + rolling_type df_rolling = df_rolling.iloc[period - 1:n] df_rolling.index = idxes[period - 1:n] else: pre = "p" + str(abs(days)) + rolling_type df_rolling = df_rolling.iloc[period - 1:n] if n - period + 1 >= 0: df_rolling.index = idxes[:n - period + 1] if has_prefix: return _prefix(pre, df_rolling) else: return df_rolling def _rolling_max(days, df: pd.DataFrame, cols, move=0, has_prefix=True): _check_int(days) cols = _make_iterable(cols) period = abs(days) df_rolling = df[cols].rolling(window=abs(days)).max() if move != 0: # print("--------",move) # print(df_rolling[df["code"] == "600887.SH"]["high"].iloc[:30]) df_rolling = _move(move, df_rolling) # print(df_rolling[df["code"] == "600887.SH"]["f1mv_high"].iloc[:30]) n = len(df_rolling) idxes = df_rolling.index if days > 0: pre = "f" + str(abs(days)) + "max" df_rolling = df_rolling.iloc[period - 1:n] df_rolling.index = idxes[ period - 1:n] # df_rolling = df_rolling.iloc[period-1:n+move] # df_rolling.index = df.index[period-1-move:n] else: pre = "p" + str(abs(days)) + "max" df_rolling = df_rolling.iloc[period - 1:n] if n - period + 1 >= 0: df_rolling.index = idxes[:n - period + 1] # df_rolling = df_rolling.iloc[period-1+move:n] # df_rolling.index = df.index[:n-period+1-move] if has_prefix: return _prefix(pre, df_rolling) else: return df_rolling def _rolling_min(days, df: pd.DataFrame, cols, move=0, has_prefix=True): _check_int(days) cols = _make_iterable(cols) period = abs(days) df_rolling = df[cols].rolling(window=abs(days)).min() if move != 0: # print("--------",move) # print(df_rolling[df["code"] == "600887.SH"]["high"].iloc[:30]) df_rolling = _move(move, df_rolling) # print(df_rolling[df["code"] == "600887.SH"]["f1mv_high"].iloc[:30]) n = len(df_rolling) idxes = df_rolling.index if days > 0: pre = "f" + str(abs(days)) + "min" df_rolling = df_rolling.iloc[period - 1:n] df_rolling.index = idxes[period - 1:n] else: pre = "p" + str(abs(days)) + "min" df_rolling = df_rolling.iloc[period - 1:n] if n - period + 1 >= 0: df_rolling.index = idxes[:n - period + 1] if has_prefix: return _prefix(pre, df_rolling) else: return df_rolling def _rolling_mean(days, df: pd.DataFrame, cols, move=0, has_prefix=True): _check_int(days) cols = _make_iterable(cols) period = abs(days) df_rolling = df[cols].rolling(window=abs(days)).mean() if move != 0: df_rolling = _move(move, df_rolling) n = len(df_rolling) idxes = df_rolling.index if days > 0: pre = "f" + str(abs(days)) + "mean" df_rolling = df_rolling.iloc[period - 1:n] df_rolling.index = idxes[period - 1:n] else: pre = "p" + str(abs(days)) + "mean" df_rolling = df_rolling.iloc[period - 1:n] if n - period + 1 >= 0: df_rolling.index = idxes[:n - period + 1] if has_prefix: return _prefix(pre, df_rolling) else: return df_rolling def change_rate(df1: pd.DataFrame, df2: pd.DataFrame, cols1=None, cols2=None): if cols1: df1 = df1[cols1].copy() if cols2: df2 = df2[cols2].copy() if df1.shape[1] != df2.shape[1]: raise ValueError( "Column length not the same:{0}!={1}".format(df1.shape[1], df2.shape[1])) df1 = df1.copy() df1.columns = df2.columns df3 = (df2 - df1) / df1 df3 = _prefix("change_rate", df3) return df3 def create_df(cursor, table_name, start=None): if start: sql_select = "select * from {0} where date>='{1}'".format(table_name, start) else: sql_select = "select * from {0}".format(table_name) cursor.execute(sql_select) df = pd.DataFrame(cursor.fetchall()) df.columns = dbop.cols_from_cur(cursor) return df def prepare_stck_d(df_stck_d): df_stck_d = df_stck_d.set_index(["date"]).sort_index(ascending=False) df_stck_d = df_stck_d[ ["code", "open", "high", "low", "close", "vol", "amt", "adj_factor"]] return df_stck_d def prepare_idx_d(df_idx_d): df_idx_d = df_idx_d.set_index("date").sort_index(ascending=False) return df_idx_d def prepare_each_stck(df_stck, qfq_type="hfq"): if qfq_type and qfq_type not in ["hfq","qfq"]: raise ValueError("qfq_type {} is not supported".format(qfq_type)) df_stck = df_stck.copy() fq_cols = ["open", "high", "low", "close"] for col in fq_cols: df_stck[col+"0"] = df_stck[col] # 后复权 if qfq_type=="qfq": qfq_factor = np.array(df_stck["adj_factor"] / df_stck["adj_factor"].iloc[0]) # print(qfq_factor.shape) qfq_factor = np.array(df_stck["adj_factor"]).reshape(-1, 1) * np.ones( (1, len(fq_cols))) # print(df_stck[fq_cols].dtypes) # print(qfq_factor.shape, qfq_factor.dtype) # print(df_stck[fq_cols]/qfq_factor) df_stck.loc[:, fq_cols] = df_stck[fq_cols] * qfq_factor return df_stck def proc_stck_d(df_stck_d, pred_period=10): df_stck_d = prepare_stck_d(df_stck_d) df_stck_list = [] cols_move = ["open", "high", "low", "close", "amt"] cols_roll = ["open", "high", "low", "close", "amt"] fq_cols = ["open", "high", "low", "close"] cols_future = None for code, df in df_stck_d.groupby("code"): df = df.sort_index(ascending=False) df = prepare_each_stck(df) df_label_min = _rolling_min(pred_period, df, "low", move=-1) df_label_max = _rolling_max(pred_period - 1, df, "high", move=-2) p1 = (pred_period - 1) // 3 p2 = p1 p3 = pred_period - 1 - p1 - p2 df_label_mean1 = _rolling_mean(p1, df, "open", move=-2) df_label_mean2 = _rolling_mean(p2, df, "open", move=-2 - p1) df_label_mean3 = _rolling_mean(p3, df, "open", move=-2 - p1 - p2) # print(df_label_min.columns) df_tomorrow = _move(-1, df, ["open", "high", "low", "close"]) # df_label_min = _rolling_min(pred_period,df,"low") # if code == "000002.SZ": # tmp = _rolling_min(-5,df,cols_roll).loc["2018-08-07"] # print(tmp) df_move_list = [change_rate(df[cols_move], _move(i, df, cols_move)) for i in range(1, 6)] df_qfq = df[fq_cols] / df["adj_factor"].iloc[0] qfq_cols = ["qfq_"+col for col in fq_cols] df_tomorrow_qfq = _move(-1, df_qfq) df_rolling_list = [(change_rate(df[cols_roll], _rolling_max(i, df, cols_roll)), change_rate(df[cols_roll], _rolling_min(i, df, cols_roll)), change_rate(df[cols_roll], _rolling_mean(i, df, cols_roll))) for i in [-5, -10, -20, -60, -120, -250]] df_roll_flat_list = [] for df_rolling_group in df_rolling_list: df_roll_flat_list.extend(df_rolling_group) df_labels = pd.concat( [df_tomorrow,df_tomorrow_qfq, df_label_max, df_label_min, df_label_mean1, df_label_mean2, df_label_mean3], axis=1, sort=False) df_stck = pd.concat( [df,df_qfq] + df_move_list + df_roll_flat_list + [df_labels], axis=1, sort=False) df_stck_list.append(df_stck) if not cols_future: cols_future = list(df_labels) # print(tmp.shape) # print(tmp[tmp[col_label].isnull()]) # if code == "002217.SZ": # print(df[df.index == "2018-01-02"]) # print(df_stck[df_stck.index == "2018-01-02"]) df_stck_d_all = pd.concat(df_stck_list, sort=False) # for df in df_stck_list: # print(df["code"].unique(), df.shape) # print(df["code"].unique(), df[df.index >= "2018-01-01"].shape) print("count stck", len( df_stck_d_all["code"][df_stck_d_all.index >= "2018-01-01"].unique())) print(df_stck_d_all.shape) return df_stck_d_all, cols_future def proc_idx_d(df_idx_d: pd.DataFrame): df_idx_d = prepare_idx_d(df_idx_d) cols_move = ["open", "high", "low", "close", "vol"] cols_roll = cols_move df_idx_list = [] for name, group in df_idx_d.groupby("code"): group = group.sort_index(ascending=False) del group["code"] df_move_list = [ change_rate(group[cols_move], _move(i, group, cols_move)) for i in range(1, 6)] df_rolling_list = [(change_rate(group[["high", "vol"]], _rolling_max(i, group, ["high", "vol"])), change_rate(group[["low", "vol"]], _rolling_min(i, group, ["low", "vol"])), change_rate(group[["open", "close", "vol"]], _rolling_mean(i, group, ["open", "close", "vol"]))) for i in [-5, -10, -20, -60, -120, -250, -500]] df_roll_flat_list = [] for df_rolling_group in df_rolling_list: df_roll_flat_list.extend(df_rolling_group) tmp_list = [group] + df_move_list + df_roll_flat_list tmp = pd.concat(tmp_list, axis=1, sort=False) df_idx_list.append(_prefix(name, tmp)) df_idx_d = pd.concat(df_idx_list, axis=1, sort=False) return df_idx_d def prepare_data(cursor, pred_period=10, start=None): stock_day, index_day = constants.STOCK_DAY[clct.TABLE], constants.INDEX_DAY[ clct.TABLE] print("start:",start) df_stck_d = create_df(cursor, stock_day, start) print("min_date",min(df_stck_d.date)) df_idx_d = create_df(cursor, index_day, start) df_stck_d_all, cols_future = proc_stck_d(df_stck_d, pred_period=pred_period) print(df_stck_d_all.shape) df_idx_d = proc_idx_d(df_idx_d) print(df_idx_d.shape, len(df_idx_d.index.unique())) df_all = df_stck_d_all.join(df_idx_d) print(df_all.shape) # print(df_all[(df_all.index == "2018-01-02") & ( # df_all["code"] == "002217.SZ")]) return df_all, cols_future def feature_select(X, y): import sklearn.ensemble as ensemble clf = ensemble.ExtraTreesClassifier(random_state=0) clf.fit(X, y) import sklearn.feature_selection as fselect model = fselect.SelectFromModel(clf, prefit=True) X_new = model.transform(X) print("selected feature number:", X_new.shape) return X_new, model def main(): db_type = "sqlite3" # # conn = dbop.connect_db(db_type) # cursor = conn.cursor() # # pred_period=20 # df_all,cols_future = prepare_data(cursor,pred_period=pred_period,start="2011-01-01") # # # test # # df_test = df_all[df_all["code"]=="600887.SH"] # # basic_cols = ["open", "high", "low", "close", "amt", "adj_factor"] # # derived_cols = ['change_rate_p1mv_open', 'change_rate_p1mv_high', # # 'change_rate_p1mv_low', 'change_rate_p1mv_close', # # 'change_rate_p1mv_amt', 'change_rate_p3mv_open', # # 'change_rate_p3mv_high', 'change_rate_p3mv_low', # # 'change_rate_p3mv_close', 'change_rate_p3mv_amt', # # 'change_rate_p5mv_open', 'change_rate_p5mv_high', # # 'change_rate_p5mv_low', 'change_rate_p5mv_close', # # 'change_rate_p5mv_amt', 'change_rate_p5max_open', # # 'change_rate_p5max_high', 'change_rate_p5max_low', # # 'change_rate_p5max_close', 'change_rate_p5max_amt', # # 'change_rate_p5min_open', 'change_rate_p5min_high', # # 'change_rate_p5min_low', 'change_rate_p5min_close', # # 'change_rate_p5min_amt', 'change_rate_p5mean_open', # # 'change_rate_p5mean_high', 'change_rate_p5mean_low', # # 'change_rate_p5mean_close', 'change_rate_p5mean_amt', # # 'change_rate_p20max_open', 'change_rate_p20max_high', # # 'change_rate_p20max_low', 'change_rate_p20max_close', # # 'change_rate_p20max_amt', 'change_rate_p20min_open', # # 'change_rate_p20min_high', 'change_rate_p20min_low', # # 'change_rate_p20min_close', 'change_rate_p20min_amt', # # 'change_rate_p20mean_open', 'change_rate_p20mean_high', # # 'change_rate_p20mean_low', 'change_rate_p20mean_close', # # 'change_rate_p20mean_amt', 'f1mv_open', 'f1mv_high', # # 'f1mv_low', 'f1mv_close', 'f20max_f1mv_high', # # 'sz50_open', 'sz50_high', 'sz50_low', 'sz50_close', # # 'sz50_vol', 'sz50_change_rate_p1mv_open', # # 'sz50_change_rate_p1mv_high', # # 'sz50_change_rate_p1mv_low', # # 'sz50_change_rate_p1mv_close', # # 'sz50_change_rate_p1mv_vol'] # # # # test_cols = basic_cols + derived_cols # # print(test_cols) # # df_test[test_cols].sort_index(ascending=False).iloc[:100].to_excel( # # "test_data.xlsx",header=True,index=True) # # # # # # # test # # df_test_list = [] # # for code in df_all["code"].unique()[:3]: # # df = df_all[df_all["code"]==code].sort_index( # # ascending=False).iloc[:50] # # print(df) # # df_test_list.append(df) # # pd.concat(df_test_list).to_excel("test_data.xlsx",header=True,index=True) # # # # # import xgboost.sklearn as xgb # import lightgbm.sklearn as lgbm # import sklearn.metrics as metrics # import matplotlib.pyplot as plt # import time # import sklearn.preprocessing as preproc # # period = (df_all.index >= "2014-01-01") # df_all = df_all[period] # # df_all = df_all[df_all["amt"]!=0] # # y = gen_y(df_all, threshold=0.15, pred_period=pred_period) # print("null:",sum(y.isnull())) # # features = df_all.columns.difference(cols_future+["code"]) # # # X = df_all[features] # # # # X,y = drop_null(X,y) # X = X[y.notnull()] # X_full = df_all[y.notnull()] # print("full and X",X.shape,X_full.shape) # y = y.dropna() # print(X.shape,y.shape) # print("total positive", sum(y)) # # condition = (X.index >= "2018-01-01") # X_train, y_train = X[~condition], y[~condition] # X_test, y_test = X[condition], y[condition] # # print(X_test.shape,y_test.shape) # print("test positive:", sum(y_test)) # # X_train_full = X_full.loc[condition] # X_test_full = X_full.loc[condition] # # print(X_test_full.shape,X_test.shape) # print(X_test_full[(X_test_full.index == "2018-01-02") & (X_test_full["code"]=="002217.SZ")].shape) # # # # print(X_test_full["code"].iloc[np.array(y_test == 1)]) # # print(X_test_full[X_test_full["code"]=="002217.SZ"]) # # # # scaler = preproc.StandardScaler() # # # X_train = scaler.fit_transform(X_train) # # # X_test = scaler.transform(X_test) # # # # # X_train,selector = feature_select(X_train,y_train) # # # X_test = selector.transform(X_test) # # # # # scale_pos_weight = sum(y==0)/sum(y==1) # # clfs = [ # lgbm.LGBMClassifier(n_estimators=300, scale_pos_weight=0.1, # num_leaves=100, max_depth=8, random_state=0), # xgb.XGBClassifier(n_estimators=300, scale_pos_weight=0.1, # max_depth=5, # random_state=0,), # ] # # y_prd_list = [] # colors = ["r", "b"] # for clf, c in zip(clfs, colors): # t1 = time.time() # clf.fit(X_train, y_train) # t2 = time.time() # y_prd_list.append([clf, t2 - t1, clf.predict_proba(X_test), c]) # # for clf, t, y_prd_prob, c in y_prd_list: # y_prd = np.where(y_prd_prob[:, 0] < 0.25, 1, 0) # print(clf.classes_) # print(y_prd.shape, sum(y_prd)) # # print(X_test_full["code"].iloc[y_prd==1]) # # print(X_test_full["code"]) # # print("accuracy", metrics.accuracy_score(y_test, y_prd)) # print("precison", metrics.precision_score(y_test, y_prd)) # print("recall", metrics.recall_score(y_test, y_prd)) # precision, recall, _ = metrics.precision_recall_curve(y_test, y_prd_prob[:, 1]) # # plt.figure() # plt.title(clf.__class__) # plt.xlim(0, 1) # plt.ylim(0, 1) # plt.xlabel("recall") # plt.ylabel("precision") # plt.plot(recall, precision, color=c) # print(clf, t) # # plt.show() if __name__ == '__main__': main() ``` #### File: jiewufd/Quant/db_operations.py ```python import sqlite3 import pymysql def connect_db(db:str): if db=="mysql": return pymysql.connect(host='127.0.0.1', user='root', passwd='<PASSWORD>', db='quant', charset='utf8') elif db == "sqlite3": return sqlite3.connect("database\\stock.db") else: raise ValueError("{} not supported".format(db)) def close_db(conn): conn.commit() conn.close() def _parse_config(path): with open(path) as f: split_symbol = "----" config_str = "".join(f.readlines()) config_str = config_str.replace("\n","") config_str = config_str.replace("\t"," ") config_str = config_str.replace(split_symbol*2,split_symbol) config_str = config_str.strip(split_symbol) configs = dict([config.split("::") for config in config_str.split(split_symbol)]) return configs def parse_config(path): with open(path) as f: split_symbol = "-"*4 config_str = "".join(f.readlines()).strip(split_symbol) configs = [] for config_table in config_str.split(split_symbol): configs.append(_parse_config_table(config_table)) return dict(configs) def _parse_config_table(config_table:str): split_symbol = ":"*2 table_name, config_tab_details = config_table.split(split_symbol) table_name = table_name.replace("\n","").replace(" ","") return table_name, _parse_config_tab_details(config_tab_details) def _parse_config_tab_details(config_tab_details:str): split_symbol = "-"*2 config_cols, config_others = config_tab_details.split(split_symbol) pass def cols_from_cur(cursor): return tuple(desc[0] for desc in cursor.description) if __name__ == '__main__': cursor = connect_db("sqlite3").cursor() cursor.execute("select * from stock_day where date>='2018-08-15'") for row in cursor.fetchall(): print(row) ``` #### File: jiewufd/Quant/ml_model.py ```python import os import pickle import re import time import lightgbm.sklearn as lgbm import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.preprocessing as preproc import xgboost.sklearn as xgb from matplotlib import pyplot as plt import db_operations as dbop from data_prepare import prepare_data, feature_select from constants import FLOAT_DELTA def gen_data(pred_period=20, lower_bound="2011-01-01", start="2014-01-01"): db_type = "sqlite3" conn = dbop.connect_db(db_type) cursor = conn.cursor() df_all, cols_future = prepare_data(cursor, pred_period=pred_period, start=lower_bound) data_period = (df_all.index >= start) df_all = df_all[data_period] df_all = df_all[df_all["amt"] != 0] return df_all, cols_future def y_distribution(y): y = y.copy().dropna() # print distribution of y print("before", sum(y < 0)) print("y<-0.5:", sum(y < -0.5)) for i in range(-5, 5): tmp1 = ((i * 0.1) <= y) tmp2 = (y < ((i + 1) * 0.1)) if len(tmp1) == 0 or len(tmp2) == 0: tmp = [False] else: tmp = tmp1 & tmp2 print("{0:.2f}<=y<{1:.2f}:".format(i * 0.1, (i + 1) * 0.1), sum(tmp)) print("y>0.5", sum(y > 0.5)) print("after", sum(y < 0)) plt.figure() plt.hist(y, bins=np.arange(-10, 11) * 0.1) def gen_y(df_all: pd.DataFrame, pred_period=10, threshold=0.1, is_high=True, is_clf=False): target_col = get_target_col(pred_period, is_high) y = df_all[target_col] / df_all["f1mv_open"] - 1 y_distribution(y) # print(y[y.isna() & (df_all["f1mv_high"] == df_all["f1mv_low"])]) y[y.notnull() & (df_all["f1mv_high"] == df_all["f1mv_low"])] = 0 print("过滤涨停项:", sum(df_all["f1mv_high"] == df_all["f1mv_low"])) return label(y, threshold=threshold, is_high=is_high,is_clf=is_clf) def get_target_col(pred_period = 20,is_high = True): if is_high: target_col = "f{}max_f2mv_high".format(pred_period-1) else: target_col = "f{}min_f1mv_low".format(pred_period) return target_col def label(y, threshold=0.1, is_high=True, is_clf=False): if is_clf: if not is_high: y = -y y[y > threshold] = 1 y[y <= threshold] = 0 return y def drop_null(X, y): Xy = np.concatenate((np.array(X), np.array(y).reshape(-1, 1)), axis=1) Xy = pd.DataFrame(Xy, index=X.index).dropna() X = Xy.iloc[:, :-1].copy() y = Xy.iloc[:, -1].copy() return X, y def gen_dataset(pred_period=20, lower_bound="2011-01-01", start="2014-01-01", test_start="2018-01-01", is_high=True, is_clf=False, is_drop_null=False, is_normalized=False, is_feature_selected=False): """ Generate training and testing data to be passed to train(). :param pred_period: :param is_drop_null: :param is_normalized: :param is_feature_selected: :return: """ df_all, cols_future = gen_data(pred_period, lower_bound, start) y = gen_y(df_all, threshold=0.15, pred_period=pred_period, is_high=is_high, is_clf=is_clf) print("null:", sum(y.isnull())) features = df_all.columns.difference(cols_future + ["code"]) X_full = df_all[y.notnull()] X = X_full[features] y = y.dropna() if is_drop_null: X, y = drop_null(X, y) print("X_full,X,y:", X_full.shape, X.shape, y.shape) print("total positive", sum(y)) test_period = (X.index >= test_start) X_train, y_train = X[~test_period], y[~test_period] X_test, y_test = X[test_period], y[test_period] print(X_test.shape, y_test.shape) print("test positive:", sum(y_test)) X_train_full = X_full[~test_period] X_test_full = X_full[test_period] print(X_test_full.shape, X_test.shape) scaler = None if is_normalized: scaler = preproc.StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) selector = None if is_feature_selected: X_train, selector = feature_select(X_train, y_train) X_test = selector.transform(X_test) return {"train":(X_train,y_train), "test":(X_test, y_test), "full": (X_train_full, X_test_full), "preproc":(scaler, selector)} def gen_X(df_all: pd.DataFrame, cols_future, scaler=None, selector=None): features = df_all.columns.difference(cols_future + ["code"]) X = df_all[features] if scaler: X = X.transform(X) if selector: X = X.transform(X) return X def train(data, models, is_clf=False): X_train, y_train = data["train"] y_pred_list = [] for model in models: t1 = time.time() model.fit(X_train, y_train) t2 = time.time() y_pred_list.append([model, t2 - t1]) print("training time:", t2-t1) return y_pred_list def pred_vs_real(inc:pd.DataFrame, y_pred): x_min = -1 # Average for all. y0 = inc["pct"].mean() print(y0) x0 = np.arange(x_min,11) * 0.1 y0 = np.ones(x0.shape) * y0 # prediction performance df = pd.DataFrame(columns=["p0","range","cnt","min","mean","median","max","std"]) df = df.set_index(["p0"]) for i in range(-5,10): p0 = i * 0.1 p1 = (i + 1) * 0.1 cond = (p0 < y_pred) & (y_pred < p1) df.loc["{:.1f}".format(p0)] = ("{:.1f}-{:.1f}".format(p0,p1), sum(cond), inc["pct"][cond].min(), inc["pct"][cond].mean(), inc["pct"][cond].median(), inc["pct"][cond].max(), inc["pct"][cond].std()) if p0 > 0.3*FLOAT_DELTA and sum(cond)>0: plt.figure() plt.title(df.loc["{:.1f}".format(p0), "range"]) plt.hist(inc["pct"][cond], bins=5) print(df) plt.figure() plt.title("real-pred") cond_plt = y_pred<0.5*FLOAT_DELTA plt.scatter(y_pred[cond_plt],inc["pct"][cond_plt]) # for p0_pred, c, p_real,s in zip(p_pred,cnt, y,std): # print("{0:.1f}-{1:.1f}:".format(p0_pred,p0_pred+0.1),c, p_real, s) print(sum([row["cnt"] * row["mean"] for p0, row in df.iterrows() if float(p0) < 0.3*FLOAT_DELTA and row["cnt"]>0])) plt.figure() plt.bar(np.array(list(map(float,df.index))) + 0.05, df["mean"], width=0.08) plt.plot(x0, y0, color='r') # plt.xlim(-0.2, 1) def save_model(model, pred_period=20, is_high=True): suffix = "high" if is_high else "low" f_name = re.search("\.([^.]*)'", str(type(model))).group(1) f_name += "_{}".format(pred_period) + suffix print(f_name) with open(os.path.join(os.getcwd(), f_name), "wb") as f: pickle.dump(model, f) def load_model(model_type:str, pred_period=20, is_high=True): suffix = "high" if is_high else "low" f_name = model_type+"_{}".format(pred_period) + suffix print(f_name) with open(os.path.join(os.getcwd(), f_name), "rb") as f: model = pickle.load(f) return model def train_save(pred_period = 20,is_high = True, is_clf=False): data = gen_dataset(is_high=is_high,is_clf=is_clf,pred_period=pred_period) if is_clf: _, y_train=data["train"] scale_pos_weight = sum(y_train == 0) / sum(y_train == 1) if not is_clf: models = [lgbm.LGBMRegressor(n_estimators=300, num_leaves=100, max_depth=8,random_state=0), xgb.XGBRegressor(n_estimators=300, max_depth=5, random_state=0)] else: models = [lgbm.LGBMClassifier(n_estimators=300, scale_pos_weight=0.1, num_leaves=100, max_depth=8, random_state=0), xgb.XGBClassifier(n_estimators=300, scale_pos_weight=0.1, max_depth=5, random_state=0, )] y_pred_list = train(data, models, is_clf=is_clf) # save model for model in models: save_model(model,pred_period,is_high) return y_pred_list def load_test(pred_period = 20,is_high = True, is_clf=False): model_type = "XGBRegressor" model = load_model(model_type,pred_period,is_high) dataset = gen_dataset( lower_bound="2015-01-01",start="2018-01-01",pred_period=pred_period, is_high=is_high,is_clf=is_clf) X_test, y_test = dataset["test"] _, X_test_full = dataset["full"] target_col = get_target_col(pred_period,is_high) inc = X_test_full[["code", "f1mv_open", target_col]].copy() inc["pct"] = inc[target_col] / inc["f1mv_open"] - 1 y_pred = model.predict(X_test) pred_vs_real(inc,y_pred) plt.show() if __name__ == '__main__': # train_save(pred_period=5, is_high=True, is_clf=False) # train_save(pred_period=5, is_high=False, is_clf=False) # load_test(pred_period=5, is_high=False, is_clf=False) load_test(pred_period=5, is_high=True, is_clf=False) ```
{ "source": "JIexa/complexity-recurrence", "score": 4 }
#### File: complexity-recurrence/graphs/strassen.py ```python import numpy as np import random import os counter = 0 def random_matrix(size): lists = [] list = [] for j in range(size): for i in range(size): list.append(random.randint(1, 100)) lists.append(list) list = [] return lists def new_matrix(r, c): """Create a new matrix filled with zeros.""" matrix = [[0 for row in range(r)] for col in range(c)] global counter counter = counter + r*c return matrix def split(matrix): """Split matrix into quarters.""" a = b = c = d = matrix global counter while len(a) > len(matrix)/2: a = a[:len(a)//2] b = b[:len(b)//2] c = c[len(c)//2:] d = d[len(d)//2:] counter = counter + 1 while len(a[0]) > len(matrix[0])//2: for i in range(len(a[0])//2): counter = counter + 1 a[i] = a[i][:len(a[i])//2] b[i] = b[i][len(b[i])//2:] c[i] = c[i][:len(c[i])//2] d[i] = d[i][len(d[i])//2:] return a, b, c, d # matrix = np.array(matrix) # # print(matrix.shape) # row, col = matrix.shape # row2, col2 = row//2, col//2 # return matrix[:row2, :col2], matrix[:row2, col2:], matrix[row2:, :col2], matrix[row2:, col2:] def add_matrix(a, b): global counter if type(a) == int: d = a + b else: d = [] for i in range(len(a)): c = [] for j in range(len(a[0])): c.append(a[i][j] + b[i][j]) counter = counter + 1 d.append(c) return d def subtract_matrix(a, b): global counter if type(a) == int: d = a - b else: d = [] for i in range(len(a)): c = [] for j in range(len(a[0])): c.append(a[i][j] - b[i][j]) counter = counter + 1 d.append(c) return d def strassen(x, y, n): # base case: 1x1 matrix global counter if n == 1: z = [[0]] z[0][0] = x[0][0] * y[0][0] counter = counter + 1 return z else: # split matrices into quarters a, b, c, d = split(x) e, f, g, h = split(y) # p1 = a*(f-h) p1 = strassen(a, subtract_matrix(f, h), n/2) # p2 = (a+b)*h p2 = strassen(add_matrix(a, b), h, n/2) # p3 = (c+d)*e p3 = strassen(add_matrix(c, d), e, n/2) # p4 = d*(g-e) p4 = strassen(d, subtract_matrix(g, e), n/2) # p5 = (a+d)*(e+h) p5 = strassen(add_matrix(a, d), add_matrix(e, h), n/2) # p6 = (b-d)*(g+h) p6 = strassen(subtract_matrix(b, d), add_matrix(g, h), n/2) # p7 = (a-c)*(e+f) p7 = strassen(subtract_matrix(a, c), add_matrix(e, f), n/2) z11 = add_matrix(subtract_matrix(add_matrix(p5, p4), p2), p6) z12 = add_matrix(p1, p2) z21 = add_matrix(p3, p4) z22 = add_matrix(subtract_matrix(subtract_matrix(p5, p3), p7), p1) z = new_matrix(len(z11)*2, len(z11)*2) for i in range(len(z11)): for j in range(len(z11)): z[i][j] = z11[i][j] z[i][j+len(z11)] = z12[i][j] z[i+len(z11)][j] = z21[i][j] z[i+len(z11)][j+len(z11)] = z22[i][j] counter = counter + 1 return z if __name__ == '__main__': for i in range(100): size = 2 ** random.randint(1, 5) depth = 0 x = random_matrix(size) y = random_matrix(size) path = "./strassen" try: os.mkdir(path) except OSError as error: pass strassen(x, y, size) with open("./strassen/traces", 'a') as f: print("{};{}".format(size, counter), file=f) counter = 0 ``` #### File: JIexa/complexity-recurrence/recurrence_solver.py ```python import math import argparse def master_theorem(a, b, k, p=0): '''T(n) = a T(n/b) + (n^k(logn)^p)''' assert(isinstance(a, int)), a assert(isinstance(b, int)), b assert(isinstance(k, int)), k assert(isinstance(p, int)), p c = math.log(a,b) if b != 1 else 0 if a > b**k: complexity = "n^{}".format(c) elif a == b**k: if p > -1: complexity = "n^{} (logn)^{}".format(c, p+1) if p!=0 else "n^{} logn".format(c) elif p == -1: complexity = "n^{} log(logn)".format(c) elif p < -1: complexity = "n^{}".format(c) elif a < b**k: if p >= 0: complexity = "n^{} (logn)^{}".format(k, p) else: complexity = "n^{}".format(c) return complexity def recurrence(a, b, k, p, rec_call): '''T(n) = T(n-a) + T(n-b) + fn''' assert(isinstance(a, int)), a assert(isinstance(b, int)), b assert(a!=0 or b!=0), "Invalid recurrence relation" if rec_call > 2: complexity = "{}^n".format(rec_call) elif a != 0 and b != 0: complexity = "2^n" elif a != 0 and b == 0: if p==0: complexity = "n^{}".format(k+1) else: complexity = "n^{}(logn)^{}".format(k+1, p) else: assert false, "failed to solve this recurrence relation" return complexity if __name__ == '__main__': parser = argparse.ArgumentParser(prog="recurrence_solver.py") parser.add_argument('-format', help="1: T(n) = a T(n/b) + n^k(logn)^p\n2: T(n) = a T(n-b) + n^k(logn)^p\n3: T(n) = T(n/a) + T(n/b) + fn") parser.add_argument('-a') parser.add_argument('-b') parser.add_argument('-k') parser.add_argument('-p') parser.add_argument('-rec_call') args = parser.parse_args() fmt = int(args.format) a = int(args.a) b = int(args.b) k = int(args.k) p = int(args.p) rec_call = int(args.rec_call) if fmt == 1: complexity = master_theorem(a, b, k, p) elif fmt == 2: complexity = recurrence(a, b, k, p, rec_call) elif fmt == 3: # T(n) = T(n/a) + T(n/b) + fn complexity = master_theorem(1, a, k, p) if a<b else masther_theorem(1, b, k, p) print("Complexity is O({})".format(complexity)) ``` #### File: recursive_programs/python/reverse_stack.py ```python import random import os counter = 0 def random_list(size): list = [] for i in range(size): list.append(random.randint(-10000, 10000)) return list def insertAtBottom(stack, item, depth): if depth == 0: global counter counter = counter + 1 if isEmpty(stack): push(stack, item) else: temp = pop(stack) insertAtBottom(stack, item, depth) push(stack, temp) def reverse(stack, depth, file): with open(file, 'a') as f: print("{};{}".format(depth, len(stack)), file=f) if depth == 0: global counter counter = counter + 1 if not isEmpty(stack): temp = pop(stack) reverse(stack, depth+1, file) insertAtBottom(stack, temp, depth) def isEmpty( stack ): return len(stack) == 0 def push( stack, item ): stack.append( item ) def pop( stack ): if(isEmpty( stack )): print("Stack Underflow ") exit(1) return stack.pop() # Driver collect traces def main(): global counter counter = 0 size = random.randint(1, 500) arr = random_list(size) depth = 0 path = "./reverse_stack" try: os.mkdir(path) except OSError as error: pass file = "./reverse_stack/output-{}".format(size) reverse(arr, depth, file) with open("./reverse_stack/traces", 'a') as f: print("{};{}".format(size, counter), file=f) counter = 0 if __name__ == '__main__': for i in range(100): main() ``` #### File: recursive_programs/python/tree_traversal.py ```python import random import os counter = 0 class Node: def __init__(self, data): self.left = None self.right = None self.data = data def insert(self, data): if self.data: if data < self.data: # if size(self.left) < size(self.right): if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: # else: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # assert(abs(size(self.right)-size(self.left)) <= 1) def populate(self, size): for i in range(size): val = random.randint(-size, size) self.insert(val) return def PrintTree(self): if self.left: self.left.PrintTree() print( self.data), if self.right: self.right.PrintTree() def size(node): if node is None: return 0 else: return (size(node.left) + 1 + size(node.right)) # Recursive function to perform postorder traversal on the tree def postorder(root, depth, file): with open(file, 'a') as f: print("{};{}".format(depth, size(root)), file=f) if depth==0: global counter counter = counter + 1 if root is None: return postorder(root.left, depth+1, file) postorder(root.right, depth+1, file) # print(root.data, end=' ') # Recursive function to perform inorder traversal on the tree def inorder(root, depth, file): with open(file, 'a') as f: print("{};{}".format(depth, size(root)), file=f) if depth==0: global counter counter = counter + 1 if root is None: return inorder(root.left, depth+1, file) # print(root.data, end=' ') inorder(root.right, depth+1, file) # Recursive function to copy the tree def copy(root, height, depth, file): with open(file, 'a') as f: print("{};{}".format(depth, height), file=f) if depth==0: global counter counter = counter + 1 if root is None: return # if root.left: copy(root.left, height+1, depth+1, file) # if root.right: copy(root.right, height+1, depth+1, file) # Driver collect traces def main(): global counter counter = 0 depth = 0 root = Node(random.randint(-10,10)) root.populate(random.randint(2,500)) siz = size(root) path = "./postorder_ubt" try: os.mkdir(path) except OSError as error: pass file = "./postorder_ubt/output-{}".format(siz) postorder(root, depth, file) with open("./postorder_ubt/traces", 'a') as f: print("{};{}".format(siz, counter), file=f) counter = 0 path = "./inorder_ubt" try: os.mkdir(path) except OSError as error: pass file = "./inorder_ubt/output-{}".format(siz) inorder(root, depth, file) with open("./inorder_ubt/traces", 'a') as f: print("{};{}".format(siz, counter), file=f) counter = 0 path = "./bstcopy_ubt" try: os.mkdir(path) except OSError as error: pass file = "./bstcopy_ubt/output-{}".format(siz) height = 1 copy(root, height, depth, file) with open("./bstcopy_ubt/traces", 'a') as f: print("{};{}".format(siz, counter), file=f) counter = 0 if __name__ == '__main__': for i in range(100): main() ```
{ "source": "JIEXAO/incubator-mxnet", "score": 2 }
#### File: incubator-mxnet/python/Multi_GPU.py ```python import d2lzh as d2l import mxnet as mx from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss, nn, utils as gutils import time from mpi4py import MPI ##先做多机单卡 def resnet18(num_classes): def resnet_block(num_channels, num_residuals, first_block=False): blk = nn.Sequential() for i in range(num_residuals): if i == 0 and not first_block: blk.add(d2l.Residual( num_channels, use_1x1conv=True, strides=2)) else: blk.add(d2l.Residual(num_channels)) return blk net = nn.Sequential() net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1), nn.BatchNorm(), nn.Activation('relu')) net.add(resnet_block(64, 2, first_block=True), resnet_block(128, 2), resnet_block(256, 2), resnet_block(512, 2)) net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes)) return net def train(num_gpus, batch_size, lr): comm = MPI.COMM_WORLD comm_rank = comm.Get_rank() comm_size = comm.Get_size() train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) #ctx = [mx.gpu(i) for i in range(num_gpus)] if comm_rank == 0: ctx = mx.gpu(0) else: ctx = mx.gpu(1) print('running on:', ctx) net.initialize(init=init.Normal(sigma=0.01), ctx=ctx, force_reinit=True) trainer = gluon.Trainer( net.collect_params(), 'sgd', {'learning_rate': lr}, SSP_FLAG=True, thre = 2) loss = gloss.SoftmaxCrossEntropyLoss() for epoch in range(400000): start = time.time() for X, y in train_iter: gpu_Xs = gutils.split_and_load(X, ctx) gpu_ys = gutils.split_and_load(y, ctx) with autograd.record(): ls = [loss(net(gpu_X), gpu_y) for gpu_X, gpu_y in zip(gpu_Xs, gpu_ys)] for l in ls: l.backward() trainer.step(epoch, batch_size) train_time = time.time() - start test_acc = d2l.evaluate_accuracy(test_iter, net, ctx[comm_rank]) print('epoch %d, time %.1f sec, test acc %.2f, process %d' % ( epoch + 1, train_time, test_acc, comm_rank)) net = resnet18(10) train(num_gpus=1, batch_size=256, lr=0.1) #train(num_gpus=2, batch_size=512, lr=0.2) ``` #### File: python/unittest/test_numpy_op.py ```python from __future__ import absolute_import import numpy as _np import mxnet as mx from mxnet import np, npx from mxnet.base import MXNetError from mxnet.gluon import HybridBlock from mxnet.base import MXNetError from mxnet.test_utils import same, assert_almost_equal, rand_shape_nd, rand_ndarray from mxnet.test_utils import check_numeric_gradient, use_np from common import assertRaises, with_seed import random import collections @with_seed() @use_np def test_np_sum(): class TestSum(HybridBlock): def __init__(self, axis=None, dtype=None, keepdims=False): super(TestSum, self).__init__() self._axis = axis self._dtype = dtype self._keepdims = keepdims def hybrid_forward(self, F, a, *args, **kwargs): return F.np.sum(a, axis=self._axis, dtype=self._dtype, keepdims=self._keepdims) def is_int(dtype): return 'int' in dtype in_data_dim = random.choice([2, 3, 4]) shape = rand_shape_nd(in_data_dim, dim=3) acc_type = {'float16': 'float32', 'float32': 'float64', 'float64': 'float64', 'int8': 'int32', 'int32': 'int64', 'int64': 'int64'} for hybridize in [False, True]: for keepdims in [True, False]: for axis in ([i for i in range(in_data_dim)] + [(), None]): for itype in ['float16', 'float32', 'float64', 'int8', 'int32', 'int64']: for dtype in ['float16', 'float32', 'float64', 'int8', 'int32', 'int64']: if is_int(dtype) and not is_int(itype): continue # test gluon test_sum = TestSum(axis=axis, dtype=dtype, keepdims=keepdims) if hybridize: test_sum.hybridize() if is_int(itype): x = _np.random.randint(-128, 128, shape, dtype=itype) x = mx.nd.array(x) else: x = mx.nd.random.uniform(-1.0, 1.0, shape=shape, dtype=itype) x = x.as_np_ndarray() x.attach_grad() expected_ret = _np.sum(x.asnumpy(), axis=axis, dtype=acc_type[itype], keepdims=keepdims) expected_ret = expected_ret.astype(dtype) with mx.autograd.record(): y = test_sum(x) assert y.shape == expected_ret.shape assert_almost_equal(y.asnumpy(), expected_ret, rtol=1e-3 if dtype == 'float16' else 1e-3, atol=1e-5 if dtype == 'float16' else 1e-5) y.backward() assert same(x.grad.asnumpy(), _np.ones(shape=x.shape, dtype=x.dtype)) # test numeric if itype == 'float32' and dtype == 'float32': x_sym = mx.sym.Variable("x").as_np_ndarray() mx_sym = mx.sym.np.sum(x_sym, axis=axis, dtype=dtype, keepdims=keepdims).as_nd_ndarray() check_numeric_gradient(mx_sym, [x.as_nd_ndarray()], numeric_eps=1e-3, rtol=1e-3, atol=1e-4, dtype=_np.float32) # test imperative mx_out = np.sum(x, axis=axis, dtype=dtype, keepdims=keepdims) np_out = _np.sum(x.asnumpy(), axis=axis, dtype=acc_type[itype], keepdims=keepdims).astype(dtype) assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5) if __name__ == '__main__': import nose nose.runmodule() ```
{ "source": "jiexiang1972/vnpy", "score": 2 }
#### File: jiexiang1972/vnpy/runDataRecoderGUI.py ```python from vnpy.event import EventEngine from vnpy.trader.engine import MainEngine from vnpy.trader.ui import MainWindow, create_qapp from vnpy.gateway.weboption import WeboptionGateway from vnpy.app.data_recorder import DataRecorderApp def main(): """Start VN Trader""" qapp = create_qapp() event_engine = EventEngine() main_engine = MainEngine(event_engine) main_engine.add_gateway(WeboptionGateway) main_engine.add_app(DataRecorderApp) main_window = MainWindow(main_engine, event_engine) main_window.showMaximized() qapp.exec() if __name__ == "__main__": main() ```
{ "source": "JiexingQi/picard", "score": 3 }
#### File: seq2seq/preprocess/add_coref_to_dataset_tmp.py ```python import spacy from spacy.tokens import Doc import coreferee import json from tqdm import tqdm import os class WhitespaceTokenizer: def __init__(self, vocab): self.vocab = vocab def __call__(self, text): words = text.split(" ") spaces = [True] * len(words) # Avoid zero-length tokens for i, word in enumerate(words): if word == "": words[i] = " " spaces[i] = False # Remove the final trailing space if words[-1] == " ": words = words[0:-1] spaces = spaces[0:-1] else: spaces[-1] = False return Doc(self.vocab, words=words, spaces=spaces) def init_nlp(): nlp = spacy.load('en_core_web_trf') nlp.tokenizer = WhitespaceTokenizer(nlp.vocab) nlp.add_pipe('coreferee') return nlp def find_turn_idx(id, turn_list, len_text_list): total_length = 0 for idx, length in enumerate(len_text_list): total_length += length if id < total_length and id >= total_length-length: return turn_list[idx], id-total_length+length return turn_list[0], id def text_list2coref_json(output_path, mode, nlp): with open(os.path.join(output_path, f"{mode}_text_list.txt"), 'r') as load_f: dataset = load_f.readlines() new_res=[] for idx, entry in tqdm(enumerate(dataset)): final_preprocessed_text_list = eval(dataset[idx].strip()) text_list = " ".join([i for item in final_preprocessed_text_list for i in item[1]]) turn_list = [item[0] for item in final_preprocessed_text_list] len_text_list = [item[2] for item in final_preprocessed_text_list] doc = nlp(text_list) coref_dict = {} for chain in doc._.coref_chains: key = chain.index used_turn = set() coref_dict[key] = {} coref_dict[key]["group"] = [] for li in [list(_) for _ in chain]: new_list = [] for idx in li: item = find_turn_idx(idx, turn_list, len_text_list) item_dict = {"turn": item[0], "position": item[1], "ori": idx} used_turn.add(item[0]) new_list.append(item_dict) coref_dict[key]["group"].append(new_list) coref_dict[key]["used_turn"] = list(used_turn) new_entry = {} new_entry["coref"] = coref_dict new_entry["text_list"] = text_list new_res.append(new_entry) with open(os.path.join(output_path, f'{mode}_coref.json'),"w") as dump_f: json.dump(new_res,dump_f) def main(): mode_list = ["train", "dev"] dataset_name_list = ["spider", "cosql"] nlp = init_nlp() for datatset_name in dataset_name_list: for mode in mode_list: output_path = os.path.join("../../dataset_files/preprocessed_dataset/", datatset_name) text_list2coref_json(output_path, mode, nlp) main() ``` #### File: seq2seq/preprocess/get_relation2id_dict.py ```python def get_relation2id_dict(choice = "Default", use_coref = False, use_dependency = False): from .constants import RELATIONS, MAX_RELATIVE_DIST current_relation = [r for r in RELATIONS] if not use_coref: current_relation = [r for r in current_relation if r not in ['co_relations', 'coref_relations']] if not use_dependency: current_relation = [r for r in current_relation if r not in ['Forward-Syntax', 'Backward-Syntax', 'None-Syntax']] if choice in ["Default"]: idx_list = [i for i in range(1, len(current_relation)+1)] elif choice == "DefaultWithoutSchemaEncoding": schema_encoding_rel = [] for rel in current_relation: split_rel = rel.split("-") try: src_type, tgt_type = split_rel[0], split_rel[1] except: continue if src_type in ["table", "column", "*"] and tgt_type in ["table", "column", "*"]: schema_encoding_rel.append(rel) current_relation = [r for r in current_relation if r not in schema_encoding_rel] idx_list = [i for i in range(1, len(current_relation)+1)] for rel in schema_encoding_rel: current_relation.append(rel) idx_list.append(0) elif choice == "DefaultWithoutSchemaLinking": schema_linking_rel = [] for rel in current_relation: split_rel = rel.split("-") try: src_type, tgt_type = split_rel[0], split_rel[1] except: continue if (src_type in ["question"] and tgt_type in ["table", "column", "*"]) or (tgt_type in ["question"] and src_type in ["table", "column", "*"]): schema_linking_rel.append(rel) current_relation = [r for r in current_relation if r not in schema_linking_rel] idx_list = [i for i in range(1, len(current_relation)+1)] for rel in schema_linking_rel: current_relation.append(rel) idx_list.append(0) elif choice == "MinType": idx_list = [] dummy_idx = 8 for rel in current_relation: if rel in ['question-column-partialmatch', 'question-table-partialmatch']: idx_list.append(1) elif rel in ['question-column-exactmatch', 'question-table-exactmatch']: idx_list.append(2) elif rel in ['question-column-valuematch']: idx_list.append(3) elif rel in ['question-table-nomatch', 'question-column-nomatch']: idx_list.append(4) elif rel in ['table-column-pk']: idx_list.append(5) elif rel in ['table-column-has']: idx_list.append(6) elif rel in ['column-column-fk']: idx_list.append(7) elif rel in ['question-question-generic'] + ['question-question-dist' + str(i) if i != 0 else 'question-question-identity' for i in range(- MAX_RELATIVE_DIST, MAX_RELATIVE_DIST + 1)]: idx_list.append(dummy_idx) dummy_idx += 1 else: idx_list.append(0) elif choice == "Dependency_MinType": idx_list = [] dummy_idx = 8 for rel in current_relation: if rel in ['question-column-partialmatch', 'question-table-partialmatch']: idx_list.append(1) elif rel in ['question-column-exactmatch', 'question-table-exactmatch']: idx_list.append(2) elif rel in ['question-column-valuematch']: idx_list.append(3) elif rel in ['question-table-nomatch', 'question-column-nomatch']: idx_list.append(4) elif rel in ['table-column-pk']: idx_list.append(5) elif rel in ['table-column-has']: idx_list.append(6) elif rel in ['column-column-fk']: idx_list.append(7) elif rel in ['Forward-Syntax', 'Backward-Syntax', 'None-Syntax']: idx_list.append(dummy_idx) dummy_idx += 1 else: idx_list.append(0) else: raise NotImplementedError RELATION2ID_DICT = dict(zip(current_relation, idx_list)) idx_list.append(0) current_relation.append("None") ID2RELATION_DICT = dict(zip(idx_list, current_relation)) return RELATION2ID_DICT, ID2RELATION_DICT, max(idx_list) ``` #### File: seq2seq/preprocess/process_dataset.py ```python import os, json, pickle, time from tqdm import tqdm import fcntl from .common_utils import Preprocessor from .align_tables import align_tables_by_dataset_name def process_tables(processor, tables_list, output_path=None): tables = {} for idx, each in tqdm(enumerate(tables_list)): tables[each['db_id']] = processor.preprocess_database(each) print('In total, process %d databases .' % (len(tables))) if output_path is not None: with open (output_path, 'wb') as dump_f: fcntl.flock(dump_f.fileno(), fcntl.LOCK_EX) pickle.dump(tables, dump_f) return tables def process_dataset(processor, dataset, tables, dataset_name, mode, output_path_base=None, used_coref=False): processed_dataset = [] # if dataset_name == "cosql": # wfile = open(f"./dataset_files/ori_dataset/cosql_dataset/sql_state_tracking/{mode}_text_list.txt", "w") if used_coref and not os.path.exists(os.path.join(output_path_base, f"{mode}_coref.json")): wfile = open(os.path.join(output_path_base, f"{mode}_text_list.txt"), "w") for idx, entry in tqdm(enumerate(dataset)): # if idx > 100: # continue if dataset_name in ["spider"]: entry = processor.pipeline(entry, tables[entry['db_id']], dataset_name, idx) elif dataset_name in ["cosql", "sparc"]: entry = processor.pipeline(entry, tables[entry['database_id']], dataset_name, idx) else: raise NotImplementedError if used_coref and not os.path.exists(os.path.join(output_path_base, f"{mode}_coref.json")): wfile.write(str(entry['final_preprocessed_text_list'])+"\n") processed_dataset.append(entry) with open(os.path.join(output_path_base, f"{mode}.bin"), 'wb') as dump_f: fcntl.flock(dump_f.fileno(), fcntl.LOCK_EX) pickle.dump(processed_dataset, dump_f) return processed_dataset def init_dataset_path(data_base_dir, dataset_name, mode): db_dir = os.path.join(data_base_dir, "ori_dataset", dataset_name, "database") table_data_path=os.path.join(data_base_dir, "ori_dataset", dataset_name, "tables.json") table_out_path=os.path.join(data_base_dir, "preprocessed_dataset", dataset_name, "tables.bin") if mode == "train": if dataset_name == "spider": dataset_path=os.path.join(data_base_dir, "ori_dataset", dataset_name, "train_spider.json") elif dataset_name == "cosql": db_dir = os.path.join(data_base_dir, "ori_dataset", "cosql_dataset", "database") dataset_path=os.path.join(data_base_dir, "ori_dataset", "cosql_dataset/sql_state_tracking/", "cosql_train.json") table_data_path=os.path.join(data_base_dir, "ori_dataset", "cosql_dataset", "tables.json") elif dataset_name == "sparc": dataset_path=os.path.join(data_base_dir, "ori_dataset", dataset_name, "train.json") else: raise NotImplementedError # dataset_output_path_base=os.path.join(data_base_dir, "preprocessed_dataset", dataset_name, "train.bin") elif mode == "dev": if dataset_name in ["spider", "sparc"] : dataset_path=os.path.join(data_base_dir, "ori_dataset", dataset_name, "dev.json") elif dataset_name == "cosql": db_dir = os.path.join(data_base_dir, "ori_dataset", "cosql_dataset", "database") dataset_path=os.path.join(data_base_dir, "ori_dataset", "cosql_dataset/sql_state_tracking/", "cosql_dev.json") table_data_path=os.path.join(data_base_dir, "ori_dataset", "cosql_dataset", "tables.json") else: raise NotImplementedError # dataset_output_path=os.path.join(data_base_dir, "preprocessed_dataset", dataset_name, "dev.bin") else: raise NotImplementedError dataset_output_path_base=os.path.join(data_base_dir, "preprocessed_dataset", dataset_name) if not os.path.exists(os.path.join(data_base_dir, "preprocessed_dataset", dataset_name)): os.makedirs(os.path.join(data_base_dir, "preprocessed_dataset", dataset_name)) return db_dir, table_data_path, table_out_path, dataset_path, dataset_output_path_base def preprocessing_generate_lgerels(data_base_dir, dataset_name, mode, used_coref = False, use_dependency=False): db_dir, table_data_path, table_out_path, dataset_path, dataset_output_path_base = init_dataset_path(data_base_dir, dataset_name, mode) processor = Preprocessor(dataset_name, db_dir=db_dir, db_content=True) # loading database and dataset print(f"Dataset name: {dataset_name}") print(f"Mode: {mode}") if not os.path.exists(table_out_path): with open(table_data_path, 'r') as load_f: fcntl.flock(load_f.fileno(), fcntl.LOCK_EX) tables_list = json.load(load_f) print('Firstly, preprocess the original databases ...') tables_list = align_tables_by_dataset_name(dataset_name, tables_list) print('Tables alignments done...') start_time = time.time() tables = process_tables(processor, tables_list, table_out_path) print('Databases preprocessing costs %.4fs .' % (time.time() - start_time)) else: tables = pickle.load(open(table_out_path, 'rb')) print('Databases has been preprocessed. Use cache.') with open(dataset_path, 'r') as load_f: fcntl.flock(load_f.fileno(), fcntl.LOCK_EX) dataset = json.load(load_f) start_time = time.time() if not os.path.exists(os.path.join(dataset_output_path_base, f"{mode}.bin")): dataset = process_dataset(processor, dataset, tables, dataset_name, mode, dataset_output_path_base, used_coref) print('Dataset preprocessing costs %.4fs .' % (time.time() - start_time)) else: print('Dataset has been preprocessed. Use cache.') ``` #### File: seq2seq/preprocess/transform_utils.py ```python import pickle import numpy as np import functools import itertools def mul_mul_match(t5_toks_list, question_toks_list): """"match two list of question toks""" t5_index = [i for i in range(1, len(t5_toks_list)+1)] question_index = [i for i in range(1, len(question_toks_list)+1)] index_pair = list(itertools.product(t5_index, question_index)) for i, j in index_pair: t5_toks = "".join(t5_toks_list[:i]) question_toks = "".join(question_toks_list[:j]) if t5_toks == question_toks: return i, j return -1,-1 def mul_mul_match_changeOrder(t5_toks_list, question_toks_list): """"match two list of question toks""" t5_index = [i for i in range(0, len(t5_toks_list))] t5_index.reverse() question_index = [i for i in range(0, len(question_toks_list))] question_index.reverse() index_pair = list(itertools.product(t5_index, question_index)) for i, j in index_pair: t5_toks = "".join(t5_toks_list[i:]) question_toks = "".join(question_toks_list[j:]) if t5_toks == question_toks: return i, j return -1,-1 def cmp(str1, str2): l1 = str1.split('#') l2 = str2.split('#') if (int(l1[0]!=l2[0])): return -1 if int(l1[0])<int(l2[0]) else 1 else: return -1 if int(l1[1])<int(l2[1]) else 1 def get_idx_list(res_dict, dataset_name): if dataset_name in ["cosql", "sparc"]: key = res_dict.keys() key = [k.split("_")[-1] for k in key if "relations" in k and "tree" not in k] key.sort(key = functools.cmp_to_key(cmp)) total_res = [[key[0]]] tmp = [] for i in range(1, len(key)): tmp.insert(0, key[i]) if ("#" in key[i] and i+1 < len(key) and key[i].split('#')[0] == key[i+1].split('#')[0]): continue a = tmp.copy() total_res.append(a) elif dataset_name in ["spider"]: total_res = [['-1']] return total_res def get_idx_list_changeOrder(res_dict, dataset_name): if dataset_name in ["cosql", "sparc"]: key = res_dict.keys() key = [k.split("_")[-1] for k in key if "relations" in k and "tree" not in k] key.sort(key = functools.cmp_to_key(cmp)) total_res = [[key[0]]] tmp = [] for i in range(1, len(key)): tmp.append(key[i]) if ("#" in key[i] and i+1 < len(key) and key[i].split('#')[0] == key[i+1].split('#')[0]): continue a = tmp.copy() total_res.append(a) elif dataset_name in ["spider"]: total_res = [['-1']] return total_res def isValid(idx, maxlen): if idx >=0 and idx<maxlen: return True return False def find_sep_mullen(item_list, sep_item): start = 0 times = 2 sep_list = [] while start < len(item_list): try: index = item_list.index(sep_item, start) start = index+1 if isValid(start, len(item_list)): if (item_list[start] == sep_item): sep_list.append(index) except: break sep_list.append(len(item_list)) return sep_list def find_all_sep_index_from_list(item_list, sep_item): start = 0 sep_list = [] while start < len(item_list): try: index = item_list.index(sep_item, start) start = index+1 sep_list.append(index) except: break sep_list.append(len(item_list)) return sep_list def find_all_sep_pair_from_list(item_list, sep_item_1, sep_item_2): start = 0 sep_list = [] while start < len(item_list): try: index_1 = item_list.index(sep_item_1, start) start = index_1+1 index_2 = item_list.index(sep_item_2, start) start = index_2+1 sep_list.append((index_1, index_2)) except: break sep_list.append(len(item_list)) return sep_list def raise_key(ori_dict, add_num): res_dict = {} for ori_key in ori_dict.keys(): new_key = ori_key + add_num res_dict[new_key] = ori_dict[ori_key] return res_dict def merge_two_dict(ori_dict, change_dict, add_num): res_dict = {} res_dict.update(ori_dict) res_dict.update(raise_key(change_dict, add_num)) return res_dict def decode_from_dict(t5_tokenizer, d, t5_toks_ids): v = [t5_toks_ids[i] for item in d.values() for i in item] print(t5_tokenizer.decode(v).replace("</s>", "")) def decode_from_pair_dict(t5_tokenizer, d, t5_toks_ids): v = [t5_toks_ids[id] for items in d.values() for pair in items for id in pair] if len(v) > 0: print(t5_tokenizer.decode(v).replace("</s>", "")) print(t5_tokenizer.decode(t5_toks_ids).replace("</s>", "")) def tokid2sent(t5_tokenizer, t5_toks_id): print(t5_tokenizer.decode(t5_toks_id).replace("</s>", "")) ``` #### File: seq2seq/utils/relation_data_collator.py ```python import random import warnings import numpy as np from dataclasses import dataclass from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase from transformers.file_utils import PaddingStrategy @dataclass class DataCollatorForSeq2Seq: """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. model (:class:`~transformers.PreTrainedModel`): The model that is being trained. If set and has the `prepare_decoder_input_ids_from_labels`, use it to prepare the `decoder_input_ids` This is useful when using `label_smoothing` to avoid calculating loss twice. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence is provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). label_pad_token_id (:obj:`int`, `optional`, defaults to -100): The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions). """ tokenizer: PreTrainedTokenizerBase model: Optional[Any] = None padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 return_tensors: str = "pt" def __call__(self, features, return_tensors=None): import numpy as np if return_tensors is None: return_tensors = self.return_tensors labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the # same length to return tensors. if labels is not None: max_label_length = max(len(l) for l in labels) if self.pad_to_multiple_of is not None: max_label_length = ( (max_label_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of * self.pad_to_multiple_of ) padding_side = self.tokenizer.padding_side for feature in features: remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"])) if isinstance(feature["labels"], list): feature["labels"] = ( feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"] ) elif padding_side == "right": feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64) else: feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64) relations = [feature["relations"] for feature in features] if "relations" in features[0].keys() else None input_ids = [feature["input_ids"] for feature in features] if "input_ids" in features[0].keys() else None # We have to pad the relation matrixs before calling `tokenizer.pad` as this method won't pad them and needs them of the # same length to return tensors. if relations is not None: sub_len = [len(r)-len(i) for r,i in zip(relations, input_ids)] assert not(any(sub_len)), "the relations is not equal with input_ids" max_input_ids = max(len(i) for i in input_ids) max_relation_length = max(len(r) for r in relations) assert max_input_ids==max_relation_length, "max_input_ids is not equal to max_relation_length" max_length = max(max_input_ids, max_relation_length) for feature in features: relation_pad_length = max_length - len(feature['relations']) feature["relations"] = np.pad(np.array(feature["relations"]),((0,relation_pad_length),(0,relation_pad_length)),'constant',constant_values = (0,0)) #constant_values表示填充值,且(before,after)的填充值等于(0,0) # print("type(features:)", type(features)) # print("type(features[0]:)", type(features[0])) # print("len(features[0]:)", len(features[0]['input_ids'])) # print("(features[0]:)", features[0]['input_ids']) features = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=return_tensors, ) # print("type(features:)", type(features)) # print("type(features[0]:)", type(features[0])) # print("After pad len(features[0]:)", len(features[0]['input_ids'])) # print("After pad (features[0]:)", features[0]["input_ids"]) # import os;os._exit() # prepare decoder_input_ids if self.model is not None and hasattr(self.model, "prepare_decoder_input_ids_from_labels"): decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"]) features["decoder_input_ids"] = decoder_input_ids return features ``` #### File: seq2seq/utils/spider.py ```python import json import torch import numpy as np from typing import Optional from datasets.arrow_dataset import Dataset from transformers.tokenization_utils_base import PreTrainedTokenizerBase from seq2seq.utils.dataset import DataTrainingArguments, normalize, serialize_schema from seq2seq.utils.trainer import Seq2SeqTrainer, EvalPrediction def spider_get_input( question: str, serialized_schema: str, prefix: str, ) -> str: return prefix + question.strip() + " " + serialized_schema.strip() def spider_get_target( query: str, db_id: str, normalize_query: bool, target_with_db_id: bool, ) -> str: _normalize = normalize if normalize_query else (lambda x: x) return f"{db_id} | {_normalize(query)}" if target_with_db_id else _normalize(query) def spider_add_serialized_schema(ex: dict, data_training_args: DataTrainingArguments) -> dict: serialized_schema = serialize_schema( question=ex["question"], db_path=ex["db_path"], db_id=ex["db_id"], db_column_names=ex["db_column_names"], db_table_names=ex["db_table_names"], schema_serialization_type=data_training_args.schema_serialization_type, schema_serialization_randomized=data_training_args.schema_serialization_randomized, schema_serialization_with_db_id=data_training_args.schema_serialization_with_db_id, schema_serialization_with_db_content=data_training_args.schema_serialization_with_db_content, normalize_query=data_training_args.normalize_query, ) return {"serialized_schema": serialized_schema} def spider_pre_process_function( batch: dict, max_source_length: Optional[int], max_target_length: Optional[int], data_training_args: DataTrainingArguments, tokenizer: PreTrainedTokenizerBase, ) -> dict: prefix = data_training_args.source_prefix if data_training_args.source_prefix is not None else "" inputs = [ spider_get_input(question=question, serialized_schema=serialized_schema, prefix=prefix) for question, serialized_schema in zip(batch["question"], batch["serialized_schema"]) ] model_inputs: dict = tokenizer( inputs, max_length=max_source_length, padding=False, truncation=True, return_overflowing_tokens=False, ) targets = [ spider_get_target( query=query, db_id=db_id, normalize_query=data_training_args.normalize_query, target_with_db_id=data_training_args.target_with_db_id, ) for db_id, query in zip(batch["db_id"], batch["query"]) ] # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer( targets, max_length=max_target_length, padding=False, truncation=True, return_overflowing_tokens=False, ) model_inputs["labels"] = labels["input_ids"] return model_inputs class SpiderTrainer(Seq2SeqTrainer): def _post_process_function( self, examples: Dataset, features: Dataset, predictions: np.ndarray, stage: str ) -> EvalPrediction: inputs = self.tokenizer.batch_decode([f["input_ids"] for f in features], skip_special_tokens=True) label_ids = [f["labels"] for f in features] if self.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. _label_ids = np.where(label_ids != -100, label_ids, self.tokenizer.pad_token_id) decoded_label_ids = self.tokenizer.batch_decode(_label_ids, skip_special_tokens=True) metas = [ { "query": x["query"], "question": x["question"], "context": context, "label": label, "db_id": x["db_id"], "db_path": x["db_path"], "db_table_names": x["db_table_names"], "db_column_names": x["db_column_names"], "db_foreign_keys": x["db_foreign_keys"], } for x, context, label in zip(examples, inputs, decoded_label_ids) ] predictions = self.tokenizer.batch_decode(predictions, skip_special_tokens=True) assert len(metas) == len(predictions) with open(f"{self.args.output_dir}/predictions_{stage}.json", "w") as f: json.dump( [dict(**{"prediction": prediction}, **meta) for prediction, meta in zip(predictions, metas)], f, indent=4, ) return EvalPrediction(predictions=predictions, label_ids=label_ids, metas=metas) def _compute_metrics(self, eval_prediction: EvalPrediction) -> dict: predictions, label_ids, metas = eval_prediction if self.target_with_db_id: # Remove database id from all predictions predictions = [pred.split("|", 1)[-1].strip() for pred in predictions] # TODO: using the decoded reference labels causes a crash in the spider evaluator # if self.ignore_pad_token_for_loss: # # Replace -100 in the labels as we can't decode them. # label_ids = np.where(label_ids != -100, label_ids, tokenizer.pad_token_id) # decoded_references = self.tokenizer.batch_decode(label_ids, skip_special_tokens=True) # references = [{**{"query": r}, **m} for r, m in zip(decoded_references, metas)] references = metas return self.metric.compute(predictions=predictions, references=references) # # Change it to our custom loss # def compute_loss(self, model, inputs, return_outputs=False): # """ # How the loss is computed by Trainer. By default, all models return the loss in the first element. # Subclass and override for custom behavior. # """ # if self.label_smoother is not None and "labels" in inputs: # labels = inputs.pop("labels") # else: # labels = None # outputs = model(**inputs) # # Save past state if it exists # # TODO: this needs to be fixed and made cleaner later. # if self.args.past_index >= 0: # self._past = outputs[self.args.past_index] # if labels is not None: # loss = self.label_smoother(outputs, labels) # else: # # We don't use .loss here since the model may return tuples instead of ModelOutput. # loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] # def get_relation_norm(model): # ''' # get relation params norm # ''' # norm_loss = 0 # for name, param in model.parameters(): # if 'relation' in name: # norm_loss += 0.5 * torch.sum(param**2) # return norm_loss # loss += get_relation_norm(model) # return (loss, outputs) if return_outputs else loss ``` #### File: seq2seq/utils/trainer.py ```python import collections from typing import Dict, List, Optional, NamedTuple, Any, Tuple, Union import transformers.trainer_seq2seq from transformers.trainer_utils import PredictionOutput, speed_metrics from transformers.optimization import get_scheduler, Adafactor, AdamW from transformers.trainer_pt_utils import get_parameter_names from transformers.trainer_utils import ShardedDDPOption from transformers.file_utils import is_sagemaker_mp_enabled from datasets.arrow_dataset import Dataset from datasets.metric import Metric import numpy as np import time import torch import torch.nn as nn from transformers.deepspeed import is_deepspeed_zero3_enabled from packaging import version from seq2seq.utils.custom_lr_scheduler import get_scheduler_custom if version.parse(torch.__version__) >= version.parse("1.6"): from torch.cuda.amp import autocast if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp class EvalPrediction(NamedTuple): predictions: List[str] label_ids: np.ndarray metas: List[dict] class Seq2SeqTrainer(transformers.trainer_seq2seq.Seq2SeqTrainer): def __init__( self, metric: Metric, *args, eval_examples: Optional[Dataset] = None, ignore_pad_token_for_loss: bool = True, target_with_db_id: bool = False, **kwargs, ) -> None: super().__init__(*args, **kwargs) self.metric = metric self.eval_examples = eval_examples self.compute_metrics = self._compute_metrics self.ignore_pad_token_for_loss = ignore_pad_token_for_loss self.target_with_db_id = target_with_db_id def _compute_metrics(self, eval_prediction: EvalPrediction) -> dict: raise NotImplementedError() def _post_process_function( self, examples: Dataset, features: Dataset, predictions: np.ndarray, stage: str ) -> EvalPrediction: raise NotImplementedError() def evaluate( self, eval_dataset: Optional[Dataset] = None, eval_examples: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", max_length: Optional[int] = None, max_time: Optional[int] = None, num_beams: Optional[int] = None, ) -> Dict[str, float]: self._max_length = max_length self._max_time = max_time self._num_beams = num_beams # memory metrics - must set up as early as possible self._memory_tracker.start() eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") eval_dataloader = self.get_eval_dataloader(eval_dataset) eval_examples = self.eval_examples if eval_examples is None else eval_examples start_time = time.time() # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None try: output: PredictionOutput = self.evaluation_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) finally: self.compute_metrics = compute_metrics # We might have removed columns from the dataset so we put them back. if isinstance(eval_dataset, Dataset): eval_dataset.set_format( type=eval_dataset.format["type"], columns=list(eval_dataset.features.keys()), ) if eval_examples is not None and eval_dataset is not None and self.compute_metrics is not None: eval_preds = self._post_process_function( eval_examples, eval_dataset, output.predictions, "eval_{}".format(self.state.epoch), ) output.metrics.update(self.compute_metrics(eval_preds)) n_samples = len(eval_dataset if eval_dataset is not None else self.eval_dataset) output.metrics.update(speed_metrics(metric_key_prefix, start_time, n_samples)) # Prefix all keys with metric_key_prefix + '_' for key in list(output.metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): output.metrics[f"{metric_key_prefix}_{key}"] = output.metrics.pop(key) self.log(output.metrics) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output.metrics def predict( self, test_dataset: Dataset, test_examples: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", max_length: Optional[int] = None, max_time: Optional[int] = None, num_beams: Optional[int] = None, ) -> PredictionOutput: self._max_length = max_length self._max_time = max_time self._num_beams = num_beams # memory metrics - must set up as early as possible self._memory_tracker.start() if test_dataset is not None and not isinstance(test_dataset, collections.abc.Sized): raise ValueError("test_dataset must implement __len__") test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None try: output: PredictionOutput = self.evaluation_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) finally: self.compute_metrics = compute_metrics if self.compute_metrics is not None: # We might have removed columns from the dataset so we put them back. if isinstance(test_dataset, Dataset): test_dataset.set_format( type=test_dataset.format["type"], columns=list(test_dataset.features.keys()), ) eval_preds = self._post_process_function( test_examples, test_dataset, output.predictions, metric_key_prefix) output.metrics.update(self.compute_metrics(eval_preds)) output.metrics.update(speed_metrics(metric_key_prefix, start_time, len(test_dataset))) # Prefix all keys with metric_key_prefix + '_' for key in list(output.metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): output.metrics[f"{metric_key_prefix}_{key}"] = output.metrics.pop(key) self.log(output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ if not self.args.predict_with_generate or prediction_loss_only: return super().prediction_step( model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys ) has_labels = "labels" in inputs inputs = self._prepare_inputs(inputs) # XXX: adapt synced_gpus for fairscale as well gen_kwargs = { "max_length": self._max_length if self._max_length is not None else self.model.config.max_length, "num_beams": self._num_beams if self._num_beams is not None else self.model.config.num_beams, "synced_gpus": True if is_deepspeed_zero3_enabled() else False, } if "relations" in inputs.keys(): generated_tokens = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], relations=inputs["relations"], **gen_kwargs, ) else: generated_tokens = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **gen_kwargs, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) with torch.no_grad(): if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) if has_labels: if self.label_smoother is not None: loss = self.label_smoother(outputs, inputs["labels"]).mean().detach() else: loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach() else: loss = None if self.args.prediction_loss_only: return (loss, None, None) labels = inputs["labels"] if labels.shape[-1] < gen_kwargs["max_length"]: labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) return (loss, generated_tokens, labels) def create_optimizer(self): """ Setup the optimizer. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through `optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: decay_parameters = get_parameter_names(self.model, [nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] # decay_parameters = [name for name in decay_parameters if "shared" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if n in decay_parameters], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if is_sagemaker_mp_enabled(): self.optimizer = smp.DistributedOptimizer(self.optimizer) return self.optimizer def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): """ Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument. Args: num_training_steps (int): The number of training steps to do. """ custom_schedule_lr_list = set(["step_lr", "multi_step_lr", "exponential_lr", "cosine_annealing_lr"]) # self.args.lr_scheduler_type = "step_lr" # lr_scheduler_type = "step_lr" lr_scheduler_type = "" if self.lr_scheduler is None: if lr_scheduler_type in custom_schedule_lr_list: self.lr_scheduler = get_scheduler_custom( # self.args.lr_scheduler_type, lr_scheduler_type, optimizer=self.optimizer if optimizer is None else optimizer, ) else: self.lr_scheduler = get_scheduler( self.args.lr_scheduler_type, optimizer=self.optimizer if optimizer is None else optimizer, num_warmup_steps=self.args.get_warmup_steps(num_training_steps), num_training_steps=num_training_steps, ) return self.lr_scheduler ```
{ "source": "jiexingtianxia/AutopodspecLint", "score": 2 }
#### File: jiexingtianxia/AutopodspecLint/autopodspecLint.py ```python import os, sys import fileinput import time new_tag = raw_input('请输入项目更新版本号:') pod_sources = 'https://github.com/jiexingtianxia/G_Hey_podSpecs.git' git_sources = 'https://github.com/jiexingtianxia/G_OSLib.git' project_name = 'G_Hey_podSpecs' podspec_name = 'G_OSLib.podspec' project_path = os.getcwd() new_tag = new_tag.strip() lib_cmd = '' pod_push_cmd = '' spec_file_path = project_path + "/" + podspec_name def updateVersion(): f = open(spec_file_path,'r+') infos = f.readlines() f.seek(0, 0) file_data = "" new_line = "" for line in infos: if line.find('s.version ') != -1: line = ' s.version = \'%s\' \n' % new_tag elif line.find('s.source ') != -1: line = ' s.source = { :git => \'%s\', :tag => \'%s\' } \n' % (git_sources,new_tag) else : print('==================') print('******************%s') % line file_data += line with open(spec_file_path, 'w', ) as f1: f1.write(file_data) f.close() def podCmd(): global lib_cmd global pod_push_cmd source_suffix = 'https://github.com/CocoaPods/Specs.git --allow-warnings' lib_cmd = 'pod lib lint --sources=' lib_cmd += git_sources lib_cmd += ',' lib_cmd += source_suffix pod_push_cmd = 'pod repo push ' + project_name + ' ' + podspec_name pod_push_cmd += ' --sources=' pod_push_cmd += pod_sources pod_push_cmd += ',' pod_push_cmd += source_suffix def libLint(): print('*****************waiting for pod lib lint checking 🍺 🍺 🍺') os.system(lib_cmd) def gitPush(): print('*****************waiting for git push 🍺 🍺 🍺') os.system('git add .') commit_desc = 'version_' + new_tag commit_cmd = 'git commit -m ' + commit_desc os.system(commit_cmd) r = os.popen('git symbolic-ref --short -q HEAD') current_branch = r.read() r.close() push_cmd = 'git push origin ' + current_branch tag_cmd = 'git tag ' + new_tag os.system(push_cmd) os.system(tag_cmd) os.system('git push --tags') def podPush(): print('*****************waiting for pod push 🍺 🍺 🍺') os.system(pod_push_cmd) updateVersion() podCmd() libLint() gitPush() podPush() ```
{ "source": "Jiexin-Zheng/BERT_with_keras", "score": 3 }
#### File: Jiexin-Zheng/BERT_with_keras/optimization.py ```python import re import tensorflow as tf import keras.backend as K from keras.optimizers import Optimizer from keras.legacy import interfaces class AdamWeightDecayOpt(Optimizer): """Adam optimizer. Default parameters follow those provided in the original paper. # Arguments lr: float >= 0. Learning rate. num_train_steps: total number train batches in N epoches. np.ceil(train_samples/batch_size)*epoches. num_warmup_steps: number steps of warmup weight_decay_rate: apply weight decay to weights beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`. bias_corrected: boolean. whether or not to use bias_corrected to adam optimizer. exclude_from_weight_decay: list of str. weights is excluded from weight deacy. # References - [Adam - A Method for Stochastic Optimization] (https://arxiv.org/abs/1412.6980v8) - [On the Convergence of Adam and Beyond] (https://openreview.net/forum?id=ryQu7f-RZ) """ def __init__(self, lr, num_train_steps, num_warmup_steps, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, bias_corrected=False, exclude_from_weight_decay=None, **kwargs): super(AdamWeightDecayOpt, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.epsilon = epsilon self.weight_decay_rate = weight_decay_rate self.exclude_from_weight_decay = exclude_from_weight_decay self.num_train_steps = num_train_steps self.num_warmup_steps = num_warmup_steps self.bias_corrected = bias_corrected @interfaces.legacy_get_updates_support def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = tf.train.polynomial_decay( self.lr, self.iterations, self.num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False ) # Implements linear warmup. I.e., if global_step < num_warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. t = K.cast(self.iterations, K.floatx()) + 1 warmup_percent_done = K.cast(t / self.num_warmup_steps, dtype=K.floatx()) warmup_lr = self.lr * warmup_percent_done is_warmup = K.cast(t < self.num_warmup_steps, dtype=K.floatx()) lr = ((1.0 - is_warmup) * lr) + is_warmup * warmup_lr ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.bias_corrected: m_t /= 1 - K.pow(self.beta_1, t) v_t /= 1 - K.pow(self.beta_2, t) update = m_t / (K.sqrt(v_t) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. param_name = self._get_variable_name(p.name) if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * p p_t = p - lr * update self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = {'lr': float(K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'epsilon': self.epsilon} base_config = super(AdamWeightDecayOpt, self).get_config() return dict(list(base_config.items()) + list(config.items())) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name ```
{ "source": "jiexuan/evaluation_tools", "score": 3 }
#### File: evo-plot/contrib/rename_est_name.py ```python from evo.tools import file_interface DESC = """rename the 'est_name' field in a result file""" def main(res_file, new_name): result = file_interface.load_res_file(res_file) result.info["est_name"] = new_name file_interface.save_res_file(res_file, result) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description=DESC) parser.add_argument("res_file", help="evo result file") parser.add_argument("new_name", help="new 'est_name'") args = parser.parse_args() main(args.res_file, args.new_name) ``` #### File: evo/tools/settings_template.py ```python import pkgutil def get_default_plot_backend(): backends = {"PyQt5": "Qt5Agg", "PyQt4": "Qt4Agg"} for pkg in backends: if pkgutil.find_loader(pkg) is not None: return backends[pkg] return "TkAgg" # default settings with documentation DEFAULT_SETTINGS_DICT_DOC = { "plot_xyz_realistic": ( True, "Equal axes ratio in 'xyz' plot mode for realistic trajectory plots." ), "plot_backend": ( get_default_plot_backend(), "matplotlib backend - default: 'Qt{4, 5}Agg' (if PyQt is installed) or 'TkAgg'." ), "plot_hideref": ( False, "Hide the reference trajectory in trajectory plots." ), "plot_linewidth": ( 1.5, "Line width value supported by matplotlib." ), "plot_usetex": ( False, "Use the LaTeX renderer configured in plot_texsystem for plots.", ), "plot_texsystem": ( "pdflatex", "'xelatex', 'lualatex' or 'pdflatex', see: https://matplotlib.org/users/pgf.html", ), "plot_fontfamily": ( "sans-serif", "Font family string supported by matplotlib." ), "plot_fontscale": ( 1.0, "Font scale value, see: https://seaborn.pydata.org/generated/seaborn.set.html" ), "plot_split": ( False, "Show / save each figure separately instead of a collection." ), "plot_figsize": ( [6, 6], "The default size of one (sub)plot figure (width, height)." ), "plot_trajectory_cmap": ( "jet", "matplotlib color map used for mapping values on a trajectory.", ), "plot_multi_cmap": ( "none", "Color map for coloring plots from multiple data sources.\n" + "'none' will use the default color palette, see plot_seaborn_palette." ), "plot_invert_xaxis": ( False, "Invert the x-axis of plots." ), "plot_invert_yaxis": ( False, "Invert the y-axis of plots." ), "plot_seaborn_style": ( "darkgrid", "Defines the plot background/grid.\n" + "Options: 'whitegrid', 'darkgrid', 'white' or 'dark'." ), "plot_seaborn_palette": ( "deep", "Default color palette of seaborn. Can also be a list of colors.\n" + "See: https://seaborn.pydata.org/generated/seaborn.color_palette.html" ), "plot_export_format": ( "pdf", "File format supported by matplotlib for exporting plots." ), "table_export_format": ( "csv", "Format for exporting tables, e.g. 'csv', 'excel', 'latex', 'json'...", ), "table_export_data": ( "stats", "Which data to export: 'info', 'stats' or 'error_array'.", ), "table_export_transpose": ( True, "Transpose tables for export." ), "save_traj_in_zip": ( False, "Store backup trajectories in result zip files (increases size)." ), "logging_format": ( "%(message)s", "Format string for the logging module (console only)." ), "logfile_enabled": ( False, "Whether to write a logfile to the home folder." ) } # without documentation DEFAULT_SETTINGS_DICT = {k: v[0] for k, v in DEFAULT_SETTINGS_DICT_DOC.items()} ```
{ "source": "JieYang031/deepcpg", "score": 3 }
#### File: deepcpg/scripts/dcpg_data.py ```python from __future__ import print_function from __future__ import division from collections import OrderedDict #import dictory remember order of adding import os import sys import warnings import argparse import logging import h5py as h5 import numpy as np import pandas as pd import six from six.moves import range #mainly used the self-defined functions in ./deepcpg/data/*.py. from deepcpg import data as dat # import folder ./deepcpg/data/, use functions in this folder from deepcpg.data import annotations as an from deepcpg.data import stats from deepcpg.data import dna from deepcpg.data import fasta from deepcpg.data import feature_extractor as fext from deepcpg.utils import make_dir #the input is a list, length=#samples. sample has a pd data frame with: chromo, pos. #the output of this function is merged pd data frame with chromo and pos. Any position ever exist in one sample #will be kept and all positions will be sorted def prepro_pos_table(pos_tables): """Extracts unique positions and sorts them.""" if not isinstance(pos_tables, list): #check if pos_tables is a list. This may happen if only one file was read for it. #isinstance(object, classinfo), used to check if the object belongs to the class. pos_tables = [pos_tables] pos_table = None for next_pos_table in pos_tables: if pos_table is None: #for 1st round of loop: pos_table = None because just assigned, next_pos_table = pos_tables[0] pos_table = next_pos_table #pos_table = next_pos_table = pos_tables[0] else: #for 2nd and all following round, pos_table != None pos_table = pd.concat([pos_table, next_pos_table]) # concatenate all samples' pos together. pos_table = pos_table.groupby('chromo').apply( lambda df: pd.DataFrame({'pos': np.unique(df['pos'])})) ##keep only unique position value (int32). #also, 'pos' has been grouped by chromo pos_table.reset_index(inplace=True) #reset index, will show three columns, "chromo", "level_1", "pos" pos_table = pos_table[['chromo', 'pos']] #select columns #>>> pos_table.iloc[:10,] # chromo level_1 pos #0 1 0 3000827 #1 1 1 3001007 #2 1 2 3001018 pos_table.sort_values(['chromo', 'pos'], inplace=True) return pos_table def split_ext(filename): """Remove file extension from `filename`.""" return os.path.basename(filename).split(os.extsep)[0] #return file name def read_cpg_profiles(filenames, log=None, *args, **kwargs): """Read methylation profiles. Input files can be gzip compressed. Returns ------- dict `dict (key, value)`, where `key` is the output name and `value` the CpG table. """ cpg_profiles = OrderedDict() #a dictionary which remember the order of item inserted, when iterating it, #items are returned in the order their keys were first added. for filename in filenames: if log: log(filename) cpg_file = dat.GzipFile(filename, 'r') #Wrapper to read and write gzip-compressed files. output_name = split_ext(filename) #Remove file extension from `filename`, defined above cpg_profile = dat.read_cpg_profile(cpg_file, sort=True, *args, **kwargs) #Read CpG profile from TSV or bedGraph file. #return :class:`pandas.DataFrame` with columns `chromo`, `pos`, `value`. cpg_profiles[output_name] = cpg_profile #cpg_profiles store multiple sample information cpg_file.close() return cpg_profiles #return ordered dictory, each item is a pandas data frame def extract_seq_windows(seq, pos, wlen, seq_index=1, assert_cpg=False): """Extracts DNA sequence windows at positions. Parameters ---------- seq: str DNA sequence. pos: list Positions at which windows are extracted. wlen: int Window length. seq_index: int Offset at which positions start. assert_cpg: bool If `True`, check if positions in `pos` point to CpG sites. Returns ------- np.array Array with integer-encoded sequence windows. """ delta = wlen // 2 nb_win = len(pos) #nb_win=32768, which is the default chunk size seq = seq.upper() #change to upper case seq_wins = np.zeros((nb_win, wlen), dtype='int8') #seq_wins.shape = (32768, 1001) for i in range(nb_win): p = pos[i] - seq_index if p < 0 or p >= len(seq): raise ValueError('Position %d not on chromosome!' % (p + seq_index)) if seq[p:p + 2] != 'CG': warnings.warn('No CpG site at position %d!' % (p + seq_index)) win = seq[max(0, p - delta): min(len(seq), p + delta + 1)] if len(win) < wlen: #which means cannot extract 1001 window size from original fasta sequence. #this may caused by the targeted position is so close to end of the chromosome win = max(0, delta - p) * 'N' + win #add NNN to seq win += max(0, p + delta + 1 - len(seq)) * 'N' #add something and assign the new value to it. #this equals to win = win + max(0, p + delta + 1 - len(seq)) * 'N' assert len(win) == wlen #assert: used to catch bugs seq_wins[i] = dna.char_to_int(win) #Translate chars of single sequence `seq` to ints #ATGCN were transferred to 0-4 # Randomly choose missing nucleotides idx = seq_wins == dna.CHAR_TO_INT['N'] #idx is numpy array with both True/False value seq_wins[idx] = np.random.randint(0, 4, idx.sum()) #np.random.randint(0, 4, idx.sum()).shape = (992,) which is the same shape as idx assert seq_wins.max() < 4 #make sure this is true, or it will stop and report error if assert_cpg: assert np.all(seq_wins[:, delta] == 3) #Test whether all array elements along a given axis evaluate to True. assert np.all(seq_wins[:, delta + 1] == 2) return seq_wins def map_values(values, pos, target_pos, dtype=None, nan=dat.CPG_NAN): """Maps `values` array at positions `pos` to `target_pos`. Inserts `nan` for uncovered positions. """ assert len(values) == len(pos) #judge T/F, T: keep running; F: stop the program assert np.all(pos == np.sort(pos)) #check if pos has been sorted assert np.all(target_pos == np.sort(target_pos)) #check if target_pos has been sorted values = values.ravel() #returns contiguous flattened array(1D array with all the input-array #elements and with the same type as it). #however, values = cpg_table.value.values, it is already a 1D array pos = pos.ravel() target_pos = target_pos.ravel() #maybe just double verify?? idx = np.in1d(pos, target_pos) #Test whether each element of a 1-D array is also present in a second array. #pos is much shorter than the target_pos, but make sure the first is fully covered by the second. pos = pos[idx] #idx is all TRUE. values = values[idx] if not dtype: dtype = values.dtype #dtype set as int8 target_values = np.empty(len(target_pos), dtype=dtype) #create empty array with specified shape and type target_values.fill(nan) #fill it with missing, default is -1 idx = np.in1d(target_pos, pos).nonzero()[0] #Return the indices of the elements that are non-zero. assert len(idx) == len(values) assert np.all(target_pos[idx] == pos) target_values[idx] = values return target_values def map_cpg_tables(cpg_tables, chromo, chromo_pos): """Maps values from cpg_tables to `chromo_pos`. Positions in `cpg_tables` for `chromo` must be a subset of `chromo_pos`. Inserts `dat.CPG_NAN` for uncovered positions. """ chromo_pos.sort() #sorts the elements of a given list in a specific order, numpy array with 1D mapped_tables = OrderedDict() #create dictionary for name, cpg_table in six.iteritems(cpg_tables): #cpg_tables, OrderedDict, ##cpg_tables: sample items, each item stored each sample's chro pos, and value cpg_table = cpg_table.loc[cpg_table.chromo == chromo] #selected cpg_table, #samples rows * 3 column cpg_table = cpg_table.sort_values('pos') #sort by position column mapped_table = map_values(cpg_table.value.values, #1D numpy array, (266747,) cpg_table.pos.values, #1D numpy array, (266747,) chromo_pos) #1D numpy array, (402166,) #return numpy 1D array. (402166,), exit 1, 0, -1 (nan default value) assert len(mapped_table) == len(chromo_pos) mapped_tables[name] = mapped_table return mapped_tables def format_out_of(out, of): return '%d / %d (%.1f%%)' % (out, of, out / of * 100) def get_stats_meta(names): funs = OrderedDict() for name in names: fun = stats.get(name) #Return object from module by its name if name in ['mode', 'cat_var', 'cat2_var', 'diff']: dtype = np.int8 else: dtype = np.float32 funs[name] = (fun, dtype) return funs def select_dict(data, idx): data = data.copy() for key, value in six.iteritems(data): if isinstance(value, dict): data[key] = select_dict(value, idx) else: data[key] = value[idx] return data def annotate(anno_file, chromo, pos): anno_file = dat.GzipFile(anno_file, 'r') anno = pd.read_table(anno_file, header=None, usecols=[0, 1, 2], dtype={0: 'str', 1: 'int32', 2: 'int32'}) anno_file.close() anno.columns = ['chromo', 'start', 'end'] anno.chromo = anno.chromo.str.upper().str.replace('CHR', '') anno = anno.loc[anno.chromo == chromo] anno.sort_values('start', inplace=True) start, end = an.join_overlapping(anno.start.values, anno.end.values) anno = np.array(an.is_in(pos, start, end), dtype='int8') return anno class App(object): def run(self, args): name = os.path.basename(args[0]) parser = self.create_parser(name) opts = parser.parse_args(args[1:]) return self.main(name, opts) def create_parser(self, name): p = argparse.ArgumentParser( prog=name, formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Creates DeepCpG data for training and testing.') # I/O p.add_argument( '--pos_file', help='File with positions of CpG sites that are to be predicted.' ' If missing, only CpG sites that are observed in at least one of' ' the given cells will be used.') p.add_argument( '--cpg_profiles', help='Input single-cell methylation profiles in dcpg or bedGraph' ' format that are to be imputed', nargs='+') p.add_argument( '--cpg_wlen', help='If provided, extract `cpg_wlen`//2 neighboring CpG sites', type=int) p.add_argument( '--cpg_cov', help='Minimum CpG coverage. Only use CpG sites for which the true' ' methylation state is known in at least that many cells.', type=int, default=1) p.add_argument( '--dna_files', help='Directory or FASTA files named "*.chromosome.`chromo`.fa*"' ' with the DNA sequences for chromosome `chromo`.', nargs='+') p.add_argument( '--dna_wlen', help='DNA window length', type=int, default=1001) p.add_argument( '--anno_files', help='Files with genomic annotations that are used as input' ' features. Currently ignored by `dcpg_train.py`.', nargs='+') p.add_argument( '-o', '--out_dir', help='Output directory', default='.') g = p.add_argument_group('output statistics') g.add_argument( '--cpg_stats', help='Per CpG statistics derived from single-cell profiles.' ' Required, e.g., for predicting mean methylation levels or' ' cell-to-cell variance.', nargs='+', choices=['mean', 'mode', 'var', 'cat_var', 'cat2_var', 'entropy', 'diff', 'cov']) g.add_argument( '--cpg_stats_cov', help='Minimum coverage for computing per CpG statistics', type=int, default=3) g.add_argument( '--win_stats', help='Window-based output statistics derived from single-cell' ' profiles. Required, e.g., for predicting mean methylation levels' ' or cell-to-cell variance.', nargs='+', choices=['mean', 'mode', 'var', 'cat_var', 'cat2_var', 'entropy', 'diff', 'cov']) g.add_argument( '--win_stats_wlen', help='Window lengths for computing statistics', type=int, nargs='+', default=[1001, 2001, 3001, 4001, 5001]) g = p.add_argument_group('advanced arguments') g.add_argument( '--chromos', nargs='+', help='Chromosomes that are used') g.add_argument( '--nb_sample', type=int, help='Maximum number of samples') g.add_argument( '--nb_sample_chromo', type=int, help='Number of random samples from each chromosome') g.add_argument( '--chunk_size', type=int, default=32768, help='Maximum number of samples per output file. Should be' ' divisible by batch size.') g.add_argument( '--seed', help='Seed of random number generator', type=int, default=0) g.add_argument( '--verbose', help='More detailed log messages', action='store_true') g.add_argument( '--log_file', help='Write log messages to file') return p def main(self, name, opts): if opts.seed is not None: np.random.seed(opts.seed) logging.basicConfig(filename=opts.log_file, format='%(levelname)s (%(asctime)s): %(message)s') log = logging.getLogger(name) if opts.verbose: log.setLevel(logging.DEBUG) else: log.setLevel(logging.INFO) log.debug(opts) # Check input arguments if not opts.cpg_profiles: if not (opts.pos_file or opts.dna_files): raise ValueError('Position table and DNA database expected!') if opts.dna_wlen and opts.dna_wlen % 2 == 0: raise '--dna_wlen must be odd!' if opts.cpg_wlen and opts.cpg_wlen % 2 != 0: raise '--cpg_wlen must be even!' # Parse functions for computing output statistics cpg_stats_meta = None win_stats_meta = None if opts.cpg_stats: cpg_stats_meta = get_stats_meta(opts.cpg_stats) if opts.win_stats: win_stats_meta = get_stats_meta(opts.win_stats) make_dir(opts.out_dir) outputs = OrderedDict() # Read single-cell profiles if provided if opts.cpg_profiles: log.info('Reading CpG profiles ...') outputs['cpg'] = read_cpg_profiles( opts.cpg_profiles, chromos=opts.chromos, nb_sample=opts.nb_sample, nb_sample_chromo=opts.nb_sample_chromo, log=log.info) # Create table with unique positions if opts.pos_file: #the pos_file provide the CpG positions which need to be predicted # Read positions from file log.info('Reading position table ...') pos_table = pd.read_table(opts.pos_file, usecols=[0, 1], dtype={0: str, 1: np.int32}, header=None, comment='#') pos_table.columns = ['chromo', 'pos'] pos_table['chromo'] = dat.format_chromo(pos_table['chromo']) pos_table = prepro_pos_table(pos_table) else: # Extract positions from profiles, if not provided. Predict position which available in at least one cells. pos_tables = [] for cpg_table in list(outputs['cpg'].values()): pos_tables.append(cpg_table[['chromo', 'pos']]) pos_table = prepro_pos_table(pos_tables) if opts.chromos: pos_table = pos_table.loc[pos_table.chromo.isin(opts.chromos)] if opts.nb_sample_chromo: pos_table = dat.sample_from_chromo(pos_table, opts.nb_sample_chromo) if opts.nb_sample: pos_table = pos_table.iloc[:opts.nb_sample] log.info('%d samples' % len(pos_table)) make_dir(opts.out_dir) # Iterate over chromosomes # ------------------------ for chromo in pos_table.chromo.unique(): log.info('-' * 80) log.info('Chromosome %s ...' % (chromo)) idx = pos_table.chromo == chromo ##idx is T/F for whether the entries are equal to the chromo chromo_pos = pos_table.loc[idx].pos.values #a numpy array with 1D data chromo_outputs = OrderedDict() if 'cpg' in outputs: # Concatenate CpG tables into single nb_site x nb_output matrix chromo_outputs['cpg'] = map_cpg_tables(outputs['cpg'], chromo, chromo_pos) #chromo_outputs, one array called 'cpg', 'cpg' has #sample array, #each item is mapped table of target_pos with value filled #OrderedDict([('BS27_1_SER', array([1, 1, 1, ..., 1, 1, 0], dtype=int8)), #('BS27_3_SER', array([-1, 1, 1, ..., 1, -1, -1], dtype=int8))]) chromo_outputs['cpg_mat'] = np.vstack( list(chromo_outputs['cpg'].values())).T #add one more array to it. np.vstack, stack array sequence vertically #chromo_outputs['cpg_mat'].shape=(402166, 2) #402166 is the CHR1 target pos number, 2 is the input two samples, BS27_1_SER, BS27_3_SER assert len(chromo_outputs['cpg_mat']) == len(chromo_pos) if 'cpg_mat' in chromo_outputs and opts.cpg_cov: cov = np.sum(chromo_outputs['cpg_mat'] != dat.CPG_NAN, axis=1) assert np.all(cov >= 1) idx = cov >= opts.cpg_cov tmp = '%s sites matched minimum coverage filter' tmp %= format_out_of(idx.sum(), len(idx)) log.info(tmp) if idx.sum() == 0: continue chromo_pos = chromo_pos[idx] chromo_outputs = select_dict(chromo_outputs, idx) # Read DNA of chromosome chromo_dna = None if opts.dna_files: #this will only read the corresponding chromosome sequence chromo_dna = fasta.read_chromo(opts.dna_files, chromo) #chromo_dna is string, len=195471971 for chr1 annos = None if opts.anno_files: log.info('Annotating CpG sites ...') annos = dict() for anno_file in opts.anno_files: name = split_ext(anno_file) annos[name] = annotate(anno_file, chromo, chromo_pos) # Iterate over chunks # ------------------- nb_chunk = int(np.ceil(len(chromo_pos) / opts.chunk_size)) for chunk in range(nb_chunk): log.info('Chunk \t%d / %d' % (chunk + 1, nb_chunk)) chunk_start = chunk * opts.chunk_size chunk_end = min(len(chromo_pos), chunk_start + opts.chunk_size) chunk_idx = slice(chunk_start, chunk_end) chunk_pos = chromo_pos[chunk_idx] chunk_outputs = select_dict(chromo_outputs, chunk_idx) #OrderedDict() #chunk_outputs is 1D array filename = 'c%s_%06d-%06d.h5' % (chromo, chunk_start, chunk_end) filename = os.path.join(opts.out_dir, filename) chunk_file = h5.File(filename, 'w') # Write positions chunk_file.create_dataset('chromo', shape=(len(chunk_pos),), dtype='S2') #create_dataset() in default for h5py chunk_file['chromo'][:] = chromo.encode() #set the chunk_file['chromo'] = 1 for all. #chunk_file['chromo'].shape = (32768,) chunk_file.create_dataset('pos', data=chunk_pos, dtype=np.int32) #chunk_file['pos'].shape = (32768,) # the size is default chunk_size if len(chunk_outputs): #len(chunk_outputs)=2 out_group = chunk_file.create_group('outputs') #for now, type(out_group) = <class 'h5py._hl.group.Group'> #list(out_group) = [] # Write cpg profiles if 'cpg' in chunk_outputs: for name, value in six.iteritems(chunk_outputs['cpg']): #name = ["BS27_1_SER", 'BS27_3_SER'] # the sample name #value= 2 numpy array, both with shape=(32768,) assert len(value) == len(chunk_pos) # Round continuous values out_group.create_dataset('cpg/%s' % name, data=value.round(), dtype=np.int8, compression='gzip') #type(out_group)= <class 'h5py._hl.group.Group'> #list(out_group) = ['cpg'] #list(out_group['cpg']) = ['BS27_1_SER', 'BS27_3_SER'] # Compute and write statistics if cpg_stats_meta is not None: log.info('Computing per CpG statistics ...') cpg_mat = np.ma.masked_values(chunk_outputs['cpg_mat'], dat.CPG_NAN) #cpg_mat.shape=(32768, 2) mask = np.sum(~cpg_mat.mask, axis=1) mask = mask < opts.cpg_stats_cov for name, fun in six.iteritems(cpg_stats_meta): stat = fun[0](cpg_mat).data.astype(fun[1]) stat[mask] = dat.CPG_NAN assert len(stat) == len(chunk_pos) out_group.create_dataset('cpg_stats/%s' % name, data=stat, dtype=fun[1], compression='gzip') #until here: #>>> chunk_file.visit(printname) #chromo #outputs #outputs/cpg #outputs/cpg/BS27_1_SER #utputs/cpg/BS27_3_SER #pos # Write input features in_group = chunk_file.create_group('inputs') # DNA windows if chromo_dna: log.info('Extracting DNA sequence windows ...') dna_wins = extract_seq_windows(chromo_dna, pos=chunk_pos, wlen=opts.dna_wlen) #give the fasta sequence of one chromosome ('chromo_dna'), and targeted position ('chunk_pos') #, and wlen=1001, return a numpy array with shape as (32768, 1001). The array has been transfered as #number rather than base pair assert len(dna_wins) == len(chunk_pos) in_group.create_dataset('dna', data=dna_wins, dtype=np.int8, compression='gzip') #>>> in_group.visit(printname) = dna # CpG neighbors if opts.cpg_wlen: log.info('Extracting CpG neighbors ...') cpg_ext = fext.KnnCpgFeatureExtractor(opts.cpg_wlen // 2) context_group = in_group.create_group('cpg') # outputs['cpg'], since neighboring CpG sites might lie # outside chunk borders and un-mapped values are needed for name, cpg_table in six.iteritems(outputs['cpg']): #name="BS27_1_SER" and "BS27_3_SER" #cpg_table = numpy array, with three columns information for each input sample. cpg_table = cpg_table.loc[cpg_table.chromo == chromo] state, dist = cpg_ext.extract(chunk_pos, cpg_table.pos.values, cpg_table.value.values) #extract the cpg distance and state with wlen nan = np.isnan(state) state[nan] = dat.CPG_NAN #set nan value as -1, which means unknown dist[nan] = dat.CPG_NAN # States can be binary (np.int8) or continuous # (np.float32). state = state.astype(cpg_table.value.dtype, copy=False) #set data type dist = dist.astype(np.float32, copy=False) assert len(state) == len(chunk_pos) assert len(dist) == len(chunk_pos) assert np.all((dist > 0) | (dist == dat.CPG_NAN)) group = context_group.create_group(name) group.create_dataset('state', data=state, compression='gzip') group.create_dataset('dist', data=dist, compression='gzip') #list(group) = ['state','dist'] if win_stats_meta is not None and opts.cpg_wlen: log.info('Computing window-based statistics ...') states = [] dists = [] cpg_states = [] cpg_group = out_group['cpg'] context_group = in_group['cpg'] for output_name in six.iterkeys(cpg_group): state = context_group[output_name]['state'].value states.append(np.expand_dims(state, 2)) dist = context_group[output_name]['dist'].value dists.append(np.expand_dims(dist, 2)) cpg_states.append(cpg_group[output_name].value) # samples x outputs x cpg_wlen states = np.swapaxes(np.concatenate(states, axis=2), 1, 2) dists = np.swapaxes(np.concatenate(dists, axis=2), 1, 2) cpg_states = np.expand_dims(np.vstack(cpg_states).T, 2) cpg_dists = np.zeros_like(cpg_states) states = np.concatenate([states, cpg_states], axis=2) dists = np.concatenate([dists, cpg_dists], axis=2) for wlen in opts.win_stats_wlen: idx = (states == dat.CPG_NAN) | (dists > wlen // 2) states_wlen = np.ma.masked_array(states, idx) group = out_group.create_group('win_stats/%d' % wlen) for name, fun in six.iteritems(win_stats_meta): stat = fun[0](states_wlen) if hasattr(stat, 'mask'): idx = stat.mask stat = stat.data if np.sum(idx): stat[idx] = dat.CPG_NAN group.create_dataset(name, data=stat, dtype=fun[1], compression='gzip') if annos: log.info('Adding annotations ...') group = in_group.create_group('annos') for name, anno in six.iteritems(annos): group.create_dataset(name, data=anno[chunk_idx], dtype='int8', compression='gzip') chunk_file.close() log.info('Done!') return 0 if __name__ == '__main__': app = App() app.run(sys.argv) ```
{ "source": "JieYang031/TCAG-WGS-CNV-workflow", "score": 3 }
#### File: JieYang031/TCAG-WGS-CNV-workflow/format_erds_results.py ```python import os, sys, re tags = {} tag_pos = {} tags_of_interest = ["FORMAT","INFO"] for key in tags_of_interest: tags[key] = {} def print_tags(): for t in tags.keys(): print t, tags[t] if len(sys.argv) != 3: print "<program> <erds vcf output> <formatted results>" sys.exit(0) vcf_file_name = sys.argv[1] out_file_name = sys.argv[2] t_file_name = out_file_name + ".temp" if not os.path.isfile(vcf_file_name): print "erds output not found ..." sys.exit(1) if os.path.isfile(out_file_name): print "Delete file", out_file_name, "and rerun" sys.exit(1) header = [] t_file = open(t_file_name ,'w') o_file = open(out_file_name,'w') info_header = {} vcf_file = open(vcf_file_name) num_samples = 0 vcf_file = open(vcf_file_name) for line in vcf_file: line = line.replace("\n","") if line[0:2] == "##": words = line.split("<") if len(words) < 2: continue tag = words[0].replace("#","").replace("=","") id = words[1].split(",")[0].replace("ID=","") if tag in tags_of_interest: tags[tag][id]=0 elif line[0]=="#": line = line.replace("POS","START") words = line.split("\t") header = words new_header = words[0:7] new_header.extend(tags[words[7]].keys()) num_samples = len(words)-9 + 1 if num_samples == 0: print "Error: no samples in vcf file!!" sys.exit(0) for i in range (1,num_samples): id = 8+i for key in tags[words[8]].keys(): new_header.append(words[id] + "|" + key) print >> t_file, "\t".join(new_header) else: words = line.split("\t") entry = [] entry = words[0:7] #format "INFO" column info = words[7].split(";") info_dets = {} for t in tags[header[7]].keys(): info_dets[t] = "-" for i in info: i_1 = i.split("=") if i_1[0]=="DB" or i_1[0] == "DS" or i_1[0] == "INV5" or i_1[0] == "INV3": continue elif i_1[0]=="PRECISE": info_dets["IMPRECISE"]="PRECISE" continue elif i_1[0]=="IMPRECISE" : info_dets["IMPRECISE"]=i_1[0] continue info_dets[i_1[0]]=i_1[1] #put together the entry for t in tags[header[7]].keys(): entry.append(info_dets[t]) #format "FORMAT" column format_info = words[8].split(":") for i in range (1,num_samples): id = 8+i sample = words[id].split(":") s_format = {} for t in tags[header[8]].keys(): s_format[t]="-" if len(sample) != 1: for f in range(0,len(format_info)): s_format[format_info[f]]=sample[f] #put together the entry for t in tags[header[8]].keys(): entry.append(s_format[t]) print >> t_file, "\t".join(entry) vcf_file.close() t_file.close() #format temp file t_file = open(t_file_name) ##sample CHROM START END SVTYPE SIZE sample|CN FILTER sample|REFCN SVLEN ALT IMPRECISE fixed_column_index = {"CHROM":-1,"START":-1,"END":-1,"SVTYPE":-1,"SAMPLE|CN":-1,"FILTER":-1,"SAMPLE|REFCN":-1,"SVLEN":-1,"ALT":-1,"IMPRECISE":-1,"SIZE":-1} flex_column_index = {} sample = re.sub(".*/","",out_file_name).replace(".txt","").replace(".erds.vcf","") for line in t_file: line = line.replace("\n","") if line[0] == "#": line = line.replace("#","") words = line.split("\t") for i in range (0,len(words)): words[i]=re.sub(r'.*\|','SAMPLE|',words[i]) if words[i] in fixed_column_index.keys(): fixed_column_index[words[i]] = i for key in fixed_column_index.keys(): if fixed_column_index[key] == -1 and key != "SIZE": print "Required column " , key, " is missing.." sys.exit(0) new_header = "#sample\tCHROM\tSTART\tEND\tSVTYPE\tSIZE\tFILTER\tSAMPLE|REFCN\tSAMPLE|CN\tIMPRECISE\tSVLEN\tALT" print >> o_file, new_header else: words = line.split("\t") entry = [] chrom = words[fixed_column_index["CHROM"]] start = words[fixed_column_index["START"]] end = words[fixed_column_index["END"]] svtype = words[fixed_column_index["SVTYPE"]] filter = words[fixed_column_index["FILTER"]] refcn = words[fixed_column_index["SAMPLE|REFCN"]] samplecn = words[fixed_column_index["SAMPLE|CN"]] imprecise = words[fixed_column_index["IMPRECISE"]] svlen = words[fixed_column_index["SVLEN"]] alt = words[fixed_column_index["ALT"]] if end == "-": end = start entry.extend([sample,words[fixed_column_index["CHROM"]],start,end,svtype,`int(end)-int(start)+1`,filter,refcn,samplecn,imprecise,svlen,alt]) print >> o_file, "\t".join(entry) t_file.close() o_file.close() ``` #### File: JieYang031/TCAG-WGS-CNV-workflow/IQR_samtools_depth.py ```python import argparse import CNVworkflowlib #################################### ### Parse command-line arguments ### parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("samtools_depth_filename", type=str, nargs="?", default="-") args = parser.parse_args() ##################################### def find_cumulative_val(v, total, percent): cumulative_sum = 0 for i in sorted(list(v.keys())): cumulative_sum = cumulative_sum + v[i] if cumulative_sum > total * (percent / 100): quartile_num = i break return(quartile_num) samtools_depth_file = CNVworkflowlib.file_or_stdin(args.samtools_depth_filename) depth_count = {} total = 0 for line in samtools_depth_file: depth = int(line.rstrip().split("\t")[2]) if depth not in depth_count: depth_count[depth] = 0 depth_count[depth] += 1 total += 1 upper_quartile_num = find_cumulative_val(depth_count, total, 75) lower_quartile_num = find_cumulative_val(depth_count, total, 25) IQR = upper_quartile_num - lower_quartile_num print(IQR) ``` #### File: JieYang031/TCAG-WGS-CNV-workflow/MANTA.py ```python import sys from VCF import VCF from VCF import VCF_filter ZYG={'0/1':'HET', '1/1':'HOMO', './.':'UNKNOWN', '0/0':'REF'} class MANTA (VCF): def __init__ (self, name): super (MANTA, self).__init__(name) def filter_func(self, chrom, beg, end, type, E): if int(end) - int (beg) < 50: return True return False def run (self, what=None): super (MANTA, self).run('MANTA', False, self.filter_func, what=what) # ========================================================================= class MANTA_filter: chrom_col=0 start_col=1 end_col=2 size_col=3 type_col=4 filter_col=5 prog_col=6 other_col=7 @staticmethod def is_good (h): if h['GT'] == '0/0': return False return True # ========================================================================= class MANTA_filter_mix: def __init__ (self, fname, use_default, min_pe=5, min_sr=5, min_qual=0.0): self.tab_file=fname self.qual=min_qual self.min_pe=float(min_pe) self.min_sr=float(min_sr) self.allelic_ratio=0.2 if self.qual=='DEFAULT': self.qual=-1 else: self.qual=float(self.qual) print >> sys.stderr, 'min_pe =', min_pe print >> sys.stderr, 'min_sr =', min_sr print >> sys.stderr, 'min_qual =', min_qual def is_good (self, E): h={} F=E[MANTA_filter.other_col].split ('|') info=F[0].split (';') names=F[1].split(':') values=F[2].split(':') for a in info: b=a.split ('=') if len(b) == 1: val = b[0] else: val=b[1] h[b[0]]=val for i, nm in enumerate (names): h[nm] = values[i] if not MANTA_filter.is_good (h): return False if not h.has_key ('PR'): h['PR']="0,0" if not h.has_key ('SR'): h['SR']="0,0" h['PR']=map(lambda x: int(x), h['PR'].split(',')) h['SR']=map(lambda x: int(x), h['SR'].split(',')) ref_pe=int(h['PR'][0]) alt_pe=int(h['PR'][1]) ref_sr=int(h['SR'][0]) alt_sr=int(h['SR'][1]) total=1.0*(ref_pe+alt_pe+ref_sr+alt_sr) #if (alt_pe + alt_sr) / total < self.allelic_ratio: # return False flag=(alt_pe >= self.min_pe or (alt_pe+alt_sr) >= (self.min_pe+self.min_sr)/2.0 or alt_sr >= self.min_sr) #print >> sys.stderr, ref_pe, ref_sr, alt_pe, alt_sr, (alt_pe + alt_sr) / total, flag if not flag: return False if self.qual > -1: if float (h['QUAL']) < self.qual: return False else: # Note we use the overall filter if not E[MANTA_filter.filter_col] == 'PASS': return False return True # -------------------------------------------------------------- | def dofilter (self, outfile='/dev/stdout', Filter=False): in_f=open (self.tab_file) out_f=open (outfile, 'w') for line in in_f: E=line.rstrip('\n').split() if not self.is_good(E): continue print line, out_f.close() in_f.close() # ======================================================================= class MANTA_filter_qual: def __init__ (self, fname, use_default, min_pe=5, min_sr=5, min_qual=0.0): self.tab_file=fname self.qual=float(min_qual) def is_good (self, E): h={} F=E[MANTA_filter.other_col].split ('|') info=F[0].split (';') names=F[1].split(':') values=F[2].split(':') for a in info: b=a.split ('=') if len(b) == 1: val = b[0] else: val=b[1] h[b[0]]=val for i, nm in enumerate (names): h[nm] = values[i] if not MANTA_filter.is_good (h): return False if float (h['QUAL']) < self.qual: return False return True # -------------------------------------------------------------- | def dofilter (self, outfile='/dev/stdout', Filter=False): in_f=open (self.tab_file) out_f=open (outfile, 'w') for line in in_f: E=line.rstrip('\n').split() if not self.is_good(E): continue print line, out_f.close() in_f.close() # ======================================================================= class MANTA_filter_default: def __init__ (self, fname, use_default, min_dv=5, min_pe=5, min_sr=5, min_qual=0): self.tab_file=fname self.dv=min_dv self.sr=min_sr self.pe=min_pe self.use_default=use_default def is_good (self, E): if self.use_default: if E[MANTA_filter.filter_col] == 'PASS': return True else: return False return True # -------------------------------------------------------------- | def dofilter (self, outfile='/dev/stdout', Filter=False): in_f=open (self.tab_file) out_f=open (outfile, 'w') for line in in_f: E=line.rstrip('\n').split() if not self.is_good(E): continue print line, out_f.close() in_f.close() # ======================================================================= class MANTA_param: chrom_col=0 start_col=1 end_col=2 size_col=3 type_col=4 filter_col=5 prog_col=6 other_col=7 diff_col=8 confirm_col=9 def __init__ (self, fname): self.tab_file=fname # ------------------------------------------------ def get_param (self, E): h={} F=E[MANTA_param.other_col].split ('|') gt_name=F[-2] gt_info=F[-1] names=gt_name.split(':') GT=gt_info.split(':') for nm, val in zip(names, GT): h[nm]=val pr_ref='0' pr_var='0' sr_ref='0' sr_var='0' if h.has_key ('PR'): X=h['PR'].split(',') pr_ref=X[0] pr_var=X[1] if h.has_key ('SR'): X=h['SR'].split(',') sr_ref=X[0] sr_var=X[1] for ele in F[0].split(';'): print >> sys.stderr, ele x=ele.split('=') if len (x) > 1: h[x[0]] = x[1] else: h[x[0]] = x[0] zygosity=E[7].split('|') zygosity=zygosity[-1].split(':') confirm_count = 0 if not E[MANTA_param.confirm_col] == 'NotApplicable': X=E[MANTA_param.confirm_col].split('|') confirm_count=len(X) print >> sys.stderr, pr_ref, pr_var, sr_ref, sr_var return '\t'.join ( [':'.join (E[0:3]), h['QUAL'] ] + \ [pr_ref, pr_var, sr_ref, sr_var]+ \ [str(confirm_count)] + \ [ZYG[zygosity[0]]]) # ------------------------------------------------ def run (self, outfile='/dev/stdout'): in_f=open (self.tab_file) out_f=open (outfile, 'w') print >> out_f, '\t'.join ( [ 'SIZE', 'QUAL', 'PR_REF', 'PR_VAR', 'SR_REF', 'SR_VAR', 'COUNT', 'ZYG'] ) for line in in_f: E=line.rstrip('\n').split() x=self.get_param (E) print >> out_f, x out_f.close() in_f.close() # ======================================================================= ```