metadata
dict
text
stringlengths
60
3.49M
{ "source": "jieyanzhu/codes-effective-computation-in-physics", "score": 3 }
#### File: codes-effective-computation-in-physics/chap_17/a_list_mean.py ```python import pdb def mean(nums): top = sum(nums) bot = len(nums) return float(top) / float(bot) if __name__ == "__main__": pdb.set_trace() a_list = [1, 2, 3, 4, 5, 6, 10, "one hundred"] mean(a_list) ``` #### File: codes-effective-computation-in-physics/chap_17/elementary.py ```python from particle import Particle import numpy class ElementaryParticle(Particle): roar = "I am an Elementary Particle!" def __init__(self, spin): self.s = spin self.is_fermion = bool(spin % 1.0) self.is_boson = not self.is_fermion ``` #### File: codes-effective-computation-in-physics/chap_18/mod.py ```python import numpy as np import os def fib(n): if n == 0 or n == 1: return 1 else: return fib(n - 1) + fib(n - 2) def sinc2d(x, y): if x == 0.0 and y == 0.0: return 1.0 elif x == 0.0: return np.sin(y) / y elif y == 0.0: return np.sin(x) / x else: return (np.sin(x) / x) * (np.sin(y) / y) def f(): files = os.listdir('.') if 'no.txt' not in files: with open('yes.txt', 'w') as fhandle: fhandle.write('42') return None def a(x): return x + 1 def b(x): return 2 * x def c(x): return b(a(x)) ``` #### File: codes-effective-computation-in-physics/chap_18/test_fib.py ```python from nose.tools import assert_equal from mod import fib def test_fib0(): # test edge 0 obs = fib(0) assert_equal(1, obs) def test_fib1(): # test edge 1 obs = fib(1) assert_equal(1, obs) def test_fib6(): # test regular point obs = fib(6) assert_equal(13, obs) ```
{ "source": "jieyaren/hello-world", "score": 4 }
#### File: hello-world/py/5_LPS.py ```python class Solution: # Manacher algorithm # http://en.wikipedia.org/wiki/Longest_palindromic_substring def longestPalindrome(self, s): # Transform S into T. # For example, S = "abba", T = "^#a#b#b#a#$". # ^ and $ signs are sentinels appended to each end to avoid bounds checking T = '#'.join('^{}$'.format(s)) n = len(T) P = [0] * n C = R = 0 #全篇目的遍历每个i的回文半径P[i],以节省时间为目的。最后enum P[i]。 #R的作用应该也是为了设置右边界节省时间。不是单纯为了寻找最大半径。 for i in range(1, n - 1): P[i] = (R > i) and min(R - i, P[2 * C - i]) # equals to i' = C - (i-C) #python 中的and从左到右计算表达式,若所有值均为真,则返回最后一个值,若存在假,返回第一个假值。 #or也是从左到有计算表达式,返回第一个为真的值。 #求出P[i]的初始至小值。这一步P[i]=0也能AC。加这步赋初值节省时间。 # Attempt to expand palindrome centered at i while T[i + 1 + P[i]] == T[i - 1 - P[i]]: P[i] += 1 #若回文则当前i的回文半径+1 # If palindrome centered at i expand past R, # adjust center based on expanded palindrome. if i + P[i] > R: #更新右边界R和中心C,需要再理解。 C, R = i, i + P[i] # Find the maximum element in P. maxLen, centerIndex = max((n, i) for i, n in enumerate(P)) return s[(centerIndex - maxLen) // 2: (centerIndex + maxLen) // 2] ``` #### File: hello-world/py/6_ZZC.py ```python class Solution(object): def convert(self, s, numRows): """ :type s: str :type numRows: int :rtype: str """ # 整体思路是分成numRows个字符串,每个字符串在结尾添加元素。 L = [''] * numRows; index = 0; step = 1; if numRows == 1 or numRows >= len(s): return s; for c in s: L[index] += c; if index == numRows - 1: step = -1; #在逆向-1过程中应设置index=0时改变方向。 elif index == 0: step = 1; index += step; return ''.join(L); ``` #### File: hello-world/py/chap1-12.py ```python import re def test_assert(l): assert(l[0]) print l[1] +'('+ l[2] + ') pass' ''' 1.11 匹配邮箱 ''' def mail_check(s): matcher='\w+<EMAIL>\.]+.<EMAIL>' m=re.match(matcher,s) return [m.group()!=None,mail_check.__name__,s] test_assert(mail_check("<EMAIL>")) test_assert(mail_check("<EMAIL>")) test_assert(mail_check("<EMAIL>")) #test_assert(mail_check("a@ <EMAIL>")) #test_assert(mail_check("a @<EMAIL>")) #test_assert(mail_check("_<EMAIL>")) #test_assert(mail_check(" @b.com")) ''' 1.10 匹配所有复数字符串 1.7-1.9 匹配所有整数长整数浮点数不过是\d控制字数版本就不做了 [0-9]{1-9}+ ''' def complex_check(s): matcher='\d*(-\d+j)?' #'\d*+(-|+\d*j)' m=re.match(matcher,s) return [m.group()!=None,complex_check.__name__,s] test_assert(complex_check("1-5j")) test_assert(complex_check("1+5j")) test_assert(complex_check("1 + 5j")) test_assert(complex_check("1")) test_assert(complex_check("5j")) ''' 1.6 匹配网址 1.12类似,不过是扩展域名。就不考虑了。 ''' def net_check(s): matcher='^w{3}\.\w+\.com$' m=re.match(matcher,s) return [m.group()!=None,net_check.__name__,s] test_assert(net_check("www.a.com")) test_assert(net_check("www._a.com")) test_assert(net_check("www.a_.com")) #test_assert(net_check("www. a.com")) ''' 1.5 匹配数字空格英文 ''' def street(s): matcher='[0-9]+(\s[a-zA-Z]+)+' m=re.match(matcher,s) return [m.group()!=None,street.__name__,s] test_assert(street("12345 abc")) test_assert(street('1 a b b c')) #test_assert(street('a')) #test_assert(street('1 ')) #test_assert(street('1a')) ''' 1.4 标识符? ''' def name(s): matcher='_*|[a-zA-Z]*\w+' m=re.match(matcher,s) return [m.group()!=None,name.__name__,s] #test_assert(name('233')) test_assert(name('w_w')) test_assert(name('name')) #test_assert(name('')) #test_assert(name(' ')) _1 = 2 print _1 test_assert(name('_1')) test_assert(name('_d')) test_assert(name('_1_d')) ''' 1.3 match a\s or a\. ''' def dot(s): matcher = '[a-zA-Z]+[\s|\.]' m=re.match(matcher,s) #print m.group()+'|' return [m.group()!=None,dot.__name__,s,] test_assert(dot('a b')) #test_assert(dot('1 b')) test_assert(dot('a ')) #test_assert(dot('')) #test_assert(dot('.')) test_assert(dot('a.')) #test_assert(dot(' aab.')) #test_assert(dot('.b.')) #test_assert(dot(' b')) ''' 1.2 match a b ''' def blank(s): matcher = '\w+\s' m=re.match(matcher,s) return [m.group()!=None,blank.__name__,s,] test_assert(blank('a b')) test_assert(blank('aaaaa b')) test_assert(blank('a bbbbbbb')) test_assert(blank('aaaaaa bbbbbbb')) #test_assert(blank('aaa')) ''' 1.1 bat bit but hat hit hut ([bh][aiu]t) ''' def aiu(s): matcher = '[bh][aiu]t' m=re.match(matcher,s) return [m.group()!=None,aiu.__name__,s] test_assert(aiu('bat')) test_assert(aiu('but')) test_assert(aiu('bit')) test_assert(aiu('hat')) test_assert(aiu('hut')) test_assert(aiu('hit')) #test_assert(aiu('abc')) ``` #### File: hello-world/py/getip.py ```python import socket import struct import fcntl def getip(ethname): s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, # SIOCGIFADDR struct.pack('256s', ethname[:15]) )[20:24]) if __name__=='__main__': print getip('eth0') ``` #### File: hello-world/py/lintcode_478.py ```python class Calculator: """ @param a: An integer @param operator: A character, +, -, *, /. @param b: An integer @return: The result """ def calculate(self, a, operator, b): # write your code here switcher = { "+": lambda a,b:a+b, "-": lambda a,b:a-b, "*": lambda a,b:a*b, "/": lambda a,b:a/b } return switcher.get(operator)(a,b) ``` #### File: hello-world/py/Sum of Multiples of Whole Numbers.py ```python a=[] b=[] def multiples_of_3(n): i=1 for i in range(n): # stops at 1 less than the value passed to `range` m=i*3 if(m<n): a.append(m) def multiples_of_5(n): j=1 for j in range(n): # could change to 201 and still work k=j*5 if(k<n): b.append(k) if __name__ == "__main__": n=input() multiples_of_3(n) multiples_of_5(n) print sum(set(a+b)) ```
{ "source": "jieyu97/mvpp", "score": 2 }
#### File: jieyu97/mvpp/igep_model_test_temperature.py ```python from tensorflow import keras from tensorflow.keras import layers import numpy as np import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.models import Model from tensorflow.keras.losses import Loss import matplotlib.pyplot as plt import seaborn as sns sns.set() import pandas as pd from scoringRules import es_sample from sklearn import preprocessing plt.close("all") # from hyperopt.pyll.base import scope # from hyperopt import Trials, tpe, fmin, hp, STATUS_OK # import pickle import tensorflow.compat.v1 as tfv tfv.disable_v2_behavior() # fix random seed for reproducibility seed = 8 np.random.seed(seed) # set model hyper parameters N_SAMPLES_TRAIN = 50 # number of samples drawn during training EPOCHS = 50 # max epochs # misc options VERBOSE = 2 # determines how much info is given about fitting PLOT_LEARNING_CURVE = False # if True, the model's learning curve is plotted N_SAMPLES_TEST = 50 # 1000 # number of samples used for computung scores DIM = 10 # dimension of target values TAUS = np.linspace(1,99,99)/100 # which quantiles to evaluate PLOT_RESULTS = False # Model 3.2.3 hyperparameters latent_dist = 'uniform' learningrate = 0.01 epochs = EPOCHS # important hp batch_size = 64 layer_number = 2 nodes_number = 25 dim_latent = 20 path = '/home/chen_jieyu/IGEP/ens_fc_t2m_complete.feather' t2m_ens_complete = pd.read_feather(path) path_add = '/home/chen_jieyu/IGEP/tem_additional_predictors.feather' t2m_add_complete = pd.read_feather(path_add) dist_samples = pd.read_csv('/home/chen_jieyu/IGEP/dist_10samples.csv', header=None) # define energy score def energy_score(y_true, S): """ Computes energy score: Parameters ---------- y_true : tf tensor of shape (BATCH_SIZE, D, 1) True values. S : tf tensor of shape (BATCH_SIZE, D, N_SAMPLES) Predictive samples. Returns ------- tf tensor of shape (BATCH_SIZE,) Scores. """ # y_true = tf.cast(y_true, tf.float32) # S = tf.cast(S, tf.float32) beta=1 n_samples = S.shape[-1] def expected_dist(diff, beta): return K.sum(K.pow(K.sqrt(K.sum(K.square(diff), axis=-2)+K.epsilon()), beta),axis=-1) es_1 = expected_dist(y_true - S, beta) es_2 = 0 for i in range(n_samples): es_2 = es_2 + expected_dist(K.expand_dims(S[:,:,i]) - S, beta) # es_1 = tf.cast(es_1, tf.float32) # es_2 = tf.cast(es_2, tf.float32) n_samples = tf.cast(n_samples, tf.float32) es = es_1/n_samples - es_2/(2*n_samples**2) es = tf.cast(es, tf.float32) return es # subclass tensorflow.keras.losses.Loss class EnergyScore(Loss): def call(self, y_true, S): return energy_score(y_true, S) for k in [10,20,30,40,50,60,70,80,90]: tfv.reset_default_graph() station_sample = dist_samples.iloc[k,] ens_sample = t2m_ens_complete[t2m_ens_complete['station'].isin(station_sample)] dateobs_count = ens_sample.groupby('date')['date'].count() dates = dateobs_count.index used_dates = dates[dateobs_count == DIM] used_ens_sample = ens_sample[ens_sample['date'].isin(used_dates)] add_sample = t2m_add_complete[t2m_add_complete['station'].isin(station_sample)] used_add_sample = add_sample[add_sample['date'].isin(used_dates)] # t2m data t2m_obs = used_ens_sample['obs'] t2m_obs.index = used_ens_sample['date'] data_obs = t2m_obs # set initial training and test dates train_dateindex = ((t2m_obs.index.year != 2016) & (t2m_obs.index.year != 2015)) val_dateindex = (t2m_obs.index.year == 2015) test_dateindex = (t2m_obs.index.year == 2016) # Predictions t2m_ens = used_ens_sample.iloc[:, 3:53] t2m_ens.index = used_ens_sample['date'] data_ens = t2m_ens # added predictors add_dim = 37 t2m_add = used_add_sample.loc[:, ["d2m_mean", "d2m_var", "q_pl850_mean", "q_pl850_var", "tcc_mean", "tcc_var", "u_pl850_mean", "u_pl850_var", "v_pl850_mean", "v_pl850_var", "sshf_mean", "sshf_var", "slhf_mean", "slhf_var", "u10_mean", "u10_var", "v10_mean", "v10_var", "cape_mean", "cape_var", "sp_mean", "sp_var", "u_pl500_mean", "u_pl500_var", "v_pl500_mean", "v_pl500_var", "gh_pl500_mean", "gh_pl500_var", "ssr_mean", "ssr_var", "str_mean", "str_var", "lat", "lon", "alt", "orog", "sin_yday"]] t2m_add.index = used_add_sample['date'] data_add = t2m_add # get training and test data obser = data_obs.copy() pred = data_ens.copy() addpre = data_add.copy() dim = DIM pred_mu = pred.mean(axis = 1) pred_sigma = pred.var(axis = 1) ######### standardization old scaler = preprocessing.StandardScaler().fit(obser[train_dateindex].values.reshape(-1,1)) #= standardise data ??? stand_obs = scaler.transform(obser.values.reshape(-1,1)).reshape(-1) obser.iloc[:] = stand_obs for i in range(pred.shape[1]): pred.iloc[:,i] = scaler.transform(pred.iloc[:,i].values.reshape(-1,1)) ens_mu = pred.mean(axis=1) ens_sigma = pred.var(axis=1) ens_max = pred.max(axis=1) ens_min = pred.min(axis=1) ens_spread = ens_max - ens_min # scaler_mu = preprocessing.StandardScaler().fit(pred_mu[train_dateindex].values.reshape(-1,1)) # ens_mu = scaler_mu.transform(pred_mu.values.reshape(-1,1)) # scaler_sigma = preprocessing.StandardScaler().fit(pred_sigma[train_dateindex].values.reshape(-1,1)) # ens_sigma = scaler_sigma.transform(pred_sigma.values.reshape(-1,1)) for i in range(addpre.shape[1]-1): scaler_i = preprocessing.StandardScaler().fit(addpre.iloc[train_dateindex,i].values.reshape(-1,1)) addpre.iloc[:,i] = scaler_i.transform(addpre.iloc[:,i].values.reshape(-1,1)) # ######### standardization new # obser_copy = data_obs.copy() # pred_copy = data_ens.copy() # addpre_copy = data_add.copy() # # scale = np.max(np.absolute(obser_copy[train_dateindex].values)) # obser.iloc[:] = obser_copy.values / scale # for i in range(pred.shape[1]): # pred.iloc[:,i] = pred_copy.iloc[:,i].values / scale # # for i in range(addpre.shape[1]-1): # scale_i = np.max( np.absolute( addpre_copy.iloc[train_dateindex,i].values ) ) # addpre.iloc[:,i] = addpre_copy.iloc[:,i].values / scale_i # # ens_mu = pred.mean(axis=1) # ens_sigma = pred.std(axis=1) add_pre_mu = addpre.loc[:,["d2m_mean","q_pl850_mean","tcc_mean","u_pl850_mean","v_pl850_mean", "sshf_mean","slhf_mean","u10_mean","v10_mean","cape_mean","sp_mean", "u_pl500_mean","v_pl500_mean","gh_pl500_mean","ssr_mean","str_mean"]] add_pre_sigma = addpre.loc[:,["d2m_var","q_pl850_var","tcc_var","u_pl850_var","v_pl850_var", "sshf_var","slhf_var","u10_var","v10_var","cape_var","sp_var", "u_pl500_var","v_pl500_var","gh_pl500_var","ssr_var","str_var"]] n_add = 16 # Inputs for Model 3.2.3 x_train_m323 = [np.concatenate((ens_mu[train_dateindex].values.reshape((-1, dim, 1)), add_pre_mu[train_dateindex].values.reshape((-1, dim, n_add)) ), axis=-1), np.concatenate((ens_sigma[train_dateindex].values.reshape((-1, dim, 1)), ens_max[train_dateindex].values.reshape((-1, dim, 1)), ens_min[train_dateindex].values.reshape((-1, dim, 1)), ens_spread[train_dateindex].values.reshape((-1, dim, 1)), add_pre_sigma[train_dateindex].values.reshape((-1, dim, n_add)) ), axis=-1), np.concatenate((ens_mu[train_dateindex].values.reshape((-1, dim, 1)), ens_sigma[train_dateindex].values.reshape((-1, dim, 1)), ens_max[train_dateindex].values.reshape((-1, dim, 1)), ens_min[train_dateindex].values.reshape((-1, dim, 1)), ens_spread[train_dateindex].values.reshape((-1, dim, 1)), addpre[train_dateindex].values.reshape((-1, dim, add_dim)) ), axis=-1)] x_val_m323 = [np.concatenate((ens_mu[val_dateindex].values.reshape((-1, dim, 1)), add_pre_mu[val_dateindex].values.reshape((-1, dim, n_add)) ), axis=-1), np.concatenate((ens_sigma[val_dateindex].values.reshape((-1, dim, 1)), ens_max[val_dateindex].values.reshape((-1, dim, 1)), ens_min[val_dateindex].values.reshape((-1, dim, 1)), ens_spread[val_dateindex].values.reshape((-1, dim, 1)), add_pre_sigma[val_dateindex].values.reshape((-1, dim, n_add)) ), axis=-1), np.concatenate((ens_mu[val_dateindex].values.reshape((-1, dim, 1)), ens_sigma[val_dateindex].values.reshape((-1, dim, 1)), ens_max[val_dateindex].values.reshape((-1, dim, 1)), ens_min[val_dateindex].values.reshape((-1, dim, 1)), ens_spread[val_dateindex].values.reshape((-1, dim, 1)), addpre[val_dateindex].values.reshape((-1, dim, add_dim)) ), axis=-1)] x_test_m323 = [np.concatenate((ens_mu[test_dateindex].values.reshape((-1, dim, 1)), add_pre_mu[test_dateindex].values.reshape((-1, dim, n_add)) ), axis=-1), np.concatenate((ens_sigma[test_dateindex].values.reshape((-1, dim, 1)), ens_max[test_dateindex].values.reshape((-1, dim, 1)), ens_min[test_dateindex].values.reshape((-1, dim, 1)), ens_spread[test_dateindex].values.reshape((-1, dim, 1)), add_pre_sigma[test_dateindex].values.reshape((-1, dim, n_add)) ), axis=-1), np.concatenate((ens_mu[test_dateindex].values.reshape((-1, dim, 1)), ens_sigma[test_dateindex].values.reshape((-1, dim, 1)), ens_max[test_dateindex].values.reshape((-1, dim, 1)), ens_min[test_dateindex].values.reshape((-1, dim, 1)), ens_spread[test_dateindex].values.reshape((-1, dim, 1)), addpre[test_dateindex].values.reshape((-1, dim, add_dim)) ), axis=-1)] y_train = obser[train_dateindex].values.reshape((-1, dim, 1)) y_val = obser[val_dateindex].values.reshape((-1, dim, 1)) y_test = obser[test_dateindex].values.reshape((-1, dim, 1)) y_train_tmp = y_train y_val_tmp = y_val y_test_tmp = y_test testy = data_obs[test_dateindex] # model wrapping # Function to create model, fit and train model, test model, and get the ES output. # def igep_model3_es(params): dim_out = DIM # dim_in_mean = 1 dim_in_features_mu = x_train_m323[0].shape[-1] dim_in_features_sigma = x_train_m323[1].shape[-1] dim_in_features_all = x_train_m323[2].shape[-1] # dim_in_features_all != dim_in_features*2 here n_samples = N_SAMPLES_TRAIN # optimizer = "Adam" train_x = x_train_m323 train_y = y_train_tmp val_x = x_val_m323 val_y = y_val_tmp test_x = x_test_m323 test_y = testy if latent_dist == "uniform": latent_dist_params = (-1.0, 1.0) elif latent_dist == "normal": latent_dist_params = (0.0, 1.0) ### Inputs ### input_mean = keras.Input(shape=(dim_out, dim_in_features_mu), name = "input_mean") input_sd = keras.Input(shape=(dim_out, dim_in_features_sigma), name = "input_sd") input_all = keras.Input(shape=(dim_out, dim_in_features_all), name = "input_all") bs = K.shape(input_mean)[0] x_mean = layers.LocallyConnected1D(filters=1, kernel_size=1, strides=1, padding='valid', data_format='channels_last', use_bias=True, activation='linear')(input_mean) # (, dim_out, 1) # x_mean = layers.Flatten()(input_mean) # # x_mean = layers.Dense(128, use_bias=True, activation = 'relu')(x_mean) # x_mean = layers.Dense(64, use_bias=True, activation = 'relu')(x_mean) # x_mean = layers.Dense(32, use_bias=True, activation = 'relu')(x_mean) # # x_mean = layers.Dense(dim_out, use_bias=True, activation = 'linear')(x_mean) # (, dim_out*1) # x_mean = layers.Reshape((dim_out, 1))(x_mean) # (, dim_out, 1) # x_mean = layers.LocallyConnected1D(filters=32, # kernel_size=1, # strides=1, # padding='valid', # data_format='channels_last', # use_bias=True, # activation='linear')(input_mean) # (, dim_out, 8) # x_mean = layers.LocallyConnected1D(filters=1, # kernel_size=1, # strides=1, # padding='valid', # data_format='channels_last', # use_bias=True, # activation='linear')(x_mean) # (, dim_out, 1) ################################################################## x_mean_all = layers.Lambda(lambda arg: K.repeat_elements(arg, n_samples, axis=-1))(x_mean) # (, dim_out, n_samples) # z_delta = layers.LocallyConnected1D(filters=1, # kernel_size=1, # strides=1, # padding='valid', # data_format='channels_last', # use_bias=True, # activation='linear')(input_sd) # (, dim_out, 1) # z_delta = layers.Flatten()(input_sd) # # z_delta = layers.Dense(25, use_bias=True, activation = 'elu')(z_delta) # z_delta = layers.Dense(25, use_bias=True, activation = 'elu')(z_delta) # z_delta = layers.Dense(25, use_bias=True, activation = 'elu')(z_delta) # z_delta = layers.Dense(dim_out, use_bias=True, activation = 'linear')(z_delta) # (, dim_out*1) # z_delta = layers.Reshape((dim_out, 1))(z_delta) # (, dim_out, 1) z_delta = layers.LocallyConnected1D(filters=16, kernel_size=1, strides=1, padding='valid', data_format='channels_last', use_bias=True, activation='linear')(input_sd) # (, dim_out, 1) z_delta = layers.LocallyConnected1D(filters=1, kernel_size=1, strides=1, padding='valid', data_format='channels_last', use_bias=True, activation='linear')(z_delta) # (, dim_out, 1) ################################################################## z_delta_flat = layers.Flatten()(z_delta) z_delta_final = layers.Dense(dim_latent, activation = 'exponential')(z_delta_flat) # spread of latent variables z_delta_reshape = layers.Lambda(lambda arg: K.reshape(arg, (bs, dim_latent, 1)))(z_delta_final) # (, dim_latent, 1) # z_delta = layers.Dense(dim_latent, use_bias=True, activation = 'linear')(z_delta) # (, dim_latent*1) # z_delta_reshape = layers.Reshape((dim_latent, 1))(z_delta) # (, dim_latent, 1) if latent_dist == "uniform": z = layers.Lambda(lambda args: K.random_uniform(shape=(args[0], args[1], args[2]), minval=latent_dist_params[0], maxval=latent_dist_params[1]))([bs, dim_latent, n_samples]) elif latent_dist == "normal": z = layers.Lambda(lambda args: K.random_normal(shape=(args[0], args[1], args[2]), mean=latent_dist_params[0], stddev=latent_dist_params[1]))([bs, dim_latent, n_samples]) z_adjust_spread = layers.Multiply()([z_delta_reshape, z]) # (, dim_latent, n_samples) # weights # W = layers.Flatten()(input_all) # for l in range(layer_number): # W = layers.Dense(nodes_number, use_bias=True, activation = 'elu')(W) # # W = layers.Dense(dim_out*dim_latent, use_bias=True, activation = 'linear')(W) # (, dim_out*dim_latent) # W = layers.Reshape((dim_out, dim_latent))(W) # (, dim_out, dim_latent) # ################################################################## # # z_samples = layers.Dot(axes=(2,1))([W,z_adjust_spread]) # (, dim_out, n_samples) # y = layers.Add()([x_mean_all,z_samples]) W = layers.Flatten()(input_all) z_n = layers.Flatten()(z_adjust_spread) W_con = layers.Concatenate(axis=1)([W, z_n]) W_con = layers.Dense(25, use_bias=True, activation = 'elu')(W_con) W_con = layers.Dense(25, use_bias=True, activation = 'elu')(W_con) # W_con = layers.Dense(100, use_bias=True, activation = 'elu')(W_con) W_con = layers.Dense(dim_out*n_samples, use_bias=True, activation = 'linear')(W_con) # (, dim_out*n_samples) z_samples = layers.Reshape((dim_out, n_samples))(W_con) # (, dim_out, n_samples) y = layers.Add()([x_mean_all, z_samples]) model = Model(inputs = [input_mean, input_sd, input_all], outputs = y) opt = keras.optimizers.Adam(learning_rate = learningrate) # lr default 0.01 model.compile(loss = EnergyScore(), optimizer = opt) callback = tf.keras.callbacks.EarlyStopping(monitor = 'val_loss', min_delta = 0.001, patience = 3, restore_best_weights = True) model.fit(x = train_x, y = train_y, batch_size = batch_size, epochs = epochs, verbose = 0, callbacks = [callback], validation_split = 0.0, validation_data = (val_x, val_y), sample_weight=None) N_SAMPLES_TEST = 50 # predict and append to list S_m3 = [] std_fcst = model.predict(x_test_m323, N_SAMPLES_TEST) S_m3.append(std_fcst) pre_dat = np.concatenate(S_m3, axis = 0) fcst = scaler.inverse_transform(np.reshape(pre_dat, (pre_dat.shape[0]*pre_dat.shape[1],-1))) # S_m3.append( ( model.predict(x_test_m323, N_SAMPLES_TEST) ) * scale ) ES = es_sample(y = np.reshape(test_y.values, (-1, DIM)), dat = np.reshape(fcst, (pre_dat.shape[0],pre_dat.shape[1],pre_dat.shape[2]) ) ) pd_output = pd.DataFrame(fcst, index=testy.index) # print(pd_output) print(k) print(ES) ```
{ "source": "Jie-Yuan/1_DataMining", "score": 3 }
#### File: examples/accelerate/numba.py ```python from numba import jit, njit, vectorize import numpy as np x = np.arange(100).reshape(10, 10) # Numba likes NumPy broadcasting # @jit @njit # 设置为"nopython"模式 有更好的性能 def go_fast1(a): # 第一次调用时会编译 trace = 0 for i in range(a.shape[0]): # Numba likes loops trace += np.tanh(a[i, i]) # Numba likes NumPy functions return a + trace ``` #### File: examples/client/rpc.py ```python import os from xmlrpc.server import SimpleXMLRPCServer from socketserver import ThreadingMixIn, ForkingMixIn class ThreadXMLRPCServer(ThreadingMixIn, SimpleXMLRPCServer): """多线程""" pass # shell def sh(cmd): with os.popen(cmd) as f: return f.read().split() if __name__ == '__main__': server = ThreadXMLRPCServer(('0.0.0.0', 7777), allow_none=True) # 注册函数 server.register_function(sh, 'sh') print("服务端") # 保持等待调用状态 server.serve_forever() # from xmlrpc.client import ServerProxy # # client = ServerProxy('http://10.114.38.22:7777') # client.sh('ls') ``` #### File: examples/opt/lgb.py ```python from tql.algo_ml.cv import LGBMClassifierCV from tql.algo_ml.opt_params import Optimizer from sklearn.datasets import make_classification X, y = make_classification(10000) class Opt(Optimizer): def objective(self, **params): """重写目标函数""" self.params = params # 超参 params['num_leaves'] = int(params['num_leaves']) params['min_child_samples'] = int(params['min_child_samples']) # 固定参数:TODO 更方便的方式 params['n_estimators'] = 3000 params['subsample_freq'] = 6 # 需要调参不 params['verbosity'] = -1 params['n_jobs'] = 16 # self.params = params self.clf = LGBMClassifierCV(params) return self.clf.fit(X, y, X[:1]) opt = Optimizer(X, y) print(opt.maximize(1)) ``` #### File: examples/sanic/restful_sanic.py ```python import jieba from restful_api import Api import requests from lxml.etree import HTML from googletrans import Translator translator = Translator(service_urls=['translate.google.cn', 'translate.google.com'], timeout=3) def trans_google(q='苹果', fromLang='auto', toLang='en'): """ :param q: :param fromLang: :param toLang: zh :return: """ url = "http://translate.google.cn/translate_a/single?client=gtx&dt=t&dj=1&ie=UTF-8&sl=%s&tl=%s" % (fromLang, toLang) try: r = requests.get(url, {'q': q}, timeout=3) text = r.json()['sentences'][0]['trans'] except Exception as e: print(e) text = translator.translate(q, toLang, fromLang).text return text def get_title(url='https://baijiahao.baidu.com/s?id=1604534610481479105&wfr=spider&for=pc&isFailFlag=1'): r = requests.get(url, headers={'user-agent': 'Mozilla/5.0'}) r.encoding = r.apparent_encoding # soup = BeautifulSoup(r.text) dom_tree = HTML(r.text) title = dom_tree.xpath('//title/text()') return title[0] api = Api('/ctr/trans', trans_google, method='GET', verbose=False) api = Api('/get_title', get_title, api.app) api.app.run('0.0.0.0') # import requests # json = {'x': 1, 'y': 10} # requests.post('http://127.0.0.1:8000/post1', json=json).json() # requests.post('http://127.0.0.1:8000/post2', json=json).json() # requests.post('http://1172.16.31.10:8000/post3', json=json).json() ``` #### File: 0_DA/udfs/__init__.py ```python import warnings # warnings.filterwarnings("ignore") def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn import os import re import time import numpy as np import pandas as pd from pathlib import Path import matplotlib.pyplot as plt from sklearn.preprocessing import * from sklearn.pipeline import make_pipeline, Pipeline from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score # 目录树 def lst_tree(p='..', n=0): p = Path(p) if p.is_file(): # 判断是否是文件 print('|' + '\t|' * n + '-' * 4 + p.name) elif p.is_dir(): # 判断是否是目录 print('|' + '\t|' * n + '-' * 4 + str(p.relative_to(p.parent)) + '\\') for pt in p.iterdir(): lst_tree(pt, n + 1) # 递归 ``` #### File: 0_DA/udfs/model_selection.py ```python __title__ = 'prediction' __author__ = 'JieYuan' __mtime__ = '2018/2/13' from .__init__ import * def cv(clf, X, y, cv=3, stratified=True, seed=42): from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import roc_auc_score, f1_score, classification_report if stratified: kf = StratifiedKFold(cv, True, seed).split(X, y) else: kf = KFold(cv, True, seed).split(X, y) f1_loss = [] auc_loss = [] for i, (train_index, test_index) in enumerate(kf, 1): X_train, X_test, y_train, y_test = X[train_index], X[test_index], y[train_index], y[test_index] clf.fit(X_train, y_train) y_pred = clf.predict_proba(X_test)[:, 1] auc_loss.append(roc_auc_score(y_test, y_pred)) # threshold = sorted(y_pred)[::-1][y_test.sum()] # y_pred = np.where(y_pred > threshold, 1, 0) y_pred = get_class(y_pred, y_test.sum()) print("%d flod:\n" % i, classification_report(y_test, y_pred)) f1_loss.append(f1_score(y_test, y_pred)) print(" F1-CV-Score: %0.5f (+/- %0.3f)" % (np.mean(f1_loss), np.std(f1_loss))) print("Auc-CV-Score: %0.5f (+/- %0.3f)" % (np.mean(auc_loss), np.std(auc_loss))) return f1_loss, auc_loss def get_class(y_pred, n_pos): """ :param y_pred: clf.predict_proba(X_test)[:, 1] :param n_pos: n Positive sample :return: 计算f1可用到 """ threshold = sorted(y_pred)[::-1][n_pos] y_pred = np.where(y_pred > threshold, 1, 0) return y_pred ``` #### File: 3_FeatureEngineering/smbinning/mdlp.py ```python import pandas as pd import numpy as np from entropy import entropy, cut_point_information_gain from math import log import sys import getopt import re class MDLP_Discretizer(object): def __init__(self, dataset, class_label, out_path_data, out_path_bins, features=None): ''' initializes discretizer object: saves raw copy of data and creates self._data with only features to discretize and class computes initial entropy (before any splitting) self._features = features to be discretized self._classes = unique classes in raw_data self._class_name = label of class in pandas_utils dataframe self._data = partition of data with only features of interest and class self._cuts = dictionary with cut points for each feature :param dataset: pandas_utils dataframe with data to discretize :param class_label: name of the column containing class in input dataframe :param features: if !None, features that the user wants to discretize specifically :return: ''' if not isinstance(dataset, pd.core.frame.DataFrame): # class needs a pandas_utils dataframe raise AttributeError('input dataset should be a pandas_utils data frame') self._data_raw = dataset #copy or original input data self._class_name = class_label self._classes = self._data_raw[self._class_name].unique() #if user specifies which attributes to discretize if features: self._features = [f for f in features if f in self._data_raw.columns] # check if features in dataframe missing = set(features) - set(self._features) # specified columns not in dataframe if missing: print('WARNING: user-specified features %s not in input dataframe' % str(missing)) else: # then we need to recognize which features are numeric numeric_cols = self._data_raw._data.get_numeric_data().items self._features = [f for f in numeric_cols if f != class_label] #other features that won't be discretized self._ignored_features = set(self._data_raw.columns) - set(self._features) #create copy of data only including features to discretize and class self._data = self._data_raw.loc[:, self._features + [class_label]] #pre-compute all boundary points in dataset self._boundaries = self.compute_boundary_points_all_features() #initialize feature bins with empty arrays self._cuts = {f: [] for f in self._features} #get cuts for all features self.all_features_accepted_cutpoints() #discretize self._data self.apply_cutpoints(out_data_path=out_path_data, out_bins_path=out_path_bins) def MDLPC_criterion(self, data, feature, cut_point): ''' Determines whether a partition is accepted according to the MDLPC criterion :param feature: feature of interest :param cut_point: proposed cut_point :param partition_index: index of the sample (dataframe partition) in the interval of interest :return: True/False, whether to accept the partition ''' #get dataframe only with desired attribute and class columns, and split by cut_point data_partition = data.copy(deep=True) data_left = data_partition[data_partition[feature] <= cut_point] data_right = data_partition[data_partition[feature] > cut_point] #compute information gain obtained when splitting data at cut_point cut_point_gain = cut_point_information_gain(dataset=data_partition, cut_point=cut_point, feature_label=feature, class_label=self._class_name) #compute delta term in MDLPC criterion N = len(data_partition) # number of examples in current partition partition_entropy = entropy(data_partition[self._class_name]) k = len(data_partition[self._class_name].unique()) k_left = len(data_left[self._class_name].unique()) k_right = len(data_right[self._class_name].unique()) entropy_left = entropy(data_left[self._class_name]) # entropy of partition entropy_right = entropy(data_right[self._class_name]) delta = log(3 ** k, 2) - (k * partition_entropy) + (k_left * entropy_left) + (k_right * entropy_right) #to split or not to split gain_threshold = (log(N - 1, 2) + delta) / N if cut_point_gain > gain_threshold: return True else: return False def feature_boundary_points(self, data, feature): ''' Given an attribute, find all potential cut_points (boundary points) :param feature: feature of interest :param partition_index: indices of rows for which feature value falls whithin interval of interest :return: array with potential cut_points ''' #get dataframe with only rows of interest, and feature and class columns data_partition = data.copy(deep=True) data_partition.sort_values(feature, ascending=True, inplace=True) boundary_points = [] #add temporary columns data_partition['class_offset'] = data_partition[self._class_name].shift(1) # column where first value is now second, and so forth data_partition['feature_offset'] = data_partition[feature].shift(1) # column where first value is now second, and so forth data_partition['feature_change'] = (data_partition[feature] != data_partition['feature_offset']) data_partition['mid_points'] = data_partition.loc[:, [feature, 'feature_offset']].mean(axis=1) potential_cuts = data_partition[data_partition['feature_change'] == True].index[1:] sorted_index = data_partition.index.tolist() for row in potential_cuts: old_value = data_partition.loc[sorted_index[sorted_index.index(row) - 1]][feature] new_value = data_partition.loc[row][feature] old_classes = data_partition[data_partition[feature] == old_value][self._class_name].unique() new_classes = data_partition[data_partition[feature] == new_value][self._class_name].unique() if len(set.union(set(old_classes), set(new_classes))) > 1: boundary_points += [data_partition.loc[row]['mid_points']] return set(boundary_points) def compute_boundary_points_all_features(self): ''' Computes all possible boundary points for each attribute in self._features (features to discretize) :return: ''' boundaries = {} for attr in self._features: data_partition = self._data.loc[:, [attr, self._class_name]] boundaries[attr] = self.feature_boundary_points(data=data_partition, feature=attr) return boundaries def boundaries_in_partition(self, data, feature): ''' From the collection of all cut points for all features, find cut points that fall within a feature-partition's attribute-values' range :param data: data partition (pandas_utils dataframe) :param feature: attribute of interest :return: points within feature's range ''' range_min, range_max = (data[feature].min(), data[feature].max()) return set([x for x in self._boundaries[feature] if (x > range_min) and (x < range_max)]) def best_cut_point(self, data, feature): ''' Selects the best cut point for a feature in a data partition based on information gain :param data: data partition (pandas_utils dataframe) :param feature: target attribute :return: value of cut point with highest information gain (if many, picks first). None if no candidates ''' candidates = self.boundaries_in_partition(data=data, feature=feature) # candidates = self.feature_boundary_points(data=data, feature=feature) if not candidates: return None gains = [(cut, cut_point_information_gain(dataset=data, cut_point=cut, feature_label=feature, class_label=self._class_name)) for cut in candidates] gains = sorted(gains, key=lambda x: x[1], reverse=True) return gains[0][0] #return cut point def single_feature_accepted_cutpoints(self, feature, partition_index=pd.DataFrame().index): ''' Computes the cuts for binning a feature according to the MDLP criterion :param feature: attribute of interest :param partition_index: index of examples in data partition for which cuts are required :return: list of cuts for binning feature in partition covered by partition_index ''' if partition_index.size == 0: partition_index = self._data.index # if not specified, full sample to be considered for partition data_partition = self._data.loc[partition_index, [feature, self._class_name]] #exclude missing data: if data_partition[feature].isnull().values.any: data_partition = data_partition[~data_partition[feature].isnull()] #stop if constant or null feature values if len(data_partition[feature].unique()) < 2: return #determine whether to cut and where cut_candidate = self.best_cut_point(data=data_partition, feature=feature) if cut_candidate == None: return decision = self.MDLPC_criterion(data=data_partition, feature=feature, cut_point=cut_candidate) #apply decision if not decision: return # if partition wasn't accepted, there's nothing else to do if decision: # try: #now we have two new partitions that need to be examined left_partition = data_partition[data_partition[feature] <= cut_candidate] right_partition = data_partition[data_partition[feature] > cut_candidate] if left_partition.empty or right_partition.empty: return #extreme point selected, don't partition self._cuts[feature] += [cut_candidate] # accept partition self.single_feature_accepted_cutpoints(feature=feature, partition_index=left_partition.index) self.single_feature_accepted_cutpoints(feature=feature, partition_index=right_partition.index) #order cutpoints in ascending order self._cuts[feature] = sorted(self._cuts[feature]) return def all_features_accepted_cutpoints(self): ''' Computes cut points for all numeric features (the ones in self._features) :return: ''' for attr in self._features: self.single_feature_accepted_cutpoints(feature=attr) return def apply_cutpoints(self, out_data_path=None, out_bins_path=None): ''' Discretizes data by applying bins according to self._cuts. Saves a new, discretized file, and a description of the bins :param out_data_path: path to save discretized data :param out_bins_path: path to save bins description :return: ''' bin_label_collection = {} for attr in self._features: if len(self._cuts[attr]) == 0: self._data[attr] = 'All' bin_label_collection[attr] = ['All'] else: cuts = [-np.inf] + self._cuts[attr] + [np.inf] start_bin_indices = range(0, len(cuts) - 1) bin_labels = ['%s_to_%s' % (str(cuts[i]), str(cuts[i+1])) for i in start_bin_indices] bin_label_collection[attr] = bin_labels self._data[attr] = pd.cut(x=self._data[attr].values, bins=cuts, right=False, labels=bin_labels, precision=6, include_lowest=True) #reconstitute full data, now discretized if self._ignored_features: to_return = pd.concat([self._data, self._data_raw[list(self._ignored_features)]], axis=1) to_return = to_return[self._data_raw.columns] #sort columns so they have the original order else: to_return = self._data #save data as csv if out_data_path: print(out_data_path) to_return.to_csv(out_data_path) #save bins description if out_bins_path: with open(out_bins_path, 'w') as bins_file: print('Description of bins in file: %s' % out_data_path, file=bins_file) for attr in self._features: print('attr: %s\n\t%s' % (attr, ', '.join([bin_label for bin_label in bin_label_collection[attr]])), file=bins_file) ``` #### File: 2_FactorizationMachine/FFM/OneEncoding2libffm.py ```python def df2libffm(df, field_Category, field_Numeric=[]): libffm = [] num_n = len(field_Numeric) csr = OneHotEncoder().fit_transform(df[field_Category]) for i in range(len(csr.indptr) - 1): ls = [] k = csr.indptr[i + 1] - csr.indptr[i] for j in range(k): ls.append((k - j + num_n, csr.indices[i * k + j] + num_n, 1)) libffm.append(ls) if field_Numeric: for i in range(len(libffm)): for j in range(len(field_Numeric)): libffm[i].append((j + 1, j + 1, df[field_Numeric[j]].iloc[i])) return libffm ``` #### File: 6_ModelEnsembling/3_Stacking/stacking_feature.py ```python def stacking_feature(clf, X, y, nb_cv=3): """种子扰动 tfidf_lr = make_pipeline(TfidfVectorizer(), LogisticRegression()) tfidf_lr.fit(X, y) tfidf_lr.predict_proba(X) """ pred_list_stack = [] for i in range(nb_cv): pred_list = [] auc_loss = [] kf = StratifiedKFold(nb_cv, True).split(X, y) for i, (train_index, test_index) in enumerate(kf, 1): X_train, X_test, y_train, y_test = X[train_index], X[test_index], y[train_index], y[test_index] clf.fit(X_train, y_train) y_test_pred = clf.predict_proba(X_test)[:, 1] pred_list += y_test_pred.tolist() auc_loss.append(roc_auc_score(y_test, y_test_pred)) pred_list_stack.append(pred_list) print("Auc-CV-Score: %0.5f (+/- %0.3f)" % (np.mean(auc_loss), np.std(auc_loss))) return np.column_stack(pred_list_stack) cross_val_predict(lr, X, y, cv=StratifiedKFold(5, True, random_state=2018+i), method='predict_proba') ``` #### File: Torch/02_TASK/numpy_GB.py ```python import numpy as np def gen_data(num=100): """"" y = 3*x1+4*x2 """"" x1 = np.linspace(0, 9, num) x2 = np.linspace(4, 13, num) x = np.concatenate(([x1], [x2]), axis=0).T y = np.dot(x, np.array([3, 4]).T) # y 列向量 return x, y def sgd(samples, y, step_size=0.01, max_iter_count=10000): sample_num, dim = samples.shape y = y.flatten() w = np.ones((dim,), dtype=np.float32) loss = 10 iter_count = 0 while loss > 0.001 and iter_count < max_iter_count: loss = 0 error = np.zeros((dim,), dtype=np.float32) for i in range(sample_num): predict_y = np.dot(w.T, samples[i]) for j in range(dim): error[j] += (y[i] - predict_y) * samples[i][j] w[j] += step_size * error[j] / sample_num # for j in range(dim): # w[j] += step_size * error[j] / sample_num for i in range(sample_num): predict_y = np.dot(w.T, samples[i]) error = (1 / (sample_num * dim)) * np.power((predict_y - y[i]), 2) loss += error print("iter_count: ", iter_count, "the loss:", loss) iter_count += 1 return w if __name__ == '__main__': x, y = gen_data() w = sgd(x, y) print(w) ``` #### File: Torch/05_TASK/l1l2.py ```python import torch def l1_penalty(var): return torch.abs(var).sum() def l2_penalty(var): return torch.sqrt(torch.pow(var, 2).sum()) torch.optim.SGD # weight_decay表示l2正则 ``` #### File: keras/models/TextCNN.py ```python from .BaseModel import BaseModel from tensorflow.python.keras import Input, Model from tensorflow.python.keras.layers import Dense, Concatenate, Dropout from tensorflow.python.keras.layers import Conv1D, GlobalMaxPool1D, GlobalAvgPool1D class TextCNN(BaseModel): """ TextCNN: 1. embedding layers: embeddings = model.layers[0].get_weights()[0] 2. convolution layer, 3. max-pooling, 4. softmax layer. 数据量较大:可以直接随机初始化embeddings,然后基于语料通过训练模型网络来对embeddings进行更新和学习。 数据量较小:可以利用外部语料来预训练(pre-train)词向量,然后输入到Embedding层,用预训练的词向量矩阵初始化embeddings。(通过设置weights=[embedding_matrix])。 静态(static)方式:训练过程中不再更新embeddings。实质上属于迁移学习,特别是在目标领域数据量比较小的情况下,采用静态的词向量效果也不错。(通过设置trainable=False) 非静态(non-static)方式:在训练过程中对embeddings进行更新和微调(fine tune),能加速收敛。(通过设置trainable=True) """ def __init__(self, max_tokens, maxlen=128, embedding_size=None, num_class=1, kernel_size_list=(3, 4, 5), weights=None): """ :param embedding_size: 类别/实体嵌入时可不指定 model = TextCNN(max_token, maxlen, num_class=1)() model.compile('adam', 'binary_crossentropy', metrics=['accuracy']) model.fit_generator(DataIter(X, y), epochs=5) """ super().__init__(max_tokens, maxlen, embedding_size, num_class, weights) self.kernel_size_list = kernel_size_list def get_model(self): input = Input(self.maxlen) # Embedding part can try multichannel as same as origin paper embedding = self.embedding_layer(input) convs = [] for kernel_size in self.kernel_size_list: c = Conv1D(128, kernel_size, activation='relu')(embedding) # 卷积 # c = Dropout(0.5)(c) p = GlobalMaxPool1D()(c) # 池化 # p = GlobalAvgPool1D()(c) convs.append(p) x = Concatenate()(convs) output = Dense(self.num_class, activation=self.last_activation)(x) model = Model(inputs=input, outputs=output) return model if __name__ == '__main__': TextCNN(1000, 10)() ``` #### File: keras/utils/ConfigKeras.py ```python import os import random import numpy as np import tensorflow as tf from tensorflow.python.keras import backend as K class ConfigKeras(object): """ https://www.cnblogs.com/wuliytTaotao/p/10883749.html """ def __init__(self, seed=2019): self._seed = seed def set_seed(self): os.environ["PYTHONHASHSEED"] = '0' os.environ["CUDA_VISIBLE_DEVICES"] = "-1" random.seed(self._seed) np.random.seed(self._seed) # config = tf.estimator.RunConfig(tf_random_seed=234) # tf.contrib.learn.RunConfig(tf_random_seed=234) tf.set_random_seed(self._seed) session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.get_session().graph.as_default() K.set_session(sess) ``` #### File: utils/models/BILSTM.py ```python import torch import torch.nn as nn import torch.nn.functional as F class Config(object): # Data class_num = 2 # Embedding pretrained_embedding = None # pretrained_weight vocab_dim = 128 if pretrained_embedding is None else pretrained_embedding.shape[1] vocab_size = 10000 # RNN rnn_layers_num = 2 rnn_dropout = 0 # Linear fc_dropout = 0 opt = Config() class BiLSTM(nn.Module): def __init__(self): super(BiLSTM, self).__init__() # self.embed = nn.Embedding(V, D, max_norm=config.max_norm) self.embed = nn.Embedding(opt.vocab_size, opt.vocab_dim) # pretrained embedding if opt.pretrained_embedding: self.embed.weight.data.copy_(opt.pretrained_embedding) # self.embed.weight.requires_grad = False # 冻结词向量 self.bilstm = nn.LSTM( opt.vocab_dim, opt.vocab_dim // 2, dropout=opt.rnn_dropout, num_layers=opt.rnn_layers_num, batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size) bidirectional=True) print(self.bilstm) self.fc1 = nn.Linear(opt.vocab_dim // 2 * 2, opt.vocab_dim // 2) self.fc2 = nn.Linear(opt.vocab_dim // 2, opt.class_num) self.dropout = nn.Dropout(opt.fc_dropout) def forward(self, x): embed = self.embed(x) x = embed.view(len(x), embed.size(1), -1) # x shape (batch, time_step, input_size) # r_out shape (batch, time_step, output_size) # h_n shape (n_layers, batch, hidden_size) # h_c shape (n_layers, batch, hidden_size) r_out, (h_n, h_c) = self.bilstm(x) r_out = F.relu(r_out) # r_out = F.max_pool1d(r_out, r_out.size(2)).squeeze(2) # y = self.fc1(r_out) # y = self.fc2(y) # choose r_out at the last time step y = self.fc1(r_out[:, -1, :]) y = self.fc2(y) return torch.softmax(y) ``` #### File: algo_ml/cv/CatBoostClassifierCV.py ```python import time import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold, KFold, cross_val_predict, cross_validate from catboost import CatBoostClassifier from sklearn.metrics import roc_auc_score import os cloudml = os.path.exists('/fds') class CatBoostClassifierCV(object): """cross_val_predict""" def __init__(self, params=None, cv=5, random_state=None, n_repeats=None): self.clf = CatBoostClassifier() if params: self.clf.set_params(**params) if n_repeats: self._kf = RepeatedStratifiedKFold(cv, True, random_state) self._num_preds = cv * n_repeats else: self._kf = StratifiedKFold(cv, True, random_state) self._num_preds = cv def fit(self, X, y, X_test, feval=roc_auc_score, cat_features=None, sample_weight=None, verbose=100, early_stopping_rounds=100, plot=False, silent=None, logging_level=None, column_description=None, save_snapshot=None, snapshot_file='/fds/data' if cloudml else None, snapshot_interval=None, init_model=None): """输入数组""" self.oof_train = np.zeros(len(X)) self.oof_test = np.zeros((len(X_test), self._num_preds)) for n_fold, (train_index, valid_index) in enumerate(self._kf.split(X, y)): if verbose: print("\033[94mFold %s started at %s\033[0m" % (n_fold + 1, time.ctime())) X_train, y_train = X[train_index], y[train_index] X_valid, y_valid = X[valid_index], y[valid_index] # eval_set = [(X_train, y_train), (X_valid, y_valid)] ######################################################################## self.clf.fit(X_train, y_train, cat_features=cat_features, sample_weight=sample_weight, use_best_model=True, eval_set=(X_valid, y_valid), verbose=verbose, logging_level=logging_level, plot=plot, column_description=column_description, silent=silent, early_stopping_rounds=early_stopping_rounds, save_snapshot=save_snapshot, snapshot_file=snapshot_file, snapshot_interval=snapshot_interval, init_model=init_model) self.oof_train[valid_index] = self.clf.predict_proba(X_valid)[:, 1] self.oof_test[:, n_fold] = self.clf.predict_proba(X_test)[:, 1] ######################################################################## # 输出 测试集 oof self.oof_test_rank = pd.DataFrame(self.oof_test).rank().mean(1) / len(self.oof_test) self.oof_test = self.oof_test.mean(1) # 计算 训练集 oof 得分 if feval: score = feval(y, self.oof_train) print(f"\n\033[94mCV Score: {score} ended at {time.ctime()}\033[0m") return score def oof_save(self, file='./oof_train_and_test.csv'): assert isinstance(file, str) _ = np.append(self.oof_train, self.oof_test) pd.DataFrame(_, columns='oof_train_and_test').to_csv(file, index=False) if __name__ == "__main__": from sklearn.datasets import make_classification X, y = make_classification() X_test, _ = make_classification() clf = CatBoostClassifierCV({'n_estimators': 100, 'eval_metric': 'AUC'}) clf.fit(X, y, X_test, verbose=50, plot=True) ``` #### File: algo_ml/cv/FMModelCV.py ```python import time import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold, KFold, cross_val_predict, cross_validate from sklearn.metrics import roc_auc_score from xlearn import FMModel, FMModel class FMModelCV(object): """cross_val_predict""" def __init__(self, params=None, cv=5, cv_seed=None, n_repeats=None): self.clf = FMModel() self.cv = cv if params: self.clf.set_params(**params) if n_repeats: self._kf = RepeatedStratifiedKFold(cv, True, cv_seed) self._num_preds = cv * n_repeats else: self._kf = StratifiedKFold(cv, True, cv_seed) self._num_preds = cv def fit(self, X, y, X_test=None, feval=roc_auc_score, fix_valid_index=None, fields=None, is_lock_free=True, is_instance_norm=True, is_quiet=False, verbose=1): if X_test is None: X_test = X[:1] self.oof_train = np.zeros(len(X)) self.oof_test = np.zeros((len(X_test), self._num_preds)) for n_fold, (train_index, valid_index) in enumerate(self._kf.split(X, y)): if verbose: print("\033[94mFold %s started at %s\033[0m" % (n_fold + 1, time.ctime())) # 设置valid早停范围 if fix_valid_index is not None: valid_index = list(set(fix_valid_index) & set(valid_index)) X_train, y_train = X[train_index], y[train_index] X_valid, y_valid = X[valid_index], y[valid_index] # eval_set = [(X_train, y_train), (X_valid, y_valid)] ######################################################################## self.clf.fit( X_train, y_train, fields, is_lock_free, is_instance_norm, [X_valid, y_valid], is_quiet ) self.oof_train[valid_index] = self.clf.predict(X_valid) self.oof_test[:, n_fold] = self.clf.predict(X_test) ######################################################################## # 输出 测试集 oof self.oof_test_rank = (pd.DataFrame(self.oof_test).rank().mean(1) / len(self.oof_test)).values self.oof_test = self.oof_test.mean(1) assert len(X) == len(self.oof_train) assert len(X_test) == len(self.oof_test) # 计算 训练集 oof 得分 if feval: self.oof_score = feval(y, self.oof_train) print("\n\033[94mScore Info:\033[0m") print(f"\033[94m {self.cv:>2} CV: {self.oof_score:.6f}\033[0m") # _ = np.array(self.best_info['best_iteration']) # print(f"\033[94m Iter: {_.mean():.0f} +/- {_.std():.0f}\033[0m") # # _ = np.array(self.best_info['best_score_valid']) # print(f"\033[94m Valid: {_.mean():.6f} +/- {_.std():.6f} \033[0m\n") return self.oof_score @property def oof_train_and_test(self): return np.r_[self.oof_train, self.oof_test] if __name__ == "__main__": from sklearn.datasets import make_classification X, y = make_classification(1000, random_state=666) clf = FMModelCV() clf.fit(X, y) ``` #### File: algo_ml/cv/XGBClassifierCV.py ```python import time import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold, KFold, cross_val_predict, cross_validate from sklearn.metrics import roc_auc_score from xgboost import XGBClassifier class XGBClassifierCV(object): """cross_val_predict""" def __init__(self, params=None, cv=5, random_state=None, n_repeats=None): self.clf = XGBClassifier() self.cv = cv if params: self.clf.set_params(**params) if n_repeats: self._kf = RepeatedStratifiedKFold(cv, True, random_state) self._num_preds = cv * n_repeats else: self._kf = StratifiedKFold(cv, True, random_state) self._num_preds = cv def fit(self, X, y, X_test=None, feval=roc_auc_score, sample_weight=None, eval_metric='auc', early_stopping_rounds=300, verbose=100, xgb_model=None, sample_weight_eval_set=None, callbacks=None): """输入数组""" self.best_info = {} if X_test is None: X_test = X[:1] self.oof_train = np.zeros(len(X)) self.oof_test = np.zeros((len(X_test), self._num_preds)) for n_fold, (train_index, valid_index) in enumerate(self._kf.split(X, y)): if verbose: print("\033[94mFold %s started at %s\033[0m" % (n_fold + 1, time.ctime())) X_train, y_train = X[train_index], y[train_index] X_valid, y_valid = X[valid_index], y[valid_index] eval_set = [(X_train, y_train), (X_valid, y_valid)] ######################################################################## self.clf.fit(X_train, y_train, sample_weight, eval_set=eval_set, eval_metric=eval_metric, early_stopping_rounds=early_stopping_rounds, verbose=verbose, xgb_model=xgb_model, sample_weight_eval_set=sample_weight_eval_set, callbacks=callbacks) self.oof_train[valid_index] = self.clf.predict_proba(X_valid)[:, 1] self.oof_test[:, n_fold] = self.clf.predict_proba(X_test)[:, 1] # best info # print(self.clf.evals_result_) self.best_info.setdefault('best_iteration', []).append(self.clf.best_iteration) self.best_info.setdefault('best_score_valid', []).append(self.clf.best_score) ######################################################################## # 输出 测试集 oof self.oof_test_rank = (pd.DataFrame(self.oof_test).rank().mean(1) / len(self.oof_test)).values self.oof_test = self.oof_test.mean(1) assert len(X) == len(self.oof_train) assert len(X_test) == len(self.oof_test) # 计算 训练集 oof 得分 if feval: self.oof_score = feval(y, self.oof_train) print("\n\033[94mScore Info:\033[0m") print(f"\033[94m {self.cv:>2} CV: {self.oof_score:.6f}\033[0m") _ = np.array(self.best_info['best_iteration']) print(f"\033[94m Iter: {_.mean():.0f} +/- {_.std():.0f}\033[0m") _ = np.array(self.best_info['best_score_valid']) print(f"\033[94m Valid: {_.mean():.6f} +/- {_.std():.6f} \033[0m\n") return self.oof_score def oof_submit(self, ids, pred_ranking=False, file=None, preds=None): """preds藏分用""" if file is None: file = f'submit_cv{self.cv}_{self.oof_score}.csv' print(f'Save {file} ...') if preds is None: preds = self.oof_test_rank if pred_ranking else self.oof_test if not isinstance(ids, pd.DataFrame): ids = pd.DataFrame(ids) ids.assign(preds=preds).to_csv(file, index=False, header=False) @property def oof_train_and_test(self): return np.r_[self.oof_train, self.oof_test] def oof_save(self, file='./oof_train_and_test.csv'): pd.DataFrame(self.oof_train_and_test, columns=['oof_train_and_test']).to_csv(file, index=False) def plot_feature_importances(self, feature_names=None, topk=20, figsize=(10, 6), pic_name=None): columns = ['Importances', 'Features'] importances = self.clf.feature_importances_.tolist() if feature_names is None: feature_names = list(map(lambda x: f'F_{x}', range(len(importances)))) _ = list(zip(importances, feature_names)) df = pd.DataFrame(_, columns=columns).sort_values('Importances', 0, False) plt.figure(figsize=figsize) sns.barplot(*columns, data=df[:topk]) plt.title('Features Importances\n') plt.tight_layout() if pic_name is None: plt.savefig(f'importances_{self.oof_score}.png') if __name__ == "__main__": from sklearn.datasets import make_classification X, y = make_classification() X_test, _ = make_classification() clf = XGBClassifierCV({'n_estimators': 1000}) clf.fit(X, y, X_test) ``` #### File: algo_ml/explainer/ExplainerTabular.py ```python class ExplainerTabular(object): def __init__(self): pass ``` #### File: algo_ml/explainer/ExplainerText.py ```python from nlp.models import BaselineBow from sklearn.linear_model import LogisticRegression from lime.lime_text import LimeTextExplainer # import eli5 # from eli5.lime import TextExplainer # # te = TextExplainer(random_state=42) # te.fit(doc, pipe.predict_proba) # te.show_prediction(target_names=twenty_train.target_names) class ExplainerText(object): """ X = df.review.astype(str).map(lambda x: ' '.join(jieba.cut(x))) y = df.label enlp = ExplainNLP() enlp.fit(X, y) enlp.explain(X[0]) """ def __init__(self, estimator=LogisticRegression(), class_names=None): self._baseline = BaselineBow(estimator)() self._explainer = LimeTextExplainer(verbose=True, class_names=class_names) def fit(self, X, y): self._baseline.fit(X, y) return self._baseline def explain(self, sentence, num_features=6): """ :param sentence: '分词 空格 拼接' :param num_features: :return: """ exp = self._explainer.explain_instance( sentence, self._baseline.predict_proba, num_features=num_features) exp.show_in_notebook(text=1 if len(sentence) < 256 else 0) return exp ``` #### File: features/agg/Funcs.py ```python import numpy as np class Funcs(object): """x: pd.Series""" def __init__(self): self.num = ['q1', 'q3', 'iqr', 'kurt', 'cv', 'p2p'] self.cat = ['mode', 'nunique_perc'] @property def num_funcs(self): return [self.__getattribute__(func_name) for func_name in self.num] @property def cat_funcs(self): return [self.__getattribute__(func_name) for func_name in self.cat] # cat funcs def mode(self, x): return x.value_counts().index[0] def nunique_perc(self, x): return x.nunique() / x.count() # num funcs def q1(self, x): return x.quantile(0.25) def q3(self, x): return x.quantile(0.75) def iqr(self, x): return x.quantile(0.75) - x.quantile(0.25) def p2p(self, x): return np.ptp(x) def kurt(self, x): return x.kurt() def cv(self, x): return x.std() / (x.mean() + 1e-8) # 变异系数 def count_nonzero(self, x): return np.count_nonzero(x) ``` #### File: features/cat/VecFeats.py ```python from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from tqdm import tqdm class VecFeats(object): """ tfv = TfidfVectorizer(min_df=2, max_features=None, strip_accents='unicode', analyzer='word', token_pattern=r'(?u)\b\w+\b', ngram_range=(1, 3), use_idf=1, smooth_idf=1, sublinear_tf=1) """ def __init__(self, df, cat_feats, vectorizer=TfidfVectorizer(ngram_range=(1, 1), max_features=1000)): self.df = df self.cat_feats = cat_feats self.vectorizer = vectorizer def get_vectors(self): return self.vectorizer.fit_transform(self.corpus) @property def corpus(self): df = self.df[self.cat_feats] for idx, feat in tqdm(enumerate(self.cat_feats)): df[feat] = '%s_' % idx + df[feat].astype(str) return df.apply(lambda x: ' '.join(x), 1) ``` #### File: features/transformer/RankEncoder.py ```python import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin class RankEncoder(BaseEstimator, TransformerMixin): def __init__(self, method='average', na_option='keep'): """ method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' How to rank the group of records that have the same value (i.e. ties): * average: average rank of the group * min: lowest rank in the group * max: highest rank in the group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups numeric_only : bool, optional For DataFrame objects, rank only numeric columns if set to True. na_option : {'keep', 'top', 'bottom'}, default 'keep' How to rank NaN values: * keep: assign NaN rank to NaN values * top: assign smallest rank to NaN values if ascending * bottom: assign highest rank to NaN values if ascending ascending : bool, default True Whether or not the elements should be ranked in ascending order. """ self.method = method self.na_option = na_option def transform(self, y): """不在训练集的补0,不经常出现补0""" return pd.Series(y).rank(method=self.method, na_option=self.na_option) # .fillna(0) if __name__ == '__main__': import numpy as np s = ['a', 'a', 'b', 'b', 'c'] + [np.nan] * 6 re = RankEncoder(na_option='keep') print(re.transform(s)) ``` #### File: features/ts/DateTimeFeats.py ```python import pandas as pd from tqdm import tqdm from datetime import timedelta tqdm.pandas() class DateTimeFeats(object): """ pandas_utils 时间/日期特征工程 常见格式: 1. 时间戳 2. 时间字符串 # 很强大: 解析不出为空 pd.to_datetime(ts, 'coerce', unit='s', infer_datetime_format=True) """ def __init__(self, include_feats=None): """ :param include_feats: 默认 ("year", "quarter", "month", "day", "hour", "minute", "week", "weekday", "weekofyear") weekofyear == week? TODO: + "DayOfWeekInMonth": 当月第几周 利用python获取某年中每个月的第一天和最后一天 """ self.time_granularity = ("year", "quarter", "month", "day", "hour", "minute", "week", "weekday", "weekofyear") self.feats = include_feats if include_feats else self.time_granularity def transform(self, s: pd.Series, add_prefix=None): if s.name is None: s.name = 'time_str' if add_prefix is None: add_prefix = f"{s.name}_" feats = self.feats _dtype = s.dtypes.__str__() if _dtype.__contains__('int') or _dtype.__contains__('float'): # 时间戳 10位是秒 13位是毫秒 print("infer_datetime_format: timestamp2date") ts = self.timestamp2date(s) else: print('infer_datetime_format: dateStr2date') ts = self.dateStr2date(s) _ = ts.progress_map(lambda t: list(self._func(t, feats))) df_ts = pd.DataFrame(_.tolist(), columns=feats).add_prefix(add_prefix) df_ts.insert(0, f'{s.name}2date', ts) return df_ts def _func(self, t, feats): for feat in feats: _ = t.__getattribute__(feat) if callable(_): yield _() else: yield _ def timestamp2date(self, ts): return pd.to_datetime(ts, 'coerce', unit='s', infer_datetime_format=True) def dateStr2date(self, ts): try: _ = ts.astype('datetime64[ns]') except Exception as e: print("astype('datetime64[ns]'): %s" % e) _ = pd.to_datetime(ts, 'coerce', infer_datetime_format=True) return _ def DayOfWeekInMonth(self, t): """ 获取指定的某天是某个月的第几周 周一为一周的开始 实现思路:就是计算当天在本年的第y周,本月一1号在本年的第x周,然后求差即可。 """ b = int((t - timedelta(t.day - 1)).strftime("%W")) e = int(t.strftime("%W")) return e - b + 1 if __name__ == '__main__': import pandas as pd ts = pd.Series([pd.datetime.today()] * 10) print(DateTimeFeats().transform(ts)) ``` #### File: tql/algo_ml/ftrl.py ```python from datetime import datetime from csv import DictReader from math import exp, log, sqrt import gzip import random import json import argparse class FTRLProximal(object): """ FTRL Proximal engineer project with logistic regression Reference: https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/41159.pdf """ def __init__(self, alpha, beta, L1, L2, D, interaction=False, dropout=1.0, dayfeature=True, device_counters=False): # parameters self.alpha = alpha self.beta = beta self.L1 = L1 self.L2 = L2 self.dayfeature = dayfeature self.device_counters = device_counters # feature related parameters self.D = D self.interaction = interaction self.dropout = dropout # model self.n = [0.] * D self.z = [0.] * D self.w = [0.] * D def _indices(self, x): ''' A helper generator that yields the indices in x The purpose of this generator is to make the following code a bit cleaner when doing feature interaction. ''' for i in x: yield i if self.interaction: D = self.D L = len(x) for i in range(1, L): # skip bias term, so we start at 1 for j in range(i + 1, L): # one-hot encode interactions with hash trick yield abs(hash(str(x[i]) + '_' + str(x[j]))) % D def predict(self, x, dropped=None): """ use x and computed weight to get predict :param x: :param dropped: :return: """ # wTx is the inner product of w and x wTx = 0. for j, i in enumerate(self._indices(x)): if dropped is not None and dropped[j]: continue wTx += self.w[i] if dropped is not None: wTx /= self.dropout # bounded sigmoid function, this is the probability estimation return 1. / (1. + exp(-max(min(wTx, 35.), -35.))) def update(self, x, y): """ update weight and coordinate learning rate based on x and y :param x: :param y: :return: """ ind = [i for i in self._indices(x)] if self.dropout == 1: dropped = None else: dropped = [random.random() > self.dropout for i in range(0, len(ind))] p = self.predict(x, dropped) # gradient under logloss g = p - y # update z and n for j, i in enumerate(ind): # implement dropout as overfitting prevention if dropped is not None and dropped[j]: continue g_i = g * i sigma = (sqrt(self.n[i] + g_i * g_i) - sqrt(self.n[i])) / self.alpha self.z[i] += g_i - sigma * self.w[i] self.n[i] += g_i * g_i sign = -1. if self.z[i] < 0 else 1. # get sign of z[i] # build w on the fly using z and n, hence the name - lazy weights - if sign * self.z[i] <= self.L1: # w[i] vanishes due to L1 regularization self.w[i] = 0. else: # apply prediction time L1, L2 regularization to z and get self.w[i] = (sign * self.L1 - self.z[i]) \ / ((self.beta + sqrt(self.n[i])) / self.alpha + self.L2) def save_model(self, save_file): """ 保存weight数据到本地 :param save_file: :return: """ with open(save_file, "w") as f: w = {k: v for k, v in enumerate(self.w) if v != 0} z = {k: v for k, v in enumerate(self.z) if v != 0} n = {k: v for k, v in enumerate(self.n) if v != 0} data = { 'w': w, 'z': z, 'n': n } json.dump(data, f) def load_weight(self, model_file, D): """ loada weight data :param model_file: :return: """ with open(model_file, "r") as f: data = json.load(f) self.w = data.get('w', [0.] * D) self.z = data.get('z', [0.] * D) self.n = data.get('n', [0.] * D) @staticmethod def loss(y, y_pred): """ log loss for LR model :param y: :param y_pred: :return: """ p = max(min(y_pred, 1. - 10e-15), 10e-15) return -log(p) if y == 1. else -log(1. - p) def data(f_train, D, dayfilter=None, dayfeature=True, counters=False): ''' GENERATOR: Apply hash-trick to the original csv row and for simplicity, we one-hot-encode everything INPUT: path: path to training or testing file D: the max index that we can hash to YIELDS: ID: id of the instance, mainly useless x: a list of hashed and one-hot-encoded 'indices' we only need the index since all values are either 0 or 1 y: y = 1 if we have a click, else we have y = 0 ''' device_ip_counter = {} device_id_counter = {} for t, row in enumerate(DictReader(f_train)): # process id ID = row['id'] del row['id'] # process clicks y = 0. if 'click' in row: if row['click'] == '1': y = 1. del row['click'] # turn hour really into hour, it was originally YYMMDDHH date = row['hour'][0:6] row['hour'] = row['hour'][6:] if dayfilter != None and not date in dayfilter: continue if dayfeature: # extract date row['wd'] = str(int(date) % 7) row['wd_hour'] = "%s_%s" % (row['wd'], row['hour']) if counters: d_ip = row['device_ip'] d_id = row["device_id"] try: device_ip_counter[d_ip] += 1 device_id_counter[d_id] += 1 except KeyError: device_ip_counter[d_ip] = 1 device_id_counter[d_id] = 1 row["ipc"] = str(min(device_ip_counter[d_ip], 8)) row["idc"] = str(min(device_id_counter[d_id], 8)) # build x x = [0] # 0 is the index of the bias term for key in row: value = row[key] # one-hot encode everything with hash trick index = abs(hash(key + '_' + value)) % D x.append(index) yield t, ID, x, y ``` #### File: models/classifier/bayes_opt_xgb.py ```python import warnings warnings.filterwarnings('ignore') import pandas as pd import xgboost as xgb from bayes_opt import BayesianOptimization from bayes_opt.observer import JSONLogger from bayes_opt.event import Events class BayesOptXGB(object): def __init__(self, X, y, topk=10, missing=None, metric='auc', objective='binary:logistic', fix_params={}, n_jobs=8, opt_seed=None): """ :param objective: 'binary:logistic', 'multi:softmax', 'reg:linear' """ self.data = xgb.DMatrix(X, y, missing=missing) self.topk = topk self.metric = metric self.objective = objective self.fix_params = fix_params # 固定不需要调节的参数 self.opt_seed = opt_seed self.n_jobs = n_jobs self.params_ls = [] self.params_ls_sk = [] self.params_best = {} self.params_best_sk = {} self.params_opt_df = None self._iter_ls = [] if self.fix_params: print('Fixed Params: \033[94m%s\033[0m\n' % self.fix_params) @property def best_model(self): if self.params_best: return xgb.train(dtrain=self.data, **self.params_best) else: print('\033[94m%s\033[0m\n' % "Please Run !") def run(self, n_iter=5, save_log=False): BoParams = { 'max_depth': (5, 16), 'min_child_weight': (1, 10), 'gamma': (0, 1), 'subsample': (0.6, 1), 'colsample_bytree': (0.6, 1), 'reg_alpha': (0, 1), 'reg_lambda': (0, 1), } optimizer = BayesianOptimization(self.__evaluator, BoParams, self.opt_seed) if save_log: logger = JSONLogger(path="./opt_xgb_logs.json") optimizer.subscribe(Events.OPTMIZATION_STEP, logger) if self.fix_params: optimizer.set_bounds({k: (v, v) for k, v in self.fix_params.items()}) # optimizer.probe( # {'max_depth': 7, # 'min_child_weight': 1, # 'gamma': 0, # 'subsample': 0.8, # 'colsample_bytree': 0.8, # 'reg_alpha': 0.01, # 'reg_lambda': 1}) gp_params = {"alpha": 1e-5, "n_restarts_optimizer": 3} optimizer.maximize(init_points=3, n_iter=n_iter, acq='ucb', kappa=2.576, xi=0.0, **gp_params) self.__get_params(optimizer) def __evaluator(self, max_depth, gamma, min_child_weight, subsample, colsample_bytree, reg_alpha, reg_lambda): self.__params_sk = dict( silent=True, booster='gbtree', objective=self.objective, max_depth=int(max_depth), learning_rate=0.01, gamma=gamma, # min_split_gain min_child_weight=min_child_weight, subsample=subsample, colsample_bylevel=0.8, # 每一层的列数 colsample_bytree=colsample_bytree, reg_alpha=reg_alpha, reg_lambda=reg_lambda, scale_pos_weight=1, random_state=0, n_jobs=self.n_jobs ) params = self.__params_sk.copy() params['eta'] = params.pop('learning_rate') params['alpha'] = params.pop('reg_alpha') params['lambda'] = params.pop('reg_lambda') params['eval_metric'] = self.metric _ = xgb.cv(params, self.data, num_boost_round=3600, nfold=5, early_stopping_rounds=100, show_stdv=False, stratified=False if 'reg' in self.objective else True, as_pandas=False)['test-%s-mean' % self.metric] self._iter_ls.append(len(_)) return -_[-1] if 'reg' in self.objective else _[-1] def __get_params(self, optimizer): self.params_opt_df = ( pd.concat([pd.DataFrame({'iter': self._iter_ls}), pd.DataFrame(optimizer.res)], 1) .sort_values('target', ascending=False) .reset_index(drop=True)[:self.topk]) for _, (i, p, _) in self.params_opt_df.iterrows(): params_sk = {**self.__params_sk, **p, **{'n_estimators': i}} params_sk['max_depth'] = int(params_sk['max_depth']) params_sk = {k: float('%.3f' % v) if isinstance(v, float) else v for k, v in params_sk.items()} self.params_ls_sk.append(params_sk) params = params_sk.copy() params['eta'] = params.pop('learning_rate') params['alpha'] = params.pop('reg_alpha') params['lambda'] = params.pop('reg_lambda') num_boost_round = params.pop('n_estimators') self.params_ls.append({'params': params, 'num_boost_round': num_boost_round}) self.params_best = self.params_ls[0] self.params_best_sk = self.params_ls_sk[0] ``` #### File: algo_ml/opt_params/CatBoostOptimizer.py ```python import numpy as np import catboost from catboost import CatBoostClassifier from sklearn.model_selection import cross_val_score, StratifiedKFold from .Optimizer import Optimizer class CatBoostOptimizer(Optimizer): def __init__(self, X, y, cv=5, cv_seed=None, params_bounds=None, use_gpu=1): super().__init__(X, y, cv, cv_seed, params_bounds) self.params_bounds = params_bounds if params_bounds else \ dict(n_estimators=1000, loss_function="Logloss", eval_metric="AUC", learning_rate=(0.001, 1), l2_leaf_reg=(0, 100), random_seed=666, od_type="Iter", depth=(2, 16), early_stopping_rounds=300, verbose=False, border_count=64, has_time=True) if use_gpu: self.workers = 1 # gpu 交叉验证只能单进程 self.params_bounds.update({'task_type': 'GPU'}) def objective(self, **params): """重写目标函数""" # 纠正参数类型 params = self._round_params(params) _params = {**self.params_bounds, **params} # 核心逻辑 # TODO: 原生CV self.clf = CatBoostClassifier(**_params) scores = cross_val_score(self.clf, self.X, self.y, scoring='roc_auc', cv=StratifiedKFold(self.cv, True, self.cv_seed)) return scores.mean() ``` #### File: algo_ml/opt_params/ParamsBounds.py ```python from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier as RFC class ParamsBounds(object): """https://github.com/Jie-Yuan/optuna/blob/master/examples/lightgbm_simple.py""" @property def lgb(self): """https://www.cnblogs.com/wzdLY/p/9867719.html""" pass """https://github.com/fmfn/BayesianOptimization/blob/master/examples/sklearn_example.py""" @property def svc(self): estimator = SVC(random_state=123456) pbounds = {"C": (0.001, 100), "gamma": (0.0001, 0.1)} return estimator, pbounds @property def rfc(self): estimator = RFC(random_state=123456, n_jobs=-1) pbounds = { "criterion": ('gini', 'entropy'), "n_estimators": (32, 256), "min_samples_split": (2, 25), "max_features": (0.01, 1), } return estimator, pbounds ``` #### File: algo_nlp/api/baidu_post.py ```python import json import urllib import requests class BaiduPost(object): """ 知识图谱: https://aip.baidubce.com/rpc/2.0/kg/v1/cognitive/entity_annotation 智能春联: https://aip.baidubce.com/rpc/2.0/nlp/v1/couplets { "text": "百度", "index": 0} 智能写诗: https://aip.baidubce.com/rpc/2.0/nlp/v1/poem { "text": "百度", "index": 0} # index默认为数值为0,即第一首诗。每换一次,数值加1即可,一定数量后会返回之前的作诗结果 """ def __init__(self, api_key='<KEY>', secret_key='<KEY>'): self.access_token = self._get_access_token(api_key, secret_key) def predict(self, input_text, url): url = url + '?charset=UTF-8&access_token=' + self.access_token # the input is json format # input_text = {'data': text} r = requests.post(url, json=input_text) return r.json() def _get_access_token(self, api_key, secret_key): host = f'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}' request = urllib.request.Request(host) request.add_header('Content-Type', 'application/json; charset=UTF-8') response = urllib.request.urlopen(request) content = response.read() return json.loads(content)['access_token'] if __name__ == '__main__': from pprint import pprint api = BaiduPost() pprint(api.predict({'data': '周杰伦'}, 'https://aip.baidubce.com/rpc/2.0/kg/v1/cognitive/entity_annotation')) ``` #### File: tql/algo_nlp/TencentWord2Vec.py ```python from tqdm import tqdm import pymongo from concurrent.futures import ThreadPoolExecutor from scipy.spatial.distance import pdist from sklearn.metrics.pairwise import cosine_similarity class TencentWord2Vec(object): def __init__(self): self.db = pymongo.MongoClient().ChineseEmbedding.TencentWord2Vec def __getitem__(self, items): if isinstance(items, str): return self.get_vector([items])[0] else: return self.get_vector(items) def cosine(self, w1, w2): return 1 - pdist(self.get_vector((w1, w2)), 'cosine')[0] def get_vector(self, words): """ from sklearn.metrics.pairwise import cosine_similarity >>> a=[[1,3,2],[2,2,1]] >>> cosine_similarity(a) """ with ThreadPoolExecutor(8 if len(words) > 8 else len(words)) as pool: vecs = pool.map(self.__func, words) return list(vecs) def __insert_word2vec(self): self.db.delete_many({}) for line in self.__reader(): _ = self.db.insert_one(line) def __func(self, word): return self.db.find_one({'word': word})['vector'] def __reader(self): with open("/home/yuanjie/下载/Tencent_AILab_ChineseEmbedding/Tencent_AILab_ChineseEmbedding.txt") as f: for idx, line in tqdm(enumerate(f), 'Loading ...'): ws = line.strip().split(' ') if idx: yield {'word': ws[0], 'vector': [float(i) for i in ws[1:]]} ``` #### File: algo_nlp/utils/VecQuery.py ```python import numpy as np import nmslib from collections import OrderedDict class VecQuery(object): """ index.getDistance index.knnQueryBatch index.loadIndex index.saveIndex """ def __init__(self, index=None): """ # TODO:index, id2word 都要存才能保证下次加载判断逻辑正确 :param index: index.loadIndex('*') """ self.id2word = {} self.word2id = {} self.index = index def __call__(self, *args, **kwargs): return self.query(*args, **kwargs) def query(self, data, k=10, num_threads=4): _ = self.index.knnQueryBatch(data, k, num_threads) return list(map(self._parse_result, _)) def createIndex(self, words, vectors): """ :param words: 务必唯一不重复 :param vectors: :return: """ if not self.id2word: print('Index Create ...') self.id2word, self.word2id = self._add(words) self._create(vectors) else: print('Index Add...') _add_ids = [] for id, word in enumerate(words): if word not in self.word2id: # 忽略已存在的索引 self.word2id[word] = len(self.word2id) _add_ids.append(id) vectors = np.array(vectors)[_add_ids] self._create(vectors, len(self.id2word) + np.arange(len(_add_ids))) # 增量更新索引 self.id2word = {j: i for i, j in self.word2id.items()} def _add(self, words): id2word = dict(enumerate(words)) word2id = {j: i for i, j in id2word.items()} return id2word, word2id def _create(self, vectors, ids=None): # initialize a new index, using a HNSW index on Cosine Similarity self.index = nmslib.init(method='hnsw', space='cosinesimil') if not self.index else self.index self.index.addDataPointBatch(vectors, ids) self.index.createIndex({'post': 2}) def _parse_result(self, pair): return OrderedDict([(self.id2word[k], 1 - v) for k, v in zip(*pair)]) if __name__ == '__main__': vq = VecQuery() vq.createIndex(['a', 'b'], [[1, 2], [3, 4]]) print(vq.query([[1, 2]])) print(vq.id2word, vq.word2id) vq.createIndex(['a', 'c'], [[1, 2], [3, 3]]) print(vq.query([[1, 2], [1, 2]])) print(vq.id2word, vq.word2id) ``` #### File: tql/data_eda/target_distributed.py ```python def target_distributed(df, by, target_name='label'): _ = df.groupby(by)[target_name].value_counts(1) return _ ``` #### File: ml/automl/AutoFeat_.py ```python import featuretools import featuretools as ft import featuretools.variable_types as vt from tqdm.auto import tqdm from tql.pipe import cprint from tql.utils.pandas_utils import reduce_mem_usage, duplicate_columns from tql.ml.automl.primitives import * from featuretools.selection import remove_low_information_features, remove_single_value_features, \ remove_highly_correlated_features class AutoFeat(object): def __init__(self, df, base_entity_id, target_entity_id, type2features, index=None, time_index=None, secondary_time_index=None): self.entity_id = base_entity_id # 表名 self.type2features = self._convert_type(type2features) # vt.xx self.index = '__id' if index is None else index self.target_entity_id = target_entity_id # self.index != '__id' => self.target_entity_id = self.entity_id self.es = ft.EntitySet(id='MAIN') self.es.entity_from_dataframe( entity_id=self.entity_id, dataframe=df, # df.copy() index=self.index, variable_types=self.variable_types, time_index=time_index, secondary_time_index=secondary_time_index ) self._create_es() def _create_es(self): """overwrite""" for col in tqdm(self.normalize_entity_cols, desc='Normalize Entity'): self.es.normalize_entity(self.entity_id, col, col) def run_dfs( self, max_depth=1, features_only=True, ignore_variables=None, reduce_mem=False, reduce_feats=True, trans_primitives=None, agg_primitives=None, chunk_size=None, n_jobs=1, **kwargs ): """Deep Feature Synthesisf agg_primitives (list[str or AggregationPrimitive], optional): List of Aggregation Feature types to apply. Default: ["sum", "std", "max", "skew", "min", "mean", "count", "percent_true", "num_unique", "mode"] DateTime: ['time_since_last', 'time_since_first', 'trend'] trans_primitives (list[str or TransformPrimitive], optional): List of Transform Feature functions to apply. Default: ["day", "year", "month", "weekday", "haversine", "num_words", "num_characters"] groupby_trans_primitives (list[str or :class:`.primitives.TransformPrimitive`], optional): list of Transform primitives to make GroupByTransformFeatures with """ if ignore_variables is None: # ignore_variables = [self.target_entity_id, self.index] # ignore_variables = ["__id"] # 忽略单值id 会少了一些count特征 ignore_variables = [] if trans_primitives is None: trans_primitives = [ "year", "month", "day", "hour", "minute", "week", "weekday", "is_weekend", 'time_since_previous', # diff # https://stackoverflow.com/questions/60324672/how-is-time-since-previous-computed-in-featuretools Quarter(), ] _ = ft.dfs( entityset=self.es, target_entity=self.target_entity_id, # 具有唯一ID: 不重复id的base_es或者normalize_entity生成的唯一id es features_only=features_only, max_depth=max_depth, ignore_variables={self.entity_id: ignore_variables}, chunk_size=chunk_size, n_jobs=n_jobs, verbose=1, agg_primitives=agg_primitives, trans_primitives=trans_primitives, **kwargs ) if features_only: return _ else: df_ = _[0].add_prefix(f'{self.entity_id}_').reset_index() if reduce_feats: cprint("remove_low_information_features") df_ = remove_low_information_features(df_) cprint("remove_single_value_features") df_ = remove_single_value_features(df_, count_nan_as_value=True) cprint("remove_duplicate_features") dups = duplicate_columns(df_) df_ = df_.drop(dups, 1) if reduce_mem: df_ = reduce_mem_usage(df_) return df_ @property def normalize_entity_cols(self): types = [vt.Id, vt.Categorical, vt.Boolean] cols = sum([self.type2features.get(type_, []) for type_ in types], []) return [i for i in cols if i != self.index] @property def variable_types(self): dic = {} for type_, features in self.type2features.items(): dic.update(zip(features, len(features) * [type_])) return dic def _convert_type(self, type2features): type2features_ = {} for type_, features in type2features.items(): if isinstance(type_, str): type2features_[vt.__getattribute__(type_)] = features else: type2features_[type_] = features return type2features_ if __name__ == '__main__': import pandas as pd df = pd.DataFrame([[1, 2, 3], [2, 2, 3], [3, 2, 3]], columns=['uid', 'a', 'b']) df['date'] = pd.date_range('2020-01-01', periods=3) type2features = { vt.Id: ['uid'], vt.Categorical: ['a', 'b'], vt.Datetime: ['date'] } af = AutoFeat(df, 'test', 'test', type2features, index='uid') # base_entity 就是 base_entity_id df_ft = af.run_dfs(3, False, trans_primitives=['cum_max'], reduce_feats=False) print(df_ft) ``` #### File: ml/fm/fm_embedding.py ```python import numpy as np from lightfm import LightFM from scipy.sparse import csr_matrix class FMEmbedding(object): def __init__(self, dim=128, **kwargs): self.fm = LightFM(no_components=dim, random_state=666, **kwargs) def fit(self, df, epochs=10, num_threads=30, verbose=True): """ :param df: ['uid', 'iid', 'rating'] :return: """ df.columns = ['uid', 'iid', 'rating'] csr_data = csr_matrix((df['rating'], (df['uid'], df['iid']))) print(f"csr_data: {csr_data.shape}") self.fm.fit(csr_data, epochs=epochs, num_threads=num_threads, verbose=verbose) self.user_embeddings = np.ascontiguousarray(self.fm.user_embeddings) self.item_embeddings = np.ascontiguousarray(self.fm.item_embeddings) # if __name__ == '__main__': # import faiss # from ann import ANNFaiss # # ann = ANNFaiss() # # ann.train(item_embeddings, index_factory='IVF4000, Flat', metric=faiss.METRIC_INNER_PRODUCT, noramlize=True) # # ann.noramlize() ``` #### File: tql/regex/illegal_char.py ```python import re """https://www.jianshu.com/p/4958bcdea12a""" # def illegal_char(s): # s = re.compile(r"""^[\u4e00-\u9fa5\u0041-\u005A\u0061-\u007A\u0030-\u0039!@#$%^&*()-=[]{}\\;':",./<>?/*\+]+""") \ # .sub('', s) # # return s # # if __name__ == '__main__': # s = "《魔兽世界》官方宣布,为了维护玩家们的游戏体验," \ # "将为怀旧服高负载服务器的玩家们提供免费的角色定向转移服务," \ # "更多的详情将在晚些时候公布。官方也将在今晚18点新增两个PVP服务器阿什坎迪与怀特迈恩。 ​​​​" # print(illegal_char(s)) ``` #### File: utils/config/limit_memory.py ```python import resource def limit_memory(memory=16): """ :param memory: 默认限制内存为 16G :return: """ rsrc = resource.RLIMIT_AS # res_mem=os.environ["RESOURCE_MEM"] memlimit = memory * 1024 ** 3 resource.setrlimit(rsrc, (memlimit, memlimit)) # soft, hard = resource.getrlimit(rsrc) print("memory limit as: %s G" % memory) ``` #### File: utils/config/set_plot.py ```python import matplotlib.pyplot as plt def set_plot(): """ plt.rcParams['font.sans-serif'] = ['Simhei'] # 中文乱码的处理 plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['axes.unicode_minus'] = False # 负号 plt.rcParams["text.usetex"] = False plt.rcParams["legend.numpoints"] = 1 plt.rcParams["figure.figsize"] = (18, 9) # (12, 6) plt.rcParams["figure.dpi"] = 128 plt.rcParams["savefig.dpi"] = plt.rcParams["figure.dpi"] plt.rcParams["font.size"] = 12 plt.rcParams["pdf.fonttype"] = 42 """ plt.rcParams['font.sans-serif'] = ['Simhei'] # 中文乱码的处理 plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['axes.unicode_minus'] = False # 负号 plt.rcParams["text.usetex"] = False plt.rcParams["legend.numpoints"] = 1 plt.rcParams["figure.figsize"] = (18, 9) # (12, 6) plt.rcParams["figure.dpi"] = 128 plt.rcParams["savefig.dpi"] = plt.rcParams["figure.dpi"] plt.rcParams["font.size"] = 12 plt.rcParams["pdf.fonttype"] = 42 print('Setting Success!') ``` #### File: utils/debug/__init__.py ```python import pysnooper @pysnooper.snoop() def number_to_bits(number): if number: bits = [] while number: number, remainder = divmod(number, 2) bits.insert(0, remainder) return bits else: return [0] import numpy as np @pysnooper.snoop() def f(): return np.arange(100000).shape if __name__ == '__main__': f() ``` #### File: 0_DA/udfs/data_transform.py ```python __title__ = 'data_transform' __author__ = 'JieYuan' __mtime__ = '2018/2/13' # 聚合函数 class Agg(object): @staticmethod def mode(x): """ 因mode需至少重复2次才可用,故需判断异常 """ try: _mode = x.mode()[0] except: return x.values[0] else: return _mode @staticmethod def count_zero(x): return len(x) - np.sum(x) @staticmethod def count_null(x): return x.isnull().sum() @staticmethod def gr_agg(df, by_name, col_name, *functions): """ positional argument follows keyword argument相对位置指代参数 """ gr = df.groupby(by_name) mapper = lambda x: col_name + '_' + x if x != by_name else by_name # col_name_sum return gr[col_name].agg(functions).reset_index().rename(columns=mapper) @staticmethod def nlargest(df, by_name, col_name, n=1): """ col_name top K """ return df.sort_values(col_name).groupby(by_name).tail(n) @staticmethod def nsmallest(df, by_name, col_name, n=1): return df.sort_values(col_name).groupby(by_name).head(n) @classmethod def nmost(cls, df, by_name, col_name, n=3): """ col_name 最多的前几个 """ df = df.groupby([by_name, col_name], as_index=False)[col_name].agg({'_count': 'count'}) return df.pipe(cls.nlargest, by_name, '_count', n).drop('_count', 1).rename( columns={col_name: col_name + '_nmost'}) @classmethod def nleast(cls, df, by_name, col_name, n=3): df = df.groupby([by_name, col_name], as_index=False)[col_name].agg({'_count': 'count'}) return df.pipe(cls.nsmallest, by_name, '_count', n).drop('_count', 1).rename( columns={col_name: col_name + '_nleast'}) # 数据变形 class Reshape(object): def __init__(self): pass @staticmethod def explode(df, col, pat=None, drop_col=True): """ :param df: :param col: col name :param pat: String or regular expression to split on. If None, splits on whitespace :param drop_col: drop col is Yes or No :return: hive explode """ data = df.copy() data_temp = data[col].str.split(pat=pat, expand=True).stack().reset_index(level=1, drop=True).rename( col + '_explode') if drop_col: data.drop(col, 1, inplace=True) return data.join(data_temp) # df.a.str.split('|', expand=True) 'a|b|c' -> 'a', 'b', 'c' @staticmethod def crossJoin(df1, df2): __addCol = lambda x: x.assign(__col=1) return __addCol(df1).merge(__addCol(df2), on='__col').drop('__col', 1) # lag/lead def lag(df, by_name, col_name, n=1): df = df.copy() df[col_name + '_' + str(n)] = df.groupby(by_name)[col_name].shift(n) return df ``` #### File: utils/pandas_utils/__init__.py ```python import numpy as np import pandas as pd from tqdm.auto import tqdm def duplicate_columns(frame): """keep='first' https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns/32961145#32961145 数据大: dups = duplicate_columns(df) df.drop(dups, 1) 数据小: df.T.drop_duplicates().T """ frame = frame.fillna(-123456) # 处理缺失值 groups = frame.columns.to_series().groupby(frame.dtypes).groups dups = [] for t, v in groups.items(): dcols = frame[v].to_dict(orient="list") vs = list(dcols.values()) ks = list(dcols.keys()) lvs = len(vs) for i in range(lvs): for j in range(i + 1, lvs): if vs[i] == vs[j]: dups.append(ks[j]) # keep='first' break return dups # reduce memory def reduce_mem_usage(df): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024 ** 2 for col in tqdm(df.columns, desc="Reduce memory"): col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) # else: # df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024 ** 2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df if __name__ == '__main__': df = pd.DataFrame([[1, 2, 3] * 10000, [2, 2, 3] * 10000, [3, 2, 3] * 10000]) import time s = time.time() reduce_mem_usage(df) # 34 print(time.time() - s) ``` #### File: utils/pandas_utils/split2cols.py ```python import pandas as pd s = pd.Series([[1, 2, 3], [4, 5, 6]]) s.tolist() def split2cols(series: pd.Series, columns=None): return pd.DataFrame(series.tolist(), columns=columns) ``` #### File: utils/string/json2cls.py ```python class CreateOrder(object): def __init__(self): self.success = None self.item = None self.a = None co = CreateOrder() co.__dict__ = {'success': True, 'item': {'id': '1f4652c2f841f94f77b29a7836ffb971', 'title': '“乱港分子”黄之锋抵台 将拜会民进党', 'url': 'https://mb.yidianzixun.com/article/0N7BdC2A?s=mb&appid=mibrowser&miref=newsin_push_model', 'category': ['时政'], 'publishTime': '2019-09-03 11:03:02', 'keywords': ['时政', '香港', '台湾'], 'source': '快讯', 'valid': True, 'userTags': ['时政', '香港', '台湾'], 'crawlTime': 1567479784181, 'cpApi': 'cn-browser-push', 'isReservedDoc': True, 'updateTime': 1567479784181, 'bizIndexName': 'BROWSER_NEWS'}} print(co.success) print(type(co.item['keywords'])) import requests requests.post() ``` #### File: utils/string/replace.py ```python def replace(s, dic): return s.translate(str.maketrans(dic)) if __name__ == '__main__': print(replace('abcd', {'a': '8', 'd': '88'})) ```
{ "source": "Jie-Yuan/aizoo", "score": 3 }
#### File: aizoo/tab/feature_selector.py ```python import scipy as sp from functools import partial from sklearn.utils import shuffle, check_random_state from sklearn.preprocessing import scale as zscore from sklearn.model_selection import train_test_split # ME from meutils.pipe import * from aizoo.utils.model_utils import get_imp from aizoo.utils.check_utils import check_classification class SimpleFS(object): """粗筛 高缺失率: 低方差(高度重复值):0.5%~99.5%分位数内方差为0的初筛 高相关:特别高的初筛,根据重要性细筛 TODO 低重要性: 召回高IV: """ def __init__(self, df: pd.DataFrame, exclude=None): self.to_drop_dict = {} if exclude is None: exclude = [] assert isinstance(exclude, list) assert isinstance(df, pd.DataFrame) self.df = df exclude += df.select_dtypes(['datetime64[ns]', object]).columns.tolist() print(f"Exclude Fetures: {exclude}") if exclude: self.feats = df.columns.difference(exclude).tolist() else: self.feats = df.columns.tolist() def run(self): df = self.df.copy() with timer('干掉高缺失'): self.to_drop_dict['filter_missing'] = self.filter_missing() with timer('干掉低方差'): self.to_drop_dict['filter_variance'] = self.filter_variance() with timer('干掉高相关'): pass return df def filter_missing(self, feats=None, threshold=0.95): """ :param feat_cols: :param threshold: :param as_na: 比如把-99当成缺失值 :return: """ if feats is None: feats = self.feats to_drop = self.df[feats].isna().mean()[lambda x: x > threshold].index.tolist() print('%d features with greater than %0.2f missing values.' % (len(to_drop), threshold)) return to_drop def _filter_variance(self, feat, df): var = df[feat][lambda x: x.between(x.quantile(0.005), x.quantile(0.995))].var() return '' if var else feat def filter_variance(self, feats=None, max_worker=4): if feats is None: feats = self.feats _filter_variance = partial(self._filter_variance, df=self.df) with ProcessPoolExecutor(min(max_worker, len(feats))) as pool: to_drop = pool.map(_filter_variance, tqdm(feats, 'Filter Variance ...')) to_drop = [feat for feat in to_drop if feat] print('%d features with 0 variance in 0.5 ~ 99.5 quantile.' % len(to_drop)) return to_drop class FS(object): def __init__(self, estimator, verbose=0, importance_type='split', importance_normlize=True, percent=95, alpha=0.05, two_step=True, ): self.estimator = estimator self.estimator_name = str(estimator).lower() self.verbose = verbose self.importance_type = importance_type # split/shap/permutaion self.importance_type_normlize = importance_normlize self.alpha = alpha self.two_step = two_step self.percent = percent * 100 if 0 <= percent <= 1 else percent def fit(self, X, y, n_trials=10, sample_weight=None): # setup variables for Boruta n_sample, n_feat = X.shape # holds the decision about each feature: # 0 - default state = tentative in original code # 1 - accepted in original code # -1 - rejected in original code dec_reg = np.zeros(n_feat) # counts how many times a given feature was more important than the best of the shadow features hit_reg = np.zeros(n_feat) # these record the history of the iterations imp_history = np.zeros((n_trials, n_feat)) # 记录真实特征历史重要性, 输出排序 imp_history[:] = np.nan # 影子特征历史重要性最大值 sha_max_history = [] # main feature selection loop for trial in tqdm(range(n_trials), desc='🔥'): if not np.any(dec_reg == 0): # 存在未拒绝的就继续迭代 break # make sure we start with a new tree in each iteration seed = np.random.randint(0, 10 ** 6) # 通过模型获取shap值 imp_real, imp_sha = self._add_shadows_get_imps(X, y, dec_reg, sample_weight, seed=seed + 2) imp_history[trial] = imp_real # record importance history # get the threshold of shadow importances we will use for rejection imp_sha_max = np.percentile(imp_sha, self.percent) sha_max_history.append(imp_sha_max) # register which feature is more imp than the max of shadows hits = np.where(imp_real > imp_sha_max)[0] hit_reg[hits] += 1 # based on hit_reg we check if a feature is doing better than expected by chance dec_reg = self._do_tests(dec_reg, hit_reg, trial + 1) # we automatically apply R package's rough fix for tentative ones confirmed = np.where(dec_reg == 1)[0] tentative = np.where(dec_reg == 0)[0] # which tentative to keep tentative_median = np.median(imp_history[:, tentative], 0) tentative_confirmed = np.where(tentative_median > np.median(sha_max_history))[0] tentative = tentative[tentative_confirmed] # basic result variables self.n_features_ = confirmed.shape[0] self.support_ = np.zeros(n_feat, dtype=np.bool) self.support_[confirmed] = 1 self.support_weak_ = np.zeros(n_feat, dtype=np.bool) self.support_weak_[tentative] = 1 # ranking, confirmed variables are rank 1 self.ranking_ = np.ones(n_feat, dtype=np.int) # tentative variables are rank 2 self.ranking_[tentative] = 2 # selected = confirmed and tentative selected = np.hstack((confirmed, tentative)) # all rejected features are sorted by importance history not_selected = np.setdiff1d(np.arange(n_feat), selected) # large importance values should rank higher = lower ranks -> *(-1) imp_history_rejected = imp_history[:, not_selected] * -1 # update rank for not_selected features if not_selected.shape[0] > 0: # calculate ranks in each iteration, then median of ranks across feats iter_ranks = self._nanrankdata(imp_history_rejected, axis=1) rank_medians = np.nanmedian(iter_ranks, axis=0) ranks = self._nanrankdata(rank_medians, axis=0) # set smallest rank to 3 if there are tentative feats if tentative.shape[0] > 0: ranks = ranks - np.min(ranks) + 3 else: # and 2 otherwise ranks = ranks - np.min(ranks) + 2 self.ranking_[not_selected] = ranks else: # all are selected, thus we set feature supports to True self.support_ = np.ones(n_feat, dtype=np.bool) self.importance_type_history_ = imp_history self.shadows_max_importance_history = sha_max_history def _estimator_fit(self, X_train, X_test, y_train, y_test, train_w=None, test_w=None, seed=0): # todo: oof estimator # check estimator_name self.estimator.set_params(random_state=seed) # 要不要都行,因为数据随机了 if 'lgb' in self.estimator_name: self.estimator.fit(X_train, y_train, sample_weight=train_w, eval_sample_weight=test_w, eval_set=[(X_train, y_train), (X_test, y_test)], eval_metric=None, eval_names=('Train', 'Valid'), verbose=self.verbose, early_stopping_rounds=100) else: raise ValueError('默认支持lgb,其他模型待支持') def _add_shadows_get_imps(self, X, y, dec_reg, sample_weight=None, seed=0): # find features that are tentative still x_cur_ind = np.where(dec_reg >= 0)[0] x_cur = X[:, x_cur_ind] x_cur_w = x_cur.shape[1] # deep copy the matrix for the shadow matrix x_sha = x_cur.copy() # make sure there's at least 5 columns in the shadow matrix for while (x_sha.shape[1] < 5): x_sha = np.c_[x_sha, x_sha] # 打乱每列的值 x_sha = np.apply_along_axis(check_random_state(seed).permutation, 0, x_sha) # 打乱每列的值 # get importance of the merged matrix imp = self._feature_importances(np.c_[x_cur, x_sha], y, sample_weight, seed + 1) # (x_cur, x_sha) # separate importances of real and shadow features imp_sha = imp[x_cur_w:] imp_real = np.zeros(X.shape[1]) imp_real[:] = np.nan imp_real[x_cur_ind] = imp[:x_cur_w] return imp_real, imp_sha def _feature_importances(self, X, y, sample_weight=None, seed=0): arrays = [X, y] if sample_weight is None else [X, y, sample_weight] args = train_test_split(*arrays, random_state=seed, stratify=y if check_classification(y) else None) self._estimator_fit(*args, seed=seed + 1) # estimator fitted imp = get_imp(self.estimator, X, self.importance_type) return zscore(imp) if self.importance_type_normlize else imp def _nanrankdata(self, X, axis=1): """ Replaces bottleneck's nanrankdata with scipy and numpy alternative. """ ranks = sp.stats.mstats.rankdata(X, axis=axis) ranks[np.isnan(X)] = np.nan return ranks def _do_tests(self, dec_reg, hit_reg, _iter): active_features = np.where(dec_reg >= 0)[0] hits = hit_reg[active_features] # get uncorrected p values based on hit_reg to_accept_ps = sp.stats.binom.sf(hits - 1, _iter, .5).flatten() to_reject_ps = sp.stats.binom.cdf(hits, _iter, .5).flatten() if self.two_step: # two step multicor process # first we correct for testing several features in each round using FDR to_accept = self._fdrcorrection(to_accept_ps, alpha=self.alpha)[0] to_reject = self._fdrcorrection(to_reject_ps, alpha=self.alpha)[0] # second we correct for testing the same feature over and over again # using bonferroni to_accept2 = to_accept_ps <= self.alpha / float(_iter) to_reject2 = to_reject_ps <= self.alpha / float(_iter) # combine the two multi corrections, and get indexes to_accept *= to_accept2 to_reject *= to_reject2 else: # as in th original Boruta, we simply do bonferroni correction # with the total n_feat in each iteration to_accept = to_accept_ps <= self.alpha / float(len(dec_reg)) to_reject = to_reject_ps <= self.alpha / float(len(dec_reg)) # find features which are 0 and have been rejected or accepted to_accept = np.where((dec_reg[active_features] == 0) * to_accept)[0] to_reject = np.where((dec_reg[active_features] == 0) * to_reject)[0] # updating dec_reg dec_reg[active_features[to_accept]] = 1 dec_reg[active_features[to_reject]] = -1 return dec_reg def _fdrcorrection(self, pvals, alpha=0.05): """ Benjamini/Hochberg p-value correction for false discovery rate, from statsmodels package. Included here for decoupling dependency on statsmodels. Parameters ---------- pvals : array_like set of p-values of the individual tests. alpha : float error rate Returns ------- rejected : array, bool True if a hypothesis is rejected, False if not pvalue-corrected : array pvalues adjusted for multiple hypothesis testing to limit FDR """ pvals = np.asarray(pvals) pvals_sortind = np.argsort(pvals) pvals_sorted = np.take(pvals, pvals_sortind) nobs = len(pvals_sorted) ecdffactor = np.arange(1, nobs + 1) / float(nobs) reject = pvals_sorted <= ecdffactor * alpha if reject.any(): rejectmax = max(np.nonzero(reject)[0]) reject[:rejectmax] = True pvals_corrected_raw = pvals_sorted / ecdffactor pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] pvals_corrected[pvals_corrected > 1] = 1 # reorder p-values and rejection mask to original order of pvals pvals_corrected_ = np.empty_like(pvals_corrected) pvals_corrected_[pvals_sortind] = pvals_corrected reject_ = np.empty_like(reject) reject_[pvals_sortind] = reject return reject_, pvals_corrected_ ``` #### File: aizoo/tuner/optimizers.py ```python from meutils.pipe import * from sklearn.metrics import * from aizoo.tuner.base import optuna, Tuner from aizoo.tab.models import LGBMOOF from aizoo.utils.check_utils import check_classification class F1Optimizer(Tuner): def __init__(self, search_space, y, y_pred, **kwargs): super().__init__(search_space, **kwargs) self.y = y self.y_pred = y_pred def objective(self, trial: optuna.trial.Trial): params = self.trial_choice(trial) y_pred_ = np.where(np.array(self.y_pred) > params['threshold'], 1, 0) return f1_score(self.y, y_pred_) class LGBOptimizer(Tuner): def __init__(self, search_space, X, y, feval, fit_params=None, oof_fit_params=None, **kwargs): """ @param search_space: @param X: @param y: @param feval: @param fit_params: 原生fit参数 @param oof_fit_params: dict(sample_weight=None, X_test=None, feval=None, cv=5, split_seed=777, target_index=None) @param kwargs: """ super().__init__(search_space, **kwargs) self.X = X self.y = y self.feval = feval self.fit_params = fit_params self.oof_fit_params = oof_fit_params if oof_fit_params is not None else {} def objective(self, trial: optuna.trial.Trial): params = self.trial_choice(trial) task = 'Classifier' if check_classification(self.y) else 'Regressor' _ = ( LGBMOOF(params=params, fit_params=self.fit_params, task=task) .fit(self.X, self.y, feval=self.feval, **self.oof_fit_params) ) if _ is None: raise ValueError("Target is None⚠️") return _ if __name__ == '__main__': y = [1, 1, 0, 0] y_pred = [0.1, 0.2, 0.3, 0.4] # opt = F1Optimizer({'threshold': 0.1}, y, y_pred) opt = F1Optimizer("./search_space/f1.yaml", y, y_pred) opt.optimize( 100, direction='minimize', study_name='test', storage="sqlite:////Users/yuanjie/Desktop/Projects/Python/aizoo/aizoo/tuner/test.db", load_if_exists=True # cli --skip-if-exists ) # optuna-dashboard sqlite:////Users/yuanjie/Desktop/Projects/Python/aizoo/aizoo/tuner/test.db print(opt.trials_dataframe) ```
{ "source": "Jie-Yuan/autokeras", "score": 2 }
#### File: autokeras/autokeras/layer_utils.py ```python import tensorflow as tf from sklearn import model_selection from tensorflow.python.util import nest from autokeras import const def get_global_average_pooling_layer(shape): return [tf.keras.layers.GlobalAveragePooling1D, tf.keras.layers.GlobalAveragePooling2D, tf.keras.layers.GlobalAveragePooling3D][len(shape) - 3] def get_global_max_pooling_layer(shape): return [tf.keras.layers.GlobalMaxPool1D, tf.keras.layers.GlobalMaxPool2D, tf.keras.layers.GlobalMaxPool3D][len(shape) - 3] def format_inputs(inputs, name=None, num=None): inputs = nest.flatten(inputs) if not isinstance(inputs, list): inputs = [inputs] if num is None: return inputs if not len(inputs) == num: raise ValueError('Expected {num} elements in the ' 'inputs list for {name} ' 'but received {len} inputs.'.format(num=num, name=name, len=len(inputs))) return inputs def split_train_to_valid(x, y): # Generate split index validation_set_size = int(len(x[0]) * const.Constant.VALIDATION_SET_SIZE) validation_set_size = min(validation_set_size, 500) validation_set_size = max(validation_set_size, 1) train_index, valid_index = model_selection.train_test_split( range(len(x[0])), test_size=validation_set_size, random_state=const.Constant.SEED) # Split the data x_train = [] y_train = [] x_val = [] y_val = [] for temp_x in x: x_train.append(temp_x[train_index]) x_val.append(temp_x[valid_index]) for temp_y in y: y_train.append(temp_y[train_index]) y_val.append(temp_y[valid_index]) return (x_train, y_train), (x_val, y_val) def get_name_scope(): with tf.name_scope('a') as scope: name_scope = scope[:-2] return name_scope ```
{ "source": "Jie-Yuan/BaiduAI-sdk", "score": 3 }
#### File: Jie-Yuan/BaiduAI-sdk/kg.py ```python import json import urllib import requests import json import urllib import requests class BaiDuNLP(object): def __init__(self, api_key='<KEY>', secret_key='<KEY>'): self.access_token = None self._get_access_token(api_key, secret_key) def predict(self, text, api_url): """ api_url = 'https://aip.baidubce.com/rpc/2.0/kg/v1/cognitive/entity_annotation?charset=UTF-8&access_token=' api = BaiDuNLP() api.predict('周杰伦', api_url) """ url = api_url + self.access_token # the input is json format input_text = {'data': text} input_text = json.dumps(input_text) r = requests.post(url, data=input_text, headers={'Content-Type': 'application/json'}) return r.json() def _get_access_token(self, api_key, secret_key): host = f'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}' request = urllib.request.Request(host) request.add_header('Content-Type', 'application/json; charset=UTF-8') response = urllib.request.urlopen(request) content = response.read() self.access_token = json.loads(content)['access_token'] ```
{ "source": "jieyuan-bi/finduofagroup", "score": 2 }
#### File: findclassmate/users/models.py ```python from django.db import models from courses.models import ClassModel from django.utils import timezone from PIL import Image baseurl = 'http://192.168.0.209:8000' class UserModel(models.Model): name = models.CharField(max_length=255, unique=True) password = models.CharField(max_length=255) gender = models.CharField(max_length=255) classes = models.ManyToManyField(ClassModel) #the class joined role = models.IntegerField(default=0) #guest-0, user-1, admin-2 create_time = models.DateTimeField(default=timezone.now) phone = models.CharField(max_length=255) wechat = models.CharField(max_length=255) email = models.EmailField() major = models.CharField(max_length=255) onecard = models.ImageField(upload_to='uploads/') class Meta: ordering = ('name',) db_table = 'users_user' def get_onecard(self): if self.onecard: return baseurl + self.onecard.url return '' ``` #### File: findclassmate/users/utils.py ```python import logging from django.db.models import Q from .models import * from passlib.context import CryptContext # Get an instance of a logger logger = logging.getLogger(__name__) #encrypt the password def encryptPassword(password): pwd_context = CryptContext( schemes=["pbkdf2_sha256"], default="<PASSWORD>", pbkdf2_sha256__default_rounds=30000 ) return pwd_context.encrypt(password) #check if the password match the hashed one #@return def checkPassword(account, password): role = UserModel.objects.get(name=account).role pwd_context = CryptContext( schemes=["pbkdf2_sha256"], default="pbkdf2_sha256", pbkdf2_sha256__default_rounds=30000 ) hashed = UserModel.objects.get(name=account).password # logger.info('[Users] check_password' +hashed ) validity = pwd_context.verify(password, hashed) return validity, role #create super super user def createAdmin(): name='jieyuan' password='<PASSWORD>' password = encryptPassword(password) UserModel.objects.create(name=name,password=password,role=2) return #search user with query #@return serialized users def searchUser(query): users = UserModel.objects.filter(Q(name__icontains=query)) result = [] for user in users: data = {'name':user.name,'gender':user.gender,'phone':user.phone,'wechat':user.wechat,'email':user.email,'onecard':user.get_onecard(), 'role':user.role,'create_time':user.create_time, 'major':user.major} result.append(data) return result ``` #### File: findclassmate/users/views.py ```python from re import A from django.shortcuts import render from django.template import response from django.db import IntegrityError from rest_framework.views import APIView from rest_framework.response import Response from .utils import * from .models import * import logging import os from django.conf import settings from django.core.files import File # Get an instance of a logger logger = logging.getLogger(__name__) # returns all the catalogues and subjects class SignupView(APIView): # permission_classes = (IsAuthenticated,) def post(self, request, *args, **kwargs): name = request.data.get('name') email = request.data.get('email') phone = request.data.get('phone') password = request.data.get('password') wechat = request.data.get('wechat') major = request.data.get('major') gender = request.data.get('gender') onecard = request.FILES['onecard'] response={'success':'1'} safe_password = <PASSWORD>(password) logger.info('onecard',onecard) image_name = onecard.name image_path = os.path.join(settings.MEDIA_ROOT, image_name) #create a dir when not exist try: os.mkdir(settings.MEDIA_ROOT) except Exception: pass #save file to local f = open(image_path,'wb') for i in onecard.chunks(): f.write(i) f.close() # try to create a new registered user try: UserModel.objects.create(name=name, gender=gender, email=email, major=major, phone=phone, wechat=wechat, password=<PASSWORD>,onecard=image_name) # if the username already exist, give a flag except IntegrityError as e: response['success']='-1' except Exception as e: # logger.info("[Users] Fail to create user!\n", e) response['success']='0' return Response(response) class LoginView(APIView): # permission_classes = (IsAuthenticated,) def post(self, request, *args, **kwargs): account = request.data.get('account') password = request.data.get('password') response={'success':1} #create admin_account,super super user # try: # createAdmin() # except Exception: # pass try: check_password, role = checkPassword(account, password) except Exception: response['success']=0 return Response(response) # logger.info(check_password ) if not check_password: response['success']=0 response['role']=role return Response(response) class getUsersView(APIView): def get(self, request, *args, **kwargs): result = UserModel.objects.all() response={} response['users']=[] for i in result: user = {'name':i.name,'gender':i.gender,'phone':i.phone,'wechat':i.wechat,'email':i.email,'onecard':i.get_onecard(), 'role':i.role,'create_time':i.create_time, 'major':i.major} response['users'].append(user) return Response(response) class adminSearchView(APIView): def get(self, request, *args, **kwargs): query = request.GET.get('query') logger.info('query:', query) users = searchUser(query) response={} response['users']=users return Response(response) class confirmOnecardView(APIView): def post(self, request, *args, **kwargs): name = request.data.get('name') response={} response['success']=0 #supersuper user cannot change # logger.info('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!name:',name) if name=='jieyuan': return Response(response) try: user = UserModel.objects.get(name=name) user.role=1 user.save() response['success']=1 except Exception as e: pass return Response(response) ```
{ "source": "Jie-Yuan/ChatGo", "score": 3 }
#### File: chatgo/utils/topnews.py ```python import pandas as pd def get(idx, url='http://web.algo.browser.miui.srv/data/feed/recall?q=topnews'): _ = pd.read_html(url, encoding='utf-8')[0][1].tolist()[:idx] return ':\n' + '\n\n'.join(_) ```
{ "source": "Jie-Yuan/CTRZOO", "score": 3 }
#### File: ctrzoo/dateset/Dataset.py ```python import numpy as np import pandas as pd import tensorflow as tf from functools import partial class Dataset(object): """ https://tensorflow.google.cn/guide/data?hl=zh_cn """ def __init__(self, batchsize=128, cache_filename=""): self.batchsize = batchsize self.cache_filename = cache_filename def from_cache(self, inputs, outputs=None, is_test=False, shuffle_buffer_size=10000, shuffle_seed=None): """ 多输入多输出inputs/outputs对应元组 """ if isinstance(inputs, tuple): # Multi-inputs pass elif isinstance(inputs, (list, np.ndarray, dict, pd.DataFrame)): if isinstance(inputs, pd.DataFrame): inputs = inputs.to_dict('list') else: raise ValueError("`inputs` Data Type Error") if outputs is None: tensors = (inputs,) else: tensors = (inputs, outputs) # Common ds = tf.data.Dataset.from_tensor_slices(tensors) if outputs is None or is_test: # 避免测试集shuffle pass else: ds = ds.shuffle(shuffle_buffer_size, seed=shuffle_seed) ds = ds.batch(self.batchsize) ds = ds.prefetch(tf.data.experimental.AUTOTUNE) # todo: .repeat() 更乱一些???在每个epoch内将图片打乱组成大小为32的batch,并重复10次。 return ds def from_generator(self): # TODO: 增加对文件的操作(txt/tfrecord) # tf.data.Dataset.from_generator() pass def _from_np_array(self, array): # Common buffer_size = len(array) ds = tf.data.Dataset.from_tensor_slices(array) ds = ds.shuffle(buffer_size, seed=None) ds = ds.batch(self.batchsize) ds = ds.prefetch(tf.data.experimental.AUTOTUNE) return ds def _from_pd_dataframe(self, df: pd.DataFrame, label="label"): """ import tensorflow as tf dataset = tf.data.Dataset.from_tensor_slices(({"a": [1, 2], "b": [3, 4]}, [0, 1])) print(list(dataset.as_numpy_iterator())) :param df: :param label: :return: """ if label and label in df.columns: df = df.drop(labels=[label], axis=1) labels = df[label] tensors = (df.to_dict('list'), labels) # df.to_dict('series') else: tensors = df.to_dict('list') # Common buffer_size = len(df) ds = tf.data.Dataset.from_tensor_slices(tensors) ds = ds.shuffle(buffer_size, seed=None) ds = ds.batch(self.batchsize) ds = ds.prefetch(tf.data.experimental.AUTOTUNE) # features_dataset = tf.data.Dataset.from_tensor_slices(features) # labels_dataset = tf.data.Dataset.from_tensor_slices(labels) # tf.data.Dataset.zip((features_dataset, labels_dataset)) return ds def from_tfrecord(self, feature_dict: dict, file_pattern: str = None, label='label', file_shuffle=True, file_shuffle_seed=666, shuffle_buffer_size=0): """注意缺失值问题 ds = Dataset() feature_dict = { 'id': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'feature': tf.io.FixedLenFeature((), tf.int64, default_value=0) # default_value=tf.zeros([], dtype=tf.float32) } ds = ds.from_tfrecord(feature_dict, '/Users/yuanjie/Desktop/Projects/Spark/MIPush/test-output.tfrecord/part*') :param feature_dict: :param file_pattern: :param shuffle: :param seed: :param shuffle_buffer_size: :return: """ # TODO: cache # assert isinstance(filename, str), f"file path error: {filename}" # # if Path(filename).is_dir(): # filename = list(map(str, Path(filename).glob(glob_regex))) # tf.data.Dataset.list_files # parser_fn = partial(tf.io.parse_single_example, features=feature_dict) parser_fn = partial(self._tfrecord_parser_fn, features=feature_dict, label=label) filenames = tf.data.Dataset.list_files(file_pattern, file_shuffle, file_shuffle_seed) # ds ds = tf.data.TFRecordDataset(filenames, num_parallel_reads=tf.data.experimental.AUTOTUNE) ds = ds.map(parser_fn) if shuffle_buffer_size > 0: ds = ds.shuffle(shuffle_buffer_size, seed=None, reshuffle_each_iteration=True) ds = ds.batch(self.batchsize) ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) # 若内存泄露,需手动指定 return ds def _tfrecord_parser_fn(self, example_photo, features, label='label'): _ = tf.io.parse_single_example(example_photo, features=features) return _, _.pop(label) # X, y ``` #### File: features/transformer/smooth_utils.py ```python import numpy as np def walson_ctr(num_click, num_pv, z=1.96): """:arg 威尔逊 https://mp.weixin.qq.com/s/rLP1wsS0a71q5RA7NQcjdQ """ p = num_click / num_pv if p > 0.9: return 0.0 n = num_pv A = p + z ** 2 / (2 * n) B = np.sqrt(p * (1 - p) / n + z ** 2 / (4 * (n ** 2))) C = z * B D = 1 + z ** 2 / n ctr = (A - C) / D return ctr ```
{ "source": "jieyuanCUHK/DeeperCount", "score": 3 }
#### File: DeeperCount/02_source_code_for_training/4_get_ready_for_training.py ```python from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img import numpy as np import os import glob import cv2 import cv2 import sys #from libtiff import TIFF class myAugmentation(object): def __init__(self, aug_merge_path="./03_image_directory/After_augmentation_primary", aug_train_path="./03_image_directory/Final_train", aug_label_path="./03_image_directory/Final_label", img_type="tif"): self.img_type = img_type self.aug_merge_path = aug_merge_path self.aug_train_path = aug_train_path self.aug_label_path = aug_label_path self.aug_imgs=glob.glob(aug_merge_path+"/*."+img_type) self.slices = len(self.aug_imgs) def splitMerge(self): """ split merged image (after image augmentation) apart """ path_merge = self.aug_merge_path path_train = self.aug_train_path path_label = self.aug_label_path path = path_merge + "/" train_imgs = glob.glob(path+"/*."+self.img_type) savedir = path_train + "/" if not os.path.lexists(savedir): os.mkdir(savedir) savedir = path_label + "/" if not os.path.lexists(savedir): os.mkdir(savedir) count=0 for imgname in train_imgs: midname = imgname[imgname.rindex("/")+1:imgname.rindex("."+self.img_type)] img = cv2.imread(imgname) img_train = img[:,:,2]#cv2 read image rgb->bgr img_label = img[:,:,0] cv2.imwrite(path_train+"/"+midname+"_train"+"."+self.img_type,img_train) cv2.imwrite(path_label+"/"+midname+"_label"+"."+self.img_type,img_label) count=count+1 if count==len(train_imgs): break class dataProcess(object): def __init__(self, out_rows, out_cols, data_path, label_path, npy_path = "./", img_type = "tif"): self.out_rows = out_rows self.out_cols = out_cols self.data_path = data_path self.label_path = label_path self.img_type = img_type self.npy_path = npy_path def create_train_data_aug(self): i = 0 print('Creating training images') print('-'*30) imgs = glob.glob(self.data_path+"/*."+self.img_type) corr_labels= glob.glob(self.label_path+"/*."+self.img_type) imgs.sort() corr_labels.sort() imgdatas = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8) imglabels = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8) for itering in zip(imgs,corr_labels): imgname=itering[0] labelname=itering[1] midname = imgname[imgname.rindex("/")+1:] midname_label= labelname[labelname.rindex("/")+1:] img = load_img(self.data_path + "/" + midname,grayscale = True) label = load_img(self.label_path + "/" + midname_label,grayscale = True) img = img_to_array(img) label = img_to_array(label) #img = cv2.imread(self.data_path + "/" + midname,cv2.IMREAD_GRAYSCALE) #label = cv2.imread(self.label_path + "/" + midname,cv2.IMREAD_GRAYSCALE) #img = np.array([img]) #label = np.array([label]) imgdatas[i] = img imglabels[i] = label if i % 100 == 0: print('Done: {0}/{1} images'.format(i, len(imgs))) i += 1 print('Creation finished') print('-'*30) np.save(self.npy_path + '/aug_imgs_train.npy', imgdatas) np.save(self.npy_path + '/aug_imgs_mask_train.npy', imglabels) print('Saving to .npy files completed') if __name__ == "__main__": au=myAugmentation() au.splitMerge() mydata_t= dataProcess(512,512,data_path="./03_image_directory/Final_train",label_path="./03_image_directory/Final_label",npy_path="./03_image_directory/") mydata_t.create_train_data_aug() ```
{ "source": "Jie-Yuan/Deeps", "score": 2 }
#### File: serving/onnx/inference.py ```python import numpy as np import onnxruntime as rt class Inference(object): def __init__(self, path="./iris.onnx"): self.sess = rt.InferenceSession(path) self._describe() def run(self, X): _ = self.sess.get_inputs()[0] self.input_name = _.name # self.input_shape = tuple(_.shape) # assert X.shape == self.input_shape if not isinstance(X[0][0], np.float32): X = X.astype(np.float32) return self.sess.run(None, {self.input_name: X}) # 概率输出 or 类别输出 def _describe(self): for attr_ in ['get_inputs', 'get_outputs']: _puts = self.sess.__getattribute__(attr_)() for i, _put in enumerate(_puts, 1): print({attr_.split('_')[-1][:-1].title() + str(i): (_put.type, _put.name, _put.shape)}) ``` #### File: inn/layers/_Prediction.py ```python import tensorflow as tf from tensorflow.keras.initializers import Zeros class Prediction(tf.keras.layers.Layer): def __init__(self, task='binary', use_bias=False, num_class=0, name='Prediction', **kwargs): """https://github.com/shenweichen/DeepCTR/issues/211 :param task: ["binary", "multiclass", "regression"] :param use_bias: :param kwargs: """ super().__init__(name=name, **kwargs) if task not in ["binary", "multiclass", "regression"]: raise ValueError("task must be binary, multiclass or regression") self.task = task self.use_bias = use_bias self.num_class = num_class def build(self, input_shape): super().build(input_shape) if self.use_bias: self.global_bias = self.add_weight( shape=(self.num_class,) if self.task == "multiclass" else (1,), initializer=Zeros(), name="global_bias") def call(self, inputs, **kwargs): x = inputs if self.use_bias: x = tf.nn.bias_add(x, self.global_bias, data_format='NHWC') if self.task == "binary": x = tf.sigmoid(x) # [[pred1], [pred2]] output = tf.reshape(x, (-1, 1)) elif self.task == "multiclass": x = tf.nn.softmax(x) output = tf.reshape(x, (-1, self.num_class)) else: # regression output = x return output def compute_output_shape(self, input_shape): if self.task == "multiclass": return (None, self.num_class) else: return (None, 1) def get_config(self, ): base_config = super().get_config() config = {'task': self.task, 'use_bias': self.use_bias, 'num_class': self.num_class} return {**base_config, **config} ``` #### File: inn/models/BaseModel.py ```python from abc import abstractmethod from typing import Any, Callable, Dict, List, Optional, Sequence, Type, Union import tensorflow as tf from tensorflow.python.feature_column.feature_column_v2 import \ FeatureColumn, NumericColumn, CategoricalColumn, SequenceCategoricalColumn, EmbeddingColumn, \ BucketizedColumn class BaseModel(object): def __init__(self, # todo: 初始化基础属性 feature_columns: List[FeatureColumn] = None, task='binary', num_class=None, early_stopping_epochs=3): self.feature_columns = feature_columns self.task = task if task == 'multiclass': assert num_class is not None, "num_class must not be None" self.num_class = num_class self.early_stopping_epochs = early_stopping_epochs @abstractmethod def model(self): raise NotImplementedError() def compile(self, optimizer='rmsprop', loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, distribute=None, **kwargs, ): self.model.compile(optimizer=optimizer, loss=loss, metrics=metrics, loss_weights=loss_weights, sample_weight_mode=sample_weight_mode, weighted_metrics=weighted_metrics, target_tensors=target_tensors, distribute=distribute, **kwargs, ) def plot(self, to_file='model.png', show_shapes=False, show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96): tf.keras.utils.plot_model(self.model, to_file=to_file, show_shapes=show_shapes, show_layer_names=show_layer_names, rankdir=rankdir, expand_nested=expand_nested, dpi=dpi) def callbacks(self): callbacks_list = [ tf.keras.callbacks.ReduceLROnPlateau(factor=0.9, patience=2, verbose=1, min_lr=0.0001), # annealer = LearningRateScheduler(lambda x: min(0.01 * 0.9 ** x, 0.001), verbose=1) tf.keras.callbacks.ModelCheckpoint("filepath", monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', save_freq='epoch'), tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=self.early_stopping_epochs, verbose=0, mode='auto', baseline=None, restore_best_weights=False) ] return callbacks_list # todo: 学习率clr_callback, WandbCallback ``` #### File: tricks/online_info/get_label.py ```python import numpy as np import pandas as pd def get_threshold_or_label(preds, psr, only_return_threshold=False): """默认: 指标>阈值为正样本 :param psr: Positive sample ratio :return: """ threshold = pd.Series(preds).quantile(1 - psr) if only_return_threshold: return threshold else: return np.where(preds > threshold, 1, 0) # def threshold_search(y_true, y_proba): # best_threshold = 0 # best_score = 0 # for threshold in tqdm([i * 0.01 for i in range(100)]): # score = f1_score(y_true=y_true, y_pred=y_proba > threshold) # if score > best_score: # best_threshold = threshold # best_score = score # search_result = {'threshold': best_threshold, 'f1': best_score} # return search_result ```
{ "source": "Jie-Yuan/DeepTricks", "score": 3 }
#### File: deeptricks/layers/DNN.py ```python import tensorflow as tf from tensorflow.python.keras import backend as K from tensorflow.python.keras.initializers import Zeros, glorot_normal from tensorflow.python.keras.layers import Layer from tensorflow.python.keras.regularizers import l2 class DNN(Layer): def __init__(self, hidden_units, activation='relu', l2_reg=0, dropout_rate=0, use_bn=False, seed=1024, **kwargs): self.hidden_units = hidden_units self.activation = activation self.dropout_rate = dropout_rate self.seed = seed self.l2_reg = l2_reg self.use_bn = use_bn self.hidden_units_index = range(len(self.hidden_units)) super(DNN, self).__init__(**kwargs) def build(self, input_shape): input_size = input_shape[-1] hidden_units = [int(input_size)] + list(self.hidden_units) # range(len(self.hidden_units)) self.kernels = [] self.bias = [] for i in range(len(self.hidden_units)): kernel = self.add_weight( name='kernel' + str(i), shape=(hidden_units[i], hidden_units[i + 1]), initializer=glorot_normal(seed=self.seed), regularizer=l2(self.l2_reg), trainable=True ) bias = self.add_weight( name='bias' + str(i), shape=(self.hidden_units[i],), initializer=Zeros(), trainable=True ) self.kernels.append(kernel) self.bias.append(bias) if self.use_bn: self.bn_layers = [tf.keras.layers.BatchNormalization()] * len(self.hidden_units) self.dropout_layers = [tf.keras.layers.Dropout()] * len(self.hidden_units) self.activation_layers = [activation_layer(self.activation)] * len(self.hidden_units) super(DNN, self).build(input_shape) # Be sure to call this somewhere! 传递信息? def call(self, inputs, training=None, **kwargs): deep_input = inputs for i in range(len(self.hidden_units)): fc = tf.nn.bias_add(tf.tensordot(deep_input, self.kernels[i], axes=(-1, 0)), self.bias[i]) fc = self.bn_layers[i](fc, training=training) if self.use_bn else fc fc = self.activation_layers[i](fc) fc = self.dropout_layers[i](fc, training=training) return fc def compute_output_shape(self, input_shape): if len(self.hidden_units) > 0: shape = input_shape[:-1] + (self.hidden_units[-1],) else: shape = input_shape return tuple(shape) def get_config(self, ): config = { 'activation': self.activation, 'hidden_units': self.hidden_units, 'l2_reg': self.l2_reg, 'use_bn': self.use_bn, 'dropout_rate': self.dropout_rate, 'seed': self.seed } base_config = super(DNN, self).get_config() # TODO: 更新配置信息 return {**base_config, **config} # return dict(list(base_config.items()) + list(config.items())) ``` #### File: deeptricks/layers/__init__.py ```python from functools import partial from collections import Iterable from keras.layers import Dense # last layer: 'softmax' or 'sigmoid' def getDenseList(unitsList, activation=None): assert isinstance(unitsList, Iterable) dense = partial(Dense, activation=activation) return map(dense, unitsList) ```
{ "source": "Jie-Yuan/finch", "score": 2 }
#### File: tensorflow/attn_is_all_u_need/model.py ```python from config import args from modules import * import tensorflow as tf def forward_pass(sources, targets, params, reuse=False): with tf.variable_scope('forward_pass', reuse=reuse): pos_enc = _get_position_encoder() # ENCODER en_masks = tf.sign(sources) with tf.variable_scope('encoder_embedding', reuse=reuse): encoded = embed_seq( sources, params['source_vocab_size'], args.hidden_units, zero_pad=True, scale=True) with tf.variable_scope('encoder_position_encoding', reuse=reuse): encoded += pos_enc(sources, en_masks, args.hidden_units) with tf.variable_scope('encoder_dropout', reuse=reuse): encoded = tf.layers.dropout(encoded, args.dropout_rate, training=(not reuse)) for i in range(args.num_blocks): with tf.variable_scope('encoder_attn_%d'%i, reuse=reuse): encoded = multihead_attn(queries=encoded, keys=encoded, q_masks=en_masks, k_masks=en_masks, num_units=args.hidden_units, num_heads=args.num_heads, dropout_rate=args.dropout_rate, future_binding=False, reuse=reuse, activation=None) with tf.variable_scope('encoder_feedforward_%d'%i, reuse=reuse): encoded = pointwise_feedforward(encoded, num_units=[4*args.hidden_units, args.hidden_units], activation=params['activation']) # DECODER decoder_inputs = _shift_right(targets, params['start_symbol']) de_masks = tf.sign(decoder_inputs) if args.tied_embedding: with tf.variable_scope('encoder_embedding', reuse=True): decoded = embed_seq(decoder_inputs, params['target_vocab_size'], args.hidden_units, zero_pad=True, scale=True) else: with tf.variable_scope('decoder_embedding', reuse=reuse): decoded = embed_seq( decoder_inputs, params['target_vocab_size'], args.hidden_units, zero_pad=True, scale=True) with tf.variable_scope('decoder_position_encoding', reuse=reuse): decoded += pos_enc(decoder_inputs, de_masks, args.hidden_units) with tf.variable_scope('decoder_dropout', reuse=reuse): decoded = tf.layers.dropout(decoded, args.dropout_rate, training=(not reuse)) for i in range(args.num_blocks): with tf.variable_scope('decoder_self_attn_%d'%i, reuse=reuse): decoded = multihead_attn(queries=decoded, keys=decoded, q_masks=de_masks, k_masks=de_masks, num_units=args.hidden_units, num_heads=args.num_heads, dropout_rate=args.dropout_rate, future_binding=True, reuse=reuse, activation=None) with tf.variable_scope('decoder_attn_%d'%i, reuse=reuse): decoded = multihead_attn(queries=decoded, keys=encoded, q_masks=de_masks, k_masks=en_masks, num_units=args.hidden_units, num_heads=args.num_heads, dropout_rate=args.dropout_rate, future_binding=False, reuse=reuse, activation=None) with tf.variable_scope('decoder_feedforward_%d'%i, reuse=reuse): decoded = pointwise_feedforward(decoded, num_units=[4*args.hidden_units, args.hidden_units], activation=params['activation']) # OUTPUT LAYER if args.tied_proj_weight: b = tf.get_variable('bias', [params['target_vocab_size']], tf.float32) _scope = 'encoder_embedding' if args.tied_embedding else 'decoder_embedding' with tf.variable_scope(_scope, reuse=True): shared_w = tf.get_variable('lookup_table') decoded = tf.reshape(decoded, [-1, args.hidden_units]) logits = tf.nn.xw_plus_b(decoded, tf.transpose(shared_w), b) logits = tf.reshape(logits, [tf.shape(sources)[0], -1, params['target_vocab_size']]) else: with tf.variable_scope('output_layer', reuse=reuse): logits = tf.layers.dense(decoded, params['target_vocab_size'], reuse=reuse) return logits def _model_fn_train(features, mode, params, logits): with tf.name_scope('backward'): targets = features['target'] masks = tf.to_float(tf.not_equal(targets, 0)) if args.label_smoothing: loss_op = label_smoothing_sequence_loss( logits=logits, targets=targets, weights=masks, label_depth=params['target_vocab_size']) else: loss_op = tf.contrib.seq2seq.sequence_loss( logits=logits, targets=targets, weights=masks) if args.lr_decay_strategy == 'noam': step_num = tf.train.get_global_step() + 1 # prevents zero global step lr = _get_noam_lr(step_num) elif args.lr_decay_strategy == 'exp': lr = tf.train.exponential_decay(1e-3, tf.train.get_global_step(), 100000, 0.1) else: raise ValueError("lr decay strategy must be one of 'noam' and 'exp'") log_hook = tf.train.LoggingTensorHook({'lr': lr}, every_n_iter=100) train_op = tf.train.AdamOptimizer(lr).minimize(loss_op, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec( mode=mode, loss=loss_op, train_op=train_op, training_hooks=[log_hook]) def _model_fn_predict(features, mode, params): def cond(i, x, temp): return i < args.target_max_len def body(i, x, temp): logits = forward_pass(features['source'], x, params, reuse=True) ids = tf.argmax(logits, -1)[:, i] ids = tf.expand_dims(ids, -1) temp = tf.concat([temp[:, 1:], ids], -1) x = tf.concat([temp[:, -(i+1):], temp[:, :-(i+1)]], -1) x = tf.reshape(x, [tf.shape(temp)[0], args.target_max_len]) i += 1 return i, x, temp _, res, _ = tf.while_loop(cond, body, [tf.constant(0), features['target'], features['target']]) return tf.estimator.EstimatorSpec(mode=mode, predictions=res) def tf_estimator_model_fn(features, labels, mode, params): logits = forward_pass(features['source'], features['target'], params) if mode == tf.estimator.ModeKeys.TRAIN: _ = forward_pass(features['source'], features['target'], params, reuse=True) return _model_fn_train(features, mode, params, logits) if mode == tf.estimator.ModeKeys.PREDICT: return _model_fn_predict(features, mode, params) def _shift_right(targets, start_symbol): start_symbols = tf.cast(tf.fill([tf.shape(targets)[0], 1], start_symbol), tf.int64) return tf.concat([start_symbols, targets[:, :-1]], axis=-1) def _get_position_encoder(): if args.position_encoding == 'non_param': pos_enc = sinusoidal_position_encoding elif args.position_encoding == 'param': pos_enc = learned_position_encoding else: raise ValueError("position encoding has to be either 'sinusoidal' or 'learned'") return pos_enc def _get_noam_lr(step_num): return tf.rsqrt(tf.to_float(args.hidden_units)) * tf.minimum( tf.rsqrt(tf.to_float(step_num)), tf.to_float(step_num) * tf.convert_to_tensor(args.warmup_steps ** (-1.5))) ``` #### File: tensorflow/end2end_mn/model.py ```python from config import args import tensorflow as tf import numpy as np def model_fn(features, labels, mode, params): if labels is None: labels = tf.zeros([tf.shape(features['inputs'])[0], params['max_answer_len']], tf.int64) logits = forward(features, params, is_training=True, seq_inputs=shift_right(labels, params)) predicted_ids = forward(features, params, is_training=False) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predicted_ids) if mode == tf.estimator.ModeKeys.TRAIN: loss_op = tf.reduce_mean(tf.contrib.seq2seq.sequence_loss( logits=logits, targets=labels, weights=tf.ones_like(labels, tf.float32))) train_op = tf.train.AdamOptimizer().minimize(loss_op, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss_op, train_op=train_op) def forward(features, params, is_training, seq_inputs=None, reuse=tf.AUTO_REUSE): with tf.variable_scope('memory_o', reuse=reuse): memory_o = input_mem(features['inputs'], params, is_training) with tf.variable_scope('memory_i', reuse=reuse): memory_i = input_mem(features['inputs'], params, is_training) with tf.variable_scope('questions', reuse=reuse): question = quest_mem(features['questions'], params, is_training) match = tf.matmul(question, tf.transpose(memory_i, [0,2,1])) match = pre_softmax_masking(match, features['inputs_len'], params['max_input_len']) match = tf.nn.softmax(match) # (batch, question_maxlen, input_maxlen) match = post_softmax_masking(match, features['questions_len'], params['max_quest_len']) response = tf.matmul(match, memory_o) with tf.variable_scope('memory_o', reuse=True): embedding = tf.get_variable('lookup_table') with tf.variable_scope('answer', reuse=reuse): answer = tf.layers.flatten(tf.concat([response, question], -1)) output = answer_module(features, params, answer, embedding, is_training, seq_inputs) return output def input_mem(x, params, is_training): x = embed_seq(x, params) x = tf.layers.dropout(x, args.dropout_rate, training=is_training) pos = position_encoding(params['max_sent_len'], args.hidden_dim) x = tf.reduce_sum(x * pos, 2) return x def quest_mem(x, params, is_training): x = embed_seq(x, params) x = tf.layers.dropout(x, args.dropout_rate, training=is_training) pos = position_encoding(params['max_quest_len'], args.hidden_dim) return (x * pos) def answer_module(features, params, answer, embedding, is_training, seq_inputs=None): answer = tf.layers.dense(answer, args.hidden_dim, name='answer_hidden') init_state = tf.layers.dropout(answer, args.dropout_rate, training=is_training) if is_training: helper = tf.contrib.seq2seq.TrainingHelper( inputs = tf.nn.embedding_lookup(embedding, seq_inputs), sequence_length = tf.to_int32(features['answers_len'])) decoder = tf.contrib.seq2seq.BasicDecoder( cell = GRU('decoder_rnn'), helper = helper, initial_state = init_state, output_layer = tf.layers.Dense(params['vocab_size'], name='vocab_proj')) decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode( decoder = decoder) return decoder_output.rnn_output else: helper = tf.contrib.seq2seq.GreedyEmbeddingHelper( embedding = embedding, start_tokens = tf.tile( tf.constant([params['<start>']], dtype=tf.int32), [tf.shape(init_state)[0]]), end_token = params['<end>']) decoder = tf.contrib.seq2seq.BasicDecoder( cell = GRU('decoder_rnn'), helper = helper, initial_state = init_state, output_layer = tf.layers.Dense(params['vocab_size'], name='vocab_proj')) decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode( decoder = decoder, maximum_iterations = params['max_answer_len']) return decoder_output.sample_id def pre_softmax_masking(x, seq_len, max_seq_len): paddings = tf.fill(tf.shape(x), float('-inf')) T = x.get_shape().as_list()[1] masks = tf.sequence_mask(seq_len, max_seq_len, dtype=tf.float32) masks = tf.tile(tf.expand_dims(masks, 1), [1, T, 1]) return tf.where(tf.equal(masks, 0), paddings, x) def post_softmax_masking(x, seq_len, max_seq_len): T = x.get_shape().as_list()[-1] masks = tf.sequence_mask(seq_len, max_seq_len, dtype=tf.float32) masks = tf.tile(tf.expand_dims(masks, -1), [1, 1, T]) return (x * masks) def shift_right(x, params): batch_size = tf.shape(x)[0] start = tf.to_int64(tf.fill([batch_size, 1], params['<start>'])) return tf.concat([start, x[:, :-1]], 1) def GRU(name, rnn_size=None): rnn_size = args.hidden_dim if rnn_size is None else rnn_size return tf.nn.rnn_cell.GRUCell( rnn_size, kernel_initializer=tf.orthogonal_initializer(), name=name) def embed_seq(x, params, zero_pad=True): lookup_table = tf.get_variable('lookup_table', [params['vocab_size'], args.hidden_dim], tf.float32) if zero_pad: lookup_table = tf.concat((tf.zeros([1, args.hidden_dim]), lookup_table[1:, :]), axis=0) return tf.nn.embedding_lookup(lookup_table, x) def position_encoding(sentence_size, embedding_size): encoding = np.ones((embedding_size, sentence_size), dtype=np.float32) ls = sentence_size + 1 le = embedding_size + 1 for i in range(1, le): for j in range(1, ls): encoding[i-1, j-1] = (i - (le-1)/2) * (j - (ls-1)/2) encoding = 1 + 4 * encoding / embedding_size / sentence_size return np.transpose(encoding) ```
{ "source": "Jie-Yuan/iNLP", "score": 2 }
#### File: explode/strokes/handian.py ```python import requests import time class Handian(object): def __init__(self): self.headers = { "Host": "www.zdic.net", "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:47.0) Gecko/20100101 Firefox/47.0", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language": "zh-TW,zh-CN;q=0.8,zh;q=0.6,en;q=0.4,en-US;q=0.2", "Accept-Encoding": "gzip, deflate", "Referer": "http://www.zdic.net/z/15/js/4EBA.htm", "Cookie": "UM_distinctid=16264efc020144-0cdc7740ca36d5-4323461-1aeaa0-16264efc02125e; " "ASPSESSIONIDCATTBADD=BIHGOGEBNPJNLMMGMHHJAKOP; ASPSESSIONIDCSSQSCSA=GCIALALAGJGGICPDGLHIFDDK; " "CNZZDATA524192=cnzz_eid%3D915161487-1522106804-null%26ntime%3D1522193207; cxls=%E6%9E%97; lb%5Fc=mh; " "lb%5Fb=mh; lb%5Fa=hp; tp=tp1; ASPSESSIONIDASQSRBQC=JDMHPALADHOGFHIPCAICKLNM", # 由于字数限制,这里省略掉cookie,见下文的回答 "Connection": "keep-alive", # "Connection": "close", } self.params = { "lb_a": "hp", "lb_b": "mh", "lb_c": "mh", "tp": "tp1", # "q": "我" "q": None } self.cookies = { "ASPSESSIONIDQQBTQBSA": "AIFKNJKBDMDCNKHIIAEFDLLD", "ASPSESSIONIDQQCQSATA": "BKEMOFHCOMBMDNCDLHIINGHD", "ASPSESSIONIDQQCSTBSA": "EGIHAKKBKKPDOFOKBGPODFHK", "ASPSESSIONIDQQDQTATA": "PPLMDDDBKICEEJANAPIECGHG", "ASPSESSIONIDQQDRRATA": "LDKKPNNAKMPDPFEGIIANBLJL", "ASPSESSIONIDQSCQSATA": "NPDPCONAILAPOLMFPFLPJKMH", "ASPSESSIONIDSQBRSATA": "DOFGMEICOILOJHJENECEOGDA", "ASPSESSIONIDSQCRSASB": "PKJIAMNBGNCJMONFLNOEHJPD", "ASPSESSIONIDSSDQTDQB": "MDBILFHCCKBIDADCMPHLLBLC", "CNZZDATA524192": "cnzz_eid=551846853-1465193430-&ntime=1469453481", "Hm_lpvt_57315eba0396d9939adbd0045addeae1": "1469451059", "Hm_lvt_57315eba0396d9939adbd0045addeae1": "1467616616,1469451059", "cxls": "人|伤|㤅|値|直|直|旣|愛|一|丨|丯|癶|丰|的|生|生活|𢟪|慹|情|囪|悤|靑|卄|青|鼂|廛|麻|陽", "cxls": "丨|丯|人|癶|丰|伤|一|的|生|生活|𢟪|慹|情|囪|悤|靑|卄|青|鼂|廛|麻|陽", "lb_a": "hp", "lb_b": "mh", "lb_c": "mh", "tp": "tp1", } def get_url(self, word): self.params = { "lb_a": "hp", "lb_b": "mh", "lb_c": "mh", "tp": "tp1", # "q": "我" "q": word } requests.adapters.DEFAULT_RETRIES = 50 s = requests.session() s.keep_alive = False time.sleep(2) response = requests.post("http://www.zdic.net/sousuo/", data=self.params, headers=self.headers, cookies=self.cookies) return response.url if __name__ == "__main__": handian = Handian() print(handian.get_url("我")) print(handian.get_url("你")) print(handian.get_url("烔")) ``` #### File: inlp/similarity/__init__.py ```python from simhash import Simhash class SimHaming: '''利用64位数,计算海明距离''' def haming_distance(self, code_s1, code_s2): x = (code_s1 ^ code_s2) & ((1 << 64) - 1) ans = 0 while x: ans += 1 x &= x - 1 return ans '''利用相似度计算方式,计算全文编码相似度''' def get_similarity(self, a, b): if a > b: return b / a else: return a / b def get_features(self, s): word_list = s return word_list '''计算两个全文编码的距离''' def get_distance(self, code_s1, code_s2): return self.haming_distance(code_s1, code_s2) '''对全文进行编码''' def get_code(self, string): return Simhash(self.get_features(string)).value '''计算s1与s2之间的距离''' def distance(self, s1, s2): """ s = '对全文进行分词,提取全文特征,使用词性将虚词等无关字符去重' word_list=[word.word for word in jieba.posseg.cut(s) if word.flag[0] not in ['u','x','w','o','p','c','m','q']] s1 = word_list s2 = ... """ code_s1 = self.get_code(s1) code_s2 = self.get_code(s2) similarity = (100 - self.haming_distance(code_s1, code_s2) * 100 / 64) / 100 return similarity simhash = SimHaming().distance ``` #### File: inlp/text_preprocessing/KerasBow.py ```python from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer class KerasBow(object): """doc 词袋模型:我们可以为数据集中的所有单词制作一张词表,然后将每个单词和一个唯一的索引关联。 每个句子都是由一串数字组成,这串数字是词表中的独立单词对应的个数。 通过列表中的索引,我们可以统计出句子中某个单词出现的次数。 """ def __init__(self, num_words=20000, maxlen=None): """ :param maxlen: 句子序列最大长度 :param num_words: top num_words-1(词频降序):保留最常见的num_words-1词 """ self.maxlen = maxlen self.num_words = num_words self.tokenizer = None def fit(self, docs): """ :param corpus: ['some thing to do', 'some thing to drink']与sklearn提取文本特征一致 """ print('Create Bag Of Words ...') self.tokenizer = Tokenizer(self.num_words, lower=False) # 不改变大小写(需提前预处理) self.tokenizer.fit_on_texts(docs) print("Get Unique Words In Corpus: %s" % len(self.tokenizer.word_index)) return self def transform(self, docs): print('Docs To Sequences ...') sequences = self.tokenizer.texts_to_sequences(docs) pad_docs = pad_sequences(sequences, self.maxlen, padding='post') if self.maxlen is None: self.maxlen = pad_docs.shape[1] return pad_docs def fit_transform(self, docs): self.fit(docs) return self.transform(docs) ```
{ "source": "Jie-Yuan/MeUtils", "score": 3 }
#### File: examples/betterme/j.py ```python import requests class ModelServer(object): def __init__(self, url='http://10.1.42.180:30061', serving='pmml'): self.metadata_url = f"{url}/{serving}/serving/metadata" self.predict_url = f"{url}/{serving}/serving/predict" fields = self.get_fields() self.input_fields, self.output_fields, self.target_fields = fields.values() print(fields) def get_fields(self): self._metadata = requests.get(self.metadata_url).json() _ = self._metadata.get('data', {}) func = lambda field: list(map(lambda x: x['field'].get('name', {}).get('value'), _[field])) return {field: func(field) for field in ['inputFields', 'outputFields', 'targetFields']} def predict(self, values=None): json = dict(zip(self.input_fields, values if values is None else range(len(self.input_fields)))) return requests.post(ms.predict_url, json=json).json() ``` #### File: examples/betterme/tophub_news.py ```python import typer import requests from lxml.etree import HTML from meutils.notice.wechat import Bot cli = typer.Typer(name="Tophub") def get_dom_tree(url="https://top.baidu.com/board?tab=realtime"): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE ' } r = requests.get(url, headers=headers) return HTML(r.text) @cli.command() def send_news(title='今日热榜', url='https://tophub.today/n/x9ozB4KoXb', bot_key='5f51e925-1257-4f90-88ea-f474bc1e2a05'): dom_tree = get_dom_tree(url) titles = dom_tree.xpath( """//*[@id="page"]/div[2]/div[2]/div[1]/div[2]/div/div[1]/table/tbody/tr[*]/td[2]/a/text()""" )[:10] titles = map(lambda x: x.strip().replace('\n', ' '), titles) titles = filter(lambda x: len(x) > 6, titles) titles = '\n'.join(map(lambda x: f"{x}", titles)) # {'#' * 8} print(titles) bot = Bot(bot_key) json = { "msgtype": "markdown", "markdown": { "content": f""" > # [{title}]({url})\n\n{titles} """.strip(), } } bot.send(json) # if __name__ == '__main__': # send_news(title='证券日报', url='https://tophub.today/n/wkvlP5kvz1') if __name__ == '__main__': cli() ``` #### File: examples/clis/a.py ```python def f1(x): print(type(x)) print(f'f1: {x}') def f2(x=2): print(f'f2: {x}') class Conf: a=1 b=2 c=3 if __name__ == '__main__': from fire import Fire Fire(Conf) ``` #### File: MeUtils/examples/importlib_.py ```python import importlib """ class C: def c(self): pass """ params = importlib.import_module('b.c.c') # 绝对导入 params_ = importlib.import_module('.c.c', package='b') # 相对导入 ``` #### File: MeUtils/examples/memory_profiler_demo.py ```python from memory_profiler import profile @profile def my_func(): a = [1] * (10 ** 6) b = [2] * (2 * 10 ** 7) del b return a if __name__ == '__main__': my_func() # mprof run <script> # mprof plot ``` #### File: MeUtils/examples/zk_hot_update.py ```python import time from kazoo.retry import KazooRetry from kazoo.client import KazooClient # def func(): # # print(time.time()) # with open('./config.txt') as f: # return f.read().strip() # # print(KazooRetry()(func)) # # while 1: # time.sleep(2) # KazooRetry()(func) zk = KazooClient(hosts="127.0.0.1:2181") ``` #### File: aizoo/layers/Prediction.py ```python import tensorflow as tf from .utils import get_activation_by_num_class class Prediction(tf.keras.layers.Layer): def __init__(self, num_class=2, name='Prediction', **kwargs): super().__init__(name=name, **kwargs) self.num_class = num_class self.activation = get_activation_by_num_class(num_class) def build(self, input_shape): super().build(input_shape) units = self.num_class if self.num_class > 2 else 1 # 多分类输出 num_class 维 self.fc = tf.keras.layers.Dense(units, activation=self.activation) def call(self, inputs, **kwargs): return self.fc(inputs) def compute_output_shape(self, input_shape): if self.task == "multiclass": return (None, self.num_class) else: return (None, 1) def get_config(self, ): base_config = super().get_config() config = {'task': self.task, 'num_class': self.num_class} return {**base_config, **config} ``` #### File: aizoo/video/video.py ```python from meutils.pipe import * from moviepy.editor import * # TODO: 抽帧去重 def video2picture(video='/fds/1_Work/2_DownVideo/videos/互联网_yidian_V_07d0oZik.mp4', top_duration=180): p = Path(video) pic_dir = ''.join(p.name[::-1].split('.')[-1:])[::-1] (p.parent / pic_dir).mkdir(exist_ok=True) with VideoFileClip(video) as clip: duration = int(clip.duration) for i in tqdm(range(min(duration, top_duration))): clip_ = clip.subclip(i, i + 1) clip_.save_frame(p.parent / pic_dir / f'{i}.png') def video2audio(path_pair, verbose=False, subclip=None, ffmpeg_params=["-f", "mp3"]): """ clip = VideoFileClip('蛋清和蛋黄是这么分离的.720p').subclip(3, 7) :param paths: (video_path, audio_path) :param subclip: :param ffmpeg_params: :return: """ video_path, audio_path = path_pair with VideoFileClip(video_path) as clip: duration = int(clip.duration) if subclip: s, e = subclip[0], duration if subclip is None or duration < subclip[1] else subclip[1] clip = clip.subclip(s, e) clip.audio.write_audiofile( audio_path, fps=None, nbytes=2, buffersize=2000, codec=None, bitrate=None, ffmpeg_params=ffmpeg_params, write_logfile=False, verbose=verbose, logger='bar' if verbose else None ) ``` #### File: meutils/annzoo/ann.py ```python from meutils.pipe import * from milvus import Milvus, DataType import copy # IndexType. # from milvus.client.exceptions import CollectionNotExistException """ client.drop_index client.get_config client.list_id_in_segment client.load_collection??? """ class Collection(object): def __init__(self, name=None, client=None): self.name = name self.client = client self.count_entities = self.count self.count_documents = self.count self.vector_name = self.get_vec_field_name() def __str__(self): has_collection = self.client.has_collection(self.name) if not has_collection: logger.warning(f"{self.name} doesn't exist") return f"Collection({self.name})" def batch_insert(self, df_entity: pd.DataFrame, batch_size=100000): """ :param df_entity: id, sid, vec, part 与 collection 字段一致 :param batch_size: :return: """ entity_names = [_['name'] for _ in self.collection_info['fields']] logger.warning(f"EntityNames: {entity_names}") # 分区 df_entity = df_entity.reset_index(drop=True) n = len(df_entity) num_part = n // batch_size + 1 if n % batch_size else n // batch_size ids = [] for i in tqdm(range(num_part), desc='BatchInsert'): df = df_entity.iloc[i * batch_size:(i + 1) * batch_size, :] entities = [] for record in self.collection_info['fields']: entities.append({ 'name': record['name'], 'type': record['type'], 'values': df[record['name']].values }) ids += self.client.insert(self.name, entities, ids=df['id'] if 'id' in df else None) time.sleep(3) return ids def search( self, vectors=np.random.random((1, 256)), topk=10, nprobe=1, scalar_list: List[dict] = None): q = self.get_search_query(vectors, topk, nprobe, scalar_list) entities = self.client.search(self.name, q)[0] return entities # todo: 增加阈值过滤 # entities = ann.client.search("demo", query_hybrid)[0] # id2score = dict(zip(entities.ids, entities.distances)) # docs = mongo_collection.find({"xindaoid": {'$in': entities.ids}}) # df = pd.DataFrame(list(docs)).drop(['_id', 'category_', 'vector'], 1) # df['distance'] = df['xindaoid'].map(id2score) def batch_search(self, vectors=np.random.random((1, 256)), topk=10, nprobe=1, scalar_list: List[dict] = None): q = self.get_search_query(vectors, topk, nprobe, scalar_list) entities = self.client.search(self.name, q) return entities def get_entity_by_id(self, ids, fields=None): return self.client.get_entity_by_id(self.name, ids, fields) def delete_entity_by_id(self, ids): self.client.delete_entity_by_id(self.name, ids) @property def count(self): return self.client.count_entities(self.name) @property def collection_info(self): return self.client.get_collection_info(self.name) @property def collection_stats(self): return self.client.get_collection_stats(self.name) def get_vec_field_name(self): fields = self.collection_info['fields'] vec_field = [_ for _ in fields if str(_.get('type', '')).__contains__('VECTOR')][0] return vec_field['name'] def get_search_query(self, vectors, topk=10, nprobe=1, scalar_list: List[dict] = None): """ ann.demo.search(np.random.random((1, 10)), scalar_list=[{'term': {'scalar': [1,2,3,4]}}]) :param vectors: :param topk: :param nprobe: :param scalar_list: :return: """ q = { "bool": { "must": [ { "vector": { self.vector_name: { "topk": topk, "query": vectors, "metric_type": "IP", "params": { "nprobe": nprobe } } } }, ] } } if scalar_list is not None: # {"term": {"标量字段": [1,2,3]}} for _ in scalar_list: q['bool']['must'].append(_) return q class ANN(object): def __init__(self, host='10.46.242.23', port='19530', handler="GRPC", pool="SingletonThread", show_info=False): self.host = host self.client = Milvus(host, port, handler=handler, pool=pool, pool_size=32) # 线程池 if show_info: logger.info( { "ClientVersion": self.client.client_version(), "ServerVersion": self.client.server_version() } ) def __getattr__(self, collection_name) -> Collection: return Collection(collection_name, self.client) def create_collection(self, collection_name, fields, auto_id=True, segment_row_limit=4096, overwrite=True): """ :param collection_name: :param fields: # type: BOOL INT32 INT64 FLOAT BINARY_VECTOR FLOAT_VECTOR fields = [ { "name": "scalar", "type": 'INT32', "params": {}, "indexes": [{}] }, { "name": "vector", "type": 'FLOAT_VECTOR', "params": {"dim": 768}, "indexes": [{"index_type": 'IVF_FLAT', 'metric_type': 'IP', 'params': {'nlist': 1024}, 'index_file_size': 1024}] } ] # index_file_size不确定放在哪生效 :param auto_id: :param segment_row_limit: range 4096 ~ 4194304 :return: """ fields = copy.deepcopy(fields) # fields[:] if self.client.has_collection(collection_name): if overwrite: logger.warning(f"{collection_name} already exists! to drop.") self.client.drop_collection(collection_name, timeout=300) else: return f"{collection_name} already exists!" vec_field = [_ for _ in fields if _.get('type', '').__contains__('VECTOR')][0] # assert len(vec_fields) > 0, "至少有一个矢量" for _ in fields: if 'type' in _: _['type'] = DataType.__getattr__(_['type']) collection_param = { "fields": fields, "auto_id": auto_id, "segment_row_limit": segment_row_limit, } # collection vector index self.client.create_collection(collection_name, fields=collection_param) self.client.create_index(collection_name, vec_field['name'], vec_field['indexes'][0]) logger.info(f"{self.client.get_collection_info(collection_name)}") @property def collection_names(self): return self.client.list_collections() def __create_index(self, collection_name, field_name, index_type='IVF_FLAT', metric_type='IP', index_params=None): if index_params is None: index_params = {'nlist': 1024} params = { 'index_type': index_type, # 'index_file_size': 1024, # TODO: 不确定放在哪生效 'params': index_params, 'metric_type': metric_type, } self.client.create_index(collection_name, field_name, params) # field_name='embedding' if __name__ == '__main__': ann = ANN('10.119.18.201', show_info=True) fields = [ { "name": "scalar", "type": 'INT32', "params": {}, "indexes": [{}] }, { "name": "vector", "type": 'FLOAT_VECTOR', "params": {"dim": 256}, "indexes": [ {"index_type": 'IVF_FLAT', 'metric_type': 'IP', 'params': {'nlist': 1024}, 'index_file_size': 1024}] } ] ann.create_collection('demo', fields) print(ann.demo) print(ann.demo.collection_info) print(ann.demo.vector_name) # print(ann.demo.collection_stats) # df列名必须与fields一致 df = pd.DataFrame(enumerate('abcdefgh'), columns=['scalar', 'sid']).assign( vector=np.random.random((8, 256)).tolist()) ann.demo.batch_insert(df) ``` #### File: MeUtils/meutils/array_utils.py ```python def multi_list(ls, n=10): return sum(([i] * n for i in ls), []) if __name__ == '__main__': ls = range(5) print(multi_list(ls, 3)) ``` #### File: MeUtils/meutils/cli.py ```python from meutils.pipe import * class CLIRun(object): """doc""" def __init__(self, **kwargs): pass def apps_list(self, apps='apps'): """ apps/apps_streamlit """ def pip(self, *packages): """ mecli - pip "meutils appzoo" :param packages: :return: """ packages = " ".join(packages) cmd = f"pip install -U --no-cache-dir -i https://mirrors.aliyun.com/pypi/simple {packages} && pip install -U {packages}" logger.info(cmd) os.system(cmd) # todo: 增加常用包更新 def cli(): fire.Fire(CLIRun) if __name__ == '__main__': print(CLIRun().pip()) # # import fire # # def add(x, y): # return x + y # # def multiply(x, y): # return x * y # # if __name__ == '__main__': # fire.Fire() # We can use this like so: # # $ python example.py add 10 20 # 30 # $ python example.py multiply 10 20 # 200 ``` #### File: meutils/clis/conf.py ```python from meutils.pipe import * # 定义参数 class TrainConf(BaseConfig): epoch = 10 batch_size = 128 def train(**kwargs): logger.info("开始训练") time.sleep(3) # 使用参数 def run(**kwargs): logger.info(f"输入参数: {kwargs}") c = TrainConf.parse_obj(kwargs) logger.info(f"使用参数: {c.dict()}") train(**c.dict()) # 传入参数 conf_cli = lambda: fire.Fire(run) # <conf_cli> --epoch 11 --batch_size 111 # fire.Fire()需要指定命令对象 ``` #### File: meutils/cmds/hdfs_cmd.py ```python from meutils.pipe import * class HDFS(object): HADOOP_HOME = os.environ.get('HADOOP_HOME', '~/infra-client/bin') HDFS_CLUSTER_NAME = os.environ.get('HDFS_CLUSTER_NAME', 'zjyprc-hadoop') HDFS_CMD = f"{HADOOP_HOME}/hdfs --cluster {HDFS_CLUSTER_NAME} dfs" # f"{HADOOP_HOME}/hadoop --cluster {HDFS_CLUSTER_NAME} fs" @classmethod def check_path_isexist(cls, path): cmd = f"-test -e {path}" # 包含?-test -d status, output = cls.magic_cmd(cmd) rst = False if status != 0 else True logger.info(f'Path Exist: {rst}') return rst @classmethod def touchz(cls, path): """ :param path: /user/h_browser/algo/yuanjie/jars/xx.txt :return: """ cmd = f"-touchz {path}" return cls.magic_cmd(cmd) @classmethod def wc_l(cls, path): """ :param path: /user/h_data_platform/platform/browser/push_group/locals/江苏_南京/date=20210120/* :return: """ cmd = f"-cat {path} | wc -l" return cls.magic_cmd(cmd) @classmethod def magic_cmd(cls, cmd): """ :param cmd: -cat /user/h_browser/algo/yuanjie/jars/vec.csv :return: """ cmd = f"{cls.HDFS_CMD} {cmd}" return magic_cmd(cmd) @classmethod def push2hdfs(cls, input, output): cls.magic_cmd(f"-mkdir -p {output}") cls.magic_cmd(f"-put -f {input} {output}") cls.touchz(f"{output}/_SUCCESS") ``` #### File: meutils/db/neo4j.py ```python from meutils.pipe import * from py2neo import Graph, Node, Relationship from concurrent.futures import ThreadPoolExecutor class Neo4j(object): """TODO 添加属性值:关系的属性 """ def __init__(self, profile="bolt://xx:7687", username='neo4j', password='mi'): self.graph = Graph(profile, username=username, password=password) # self.graph.delete_all() def create_nodes(self, df_nodes, label="Demo", max_workers=30): """ :param label: Node Label 可以理解为一个集合 :param node_list: [(k, v, r), ] 三元组 :return: """ df_nodes.columns = ['k', 'v', 'r'] groups = df_nodes.groupby('k') print(f"Num Group: {len(groups)}") func = lambda group: [self._create_node(label, nodes) for nodes in tqdm(group[1].values)] with ThreadPoolExecutor(max_workers, thread_name_prefix=f"{label}__") as pool: _ = pool.map(func, tqdm(groups), chunksize=1) def _create_node(self, label, nodes): k, v, r = nodes node_key = self._create(label, k) node_value = self._create(label, v) if node_key != node_value: node_relation = Relationship(node_key, r, node_value) # r也可以是节点 # node_relation['属性'] = 0 self.graph.create(node_relation) @lru_cache(1024) def _create(self, label, name): subgraph = Node(label, name=name) self.graph.create(subgraph) return subgraph ``` #### File: meutils/request_utils/crawler.py ```python from lxml.etree import HTML from meutils.request_utils import request class Crawler(object): def __init__(self, url, encoding=None, *args, **kwargs): self.url = url self.html = self.get_html(url, encoding) def xpath(self, _path="//text()", **_variables): return self.html.xpath(_path, **_variables) @staticmethod def get_html(url, encoding): r = request(url, parser=None, encoding=encoding) return HTML(r.text) if __name__ == '__main__': url = "https://top.baidu.com/board?tab=realtime" _ = Crawler(url).xpath('//*[@id="sanRoot"]/main/div[2]/div/div[2]/div[*]/div[2]/a/div[1]//text()') print("\n".join(_)) ``` #### File: meutils/request_utils/__init__.py ```python import requests from loguru import logger from tenacity import retry, stop_after_delay, stop_after_attempt, wait_fixed @retry(wait=wait_fixed(3), # 重试之前等待3秒 stop=stop_after_delay(7) | stop_after_attempt(3), # 同时满足用 | 没毛病:重试7秒重试3次 retry_error_callback=lambda log: logger.error(log), reraise=True) # @lru_cache() def request(url=None, json=None, parser=lambda x: x, encoding=None, **kwargs): """ :param url: :param json: :param parser: None 的时候返回r,否则返回 parser(r.json()) :param kwargs: :return: """ method = 'post' if json is not None else 'get' # 特殊情况除外 logger.info(f"Request Method: {method}") headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE ' } r = requests.request(method, url, json=json, headers=headers) r.encoding = encoding if encoding else r.apparent_encoding if parser is None: return r return parser(r.json()) ``` #### File: meutils/request_utils/results.py ```python from meutils.pipe import * from meutils.zk_utils import zk_cfg from meutils.request_utils import request def get_ac(docid, parser=lambda x: x.get('item', {})): return request(f"{zk_cfg.ac_url}/{docid}", parser=parser) def get_acs(docids, max_workers=10, parser=lambda x: x.get('item', {}).get('title')): func = functools.partial(get_ac, parser=parser) return docids | xThreadPoolExecutor(func, max_workers) | xlist def get_simbert_vectors(titles='bert向量化', max_workers=1, is_lite='0'): """ 适合小批量请求 :param titles: :param max_workers: :param is_lite: :return: """ if isinstance(titles, str): titles = [titles] max_workers = min(len(titles), max_workers) titles_list = np.array_split(titles, len(titles) // 64 + 1) # list request_func = lambda titles: request(f"{zk_cfg.simbert_url}", json={"texts": list(titles), "is_lite": is_lite}).get('vectors') vectors_list = titles_list | xThreadPoolExecutor(request_func, max_workers) return np.row_stack(vectors_list) if __name__ == '__main__': print(get_acs(['fengxing_144094389'])) # print(get_simbert_vectors('bert向量化', is_lite='1').shape) ``` #### File: MeUtils/meutils/smooth_utils.py ```python from meutils.pipe import * """ TODO: 增加可视化 """ def exponential_decay(t, life_cycle=24 * 7, start=1, end=0): """牛顿冷却定律 拟合随时间指数衰减的过程 https://blog.csdn.net/xiaokang06/article/details/78076925 https://blog.csdn.net/zhufenghao/article/details/80879260 :param t: 0~delta :param life_cycle: 衰减时间长度/生命周期 :param start: 起始值 :param end: 结束值 :return: """ α = np.log(start / (end + 1e-8)) / life_cycle t0 = - np.log(start) / α decay = np.exp(- α * (t + t0)) return decay def walson_ctr(num_click, num_pv, z=1.96): """:arg 威尔逊 https://mp.weixin.qq.com/s/rLP1wsS0a71q5RA7NQcjdQ """ p = num_click / num_pv if p > 0.9: return 0.0 n = num_pv A = p + z ** 2 / (2 * n) B = np.sqrt(p * (1 - p) / n + z ** 2 / (4 * (n ** 2))) C = z * B D = 1 + z ** 2 / n ctr = (A - C) / D return ctr ```
{ "source": "Jie-Yuan/optuna-dashboard", "score": 2 }
#### File: optuna-dashboard/python_tests/test_api.py ```python import json from unittest import TestCase import optuna from optuna_dashboard.app import create_app from .wsgi_client import send_request def objective(trial: optuna.trial.Trial) -> float: x = trial.suggest_float("x", -1, 1) return x class APITestCase(TestCase): def test_get_study_summaries(self) -> None: storage = optuna.storages.InMemoryStorage() storage.create_new_study("foo1") storage.create_new_study("foo2") app = create_app(storage) status, _, body = send_request( app, "/api/studies/", "GET", content_type="application/json", ) self.assertEqual(status, 200) study_summaries = json.loads(body)["study_summaries"] self.assertEqual(len(study_summaries), 2) def test_get_study_details_without_after_param(self) -> None: study = optuna.create_study() study_id = study._study_id study.optimize(objective, n_trials=2) app = create_app(study._storage) status, _, body = send_request( app, f"/api/studies/{study_id}", "GET", content_type="application/json", ) self.assertEqual(status, 200) all_trials = json.loads(body)["trials"] self.assertEqual(len(all_trials), 2) def test_get_study_details_with_after_param_partial(self) -> None: study = optuna.create_study() study_id = study._study_id study.optimize(objective, n_trials=2) app = create_app(study._storage) status, _, body = send_request( app, f"/api/studies/{study_id}", "GET", queries={"after": "1"}, content_type="application/json", ) self.assertEqual(status, 200) all_trials = json.loads(body)["trials"] self.assertEqual(len(all_trials), 1) def test_get_study_details_with_after_param_full(self) -> None: study = optuna.create_study() study_id = study._study_id study.optimize(objective, n_trials=2) app = create_app(study._storage) status, _, body = send_request( app, f"/api/studies/{study_id}", "GET", queries={"after": "2"}, content_type="application/json", ) self.assertEqual(status, 200) all_trials = json.loads(body)["trials"] self.assertEqual(len(all_trials), 0) def test_get_study_details_with_after_param_illegal(self) -> None: study = optuna.create_study() study_id = study._study_id study.optimize(objective, n_trials=2) app = create_app(study._storage) status, _, body = send_request( app, f"/api/studies/{study_id}", "GET", queries={"after": "-1"}, content_type="application/json", ) self.assertEqual(status, 400) def test_create_study(self) -> None: for name, directions, expected_status in [ ("single-objective success", ["minimize"], 201), ("multi-objective success", ["minimize", "maximize"], 201), ("invalid direction name", ["invalid-direction", "maximize"], 400), ]: with self.subTest(name): storage = optuna.storages.InMemoryStorage() self.assertEqual(len(storage.get_all_study_summaries()), 0) app = create_app(storage) request_body = { "study_name": "foo", "directions": directions, } status, _, _ = send_request( app, "/api/studies", "POST", content_type="application/json", body=json.dumps(request_body), ) self.assertEqual(status, expected_status) if expected_status == 201: self.assertEqual(len(storage.get_all_study_summaries()), 1) else: self.assertEqual(len(storage.get_all_study_summaries()), 0) def test_create_study_duplicated(self) -> None: storage = optuna.storages.InMemoryStorage() storage.create_new_study("foo") self.assertEqual(len(storage.get_all_study_summaries()), 1) app = create_app(storage) request_body = { "study_name": "foo", "direction": "minimize", } status, _, _ = send_request( app, "/api/studies", "POST", content_type="application/json", body=json.dumps(request_body), ) self.assertEqual(status, 400) self.assertEqual(len(storage.get_all_study_summaries()), 1) def test_delete_study(self) -> None: storage = optuna.storages.InMemoryStorage() storage.create_new_study("foo1") storage.create_new_study("foo2") self.assertEqual(len(storage.get_all_study_summaries()), 2) app = create_app(storage) status, _, _ = send_request( app, "/api/studies/1", "DELETE", content_type="application/json", ) self.assertEqual(status, 204) self.assertEqual(len(storage.get_all_study_summaries()), 1) def test_delete_study_not_found(self) -> None: storage = optuna.storages.InMemoryStorage() app = create_app(storage) status, _, _ = send_request( app, "/api/studies/1", "DELETE", content_type="application/json", ) self.assertEqual(status, 404) class BottleRequestHookTestCase(TestCase): def test_ignore_trailing_slashes(self) -> None: storage = optuna.storages.InMemoryStorage() app = create_app(storage) endpoints = ["/api/studies", "/api/studies/"] for endpoint in endpoints: with self.subTest(msg=endpoint): status, _, body = send_request( app, endpoint, "GET", content_type="application/json", ) self.assertEqual(status, 200) ```
{ "source": "Jie-Yuan/StreamlitApp", "score": 3 }
#### File: appzoo/utils/ocr_utils.py ```python from PIL import Image from paddleocr import PaddleOCR, draw_ocr from appzoo.utils import get_module_path def ocr_result_image(result, input_image, output_image='output_image.png'): # https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/develop/doc/simfang.ttf image = Image.open(input_image).convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] im_show = draw_ocr(image, boxes, txts, scores, font_path=get_module_path("../data/simfang.ttf", __file__)) im_show = Image.fromarray(im_show) im_show.save(output_image) return output_image ```
{ "source": "Jie-Yuan/woe", "score": 3 }
#### File: lib/woe/ftrl.py ```python __author__ = 'boredbird' import numpy as np class LR(object): @staticmethod def fn(w, x): '''sigmoid function ''' return 1.0 / (1.0 + np.exp(-w.dot(x))) @staticmethod def loss(y, y_hat): '''Cross entropy loss function ''' return np.sum(np.nan_to_num(-y * np.log(y_hat) - (1 - y) * np.log(1 - y_hat))) @staticmethod def grad(y, y_hat, x): '''The first derivative of the cross entropy loss function to the weight W ''' return (y_hat - y) * x class FTRL(object): def __init__(self, dim, l1, l2, alpha, beta, decisionFunc=LR): self.dim = dim self.decisionFunc = decisionFunc self.z = np.zeros(dim) self.n = np.zeros(dim) self.w = np.zeros(dim) self.w_list = [] self.loss_list = [] self.l1 = l1 self.l2 = l2 self.alpha = alpha self.beta = beta def predict(self, x): return self.decisionFunc.fn(self.w, x) def update(self, x, y): self.w = np.array([0 if np.abs(self.z[i]) <= self.l1 else (np.sign( self.z[i]) * self.l1 - self.z[i]) / (self.l2 + (self.beta + np.sqrt(self.n[i])) / self.alpha) for i in xrange(self.dim)]) y_hat = self.predict(x) g = self.decisionFunc.grad(y, y_hat, x) sigma = (np.sqrt(self.n + g * g) - np.sqrt(self.n)) / self.alpha self.z += g - sigma * self.w self.n += g * g return self.decisionFunc.loss(y, y_hat) def train(self, trainSet, verbos=False, max_itr=10000000000, eta=0.01, epochs=100): itr = 0 n = 0 while True: for x, y in trainSet: loss = self.update(x, y) if verbos and n%verbos==0: print("itr=" + str(n) + "\tloss=" + str(loss)) self.w_list.append(self.w) self.loss_list.append(loss) if loss < eta: itr += 1 else: itr = 0 if itr >= epochs: # when the loss function has been continuously epochs iterations less than eta print("loss have less than", eta, " continuously for ", itr, "iterations") return n += 1 if n >= max_itr: print("reach max iteration", max_itr) return ```
{ "source": "JieyuZ2/ASTRA", "score": 3 }
#### File: ASTRA/astra/Student.py ```python import os from model import LogRegTrainer, BertTrainer, DefaultModelTrainer preprocessed_dataset_list = ['trec', 'youtube', 'sms', 'census', 'mitr'] supported_trainers = { 'logreg': LogRegTrainer, 'bert': BertTrainer, } class Student: def __init__(self, args, logger=None): self.args = args self.logger = logger self.name = args.student_name assert self.name in supported_trainers, "Student not supported: <{}>".format(self.name) self.trainer_class = supported_trainers[self.name] if args.dataset in preprocessed_dataset_list: self.trainer = DefaultModelTrainer(args=self.args, logger=self.logger) else: self.trainer = self.trainer_class(args=self.args, logger=self.logger) self.preprocess = self.trainer.preprocess def train(self, train_dataset, dev_dataset, train_label_name='label', dev_label_name='label'): # Training student for the first time on few labeled data (First iteration of self-training) res = self.trainer.train( train_texts=train_dataset.data['texts'], preprocessed_train_texts=train_dataset.data.get('preprocessed_texts'), train_labels=train_dataset.data[train_label_name], dev_texts=dev_dataset.data['texts'], preprocessed_dev_texts=dev_dataset.data.get('preprocessed_texts'), dev_labels=dev_dataset.data[dev_label_name], ) return res def train_pseudo(self, train_dataset, dev_dataset, train_label_name='label', train_weight_name='weights', dev_label_name='label'): # Fine-tuning student on pseudo-labeled data (provided by the Teacher) # Call different function for student model with different hyperparameters: weighted training. # Note: if train_weight_name is None, then weights are not used res = self.trainer.train_pseudo( train_texts=train_dataset.data['texts'], preprocessed_train_texts=train_dataset.data.get('preprocessed_texts'), train_labels=train_dataset.data[train_label_name], train_weights=train_dataset.data.get(train_weight_name), dev_texts=dev_dataset.data['texts'], preprocessed_dev_texts=dev_dataset.data.get('preprocessed_texts'), dev_labels=dev_dataset.data[dev_label_name], ) return res def finetune(self, train_dataset, dev_dataset, train_label_name='label', dev_label_name='label'): # Fine-tuning student on few labeled data # Note: this function is different than train() because of potentially different hyperparameters. # If all hyperparameters are same, you can merge both train() and finetune() into one. res = self.trainer.finetune( train_texts=train_dataset.data['texts'], preprocessed_train_texts=train_dataset.data.get('preprocessed_texts'), train_labels=train_dataset.data[train_label_name], dev_texts=dev_dataset.data['texts'], preprocessed_dev_texts=dev_dataset.data.get('preprocessed_texts'), dev_labels=dev_dataset.data[dev_label_name], ) return res def predict(self, dataset): res = self.trainer.predict( texts=dataset.data['texts'], preprocessed_texts=dataset.data.get('preprocessed_texts'), ) assert 'preds' in res and 'proba' in res, "Student Trainer must return 'preds' and 'proba'" return res def save(self, name='student'): savefolder = os.path.join(self.args.logdir, name) self.logger.info('Saving {} to {}'.format(name, savefolder)) os.makedirs(savefolder, exist_ok=True) self.trainer.save(savefolder) def load(self): savefolder = os.path.join(self.args.logdir, 'student') if not os.path.exists(savefolder): raise(BaseException('Pre-trained student folder does not exist: {}'.format(savefolder))) self.trainer.load(savefolder) ```
{ "source": "JieyuZ2/meta-weight-net", "score": 2 }
#### File: JieyuZ2/meta-weight-net/MW-Net.py ```python import argparse import torch import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.nn.parallel import torch.optim import torch.utils.data import torchvision.transforms as transforms from load_corrupted_data import CIFAR10, CIFAR100 # from wideresnet import WideResNet, VNet from resnet import ResNet32, VNet # import sklearn.metrics as sm # import pandas as pd # import sklearn.metrics as sm parser = argparse.ArgumentParser(description='PyTorch WideResNet Training') parser.add_argument('--dataset', default='cifar10', type=str, help='dataset (cifar10 [default] or cifar100)') parser.add_argument('--corruption_prob', type=float, default=0.4, help='label noise') parser.add_argument('--corruption_type', '-ctype', type=str, default='unif', help='Type of corruption ("unif" or "flip" or "flip2").') parser.add_argument('--num_meta', type=int, default=1000) parser.add_argument('--epochs', default=120, type=int, help='number of total epochs to run') parser.add_argument('--iters', default=60000, type=int, help='number of total iters to run') parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)') parser.add_argument('--batch_size', '--batch-size', default=100, type=int, help='mini-batch size (default: 100)') parser.add_argument('--lr', '--learning-rate', default=1e-1, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, help='momentum') parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum') parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float, help='weight decay (default: 5e-4)') parser.add_argument('--print-freq', '-p', default=10, type=int, help='print frequency (default: 10)') parser.add_argument('--layers', default=28, type=int, help='total number of layers (default: 28)') parser.add_argument('--widen-factor', default=10, type=int, help='widen factor (default: 10)') parser.add_argument('--droprate', default=0, type=float, help='dropout probability (default: 0.0)') parser.add_argument('--no-augment', dest='augment', action='store_false', help='whether to use standard augmentation (default: True)') parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)') parser.add_argument('--name', default='WideResNet-28-10', type=str, help='name of experiment') parser.add_argument('--seed', type=int, default=2) parser.add_argument('--prefetch', type=int, default=0, help='Pre-fetching threads.') parser.set_defaults(augment=True) args = parser.parse_args() use_cuda = True torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") print() print(args) def build_dataset(): normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) if args.augment: train_transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: F.pad(x.unsqueeze(0), (4, 4, 4, 4), mode='reflect').squeeze()), transforms.ToPILImage(), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) else: train_transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) if args.dataset == 'cifar10': train_data_meta = CIFAR10( root='./data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob, corruption_type=args.corruption_type, transform=train_transform, download=True) train_data = CIFAR10( root='./data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob, corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed) test_data = CIFAR10(root='./data', train=False, transform=test_transform, download=True) elif args.dataset == 'cifar100': train_data_meta = CIFAR100( root='./data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob, corruption_type=args.corruption_type, transform=train_transform, download=True) train_data = CIFAR100( root='./data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob, corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed) test_data = CIFAR100(root='./data', train=False, transform=test_transform, download=True) train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.prefetch, pin_memory=True) train_meta_loader = torch.utils.data.DataLoader( train_data_meta, batch_size=args.batch_size, shuffle=True, num_workers=args.prefetch, pin_memory=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=args.prefetch, pin_memory=True) return train_loader, train_meta_loader, test_loader def build_model(): model = ResNet32(args.dataset == 'cifar10' and 10 or 100) if torch.cuda.is_available(): model.cuda() torch.backends.cudnn.benchmark = True return model def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def adjust_learning_rate(optimizer, epochs): lr = args.lr * ((0.1 ** int(epochs >= 80)) * (0.1 ** int(epochs >= 100))) # For WRN-28-10 for param_group in optimizer.param_groups: param_group['lr'] = lr def test(model, test_loader): model.eval() correct = 0 test_loss = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) test_loss += F.cross_entropy(outputs, targets).item() _, predicted = outputs.max(1) correct += predicted.eq(targets).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format( test_loss, correct, len(test_loader.dataset), accuracy)) return accuracy def train(train_loader, train_meta_loader, model, vnet, optimizer_model, optimizer_vnet, epoch): print('\nEpoch: %d' % epoch) train_loss = 0 meta_loss = 0 train_meta_loader_iter = iter(train_meta_loader) for batch_idx, (inputs, targets) in enumerate(train_loader): model.train() inputs, targets = inputs.to(device), targets.to(device) meta_model = build_model().cuda() meta_model.load_state_dict(model.state_dict()) outputs = meta_model(inputs) cost = F.cross_entropy(outputs, targets, reduce=False) cost_v = torch.reshape(cost, (len(cost), 1)) v_lambda = vnet(cost_v.data) l_f_meta = torch.sum(cost_v * v_lambda) / len(cost_v) meta_model.zero_grad() grads = torch.autograd.grad(l_f_meta, (meta_model.params()), create_graph=True) meta_lr = args.lr * ((0.1 ** int(epoch >= 80)) * (0.1 ** int(epoch >= 100))) # For ResNet32 meta_model.update_params(lr_inner=meta_lr, source_params=grads) del grads try: inputs_val, targets_val = next(train_meta_loader_iter) except StopIteration: train_meta_loader_iter = iter(train_meta_loader) inputs_val, targets_val = next(train_meta_loader_iter) inputs_val, targets_val = inputs_val.to(device), targets_val.to(device) y_g_hat = meta_model(inputs_val) l_g_meta = F.cross_entropy(y_g_hat, targets_val) prec_meta = accuracy(y_g_hat.data, targets_val.data, topk=(1,))[0] optimizer_vnet.zero_grad() l_g_meta.backward() optimizer_vnet.step() outputs = model(inputs) cost_w = F.cross_entropy(outputs, targets, reduce=False) cost_v = torch.reshape(cost_w, (len(cost_w), 1)) prec_train = accuracy(outputs.data, targets.data, topk=(1,))[0] with torch.no_grad(): w_new = vnet(cost_v) loss = torch.sum(cost_v * w_new) / len(cost_v) optimizer_model.zero_grad() loss.backward() optimizer_model.step() train_loss += loss.item() meta_loss += l_g_meta.item() if (batch_idx + 1) % 50 == 0: print('Epoch: [%d/%d]\t' 'Iters: [%d/%d]\t' 'Loss: %.4f\t' 'MetaLoss:%.4f\t' 'Prec@1 %.2f\t' 'Prec_meta@1 %.2f' % ( (epoch + 1), args.epochs, batch_idx + 1, len(train_loader.dataset) / args.batch_size, (train_loss / (batch_idx + 1)), (meta_loss / (batch_idx + 1)), prec_train, prec_meta)) a = 1 train_loader, train_meta_loader, test_loader = build_dataset() # create model model = build_model() vnet = VNet(1, 100, 1).cuda() if args.dataset == 'cifar10': num_classes = 10 if args.dataset == 'cifar100': num_classes = 100 optimizer_model = torch.optim.SGD(model.params(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) optimizer_vnet = torch.optim.Adam(vnet.params(), 1e-3, weight_decay=1e-4) def main(): best_acc = 0 for epoch in range(args.epochs): adjust_learning_rate(optimizer_model, epoch) train(train_loader, train_meta_loader, model, vnet, optimizer_model, optimizer_vnet, epoch) test_acc = test(model=model, test_loader=test_loader) if test_acc >= best_acc: best_acc = test_acc print(f'test acc @ {epoch}: {test_acc}') print('best accuracy:', best_acc) if __name__ == '__main__': main() ```
{ "source": "JieZhang0822/pyang", "score": 3 }
#### File: pyang/pyang/error.py ```python import copy import os.path ### struct to keep track of position for error messages class Position(object): __slots__ = ( 'ref', 'line', 'top', 'uses_pos', ) def __init__(self, ref): self.ref = ref self.line = 0 self.top = None self.uses_pos = None def __str__(self): return self.label() def label(self, basename=False): ref = self.ref if basename: ref = os.path.basename(ref) s = ref + ':' + str(self.line) if self.uses_pos is None: return s else: return str(self.uses_pos) + ' (at ' + s + ')' ### Exceptions class Abort(Exception): """used for non-recoverable errors to abort parsing""" pass class Eof(Exception): """raised by tokenizer when end of file is detected""" pass class TransformError(Exception): """raised by plugins to fail the transform() function""" def __init__(self, msg="", exit_code=1): self.msg = msg self.exit_code = exit_code class EmitError(Exception): """raised by plugins to fail the emit() function""" def __init__(self, msg="", exit_code=1): self.msg = msg self.exit_code = exit_code ### error codes ## level: ## 1: critical error, can not be made into a warning ## 2: major error, can not be made into a warning ## 3: minor error, can be made into warning with -W ## 4: warning error_codes = \ { 'READ_ERROR': (1, 'read error: %s'), 'EOF_ERROR': (1, 'premature end of file'), 'EXPECTED_QUOTED_STRING': (1, 'expected quoted string after \'+\' operator'), 'UNKNOWN_KEYWORD': (1, 'unknown keyword "%s"'), 'INCOMPLETE_STATEMENT': (1, 'unterminated statement definition for keyword "%s", looking at %s'), 'EXPECTED_KEYWORD': (1, 'expected keyword "%s"'), 'EXPECTED_KEYWORD_2': (1, 'expected keyword "%s" as child to "%s"'), 'EXPECTED_DATA_DEF': (1, 'expected a data definition statement as child to "%s"'), 'UNEXPECTED_KEYWORD': (1, 'unexpected keyword "%s"'), 'UNEXPECTED_KEYWORD_1': (1, 'unexpected keyword "%s", expected "%s"'), 'UNEXPECTED_KEYWORD_N': (1, 'unexpected keyword "%s", expected one of %s'), 'UNEXPECTED_KEYWORD_CANONICAL': (1, 'keyword "%s" not in canonical order (see RFC 6020, Section 12)'), 'UNEXPECTED_KEYWORD_CANONICAL_1': (1, 'keyword "%s" not in canonical order, ' \ 'expected "%s" (see RFC 6020, Section 12)'), 'UNEXPECTED_KEYWORD_USES': (1, 'unexpected keyword "%s" under "%s", defined at %s'), 'UNEXPECTED_KEYWORD_AUGMENT': (1, 'unexpected keyword "%s" under "%s", defined at %s'), 'EXPECTED_ARGUMENT': (1, 'expected an argument for keyword "%s"'), 'UNEXPECTED_ARGUMENT': (1, 'did not expect an argument, got "%s"'), 'XML_IDENTIFIER': (3, 'illegal identifier "%s", must not start with [xX][mM][lL] in' \ ' YANG version 1 (see RFC 6020, Section 12)'), 'TRAILING_GARBAGE': (2, 'trailing garbage after module'), 'BAD_VALUE': (1, 'bad value "%s" (should be %s)'), 'CIRCULAR_DEPENDENCY': (1, 'circular dependency for %s "%s"'), 'MODULE_NOT_FOUND': (1, 'module "%s" not found in search path'), 'MODULE_NOT_FOUND_REV': (1, 'module "%s" revision "%s" not found in search path'), 'MODULE_NOT_IMPORTED': (1, 'no module with the namespace "%s" is imported'), 'BAD_IMPORT': (1, 'cannot import %s "%s", must be a module'), 'BAD_IMPORT_YANG_VERSION': (1, 'a version %s module cannot import a version %s module by revision'), 'BAD_INCLUDE': (1, 'cannot include %s "%s", must be a submodule'), 'BAD_INCLUDE_YANG_VERSION': (1, 'cannot include a version %s submodule in a version %s module'), 'BAD_MODULE_NAME': (2, 'unexpected modulename "%s" in %s, should be "%s"'), 'WBAD_MODULE_NAME': (4, 'unexpected modulename "%s" in %s, should be "%s"'), 'FILENAME_BAD_MODULE_NAME': (4, 'filename "%s" suggests invalid module name "%s", should match "%s"'), 'BAD_REVISION': (3, 'unexpected latest revision "%s" in %s, should be "%s"'), 'WBAD_REVISION': (4, 'unexpected latest revision "%s" in %s, should be "%s"'), 'FILENAME_BAD_REVISION': (4, 'filename "%s" suggests invalid revision "%s", should match "%s"'), 'BAD_SUB_BELONGS_TO': (1, 'module "%s" includes "%s", but "%s" does not specify a ' \ 'correct belongs-to'), 'MISSING_INCLUDE': (1, 'submodule %s is included by %s, but not by the module %s'), 'PREFIX_ALREADY_USED': (1, 'prefix "%s" already used for module %s'), 'PREFIX_NOT_DEFINED': (1, 'prefix "%s" is not defined (reported only once)'), 'WPREFIX_NOT_DEFINED': (4, '"%s" looks like a prefix but is not defined'), 'NODE_NOT_FOUND': (1, 'node %s::%s is not found'), 'BAD_NODE_IN_AUGMENT': (1, 'node %s::%s of type %s cannot be augmented'), 'BAD_TARGET_NODE': (1, 'node %s::%s of type %s cannot be target node'), 'BAD_NODE_IN_REFINE': (1, 'node %s::%s cannot be refined'), 'BAD_REFINEMENT': (1, '"%s" node "%s::%s" cannot be refined with "%s"'), 'BAD_DEVIATE_KEY': (2, 'key node "%s::%s" cannot be deviated with "not-supported"'), 'BAD_DEVIATE_ADD': (2, 'the "%s" property already exists in node "%s::%s"'), 'BAD_DEVIATE_REP': (2, 'the "%s" property does not exist in node "%s::%s"'), 'BAD_DEVIATE_DEL': (2, 'the "%s" property does not exist in node "%s::%s"'), 'BAD_DEVIATE_DEL2': (2, 'the "%s" property connot be deviate deleted in node "%s::%s"'), 'BAD_DEVIATE_TYPE': (2, 'the "%s" property cannot be added'), 'BAD_DEVIATE_WITH_NOT_SUPPORTED': (2, 'cannot have other deviate statement together with "not-supported"'), 'EXTENSION_NOT_DEFINED': (1, 'extension "%s" is not defined in module %s'), 'TYPE_NOT_FOUND': (1, 'type "%s" not found in module "%s"'), 'FEATURE_NOT_FOUND': (1, 'feature "%s" not found in module "%s"'), 'IDENTITY_NOT_FOUND': (1, 'identity "%s" not found in module "%s"'), 'GROUPING_NOT_FOUND': (1, 'grouping "%s" not found in module "%s"'), 'DEFAULT_CASE_NOT_FOUND': (1, 'the default case "%s" is not found"'), 'MANDATORY_NODE_IN_DEFAULT_CASE': (1, 'mandatory node in default case'), 'MULTIPLE_REFINE': (1, 'the node "%s" is already refined at %s'), 'RANGE_BOUNDS': (2, 'range error: "%s" is not larger than "%s"'), 'LENGTH_BOUNDS': (2, 'length error: "%s" is not larger than "%s"'), 'TYPE_VALUE': (2, 'the value "%s" does not match its base type %s- %s'), 'DUPLICATE_ENUM_NAME': (1, 'the enum name "%s" has already been used for the ' \ 'enumeration at %s'), 'DUPLICATE_ENUM_VALUE': (1, 'the integer value "%d" has already been used for the ' \ 'enumeration at %s'), 'ENUM_VALUE': (1, 'the enumeration value "%s" is not an 32 bit integer'), 'BAD_ENUM_VALUE': (1, 'the given value "%s" does not match the base enum value "%d"'), 'DUPLICATE_BIT_POSITION': (1, 'the position "%d" has already been used for the bit at %s'), 'BIT_POSITION': (1, 'the position value "%s" is not valid'), 'BAD_BIT_POSITION': (1, 'the given position "%s" does not match the base bit position "%d"'), 'NEED_KEY': (1, 'the list needs at least one key'), 'NEED_KEY_USES': (1, 'the list at "%s" needs at least one key because it is used as config'), 'KEY_BAD_CONFIG': (1, 'the key "%s" does not have same "config" as its list'), 'BAD_KEY': (1, 'the key "%s" does not reference an existing leaf'), 'BAD_UNIQUE': (1, 'the unique argument "%s" does not reference an existing leaf'), 'BAD_UNIQUE_PART': (1, 'the identifier "%s" in the unique argument does not reference ' 'an existing container'), 'BAD_UNIQUE_PART_LIST': (1, 'the identifier "%s" in the unique argument references a list; ' 'this is not legal'), 'BAD_UNIQUE_CONFIG': (1, 'the identifer "%s" has not the same config property as the' ' other nodes in the unique expression'), 'ILLEGAL_ESCAPE': (1, 'the escape sequence "\\%s" is illegal in double quoted strings'), 'ILLEGAL_ESCAPE_WARN': (4, 'the escape sequence "\\%s" is unsafe in double quoted strings' \ ' - pass the flag --lax-quote-checks to avoid this warning'), 'UNIQUE_IS_KEY': (4, 'all keys in the list are redundantly present in the unique statement'), 'DUPLICATE_KEY': (2, 'the key "%s" must not be listed more than once'), 'DUPLICATE_UNIQUE': (3, 'the leaf "%s" occurs more than once in the unique expression'), 'PATTERN_ERROR': (2, 'syntax error in pattern: %s'), 'LEAFREF_TOO_MANY_UP': (1, 'the path for %s at %s has too many ".."'), 'LEAFREF_IDENTIFIER_NOT_FOUND': (1, '"%s:%s" in the path for %s at %s is not found'), 'LEAFREF_IDENTIFIER_BAD_NODE': (1, '"%s:%s" in the path for %s at %s references a %s node'), 'LEAFREF_BAD_PREDICATE': (1, '"%s:%s" in the path for %s at %s has a predicate, ' 'but is not a list'), 'LEAFREF_BAD_PREDICATE_PTR': (1, '"%s:%s" in the path\'s predicate for %s at %s is compared ' 'with a node that is not a leaf'), 'LEAFREF_NOT_LEAF': (1, 'the path for %s at %s does not refer to a leaf'), 'LEAFREF_NO_KEY': (1, '"%s:%s" in the path for %s at %s is not the name of a key leaf'), 'LEAFREF_MULTIPLE_KEYS': (1, '"%s:%s" in the path for %s at %s is referenced more than once'), 'LEAFREF_BAD_CONFIG': (1, 'the path for %s is config but refers to a ' 'non-config leaf "%s" defined at %s'), 'LEAFREF_DEREF_NOT_LEAFREF': (1, 'the deref argument refers to node "%s" at %s which is' ' not a leafref leaf'), 'LEAFREF_DEREF_NOT_KEY': (1, 'the deref argument refers to node "%s" at %s which' ' does not refer to a key (%s at %s)'), 'LEAFREF_TO_NOT_IMPLEMENTED': (1, 'the leafref refer to a node that is not implemented'), 'DUPLICATE_CHILD_NAME': (1, 'there is already a child node to "%s" at %s with the name "%s" ' 'defined at %s'), 'BAD_ANCESTOR': (1, '"%s" node cannot have an ancestor list node without a key'), 'BAD_ANCESTOR2': (1, '"%s" node cannot have an ancestor "%s" node'), 'BAD_TYPE_NAME': (1, 'illegal type name "%s"'), 'TYPE_ALREADY_DEFINED': (1, 'type name "%s" is already defined at %s'), 'GROUPING_ALREADY_DEFINED': (1, 'grouping name "%s" is already defined at %s'), 'FEATURE_ALREADY_DEFINED': (1, 'feature name "%s" is already defined at %s'), 'IDENTITY_ALREADY_DEFINED': (1, 'identity name "%s" is already defined at %s'), 'EXTENSION_ALREADY_DEFINED': (1, 'extension name "%s" is already defined at %s'), 'BAD_RESTRICTION': (1, 'restriction "%s" not allowed for this base type'), 'BAD_DEFAULT_VALUE': (1, 'the type "%s" cannot have a default value'), 'MISSING_TYPE_SPEC': (1, 'a type "%s" must have at least one "%s" statement'), 'MISSING_TYPE_SPEC_1': (1, 'a type "%s" must have a "%s" statement'), 'BAD_TYPE_IN_UNION': (1, 'the type "%s" (defined at %s) cannot be part of a union'), 'BAD_TYPE_IN_KEY': (1, 'the type "%s" cannot be part of a key, used by leaf "%s"'), 'KEY_BAD_SUBSTMT': (1, 'the statement "%s" cannot be given for a key'), 'DEFAULT_AND_IFFEATURE': (1, 'a \'default\' value cannot be given in leaf node when' ' \'if-feature\' is existing'), 'DEFAULT_AND_MANDATORY': (1, 'a \'default\' value cannot be given when \'mandatory\' is "true"'), 'DEFAULT_AND_MIN_ELEMENTS': (1, 'a \'default\' value cannot be given when \'min-elements\' is' ' greater than 0'), 'MAX_ELEMENTS_AND_MIN_ELEMENTS': (1, 'a \'min-elements\' value cannot be greater than \'max-elements\' value'), 'DUPLICATE_DEFAULT': (1, 'the default value "%s" is given twice in the leaf list'), 'BAD_STATUS_REFERENCE': (2, 'the "%s" definition is %s, but the "%s" it references is %s'), 'REVISION_ORDER': (4, 'the revision statements are not given in reverse chronological order'), 'EXTENSION_ARGUMENT_PRESENT': (1, 'unexpected argument for extension "%s"'), 'EXTENSION_NO_ARGUMENT_PRESENT': (1, 'expected argument for extension "%s"'), 'SYNTAX_ERROR': (1, 'syntax error: %s'), 'DUPLICATE_NAMESPACE': (1, 'duplicate namespace uri "%s" found in modules "%s"'), 'MISSING_ARGUMENT_ATTRIBUTE': (1, 'missing argument attribute "%s" for "%s"'), 'MISSING_ARGUMENT_ELEMENT': (1, 'missing argument element "%s" for "%s"'), 'UNEXPECTED_ATTRIBUTE': (1, 'unexpected attribute %s'), 'INVALID_CONFIG': (2, 'config true cannot be set when the parent is config false'), 'XPATH_SYNTAX_ERROR': (2, 'XPath syntax error: %s'), 'XPATH_VARIABLE': (2, 'XPath variable "%s" is not defined in the XPath context'), 'XPATH_FUNCTION': (2, 'XPath function "%s" is not defined in the XPath context'), 'XPATH_FUNC_ARGS': (2, 'XPath function "%s" takes %s arguments but called with %s.'), 'XPATH_NODE_NOT_FOUND1': (4, 'node "%s::%s" is not found in "%s::%s"'), 'XPATH_NODE_NOT_FOUND2': (4, 'node "%s::%s" is not found in module "%s"'), 'XPATH_REF_CONFIG_FALSE': (4, 'node "%s::%s" is config false and is not part of the accessible tree'), 'XPATH_PATH_TOO_MANY_UP': (2, 'the path has too many ".."'), # 'XPATH_FUNCTION_RET_VAL': # (2, # 'XPath function "%s" does not return a %s'), 'AUGMENT_MANDATORY': (1, 'cannot augment with mandatory node "%s"'), 'LONG_IDENTIFIER': (3, 'identifier "%s" exceeds %s characters'), 'CONFIG_IGNORED': (4, 'explicit config statement is ignored'), 'UNUSED_IMPORT': (4, 'imported module "%s" not used'), 'UNUSED_TYPEDEF': (4, 'locally scoped typedef "%s" not used'), 'UNUSED_GROUPING': (4, 'locally scoped grouping "%s" not used'), 'KEY_HAS_DEFAULT': (4, 'default value for a key leaf is ignored'), 'KEY_HAS_MANDATORY_FALSE': (4, '"mandatory" statement for a key leaf is ignored'), 'LONG_LINE': (4, 'line length %s exceeds %s characters'), 'STRICT_XPATH_FUNCTION': (2, 'XPath function "%s" is not allowed for strict YANG compliance'), } def add_error_code(tag, level, fmt): """Add an error code to the framework. Can be used by plugins to add special errors.""" error_codes[tag] = (level, fmt) def err_level(tag): try: (level, fmt) = error_codes[tag] return level except KeyError: return 0 def err_to_str(tag, args): try: (level, fmt) = error_codes[tag] return fmt % args except KeyError: return 'unknown error %s' % tag def err_add(errors, pos, tag, args): error = (copy.copy(pos), tag, args) # surely this can be done more elegant?? for p, t, a in errors: if (p.line == pos.line and p.ref == pos.ref and p.top == pos.top and t == tag and a == args): return errors.append(error) def is_warning(level): return not is_error(level) def is_error(level): return level < 4 def allow_warning(level): return level > 2 ```
{ "source": "jiezhangxl/PointCNN-FI-Conv", "score": 2 }
#### File: jiezhangxl/PointCNN-FI-Conv/pointcnn.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import pointfly as pf import tensorflow as tf def ficonv(pts, fts, qrs, tag, N, K1, mm, sigma, scale, K, D, P, C, C_pts_fts, kernel_num, is_training, with_kernel_registering, with_kernel_shape_comparison, with_point_transformation, with_feature_transformation, with_learning_feature_transformation, kenel_initialization_method, depth_multiplier, sorting_method=None, with_global=False): Dis, indices_dilated = pf.knn_indices_general(qrs, pts, K*D, True) indices = indices_dilated[:, :, ::D, :] if sorting_method is not None: indices = pf.sort_points(pts, indices, sorting_method) nn_pts = tf.gather_nd(pts, indices, name=tag + 'nn_pts') # (N, P, K, 3) nn_pts_center = tf.expand_dims(qrs, axis=2, name=tag + 'nn_pts_center') # (N, P, 1, 3) nn_pts_local = tf.subtract(nn_pts, nn_pts_center, name=tag+'nn_pts_local') # (N, P, K, 3) if with_point_transformation or with_feature_transformation: X_0 = pf.conv2d(nn_pts_local, K * K, tag + 'X_0', is_training, (1, K)) X_0_KK = tf.reshape(X_0, (N, P, K, K), name=tag + 'X_0_KK') X_1 = pf.depthwise_conv2d(X_0_KK, K, tag + 'X_1', is_training, (1, K)) X_1_KK = tf.reshape(X_1, (N, P, K, K), name=tag + 'X_1_KK') X_2 = pf.depthwise_conv2d(X_1_KK, K, tag + 'X_2', is_training, (1, K), activation=None) X_2_KK = tf.reshape(X_2, (N, P, K, K), name=tag + 'X_2_KK') if with_point_transformation: if with_learning_feature_transformation: nn_pts_local = tf.matmul(X_2_KK, nn_pts_local) # Prepare features to be transformed nn_fts_from_pts_0 = pf.dense(nn_pts_local, C_pts_fts, tag + 'nn_fts_from_pts_0', is_training) nn_fts_from_pts = pf.dense(nn_fts_from_pts_0, C_pts_fts, tag + 'nn_fts_from_pts', is_training) else: # Prepare features to be transformed nn_fts_from_pts_0 = pf.dense(nn_pts_local, C_pts_fts, tag + 'nn_fts_from_pts_0', is_training) nn_fts_from_pts = pf.dense(nn_fts_from_pts_0, C_pts_fts, tag + 'nn_fts_from_pts', is_training) nn_pts_local = tf.matmul(X_2_KK, nn_pts_local) else: if with_learning_feature_transformation: nn_pts_local_ = tf.matmul(X_2_KK, nn_pts_local, name=tag+'nn_pts_local_') # Prepare features to be transformed nn_fts_from_pts_0 = pf.dense(nn_pts_local_, C_pts_fts, tag + 'nn_fts_from_pts_0', is_training) nn_fts_from_pts = pf.dense(nn_fts_from_pts_0, C_pts_fts, tag + 'nn_fts_from_pts', is_training) else: nn_fts_from_pts_0 = pf.dense(nn_pts_local, C_pts_fts, tag + 'nn_fts_from_pts_0', is_training) nn_fts_from_pts = pf.dense(nn_fts_from_pts_0, C_pts_fts, tag + 'nn_fts_from_pts', is_training) if fts is None: nn_fts_input = nn_fts_from_pts else: nn_fts_from_prev = tf.gather_nd(fts, indices, name=tag + 'nn_fts_from_prev') nn_fts_input = tf.concat([nn_fts_from_pts, nn_fts_from_prev], axis=-1, name=tag + 'nn_fts_input') P1 = tf.shape(nn_pts_local)[1] dim1 = 3 if with_kernel_registering: ######################## preparing ######################### if with_feature_transformation: nn_fts_input = tf.matmul(X_2_KK, nn_fts_input) r_data = tf.reduce_sum(nn_pts_local * nn_pts_local, axis=3, keep_dims=True, name=tag+'kernel_pow') ######################## kernel-registering ######################### shape_id = 0 if kenel_initialization_method == 'random': kernel_shape=tf.Variable(tf.random_uniform([K1,dim1], minval=-0.5, maxval=0.5, dtype=tf.float32), name=tag+'kernel_shape'+str(shape_id)) else: kernel_shape=tf.Variable(tf.random_normal([K1,dim1], mean=0.0, stddev=1.0, dtype=tf.float32), name=tag+'kernel_shape'+str(shape_id)) kernel_shape_dis = tf.sqrt(tf.reduce_sum(kernel_shape * kernel_shape, axis=1), name=tag+'kernel_shape_dis'+str(shape_id)) kernel_shape_normal = scale * tf.div(kernel_shape,tf.reduce_max(kernel_shape_dis), name=tag+'kernel_shape_normal'+str(shape_id)) r_kernel = tf.reduce_sum(kernel_shape_normal * kernel_shape_normal, axis=1, keep_dims=True, name=tag+'kernel_pow'+str(shape_id)) reshape_data = tf.reshape(nn_pts_local, [N*P1*K,dim1], name=tag+'reshape_kernel'+str(shape_id)) m = tf.reshape( tf.matmul(reshape_data, tf.transpose(kernel_shape_normal)), [N, P1, K, K1], name=tag+'mm'+str(shape_id)) dis_matrix = tf.transpose(r_data-2*m+tf.transpose(r_kernel),perm=[0,1,3,2],name=tag+'dis_matrix'+str(shape_id)) coef_matrix = tf.exp(tf.div(-dis_matrix,sigma), name=tag+'coef_matrix'+str(shape_id)) #coef_matrix = tf.transpose(r_data-2*m+tf.transpose(r_kernel),perm=[0,1,3,2],name=tag+'coef_matrix'+str(shape_id)) if with_kernel_shape_comparison: coef_global = tf.reduce_sum(coef_matrix, axis=[2,3], keep_dims=True)/K coef_normal = coef_global * tf.div(coef_matrix,tf.reduce_sum(coef_matrix , axis = 3 , keep_dims=True), name=tag+'coef_normal'+str(shape_id)) else: coef_normal = tf.div(coef_matrix,tf.reduce_sum(coef_matrix , axis = 3 , keep_dims=True), name=tag+'coef_normal'+str(shape_id)) fts_X = tf.matmul(coef_normal, nn_fts_input, name=tag+'fts_X'+str(shape_id)) ################################################################### fts_conv = pf.separable_conv2d(fts_X, math.ceil(mm*C/kernel_num), tag+'fts_conv'+str(shape_id), is_training, (1, K1), depth_multiplier=depth_multiplier) fts_conv_3d = tf.squeeze(fts_conv, axis=2, name=tag+'fts_conv_3d'+str(shape_id)) for shape_id in range(kernel_num - 1): shape_id = shape_id + 1 if kenel_initialization_method == 'random': kernel_shape=tf.Variable(tf.random_uniform([K1,dim1], minval=-0.5, maxval=0.5, dtype=tf.float32), name=tag+'kernel_shape'+str(shape_id)) else: kernel_shape=tf.Variable(tf.random_normal([K1,dim1], mean=0.0, stddev=1.0, dtype=tf.float32), name=tag+'kernel_shape'+str(shape_id)) kernel_shape_dis = tf.sqrt(tf.reduce_sum(kernel_shape * kernel_shape, axis=1), name=tag+'kernel_shape_dis'+str(shape_id)) kernel_shape_normal = scale * tf.div(kernel_shape,tf.reduce_max(kernel_shape_dis), name=tag+'kernel_shape_normal'+str(shape_id)) r_kernel = tf.reduce_sum(kernel_shape_normal * kernel_shape_normal, axis=1, keep_dims=True, name=tag+'kernel_pow'+str(shape_id)) reshape_data = tf.reshape(nn_pts_local, [N*P1*K,dim1], name=tag+'reshape_kernel'+str(shape_id)) m = tf.reshape( tf.matmul(reshape_data, tf.transpose(kernel_shape_normal)), [N, P1, K, K1], name=tag+'mm'+str(shape_id)) dis_matrix = tf.transpose(r_data-2*m+tf.transpose(r_kernel),perm=[0,1,3,2],name=tag+'dis_matrix'+str(shape_id)) coef_matrix = tf.exp(tf.div(-dis_matrix,sigma), name=tag+'coef_matrix'+str(shape_id)) #coef_matrix = tf.transpose(r_data-2*m+tf.transpose(r_kernel),perm=[0,1,3,2],name=tag+'coef_matrix'+str(shape_id)) if with_kernel_shape_comparison: coef_global = tf.reduce_sum(coef_matrix, axis=[2,3], keep_dims=True)/K coef_normal = coef_global * tf.div(coef_matrix,tf.reduce_sum(coef_matrix , axis = 3 , keep_dims=True), name=tag+'coef_normal'+str(shape_id)) else: coef_normal = tf.div(coef_matrix,tf.reduce_sum(coef_matrix , axis = 3 , keep_dims=True), name=tag+'coef_normal'+str(shape_id)) fts_X = tf.matmul(coef_normal, nn_fts_input, name=tag+'fts_X'+str(shape_id)) ################################################################### fts_conv = pf.separable_conv2d(fts_X, math.ceil(mm*C/kernel_num), tag+'fts_conv'+str(shape_id), is_training, (1, K1), depth_multiplier=depth_multiplier) fts_conv_3d = tf.concat([fts_conv_3d, tf.squeeze(fts_conv, axis=2)], axis = -1 , name=tag+'fts_conv_3d'+str(shape_id)) else: fts_X = nn_fts_input fts_conv = pf.separable_conv2d(fts_X, C, tag + 'fts_conv', is_training, (1, K), depth_multiplier=depth_multiplier) fts_conv_3d = tf.squeeze(fts_conv, axis=2, name=tag + 'fts_conv_3d') if with_global: fts_global_0 = pf.dense(qrs, C // 4, tag + 'fts_global_0', is_training) fts_global = pf.dense(fts_global_0, C // 4, tag + 'fts_global', is_training) return tf.concat([fts_global, fts_conv_3d], axis=-1, name=tag + 'fts_conv_3d_with_global') else: return fts_conv_3d def xdeconv(pts, fts, qrs, tag, N, K, D, P, C, C_pts_fts, is_training, with_X_transformation, depth_multiplier, sorting_method=None, with_global=False): _, indices_dilated = pf.knn_indices_general(qrs, pts, K * D, True) indices = indices_dilated[:, :, ::D, :] if sorting_method is not None: indices = pf.sort_points(pts, indices, sorting_method) nn_pts = tf.gather_nd(pts, indices, name=tag + 'nn_pts') # (N, P, K, 3) nn_pts_center = tf.expand_dims(qrs, axis=2, name=tag + 'nn_pts_center') # (N, P, 1, 3) nn_pts_local = tf.subtract(nn_pts, nn_pts_center, name=tag + 'nn_pts_local') # (N, P, K, 3) # Prepare features to be transformed nn_fts_from_pts_0 = pf.dense(nn_pts_local, C_pts_fts, tag + 'nn_fts_from_pts_0', is_training) nn_fts_from_pts = pf.dense(nn_fts_from_pts_0, C_pts_fts, tag + 'nn_fts_from_pts', is_training) if fts is None: nn_fts_input = nn_fts_from_pts else: nn_fts_from_prev = tf.gather_nd(fts, indices, name=tag + 'nn_fts_from_prev') nn_fts_input = tf.concat([nn_fts_from_pts, nn_fts_from_prev], axis=-1, name=tag + 'nn_fts_input') if with_X_transformation: ######################## X-transformation ######################### X_0 = pf.conv2d(nn_pts_local, K * K, tag + 'X_0', is_training, (1, K)) X_0_KK = tf.reshape(X_0, (N, P, K, K), name=tag + 'X_0_KK') X_1 = pf.depthwise_conv2d(X_0_KK, K, tag + 'X_1', is_training, (1, K)) X_1_KK = tf.reshape(X_1, (N, P, K, K), name=tag + 'X_1_KK') X_2 = pf.depthwise_conv2d(X_1_KK, K, tag + 'X_2', is_training, (1, K), activation=None) X_2_KK = tf.reshape(X_2, (N, P, K, K), name=tag + 'X_2_KK') fts_X = tf.matmul(X_2_KK, nn_fts_input, name=tag + 'fts_X') ################################################################### else: fts_X = nn_fts_input fts_conv = pf.separable_conv2d(fts_X, C, tag + 'fts_conv', is_training, (1, K), depth_multiplier=depth_multiplier) fts_conv_3d = tf.squeeze(fts_conv, axis=2, name=tag + 'fts_conv_3d') if with_global: fts_global_0 = pf.dense(qrs, C // 4, tag + 'fts_global_0', is_training) fts_global = pf.dense(fts_global_0, C // 4, tag + 'fts_global', is_training) return tf.concat([fts_global, fts_conv_3d], axis=-1, name=tag + 'fts_conv_3d_with_global') else: return fts_conv_3d class PointCNN: def __init__(self, points, features, is_training, setting): xconv_params = setting.xconv_params fc_params = setting.fc_params with_X_transformation = setting.with_X_transformation with_kernel_registering = setting.with_kernel_registering with_kernel_shape_comparison = setting.with_kernel_shape_comparison with_point_transformation = setting.with_point_transformation with_feature_transformation = setting.with_feature_transformation with_learning_feature_transformation = setting.with_learning_feature_transformation kenel_initialization_method = setting.kenel_initialization_method sorting_method = setting.sorting_method N = tf.shape(points)[0] kernel_num = setting.kernel_num if setting.sampling == 'fps': from sampling import tf_sampling self.layer_pts = [points] if features is None: self.layer_fts = [features] else: features = tf.reshape(features, (N, -1, setting.data_dim - 3), name='features_reshape') C_fts = xconv_params[0]['C'] // 2 features_hd = pf.dense(features, C_fts, 'features_hd', is_training) self.layer_fts = [features_hd] # self.Dis = [] # self.nn_pts_local = [] for layer_idx, layer_param in enumerate(xconv_params): tag = 'xconv_' + str(layer_idx + 1) + '_' K1 = layer_param['K1'] mm = layer_param['mm'] sigma = layer_param['sigma'] scale = layer_param['scale'] K = layer_param['K'] D = layer_param['D'] P = layer_param['P'] C = layer_param['C'] links = layer_param['links'] if setting.sampling != 'random' and links: print('Error: flexible links are supported only when random sampling is used!') exit() # get k-nearest points pts = self.layer_pts[-1] fts = self.layer_fts[-1] if P == -1 or (layer_idx > 0 and P == xconv_params[layer_idx - 1]['P']): qrs = self.layer_pts[-1] else: if setting.sampling == 'fps': fps_indices = tf_sampling.farthest_point_sample(P, pts) batch_indices = tf.tile(tf.reshape(tf.range(N), (-1, 1, 1)), (1, P, 1)) indices = tf.concat([batch_indices, tf.expand_dims(fps_indices,-1)], axis=-1) qrs = tf.gather_nd(pts, indices, name= tag + 'qrs') # (N, P, 3) elif setting.sampling == 'ids': indices = pf.inverse_density_sampling(pts, K, P) qrs = tf.gather_nd(pts, indices) elif setting.sampling == 'random': qrs = tf.slice(pts, (0, 0, 0), (-1, P, -1), name=tag + 'qrs') # (N, P, 3) else: print('Unknown sampling method!') exit() self.layer_pts.append(qrs) if layer_idx == 0: C_pts_fts = C // 2 if fts is None else C // 4 depth_multiplier = 4 else: C_prev = xconv_params[layer_idx - 1]['C'] C_pts_fts = C_prev // 4 depth_multiplier = math.ceil(C / C_prev) with_global = (setting.with_global and layer_idx == len(xconv_params) - 1) fts_xconv= ficonv(pts, fts, qrs, tag, N, K1, mm, sigma, scale, K, D, P, C, C_pts_fts, kernel_num, is_training, with_kernel_registering, with_kernel_shape_comparison, with_point_transformation, with_feature_transformation, with_learning_feature_transformation, kenel_initialization_method, depth_multiplier, sorting_method, with_global) #self.Dis.append(Dis_) #self.nn_pts_local.append(nn_pts_local_) fts_list = [] for link in links: fts_from_link = self.layer_fts[link] if fts_from_link is not None: fts_slice = tf.slice(fts_from_link, (0, 0, 0), (-1, P, -1), name=tag + 'fts_slice_' + str(-link)) fts_list.append(fts_slice) if fts_list: fts_list.append(fts_xconv) self.layer_fts.append(tf.concat(fts_list, axis=-1, name=tag + 'fts_list_concat')) else: self.layer_fts.append(fts_xconv) if hasattr(setting, 'xdconv_params'): for layer_idx, layer_param in enumerate(setting.xdconv_params): tag = 'xdconv_' + str(layer_idx + 1) + '_' K = layer_param['K'] D = layer_param['D'] pts_layer_idx = layer_param['pts_layer_idx'] qrs_layer_idx = layer_param['qrs_layer_idx'] pts = self.layer_pts[pts_layer_idx + 1] fts = self.layer_fts[pts_layer_idx + 1] if layer_idx == 0 else self.layer_fts[-1] qrs = self.layer_pts[qrs_layer_idx + 1] fts_qrs = self.layer_fts[qrs_layer_idx + 1] P = xconv_params[qrs_layer_idx]['P'] C = xconv_params[qrs_layer_idx]['C'] C_prev = xconv_params[pts_layer_idx]['C'] C_pts_fts = C_prev // 4 depth_multiplier = 1 fts_xdconv = xdeconv(pts, fts, qrs, tag, N, K, D, P, C, C_pts_fts, is_training, with_X_transformation, depth_multiplier, sorting_method) fts_concat = tf.concat([fts_xdconv, fts_qrs], axis=-1, name=tag + 'fts_concat') fts_fuse = pf.dense(fts_concat, C, tag + 'fts_fuse', is_training) self.layer_pts.append(qrs) self.layer_fts.append(fts_fuse) self.fc_layers = [self.layer_fts[-1]] for layer_idx, layer_param in enumerate(fc_params): C = layer_param['C'] dropout_rate = layer_param['dropout_rate'] fc = pf.dense(self.fc_layers[-1], C, 'fc{:d}'.format(layer_idx), is_training) fc_drop = tf.layers.dropout(fc, dropout_rate, training=is_training, name='fc{:d}_drop'.format(layer_idx)) self.fc_layers.append(fc_drop) ```
{ "source": "JieZheng-ShanghaiTech/HiCoEx", "score": 3 }
#### File: src/data_preprocessing/01_gene_expression.py ```python import argparse import os import pandas as pd def main(args): dataset_path = '../../data/{}'.format(args.dataset) if not os.path.exists(dataset_path + '/expression_raw.csv'): tcga = pd.read_csv(args.input, delimiter='\t') print('Gene expression data loaded:', tcga.shape[0], 'genes and', tcga.shape[1] - 1, 'samples') low_expression_genes = (tcga == 0).sum(axis=1) <= tcga.shape[1] * 0.2 print(tcga.shape[0] - low_expression_genes.sum(), 'genes out of', tcga.shape[0], 'have more that 80% of samples with 0 expression. Removed') tcga = tcga[low_expression_genes] gene_info = pd.read_csv(args.gene_info, delimiter='\t') print('Merging gene expression data with gene information from Ensembl hg19') tcga = gene_info.merge(tcga, right_on='sample', left_on='Gene name', ) tcga = tcga.drop('sample', axis=1) print('Removing duplicated gene entries and keeping the ones with the outermost TSS') tcga_pos = tcga[tcga['Strand'] == 1] tcga_neg = tcga[tcga['Strand'] == -1] tcga_pos = tcga_pos.groupby(['Gene name']).min() tcga_neg = tcga_neg.groupby(['Gene name']).max() tcga = pd.concat([tcga_neg, tcga_pos]) tcga = tcga.groupby(['Gene name']).max() print('Final gene expression data with', tcga.shape[0], 'genes') if not os.path.exists(dataset_path): os.mkdir(dataset_path) print('Saving in', dataset_path + '/expression_raw.csv') tcga.to_csv(dataset_path + '/expression_raw.csv') else: print('Expression already computed. Skipped.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, required=True, help='Gene expression input file path downloaded from Xena Browser') parser.add_argument('--dataset', type=str, default='breast_normal', help='Name that will be used to identify the dataset') parser.add_argument('--gene-info', type=str, default='../../data/GRCh37_p13_gene_info.txt', help='Path of the txt file containing the association gene name - TSS') args = parser.parse_args() main(args) ``` #### File: src/data_preprocessing/02_hic_juicer.py ```python import argparse import os import numpy as np import pandas as pd import scipy.sparse as sps import matplotlib.pyplot as plt def main(args): print('Loading using juicer') chromosomes = range(1, 23) if args.chromosomes is None else args.chromosomes dataset_path = '../../data/{}/hic_raw/'.format(args.dataset) if not os.path.exists(dataset_path): os.makedirs(dataset_path, exist_ok=True) for i, chr_source in enumerate(chromosomes): if args.inter: chromosomes_target = chromosomes[i:] else: chromosomes_target = [chr_source] for chr_target in chromosomes_target: print('Downloading interactions between chr.', chr_source, 'and chr.', chr_target) output_hic = 'hic_raw_{}_{}_{}.npz'.format(chr_source, chr_target, args.window) output_path = os.path.join(dataset_path, output_hic) if not os.path.exists(output_path): # import ipdb # ipdb.set_trace() output_original = 'hic_raw_{}_{}_{}.txt'.format(chr_source, chr_target, args.resolution) original_path = os.path.join(dataset_path, output_original) os.system('java -jar {} '.format(args.juicer_path) + 'dump observed NONE {} '.format(args.input) + '{} {} '.format(chr_source, chr_target) + 'BP {} '.format(args.resolution) + '{}'.format(original_path)) hic = pd.read_csv(original_path, delim_whitespace=True, header=None) contact_matrix = sps.csr_matrix( (hic.iloc[:, 2], (hic.iloc[:, 0] // args.resolution, hic.iloc[:, 1] // args.resolution))) if args.window > args.resolution: contact_matrix_agg = np.add.reduceat(contact_matrix.toarray(), np.arange(0, contact_matrix.shape[0], args.window // args.resolution), axis=0) contact_matrix_agg = np.add.reduceat(contact_matrix_agg, np.arange(0, contact_matrix.shape[1], args.window // args.resolution), axis=1) contact_matrix = sps.csr_matrix(contact_matrix_agg) # import ipdb # ipdb.set_trace() sps.save_npz(output_path, contact_matrix) os.remove(original_path) else: print('File already existing. Skip.') if args.save_plot: contact_matrix = sps.load_npz(output_path) if args.save_plot: plot_path = '../../data/plots/{}/hic_raw'.format(args.dataset) if not os.path.exists(plot_path): os.makedirs(plot_path, exist_ok=True) plt.figure(dpi=200) plt.imshow(np.log1p(contact_matrix.toarray()*10), cmap='Reds') plt.savefig(os.path.join(plot_path, 'hic_raw_{}_{}_{}.png'.format(chr_source, chr_target, args.window))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, required=True, help='Link of the Hi-C data hosted on Juicer') parser.add_argument('--juicer-path', type=str, required=True) parser.add_argument('--dataset', type=str, required=True) parser.add_argument('--resolution', type=int, default=10000, help='Resolution of the Hi-C data.') parser.add_argument('--window', type=int, default=40000, help='Resolution of the Hi-C data.') parser.add_argument('--chromosomes', nargs='*', default=None, help='List of chromosomes for which to extract the Hi-C data. If empty all the non-sexual chromosomes data will be extracted.') parser.add_argument('--inter', default=False, action='store_true', help='Extract also interchromosomal interactions') parser.add_argument('--save-plot', default=False, action='store_true') args = parser.parse_args() if args.window % args.resolution != 0: raise ValueError('window must be a multiple of the resolution') main(args) ``` #### File: src/data_preprocessing/02_hic_norm.py ```python import os import argparse import numpy as np from iced import normalization import scipy.sparse as sps def main(args): chromosomes = range(1, 23) if args.chromosomes is None else args.chromosomes dataset_path = '../../data/{}/hic_raw'.format(args.dataset) file_list = os.listdir(dataset_path) chr_list = [f.split('.')[-2] for f in file_list] for i in chromosomes: print('Chromosome ', i) input_path = file_list[chr_list.index('chr'+str(i))] original_path = os.path.join(dataset_path, input_path) # import ipdb # ipdb.set_trace() contact_matrix = np.genfromtxt(original_path, delimiter='\t') contact_matrix = normalization.ICE_normalization(contact_matrix) contact_matrix_sparse = sps.csr_matrix(contact_matrix) sps.save_npz(dataset_path + '/hic_raw_{}_{}_{}.npz'.format(i, i, args.resolution), contact_matrix_sparse) os.remove(original_path) if args.save_plot: plot_path = '../../data/plots/{}/hic_raw'.format(args.dataset) if not os.path.exists(plot_path): os.makedirs(plot_path, exist_ok=True) plt.figure(dpi=200) plt.imshow(np.log1p(contact_matrix.toarray()*10), cmap='Reds') plt.savefig(os.path.join(plot_path, 'hic_raw_{}_{}_{}.png'.format(chr_source, chr_target, args.window))) print('Hi-C data saved in sparse format in', dataset_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, required=True) parser.add_argument('--resolution', type=int, required=True, help='Resolution of the Hi-C data.') parser.add_argument('--chromosomes', nargs='*', default=None, help='List of chromosomes for which to normalize the Hi-C data. If empty all the non-sexual chromosomes data will be normalized.') parser.add_argument('--save-plot', default=False, action='store_true') args = parser.parse_args() main(args) ``` #### File: src/link_prediction/01_link_prediction_chromosome.py ```python import numpy as np import random import torch import argparse import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from utils_link_prediction import * from utils import set_n_threads, set_gpu from train_GNN import train_main import ipdb def main(args): if args.chr_src is None: raise ValueError() if args.chr_tgt is None: args.chr_tgt = args.chr_src if args.chromatin_network_name is None: args.chromatin_network_name = '{}_{}_{}_{}_{}'.format(args.type, args.chr_src, args.chr_tgt, args.bin_size, args.hic_threshold) args, filename = setup_filenames_and_folders(args, args.chr_src) np.random.seed(args.seed) random.seed(args.seed) if not os.path.exists('{}/results/{}/{}'.format(args.data_root, args.dataset, filename)) or args.force: print('Prediction of co-expression links from chr. {} to {} using {} embeddings.'.format(args.chr_src, args.chr_tgt, args.method)) coexpression, disconnected_nodes = load_coexpression(args, args.chromatin_network_name, '{}_{}'.format(args.chr_src, args.chr_tgt)) edges, non_edges = get_edges(coexpression) X_train, X_test, y_train, y_test = build_dataset(args, edges, non_edges, coexpression.shape[0]) print('Method: {}, classifier: {}, seed: {}'.format(args.method, args.classifier, args.seed)) if args.method[:3] != 'GNN': if args.chr_src == 1: print('Training on {} dataset'.format(args.dataset)) print('{} training samples, {} testing samples'.format(len(X_train), len(X_test))) link_prediction(args, X_train, y_train, X_test, y_test, filename) else: emb = train_main(args, X_train, y_train, X_test, y_test, filename) X = np.vstack((X_train, X_test)) y = np.hstack((y_train, y_test)) name = args.chromatin_network_name emb_file = '{}_es{}_nl{}_nhds{}_clf_{}'.format(name, args.emb_size, args.n_layers, args.num_heads, args.classifier) if args.save_emb: emb_path = '{}/{}/embeddings/{}_{}'.format(args.data_root, args.dataset, args.classifier, args.method) os.makedirs(emb_path, exist_ok=True) np.save('{}/{}.npy'.format(emb_path, emb_file), emb.cpu().numpy()) else: print('Result already computed for {}. Skipped.'.format(filename)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data-root', type=str, required=True, default='../../data') parser.add_argument('--node-feature', type=str, default='random', choices=['random', 'one-hot', 'biological', 'pre-trained']) parser.add_argument('--seed', type=int, default=42) parser.add_argument('--nfeat-path', type=str, default=None, help='require when node feature is biological or pre-trained') parser.add_argument('--dataset', type=str, required=True) parser.add_argument('--chr-src', type=int, default=1) parser.add_argument('--chr-tgt', type=int, default=1) parser.add_argument('--n-iter', type=int, default=1) parser.add_argument('--cv-splits', type=int, default=5) parser.add_argument('--method', type=str, default='node2vec', choices=['random', 'distance', 'topological', 'svd', 'node2vec', 'GNN_GCN', 'GNN_HiCoEx', 'GNN_GCN_pyg', 'GNN_HiCoEx_pyg']) parser.add_argument('--type', type=str) parser.add_argument('--bin-size', type=int) parser.add_argument('--hic-threshold', type=str) parser.add_argument('--chromatin-network-name', type=str) parser.add_argument('--aggregators', nargs='*', default=['hadamard'], choices=['hadamard', 'avg', 'l1']) parser.add_argument('--classifier', default='rf', choices=['mlp', 'direct', 'rf', 'random']) parser.add_argument('--coexp-thr', type=str, default=None, required=True) parser.add_argument('--save-predictions', default=True, action='store_true') parser.add_argument('--emb-size', type=int, default=16) # Topological measures params parser.add_argument('--edge-features', default=True, action='store_true') # Node2vec params parser.add_argument('--num-walks', type=int, default=10) parser.add_argument('--walk-len', type=int, default=80) parser.add_argument('--p', type=float, default=1.0) parser.add_argument('--q', type=float, default=1.0) parser.add_argument('--window', type=int, default=10) # GNN_* params parser.add_argument('--training', default=False, action='store_true') parser.add_argument('--times', type=int, default=None) parser.add_argument('--init_lr', type=float, default=0.01) parser.add_argument('--weight-decay', type=float, default=0.001) parser.add_argument('--lr-reduce-factor', type=float, default=0.5) parser.add_argument('--epoches', type=int, default=100) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--n-layers', type=int, default=2) parser.add_argument('--num-heads', type=int, default=1) parser.add_argument('--out-dim', type=int, default=16) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--load-ckpt', default=False, action='store_true') parser.add_argument('--save-emb', default=False, action='store_true') parser.add_argument('--force', default=False, action='store_true') parser.add_argument('--test', default=True, action='store_true') parser.add_argument('--gpu', default=False, action='store_true') parser.add_argument('--gpu-id', type=int, default=0) parser.add_argument('--device', type=str, default=None) parser.add_argument('--n-jobs', type=int, default=10) parser.add_argument('--wandb', default=False, action='store_false') parser.add_argument('--project', default='parameter-importance', type=str) args = parser.parse_args() # ipdb.set_trace() device = set_gpu(args.gpu, args.gpu_id) args.device = device set_n_threads(args.n_jobs) main(args) ```
{ "source": "JieZheng-ShanghaiTech/MGE4SL", "score": 2 }
#### File: JieZheng-ShanghaiTech/MGE4SL/data_prepare.py ```python import math import torch from torch_geometric.data import Data from torch_geometric.utils import to_undirected class SynlethDB(Data): def __init__(self, num_nodes, sl_data,nosl_data): num_nodes = num_nodes num_edges = sl_data.shape[0] neg_num_edges = nosl_data.shape[0] feat_node_dim = 1 feat_edge_dim = 1 self.x = torch.ones(num_nodes, feat_node_dim) self.y = torch.randint(0, 2, (num_nodes,)) self.edge_index = torch.tensor(sl_data[['gene_a_encoder','gene_b_encoder']].T.values, dtype=torch.long) self.edge_attr = torch.ones(num_edges, feat_edge_dim) self.neg_edge_index = torch.tensor(nosl_data[['gene_a_encoder', 'gene_b_encoder']].T.values, dtype=torch.long) self.neg_edge_attr = torch.ones(neg_num_edges, feat_edge_dim) #related knowledge graph class SynlethDB_KG(Data): def __init__(self, kg_data, types): self.type = types num_nodes = 9872 num_edges = kg_data.shape[0] feat_node_dim = 1 feat_edge_dim = 1 self.x = torch.ones(num_nodes, feat_node_dim) self.y = torch.randint(0, 2, (num_nodes,)) self.edge_index = torch.tensor(kg_data[['gene_a_encoder','gene_b_encoder']].T.values, dtype=torch.long) self.edge_attr = torch.tensor(kg_data[[self.type]].values, dtype = torch.long) #random negative sample def get_k_fold_data_random_neg(data, k = 10): num_nodes = data.num_nodes row, col = data.edge_index num_edges = row.size(0) mask = row < col row, col = row[mask], col[mask] neg_row, neg_col = data.neg_edge_index neg_num_edges = neg_row.size(0) mask = neg_row < neg_col neg_row, neg_col = neg_row[mask], neg_col[mask] assert k > 1 fold_size = num_edges // k perm = torch.randperm(num_edges) row, col = row[perm], col[perm] neg_perm = torch.randperm(neg_num_edges) neg_row, neg_col = neg_row[neg_perm], neg_col[neg_perm] res_neg_adj_mask = torch.ones(num_nodes, num_nodes, dtype=torch.uint8) res_neg_adj_mask = res_neg_adj_mask.triu(diagonal=1).to(torch.bool) res_neg_adj_mask[row, col] = 0 res_neg_row, res_neg_col = res_neg_adj_mask.nonzero(as_tuple=False).t() for j in range(k): val_start = j * fold_size val_end = (j+1) * fold_size if j == k - 1: val_row, val_col = row[val_start:], col[val_start:] train_row, train_col = row[:val_start], col[:val_start] else: val_row, val_col = row[val_start:val_end], col[val_start:val_end] train_row, train_col = torch.cat([row[:val_start],row[val_end:]], 0), torch.cat([col[:val_start],col[val_end:]], 0) # val data.val_pos_edge_index = torch.stack([val_row, val_col], dim=0) # train data.train_pos_edge_index = torch.stack([train_row, train_col], dim=0) add_val = data.val_pos_edge_index.shape[1] add_train = data.train_pos_edge_index.shape[1] perm = torch.randperm(res_neg_row.size(0))[:add_val+add_train] res_neg_row, res_neg_col = res_neg_row[perm], res_neg_col[perm] res_r, res_c = res_neg_row[:add_val], res_neg_col[:add_val] data.val_neg_edge_index = torch.stack([res_r, res_c], dim=0) res_r, res_c = res_neg_row[add_val:add_val+add_train], res_neg_col[add_val:add_val+add_train] data.train_neg_edge_index = torch.stack([res_r, res_c], dim=0) data.train_pos_edge_index = to_undirected(data.train_pos_edge_index) data.train_neg_edge_index = to_undirected(data.train_neg_edge_index) yield data def train_test_split_edges_kg(data, test_ratio=0.1): num_nodes = data.num_nodes row, col = data.edge_index data.edge_index = None num_edges = row.size(0) # Return upper triangular portion. mask = row < col row, col = row[mask], col[mask] n_t = int(math.floor(test_ratio * num_edges)) # Positive edges. perm = torch.randperm(row.size(0)) row, col = row[perm], col[perm] r, c = row[:n_t], col[:n_t] data.test_pos_edge_index = torch.stack([r, c], dim=0) r, c = row[n_t:], col[n_t:] data.train_pos_edge_index = torch.stack([r, c], dim=0) data.train_pos_edge_index = to_undirected(data.train_pos_edge_index) # Negative edges. neg_adj_mask = torch.ones(num_nodes, num_nodes, dtype=torch.uint8) neg_adj_mask = neg_adj_mask.triu(diagonal=1).to(torch.bool) neg_adj_mask[row, col] = 0 neg_row, neg_col = neg_adj_mask.nonzero(as_tuple=False).t() perm = torch.randperm(neg_row.size(0))[:num_edges] neg_row, neg_col = neg_row[perm], neg_col[perm] row, col = neg_row[:n_t], neg_col[:n_t] data.test_neg_edge_index = torch.stack([row, col], dim=0) row, col = neg_row[n_t:], neg_col[n_t:] data.train_neg_edge_index = torch.stack([row, col], dim=0) data.train_neg_edge_index = to_undirected(data.train_neg_edge_index) return data def construct_kg_sldb(data): combined_score_data = data[data['combined_score'] > 0] reactome_data = data[data['reactome'] > 0] corum_data = data[data['corum'] > 0] go_F_data = data[data['go_F'] > 0] go_C_data = data[data['go_C'] > 0] go_P_data = data[data['go_P'] > 0] kegg_data = data[data['kegg'] > 0] synlethdb_ppi = SynlethDB_KG(combined_score_data, 'combined_score') synlethdb_ppi = train_test_split_edges_kg(synlethdb_ppi, test_ratio=0) synlethdb_rea = SynlethDB_KG(reactome_data, 'reactome') synlethdb_rea = train_test_split_edges_kg(synlethdb_rea, test_ratio=0) synlethdb_cor = SynlethDB_KG(corum_data, 'corum') synlethdb_cor = train_test_split_edges_kg(synlethdb_cor, test_ratio=0) synlethdb_go_F = SynlethDB_KG(go_F_data, 'go_F') synlethdb_go_F = train_test_split_edges_kg(synlethdb_go_F, test_ratio=0) synlethdb_go_C = SynlethDB_KG(go_C_data, 'go_C') synlethdb_go_C = train_test_split_edges_kg(synlethdb_go_C, test_ratio=0) synlethdb_go_P = SynlethDB_KG(go_P_data, 'go_P') synlethdb_go_P = train_test_split_edges_kg(synlethdb_go_P, test_ratio=0) synlethdb_kegg = SynlethDB_KG(kegg_data, 'kegg') synlethdb_kegg = train_test_split_edges_kg(synlethdb_kegg, test_ratio=0) return synlethdb_ppi,synlethdb_rea,synlethdb_cor,synlethdb_go_F,synlethdb_go_C,synlethdb_go_P,synlethdb_kegg ```
{ "source": "JieZheng-ShanghaiTech/PIKE-R2P", "score": 2 }
#### File: JieZheng-ShanghaiTech/PIKE-R2P/gcn_test.py ```python import torch import numpy as np from torchvision.datasets import mnist from torch import nn from torch.autograd import Variable import matplotlib.pyplot as plt import torch.nn.functional as F from torch.utils.data import DataLoader from torch.utils.data import TensorDataset,DataLoader from tqdm import tqdm from scipy.stats import pearsonr from model import Net,Net2 from sklearn.model_selection import train_test_split from config import Config def load_data(configs,k=True): print('loading data....') x_test = np.load(configs.test_x_file) y_test = np.load(configs.test_y_file) configs.input_dim=x_test.shape[1] configs.output_dim=y_test.shape[1] try: print('using knowledge from',configs.corelation_matrix) coef_m = np.load(configs.corelation_matrix) coef_list=[] for c in configs.corelation_list: coef_list.append(np.load(c)) coef_list=np.array(coef_list) print(coef_list.shape) except: print('random init') coef_m=np.random.random((y_test.shape[1],y_test.shape[1])) print(x_test.shape,y_test.shape) print(x_test.shape,y_test.shape) x_test = torch.from_numpy(x_test) y_test = torch.from_numpy(y_test) datas_test = TensorDataset(x_test, y_test) data_loader_test = DataLoader(datas_test, batch_size=configs.batch_size, shuffle=False) if k: return data_loader_test, coef_m, configs,coef_list else: return data_loader_test,coef_m,configs def test(test_loader,coef_m,coef_list,configs): label_shape=configs.output_dim if configs.net_model=='k': net = Net2(configs.input_dim, configs.output_dim,configs.device,coef_list) else: net = Net(configs.input_dim, configs.output_dim, configs.device, coef_m) net.load_state_dict(torch.load(configs.val_model)) net.to(configs.device) print(net) criterion = nn.MSELoss() net.eval() output=[[] for _ in range(label_shape)] targets=[[] for _ in range(label_shape)] val_loss=0 for data,target in test_loader: data, target = Variable(data).float(), Variable(target).float() # data.cuda() data = data.to(configs.device) target = target.to(configs.device) out = net(data) loss = criterion(out, target) val_loss+=loss.item() for i in range(label_shape): output[i].append(out[:,i]) targets[i].append(target[:,i]) val_loss/=len(test_loader) pearson_list=[] for i in range(label_shape): output[i]=torch.cat([x for x in output[i]]).cpu().detach().numpy().tolist() targets[i] = torch.cat([x for x in targets[i]]).cpu().detach().numpy().tolist() p=pearsonr(output[i],targets[i])[0] if p>=-1 and p<=1: pearson_list.append(p) else: pearson_list.append(0) print('0 pers at',i,max(output[i]),min(output[i])) pear_sum=np.mean(np.array(pearson_list)) print('test_loss', val_loss, '\tpearsonr', pear_sum) with open(configs.logs,'a') as f: f.write('test\t') f.write(configs.net_model+'\t') f.write(str(configs.test)+'\t') f.write(configs.name+'\t') f.write(configs.result_save+'\n') f.write(str(val_loss)+'\t'+str(pear_sum)+'\n') print(configs.net_model,configs.test,configs.name,configs.result_save) ``` #### File: JieZheng-ShanghaiTech/PIKE-R2P/model.py ```python import torch.nn as nn import torch.nn.functional as F import torch from torch.autograd import Variable class Net(nn.Module): def __init__(self,input_dim,output_dim,device,coef_m=None): super(Net, self).__init__() self.output_dim=output_dim self.fc_input=nn.Linear(input_dim,1024) self.fc1=nn.Linear(1024,128) self.dropout=nn.Dropout(0.3) self.output_list=[] self.device=device self.output_list2=[] for i in range(output_dim): self.output_list.append(nn.Linear(128,64)) self.output_list2.append(nn.Linear(64,1)) self.output_list=nn.ModuleList(self.output_list) self.output_list2=nn.ModuleList(self.output_list2) # self.fc2=nn.Linear(output_dim,output_dim) self.trans_gcn=nn.Linear(64,64) self.nodes_trans_nn = nn.Linear(output_dim, output_dim, bias=False) self.nodes_trans=Variable(torch.from_numpy(coef_m).contiguous().float(),requires_grad=True).to(device) coef_w=torch.from_numpy(coef_m*0.25).contiguous().float() self.nodes_trans_nn.weight=torch.nn.Parameter(coef_w) self.output_mapping=nn.Linear(64,1) self.prelu=nn.PReLU() def forward(self,x): x.to(self.device) x=F.relu(self.fc_input(x)) x=F.relu(self.fc1(x)) hidden_list=[] output_list=[] for i in range(self.output_dim): hidden_list.append(F.relu(self.output_list[i](x))) hidden_list[i] = hidden_list[i].unsqueeze(1) hiddens = torch.cat([h for h in hidden_list], 1) nodes_hidden = hiddens.permute(0, 2, 1) nodes_trans = self.nodes_trans_nn(nodes_hidden) nodes_trans = nodes_trans.permute(0, 2, 1) # print(nodes_trans.shape) trans = F.sigmoid(self.trans_gcn(nodes_trans)) for i in range(self.output_dim): output_list.append(F.elu(self.output_list2[i](trans[:,i:i+1,:].squeeze(1)))) outputs=self.prelu(self.output_mapping(trans)).squeeze(-1) return outputs class Net2(nn.Module): def __init__(self,input_dim,output_dim,device,coef_m=None): super(Net2, self).__init__() self.output_dim = output_dim self.device = device self.fc_input = nn.Linear(input_dim, 1024) self.fc1 = nn.Linear(1024, 128) self.dropout = nn.Dropout(0.3) self.output_list = [] self.device = device self.output_list2 = [] self.coef_m = Variable(torch.from_numpy(coef_m).contiguous().float(), requires_grad=True).to(self.device) self.coef_m = self.coef_m.permute(1, 2, 0) self.output_list = nn.ModuleList(self.output_list) self.output_list2 = nn.ModuleList(self.output_list2) # self.fc2=nn.Linear(output_dim,output_dim) self.feature_nums = self.coef_m.shape[2] self.coef_nn_list = [] self.coef_nn_list_att = [] self.feature_hidden = 32 for i in range(self.feature_nums): self.coef_nn_list.append(nn.Linear(1, self.feature_hidden)) self.coef_nn_list_att.append(nn.Linear(self.feature_hidden, self.feature_hidden, bias=False)) self.coef_nn_list = nn.ModuleList(self.coef_nn_list) self.coef_nn_list_att = nn.ModuleList(self.coef_nn_list_att) self.output_list_att = [] for i in range(self.output_dim): self.output_list_att.append(nn.Linear(self.feature_hidden, self.feature_hidden, bias=False)) self.output_list_att = nn.ModuleList(self.output_list_att) self.trans_gcn = nn.Linear(64 + self.feature_hidden * self.output_dim, 64 + self.feature_hidden * self.output_dim,bias=False) self.nodes_trans_nn = nn.Linear(output_dim, output_dim,bias=False) self.output_mapping = nn.Linear(64 + self.feature_hidden * self.output_dim, 1) self.prelu = nn.PReLU() # self.coef_feature=nn.Linear(self.feature_nums*self.feature_hidden,self.feature_nums*self.feature_hidden) # self.coef_feature=nn.Linear(self.feature_nums*self.feature_hidden*self.output_dim,self.feature_nums*self.feature_hidden) self.nodes_feature = nn.Linear(64 + self.feature_hidden * self.output_dim, 64) for i in range(output_dim): self.output_list.append(nn.Linear(128, 64)) self.output_list2.append(nn.Linear(64 + self.feature_hidden * self.output_dim, 1)) def forward(self, x): batch_size = x.shape[0] x.to(self.device) x = F.relu(self.fc_input(x)) x = F.relu(self.fc1(x)) hidden_list = [] output_list = [] for i in range(self.output_dim): hidden_list.append(F.relu(self.output_list[i](x))) hidden_list[i] = hidden_list[i].unsqueeze(1) coef_feature_list = [] for i in range(self.feature_nums): coef_feature_list.append(F.elu(self.coef_nn_list[i](self.coef_m[:, :, i].unsqueeze(-1)))) coef_feature = torch.cat([h for h in coef_feature_list], 2) sum = torch.sum(torch.exp(F.elu(coef_feature)), 2) sum = sum.unsqueeze(2) hiddens = torch.cat([h for h in hidden_list], 1) coef_feature_list_att = [] coef_feature_s = torch.zeros((self.output_dim, self.output_dim, self.feature_hidden)).contiguous().float().to( self.device) for idx, f in enumerate(coef_feature_list): att = torch.exp(F.elu(f)) p = F.elu(att * self.coef_nn_list_att[idx](f) / sum) coef_feature_list_att.append(p) coef_feature_s = coef_feature_s + p coef_feature_s /= self.feature_nums coef_feature_s = F.elu(coef_feature_s) # coef_feature = torch.cat([h for h in coef_feature_list_att], 2) nodes_feature_s = torch.zeros((self.output_dim, self.feature_hidden)).contiguous().float().to(self.device) coef_sum = torch.sum(torch.exp(F.elu(coef_feature_s)), 1) coef_feature_att = [] for i in range(self.output_dim): nodes_feat = coef_feature_s[:, i, :] p = torch.exp(F.elu(nodes_feat)) / coef_sum att = p * self.output_list_att[i](nodes_feat) coef_feature_att.append(att) coef_feature_att = torch.cat([h for h in coef_feature_att], 1) coef_feature_att = coef_feature_att.unsqueeze(0) coef_feature_att = coef_feature_att.repeat(batch_size, 1, 1) hiddens = torch.cat([hiddens, coef_feature_att], 2) # graph neural network nodes_hidden = hiddens.permute(0, 2, 1) nodes_trans = self.nodes_trans_nn(nodes_hidden) nodes_trans = nodes_trans.permute(0, 2, 1) trans = F.sigmoid(self.trans_gcn(nodes_trans)) for i in range(self.output_dim): output_list.append(self.prelu(self.output_list2[i](trans[:, i:i + 1, :].squeeze(1)))) outputs = self.prelu(self.output_mapping(trans)).squeeze(-1) return outputs ```
{ "source": "Jiezhi/forecastr", "score": 3 }
#### File: Jiezhi/forecastr/helper_v4.py ```python import time import numpy as np import pandas as pd from flask_socketio import emit from prophet import Prophet from prophet.diagnostics import cross_validation from prophet.diagnostics import performance_metrics def forecastr(data, forecast_settings, column_headers, freq_val, build_settings): """ Background: This function will take the data from the csv and forecast out x number of days. Input: data: This is a pandas dataframe containing time series data (2 columns: date and metric) forecast_settings: This is a list containing values for model type, forecast period length and seasonality parameters column_headers: List containing the name of the date and metric freq_val: String containing "D","M","Y" build_settings: String determining whether this is an initial or updated forecast. Output: [y_hat,dates,m,csv_ready_for_export]: A list containing forecasted data, dimension, model and data for the csv export """ ##### Variables, Model Settings & Facebook Prophet Hyper Parameters ##### # Initial Variables build = build_settings # Determine the build_setting - either initial or update forecast settings. dimension = column_headers[0] # date metric = column_headers[1] # metric name # Rename the columns so we can use FB Prophet data.rename(index=str, columns={dimension: "ds", metric: "y"}, inplace=True) # Hyper-parameters fs_model_type = forecast_settings[0] # linear or logistic fs_period = int(forecast_settings[1]) # int fs_seasonality_mode = forecast_settings[4] # additive or multiplicative fs_daily_seasonality = forecast_settings[6][0] # True or False fs_weekly_seasonality = forecast_settings[6][1] # True or False fs_yearly_seasonality = forecast_settings[6][2] # True or False # Need to set carrying capacity and saturated min as an int if model_type = 'logistic', else we'll set as 'auto' to be filtered out. if fs_model_type == 'logistic': fs_carrying_capacity = int(forecast_settings[2]) # int fs_saturated_minimum = int(forecast_settings[3]) # int data['cap'] = fs_carrying_capacity data['floor'] = fs_saturated_minimum else: print('no cap or floor needed as it is a linear model.') fs_carrying_capcity = 'auto' fs_saturated_minimum = 'auto' # Additional Hyper Parameters fs_seasonality_prior_scale = forecast_settings[5] # int fs_n_changepoints = forecast_settings[7] # int fs_changepoints_prior_scale = forecast_settings[8] # int?? # Check the following hyper parameters to see if they were set from within the UI. If not, they'll be set to 'auto' fs_seasonality_prior_scale = check_val_of_forecast_settings(fs_seasonality_prior_scale) fs_n_changepoints = check_val_of_forecast_settings(fs_n_changepoints) fs_changepoints_prior_scale = check_val_of_forecast_settings(fs_changepoints_prior_scale) # Holidays - to be included in a future iteration.... holidays_prior_scale = 10 # Determines how much of an effect holidays should have on a prediction. Default value is 10 #### End of Hyper Parameters Settings #### # No let's set up the arguments so that we can pass them into Prophet() when we instantiate the model. arguments = ['growth', 'seasonality_mode', 'seasonality_prior_scale', 'daily_seasonality', 'weekly_seasonality', 'yearly_seasonality', 'n_changepoints', 'changepoint_prior_scale'] arg_values = [fs_model_type, fs_seasonality_mode, fs_seasonality_prior_scale, fs_daily_seasonality, fs_weekly_seasonality, fs_yearly_seasonality, fs_n_changepoints if fs_n_changepoints == 'auto' else int(fs_n_changepoints), fs_changepoints_prior_scale] # Needs to be a dictionary model_arg_vals = dict(zip(arguments, arg_values)) ###### CHECK TO SEE WHAT VALUES WERE SET FROM WITHIN THE UI ###### # Check to see if any values are 0, auto or false. If any hyper-parameters have these values, they will not be included # when the pass in the dictionary prophet_arg_vals as kwarg prophet_arg_vals = {} for key, value in model_arg_vals.items(): if value != "" and value != False and value != 0 and value != 'auto': prophet_arg_vals[key] = value else: print(f'skipping {key}: {value}') ##### TIME TO INSTANTIATE, FIT AND PREDICT WITH FACEBOOK PROPHET ###### # Instantiate with prophet_arg_vals that are not auto, 0 or False. m = Prophet(**prophet_arg_vals) # Fit the Model - Side Note it would be interesting to time how long this takes by file size #start = time.time() start = time.time() m.fit(data) end = time.time() print(end - start) # Status update emit('processing', {'data': 'model has been fit'}) # Let's create a new data frame for the forecast which includes how long the user requested to forecast out in time units and by time unit type (eg. "D", "M","Y") future = m.make_future_dataframe(periods=fs_period, freq=freq_val) # If fs_model_type = 'logistic', create a column in future for carrying_capacity and saturated_minimum if fs_model_type == 'logistic': future['cap'] = fs_carrying_capacity future['floor'] = fs_saturated_minimum else: print('no cap or floor needed as it is a linear model.') # Let's predict the future :) forecast = m.predict(future) ##### Removed Cross-Validation for this release - see v3 for previous implementation ##### ##### Send y_hat and dates to a list, so that they can be graphed easily when set in ChartJS y_hat = forecast['yhat'].tolist() yhat_lower = forecast['yhat_lower'].tolist() yhat_upper = forecast['yhat_upper'].tolist() dates = forecast['ds'].apply(lambda x: str(x).split(' ')[0]).tolist() ##### Lets see how the forecast compares to historical performance ##### # First, lets sum up the forecasted metric forecast_sum = forecast['yhat'][-fs_period:].sum() forecast_mean = forecast['yhat'][-fs_period:].mean() # Now lets sum up the actuals for the same time interval as we predicted actual_sum = float(data['y'][-fs_period:].sum()) actual_mean = float(data['y'][-fs_period:].mean()) difference = '{0:.1%}'.format(((forecast_sum - actual_sum) / forecast_sum)) difference_mean = '{0:.1%}'.format(((forecast_mean - actual_mean) / forecast_mean)) forecasted_vals = ['{0:.1f}'.format(forecast_sum), '{0:.1f}'.format(actual_sum), difference] forecasted_vals_mean = ['{0:.1f}'.format(forecast_mean), '{0:.1f}'.format(actual_mean), difference_mean] ''' # Lets compare those two numbers, if forecast_sum is greater than actual, calculate the increase. Else, calculate the decrease if forecast_sum - actual_sum > 0: # this if else handles percent increase vs. decrease difference = '{0:.2%}'.format(((forecast_sum - actual_sum) / forecast_sum)) print("*********** DIFFERENCE IS ********") print(difference) else: difference = '{0:.2f}'.format(((actual_sum - forecast_sum) / actual_sum)) print("*********** DIFFERENCE IS ********") print(difference) ''' ####### Formatting data for CSV Export Functionality ########## # First, let's merge the original and forecast dataframes data_for_csv_export = pd.merge(forecast, data, on='ds', how='left') # Select the columns we want to include in the export export_formatted = data_for_csv_export[['ds', 'y', 'yhat', 'yhat_upper', 'yhat_lower']] # Rename y and yhat to the actual metric names export_formatted.rename(index=str, columns={'ds': 'date', 'y': metric, 'yhat': metric + '_forecast', 'yhat_upper': metric + '_upper_forecast', 'yhat_lower': metric + '_lower_forecast'}, inplace=True) # replace NaN with an empty val export_formatted = export_formatted.replace(np.nan, '', regex=True) # Format timestamp export_formatted['date'] = export_formatted['date'].apply(lambda x: str(x).split(' ')[0]) # Create dictionary format for sending to csv csv_ready_for_export = export_formatted.to_dict('records') # print(y_hat) # print(csv_ready_for_export) print(forecasted_vals) print(forecasted_vals_mean) return [y_hat, dates, m, csv_ready_for_export, forecasted_vals, forecasted_vals_mean, yhat_lower, yhat_upper] def validate_model(model, dates): """ Background: This model validation function is still under construction and will be updated during a future release. """ count_of_time_units = len(dates) # print(count_of_time_units) initial_size = str(int(count_of_time_units * 0.20)) + " days" horizon_size = str(int(count_of_time_units * 0.10)) + " days" period_size = str(int(count_of_time_units * 0.05)) + " days" df_cv = cross_validation(model, initial=initial_size, horizon=horizon_size, period=period_size) # df_cv = cross_validation(model,initial='730 days', period='180 days', horizon = '365 days') df_p = performance_metrics(df_cv) # print(df_cv.head(100)) # print(df_p.head(100)) mape_score_avg = str(round(df_p['mape'].mean() * 100, 2)) + "%" return mape_score_avg def check_val_of_forecast_settings(param): """ Background: This function is used to check to see if there is a value (submitted from the user in the UI) for a given Prophet Hyper Parameter. If there is no value or false or auto, return that, else we'll return a float of the param given that the value may be a string. If the param value is blank, false or auto, it will eventually be excluding from the dictionary being passed in when instantiating Prophet. """ # Check hyper parameter value and return appropriate value. if (param == "") or (param == False) or (param == 'auto'): new_arg = param return new_arg else: new_arg = float(param) return new_arg def get_summary_stats(data, column_headers): """ Background: This function will get some summary statistics about the original dataset being uploaded. Input: data: a dataframe with the data from the uploaded csv containing a dimension and metric column_headers: string of column names for the dimension and metric Output: sum_stats: a list containing the count of time units, the mean, std, min and max values of the metric. This data is rendered on step 2 of the UI. """ # Set the dimension and metrics dimension = column_headers[0] metric = column_headers[1] time_unit_count = str(data[dimension].count()) print(data[metric].mean()) mean = str(round(data[metric].mean(), 2)) print('string of the mean is ' + mean) std = str(round(data[metric].std(), 2)) minimum = str(round(data[metric].min(), 2)) maximum = str(round(data[metric].max(), 2)) sum_stats = [time_unit_count, mean, std, minimum, maximum] print(sum_stats) return sum_stats def preprocessing(data): """ Background: This function will determine which columns are dimensions (time_unit) vs metrics, in addition to reviewing the metric data to see if there are any objects in that column. Input: data (df): A dataframe of the parsed data that was uploaded. Output: [time_unit,metric_unit]: the appropriate column header names for the dataset. """ # Get list of column headers column_headers = list(data) # Let's determine the column with a date col1 = column_headers[0] col2 = column_headers[1] print('the first column is ' + col1) # Get the first value in column 1, which is what is going to be checked. col1_val = data[col1][0] print(type(col1_val)) """ TO DO: Pre-processing around the dtypes of both columns. If both are objects, I'll need to determine which is the column. TO DO: Emit any error messaging print('The data type of this metric column is: ' + str(data[metric].dtype)) print(data[metric].head()) data[metric] = data[metric].apply(lambda x: float(x)) print(data[metric].dtype) """ # Check to see if the data has any null values print('Is there any null values in this data? ' + str(data.isnull().values.any())) # If there is a null value in the dataset, locate it and emit the location of the null value back to the client, else continue: print(data.tail()) do_nulls_exist = data.isnull().values.any() if do_nulls_exist == True: print('found a null value') null_rows = pd.isnull(data).any(1).nonzero()[0] print('######### ORIGINAL ROWS THAT NEED UPDATING ##############') print(null_rows) # Need to add 2 to each value in null_rows because there print('######### ROWS + 2 = ACTUAL ROW NUMBERS IN CSV ##############') update_these_rows = [] for x in null_rows: update_these_rows.append(int(x) + 2) print(update_these_rows) emit('error', {'data': update_these_rows}) else: print('no nulls found') if isinstance(col1_val, (int, np.integer)) or isinstance(col1_val, float): print(str(col1_val) + ' this is a metric') print('Setting time_unit as the second column') time_unit = column_headers[1] metric_unit = column_headers[0] return [time_unit, metric_unit] else: print('Setting time_unit as the first column') time_unit = column_headers[0] metric_unit = column_headers[1] return [time_unit, metric_unit] def determine_timeframe(data, time_unit): """ Background: This function determines whether the data is daily, weekly, monthly or yearly by checking the delta between the first and second date in the df. Input: data: a df containg a dimension and a metric time_unit: is the dimension name for the date. Output: time_list: a list of strings to be used within the UI (time, desc) and when using the function future = m.make_future_dataframe(periods=fs_period, freq=freq_val) """ # Determine whether the data is daily, weekly, monthly or yearly date1 = data[time_unit][0] date2 = data[time_unit][1] first_date = pd.Timestamp(data[time_unit][0]) second_date = pd.Timestamp(data[time_unit][1]) time_delta = second_date - first_date time_delta = int(str(time_delta).split(' ')[0]) print([data[time_unit][0], data[time_unit][1]]) print([second_date, first_date, time_delta]) if time_delta == 1: time = 'days' freq = 'D' desc = 'daily' elif 7 <= time_delta <= 27: time = 'weeks' freq = 'W' desc = 'weekly' elif 28 <= time_delta <= 31: time = 'months' freq = 'M' desc = 'monthly' elif time_delta >= 364: time = 'years' freq = 'Y' desc = 'yearly' else: print('error?') time_list = [time, freq, desc] # print(time_list) return time_list ```
{ "source": "Jiezhi/myleetcode", "score": 3 }
#### File: myleetcode/src/1009-ComplementofBase10Integer.py ```python class Solution: def bitwiseComplement(self, n: int) -> int: """ Runtime: 43 ms, faster than 9.05% Memory Usage: 14.3 MB, less than 38.43% 0 <= n < 10^9 :param n: :return: """ ret = [] n_str = format(n, 'b') for c in n_str: if c == '1': ret.append('0') else: ret.append('1') return int(''.join(ret), 2) def test(): assert Solution().bitwiseComplement(n=5) == 2 assert Solution().bitwiseComplement(n=7) == 0 assert Solution().bitwiseComplement(n=10) == 5 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1010-PairsofSongsWithTotalDurationsDivisibleby60.py ```python import collections from typing import List class Solution: def numPairsDivisibleBy60(self, time: List[int]) -> int: """ Ref: https://leetcode.com/problems/pairs-of-songs-with-total-durations-divisible-by-60/discuss/256738/JavaC%2B%2BPython-Two-Sum-with-K-60 Runtime: 208 ms, faster than 97.68% Memory Usage: 18 MB, less than 48.64% 1 <= time.length <= 6 * 10^4 1 <= time[i] <= 500 :param time: :return: """ remainders = [0] * 60 ret = 0 for t in time: ret += remainders[-t % 60] remainders[t % 60] += 1 return ret def test(): assert Solution().numPairsDivisibleBy60(time=[30, 20, 150, 100, 40]) == 3 assert Solution().numPairsDivisibleBy60(time=[60]) == 0 assert Solution().numPairsDivisibleBy60(time=[60, 60]) == 1 assert Solution().numPairsDivisibleBy60(time=[60, 60, 60]) == 3 assert Solution().numPairsDivisibleBy60(time=[60, 60, 60, 60]) == 6 assert Solution().numPairsDivisibleBy60(time=[60, 60, 60, 60, 60]) == 10 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1022-SumOfRootToLeafBinaryNumbers.py ```python import collections from typing import Optional from src.tree_node import TreeNode, build_tree_node class Solution: def sumRootToLeaf(self, root: Optional[TreeNode]) -> int: """ Runtime: 52 ms, faster than 24.89% Memory Usage: 14.7 MB, less than 39.83% The number of nodes in the tree is in the range [1, 1000]. Node.val is 0 or 1. :param root: :return: """ ret = 0 def dfs(node, num): if not node: return nonlocal ret num = (num << 1) | node.val if not node.left and not node.right: ret += num return if node.left: dfs(node.left, num) if node.right: dfs(node.right, num) dfs(root, 0) return ret def test(): assert Solution().sumRootToLeaf(root=build_tree_node([1, 1, 1, 1, 1, 1, 1])) == 28 assert Solution().sumRootToLeaf(root=build_tree_node([1, 0, 1, 0, 1, 0, 1])) == 22 assert Solution().sumRootToLeaf(root=build_tree_node([0])) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/102-BinaryTreeLevelOrderTraversal.py ```python import queue from tree_node import * class Solution: def level_order(self, root: TreeNode) -> list: if not root: return [] ret = [] q = queue.Queue() q.put([root]) while q.qsize() > 0: tmp_ret = [] tmp_list = [] for tmp in q.get(): tmp_ret.append(tmp.val) if tmp.left: tmp_list.append(tmp.left) if tmp.right: tmp_list.append(tmp.right) ret.append(tmp_ret) if tmp_list: q.put(tmp_list) return ret def test(): assert Solution().level_order(build_tree_node([3, 9, 20, None, None, 15, 7])) == [[3], [9, 20], [15, 7]] ``` #### File: myleetcode/src/1041-RobotBoundedInCircle.py ```python class Solution: def isRobotBounded(self, instructions: str) -> bool: """ Runtime: 24 ms, faster than 96.05% Memory Usage: 14.4 MB, less than 15.52% 1 <= instructions.length <= 100 ewsnstructions[i] is 'G', 'L' or, 'R'. :param instructions: :return: """ pos = (0, 0) direction = 'N' def executeInstructions(): nonlocal direction nonlocal pos for instruction in instructions: if instruction == 'G': if direction == 'N': pos = (pos[0], pos[1] + 1) elif direction == 'W': pos = (pos[0] - 1, pos[1]) elif direction == 'S': pos = (pos[0], pos[1] - 1) else: pos = (pos[0] + 1, pos[1]) elif instruction == 'L': if direction == 'N': direction = 'W' elif direction == 'W': direction = 'S' elif direction == 'S': direction = 'E' elif direction == 'E': direction = 'N' elif instruction == 'R': if direction == 'N': direction = 'E' elif direction == 'E': direction = 'S' elif direction == 'S': direction = 'W' elif direction == 'W': direction = 'N' return pos pos1 = executeInstructions() executeInstructions() pos2 = executeInstructions() if (pos2[0] * pos2[0] + pos2[1] * pos2[1]) > (pos1[0] * pos1[0] + pos1[1] * pos1[1]): return False return True def test(): assert Solution().isRobotBounded(instructions="GGLLGG") assert not Solution().isRobotBounded(instructions="GG") assert Solution().isRobotBounded(instructions="GL") if __name__ == '__main__': test() ``` #### File: myleetcode/src/1046-LastStoneWeight.py ```python import heapq from typing import List class Solution: def lastStoneWeight(self, stones: List[int]) -> int: """ 70 / 70 test cases passed. Status: Accepted Runtime: 24 ms Memory Usage: 14.4 MB 1 <= stones.length <= 30 1 <= stones[i] <= 1000 :param stones: :return: """ if len(stones) == 1: return stones[0] stones = [-x for x in stones] heapq.heapify(stones) while len(stones) > 1: k1 = heapq.heappop(stones) k2 = heapq.heappop(stones) if k1 != k2: heapq.heappush(stones, k1 - k2) if len(stones) == 1: return -stones[0] else: return 0 def test(): assert Solution().lastStoneWeight(stones=[2, 7, 4, 1, 8, 1]) == 1 assert Solution().lastStoneWeight(stones=[1]) == 1 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1089-DuplicateZeros.py ```python from typing import List class Solution: def duplicateZeros(self, arr: List[int]) -> None: """ Do not return anything, modify arr in-place instead. Just create a new array, and set the value to the old arr. """ arr_len = len(arr) new_arr = [] for num in arr: new_arr.append(num) if num == 0: new_arr.append(0) if len(new_arr) == arr_len: break for i in range(arr_len): arr[i] = new_arr[i] def duplicateZeros2(self, arr: List[int]) -> None: """ Do not return anything, modify arr in-place instead. In place the arr from the end when encounter zero. """ arr_len = len(arr) i = 0 # The last one number don't need handle while i < arr_len - 1: if arr[i] == 0: for j in range(arr_len - 1, i, -1): arr[j] = arr[j - 1] # jump over the duplicate zero i += 2 else: # move forward i += 1 def test(): arr = [1, 0, 2, 3, 0, 4, 5, 0] Solution().duplicateZeros(arr) assert arr == [1, 0, 0, 2, 3, 0, 0, 4] arr = [1, 2, 3] Solution().duplicateZeros(arr) assert arr == [1, 2, 3] arr = [1, 0, 2, 3, 0, 4, 5, 0] Solution().duplicateZeros2(arr) assert arr == [1, 0, 0, 2, 3, 0, 0, 4] arr = [1, 2, 3] Solution().duplicateZeros2(arr) assert arr == [1, 2, 3] if __name__ == '__main__': test() ``` #### File: myleetcode/src/116-PopulatingNextRightPointersinEachNode.py ```python import node from node import Node from tool import print_results class Solution: @print_results def connect(self, root: Node) -> Node: """ 58 / 58 test cases passed. Status: Accepted Runtime: 56 ms Memory Usage: 15.7 MB :param root: :return: """ if root is None or root.val is None: return root parent_list = [root, None] child_list = [] while len(parent_list) > 1: for i in range(len(parent_list) - 1): parent_list[i].next = parent_list[i + 1] if parent_list[i].left is not None: child_list.append(parent_list[i].left) if parent_list[i].right is not None: child_list.append(parent_list[i].right) parent_list = child_list.copy() parent_list.append(None) child_list = [] return root def test(): assert Solution().connect(root=node.build_node_without_next([1, 2, 3, 4, 5, 6, 7])) if __name__ == '__main__': test() ``` #### File: myleetcode/src/1189-MaximumNumberofBalloons.py ```python import collections class Solution: def maxNumberOfBalloons(self, text: str) -> int: """ 24 / 24 test cases passed. Status: Accepted Runtime: 28 ms Memory Usage: 14.5 MB balloon :param text: :return: """ cnt = collections.Counter(text) return min(cnt['b'], cnt['a'], cnt['l'] // 2, cnt['o'] // 2, cnt['n']) def test(): assert Solution().maxNumberOfBalloons(text="nlaebolko") == 1 assert Solution().maxNumberOfBalloons(text="loonbalxballpoon") == 2 assert Solution().maxNumberOfBalloons(text="leetcode") == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/120-Triangle.py ```python from typing import List class Solution: def minimumTotal(self, triangle: List[List[int]]) -> int: """ If reverse iterator triangle to avoid reverse list operation. 44 / 44 test cases passed. Status: Accepted Runtime: 64 ms Memory Usage: 15.2 MB :param triangle: :return: """ h = len(triangle) # it would be easier to sum reverse triangle triangle.reverse() dp = [triangle[0]] for i in range(1, h): tmp = [] for j in range(h - i): tmp.append(triangle[i][j] + min(dp[i - 1][j], dp[i - 1][j + 1])) dp.append(tmp) return dp[-1][0] def test(): assert Solution().minimumTotal(triangle=[[2], [3, 4], [6, 5, 7], [4, 1, 8, 3]]) == 11 assert Solution().minimumTotal(triangle=[[-10]]) == -10 if __name__ == '__main__': test() ``` #### File: myleetcode/src/123-BestTimetoBuyandSellStockIII.py ```python import sys from typing import List class Solution: def maxProfit(self, prices: List[int]) -> int: """ https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/discuss/39743/Python-DP-solution-120ms Runtime: 1383 ms, faster than 44.21% Memory Usage: 27.8 MB, less than 87.46% 1 <= prices.length <= 10**5 0 <= prices[i] <= 10**5 :param prices: :return: """ min_price = prices[0] max_profit = 0 profits = [] # first get the max profit if we only use 1 transaction for price in prices: min_price = min(price, min_price) max_profit = max(max_profit, price - min_price) profits.append(max_profit) curr_max_price = 0 max_profit = 0 # we backwards see the max profits if we do more 1 transaction for i in range(len(prices) - 1, 0, -1): curr_max_price = max(curr_max_price, prices[i]) max_profit = max(max_profit, curr_max_price - prices[i] + profits[i]) return max_profit def maxProfit2(self, prices: List[int]) -> int: """ https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/discuss/39743/Python-DP-solution-120ms/301157 :param prices: :return: """ one_buy = two_buy = sys.maxsize one_profit = two_profit = 0 for p in prices: one_buy = min(one_buy, p) one_profit = max(one_profit, p - one_buy) two_buy = min(two_buy, p - one_profit) two_profit = max(two_profit, p - two_buy) return two_profit def test(): assert Solution().maxProfit2(prices=[1, 2, 4, 2, 5, 7, 2, 4, 9, 0]) == 13 assert Solution().maxProfit2(prices=[6, 1, 3, 2, 4, 7]) == 7 assert Solution().maxProfit2(prices=[3, 3, 5, 0, 0, 3, 1, 4]) == 6 assert Solution().maxProfit2(prices=[1, 2, 3, 4, 5]) == 4 assert Solution().maxProfit2(prices=[7, 6, 4, 3, 1]) == 0 assert Solution().maxProfit(prices=[1, 2, 4, 2, 5, 7, 2, 4, 9, 0]) == 13 assert Solution().maxProfit(prices=[6, 1, 3, 2, 4, 7]) == 7 assert Solution().maxProfit(prices=[3, 3, 5, 0, 0, 3, 1, 4]) == 6 assert Solution().maxProfit(prices=[1, 2, 3, 4, 5]) == 4 assert Solution().maxProfit(prices=[7, 6, 4, 3, 1]) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1275-FindWinneronaTicTacToeGame.py ```python from typing import List class Solution: def tictactoe(self, moves: List[List[int]]) -> str: """ 100 / 100 test cases passed. Status: Accepted Runtime: 42 ms Memory Usage: 14.3 MB :param moves: :return: """ if len(moves) < 5: return 'Pending' matrix = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] for x in range(0, len(moves), 2): matrix[moves[x][0]][moves[x][1]] = 1 for x in range(1, len(moves), 2): matrix[moves[x][0]][moves[x][1]] = 2 if matrix[0][0] == matrix[1][1] == matrix[2][2]: if matrix[0][0] == 1: return 'A' elif matrix[0][0] == 2: return 'B' if matrix[0][2] == matrix[1][1] == matrix[2][0]: if matrix[0][2] == 1: return 'A' elif matrix[0][2] == 2: return 'B' for i in [0, 1, 2]: if matrix[i][0] == matrix[i][1] == matrix[i][2]: if matrix[i][0] == 1: return 'A' elif matrix[i][0] == 2: return 'B' for i in [0, 1, 2]: if matrix[0][i] == matrix[1][i] == matrix[2][i]: if matrix[0][i] == 1: return 'A' elif matrix[0][i] == 2: return 'B' return 'Pending' if len(moves) < 9 else 'Draw' def test(): assert Solution().tictactoe(moves=[[2, 0], [1, 1], [0, 2], [2, 1], [1, 2], [1, 0], [0, 0], [0, 1]]) == 'B' assert Solution().tictactoe(moves=[[0, 0], [2, 0], [1, 1], [2, 1], [2, 2]]) == 'A' assert Solution().tictactoe(moves=[[0, 0], [1, 1], [0, 1], [0, 2], [1, 0], [2, 0]]) == 'B' assert Solution().tictactoe( moves=[[0, 0], [1, 1], [2, 0], [1, 0], [1, 2], [2, 1], [0, 1], [0, 2], [2, 2]]) == 'Draw' assert Solution().tictactoe(moves=[[0, 0], [1, 1]]) == 'Pending' if __name__ == '__main__': test() ``` #### File: myleetcode/src/1314-MatrixBlockSum.py ```python from typing import List class Solution: def matrixBlockSum(self, mat: List[List[int]], k: int) -> List[List[int]]: """ 12 / 12 test cases passed. Status: Accepted Runtime: 104 ms Memory Usage: 15.2 MB :param mat: :param k: :return: """ m, n = len(mat), len(mat[0]) ret = [[0 for _ in range(n)] for _ in range(m)] dp = [[0 for _ in range(n)] for _ in range(m)] # dp accumulate from [0][0] to [i][j] dp[0][0] = mat[0][0] for i in range(1, m): dp[i][0] = mat[i][0] + dp[i - 1][0] for j in range(1, n): dp[0][j] = mat[0][j] + dp[0][j - 1] for i in range(1, m): for j in range(1, n): dp[i][j] = mat[i][j] + dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] for i in range(m): for j in range(n): max_r = min(i + k, m - 1) max_c = min(j + k, n - 1) ret[i][j] = dp[max_r][max_c] if i - k > 0: ret[i][j] -= dp[i - k - 1][max_c] if j - k > 0: ret[i][j] -= dp[max_r][j - k - 1] if i - k > 0 and j - k > 0: ret[i][j] += dp[i - k - 1][j - k - 1] return ret def test(): assert Solution().matrixBlockSum(mat=[[1, 2, 3], [4, 5, 6], [7, 8, 9]], k=1) == [[12, 21, 16], [27, 45, 33], [24, 39, 28]] assert Solution().matrixBlockSum(mat=[[1, 2, 3], [4, 5, 6], [7, 8, 9]], k=2) == [[45, 45, 45], [45, 45, 45], [45, 45, 45]] if __name__ == '__main__': test() ``` #### File: myleetcode/src/1346-CheckIfNandItsDoubleExist.py ```python from typing import List class Solution: def checkIfExist(self, arr: List[int]) -> bool: for i in range(len(arr)): for j in range(len(arr)): if arr[j] == arr[i] * 2 and j != i: return True return False def test(): assert Solution().checkIfExist([10, 2, 5, 3]) assert Solution().checkIfExist([7, 1, 14, 11]) assert not Solution().checkIfExist([3, 1, 7, 11]) assert not Solution().checkIfExist([-2, 0, 10, -19, 4, 6, -8]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/136-SingleNumber.py ```python from typing import List class Solution: def singleNumber(self, nums: List[int]) -> int: return 2 * sum(set(nums)) - sum(nums) def singleNumber2(self, nums: List[int]) -> int: a = 0 for n in nums: a ^= n return a def test(): assert Solution().singleNumber(nums=[2, 2, 1]) == 1 assert Solution().singleNumber(nums=[4, 1, 2, 1, 2]) == 4 assert Solution().singleNumber(nums=[1]) == 1 assert Solution().singleNumber2(nums=[2, 2, 1]) == 1 assert Solution().singleNumber2(nums=[4, 1, 2, 1, 2]) == 4 assert Solution().singleNumber2(nums=[1]) == 1 if __name__ == '__main__': test() ``` #### File: myleetcode/src/143-ReorderList.py ```python from typing import Optional from src.list_node import ListNode, buildListNode class Solution: def reorderList(self, head: Optional[ListNode]) -> None: """ Runtime: 96 ms, faster than 53.19% Memory Usage: 23.2 MB, less than 94.94% Do not return anything, modify head in-place instead. The number of nodes in the list is in the range [1, 5 * 10^4]. 1 <= Node.val <= 1000 """ nums = [] node = head while node: nums.append(node.val) node = node.next node = head.next index = 1 flag = 1 while index <= len(nums) / 2 and node: flag *= -1 node.val = nums[index * flag] node = node.next if flag == 1: index += 1 def test(): test_case = buildListNode([1]) Solution().reorderList(test_case) assert test_case == buildListNode([1]) test_case = buildListNode([1, 2]) Solution().reorderList(test_case) assert test_case == buildListNode([1, 2]) test_case = buildListNode([1, 2, 3]) Solution().reorderList(test_case) assert test_case == buildListNode([1, 3, 2]) test_case = buildListNode([1, 2, 3, 4]) Solution().reorderList(test_case) assert test_case == buildListNode([1, 4, 2, 3]) test_case = buildListNode([1, 2, 3, 4, 5]) Solution().reorderList(test_case) assert test_case == buildListNode([1, 5, 2, 4, 3]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/1448-CountGoodNodesinBinaryTree.py ```python import collections from tree_node import * class Solution: def goodNodes(self, root: TreeNode) -> int: """ 63 / 63 test cases passed. Status: Accepted Runtime: 244 ms Memory Usage: 31.5 MB :param root: :return: """ good_nodes = 1 dq = collections.deque() dq.append(root) while len(dq) > 0: node = dq.pop() if node.left: if node.val <= node.left.val: good_nodes += 1 else: node.left.val = node.val dq.append(node.left) if node.right: if node.val <= node.right.val: good_nodes += 1 else: node.right.val = node.val dq.append(node.right) return good_nodes def test(): null = None assert Solution().goodNodes(build_tree_node([3, 1, 4, 3, null, 1, 5])) == 4 assert Solution().goodNodes(build_tree_node([3, 3, null, 4, 2])) == 3 assert Solution().goodNodes(build_tree_node([1])) == 1 if __name__ == '__main__': test() ``` #### File: myleetcode/src/14-LongestCommonPrefix.py ```python class Solution: def longestCommonPrefix(self, strs): """ :type strs: List[str] :rtype: str """ if not strs: return "" if len(strs) == 1: return strs[0] str1 = strs[0] longest = "" for c in str1: longest += c for s in strs[1:]: if not s.startswith(longest): return longest[:-1] return longest def test(): assert Solution().longestCommonPrefix([]) == "" assert Solution().longestCommonPrefix(["flower", "flow", "flight"]) == "fl" assert Solution().longestCommonPrefix(["dog", "racecar", "car"]) == "" assert Solution().longestCommonPrefix(["dog", "dog", "dog"]) == "dog" ``` #### File: myleetcode/src/152-MaximumProductSubarray.py ```python from typing import List class Solution: def maxProduct(self, nums: List[int]) -> int: """ Runtime: 60 ms, faster than 43.10% Memory Usage: 14.1 MB, less than 95.16% 1 <= nums.length <= 2 * 10^4 -10 <= nums[i] <= 10 The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer. :param nums: :return: """ pre_dp = [nums[0], nums[0]] ret = nums[0] for num in nums[1:]: cur_dp = [max(num, pre_dp[0] * num, pre_dp[1] * num), min(num, pre_dp[0] * num, pre_dp[1] * num)] pre_dp[0] = cur_dp[0] pre_dp[1] = cur_dp[1] ret = max(ret, cur_dp[0]) return ret def test(): assert Solution().maxProduct(nums=[2, 3, -2, 4]) == 6 assert Solution().maxProduct(nums=[2, 3, -2, 4, -1]) == 48 assert Solution().maxProduct(nums=[-2, 0, -1]) == 0 assert Solution().maxProduct(nums=[-2]) == -2 assert Solution().maxProduct(nums=[-2, 1]) == 1 assert Solution().maxProduct(nums=[-2, 1, -1]) == 2 if __name__ == '__main__': test() ``` #### File: myleetcode/src/153-FindMinimuminRotatedSortedArray.py ```python from typing import List class Solution: def findMin(self, nums: List[int]) -> int: """ 150 / 150 test cases passed. Status: Accepted Runtime: 44 ms Memory Usage: 14.7 MB :param nums: :return: """ if len(nums) == 1: return nums[0] if len(nums) == 2: return min(nums[0], nums[1]) mid = (len(nums) - 1) // 2 if nums[mid - 1] > nums[mid] < nums[mid + 1]: return nums[mid] if nums[mid - 1] < nums[mid] > nums[mid + 1]: return nums[mid + 1] if nums[mid] >= nums[-1]: return self.findMin(nums[mid + 1:]) else: return self.findMin(nums[:mid]) def test(): assert Solution().findMin(nums=[3]) == 3 assert Solution().findMin(nums=[3, 4, 5]) == 3 assert Solution().findMin(nums=[3, 4, 5, 0]) == 0 assert Solution().findMin(nums=[6, 3, 4, 5]) == 3 assert Solution().findMin(nums=[6, 7, 3, 4, 5]) == 3 assert Solution().findMin(nums=[3, 4, 5, 1, 2]) == 1 assert Solution().findMin(nums=[4, 5, 6, 7, 0, 1, 2]) == 0 assert Solution().findMin(nums=[11, 13, 15, 17]) == 11 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1629-SlowestKey.py ```python from typing import List class Solution: def slowestKey(self, releaseTimes: List[int], keysPressed: str) -> str: """ 105 / 105 test cases passed. Status: Accepted Runtime: 48 ms Memory Usage: 14.3 MB :param releaseTimes: :param keysPressed: :return: """ tmp_max = releaseTimes[0] ret = keysPressed[0] for i in range(1, len(releaseTimes)): t = releaseTimes[i] - releaseTimes[i - 1] if t > tmp_max: tmp_max = t ret = keysPressed[i] if t == tmp_max: ret = max(ret, keysPressed[i]) return ret def test(): assert Solution().slowestKey(releaseTimes=[9, 29, 49, 50], keysPressed="cbcd") == 'c' assert Solution().slowestKey(releaseTimes=[50, 9, 29, 49, 50], keysPressed="zcbcd") == 'z' assert Solution().slowestKey(releaseTimes=[12, 23, 36, 46, 62], keysPressed="spuda") == 'a' if __name__ == '__main__': test() ``` #### File: myleetcode/src/168-ExcelSheetColumnTitle.py ```python class Solution: def convertToTitle(self, columnNumber: int) -> str: """ 18 / 18 test cases passed. Status: Accepted Runtime: 16 ms Memory Usage: 14.2 MB :param columnNumber: :return: """ ret = '' while columnNumber > 0: columnNumber -= 1 columnNumber, l = divmod(columnNumber, 26) ret = chr(l + 65) + ret return ret def test(): assert Solution().convertToTitle(columnNumber=1) == 'A' assert Solution().convertToTitle(columnNumber=28) == 'AB' assert Solution().convertToTitle(columnNumber=52) == 'AZ' assert Solution().convertToTitle(columnNumber=701) == 'ZY' assert Solution().convertToTitle(columnNumber=2147483647) == 'FXSHRXW' if __name__ == '__main__': test() ``` #### File: myleetcode/src/190-ReverseBits.py ```python from tool import print_results class Solution: @print_results def reverseBits(self, n: int) -> int: """ 600 / 600 test cases passed. Status: Accepted Runtime: 20 ms Memory Usage: 14.3 MB :param n: :return: """ reversed_n = format(n, 'b')[::-1] reversed_n += '0' * (32 - len(reversed_n)) return int(reversed_n, 2) def test(): assert Solution().reverseBits(n=43261596) == 964176192 assert Solution().reverseBits(n=0b00000010100101000001111010011100) == 964176192 assert Solution().reverseBits(n=0b11111111111111111111111111111101) == 3221225471 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1952-ThreeDivisors.py ```python class Solution: def isThree(self, n: int) -> bool: cnt = 0 for i in range(2, int(n / 2) + 1): if n % i == 0: cnt += 1 return cnt == 1 def test(): assert not Solution().isThree(n=2) assert not Solution().isThree(n=8) assert Solution().isThree(n=4) assert Solution().isThree(n=9) if __name__ == '__main__': test() ``` #### File: myleetcode/src/1991-FindtheMiddleIndexinArray.py ```python from typing import List class Solution: def findMiddleIndex(self, nums: List[int]) -> int: if len(nums) == 1: return 0 right_sum = sum(nums) - nums[0] left_sum = 0 if right_sum == left_sum: return 0 for i in range(1, len(nums)): right_sum -= nums[i] left_sum += nums[i - 1] if left_sum == right_sum: return i return -1 def test(): assert Solution().findMiddleIndex(nums=[2, 3, -1, 8, 4]) == 3 assert Solution().findMiddleIndex(nums=[1, -1, 4]) == 2 assert Solution().findMiddleIndex(nums=[2, 5]) == -1 assert Solution().findMiddleIndex(nums=[1]) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/1995-CountSpecialQuadruplets.py ```python from typing import List class Solution: def countQuadruplets(self, nums: List[int]) -> int: ret = 0 for i in range(len(nums) - 3): for j in range(i + 1, len(nums) - 2): for k in range(j + 1, len(nums) - 1): for l in range(k + 1, len(nums)): if nums[i] + nums[j] + nums[k] == nums[l]: ret += 1 return ret def test(): assert Solution().countQuadruplets([9, 6, 8, 23, 39, 23]) == 2 assert Solution().countQuadruplets(nums=[1, 2, 3, 6]) == 1 assert Solution().countQuadruplets(nums=[1, 1, 1, 3, 5]) == 4 assert Solution().countQuadruplets(nums=[3, 3, 6, 4, 5]) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/202-HappyNumber.py ```python class Solution: def isHappy(self, n: int) -> bool: """ 402 / 402 test cases passed. Status: Accepted Runtime: 36 ms Memory Usage: 14 MB :param n: :return: """ if n == 1: return True def replace(num) -> int: i, j = divmod(num, 10) ret = j * j while i >= 10: i, j = divmod(i, 10) ret += j * j ret += i * i return ret circle = [] while n not in circle: circle.append(n) n = replace(n) if n == 1: return True return False def test(): assert Solution().isHappy(n=19) assert Solution().isHappy(n=1) assert not Solution().isHappy(n=2) if __name__ == '__main__': test() ``` #### File: myleetcode/src/2037-MinimumNumberofMovestoSeatEveryone.py ```python from typing import List class Solution: def minMovesToSeat(self, seats: List[int], students: List[int]) -> int: """ n == seats.length == students.length 1 <= n <= 100 1 <= seats[i], students[j] <= 100 :param seats: :param students: :return: """ ret = 0 for seat, student in zip(sorted(seats), sorted(students)): ret += abs(seat - student) return ret def test(): assert Solution().minMovesToSeat(seats=[3, 1, 5], students=[2, 7, 4]) == 4 assert Solution().minMovesToSeat(seats=[2, 2, 6, 6], students=[1, 3, 2, 6]) == 4 assert Solution().minMovesToSeat(seats=[4, 1, 5, 9], students=[1, 3, 2, 6]) == 7 if __name__ == '__main__': test() ``` #### File: myleetcode/src/2094-Finding-3-DigitEvenNumbers.py ```python from typing import List class Solution: def findEvenNumbers(self, digits: List[int]) -> List[int]: """ 3 <= digits.length <= 100 0 <= digits[i] <= 9 :param digits: :return: """ ret_set = set() for i in range(len(digits)): if digits[i] % 2 == 0: for j in range(len(digits)): if j == i or digits[j] == 0: continue for k in range(len(digits)): if k == i or k == j: continue ret_set.add(digits[j] * 100 + digits[k] * 10 + digits[i]) else: continue return sorted(list(ret_set)) def test(): assert Solution().findEvenNumbers(digits=[2, 1, 3, 0]) == [102, 120, 130, 132, 210, 230, 302, 310, 312, 320] assert Solution().findEvenNumbers(digits=[2, 2, 8, 8, 2]) == [222, 228, 282, 288, 822, 828, 882] assert Solution().findEvenNumbers(digits=[3, 7, 5]) == [] assert Solution().findEvenNumbers(digits=[0, 2, 0, 0]) == [200] assert Solution().findEvenNumbers(digits=[0, 0, 0]) == [] if __name__ == '__main__': test() ``` #### File: myleetcode/src/2099-FindSubsequenceofLengthKWiththeLargestSum.py ```python from typing import List from src import tool class Solution: def maxSubsequence(self, nums: List[int], k: int) -> List[int]: """ 1 <= nums.length <= 1000 -10^5 <= nums[i] <= 10^5 1 <= k <= nums.length :param nums: :param k: :return: """ if k == len(nums): return nums smallest = sorted(nums)[:len(nums) - k] for num in smallest: nums.pop(nums.index(num)) return nums def test(): assert Solution().maxSubsequence(nums=[2, 1, 3, 3], k=2) == [3, 3] assert Solution().maxSubsequence(nums=[-1, -2, 3, 4], k=3) == [-1, 3, 4] assert tool.equal_list_value(Solution().maxSubsequence(nums=[3, 4, 3, 3], k=2) == [3, 4]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/213-HouseRobberII.py ```python from typing import List class Solution: def rob(self, nums: List[int]) -> int: """ 75 / 75 test cases passed. Status: Accepted Runtime: 20 ms Memory Usage: 14.3 MB :param nums: :return: """ if len(nums) <= 3: return max(nums) def rob2(nums: List[int]) -> int: dp = [0] * len(nums) dp[0] = nums[0] for i in range(1, len(nums)): dp[i] = max(nums[i] + dp[i - 2], dp[i - 1]) return dp[-1] # we rob twice without the first and the last separately, and choose the max one return max(rob2(nums[1:]), rob2(nums[:-1])) def test(): assert Solution().rob(nums=[4, 1, 2, 8, 1]) == 12 assert Solution().rob(nums=[4, 1, 2, 8]) == 9 assert Solution().rob(nums=[2, 3, 2]) == 3 assert Solution().rob(nums=[1, 2, 3, 1]) == 4 assert Solution().rob(nums=[1, 2, 3]) == 3 if __name__ == '__main__': test() ``` #### File: myleetcode/src/221-MaximalSquare.py ```python from typing import List class Solution: def maximalSquare(self, matrix: List[List[str]]) -> int: """ Runtime: 1936 ms, faster than 5.03% Memory Usage: 15.5 MB, less than 75.88% m == matrix.length n == matrix[i].length 1 <= m, n <= 300 matrix[i][j] is '0' or '1'. :param matrix: :return: """ m, n = len(matrix), len(matrix[0]) ret = 0 for i in range(m): for j in range(n): if matrix[i][j] == '1': k = 1 ex = False while not ex: for r in range(k): if j + k >= n or i + r >= m or matrix[i + r][j + k] == '0': ex = True break if j + r >= n or i + k >= m or matrix[i + k][j + r] == '0': ex = True break if matrix[i + k][j + k] == '0': ex = True break k += 1 ret = max(ret, (k - 1) ** 2) return ret def test(): assert Solution().maximalSquare( matrix=[["0", "1", "1", "0", "0", "1", "0", "1", "0", "1"], ["0", "0", "1", "0", "1", "0", "1", "0", "1", "0"], ["1", "0", "0", "0", "0", "1", "0", "1", "1", "0"], ["0", "1", "1", "1", "1", "1", "1", "0", "1", "0"], ["0", "0", "1", "1", "1", "1", "1", "1", "1", "0"], ["1", "1", "0", "1", "0", "1", "1", "1", "1", "0"], ["0", "0", "0", "1", "1", "0", "0", "0", "1", "0"], ["1", "1", "0", "1", "1", "0", "0", "1", "1", "1"], ["0", "1", "0", "1", "1", "0", "1", "0", "1", "1"]]) == 4 assert Solution().maximalSquare(matrix=[["0", "1"], ["1", "0"]]) == 1 assert Solution().maximalSquare(matrix=[["1", "1"], ["1", "1"]]) == 4 assert Solution().maximalSquare(matrix=[["0"]]) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/222-CountCompleteTreeNodes.py ```python import collections from typing import Optional from tree_node import TreeNode, build_tree_node class Solution: def countNodes(self, root: Optional[TreeNode]) -> int: """ The number of nodes in the tree is in the range [0, 5 * 10**4]. 0 <= Node.val <= 5 * 10**4 The tree is guaranteed to be complete. :param root: :return: """ if root is None: return 0 dq = collections.deque() dq.append(root) ret = 0 while len(dq) > 0: node = dq.pop() ret += 1 if node.left is not None: dq.append(node.left) if node.right is not None: dq.append(node.right) return ret def countNodes2(self, root: Optional[TreeNode]) -> int: """ Runtime: 90 ms, faster than 49.51% Memory Usage: 21.6 MB, less than 57.82% Reference: https://leetcode.com/problems/count-complete-tree-nodes/discuss/62088/My-python-solution-in-O(lgn-*-lgn)-time The number of nodes in the tree is in the range [0, 5 * 10**4]. 0 <= Node.val <= 5 * 10**4 The tree is guaranteed to be complete. :param root: :return: """ def get_tree_height(tree): if tree is None: return 0 return 1 + get_tree_height(tree.left) if root is None: return 0 left_height = get_tree_height(root.left) right_height = get_tree_height(root.right) if left_height == right_height: # left sub tree must be a full binary tree return 2 ** left_height + self.countNodes(root.right) else: # right sub tree must be a full binary tree return 2 ** right_height + self.countNodes(root.left) def test(): assert Solution().countNodes2(root=build_tree_node([])) == 0 assert Solution().countNodes2(root=build_tree_node([1])) == 1 assert Solution().countNodes2(root=build_tree_node([1, 2])) == 2 assert Solution().countNodes2(root=build_tree_node([1, 2, 3])) == 3 assert Solution().countNodes2(root=build_tree_node([1, 2, 3, 4])) == 4 assert Solution().countNodes2(root=build_tree_node([1, 2, 3, 4, 5])) == 5 assert Solution().countNodes2(root=build_tree_node([1, 2, 3, 4, 5, 6])) == 6 if __name__ == '__main__': test() ``` #### File: myleetcode/src/22-GenerateParentheses.py ```python from typing import List class Solution: def generateParenthesis(self, n: int) -> List[str]: """ 8 / 8 test cases passed. Status: Accepted Runtime: 36 ms Memory Usage: 14.7 MB :param n: :return: """ if n == 1: return ["()"] ret = self.generateParenthesis(n - 1) ret_set = set() for p in ret: ret_set.add(f'(){p}') ret_set.add(f'{p}()') for i in range(len(p)): if p[i] == '(': ret_set.add(f'{p[:i + 1]}(){p[i + 1:]}') return list(ret_set) def test(): assert Solution().generateParenthesis(n=1) == ["()"] ans = ["()()", "(())"] ret = Solution().generateParenthesis(n=2) assert len(ret) == len(ans) for a in ans: assert a in ret ans = ["((()))", "(()())", "(())()", "()(())", "()()()"] ret = Solution().generateParenthesis(n=3) assert len(ret) == len(ans) for a in ans: assert a in ret ans = ["(((())))", "((()()))", "((())())", "((()))()", "(()(()))", "(()()())", "(()())()", "(())(())", "(())()()", "()((()))", "()(()())", "()(())()", "()()(())", "()()()()"] ret = Solution().generateParenthesis(n=4) assert len(ret) == len(ans) for a in ans: assert a in ret ret = Solution().generateParenthesis(n=8) print(ret) if __name__ == '__main__': test() ``` #### File: myleetcode/src/237-DeleteNodeinaLinkedList.py ```python from list_node import ListNode, buildListNode class Solution: def deleteNode(self, node: ListNode): """ 41 / 41 test cases passed. Status: Accepted Runtime: 40 ms Memory Usage: 14.9 MB :type node: ListNode :rtype: void Do not return anything, modify node in-place instead. """ node.val = node.next.val node.next = node.next.next def test(): # No test case applied. pass if __name__ == '__main__': test() ``` #### File: myleetcode/src/24-SwapNodesInPairs.py ```python from list_node import ListNode, buildListNode class Solution: def swapPairs(self, head: ListNode) -> ListNode: ret = tmp = self tmp.next = head while tmp.next and tmp.next.next: left = tmp.next right = left.next tmp.next, right.next, left.next = right, left, right.next # tmp.next = right # right.next = left # left.next = right.next tmp = left return ret.next def test(): assert Solution().swapPairs(buildListNode([1, 2, 3, 4])) == buildListNode([2, 1, 4, 3]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/268-MissingNumber.py ```python from typing import List class Solution: def missingNumber(self, nums: List[int]) -> int: """ 122 / 122 test cases passed. Status: Accepted Runtime: 128 ms Memory Usage: 15.2 MB :param nums: :return: """ return len(nums) * (len(nums) + 1) // 2 - sum(nums) def test(): assert Solution().missingNumber(nums=[3, 0, 1]) == 2 assert Solution().missingNumber(nums=[0, 1]) == 2 assert Solution().missingNumber(nums=[9, 6, 4, 2, 3, 5, 7, 0, 1]) == 8 assert Solution().missingNumber(nums=[0]) == 1 if __name__ == '__main__': test() ``` #### File: myleetcode/src/283-MoveZeroes.py ```python from typing import List class Solution: def moveZeroes(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ l = len(nums) - 1 i = 0 while i < l: if nums[i] == 0: l -= 1 nums[i:] = nums[i + 1:] + [0] else: i += 1 def moveZeroes2(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ zeros = 0 for i in range(len(nums)): if zeros > 0: nums[i - zeros] = nums[i] if nums[i] == 0: zeros += 1 if zeros > 0: nums[-zeros:] = [0] * zeros def test(): nums = [0, 1, 0, 3, 12] Solution().moveZeroes(nums) assert nums == [1, 3, 12, 0, 0] nums = [0, 0, 1] Solution().moveZeroes(nums) assert nums == [1, 0, 0] nums = [0, 1, 0, 3, 12] Solution().moveZeroes2(nums) assert nums == [1, 3, 12, 0, 0] nums = [0, 0, 1] Solution().moveZeroes2(nums) assert nums == [1, 0, 0] nums = [1] Solution().moveZeroes2(nums) assert nums == [1] if __name__ == '__main__': test() ``` #### File: myleetcode/src/28-ImplementStrstr.py ```python class Solution: def strStr(self, haystack, needle): """ :type haystack: str :type needle: str :rtype: int """ if not needle or haystack == needle: return 0 len_n = len(needle) for i in range(len(haystack) - len_n + 1): if haystack[i:i + len_n] == needle: return i return -1 def test(): assert Solution().strStr("test", "") == 0 assert Solution().strStr("hello", "ll") == 2 assert Solution().strStr("hello", "k") == -1 assert Solution().strStr("hello", "hello") == 0 assert Solution().strStr("mississippi", "pi") == 9 ``` #### File: myleetcode/src/290-WordPattern.py ```python class Solution: def wordPattern(self, pattern: str, s: str) -> bool: """ Runtime: 38 ms, faster than 32.55% Memory Usage: 14.2 MB, less than 55.31% 1 <= pattern.length <= 300 pattern contains only lower-case English letters. 1 <= s.length <= 3000 s contains only lowercase English letters and spaces ' '. s does not contain any leading or trailing spaces. All the words in s are separated by a single space. :param pattern: :param s: :return: """ values = s.split() if len(pattern) != len(values): return False d = dict() d2 = dict() for i in range(len(pattern)): p = pattern[i] v = values[i] if p in d and v != d.get(p): return False elif p not in d: d[p] = v if v in d2 and p != d2.get(v): return False elif v not in d2: d2[v] = p return True def test(): assert Solution().wordPattern(pattern="abba", s="dog cat cat dog") assert not Solution().wordPattern(pattern="abba", s="dog dog dog dog") assert not Solution().wordPattern(pattern="abba", s="dog cat cat fish") assert not Solution().wordPattern(pattern="aaaa", s="dog cat cat dog") if __name__ == '__main__': test() ``` #### File: myleetcode/src/2-AddTwoNumbers.py ```python from typing import Optional from list_node import * class Solution: def addTwoNumbers2(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]: """ Updated at 2021-12-06 1568 / 1568 test cases passed. Runtime: 68 ms, faster than 77.74% Memory Usage: 14.2 MB, less than 91.26% The number of nodes in each linked list is in the range [1, 100]. 0 <= Node.val <= 9 It is guaranteed that the list represents a number that does not have leading zeros. :param l1: :param l2: :return: """ node1, node2 = l1, l2 flag = 0 while node1 is not None or node2 is not None or flag > 0: if node1 is None and node2 is None: last_node1.next = ListNode(flag) break if node1 is None: node1 = node2 last_node1.next = node1 node2 = None node2val = node2.val if node2 is not None else 0 ret = flag + node1.val + node2val flag, node1.val = divmod(ret, 10) last_node1 = node1 node1 = node1.next if node2 is not None: node2 = node2.next return l1 def add_two_numbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ add_one = False l3 = tmp = ListNode(0) while l1 or l2: result = 0 if l1: result += l1.val l1 = l1.next if l2: result += l2.val l2 = l2.next if add_one: result += 1 add_one = False if result > 9: add_one = True tmp.next = ListNode(result % 10) tmp = tmp.next if add_one: tmp.next = ListNode(1) return l3.next def test(): assert Solution().add_two_numbers( buildListNode([2, 4, 3]), buildListNode([5, 6, 4]) ) == buildListNode([7, 0, 8]) assert Solution().addTwoNumbers2( l1=buildListNode([2, 4, 3]), l2=buildListNode([5, 6, 4]) ) == buildListNode([7, 0, 8]) assert Solution().addTwoNumbers2( l1=buildListNode([0]), l2=buildListNode([0]) ) == buildListNode([0]) assert Solution().addTwoNumbers2( l1=buildListNode([9, 9, 9, 9, 9, 9, 9]), l2=buildListNode([9, 9, 9, 9]) ) == buildListNode([8, 9, 9, 9, 0, 0, 0, 1]) assert Solution().addTwoNumbers2( l1=buildListNode([5]), l2=buildListNode([5]) ) == buildListNode([0, 1]) assert Solution().addTwoNumbers2( l1=buildListNode([0]), l2=buildListNode([1]) ) == buildListNode([1]) assert Solution().addTwoNumbers2( l1=buildListNode([9, 9, 9, 9, 9, 9, 9]), l2=buildListNode([1]) ) == buildListNode([0, 0, 0, 0, 0, 0, 0, 1]) assert Solution().addTwoNumbers2( l2=buildListNode([9, 9, 9, 9, 9, 9, 9]), l1=buildListNode([1]) ) == buildListNode([0, 0, 0, 0, 0, 0, 0, 1]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/303-RangeSumQuery-Immutable.py ```python import collections import itertools from typing import List class NumArray: """ 15 / 15 test cases passed. Status: Accepted Runtime: 1100 ms Memory Usage: 17.7 MB """ def __init__(self, nums: List[int]): self.nums = nums def sumRange(self, left: int, right: int) -> int: return sum(self.nums[left:right + 1]) class NumArray2: """ """ def __init__(self, nums: List[int]): self.accum = list(itertools.accumulate(nums, initial=0)) def sumRange(self, left: int, right: int) -> int: return self.accum[right + 1] - self.accum[left] def test(): na = NumArray(nums=[-2, 0, 3, -5, 2, -1]) assert na.sumRange(0, 2) == 1 assert na.sumRange(2, 5) == -1 assert na.sumRange(0, 5) == -3 na = NumArray2(nums=[-2, 0, 3, -5, 2, -1]) assert na.sumRange(0, 2) == 1 assert na.sumRange(2, 5) == -1 assert na.sumRange(0, 5) == -3 if __name__ == '__main__': test() ``` #### File: myleetcode/src/334-IncreasingTripletSubsequence.py ```python from typing import List class Solution: def increasingTriplet(self, nums: List[int]) -> bool: """ 76 / 76 test cases passed. Status: Accepted Runtime: 695 ms Memory Usage: 25.5 MB :param nums: :return: """ n = len(nums) if n < 3: return False # set by Constraints1, # flag_num means that there is nums[i] < nums[j] and flag_num is the smallest nums[j] flag_num = 2 ** 31 min_value = nums[0] for i in range(1, n): if nums[i] > flag_num: return True if nums[i] > min_value: flag_num = min(nums[i], flag_num) min_value = min(min_value, nums[i]) return False def test(): assert Solution().increasingTriplet(nums=[1, 2, 3, 4, 5]) assert not Solution().increasingTriplet(nums=[5, 4, 3, 2, 1]) assert Solution().increasingTriplet(nums=[2, 1, 5, 0, 4, 6]) assert Solution().increasingTriplet(nums=[2, 1, 5, 0, 6]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/33-SearchinRotatedSortedArray.py ```python from typing import List class Solution: def search(self, nums: List[int], target: int) -> int: """ 195 / 195 test cases passed. Status: Accepted Runtime: 60 ms Memory Usage: 14.7 MB :param nums: :param target: :return: """ l, h = 0, len(nums) - 1 while l <= h: mid = l + (h - l) // 2 if nums[mid] == target: return mid if nums[mid] > target: # ordered if nums[l] <= nums[mid]: if nums[l] > target: # might be in nums[mid + 1, h] l = mid + 1 else: # might be in nums[l, mid - 1] h = mid - 1 else: # not ordered h = mid - 1 else: if nums[l] > nums[mid]: if nums[l] > target: l = mid + 1 else: h = mid - 1 else: l = mid + 1 return -1 def test(): assert Solution().search(nums=[1, 3], target=3) == 1 assert Solution().search(nums=[1, 3], target=1) == 0 assert Solution().search(nums=[3, 1], target=1) == 1 assert Solution().search(nums=[3, 1], target=3) == 0 assert Solution().search(nums=[4, 5, 6, 7, 0, 1, 2], target=0) == 4 assert Solution().search(nums=[4, 5, 6, 7, 0, 1, 2], target=4) == 0 assert Solution().search(nums=[4, 5, 6, 7, 0, 1, 2], target=3) == -1 assert Solution().search(nums=[1], target=0) == -1 assert Solution().search(nums=[1], target=1) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/367-ValidPerfectSquare.py ```python class Solution: def isPerfectSquare(self, num: int) -> bool: """ 70 / 70 test cases passed. Status: Accepted Runtime: 39 ms Memory Usage: 14.3 MB 1 <= num <= 2^31 - 1 :param num: :return: """ if num == 1: return True low, high = 0, num // 2 while low <= high: mid = (low + high) // 2 if mid * mid == num: return True if mid * mid > num: high = mid - 1 else: low = mid + 1 return False def test(): assert Solution().isPerfectSquare(num=1) assert not Solution().isPerfectSquare(num=2) assert Solution().isPerfectSquare(num=16) assert not Solution().isPerfectSquare(num=14) if __name__ == '__main__': test() ``` #### File: myleetcode/src/3-LongestSubstringWithoutRepeatingCharacters.py ```python class Solution: def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ max_substr = '' max_len = 0 for c in s: if c not in max_substr: max_substr += c else: max_len = max(len(max_substr), max_len) max_substr = max_substr[max_substr.index(c) + 1:] max_substr += c max_len = max(len(max_substr), max_len) return max_len def lengthOfLongestSubstring2(self, s: str) -> int: """ 20210828 do it again, and found the solution thought is same like 3 years ago(2018-07-06) 987 / 987 test cases passed. Status: Accepted Runtime: 57 ms Memory Usage: 14.2 MB :param s: :return: """ subs = '' longest_len = 0 for i in s: if i in subs: longest_len = max(len(subs), longest_len) subs = subs[subs.index(i) + 1:] subs += i longest_len = max(len(subs), longest_len) return longest_len def test(): assert Solution().lengthOfLongestSubstring('abcdcfge') == 5 assert Solution().lengthOfLongestSubstring2('') == 0 assert Solution().lengthOfLongestSubstring2(s="abcabcbb") == 3 assert Solution().lengthOfLongestSubstring2(s="bbbbb") == 1 assert Solution().lengthOfLongestSubstring2(s="pwwkew") == 3 assert Solution().lengthOfLongestSubstring2('abcdcfge') == 5 if __name__ == '__main__': test() ``` #### File: myleetcode/src/412-FizzBuzz.py ```python from typing import List class Solution: def fizzBuzz(self, n: int) -> List[str]: """ 8 / 8 test cases passed. Status: Accepted Runtime: 44 ms Memory Usage: 15.1 MB :param n: :return: """ ret = [] for i in range(1, n + 1): if i % 15 == 0: ret.append('FizzBuzz') elif i % 3 == 0: ret.append('Fizz') elif i % 5 == 0: ret.append('Buzz') else: ret.append(str(i)) return ret def test(): assert Solution().fizzBuzz(n=3) == ["1", "2", "Fizz"] assert Solution().fizzBuzz(n=5) == ["1", "2", "Fizz", "4", "Buzz"] assert Solution().fizzBuzz(n=15) == ["1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz", "Buzz", "11", "Fizz", "13", "14", "FizzBuzz"] if __name__ == '__main__': test() ``` #### File: myleetcode/src/414-ThirdMaximumNumber.py ```python from math import inf from typing import List class Solution: def thirdMax(self, nums: List[int]) -> int: m1 = nums[0] m2 = None m3 = None for n in nums[1:]: if n == m1 or n == m2 or n == m3: continue if m1 <= n: m3 = m2 m2 = m1 m1 = n elif not m2: m2 = n elif m2 <= n: m3 = m2 m2 = n elif not m3: m3 = n elif m3 < n: m3 = n # print(f'm1: {m1}, m2: {m2}, m3:{m3}') return m3 if m3 is not None else m1 def thirdMax1(self, nums: List[int]) -> int: m1 = nums[0] m2 = -inf m3 = -inf for n in nums[1:]: if n == m1 or n == m2 or n == m3: continue if m1 <= n: m3 = m2 m2 = m1 m1 = n elif m2 <= n: m3 = m2 m2 = n elif m3 < n: m3 = n # print(f'm1: {m1}, m2: {m2}, m3:{m3}') return m3 if m3 != -inf else m1 def test(): assert Solution().thirdMax([3, 2, 1]) == 1 assert Solution().thirdMax([3, 3, 3]) == 3 assert Solution().thirdMax([1, 2, 3]) == 1 assert Solution().thirdMax([1, 2]) == 2 assert Solution().thirdMax([1]) == 1 assert Solution().thirdMax([2, 2, 3, 1]) == 1 assert Solution().thirdMax([5, 8, 3, 2, 1, 9]) == 5 assert Solution().thirdMax([3, 3, 4, 3, 4, 3, 0, 3, 3]) == 0 if __name__ == '__main__': test() ``` #### File: myleetcode/src/415-AddStrings.py ```python from tool import print_results class Solution: @print_results def addStrings(self, num1: str, num2: str) -> str: """ 317 / 317 test cases passed. Status: Accepted Runtime: 36 ms Memory Usage: 14.3 MB :param num1: :param num2: :return: """ # the apparent solution # return str(int(num1) + int(num2)) # If the number length is large enough, we use below solution m = 0 i, j = len(num1) - 1, len(num2) - 1 ret = '' while i >= 0 or j >= 0: if i >= 0 and j >= 0: tmp = int(num1[i]) + int(num2[j]) i -= 1 j -= 1 elif j >= 0: tmp = int(num2[j]) j -= 1 elif i >= 0: tmp = int(num1[i]) i -= 1 m, n = divmod(tmp + m, 10) ret = str(n) + ret if m == 1: return '1' + ret else: return ret def test(): assert Solution().addStrings(num1="1", num2="9999") == '10000' assert Solution().addStrings(num1="11", num2="123") == '134' assert Solution().addStrings(num1="456", num2="77") == '533' assert Solution().addStrings(num1="0", num2="0") == '0' assert Solution().addStrings(num1="1", num2="0") == '1' assert Solution().addStrings(num1="5555", num2="5555") == '11110' assert Solution().addStrings(num1="6994", num2="36") == '7030' if __name__ == '__main__': test() ``` #### File: myleetcode/src/441-ArrangingCoins.py ```python class Solution: def arrangeCoins(self, n: int) -> int: """ Runtime: 924 ms, faster than 35.91% Memory Usage: 14.3 MB, less than 39.42% 1 <= n <= 2^31 - 1 :param n: :return: """ i = 1 while n >= i: n, i = n - i, i + 1 return i - 1 def test(): assert Solution().arrangeCoins(n=1) == 1 assert Solution().arrangeCoins(n=2) == 1 assert Solution().arrangeCoins(n=3) == 2 assert Solution().arrangeCoins(n=4) == 2 assert Solution().arrangeCoins(n=5) == 2 assert Solution().arrangeCoins(n=6) == 3 assert Solution().arrangeCoins(n=7) == 3 assert Solution().arrangeCoins(n=8) == 3 assert Solution().arrangeCoins(n=9) == 3 assert Solution().arrangeCoins(n=10) == 4 if __name__ == '__main__': test() ``` #### File: myleetcode/src/442-FindAllDuplicatesinanArray.py ```python from typing import List from tool import equal_list_value class Solution: def findDuplicates(self, nums: List[int]) -> List[int]: """ 28 / 28 test cases passed. Status: Accepted Runtime: 372 ms Memory Usage: 21.6 MB :param nums: :return: """ ret = [] for i in range(len(nums)): index = abs(nums[i]) - 1 if nums[index] < 0: ret.append(abs(nums[i])) nums[index] = -nums[index] return ret def test(): assert equal_list_value(Solution().findDuplicates(nums=[4, 3, 2, 7, 8, 2, 3, 1]), [2, 3]) assert equal_list_value(Solution().findDuplicates(nums=[10, 2, 5, 10, 9, 1, 1, 4, 3, 7]), [10, 1]) assert Solution().findDuplicates(nums=[1, 1, 2]) == [1] assert Solution().findDuplicates(nums=[1]) == [] if __name__ == '__main__': test() ``` #### File: myleetcode/src/450-DeleteNodeinaBST.py ```python from typing import Optional from src.tree_node import TreeNode, build_tree_node class Solution: def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]: """ Runtime: 76 ms, faster than 63.07% Memory Usage: 18.5 MB, less than 22.29% The number of nodes in the tree is in the range [0, 10^4]. -10^5 <= Node.val <= 10^5 Each node has a unique value. root is a valid binary search tree. -10^5 <= key <= 10^5 :param root: :param key: :return: """ if root is None: return root # if not found key in BST, just return root # if found, noted as keynode, and we need replace this node # by the maximum node in its left side or minimum node in its right side. def replace(node): if node is None: return None if node.left is None: return node.right if node.right is None: return node.left # we choose left maximum node to be the root node parent_node = node tmp_node = parent_node.left if tmp_node.right is None: tmp_node.right = node.right return tmp_node while tmp_node.right is not None: parent_node = tmp_node tmp_node = tmp_node.right parent_node.right = tmp_node.left tmp_node.left = node.left tmp_node.right = node.right return tmp_node if root.val == key: return replace(root) p_node = root while p_node is not None: if p_node.left and key == p_node.left.val: p_node.left = replace(p_node.left) return root if p_node.right and key == p_node.right.val: p_node.right = replace(p_node.right) return root if key < p_node.val: p_node = p_node.left else: p_node = p_node.right return root def test(): null = None tree_list = [22, 19, 24, 17, 21, 23, null, 16, 18, 20] root = build_tree_node(tree_list) ret_list = [21, 19, 24, 17, 20, 23, null, 16, 18] assert Solution().deleteNode(root=root, key=22) == build_tree_node(ret_list) # Delete root node ret = Solution().deleteNode(root=build_tree_node([2, 1, 3]), key=2) assert ret == build_tree_node([1, null, 3]) or ret == build_tree_node([3, 1]) assert Solution().deleteNode(root=build_tree_node([2, 1, 3]), key=1) == build_tree_node([2, null, 3]) assert Solution().deleteNode(root=build_tree_node([2, 1, 3]), key=3) == build_tree_node([2, 1]) assert Solution().deleteNode(root=build_tree_node([2, 1, 3]), key=4) == build_tree_node([2, 1, 3]) ret = Solution().deleteNode(root=build_tree_node([5, 3, 6, 2, 4, null, 7]), key=3) assert ret == build_tree_node([5, 4, 6, 2, null, null, 7]) or ret == build_tree_node([5, 2, 6, null, 4, null, 7]) assert Solution().deleteNode(root=build_tree_node([5, 3, 6, 2, 4, null, 7]), key=0) == \ build_tree_node([5, 3, 6, 2, 4, null, 7]) assert Solution().deleteNode(root=build_tree_node([]), key=0) == build_tree_node([]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/45-JumpGameII.py ```python from typing import List class Solution: def jump(self, nums: List[int]) -> int: """ 106 / 106 test cases passed. Status: Accepted Runtime: 148 ms Memory Usage: 15.1 MB :param nums: :return: """ n = len(nums) dp = [0] * n last = 0 for i in range(n): j = max(i + 1, last) while j < min(n, i + nums[i] + 1): dp[j] = dp[i] + 1 j += 1 last = j return dp[-1] def test(): assert Solution().jump(nums=[2]) == 0 assert Solution().jump(nums=[1, 1, 1, 1, 1]) == 4 assert Solution().jump(nums=[2, 3, 1, 1, 4]) == 2 assert Solution().jump(nums=[2, 3, 0, 1, 4]) == 2 if __name__ == '__main__': test() ``` #### File: myleetcode/src/463-IslandPerimeter.py ```python from typing import List class Solution: def islandPerimeter(self, grid: List[List[int]]) -> int: """ 5833 / 5833 test cases passed. Status: Accepted Runtime: 842 ms Memory Usage: 14.4 MB :param grid: :return: """ ret = 0 m = len(grid) n = len(grid[0]) for i in range(m): for j in range(n): if grid[i][j] == 1: if i == 0 or grid[i - 1][j] == 0: ret += 1 if i == m - 1 or grid[i + 1][j] == 0: ret += 1 if j == 0 or grid[i][j - 1] == 0: ret += 1 if j == n - 1 or grid[i][j + 1] == 0: ret += 1 return ret def test(): assert Solution().islandPerimeter(grid=[[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0], [1, 1, 0, 0]]) == 16 assert Solution().islandPerimeter(grid=[[1]]) == 4 assert Solution().islandPerimeter(grid=[[1, 0]]) == 4 assert Solution().islandPerimeter(grid=[[1, 1], [1, 1]]) == 8 if __name__ == '__main__': test() ``` #### File: myleetcode/src/485-MaxConsecutiveOnes.py ```python from typing import List class Solution: def findMaxConsecutiveOnes(self, nums: List[int]) -> int: """ 42 / 42 test cases passed. Status: Accepted Runtime: 340 ms Memory Usage: 14.1 MB :param nums: :return: """ if not nums: return 0 ret = 0 cur = 0 for i in nums: if i == 1: cur += 1 else: ret = max(ret, cur) cur = 0 return max(ret, cur) def test(): assert Solution().findMaxConsecutiveOnes([1, 1, 0, 1, 1, 1]) == 3 if __name__ == '__main__': test() ``` #### File: myleetcode/src/496-NextGreaterElementI.py ```python from typing import List class Solution: def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]: """ Runtime: 94 ms, faster than 19.85% Memory Usage: 14.5 MB, less than 73.08% 1 <= nums1.length <= nums2.length <= 1000 0 <= nums1[i], nums2[i] <= 10**4 All integers in nums1 and nums2 are unique. All the integers of nums1 also appear in nums2. :param nums1: :param nums2: :return: """ ret = [] for num in nums1: index = nums2.index(num) for n in nums2[index + 1:]: if n > num: ret.append(n) break else: ret.append(-1) return ret def test(): assert Solution().nextGreaterElement(nums1=[4], nums2=[4]) == [-1] assert Solution().nextGreaterElement(nums1=[4, 1, 2], nums2=[1, 3, 4, 2]) == [-1, 3, -1] assert Solution().nextGreaterElement(nums1=[2, 4], nums2=[1, 2, 3, 4]) == [3, -1] assert Solution().nextGreaterElement(nums1=[2, 4, 3, 1], nums2=[4, 3, 2, 1]) == [-1, -1, -1, -1] if __name__ == '__main__': test() ``` #### File: myleetcode/src/49-GroupAnagrams.py ```python import collections from typing import List from tool import print_results class Solution: @print_results def groupAnagrams(self, strs: List[str]) -> List[List[str]]: """ 114 / 114 test cases passed. Status: Accepted Runtime: 140 ms Memory Usage: 28 MB :param strs: :return: """ d = collections.defaultdict(list) for s in strs: key = frozenset(collections.Counter(s).items()) d[key].append(s) return list(d.values()) def test(): ans = [["bat"], ["nat", "tan"], ["ate", "eat", "tea"]] ret = Solution().groupAnagrams(strs=["eat", "tea", "tan", "ate", "nat", "bat"]) # just check the length of the result, maybe add check the content next time. assert len(ans) == len(ret) assert Solution().groupAnagrams(strs=[""]) == [[""]] assert Solution().groupAnagrams(strs=["a"]) == [["a"]] if __name__ == '__main__': test() ``` #### File: myleetcode/src/509-FibonacciNumber.py ```python class Solution: cache = {} def fib(self, N: int) -> int: if N < 2: return N if N in self.cache: return self.cache[N] else: ret = self.fib(N - 1) + self.fib(N - 2) self.cache[N] = ret return ret def test(): assert Solution().fib(0) == 0 assert Solution().fib(1) == 1 assert Solution().fib(2) == 1 assert Solution().fib(4) == 3 if __name__ == '__main__': test() ``` #### File: myleetcode/src/53-MaximumSubarray.py ```python from typing import List class Solution: def maxSubArray2(self, nums: List[int]) -> int: """ Updated on 2021-11-25 Runtime: 720 ms, faster than 78.96% Memory Usage: 28.8 MB, less than 33.13% 1 <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 :param nums: :return: """ last_max_sum = nums[0] ret = last_max_sum for num in nums[1:]: if last_max_sum < 0: last_max_sum = num else: last_max_sum += num ret = max(ret, last_max_sum) return ret def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int """ max_sum = nums[0] tmp_sum = nums[0] for i in range(1, len(nums)): tmp_sum = max(nums[i], tmp_sum + nums[i]) max_sum = max(max_sum, tmp_sum) return max_sum def test(): assert Solution().maxSubArray([-2, 1, -3, 4, -1, 2, 1, -5, 4]) == 6 assert Solution().maxSubArray2(nums=[-2, 1, -3, 4, -1, 2, 1, -5, 4]) == 6 assert Solution().maxSubArray2(nums=[5, 4, -1, 7, 8]) == 23 if __name__ == '__main__': test() ``` #### File: myleetcode/src/542-01Matrix.py ```python from typing import List class Solution: def updateMatrix(self, mat: List[List[int]]) -> List[List[int]]: """ 49 / 49 test cases passed. Status: Accepted Runtime: 564 ms Memory Usage: 17.2 MB m == mat.length n == mat[i].length 1 <= m, n <= 10^4 1 <= m * n <= 10^4 mat[i][j] is either 0 or 1. There is at least one 0 in mat. :param mat: :return: """ m = len(mat) n = len(mat[0]) # ret = [[10001] * n] * m This way would make disasters! `*` replicates reference for object. ret = [[10001 for _ in range(n)] for _ in range(m)] # get minimum steps from top and left for i in range(m): for j in range(n): if mat[i][j] == 0: ret[i][j] = 0 else: if i > 0: ret[i][j] = min(ret[i - 1][j] + 1, ret[i][j]) if j > 0: ret[i][j] = min(ret[i][j - 1] + 1, ret[i][j]) # rescan to get minimum steps from bottom and right for i in range(m - 1, -1, -1): for j in range(n - 1, -1, -1): if ret[i][j] == 0: continue else: if i < m - 1: ret[i][j] = min(ret[i + 1][j] + 1, ret[i][j]) if j < n - 1: ret[i][j] = min(ret[i][j + 1] + 1, ret[i][j]) return ret def test(): assert Solution().updateMatrix( mat=[[1, 0, 1, 1, 0, 0, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0, 1, 0, 1, 1], [0, 0, 1, 0, 1, 0, 0, 1, 0, 0], [1, 0, 1, 0, 1, 1, 1, 1, 1, 1], [0, 1, 0, 1, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 1, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 0, 1, 0], [1, 1, 1, 1, 0, 1, 0, 0, 1, 1]]) == \ [[1, 0, 1, 1, 0, 0, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0, 1, 0, 1, 1], [0, 0, 1, 0, 1, 0, 0, 1, 0, 0], [1, 0, 1, 0, 1, 1, 1, 1, 1, 1], [0, 1, 0, 1, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 1, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 1, 1], [1, 0, 0, 0, 1, 2, 1, 1, 0, 1], [2, 1, 1, 1, 1, 2, 1, 0, 1, 0], [3, 2, 2, 1, 0, 1, 0, 0, 1, 1]] assert Solution().updateMatrix(mat=[[0]]) == [[0]] assert Solution().updateMatrix(mat=[[0], [1]]) == [[0], [1]] assert Solution().updateMatrix(mat=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) == [[0, 0, 0], [0, 1, 0], [0, 0, 0]] assert Solution().updateMatrix(mat=[[0, 0, 0], [0, 1, 0], [1, 1, 1]]) == [[0, 0, 0], [0, 1, 0], [1, 2, 1]] assert Solution().updateMatrix( mat=[[1, 1, 0, 0, 1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 0, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1], [0, 1, 0, 1, 1, 0, 1, 1, 1, 1], [1, 1, 1, 0, 1, 0, 1, 1, 1, 1]]) == \ [[2, 1, 0, 0, 1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 0, 1, 1, 2, 2, 1], [1, 1, 1, 0, 0, 1, 2, 2, 1, 0], [0, 1, 2, 1, 0, 1, 2, 3, 2, 1], [0, 0, 1, 2, 1, 2, 1, 2, 1, 0], [1, 1, 2, 3, 2, 1, 0, 1, 1, 1], [0, 1, 2, 3, 2, 1, 1, 0, 0, 1], [1, 2, 1, 2, 1, 0, 0, 1, 1, 2], [0, 1, 0, 1, 1, 0, 1, 2, 2, 3], [1, 2, 1, 0, 1, 0, 1, 2, 3, 4]] if __name__ == '__main__': test() ``` #### File: myleetcode/src/55-JumpGame.py ```python from typing import List class Solution: def canJump(self, nums: List[int]) -> bool: """ 166 / 166 test cases passed. Status: Accepted Runtime: 5652 ms Memory Usage: 15.3 MB :param nums: :return: """ n = len(nums) if n == 1: return True jmp_lst = [False for _ in range(n)] jmp_lst[n - 1] = True for i in range(n - 2, -1, -1): for j in range(min(n - i - 1, nums[i]), 0, -1): if jmp_lst[i + j]: jmp_lst[i] = True break return jmp_lst[0] def canJump2(self, nums: List[int]) -> bool: """ 166 / 166 test cases passed. Status: Accepted Runtime: 500 ms Memory Usage: 15.2 MB :param nums: :return: """ max_step = 0 for i, n in enumerate(nums): if max_step < i: return False max_step = max(i + n, max_step) return True def test(): assert Solution().canJump(nums=[0]) assert not Solution().canJump(nums=[0, 1]) assert Solution().canJump(nums=[1, 0]) assert Solution().canJump(nums=[2, 0, 1]) assert Solution().canJump(nums=[2, 3, 1, 1, 4]) assert not Solution().canJump(nums=[3, 2, 1, 0, 4]) assert Solution().canJump2(nums=[0]) assert not Solution().canJump2(nums=[0, 1]) assert Solution().canJump2(nums=[1, 0]) assert Solution().canJump2(nums=[2, 0, 1]) assert Solution().canJump2(nums=[2, 3, 1, 1, 4]) assert not Solution().canJump2(nums=[3, 2, 1, 0, 4]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/56-MergeIntervals.py ```python from typing import List class Solution: def merge(self, intervals: List[List[int]]) -> List[List[int]]: """ 168 / 168 test cases passed. Status: Accepted Runtime: 76 ms Memory Usage: 16.1 MB :param intervals: :return: """ intervals = sorted(intervals, key=lambda x: x[0]) ret = [] tmp = intervals[0] for interval in intervals[1:]: if interval[1] < tmp[1]: continue if interval[0] <= tmp[1]: tmp[1] = interval[1] else: # interval[0] > tmp[1] ret.append(tmp) tmp = interval ret.append(tmp) return ret def test(): assert Solution().merge(intervals=[[1, 1]]) == [[1, 1]] assert Solution().merge(intervals=[[1, 3], [2, 6], [8, 10], [15, 18]]) == [[1, 6], [8, 10], [15, 18]] assert Solution().merge(intervals=[[1, 4], [4, 5]]) == [[1, 5]] if __name__ == '__main__': test() ``` #### File: myleetcode/src/5963-ANumberAfteraDoubleReversal.py ```python class Solution: def isSameAfterReversals(self, num: int) -> bool: """ 0 <= num <= 10^6 :param num: :return: """ return not ((num % 10) == 0 and num > 0) def test(): assert Solution().isSameAfterReversals(num=0) assert Solution().isSameAfterReversals(num=526) assert not Solution().isSameAfterReversals(num=5260) if __name__ == '__main__': test() ``` #### File: myleetcode/src/598-RangeAdditionII.py ```python from typing import List class Solution: def maxCount(self, m: int, n: int, ops: List[List[int]]) -> int: """ 69 / 69 test cases passed. Status: Accepted Runtime: 64 ms Memory Usage: 16.1 MB :param m: :param n: :param ops: :return: """ m_min, n_min = m, n for op in ops: m_min = min(op[0], m_min) n_min = min(op[1], n_min) return m_min * n_min def test(): assert Solution().maxCount(m=3, n=3, ops=[[2, 2], [3, 3]]) == 4 assert Solution().maxCount(m=3, n=3, ops=[[2, 3], [3, 2]]) == 4 assert Solution().maxCount( m=3, n=3, ops=[[2, 2], [3, 3], [3, 3], [3, 3], [2, 2], [3, 3], [3, 3], [3, 3], [2, 2], [3, 3], [3, 3], [3, 3]] ) == 4 assert Solution().maxCount(m=3, n=3, ops=[]) == 9 if __name__ == '__main__': test() ``` #### File: myleetcode/src/605-CanPlaceFlowers.py ```python from typing import List class Solution: def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool: """ Runtime: 284 ms, faster than 12.11% Memory Usage: 14.3 MB, less than 99.36% 1 <= flowerbed.length <= 2 * 10^4 flowerbed[i] is 0 or 1. There are no two adjacent flowers in flowerbed. 0 <= n <= flowerbed.length :param flowerbed: :param n: :return: """ if n == 0: return True ret = 0 i = 0 while i < len(flowerbed) and ret < n: if flowerbed[i] == 0 and (i == 0 or flowerbed[i - 1] == 0) and ( i == len(flowerbed) - 1 or flowerbed[i + 1] == 0): flowerbed[i] = 1 ret += 1 if ret >= n: return True i += 1 return False def test(): assert Solution().canPlaceFlowers(flowerbed=[0], n=1) assert Solution().canPlaceFlowers(flowerbed=[1, 0, 0, 0, 0, 0, 1], n=2) assert Solution().canPlaceFlowers(flowerbed=[0, 0, 1, 0, 1], n=1) assert Solution().canPlaceFlowers(flowerbed=[0, 0, 1, 0, 0], n=2) assert Solution().canPlaceFlowers(flowerbed=[1, 0, 0, 0, 1], n=1) assert not Solution().canPlaceFlowers(flowerbed=[1, 0, 0, 0, 1], n=2) assert not Solution().canPlaceFlowers(flowerbed=[1, 0, 1, 0, 1, 0, 1], n=1) assert not Solution().canPlaceFlowers(flowerbed=[1, 0, 0, 0, 0, 1], n=2) if __name__ == '__main__': test() ``` #### File: myleetcode/src/677-MapSumPairs.py ```python import collections class MapSum: """ 35 / 35 test cases passed. Status: Accepted Runtime: 28 ms Memory Usage: 14.4 MB Runtime: 28 ms, faster than 89.65% of Python3 online submissions for Map Sum Pairs. Memory Usage: 14.4 MB, less than 25.00% of Python3 online submissions for Map Sum Pairs. """ def __init__(self): """ Initialize your data structure here. """ self.root = {} def insert(self, key: str, val: int) -> None: """ Inserts the key-val pair into the map. If the key already existed, the original key-value pair will be overridden to the new one. :param key: :param val: :return: """ cur = self.root for c in key: if c not in cur: cur[c] = {} cur = cur[c] # set the word value at the last character. cur['val'] = val def sum(self, prefix: str) -> int: cur = self.root for c in prefix: if c not in cur: return 0 cur = cur[c] ret = 0 # add all children values dq = collections.deque() dq.append(cur) while len(dq) > 0: cur = dq.pop() if 'val' in cur: ret += cur['val'] [dq.append(x) for k, x in cur.items() if k != 'val'] return ret def test(): mapSum = MapSum() mapSum.insert("apple", 3) assert mapSum.sum("ap") == 3 # return 3 (apple=3) mapSum.insert("app", 2) assert mapSum.sum("ap") == 5 # return 5 (apple + app = 3 + 2 = 5) if __name__ == '__main__': test() ``` #### File: myleetcode/src/69-SqrtX.py ```python class Solution: def mySqrt2(self, x: int) -> int: """ Updated at 2021/12/02 1017 / 1017 test cases passed. Status: Accepted Runtime: 32 ms Memory Usage: 14.3 MB 0 <= x <= 2^31 - 1 :param x: :return: """ low, high = 0, x while low <= high: mid = (low + high) // 2 if mid * mid == x: return mid elif mid * mid > x: high = mid - 1 else: low = mid + 1 return low - 1 def mySqrt(self, x): """ :type x: int :rtype: int """ if x == 1: return 1 low = 0 high = x while low < high - 1: mid = low + (high - low) // 2 ret = mid * mid if ret == x: return mid if ret > x: high = mid else: low = mid return low def test(): assert Solution().mySqrt2(1) == 1 assert Solution().mySqrt2(2) == 1 assert Solution().mySqrt2(4) == 2 assert Solution().mySqrt2(8) == 2 assert Solution().mySqrt(4) == 2 assert Solution().mySqrt(8) == 2 if __name__ == '__main__': test() ``` #### File: myleetcode/src/700-SearchinaBinarySearchTree.py ```python from typing import Optional from tree_node import TreeNode, build_tree_node class Solution: def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]: """ 36 / 36 test cases passed. Status: Accepted Runtime: 89 ms Memory Usage: 16.1 MB :param root: :param val: :return: """ if root is None: return None if root.val == val: return root if root.val < val: return self.searchBST(root.right, val) else: return self.searchBST(root.left, val) def test(): assert Solution().searchBST(root=build_tree_node([4, 2, 7, 1, 3]), val=2) == build_tree_node([2, 1, 3]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/707-DesignLinkedList.py ```python class Node: def __init__(self, val: int): self.val = val self.next = None class MyLinkedList: def __init__(self): """ Initialize your data structure here. """ self.first = None self.length = 0 def get(self, index: int) -> int: """ Get the value of the index-th node in the linked list. If the index is invalid, return -1. """ if index >= self.length: return -1 else: i = 0 tmp_node: Node = self.first while i < index: tmp_node = tmp_node.next i += 1 return tmp_node.val def addAtHead(self, val: int) -> None: """ Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. """ tmp_node: Node = Node(val) tmp_node.next = self.first self.first = tmp_node self.length += 1 def addAtTail(self, val: int) -> None: """ Append a node of value val to the last element of the linked list. """ # i = 1 # tmp_node = self.first # while i < self.length: # tmp_node = tmp_node.next # tmp_node.next = Node(val) # # self.first = tmp_node # self.length += 1 self.addAtIndex(index=self.length, val=val) def addAtIndex(self, index: int, val: int) -> None: """ Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. """ if index > self.length: return if index == 0: self.addAtHead(val) return i = 1 tmp_node = self.first while i < index: tmp_node = tmp_node.next i += 1 insert_node = Node(val) insert_node.next = tmp_node.next tmp_node.next = insert_node self.length += 1 def deleteAtIndex(self, index: int) -> None: """ Delete the index-th node in the linked list, if the index is valid. """ if index >= self.length: return if index == 0: self.first = self.first.next return i = 1 tmp_node = self.first while i < index: tmp_node = tmp_node.next i += 1 tmp_node.next = tmp_node.next.next self.length -= 1 def debug_print(self): val_list = [] tmp_node = self.first while tmp_node: val_list.append(tmp_node.val) tmp_node = tmp_node.next print(val_list) return val_list def test(): # Your MyLinkedList object will be instantiated and called as such: obj = MyLinkedList() assert obj.debug_print() == [] # param_1 = obj.get(0) obj.addAtHead(1) assert obj.debug_print() == [1] obj.addAtTail(0) assert obj.debug_print() == [1, 0] obj.addAtIndex(1, 10) assert obj.debug_print() == [1, 10, 0] assert obj.get(2) == 0 assert obj.get(3) == -1 assert obj.get(0) == 1 assert obj.get(1) == 10 assert obj.get(2) == 0 obj.deleteAtIndex(1) assert obj.debug_print() == [1, 0] obj.deleteAtIndex(1) assert obj.debug_print() == [1] obj.deleteAtIndex(1) assert obj.debug_print() == [1] # ["MyLinkedList","addAtHead","deleteAtIndex"] # [[],[1],[0]] obj = MyLinkedList() obj.addAtHead(1) assert obj.debug_print() == [1] obj.deleteAtIndex(0) assert obj.debug_print() == [] # ["MyLinkedList","addAtIndex","addAtIndex","addAtIndex","get"] # [[],[0,10],[0,20],[1,30],[0]] obj = MyLinkedList() obj.addAtIndex(0, 10) assert obj.debug_print() == [10] obj.addAtIndex(0, 20) assert obj.debug_print() == [20, 10] obj.addAtIndex(1, 30) assert obj.debug_print() == [20, 30, 10] assert obj.get(0) == 20 # ["MyLinkedList","addAtHead","deleteAtIndex","addAtHead","addAtHead", # "addAtHead","addAtHead","addAtHead","addAtTail","get","deleteAtIndex","deleteAtIndex"] # [[],[2],[1],[2],[7],[3],[2],[5],[5],[5],[6],[4]] if __name__ == '__main__': test() ``` #### File: myleetcode/src/744-FindSmallestLetterGreaterThanTarget.py ```python from typing import List class Solution: def nextGreatestLetter(self, letters: List[str], target: str) -> str: """ 165 / 165 test cases passed. Status: Accepted Runtime: 136 ms Memory Usage: 14.9 MB 2 <= letters.length <= 10^4 letters[i] is a lowercase English letter. letters is sorted in non-decreasing order. letters contains at least two different characters. target is a lowercase English letter. :param letters: :param target: :return: """ if target >= letters[-1]: return letters[0] low, high = 0, len(letters) - 1 while low + 1 < high: mid = (low + high) // 2 if letters[mid] <= target: low = mid else: high = mid # low + 1 == high if letters[low] > target: return letters[low] return letters[high] if letters[high] != target else letters[high + 1] def test(): assert Solution().nextGreatestLetter(letters=["e", "e", "e", "e", "e", "e", "n", "n", "n", "n"], target="e") == "n" assert Solution().nextGreatestLetter(letters=["c", "f", "j"], target="a") == "c" assert Solution().nextGreatestLetter(letters=["c", "f", "j"], target="c") == 'f' assert Solution().nextGreatestLetter(letters=["c", "f", "j"], target="d") == 'f' assert Solution().nextGreatestLetter(letters=["c", "f", "j"], target="f") == 'j' assert Solution().nextGreatestLetter(letters=["c", "f", "j"], target="j") == 'c' if __name__ == '__main__': test() ``` #### File: myleetcode/src/746-MinCostClimbingStairs.py ```python from typing import List class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: """ 283 / 283 test cases passed. Status: Accepted Runtime: 56 ms Memory Usage: 14.4 MB :param cost: :return: """ if len(cost) == 1: return 0 if len(cost) == 2: return min(cost) dp = [0] * len(cost) dp[0] = cost[0] dp[1] = cost[1] for i in range(2, len(cost)): dp[i] = cost[i] + min(dp[i - 1], dp[i - 2]) return min(dp[-1], dp[-2]) def test(): assert Solution().minCostClimbingStairs(cost=[10, 15, 20]) == 15 assert Solution().minCostClimbingStairs(cost=[1, 100, 1, 1, 1, 100, 1, 1, 100, 1]) == 6 if __name__ == '__main__': test() ``` #### File: myleetcode/src/779-K-thSymbolInGrammar.py ```python import math class Solution: def kthGrammar(self, N: int, K: int) -> int: # Do some tricks # The first always be 0 if K == 1: return 0 last = self.kthGrammar(N - 1, math.ceil(K / 2)) if K % 2 == 1: return 0 if last == 0 else 1 else: return 1 if last == 0 else 0 def test(): assert Solution().kthGrammar(N=1, K=1) == 0 assert Solution().kthGrammar(N=2, K=1) == 0 assert Solution().kthGrammar(N=2, K=2) == 1 assert Solution().kthGrammar(N=4, K=5) == 1 if __name__ == '__main__': test() # print(Solution().kthGrammar(N=30, K=2)) ``` #### File: myleetcode/src/915-PartitionArrayintoDisjointIntervals.py ```python from typing import List class Solution: def partitionDisjoint(self, nums: List[int]) -> int: l_max = tmp_max = nums[0] l_len = 1 going_compare = False for i in range(1, len(nums)): if l_max > nums[i]: if going_compare: # found a right value less than left l_max = tmp_max going_compare = False l_len = i + 1 else: going_compare = True tmp_max = max(nums[i], tmp_max) return l_len def test(): assert Solution().partitionDisjoint([24, 11, 49, 80, 63, 8, 61, 22, 73, 85]) == 9 assert Solution().partitionDisjoint([5, 0, 3, 8, 6]) == 3 assert Solution().partitionDisjoint([1, 2]) == 1 assert Solution().partitionDisjoint([2, 2]) == 1 assert Solution().partitionDisjoint([5, 0, 3, 8, 4, 6, 9]) == 6 assert Solution().partitionDisjoint([1, 1, 1, 0, 6, 12]) == 4 assert Solution().partitionDisjoint([5, 4, 3, 2, 8]) == 4 if __name__ == '__main__': test() ``` #### File: myleetcode/src/922-SortArrayByParityII.py ```python from typing import List from tool import print_results class Solution: @print_results def sortArrayByParityII(self, nums: List[int]) -> List[int]: """ 61 / 61 test cases passed. Status: Accepted Runtime: 220 ms Memory Usage: 16.2 MB :param nums: :return: """ j = 1 for i in range(0, len(nums), 2): if nums[i] % 2 == 0: continue while j < len(nums) and nums[j] % 2 == 1: j += 2 nums[i], nums[j] = nums[j], nums[i] return nums def test(): ans = [[4, 5, 2, 7], [2, 5, 4, 7], [2, 7, 4, 5]] assert Solution().sortArrayByParityII(nums=[4, 2, 5, 7]) in ans assert Solution().sortArrayByParityII(nums=[2, 3]) == [2, 3] assert Solution().sortArrayByParityII(nums=[2, 3, 1, 1, 4, 0, 0, 4, 3, 3]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/929-UniqueEmailAddresses.py ```python from typing import List class Solution: def numUniqueEmails(self, emails: List[str]) -> int: """ 183 / 183 test cases passed. Status: Accepted Runtime: 48 ms Memory Usage: 14.3 MB :param emails: :return: """ email_set = set() for email in emails: p_index = email.find('+') at_index = email.index('@') if p_index > -1: email_set.add(email[:p_index].replace('.', '') + email[at_index:]) else: email_set.add(email[:at_index].replace('.', '') + email[at_index:]) print(email_set) return len(email_set) def test(): assert Solution().numUniqueEmails(["<EMAIL>", "<EMAIL>"]) == 1 assert Solution().numUniqueEmails( emails=["<EMAIL>", "<EMAIL>+<EMAIL>", "<EMAIL>"]) == 2 assert Solution().numUniqueEmails(emails=["<EMAIL>", "<EMAIL>", "<EMAIL>"]) == 3 if __name__ == '__main__': test() ``` #### File: myleetcode/src/954-ArrayofDoubledPairs.py ```python from typing import List class Solution: def canReorderDoubled(self, arr: List[int]) -> bool: """ 102 / 102 test cases passed. Status: Accepted Runtime: 7000 ms Memory Usage: 16.9 MB My solution is spend two much time at list operations. The leetcode solution 1 is: ```python count = collections.Counter(A) for x in sorted(A, key = abs): if count[x] == 0: continue if count[2*x] == 0: return False count[x] -= 1 count[2*x] -= 1 ``` return True :param arr: :return: """ arr = sorted(arr) # we remove two elements in a iteration for _ in range(len(arr) // 2): i = arr.pop(0) if i < 0: m, n = divmod(i, 2) if n == 1 or m not in arr: return False else: arr.remove(m) else: if 2 * i not in arr: return False else: arr.remove(2 * i) return True def test(): assert not Solution().canReorderDoubled(arr=[3, 1, 3, 6]) assert not Solution().canReorderDoubled(arr=[2, 1, 2, 6]) assert Solution().canReorderDoubled(arr=[4, -2, 2, -4]) assert not Solution().canReorderDoubled(arr=[1, 2, 4, 16, 8, 4]) if __name__ == '__main__': test() ``` #### File: myleetcode/src/977-SquaresOfASortedArray.py ```python from typing import List class Solution: def sortedSquares(self, A: List[int]) -> List[int]: return sorted([x * x for x in A]) def test(): assert Solution().sortedSquares([-4, -1, 0, 3, 10]) == [0, 1, 9, 16, 100] if __name__ == '__main__': test() ``` #### File: myleetcode/src/993-CousinsinBinaryTree.py ```python from typing import Optional from tree_node import TreeNode, build_tree_node class Solution: def isCousins(self, root: Optional[TreeNode], x: int, y: int) -> bool: """ Runtime: 28 ms, faster than 93.30% Memory Usage: 14.3 MB, less than 71.37% The number of nodes in the tree is in the range [2, 100]. 1 <= Node.val <= 100 Each node has a unique value. x != y x and y are exist in the tree. :param root: :param x: :param y: :return: """ if root.val == x or root.val == y: return False parent_list = [root] cur_list = [] while len(parent_list) > 0: cur_val_list = [] for node in parent_list: if node.left is not None and node.right is not None: if node.left.val in [x, y] and node.right.val in [x, y]: return False if node.left is not None: cur_list.append(node.left) cur_val_list.append(node.left.val) if node.right is not None: cur_list.append(node.right) cur_val_list.append(node.right.val) if x in cur_val_list: if y in cur_val_list: return True else: return False if y in cur_val_list: return False parent_list = cur_list.copy() cur_list = [] return False def test(): null = None assert not Solution().isCousins(root=build_tree_node([1, 2, 3, null, 4]), x=2, y=3) assert not Solution().isCousins(root=build_tree_node([1, 2, 3, 4]), x=4, y=3) assert Solution().isCousins(root=build_tree_node([1, 2, 3, null, 4, null, 5]), x=5, y=4) if __name__ == '__main__': test() ``` #### File: src/todo/152-MaximumProductSubarray.py ```python from typing import List class Solution: def maxProduct(self, nums: List[int]) -> int: pass def test(): assert Solution().maxProduct(nums=[2, 3, -2, 4]) == 6 assert Solution().maxProduct(nums=[-2, 0, -1]) == 0 if __name__ == '__main__': test() ``` #### File: src/todo/1986-MinimumNumberofWorkSessionstoFinishtheTasks.py ```python from typing import List class Solution: def minSessions(self, tasks: List[int], sessionTime: int) -> int: cnt = 0 tasks = sorted(tasks, reverse=True) while len(tasks) > 0: if tasks[0] == sessionTime: tasks.remove(tasks[0]) cnt += 1 continue if len(tasks) == 1: cnt += 1 break left = sessionTime - tasks[0] tasks.remove(tasks[0]) if left in tasks: tasks.remove(left) cnt += 1 else: to_remove = [] for task in tasks: if task <= left: left -= task to_remove.append(task) for r in to_remove: tasks.remove(r) cnt += 1 return cnt def test(): assert Solution().minSessions(tasks=[2, 3, 3, 4, 4, 4, 5, 6, 7, 10], sessionTime=12) == 4 assert Solution().minSessions(tasks=[1], sessionTime=2) == 1 assert Solution().minSessions(tasks=[1, 2, 3], sessionTime=3) == 2 assert Solution().minSessions(tasks=[3, 1, 3, 1, 1], sessionTime=8) == 2 assert Solution().minSessions(tasks=[1, 2, 3, 4, 5], sessionTime=15) == 1 if __name__ == '__main__': test() ``` #### File: src/todo/29-DivideTwoIntegers.py ```python class Solution: def divide(self, dividend: int, divisor: int) -> int: """ -2**31 <= dividend, divisor <= 2**31 - 1 divisor != 0 :param dividend: :param divisor: :return: """ if dividend == 0: return 0 negative = False # Turn all num to negative if divisor < 0 and dividend > 0: negative = True dividend = -dividend elif divisor > 0 and dividend < 0: negative = True divisor = -divisor elif divisor > 0 and dividend > 0: divisor = -divisor dividend = -dividend ret = 1 # all num are negative now if dividend > divisor: return 0 while divisor > dividend: divisor += divisor ret += 1 if negative and divisor == dividend: return -ret return -ret + 1 if negative else ret def test(): assert Solution().divide(dividend=-1, divisor=2) == 0 assert Solution().divide(dividend=1, divisor=2) == 0 assert Solution().divide(dividend=-1, divisor=1) == -1 assert Solution().divide(dividend=10, divisor=3) == 3 assert Solution().divide(dividend=5, divisor=2) == 2 assert Solution().divide(dividend=7, divisor=-3) == -2 assert Solution().divide(dividend=0, divisor=-3) == 0 assert Solution().divide(dividend=1, divisor=1) == 1 assert Solution().divide(dividend=1, divisor=-1) == -1 assert Solution().divide(dividend=-1, divisor=-1) == 1 if __name__ == '__main__': test() ``` #### File: src/todo/522-LongestUncommonSubsequenceII.py ```python from typing import List class Solution: def findLUSlength(self, strs: List[str]) -> int: pass def test(): assert Solution().findLUSlength(strs=["aba", "cdc", "eae"]) == 3 assert Solution().findLUSlength(strs=["aaa", "aaa", "aa"]) == -1 if __name__ == '__main__': test() ```
{ "source": "jifanz/ACED", "score": 3 }
#### File: ACED/src/algorithm.py ```python import logging from torch.utils.tensorboard import SummaryWriter import matplotlib.pyplot as plt from src.argmax_oracle import argmax_oracle_single from src.dataset import * from src.utils import * from src.record import * logger = logging.getLogger() logger.setLevel(logging.INFO) def maxZ(z0, l_inv, shift, theta, eta, num_grid=40): ''' Computes max_h f(lambda; h; zeta) Input: z0: vector of dimension N_dim, tilde{h_k} in the paper. l_inv: vector of dimension N_dim, 1 / lambda in the paper. shift: a non-negative number, 2^{-k+1} in the paper. theta: vector of dimension N_dim, hat{eta_{k - 1}} in the paper. eta: vector of dimension N_dim, zeta in the paper. tol: stopping criteria for search. Output: z: argmax vector, denoting the prediction of the hypothesis. val: value of max_h f(lambda; h; zeta) ''' seed = np.random.randint(1, 1e8) def glinmax(r, return_pred=False, debug=False): v = -np.sqrt(l_inv) * eta + r * theta z = argmax_oracle_single(v, seed=seed, return_test_accuracy=False) if z @ theta > z0 @ theta: # Found better hypothesis than z0, so we replace it with the new hypothesis. # This is necessary since we are using an approximate oracle where we relax the 0/1 loss. raise ZException('Found Better', z) val = z @ v diff = val - r * (shift + theta @ z0) + np.sum(z0 * np.sqrt(l_inv) * eta) frac = np.sum((z0 - z) * np.sqrt(l_inv) * eta) / (shift + theta @ (z0 - z)) if return_pred: return diff, frac, z return diff, frac r = 100 factor = 10 rs = [r] diffs = [] fracs = [] zs = [] diff, frac, z = glinmax(r, return_pred=True) diffs.append(diff) fracs.append(frac) zs.append(z) it = 0 while diff < 0 and it < num_grid: r /= 2 diff, frac, z = glinmax(r, return_pred=True) rs.append(r) diffs.append(diff) fracs.append(frac) zs.append(z) it += 1 for _ in range(num_grid - it): diff, frac, z = glinmax(r, return_pred=True) rs.append(r) diffs.append(diff) fracs.append(frac) zs.append(z) if diff > 0: r *= factor else: r /= factor ** 2 factor /= 1.4 idx = np.argmax(np.array(fracs)) record = {'diffs': diffs, 'fracs': fracs, 'rs': rs} return None, zs[idx], record def mp_batch(maxz_params): ''' Wrapper around maxZ that also records information for logging. Input: maxz_params: a dictionary from function argument name to values to be passed to maxZ. ''' _, z, record = maxZ(**maxz_params) record = {} z0 = maxz_params['z0'] l_inv = maxz_params['l_inv'] shift = maxz_params['shift'] theta_k = maxz_params['theta'] eta = maxz_params['eta'] gamma_val = np.sum((z0 - z) * np.sqrt(l_inv) * eta) / (shift + (z0 - z) @ theta_k) record['gamma_val'] = gamma_val return gamma_val, z, eta, record def eval_grad(z0, l_inv, shift, theta_k, eta_batch, pool): ''' Computes E [max_h f(lambda; h; zeta)] where expectation is taken by averaging over eta_batch.shape[0] samples. Input: z0: vector of dimension N_dim, tilde{h_k} in the paper. l_inv: vector of dimension N_dim, 1 / lambda in the paper. shift: a non-negative number, 2^{-k+1} in the paper. theta_k: vector of dimension N_dim, hat{eta_{k - 1}} in the paper. eta_batch: array of (M, N_dim), each row corresponds to a sample of zeta in the paper. pool: multiprocessing pool. Output: z: argmax vector, denoting the prediction of the hypothesis. val: value of max_h f(lambda; h; zeta) ''' finished = False while not finished: try: results = pool.map(mp_batch, [{'z0': z0, 'l_inv': l_inv, 'shift': shift, 'theta': theta_k, 'eta': eta_batch[i, :], 'num_grid': 40} for i in range(eta_batch.shape[0])]) finished = True except ZException as e: # Found better hypothesis than z0, so we replace it with the new hypothesis. # This is necessary since we are using an approximate oracle where we relax the 0/1 loss. print('resetted') z0 = e.z # Retrieve from results of parallel computation. zs = [] records = [] gamma_vals = [] for (gamma_val, z, eta, record) in results: gamma_vals.append(gamma_val) zs.append(z) records.append(record) gamma_vals = np.array(gamma_vals) zs = np.array(zs) # Compute gradient wrt lambda. grads = -1 / 2 / np.sqrt(N_dim) * (z0 - zs) * np.sqrt(l_inv) ** 3 * eta_batch / ( shift + (z0 - zs) @ theta_k.reshape((-1, 1))) avg_val = np.mean(gamma_vals) avg_val_var = np.mean(gamma_vals ** 2) - avg_val ** 2 avg_g = np.mean(grads, axis=0) avg_g_var = np.mean(grads ** 2, axis=0) - avg_g ** 2 return avg_val, avg_val_var / eta_batch.shape[0], avg_g, avg_g_var / eta_batch.shape[0], z0, records, zs def gamma_combi(z0, theta_k, k, B, shared_data, iters=N_it_gamma_combi, max_batch_size=800, min_batch_size=50, max_lr=.1, min_lr=1e-5, eps_rel=0.2, eps_abs=1., visualize=False, recorder=None, trial=0, l=None): ''' A function to minimize gamma* as a function of lambda. Input: z0: vector of dimension N_dim, tilde{h_k} in the paper. theta_k: vector of dimension N_dim, hat{eta_{k - 1}} in the paper. k: index number of iteration, k in the paper. B: scaling factor for 2^{-k}, usually 2 * N_dim to match paper. shared_data: dataset object to be passed into multiprocessing pool. iters: total number of iterations (100 should be plenty for all purposes). Batchsize (number of etas per iteration) is set adaptively in the algorithm. But will never exceed limits. min_batch_size: can be as small as 1, default 10. Let algorithm grow it. max_batch_size: should be a bit larger than gamma*. So maybe take this to be twice the total measurement budget you plan to take. Step size eta is set adaptively in the algorithm. But will never exceed limits. min_eta: in my experiments just on thresholds, .001 was small enough and almost never used. max_eta: in my experiments just on thresholds, 1.0 worked but could cause some lambdas to get suuuuuper small which is not great. 0.1 seems good. Stopping criteria. If max_batch_size is not large enough, or min_eta is not small enough, these stopping conditions may not be met. eps_rel: Uses confidence intervals to Stop when (Gamma(lambda) - Gamma(opt)) / Gamma(lambda) < eps_rel. That is, Gamma(lam) < Gamma(opt)/(1 - eps_rel). I suggest a conservative value like eps_rel=0.2. eps_abs: Uses confidence intervals to Stop when Gamma(lambda) - Gamma(opt) < eps_abs. This should be no smaller than 1, but could be quite large, like 10. ''' shift = 2. ** (-k) * B if l is None: l = np.ones(N_dim) / N_dim kappa = np.sqrt(2 * np.log(10)) num_resets = 0 batch_size = min_batch_size lr_candidates = 1. / (10 ** (np.arange(int(-np.log10(max_lr)), int(-np.log10(min_lr)) + 1))) gamma_expectations = [] pool = mp.Pool(N_max_processes, initializer=init_worker, initargs=shared_data) writer = SummaryWriter('runs/active_{}'.format(trial)) l_inv = 1 / np.clip(l, a_min=1e-8, a_max=None) while True: eta_batch = np.random.randn(batch_size, N_dim) avg_val, avg_val_var, avg_g, avg_g_var, z0, records, zs = eval_grad(z0, l_inv, shift, theta_k, eta_batch, pool) subopt_gap = np.dot(avg_g, l) - np.min(avg_g) if subopt_gap < kappa * np.sqrt(max(avg_g_var)) and 2 * batch_size <= max_batch_size: batch_size *= 2 print("New batch size:", batch_size) else: break grads = [] grad_norms = [] for t in range(iters): old_z0 = z0 if recorder is not None: recorder.set_level('maxZ_{}'.format(t)) subopt_gap = avg_g @ l - np.min(avg_g) grads.append(avg_g) grad = avg_g - np.min(avg_g) grad_norms.append(np.linalg.norm(avg_g - np.mean(avg_g))) flag = True for j, lr in enumerate(lr_candidates): eta_batch = np.random.randn(batch_size, N_dim) lbd = l * np.exp(-lr * grad) lbd = np.clip(lbd, a_min=1e-8, a_max=1) lbd /= np.sum(lbd) l_inv = 1 / np.clip(lbd, a_min=1e-8, a_max=None) if np.sum(np.isnan(l_inv)): continue avg_val, avg_val_var, avg_g, avg_g_var, z0, records, zs = eval_grad(z0, l_inv, shift, theta_k, eta_batch, pool) if flag or avg_val + np.sqrt(avg_val_var) < best_tuple[0] - np.sqrt(best_tuple[1]): flag = False best_tuple = (avg_val, avg_val_var, avg_g, avg_g_var, lbd, records, zs) else: break avg_val, avg_val_var, avg_g, avg_g_var, l, records, zs = best_tuple if subopt_gap < kappa * np.sqrt(np.max(avg_g_var)): if 2 * batch_size <= max_batch_size: batch_size *= 2 # Logging gamma_expectations.append(avg_val) if (t + 1) >= iters // 10 and (t + 1) % (iters // 10) == 0: logging.info('gamma_combi: iter {}'.format(t + 1)) writer.add_scalar('Gamma_Combi_{}/gradient_norms'.format(k), np.linalg.norm(avg_g - np.mean(avg_g)), t) writer.add_scalar('Gamma_Combi_{}/gamma_expectations'.format(k), gamma_expectations[-1], t) if recorder is not None: recorder.record_vars(['zs', 'record', 'etas'], [zs, records, eta_batch]) recorder.pop() # Found better hypothesis, don't terminate. if np.sum(z0 != old_z0) != 0: continue # Relative suboptimality gap stopping condition. if (subopt_gap + kappa * np.sqrt(np.max(avg_g_var))) / (avg_val - kappa * np.sqrt(avg_val_var)) < eps_rel: logging.info('Gamma_Combi finished after {} iterations'.format(t + 1)) break # Absolute suboptimality gap stopping condition. if subopt_gap + kappa * np.sqrt(np.max(avg_g_var)) < eps_abs: logging.info('Gamma_Combi finished after {} iterations'.format(t + 1)) break pool.close() pool.join() for i in range(len(l)): writer.add_scalar('Gamma_Combi_{}/allocation'.format(k), l[i], i) if recorder is not None: recorder.record_vars(['ls', 'gamma_expectations', 'grads', 'grad_norms', 'num_resets'], [l, gamma_expectations, grads, grad_norms, num_resets]) writer.close() return l def get_z0(theta_k, shared_data, num=100): ''' More robust computation of argmax h <w, h>. ''' pool = mp.Pool(N_max_processes, initializer=init_worker, initargs=shared_data) result_lst = pool.map(argmax_oracle_single, [theta_k] + [ theta_k * np.random.choice([-1, 1], size=theta_k.shape[0], replace=True, p=[.01, .99]) for _ in range(num - 1)]) pool.close() pool.join() z0_lst = [result[0] for result in result_lst] return result_lst[np.argmax(np.array(z0_lst) @ theta_k)] def combi_alg(theta_star, z_star, schedule, it_run=0): ''' Runs ACED. Input: theta_star: a vector of dimension N_dim with elements in {-1, 1}, 2 * h_star - 1. z_star: a vector of dimension N_dim with elements in {0, 1}, h_star in paper. schedule: number of new queries to take for each iteration. it_run: index the number of runs of the algorithm (for averaging over multiple runs). Output: z0: best arm lk: allocation thetak: empirically computed theta estimate np.sum(pulls): total number of queries ''' shared_data = get_shared_data() init_worker(*shared_data) theta_k, theta_sum = 2 * np.random.rand(N_dim) - 1, 0 B = 2 * N_dim pulls = np.zeros(N_dim) labels = np.zeros(N_dim) lk = np.ones(N_dim, dtype=float) / N_dim writer = SummaryWriter('runs/active_{}'.format(it_run)) global_record = Recorder(data_name, model_name, f'combi_alg_global', idx=it_run) z0, _ = get_z0(theta_k, shared_data) prob_sum = np.zeros(N_dim, dtype=float) pk = lk for t in range(1, N_dim + 1): if t in schedule: k = schedule.index(t) recorder = Recorder(data_name, model_name, f'combi_alg_run_{it_run}', idx=k) logging.info('combi_alg: entering gamma_combi in round {}'.format(k)) recorder.set_level('gamma_combi') lk = gamma_combi(z0, theta_k, k, B, shared_data, iters=N_it_gamma_combi, recorder=recorder, trial=it_run, l=lk, min_batch_size=125, max_batch_size=2000) logging.info('combi_alg: got gamma') recorder.pop() recorder.save() del recorder # Water filling. p_left = 1.0 if k != len(schedule) - 1: p_diff = (lk * (schedule[k + 1] - 1) - prob_sum) / (schedule[k + 1] - t) diff_sorted = -np.sort(-p_diff) pk = np.zeros(N_dim) for ind in range(N_dim - 1): diff = diff_sorted[ind] - diff_sorted[ind + 1] if p_left > diff * (ind + 1): pk[p_diff >= diff_sorted[ind]] += diff p_left -= diff * (ind + 1) else: pk[p_diff >= diff_sorted[ind]] += p_left / (ind + 1) break if np.sum(pk) < 1: pk = pk + (1. - np.sum(pk)) / N_dim if not np.allclose(np.sum(pk), 1): print(p_diff) print(diff_sorted) print(lk) print(pk) assert np.allclose(np.sum(pk), 1), "pk not summing to 1 (sum = {}), {}, {}".format(np.sum(pk), lk, pk) pk += 1e-8 pk /= np.sum(pk) prob_sum += pk # Query based on pk. idx = np.random.choice(np.arange(N_dim)[pulls == 0], 1, p=pk[pulls == 0] / np.sum(pk[pulls == 0])) labels[idx] = theta_star[idx] pulls[idx] = 1 theta_k = labels # Logging. if t in schedule: for ind in range(N_dim): writer.add_scalar('Gamma_Combi_{}/water_filling'.format(k), pk[ind], ind) logger.info( 'combi_alg: total pulls up to this round {}, total seen this round {}'.format(sum(pulls), t)) logger.info('combi_alg: positive labels seen {}/{}'.format(sum(labels == 1), sum((theta_star + 1) / 2))) # Update the best estimated hypothesis so far. z0, test_accuracy_z0 = get_z0(theta_k, shared_data) pred, test_accuracy_retrain = argmax_oracle_single(labels) accuracy_retrain = np.sum(pred == z_star) / float(N_dim) accuracy_z0 = np.sum(z0 == z_star) / float(N_dim) writer.add_scalar('Accuracy/results/retrain', accuracy_retrain, t) writer.add_scalar('Accuracy/results/z0', accuracy_z0, t) writer.add_scalar('Accuracy/results/retrain_test', test_accuracy_retrain, t) writer.add_scalar('Accuracy/results/z0_test', test_accuracy_z0, t) print("Accuracy after round %d: retrain %f z0: %f" % (k, accuracy_retrain, accuracy_z0)) global_record.append_vars( ['lk', 'pk', 'pulls', 'theta_k', 'z0', 'pred', 'accuracy_retrain', 'accuracy_z0', 'z_star', 'theta_star', 'labels', 'test_accuracy_retrain', 'test_accuracy_z0'], [lk, pk, np.array(pulls), theta_k, z0, pred, accuracy_retrain, accuracy_z0, z_star, theta_star, labels, test_accuracy_retrain, test_accuracy_z0]) global_record.save() elif (t + 1) in schedule: z0, _ = get_z0(theta_k, shared_data) global_record.record_var("schedule", schedule) global_record.save() writer.close() return z0, lk, theta_k, np.sum(pulls) if __name__ == "__main__": np.random.seed(111) mp.set_start_method('spawn') shared_data = get_shared_data() init_worker(*shared_data) dataset = get_dataset() for trial in range(1): print("************ Starting Active Run #%d *************" % trial) z_star = dataset["Y"].numpy() result = combi_alg(z_star * 2 - 1, z_star, list(np.arange(250, N_dim, step=250)) + [N_dim], it_run=trial) ``` #### File: ACED/src/utils.py ```python class ZException(Exception): ''' Exception when z0 is suboptimal. ''' def __init__(self, text, z, *args): super(ZException, self).__init__(text, z, *args) self.text = text self.z = z ```
{ "source": "Jifan-Zhang/Ideas", "score": 3 }
#### File: Ideas/color-gradient/Discriminator.py ```python import tensorflow as tf from tensorflow.keras import Model from Model_builder import Model_builder from Generator import Generate class Discriminator(Model_builder): def __init__(self, input_shape): super(Discriminator, self).__init__(input_shape, (1,)) def set_painter(self, Gen): self.Gen = Gen def build(self): """ Create model """ self.model = Model(inputs=self.blocks[0],outputs=self.blocks[-1]) return self.model def __loss__(self, real_out, fake_out): return fake_out - real_out def __get_pred__(self, path="color-gradient.jpg"): # fake inputs x = tf.random.uniform(minval=0, maxval=1, shape=(1,)+self.Gen.input_shape, dtype=tf.float32) if(self.Gen.monitored): fake_inputs = self.Gen.model(x)[-1] else: fake_inputs = self.Gen.model(x) fake_out = self.model(fake_inputs) # real inputs real_inputs = next(Generate("color-gradient.jpg", self.Gen.output_shape)) real_out = self.model(real_inputs) return (real_out, fake_out) def get_gradient(self): with tf.GradientTape() as tape: real_out, fake_out = self.__get_pred__() loss = self.__loss__(real_out, fake_out) self.__current_loss__ = loss.numpy()[0] return tape.gradient(loss, self.model.trainable_weights) ``` #### File: Ideas/color-gradient/Model_builder.py ```python import tensorflow as tf from tensorflow.keras import Model import tensorflow.keras.backend as K import numpy as np class Model_builder: """ A model layers wrapper, building layer blocks. The instance variable remembers the layer structure. input_shape: The image shape CNN trains on """ def __init__(self, input_shape = (1024,1024,3), output_shape = (512,512,3)): self.input_shape = input_shape self.output_shape = output_shape self.blocks = [] def __bottle_neck_check__(f): def inner(self, *args, **kwargs): f(self, *args, **kwargs) if(self.__dict__.get("Discriminator")): # Only painter checks bottle neck x = self.blocks[-1] if(x.get_shape()[1]<self.output_shape[0] or x.get_shape()[2]<self.output_shape[1]): raise RuntimeError(f"The model has formed a bottle neck structure {(x.get_shape()[1],x.get_shape()[2])} < {(self.output_shape[0], self.output_shape[1])}, which should be recovered with up sampling, which is not implemented in the version.") return inner def input(self): out = tf.keras.Input(shape=self.input_shape) self.blocks.append(out) """""" if(self.__dict__.get("Discriminator") is None): # Discriminator scales input (Only painter stores discriminator in its instance) out = out/255. self.blocks.append(out) return out @__bottle_neck_check__ def conv_block(self, n_filter=5, filter_size=(3,3), padding = "valid", strides=1): x = self.blocks[-1] out = tf.keras.layers.Conv2D(n_filter, filter_size, strides=strides, padding = padding, activation="selu")(x) self.blocks.append(out) return out @__bottle_neck_check__ def pooling_block(self, strides=(2,2)): x = self.blocks[-1] out = tf.keras.layers.MaxPool2D()(x) self.blocks.append(out) return out @__bottle_neck_check__ def conv_pool_block(self, n_filter=5, filter_size=(3,3), strides=1): x = self.blocks[-1] x = tf.keras.layers.Conv2D(n_filter, filter_size, strides=strides, padding = "same",activation="selu")(x) out = tf.keras.layers.MaxPool2D()(x) self.blocks.append(out) return out def fully_connected(self,n): x = self.blocks[-1] if(len(x.get_shape())!=2): x = tf.keras.layers.Flatten()(x) if(n==2): activation = "softmax" elif(n==1): activation = "linear" else: activation = "selu" out = tf.keras.layers.Dense(n, activation=activation)(x) self.blocks.append(out) return out def top_block(self): x = self.blocks[-1] width = x.get_shape()[1] height = x.get_shape()[2] f_width = width + 1 - self.output_shape[0] f_height = height + 1 - self.output_shape[1] out = tf.keras.layers.Conv2D(3, (f_width,f_height) ,padding="valid", activation = "selu")(x) self.blocks.append(out) return out ```
{ "source": "jifegg/yafblog", "score": 2 }
#### File: yafblog/lib/myrenderer.py ```python import mistune from pygments import highlight from pygments.lexers import get_lexer_by_name from pygments.formatters import HtmlFormatter class MyRenderer(mistune.Renderer): def block_code(self, text, lang): linenos = inlinestyles = False if not lang: text = text.strip() return u'<pre><code>%s</code></pre>\n' % mistune.escape(text) try: lexer = get_lexer_by_name(lang, stripall=True) formatter = HtmlFormatter( noclasses=inlinestyles, linenos=linenos, cssclass='codehilite' ) code = highlight(text, lexer, formatter) if linenos: return '<div class="highlight-wrapper">%s</div>\n' % code return '<div class="doc doc-code">%s</div>%s' % (lang.upper(), code) except: return '<pre class="%s"><code>%s</code></pre>\n' % ( lang, mistune.escape(text) ) def link(self, link, title, text): link = mistune.escape_link(link) if not title: return '<a href="%s" target="_blank">%s</a>' % (link, text) title = escape(title, quote=True) return '<a href="%s" title="%s" target="_blank">%s</a>' % (link, title, text) def header(self, text, level, raw=None): rv = '<h%d id="toc-%d">%s</h%d>\n' % ( level, self.toc_count, text, level ) self.toc_tree.append((self.toc_count, text, level, raw)) self.toc_count += 1 return rv def reset_toc(self): self.toc_tree = [] self.toc_count = 0 def render_toc(self, level=3): """Render TOC to HTML. :param level: render toc to the given level """ return ''.join(self._iter_toc(level)) def _iter_toc(self, level): first_level = None last_level = None yield '<ul id="table-of-content">\n' for toc in self.toc_tree: index, text, l, raw = toc if l > level or l < 2: # ignore this level continue if first_level is None: # based on first level first_level = l last_level = l yield '<li><a href="#toc-%d">%s</a>' % (index, text) elif last_level == l: yield '</li>\n<li><a href="#toc-%d">%s</a>' % (index, text) elif last_level == l - 1: last_level = l yield '<ul>\n<li><a href="#toc-%d">%s</a>' % (index, text) elif last_level > l: # close indention yield '</li>' while last_level > l: yield '</ul>\n</li>\n' last_level -= 1 yield '<li><a href="#toc-%d">%s</a>' % (index, text) # close tags if first_level and last_level: yield '</li>\n' while last_level > first_level: yield '</ul>\n</li>\n' last_level -= 1 yield '</ul>\n' ```
{ "source": "jifengting1/fastpliFork", "score": 3 }
#### File: fastpli/analysis/affine_transformation.py ```python import numpy as np import scipy.interpolate import numba def _replace_mat_row(B, r, d): return np.linalg.det(np.delete(np.vstack([r, B]), (d + 1), axis=0)) @numba.njit(cache=True) def _nearest_neighbors(image, M): """ written for simpli images[x,y,rho] """ image = np.atleast_3d(image) image_nn = np.empty_like(image) M = np.ascontiguousarray(np.linalg.inv(M)) x_max, y_max = image.shape[0] - 1, image.shape[1] - 1 for i in range(image.shape[0]): for j in range(image.shape[1]): x, y, _ = M @ np.array([i, j, 1.0]) ii = max(0, min(x_max, int(np.rint(x)))) jj = max(0, min(y_max, int(np.rint(y)))) image_nn[i, j, :] = image[ii, jj, :] return image_nn def _interpolate_griddata(image, M, mode): """ written for simpli images[x,y,rho] """ image = np.atleast_3d(image) image_nn = np.empty_like(image) grid_i, grid_j = np.mgrid[0:image.shape[0], 0:image.shape[1]] # points -> coordinates in transformed image points = np.array( [grid_i.flatten(), grid_j.flatten(), np.ones(grid_j.size)]) points = (M @ points)[0:2, :] for k in range(image.shape[2]): image_nn[:, :, k] = scipy.interpolate.griddata(points.T, image[:, :, k].flatten(), (grid_i, grid_j), method=mode) return image_nn def calc_matrix(p_in, p_out): """ Calculate the affine transformation matrix. Parameters ---------- p_in, p_out : (3,2)-array_like list of 3 x 2d points which will be transformed from p_in to p_out Returns ------- res : (3x3)-array affine transformation matrix """ p_in = np.array(p_in) p_out = np.array(p_out) if not np.all(np.equal(np.array(p_in.shape), np.array(p_out.shape))): raise TypeError("in and out not the same shape") if not np.all(np.equal(np.array(p_in.shape), np.array([3, 2]))): print(p_in.shape) raise TypeError("shape error: input required [3x2], [3x2]") l = p_in.shape[0] B = np.vstack([np.transpose(p_in), np.ones(l)]) D = 1.0 / np.linalg.det(B) M = np.array([[(-1)**i * D * _replace_mat_row(B, R, i) for i in range(l)] for R in np.transpose(p_out)]) return np.vstack([M, [0, 0, 1]]) def exec_matrix(M, x, y): """ Execute the affine transformation. Parameters ---------- M : (3,3)-array affine transformation matrix x, y : float 2d coordinates to transform Returns ------- res : float, float transformed coordinates """ x, y, _ = M @ np.array([x, y, 1.0]) return x, y def image(image, M, mode='nearest'): """ Execute the affine transformation on simpli images[x,y,rho]. Parameters ---------- image : 2d-array image to transform M : float affine transformation matrix mode : str "nearest", "linear", "cubic" interpolation mode Returns ------- res : 2d-array transformed image """ if mode == 'nearest': # this is faster then scipy.interpolate.griddata('nearest') new_image = _nearest_neighbors(image, M) elif mode == 'linear' or mode == 'cubic': new_image = _interpolate_griddata(image, M, mode) else: raise ValueError(f"mode \"{mode}\" does not exist") return np.squeeze(new_image) ``` #### File: fastpli/objects/fiber_bundle.py ```python import numpy as np import copy from . import fiber def Rescale(fiber_bundle, scale, mod='all'): """ Rescales fiber_bundle Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers scale : float scale factor mod : str, optional 'all', 'points' or 'radii' will be scaled Returns ------- res : [(,4)-array, ...] scaled fiber_bundle """ fiber_bundle = copy.deepcopy(fiber_bundle) for i, _ in enumerate(fiber_bundle): fiber_bundle[i] = fiber.Rescale(fiber_bundle[i], scale, mod) return fiber_bundle def Rotate(fiber_bundle, rot, offset=None): """ Rotates fiber_bundle around offset Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers rot : (3,3)-array_like scale factor offset : 3d-array-array_like, optional offset for rotation center Returns ------- res : [(,4)-array, ...] rotated fiber_bundle """ fiber_bundle = copy.deepcopy(fiber_bundle) rot = np.array(rot, copy=False) if offset is not None: offset = np.array(offset, copy=False) for i, _ in enumerate(fiber_bundle): fiber_bundle[i] = fiber.Rotate(fiber_bundle[i], rot, offset) return fiber_bundle def Translate(fiber_bundle, offset): """ Translates fiber_bundle Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers offset : 3d-array-array_like offset to translate Returns ------- res : [(,4)-array, ...] translated fiber_bundle """ fiber_bundle = copy.deepcopy(fiber_bundle) offset = np.array(offset, copy=False) for i, _ in enumerate(fiber_bundle): fiber_bundle[i] = fiber.Translate(fiber_bundle[i], offset) return fiber_bundle def ApplyFun(fiber_bundle, fun): """ Applies function to fibers Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers fun : function Returns ------- res : [(,4)-array, ...] translated fiber_bundle """ fiber_bundle = copy.deepcopy(fiber_bundle) for i, _ in enumerate(fiber_bundle): fiber_bundle[i] = fun(fiber_bundle[i]) return fiber_bundle def ApplyFunToPosition(fiber_bundle, fun): """ Applies function to fibers positions Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers fun : function Returns ------- res : [(,4)-array, ...] translated fiber_bundle """ fiber_bundle = copy.deepcopy(fiber_bundle) for i, _ in enumerate(fiber_bundle): fiber_bundle[i][:, :-1] = fun(fiber_bundle[i][:, :-1]) return fiber_bundle def ApplyFunToRadii(fiber_bundle, fun): """ Applies function to fibers radii Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers fun : function Returns ------- res : [(,4)-array, ...] translated fiber_bundle """ fiber_bundle = copy.deepcopy(fiber_bundle) for i, _ in enumerate(fiber_bundle): fiber_bundle[i][:, -1] = fun(fiber_bundle[i][:, -1]) return fiber_bundle def Cut(fiber_bundle, voi): """ Cut fiber into voi. The cutting process can create multiple fibers. It checks every cone_aabb if it overlapps with the voi. Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers voi : [xmin, ymin, zmin],[xmax,ymax,zmax] Volume of interest of which fibers to include. E.g. same as in Simulation Returns ------- res : [(,4)-array, ...] cutted fiber_bundle """ new_fiber_bundle = [] for f in fiber_bundle: new_fiber_bundle.extend(fiber.Cut(f, voi)) return new_fiber_bundle def CutSphere(fiber_bundle, radius, center=[0, 0, 0]): """ Cut fiber into sphere. The cutting process can create multiple fibers. It checks every cone_aabb if it overlapps with the sphere. Parameters ---------- fiber_bundle : [(,4)-array, ...] list of fibers radius : float radius of cutting sphere center : 3d-array center of cutting sphere Returns ------- res : [(,4)-array, ...] cutted fiber_bundle """ new_fiber_bundle = [] for f in fiber_bundle: new_fiber_bundle.extend(fiber.CutSphere(f, radius, center)) return new_fiber_bundle ``` #### File: fastpli/objects/fiber.py ```python import numpy as np import numba def Rescale(fiber, scale, mod='all'): """ Rescales fiber Parameters ---------- fiber : (,4)-array fiber scale : float scale factor mod : str, optional 'all', 'points' or 'radii' will be scaled Returns ------- res : (,4)-array scaled fiber """ fiber = np.array(fiber, copy=True) if mod == 'all': fiber *= scale elif mod == 'points': fiber[:, :3] *= scale elif mod == 'radii': fiber[:, -1] *= scale else: raise ValueError('mod = [all, points, radii]') return fiber def Rotate(fiber, rot, offset=None): """ Rotates fiber around offset Parameters ---------- fiber : (,4)-array fiber rot : (3,3)-array_like scale factor offset : 3d-array-array_like, optional offset for rotation center Returns ------- res : (,4)-array rotated fiber """ rot = np.array(rot, copy=False) fiber = np.array(fiber, copy=True) if offset is None: fiber[:, :3] = np.dot(rot, fiber[:, :3].T).T else: offset = np.array(offset, copy=False) fiber[:, :3] = np.dot(rot, (fiber[:, :3] - offset).T).T + offset return fiber def Translate(fiber, offset): """ Translates fiber Parameters ---------- fiber : (,4)-array fiber offset : 3d-array-array_like offset to translate Returns ------- res : (,4)-array translated fiber """ fiber = np.array(fiber, copy=True) offset = np.array(offset, copy=False) fiber[:, :3] += offset return fiber @numba.njit(cache=True) def _cone_aabb_in_aabb(c0, c1, vmin, vmax): c_min = np.array([ min(c0[0] - c0[-1], c1[0] - c1[-1]), min(c0[1] - c0[-1], c1[1] - c1[-1]), min(c0[2] - c0[-1], c1[2] - c1[-1]) ]) c_max = np.array([ max(c0[0] + c0[-1], c1[0] + c1[-1]), max(c0[1] + c0[-1], c1[1] + c1[-1]), max(c0[2] + c0[-1], c1[2] + c1[-1]) ]) for i in range(3): if c_min[i] > vmax[i] or c_max[i] < vmin[i]: return False return True @numba.njit(cache=True) def _cone_aabb_in_sphere(c0, c1, r, center): c_min = np.array([ min(c0[0] - c0[-1], c1[0] - c1[-1]), min(c0[1] - c0[-1], c1[1] - c1[-1]), min(c0[2] - c0[-1], c1[2] - c1[-1]) ]) c_max = np.array([ max(c0[0] + c0[-1], c1[0] + c1[-1]), max(c0[1] + c0[-1], c1[1] + c1[-1]), max(c0[2] + c0[-1], c1[2] + c1[-1]) ]) dmin = 0 for i in range(3): if center[i] < c_min[i]: dmin += (center[i] - c_min[i])**2 elif center[i] > c_max[i]: dmin += (center[i] - c_max[i])**2 return dmin <= r**2 def Cut(fiber, voi): """ Cut fiber into voi. The cutting process can create multiple fibers. It checks every cone_aabb if it overlapps with the voi. Parameters ---------- fiber : (,4)-array fiber voi : [xmin, ymin, zmin],[xmax,ymax,zmax] Volume of interest of which fibers to include. E.g. same as in Simulation Returns ------- res : [(,4)-array] cut fiber(s) """ fibers = [] fiber = np.array(fiber, copy=False) if fiber.ndim != 2: raise (TypeError, "False fiber shape") start = 0 voi = np.array(voi) for i in range(fiber.shape[0] - 1): if not _cone_aabb_in_aabb(fiber[i, :], fiber[i + 1, :], voi[0], voi[1]): if start != i: fibers.append(fiber[start:i + 1]) start = i + 1 if start != i + 1: fibers.append(fiber[start:]) return fibers def CutSphere(fiber, radius, center=[0, 0, 0]): """ Cut fiber into sphere. The cutting process can create multiple fibers. It checks every cone_aabb if it overlapps with the sphere. Parameters ---------- fiber : (,4)-array fiber radius : float radius of cutting sphere center : 3d-array center of cutting sphere Returns ------- res : [[(,4)-array, ...]] cutted fiber_bundles """ center = np.array(center, copy=False) fibers = [] fiber = np.array(fiber, copy=False) if fiber.ndim != 2: raise (TypeError, "False fiber shape") start = 0 for i in range(fiber.shape[0] - 1): if not _cone_aabb_in_sphere(fiber[i, :], fiber[i + 1, :], radius, center): if start != i: fibers.append(fiber[start:i + 1]) start = i + 1 if start != i + 1: fibers.append(fiber[start:]) return fibers ``` #### File: fastpli/tools/helper.py ```python import glob import os from .. import __version__ def pip_freeze(): """ turns pip freeze into a string """ try: from pip._internal.operations import freeze except ImportError: from pip.operations import freeze return "\n".join(freeze.freeze()) def version_file_name(file_name): """ Versions file name with .v{i}. Returns new file name with latest i """ file_path = os.path.dirname(file_name) file_name = os.path.basename(file_name) files = glob.glob(os.path.join(file_path, file_name + '*')) def in_list(i, files): for f in files: if file_name + f".v{i}" in f: return True return False i = 0 while in_list(i, files): i += 1 return os.path.join(file_path, file_name + f".v{i}") def version_path(path, name): """ Versions folder name with .v{i}. Returns new path with latest i """ folders = [ p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p)) ] def in_list(i, name): for f in folders: if name + f".v{i}" in f: return True return False i = 0 while in_list(i, name): i += 1 return os.path.join(path, name + f".v{i}") ``` #### File: model/sandbox/sandbox_test.py ```python import unittest import numpy as np import fastpli.model.sandbox as sb import fastpli.objects as obj class MainTest(unittest.TestCase): def setUp(self): pass def test_triangular_grid(self): seeds = sb.seeds.triangular_grid(0, 0, 1, endpoint=False) self.assertTrue(seeds.size == 0) seeds = sb.seeds.triangular_grid(2, 0, 1, endpoint=False) self.assertTrue(seeds.size == 0) seeds = sb.seeds.triangular_grid(2, 0, 1, endpoint=True) self.assertTrue(seeds.shape[0] == 3) self.assertTrue(np.all(seeds[:, 1] == 0)) self.assertTrue(np.all(seeds[:, 0] == np.array([0, 1, 2]))) seeds = sb.seeds.triangular_grid(2, 2, 1, endpoint=True) self.assertTrue(seeds.shape[0] == 8) def test_crop_rectangle(self): seeds = sb.seeds.triangular_grid(2, 2, 1) new_seeds = sb.seeds.crop_rectangle(2, 2, seeds) self.assertTrue(np.array_equal(seeds, new_seeds)) seeds = sb.seeds.triangular_grid(0, 0, 1) new_seeds = sb.seeds.crop_rectangle(2, 2, seeds, 1) self.assertTrue(new_seeds.size == 0) new_seeds = sb.seeds.crop_rectangle([-1, -1], [1, 1], seeds, 0) self.assertTrue(np.array_equal(new_seeds, [[0, 0]])) seeds = sb.seeds.triangular_grid(2, 2, 1) new_seeds = sb.seeds.crop_rectangle(2, 2, seeds, radii=[1] * seeds.shape[0]) self.assertTrue(new_seeds.size < seeds.size) def test_crop_circle(self): seeds = sb.seeds.triangular_grid(2, 2, 1) new_seeds = sb.seeds.crop_circle(100, seeds) self.assertTrue(np.array_equal(seeds, new_seeds)) new_seeds = sb.seeds.crop_circle(1, seeds) self.assertTrue( np.array_equal(new_seeds, [[0, 0], [1, 0], [0.5, np.sqrt(3) / 2]])) new_seeds = sb.seeds.crop_circle(np.sqrt(2), seeds, [1, 1]) self.assertTrue(np.array_equal(seeds, new_seeds)) new_seeds = sb.seeds.crop_circle(1, seeds, center=[0, 0], radii=1) self.assertTrue(np.array_equal(new_seeds, [[0, 0]])) new_seeds = sb.seeds.crop_circle(1, seeds, center=[0, 0], radii=[1] * seeds.shape[0]) self.assertTrue(np.array_equal(new_seeds, [[0, 0]])) def test_build_cylinder(self): seeds = sb.seeds.triangular_circle(10, 1) for m in ['p', 'r', 'c']: sb.build.cylinder(p=(0, 0, 0), q=(10, 10, 10), r_in=5, r_out=8, seeds=seeds, radii=1, alpha=np.deg2rad(20), beta=np.deg2rad(160), mode=m) self.assertTrue(True) def test_build_cuboid(self): p = np.array([0, 80, 50]) q = np.array([40, 180, 100]) d = np.max(np.abs(p - q)) * np.sqrt(3) seeds = sb.seeds.triangular_grid(a=d, b=d, spacing=5, center=True) sb.build.cuboid(p=p, q=q, phi=np.deg2rad(45), theta=np.deg2rad(90), seeds=seeds, radii=1) self.assertTrue(True) seeds = sb.seeds.triangular_grid(300, 300, 2, center=True) fb = sb.build.cuboid(p=[-5] * 3, q=[5] * 3, phi=0, theta=np.deg2rad(0), seeds=seeds, radii=1) cut_fb = obj.fiber_bundle.Cut(fb, [[-5] * 3, [5] * 3]) for f0, f1 in zip(fb, cut_fb): self.assertTrue(np.array_equal(f0, f1)) def test_build_bundle(self): traj = np.array([[0, 0, 0], [0, 0, 100]]) seeds = np.array([[0, 0], [1, 1], [-1, 1]]) fiber_bundle = sb.build.bundle(traj, seeds, 1) for i in range(len(fiber_bundle)): self.assertTrue( np.array_equal(fiber_bundle[i][0, :3], [seeds[i][0], seeds[i][1], 0])) self.assertTrue( np.array_equal(fiber_bundle[i][1, :3], [seeds[i][0], seeds[i][1], 100])) if __name__ == '__main__': unittest.main() ``` #### File: tests/objects/fiber_manipulation_test.py ```python import unittest import numpy as np import fastpli.objects import fastpli.tools class MainTest(unittest.TestCase): # TODO: implement object.fiber.*manipulations* def setUp(self): self.fiber = np.array([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) self.fiber_bundle = [self.fiber.copy()] self.fiber_bundles = [[self.fiber.copy()]] def test_resize(self): fiber = fastpli.objects.fiber.Rescale(self.fiber, 10) self.assertTrue(np.array_equal(fiber, self.fiber * 10)) fb = fastpli.objects.fiber_bundle.Rescale(self.fiber_bundle, 10) for f in fb: self.assertTrue(np.array_equal(f, self.fiber * 10)) fbs = fastpli.objects.fiber_bundles.Rescale(self.fiber_bundles, 10) for fb in fbs: for f in fb: self.assertTrue(np.array_equal(f, self.fiber * 10)) fiber = fastpli.objects.fiber.Rescale(self.fiber, 10, mod='points') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2] * 10)) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber = fastpli.objects.fiber.Rescale(self.fiber, 10, mod='radii') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2])) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1] * 10)) def test_rotation(self): fiber = fastpli.objects.fiber.Rotate(self.fiber, fastpli.tools.rotation.x(0)) self.assertTrue(np.array_equal(self.fiber, fiber)) fiber = fastpli.objects.fiber.Rotate( self.fiber, fastpli.tools.rotation.x(np.deg2rad(90))) self.assertTrue( np.allclose(fiber, np.array([[0, 0, 0, 1], [1, -1, 1, 2]]))) fiber = fastpli.objects.fiber.Rotate( self.fiber, fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber, np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) for f in self.fiber_bundle: fiber = fastpli.objects.fiber.Rotate( f, fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber, np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) for fb in self.fiber_bundles: for f in fb: fiber = fastpli.objects.fiber.Rotate( f, fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber, np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) def test_translate(self): fiber = fastpli.objects.fiber.Translate(self.fiber, [1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) for f in self.fiber_bundle: fiber = fastpli.objects.fiber.Translate(f, [1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) for fb in self.fiber_bundles: for f in fb: fiber = fastpli.objects.fiber.Translate(f, [1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) def test_cut(self): fiber = np.array([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fibers = fastpli.objects.fiber.Cut(fiber, [[-10] * 3, [10] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(np.array_equal(fibers[0], fiber)) fiber = np.array([[0, 0, 0, 1], [10, 10, 10, 2]], dtype=float) fibers = fastpli.objects.fiber.Cut(fiber, [[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(np.array_equal(fibers[0], fiber)) fiber = np.array([[0, 0, 0, 1], [10, 10, 10, 2], [100, 100, 100, 2]], dtype=float) fibers = fastpli.objects.fiber.Cut(fiber, [[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0], fiber)) fiber = np.array([[0, 0, 0, 1], [10, 10, 10, 2], [100, 100, 100, 2], [10, 10, 10, 2], [0, 0, 0, 1]], dtype=float) fibers = fastpli.objects.fiber.Cut(fiber, [[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0], fiber)) self.assertTrue(not np.array_equal(fibers[1], fiber)) fiber_bundle = [fiber] cut_fb = fastpli.objects.fiber_bundle.Cut(fiber_bundle, [[-5] * 3, [5] * 3]) fibers = cut_fb self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0], fiber)) self.assertTrue(not np.array_equal(fibers[1], fiber)) fiber_bundles = [[fiber]] cut_fbs = fastpli.objects.fiber_bundles.Cut(fiber_bundles, [[-5] * 3, [5] * 3]) fibers = cut_fbs[0] self.assertTrue(len(cut_fbs) == 1) self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0], fiber)) self.assertTrue(not np.array_equal(fibers[1], fiber)) fiber = np.array([[0, 0, 0, 1], [10, 10, 10, 2]], dtype=float) fibers = fastpli.objects.fiber.Cut(fiber, [[5] * 3, [6] * 3]) self.assertTrue(np.array_equal(fibers[0], fiber)) if __name__ == '__main__': unittest.main() ```
{ "source": "jifengyeying/ykt", "score": 3 }
#### File: ykt/lib/login_qiandao.py ```python import requests from . import pwd def cookie_str_to_dict(cookie_str): cookie_dict= {} list_ = cookie_str.split(';') if cookie_str.find('; ') == -1 else cookie_str.split('; ') for i in list_: cookie_dict.update({i.split('=')[0]:i.split('=')[1]}) return cookie_dict def cookie_dict_to_str(cookie_dict): cookie_str = '' for i in cookie_dict.keys(): cookie_str += i+'='+cookie_dict.get(i)+'; ' return cookie_str[:-2] def login(user, password): login_dict = {'account': '', 'password': '', 'ipForget':'true'} login_dict['account'] = user login_dict['password'] = <PASSWORD>(password) headers = {'Host': 'ykt.zenking.cc', 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Referer': '', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6', 'Cookie': ''} login_headers = requests.post(url='http://ykt.zenking.cc/user/ajax/login', data=login_dict, headers=headers).headers if not login_headers.get('Set-Cookie'): return None result = 'SESSION='+requests.post('http://ykt.zenking.cc/dialog/ajax/loginReg').headers['Set-Cookie'].split(';')[0].split('=')[1]+';' for i in login_headers.get('Set-Cookie').split(' Expires='): for j in i.split('Path=/, '): if not j.endswith(' '): if not j.endswith('/'): result += j if result.endswith(';'): result = result[:-1] result_dict = cookie_str_to_dict(result) result_dict['web_user_logindatatime'] = result_dict['web_user_logindatatimeinxedu_customer_chanjing'] result = cookie_dict_to_str(result_dict) return result def qiandao(): pass def cookie_change_test(): cookie = 'WEB_USER_LOGIN_PREFIXinxedu_customer_chanjing=26b450e86dcf4a54baf5fd1f562373a9; web_user_logindatatimeinxedu_customer_chanjing=2020-04-17%2019%3A22%3A27; web_user_logindatatime=2020-04-17%2019%3A22%3A27; courseIdinxedu_customer_chanjing=193; SESSION=MTZhZTIxOTAtM2Y5Ni00MzNlLWE4M2MtZTZmZjJiODBlZjIx; ONLINE_NUMBERinxedu_customer_chanjing=WEB_LOGINER29b023416f3f4963a533474ce6fc948c; s=1587259307570' print('Yes') if cookie == cookie_dict_to_str(cookie_str_to_dict(cookie)) else print('No') ``` #### File: ykt/lib/spider.py ```python import requests from bs4 import BeautifulSoup as bs import re import mypy.data import mypy.download import datetime class NoSettingException(Exception): def __init__(self): super().__init__() def __str__(self): return '你还没有设置或选择!' # 这里是高三专用代码,高一高二是下面的 def gaosan(choice, class_='高三理科', data_path_name='data', aria2path=r'.\aria2c.exe'): print(choice) if not mypy.data.read_data('cookie', data_path_name=data_path_name): raise NoSettingException time = datetime.datetime.now().date().strftime('%m%d') li_dict = {'高三理科数学':'ma_l_3'} wen_dict = {'高三文科数学':'ma_w_3'} dict_ = {'地理':'go_3', '语文':'cn_3', '物理':'ph_3', '英语':'en_3', '政治':'zz_3', '历史':'hi_3', '化学':'ch_3', '生物':'bo_3'} dict_.update(li_dict if class_.find('文') == -1 else wen_dict) for i in dict_.keys(): if choice == '所有': url = 'http://vd.mincoo.com:8088/jyyz/' + time + '/' + dict_.get(i) + '.mp4' mypy.download.aria2(dict_.get(i) + '.mp4', url, aria2path=aria2path, referer='http://ykt.zenking.cc/') else: if i.find(choice) != -1: url = 'http://vd.mincoo.com:8088/jyyz/' + time + '/' + dict_.get(i) + '.mp4' mypy.download.aria2(dict_.get(i) + '.mp4', url, aria2path=aria2path, referer='http://ykt.zenking.cc/') class ykt: def __init__(self, data_path_name='data'): # 从浏览器截取到的一些信息 headers = {'Host': 'ykt.zenking.cc', 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Referer': '', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6', 'Cookie': ''} video_headers = {'Host': 'ykt.zenking.cc', 'Connection': 'keep-alive', 'Content-Length': '28', 'Accept': 'text/plain, */*; q=0.01', 'X-Requested-With': 'XMLHttpRequest', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'Origin': 'http://ykt.zenking.cc', 'Referer': '', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6', 'Cookie': ''} # 读取信息 headers['Cookie'] = mypy.data.read_data('cookie', data_path_name=data_path_name) video_headers['Cookie'] = mypy.data.read_data('cookie', data_path_name=data_path_name) if not headers['Cookie']: raise NoSettingException self.headers = headers self.video_headers = headers self.aria2path = r'.\lib\aria2c.exe' self.time = datetime.datetime.now().date() # 获取时间并去掉前面的0 self.time_without_zero = str(int(self.time.strftime('%m'))) + '月' + str(int(self.time.strftime('%d'))) def main(self, choice_num=None, class_=None): # 下载,choice要求列表(支持多个)! for num in choice_num: html_url = 'http://ykt.zenking.cc/uc/play/' + num + '/0' print(html_url) # 设置Referer self.headers['Referer'] = 'http://ykt.zenking.cc/front/couinfo/' + num self.video_headers['Referer'] = 'http://ykt.zenking.cc/uc/play/' + num + '/0' filename, urls = self.get_video_real_name_and_url(html_url, class_) self.download(urls, filename) def download(self, download_url, filename): # 调用aria2批量下载 if download_url != -1: # 可能一天有多个视频 for i in range(len(download_url)): # 因为使用的是命令行,使用不能有空格,要加上"" mypy.download.aria2(name='"'+filename[i]+download_url[i][-4:]+'"', url=download_url[i], aria2path=self.aria2path, referer="http://ykt.zenking.cc") def get_video_real_name_and_url(self, html_url, class_): # 用beautifulsoup是因为他的find_all函数很好用,然后通过分析得到规律,抓取信息 html = bs(requests.get(url=html_url, headers=self.headers).text, 'html.parser') video = re.findall(r"getPlayerHtml\((.+?)\)", str(html.find_all("a", href="javascript:void(0)"))) # 上面的是全部视频,这个是对应年级对应时间的 video_class_today = [] # 这里的find()会输出字符所在位置,没有时为-1,而不是True或False for i in video: if str(i).find(self.time_without_zero) != -1: if str(i).find(class_) != -1: video_class_today.append(i) # 注意注意 这里不能写成a=b=[]的形式!!! kpointIds = [] file_name = [] urls = [] # 获取kpointIds和file_name for i in video_class_today: a = str(i).split(',') kpointIds.append(a[0]) # 他的名字是类似'2月26日\t高一\t数学期末试题评讲'的,所以要去掉\t和' # 并且这里需要注意的是因为str.replace方法是由c语言写的,所以不能用形参,只能用位参,并且这里的\t也不用转义 file_name.append(a[2].replace('\t', '').replace("'", '')) # 得到id之后获取视频真实链接 for kpointId in kpointIds: data = (('kpointId', kpointId), ('playFromType', '2')) # 这里本来用正则表达式更好,可惜我不怎么会 u = str(bs(requests.post(url="http://ykt.zenking.cc/front/ajax/checkKpoint", data=data, headers=self.video_headers).text, 'html.parser')) # 检查视频是否过期 if u.find('.mp4') != -1: urls.append(u[u.find('src=')+5:u.find('.mp4')] + '.mp4') elif u.find('courseKpoint/pdf/') != -1: urls.append(u[u.find('http://ykt.zenking.cc/images/upload/courseKpoint/pdf/'):u.find('.pdf')] + '.pdf') else: return -1,-1 return file_name, urls if __name__ == '__main__': a = dict(语文='193', 高一二数学='205', 英语='196', 物理='200', 化学='201', 生物='199', 历史='197', 政治='202', 地理='198', 团课='204', 体育='210', 音乐='208', 心理='203', 美术='209') num = [] for i in a.keys(): num.append(a.get(i)) spider = ykt(r'.\lib\data') print('高一') spider.main(choice_num=num, class_='高一') print('高三') gaosan('所有', '高三理科', 'data', r'.\lib\aria2c.exe') ```
{ "source": "jifflund/lab2d", "score": 3 }
#### File: lab2d/dmlab2d/random_agent.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import numpy as np import pygame import dmlab2d from dmlab2d import runfiles_helper def _make_int32_distribution(random, minimum, maximum): def function(): return random.randint(minimum, maximum + 1) return function def _make_float64_distribution(random, minimum, maximum): def function(): return random.uniform(minimum, maximum) return function class PyGameRandomAgent(object): """Random agent works with int32 or float64 bounded actions.""" def __init__(self, action_spec, observation_name, observation_spec, seed, scale): """Create a PyGame agent. Args: action_spec: Environment action spec used to generate random actions. observation_name: Name of observation to render each frame. observation_spec: Environment observation spec for creating PyGame window. seed: Agent seed used for generating random actions. scale: Scales screen. """ self._observation_name = observation_name random = np.random.RandomState(seed) self._actions = [] self._scores = [] self._scale = scale for name, spec in action_spec.items(): if spec.dtype == np.dtype('int32'): self._actions.append( (name, _make_int32_distribution(random, spec.minimum, spec.maximum))) elif spec.dtype == np.dtype('float64'): self._actions.append( (name, _make_float64_distribution(random, spec.minimum, spec.maximum))) else: print("Warning '{}' is not supported".format(spec)) obs_spec = observation_spec[observation_name] self._setup_py_game(obs_spec.shape) def _setup_py_game(self, shape): pygame.init() pygame.display.set_caption('DM Lab2d') self._game_display = pygame.display.set_mode( (int(shape[1] * self._scale), int(shape[0] * self._scale))) def _render_observation(self, observation): obs = np.transpose(observation, (1, 0, 2)) surface = pygame.surfarray.make_surface(obs) rect = surface.get_rect() surf = pygame.transform.scale( surface, (int(rect[2] * self._scale), int(rect[3] * self._scale))) self._game_display.blit(surf, dest=(0, 0)) pygame.display.update() def step(self, timestep): """Renders timestep and returns random actions according to spec.""" self._render_observation(timestep.observation[self._observation_name]) display_score_dirty = False if timestep.reward is not None: if timestep.reward != 0: self._scores[-1] += timestep.reward display_score_dirty = True else: self._scores.append(0) display_score_dirty = True if display_score_dirty: pygame.display.set_caption('%d score' % self._scores[-1]) return {name: gen() for name, gen in self._actions} def print_stats(self): print('Scores: ' + ', '.join(str(score) for score in self._scores)) def _create_environment(args): """Creates an environment. Args: args: See `main()` for description of args. Returns: dmlab2d.Environment with one observation. """ args.settings['levelName'] = args.level_name lab2d = dmlab2d.Lab2d(runfiles_helper.find(), args.settings) return dmlab2d.Environment(lab2d, [args.observation], args.env_seed) def _run(args): """Runs a random agent against an environment rendering the results. Args: args: See `main()` for description of args. """ env = _create_environment(args) agent = PyGameRandomAgent(env.action_spec(), args.observation, env.observation_spec(), args.agent_seed, args.scale) for _ in range(args.num_episodes): timestep = env.reset() # Run single episode. while True: # Query PyGame for early termination. if any(event.type == pygame.QUIT for event in pygame.event.get()): print('Exit early last score may be truncated:') agent.print_stats() return action = agent.step(timestep) timestep = env.step(action) if timestep.last(): # Observe last frame of episode. agent.step(timestep) break # All episodes completed, report per episode. agent.print_stats() def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='clean_up', help='Level name to load') parser.add_argument( '--observation', type=str, default='WORLD.RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') parser.add_argument( '--env_seed', type=int, default=0, help='Environment seed') parser.add_argument('--agent_seed', type=int, default=0, help='Agent seed') parser.add_argument( '--num_episodes', type=int, default=1, help='Number of episodes') parser.add_argument( '--scale', type=float, default=1, help='Scale to render screen') args = parser.parse_args() _run(args) if __name__ == '__main__': main() ```
{ "source": "jiffyclub/regexmagic", "score": 3 }
#### File: jiffyclub/regexmagic/regexmagic.py ```python import re from IPython.core.magic import Magics, magics_class, cell_magic from IPython.display import display, HTML MATCH_TEMPL = '<font color="{0}"><u>{1}</u></font>' PATTERN_TEMPL = '<font color="green"><strong>{0}</strong></font>\n' @magics_class class RegexMagic(Magics): '''Provide the 'regex' calling point for the magic, and keep track of alternating colors while matching.''' this_color, next_color = 'red', 'blue' @cell_magic def regex(self, pattern, text): pattern_str = PATTERN_TEMPL.format(pattern) result_str = [self.handle_line(pattern, line) for line in text.split('\n')] display(HTML(pattern_str + '\n'.join(result_str))) def handle_line(self, pattern, line): result = [] m = re.search(pattern, line) while m: result.append(line[:m.start()]) result.append(MATCH_TEMPL.format(self.this_color, line[m.start():m.end()])) self.this_color, self.next_color = self.next_color, self.this_color line = line[m.end():] m = re.search(pattern, line) result.append(line) return '<br/>{0}'.format(''.join(result)) def load_ipython_extension(ipython): ipython.register_magics(RegexMagic) ```
{ "source": "jiffyclub/scipy", "score": 2 }
#### File: scipy/tools/refguide_check.py ```python import sys import re import copy import inspect from argparse import ArgumentParser, REMAINDER import scipy from scipy import (cluster, constants, fftpack, integrate, interpolate, io, linalg, misc, ndimage, odr, optimize, signal, sparse, spatial, special, stats) # TODO: sparse.csgraph, sparse.linalg, stats.mstats, cluster.vq, # cluster.hierarchy def find_funcnames(module): funcnames = set() # 3 spaces followed by function name; only function names listed in # refguide are indented like this (mostly, there may be some false # positives) pattern = re.compile("(\s\s\s[a-z_0-9A-Z]+)") for line in module.__doc__.splitlines(): res = re.search(pattern, line) if res is not None: funcname = res.groups()[0].lstrip() funcnames.add(funcname) return funcnames def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" all = copy.deepcopy(module.__all__) for name in ['absolute_import', 'division', 'print_function']: try: all.remove(name) except ValueError: pass # somehow some modules survive the first iteration (?) for _ in range(2): for name in all: if inspect.ismodule(getattr(module, name)): all.remove(name) return all def compare(all, funcnames): """Return sets of objects only in one of __all__, refguide.""" only_all = set() for name in all: if name not in funcnames: only_all.add(name) only_ref = set() for name in funcnames: if name not in all: only_ref.add(name) return only_all, only_ref def report(all, funcnames, module_name): """Print out a report for the module""" num_all = len(all) num_ref = len(funcnames) print("Number of functions in __all__: %i" % num_all) print("Number of functions in refguide: %i" % num_ref) only_all, only_ref = compare(all, funcnames) if len(only_all) == len(only_ref) == 0: print("\nAll good!") else: if len(only_all) > 0: print("") print("Objects in %s.__all__ but not in refguide:" % module_name) print("------------------------------------------") for name in only_all: print(name) if len(only_ref) > 0: print("") print("Objects in refguide but not in %s.__all__:" % module_name) print("------------------------------------------") for name in only_ref: print(name) def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_name", metavar="ARGS", default=[], nargs=REMAINDER, help="Valid Scipy submodule name") args = parser.parse_args(argv) module_name = args.module_name[0] module = getattr(scipy, module_name) funcnames = find_funcnames(module) all = get_all_dict(module) report(all, funcnames, module_name) if __name__ == '__main__': main(argv=sys.argv[1:]) ```
{ "source": "jiforcen/orderedweightedpooling", "score": 2 }
#### File: orderedweightedpooling/pooling/legacy_sort.py ```python import numpy as np import tensorflow as tf def sort_p2x2(x): _, pool_height, pool_width, channels, elems = x.get_shape().as_list() x = tf.reshape(x, [-1, elems]) rows, _ = x.get_shape().as_list() # 1st stage x_1 = tf.slice(x, [0, 0], [-1, 1]) x_2 = tf.slice(x, [0, 1], [-1, 1]) x_3 = tf.slice(x, [0, 2], [-1, 1]) x_4 = tf.slice(x, [0, 3], [-1, 1]) x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4], axis=1)) # 2nd stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4], axis=1)) # 3rd stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4], axis=1)) x = tf.reshape(x, [-1, pool_height, pool_width, channels, elems]) # Reshape tensor return x def sort_p3x3(x): _, pool_height, pool_width, channels, elems = x.get_shape().as_list() x = tf.reshape(x, [-1, elems]) rows, _ = x.get_shape().as_list() # 1st stage x_1 = tf.slice(x, [0, 0], [-1, 1]) x_2 = tf.slice(x, [0, 1], [-1, 1]) x_3 = tf.slice(x, [0, 2], [-1, 1]) x_4 = tf.slice(x, [0, 3], [-1, 1]) x_5 = tf.slice(x, [0, 4], [-1, 1]) x_6 = tf.slice(x, [0, 5], [-1, 1]) x_7 = tf.slice(x, [0, 6], [-1, 1]) x_8 = tf.slice(x, [0, 7], [-1, 1]) x_9 = tf.slice(x, [0, 8], [-1, 1]) x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x_45_greater = tf.greater(x_4, x_5) x_aux = tf.where(x_45_greater, x_4, x_5) x_5 = tf.where(tf.logical_not(x_45_greater), x_4, x_5) x_4 = x_aux x_56_greater = tf.greater(x_5, x_6) x_aux = tf.where(x_56_greater, x_5, x_6) x_6 = tf.where(tf.logical_not(x_56_greater), x_5, x_6) x_5 = x_aux x_67_greater = tf.greater(x_6, x_7) x_aux = tf.where(x_67_greater, x_6, x_7) x_7 = tf.where(tf.logical_not(x_67_greater), x_6, x_7) x_6 = x_aux x_78_greater = tf.greater(x_7, x_8) x_aux = tf.where(x_78_greater, x_7, x_8) x_8 = tf.where(tf.logical_not(x_78_greater), x_7, x_8) x_7 = x_aux x_89_greater = tf.greater(x_8, x_9) x_aux = tf.where(x_89_greater, x_8, x_9) x_9 = tf.where(tf.logical_not(x_89_greater), x_8, x_9) x_8 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 2nd stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x_45_greater = tf.greater(x_4, x_5) x_aux = tf.where(x_45_greater, x_4, x_5) x_5 = tf.where(tf.logical_not(x_45_greater), x_4, x_5) x_4 = x_aux x_56_greater = tf.greater(x_5, x_6) x_aux = tf.where(x_56_greater, x_5, x_6) x_6 = tf.where(tf.logical_not(x_56_greater), x_5, x_6) x_5 = x_aux x_67_greater = tf.greater(x_6, x_7) x_aux = tf.where(x_67_greater, x_6, x_7) x_7 = tf.where(tf.logical_not(x_67_greater), x_6, x_7) x_6 = x_aux x_78_greater = tf.greater(x_7, x_8) x_aux = tf.where(x_78_greater, x_7, x_8) x_8 = tf.where(tf.logical_not(x_78_greater), x_7, x_8) x_7 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 3rd stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x_45_greater = tf.greater(x_4, x_5) x_aux = tf.where(x_45_greater, x_4, x_5) x_5 = tf.where(tf.logical_not(x_45_greater), x_4, x_5) x_4 = x_aux x_56_greater = tf.greater(x_5, x_6) x_aux = tf.where(x_56_greater, x_5, x_6) x_6 = tf.where(tf.logical_not(x_56_greater), x_5, x_6) x_5 = x_aux x_67_greater = tf.greater(x_6, x_7) x_aux = tf.where(x_67_greater, x_6, x_7) x_7 = tf.where(tf.logical_not(x_67_greater), x_6, x_7) x_6 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 4th stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x_45_greater = tf.greater(x_4, x_5) x_aux = tf.where(x_45_greater, x_4, x_5) x_5 = tf.where(tf.logical_not(x_45_greater), x_4, x_5) x_4 = x_aux x_56_greater = tf.greater(x_5, x_6) x_aux = tf.where(x_56_greater, x_5, x_6) x_6 = tf.where(tf.logical_not(x_56_greater), x_5, x_6) x_5 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 5th stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x_45_greater = tf.greater(x_4, x_5) x_aux = tf.where(x_45_greater, x_4, x_5) x_5 = tf.where(tf.logical_not(x_45_greater), x_4, x_5) x_4 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 6th stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x_34_greater = tf.greater(x_3, x_4) x_aux = tf.where(x_34_greater, x_3, x_4) x_4 = tf.where(tf.logical_not(x_34_greater), x_3, x_4) x_3 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 7th stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x_23_greater = tf.greater(x_2, x_3) x_aux = tf.where(x_23_greater, x_2, x_3) x_3 = tf.where(tf.logical_not(x_23_greater), x_2, x_3) x_2 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # 8th stage x_12_greater = tf.greater(x_1, x_2) x_aux = tf.where(x_12_greater, x_1, x_2) x_2 = tf.where(tf.logical_not(x_12_greater),x_1, x_2) x_1 = x_aux x = tf.squeeze(tf.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9], axis=1)) # Reshape x = tf.reshape(x, [-1, pool_height, pool_width, channels, elems]) # Reshape tensor return x ``` #### File: jiforcen/orderedweightedpooling/tensor.py ```python import tensorflow as tf from keras import backend as K import numpy as np def ow2_reg_un(weight_matrix, a1, a2): return (a1 * K.sum(K.abs(1-K.sum(weight_matrix, axis=1))) + a2 * K.sum(-tf.minimum(0.0, weight_matrix))) def ow2_reg_uns(weight_matrix, a1, a2, a3): result = weight_matrix - tf.manip.roll(weight_matrix, shift=1, axis=1) shape = tf.shape(weight_matrix) result = tf.reduce_sum (tf.square(tf.slice(result,[0, 1],[shape[0], shape[-1]-1]))) return (a3 * result + ow2_reg_un(weight_matrix, a1, a2)) not_equal_weights_ow2 = tf.constant(np.array([[0.25, -0.25, 0.25, 0.25], [0.25, 0.25, -0.25, 0.25]]), dtype=tf.float32) reg_op = ow2_reg_uns(not_equal_weights_ow2, 0, 0, 1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) print (reg_val) ``` #### File: orderedweightedpooling/test/test_regularizers.py ```python import unittest import numpy as np import keras from keras.initializers import Constant from keras.layers import ( MaxPooling2D, AveragePooling2D, Input, Dense, Flatten, Activation, ) from keras.models import Model from pooling.pooling_layers import ( OW1Pooling2D, OW2Pooling2D, OW3Pooling2D, ) from pooling.ow_regularizers import ( ow1_reg_un, ow1_reg_uns, ow2_reg_un, ow2_reg_uns, ) import tensorflow as tf class Test_PosUnitConstraint(unittest.TestCase): """ Test OW1 Regularizers""" def setUp(self): self.x_input = np.random.rand(10, 4, 4, 2) self.input_tensor = Input(shape=self.x_input.shape[1:]) self.y = np.array([0, 1]).reshape(1,2) self.y = np.ones((10, 2)) self.pool_size = (4, 4) self.optimizer = keras.optimizers.Adam(lr=.01) def test_ow1_regularizer(self): """ Test ow-pool with mean weights""" def regularizer(weight_matrix): return ow1_reg_un(weight_matrix, .1, .1) neg_ones_ini = -np.ones(self.pool_size[0] * self.pool_size[1])/2 w_initializer = Constant(value=neg_ones_ini) x = OW1Pooling2D(pool_size=self.pool_size, name='ow', padding='same', weights_regularizer=regularizer, weights_initializer=w_initializer)(self.input_tensor) x = Flatten()(x) x = Dense(10)(x) x = Dense(2)(x) x = Activation('softmax')(x) ow_model = Model(self.input_tensor, x) ow_model.compile(optimizer=self.optimizer, loss='categorical_crossentropy', metrics=['accuracy']) ow_layer = ow_model.layers[-5] ow_weights = ow_layer.get_weights()[0] ow_model.fit(self.x_input, self.y, epochs=1000, verbose=0, batch_size=2) ow_layer = ow_model.layers[-5] ow_weights = ow_layer.get_weights()[0] np.testing.assert_array_almost_equal(np.sum(ow_weights), 1, decimal=2) self.assertFalse(np.sum(ow_weights<0)) class Test_RegOwa1(unittest.TestCase): """ Test OW1 Regularizers""" def setUp(self): self.equal_weights_ow1 = tf.constant(np.array([0.25, 0.25, 0.25, 0.25]), dtype=tf.float32) self.not_equal_weights_ow1 = tf.constant(np.array([0.25, -0.25, 0.25, 0.25]), dtype=tf.float32) def test_ow1_regularizer_un_case_0(self): """ Test ow1 regularizer""" reg_op = ow1_reg_un(self.equal_weights_ow1, .1, .1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertEqual(reg_val, 0) def test_ow1_regularizer_un_case_1(self): """ Test ow1 regularizer""" reg_op = ow1_reg_un(self.not_equal_weights_ow1, .1, 0) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertNotEqual(reg_val, 0) def test_ow1_regularizer_un_case_2(self): """ Test ow1 regularizer""" reg_op = ow1_reg_un(self.not_equal_weights_ow1, 0, .1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertNotEqual(reg_val, 0) def test_ow1_regularizer_uns_case_0(self): """ Test ow1 regularizer""" reg_op = ow1_reg_uns(self.equal_weights_ow1, .1, .1, .1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertEqual(reg_val, 0) def test_ow1_regularizer_uns_case_1(self): """ Test ow1 regularizer""" reg_op = ow1_reg_uns(self.not_equal_weights_ow1, 0, 0, 0) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertEqual(reg_val, 0) def test_ow1_regularizer_uns_case_2(self): """ Test ow1 regularizer""" reg_op = ow1_reg_uns(self.not_equal_weights_ow1, 0, 0, 1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertNotEqual(reg_val, 0) class Test_RegOwa2(unittest.TestCase): """ Test OW2 Regularizers""" def setUp(self): self.equal_weights_ow2 = tf.constant(np.array([[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]]), dtype=tf.float32) self.not_equal_weights_ow2 = tf.constant(np.array([[0.25, -0.25, 0.25, 0.25], [0.25, -0.25, 0.25, 0.25]]), dtype=tf.float32) def test_ow2_regularizer_un_case_0(self): """ Test OW2 Regularizers""" reg_op = ow2_reg_un(self.equal_weights_ow2, .1, .1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertEqual(reg_val, 0) def test_ow2_regularizer_un_case_1(self): """ Test OW2 Regularizers""" reg_op = ow2_reg_un(self.not_equal_weights_ow2, .1, 0) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertNotEqual(reg_val, 0) def test_ow2_regularizer_un_case_2(self): """ Test OW2 Regularizers""" reg_op = ow2_reg_un(self.not_equal_weights_ow2, 0, .1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertNotEqual(reg_val, 0) def test_ow2_regularizer_uns_case_0(self): """ Test OW2 Regularizers""" reg_op = ow2_reg_uns(self.equal_weights_ow2, .1, .1, .1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertEqual(reg_val, 0) def test_ow2_regularizer_uns_case_1(self): """ Test OW2 Regularizers""" reg_op = ow2_reg_uns(self.not_equal_weights_ow2, 0, 0, 0) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertEqual(reg_val, 0) def test_ow2_regularizer_uns_case_2(self): """ Test OW2 Regularizers""" reg_op = ow2_reg_uns(self.not_equal_weights_ow2, 0, 0, 1) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) reg_val = sess.run(reg_op) self.assertNotEqual(reg_val, 0) ```
{ "source": "jifox/nautobot-plugin-secrets-providers", "score": 2 }
#### File: nautobot_secrets_providers/providers/aws.py ```python import base64 import json try: import boto3 from botocore.exceptions import ClientError except (ImportError, ModuleNotFoundError): boto3 = None from django import forms from nautobot.utilities.forms import BootstrapMixin from nautobot.extras.secrets import exceptions, SecretsProvider __all__ = ("AWSSecretsManagerSecretsProvider",) class AWSSecretsManagerSecretsProvider(SecretsProvider): """A secrets provider for AWS Secrets Manager.""" slug = "aws-secrets-manager" name = "AWS Secrets Manager" is_available = boto3 is not None class ParametersForm(BootstrapMixin, forms.Form): """Required parameters for AWS Secrets Manager.""" name = forms.CharField( required=True, help_text="The name of the AWS Secrets Manager secret", ) region = forms.CharField( required=True, help_text="The region name of the AWS Secrets Manager secret", ) key = forms.CharField( required=True, help_text="The key of the AWS Secrets Manager secret", ) @classmethod def get_value_for_secret(cls, secret, obj=None, **kwargs): """Return the secret value by name and region.""" # Extract the parameters from the Secret. parameters = secret.rendered_parameters(obj=obj) secret_name = parameters.get("name") secret_key = parameters.get("key") region_name = parameters.get("region") # Create a Secrets Manager client. session = boto3.session.Session() client = session.client(service_name="secretsmanager", region_name=region_name) # This is based on sample code to only handle the specific exceptions for the 'GetSecretValue' API. # See https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html # We rethrow the exception by default. try: get_secret_value_response = client.get_secret_value(SecretId=secret_name) except ClientError as err: if err.response["Error"]["Code"] == "DecryptionFailureException": # pylint: disable=no-else-raise # Secrets Manager can't decrypt the protected secret text using the provided KMS key. # Deal with the exception here, and/or rethrow at your discretion. raise exceptions.SecretProviderError(secret, cls, str(err)) elif err.response["Error"]["Code"] == "InternalServiceErrorException": # An error occurred on the server side. # Deal with the exception here, and/or rethrow at your discretion. raise exceptions.SecretProviderError(secret, cls, str(err)) elif err.response["Error"]["Code"] == "InvalidParameterException": # You provided an invalid value for a parameter. # Deal with the exception here, and/or rethrow at your discretion. raise exceptions.SecretParametersError(secret, cls, str(err)) elif err.response["Error"]["Code"] == "InvalidRequestException": # You provided a parameter value that is not valid for the current state of the resource. # Deal with the exception here, and/or rethrow at your discretion. raise exceptions.SecretProviderError(secret, cls, str(err)) elif err.response["Error"]["Code"] == "ResourceNotFoundException": # We can't find the resource that you asked for. # Deal with the exception here, and/or rethrow at your discretion. raise exceptions.SecretValueNotFoundError(secret, cls, str(err)) else: # Decrypts secret using the associated KMS CMK. # Depending on whether the secret is a string or binary, one of these fields will be populated. if "SecretString" in get_secret_value_response: secret_value = get_secret_value_response["SecretString"] else: # TODO(jathan): Do we care about this? Let's figure out what to do about a binary value? secret_value = base64.b64decode(get_secret_value_response["SecretBinary"]) # noqa # If we get this far it should be valid JSON. data = json.loads(secret_value) # Retrieve the value using the key or complain loudly. try: return data[secret_key] except KeyError as err: msg = f"The secret value could not be retrieved using key {err}" raise exceptions.SecretValueNotFoundError(secret, cls, msg) from err ``` #### File: nautobot-plugin-secrets-providers/nautobot_secrets_providers/views.py ```python from django.views.generic import TemplateView from nautobot_secrets_providers import secrets class SecretsProvidersHomeView(TemplateView): """Plugin home page for Secrets Providers.""" template_name = "nautobot_secrets_providers/home.html" def get_context_data(self, **kwargs): """Inject `secrets_providers` into template context.""" ctx = super().get_context_data(**kwargs) ctx["secrets_providers"] = secrets.secrets_providers return ctx ```
{ "source": "jifox/nornir_rich", "score": 2 }
#### File: nornir_rich/tests/test.py ```python from nornir_rich.plugins.functions import RichResults from nornir import InitNornir from nornir.core.task import Result from nornir_utils.plugins.tasks.data import echo_data nr = InitNornir() rr = RichResults() def stuff(task): return Result( host=task.host, exception=Exception("testing"), stdout=task, result=[1, 2, 3] ) def level1(task): task.run(level2) def level2(task): task.run(level3) def level3(task): return Result(host=task.host, stdout="abcd", result={"x": 9, "y": 10}) def gen_exception(task): raise Exception('this is an exception') rr.print(nr.run(task=echo_data, x=10, z=[1, 2, 3])) rr.print(nr.run(task=stuff), vars=["stdout", "result", "exception"]) rr.print(nr.run(task=level1), vars=["stdout", "result", "exception"]) rr.print(nr.run(task=gen_exception), vars=["stdout", "result", "exception"]) ```
{ "source": "jifox/relpath", "score": 4 }
#### File: relpath/relpath/__init__.py ```python import os from pathlib import Path from typing import Union def relative_path(base_path: Union[str, Path], rel_path: Union[str, Path]) -> str: """Returns the relative path from base path to rel_path even when rel_path is not a subdirectory of base_path. Args: base_path (str|Path): Base for relative path rel_path (str|Path): File or Directory that the relative path points to. Returns: str: relative path to access 'rel_path' from 'base_path' """ base = Path(base_path).absolute() rel = Path(rel_path).absolute() if not base.is_dir(): base = base.parent common = "" idx = 0 while (idx < min(len(base.parts), len(rel.parts))) and ( str(base.parts[idx]) == str(rel.parts[idx]) ): if len(common) > 0 and (common[-1] != os.sep): common += os.sep common += base.parts[idx] idx += 1 diff_len = len(base.parts) - len(Path(common).parts) res = "" for dummy in range(0, diff_len): res += ".." + os.sep ofs = 0 if str(rel) == str(common): return res if len(res) > 0 and res[-1] == os.sep and str(rel)[len(str(common))] == os.sep: ofs = 1 elif len(res) == 0: ofs = 1 res += str(rel)[len(str(common)) + ofs :] return res ``` #### File: relpath/tests/test_relpath.py ```python from pathlib import Path import sys sys.path.append(str(Path(Path(__file__).parent).parent)) import pytest import os from relpath import relative_path def test_relative_path(): testdir = str(Path(__file__).parent) + os.sep testdata = [ { "bas": str(Path(testdir).joinpath("dir1", "dir2")), "rel": str(Path(testdir).joinpath("dir4", "test.txt")), "res": str(Path("..").joinpath("..", "dir4", "test.txt")), }, { "bas": testdir, "rel": str(Path(testdir).joinpath("dir4", "test.txt")), "res": str(Path("dir4").joinpath("test.txt")), }, { "bas": str(Path(testdir).joinpath("dir1", "non-existing-filename")), "rel": str(Path(testdir).joinpath("dir4", "test.txt")), "res": str(Path("..").joinpath("dir4", "test.txt")), }, { "bas": "/home", "rel": "/", "res": "../", }, ] for dat in testdata: print("") print("bas:", dat.get("bas")) print("rel:", dat.get("rel")) print("res:", dat.get("res")) res = relative_path(dat.get("bas"), dat.get("rel")) assert str(res) == str(dat.get("res")) ```
{ "source": "jifox/secret-server-reader", "score": 2 }
#### File: secread/tests/test_secread.py ```python import os import pytest from secread import __version__, SecretServer def test_version(): assert __version__ == "0.1.4" @pytest.fixture def sec_server(): return SecretServer() def test_default_slugs_is_a_list(sec_server: SecretServer): slugs = sec_server.SECRET_SERVER_DEFAULT_SLUGS assert isinstance(slugs, list) def test_secretserver(sec_server: SecretServer): token = sec_server.getAuthToken() assert len(token) > 0, "Token could not be read" def test_get_secret_response_by_name(sec_server: SecretServer): secname = os.getenv("TEST_SECRET_NAME", "GitLab Token netsearch-ro") res = sec_server.searchSecretResponse(secname) fields = sec_server.getFieldItemWithSlug(res) assert "username" in fields.keys(), "Missing username" assert "password" in fields.keys(), "Missing password" def test_get_secret_by_name(sec_server: SecretServer): secname = os.getenv("TEST_SECRET_NAME", "GitLab Token netsearch-ro") res = sec_server.searchSecret(secname) assert "username" in res.keys(), "Missing username" assert "password" in res.keys(), "Missing password" ``` #### File: secret-server-reader/secread/thycotic.py ```python from typing import Any, Dict, List, Optional, Union from pathlib import Path import json import os import requests from dotenv import load_dotenv from requests.models import Response def strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. credits: https://github.com/nautobot """ val = val.lower() if val in ("y", "yes", "t", "true", "on", "1"): return 1 elif val in ("n", "no", "f", "false", "off", "0"): return 0 else: raise ValueError("invalid truth value %r" % (val,)) def is_truthy(arg) -> bool: """Convert "truthy" strings into Booleans. Examples: >>> is_truthy('yes') True Args: arg (str): Truthy string (True values are y, yes, t, true, on and 1; false values are n, no, f, false, off and 0. Raises ValueError if val is anything else. credits: https://github.com/nautobot """ if isinstance(arg, bool): return arg return bool(strtobool(arg)) class SecretServer: # see .env.example SECRET_SERVER_SITE: str SECRET_SERVER_AUTH_API: str SECRET_SERVER_USERNAME: str SECRET_SERVER_PASSWORD: str SECRET_SERVER_SSL_VERIFY: Union[bool, str] SECRET_SERVER_API: str SECRET_SERVER_DEFAULT_SLUGS: List[str] = ["id", "url", "username", "password"] SECRET_SERVER_IS_DUMMY: bool SECRET_SERVER_TEST_DUMMY_RESULT: Dict[Any, Any] def __init__(self) -> None: load_dotenv(".env") self.SECRET_SERVER_SITE = os.getenv("SECRET_SERVER_SITE", "https://pw.example.local/SecretServer") self.SECRET_SERVER_AUTH_API = os.getenv("SECRET_SERVER_AUTH_API", "/oauth2/token") self.SECRET_SERVER_USERNAME = os.getenv("SECRET_SERVER_USERNAME", "thycotic_api_username") self.SECRET_SERVER_PASSWORD = os.getenv("SECRET_SERVER_PASSWORD", "<PASSWORD>") # SECRET_SERVER_SSL_VERIFY # values: # - True: certificate will be verified (Default) # - False: certificate will be ignored # - Path: path to trusted certificat bundle e.g. "/etc/ssl/certs/ca-bundle.crt" ssl_verify = os.getenv("SECRET_SERVER_SSL_VERIFY", "True") if Path(ssl_verify).exists(): self.SECRET_SERVER_SSL_VERIFY = ssl_verify else: self.SECRET_SERVER_SSL_VERIFY = is_truthy(ssl_verify) slugliststr = os.getenv("SECRET_SERVER_DEFAULT_SLUGS", "") if len(self.SECRET_SERVER_DEFAULT_SLUGS) > 0: try: self.SECRET_SERVER_DEFAULT_SLUGS = json.loads(slugliststr) except: pass self.SECRET_SERVER_API = self.SECRET_SERVER_SITE + "/api/v1" self.SECRET_SERVER_IS_DUMMY = is_truthy(os.getenv("SECRET_SERVER_IS_DUMMY", "False")) try: dummyres = json.loads(str(os.getenv("SECRET_SERVER_TEST_DUMMY_RESULT"))) except: dummyres = None if not dummyres or ("username" not in dummyres) or ("password" not in dummyres) or ("url" not in dummyres): dummyres = { "username": "testuser", "password": "<PASSWORD>", "url": "https://localhost/SecretServer", } self.SECRET_SERVER_TEST_DUMMY_RESULT = dummyres self._isconnected = False self.token = None def getAuthToken(self): """Get token with given credentials""" if self.SECRET_SERVER_IS_DUMMY: return "DUMMY_TOKEN" creds = {} creds["username"] = self.SECRET_SERVER_USERNAME creds["password"] = self.SECRET_SERVER_PASSWORD creds["grant_type"] = "password" uri = self.SECRET_SERVER_SITE + self.SECRET_SERVER_AUTH_API headers = { "Accept": "application/json", "content-type": "application/x-www-form-urlencoded", } resp = requests.post( uri, data=creds, headers=headers, verify=self.SECRET_SERVER_SSL_VERIFY, ) if resp.status_code not in (200, 304): raise Exception( "Problems getting a token from Secret Server for %s. %s %s" % (self.SECRET_SERVER_USERNAME, resp.status_code, resp) ) self.token = resp.json()["access_token"] self._isconnected = True return self.token def getSecret(self, secretId: str): """Retrieve the infomation about the secret having id==secretid Args: secretId (str): Entry ID to retrieve fron server Raises: Exception: REST Api Call failed Returns: [Response.json()]: Answer from server """ if self.SECRET_SERVER_IS_DUMMY: return { "id": secretId, "name": "DUMMY Secret", "items": [ { "itemId": 18582, "itemValue": "https://example.com/net-automation/inventory.git", "slug": "url", }, { "itemId": 18583, "itemValue": self.SECRET_SERVER_TEST_DUMMY_RESULT["username"], "slug": "username", }, { "itemId": 18584, "itemValue": self.SECRET_SERVER_TEST_DUMMY_RESULT["password"], "slug": "password", }, ], } if not self._isconnected: self.getAuthToken() headers = { "Authorization": f"Bearer {self.token}", "content-type": "application/json", } srv_response = requests.get( self.SECRET_SERVER_API + f"/secrets/{secretId}", headers=headers, verify=self.SECRET_SERVER_SSL_VERIFY, ) if srv_response.status_code not in (200, 304): self._isconnected = False raise Exception(f"Error retrieving Secret. {srv_response.status_code} {srv_response}") self._response = srv_response.json() return self._response def getFieldItemWithSlug(self, response, slugs: Optional[List[str]] = None) -> Dict[str, Any]: """Return the field values from the fields selected in list[slugs] Args: response (Response.json()): response from secretserver slugs ([str], optional): Slugs to extract. When None, the default is used. Defaults to None. Returns: [dict]: Fieldname and Value """ result = {} if slugs is None: slugs = self.SECRET_SERVER_DEFAULT_SLUGS elif isinstance(slugs, str): slugs = json.loads(slugs) if "id" in slugs: # type: ignore result = {"id": response["id"]} if "name" in slugs: # type: ignore result.update({"name": response.name}) for field in response["items"]: if field["slug"] in slugs: result.update({field["slug"]: field["itemValue"]}) return result def searchSecretResponse(self, text, slugs: Optional[List[str]] = None): """Search the secret name and return Args: text ([type]): [description] slugs ([type], optional): [description]. Defaults to None. Raises: Exception: Error retrieving Secret. Returns: [dict]: Extracted Secret field-names and values """ if not slugs: slugs = self.SECRET_SERVER_DEFAULT_SLUGS if isinstance(slugs, str): slugs = json.loads(slugs) if not self._isconnected: self.getAuthToken() headers = { "Authorization": f"Bearer {self.token}", "content-type": "application/json", "filter.searchField": text, } if self.SECRET_SERVER_IS_DUMMY: with Path(__file__).parent.joinpath("tests","data","get_secret_response.json").open("r") as stream: srv_response_json = json.load(stream) else: srv_response = requests.get( self.SECRET_SERVER_API + "/secrets/", headers=headers, verify=self.SECRET_SERVER_SSL_VERIFY, ) if srv_response.status_code not in (200, 304): self._isconnected = False raise Exception(f"Error retrieving Secret. {srv_response.status_code} {srv_response}") srv_response_json = srv_response.json() found = list(filter(lambda x: text in x["name"], srv_response_json["records"])) if found: secret_id = str(found[0]["id"]) return self.getSecret(secret_id) return srv_response_json() def searchSecret(self, name_or_id, slugs: Optional[List[str]] = None): """Search a secret by name or id Args: name_or_id (str): Secret Name or ID to search fo Returns: dict: Field names and values """ try: secid = int(name_or_id) resp = self.getSecret(str(secid)) except ValueError: resp = self.searchSecretResponse(name_or_id) return self.getFieldItemWithSlug(resp, slugs=slugs) ```
{ "source": "jifranco/astr-119-hw-2", "score": 3 }
#### File: jifranco/astr-119-hw-2/functions.py ```python import numpy as np import sys def expo(x): return np.exp(x) def show_expo(n): for i in range(n): print(expo(float(i))) def main(): n=10 if(len(sys.argv)>1): n = int(sys.argv[1]) show_expo(n) if __name__ == "__main__": main() ```
{ "source": "JifuZhao/Lending-Club-Loan-Analysis", "score": 3 }
#### File: JifuZhao/Lending-Club-Loan-Analysis/utils.py ```python import warnings import numpy as np import pandas as pd import seaborn as sns from scipy import stats import matplotlib.pyplot as plt import plotly.figure_factory as ff import plotly.graph_objs as go from plotly import tools warnings.simplefilter('ignore') def plot_numerical(data, feature, figsize=(16, 5)): """ helper function for visualization using Seaborn """ data = data[~data[feature].isnull()] grouped = data[[feature, 'target']].groupby(feature) mean = grouped.mean().reset_index() hist_kws={'histtype': 'bar', 'edgecolor':'black', 'alpha': 0.2} warnings.filterwarnings('ignore') fig, ax = plt.subplots(nrows=1, ncols=2, figsize=figsize) sns.distplot(data[data['target'] == 0][feature], label='Target: 0', ax=ax[0], hist_kws=hist_kws) sns.distplot(data[data['target'] == 1][feature], label='Target: 1', ax=ax[0], hist_kws=hist_kws) ax[0].legend() ax[1].plot(mean[feature], mean['target'], '.:', alpha=0.5) ax[1].set_xlabel(feature) ax[1].set_ylabel('Mean') ax[1].grid(True) plt.tight_layout() return fig, ax def discrete_plot(data, feature, width=800, height=400): """ function to plot the discrete variable with Plotly """ # make subplots titles = ('Distribution Plot of ' + feature.capitalize(), 'Default Rate vs. '+ feature.capitalize()) fig = tools.make_subplots(rows=1, cols=2, print_grid=False, subplot_titles=titles) # fig 1: count distribution for each feature grouped = data.groupby('target')[feature] values = grouped.apply(lambda x: x.value_counts(normalize=True)).unstack() trace0 = go.Bar(x=values.columns, y=values.loc[0], name='Status 0') trace1 = go.Bar(x=values.columns, y=values.loc[1], name='Status 1') fig.append_trace(trace0, 1, 1) fig.append_trace(trace1, 1, 1) # fig 2: default rate bar plot for each feature names = list(values.columns) means = data.groupby(feature)['target'].mean() stds = data.groupby(feature)['target'].std() for name, mean, std in zip(names, means[names], stds[names]): low, high = stats.norm.interval(0.05, loc=mean, scale=std) er = mean - low trace = go.Bar(x=[name], y=[mean], error_y=dict(array=[er], visible=True), name=name, xaxis='x2') fig.append_trace(trace, 1, 2) # layout setting legend = dict(orientation='h', xanchor='auto', y=-0.2) margin=go.layout.Margin(l=50, r=50, b=50, t=40, pad=4) fig['layout'].update(xaxis=dict(domain=[0, 0.47]), xaxis2=dict(domain=[0.53, 1]), yaxis2=dict(anchor='x2'), width=width, height=height, margin=margin, legend=legend) fig['layout']['xaxis1'].update(title=feature.capitalize()) fig['layout']['yaxis1'].update(title='Probability Density') fig['layout']['xaxis2'].update(title=feature.capitalize()) fig['layout']['yaxis2'].update(title='Default Rate') return fig def numerical_plot(data, feature, hist_bins=40, scatter_bins=100, log=False, w=1000, h=450): """ function to plot the numerical variable with Plotly """ # transform into log scale if log is True: data = data.copy() tail = ' (log)' if np.min(data[feature]) == 0: data[feature] = np.log(data[feature] + 1) data[feature] = np.log(data[feature] + 1) else: tail = '' # make subplots titles = ('Histogram of ' + feature.capitalize() + tail, 'Default Rate vs. ' + feature.capitalize() + tail) fig = tools.make_subplots(rows=1, cols=2, print_grid=False, subplot_titles=titles) # fig 1: histogram for different loan status x0 = data[data['target']==0][feature] x1 = data[data['target']==1][feature] # find the minimum and maximum values start = min(x0.min(), x1.min()) end = max(x0.max(), x1.max()) n_unique = len(data[feature].unique()) if n_unique <= min(end - start + 1, hist_bins): bin_size = 1 else: bin_size = (end - start) / hist_bins # Group data together hist_data = [x0, x1] group_labels = ['Status 0', 'Status 1'] # Create distplot fig1 = ff.create_distplot(hist_data=hist_data, group_labels=group_labels, bin_size=bin_size, show_rug=False) displot = fig1['data'] # add histgram into the final figure fig.append_trace(displot[0], 1, 1) fig.append_trace(displot[1], 1, 1) fig.append_trace(displot[2], 1, 1) fig.append_trace(displot[3], 1, 1) # fig 2: scatter plot for each feature cut = pd.cut(data[feature], bins=scatter_bins) group_median = data[[feature, 'target']].groupby(cut).median() index = group_median[~group_median[feature].isnull()][feature].values grouped_mean = data[[feature, 'target']].groupby(cut).mean().fillna(method='pad') mean = grouped_mean[~group_median[feature].isnull()]['target'].values grouped_sem = data[[feature, 'target']].groupby(cut).sem().fillna(method='pad') sem = grouped_sem[~group_median[feature].isnull()]['target'].values # make figures lower = go.Scatter(name='Lower Bound', x=index, y=mean - sem, mode='lines', marker=dict(color="#444"), line=dict(width=0), showlegend=False) trace = go.Scatter(name='Default Rate', x=index, y=mean, mode='lines', line=dict(color='rgb(31, 119, 180)', width=1), fillcolor='rgba(68, 68, 68, 0.3)', fill='tonexty') upper = go.Scatter(name='Upper Bound', x=index, y=mean + sem, mode='lines', marker=dict(color="#444"), line=dict(width=0), fill='tonexty', fillcolor='rgba(68, 68, 68, 0.3)', showlegend=False) fig.append_trace(lower, 1, 2) fig.append_trace(trace, 1, 2) fig.append_trace(upper, 1, 2) # layout setting legend = dict(orientation='h', xanchor='auto', y=-0.2) margin=go.layout.Margin(l=50, r=50, b=50, t=40, pad=4) fig['layout'].update(xaxis=dict(domain=[0, 0.47]), xaxis2=dict(domain=[0.53, 1]), yaxis2=dict(anchor='x2'), width=w, height=h, margin=margin, legend=legend) fig['layout']['xaxis1'].update(title=feature.capitalize() + tail) fig['layout']['yaxis1'].update(title='Probability Density') fig['layout']['xaxis2'].update(title=feature.capitalize() + tail) fig['layout']['yaxis2'].update(title='Default Rate') return fig # def numerical_plot(data, feature, width=800, height=400, bins=50): # """ function to plot the numerical variable """ # # make subplots # titles = ('Histogram Plot', 'Default Rate vs. ' + feature.capitalize()) # fig = tools.make_subplots(rows=1, cols=2, print_grid=False, subplot_titles=titles) # # # fig 1: histogram for different loan status # x0 = data[data['target']==0][feature] # x1 = data[data['target']==1][feature] # # # find the minimum and maximum values # start = min(x0.min(), x1.min()) # end = max(x0.max(), x1.max()) # n_unique = len(data[feature].unique()) # if n_unique <= min(end - start + 1, bins): # bin_size = 1 # else: # bin_size = (end - start) / bins # # # Group data together # hist_data = [x0, x1] # group_labels = ['Status 0', 'Status 1'] # # # Create distplot # fig1 = ff.create_distplot(hist_data=hist_data, group_labels=group_labels, # bin_size=bin_size, show_rug=False) # displot = fig1['data'] # # # add histgram into the final figure # fig.append_trace(displot[0], 1, 1) # fig.append_trace(displot[1], 1, 1) # fig.append_trace(displot[2], 1, 1) # fig.append_trace(displot[3], 1, 1) # # # fig 2: scatter plot for each feature # mean = train.groupby(feature)['target'].mean() # sem = train.groupby(feature)['target'].sem().fillna(value=0) # index = mean.index # # lower = go.Scatter(x=index, y=mean[index]-sem[index], mode='lines', # marker=dict(color="#444"), line=dict(width=0), # showlegend=False) # # trace = go.Scatter(name='Default Rate', x=index, y=mean[index], # line=dict(color='rgb(31, 119, 180)', width=1), # fillcolor='rgba(68, 68, 68, 0.3)', mode='lines',) # # upper = go.Scatter(x=index, y=mean[index]+sem[index], mode='lines', # marker=dict(color="#444"), line=dict(width=0), # fill='tonexty', fillcolor='rgba(68, 68, 68, 0.3)', # showlegend=False) # # fig.append_trace(lower, 1, 2) # fig.append_trace(upper, 1, 2) # fig.append_trace(trace, 1, 2) # # # layout setting # legend = dict(orientation='h', xanchor='auto', y=-0.2) # margin=go.layout.Margin(l=50, r=50, b=50, t=40, pad=4) # fig['layout'].update(xaxis=dict(domain=[0, 0.47]), xaxis2=dict(domain=[0.53, 1]), # yaxis2=dict(anchor='x2'), width=width, height=height, # margin=margin, legend=legend) # fig['layout']['xaxis1'].update(title=feature.capitalize()) # fig['layout']['yaxis1'].update(title='Probability Density') # fig['layout']['xaxis2'].update(title=feature.capitalize()) # fig['layout']['yaxis2'].update(title='Default Rate') # # return fig # # # def categorical_plot(data, feature, width=800, height=400): # """ function to plot the categorical variable """ # # make subplots # titles = ('Distribution Plot', 'Default Rate Distribution') # fig = tools.make_subplots(rows=1, cols=2, print_grid=False, subplot_titles=titles) # # # fig 1: count distribution for each feature # grouped = data.groupby('target')[feature] # values = grouped.apply(lambda x: x.value_counts(normalize=True)).unstack() # names = list(values.columns) # x = ['status 0', 'status 1'] # for name in names: # trace = go.Bar(x=x, y=list(values[name]), name=name) # fig.append_trace(trace, 1, 1) # # # fig 2: default rate bar plot for each feature # means = data.groupby(feature)['target'].mean() # stds = data.groupby(feature)['target'].std() # for name, mean, std in zip(names, means[names], stds[names]): # low, high = stats.norm.interval(0.05, loc=mean, scale=std) # er = mean - low # trace = go.Bar(x=[name], y=[mean], error_y=dict(array=[er], visible=True), # name=name, xaxis='x2') # fig.append_trace(trace, 1, 2) # # # layout setting # legend = dict(orientation='h', xanchor='auto', y=-0.2) # margin=go.layout.Margin(l=50, r=50, b=50, t=40, pad=4) # fig['layout'].update(xaxis=dict(domain=[0, 0.47]), xaxis2=dict(domain=[0.53, 1]), # yaxis2=dict(anchor='x2'), width=width, height=height, # margin=margin, legend=legend) # fig['layout']['xaxis1'].update(title='Loan Status') # fig['layout']['yaxis1'].update(title='Probability Density') # fig['layout']['xaxis2'].update(title=feature.capitalize()) # fig['layout']['yaxis2'].update(title='Default Rate') # # return fig ```
{ "source": "Jiganesh/High-On-DSA", "score": 3 }
#### File: High-On-DSA/arrays/shift2DGrid.py ```python class Solution: # [All Three Accepted] # Runtime: 160 ms, faster than 96.38% of Python3 online submissions for Shift 2D Grid. # Memory Usage: 14.4 MB, less than 35.10% of Python3 online submissions for Shift 2D Grid. # TC : O(M*N) # SC : O(M*N) def shiftGrid(self, grid, k: int) : result = [] for i in grid: for j in i: result.append(j) k=k%(len(grid)*len(grid[0])) result = result [-k:]+ result [:-k] pointer=0 for i in range (len(grid)): for j in range(len(grid[i])): grid[i][j]= result[pointer] pointer+=1 return grid # TC : O(M*N) # SC : O(M*N) def shiftGrid(self, grid, k): m, n = len(grid), len(grid[0]) start = m * n - k % (m * n) ans = [] for i in range(start, m * n + start): j = i % (m * n) r, c = j // n, j % n if not (j - start) % n: ans.append([]) ans[-1].append(grid[r][c]) return ans # TC : O(M*N) # SC : O(1) def shiftGrid(self, grid,k) : row = len(grid) column = len(grid[0]) totalLength = (row*column)-1 # Pointer on Last Element k%=(row*column) def reverse (start , end): while start < end : startrow, startcol = (start//column)%row , start%column endrow, endcol = (end//column)%row, end%column grid[startrow][startcol] , grid[endrow][endcol] = grid[endrow][endcol], grid[startrow][startcol] start+=1 end -=1 return grid reverse(0, totalLength-k) reverse(totalLength-k+1 , totalLength) reverse(0, totalLength) return grid ``` #### File: High-On-DSA/design/designAnATMMachine.py ```python class ATM: # Runtime: 689 ms, faster than 83.33% of Python3 online submissions for Design an ATM Machine. # Memory Usage: 17.5 MB, less than 100.00% of Python3 online submissions for Design an ATM Machine. def __init__(self): self.denominations= [20, 50, 100,200,500] self.noOfDenominations= [0, 0, 0, 0, 0] def deposit(self, banknotesCount): for i in range (len(banknotesCount)): self.noOfDenominations[i]+= banknotesCount[i] def withdraw(self, amount: int) : withdrawn =[0, 0,0,0,0] endPointer = 4 initialState = self.noOfDenominations while endPointer>=0: if self.noOfDenominations[endPointer]: maxNotesAvailabe = min(self.noOfDenominations[endPointer], amount//(self.denominations[endPointer])) amount-= maxNotesAvailabe * self.denominations[endPointer] withdrawn[endPointer]= maxNotesAvailabe endPointer-=1 if amount ==0: for i in range (len(withdrawn)): self.noOfDenominations[i]-=withdrawn[i] return withdrawn else: self.noOfDenominations = initialState return [-1] ``` #### File: High-On-DSA/design/encodeAndDecodeTinyURL.py ```python class Codec: # Runtime: 36 ms, faster than 84.95% of Python3 online submissions for Encode and Decode TinyURL. # Memory Usage: 13.9 MB, less than 69.91% of Python3 online submissions for Encode and Decode TinyURL. def encode(self, longUrl: str) -> str: """Encodes a URL to a shortened URL. """ return longUrl def decode(self, shortUrl: str) -> str: """Decodes a shortened URL to its original URL. """ return shortUrl # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.decode(codec.encode(url)) ``` #### File: High-On-DSA/design/implementStackUsingQueues.py ```python from collections import * # https://leetcode.com/problems/implement-stack-using-queues/ class MyStack: # Runtime: 44 ms, faster than 41.12% of Python3 online submissions for Implement Stack using Queues. # Memory Usage: 13.9 MB, less than 76.44% of Python3 online submissions for Implement Stack using Queues. def __init__(self): self.q = deque () def push(self, x: int) -> None: self.q.append(x) def pop(self) -> int: return self.q.pop() def top(self) -> int: return self.q[-1] def empty(self) -> bool: return len(self.q)==0 # Your MyStack object will be instantiated and called as such: # obj = MyStack() # obj.push(x) # param_2 = obj.pop() # param_3 = obj.top() # param_4 = obj.empty() ``` #### File: High-On-DSA/dynamicProgramming/decodeWays.py ```python class Solution(object): # Submitted by Jiganesh # TC : O(N) # SC : O(N) def numDecodings(self, s): """ :type s: str :rtype: int """ dp = { "" : 1 } def helper(s): if s in dp : return dp[s] first, second = 0,0 if 1<=int(s[0])<=9: first = helper(s[1:]) if len(s)>=2 and( s[0]=="1" or( s[0]=="2" and 0<=int(s[1])<=6)): second = helper(s[2:]) dp[s]= first +second return first+second return helper(s) print(Solution().numDecodings("22233")) ``` #### File: High-On-DSA/prefixSum/minimumAverageDifference.py ```python import math import operator from itertools import accumulate class Solution: # Runtime: 1148 ms, faster than 25.00% of Python3 online submissions for Minimum Average Difference. # Memory Usage: 25.3 MB, less than 25.00% of Python3 online submissions for Minimum Average Difference. def minimumAverageDifference(self, nums) -> int: prefixSum = list(accumulate(nums, operator.add)) minindex = [-1, float("inf")] for index , i in enumerate(prefixSum): leftside = i numbersinleftside = index+1 rightside = prefixSum[-1]-i numbersinrightside = len(prefixSum)-numbersinleftside if numbersinleftside < len(prefixSum) else 1 l = math.floor(leftside/numbersinleftside) r = math.floor(rightside/numbersinrightside) if minindex[1] > abs(l-r): minindex = [index, abs(l-r)] return minindex[0] ``` #### File: High-On-DSA/prefixSum/minimumSizeSubarraySum.py ```python class Solution: # TLE Brute Force def minSubArrayLen(self, target, nums) -> int: summation = 0 array =[] for i in nums: summation+=i array.append(summation) minimum =float('inf') for i in range (len(array)): for j in range (i+1,len(array)): if array[j]-array[i] >=target: minimum = min(j-i, minimum) return minimum if minimum != float('inf') else 0 def minSubArrayLen(self, target, nums) -> int: leftPointer = 0 rightPointer = 0 summation = 0 minimumSubarray = float('inf') for i in nums: summation+=i rightPointer+=1 while summation >= target : minimumSubarray = min(rightPointer - leftPointer, minimumSubarray) summation-= nums[leftPointer] leftPointer+=1 return minimumSubarray if minimumSubarray != float('inf') else 0 # Little Efficient that above algorithm as we are using while loop with pointers instead of for loop # Runtime: 87 ms, faster than 71.41% of Python3 online submissions for Minimum Size Subarray Sum. # Memory Usage: 16.8 MB, less than 52.83% of Python3 online submissions for Minimum Size Subarray Sum. def minSubArrayLen(self, target, nums) -> int: leftPointer = 0 rightPointer = 0 summation = 0 minimumSubarray = float('inf') while rightPointer< len(nums): summation+=nums[rightPointer] rightPointer+=1 while summation >= target : minimumSubarray = min(rightPointer - leftPointer, minimumSubarray) summation-= nums[leftPointer] leftPointer+=1 return minimumSubarray if minimumSubarray != float('inf') else 0 ``` #### File: High-On-DSA/prefixSum/runningSumOf1DArray.py ```python from itertools import accumulate import operator class Solution: # Runtime: 40 ms, faster than 89.27% of Python3 online submissions for Running Sum of 1d Array. # Memory Usage: 14.2 MB, less than 29.22% of Python3 online submissions for Running Sum of 1d Array. def runningSum(self, nums) : return list(accumulate(nums, operator.add)) ``` #### File: High-On-DSA/trees/convertBSTToGreaterTree.py ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: # Iterative Approach # Runtime: 69 ms, faster than 99.27% of Python3 online submissions for Convert BST to Greater Tree. # Memory Usage: 16.7 MB, less than 53.49% of Python3 online submissions for Convert BST to Greater Tree. def convertBST(self, root): lst = [] curr = root sum = 0 while lst or curr: while curr: lst.append(curr) curr = curr.right curr = lst.pop() sum += curr.val curr.val = sum curr = curr.left return root # Recursive Approach # Runtime: 82 ms, faster than 89.47% of Python3 online submissions for Convert BST to Greater Tree. # Memory Usage: 16.7 MB, less than 77.23% of Python3 online submissions for Convert BST to Greater Tree. def convertBST(self, root): def helper(root, array): if root: helper(root.right, array) root.val += array[0] array[0] = root.val helper(root.left, array) return root array = [0] return helper(root, array) # Recursive Another Approach sum=0 def convertBST(self, root): if (root==None): return None self.convertBST(root.right) #first get to the rightmost element self.sum+=root.val #then add the current nodes value to sum root.val=self.sum #then update current node with sum self.convertBST(root.left) #travese to check left nodes return root ```
{ "source": "jigangc/rrunner", "score": 2 }
#### File: rrunner/common/handle_api_auto.py ```python import requests import os import openpyxl from rrunner.common.handle_config import config from rrunner.common.handle_path import DATA_DIR, CASE_DIR def getByPath(path, obj): paths = path.split(".") for path in paths: obj = obj.get(path, None) if obj == None: break return obj def dic2String(obj): rs = ['{'] for kv in obj.items(): rs.append('\"' + kv[0] + "\":\"" + str(kv[1]) + '\"') rs.append(',') if len(rs) > 2: rs.pop() rs.append('}') return ''.join(rs) def parseBody(parItem, body, raw): if parItem.get('schema', None) != None: refPath = getByPath('schema.$ref', parItem) if refPath == None: # 数组 refPath = getByPath('schema.items.$ref', parItem) if refPath != None: refPath = refPath.replace('#/definitions/', '') refData = getByPath('definitions.' + refPath + '.properties', raw) if refData != None: for ri in refData.items(): body[ri[0]] = (0 if ri[1].get('type', None) == 'integer' else "") elif parItem.get('description', None) != None: body['_parms'] = parItem['description'] else: body[parItem['name']] = '' else: body[parItem['name']] = (0 if parItem.get('type', None) == 'integer' else "") def writeRow(func, ws, i): i = str(i) ws['A' + i] = func['case_id'] ws['B' + i] = func['title'] ws['C' + i] = func['interface'] ws['D' + i] = func['content-type'] ws['E' + i] = func['method'] ws['F' + i] = func['url'] ws['G' + i] = func['data'] ws['H' + i] = func['expected'] ws['I' + i] = func['check_sql'] ws['J' + i] = func['result'] ws['K' + i] = func['tag'] def writeCaseClass(cName): caseName = 'test_' + cName + '_controller.py' dataName = 'test_' + cName + '_controller.xlsx' isExist = os.path.exists(os.path.join(CASE_DIR + "\InnerApi", caseName)) if isExist: return f = open(os.path.join(CASE_DIR + "\InnerApi", caseName), 'w') f.write("import os\n") f.write("import allure\n") f.write("import pytest\n") f.write("from common.handle_excel import Excel\n") f.write("from common.handle_path import DATA_DIR\n") f.write("from common.handle_config import config\n") f.write("from common.requtest_assert import RequestsAssert\n") f.write("class Test" + cName + ":\n") f.write(' excel = Excel(os.path.join(DATA_DIR, "{}"), "Sheet")\n'.format(dataName)) f.write(" test_data = excel.read_excel()\n") f.write(' module = config.get("test_data", "module")\n') f.write(' if module == "0":\n') f.write(' for i in range(0, len(test_data) - 1):\n') f.write(' if None == test_data[i]["tag"]:\n') f.write(' del (test_data[i])\n') f.write(' @allure.feature("{}")\n'.format(cName)) f.write(" @pytest.mark.parametrize('item', test_data)\n") f.write(' def test_' + cName + '(self, item, get_token):\n') f.write(" headers = get_token\n") f.write(" res = RequestsAssert.apiRequest(item, headers)\n") f.write(" write = self.excel.write_excel\n") f.write(" RequestsAssert.apiAssert(res, item, write)\n") def writeCase(cName, funcs): caseName = 'test_' + cName + '_controller.xlsx' isExist = os.path.exists(os.path.join(DATA_DIR, caseName)) if isExist: return wb = openpyxl.Workbook() ws = wb.active i = 1 for func in funcs: writeRow(func, ws, i) i += 1 wb.save(os.path.join(DATA_DIR, caseName)) def main(catName, rules): rs = requests.get(config.get("env", "swagger_url")) raw = rs.json() paths = getByPath("paths", raw) funcs = [] lastCName = None i = 1 keys = paths.keys() # keys.sort() keys = sorted(keys) for pKey in keys: path = pKey value = paths[pKey] cName = path.split('/')[1] if catName != '*' and cName != catName: continue if lastCName != cName and lastCName != None: writeCase(lastCName, funcs) writeCaseClass(lastCName) i = 1 funcs = [] lastCName = cName method = 'post' if value.get('post', None) != None else 'get' value = value[method] params = getByPath("parameters", value) desc = getByPath("summary", value) body = {} query = {} data = {} for par in params: if par['in'] == 'body': parseBody(par, body, raw) elif par['in'] == 'query': query[par['name']] = '' data = {'query': query, 'body': body} # if len(body) > 0 and len(query) > 0: # data = {query: query, body: body} # else: # data = body if len(body) > 0 else query if i == 1: funcs.append({ 'case_id': 'case_id', 'title': 'title', 'content-type': 'content-type', 'interface': 'interface', 'url': 'url', 'method': 'method', 'data': 'data', 'expected': 'expected', 'check_sql': 'check_sql', 'result': 'result', 'tag': 'tag' }) item = { 'case_id': str(i), 'title': desc, 'content-type': 'union', 'interface': path, 'url': "/smartfactory" + path, 'method': method, 'data': '', 'expected': '{\"innerCode\":"200"}', 'check_sql': '', 'result': '', 'tag': '' } if len(body) > 0: item['content-type'] = 'data' if len(body) == 1 and body.get('_parms', None) != None: item['data'] = body['_parms'] else: item['data'] = dic2String(body) else: item['content-type'] = 'params' item['data'] = dic2String(query) if method == "post": item['content-type'] = 'json' else: item['content-type'] = 'params' funcs.append(item) i += 1 writeCase(lastCName, funcs) writeCaseClass(lastCName) def parseArgs(): args = { 'int': { 'min': 0, 'max': 100 }, 'string': { 'min': 0, 'max': 100, 'whiteSpace': True, 'required': True } } return args main('*', parseArgs()) ```
{ "source": "jigangkim/domain_randomization", "score": 2 }
#### File: dr/ppo/train.py ```python import numpy as np import torch import torch.nn.functional as F from dr.ppo.utils import Dataset, change_lr def update_params(m_b, pol, val, optims, clip_param): keys = ('obs', 'acs', 'vtargs', 'atargs', 'pold') obs, acs, vtargs, atargs, pold = (torch.from_numpy(m_b[i]).float() for i in keys) vtargs = vtargs.view(-1, 1) atargs = atargs.view(-1, 1) # Calculate policy surrogate objective pnew = pol.prob(obs, acs) ratio = pnew / pold surr1 = ratio * atargs surr2 = torch.clamp(ratio, 1.0 - clip_param, 1.0 + clip_param) * atargs pol_surr, _ = torch.min(torch.cat((surr1, surr2), dim=1), dim=1) pol_surr = - torch.sum(pol_surr) / obs.size()[0] # Calculate value function loss val_loss = F.mse_loss(val(obs), vtargs) optims['pol_optim'].zero_grad() optims['val_optim'].zero_grad() total_loss = pol_surr + val_loss total_loss.backward(retain_graph=True) optims['pol_optim'].step() optims['val_optim'].step() @torch.no_grad() def evaluate_policy(pol, eval_envs): num_envs = len(eval_envs) for i, env in enumerate(eval_envs): env.seed(i) done = np.array([False] * num_envs) avg_reward = np.array([0.] * num_envs, dtype=np.float32) obs = np.stack([env.reset() for env in eval_envs]) while not all(done): t_obs = torch.from_numpy(obs).float() _, mean_acs = pol(t_obs) for i, (env, action) in enumerate(zip(eval_envs, mean_acs)): if not done[i]: obs[i], r, d, _ = env.step(action) avg_reward[i] += r done[i] = d avg_reward = np.mean(avg_reward) return avg_reward def add_vtarg_and_adv(seg, lam, gamma): """ Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) """ news = np.append(seg["news"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpreds = np.append(seg["vpreds"], seg["nextvpred"]) T = len(seg["rews"]) seg["advs"] = gaelam = np.empty(T, 'float32') rews = seg["rews"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1 - news[t + 1] delta = rews[t] + gamma * vpreds[t + 1] * nonterminal - vpreds[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamrets"] = seg["advs"] + seg["vpreds"] def one_train_iter(pol, val, optims, iter_i, eps_rets_buff, eps_rets_mean_buff, seg_gen, state_running_m_std, train_params, eval_envs, eval_perfs, eval_freq=5): # Extract params ts_per_batch = train_params['ts_per_batch'] num_timesteps = train_params['num_timesteps'] optim_stepsize = train_params['optim_stepsize'] lam = train_params['lam'] gamma = train_params['gamma'] optim_epoch = train_params['optim_epoch'] optim_batch_size = train_params['optim_batch_size'] clip_param = train_params['clip_param'] # Anneal the learning rate num_ts_so_far = iter_i * ts_per_batch lr_mult = max(1.0 - float(num_ts_so_far) / num_timesteps, 0) change_lr(optims['pol_optim'], optim_stepsize * lr_mult) change_lr(optims['val_optim'], optim_stepsize * lr_mult) # Obtain training batch seg = seg_gen.__next__() # Update running mean and std of states state_running_m_std.update(seg['obs']) eps_rets_buff.extend(seg['ep_rets']) eps_rets_mean_buff.append((num_ts_so_far, np.mean(eps_rets_buff))) add_vtarg_and_adv(seg, lam, gamma) seg['advs'] = (seg['advs'] - seg['advs'].mean()) / seg['advs'].std() pold = pol.prob(torch.from_numpy(seg['obs']).float(), torch.from_numpy(seg['acs']).float()).data.numpy() batch = Dataset(dict(obs=seg['obs'], acs=seg['acs'], atargs=seg['advs'], vtargs=seg['tdlamrets'], pold=pold)) for epoch_i in range(optim_epoch): for m_b in batch.iterate_once(optim_batch_size): update_params(m_b, pol, val, optims, clip_param) if iter_i % eval_freq == 0: eval_pref = evaluate_policy(pol, eval_envs) eval_perfs.append(eval_pref) ```
{ "source": "jigangkim/nvidia-gpu-scheduler", "score": 2 }
#### File: nvidia-gpu-scheduler/nvidia_gpu_scheduler/utils.py ```python import datetime import errno import logging import numpy as np import os import pickle import pwd import py3nvml import random import string import sys import time from tqdm import tqdm import traceback import warnings # https://stackoverflow.com/questions/6728236/exception-thrown-in-multiprocessing-pool-not-detected class CatchExceptions(object): ''' Wrapper for callable enabling child process exception/traceback catching ''' def __init__(self, callable): self.__callable = callable def __call__(self, *args, **kwargs): try: result = self.__callable(*args, **kwargs) except Exception as e: print(traceback.format_exc()) raise return result class ROSRate(object): ''' http://docs.ros.org/diamondback/api/rostime/html/rate_8cpp_source.html ''' def __init__(self, frequency): assert frequency > 0, 'Frequency must be greated than zero!' self._freq = frequency self._start = time.time() self._actual_cycle_time = 1/self._freq def reset(self): self._start = time.time() def sleep(self): expected_end = self._start + 1/self._freq actual_end = time.time() if actual_end < self._start: # detect backward jumps in time expected_end = actual_end + 1/self._freq # calculate sleep time sleep_duration = expected_end - actual_end # set the actual amount of time the loop took in case the user wants to know self._actual_cycle_time = actual_end - self._start # reset start time self._start = expected_end if sleep_duration <= 0: # if we've jumped forward in time, or the loop has taken more than a full extra cycle, reset our cycle if actual_end > expected_end + 1/self._freq: self._start = actual_end return True return time.sleep(sleep_duration) def mute_terminal(): sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') def prompt_yes_or_no(query): while True: response = input(query + ' [Y/n] ').lower() if response in {'y', 'yes'}: return True elif response in {'n', 'no'}: return False else: print('Invalid response!\n') def log_tqdm(tqdm_obj, config_fname, remove=False): if remove: try: os.remove(os.path.join('/tmp', config_fname + '.tqdm')) except OSError: pass else: d = tqdm_obj.format_dict tqdm_stat = () tqdm_stat += (os.environ.get('CUDA_VISIBLE_DEVICES'),) tqdm_stat += (os.getpid(),) tqdm_stat += (int(d['n']/d['total']*100),) tqdm_stat += (d['n'],) tqdm_stat += (d['total'],) tqdm_stat += (str(datetime.timedelta(seconds=int(d['elapsed']))),) try: tqdm_stat += (str(datetime.timedelta(seconds=int((d['total'] - d['n'])/d['rate']))),) except: tqdm_stat += ('?',) try: tqdm_stat += (round(d['rate'],2),) except: tqdm_stat += ('?',) try: pickle.dump(tqdm_stat, open(os.path.join('/tmp', config_fname + '.tqdm'), 'wb') ) except OSError as e: if e.errno == errno.ENOENT: print('log_tqdm: No such file of directory') elif e.errno == errno.ENOSPC: print('log_tqdm: No space left on device') def get_random_string(length): letters = string.ascii_letters result_str = ''.join(random.choice(letters) for i in range(length)) return result_str def get_num_procs(allocated_gpus=[], username='all users', version='v1'): """ Gets the number of processes running on each gpu Returns ------- num_procs : list(int) Number of processes running on each gpu Note ---- If function can't query the driver will return an empty list rather than raise an Exception. Note ---- If function can't get the info from the gpu will return -1 in that gpu's place """ if username != 'all users': pwd.getpwnam(username) # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly.""" warnings.warn(str_, RuntimeWarning) logger.warn(str_) return [], [] num_gpus = py3nvml.py3nvml.nvmlDeviceGetCount() if len(allocated_gpus) == 0: allocated_gpus = list(range(num_gpus)) else: assert num_gpus > max(allocated_gpus) gpu_procs = [-1]*len(allocated_gpus) gpu_procs_user = [-1]*len(allocated_gpus) gpu_procs_pid = [[]]*len(allocated_gpus) for i, gpuid in enumerate(allocated_gpus): try: h = py3nvml.py3nvml.nvmlDeviceGetHandleByIndex(gpuid) except: continue procs = py3nvml.utils.try_get_info(py3nvml.py3nvml.nvmlDeviceGetComputeRunningProcesses, h, ['something']) gpu_procs[i] = len(procs) procs_user = [] procs_pid = [] for proc in procs: proc_uid = os.stat('/proc/%d' % (proc.pid)).st_uid if pwd.getpwuid(proc_uid).pw_name == username or username == 'all users': procs_user.append(proc) procs_pid.append(proc.pid) gpu_procs_user[i] = len(procs_user) gpu_procs_pid[i] = procs_pid py3nvml.py3nvml.nvmlShutdown() if version == 'v1': return gpu_procs, gpu_procs_user elif version == 'v2': return gpu_procs, gpu_procs_user, gpu_procs_pid def get_gpu_utilization(allocated_gpus=[]): ''' Gets the utilization rates of each gpu ''' # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly.""" warnings.warn(str_, RuntimeWarning) logger.warn(str_) return [] num_gpus = py3nvml.py3nvml.nvmlDeviceGetCount() if len(allocated_gpus) == 0: allocated_gpus = list(range(num_gpus)) else: assert num_gpus > max(allocated_gpus) gpu_rates = [-1]*len(allocated_gpus) for i, gpuid in enumerate(allocated_gpus): try: h = py3nvml.py3nvml.nvmlDeviceGetHandleByIndex(gpuid) except: continue rate = py3nvml.utils.try_get_info(py3nvml.py3nvml.nvmlDeviceGetUtilizationRates, h, ['something']) gpu_rates[i] = rate.gpu py3nvml.py3nvml.nvmlShutdown() return gpu_rates def get_gpumem_utilization(allocated_gpus=[], username='all users', version='v1'): ''' Gets the memory usage of each gpu ''' if username != 'all users': pwd.getpwnam(username) # Try connect with NVIDIA drivers logger = logging.getLogger(__name__) try: py3nvml.py3nvml.nvmlInit() except: str_ = """Couldn't connect to nvml drivers. Check they are installed correctly.""" warnings.warn(str_, RuntimeWarning) logger.warn(str_) return [] num_gpus = py3nvml.py3nvml.nvmlDeviceGetCount() if len(allocated_gpus) == 0: allocated_gpus = list(range(num_gpus)) else: assert num_gpus > max(allocated_gpus) mem_rates = [-1]*len(allocated_gpus) mem_rates_user = [-1]*len(allocated_gpus) mem_rates_pid = [{}]*len(allocated_gpus) for i, gpuid in enumerate(allocated_gpus): try: h = py3nvml.py3nvml.nvmlDeviceGetHandleByIndex(gpuid) except: continue info = py3nvml.utils.try_get_info(py3nvml.py3nvml.nvmlDeviceGetMemoryInfo, h, ['something']) procs = py3nvml.utils.try_get_info(py3nvml.py3nvml.nvmlDeviceGetComputeRunningProcesses, h, ['something']) mem_rates[i] = int(np.ceil(100*info.used/info.total)) mem_user = [] mem_pid = {} for proc in procs: proc_uid = os.stat('/proc/%d' % (proc.pid)).st_uid if pwd.getpwuid(proc_uid).pw_name == username or username == 'all users': mem_user.append(proc.usedGpuMemory) mem_pid[proc.pid] = int(np.ceil(100*proc.usedGpuMemory/info.total)) mem_rates_user[i] = int(np.ceil(100*sum(mem_user)/info.total)) mem_rates_pid[i] = mem_pid py3nvml.py3nvml.nvmlShutdown() if version == 'v1': return mem_rates elif version == 'v2': return mem_rates, mem_rates_user, mem_rates_pid if __name__ == "__main__": stime = time.time() print(get_num_procs(version='v2', username='jgkim-larr')) print(get_gpu_utilization()) print(get_gpumem_utilization(version='v2', username='jgkim-larr')) ftime = time.time() print(ftime - stime, 'seconds') ``` #### File: nvidia-gpu-scheduler/nvidia_gpu_scheduler/worker.py ```python from abc import ABC, abstractmethod from collections import OrderedDict import copy import datetime import dateutil.tz import getpass import IPython import json from math import ceil, floor import numpy as np import multiprocessing # multiprocessing.set_start_method('spawn', True) # hacky workaround for ptvsd (python debugger for vscode) from multiprocessing.managers import SyncManager import os import pickle import py3nvml import queue import signal import time from tqdm import tqdm from types import SimpleNamespace from nvidia_gpu_scheduler.utils import get_num_procs, get_gpu_utilization, get_gpumem_utilization from nvidia_gpu_scheduler.utils import prompt_yes_or_no, mute_terminal as mute, ROSRate, get_random_string class NVGPUWorker(SyncManager, ABC): def __init__(self, ip, port, authkey, name=None): # prevent SIGINT signal from affecting the manager signal.signal(signal.SIGINT, self._signal_handling) self.default_handler = signal.getsignal(signal.SIGINT) self.ip = ip self.port = port self.name = 'worker_%s'%(get_random_string(10)) if name is None else name super(NVGPUWorker, self).__init__(address=(self.ip, self.port), authkey=str.encode(authkey)) print('Configured NVGPUWorker') print('Resource limits set to default profile:') self.set_limits() self.rate = ROSRate(1) def connect(self, *args, **kwargs): super(NVGPUWorker, self).connect(*args, **kwargs) print('NVGPUWorker connected to %s:%s'%(self.ip,self.port)) def set_limits( self, available_gpus=[], gpu_utilization_limit=[], gpu_job_limit=[], utilization_margin=0, max_gpu_mem_usage=50, time_between_jobs=0, subprocess_verbose=False, apply_limits=['user', 'worker'][0] ): self.limits = SimpleNamespace() self.limits.available_gpus = available_gpus self.limits.gpu_utilization_limit = gpu_utilization_limit self.limits.gpu_job_limit = gpu_job_limit self.limits.utilization_margin = utilization_margin self.limits.max_gpu_mem_usage = max_gpu_mem_usage self.limits.time_between_jobs = time_between_jobs self.limits.subprocess_verbose = subprocess_verbose self.limits.apply_limits = apply_limits print('worker limits set to %s'%(self.limits)) def update_limits(self, **kwargs): for key, value in kwargs.items(): if hasattr(self.limits, key): setattr(self.limits, key, value) print('worker limits updated to %s'%(self.limits)) def view_limits(self): print('self.limits = %s'%(self.limits)) def run(self): # Access shared queues shared_pending_job_q = self.get_pending_job_q() shared_worker_status_q = self.get_worker_status_q() # Worker state self.worker_resume = True self.worker_terminate = False procs = {} running = OrderedDict() done = OrderedDict() failed = OrderedDict() last_job_time = -float('inf') alpha = np.exp(-3/self.limits.time_between_jobs) total_gpu_utilization_filt = {gpu_id: 0.0 for gpu_id in self.limits.available_gpus} user_gpu_utilization_filt = {gpu_id: 0.0 for gpu_id in self.limits.available_gpus} worker_gpu_utilization_filt = {gpu_id: 0.0 for gpu_id in self.limits.available_gpus} num_pending = shared_pending_job_q.qsize() while num_pending + len(running): curr_user = getpass.getuser() list_of_gpus = self.limits.available_gpus max_utilization = self.limits.gpu_utilization_limit max_jobs_per_gpu = self.limits.gpu_job_limit # 1. update candidate GPU total_compute_procs, user_compute_procs, pid_compute_procs = \ get_num_procs(allocated_gpus=list_of_gpus, username=curr_user, version='v2') worker_compute_procs = copy.deepcopy(user_compute_procs) total_gpu_utilization = get_gpu_utilization(allocated_gpus=list_of_gpus) user_gpu_utilization = [ceil(x/(y+1e-12)*z) for x, y, z in zip(user_compute_procs, total_compute_procs, total_gpu_utilization)] total_gpumem_utilization, user_gpumem_utilization, pid_gpumem_utilization = \ get_gpumem_utilization(allocated_gpus=list_of_gpus, username=curr_user, version='v2') total_gpu_utilization_filt = [(1 - alpha)*x + alpha*X for x, X in zip(total_gpu_utilization, total_gpu_utilization_filt)] user_gpu_utilization_filt = [(1 - alpha)*x + alpha*X for x, X in zip(user_gpu_utilization, user_gpu_utilization_filt)] cand_gpu, cand_gpu_util, cand_gpumem_util = [], [], [] for i, gpuid, in enumerate(list_of_gpus): if gpuid < 0: # CPU mode all_pid_compute_procs = [item for sublist in pid_compute_procs for item in sublist] worker_compute_procs[i] = sum([running[key].pid not in all_pid_compute_procs for key in running]) user_compute_procs[i] = worker_compute_procs[i] else: worker_compute_procs[i] = sum([running[key].pid in pid_compute_procs[i] for key in running]) tot_util_cond = total_gpu_utilization_filt[i] <= (100-self.limits.utilization_margin) tot_memutil_cond = total_gpumem_utilization[i] <= self.limits.max_gpu_mem_usage # (1 - gpu_fraction)*100 user_util_cond = user_gpu_utilization_filt[i] < floor(max_utilization[i]*(100-self.limits.utilization_margin)/100) user_numproc_cond = user_compute_procs[i] < max_jobs_per_gpu[i] or max_jobs_per_gpu[i] == -1 worker_numproc_cond = worker_compute_procs[i] < max_jobs_per_gpu[i] or max_jobs_per_gpu[i] == -1 if self.limits.apply_limits == 'user': is_cand = tot_util_cond and user_util_cond and user_numproc_cond and tot_memutil_cond elif self.limits.apply_limits == 'worker': is_cand = tot_util_cond and worker_numproc_cond and tot_memutil_cond else: is_cand = False print("Invalid apply_limits. Available options are ['user', 'worker']") if is_cand: cand_gpu.append(gpuid) cand_gpu_util.append(total_gpu_utilization_filt[i]) cand_gpumem_util.append(total_gpumem_utilization[i]) # 2. run job process if len(cand_gpu) == 0 or time.time() - last_job_time < self.limits.time_between_jobs: # no available GPUs or no queued tasks pass else: min_util_idx = cand_gpu_util.index(min(cand_gpu_util)) min_util_cand_gpu = cand_gpu[min_util_idx] if min_util_cand_gpu < 0: # CPU mode os.environ['CUDA_VISIBLE_DEVICES'] = '-1' grab_device_success = True else: grab_device_success = py3nvml.grab_gpus(num_gpus=1, gpu_select=[cand_gpu[min_util_idx]], gpu_fraction=(100 - self.limits.max_gpu_mem_usage)/100, max_procs=-1) > 0 if not grab_device_success: # if for some reason cannot allocate gpu # print('CUDA_VISIBLE_DEVICES = %s'%(os.environ.get('CUDA_VISIBLE_DEVICES'))) # last_job_time = time.time() continue try: job = shared_pending_job_q.get_nowait() # {'tag': , 'config_byte': , 'worker_args': , 'worker_kwargs': } num_pending -= 1 # {'tag': path, 'config': json.load(f, object_hook=lambda d : SimpleNamespace(**d)), # 'worker_args': worker_args, 'worker_kwargs': worker_kwargs} signal.signal(signal.SIGINT, signal.SIG_IGN) # recover namespace object if type is json tmp_filepath = '/tmp/%s'%(job['tag'].replace('/','_')) if os.path.splitext(tmp_filepath)[-1] == '.json': with open(tmp_filepath,'wb') as f: f.write(job['config_byte']) with open(tmp_filepath,'r') as f: job['config'] = json.load(f, object_hook=lambda d : SimpleNamespace(**d)) os.remove(tmp_filepath) job['worker_kwargs'].update({'config': job['config'], 'config_byte': job['config_byte'], 'config_path': job['tag']}) else: job['worker_kwargs'].update({'config_byte': job['config_byte'], 'config_path': job['tag']}) p = multiprocessing.Process( target=self.worker, args=job['worker_args'], kwargs=job['worker_kwargs'] ) procs[job['tag']] = p p.start() running[job['tag']] = p signal.signal(signal.SIGINT, self.default_handler) last_job_time = time.time() except queue.Empty: pass except (EOFError, BrokenPipeError) as e: print('lost connection to server') # update thread status ready = [] for key in running: if not running[key].is_alive(): # call has been executed ready.append(key) if running[key].exitcode == 0: # process terminated successfully done[key] = running[key] else: # process terminated with errors failed[key] = running[key] for key in ready: running.pop(key) procs[key].terminate() # procs[key].close() procs.pop(key) # 3. display status entry_len = 150 print(''.center(entry_len,'+')) print(datetime.datetime.now(dateutil.tz.tzlocal()).strftime(' %Y/%m/%d_%H:%M:%S ').center(entry_len,'-')) # worker status if self.limits.apply_limits == 'user': print('+ WORKER: %s (apply limits on user %s)'%(self.name, curr_user)) elif self.limits.apply_limits == 'worker': print('+ WORKER: %s (apply limits on current worker)'%(self.name)) else: print("Invalid apply_limits. Available options are ['user', 'worker']") print(('+ (gpu_ids=%s, job_limit=%s, util_limit=%s%%)'%(list_of_gpus, max_jobs_per_gpu, max_utilization)).ljust(entry_len,' ')) for i, gpuid in enumerate(list_of_gpus): tup = (gpuid,) tup += (user_compute_procs[i],) tup += (worker_compute_procs[i],) tup += (total_compute_procs[i],) tup += (user_gpu_utilization[i],) tup += (total_gpu_utilization[i],) tup += (user_gpumem_utilization[i],) tup += (total_gpumem_utilization[i],) print(('+ gpu%d compute processes (%d(%d)/%d) utilization rate (%d%%/%d%%) memory usage (%d%%/%d%%)'%tup).ljust(entry_len,' ')) # job status print((' %d PENDING '%(num_pending)).center(entry_len,'-')) # if self.kwargs.get('logging'): # print((' %d LOGGING '%(len(running))).center(entry_len,'-')) # else: # print((' %d RUNNING '%(len(running))).center(entry_len,'-')) print((' %d LOGGING/RUNNING '%(len(running))).center(entry_len,'-')) tqdm_stats = [] for key in running: name_str = os.path.basename(key) try: tqdm_stat = pickle.load(open(os.path.join('/tmp', name_str + '.tqdm'), 'rb')) tqdm_stats.append(tqdm_stat) tqdm_str = 'gpu%s pid=%d |%d%%| %d/%d [%s<%s, %sit/s]' % tqdm_stat except: tqdm_stats.append(None) tqdm_str = '' name_str = '+ ' + name_str print(name_str + tqdm_str.rjust(entry_len-len(name_str))) print((' %d FAILED '%(len(failed))).center(entry_len,'-')) for key in failed: print(os.path.basename(key)) print((' %d DONE '%(len(done))).center(entry_len,'-')) for key in done: print(os.path.basename(key)) print(''.center(entry_len,'+')) print('+') # 4. report status to scheduler try: shared_worker_status_q.put({ self.name: { 'limit': vars(self.limits), 'status': { 'worker_compute_procs': user_compute_procs, 'total_compute_procs': total_compute_procs, 'worker_gpu_utilization': user_gpu_utilization, 'total_gpu_utilization': total_gpu_utilization, 'worker_gpumem_utilization': user_gpumem_utilization, 'total_gpumem_utilization': total_gpumem_utilization }, 'running': OrderedDict(((key, tqdm_stat) for key, tqdm_stat in zip(running, tqdm_stats))), 'done': OrderedDict(((key, None) for key in done)), 'failed': OrderedDict(((key, None) for key in failed)), 'last_updated': time.time() } }) except (EOFError, BrokenPipeError) as e: # lost connection to server print('lost connection to server') # 5. SIGINT(ctrl-c) handler if self.worker_terminate: self.worker_resume = prompt_yes_or_no('Resume?') if self.worker_resume: IPython.embed() self.worker_terminate = False if self.worker_terminate: for key in running: running[key].terminate() break # run while loop every second self.rate.sleep() try: num_pending = shared_pending_job_q.qsize() except (EOFError, BrokenPipeError) as e: print('lost connection to server') # lost connection to server print('summary - done: %d, failed: %d, halted: %d, pending: %d' % (len(done), len(failed), len(running), num_pending)) def _signal_handling(self, signum, frame): self.worker_terminate = True print('pausing worker... Please wait!') def worker(self, *args, **kwargs): if not self.limits.subprocess_verbose: mute() self.worker_function(*args, **kwargs) else: self.worker_function(*args, **kwargs) @staticmethod @abstractmethod def worker_function(*args, config_path=None, config=None, **kwargs): pass NVGPUWorker.register('get_pending_job_q') NVGPUWorker.register('get_worker_status_q') if __name__ == '__main__': class MyWorker(NVGPUWorker): @staticmethod def worker_function(*args, config_path=None, config=None, **kwargs): while True: time.sleep(1) worker = MyWorker('127.0.0.1', 55555, 'hello') worker.connect() worker.update_limits( available_gpus=[0,1], gpu_utilization_limit=[100,100], gpu_job_limit=[0,1], utilization_margin=0, time_between_jobs=30, subprocess_verbose=True, apply_limits='user' ) worker.run() ```
{ "source": "jigargandhi/adventofcode2017", "score": 4 }
#### File: jigargandhi/adventofcode2017/day7.py ```python class Node(): """ Defines a program in advent of code day 7 puzzle """ def __init__(self, name, weight=None, children=None): """ """ self.name = name self.weight = weight self.parent = None self.total_weight = weight if children is None: self.children = [] else: self.children = children for child in self.children: child.parent = self def add_child(self, node): node.parent = self self.children.append(node) def __repr__(self): return "Node[name = {}, weight = {}, total_weight = {}]"\ .format(self.name, self.weight, self.total_weight) def get_total_weight(self): if len(self.children)==0: return self.weight else: return self.weight + sum([ child.get_total_weight() for child in self.children ]) def find_unbalanced_node(self): if len(self.children) <2: return None else: differentNode = None for i in range(1, len(self.children)-1): prev= self.children[i-1].get_total_weight() current = self.children[i].get_total_weight() next = self.children[i+1].get_total_weight() if prev!= current and current!=next: differentNode = self.children[i] break elif prev!=current and current== next: differentNode = self.children[i-1] break elif prev ==current and current!=next: differentNode = self.children[i+1] break else: continue if differentNode is not None: still_unbalanced= differentNode.find_unbalanced_node() if still_unbalanced is None: return differentNode else: return still_unbalanced return None class World(): def __init__(self, file_name): self.programs = {} self.file_name = file_name self.raw_programs = {} def parse_world(self): with open(self.file_name, mode='r') as f: for line in f.readlines(): line = line.strip() key, weight, children = self.line_parser(line) if key not in self.raw_programs: self.raw_programs[key] = (weight, children) else: weight, current_children = self.raw_programs[key] self.raw_programs[key] = ( weight, current_children + children) print("parsing finished") def prepare_world(self): # 1st pass for program_name in self.raw_programs.keys(): weight, _ = self.raw_programs[program_name] node = Node(program_name, weight, []) self.programs[program_name] = node # 2nd pass for program_name in self.raw_programs.keys(): parent_program = self.programs[program_name] _, children = self.raw_programs[program_name] for child_program_name in children: child_node = self.programs[child_program_name] parent_program.add_child(child_node) def line_parser(self, text_input): parts = text_input.split("->") part1 = parts[0].strip() if len(parts) == 1: part2 = "" else: part2 = parts[1].strip() part1parts = part1.split("(") program_name = part1parts[0].strip() weight = int(part1parts[1][:-1].strip()) if part2 == "": children = [] else: children = [k.strip() for k in part2.split(",")] return program_name, weight, children def get_random_node(self): import random nodeIndex = random.randint(0, len(self.programs)-1) randomr_key = list(self.programs.keys())[nodeIndex] node = self.programs[randomr_key] return node def propogate_weight(self): pass def traverse_node(node): if node.parent is None: return node else: return traverse_node(node.parent) world = World("day7_input2.txt") world.parse_world() world.prepare_world() node = world.get_random_node() world.propogate_weight() root = traverse_node(node) # for child in root.children: # print("{} ({}) ({}) ".format(child.name, child.weight, child.get_total_weight())) print(root.find_unbalanced_node()) ```
{ "source": "jigargandhi/UdemyMachineLearning", "score": 3 }
#### File: UdemyMachineLearning/Titanic/kernel.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv("input/train.csv") test = pd.read_csv("input/test.csv") X = train.iloc[:,[2,4,5]].values Y = train.iloc[:,[1]].values Z = test.iloc[:,[1,3,4]].values """ Variables of interest: pClass, Sex, Age, Treatment: pClass: Ordinal Variable no treatment required Sex: LabelEncoder, OneHotEncoder not required as values are only male and female Age, Impute with mean """ # Label Encoding Sex from sklearn.preprocessing import LabelEncoder labelEncoder = LabelEncoder() X[:,1] = labelEncoder.fit_transform(X[:,1]) Z[:,1]= labelEncoder.transform(Z[:,1]) # Imputing Age from sklearn.preprocessing import Imputer imputer = Imputer() imputer.fit(X[:,[2]]) X[:,[2]]= imputer.transform(X[:,[2]]) Z[:,[2]] = imputer.transform(Z[:,[2]]) """ Models: LogisticRegression, SVM, KernelSVM, Naive Bayes, Decision Tree, Random Forest """ def printAccuracy(d): return (d[0,0]+d[1,1])/(d[0,0]+d[1,1]+d[0,1]+d[1,0]) #Logistics Regression from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.2, random_state = 0) from sklearn.linear_model import LogisticRegression linear_classifier = LogisticRegression() linear_classifier .fit(X_train, y_train) y_pred = linear_classifier .predict(X_test) from sklearn.metrics import confusion_matrix linear_cm= confusion_matrix(y_test, y_pred) # [[93,17],[21,48]] #SVM from sklearn.svm import SVC svc_classifier = SVC(kernel = 'rbf', random_state = 0) svc_classifier.fit(X_train, y_train) y_pred= svc_classifier.predict(X_test) svc_cm = confusion_matrix(y_test, y_pred) #81% #RandomForest from sklearn.ensemble import RandomForestClassifier rf_classifier = RandomForestClassifier(criterion='entropy', random_state=0) rf_classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = rf_classifier.predict(X_test) rf_cm = confusion_matrix(y_test,y_pred) # Naive Bayes from sklearn.naive_bayes import GaussianNB gnb_classifier = GaussianNB() gnb_classifier.fit(X_train, y_train) y_pred = gnb_classifier.predict(X_test) gnb_cm = confusion_matrix(y_test, y_pred) # 82% """ Evaluation: a. Confusion Matrix, CAP Curve (how?) """ print("Linear: ",printAccuracy(linear_cm)) print("SVM: ",printAccuracy(svc_cm)) print("Random Forest: ",printAccuracy(rf_cm)) print("Naive Bayes:", printAccuracy(gnb_cm)) """ Writing Random Forest result to Output """ y_result = rf_classifier.predict(Z) result = pd.DataFrame({"PassengerId":test.iloc[:,0].values, "Survived": y_result}) result.to_csv("output/result.csv",index = None) ```
{ "source": "JigarJoshi04/tardis", "score": 3 }
#### File: tardis/widgets/kromer_plot.py ```python import numpy as np import pandas as pd import astropy.units as u import astropy.modeling.blackbody as abb import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as clr import plotly.graph_objects as go from tardis.util.base import atomic_number2element_symbol from tardis.widgets import plot_util as pu class KromerData: """The data of simulation model which is used by Kromer Plot. This preprocesses the data required by KromerPlotter class for doing calculations and plotting. """ def __init__( self, last_interaction_type, last_line_interaction_in_id, last_line_interaction_out_id, last_line_interaction_in_nu, lines_df, packet_nus, packet_energies, r_inner, spectrum_delta_frequency, spectrum_frequency_bins, # stores _frequency (bin edges) not frequency spectrum_luminosity_density_lambda, spectrum_wavelength, t_inner, time_of_simulation, ): """ Initialize the KromerData with required properties of simulation model. Parameters ---------- last_interaction_type : np.array Interaction type (no-interaction: -1, e-scattering: 1 and line interaction: 2) values of emitted packets last_line_interaction_in_id : np.array IDs of atomic lines with which emitted packet had their last absorption (interaction in) last_line_interaction_out_id : np.array IDs of atomic lines with which emitted packet had their last emission (interaction out) last_line_interaction_in_nu : np.array Frequency values of the last absorption of emitted packets lines_df : pd.DataFrame Data about the atomic lines present in simulation model's plasma packet_nus : astropy.Quantity Frequency values of the last emission of emitted packets, having unit of Hz packet_energies : astropy.Quantity Energy values of emitted packets, having unit of erg r_inner : astropy.Quantity Radius of innermost shell, having unit of cm spectrum_delta_frequency : astropy.Quantity Frequency bin width of spectrum, having unit of Hz spectrum_frequency_bins : astropy.Quantity Frequency bin edges of spectrum, having unit of Hz spectrum_wavelength : astropy.Quantity Wavelength values of spectrum, having unit of Angstrom t_inner : astropy.Quantity Temperature of innermost shell, having unit of K time_of_simulation : astropy.Quantity Time of simulation, having unit of s (second) """ # Save packets properties in a dataframe for easier data manipulation self.packets_df = pd.DataFrame( { "nus": packet_nus, "lambdas": packet_nus.to("angstrom", u.spectral()), "energies": packet_energies, "last_interaction_type": last_interaction_type, "last_line_interaction_out_id": last_line_interaction_out_id, "last_line_interaction_in_id": last_line_interaction_in_id, "last_line_interaction_in_nu": last_line_interaction_in_nu, } ) # Save other properties self.lines_df = lines_df self.r_inner = r_inner self.spectrum_delta_frequency = spectrum_delta_frequency self.spectrum_frequency_bins = spectrum_frequency_bins self.spectrum_frequency = spectrum_frequency_bins[:-1] self.spectrum_luminosity_density_lambda = ( spectrum_luminosity_density_lambda ) self.spectrum_wavelength = spectrum_wavelength self.t_inner = t_inner self.time_of_simulation = time_of_simulation # Create dataframe of packets that experience line interaction line_mask = (self.packets_df["last_interaction_type"] > -1) & ( self.packets_df["last_line_interaction_in_id"] > -1 ) # & operator is quite faster than np.logical_and on pd.Series self.packets_df_line_interaction = self.packets_df.loc[line_mask].copy() # Add columns for atomic number of last interaction in/out self.packets_df_line_interaction["last_line_interaction_out_atom"] = ( self.lines_df["atomic_number"] .iloc[ self.packets_df_line_interaction["last_line_interaction_out_id"] ] .to_numpy() ) self.packets_df_line_interaction["last_line_interaction_in_atom"] = ( self.lines_df["atomic_number"] .iloc[ self.packets_df_line_interaction["last_line_interaction_in_id"] ] .to_numpy() ) @classmethod def from_simulation(cls, sim, packets_mode): """ Create an instance of KromerData from a TARDIS simulation object. Parameters ---------- sim : tardis.simulation.Simulation TARDIS Simulation object produced by running a simulation packets_mode : {'virtual', 'real'} Mode of packets to be considered, either real or virtual Returns ------- KromerData """ # Properties common among both packet modes lines_df = sim.plasma.atomic_data.lines.reset_index().set_index( "line_id" ) r_inner = sim.model.r_inner t_inner = sim.model.t_inner time_of_simulation = sim.runner.time_of_simulation if packets_mode == "virtual": return cls( last_interaction_type=sim.runner.virt_packet_last_interaction_type, last_line_interaction_in_id=sim.runner.virt_packet_last_line_interaction_in_id, last_line_interaction_out_id=sim.runner.virt_packet_last_line_interaction_out_id, last_line_interaction_in_nu=sim.runner.virt_packet_last_interaction_in_nu, lines_df=lines_df, packet_nus=u.Quantity(sim.runner.virt_packet_nus, "Hz"), packet_energies=u.Quantity( sim.runner.virt_packet_energies, "erg" ), r_inner=r_inner, spectrum_delta_frequency=sim.runner.spectrum_virtual.delta_frequency, spectrum_frequency_bins=sim.runner.spectrum_virtual._frequency, spectrum_luminosity_density_lambda=sim.runner.spectrum_virtual.luminosity_density_lambda, spectrum_wavelength=sim.runner.spectrum_virtual.wavelength, t_inner=t_inner, time_of_simulation=time_of_simulation, ) elif packets_mode == "real": # Packets-specific properties need to be only for those packets # which got emitted return cls( last_interaction_type=sim.runner.last_interaction_type[ sim.runner.emitted_packet_mask ], last_line_interaction_in_id=sim.runner.last_line_interaction_in_id[ sim.runner.emitted_packet_mask ], last_line_interaction_out_id=sim.runner.last_line_interaction_out_id[ sim.runner.emitted_packet_mask ], last_line_interaction_in_nu=sim.runner.last_interaction_in_nu[ sim.runner.emitted_packet_mask ], lines_df=lines_df, packet_nus=sim.runner.output_nu[sim.runner.emitted_packet_mask], packet_energies=sim.runner.output_energy[ sim.runner.emitted_packet_mask ], r_inner=r_inner, spectrum_delta_frequency=sim.runner.spectrum.delta_frequency, spectrum_frequency_bins=sim.runner.spectrum._frequency, spectrum_luminosity_density_lambda=sim.runner.spectrum.luminosity_density_lambda, spectrum_wavelength=sim.runner.spectrum.wavelength, t_inner=t_inner, time_of_simulation=time_of_simulation, ) else: raise ValueError( "Invalid value passed to packets_mode. Only " "allowed values are 'virtual' or 'real'" ) @classmethod def from_hdf(cls, hdf_fpath, packets_mode): """ Create an instance of KromerData from a simulation HDF file. Parameters ---------- hdf_fpath : str Valid path to the HDF file where simulation is saved packets_mode : {'virtual', 'real'} Mode of packets to be considered, either real or virtual Returns ------- KromerData """ with pd.HDFStore(hdf_fpath, "r") as hdf: lines_df = ( hdf["/simulation/plasma/lines"] .reset_index() .set_index("line_id") ) r_inner = u.Quantity( hdf["/simulation/model/r_inner"].to_numpy(), "cm" ) # Convert pd.Series to np.array to construct quantity from it t_inner = u.Quantity(hdf["/simulation/model/scalars"].t_inner, "K") time_of_simulation = u.Quantity( hdf["/simulation/runner/scalars"].time_of_simulation, "s" ) if packets_mode == "virtual": return cls( last_interaction_type=hdf[ "/simulation/runner/virt_packet_last_interaction_type" ], last_line_interaction_in_id=hdf[ "/simulation/runner/virt_packet_last_line_interaction_in_id" ], last_line_interaction_out_id=hdf[ "/simulation/runner/virt_packet_last_line_interaction_out_id" ], last_line_interaction_in_nu=u.Quantity( hdf[ "/simulation/runner/virt_packet_last_interaction_in_nu" ].to_numpy(), "Hz", ), lines_df=lines_df, packet_nus=u.Quantity( hdf["/simulation/runner/virt_packet_nus"].to_numpy(), "Hz", ), packet_energies=u.Quantity( hdf[ "/simulation/runner/virt_packet_energies" ].to_numpy(), "erg", ), r_inner=r_inner, spectrum_delta_frequency=u.Quantity( hdf[ "/simulation/runner/spectrum_virtual/scalars" ].delta_frequency, "Hz", ), spectrum_frequency_bins=u.Quantity( hdf[ "/simulation/runner/spectrum_virtual/_frequency" ].to_numpy(), "Hz", ), spectrum_luminosity_density_lambda=u.Quantity( hdf[ "/simulation/runner/spectrum_virtual/luminosity_density_lambda" ].to_numpy(), "erg / s cm", # luminosity_density_lambda is saved in hdf in CGS ).to("erg / s AA"), spectrum_wavelength=u.Quantity( hdf[ "/simulation/runner/spectrum_virtual/wavelength" ].to_numpy(), "cm", # wavelength is saved in hdf in CGS ).to("AA"), t_inner=t_inner, time_of_simulation=time_of_simulation, ) elif packets_mode == "real": emitted_packet_mask = hdf[ "/simulation/runner/emitted_packet_mask" ].to_numpy() return cls( # First convert series read from hdf to array before masking # to eliminate index info which creates problems otherwise last_interaction_type=hdf[ "/simulation/runner/last_interaction_type" ].to_numpy()[emitted_packet_mask], last_line_interaction_in_id=hdf[ "/simulation/runner/last_line_interaction_in_id" ].to_numpy()[emitted_packet_mask], last_line_interaction_out_id=hdf[ "/simulation/runner/last_line_interaction_out_id" ].to_numpy()[emitted_packet_mask], last_line_interaction_in_nu=u.Quantity( hdf[ "/simulation/runner/last_interaction_in_nu" ].to_numpy()[emitted_packet_mask], "Hz", ), lines_df=lines_df, packet_nus=u.Quantity( hdf["/simulation/runner/output_nu"].to_numpy()[ emitted_packet_mask ], "Hz", ), packet_energies=u.Quantity( hdf["/simulation/runner/output_energy"].to_numpy()[ emitted_packet_mask ], "erg", ), r_inner=r_inner, spectrum_delta_frequency=u.Quantity( hdf[ "/simulation/runner/spectrum/scalars" ].delta_frequency, "Hz", ), spectrum_frequency_bins=u.Quantity( hdf[ "/simulation/runner/spectrum/_frequency" ].to_numpy(), "Hz", ), spectrum_luminosity_density_lambda=u.Quantity( hdf[ "/simulation/runner/spectrum/luminosity_density_lambda" ].to_numpy(), "erg / s cm", ).to("erg / s AA"), spectrum_wavelength=u.Quantity( hdf[ "/simulation/runner/spectrum/wavelength" ].to_numpy(), "cm", ).to("AA"), t_inner=t_inner, time_of_simulation=time_of_simulation, ) else: raise ValueError( "Invalid value passed to packets_mode. Only " "allowed values are 'virtual' or 'real'" ) class KromerPlotter: """Plotting interface to generate Kromer Plot for a simulation model.""" def __init__(self, data): """ Initialize the KromerPlotter with required data of simulation model. Parameters ---------- data : dict of KromerData Dictionary to store data required for Kromer plot, for both packet modes i.e. real and virtual """ self.data = data @classmethod def from_simulation(cls, sim): """ Create an instance of KromerPlotter from a TARDIS simulation object. Parameters ---------- sim : tardis.simulation.Simulation TARDIS Simulation object produced by running a simulation Returns ------- KromerPlotter """ return cls( dict( virtual=KromerData.from_simulation(sim, "virtual"), real=KromerData.from_simulation(sim, "real"), ) ) @classmethod def from_hdf(cls, hdf_fpath): """ Create an instance of KromerPlotter from a simulation HDF file. Parameters ---------- hdf_fpath : str Valid path to the HDF file where simulation is saved Returns ------- KromerPlotter """ return cls( dict( virtual=KromerData.from_hdf(hdf_fpath, "virtual"), real=KromerData.from_hdf(hdf_fpath, "real"), ) ) def _calculate_plotting_data( self, packets_mode, packet_wvl_range, distance ): """ Calculate data to be used in plotting based on parameters passed. Parameters ---------- packets_mode : {'virtual', 'real'} Mode of packets to be considered, either real or virtual packet_wvl_range : astropy.Quantity Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA distance : astropy.Quantity Distance used to calculate flux instead of luminosities in the plot. Preferrably having units of cm. Notes ----- It doesn't return the calculated properties but save them in instance itself. So it should be always called before starting plotting to update the plotting data based on parameters passed. """ if packets_mode not in ["virtual", "real"]: raise ValueError( "Invalid value passed to packets_mode. Only " "allowed values are 'virtual' or 'real'" ) # Store the plottable range of each spectrum property which is # same as entire range, initially self.plot_frequency_bins = self.data[ packets_mode ].spectrum_frequency_bins self.plot_wavelength = self.data[packets_mode].spectrum_wavelength self.plot_frequency = self.data[packets_mode].spectrum_frequency # Filter their plottable range based on packet_wvl_range specified if packet_wvl_range: packet_nu_range = packet_wvl_range.to("Hz", u.spectral()) # Index of value just before the 1st value that is > packet_nu_range[1] start_idx = ( np.argmax(self.plot_frequency_bins > packet_nu_range[1]) - 1 ) # Index of value just after the last value that is < packet_nu_range[0] end_idx = np.argmin(self.plot_frequency_bins < packet_nu_range[0]) self.plot_frequency_bins = self.plot_frequency_bins[ start_idx : end_idx + 1 ] # Since spectrum frequency (& hence wavelength) were created from # frequency_bins[:-1], so we exclude end_idx when creating the mask self.packet_wvl_range_mask = np.zeros( self.plot_wavelength.size, dtype=bool ) self.packet_wvl_range_mask[start_idx:end_idx] = True self.plot_wavelength = self.plot_wavelength[ self.packet_wvl_range_mask ] self.plot_frequency = self.plot_frequency[ self.packet_wvl_range_mask ] else: self.packet_wvl_range_mask = np.ones( self.plot_wavelength.size, dtype=bool ) # Make sure number of bin edges are always one more than wavelengths assert self.plot_frequency_bins.size == self.plot_wavelength.size + 1 # Calculate the area term to convert luminosity to flux if distance is None: self.lum_to_flux = 1 # so that this term will have no effect else: self.lum_to_flux = 4.0 * np.pi * (distance.to("cm")) ** 2 # Calculate luminosities to be shown in plot ( self.emission_luminosities_df, self.elements, ) = self._calculate_emission_luminosities( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range ) self.absorption_luminosities_df = ( self._calculate_absorption_luminosities( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range ) ) self.photosphere_luminosity = self._calculate_photosphere_luminosity( packets_mode=packets_mode ) self.modeled_spectrum_luminosity = ( self.data[packets_mode].spectrum_luminosity_density_lambda[ self.packet_wvl_range_mask ] / self.lum_to_flux ) def _calculate_emission_luminosities(self, packets_mode, packet_wvl_range): """ Calculate luminosities for the emission part of Kromer plot. Parameters ---------- packets_mode : {'virtual', 'real'} Mode of packets to be considered, either real or virtual packet_wvl_range : astropy.Quantity Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA Returns ------- luminosities_df : pd.DataFrame Dataframe containing luminosities contributed by no interaction, only e-scattering and emission with each element present elements_present: np.array Atomic numbers of the elements with which packets of specified wavelength range interacted """ # Calculate masks to be applied on packets data based on packet_wvl_range if packet_wvl_range is None: self.packet_nu_range_mask = np.ones( self.data[packets_mode].packets_df.shape[0], dtype=bool ) self.packet_nu_line_range_mask = np.ones( self.data[packets_mode].packets_df_line_interaction.shape[0], dtype=bool, ) else: packet_nu_range = packet_wvl_range.to("Hz", u.spectral()) self.packet_nu_range_mask = ( self.data[packets_mode].packets_df["nus"] < packet_nu_range[0] ) & (self.data[packets_mode].packets_df["nus"] > packet_nu_range[1]) self.packet_nu_line_range_mask = ( self.data[packets_mode].packets_df_line_interaction["nus"] < packet_nu_range[0] ) & ( self.data[packets_mode].packets_df_line_interaction["nus"] > packet_nu_range[1] ) # Histogram weights are packet luminosities or flux weights = ( self.data[packets_mode].packets_df["energies"][ self.packet_nu_range_mask ] / self.lum_to_flux ) / self.data[packets_mode].time_of_simulation luminosities_df = pd.DataFrame(index=self.plot_wavelength) # Contribution of packets which experienced no interaction ------------ # Mask to select packets with no interaction mask_noint = ( self.data[packets_mode].packets_df["last_interaction_type"][ self.packet_nu_range_mask ] == -1 ) # Calculate weighted histogram of packet frequencies for # plottable range of frequency bins hist_noint = np.histogram( self.data[packets_mode].packets_df["nus"][ self.packet_nu_range_mask ][mask_noint], bins=self.plot_frequency_bins, weights=weights[mask_noint], density=False, ) # Convert histogram (luminosity values) to luminosity density lambda L_nu_noint = ( hist_noint[0] * u.erg / u.s / self.data[packets_mode].spectrum_delta_frequency ) L_lambda_noint = L_nu_noint * self.plot_frequency / self.plot_wavelength # Save it in df luminosities_df["noint"] = L_lambda_noint.value # Contribution of packets which only experienced electron scattering --- mask_escatter = ( self.data[packets_mode].packets_df["last_interaction_type"][ self.packet_nu_range_mask ] == 1 ) & ( self.data[packets_mode].packets_df["last_line_interaction_in_id"][ self.packet_nu_range_mask ] == -1 ) hist_escatter = np.histogram( self.data[packets_mode].packets_df["nus"][ self.packet_nu_range_mask ][mask_escatter], bins=self.plot_frequency_bins, weights=weights[mask_escatter], density=False, ) L_nu_escatter = ( hist_escatter[0] * u.erg / u.s / self.data[packets_mode].spectrum_delta_frequency ) L_lambda_escatter = ( L_nu_escatter * self.plot_frequency / self.plot_wavelength ) luminosities_df["escatter"] = L_lambda_escatter.value # Group packets_df by atomic number of elements with which packets # had their last emission (interaction out) packets_df_grouped = ( self.data[packets_mode] .packets_df_line_interaction.loc[self.packet_nu_line_range_mask] .groupby(by="last_line_interaction_out_atom") ) # Contribution of each element with which packets interacted ---------- for atomic_number, group in packets_df_grouped: # Histogram of specific element hist_el = np.histogram( group["nus"], bins=self.plot_frequency_bins, weights=group["energies"] / self.data[packets_mode].time_of_simulation, ) # Convert to luminosity density lambda L_nu_el = ( hist_el[0] * u.erg / u.s / self.data[packets_mode].spectrum_delta_frequency ) L_lambda_el = L_nu_el * self.plot_frequency / self.plot_wavelength luminosities_df[atomic_number] = L_lambda_el.value # Create an array of the elements with which packets interacted elements_present = np.array(list(packets_df_grouped.groups.keys())) return luminosities_df, elements_present def _calculate_absorption_luminosities( self, packets_mode, packet_wvl_range ): """ Calculate luminosities for the absorption part of Kromer plot. Parameters ---------- packets_mode : {'virtual', 'real'} Mode of packets to be considered, either real or virtual packet_wvl_range : astropy.Quantity Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA Returns ------- pd.DataFrame Dataframe containing luminosities contributed by absorption with each element present """ # Calculate masks to be applied on packets data based on packet_wvl_range if packet_wvl_range is None: self.packet_nu_line_range_mask = np.ones( self.data[packets_mode].packets_df_line_interaction.shape[0], dtype=bool, ) else: packet_nu_range = packet_wvl_range.to("Hz", u.spectral()) self.packet_nu_line_range_mask = ( self.data[packets_mode].packets_df_line_interaction[ "last_line_interaction_in_nu" ] < packet_nu_range[0] ) & ( self.data[packets_mode].packets_df_line_interaction[ "last_line_interaction_in_nu" ] > packet_nu_range[1] ) luminosities_df = pd.DataFrame(index=self.plot_wavelength) # Group packets_df by atomic number of elements with which packets # had their last absorption (interaction in) packets_df_grouped = ( self.data[packets_mode] .packets_df_line_interaction.loc[self.packet_nu_line_range_mask] .groupby(by="last_line_interaction_in_atom") ) for atomic_number, group in packets_df_grouped: # Histogram of specific element hist_el = np.histogram( group["last_line_interaction_in_nu"], bins=self.plot_frequency_bins, weights=group["energies"] / self.data[packets_mode].time_of_simulation, ) # Convert to luminosity density lambda L_nu_el = ( hist_el[0] * u.erg / u.s / self.data[packets_mode].spectrum_delta_frequency ) L_lambda_el = L_nu_el * self.plot_frequency / self.plot_wavelength luminosities_df[atomic_number] = L_lambda_el.value return luminosities_df def _calculate_photosphere_luminosity(self, packets_mode): """ Calculate blackbody luminosity of the photosphere. Parameters ---------- packets_mode : {'virtual', 'real'} Mode of packets to be considered, either real or virtual Returns ------- astropy.Quantity Luminosity density lambda (or Flux) of photosphere (inner boundary of TARDIS simulation) """ L_lambda_ph = ( abb.blackbody_lambda( self.plot_wavelength, self.data[packets_mode].t_inner, ) * 4 * np.pi ** 2 * self.data[packets_mode].r_inner[0] ** 2 * u.sr ).to("erg / (AA s)") return L_lambda_ph / self.lum_to_flux def generate_plot_mpl( self, packets_mode="virtual", packet_wvl_range=None, distance=None, show_modeled_spectrum=True, ax=None, figsize=(10, 7), cmapname="jet", ): """ Generate Kromer Plot using matplotlib. Parameters ---------- packets_mode : {'virtual', 'real'}, optional Mode of packets to be considered, either real or virtual. Default value is 'virtual' packet_wvl_range : astropy.Quantity or None, optional Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA. Default value is None distance : astropy.Quantity or None, optional Distance used to calculate flux instead of luminosities in the plot. Preferrably having units of cm. Default value is None show_modeled_spectrum : bool, optional Whether to show modeled spectrum in Kromer Plot. Default value is True ax : matplotlib.axes._subplots.AxesSubplot or None, optional Axis on which to create plot. Default value is None which will create plot on a new figure's axis. figsize : tuple, optional Size of the matplotlib figure to display. Default value is (10, 7) cmapname : str, optional Name of matplotlib colormap to be used for showing elements. Default value is "jet" Returns ------- matplotlib.axes._subplots.AxesSubplot Axis on which Kromer Plot is created """ # Calculate data attributes required for plotting # and save them in instance itself self._calculate_plotting_data( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range, distance=distance, ) if ax is None: self.ax = plt.figure(figsize=figsize).add_subplot(111) else: self.ax = ax # Set colormap to be used in elements of emission and absorption plots self.cmap = cm.get_cmap(cmapname, self.elements.size) self._plot_emission_mpl() self._plot_absorption_mpl() # Plot modeled spectrum if show_modeled_spectrum: self.ax.plot( self.plot_wavelength, self.modeled_spectrum_luminosity, "--b", label=f"{packets_mode.capitalize()} Spectrum", linewidth=1, ) # Plot photosphere self.ax.plot( self.plot_wavelength, self.photosphere_luminosity, "--r", label="Blackbody Photosphere", ) self._show_colorbar_mpl() # Set legends and labels self.ax.legend(fontsize=12) self.ax.set_xlabel(r"Wavelength $[\AA]$", fontsize=12) if distance: # Set y-axis label for flux self.ax.set_ylabel( r"$F_{\lambda}$ [erg/s/$\AA/cm^{2}$]", fontsize=12 ) else: # Set y-axis label for luminosity self.ax.set_ylabel(r"$L_{\lambda}$ [erg/s/$\AA$]", fontsize=12) return plt.gca() def _plot_emission_mpl(self): """Plot emission part of the Kromer Plot using matplotlib.""" # To create stacked area chart in matplotlib, we will start with zero # lower level and will keep adding luminosities to it (upper level) lower_level = np.zeros(self.emission_luminosities_df.shape[0]) upper_level = ( lower_level + self.emission_luminosities_df.noint.to_numpy() ) self.ax.fill_between( self.plot_wavelength, lower_level, upper_level, color="black", label="No interaction", ) lower_level = upper_level upper_level = ( lower_level + self.emission_luminosities_df.escatter.to_numpy() ) self.ax.fill_between( self.plot_wavelength, lower_level, upper_level, color="grey", label="Electron Scatter Only", ) elements_z = self.emission_luminosities_df.columns[2:].to_list() nelements = len(elements_z) # Contribution from each element for i, atomic_number in enumerate(elements_z): lower_level = upper_level upper_level = ( lower_level + self.emission_luminosities_df[atomic_number].to_numpy() ) self.ax.fill_between( self.plot_wavelength, lower_level, upper_level, color=self.cmap(i / nelements), cmap=self.cmap, linewidth=0, ) def _plot_absorption_mpl(self): """Plot absorption part of the Kromer Plot using matplotlib.""" lower_level = np.zeros(self.absorption_luminosities_df.shape[0]) elements_z = self.absorption_luminosities_df.columns.to_list() for i, atomic_number in enumerate(elements_z): # To plot absorption part along -ve X-axis, we will start with # zero upper level and keep subtracting luminosities to it (lower # level) - fill from upper to lower level upper_level = lower_level lower_level = ( upper_level - self.absorption_luminosities_df[atomic_number].to_numpy() ) self.ax.fill_between( self.plot_wavelength, upper_level, lower_level, color=self.cmap(i / len(elements_z)), cmap=self.cmap, linewidth=0, ) def _show_colorbar_mpl(self): """Show matplotlib colorbar with labels of elements mapped to colors.""" color_values = [ self.cmap(i / self.elements.size) for i in range(self.elements.size) ] custcmap = clr.ListedColormap(color_values) norm = clr.Normalize(vmin=0, vmax=self.elements.size) mappable = cm.ScalarMappable(norm=norm, cmap=custcmap) mappable.set_array(np.linspace(1, self.elements.size + 1, 256)) cbar = plt.colorbar(mappable, ax=self.ax) bounds = np.arange(self.elements.size) + 0.5 cbar.set_ticks(bounds) elements_name = [ atomic_number2element_symbol(atomic_num) for atomic_num in self.elements ] cbar.set_ticklabels(elements_name) def generate_plot_ply( self, packets_mode="virtual", packet_wvl_range=None, distance=None, observed_spectrum=None, show_modeled_spectrum=True, fig=None, graph_height=600, cmapname="jet", ): """ Generate interactive Kromer Plot using plotly. Parameters ---------- packets_mode : {'virtual', 'real'}, optional Mode of packets to be considered, either real or virtual. Default value is 'virtual' packet_wvl_range : astropy.Quantity or None, optional Wavelength range to restrict the analysis of escaped packets. It should be a quantity having units of Angstrom, containing two values - lower lambda and upper lambda i.e. [lower_lambda, upper_lambda] * u.AA. Default value is None distance : astropy.Quantity or None, optional Distance used to calculate flux instead of luminosities in the plot. Preferrably having units of cm. Default value is None show_modeled_spectrum : bool, optional Whether to show modeled spectrum in Kromer Plot. Default value is True fig : plotly.graph_objs._figure.Figure or None, optional Figure object on which to create plot. Default value is None which will create plot on a new Figure object. graph_height : int, optional Height (in px) of the plotly graph to display. Default value is 600 cmapname : str, optional Name of the colormap to be used for showing elements. Default value is "jet" Returns ------- plotly.graph_objs._figure.Figure Figure object on which Kromer Plot is created """ # Calculate data attributes required for plotting # and save them in instance itself self._calculate_plotting_data( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range, distance=distance, ) if fig is None: self.fig = go.Figure() else: self.fig = fig # Set colormap to be used in elements of emission and absorption plots self.cmap = cm.get_cmap(cmapname, self.elements.size) self._plot_emission_ply() self._plot_absorption_ply() # Plot modeled spectrum if show_modeled_spectrum: self.fig.add_trace( go.Scatter( x=self.plot_wavelength, y=self.modeled_spectrum_luminosity, mode="lines", line=dict( color="blue", width=1, ), name=f"{packets_mode.capitalize()} Spectrum", ) ) # Plot photosphere self.fig.add_trace( go.Scatter( x=self.plot_wavelength, y=self.photosphere_luminosity, mode="lines", line=dict(width=1.5, color="red", dash="dash"), name="Blackbody Photosphere", ) ) self._show_colorbar_ply() # Set label and other layout options xlabel = pu.axis_label_in_latex("Wavelength", u.AA) if distance: # Set y-axis label for flux ylabel = pu.axis_label_in_latex( "F_{\\lambda}", u.Unit("erg/(s cm**2 AA)"), only_text=False ) else: # Set y-axis label for luminosity ylabel = pu.axis_label_in_latex( "L_{\\lambda}", u.Unit("erg/(s AA)"), only_text=False ) self.fig.update_layout( xaxis=dict( title=xlabel, exponentformat="none", ), yaxis=dict(title=ylabel, exponentformat="e"), height=graph_height, ) return self.fig @staticmethod def to_rgb255_string(color_tuple): """ Convert a matplotlib RGBA tuple to a generic RGB 255 string. Parameters ---------- color_tuple : tuple Matplotlib RGBA tuple of float values in closed interval [0, 1] Returns ------- str RGB string of format rgb(r,g,b) where r,g,b are integers between 0 and 255 (both inclusive) """ color_tuple_255 = tuple([int(x * 255) for x in color_tuple[:3]]) return f"rgb{color_tuple_255}" def _plot_emission_ply(self): """Plot emission part of the Kromer Plot using plotly.""" # By specifying a common stackgroup, plotly will itself add up # luminosities, in order, to created stacked area chart self.fig.add_trace( go.Scatter( x=self.emission_luminosities_df.index, y=self.emission_luminosities_df.noint, mode="none", name="No interaction", fillcolor="black", stackgroup="emission", ) ) self.fig.add_trace( go.Scatter( x=self.emission_luminosities_df.index, y=self.emission_luminosities_df.escatter, mode="none", name="Electron Scatter Only", fillcolor="grey", stackgroup="emission", ) ) elements_z = self.emission_luminosities_df.columns[2:] nelements = len(elements_z) for i, atomic_num in enumerate(elements_z): self.fig.add_trace( go.Scatter( x=self.emission_luminosities_df.index, y=self.emission_luminosities_df[atomic_num], mode="none", name=atomic_number2element_symbol(atomic_num), fillcolor=self.to_rgb255_string(self.cmap(i / nelements)), stackgroup="emission", showlegend=False, ) ) def _plot_absorption_ply(self): """Plot absorption part of the Kromer Plot using plotly.""" elements_z = self.absorption_luminosities_df.columns nelements = len(elements_z) for i, atomic_num in enumerate(elements_z): self.fig.add_trace( go.Scatter( x=self.absorption_luminosities_df.index, # to plot absorption luminosities along negative y-axis y=self.absorption_luminosities_df[atomic_num] * -1, mode="none", name=atomic_number2element_symbol(atomic_num), fillcolor=self.to_rgb255_string(self.cmap(i / nelements)), stackgroup="absorption", showlegend=False, ) ) def _show_colorbar_ply(self): """Show plotly colorbar with labels of elements mapped to colors.""" # Interpolate [0, 1] range to create bins equal to number of elements colorscale_bins = np.linspace(0, 1, num=self.elements.size + 1) # Create a categorical colorscale [a list of (reference point, color)] # by mapping same reference points (excluding 1st and last bin edge) # twice in a row (https://plotly.com/python/colorscales/#constructing-a-discrete-or-discontinuous-color-scale) categorical_colorscale = [] for i in range(self.elements.size): color = self.to_rgb255_string(self.cmap(colorscale_bins[i])) categorical_colorscale.append((colorscale_bins[i], color)) categorical_colorscale.append((colorscale_bins[i + 1], color)) coloraxis_options = dict( colorscale=categorical_colorscale, showscale=True, cmin=0, cmax=self.elements.size, colorbar=dict( title="Elements", tickvals=np.arange(0, self.elements.size) + 0.5, ticktext=[ atomic_number2element_symbol(atomic_num) for atomic_num in self.elements ], # to change length and position of colorbar len=0.75, yanchor="top", y=0.75, ), ) # Plot an invisible one point scatter trace, to make colorbar show up scatter_point_idx = pu.get_mid_point_idx(self.plot_wavelength) self.fig.add_trace( go.Scatter( x=self.plot_wavelength[scatter_point_idx], y=[0], mode="markers", showlegend=False, hoverinfo="skip", marker=dict(color=[0], opacity=0, **coloraxis_options), ) ) ```
{ "source": "JigarJoshi/openapi-generator", "score": 3 }
#### File: tiny/cpp/pre_compiling_bourne.py ```python Import("env") ## Compatibility for bourne to work on microcontrollers # We insert '#define _GLIBCXX_USE_C99' in files that use std::stoll or std::to_string def insert_c99_into(file): import fileinput path = env['PROJECT_LIBDEPS_DIR'] + "/" + env['PIOENV'] + "/bourne/src/bourne/" + file value = '#define _GLIBCXX_USE_C99 1\n' for line in fileinput.FileInput(path,inplace=1): if line.startswith('#define _GLIBCXX_USE_C99'): continue elif line.startswith('// D'): line=line.replace(line,line+value) print(line, end='') def fix_parser(): insert_c99_into('detail/parser.cpp') def fix_json(): insert_c99_into('json.cpp') fix_parser() fix_json() ``` #### File: python-experimental/tests_manual/test_array_holding_any_type.py ```python import sys import unittest from datetime import date, datetime, timezone import petstore_api from petstore_api.model.array_holding_any_type import ArrayHoldingAnyType from petstore_api.schemas import NoneClass, BoolClass class TestArrayHoldingAnyType(unittest.TestCase): """ArrayHoldingAnyType unit test stubs""" def setUp(self): pass def tearDown(self): pass def testArrayHoldingAnyType(self): """Test ArrayHoldingAnyType""" enum_values = [True, False] for enum_value in enum_values: inst = ArrayHoldingAnyType([enum_value]) assert isinstance(inst, ArrayHoldingAnyType) assert isinstance(inst, tuple) assert isinstance(inst[0], BoolClass) assert bool(inst[0]) is enum_value inst = ArrayHoldingAnyType([None]) assert isinstance(inst, ArrayHoldingAnyType) assert isinstance(inst, tuple) assert isinstance(inst[0], NoneClass) input_to_stored_value = [ (0, 0), (3.14, 3.14), (date(1970, 1, 1), '1970-01-01'), (datetime(1970, 1, 1, 0, 0, 0), '1970-01-01T00:00:00'), (datetime(1970, 1, 1, 0, 0, 0, tzinfo=timezone.utc), '1970-01-01T00:00:00+00:00'), ([], ()), ({}, {}), ('hi', 'hi'), ] for input, stored_value in input_to_stored_value: inst = ArrayHoldingAnyType([input]) assert isinstance(inst, ArrayHoldingAnyType) assert isinstance(inst, tuple) assert inst[0] == stored_value if __name__ == '__main__': unittest.main() ``` #### File: python-experimental/tests_manual/test_date_time_with_validations.py ```python import unittest import petstore_api from petstore_api.model.date_time_with_validations import DateTimeWithValidations from datetime import date, datetime, timezone class TestDateTimeWithValidations(unittest.TestCase): """DateTimeWithValidations unit test stubs""" def setUp(self): pass def tearDown(self): pass def testDateTimeWithValidations(self): """Test DateTimeWithValidations""" # works with datetime input valid_values = [datetime(2020, 1, 1), '2020-01-01T00:00:00'] expected_datetime = '2020-01-01T00:00:00' for valid_value in valid_values: inst = DateTimeWithValidations(valid_value) assert inst == expected_datetime # when passing data in with _from_openapi_data one must use str with self.assertRaisesRegex( petstore_api.ApiTypeError, r"Invalid type. Required value type is str and passed type was datetime at \['args\[0\]'\]" ): DateTimeWithValidations._from_openapi_data(datetime(2020, 1, 1)) # when passing data _from_openapi_data we can use str input_value_to_datetime = { "2020-01-01T00:00:00": datetime(2020, 1, 1, tzinfo=None), "2020-01-01T00:00:00Z": datetime(2020, 1, 1, tzinfo=timezone.utc), "2020-01-01T00:00:00+00:00": datetime(2020, 1, 1, tzinfo=timezone.utc) } for input_value, expected_datetime in input_value_to_datetime.items(): inst = DateTimeWithValidations._from_openapi_data(input_value) assert inst.as_datetime == expected_datetime # value error is raised if an invalid string is passed in with self.assertRaisesRegex( petstore_api.ApiValueError, r"Value does not conform to the required ISO-8601 datetime format. Invalid value 'abcd' for type datetime at \('args\[0\]',\)" ): DateTimeWithValidations._from_openapi_data("abcd") # value error is raised if a date is passed in with self.assertRaisesRegex( petstore_api.ApiValueError, r"Value does not conform to the required ISO-8601 datetime format. Invalid value '2020-01-01' for type datetime at \('args\[0\]',\)" ): DateTimeWithValidations(date(2020, 1, 1)) # pattern checking with string input error_regex = r"Invalid value `2019-01-01T00:00:00Z`, must match regular expression `.+?` at \('args\[0\]',\)" with self.assertRaisesRegex( petstore_api.ApiValueError, error_regex ): DateTimeWithValidations._from_openapi_data("2019-01-01T00:00:00Z") # pattern checking with date input error_regex = r"Invalid value `2019-01-01T00:00:00`, must match regular expression `.+?` at \('args\[0\]',\)" with self.assertRaisesRegex( petstore_api.ApiValueError, error_regex ): DateTimeWithValidations(datetime(2019, 1, 1)) if __name__ == '__main__': unittest.main() ``` #### File: python-experimental/tests_manual/test_drawing.py ```python import sys import unittest import petstore_api from petstore_api.schemas import NoneClass from petstore_api.model import shape from petstore_api.model import shape_or_null from petstore_api.model.drawing import Drawing class TestDrawing(unittest.TestCase): """Drawing unit test stubs""" def setUp(self): pass def tearDown(self): pass def test_create_instances(self): """ Validate instance can be created """ inst = shape.Shape( shapeType="Triangle", triangleType="IsoscelesTriangle" ) from petstore_api.model.isosceles_triangle import IsoscelesTriangle assert isinstance(inst, IsoscelesTriangle) def test_deserialize_oneof_reference(self): """ Validate the scenario when the type of a OAS property is 'oneOf', and the 'oneOf' schema is specified as a reference ($ref), not an inline 'oneOf' schema. """ isosceles_triangle = shape.Shape( shapeType="Triangle", triangleType="IsoscelesTriangle" ) from petstore_api.model.isosceles_triangle import IsoscelesTriangle assert isinstance(isosceles_triangle, IsoscelesTriangle) from petstore_api.model.equilateral_triangle import EquilateralTriangle inst = Drawing( mainShape=isosceles_triangle, shapes=[ shape.Shape( shapeType="Triangle", triangleType="EquilateralTriangle" ), shape.Shape( shapeType="Triangle", triangleType="IsoscelesTriangle" ), shape.Shape( shapeType="Triangle", triangleType="EquilateralTriangle" ), shape.Shape( shapeType="Quadrilateral", quadrilateralType="ComplexQuadrilateral" ) ], ) assert isinstance(inst, Drawing) assert isinstance(inst.mainShape, IsoscelesTriangle) self.assertEqual(len(inst.shapes), 4) from petstore_api.model.complex_quadrilateral import ComplexQuadrilateral assert isinstance(inst.shapes[0], EquilateralTriangle) assert isinstance(inst.shapes[1], IsoscelesTriangle) assert isinstance(inst.shapes[2], EquilateralTriangle) assert isinstance(inst.shapes[3], ComplexQuadrilateral) # Validate we cannot assign the None value to mainShape because the 'null' type # is not one of the allowed types in the 'Shape' schema. err_msg = (r"Invalid inputs given to generate an instance of .+?Shape.+? " r"None of the oneOf schemas matched the input data.") with self.assertRaisesRegex( petstore_api.ApiValueError, err_msg ): inst = Drawing( # 'mainShape' has type 'Shape', which is a oneOf [triangle, quadrilateral] # So the None value should not be allowed and an exception should be raised. mainShape=None, ) """ we can't pass in an incorrect type for shapes 'shapes' items has type 'Shape', which is a oneOf [Triangle, Quadrilateral] composed schema. We are not able to assign Triangle tor Quadrilateral to a shapes item because those instances do not include Shape validation Shape could require additional validations that Triangle + Quadrilateral do not include """ from petstore_api.model.triangle import Triangle err_msg = (r"Incorrect type passed in, required type was <class 'petstore_api.model.shape.Shape'> " r"and passed type was <class 'petstore_api.schemas.DynamicSchema'> at " r"\('args\[0\]', 'shapes', 0\)") with self.assertRaisesRegex( petstore_api.ApiTypeError, err_msg ): inst = Drawing( mainShape=isosceles_triangle, shapes=[ Triangle( shapeType="Triangle", triangleType="EquilateralTriangle" ) ] ) def test_deserialize_oneof_reference_with_null_type(self): """ Validate the scenario when the type of a OAS property is 'oneOf', and the 'oneOf' schema is specified as a reference ($ref), not an inline 'oneOf' schema. Further, the 'oneOf' schema has a 'null' type child schema (as introduced in OpenAPI 3.1). """ # Validate we can assign the None value to shape_or_null, because the 'null' type # is one of the allowed types in the 'ShapeOrNull' schema. inst = Drawing( # 'shapeOrNull' has type 'ShapeOrNull', which is a oneOf [null, triangle, quadrilateral] shapeOrNull=None, ) assert isinstance(inst, Drawing) self.assertFalse('mainShape' in inst) self.assertTrue('shapeOrNull' in inst) self.assertTrue(isinstance(inst.shapeOrNull, NoneClass)) def test_deserialize_oneof_reference_with_nullable_type(self): """ Validate the scenario when the type of a OAS property is 'oneOf', and the 'oneOf' schema is specified as a reference ($ref), not an inline 'oneOf' schema. Further, the 'oneOf' schema has the 'nullable' attribute (as introduced in OpenAPI 3.0 and deprecated in 3.1). """ # Validate we can assign the None value to nullableShape, because the NullableShape # has the 'nullable: true' attribute. inst = Drawing( # 'nullableShape' has type 'NullableShape', which is a oneOf [triangle, quadrilateral] # and the 'nullable: true' attribute. nullableShape=None, ) assert isinstance(inst, Drawing) self.assertFalse('mainShape' in inst) self.assertTrue('nullableShape' in inst) self.assertTrue(isinstance(inst.nullableShape, NoneClass)) if __name__ == '__main__': unittest.main() ``` #### File: python-experimental/tests_manual/test_integer_enum_one_value.py ```python import sys import unittest import petstore_api from petstore_api.model.integer_enum_one_value import IntegerEnumOneValue class TestIntegerEnumOneValue(unittest.TestCase): """IntegerEnumOneValue unit test stubs""" def setUp(self): pass def tearDown(self): pass def testIntegerEnumOneValue(self): """Test IntegerEnumOneValue""" with self.assertRaises(TypeError): """ a value must be passed in We cannot auto assign values because that would break composition if received payloads included this with no inputs and we the 0 value to the data to the incoming payload One is not allowed to mutate incoming payloads because then: - order of composed schema ingestion matters - one can have default value collisions - the added data will make expected schemas not match payloads """ model = IntegerEnumOneValue() model = IntegerEnumOneValue(0) assert model == 0, "We can also pass in the value as a positional arg" # one cannot pass the value with the value keyword with self.assertRaises(TypeError): model = IntegerEnumOneValue(value=0) # one can pass in the enum value model = IntegerEnumOneValue(IntegerEnumOneValue.POSITIVE_0) if __name__ == '__main__': unittest.main() ``` #### File: python-experimental/tests_manual/test_number_with_validations.py ```python import sys import unittest import petstore_api from petstore_api.model.number_with_validations import NumberWithValidations class TestNumberWithValidations(unittest.TestCase): """NumberWithValidations unit test stubs""" def setUp(self): pass def tearDown(self): pass def testNumberWithValidations(self): """Test NumberWithValidations""" valid_values = [10.0, 15.0, 20.0] for valid_value in valid_values: model = NumberWithValidations(valid_value) assert model == valid_value value_error_msg_pairs = ( (9.0, r"Invalid value `9.0`, must be a value greater than or equal to `10` at \('args\[0\]',\)"), (21.0, r"Invalid value `21.0`, must be a value less than or equal to `20` at \('args\[0\]',\)"), ) for invalid_value, error_msg in value_error_msg_pairs: with self.assertRaisesRegex(petstore_api.ApiValueError, error_msg): NumberWithValidations(invalid_value) if __name__ == '__main__': unittest.main() ``` #### File: python-experimental/tests_manual/test_object_with_validations.py ```python import sys import unittest import petstore_api from petstore_api.model.object_with_validations import ObjectWithValidations class TestObjectWithValidations(unittest.TestCase): """ObjectWithValidations unit test stubs""" def setUp(self): pass def tearDown(self): pass def test_ObjectWithValidations(self): """Test ObjectWithValidations""" with self.assertRaisesRegex( petstore_api.ApiValueError, r"Invalid value `frozendict.frozendict\({}\)`, number of properties must be greater than or equal to `2` at \('args\[0\]',\)" ): ObjectWithValidations({}) with self.assertRaisesRegex( petstore_api.ApiValueError, r"Invalid value `frozendict.frozendict\({'a': 'a'}\)`, number of properties must be greater than or equal to `2` at \('args\[0\]',\)" ): # number of properties less than 2 fails model = ObjectWithValidations(a='a') # 2 or more properties succeeds model = ObjectWithValidations(a='a', b='b') model = ObjectWithValidations(a='a', b='b', c='c') if __name__ == '__main__': unittest.main() ``` #### File: python-legacy/test/test_format_test.py ```python from __future__ import absolute_import import unittest import datetime import petstore_api from petstore_api.models.format_test import FormatTest # noqa: E501 from petstore_api.rest import ApiException class TestFormatTest(unittest.TestCase): """FormatTest unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test FormatTest include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = petstore_api.models.format_test.FormatTest() # noqa: E501 if include_optional : return FormatTest( integer = 10, int32 = 20, int64 = 56, number = 32.1, float = 54.3, double = 67.8, decimal = 1, string = 'a', byte = 'YQ==', binary = bytes(b'blah'), date = datetime.datetime.strptime('1975-12-30', '%Y-%m-%d').date(), date_time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), uuid = '72f98069-206d-4f12-9f12-3d1e525a8e84', password = '<PASSWORD>', pattern_with_digits = '0480728880', pattern_with_digits_and_delimiter = 'image_480' ) else : return FormatTest( number = 32.1, byte = 'YQ==', date = datetime.datetime.strptime('1975-12-30', '%Y-%m-%d').date(), password = '<PASSWORD>', ) def testFormatTest(self): """Test FormatTest""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main() ``` #### File: python/tests_manual/test_composed_schema_with_props_and_no_add_props.py ```python import sys import unittest import petstore_api from petstore_api.model.tag import Tag globals()['Tag'] = Tag from petstore_api.model.composed_schema_with_props_and_no_add_props import ComposedSchemaWithPropsAndNoAddProps class TestComposedSchemaWithPropsAndNoAddProps(unittest.TestCase): """ComposedSchemaWithPropsAndNoAddProps unit test stubs""" def setUp(self): pass def tearDown(self): pass def testComposedSchemaWithPropsAndNoAddProps(self): """Test ComposedSchemaWithPropsAndNoAddProps""" inst = ComposedSchemaWithPropsAndNoAddProps(color='red') # ComposedSchemaWithPropsAndNoAddProps should only allow in the color property # once https://github.com/OpenAPITools/openapi-generator/pull/8816 lands # this will no longer work # TODO update the test then inst = ComposedSchemaWithPropsAndNoAddProps(color='red', id=1, name='foo') with self.assertRaises(petstore_api.ApiAttributeError): inst = ComposedSchemaWithPropsAndNoAddProps(color='red', id=1, name='foo', additional=5) if __name__ == '__main__': unittest.main() ``` #### File: python/tests_manual/test_mole.py ```python import sys import unittest from petstore_api.exceptions import ApiAttributeError import petstore_api try: from petstore_api.model import mole except ImportError: mole = sys.modules["petstore_api.model.mole"] class TestMole(unittest.TestCase): """Triangle unit test stubs""" def setUp(self): pass def tearDown(self): pass def testMole(self): # includes required parameters that are `readOnly=False` and not defined `readOnly` my_mole = mole.Mole(smell="dirt", hearing=False) assert my_mole.smell == "dirt" assert my_mole.hearing is False # includes required parameters that `readOnly=False`, an optional `readOnly=False` and not defined `readOnly` my_mole = mole.Mole(smell="dirt", taste="kfc", hearing=True) assert my_mole.smell == "dirt" assert my_mole.taste == "kfc" assert my_mole.hearing is True # includes required parameters that `readOnly=False`, and required not defined `readOnly`, and an optional not defined my_mole = mole.Mole(smell="dirt", seeing_ghosts=True, hearing=False) assert my_mole.smell == "dirt" assert my_mole.seeing_ghosts is True assert my_mole.hearing is False # passing in required readOnly parameters raises an exception with self.assertRaises(ApiAttributeError): mole.Mole(smell="dirt", hearing=False, blind=True) # passing in optional readOnly parameters raises an exception with self.assertRaises(ApiAttributeError): mole.Mole(smell="dirt", hearing=False, touch=True) # passing in required an optional parameters with readOnly true or false works with from_openapi_data my_mole = mole.Mole._from_openapi_data( smell="dirt", taste="kfc", blind=True, touch=False, hearing=True, seeing_ghosts=False, ) assert my_mole.smell == "dirt" assert my_mole.taste == "kfc" assert my_mole.blind is True assert my_mole.touch is False assert my_mole.hearing is True assert my_mole.seeing_ghosts is False if __name__ == "__main__": unittest.main() ```
{ "source": "jigarmehta1999/selenium", "score": 2 }
#### File: py/private/suite.bzl ```python load("@rules_python//python:defs.bzl", "py_library") load("//py/private:pytest.bzl", "pytest_test") def _is_test(file): return file.startswith("test_") or file.endswith("_tests.py") def py_test_suite(name, srcs, size = None, deps = None, python_version = None, imports = None, visibility = None, **kwargs): library_name = "%s-test-lib" % name py_library( name = library_name, testonly = True, srcs = srcs, deps = deps, imports = imports, ) tests = [] for src in srcs: if _is_test(src): test_name = "%s-%s" % (name, src) tests.append(test_name) pytest_test( name = test_name, size = size, srcs = [src], deps = [library_name], python_version = python_version, **kwargs, ) native.test_suite( name = name, tests = tests, visibility = visibility, ) ```
{ "source": "jigarparekh279/Machine_Learning_Projects", "score": 3 }
#### File: Machine_Learning_Projects/01_Seoul_Bike_Trip_Duration_Prediction/04_Model_Deployment.py ```python import numpy as np import joblib import os from sklearn.preprocessing import StandardScaler from tensorflow import keras import streamlit as st ######################################################################## # Capture the path on current folder on cloud curr_path = os.path.dirname(os.path.realpath(__file__)) feat_cols = ['Distance', 'Haversine', 'Phour', 'Pmin', 'Dhour', 'Dmin', 'Temp', 'Humid', 'Solar', 'Dust'] scalar = joblib.load('models/scalar.joblib') model = keras.models.load_model('models/ANN.h5') def predict_duration(attributes: np.ndarray): # Retrun bike trip duration value scaled_attributes = scalar.transform(attributes) print(scaled_attributes) pred = model.predict(scaled_attributes) return int(pred[0,0]) ######################################################################## st.set_page_config(page_title="Seoul Bike Trip Duration Prediction App", page_icon="🛴", layout="wide") with st.form("prediction_form"): st.header("Enter the Deciding Factors:") distance = st.number_input("Distance: ", value=8490, format="%d") haversine = st.number_input("Haversine: ", value=3.400058) phour = st.slider("Pickup Hour: ", 0, 23, value=19, format="%d") pmin = st.slider("Pickup Minute: ", 0, 59, value=14, format="%d") dhour = st.slider("Dropoff Hour: ", 0, 23, value=20, format="%d") dmin = st.slider("Dropoff Minute: ", 0, 59, value=12, format="%d") temp = st.number_input("Temp: ", value=8.8) humid = st.number_input("Humid: ", value= 49.0) solar = st.number_input("Solar: ", value=0.05) dust = st.number_input("Dust: ", value=27.0) submit_val = st.form_submit_button("Predict Duration") if submit_val: # If submit is pressed == True attributes = np.array([distance, haversine, phour, pmin, dhour, dmin, temp, humid, solar, dust]).reshape(1,-1) if attributes.shape == (1,10): print("Attributes are valid") value = predict_duration(attributes=attributes) st.header("Here are the results:") st.success(f"The Duration predicted is {value} mins") ```
{ "source": "jigartarpara/greenshine_customization", "score": 2 }
#### File: customization/lead/lead.py ```python import frappe from frappe.model.mapper import get_mapped_doc @frappe.whitelist() def make_survey_form(source_name, target_doc=None): target_doc = get_mapped_doc("Lead", source_name, {"Lead": { "doctype": "Survey Form", "field_map": { "name": "lead", "lead_name": "company_name", "company_name": "name_of_kitchen", "email_id": "email", "mobile_no": "mobile" } }}, target_doc) return target_doc ``` #### File: doctype/survey_form/survey_form.py ```python from __future__ import unicode_literals import frappe from frappe.model.document import Document class SurveyForm(Document): def onload(self): customer = frappe.get_value("Customer", {"lead_name" : self.lead},['name']) self.customer = customer ``` #### File: greenshine_customization/greenshine_customization/utils.py ```python import frappe def onload(doc, method): total = 0 total_month = 0 test = 0 for item in doc.items: total += item.total_year total_month += item.total_monthly test += item.amount doc.final_total = total doc.final_total_month = total_month doc.total = test ```
{ "source": "jigartarpara/realestate", "score": 2 }
#### File: doctype/realestate_partner/realestate_partner.py ```python from __future__ import unicode_literals import frappe from frappe.model.document import Document class RealEstatePartner(Document): def validate(self): if not self.shareholder: self.create_shareholder() def create_shareholder(self): if frappe.db.get_value("Shareholder", self.partner_name, "name"): shareholder = frappe.get_doc("Shareholder",self.partner_name) else: shareholder = frappe.get_doc({ "doctype": "Shareholder", "title": self.partner_name }) shareholder.save() self.shareholder = shareholder.name ```
{ "source": "jigartarpara/warranty_management_system", "score": 2 }
#### File: doctype/service_order/service_order.py ```python from __future__ import unicode_literals import frappe from frappe.model.document import Document class ServiceOrder(Document): def on_submit(self): if self.issue: issue = frappe.get_doc("Issue",self.issue) issue.status = "Warranty Claim Raised" issue.save(ignore_permissions=True) ```
{ "source": "jigarWala/ccr", "score": 2 }
#### File: ccr/ccr/CodeCompileRun.py ```python import logging from .client import * from .utility import supported_languages,supported_languages_extension from multiprocessing import Pool log = logging.getLogger("ccr.CodeCompileRun") class CCR: def __init__(self, source_file_path, input_file_path,lang=None): self.lang = lang try: self.ext = source_file_path.split(".")[-1] except Exception: log.warning("unable to get file extension from file {}".format(source_file_path)) try: self.source_code = self.read_file(source_file_path) if(input_file_path): self.input = self.read_file(input_file_path) else: self.input = None except Exception as e: log.critical('Exception occured at CCR init {}'.format(e)) raise e id = None found_id = False if(lang): try: self.id = supported_languages[lang] found_id = True except KeyError: raise Exception("{} is not a supported language\nccr --help".format(lang)) if(not found_id): try: self.id = supported_languages_extension[self.ext] except KeyError: raise Exception("{} is not a supported extension, use -l to specify language explicitly\nccr --help for more".format(self.ext)) self.clients = [CodechefClient(), GeeksForGeeksClient()] def read_file(self, file): content = '' try: with open(file) as f: content = f.read() except Exception: raise IOError("Unable to read file {}".format(file)) return content def execute(self): try: n = len(self.clients) args = (self.source_code, self.input, self.id) targets = map(lambda client : client.run,self.clients) with Pool(processes=2) as pool: rs = [] for target in targets: rs.append(pool.apply_async(target, args= args)) clients_result_ids = set() done = False while len(clients_result_ids) < n and not done: for i in range(len(rs)): r = rs[i] if r.ready(): ans = r.get() if ans: print(ans) done = True break else: clients_result_ids.add(i) except Exception as e: log.error("something went wrong in execute method : {}".format(e)) raise e ``` #### File: ccr/ccr/utility.py ```python import requests import pickle from os import path from pkg_resources import resource_filename codechefs_languages_map = dict() # leetcodes_supported_languages = ["cpp", "java", "python", "python3", "c", "csharp", "javascript", "ruby", "swift", "kotlin", "scala", "bash", "go"] leetcodes_languages_map = dict() # geeksforgeeks_supported_languages = ["Python", "Python3", "Cpp", "Cpp14", "Java", "Csharp", "C", "Php", "Scala", "Perl"] geeksforgeeks_languages_map = dict() supported_languages = dict() supported_languages_extension = dict() def set_codechefs_languages_mapping(id, lang_code): """ codechef uses lang_code for languages to identify which interpreter/compiler to use """ # for python language --lang not set then detection by extension(.py) for different python2,python3,pypy,pypy_3 Maps to pypy_3 (id = 48) codechefs_languages_map[id] = lang_code def set_geeksforgeeks_language_mapping(id, geekslang): geeksforgeeks_languages_map[id] = geekslang def set_leetcodes_language_mapping(id, leetslang): leetcodes_languages_map[id] = leetslang def load_supported_languages(): """ codeched has extensive range of languages so using it as base for all supported languages by ccr """ response = requests.get('https://www.codechef.com/api/ide/undefined/languages/all').json() id = 1 for lang_code, payload in response['languages'].items(): lang = "_".join(payload['full_name'].lower().split()) # print(lang) supported_languages[lang] = id supported_languages_extension[payload['extension']] = id geekslang = leetslang = None # map codechef's supported languages to other OJ clients if lang == 'c++14': geekslang = 'Cpp14' leetslang = 'cpp' elif lang == 'java': geekslang = 'Java' leetslang = 'java' elif lang == 'python' or lang =="pypy": geekslang = "Python" leetslang = "python" elif lang == 'python3' or lang == 'pypy_3': geekslang = "Python3" leetslang = "python3" elif lang == 'c': geekslang = 'C' leetslang = 'c' elif lang == 'c#': geekslang = 'Csharp' leetslang = 'csharp' elif lang == 'scala': geekslang = 'Scala' leetslang = 'scala' elif lang == 'php': geekslang = 'Php' elif lang == 'perl': geekslang = 'Perl' elif lang == 'go': leetslang = 'go' elif lang == 'swift': leetslang = 'swift' elif lang == 'ruby': leetslang = 'ruby' elif lang == 'kotlin': leetslang = 'kotlin' elif lang == 'bash': leetslang = 'bash' if geekslang: set_geeksforgeeks_language_mapping(id, geekslang) if leetslang: set_leetcodes_language_mapping(id, leetslang) set_codechefs_languages_mapping(id, payload['id']) id += 1 def dump_pickle(path,data): try: with open(path,"wb") as f: pickle.dump(data,f) except Exception as e: raise e def load_pickle(path): try: with open(path,"rb") as f: data = pickle.load(f) return data except Exception as e: raise e # delete pickle if new language added in codechef api try: #during devlopment use this # sl_path = path.join(path.dirname(path.realpath(__file__)),"pickle/supported_languages.pickle") # sle_path = path.join(path.dirname(path.realpath(__file__)),"pickle/supported_languages_extension.pickle") # clm_path = path.join(path.dirname(path.realpath(__file__)),"pickle/codechefs_languages_map.pickle") # glm_path = path.join(path.dirname(path.realpath(__file__)),"pickle/geeksforgeeks_languages_map.pickle") #for packaging use below sl_path = resource_filename("ccr","pickle/supported_languages.pickle") sle_path = resource_filename("ccr","pickle/supported_languages_extension.pickle") clm_path = resource_filename("ccr","pickle/codechefs_languages_map.pickle") glm_path = resource_filename("ccr","pickle/geeksforgeeks_languages_map.pickle") supported_languages = load_pickle(sl_path) supported_languages_extension = load_pickle(sle_path) codechefs_languages_map = load_pickle(clm_path) geeksforgeeks_languages_map = load_pickle(glm_path) except Exception: load_supported_languages() try: dump_pickle(sl_path,supported_languages) dump_pickle(sle_path,supported_languages_extension) dump_pickle(clm_path,codechefs_languages_map) dump_pickle(glm_path,geeksforgeeks_languages_map) except Exception: print("unable to dump pickle data..") def supported_language_cli_output_maker(): """ get the output and cut paste in cli.py """ count = 0 for i in supported_languages: print("- "+i, end="\t") count+=1 if(count == 3): print() count = 0 # print(supported_languages) # print(supported_languages_extension) # print(codechefs_languages_map) # print(geeksforgeeks_languages_map) ```
{ "source": "jigarWala/Hackerrank", "score": 3 }
#### File: __algorithms/warmup/a-very-big-sum.py ```python def list_ip(): return list(map(int,input().strip().split(' '))) input() print(sum(list_ip())) ```
{ "source": "jigarWala/tinyurl", "score": 3 }
#### File: jigarWala/tinyurl/shortner.py ```python import sqlite3 import os PATH = "C:\\Users\\jigar\\Desktop\\shortner\\tinyurls.db" def create_db(): con = sqlite3.connect(PATH) query = """ create table if not exists mappings(id integer PRIMARY KEY AUTOINCREMENT, url varchar, shorturl varchar) """ con.execute(query) con.commit() con.close() def insert_entry(url,shorturl): con = sqlite3.connect(PATH) query = """ insert into mappings(url,shorturl) values(?,?) """ con.execute(query,(url,shorturl)) con.commit() con.close() def cleanup(): con = sqlite3.connect(PATH) query = """ delete from mappings;""" con.execute(query) query = "delete from sqlite_sequence where name='mappings';" con.execute(query) con.commit() con.close() charmaps = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" n = len(charmaps) def shorten(url): con = sqlite3.connect(PATH) cur = con.cursor() cur.execute("select count(*) from mappings") id = cur.fetchone()[0] if id is None: id = 1 else: id += 1 shorturl = "" while id>0: # only seven characters so ignoring performance loss due to immutability shorturl += charmaps[id%n] id//=n; shorturl = shorturl[::-1] shorturl = f"jig.lu/{shorturl}" insert_entry(url,shorturl) return shorturl def elate(shorturl): # jig.lu/GHhh90 shorturl = shorturl[7:] id = 0 for i in shorturl: ascii = ord(i) if ascii >= ord('A') and ascii <= ord('Z'): idx = ascii - ord('A') elif ascii >= ord('a') and ascii <= ord('z'): idx = ascii - ord('a') + 26 elif ascii >= ord('0') and ascii <= ord('9'): idx = ascii - ord('0') +26 + 26 else : raise Error('oopsie') id = id*n + idx # print(id) con = sqlite3.connect(PATH) cur = con.cursor() cur.execute("select * from mappings where id = ?",(id,)) url = cur.fetchone() if url is None: print(f"yeh none \n {shorturl} {id}") con.close() return url[1] if not os.path.exists(PATH): create_db() ```
{ "source": "jigglepuff/StlOpenDataEtl", "score": 3 }
#### File: StlOpenDataEtl/etl/fetcher_response.py ```python class FetcherResponse: name = '' source = '' payload = None error = None def __init__(self, name, payload, source, error): self.name = name self.payload = payload self.source = source self.error = error def __repr__(self): return str(self.to_dict()) def to_dict(self): return { 'name': self.name, 'payload': self.payload, 'source': self.source, 'error': self.error } ```
{ "source": "jigglequack/Riddle-Me-This", "score": 3 }
#### File: jigglequack/Riddle-Me-This/generateRiddles.py ```python from bs4 import BeautifulSoup import requests import difflib def getRiddle() -> dict: '''Returns a dict of a riddle and its answer if the answer is two words or less''' page_link = 'https://riddles.fyi/random-riddles/' page_response = requests.get(page_link, timeout=5) page_content = BeautifulSoup(page_response.content, "html.parser") riddle_find = page_content.find("a", class_ = "query-title-link") riddle = str(riddle_find.text) answer_find = page_content.find("div", class_ = "su-spoiler-content su-clearfix") answer = str(answer_find.text) if len(answer.split()) > 3: return getRiddle() else: riddle_dict = {"Riddle": riddle, "Answer": answer} return riddle_dict #def test_outputs() -> str: # x = getRiddle() # for r in x.values(): # print(r) print(getRiddle()) def allRiddles(ridict: dict, rounds: int) -> dict: '''Returns a dict with different riddles and no duplicates enough for however many rounds''' riddle = getRiddle() if len(ridict) == 0: ridict[riddle["Riddle"]] = riddle["Answer"] if len(ridict) == rounds: return ridict else: for key,value in riddle.items(): if value in ridict.values(): return allRiddles(ridict,rounds) else: ridict[riddle["Riddle"]] = riddle["Answer"] return allRiddles(ridict,rounds) #def test_outputs2() -> str: # x = allRiddles(dict(),100) # for i in x.values(): # print(i) def correctAnswer(correct_input: str, user_input: str): '''Returns true if a user's input is correct''' user_list = [user_input] correct_input = correct_input.lower() correct = difflib.get_close_matches(correct_input, user_list,1,0.8) if len(correct) > 0: #print("True") return True else: #print("False") return False #correctAnswer("TO GET to the OTHER side", "togettotheotherside") ```
{ "source": "jiggls/studyingpython", "score": 4 }
#### File: jiggls/studyingpython/war.py ```python import random import time import math class Timer(object): counter = 0 class Fighter(object): # parent class counter = 0 hp = 100 maxhp = 100 name = '' ap = 1 armor = 10 def __init__(self, hp, name, ap=1, armor=10, count=None): self.hp = hp self.maxhp = hp self.name = name self.ap = ap self.armor = armor self.count = count def attack(self, damage): damage = damage - ((damage * self.armor) // 100) self.hp = self.hp - damage def get_ap(self): return self.ap def __repr__(self): # print(self.__class__.mro()) return self.get_name() + ': ' + str(self.get_hp()) def is_fullhp(self): # if self.hp == self.maxhp:#можно так # return True # else: # return False return self.hp == self.maxhp # а можно так class Getters(): def get_hp(self): return self.hp def get_armor(self): return self.armor def get_name(self): return self.name class Nameforpriest(): def __repr__(self): return 'HEALER ' + self.get_name() + ': ' + str(self.get_hp()) class Warrior(Fighter, Getters): def get_ap(self): return int(self.ap * random.random()) class Champion(Fighter, Getters): def get_ap(self): if random.random() > 0.25: return self.ap else: print(self.name, ' champion have critical attack') return self.ap * 2 class Captain(Fighter, Getters): def attack(self, damage): a = input(f'what {self.name} should do? if 1 then shield for 10 turns, damage :{damage}') if a == '1': self.counter = self.count.counter return if damage > 30: super().attack(damage) def get_ap(self): if self.count.counter <= self.counter + 10: return 0 else: return super().get_ap() class Healer(Nameforpriest, Fighter, Getters): mana = 100 maxmana = 100 def heal(self, items): currentcounter = self.count.counter sec = currentcounter - self.counter manareg = sec * 2 self.mana += manareg if self.mana > self.maxmana: self.mana = self.maxmana target = items[0] for i in items: if i.get_hp() < target.get_hp() and not target.is_fullhp(): target = i print('healer status ', target.is_fullhp(), self.mana) if not target.is_fullhp() and self.mana >= 20: hp = target.get_hp() + 30 self.mana -= 20 if hp > target.maxhp: hp = target.maxhp target.hp = hp print('HEALER ', self.name, ' target: ', target.name, ' new hp: ', target.hp) self.counter = self.count.counter count = Timer() orcs = [] humans = [] for i in range(15): orc = Warrior(120, 'orc barbarian' + str(i), ap=50, armor=0, count=count) orcs.append(orc) orcchampion = Champion(160, "orgrim champion" + str(i), ap=80, armor=0, count=count) orcs.append(orcchampion) orcchampion = Champion(160, "zak-zak champion" + str(i), ap=80, armor=0, count=count) orcs.append(orcchampion) orcchampion = Champion(160, "samuro champion" + str(i), ap=85, armor=0, count=count) orcs.append(orcchampion) orchero = Captain(480, "rexxar hero" + str(i), ap=200, armor=10, count=count) orcs.append(orchero) orchealer = Healer(100, "druid healer", ap=0, armor=50, count=count) orcs.append(orchealer) orchealer = Healer(100, "druid healer", ap=0, armor=50, count=count) orcs.append(orchealer) for i in range(10): human = Warrior(100, 'human soldier' + str(i), ap=40, armor=20, count=count) humans.append(human) humanchampion = Champion(160, "varian champion" + str(i), ap=75, armor=30, count=count) humans.append(humanchampion) humanchampion = Champion(160, "anduin champion" + str(i), ap=75, armor=25, count=count) humans.append(humanchampion) humanchampion = Champion(160, "sedogriv champion" + str(i), ap=90, armor=0, count=count) humans.append(humanchampion) humanhero = Captain(400, "lotar hero" + str(i), ap=160, armor=40, count=count) humans.append(humanhero) humanhealer = Healer(100, "priest healer", ap=0, armor=50, count=count) humans.append(humanhealer) humanhealer = Healer(100, "priest healer", ap=0, armor=50, count=count) humans.append(humanhealer) print(orcs) print(humans) while orcs and humans: count.counter += 1 time.sleep(1) if random.random() > 0.5: # unit2.attack(20) # print('unit1 attacks unit2') # print('unit2 have', unit2.get_hp()) attackers = orcs victims = humans else: # unit1.attack(20) # print('unit2 attacks unit1') # print('unit1 have', unit1.get_hp()) attackers = humans victims = orcs attacker = random.choice(attackers) victim = random.choice(victims) if type(attacker) is Healer: attacker.heal(attackers) else: ap = attacker.get_ap() victim.attack(ap) print('unit ', attacker.get_name(), ' attacks ', victim.get_name(), ' via ap ', ap, ' victim hp = ', victim.get_hp()) if victim.get_hp() <= 0: print(victim.get_name(), ' have died') victims.remove(victim) print(orcs) print(humans) # if unit1.get_hp() > 0: # print('unit1 win,he have ',unit1.get_hp()) # else: # print ('unit2 win,he have ',unit2.get_hp()) ```
{ "source": "jiggylepcha/pronto", "score": 3 }
#### File: pronto/parsers/obo.py ```python import os import fastobo from .base import BaseParser from ._fastobo import FastoboParser class OboParser(FastoboParser, BaseParser): @classmethod def can_parse(cls, path, buffer): return buffer.lstrip().startswith((b"format-version:", b"[Term", b"[Typedef")) def parse_from(self, handle): # Load the OBO document through an iterator using fastobo doc = fastobo.iter(handle) # Extract metadata from the OBO header and resolve imports self.ont.metadata = self.extract_metadata(doc.header()) self.ont.imports.update( self.process_imports( self.ont.metadata.imports, self.ont.import_depth, os.path.dirname(self.ont.path or str()), self.ont.timeout, ) ) # Extract frames from the current document. try: for frame in doc: if isinstance(frame, fastobo.term.TermFrame): self.enrich_term(frame) elif isinstance(frame, fastobo.typedef.TypedefFrame): self.enrich_relationship(frame) except SyntaxError as s: location = self.ont.path, s.lineno, s.offset, s.text raise SyntaxError(s.args[0], location) from None ``` #### File: pronto/pronto/pv.py ```python import functools import fastobo from .utils.meta import roundrepr, typechecked class PropertyValue(object): """A property-value, which adds annotations to an entity. """ property: str __slots__ = ("__weakref__", "property") @roundrepr @functools.total_ordering class LiteralPropertyValue(PropertyValue): """A property-value which adds a literal annotation to an entity. """ literal: str datatype: str __slots__ = ("literal", "datatype") @typechecked() def __init__(self, property: str, literal: str, datatype: str = "xsd:string"): """Create a new `LiteralPropertyValue` instance. Arguments: property (str): The annotation property, as an OBO identifier. literal (str): The serialized value of the annotation. datatype (str): The datatype of the annotation property value. Defaults to `xsd:string`. """ self.property = str(fastobo.id.parse(property)) self.literal = literal self.datatype = str(fastobo.id.parse(datatype)) def __eq__(self, other: object) -> bool: if isinstance(other, LiteralPropertyValue): return ( self.property == other.property and self.literal == other.literal and self.datatype == other.datatype ) return False def __lt__(self, other: object) -> bool: if isinstance(other, LiteralPropertyValue): return (self.property, self.literal, self.datatype) < ( other.property, other.literal, other.datatype, ) elif isinstance(other, ResourcePropertyValue): return self.property < other.property else: return NotImplemented def __hash__(self) -> int: return hash((LiteralPropertyValue, self.property, self.literal, self.datatype)) @roundrepr @functools.total_ordering class ResourcePropertyValue(PropertyValue): """A property-value which adds a resource annotation to an entity. """ resource: str __slots__ = ("resource",) @typechecked() def __init__(self, property: str, resource: str): """Create a new `ResourcePropertyValue` instance. Arguments: property (str): The annotation property, as an OBO identifier. resource (str): The annotation entity value, as an OBO identifier. """ self.property = str(fastobo.id.parse(property)) self.resource = str(fastobo.id.parse(resource)) def __eq__(self, other: object) -> bool: if isinstance(other, ResourcePropertyValue): return (self.property, self.resource) == (other.property, other.resource) return False def __lt__(self, other: object) -> bool: if isinstance(other, ResourcePropertyValue): return (self.property, self.resource) < (other.property, other.resource) elif isinstance(other, LiteralPropertyValue): return self.property < other.property else: return NotImplemented def __hash__(self) -> int: return hash((LiteralPropertyValue, self.property, self.resource)) ``` #### File: pronto/utils/iter.py ```python from collections.abc import Sized from typing import TypeVar, Generic, Iterator S = TypeVar("S") T = TypeVar("T") class SizedIterator(Generic[T], Iterator[T], Sized): """A wrapper for iterators which lengths is known in advance. """ def __init__(self, it: Iterator[T], length: int): self._it = it self._length = length def __len__(self) -> int: return self._length def __length_hint__(self) -> int: return self._length def __iter__(self: S) -> S: return self def __next__(self) -> T: val = next(self._it) self._length -= 1 return val ``` #### File: pronto/tests/test_ontology.py ```python import os import sys import pickle import unittest import warnings import pronto from pronto.logic.lineage import Lineage from .utils import DATADIR class TestOntology(unittest.TestCase): @classmethod def setUpClass(cls): warnings.simplefilter('error') warnings.simplefilter('ignore', category=UnicodeWarning) cls.file = open(os.path.join(DATADIR, "ms.obo"), "rb") cls.ms = pronto.Ontology(cls.file) @classmethod def tearDownClass(cls): cls.file.close() warnings.simplefilter(warnings.defaultaction) def test_inheritance_caching(self): ont = pronto.Ontology() self.assertEqual(ont._inheritance, {}) t1 = ont.create_term("TST:001") self.assertEqual(ont._inheritance, {t1.id: Lineage()}) t2 = ont.create_term("TST:002") self.assertEqual(ont._inheritance, {t1.id: Lineage(), t2.id: Lineage()}) t2.relationships = { ont["is_a"]: [t1] } self.assertEqual(ont._inheritance, { t1.id: Lineage(sub={t2.id}), t2.id: Lineage(sup={t1.id}) }) t2.relationships = {} self.assertEqual(ont._inheritance, {t1.id: Lineage(), t2.id: Lineage()}) class TestPickling(object): @classmethod def setUpClass(cls): warnings.simplefilter('error') warnings.simplefilter('ignore', category=UnicodeWarning) cls.file = open(os.path.join(DATADIR, "ms.obo"), "rb") cls.ms = pronto.Ontology(cls.file) @classmethod def tearDownClass(cls): cls.file.close() warnings.simplefilter(warnings.defaultaction) # ------------------------------------------------------------------------ def _test_memory_pickling(self, protocol): ont = pronto.Ontology() t1 = ont.create_term("TST:001") t1.name = "<NAME>" pickled = pickle.dumps(ont, protocol=protocol) unpickled = pickle.loads(pickled) self.assertEqual(ont.keys(), unpickled.keys()) self.assertEqual(ont["TST:001"], unpickled["TST:001"]) self.assertEqual(ont["TST:001"].name, unpickled["TST:001"].name) def test_memory_pickling_3(self): self._test_memory_pickling(3) def test_memory_pickling_4(self): self._test_memory_pickling(4) @unittest.skipIf(sys.version_info < (3, 8), "protocol 5 requires Python 3.8+") def test_memory_pickling_5(self): self._test_memory_pickling(5) # ------------------------------------------------------------------------ def _test_file_pickling(self, protocol): pickled = pickle.dumps(self.ms, protocol=protocol) unpickled = pickle.loads(pickled) self.assertEqual(self.ms.keys(), unpickled.keys()) for key in self.ms.keys(): term_ms, term_pickled = self.ms[key]._data(), unpickled[key]._data() for attr in term_ms.__annotations__: attr_ms = getattr(term_ms, attr) attr_pickled = getattr(term_pickled, attr) self.assertEqual(attr_ms, attr_pickled) def test_file_pickling_3(self): self._test_file_pickling(3) def test_file_pickling_4(self): self._test_file_pickling(4) @unittest.skipIf(sys.version_info < (3, 8), "protocol 5 requires Python 3.8+") def test_file_pickling_5(self): self._test_file_pickling(5) ```
{ "source": "jigi-33/wemake-python-styleguide", "score": 3 }
#### File: test_statements/test_parameters_indentation/test_function_indentation.py ```python import pytest from wemake_python_styleguide.compat.constants import PY38 from wemake_python_styleguide.visitors.ast.statements import ( ParametersIndentationViolation, WrongParametersIndentationVisitor, ) # Correct: correct_single_line_function = 'def test(arg, *args, kw, **kwargs): ...' correct_multi_line_function = """ def test( arg, *args, kw, **kwargs, ): ... """ correct_multi_line_function_with_posonly = """ def test( arg1, /, arg2, *args, kw, **kwargs, ): ... """ correct_multi_line_function_with_defaults = """ def test( arg1, arg2=True, *args, kw1, kw2=True, **kwargs, ): ... """ correct_next_line_function = """ def test( arg, *args, kw, **kwargs, ): ... """ # Wrong: wrong_function_indentation1 = """ def test(arg, *args, kw, **kwargs): ... """ wrong_function_indentation2 = """ def test(arg, *args, kw, **kwargs): ... """ wrong_function_indentation3 = """ def test(arg, *args, kw, **kwargs): ... """ wrong_function_indentation4 = """ def test( arg, *args, kw, **kwargs, ): ... """ wrong_function_indentation5 = """ def test( arg, *args, kw, **kwargs, ): ... """ wrong_function_indentation6 = """ def test( arg, *args, kw, **kwargs, ): ... """ wrong_function_indentation7 = """ def test( arg, *args, kw, **kwargs, ): ... """ wrong_function_indentation8 = """ def test( arg1, /, arg2, *args, kw, **kwargs, ): ... """ @pytest.mark.parametrize('code', [ correct_single_line_function, correct_multi_line_function, correct_multi_line_function_with_defaults, correct_next_line_function, pytest.param( correct_multi_line_function_with_posonly, marks=pytest.mark.skipif(not PY38, reason='posonly appeared in 3.8'), ), ]) def test_correct_function_indentation( assert_errors, parse_ast_tree, code, default_options, ): """Testing that correctly indented functions work.""" tree = parse_ast_tree(code) visitor = WrongParametersIndentationVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize('code', [ wrong_function_indentation1, wrong_function_indentation2, wrong_function_indentation3, wrong_function_indentation4, wrong_function_indentation5, wrong_function_indentation6, wrong_function_indentation7, pytest.param( wrong_function_indentation8, marks=pytest.mark.skipif(not PY38, reason='posonly appeared in 3.8'), ), ]) def test_wrong_function_indentation( assert_errors, parse_ast_tree, code, default_options, ): """Testing that poorly indented functions do not work.""" tree = parse_ast_tree(code) visitor = WrongParametersIndentationVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ParametersIndentationViolation]) ```
{ "source": "jigiciak/noise_reduction", "score": 3 }
#### File: jigiciak/noise_reduction/create_dataset.py ```python import os import numpy as np from signal_utils import save_audio from signal_utils import audio_files_to_numpy from signal_utils import blend_voice_with_noise from signal_utils import numpy_audio_to_matrix_spectrogram import argparse def make_dir(path): try: os.makedirs(path) except OSError: print("Creation of the directory %s failed" % path) else: print("Successfully created the directory %s " % path) def prepare_folders(): make_dir('./data/train/timeseries/') make_dir('./data/train/combined_sound/') make_dir('./data/train/spectogram/') make_dir('./data/test/timeseries/') make_dir('./data/test/combined_sound/') make_dir('./data/test/spectogram/') def create_data_from_folder(data_type, nb_samples=1000): clean_voice_path = f"./data/{data_type}/clean_voice/" noise_path = f"./data/{data_type}/noise/" output_timeseries_path = f"./data/{data_type}/timeseries/" output_sound_path = f"./data/{data_type}/combined_sound/" output_spectogram = f"./data/{data_type}/spectogram/" create_data(clean_voice_path, noise_path, output_timeseries_path, output_sound_path, output_spectogram, nb_samples=nb_samples) def create_data(clean_voice_path, noise_path, output_timeseries_path, output_sound_path, output_spectogram_path, sample_rate=8000, min_duration=1.0, frame_length=8064, jump_length_frame=8064, jump_length_frame_noise=5000, nb_samples=1000, n_fft=255, jump_length_fft=63): list_noise_files = os.listdir(noise_path) list_voice_files = os.listdir(clean_voice_path) # Convert signals to numpy arrays noise = audio_files_to_numpy(noise_path, list_noise_files, sample_rate, frame_length, jump_length_frame_noise, min_duration) voice = audio_files_to_numpy(clean_voice_path, list_voice_files, sample_rate, frame_length, jump_length_frame, min_duration) # Blending clean voice with noises (data augmentation) prod_voice, prod_noise, prod_noisy_voice = blend_voice_with_noise( voice, noise, nb_samples, frame_length) # Save generated sounds noisy_voice_long = prod_noisy_voice.reshape(1, nb_samples * frame_length) save_audio(output_sound_path + 'noisy_voice_long.wav', noisy_voice_long[0, :], sample_rate) voice_long = prod_voice.reshape(1, nb_samples * frame_length) save_audio(output_sound_path + 'voice_long.wav', voice_long[0, :], sample_rate) noise_long = prod_noise.reshape(1, nb_samples * frame_length) save_audio(output_sound_path + 'noise_long.wav', noise_long[0, :], sample_rate) # Spectrogram dimensions spectrogram_dimension = int(n_fft / 2) + 1 # Create spectrograms m_amp_db_voice, m_pha_voice = numpy_audio_to_matrix_spectrogram( prod_voice, spectrogram_dimension, n_fft, jump_length_fft) m_amp_db_noise, m_pha_noise = numpy_audio_to_matrix_spectrogram( prod_noise, spectrogram_dimension, n_fft, jump_length_fft) m_amp_db_noisy_voice, m_pha_noisy_voice = numpy_audio_to_matrix_spectrogram( prod_noisy_voice, spectrogram_dimension, n_fft, jump_length_fft) # Save to disk for training/testing np.save(output_timeseries_path + 'voice_timeserie', prod_voice) np.save(output_timeseries_path + 'noise_timeserie', prod_noise) np.save(output_timeseries_path + 'noisy_voice_timeserie', prod_noisy_voice) np.save(output_spectogram_path + 'voice_amp_db', m_amp_db_voice) np.save(output_spectogram_path + 'noise_amp_db', m_amp_db_noise) np.save(output_spectogram_path + 'noisy_voice_amp_db', m_amp_db_noisy_voice) np.save(output_spectogram_path + 'voice_pha_db', m_pha_voice) np.save(output_spectogram_path + 'noise_pha_db', m_pha_noise) np.save(output_spectogram_path + 'noisy_voice_pha_db', m_pha_noisy_voice) if __name__ == '__main__': prepare_folders() parser = argparse.ArgumentParser(description='Prepare test or train dataset') parser.add_argument('--test', action='store_true') parser.add_argument('--train', action='store_true') parser.add_argument('--nb_samples', type=int, default=1000) args = parser.parse_args() test_flag = args.test train_flag = args.train nb_samples = args.nb_samples if test_flag: print("Creating test dataset") create_data_from_folder("test", nb_samples=nb_samples) if train_flag: print("Creating train dataset") create_data_from_folder("train", nb_samples=nb_samples) ``` #### File: jigiciak/noise_reduction/test_prediction.py ```python from prediction_denoise import prediction def predict(name_model='model_unet', audio_input_prediction='noisy_voice_bells28.wav', audio_output_prediction='val_voice_bells28.wav', sr=8000): # Example: python main.py --mode="prediction" # path to find pre-trained weights / save models weights_path = './data/weights' # pre trained model name_model = name_model # directory where read noisy sound to denoise audio_dir_prediction = './data/validation/noisy_voice' # directory to save the denoise sound dir_save_prediction = './data/validation/save_predictions/' # Name noisy sound file to denoise audio_input_prediction = [audio_input_prediction] # Name of denoised sound file to save audio_output_prediction = audio_output_prediction # Sample rate to read audio sample_rate = sr # Minimum duration of audio files to consider min_duration = 1.0 # Frame length for training data frame_length = 8064 # hop length for sound files hop_length_frame = 8064 # nb of points for fft(for spectrogram computation) n_fft = 255 # hop length for fft # hop_length_fft = 63 hop_length_fft = 63 prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction, audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft) if __name__ == '__main__': predict() ```
{ "source": "jigillespie/fonttools-utils", "score": 3 }
#### File: fonttools-utils/mac-os-x-system-font-replacer/MacOSXSystemFontReplacer.py ```python VERSION = "1.1" """MacOSXSystemFontReplacer.py Version %(version)s Copyright (c) 2015 by <NAME> <<EMAIL>> Licensed under the Apache 2 license. """ % {"version": VERSION} import argparse import os import os.path import fontTools.ttLib import subprocess parser = argparse.ArgumentParser() parser.description = """With %(prog)s v""" + VERSION + """, you can replace your system UI fonts of Mac OS X 10.10 Yosemite with any fonts of your choice. You can supply any fonts to the tool as long as they have filenames in a format that the tool expects. Please run %(prog)s -H for the exact file names you should provide. The tool is 'safe' i.e. it does not modify the original system UI fonts. Instead, it writes patched versions of the fonts you provide into the System library folder, but you can easily uninstall those later manually or using the tool itself. """ parser.add_argument("-i", "--input-folder", help="path to folder with your input font files, default is %(default)s", default=os.getcwd() ) parser.add_argument("-s", "--font-size", help="scale the relative font size in %%, default is %(default)s, use a higher value such as 105 to optically increase your patched UI fonts", type=int, default=100 ) parser.add_argument("-o", "--output-folder", help="custom path to folder where your patched fonts will be installed, default is %(default)s and you should run the tool as: sudo %(prog)s", default="/Library/Fonts/" ) parser.add_argument("-H", "--help-more", help="print the file names that the tool expects to find in the -i INPUT_FOLDER", action="store_true", default=False ) parser.add_argument("-u", "--uninstall", help="uninstall previously patched fonts from system folder or the -o OUTPUT_FOLDER", action="store_true", default=False ) parser.add_argument("-c", "--no-reset-caches", help="do not reset OS X font caches (useful if you are testing and using a custom -o OUTPUT_FOLDER)", action="store_true", default=True ) parser.add_argument("-t", "--system-ttc", help="custom path to %(default)s (which may be different from current default in future versions of OS X)", default="/System/Library/Fonts/HelveticaNeueDeskInterface.ttc" ) args = parser.parse_args() def patchFont(ttcPath, fontNumber, inFolder, outFolder, help, fontScale, uninstall): success = False try: ttxIn = fontTools.ttLib.TTFont(ttcPath, fontNumber=fontNumber) except fontTools.ttLib.TTLibError: ttxIn = None if ttxIn: fontName = "" nameRecord = ttxIn["name"].getName(4, 1, 0, 0) if nameRecord: fontName = nameRecord.string else: nameRecord = ttxIn["name"].getName(4, 0, 3, 0) if nameRecord: fontName = unicode( nameRecord.string, 'utf-16-be').encode('utf-8') if help: print('"%s.otf"' % fontName) elif uninstall: fontPathOut = os.path.join(outFolder, "%s.otf" % (fontName)) if os.path.exists: try: os.remove(fontPathOut) print("Uninstalled: %s" % (fontPathOut)) success = True except: print( "Cannot uninstall: %s (try running tool with 'sudo'!)" % (fontPathOut)) else: fontPath = os.path.join(inFolder, "%s.otf" % (fontName)) if os.path.exists(fontPath): ttxOut = fontTools.ttLib.TTFont(fontPath) scaleFactor = ( float(ttxOut["head"].unitsPerEm)/ttxIn["head"].unitsPerEm)/fontScale ttxOut[ "OS/2"].sTypoAscender = int(ttxIn["OS/2"].sTypoAscender * scaleFactor + 0.5) ttxOut[ "OS/2"].sTypoDescender = int(ttxIn["OS/2"].sTypoDescender * scaleFactor + 0.5) ttxOut[ "OS/2"].sTypoLineGap = int(ttxIn["OS/2"].sTypoLineGap * scaleFactor + 0.5) ttxOut[ "OS/2"].usWinAscent = int(ttxIn["OS/2"].usWinAscent * scaleFactor + 0.5) ttxOut[ "OS/2"].usWinDescent = int(ttxIn["OS/2"].usWinDescent * scaleFactor + 0.5) ttxOut["hhea"].ascent = int( ttxIn["hhea"].ascent * scaleFactor + 0.5) ttxOut["hhea"].descent = int( ttxIn["hhea"].descent * scaleFactor + 0.5) ttxOut["hhea"].lineGap = int( ttxIn["hhea"].lineGap * scaleFactor + 0.5) ttxOut["name"] = ttxIn["name"] ttxOut["head"].unitsPerEm = int( ttxOut["head"].unitsPerEm / fontScale + 0.5) if "CFF " in ttxOut: cff = ttxOut["CFF "].cff cffd = cff[cff.fontNames[0]].rawDict cffd["FontMatrix"][0] = cffd["FontMatrix"][0] * fontScale cffd["FontMatrix"][3] = cffd["FontMatrix"][3] * fontScale psName = None psNameRecord = ttxIn["name"].getName(6, 1, 0, 0) if psNameRecord: psName = psNameRecord.string else: psNameRecord = ttxIn["name"].getName(6, 0, 3, 0) if psNameRecord: psName = unicode( psNameRecord.string, 'utf-16-be').encode('utf-8') if psName: cff.fontNames[0] = psName fullName = None fullNameRecord = ttxIn["name"].getName(4, 1, 0, 0) if fullNameRecord: fullName = fullNameRecord.string else: fullNameRecord = ttxIn["name"].getName(4, 0, 3, 0) if fullNameRecord: fullName = unicode( fullNameRecord.string, 'utf-16-be').encode('utf-8') if fullName: cffd["FullName"] = fullName famName = None famNameRecord = ttxIn["name"].getName(1, 1, 0, 0) if famNameRecord: famName = famNameRecord.string else: famNameRecord = ttxIn["name"].getName(1, 0, 3, 0) if famNameRecord: famName = unicode( famNameRecord.string, 'utf-16-be').encode('utf-8') if famName: cffd["FamilyName"] = famName fontPathOut = os.path.join(outFolder, "%s.otf" % (fontName)) try: ttxOut.save(fontPathOut) print('Saved patched: "%s"' % (fontPathOut)) success = True except: print( "Cannot save: %s (try running tool with 'sudo'!)" % (fontPathOut)) else: print('Not found: "%s"' % (fontPath)) return (ttxIn, success) if args.help_more: print("This tool expects your font files with the following file names to be present in\n%s :" % ( args.input_folder)) fontNumber = 0 patchedFonts = 0 while True: (opened, patched) = patchFont(ttcPath=args.system_ttc, fontNumber=fontNumber, inFolder=args.input_folder, outFolder=args.output_folder, help=args.help_more, fontScale=float(args.font_size)/100, uninstall=args.uninstall) if opened: fontNumber += 1 else: break if patched: patchedFonts += 1 if args.help_more: print("The tool will match each of your fonts to one of the internal Mac OS X UI fonts\n(stored in %s)\nusing the filename.\nThen it will try to patch your fonts and install them in %s.\nAfter logging out and back in, you should see your new UI fonts." % ( args.system_ttc, args.output_folder)) else: if args.uninstall: print("Uninstalled %d fonts" % (patchedFonts)) else: print("Finished patching %d fonts" % (patchedFonts)) if not args.no_reset_caches: subprocess.call(["sudo", "atsutil", "databases", "-remove"]) print( "Mac OS X font caches have been reset. Please log out of Mac OS X and log in again.") ```
{ "source": "jignatius/Dobby", "score": 2 }
#### File: process/settings/merge_settings.py ```python import argparse import pathlib import json from sys import exit def main(): parser = argparse.ArgumentParser() parser.add_argument('files', metavar='filepath', type=pathlib.Path, nargs='+') parser.add_argument('--base', type=pathlib.Path, required=True) parser.add_argument('--output', type=pathlib.Path, required=True) args = parser.parse_args() # Check we were given valid files if not args.base.is_file(): print("ERROR: File not found:", str(args.base)) exit(1) invalid_files = [x for x in args.files if not x.is_file()] if invalid_files: print("ERROR: File(s) not found:", [str(x) for x in invalid_files]) exit(1) # Load the json to dicts loaded_json = [] for file in args.files: with file.open() as json_file: loaded_json.append(json.load(json_file)) base_settings = {} with args.base.open() as json_file: base_settings = json.load(json_file) # Merge everything into one merged = merge_dicts(base_settings, loaded_json) # Save the file with args.output.open('w') as output_file: json.dump(merged, output_file, ensure_ascii=False, indent=4) def merge_dicts(base_file, list_dicts_to_merge): """ Taking an original settings file, merge settings file(s) on top of the original without deleting any of the original settings file E.G if the original settings file containers: foo: { mySettings: ['A', 'B'] } and the append file contains: foo: { mySettings: ['C'] } the final result will be: foo: { mySettings: ['A', 'B', 'C'] } """ result = base_file for dictionary in list_dicts_to_merge: do_merge(result, dictionary) return result def do_merge(result, to_merge): """ Recursively merge the dictionaries together """ for k, v in to_merge.items(): if isinstance(v, list): if k not in result: result[k] = [] result[k].extend([x for x in v if x not in result[k]]) elif isinstance(v, dict): if k not in result: result[k] = {} do_merge(result[k], v) else: result[k] = v if __name__ == "__main__": main() ```
{ "source": "Jignesh1996/bcmd-web", "score": 3 }
#### File: bayescmd/abc/distances.py ```python import numpy as np from .data_import import * # All functions here can expect to handle the output from BCMD Model i.e. # a dict. def euclidean_dist(data1, data2): """ Gives the euclidean distance between two numpy arrays. :param data1: Numpy array for data1 :type data1: np.ndarray :param data2: Numpy array for data2 :type data2: np.ndarray :return: Euclidean distance measure :rtype: list of float """ try: assert(data1.shape == data2.shape), 'Arrays not of equal size' except AssertionError as e: print(e) print("\tData 1: ", data1.shape) print("\tData 2: ", data2.shape) return np.sum(np.sqrt(np.sum((data1 - data2) * (data1 - data2), axis=1))) def manhattan_dist(data1, data2): """ Gives the Manhattan distance between two numpy arrays. :param data1: Numpy array for data1 :type data1: np.ndarray :param data2: Numpy array for data2 :type data2: np.ndarray :return: Manhattan distance measure :rtype: list of float """ assert(data1.shape == data2.shape), 'Arrays not of equal size' return np.sum(np.abs(data1 - data2)) def mean_square_error_dist(data1, data2): """ Gives the mean squared error between two numpy arrays. :param data1: Numpy array for data1 :type data1: np.ndarray :param data2: Numpy array for data2 :type data2: np.ndarray :return: MSE distance measure :rtype: list of float """ assert(data1.shape == data2.shape), 'Arrays not of equal size' n = data1.shape[1] return np.sum(1 / n * np.sum((data1 - data2) * (data1 - data2), axis=1)) def mean_absolute_error_dist(data1, data2): """ Gives the normalised manhattan distance between two numpy arrays. :param data1: Numpy array for data1 :type data1: np.ndarray :param data2: Numpy array for data2 :type data2: np.ndarray :return: MAE distance measure :rtype: list of float """ assert(data1.shape == data2.shape), 'Arrays not of equal size' n = data1.shape[1] return 1 / n * np.sum(np.abs(data1 - data2)) DISTANCES = { 'euclidean': euclidean_dist, 'manhattan': manhattan_dist, 'MSE': mean_square_error_dist, 'MAE': mean_absolute_error_dist } def check_for_key(dictionary, target): try: data = dictionary[target] except KeyError: print('Actual data does not contain target value.') return data def zero_array(array): """ Method to zero an array of data with the initial values. :param array: Array of data - rows are time points, columns are signals. :return: Zero'd numpy array :rtype: np.ndarray """ init = array[:, 0] zerod = np.apply_along_axis(lambda x: x - init, 0, array) return zerod def get_distance(actual_data, sim_data, targets, distance='euclidean', zero=False): d0 = [] d_star = [] for idx, k in enumerate(targets): d0.append(check_for_key(actual_data, k)) d_star.append(check_for_key(sim_data, k)) if zero: try: d_star = zero_array(np.array(d_star)) except (TypeError, IndexError): print('Invalid Data') return (float('NaN')) return DISTANCES[distance](np.array(d0), np.array(d_star)) ``` #### File: bayescmd/bcmdModel/bcmd_model.py ```python import numpy import numpy.random import pprint import tempfile import shutil import csv import os import copy import sys import datetime import subprocess from io import StringIO import collections from .input_creation import InputCreator from ..util import findBaseDir # default timeout, in seconds TIMEOUT = 30 # default base directory - this should be a relative directory path # leading to bcmd/ BASEDIR = findBaseDir(os.environ['BASEDIR']) class ModelBCMD: """ BCMD model class. this can be used to create inputs, run simulations etc. """ def __init__(self, model_name, inputs=None, # Input variables params=None, # Parameters times=None, # Times to run simulation at outputs=None, burn_in=999, create_input=True, input_file=None, suppress=False, workdir=None, # default is to create a temp directory # not quite sure when the best time for this is, probably in # __del__? deleteWorkdir=False, timeout=TIMEOUT, basedir=BASEDIR, debug=False, testing=False): self.model_name = model_name self.params = params # dict of non-default params self.inputs = inputs # any time dependent inputs to the model self.times = times self.outputs = outputs self.burn_in = burn_in # Determine if input file is present already or if it needs creating self.create_input = create_input # Suppression of output files self.suppress = suppress if suppress: self.DEVNULL = open(os.devnull, 'wb') # we need working space; we may want to kill it later self.deleteWorkdir = deleteWorkdir if workdir: self.workdir = workdir if not os.path.exists(workdir): os.makedirs(workdir) else: self.workdir = tempfile.mkdtemp(prefix=model_name) self.deleteWorkdir = True if debug: print('TEMP DIR: ', self.workdir) self.timeout = timeout self.debug = debug if input_file is not None: self.input_file = input_file elif create_input: self.input_file = os.path.join( self.workdir, self.model_name + '.input') else: self.input_file = None if testing: TEST_PRE = '_test' else: TEST_PRE = '' self.basedir = basedir self.program = os.path.join( self.basedir, 'build', self.model_name + '.model') self.output_coarse = os.path.join( self.workdir, self.model_name + TEST_PRE + '.out') self.output_detail = os.path.join( self.workdir, self.model_name + TEST_PRE + '.detail') self.output_dict = collections.defaultdict(list) def _cleanupTemp(self): if self.deleteWorkdir: shutil.rmtree(self.workdir) return None def get_defaults(self): print('GETTING MODEL DEFAULTS.\n') return subprocess.run([self.program, '-s'], stdout=subprocess.PIPE) def write_default_input(self): """ Function to write a default input to file. """ # Ensure that any existing input files aren't overwritten try: assert os.path.exists(self.input_file) new_input = os.path.splitext(self.input_file)[ 0] + '_{:%H%M%S-%d%m%y}.input'.format(datetime.datetime.now()) print('Input file %s already exists.\n Renaming as %s' % (self.input_file, new_input)) input_creator = InputCreator(self.times, self.inputs, filename=new_input) input_creator.default_creation() self.input_file = input_creator.input_file_write() except AssertionError: input_creator = InputCreator(self.times, self.inputs, filename=self.input_file) input_creator.default_creation() input_creator.input_file_write() return True def create_default_input(self): """ Method to create input file and write to string buffer for acces direct from memory. """ input_creator = InputCreator(self.times, self.inputs) self.input_file = input_creator.default_creation().getvalue() return self.input_file def write_initialised_input(self): """ Function to write a default input to file. """ # Ensure that any existing input files aren't overwritten try: assert os.path.exists(self.input_file) new_input = os.path.splitext(self.input_file)[ 0] + '_{:%H%M%S-%d%m%y}.input'.format(datetime.datetime.now()) print('Input file %s already exists.\n Renaming as %s' % (self.input_file, new_input)) input_creator = InputCreator(self.times, self.inputs, params=self.params, outputs=self.outputs, filename=new_input) input_creator.initialised_creation(self.burn_in) self.input_file = input_creator.input_file_write() except AssertionError: input_creator = InputCreator(self.times, self.inputs, params=self.params, outputs=self.outputs, filename=self.input_file) input_creator.initialised_creation(self.burn_in) input_creator.input_file_write() return True def create_initialised_input(self): """ Method to create input file and write to string buffer for access direct from memory. """ input_creator = InputCreator(self.times, self.inputs, params=self.params, outputs=self.outputs) f_out = input_creator.initialised_creation(self.burn_in) if self.debug: print(f_out.getvalue(), file=sys.stderr) f_out.seek(0) self.input_file = f_out.getvalue() pprint.pprint(self.input_file) return self.input_file def run_from_file(self): try: assert os.path.exists(self.input_file) if self.debug: print("\n\nOutput goes to:\n\tCOARSE:%s\n\tDETAIL:%s\n\n" % (self.output_coarse, self.output_detail)) if self.suppress: # invoke the model program as a subprocess succ = subprocess.run([self.program, '-i', self.input_file, '-o', self.output_coarse, '-d', self.output_detail], stdout=self.DEVNULL, stderr=self.DEVNULL, timeout=self.timeout) else: stdoutname = os.path.join( self.workdir, '%s.stdout' % (self.model_name)) stderrname = os.path.join( self.workdir, '%s.stderr' % (self.model_name)) # if opening these files fails, we may be in trouble anyway # but don't peg out just because of this -- let the the failure # happen somewhere more important try: f_out = open(stdoutname, 'w') except IOError: f_out = None try: f_err = open(stderrname, 'w') except IOError: f_err = None # invoke the model program as a subprocess succ = subprocess.run([self.program, '-i', self.input_file, '-o', self.output_coarse, '-d', self.output_detail], stdout=f_out, stderr=f_err, timeout=self.timeout) if f_out: f_out.close() if f_err: f_err.close() except AssertionError: print("Input file doesn't exist. Can't run from file.") return None def run_from_buffer(self): # Ensure that input file has seeked to 0 if self.debug: print("Output goes to:\n\tCOARSE:%s\n\tDETAIL:%s" % (self.output_coarse, self.output_detail)) if self.suppress: # invoke the model program as a subprocess result = subprocess.run([self.program, '-I'], input=self.input_file.encode(), stdout=subprocess.PIPE, stderr=self.DEVNULL, timeout=self.timeout) else: stderrname = os.path.join( self.workdir, '%s.stderr' % ("buffer_" + self.model_name)) # if opening these files fails, we may be in trouble anyway # but don't peg out just because of this -- let the the failure # happen somewhere more important try: f_err = open(stderrname, 'w') except IOError: f_err = None # invoke the model program as a subprocess result = subprocess.run([self.program, '-I', '-d', self.output_detail], input=self.input_file.encode(), stdout=subprocess.PIPE, stderr=f_err, timeout=self.timeout) if f_err: f_err.close() self.output_coarse = StringIO(result.stdout.decode()) if self.debug: pprint.pprint('OUTPUT: ' + self.output_coarse.getvalue(), stream=sys.stderr) self.output_coarse.seek(0) return result def output_parse(self): """ Function to parse the output files into a dictionary. """ # Check if file is open try: file_out = open(self.output_coarse) except TypeError: file_out = self.output_coarse if self.debug: pprint.pprint(file_out.read(), stream=sys.stderr) file_out.seek(0) for d in csv.DictReader(file_out, delimiter='\t'): for key, value in d.items(): if key == 'ERR': pass else: try: self.output_dict[key].append(float(value)) except (ValueError, TypeError) as e: self.output_dict[key].append('NaN') self._cleanupTemp() return self.output_dict ``` #### File: bcmd-web/bparser/codegen.py ```python import sys import os import decimal import string import logger # template configuration: in theory this stuff could be # modified at runtime, though in practice that seems unlikely THIS_DIR = os.path.dirname(os.path.abspath(__file__)) TEMPLATE_DIR = os.path.abspath(THIS_DIR + '/templates') TEMPLATES = [ '01_header.c_template', '02_errors.c_template', '03_prototypes.c_template', '05_functions.c_template' ] # generate the C code from a parsed model # much of the code is unchanging boilerplate, and much of that # is simply copied direct from several template files # where the code is dependent on the model it is constructed # in a bunch of subsidiary functions below -- at present # these are a rather ugly mix of literal C strings and # variable substitutions -- maybe look into making this # less horrible in future? def generateSource(model, config, template_dir=TEMPLATE_DIR): f = open(template_dir + '/' + TEMPLATES[0]) src = f.read() f.close() f = open(template_dir + '/' + TEMPLATES[1]) src = src + f.read() f.close() src = src + generateModelVars(model, config) f = open(template_dir + '/' + TEMPLATES[2]) src = src + f.read() f.close() src = src + generateEmbeds(model) src = src + generateModelFuncs(model, config) f = open(template_dir + '/' + TEMPLATES[3]) src = src + f.read() f.close() return src # generate the model variables segment def generateModelVars(model, config): diffcount = len(model['diffs']) algcount = len(model['algs']) symcount = len(model['symlist']) varcount = diffcount + algcount src = '/* Model-specific constants and statics */\n' src = src + 'const char* MODEL_NAME = "' + config['name'] + '";\n' if model['version']: src = src + 'const char* MODEL_VERSION = "' + model['version'] + '";\n' else: src = src + 'const char* MODEL_VERSION = "(version not specified)";\n' if model['diagonal']: src = src + 'const int DIAGONAL = 1;\n' src = src + 'const int REQUIRE_MASS = 0;\n' else: src = src + 'const int DIAGONAL = 0;\n' src = src + 'const int REQUIRE_MASS = 1;\n' src = src + 'const unsigned int DIFF_EQ_COUNT = ' + str(diffcount) + ';\n' src = src + 'const unsigned int ALGEBRAIC_COUNT = ' + str(algcount) + ';\n' src = src + 'const unsigned int VAR_COUNT = ' + str(diffcount + algcount) + ';\n' src = src + 'const unsigned int SYMBOL_COUNT = ' + str(symcount) + ';\n\n' src = src + 'static char* SYMBOLS[' + str(symcount) + '] = \n{\n' src = src + formatArray(model['symlist']) src = src + '};\n\n' src = src + 'static char* ROOTS[' + str(varcount) + '] = \n{\n' src = src + formatArray(model['diffs'] + model['algs']) src = src + '};\n\n' if model['intermeds']: src = src + 'static double INTERMEDIATES[' + str(len(model['intermeds'])) + '] = {0};\n\n' indices = [0] for name in model['outputs']: indices.append(model['symbols'][name]['index']) src = src + 'static int DEFAULT_FIELDS[' + str(len(indices)) + '] = \n{\n' src = src + formatArray(indices, width=10, quote='') src = src + '};\n' src = src + 'static OutputSpec DEFAULT_OUTSPEC = { ' + str(len(indices)) + ', DEFAULT_FIELDS };\n\n' return src # generate segment for embedded C chunks # (by just pasting them all together -- this stuff is not checked) def generateEmbeds(model): return '/* Embedded C code from the model, if any */\n\n' + '\n'.join(model['embeds']) + '\n\n' # generate the model functions segment def generateModelFuncs(model, config): if config['unused']: targets = model['assigned'] else: targets = list(model['assigned'] - model['unused']) src = '/* Model-specific functions */\n' src = src + generateModelInit(model, config, targets) src = src + generateParamUpdate(model, config, targets) src = src + generateSaveY(model, config) src = src + generateSaveIntermediates(model, config) src = src + generateCarryForward(model, config) src = src + generateRHS(model, config, targets) src = src + generateConstraints(model, config) return src # generate the model initialisation code def generateModelInit(model, config, targets): src = ''' /* Initialise parameters with any values known at compile time. (NB: these may be overwritten by runtime values) */ void model_init() { ''' if not model['diagonal']: src = src + ' double* mass = radau5_getMassMatrix();\n\n' if config['debug']: src = src + ' fprintf(stderr, "# Initialising parameters\\n");\n\n' independent = model['assignments']['independent'] for ii in range(len(independent['names'])): name = independent['names'][ii] if name in targets: expr = independent['exprs'][ii] idx = model['symbols'][name]['index'] src = src + ' RPAR[' + str(idx) + '] = ' + str_i_expr(expr['i_expr'], model) + ';' src = src + '\t\t/* ' + name + '=' + expr['expr'] + ' */\n' if config['debug']: src = src + ' fprintf(stderr, "' + name + ' = %.17g\\n", RPAR[' + str(idx) + ']);\n' dependent = model['assignments']['dependent'] for ii in range(len(dependent['names'])): name = dependent['names'][ii] if name in targets: expr = dependent['exprs'][ii] idx = model['symbols'][name]['index'] src = src + ' RPAR[' + str(idx) + '] = ' + str_i_expr(expr['i_expr'], model) + ';' src = src + '\t\t/* ' + name + '=' + expr['expr'] + ' */\n' if config['debug']: src = src + ' fprintf(stderr, "' + name + ' = %.17g\\n", RPAR[' + str(idx) + ']);\n' src = src + '\n constrain_params();\n' src = src + '\n carry_forward();\n' if not model['diagonal']: idy = 0 for item in model['diffs']: for aux in model['auxiliaries'][item]: auxname = aux[1] if auxname not in model['diffs']: logger.error('Error: auxiliary term not in diffs: ' + auxname) else: idx = model['diffs'].index(aux[1]) src = src + '\n /* auxiliary diff eqn term: ' + item + "' : " src = src + str(aux[0]) + " " + auxname + "' */\n" # idy indexes the equation, idx the crossref # Fortran uses column-major order for matrices, # which I *think* makes this the right way to index src = src + ' mass[VAR_COUNT * ' + str(idx) + ' + ' + str(idy) + '] = ' + str(aux[0]) + ';\n' idy = idy + 1 src = src + '}\n' return src # generate param_update function def generateParamUpdate(model, config, targets): src = ''' /* Propagate parameter changes to any dependent parameters */ void param_update() { ''' step = model['assignments']['step'] if len(step) > 0: if config['debug']: src = src + ' fprintf(stderr, "# Updating dependent parameters:\\n");\n\n' for ii in range(len(step['names'])): name = step['names'][ii] if name not in targets: continue expr = step['exprs'][ii] idx = model['symbols'][name]['index'] src = src + ' RPAR[' + str(idx) + '] = ' + str_i_expr(expr['i_expr'], model, 'step') + ';' src = src + '\t\t/* ' + name + '=' + expr['expr'] + ' */\n' if config['debug']: src = src + ' fprintf(stderr, "' + name + ' = %.17g\\n", RPAR[' + str(idx) + ']);\n\n' else: src = src + ' /* no parameters to update for this model */\n' src = src + '}\n' return src def generateSaveY(model, config): src = ''' /* Copy Y values into corresponding spaces in the RPAR array */ void save_y(double* y) { ''' if config['debug']: src = src + ' fprintf(stderr, "# Saving Y estimates\\n");\n' idy = 0 for item in model['diffs'] + model['algs']: src = src + ' /* ' + item + ' */\n' src = src + ' RPAR[' + str(model['symbols'][item]['index']) + '] = y[' + str(idy) + '];\n' if config['debug']: src = src + ' fprintf(stderr, "' + item + ' = %.17g\\n", y[' + str(idy) + ']);\n' idy = idy + 1 src = src + '}\n' return src def generateSaveIntermediates(model, config): src = ''' /* Copy intermediate variables into corresponding spaces in the RPAR array */ void save_intermediates() { ''' if config['debug']: src = src + ' fprintf(stderr, "# Saving intermediates\\n");\n' idy = 0 for item in model['intermeds']: src = src + ' /* ' + item + ' */\n' src = src + ' RPAR[' + str(model['symbols'][item]['index']) + '] = INTERMEDIATES[' + str(idy) + '];\n' if config['debug']: src = src + ' fprintf(stderr, "' + item + ' = %.17g\\n", INTERMEDIATES[' + str(idy) + ']);\n' idy = idy + 1 src = src + '}\n' return src def generateCarryForward(model, config): src = ''' /* Update Y array with corresponding values from the RPAR array */ void carry_forward() { ''' if config['debug']: src = src + ' fprintf(stderr, "# Setting Y variables\\n");\n' idy = 0 for item in model['diffs'] + model['algs']: src = src + ' /* ' + item + ' */\n' src = src + ' Y[' + str(idy) + '] = RPAR[' + str(model['symbols'][item]['index']) + '];\n' if config['debug']: src = src + ' fprintf(stderr, "' + item + ' = %.17g\\n", Y[' + str(idy) + ']);\n' idy = idy + 1 src = src + '}\n' return src # generate right hand side function def generateRHS(model, config, targets): src = ''' /* right hand side of main equation system */ void rhs(int* n, double* x, double* y, double* f, double* rpar, int* ipar) { /* independent variable is always stored in RPAR[0] */ RPAR[0] = *x; constrain_y(y); constrain_params(); ''' if config['debug']: src = src + ' fprintf(stderr, "*** RHS step at %s = %.17g\\n", SYMBOLS[0], *x);\n' runtime = model['assignments']['runtime'] if len(runtime['names']) > 0: lhs = model['diffs'] + model['algs'] src = src + '\n /* calculate dependent parameters and intermediate variables */\n' if config['debug']: src = src + ' fprintf(stderr, "# Calculating intermediates:\\n");\n\n' for ii in range(len(runtime['names'])): name = runtime['names'][ii] if name in lhs: continue if name not in targets: continue expr = runtime['exprs'][ii] idx = model['intermeds'].index(name) src = src + ' INTERMEDIATES[' + str(idx) + '] = ' + str_i_expr(expr['i_expr'], model, 'solve') + ';' src = src + '\t\t/* ' + name + '=' + expr['expr'] + ' */\n' if config['debug']: src = src + ' fprintf(stderr, "' + name + ' = %.17g\\n", INTERMEDIATES[' + str(idx) + ']);\n\n' src = src + ''' constrain_intermediates(); if ( SAVE_INTERMEDIATES ) save_intermediates(); constrain_params(); ''' else: src = src + '\n /* no dependent parameters or intermediates required for this model */\n' src = src + '\n if ( f )' src = src + '\n {' src = src + '\n /* calculate output variables */\n' if config['debug']: src = src + ' fprintf(stderr, "# Calculating outputs:\\n");\n\n' idy = 0 for name in model['diffs']: # for the moment we'll just assume that the right expression is always # the first in the list, and not even bother to look further expr = model['symbols'][name]['diffs'][0] src = src + ' /* ' + name + "' = " + expr['expr'] + ' */\n' src = src + ' f[' + str(idy) + '] = ' + str_i_expr(expr['i_expr'], model, 'solve') + ';\n' if config['debug']: src = src + ' fprintf(stderr, "' + name + '\' = %.17g\\n", f[' + str(idy) + ']);\n\n' idy = idy + 1 for name in model['algs']: expr = model['symbols'][name]['algs'][0] src = src + ' /* ' + name + " = " + expr['expr'] + ' */\n' src = src + ' f[' + str(idy) + '] = ' + str_i_expr(expr['i_expr'], model, 'solve') + ';\n' if config['debug']: src = src + ' fprintf(stderr, "' + name + ' = %.17g\\n", f[' + str(idy) + ']);\n\n' idy = idy + 1 src = src + ' }\n' src = src + '}\n' return src def generateConstraints(model, config): src = ''' /* Enforce constraints on parameters/intermediates (if any). */ void constrain_params () { ''' targets = model['symbols'].keys() if not config['unused']: targets = list(set(targets) - model['unused']) for name in targets: sym = model['symbols'][name] for constraint in sym['constraints']: src = src + ' if ( RPAR[' + str(sym['index']) + '] ' + constraint['test'] + \ ' ' + str_i_expr(constraint['i_expr'], model) + ' )\n {\n' if constraint['kind'] == 'bound': src = src + ' /* hard bound on ' + name + ' */\n' src = src + ' RPAR[' + str(sym['index']) + '] = ' + \ str_i_expr(constraint['i_expr'], model) + ';\n' else: src = src + ' /* TODO: handle soft bound on ' + name + ' */\n' src = src + ' }\n' src = src + '''} void constrain_intermediates() { ''' targets = model['intermeds'] if not config['unused']: targets = list(set(targets) - model['unused']) for name in targets: idx = model['intermeds'].index(name) sym = model['symbols'][name] for constraint in sym['constraints']: src = src + ' if ( INTERMEDIATES[' + str(idx) + '] ' + constraint['test'] + \ ' ' + str_i_expr(constraint['i_expr'], model, 'solve') + ' )\n {\n' if constraint['kind'] == 'bound': src = src + ' /* hard bound on ' + name + ' */\n' src = src + ' INTERMEDIATES[' + str(idx) + '] = ' + \ str_i_expr(constraint['i_expr'], model, 'solve') + ';\n' else: src = src + ' /* TODO: handle soft bound on ' + name + ' */\n' src = src + ' }\n' src = src + '''} void constrain_y( double* y ) { ''' targets = model['diffs'] + model['algs'] for name in targets: idx = targets.index(name) sym = model['symbols'][name] for constraint in sym['constraints']: src = src + ' if ( y[' + str(idx) + '] ' + constraint['test'] + \ ' ' + str_i_expr(constraint['i_expr'], model, 'solve') + ' )\n {\n' if constraint['kind'] == 'bound': src = src + ' /* hard bound on ' + name + ' */\n' src = src + ' y[' + str(idx) + '] = ' + \ str_i_expr(constraint['i_expr'], model, 'solve') + ';\n' else: src = src + ' /* TODO: handle soft bound on ' + name + ' */\n' src = src + ' }\n' src = src + '''} ''' return src # convert an i_expr tuple into C code with the appropriate # data context # recognised contexts are as follows: # 'init' - model initialisation # 'step' - after parameters have been assigned externally # 'solve' - inside the solver RHS call def str_i_expr(i_expr, model, context='init'): expr = '' for item in i_expr: if item[0] == 'literal': expr = expr + item[1] elif item[0] == 'symbol': expr = expr + str_i_symbol(item[1], model, context) else: # add a dummy symbol to produce a C compiler error logger.error('unknown item |%s| in i_expr' % str(item)) expr = expr + 'ERROR_IN_IEXPR' return expr # map a symbol appropriately for the given context # (see above for supported contexts) def str_i_symbol(name, model, context): if name in model['params']: # these are always used from RPAR return 'RPAR[' + str(model['symbols'][name]['index']) + ']' elif name in model['roots']: if context == 'solve': return 'y[' + str((model['diffs'] + model['algs']).index(name)) + ']' elif context == 'step': return 'Y[' + str((model['diffs'] + model['algs']).index(name)) + ']' else: return 'RPAR[' + str(model['symbols'][name]['index']) + ']' elif name in model['intermeds']: # temp array used during a solve, but not outside if context == 'solve': return 'INTERMEDIATES[' + str(model['intermeds'].index(name)) + ']' else: return 'RPAR[' + str(model['symbols'][name]['index']) + ']' else: logger.error('unknown symbol |%s| in i_expr' % name) return 'ERROR_IN_IEXPR' ## ------ utility functions --------------- # generate a string containing the items of an array, formatted # for embedding in code -- default settings are for string items, # for numbers set quote='' def formatArray(items, width=5, quote='"', inset=' ', sep=', ', end='\n'): src = '' idx = 0 while idx + width < len(items): src = src + inset for jj in range(width): src = src + quote + str(items[idx + jj]) + quote + sep idx = idx + width src = src + end src = src + inset while idx + 1 < len(items): src = src + quote + str(items[idx]) + quote + sep idx = idx + 1 src = src + quote + str(items[idx]) + quote + end return src ``` #### File: bcmd-web/bparser/doc_modeldef.py ```python import sys import os import os.path import re import datetime, time import decimal def writeDoc(model, config): with open(os.path.join(config['outdir'], config['modeldef']), 'w') as f: printHeader(f, model, config) printModelDocs(f, model, config) printDirectives(f, model, config) printEmbeds(f, model, config) printReactions(f, model, config) printDiffs(f, model, config) printAlgs(f, model, config) printRoots(f, model, config) printIntermeds(f, model, config) printParameters(f, model, config) printFooter(f, model, config) def printHeader(file, model, config): print >> file, '# consolidated modeldef for model %s' % config['name'] print >> file, '# generated by BCMD module doc_modeldef.py' print >> file, '# %s' % datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') print >> file, '' def printFooter(file, model, config): pass def printDirectives(file, model, config): some = False # TODO: break each of the following into multiple directives if there are many if model['inputs']: print >> file, '@input %s' % ' '.join(model['inputs']) some = True if model['outputs'] and (set(model['outputs']) != set(model['roots'])): print >> file, '@output %s' % ' '.join(model['outputs']) some = True if model['extern']: print >> file, '@extern %s' % ' '.join(model['extern']) some = True if some: print >> file, '' def printEmbeds(file, model, config): if model['embeds']: print >> file, '# embedded C code' print >> file, '[**' for embed in model['embeds']: print >> file, embed print >> file, '**]' print >> file, '' def printModelDocs(file, model, config): some = False for line in model['modeldocs']: if not (line.startswith('@') or line.startswith('$') or line.startswith('~')): print >> file, '## %s' % line some = True if some: print >> file, '## @\n' def printReactions(file, model, config): if not model['reactions']: return print >> file, '# chemical reactions' for reac in sorted(model['reactions'].keys(), key=lambda s: s.lower()): # merge forward/reverse pairs into single two-way reactions if reac.endswith('_reverse') and (reac[:-7] + 'forward') in model['reactions']: continue op = '->' # collect terms and forward rate lhs = '' for term in model['reactions'][reac]['lhs']: stoich = translate(term['mathterm_unmod'], model, config)[0] try: dec = decimal.Decimal(stoich) if dec == 1: stoich = '' except: pass if stoich: stoich = stoich + ' ' chem = term['chem'] if lhs: lhs = '%s + %s[%s]' % (lhs, stoich, chem) else: lhs = '%s[%s]' % (stoich, chem) rhs = '' for term in model['reactions'][reac]['rhs']: stoich = translate(term['mathterm_unmod'], model, config)[0] try: dec = decimal.Decimal(stoich) if dec == 1: stoich = '' except: pass if stoich: stoich = stoich + ' ' chem = term['chem'] if rhs: rhs = '%s + %s[%s]' % (rhs, stoich, chem) else: rhs = '%s[%s]' % (stoich, chem) fspec = model['reactions'][reac]['ratespec'] fargs = ','.join([translate(x[1], model, config)[0] for x in fspec[2][1:]]) if fspec[1] == 'MA': forward = '{MA:%s}' % fargs elif fspec[1] == 'MM': forward = '{MM:%s}' % fargs else: forward = '{%s}' % fargs # if there's a reverse reaction, get that rate too if reac.endswith('_forward') and (reac[:-7] + 'reverse') in model['reactions']: rspec = model['reactions'][reac[:-7] + 'reverse']['ratespec'] rargs = ','.join([translate(x[1], model, config)[0] for x in rspec[2][1:]]) if rspec[1] == 'MA': reverse = '{MA:%s}' % rargs elif rspec[1] == 'MM': reverse = '{MM:%s}' % rargs else: reverse = '{%s}' % rargs op = '<->' else: reverse = '' rspec = () print >> file, ('%s %s %s %s %s' % (lhs, op, rhs, forward, reverse)).strip() print >> file, '' ## TEMP HACK -- ultimately I expect to just get rid of this entirely... def latexName(name, model, insert=True): return name def printDiffs(file, model, config): if not model['diffs']: return print >> file, '# differential equations' if config.get('model-comment-chem-diffs', True) and any([x in model['chemicals'] for x in model['diffs']]): print >> file, '# note: commented out equations are defined by the chemical reactions above' print >> file, '# translated forms are shown here for information only' tt = latexName(model['symlist'][0], model) first = True for name in sorted(model['diffs'], key=lambda s: s.lower()): lhs = "%s'" % latexName(name, model) for aux in model['auxiliaries'][name]: mass = aux[0] if mass < 0: mass = -mass op = '-' else: op = '+' if mass == 1: mstr = '' else: mstr = str(mass) lhs = lhs + op + mstr + "%s'" % latexName(aux[1], model) rhs = substitute(model['symbols'][name]['diffs'][0], model, config).strip() if name in model['chemicals']: if config.get('model-comment-chem-diffs', False): print >> file, '# %s = %s' % (lhs, rhs) else: print >> file, '%s = %s' % (lhs, rhs) print >> file, '' def printAlgs(file, model, config): if not model['algs']: return print >> file, '# algebraic relations' for name in sorted(model['algs'], key=lambda s: s.lower()): rhs = substitute(model['symbols'][name]['algs'][0], model, config) print >> file, '%s : 0 = %s' % (name, rhs) print >> file, '' def printRoots(file, model, config): printVars(sorted(model['roots'], key=lambda s: s.lower()), 'state variables', file, model, config, omit_expr=True) def printIntermeds(file, model, config): printVars(sorted(model['intermeds'], key=lambda s: s.lower()), 'intermediate variables', file, model, config) def printParameters(file, model, config): printVars(sorted(model['params'], key=lambda s: s.lower()), 'parameters', file, model, config) def printVars(vars, title, file, model, config, omit_expr=False): if vars: print >> file, '# %s' % title print >> file, '' for name in vars: printVar(name, file, model, config, omit_expr) print >> file, '' def printVar(name, file, model, config, omit_expr=False): sym = model['symbols'][name] for line in sym['docs']: if line.startswith('+') or line.startswith('@') or line.startswith('$') or line.startswith('~'): pass else: print >> file, '## %s' % line units = sym.get('units', '') if units: print >> file, '## ~ %s' % units latex = sym.get('latex', '') if latex: print >> file, '## $%s$' % latex tags = ' '.join(sym.get('tags', [])) if tags: print >> file, '## + %s' % tags noninits = [] if not omit_expr: noninits = [x for x in sym['assigns'] if not x['init']] if noninits: noninit = substitute(noninits[0], model, config) print >> file, '%s = %s' % (name, noninit) inits = [x for x in sym['assigns'] if x['init']] if inits: init = substitute(inits[0], model, config) elif noninits: # skip the default initialiser if there is already an assignment init = None else: init = '0' if init is not None: print >> file, '%s := %s' % (name, init) for constraint in sym['constraints']: # at present the compiler doesn't store a mathexpr for constraints, so use the old expr stuff # (this will also need to be extended if and when soft constraints ever get implemented) invtest = { '>':'<=', '>=':'<', '<':'>=', '<=':'>'}.get(constraint['test'], 'ERROR') if not (name in model['chemicals'] and (invtest == '>=') and constraint['expr']=='0'): print >> file, '%s %s %s' % ( name, invtest, constraint['expr'] ) print >> file, '' def substitute(init, model, config): # init is an assigns entry, ie a dict with expr, depends, etc # we don't yet construct mathterms for diff eqs from chem eqs, so have to check if 'mathterm' in init: expr = translate(init['mathterm'], model, config)[0] else: expr = init['expr'] # need to have some way of managing collisions here -- this will eventually get more sensible # but for now, we substitute long ids before short for dep in sorted(init['depends'], key=lambda x:-len(x)): expr = expr.replace(dep, latexName(dep, model)) return expr def translate(math, model, config): if isinstance(math, decimal.Decimal): # yet another formatting special case, purely because these annoy me! result = str(math) if result.endswith('.0'): result = result[:-2] return (result, '') if isinstance(math, str): return (latexName(math, model), '') if math[0] == 'function': if len(math) < 3: args = '' else: args = ', '.join([ translate(x[1], model, config)[0] for x in math[2][1:] ]) return ('%s(%s)' % (math[1], args), '') if math[0] == 'conditional': return ('%s ? %s : %s' % (translate_binop(math[1], model, config)[0], translate(math[2][1], model, config)[0], translate(math[3][1], model, config)[0]), '') if math[0] == 'arithmetic': return translate_binop(math, model, config) return ('[ERROR]', '') def translate_binop(math, model, config): lhs, lop = translate(math[2][1], model, config) rhs, rop = translate(math[3][1], model, config) # check for pure numbers, because we want to handle some special cases try: L = decimal.Decimal(lhs) except: L = None try: R = decimal.Decimal(rhs) except: R = None if math[1] == '*': if lop == '+' or lop == '-': lhs = '(%s)' % lhs if rop == '+' or rop == '-': rhs = '(%s)' % rhs # numeric special cases if L is not None: # nested special case for our stupid handling of unary minus in the parser... if L == -1: op = '' lhs = '' rhs = '-%s' % rhs # and to eliminate superfluous multiplications by 1 elif L == 1: op = '' lhs = '' else: op = '*' elif R is not None: if R == 1: op = '' rhs = '' else: op = '*' else: op = '*' return (('%s %s %s' % (lhs, op, rhs)).strip(), '*') if math[1] == '/': if lop == '+' or lop == '-': lhs = '(%s)' % lhs if rop == '+' or rop == '-' or rop == '*' or rop == '/': rhs = '(%s)' % rhs return ('%s / %s' % (lhs, rhs), '/') if math[1] == '^': if lop != '': lhs = '(%s)' % lhs return ('%s^(%s)' % (lhs, rhs), '^') if math[1] == '+': # another dodgy special case: convert + - into - if rhs.strip().startswith('-'): return( '%s - %s' % (lhs, rhs.strip()[1:]), '-' ) # and yet another, perhaps dodgiest of all: convert -a + b into b - a if lhs.strip().startswith('-'): return( '%s - %s' % (rhs, lhs.strip()[1:]), '-' ) return ('%s + %s' % (lhs, rhs), '+') if math[1] == '-': if rop == '-': rhs = '(%s)' % rhs return ('%s - %s' % (lhs, rhs), '-') # all remaining binops are logical # these only occur in conditions and have the weakest precedence, so we never bracket return ('%s %s %s' %(lhs, math[1], rhs), '') ``` #### File: bcmd-web/bparser/logger.py ```python import sys import pprint # extremely minimal logging module for writing out messages at # quasi-arbitrary verbosity levels -- some standard levels are # defined, but module can also be used with arbitrary levels DISASTER = -1 ERROR = 1 WARNING = 3 MESSAGE = 5 DETAIL = 7 # default verbosity hides messages and verbosity = WARNING deathThrows = True # go to stderr by default dest = sys.stderr # just write it def write(msg, level=1): if level <= verbosity: print(msg, file=dest) # prettify it first def pretty(msg, level=1): if level <= verbosity: if isinstance(msg, str): print(msg, file=dest) else: print(pprint.pformat(msg), file=dest) # some message level wrappers def error(msg, prettify=False): if prettify: pretty(msg, level=ERROR) else: write(msg, level=ERROR) def warn(msg, prettify=False): if prettify: pretty(msg, level=WARNING) else: write(msg, level=WARNING) def message(msg, prettify=False): if prettify: pretty(msg, level=MESSAGE) else: write(msg, level=MESSAGE) def detail(msg, prettify=True): if prettify: pretty(msg, level=DETAIL) else: write(msg, level=DETAIL) def die(msg, prettify=False): if prettify: pretty(msg, level=DISASTER) else: write(msg, level=DISASTER) if deathThrows: raise Exception(msg) ```
{ "source": "Jignesh1996/s2w", "score": 3 }
#### File: s2w/run/model.py ```python import pickle from keras.layers import Input, LSTM, Embedding, Dense,Dropout,TimeDistributed from keras.models import Model from sklearn.model_selection import train_test_split from model_file import build class DumbModel: def __init__(self,vocab_size=10000,num_of_encoder_tokens,num_of_decoder_tokens): self.vocab_size = vocab_size self.clf=None self.num_of_encoder_tokens = num_of_encoder_tokens self.num_of_decoder_tokens = num_of_decoder_tokens def generate_batch(X = X_train, y = y_train, batch_size = 128): while True: for j in range(0, len(X), batch_size): #encoder input encoder_input_data = np.zeros((batch_size, max_source_length),dtype='float32') #decoder input decoder_input_data = np.zeros((batch_size, max_target_size),dtype='float32') #target decoder_target_data = np.zeros((batch_size, max_target_size, num_of_decoder_tokens),dtype='float32') for i, (input_text, target_text) in enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])): for t, word in enumerate(input_text.split()): encoder_input_data[i, t] = eng_char_to_index_dict[word] # encoder input seq for t, word in enumerate(target_text.split()): if t<len(target_text.split())-1: decoder_input_data[i, t] = target_char_to_index_dict[word] # decoder input seq if t>0: # decoder target sequence (one hot encoded) # does not include the START_ token # Offset by one timestep since it is one time stamp ahead decoder_target_data[i, t - 1, target_char_to_index_dict[word]] = 1 yield([encoder_input_data, decoder_input_data], decoder_target_data) def train(self,X_train,y_train): model = build(num_of_encoder_tokens,num_of_decoder_tokens) X_train, X_test, y_train, y_test = train_test_split(X_train,y_train, test_size = 0.2) train_samples = len(X_train) val_samples = len(X_test) batch_size = 50 epochs = 50 model.fit_generator(generator = generate_batch(X_train, y_train, batch_size = batch_size ), steps_per_epoch = train_samples//batch_size, epochs=epochs, callbacks=[es], validation_data = generate_batch(X_test, y_test, batch_size = batch_size), validation_steps = val_samples//batch_size,) pass def inference(self): # Inference model # Encoder encoder_inputs = Input(shape=(None,)) enc_emb = Embedding(num_of_encoder_tokens, latent_dim, mask_zero = True)(encoder_inputs) encoder_lstm = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder_lstm(enc_emb) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None,)) dec_emb_layer = Embedding(num_of_decoder_tokens, latent_dim, mask_zero = True) dec_emb = dec_emb_layer(decoder_inputs) decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(dec_emb, initial_state=encoder_states) decoder_dense = TimeDistributed(Dense(num_of_decoder_tokens, activation='softmax')) decoder_outputs = decoder_dense(decoder_outputs) model = Model([encoder_inputs, decoder_inputs], decoder_outputs) #storing encoder input and internal states so as to give to decoder part encoder_model = Model(encoder_inputs, encoder_states) #specifying hidden and cell state for decoder part as vector process it will get output predicted and again we add to decoder states decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] dec_emb2= dec_emb_layer(decoder_inputs) # Get the embeddings of the decoder sequence # To predict the next word in the sequence, set the initial states to the states from the previous time step decoder_outputs2, state_h2, state_c2 = decoder_lstm(dec_emb2, initial_state=decoder_states_inputs) decoder_states2 = [state_h2, state_c2] decoder_outputs2 = decoder_dense(decoder_outputs2) # A dense softmax layer to generate prob dist. over the target vocabulary # Final decoder model decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs2] + decoder_states2) return encoder_model,decoder_model def decode_sequence(self,input_seq): # Encode the input as state vectors encoder_model,decoder_model= inference() states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((1,1)) target_seq[0, 0] = mar_char_to_index_dict['START_'] stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict([target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = mar_index_to_char_dict[sampled_token_index] if (sampled_char == '_END'): break; decoded_sentence += ' '+sampled_char target_seq = np.zeros((1,1)) target_seq[0, 0] = sampled_token_index # Update states states_value = [h, c] return decoded_sentence def pre_process(self): sentence = sentence.lower() sentance = re.sub("'","",sentence).strip() # sentence = re.sub(" +", " ", sentence) # remove_digits = str.maketrans('','',digits) # sentence=sentence.translate(remove_digits) sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in exclude) encoder_input_data = np.zeros((1, 35),dtype='float32') for t, word in enumerate(sentence.split()): encoder_input_data[0, t] = eng_char_to_index_dict[word] return encoder_input_data def predict(self,x): sent = pre_processing(x) predicted_output = decode_sequence(sent) return predicted_output def serialize(self,fname): with open(fname,'wb') as f: pickle.dump(self.clf,f) @staticmethod def deserialize(fname): model = DumbModel() with open(fname,'rb') as f: model.clf=pickle.load(f) return model ```
{ "source": "jigneshoo7/AlgoBook", "score": 4 }
#### File: python/Binary Tree/bst_recursion.py ```python class Node: def __init__(self,key): self.left = None self.right = None self.value = key def insert(root,key): if root is None: return Node(key) else: if root.value == key: print("Value already exists") return root elif root.value < key: root.right = insert(root.right, key) else: root.left = insert(root.left, key) return root def inorder(root): if root is not None: inorder(root.left) print(root.value) inorder(root.right) def search(root, key): if root is None: print("Element not found") return None elif root.value == key: print("Element found") return root if root.value > key: search(root.left,key) else: search(root.right, key) def delete(root, key): if root is None: return root if key < root.value: root.left = delete(root.left, key) elif(key > root.value): root.right = delete(root.right, key) else: if root.left is None : temp = root.right root = None return temp elif root.right is None : temp = root.left root = None return temp temp = getMin(root.right) root.value = temp.value root.right = delete(root.right , temp.value) return root def getMin(node): current = node while(current.left is not None): current = current.left return current if __name__=="__main__": r = insert(None,int(input("Enter root node: "))) while True: choice = int(input("1 - Insert Node, 2 - Print in inorder, 3 - Delete, 4 - Search: , 5 - Exit: ")) if choice == 1: r = insert(r,int(input("Enter node value: "))) elif choice == 2: inorder(r) elif choice == 3: r = delete(r,int(input("Enter the value of the node to be deleted: "))) elif choice == 4: search(r,int(input("Enter the node value to be searched: "))) elif choice == 5: break ``` #### File: python/Binary Tree/LazysegmentTree.py ```python Tree/LazysegmentTree.py N=1000001 a=[0]*N s=[0]*(4*N) lazy=[0]*(4 *N) def build(l,r,p): if l>r: return None if l==r: s[p]=a[l] return None m=(l+r)//2 build(l,m,2*p+1) build(m+1,r,2*p+2) s[p]=s[2*p+1]+s[2*p+2] def update(l,r,i,j,p,v): if lazy[p]!=0: s[p]+=(r-l+1)*lazy[p] if l!=r: lazy[2*p+1]+=lazy[p] lazy[2*p+2]+=lazy[p] lazy[p]=0 if l>r or r<i or l>j : #no overlap return if (l>=i and r<=j) : #complete overlap s[p]+=(r-l+1)*v if l!=r: lazy[2*p+1]+=v lazy[2*p+2]+=v return m=(l+r)//2 update(l,m,i,j,2*p+1,v) update(m+1,r,i,j,2*p+2,v) s[p]=s[2*p+1]+s[2*p+2] def query(l,r,i,j,p): if (l>r or r<i or l>j) : return 0 if lazy[p]!=0 : s[p]+=(r-l+1)*lazy[p] if l!=r: lazy[2*p+1]+=lazy[p] lazy[2*p+2]+=lazy[p] lazy[p]=0 if (l>=i and r<=j) : return s[p] m=(l+r)//2 ans=query(l,m,i,j,2*p+1) ans1=query(m+1,r,i,j,2*p+2) return ans+ans1 def main(): n,c=map(int,input().split()) build(0,n-1,0) x=y=z=val=0 for i in range(c): g=list(map(int,input().split())) x=g[0] if x==0: y=g[1] z=g[2] val=g[3] update(0,n-1,y,z,0,val) else : y=g[1] z=g[2] print(query(0,n-1,y,z,0)) if __name__=='__main__': t=int(input()) while t>0: main() t-=1 ``` #### File: python/distance/HaversineDistanceInMiles.py ```python import math def distanceInMilesOrKilos(milesOrKilos,originLat,originLon,destinationLat,destinationLon): radius = 3959 if milesOrKilos == "miles" else 6371 lat1 = originLat lat2 = destinationLat lon1 = originLon lon2 = destinationLon dlat = math.radians(lat2 - lat1) dlon = math.radians(lon2 - lon1) a = (math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2)) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) distance = radius * c return distance ``` #### File: python/dynamic_programming/Edit_distance.py ```python def editdistance(str1 , str2): m = len(str1) n = len(str2) # intialize with zeros dp = [[0 for x in range(n+1)] for x in range(m + 1)] for i in range(m + 1): for j in range(n+1): # if first string empty then add all character of second string if i==0: dp[i][j] = j # if second string is empty then we heva one option to remove all charcetrs from second string. elif j==0: dp[i][j] = i # if both string last character are same then ignore and skip it elif str1[i-1] == str2[j-1]: dp[i][j] = dp[i-1][j-1] # not if character does not match then we have to check for all possibilites insert, remove and replace else: dp[i][j] = 1 + min(dp[i][j-1], # insert dp[i-1][j], # remove dp[i-1][j-1]) # replace return dp[m][n] str_1 = input() str_2 = input() print(editdistance(str_1 , str_2)) ``` #### File: python/dynamic_programming/fibonacci_topdown.py ```python def fibonacci(n,memo): if n==0 or n==1: return n if memo[n]!=0: return memo[n] else: memo[n]=fibonacci(n-1,memo)+fibonacci(n-2,memo) return memo[n] if __name__=="__main__": n = int(input("Enter a whole number\n")); memo = [0 for i in range(n+1)] val=fibonacci(n,memo) print(val) ``` #### File: python/graph_algorithms/Dijkstra's_Shortest_Path_Implementation_using_Adjacency_List.py ```python class Node_Distance : def __init__(self, name, dist) : self.name = name self.dist = dist class Graph : def __init__(self, node_count) : self.adjlist = {} self.node_count = node_count def Add_Into_Adjlist(self, src, node_dist) : if src not in self.adjlist : self.adjlist[src] = [] self.adjlist[src].append(node_dist) def Dijkstras_Shortest_Path(self, source) : # Initialize the distance of all the nodes from source to infinity distance = [999999999999] * self.node_count # Distance of source node to itself is 0 distance[source] = 0 # Create a dictionary of { node, distance_from_source } dict_node_length = {source: 0} while dict_node_length : # Get the key for the smallest value in the dictionary # i.e Get the node with the shortest distance from the source source_node = min(dict_node_length, key = lambda k: dict_node_length[k]) del dict_node_length[source_node] for node_dist in self.adjlist[source_node] : adjnode = node_dist.name length_to_adjnode = node_dist.dist # Edge relaxation if distance[adjnode] > distance[source_node] + length_to_adjnode : distance[adjnode] = distance[source_node] + length_to_adjnode dict_node_length[adjnode] = distance[adjnode] for i in range(self.node_count) : print("Source Node ("+str(source)+") -> Destination Node(" + str(i) + ") : " + str(distance[i])) def main() : g = Graph(6) # Node 0: <1,5> <2,1> <3,4> g.Add_Into_Adjlist(0, Node_Distance(1, 5)) g.Add_Into_Adjlist(0, Node_Distance(2, 1)) g.Add_Into_Adjlist(0, Node_Distance(3, 4)) # Node 1: <0,5> <2,3> <4,8> g.Add_Into_Adjlist(1, Node_Distance(0, 5)) g.Add_Into_Adjlist(1, Node_Distance(2, 3)) g.Add_Into_Adjlist(1, Node_Distance(4, 8)) # Node 2: <0,1> <1,3> <3,2> <4,1> g.Add_Into_Adjlist(2, Node_Distance(0, 1)) g.Add_Into_Adjlist(2, Node_Distance(1, 3)) g.Add_Into_Adjlist(2, Node_Distance(3, 2)) g.Add_Into_Adjlist(2, Node_Distance(4, 1)) # Node 3: <0,4> <2,2> <4,2> <5,1> g.Add_Into_Adjlist(3, Node_Distance(0, 4)) g.Add_Into_Adjlist(3, Node_Distance(2, 2)) g.Add_Into_Adjlist(3, Node_Distance(4, 2)) g.Add_Into_Adjlist(3, Node_Distance(5, 1)) # Node 4: <1,8> <2,1> <3,2> <5,3> g.Add_Into_Adjlist(4, Node_Distance(1, 8)) g.Add_Into_Adjlist(4, Node_Distance(2, 1)) g.Add_Into_Adjlist(4, Node_Distance(3, 2)) g.Add_Into_Adjlist(4, Node_Distance(5, 3)) # Node 5: <3,1> <4,3> g.Add_Into_Adjlist(5, Node_Distance(3, 1)) g.Add_Into_Adjlist(5, Node_Distance(4, 3)) g.Dijkstras_Shortest_Path(0) print("\n") g.Dijkstras_Shortest_Path(5) if __name__ == "__main__" : main() ``` #### File: python/linked_list/Circular_LinkedList.py ```python class Node: def __init__(self, data): self.data = data self.next = None class CircularLinkedList: def __init__(self): self.count = 0 self.head = Node(None) self.tail = Node(None) self.head.next = self.tail self.tail.next = self.head def size(self): return self.count def add(self, data): newNode = Node(data) if self.head.data is None: self.head = newNode self.tail = newNode newNode.next = self.head else: self.tail.next = newNode self.tail = newNode self.tail.next = self.head self.count += 1 def printList(self): temp = self.head if self.head != None: while True: print(temp.data, end=" ") temp = temp.next if temp == self.head: break if __name__ == "__main__": cll = CircularLinkedList() cll.add(1) cll.add(-2) cll.add(40) cll.add(-101) cll.add(220) cll.add(13) cll.printList() print(cll.size()) ``` #### File: python/maths/gcd.py ```python def gcd(num1,num2): if(num2==0): return num1 else: return gcd(num2,num1%num2) num1 = int(input("Enter an Integer: ")) num2 = int(input("Enter another Integer: ")) print ("GCD: ",gcd(num1,num2)) ``` #### File: python/Matrix/Bullet-Brick.py ```python def MinBullet(points): # Sort the points in ascending order for i in range(len(points)): points[i] = points[i][::-1] points = sorted(points) for i in range(len(points)): points[i] = points[i][::-1] # Check if there are no points if (len(points) == 0): return 0 cnt = 1 curr = points[0][1] # Iterate through all the points for j in range(1, len(points)): if (curr < points[j][0]): # Increase the count cnt += 1 curr = points[j][1] # Return the count return cnt # sample brick if __name__ == '__main__': bricks = [ [ 10, 16 ], [ 2, 8 ], [ 1, 6 ], [ 7, 12 ]] # Function call print(MinBullet(bricks)) ``` #### File: python/searching/jumpsearch.py ```python import math #for sqrt def jumpsearch(arr,ele): #function to perform jump search n = len(arr) #Length of the list/array block = int(math.sqrt(n))#Defining size of the block(no of elements to be skipped) start=0 end = 0 while start < n and arr[start] <= ele: end = min(n - 1, start + block)#Taking the minimum of the length and start if arr[start] <= ele and arr[end] >= ele: #If block in which element is present is found then break break start += block #Keep incrementing start with the value of block size unti block is found if start >= n or arr[start] > ele: #If element is not found return -1 end = min(n- 1, end)#Taking the minimum of the length and end i = start while i <= end and arr[i] <=ele:#Search for the element in the respective block if arr[i] == ele: return i i += 1 return -1 def main():#Driver function arr = [1,2,3,4,5,6,7,8,9] #Input array/list pos = jumpsearch(arr,5) if(pos>=0): print("Element located at pos: ",pos+1) else: print("Element not located") main() ``` #### File: python/string algorithms/boyer_moore_sunday.py ```python def search_letter_in_pattern(pattern,letter): """ Search the letter inside in pattern if no converge return -1 """ m = len(pattern) count = 1 for i in range(m-1,-1,-1): if letter==pattern[i]: return count count = count+1 return -1 def boyern_sunday(text,pattern): """ text:str pattern:str """ coincidence = 0 n = len(text) m = len(pattern) j = m-1 i = m-1 iterations = 0 while(i<=n-1): if j==m-1: h = i #the rightmost value if text[i]==pattern[j]: if j==0: coincidence = coincidence+1 j = m-1 i = (i+m-1)+j iterations = iterations+1 else: i = i-1 j = j-1 else: #If it enters here it is because the last one no longer converges and there is no need to compare more if h==n-1: return coincidence j = m-1 l = search_letter_in_pattern(pattern,text[h+1]) if l<0: #the next move is the pattern quantity +1 i = h+m+1 iterations = iterations+1 else: i = h+l iterations = iterations+1 return coincidence print(boyern_sunday("jairo jandresja","ja")) ```
{ "source": "jigneshpshah/organic_shop", "score": 2 }
#### File: organic_shop/utils/frappe.py ```python import frappe import datetime from frappe.utils import cstr import frappe.handler @frappe.whitelist() def upload_file(): # Upload file file = frappe.handler.uploadfile() return file ``` #### File: www/organic-cart/index.py ```python import frappe import json from erpnext.shopping_cart.cart import get_cart_quotation # def get_context(context): # context.update(get_cart_quotation()) def get_context(context): # if frappe.session.user == 'Guest': # frappe.local.flags.redirect_location = '/' # raise frappe.Redirect context.session = frappe.session context.user = frappe.session.user context.csrf_token = frappe.sessions.get_csrf_token() context.item_group = frappe.get_all("Item Group",filters={"show_in_website":1,"is_group":0},fields=["name"]) # context.item = frappe.get_all("Item",filters={"show_in_website":1},fields=["name","image","item_group"]) context.item_result = get_items() context.update(get_cart_quotation()) return context def get_items(): result_items = [] items = frappe.db.sql(""" select name,item_name,route,has_variants,item_group,website_warehouse,image from `tabItem` it where it.show_in_website = 1 and it.is_sales_item = 1""",as_dict = 1) for item in items: if item.has_variants == 1: variant = frappe.db.sql("""select name,item_name,item_group,website_warehouse from `tabItem` it where it.variant_of = %s""",item.name,as_dict = 1) variant_list = [] in_stock = 0 for var in variant: price = frappe.db.get_value("Item Price",{"item_code":var.name,"price_list":frappe.db.get_value("Shopping Cart Settings",None,"price_list"),"selling":1},"price_list_rate") stock = frappe.db.get_value("Bin",{"item_code":var.name,"warehouse":var.website_warehouse},"actual_qty") if stock != None and stock != 0: in_stock=1 variant_list.append({ "variant_name":var.item_name, "variant":var.name, "stock":stock, "price":price, }) result_items.append({ "route":item.route, "has_variant":item.has_variants, "item":item.name, "item_name":item.item_name, "image":item.image, "variant":variant_list, "item_group":item.item_group, "in_stock":in_stock }) else: in_stock = 0 price = frappe.db.get_value("Item Price",{"item_code":item.name,"price_list":frappe.db.get_value("Shopping Cart Settings",None,"price_list"),"selling":1},"price_list_rate") stock = frappe.db.get_value("Bin",{"item_code":item.name,"warehouse":item.website_warehouse},"actual_qty") if stock != None and stock != 0: in_stock=1 result_items.append({ "route":item.route, "has_variant":item.has_variants, "item":item.name, "item_name":item.item_name, "image":item.image, "variant":None, "stock":stock, "price":price, "item_group":item.item_group, "in_stock":in_stock }) return result_items ```
{ "source": "jigneshpurohit/openshift_playbook", "score": 2 }
#### File: openshift_master_facts/lookup_plugins/openshift_master_facts_default_priorities.py ```python import re from ansible.errors import AnsibleError from ansible.plugins.lookup import LookupBase class LookupModule(LookupBase): # pylint: disable=too-many-branches,too-many-statements,too-many-arguments def run(self, terms, variables=None, zones_enabled=True, short_version=None, deployment_type=None, **kwargs): priorities = [] if short_version is None or deployment_type is None: if 'openshift' not in variables: raise AnsibleError("This lookup module requires openshift_facts to be run prior to use") if deployment_type is None: if 'common' not in variables['openshift'] or 'deployment_type' not in variables['openshift']['common']: raise AnsibleError("This lookup module requires that the deployment_type be set") deployment_type = variables['openshift']['common']['deployment_type'] if short_version is None: if 'short_version' in variables['openshift']['common']: short_version = variables['openshift']['common']['short_version'] elif 'openshift_release' in variables: release = variables['openshift_release'] if release.startswith('v'): short_version = release[1:] else: short_version = release short_version = '.'.join(short_version.split('.')[0:2]) elif 'openshift_version' in variables: version = variables['openshift_version'] short_version = '.'.join(version.split('.')[0:2]) else: # pylint: disable=line-too-long raise AnsibleError("Either OpenShift needs to be installed or openshift_release needs to be specified") if deployment_type == 'origin': if short_version not in ['1.1', '1.2', '1.3', '1.4', '1.5', '1.6', 'latest']: raise AnsibleError("Unknown short_version %s" % short_version) elif deployment_type == 'openshift-enterprise': if short_version not in ['3.1', '3.2', '3.3', '3.4', '3.5', '3.6', 'latest']: raise AnsibleError("Unknown short_version %s" % short_version) else: raise AnsibleError("Unknown deployment_type %s" % deployment_type) if deployment_type == 'openshift-enterprise': # convert short_version to origin short_version short_version = re.sub('^3.', '1.', short_version) if short_version == 'latest': short_version = '1.6' if short_version == '1.1': priorities.extend([ {'name': 'LeastRequestedPriority', 'weight': 1}, {'name': 'BalancedResourceAllocation', 'weight': 1}, {'name': 'SelectorSpreadPriority', 'weight': 1} ]) if short_version == '1.2': priorities.extend([ {'name': 'LeastRequestedPriority', 'weight': 1}, {'name': 'BalancedResourceAllocation', 'weight': 1}, {'name': 'SelectorSpreadPriority', 'weight': 1}, {'name': 'NodeAffinityPriority', 'weight': 1} ]) if short_version == '1.3': priorities.extend([ {'name': 'LeastRequestedPriority', 'weight': 1}, {'name': 'BalancedResourceAllocation', 'weight': 1}, {'name': 'SelectorSpreadPriority', 'weight': 1}, {'name': 'NodeAffinityPriority', 'weight': 1}, {'name': 'TaintTolerationPriority', 'weight': 1} ]) if short_version == '1.4': priorities.extend([ {'name': 'LeastRequestedPriority', 'weight': 1}, {'name': 'BalancedResourceAllocation', 'weight': 1}, {'name': 'SelectorSpreadPriority', 'weight': 1}, {'name': 'NodePreferAvoidPodsPriority', 'weight': 10000}, {'name': 'NodeAffinityPriority', 'weight': 1}, {'name': 'TaintTolerationPriority', 'weight': 1}, {'name': 'InterPodAffinityPriority', 'weight': 1} ]) if short_version in ['1.5', '1.6']: priorities.extend([ {'name': 'SelectorSpreadPriority', 'weight': 1}, {'name': 'InterPodAffinityPriority', 'weight': 1}, {'name': 'LeastRequestedPriority', 'weight': 1}, {'name': 'BalancedResourceAllocation', 'weight': 1}, {'name': 'NodePreferAvoidPodsPriority', 'weight': 10000}, {'name': 'NodeAffinityPriority', 'weight': 1}, {'name': 'TaintTolerationPriority', 'weight': 1} ]) if zones_enabled: zone_priority = { 'name': 'Zone', 'argument': { 'serviceAntiAffinity': { 'label': 'zone' } }, 'weight': 2 } priorities.append(zone_priority) return priorities ```
{ "source": "jigneshvasoya/tlspsk-wrapper", "score": 3 }
#### File: tlspsk-wrapper/pytlspsk/ssl_psk.py ```python import ssl import _ssl_psk # memory leak! _sslptr_to_psk = {} def _psk_callback(ssl): return _sslptr_to_psk[ssl] _ssl_psk.set_python_psk_callback(_psk_callback) def set_client_psk(ssl, psk): ptr = _ssl_psk.set_psk_callback(ssl._sslobj) _sslptr_to_psk[ptr] = psk def set_server_psk(ssl, psk): ptr = _ssl_psk.set_psk_server_callback(ssl._sslobj) _sslptr_to_psk[ptr] = psk def wrap_socket(*args, **kwargs): psk = kwargs.setdefault('psk', None) del kwargs['psk'] do_handshake_on_connect = kwargs.get('do_handshake_on_connect', True) kwargs['do_handshake_on_connect'] = False kwargs.setdefault('server_side', False) server_side = kwargs['server_side'] if psk: del kwargs['server_side'] # bypass need for cert sock = ssl.wrap_socket(*args, **kwargs) if psk: if server_side: set_server_psk(sock, psk) else: set_client_psk(sock, psk) if do_handshake_on_connect: sock.do_handshake() return sock ```
{ "source": "jignyasi/adhyapiyutam", "score": 3 }
#### File: jignyasi/adhyapiyutam/basics.py ```python print 'hello' a = 'hello' if(a == b){ do this } if a==a: print '1' print '2' print 'something' if True: print '1' if True: print '2' if "True": print '3' name = 'anand' age = 28 loc = 'hyd' print 'hi, my name is {0} and my age is {1} and my loc is {2} and my sal is {1}L'.format(name,age,loc) print float(2) / 3 print 17 // 3 print 17 % 3 print 2 ** 6 print pow(2,5) print not (True and True) print not (True or False) print not (True | False) print not (True & True) print 3!=3 a = 3 a+=1 print a a*=2 print a if a<10: print 'level-0 {0}'.format(a) elif a < 20: print 'level-1 {0}'.format(a) else: print 'level-2 {0}'.format(a) flag = 0 while flag <5: print flag flag+=1 for flag in range(5): print 'something' if flag ==2: continue print flag if flag == 4: break def myfun(): print 'hello world!' return None myfun() def myfun(x): return 'hello world!{0}'.format(x) print myfun() print myfun('BISCUIT') def myfun(x = 'BAZINGA'): return 'hello world!{0}'.format(x) print myfun() print myfun('BISCUIT') # Local variable scope x = 10 def myfun(y): x =2*y return 'hello world!{0}'.format(x) print myfun(x) print(x) # global variable scope x = 40 def myfun(y): global x x =2*y return 'hello world!{0}'.format(x) print myfun(x) print(x) # kwargs example -- numbers def myfun(*numbers): print numbers return sum(numbers) print myfun(2,3,4,5,6, 6.3) def myfun(**vars): print vars return vars['x'] + vars['y'] print myfun(x = 2, y = 10, z = 100, h = 200) def myfun(x,y, *nums, **kwargs): print x,y print nums, kwargs return x+y+kwargs['z'] + sum(nums) print myfun(2,4,6,8,z = 100, h = 200) #sys.path.insert(fileWD) import sampleProg1 sampleProg1.fnCopy('choc', 'biscuit') from sampleProg1 import fnCopy1, fnCopy2 fnCopy1('choc', 'biscuit') from sampleProg1 import * fnCopy2('choc', 'biscuit') import sampleProg1 dir(sampleProg1) from myPackage1 import sampleProg1 sampleProg1.fnCopy1('source1', 'destination1') x = 2 print type(x) x = 2.2 print type(x) x = '2.2' print type(x) x = 'abcdefghijklmno' print type(x) print x[0:3] print x[:-1] print x[::-1] print x[::2] print dir(x) print len(x) print x.isupper() print x.upper() print x.replace('k','K') print x + '123' x = ['a',2, 'b',3 ,'c'] print type(x) print len(x) print x[0:3] print x[-1] print x[:-1] print x[::2] print x + list('xyz') print x + ['1','2','22','33'] print dir(x) x.sort() print(x) x.append('yellow') print(x) x.append(['blue', 'red']) print(x) x.extend(['pink', 'green']) print(x) x.insert(2, 'MENTAL') print x x.reverse() print x x.pop(3) print x x.remove('a') print x y = x.pop(1) print x,y print sum([0,1,2]) print sum([True, False, True]) x = ['a','a','b','b','b','c'] y = ['b','c','c','c','d'] print set(x) - set(y) print set(x).union(set(y)) print set(x).intersection(set(y)) print list(set(x).union(set(y))) x = ['a',2, 'b',3 ,'c'] #M1 y = [] for k in x: y.append(str(k)+'L') print y #M2 y = [str(k)+'L' for k in x] #M3 y = map(lambda k: str(k)+'L',x) ######### filter(lambda k: k>5, range(10)) reduce(lambda a,b: a+b, range(10)) k = [] reduce(lambda a,b: k.append([a,b]), [22,1,2,44,7,3,8]) print k ####Vectorized operations y = ['1','2','22','33'] x = '_'.join(y) print x print x.split('_') y = ['1',2,'22',33,'abc'] print '+'.join(map(str, y)) print [2,3] #this is a list print (2,3) #this is a tuple k = [2,3] k.append(4) print k x = (2,3,4,5,6,7) #immutable print type(x) print len(x) print x[0:3] print dir(x) #print x.count(4) print x.index(4) x = [('username','<PASSWORD>'),('username1','<PASSWORD>')] print x print map(lambda k: '+'.join(k), x) def myJoinfunc(l): return '+'.join(l) print map(myJoinfunc, x) print (('username','<PASSWORD>'),('username1','<PASSWORD>')) a,b = 2,3 print a,b a,b,_ = 2,3,4 print a,b a,b = ('AB','CD') print a,b x = [('username','password1'),('username1','<PASSWORD>')] def myJoinfunc(l): a,b = l return '+'+a+'::'+b print map(myJoinfunc, x) x = (('username','<PASSWORD>'),('username1','<PASSWORD>')) print map(myJoinfunc, x) print (2,3) # length 2 print (2) #will not be a tuple print (2,) # length 1 []#Search is index based ()#Search is index based {}#Search is key based x = {'username':'password','username1':'password1','username2':'password2'} print type(x) print len(x) print x['username1'] print x.keys() print x.values() for k in x: print [k,x[k]] print [[k,x[k]] for k in x] x['username3'] = 'password3' #adding a new user print x print dir(x) for usr,pasw in x.items(): print usr+pasw x.pop('username3') print x del x['username2'] print x print x['username1'] x['username1'] = 'MYPASSWORD' print x['username1'] x = {'username':['password',22,'M','HYD'], 'username1':'password1', 'username2':('password2','M'), 'username3': {'LOC':'HYD','Age':28,'PASSWORD':'<PASSWORD>'}} print x print x['username'] print x['username'][3] print x['username3'] print x['username3']['LOC'] a = list('abcde') b = a a.remove('c') print a,b a = list('abcde') b = a[:] ##Copy a.remove('c') print a,b a = zip(list('abcde'),list('fghij')) a = dict(a) b = a a.pop('c') print a,b a = zip(list('abcde'),list('fghij')) a = dict(a) b = a.copy() a.pop('c') print a,b import re rex = re.compile('\(.*?\)') A = 'acf () (hihhh) (ashd|} dashfj' print re.sub(rex, '', A) rex = re.compile('\(.*?\)|\[.*?\]') A = 'acf () (hihhh) (ashd|} dashfj p[ascsf]' print re.sub(rex, '', A) rex = re.compile('\(.*?\)|\[.*?\]') rex = re.compile('\(\w+?\)') print re.sub(rex, '', A) ```
{ "source": "JIGNYAS/Networcked", "score": 3 }
#### File: Networcked/src/apache_server.py ```python import os import time import webbrowser from subprocess import PIPE, run from logo import logo_print logo_print() def command(cmd): return run(cmd, stdout=PIPE, stderr=PIPE, universal_newlines=True, shell=True) # a=input(f'{green}Enter Command:{NC}').split() def start_server(a): if(a[0]=="netw"): if "--se" in a: t="sudo service apache2 start -D "+a[2] x=command(t) webbrowser.open("http://localhost/") if '--file' in a: command('sudo rm /var/www/html/index.nginx-debian.html') print() os.system("echo '\033[0;31m [Starting] \033[0m Loading The Server...'") print() time.sleep(1) os.system("echo '\033[0;31m [Initializing] \033[0m Starting The Processes....'") time.sleep(1) print() os.system("echo '\033[0;31m [Loading The Host] \033[0m Copying Pages.....'") print() time.sleep(1) os.system("echo '\033[0;32m [All Set !!] \033[0m Server Deployed At http://localhost...'") print() time.sleep(1) t='sudo cp '+a[2]+' /var/www/html/src/cindex.html' command('mkdir /var/www/html/src') x=command(t) #print(t) webbrowser.open("http://localhost/src/index.html") ``` #### File: Networcked/src/directory_finder.py ```python import os import time import requests RED='\033[0;31m' NC='\033[0m' green='\033[0;32m' cyan='\033[0;36m' orange='\033[0;33m' purple='\033[0;35m' def Direc_find(a): t=open(a[3],"r") for i in t: x=repr(i).replace(r'\n',"") req=requests.get(a[2]+"/"+x) if req.status_code<300: print(green+req.status_code+NC+" "+a[2]+"/"+x) else: print(RED+req.status_code+NC+" "+a[2]+"/"+x) ```
{ "source": "jigo2600/jigo2600", "score": 2 }
#### File: jigo2600/jigo2600/setup.py ```python from setuptools import setup, Extension from setuptools.command.build_ext import build_ext import sys import setuptools import distutils __version__ = '1.0.0' class get_pybind_include(object): """Helper class to determine the pybind11 include path The purpose of this class is to postpone importing pybind11 until it is actually installed, so that the ``get_include()`` method can be invoked.""" def __init__(self, user=False): self.user = user def __str__(self): import pybind11 return pybind11.get_include(self.user) class BuildExt(build_ext): "A custom build extension for adding compiler-specific options." def build_extensions(self): # Get the default compiler options for extensions. c_opts = [] # Platform-dependent options. pl = sys.platform if pl == 'darwin': pass elif pl == 'nt': pass # Compiler-dependent options. ct = self.compiler.compiler_type if ct == 'unix': c_opts += [f'-DVERSION_INFO="{self.distribution.get_version()}"'] c_opts += ['-fvisibility=hidden'] c_opts += ['-std=c++14'] elif ct == 'msvc': c_opts += [f'/DVERSION_INFO="{self.distribution.get_version()}"'] c_opts += ['/EHsc'] # Set the options for each target. for ext in self.extensions: ext.extra_compile_args = c_opts # Build the extension. build_ext.build_extensions(self) setup( name='jigo2600', version=__version__, author='Jigo2600 Team', author_email='<EMAIL>', url='https://github.com/jigo2600/jigo2600', description='An Atari 2600 emulator', long_description=open('README.md').read(), packages=['jigo2600'], package_dir={'': 'python'}, package_data={'jigo2600': ['gamecontrollerdb.txt', 'cartridges.json']}, ext_modules=[ Extension( 'jigo2600.core', [ 'python/jigo2600/core.cpp', 'src/Atari2600.cpp', 'src/Atari2600Cartridge.cpp', 'src/M6502.cpp', 'src/M6502Disassembler.cpp', 'src/M6532.cpp', 'src/TIA.cpp', 'src/TIASound.cpp', ], include_dirs=[ 'src/', get_pybind_include(), get_pybind_include(user=True) ], language='c++' ), ], install_requires=['pybind11>=2.2'], cmdclass={'build_ext': BuildExt}, zip_safe=False, ) ```
{ "source": "jigpu/radalert-py", "score": 3 }
#### File: examples/log/logger.py ```python import sys import threading import urllib.request from datetime import datetime from string import Template from radalert.ble import RadAlertLEStatus from radalert.ble import RadAlertLEQuery from radalert.util.filter import FIRFilter from radalert.util.filter import IIRFilter class ConsoleLogger: """ Simple console-logging class for the Radiation Alert devices. Periodically prints the properties tracked by the backend to the console. """ def __init__(self, backend, delay=30): self.backend = backend self.delay = delay self._running = False self._thread_event = threading.Event() def __str__(self): try: update_delay = datetime.now() - self.backend.last_update if update_delay.total_seconds() > self.delay: return "" actual = self.backend.actuals.value avg_short = self.backend.averages[0].value * 60 avg_medium = self.backend.averages[1].value * 60 avg_long = self.backend.averages[2].value * 60 maximum = self.backend.maximum.value * 60 minimum = self.backend.minimum.value * 60 table = ( f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", f"{self.backend.battery}%", f"{self.backend.conversion}", f"{actual}", f"{avg_short:.2f}", f"{avg_medium:.2f}", f"{avg_long:.2f}", f"{maximum:.2f}", f"{minimum:.2f}", ) return "\t".join(table) except: return "" def header(self): def timespan(time): if time <= 60: return (time, "s") time /= 60 if time <= 60: return (time, "m") time /= 60 if time <= 24: return (time, "h") time /= 24 return (time, "d") ts_actual = timespan(self.backend.actual_samples) ts_short = timespan(self.backend.average_samples[0]) ts_medium = timespan(self.backend.average_samples[1]) ts_long = timespan(self.backend.average_samples[2]) ts_minmax = timespan(self.backend.minmax_samples) table = ( f"time", f"battery", f"cpm/(mR/h)", f"{ts_actual[0]}{ts_actual[1]}-count", f"{ts_short[0]}{ts_short[1]}-avg-cpm", f"{ts_medium[0]}{ts_medium[1]}-avg-cpm", f"{ts_long[0]}{ts_long[1]}-avg-cpm", f"{ts_minmax[0]}{ts_minmax[1]}-max-cpm", f"{ts_minmax[0]}{ts_minmax[1]}-min-cpm", ) return "\t".join(table) def spin(self): """ Spin our wheels periodically logging to the console. This should be executed in a seperate thread to ensure that execution can still continue. """ if not self._running: print(self.header()) self._running = True while self._running: line = self.__str__() if len(line) > 0: print(line) self._thread_event.wait(timeout=self.delay) def stop(self): """Stop execution of the spin function.""" self._running = False self._thread_event.set() class GmcmapLogger: """ Simple class to take care of logging data to the GMC.MAP service. """ _URL_TEMPLATE=Template("http://www.GMCmap.com/log2.asp?AID=${GMC_ACCOUNT_ID}&GID=${GMC_GEIGER_ID}&CPM=${CPM}&ACPM=${ACPM}&uSV=${USV}") def __init__(self, backend, account_id, geiger_id, delay=180): self.backend = backend self.account_id = account_id self.geiger_id = geiger_id self.delay = delay self._running = False self._thread_event = threading.Event() def send_update(self): try: update_delay = datetime.now() - self.backend.last_update if update_delay.total_seconds() > self.delay: return avg_short = self.backend.averages[0].value * 60 avg_long = self.backend.averages[2].value * 60 usv = avg_short / self.backend.conversion * 10 self.send_values(avg_short, avg_long, usv) except: print("Unable to send values to gmc server", file=sys.stderr) def send_values(self, cpm, acpm, usv): """ Send the log data to the service. """ url=GmcmapLogger._URL_TEMPLATE.substitute( GMC_ACCOUNT_ID=self.account_id, GMC_GEIGER_ID=self.geiger_id, CPM=f'{cpm:.2f}', ACPM=f'{acpm:.2f}', USV=f'{usv:.5f}' ) urllib.request.urlopen(url).read() def spin(self): """ Spin our wheels periodically logging to the server. This should be executed in a seperate thread to ensure that execution can still continue. """ if not self._running: self._running = True while self._running: self.send_update() self._thread_event.wait(timeout=self.delay) def stop(self): """Stop execution of the spin function.""" self._running = False self._thread_event.set() class RadmonLogger: """ Simple class to take care of logging data to the Radmon service. """ _URL_TEMPLATE=Template("http://radmon.org/radmon.php?function=submit&user=${RADMON_USERNAME}&password=${<PASSWORD>}&value=${CPM}&unit=CPM") def __init__(self, backend, account_id, geiger_id, delay=180): self.backend = backend self.account_id = account_id self.geiger_id = geiger_id self.delay = delay self._running = False self._thread_event = threading.Event() def send_update(self): try: update_delay = datetime.now() - self.backend.last_update if update_delay.total_seconds() > self.delay: return avg_short = self.backend.averages[0].value * 60 self.send_values(avg_short) except: print("Unable to send values to radmon server", file=sys.stderr) def send_values(self, cpm): """ Send the log data to the service. """ url=RadmonLogger._URL_TEMPLATE.substitute( RADMON_USERNAME=self.account_id, RADMON_PASSWORD=self.geiger_id, CPM=f'{cpm:.2f}', ) urllib.request.urlopen(url).read() def spin(self): """ Spin our wheels periodically logging to the server. This should be executed in a seperate thread to ensure that execution can still continue. """ if not self._running: self._running = True while self._running: self.send_update() self._thread_event.wait(timeout=self.delay) def stop(self): """Stop execution of the spin function.""" self._running = False self._thread_event.set() class LogBackend: """ Backend class to interface with the radalert package. Keeps track of various statistics and device state for loggers. """ def __init__(self, actual_samples=60, average_samples=(300,43200,7776000), minmax_samples=300): """ Create a new logger with the given properties. """ self.last_update = None self.conversion = None self.battery = 0 self.actual_samples = actual_samples self.actuals = FIRFilter(actual_samples, sum) self.average_samples = average_samples self.averages = ( FIRFilter(average_samples[0]), IIRFilter.create_from_time_constant(average_samples[1]), IIRFilter.create_from_time_constant(average_samples[2]), ) self.minmax_samples = minmax_samples self.maximum = FIRFilter(minmax_samples, max) self.minimum = FIRFilter(minmax_samples, min) def radalert_le_callback(self, data): """ Update internal state whenever a RadAlertLE has new data. This is a callback that should be given to the RadAlertLE object so that we can be informed whenever new data is available. """ if isinstance(data, RadAlertLEStatus): self._on_data(data) elif isinstance(data, RadAlertLEQuery): self._on_query(data) def _on_data(self, data): self.last_update=datetime.now() cps = data.cps self.battery = data.battery_percent # Do not initalize actual count with any kind of average self.actuals.iterate(cps) # Initialize averaging filters to the device average if self.averages[0].value is None: self.averages[0].iterate(data.cpm / 60) if self.averages[1].value is None: self.averages[1].iterate(data.cpm / 60) if self.averages[2].value is None: self.averages[2].iterate(data.cpm / 60) self.averages[0].iterate(cps) self.averages[1].iterate(cps) self.averages[2].iterate(cps) # Initialize the minmax filters to the device average if len(self.maximum.values) == 0: self.maximum.iterate(data.cpm / 60) if len(self.maximum.values) == 0: self.maximum.iterate(data.cpm / 60) self.maximum.iterate(self.averages[0].value) self.minimum.iterate(self.averages[0].value) def _on_query(self, data): self.conversion = data.conversion_factor ```
{ "source": "jigpu/sshlib", "score": 3 }
#### File: resources/asyncssh-server/server.py ```python import asyncio, asyncssh, crypt, sys, time, logging passwords = { '<PASSWORD>': '<PASSWORD>' # password of '<PASSWORD>' } def handle_client(process): process.stdout.write('success\n') time.sleep(10) process.exit(0) class MySSHServer(asyncssh.SSHServer): def __init__(self): self._conn = None def connection_made(self, conn): print('SSH connection received from %s.' % conn.get_extra_info('peername')[0]) self._conn = conn; def connection_lost(self, exc): if exc: print('SSH connection error: ' + str(exc), file=sys.stderr) else: print('SSH connection closed.') def begin_auth(self, username): # If the user's password is the empty string, no auth is required self._conn.set_authorized_keys('authorized_keys') return passwords.get(username) != '' def password_auth_supported(self): return True def validate_password(self, username, password): pw = passwords.get(username, '*') return crypt.crypt(password, pw) == pw def public_key_auth_supported(self): return True async def start_server(): asyncssh.set_log_level('DEBUG') asyncssh.set_debug_level(2) await asyncssh.create_server(MySSHServer, '', 8022, server_host_keys=[ '/etc/ssh/ssh_host_ecdsa_key', '/etc/ssh/ssh_host_rsa_key', ], process_factory=handle_client) print("SETTING LOGGER") root = logging.getLogger() root.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(message)s') ch.setFormatter(formatter) root.addHandler(ch) print("STARTING UP") loop = asyncio.get_event_loop() try: loop.run_until_complete(start_server()) except (OSError, asyncssh.Error) as exc: sys.exit('Error starting server: ' + str(exc)) print("LISTENER READY") # Only run the loop once for testing #loop.call_soon(loop.stop) loop.run_forever() ```
{ "source": "Jigsaw111/nondice", "score": 2 }
#### File: plugins/char_make/__init__.py ```python from nonebot import on_command, CommandSession from .calculator import Calculator __plugin_name__ = '人物作成' __plugin_usage__ = ( 'sg 变量之轮(轮回游戏二版)人物作成' 'sk 时空之轮人物作成' 'coc COC7版人物作成(不支持6版)' 'dnd DND任务作成' ) @on_command('sg', aliases=('轮回游戏'),only_to_me=False) async def sg(session: CommandSession): try:round_num=int(session.current_arg_text.strip()) except:round_num=1 if not round_num or round_num>10:await session.send('非法轮数') message='' for round in range(round_num): if round:message+='\n' attr_name=['壮硕值','爆发力','协调性','精神力','反应力','幸运值'] attr_cmd=['2d3','2d3','2d3','2d3','2d3','2d3'] for i in range(len(attr_name)): attr_cal=Calculator(attr_cmd[i]) attr_cal.calculate_with_bracket() if i:message+=',' message+=attr_name[i]+':'+str(int(attr_cal.result)) await session.send(message) @on_command('sk', aliases=('时空之轮'),only_to_me=False) async def sk(session: CommandSession): try:round_num=int(session.current_arg_text.strip()) except:round_num=1 if not round_num or round_num>10:await session.send('非法轮数') message='' for round in range(round_num): if round:message+='\n' attr_name=['力量','敏捷','体力','精神','智慧','魅力','幸运'] attr_cmd=['2d5','2d5','2d5','2d5','2d5','2d5','2d5'] for i in range(len(attr_name)): attr_cal=Calculator(attr_cmd[i]) attr_cal.calculate_with_bracket() if i:message+=',' message+=attr_name[i]+':'+str(int(attr_cal.result)) await session.send(message) @on_command('coc', aliases=('克苏鲁的呼唤'),only_to_me=False) async def coc(session: CommandSession): try:round_num=int(session.current_arg_text.strip()) except:round_num=1 if not round_num or round_num>10:await session.send('非法轮数') message='' for round in range(round_num): if round:message+='\n' attr_name=["力量", "体质", "体型", "敏捷", "外貌", "智力", "意志", "教育", "幸运"] attr_cmd=['3d6*5','3d6*5','(2d6+6)*5','3d6*5','3d6*5','(2d6+6)*5','3d6*5','(2d6+6)*5','3d6*5'] attr_count=0 for i in range(len(attr_name)): attr_cal=Calculator(attr_cmd[i]) attr_cal.calculate_with_bracket() attr_count+=attr_cal.result if i:message+=',' message+=attr_name[i]+':'+str(int(attr_cal.result)) message +="\n总计:"+str(int(attr_count-attr_cal.result))+'/'+str(int(attr_count)) await session.send(message) @on_command('dnd', aliases=('龙与地下城'),only_to_me=False) async def coc(session: CommandSession): try:round_num=int(session.current_arg_text.strip()) except:round_num=1 if not round_num or round_num>10:await session.send('非法轮数') message='' for round in range(round_num): if round:message+='\n' attr_name=["力量", "体质", "敏捷", "智力", "感知", "魅力"] attr_cmd=['4d6k3','4d6k3','4d6k3','4d6k3','4d6k3','4d6k3'] for i in range(len(attr_name)): attr_cal=Calculator(attr_cmd[i]) attr_cal.calculate_with_bracket() if i:message+=',' message+=attr_name[i]+':'+str(int(attr_cal.result)) await session.send(message) ``` #### File: plugins/draw_deck/decks.py ```python import os import json import yaml import random import re from .calculator import Calculator def get_deck_list(): deck_list_json=load_decks() message='读取到以下牌堆:' for i in deck_list_json.keys(): if i[0]=='_':continue message+='\n'+i return message def load_decks(): deck_list_data={} deck_list = os.listdir(os.path.join(os.path.dirname(__file__),'decks')) for i in deck_list: f=open(os.path.join(os.path.dirname(__file__),'decks',i),'r',encoding='utf-8') if i[len(i)-1]=='n':deck_list_data.update(json.loads(f.read())) else:deck_list_data.update(yaml.load(f.read())) f.close() return deck_list_data def get_value(key,num=1,mode=False): value_list=load_decks()[key] message='' for i in range(num): if mode: value=value_list.pop(random.randint(0,len(value_list)-1)) else: value=value_list[random.randint(0,len(value_list)-1)] while '{' in value: value=get_sub_key(value) while '[' in value: value=get_calculator(value) if i:message+='\n' message+=value return message def get_sub_key(value): mode=False l=value[:value.index('}')] r=value[value.index('}')+1:] key_sub=l[l.rindex('{')+1:] l=l[:l.rindex('{')] if key_sub[0]=='%': mode=True key_sub=key_sub[1:] return l+get_value(key_sub,1,mode)+r def get_calculator(value): l=value[:value.index(']')] r=value[value.index(']')+1:] key_sub=l[l.rindex('[')+1:] l=l[:l.rindex('[')] cal=Calculator(key_sub) cal.calculate_with_bracket() return l+str(int(cal.result))+r def separate_deckname_and_num(args,mode=False): args=args.split() deckname=args[0] try:num=int(args[1]) except:num=1 return '抽到了:\n'+get_value(deckname,num,mode) # 调试用 if __name__=='__main__': print(separate_deckname_and_num(input())) ``` #### File: plugins/draw_deck/__init__.py ```python from nonebot import on_command, CommandSession from nonebot.command import call_command from .decks import get_deck_list,separate_deckname_and_num __plugin_name__ = '拓展牌堆' __plugin_usage__ = ( 'draw list 牌堆列表' 'draw deckname 抽取牌堆' ) @on_command('draw',only_to_me=False) async def draw(session: CommandSession): args=session.current_arg_text.strip() if args=='list':await session.send(get_deck_list()) else: await session.send(separate_deckname_and_num(args)) @on_command('ndraw',only_to_me=False) async def ndraw(session: CommandSession): args=session.current_arg_text.strip() if args=='list':await session.send(get_deck_list()) else: await session.send(separate_deckname_and_num(args,True)) @on_command('name',only_to_me=False) async def name(session:CommandSession): try: await call_command(session.bot,session.event,'draw',current_arg='_name_ '+str(int(session.current_arg_text.strip()))) except: await call_command(session.bot,session.event,'draw',current_arg='_name_'+session.current_arg_text.strip()) @on_command('ti',only_to_me=False) async def ti(session:CommandSession): await call_command(session.bot,session.event,'draw',current_arg='_即时症状') @on_command('li',only_to_me=False) async def li(session:CommandSession): await call_command(session.bot,session.event,'draw',current_arg='_总结症状') ``` #### File: src/plugins/help.py ```python from nonebot import on_command, CommandSession,get_loaded_plugins @on_command('help', aliases=['使用说明','帮助'],only_to_me=False) async def _(session: CommandSession): # 获取设置了名称的插件列表 plugins = list(filter(lambda p: p.name,get_loaded_plugins())) arg = session.current_arg_text.strip().lower() if not arg: # 如果用户没有发送参数,则发送功能列表 await session.send( '目前支持的功能有:\n' + '\n'.join(p.name for p in plugins)) return # 如果发了参数则发送相应命令的使用帮助 for p in plugins: if p.name.lower() == arg: await session.send(p.usage) ``` #### File: plugins/jrrp/data_source.py ```python import json import time import os import random import httpx # 是否使用溯洄的API以达到与Dice!同步的目的 IS_ONLINE=True def get_jrrp_local(qq_id): day=str(time.localtime(time.time())[2]) try: jrrp_data=open(os.path.join(os.path.dirname(__file__),'jrrp_data.json'),'r',encoding='utf-8') jrrp_data_json=json.loads(jrrp_data.read()) jrrp_data.close() except: jrrp_data_json={} if qq_id in jrrp_data_json.keys() : if day!=jrrp_data_json[qq_id]['day']: jrrp=str(random.randint(1,100)) jrrp_data_json[qq_id]={'day':day,'jrrp':jrrp} else: jrrp=str(random.randint(1,100)) jrrp_data_json[qq_id]={'day':day,'jrrp':jrrp} jrrp_data=open(os.path.join(os.path.dirname(__file__),'jrrp_data.json'),'w',encoding='utf-8') jrrp_data.write(json.dumps(jrrp_data_json)) jrrp_data.close() return '你今天的人品值是:'+jrrp_data_json[qq_id]['jrrp'] def get_jrrp_online(bot_qq_id,qq_id): url='http://api.kokona.tech:5555/jrrp' data={'User-Agent':'NoDice','QQ':bot_qq_id,'v':'20190114','QueryQQ':qq_id} res=httpx.post(url=url,data=data) return '你今天的人品值是:'+res.text def get_jrrp(bot_qq_id,qq_id): if IS_ONLINE: return get_jrrp_online(bot_qq_id,qq_id) else: return get_jrrp_local(qq_id) if __name__=='__main__': print(get_jrrp('1234567890','1234567890')) ``` #### File: plugins/weather/data_source.py ```python import requests from .config import * from aiocache import cached @cached(ttl=60) async def get_weather_short(city: str) -> str: weather_json=get_weather_json(city) weather=weather_json["result"]["weather"] temperature=weather_json["result"]['temperature_curr'] return f'{city}当前天气{weather},温度{temperature}' @cached(ttl=60) async def get_weather_desc(city: str) -> str: weather_json=get_weather_json(city) weather=weather_json["result"]["weather"] temperature=weather_json["result"]['temperature_curr'] humidity=weather_json["result"]['humidity'] wind=weather_json["result"]['wind'] return f'{city}当前天气{weather},温度{temperature},空气湿度{humidity},{wind}' def get_weather_json(city: str): url = 'http://api.k780.com' params = { 'app' : 'weather.today', 'weaid' : city, 'appkey' : WEATHER_KEY, 'sign' : WEATHER_SIGN, 'format' : 'json', } json=requests.get(url,params).json() if json['success']=="1": return json ```
{ "source": "Jigsaw-Code/censoredplanet-analysis", "score": 2 }
#### File: censoredplanet-analysis/pipeline/manual_e2e_test.py ```python import datetime import os import pwd from typing import List, Any import unittest import warnings from apache_beam.options.pipeline_options import PipelineOptions from google.cloud import bigquery as cloud_bigquery from google.cloud.exceptions import NotFound import firehook_resources from pipeline import run_beam_tables from pipeline.metadata import ip_metadata # The test table is written into the <project>:<username> dataset username = pwd.getpwuid(os.getuid()).pw_name BEAM_TEST_TABLE = f'{username}.manual_test' BQ_TEST_TABLE = f'{firehook_resources.PROJECT_NAME}.{BEAM_TEST_TABLE}' JOB_NAME = 'manual_test_job' # These methods are used to monkey patch the data_to_load method in beam_tables # in order to return our test data. # # These files represent different types scan types (echo/discard/http/https) # The actual pipeline doesn't write different scan types to the same table # But since the table schemas are all the same we do it here to test all the # different types of fields. # # These files contain real sample data, usually 4 measurements each, the first 2 # are measurements that succeeded, the last two are measurements that failed. def local_data_to_load_http_and_https(*_: List[Any]) -> List[str]: return [ 'pipeline/e2e_test_data/http_results.json', 'pipeline/e2e_test_data/https_results.json' ] def local_data_to_load_discard_and_echo(*_: List[Any]) -> List[str]: return [ 'pipeline/e2e_test_data/discard_results.json', 'pipeline/e2e_test_data/echo_results.json' ] def get_local_pipeline_options(*_: List[Any]) -> PipelineOptions: # This method is used to monkey patch the get_pipeline_options method in # beam_tables in order to run a local pipeline. return PipelineOptions( runner='DirectRunner', job_name=JOB_NAME, project=firehook_resources.PROJECT_NAME, temp_location=firehook_resources.BEAM_TEMP_LOCATION) def run_local_pipeline(incremental: bool = False) -> None: """Run a local pipeline. Reads local files but writes to bigquery. Args: incremental: bool, whether to run a full or incremental local pipeline. """ # pylint: disable=protected-access test_runner = run_beam_tables.get_firehook_beam_pipeline_runner() # Monkey patch the get_pipeline_options method to run a local pipeline test_runner._get_pipeline_options = get_local_pipeline_options # type: ignore # Monkey patch the data_to_load method to load only local data if incremental: test_runner._data_to_load = local_data_to_load_http_and_https # type: ignore else: test_runner._data_to_load = local_data_to_load_discard_and_echo # type: ignore test_runner.run_beam_pipeline('test', incremental, JOB_NAME, BEAM_TEST_TABLE, None, None) # pylint: enable=protected-access def clean_up_bq_table(client: cloud_bigquery.Client, table_name: str) -> None: try: client.get_table(table_name) client.delete_table(table_name) except NotFound: pass def get_bq_rows(client: cloud_bigquery.Client, table_name: str) -> List: return list(client.query(f'SELECT * FROM {table_name}').result()) class PipelineManualE2eTest(unittest.TestCase): """Manual tests that require access to cloud project resources.""" def test_pipeline_e2e(self) -> None: """Test the full pipeline by running it twice locally on a few files.""" # Suppress some unittest socket warnings in beam code we don't control warnings.simplefilter('ignore', ResourceWarning) client = cloud_bigquery.Client() try: run_local_pipeline(incremental=False) written_rows = get_bq_rows(client, BQ_TEST_TABLE) self.assertEqual(len(written_rows), 28) run_local_pipeline(incremental=True) written_rows = get_bq_rows(client, BQ_TEST_TABLE) self.assertEqual(len(written_rows), 53) # Domain appear different numbers of times in the test table depending on # how their measurement succeeded/failed. expected_single_domains = [ 'boingboing.net', 'box.com', 'google.com.ua', 'mos.ru', 'scribd.com', 'uploaded.to', 'www.blubster.com', 'www.orthodoxconvert.info' ] expected_triple_domains = ['www.arabhra.org'] expected_sextuple_domains = [ 'discover.com', 'peacefire.org', 'secondlife.com', 'www.89.com', 'www.casinotropez.com', 'www.epa.gov', 'www.sex.com' ] all_expected_domains = ( expected_single_domains + expected_triple_domains * 3 + expected_sextuple_domains * 6) written_domains = [row[0] for row in written_rows] self.assertListEqual( sorted(written_domains), sorted(all_expected_domains)) finally: clean_up_bq_table(client, BQ_TEST_TABLE) def test_ipmetadata_init(self) -> None: # This E2E test requires the user to have access to the # gs://censoredplanet_geolocation bucket. ip_metadata_db = ip_metadata.get_firehook_ip_metadata_db( datetime.date(2018, 7, 27)) metadata = ip_metadata_db.lookup('1.1.1.1') self.assertEqual(metadata, ('1.1.1.0/24', 13335, 'CLOUDFLARENET', 'Cloudflare, Inc.', 'Content', 'US')) # This test is not run by default in unittest because it takes about a minute # to run, plus it reads from and writes to bigquery. # # To run it manually use the command # python3 -m unittest pipeline.manual_e2e_test.PipelineManualE2eTest if __name__ == '__main__': unittest.main() ```
{ "source": "jigsaw-labs/edx.oauth", "score": 3 }
#### File: edx.oauth/jigsawlabs_backends/auth0.py ```python from urllib2 import urlopen from jose import jwt from social_core.backends.oauth import BaseOAuth2 class Auth0(BaseOAuth2): """Auth0 OAuth authentication backend""" name = 'auth0' SCOPE_SEPARATOR = ' ' ACCESS_TOKEN_METHOD = 'POST' EXTRA_DATA = [ ('picture', 'picture') ] BASE_URL = 'https://jigsawlabs.auth0.com' AUTHORIZATION_URL = BASE_URL + '/oauth/authorize' ACCESS_TOKEN_URL = BASE_URL + '/oauth/token' USER_QUERY = BASE_URL + '/api/user?' SOCIAL_AUTH_TRAILING_SLASH = False # Remove trailing slash from routes SOCIAL_AUTH_AUTH0_DOMAIN = 'jigsawlabs.auth0.com' #SOCIAL_AUTH_AUTH0_KEY = '<KEY>' #SOCIAL_AUTH_AUTH0_SECRET = '<KEY>' SOCIAL_AUTH_AUTH0_SCOPE = [ 'openid', 'profile' ] def authorization_url(self): return self.BASE_URL + '/authorize' def access_token_url(self): return self.BASE_URL + '/oauth/token' def get_user_id(self, details, response): """Return current user id.""" return details['user_id'] def get_user_details(self, response): # Obtain JWT and the keys to validate the signature id_token = response.get('id_token') jwks = urlopen(self.BASE_URL + '/.well-known/jwks.json') issuer = self.BASE_URL + '/' audience = self.setting('KEY') # CLIENT_ID payload = jwt.decode(id_token, jwks.read(), algorithms=['RS256'], audience=audience, issuer=issuer) fullname, first_name, last_name = self.get_user_names(payload['name']) return {'username': payload['nickname'], 'email': payload['email'], 'email_verified': payload.get('email_verified', False), 'fullname': fullname, 'first_name': first_name, 'last_name': last_name, 'picture': payload['picture'], 'user_id': payload['sub']} ```
{ "source": "jigschristian/truecaller", "score": 2 }
#### File: truecaller/truecaller_api/models.py ```python from django.db import models from django.contrib.auth.models import User from phonenumber_field.modelfields import PhoneNumberField class Contact(models.Model): name = models.CharField(max_length=256, blank=False) email = models.EmailField(max_length=70, null=True, blank=True, unique=True) phone = PhoneNumberField(null=False, unique=True) created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.name + " - " + str(self.phone) class OtherContact(models.Model): contact = models.ForeignKey(Contact, on_delete=models.CASCADE) phone = PhoneNumberField(null=False, unique=True) created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.contact.name + " - " + str(self.phone) ```
{ "source": "Jigsy1/UUID2", "score": 4 }
#### File: Jigsy1/UUID2/UUID2.py ```python import random import string import tkinter from tkinter import * uuid2 = Tk() uuid2.title("UUID2") uuid2.resizable(height=False, width=False) def makeID(): str = "" out = "" str = "".join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(32)) out = f"{str[0:8]}-{str[8:12]}-{str[12:16]}-{str[16:20]}-{str[20:]}" if braces.get() == 1: out = "{" + out + "}" print(out) uuid2.clipboard_clear() uuid2.clipboard_append(out) uuid2.update() braces = IntVar(value=1) braceBox = Checkbutton(uuid2, text="{Use Braces}", variable=braces, onvalue=1, offvalue=0) genButton = Button(uuid2, text="Generate", command=makeID) braceBox.pack(side = RIGHT) genButton.pack(side = LEFT) uuid2.mainloop() # EOF ```
{ "source": "Jigyanshu17/Python-Ka-Saara-Gyaan", "score": 4 }
#### File: Python-Ka-Saara-Gyaan/Chapter 8/Functions.py ```python def function1(a,b): """This is a function which will calculate average of two numbers.""" #docstrings average = (a+b)/2 #print(average) return average # now it will return value #function1(5,7) #v = function1(5,7) # will return none #print(v) print(function1.__doc__) ``` #### File: Python-Ka-Saara-Gyaan/Chapter 8/Recursions.py ```python def Factorial_Recursive(n): """ :param n: Integer :return: n*n-1*n-2*n-3....1 """ if n == 1: return 1 else: return n * Factorial_Recursive(n-1) number = int(input("Enter the Number: ")) print("Factorial using Recursive Method is", Factorial_Recursive(number)) """ LOGIC 5 * Factorial_Recursive(4) 5 * 4 * Factorial_Recursive(3) 5 * 4 * 3 * Factorial_Recursive(2) 5 * 4 * 3 * 2 * Factorial_Recursive(1) 5 * 4 * 3 * 2 * 1 = 120.... """ ``` #### File: Python-Ka-Saara-Gyaan/Chapter 9/block.py ```python def greet(name): gr = "Have a good day\t" + name print(gr) greet("Jiggu") ``` #### File: Python-Ka-Saara-Gyaan/Misc/Args & Kwargs.py ```python def funargs(normal,*args, **kwargs): print(normal) for item in args: print(item) print("\nNow I would like to introduce some of our heroes") for key,value in kwargs.items(): print(f"{key} is a {value}") # As a tuple # function_name_print("Jiggu","g","f","dd") list = ["Jiggu","g","f","dd"] normal = "Yhis is normal" kw = {"Rohan":"Monitor", "Jiggu":"Sports coach","Him":"Programmer"} funargs(normal,*list,**kw) ``` #### File: Python-Ka-Saara-Gyaan/Misc/Lambda Function.py ```python a = [[1,14],[5,6],[7,8]] a.sort(key = lambda x:x[1]) print(a) ``` #### File: Python-Ka-Saara-Gyaan/Project/Library Management System.py ```python from telegram import user class Library: def __init__(self, list, name): self.booksList = list self.name = name self.lendDict = {} def displayBooks(self): print(f"We have following Books in library: {self.name}") for book in self.booksList: print(book) def lendBook(self, user, book): if book not in self.lendDict.keys(): self.lendDict.update({book:user}) print("Lender-Book database has been updated. You can take the book now") else: print(f"Book is already being used by {self.lendDict[book]}") def addBook(self, book): self.booksList.append(book) print("Book has been added to the book list.") def returnBook(self, book): self.lebdDict.pop(book) if __name__ == '__main__': jiggu = Library(['Python', 'Rich Dad Poor Dad', 'Think and Grow rich'], "Jigyanshu") while(True): print(f"Welcome to the {jiggu.name} library. Enter the choice to continue.") print("1. Display Books") print("2. Lend a Book") print("3. Add a Book") print("4. Return a Book") user_choice = input() if user_choice not in ['1', '2', '3', '4']: print("Please enter a valid option") continue else: user_choice = int(user_choice) if user_choice == 1: jiggu.displayBooks() elif user_choice == 2: book = input("Enter the name of the book you want to lend-->>") name = input("Enter your Name -- ") jiggu.lendBook(user, book) elif user_choice == 3: book = input("Enter the name of the book you want to Add-->>") jiggu.addBook(book) elif user_choice == 4: book = input("Enter the name of the book you want to Return-->>") jiggu.returnBook(book) else: print("Not a valid Option") print("Press q to quit and c to continue") user_choice2 = "" while(user_choice2!="c" and user_choice2 != "q"): user_choice2 = input() if user_choice2 == "q": exit() if user_choice2 == "c": continue ```
{ "source": "jigyasudhingra/E-commerce-Store-Using-React-And-Django", "score": 2 }
#### File: ecommerce/api/views.py ```python from django.http import JsonResponse # Create your views here. def home(request): return JsonResponse({'info': 'Ecommerce Store Using React And Django', 'name': "<NAME>"}) ```
{ "source": "Jigyasu/droidlet", "score": 2 }
#### File: agents/locobot/teleop.py ```python import os import subprocess import time import signal import random import logging import faulthandler import threading import functools from multiprocessing import set_start_method from droidlet import dashboard from droidlet.dashboard.o3dviz import o3dviz import numpy as np from scipy.spatial import distance import open3d as o3d import time import math if __name__ == "__main__": # this line has to go before any imports that contain @sio.on functions # or else, those @sio.on calls become no-ops dashboard.start() o3dviz.start() from droidlet.interpreter.robot import ( dance, default_behaviors, LocoGetMemoryHandler, PutMemoryHandler, LocoInterpreter, ) from droidlet.dialog.robot import LocoBotCapabilities from droidlet.event import sio faulthandler.register(signal.SIGUSR1) random.seed(0) log_formatter = logging.Formatter( "%(asctime)s [%(filename)s:%(lineno)s - %(funcName)s() %(levelname)s]: %(message)s" ) logging.getLogger().setLevel(logging.DEBUG) logging.getLogger().handlers.clear() mover = None @sio.on("sendCommandToAgent") def get_command(sid, command): command, value = command.split() print(command) print(value) test_command(sid, [command], value=value) @sio.on("logData") def log_data(sid, seconds): test_command(sid, ["LOG_DATA"], value=seconds) @sio.on("stopRobot") def stop_robot(sid): test_command(sid, ["STOP_ROBOT"]) @sio.on("unstopRobot") def unstop_robot(sid): test_command(sid, ["UNSTOP_ROBOT"]) def test_command(sid, commands, data={"yaw": 0.1, "velocity": 0.1, "move": 0.3}, value=None): print(commands, data, value) move_dist = float(data['move']) yaw = float(data['yaw']) velocity = float(data['velocity']) global mover if mover == None: return if value is not None: move_dist = value def sync(): time.sleep(10) for i in range(50): mover.get_rgb_depth() movement = [0.0, 0.0, 0.0] for command in commands: if command == "MOVE_FORWARD": movement[0] += float(move_dist) print("action: FORWARD", movement) mover.move_relative([movement], blocking=False) elif command == "MOVE_BACKWARD": movement[0] -= float(move_dist) print("action: BACKWARD", movement) mover.move_relative([movement], blocking=False) elif command == "MOVE_LEFT": movement[2] += yaw print("action: LEFT", movement) mover.move_relative([movement], blocking=False) elif command == "MOVE_RIGHT": movement[2] -= yaw print("action: RIGHT", movement) mover.move_relative([movement], blocking=False) elif command == "PAN_LEFT": mover.bot.set_pan(mover.get_pan() + yaw) sync() elif command == "PAN_RIGHT": mover.bot.set_pan(mover.get_pan() - yaw) sync() elif command == "TILT_UP": mover.bot.set_tilt(mover.get_tilt() + yaw) print("action: TILT_UP", mover.get_tilt() + yaw) sync() elif command == "TILT_DOWN": mover.bot.set_tilt(mover.get_tilt() - yaw) sync() elif command == "LOG_DATA": mover.log_data_start(float(value)) # in seconds elif command == "STOP_ROBOT": mover.stop() elif command == "UNSTOP_ROBOT": mover.unstop() elif command == "SET_PAN": print("action: SET_PAN", float(value)) mover.bot.set_pan(float(value)) sync() elif command == "SET_TILT": print("action: SET_TILT", float(value)) mover.bot.set_tilt(float(value)) sync() elif command == "MOVE_ABSOLUTE": xyyaw_s = value.split(',') xyyaw_f = [float(v) for v in xyyaw_s] print("action: MOVE_ABSOLUTE", xyyaw_f) mover.move_absolute(xyyaw_f, blocking=False) sync() elif command == "LOOK_AT": xyz = value.split(',') xyz = [float(p) for p in xyz] print("action: LOOK_AT", xyz) mover.look_at(xyz, turn_base=False) elif command == "RESET": mover.bot.set_tilt(0.) mover.bot.set_pan(0.) print(command, movement) @sio.on("movement command") def test_command_web(sid, commands, data, value=None): test_command(sid, commands, data=data, value=value) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Pass in server device IP") parser.add_argument( "--ip", help="Server device (robot) IP. Default is 0.0.0.0", type=str, default="0.0.0.0", ) parser.add_argument( "--backend", help="Which backend to use: habitat (default), hellorobot", type=str, default='habitat', ) args = parser.parse_args() ip = args.ip backend = args.backend print("Connecting to robot at ip: ", ip) if backend == 'habitat': from droidlet.lowlevel.locobot.locobot_mover import LoCoBotMover mover = LoCoBotMover(ip=ip, backend='habitat') elif backend == 'hellorobot': from droidlet.lowlevel.hello_robot.hello_robot_mover import HelloRobotMover mover = HelloRobotMover(ip=ip) print("Mover is ready to be operated") log_settings = { "image_resolution": 512, # pixels "image_quality": 10, # from 10 to 100, 100 being best } all_points = None all_colors = None first = True prev_stg = None path_count = 0 start_time = time.time_ns() fps_freq = 1 # displays the frame rate every 1 second counter = 0 while True: counter += 1 iter_time = time.time_ns() - start_time if float(iter_time) / 1e9 > fps_freq : print("FPS: ", round(counter / (float(iter_time) / 1e9), 1), " ", int(iter_time / 1e6 / counter), "ms") counter = 0 start_time = time.time_ns() base_state = mover.get_base_pos_in_canonical_coords() sio.emit("image_settings", log_settings) resolution = log_settings["image_resolution"] quality = log_settings["image_quality"] # this goes from 21ms to 120ms rgb_depth = mover.get_rgb_depth() # this takes about 1.5 to 2 fps serialized_image = rgb_depth.to_struct(resolution, quality) sio.emit("rgb", serialized_image["rgb"]) sio.emit("depth", { "depthImg": serialized_image["depth_img"], "depthMax": serialized_image["depth_max"], "depthMin": serialized_image["depth_min"], }) points, colors = rgb_depth.ptcloud.reshape(-1, 3), rgb_depth.rgb.reshape(-1, 3) colors = colors / 255. if all_points is None: all_points = points all_colors = colors else: all_points = np.concatenate((all_points, points), axis=0) all_colors = np.concatenate((all_colors, colors), axis=0) opcd = o3d.geometry.PointCloud() opcd.points = o3d.utility.Vector3dVector(all_points) opcd.colors = o3d.utility.Vector3dVector(all_colors) opcd = opcd.voxel_down_sample(0.05) # # remove the rooftop / ceiling points in the point-cloud to make it easier to see the robot in the visualization # crop_bounds = o3d.utility.Vector3dVector([ # [-1000., -20., -1000.], # [1000., 20., 1000.0], # ]) # opcd = opcd.crop( # o3d.geometry.AxisAlignedBoundingBox.create_from_points( # crop_bounds, # ) # ) all_points = np.asarray(opcd.points) all_colors = np.asarray(opcd.colors) if first: cmd = 'add' first = False else: cmd = 'replace' o3dviz.put('pointcloud', cmd, opcd) # Plot the robot x, y, yaw = base_state.tolist() robot_orientation = o3d.geometry.TriangleMesh.create_arrow(cylinder_radius=.05, cone_radius=.075, cylinder_height = .50, cone_height = .4, resolution=20) robot_orientation.compute_vertex_normals() robot_orientation.paint_uniform_color([1.0, 0.5, 0.1]) robot_orientation.translate([y, -x, 0.], relative=False) # make the cylinder representing the robot to be parallel to the floor robot_orientation.rotate(o3d.geometry.get_rotation_matrix_from_axis_angle([0, math.pi/2, 0])) # rotate the cylinder by the robot orientation if yaw != 0: robot_orientation.rotate(o3d.geometry.get_rotation_matrix_from_axis_angle([0, 0, yaw])) o3dviz.put('bot_orientation', cmd, robot_orientation) robot_base = o3d.geometry.TriangleMesh.create_cylinder(radius=.1, height=1,) robot_base.translate([y, -x, 0.1], relative=False) robot_base.compute_vertex_normals() robot_base.paint_uniform_color([1.0, 1.0, 0.1]) o3dviz.put('bot_base', cmd, robot_base) # red = x, green = y, blue = z axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0, origin=np.array([0., 0., 0.])) axis.compute_vertex_normals() o3dviz.put('axis', cmd, axis) # start the SLAM if backend == 'habitat': mover.explore((19,19,0)) # get the SLAM goals goal_loc, stg = None, None # mover.bot.get_slam_goal() # plot the final goal if goal_loc is not None: goal_x, goal_y, goal_z = goal_loc cone = o3d.geometry.TriangleMesh.create_cylinder(radius=.2, height=3.,) cone.translate([goal_x, goal_y, 0.4], relative=False) cone.compute_vertex_normals() cone.paint_uniform_color([0.0, 1.0, 1.0]) o3dviz.put('goal_cone', cmd, cone) # plot the short term goal in yellow and the path in green if stg is not None: stg_x, stg_y = stg cone = o3d.geometry.TriangleMesh.create_cylinder(radius=.2, height=3.,) cone.translate([stg_x, stg_y, 1.4], relative=False) cone.compute_vertex_normals() cone.paint_uniform_color([1.0, 1.0, 0.0]) o3dviz.put('stg', cmd, cone) if prev_stg is None: prev_stg = [y, -x] cur_stg = [stg_x, stg_y] arrow_length = distance.euclidean(cur_stg, prev_stg) if arrow_length > 0.0001: path = o3d.geometry.TriangleMesh.create_arrow(cylinder_radius=.03, cone_radius=.04, cylinder_height = arrow_length / 2, cone_height = arrow_length / 2,) path.compute_vertex_normals() path.paint_uniform_color([0.0, 1.0, 0.0]) path.translate([prev_stg[0], prev_stg[1], 0.2], relative=False) path.rotate(o3d.geometry.get_rotation_matrix_from_axis_angle([0, math.pi/2, 0])) path.rotate(o3d.geometry.get_rotation_matrix_from_axis_angle([0, 0, yaw])) o3dviz.put('short_term_goal_path_{}'.format(path_count), 'add', path) path_count = path_count + 1 prev_stg = cur_stg # # get the obstacle map and plot it # obstacles = mover.bot.get_map() # obstacles = np.asarray(obstacles) # obstacles = np.concatenate((-obstacles[:, [1]], -obstacles[:, [0]], np.zeros((obstacles.shape[0], 1))), axis=1) # obspcd = o3d.geometry.PointCloud() # obspcd.points = o3d.utility.Vector3dVector(obstacles) # obspcd.paint_uniform_color([1.0, 0., 0.]) # obsvox = o3d.geometry.VoxelGrid.create_from_point_cloud(obspcd, 0.03) # o3dviz.put('obstacles', cmd, obsvox) time.sleep(0.001) ``` #### File: droidlet/dashboard/o3dviz.py ```python import os import time os.environ["WEBRTC_IP"] = "0.0.0.0" os.environ["WEBRTC_PORT"] = "8889" import open3d as o3d o3d.visualization.webrtc_server.enable_webrtc() from open3d.visualization import O3DVisualizer, gui import threading import queue class O3dViz(threading.Thread): def __init__(self, *args, **kwargs): self.q = queue.Queue() super().__init__(*args, **kwargs) def put(self, name, command, obj): # pass self.q.put([name, command, obj]) def run(self): app = gui.Application.instance app.initialize() w = O3DVisualizer("o3dviz", 1024, 768) w.set_background((0.0, 0.0, 0.0, 1.0), None) app.add_window(w) reset_camera = False while True: app.run_one_tick() time.sleep(0.001) try: name, command, geometry = self.q.get_nowait() try: if command == 'remove': w.remove_geometry(name) elif command == 'replace': w.remove_geometry(name) w.add_geometry(name, geometry) elif command == 'add': w.add_geometry(name, geometry) except: print("failed to add geometry to scene") if not reset_camera: # Look at A from camera placed at B with Y axis # pointing at C # useful for pyrobot co-ordinates w.scene.camera.look_at([1, 0, 0], [-5, 0, 1], [0, 0, 1]) # useful for initial camera co-ordinates # w.scene.camera.look_at([0, 0, 1], # [0, 0, -1], # [0, -1, 0]) reset_camera = True w.post_redraw() except queue.Empty: pass o3dviz = O3dViz() def start(): o3dviz.start() ``` #### File: interpreter/robot/tasks.py ```python import time import math import logging import numpy as np import os import math from droidlet.memory.robot.loco_memory_nodes import DetectedObjectNode from droidlet.task.task import Task, BaseMovementTask from droidlet.memory.memory_nodes import TaskNode from droidlet.interpreter.robot.objects import DanceMovement from droidlet.lowlevel.robot_mover_utils import ( get_move_target_for_point, ARM_HEIGHT, get_camera_angles, TrajectoryDataSaver, visualize_examine, get_step_target_for_straightline_move, ExaminedMap, CAMERA_HEIGHT, get_circular_path, ) # FIXME store dances, etc. class Dance(Task): def __init__(self, agent, task_data, featurizer=None): super().__init__(agent) # movement should be a Movement object from dance.py self.movement = DanceMovement(self.agent, None) self.movement_type = task_data.get("movement_type", None) TaskNode(self.agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): self.interrupted = False if self.movement_type == "wave": self.movement.wave() elif not self.movement: # default move mv = Move(self.agent, {"target": [-1000, -1000, -1000], "approx": 2}) self.add_child_task(mv) self.finished = True def torad(deg): if deg: return deg * math.pi / 180 #### TODO, FIXME!: #### merge Look, Point, Turn into dancemove; on mc side too class Look(Task): def __init__(self, agent, task_data): super().__init__(agent) self.task_data = task_data assert( task_data.get("target") or task_data.get("pitch") or task_data.get("yaw") or task_data.get("relative_yaw") or task_data.get("relative_pitch") ) self.command_sent = False TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): self.finished = False self.interrupted = False if not self.command_sent: if self.task_data.get("target"): status = self.agent.mover.look_at(self.task_data["target"]) if self.task_data.get("pitch") or self.task_data.get("yaw"): status = self.agent.mover.set_look( torad(self.task_data.get("yaw")), torad(self.task_data.get("pitch")) ) if self.task_data.get("relative_pitch") or self.task_data.get("relative_yaw"): status = self.agent.mover.relative_pan_tilt( torad(self.task_data.get("relative_yaw")), torad(self.task_data.get("relative_pitch")) ) self.command_sent = True if status == "finished": self.finished = True else: self.finished = self.agent.mover.bot_step() def __repr__(self): if self.task_data.get("target"): target = self.task_data.get["target"] return "<Look at {} {} {}>".format(target[0], target[1], target[2]) else: return "<Look: {}".format(self.task_data) class Point(Task): def __init__(self, agent, task_data): super().__init__(agent) self.target = np.asarray(task_data["target"]) print(f'type {type(self.target), self.target}') self.steps = ["not_started"] * 2 TaskNode(agent.memory, self.memid).update_task(task=self) def get_pt_from_region(self, region): assert ( len(region) == 6 ), "Region list has less than 6 elements (minx, miny, minz, maxx, maxy, maxz)" return region[:3] # just return the min xyz for now @Task.step_wrapper def step(self): self.interrupted = False print(f'target {self.target}') pt = self.get_pt_from_region(self.target.tolist()) logging.info(f"Calling bot to Point at {pt}") logging.info(f"base pos {self.agent.mover.get_base_pos_in_canonical_coords()}") # Step 1 - Move close to the object. if self.steps[0] == "not_started": base_pos = self.agent.mover.get_base_pos_in_canonical_coords() target = get_move_target_for_point(base_pos, pt) logging.info(f"Move Target for point {target}") self.add_child_task(Move(self.agent, {"target": target})) self.steps[0] = "finished" return # Step 2 - Turn so that the object is in FOV if self.steps[0] == "finished" and self.steps[1] == "not_started": base_pos = self.agent.mover.get_base_pos_in_canonical_coords() yaw_rad, _ = get_camera_angles([base_pos[0], ARM_HEIGHT, base_pos[1]], pt) self.add_child_task(Turn(self.agent, {"yaw": yaw_rad})) self.steps[1] = "finished" return # Step 3 - Point at the object if self.steps[0] == "finished" and self.steps[1] == "finished": status = self.agent.mover.point_at(pt) if status == "finished": self.finished = True def __repr__(self): return "<Point at {}>".format(self.target) class Move(BaseMovementTask): def __init__(self, agent, task_data, featurizer=None): super().__init__(agent, task_data) self.target = np.array(task_data["target"]) self.is_relative = task_data.get("is_relative", 0) self.path = None self.command_sent = False TaskNode(agent.memory, self.memid).update_task(task=self) def target_to_memory(self, target): return [target[0], 0, target[1]] @Task.step_wrapper def step(self): self.interrupted = False self.finished = False if not self.command_sent: logging.info("calling move with : %r" % (self.target.tolist())) self.command_sent = True if self.is_relative: self.agent.mover.move_relative([self.target.tolist()]) else: self.agent.mover.move_absolute([self.target.tolist()]) else: self.finished = self.agent.mover.bot_step() def __repr__(self): return "<Move {}>".format(self.target) class Turn(Task): def __init__(self, agent, task_data): super().__init__(agent) self.yaw = task_data.get("yaw") or task_data.get("relative_yaw") self.command_sent = False TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): self.interrupted = False self.finished = False if not self.command_sent: self.command_sent = True self.agent.mover.turn(self.yaw) else: self.finished = self.agent.mover.bot_step() def __repr__(self): return "<Turn {} degrees>".format(self.yaw) # TODO handle case where agent already has item in inventory (pure give) class Get(Task): def __init__(self, agent, task_data): super().__init__(agent) # get target should be a ReferenceObjectNode memid self.get_target = task_data["get_target"] self.give_target = task_data["give_target"] # steps take values "not_started", "started", "complete" if not self.give_target: # TODO all movements simultaneous- change look while driving # approach_pickup, look_at_object, grab self.steps = ["not_started"] * 3 else: # approach_pickup, look_at_object, grab, approach_dropoff, give/drop self.steps = ["not_started"] * 5 TaskNode(agent.memory, self.memid).update_task(task=self) def get_mv_target(self, get_or_give="get", end_distance=0.35): """figure out the location where agent should move to in order to get or give object in global frame all units are in metric unit Args: get_or_give (str, optional): whether to get or give object. Defaults to "get". end_distance (float, optional): stand end_distance away from the goal in meter. Defaults to 0.35. Returns: [tuple]: (x,y,theta) location the agent should move to, in global co-ordinate system """ agent_pos = np.array(self.agent.mover.get_base_pos())[:2] if get_or_give == "get": target_memid = self.get_target else: target_memid = self.give_target target_pos = self.agent.memory.get_mem_by_id(target_memid).get_pos() target_pos = np.array((target_pos[0], target_pos[2])) diff = target_pos - agent_pos distance = np.linalg.norm(diff) # FIXME add a check to make sure not already there xz = agent_pos + (distance - end_distance) * diff / distance # TODO: Check if yaw s right target_yaw = np.arctan2(diff[1], diff[0]) received_yaw = False while not received_yaw: try: target_yaw += self.agent.mover.get_base_pos()[2] received_yaw = True except: time.sleep(0.1) return (xz[0], xz[1], target_yaw) @Task.step_wrapper def step(self): agent = self.agent self.interrupted = False self.finished = False # move to object to be picked up if self.steps[0] == "not_started": # check if already holding target object for pure give, when object is grasped # its added to memory with tag "_in_inventory" if self.get_target in agent.memory.get_memids_by_tag("_in_inventory"): self.steps[0] = "finished" self.steps[1] = "finished" self.steps[2] = "finished" else: target = self.get_mv_target(get_or_give="get") self.add_child_task(Move(agent, {"target": target})) # TODO a loop? otherwise check location/graspability instead of just assuming? self.steps[0] = "finished" return # look at the object directly if self.steps[0] == "finished" and self.steps[1] == "not_started": target_pos = agent.memory.get_mem_by_id(self.get_target).get_pos() self.add_child_task(Look(agent, {"target": target_pos})) self.steps[1] = "finished" return # grab it if self.steps[1] == "finished" and self.steps[2] == "not_started": self.add_child_task(AutoGrasp(agent, {"target": self.get_target})) self.steps[2] = "finished" return if len(self.steps) == 3: self.finished = True return # go to the place where you are supposed to drop off the item if self.steps[3] == "not_started": target = self.get_mv_target(agent, get_or_give="give") self.add_child_task(Move(agent, {"target": target})) # TODO a loop? otherwise check location/graspability instead of just assuming? self.steps[3] = "finished" return # drop it if self.steps[3] == "finished": self.add_child_task(Drop(agent, {"object": self.get_target})) self.finished = True return def __repr__(self): return "<get {}>".format(self.get_target) class AutoGrasp(Task): """thin wrapper for Dhiraj' grasping routine.""" def __init__(self, agent, task_data): super().__init__(agent) # this is a ref object memid self.target = task_data["target"] self.command_sent = False TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): self.interrupted = False self.finished = False if not self.command_sent: self.command_sent = True self.agent.mover.grab_nearby_object() else: self.finished = self.agent.mover.bot_step() # TODO check that the object in the gripper is actually the object we meant to pick up # TODO deal with failure cases # TODO tag this in the grip task, not here if self.finished: if self.agent.mover.is_object_in_gripper(): self.agent.memory.tag(self.target, "_in_inventory") class Drop(Task): """drop whatever is in hand.""" def __init__(self, agent, task_data): super().__init__(agent) # currently unused, we can expand this soon? self.object_to_drop = task_data.get("object", None) self.command_sent = False TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): agent = self.agent self.interrupted = False self.finished = False if not self.command_sent: logging.info("Dropping the object in hand") self.command_sent = True agent.mover.drop() else: self.finished = agent.mover.bot_step() and not agent.mover.is_object_in_gripper() if self.finished: agent.memory.untag(self.object_to_drop, "_in_inventory") if self.object_to_drop is None: # assumed there is only one object with tag "_in_inventory" for mmid in agent.memory.get_memids_by_tag("_in_inventory"): agent.memory.untag(mmid, "_in_inventory") class TrajectorySaverTask(Task): def __init__(self, agent, task_data): super().__init__(agent, task_data) self.save_data = task_data.get('save_data', False) self.data_path = task_data.get('data_path', 'default') self.dbg_str = 'None' if self.save_data: self.data_saver = TrajectoryDataSaver(os.path.join(agent.opts.data_store_path, self.data_path)) self.data_savers = [self.data_saver] parent_data_saver = task_data.get('parent_data_saver', None) if parent_data_saver is not None: self.data_savers.append(parent_data_saver) TaskNode(agent.memory, self.memid).update_task(task=self) def save_rgb_depth_seg(self): rgb, depth, segm = self.agent.mover.get_rgb_depth_segm() # store depth in mm depth *= 1e3 depth[depth > np.power(2, 16) - 1] = np.power(2, 16) - 1 depth = depth.astype(np.uint16) pos = self.agent.mover.get_base_pos() for data_saver in self.data_savers: data_saver.set_dbg_str(self.dbg_str) data_saver.save(rgb, depth, segm, pos) @Task.step_wrapper def step(self): if self.save_data: self.save_rgb_depth_seg() def __repr__(self): return "<TrajectorySaverTask {}>".format(self.target) class CuriousExplore(TrajectorySaverTask): """use slam to explore environemt, but also examine detections""" def __init__(self, agent, task_data): super().__init__(agent, task_data) self.steps = ["not_started"] * 2 self.task_data = task_data self.goal = task_data.get("goal", (19,19,0)) self.init_curious_logger() self.agent = agent self.objects_examined = 0 self.save_data = task_data.get('save_data') print(f'CuriousExplore task_data {task_data}') TaskNode(agent.memory, self.memid).update_task(task=self) def init_curious_logger(self): self.logger = logging.getLogger('curious') self.logger.setLevel(logging.INFO) fh = logging.FileHandler(f"curious_explore_{'_'.join([str(x) for x in self.goal])}.log", 'w') fh.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(filename)s:%(lineno)s - %(funcName)s(): %(message)s') fh.setFormatter(formatter) self.logger.addHandler(fh) self.logger.addHandler(ch) self.logger.info(f'CuriousExplore task_data {self.task_data}') @Task.step_wrapper def step(self): super().step() self.interrupted = False self.finished = False if self.steps[0] == "not_started": self.logger.info(f'exploring goal {self.goal}') self.agent.mover.explore(self.goal) self.dbg_str = "Explore" self.steps[0] = "finished" return # execute a examine maneuver if self.steps[0] == "finished" and self.steps[1] == "not_started": # Get a list of current detections objects = DetectedObjectNode.get_all(self.agent.memory) pos = self.agent.mover.get_base_pos_in_canonical_coords() # pick all from unexamined, in-sight object def pick_random_in_sight(objects, base_pos): for x in objects: if ExaminedMap.can_examine(x): # check for line of sight and if within a certain distance yaw_rad, _ = get_camera_angles([base_pos[0], CAMERA_HEIGHT, base_pos[1]], x['xyz']) dist = np.linalg.norm(base_pos[:2]-[x['xyz'][0], x['xyz'][2]]) if abs(yaw_rad - base_pos[2]) <= math.pi/4 and dist <= 3: self.logger.info(f"Exploring eid {x['eid']}, {x['label']} next, dist {dist}") return x return None target = pick_random_in_sight(objects, pos) if target is not None: self.logger.info(f"CuriousExplore Target {target['eid'], target['label'], target['xyz']}, robot pos {pos}") ExaminedMap.update(target) self.dbg_str = f"Examine {str(target['eid']) + '_' + str(target['label'])} xyz {str(np.round(target['xyz'],3))}" if os.getenv('HEURISTIC') == 'straightline': examine_heuristic = ExamineDetectionStraightline else: examine_heuristic = ExamineDetectionCircle self.add_child_task(examine_heuristic( self.agent, { "target": target, "save_data": self.save_data, "root_data_path": f"{self.task_data['data_path']}", "data_path": f"{self.task_data['data_path']}/{str(self.objects_examined)}", "dbg_str": self.dbg_str, "parent_data_saver": self.data_savers[0], "logger": self.logger, } ) ) self.objects_examined += 1 self.steps[1] = "finished" return else: self.finished = self.agent.mover.nav.is_done_exploring().value if not self.finished: self.steps = ["not_started"] * 2 else: self.logger.info(f"Exploration finished!") def __repr__(self): return "<CuriousExplore>" class ExamineDetectionStraightline(TrajectorySaverTask): """Examine a detection""" def __init__(self, agent, task_data): super().__init__(agent, task_data) self.task_data = task_data self.target = task_data['target'] self.frontier_center = np.asarray(self.target['xyz']) self.agent = agent self.last_base_pos = None self.robot_poses = [] self.dbg_str = task_data.get('dbg_str') TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): super().step() self.interrupted = False self.finished = False logger = logging.getLogger('curious') base_pos = self.agent.mover.get_base_pos_in_canonical_coords() self.robot_poses.append(base_pos) dist = np.linalg.norm(base_pos[:2]-np.asarray([self.frontier_center[0], self.frontier_center[2]])) logger.info(f"Deciding examination, dist = {dist}") d = 1 if self.last_base_pos is not None: d = np.linalg.norm(base_pos[:2] - self.last_base_pos[:2]) # logger.info(f"Distance moved {d}") if (base_pos != self.last_base_pos).any() and dist > 0.2 and d > 0: tloc = get_step_target_for_straightline_move(base_pos, self.frontier_center) logger.debug(f"get_step_target_for_straight_move \ \nx, z, yaw = {base_pos},\ \nxf, zf = {self.frontier_center[0], self.frontier_center[2]} \ \nx_move, z_move, yaw_move = {tloc}") logging.info(f"Current Pos {base_pos}") logging.info(f"Move Target for Examining {tloc}") logging.info(f"Distance being moved {np.linalg.norm(base_pos[:2]-tloc[:2])}") self.add_child_task(Move(self.agent, {"target": tloc})) # visualize tloc, frontier_center, obstacle_map if os.getenv('VISUALIZE_EXAMINE', 'False') == 'True': visualize_examine( self.agent, self.robot_poses, self.frontier_center, self.target['label'], self.agent.mover.get_obstacles_in_canonical_coords(), self.task_data['root_data_path'], ) self.last_base_pos = base_pos return else: logger.info(f"Finished Examination") self.finished = self.agent.mover.bot_step() def __repr__(self): return "<ExamineDetectionStraightline {}>".format(self.target['label']) class ExamineDetectionCircle(TrajectorySaverTask): """Examine a detection""" def __init__(self, agent, task_data): super().__init__(agent, task_data) self.task_data = task_data self.target = task_data['target'] self.frontier_center = np.asarray(self.target['xyz']) self.agent = agent self.steps = 0 self.robot_poses = [] self.last_base_pos = None self.dbg_str = task_data.get('dbg_str') self.logger = task_data.get('logger') base_pos = self.agent.mover.get_base_pos_in_canonical_coords() self.pts = get_circular_path(self.frontier_center, base_pos, radius=0.7, num_points=40) self.logger.info(f'{len(self.pts)} pts on cicle {self.pts}') TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): super().step() self.interrupted = False self.finished = False base_pos = self.agent.mover.get_base_pos_in_canonical_coords() if self.steps > 0: # without any steps, the robot isn't on the circle of inspection self.robot_poses.append(base_pos) d = 1 if self.last_base_pos is not None: d = np.linalg.norm(base_pos[:2] - self.last_base_pos[:2]) self.logger.info(f"Distance moved {d}") if (base_pos != self.last_base_pos).any() and self.steps < len(self.pts): tloc = self.pts[self.steps] self.steps += 1 self.logger.info(f'step {self.steps} moving to {tloc} Current Pos {base_pos}') self.add_child_task(Move(self.agent, {"target": tloc})) self.last_base_pos = base_pos # visualize tloc, frontier_center, obstacle_map if os.getenv('VISUALIZE_EXAMINE', 'False') == 'True': visualize_examine( self.agent, self.robot_poses, self.frontier_center, self.target['label'], self.agent.mover.get_obstacles_in_canonical_coords(), self.task_data['root_data_path'], self.pts, ) return else: self.logger.info(f"Finished Examination") self.finished = self.agent.mover.bot_step() def __repr__(self): return "<ExamineDetectionCircle {}>".format(self.target['label']) class Explore(TrajectorySaverTask): """use slam to explore environemt""" def __init__(self, agent, task_data): super().__init__(agent, task_data) self.command_sent = False self.agent = agent self.goal = task_data.get("goal") TaskNode(agent.memory, self.memid).update_task(task=self) @Task.step_wrapper def step(self): super().step() self.interrupted = False self.finished = False if not self.finished: self.agent.mover.explore(self.goal) self.finished = self.agent.mover.nav.is_done_exploring().value ``` #### File: hitl/utils/hitl_utils.py ```python import logging import os import re import CloudFlare import boto3 def generate_batch_id(): """ Generate a unique id for each hitl run """ import datetime dt = datetime.datetime.now() return int(dt.strftime("%Y%m%d%H%M%S")) def deregister_dashboard_subdomain(batch_id): """ Deregister all subdomains of a given batch on craftassist.io """ if ( os.getenv("CLOUDFLARE_TOKEN") and os.getenv("CLOUDFLARE_ZONE_ID") and os.getenv("CLOUDFLARE_EMAIL") ): logging.info("Deresigister subdomains on craftassist.io") cf_token = os.getenv("CLOUDFLARE_TOKEN") zone_id = os.getenv("CLOUDFLARE_ZONE_ID") cf_email = os.getenv("CLOUDFLARE_EMAIL") cf = CloudFlare.CloudFlare(email=cf_email, token=cf_token) dns_records = cf.zones.dns_records.get(zone_id) for record in dns_records: print(f'{record["name"]} pattern : {batch_id}') if re.match(fr"dashboard-{batch_id}-\d+.craftassist.io", record["name"]): print(f"matched cf record to be deleted: {record['name']}") cf.zones.dns_records.delete(zone_id, record["id"]) logging.debug(f'Deleted cf dns record: {record["name"]}') print(f'Deleted cf dns record: {record["name"]}') def dedup_commands(command_list): """ Deduplicate a command list. Now it only removes repeated commands. """ cmd_set = set() deduped_cmd_list = [] for command in command_list: if command.lower() not in cmd_set: cmd_set.add(command.lower()) deduped_cmd_list.append(command) return deduped_cmd_list def examine_hit(hit_id): """ Examine all assignments of a given HIT """ access_key = os.getenv("MTURK_AWS_ACCESS_KEY_ID") secret_key = os.getenv("MTURK_AWS_SECRET_ACCESS_KEY") aws_region = os.getenv("MTURK_AWS_REGION", default="us-east-1") dev_flag = None if dev_flag: MTURK_URL = "https://mturk-requester-sandbox.{}.amazonaws.com".format(aws_region) else: MTURK_URL = "https://mturk-requester.{}.amazonaws.com".format(aws_region) mturk = boto3.client( "mturk", aws_access_key_id=access_key, aws_secret_access_key=secret_key, region_name=aws_region, endpoint_url=MTURK_URL, ) worker_results = mturk.list_assignments_for_hit( HITId=hit_id, AssignmentStatuses=["Submitted"] ) print(worker_results["NumResults"]) print(worker_results["Assignments"]) def delete_all_mturk_hits(): """ Delete all HITs of a given account. Please use it with caution. """ import os import boto3 from datetime import datetime access_key = os.getenv("MTURK_AWS_ACCESS_KEY_ID") secret_key = os.getenv("MTURK_AWS_SECRET_ACCESS_KEY") aws_region = os.getenv("MTURK_AWS_REGION", default="us-east-1") MTURK_URL = "https://mturk-requester-sandbox.{}.amazonaws.com".format(aws_region) mturk = boto3.client( "mturk", aws_access_key_id=access_key, aws_secret_access_key=secret_key, region_name=aws_region, endpoint_url=MTURK_URL, ) all_hits = mturk.list_hits()["HITs"] hit_ids = [item["HITId"] for item in all_hits] # This is slow but there's no better way to get the status of pending HITs for hit_id in hit_ids: # Get HIT status status = mturk.get_hit(HITId=hit_id)["HIT"]["HITStatus"] try: response = mturk.update_expiration_for_hit(HITId=hit_id, ExpireAt=datetime(2015, 1, 1)) mturk.delete_hit(HITId=hit_id) except: pass print(f"Hit {hit_id}, status: {status}") if __name__ == "__main__": # pass for i in range(100): deregister_dashboard_subdomain(20211014214358) # examine_hit("34YWR3PJ2AD51SZWORZ4M41QBOG0XV") ``` #### File: fbrp/runtime/test_conda.py ```python import os import unittest from fbrp.life_cycle import State from fbrp.process import ProcDef from fbrp.runtime.conda import CondaEnv, Launcher from unittest import IsolatedAsyncioTestCase from unittest import mock from unittest.mock import call, patch, mock_open class TestCondaEnv(unittest.TestCase): def test_merge_and_fix_pip_1(self): a = CondaEnv( channels=["conda-forge", "robostack", "pytorch"], dependencies=["ros-noetic-genpy"], ) b = CondaEnv( channels=["pytorch", "nvidia"], dependencies=["pytorch", "numpy", "dataclasses"], ) c = CondaEnv.merge(a, b) assert len(c.channels) == 4 assert c.channels == sorted(["conda-forge", "robostack", "pytorch", "nvidia"]) assert len(c.dependencies) == 4 assert c.dependencies == sorted(["pytorch", "ros-noetic-genpy", "numpy", "dataclasses"]) assert "pip" not in c.dependencies c.fix_pip() assert "pip" not in c.dependencies def test_merge_and_fix_pip_2(self): a = CondaEnv( channels=["conda-forge", "robostack", "pytorch"], dependencies=["ros-noetic-genpy", {"pip": ["scipy", "cuda110", "pytorch"]}], ) b = CondaEnv( channels=["pytorch", "nvidia"], dependencies=["pytorch", "numpy", "dataclasses"], ) c = CondaEnv.merge(a, b) assert len(c.channels) == 4 assert c.channels == sorted(["conda-forge", "robostack", "pytorch", "nvidia"]) assert len(c.dependencies) == 5 ref_deps = sorted(["pytorch", "ros-noetic-genpy", "numpy", "dataclasses"]) list_deps = [] for dep in c.dependencies: if type(dep) == dict: assert sorted(dep["pip"]) == sorted(["scipy", "cuda110", "pytorch"]) else: assert dep in ref_deps list_deps.append(dep) assert "pip" not in c.dependencies c.fix_pip() assert "pip" in c.dependencies class TestLauncher(IsolatedAsyncioTestCase): @patch("builtins.open", new_callable=mock_open, read_data="env_var=data" + "\0") @patch("argparse.Namespace") async def test_activate_conda_env(self, mock_namespace, mock_file): proc_def = ProcDef( name="test_conda", root=None, rule_file=None, runtime="BaseRuntime", cfg={}, deps=[], env={}, ) launcher = Launcher( name="test_conda", run_command=["python3", "alice.py"], proc_def=proc_def, args=mock_namespace, ) os_env_patch = mock.patch.dict(os.environ, {"my_path": "path"}) os_env_patch.start() conda_env = await launcher.activate_conda_env() mock_file.assert_called_with(f"/tmp/fbrp_conda_test_conda.env") assert len(conda_env) == 1 self.assertDictEqual(conda_env, {"env_var": "data"}) os_env_patch.stop() @patch("fbrp.life_cycle.set_state") @patch("fbrp.runtime.conda.Launcher.gather_cmd_outputs") @patch("fbrp.runtime.conda.Launcher.run_cmd_in_env") @patch("fbrp.runtime.conda.Launcher.activate_conda_env") @patch("argparse.Namespace") async def test_run( self, mock_namespace, mock_activate_conda_env, mock_run_cmd_in_env, mock_gather_cmd_outputs, mock_set_state, ): proc_def = ProcDef( name="test_conda", root=None, rule_file=None, runtime="BaseRuntime", cfg={}, deps=[], env={}, ) launcher = Launcher( name="test_conda", run_command=["python3", "alice.py"], proc_def=proc_def, args=mock_namespace, ) await launcher.run() mock_activate_conda_env.assert_called_once() mock_run_cmd_in_env.assert_called_once() mock_gather_cmd_outputs.assert_called_once() assert mock_set_state.call_count == 2 mock_set_state.assert_has_calls( [call("test_conda", State.STARTING), call("test_conda", State.STARTED)] ) @patch("fbrp.life_cycle.set_state") @patch("fbrp.runtime.conda.Launcher.exit_cmd_in_env") @patch("argparse.Namespace") async def test_death_handler( self, mock_namespace, mock_exit_cmd_in_env, mock_set_state ): mock_exit_cmd_in_env.return_value = 0 proc_def = ProcDef( name="test_conda", root=None, rule_file=None, runtime="BaseRuntime", cfg={}, deps=[], env={}, ) launcher = Launcher( name="test_conda", run_command=["python3", "alice.py"], proc_def=proc_def, args=mock_namespace, ) await launcher.death_handler() mock_exit_cmd_in_env.assert_called_once() mock_set_state.assert_called_once_with( "test_conda", State.STOPPED, return_code=0 ) if __name__ == "__main__": unittest.main() ```
{ "source": "Jih00Kim/inclass_p1", "score": 4 }
#### File: Jih00Kim/inclass_p1/adder.py ```python def add(a, b): a = input('num1') b= input('num2' return a + b ```
{ "source": "Jihackstory/voice_activity_detection", "score": 2 }
#### File: Jihackstory/voice_activity_detection/train.py ```python import torch import numpy as np import os import torch.nn as nn import torch.optim as optim # from torchsummary import summary as summary_ from data_tools import prepare_input_img, check_length import model_nn as model def train_model(params): path = params['path'] model_path = params['model_path'] batch_size = params['batch_size'] num_epochs = params['epochs'] train_val_ratio = params['train_val_ratio'] early_stopping = params['baseline_val_loss'] data = np.expand_dims(np.load(os.path.join(path, 'train_data.npy')), 1) label = np.load(os.path.join(path, 'train_label.npy')) train_loader, val_loader = prepare_input_img(data, label, train_val_ratio, batch_size) num_total_batch, str_total_batch, str_epochs = check_length(train_loader, num_epochs) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = model.Resnet1D(params).to(device) # check the structure of the model # summary_(net, (1, 65, 16), batch_size=32) train_losses, valid_losses = [], [] avg_train_losses, avg_valid_losses = [], [] criterion = nn.CrossEntropyLoss().cuda() optimizer = optim.Adam(net.parameters(), lr=params['learning_rate']) print('\nstart the training\n') for epoch in range(1, num_epochs+1): # training step net.train() for batch, (data, target) in enumerate(train_loader, 1): optimizer.zero_grad() out = net(data.to(device)) loss = criterion(out, target.to(device)) loss.backward() optimizer.step() train_losses.append(loss.item()) print_batch_msg = (f'\r[batch : {batch:>{str_total_batch}}/{num_total_batch:>{str_total_batch}} ]') print(print_batch_msg, end=' ') # validation step total, correct = 0, 0 net.eval() for data, target in val_loader: target = target.to(device) out = net(data.to(device)) loss = criterion(out, target) valid_losses.append(loss.item()) _, predicted = torch.max(out.data, 1) total += target.size(0) correct += (predicted == target).sum().item() train_loss = np.average(train_losses) valid_loss = np.average(valid_losses) avg_train_losses.append(train_loss) avg_valid_losses.append(valid_loss) print_loss_msg = (f'\r[{epoch:>{str_epochs}}/{num_epochs:>{str_epochs}} ]' + f' train_loss: {train_loss:.5f} ' + f'/ valid_loss: {valid_loss:.5f}' + f'/ valid_acc: {100 * correct / total:.3f}') print(print_loss_msg) # Early Stopping if valid_loss < early_stopping: print('Early stopping!!!') break # save the weights and the model save_fn = os.path.join(model_path, "vad_model.pt") torch.save(net, save_fn) print('\nsaving the model') ```
{ "source": "Jihadist/Zabbix-in-Telegram", "score": 2 }
#### File: Jihadist/Zabbix-in-Telegram/ZbxTgDaemon.py ```python import sys import os import hashlib import re import time from os.path import dirname import zbxtg_settings import zbxtg from pyzabbix import ZabbixAPI, ZabbixAPIException class zabbixApi(): def __init__(self, server, user, password): self.api = ZabbixAPI(server) self.user = user self.password = password def login(self): self.api.login(self.user, self.password) def triggers_active(self): return self.api.trigger.get(output="extend", monitored=True, filter={"value": 1}, sortfield="priority", sortorder="DESC", selectHosts="extend") def print_message(string): string = str(string) + "\n" filename = sys.argv[0].split("/")[-1] sys.stderr.write(filename + ": " + string) def file_write(filename, text): with open(filename, "w") as fd: fd.write(str(text)) return True def file_read(filename): with open(filename, 'r') as fd: text = fd.readlines() return text def main(): TelegramAPI = zbxtg.TelegramAPI ZabbixWeb = zbxtg.ZabbixWeb tmp_dir = zbxtg_settings.zbx_tg_tmp_dir if not zbxtg_settings.zbx_tg_daemon_enabled: print("You should enable daemon by adding 'zbx_tg_remote_control' in the configuration file") sys.exit(1) tmp_uids = tmp_dir + "/uids.txt" tmp_ts = { "message_id": tmp_dir + "/daemon_message_id.txt", "update_offset": tmp_dir + "/update_offset.txt", } for i, v in tmp_ts.iteritems(): if not os.path.exists(v): print_message("{0} doesn't exist, creating new one...".format(v)) file_write(v, "0") print_message("{0} successfully created".format(v)) message_id_last = file_read(tmp_ts["message_id"])[0].strip() if message_id_last: message_id_last = int(message_id_last) update_id = file_read(tmp_ts["update_offset"]) tg = TelegramAPI(key=zbxtg_settings.tg_key) if zbxtg_settings.proxy_to_tg: proxy_to_tg = zbxtg_settings.proxy_to_tg if not proxy_to_tg.find("http") and not proxy_to_tg.find("socks"): proxy_to_tg = "https://" + proxy_to_tg tg.proxies = { "https": "{0}".format(zbxtg_settings.proxy_to_tg), } zbx = ZabbixWeb(server=zbxtg_settings.zbx_server, username=zbxtg_settings.zbx_api_user, password=zbxtg_settings.zbx_api_pass) if zbxtg_settings.proxy_to_zbx: zbx.proxies = {"http": "http://{0}/".format(zbxtg_settings.proxy_to_zbx)} try: zbx_api_verify = zbxtg_settings.zbx_api_verify zbx.verify = zbx_api_verify except: pass zbxapi = zabbixApi(zbxtg_settings.zbx_server, zbxtg_settings.zbx_api_user, zbxtg_settings.zbx_api_pass) zbxapi.login() print(tg.get_me()) #hosts = zbxdb.db_query("SELECT hostid, host FROM hosts") commands = [ "/triggers", "/help", # "/graph", # "/history", # "/screen" ] def md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() md5sum = md5("ZbxTgDaemon.py") print md5sum try: while True: time.sleep(1) md5sum_new = md5("ZbxTgDaemon.py") if md5sum != md5sum_new: sys.exit(1) tg.update_offset = update_id updates = tg.get_updates() if not updates["result"]: continue for m in updates["result"]: if "message" not in m: continue update_id_last = m["update_id"] tg.update_offset = update_id_last if m["message"]["from"]["id"] not in zbxtg_settings.zbx_tg_daemon_enabled_ids: file_write(tmp_ts["update_offset"], update_id_last) continue print("Fuck this shit, I'm not going to answer to someone not from the whitelist") else: if not "text" in m["message"]: continue text = m["message"]["text"] to = m["message"]["from"]["id"] reply_text = list() if m["message"]["message_id"] > message_id_last: if re.search(r"^/(start|help)", text): reply_text.append("Hey, this is ZbxTgDaemon bot.") reply_text.append("https://github.com/ableev/Zabbix-in-Telegram") reply_text.append("If you need help, you can ask it in @ZbxTg group\n") reply_text.append("Available commands:") reply_text.append("\n".join(commands)) tg.disable_web_page_preview = True if re.search(r"^/triggers", text): triggers = zbxapi.triggers_active() if triggers: for t in triggers: reply_text.append("Severity: {0}, Host: {1}, Trigger: {2}".format( t["priority"], t["hosts"][0]["host"].encode('utf-8'), t["description"].encode('utf-8') )) else: reply_text.append("There are no triggers, have a nice day!") if not reply_text: reply_text = ["I don't know what to do about it"] if tg.send_message(to, reply_text): with open(tmp_ts["message_id"], "w") as message_id_file: message_id_file.write(str(m["message"]["message_id"])) message_id_last = m["message"]["message_id"] tg.disable_web_page_preview = False file_write(tmp_ts["update_offset"], update_id_last) except KeyboardInterrupt: print("Exiting...") if __name__ == "__main__": main() ```
{ "source": "jihaekor/knowru_client", "score": 2 }
#### File: knowru_client/knowru_client/knowru_client.py ```python from __future__ import absolute_import, unicode_literals import traceback import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util import Retry from timezone_logging.timezone_logging import get_timezone_logger class KnowruClient(object): def __init__(self, token, knowru_url='https://www.knowru.com', retry_total=3, backoff_factor=1, status_forcelist=(502, 503, 504), method_whitelist=('GET', 'POST')): if knowru_url.endswith('/'): knowru_url = knowru_url[:-1] self.knowru_url = knowru_url self._token = token self.headers = {'Authorization': 'Token {}'.format(token), 'Content-Type': 'application/json', 'Accept': 'application/json'} self._retry_total = retry_total self._backoff_factor = backoff_factor self._status_forcelist = status_forcelist self._method_whitelist = method_whitelist self._adapter = HTTPAdapter(max_retries=Retry(total=retry_total, backoff_factor=backoff_factor, status_forcelist=status_forcelist, method_whitelist=method_whitelist)) self.session = requests.Session() self.session.mount(knowru_url, self._adapter) def run_runnable(self, runnable_name, input_data, output_if_error=None): try: r = self.session.post('{}/api/runnable/{}/run.json/'.format(self.knowru_url, runnable_name), json={'input': input_data}, headers=self.headers) except Exception as e: logger = get_timezone_logger('KnowruClient.call_runnable') logger.error(traceback.format_exc()) if output_if_error is not None: return output_if_error else: raise e else: return r.json()['output'] ```
{ "source": "jihan1218/multi-agent-predator-prey", "score": 2 }
#### File: training/ppo_pkg/ppo.py ```python import numpy as np import tensorflow as tf import gym import time import operator from copy import deepcopy from training.ppo_pkg import core from training.ppo_pkg.specs import pi_specs, v_specs from spinup.utils.logx import EpochLogger from spinup.utils.mpi_tf import MpiAdamOptimizer, sync_all_params from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs from ma_policy.util import listdict2dictnp from mae_envs.viewer.policy_viewer import splitobs from gym.spaces import Box, Discrete, Dict, MultiDiscrete, Tuple from ma_policy.ma_policy import MAPolicy class PPOBuffer: """ A buffer for storing trajectories experienced by a PPO agent interacting with the environment, and using Generalized Advantage Estimation (GAE-Lambda) for calculating the advantages of state-action pairs. """ def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95): self.n_agents = 1 self.size = size # Buffer size self.obs_buf = {} # Observations self.act_buf = {} # Actions self.adv_buf = [] # Advantage estimations self.rew_buf = [] # Rewards self.ret_buf = [] # Returns (Rewards-to-go) self.val_buf = [] # Values (From the value network) self.logp_buf = [] # Log probabilities of actions self.gamma, self.lam = gamma, lam # Gamma and lambda are used for GAE advantage estimation self.ptr, self.path_start_idx, self.max_size = 0, 0, size # Control variables for buffer management def store(self, obs, act, rew, val, logp): """ Append one timestep of agent-environment interaction to the buffer. """ assert self.ptr < self.max_size # buffer has to have room so you can store if self.ptr == 0: self.obs_buf = obs self.act_buf = act self.rew_buf = rew self.val_buf = val self.logp_buf = logp self.n_agents = rew.size else: for k, v in obs.items(): self.obs_buf[k] = np.vstack((self.obs_buf[k], obs[k])) for k, v in act.items(): self.act_buf[k] = np.vstack((self.act_buf[k], act[k])) self.rew_buf = np.vstack((self.rew_buf, rew)) self.val_buf = np.vstack((self.val_buf, val)) self.logp_buf = np.vstack((self.logp_buf, logp)) self.ptr += 1 def finish_path(self, last_val=0): """ Call this at the end of a trajectory, or when one gets cut off by an epoch ending. This looks back in the buffer to where the trajectory started, and uses rewards and value estimates from the whole trajectory to compute advantage estimates with GAE-Lambda, as well as compute the rewards-to-go for each state, to use as the targets for the value function. The "last_val" argument should be 0 if the trajectory ended because the agent reached a terminal state (died), and otherwise should be V(s_T), the value function estimated for the last state. This allows us to bootstrap the reward-to-go calculation to account for timesteps beyond the arbitrary episode horizon (or epoch cutoff). """ path_slice = slice(self.path_start_idx, self.ptr) if self.n_agents > 1: if last_val == 0: last_val = [0, 0] rews = np.vstack((self.rew_buf[path_slice], last_val)) vals = np.vstack((self.val_buf[path_slice], last_val)) else: rews = np.append(self.rew_buf[path_slice], last_val) vals = np.append(self.val_buf[path_slice], last_val) # the next two lines implement GAE-Lambda advantage calculation deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1] self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam) # the next line computes rewards-to-go, to be targets for the value function self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1] self.path_start_idx = self.ptr def get(self, aux_vars_only=False): """ Call this at the end of an epoch to get all of the data from the buffer, with advantages appropriately normalized (shifted to have mean zero and std one). Also, resets some pointers in the buffer. """ # buffer has to be full before you can get the data from it assert self.ptr == self.max_size self.ptr, self.path_start_idx = 0, 0 buf_shape = (self.size, self.n_agents) adv_list = np.zeros(buf_shape, dtype=np.float32) ret_list = np.zeros(buf_shape, dtype=np.float32) for i in range(self.size): for j in range(self.n_agents): adv_list[i][j] = self.adv_buf[i][j] ret_list[i][j] = self.ret_buf[i][j] # the next lines implement the advantage normalization trick adv_mean = np.zeros(self.n_agents, dtype=np.float32) adv_std = np.zeros(self.n_agents, dtype=np.float32) for i in range(self.n_agents): mean, std = mpi_statistics_scalar(np.reshape(adv_list[:, i], (self.size, 1))) adv_mean[i] = mean adv_std[i] = std self.adv_buf = (adv_list - adv_mean) / adv_std self.ret_buf = ret_list act_data = [v for k, v in self.act_buf.items()] obs_data = [v for k, v in self.obs_buf.items()] aux_shape = (self.size * self.n_agents, 1) if aux_vars_only: return [np.reshape(self.adv_buf, aux_shape), np.reshape(self.ret_buf, aux_shape), np.reshape(self.logp_buf, aux_shape)] else: return [act_data[0], obs_data[0], np.reshape(self.adv_buf, aux_shape), np.reshape(self.ret_buf, aux_shape), np.reshape(self.logp_buf, aux_shape)] # ==================================================================================================== # # ====================================== PPO TRAINING FUNCTION ======================================= # # ==================================================================================================== # def ppo(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=33, steps_per_epoch=4000, epochs=50, gamma=0.998, clip_ratio=0.2, pi_lr=3e-4, vf_lr=1e-3, train_pi_iters=60, train_v_iters=60, lam=0.95, max_ep_len=1000, target_kl=0.01, logger_kwargs=dict(), save_freq=10): """ Proximal Policy Optimization (by clipping), with early stopping based on approximate KL Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``pi`` (batch, act_dim) | Samples actions from policy given | states. ``logp`` (batch,) | Gives log probability, according to | the policy, of taking actions ``a_ph`` | in states ``x_ph``. ``logp_pi`` (batch,) | Gives log probability, according to | the policy, of the action sampled by | ``pi``. ``v`` (batch,) | Gives the value estimate for states | in ``x_ph``. (Critical: make sure | to flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to PPO. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs of interaction (equivalent to number of policy updates) to perform. gamma (float): Discount factor. (Always between 0 and 1.) clip_ratio (float): Hyperparameter for clipping in the policy objective. Roughly: how far can the new policy go from the old policy while still profiting (improving the objective function)? The new policy can still go farther than the clip_ratio says, but it doesn't help on the objective anymore. (Usually small, 0.1 to 0.3.) Typically denoted by :math:`\epsilon`. pi_lr (float): Learning rate for policy optimizer. vf_lr (float): Learning rate for value function optimizer. train_pi_iters (int): Maximum number of gradient descent steps to take on policy loss per epoch. (Early stopping may cause optimizer to take fewer than this.) train_v_iters (int): Number of gradient descent steps to take on value function per epoch. lam (float): Lambda for GAE-Lambda. (Always between 0 and 1, close to 1.) max_ep_len (int): Maximum length of trajectory / episode / rollout. target_kl (float): Roughly what KL divergence we think is appropriate between new and old policies after an update. This will get used for early stopping. (Usually small, 0.01 or 0.05.) logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ ## Logger setup logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) ## Random seed setting seed += 10000 * proc_id() tf.set_random_seed(seed) np.random.seed(seed) ## Environment instantiation env = env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape # Policies vector (only one for this project) policies = [] # TensorFlow session sess = tf.Session() # Build policy anc value networks MAP = MAPolicy(scope='policy_0', ob_space=env.observation_space, ac_space=env.action_space, network_spec=pi_specs, normalize=True, v_network_spec=v_specs) policies = [MAP] # Share information about action space with policy architecture ac_kwargs['action_space'] = env.action_space # Create aux placeholders for the computation graph adv_ph, ret_ph, logp_old_ph = core.placeholders(1, 1, 1) # Get main placeholders for the computation graph map_phs_dict = MAP.phs map_phs = [v for k, v in map_phs_dict.items()] for k, v in map_phs_dict.items(): if v.name == None: v.name = k # Append aux and main placeholders # Need placeholders in *this* order later (to zip with data from buffer) new_phs = [adv_ph, ret_ph, logp_old_ph] all_phs = np.append(map_phs, new_phs) # Intantiate Experience buffer local_steps_per_epoch = int(steps_per_epoch / num_procs()) buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam) # Count variables var_counts = tuple(core.count_vars(scope) for scope in ['policy_net', 'vpred_net']) logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts) # PPO objectives ratio = tf.exp(MAP.taken_action_logp - logp_old_ph) # pi(a|s) / pi_old(a|s) min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph, (1 - clip_ratio) * adv_ph) # PPO-clip limits pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv)) # Policy loss function v_loss = tf.reduce_mean((ret_ph - MAP.scaled_value_tensor) ** 2) # Value loss function # Info (useful to watch during learning) approx_kl = tf.reduce_mean( logp_old_ph - MAP.taken_action_logp) # a sample estimate for KL-divergence, easy to compute approx_ent = tf.reduce_mean(-MAP.taken_action_logp) # a sample estimate for entropy, also easy to compute clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio)) # a logical value which states whether there was clipping clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32)) # a measure of clipping for posterior analysis # Optimizers train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss) # Policy network optimizer train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss) # Value network optimizer # initialize TensorFlow variabels sess.run(tf.global_variables_initializer()) # Sync params across processes sess.run(sync_all_params()) # Set up logger variables to be saved (it is necessary to save everything that is # input/output to the networks so that the policy can be played afterwards during testing) out_act_dict = MAP.sampled_action out_state_dict = MAP.state_out logger_outputs = {**out_act_dict, **out_state_dict} for k, v in logger_outputs.items(): if 'lstm' in k: logger_outputs[k + '_out'] = logger_outputs.pop(k) logger_inputs = map_phs_dict logger.setup_tf_saver(sess, inputs=logger_inputs, outputs=logger_outputs) # ======================================================================== # # ===================== Auxiliary Training Functions ===================== # # ======================================================================== # # Compute metrics for analysis during and after training def compute_metrics(extra_dict={}): loss_outs = {'pi_loss': pi_loss, 'v_loss': v_loss, 'approx_ent': approx_ent, 'approx_kl': approx_kl, 'approx_cf': clipfrac, 'taken_action_logp': MAP.taken_action_logp, 'ratio': ratio, 'min_adv': min_adv} out_loss = policies[0].sess_run(buf.obs_buf, sess_act=sess, extra_feed_dict=extra_dict, other_outputs=loss_outs, replace=True) return out_loss['pi_loss'], out_loss['v_loss'], out_loss['approx_ent'], out_loss['approx_kl'], out_loss[ 'approx_cf'] # ======================================================================= # # Run session on policy and value optimizers for training their respective networks def train(net, extra_dict={}): if net == 'pi': train_outs = {'train_pi': train_pi, 'approx_kl': approx_kl} elif net == 'v': train_outs = {'train_v': train_v} else: print("Error: Network not defined") return out_train = policies[0].sess_run(buf.obs_buf, sess_act=sess, extra_feed_dict=extra_dict, other_outputs=train_outs, replace=True) if net == 'pi': return out_train['approx_kl'] # ======================================================================= # # Perform training procedure def update(): print("======= update!") # get aux data from the buffer and match it with its respective placeholders buf_data = buf.get(aux_vars_only=True) aux_inputs = {k: v for k, v in zip(new_phs, buf_data)} # for the training, the actions taken during the experience loop are also inputs to the network extra_dict = {k: v for k, v in buf.act_buf.items() if k is not 'vpred'} for k, v in extra_dict.items(): if k == 'action_movement': extra_dict[k] = np.expand_dims(v, 1) # actions and aux variables from the buffer are joined and passed to compute_metrics (observations are joined within the functions) extra_dict.update(aux_inputs) pi_l_old, v_l_old, ent, kl, cf = compute_metrics(extra_dict) # Policy training loop for i in range(train_pi_iters): if i % 10 == 0: print("training pi iter ", i) kl = train('pi', extra_dict) kl = mpi_avg(kl) if kl > 1.5 * target_kl: logger.log('Early stopping at step %d due to reaching max kl.' % i) break logger.store(StopIter=i) print("") # Value training loop for j in range(train_v_iters): if j % 10 == 0: print("training v iter ", j) train('v', extra_dict) # Log changes from update with a new run on compute_metrics pi_l_new, v_l_new, ent, kl, cf = compute_metrics(extra_dict) # Store information logger.store(LossPi=pi_l_old, LossV=v_l_old, KL=kl, Entropy=ent, ClipFrac=cf, DeltaLossPi=(pi_l_new - pi_l_old), DeltaLossV=(v_l_new - v_l_old)) # Reset experience varibales o, ep_ret, ep_len = env.reset(), 0, 0 # Reset policy for policy in policies: policy.reset() print("======= update finished!") # ======================================================================= # start_time = time.time() o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # ======================================================================= # # ========================== Experience Loop ============================ # # ======================================================================= # # Main loop: collect experience in env and update/log each epoch for epoch in range(epochs): print("epoch: ", epoch) for t in range(local_steps_per_epoch): # Pass observations through networs and get action + predicted value if len(policies) == 1: # this project's case a, info = policies[0].sess_run(o, sess_act=sess) v_t = info['vpred'] logp_t = info['ac_logp'] else: o = splitobs(o, keepdims=False) ob_policy_idx = np.split(np.arange(len(o)), len(policies)) actions = [] for i, policy in enumerate(policies): inp = operator.itemgetter(*ob_policy_idx[i])(o) inp = listdict2dictnp([inp] if ob_policy_idx[i].shape[0] == 1 else inp) ac, info = policy.act(inp) actions.append(ac) action = listdict2dictnp(actions, keepdims=True) # Take a step in the environment o2, r, d, env_info = env.step(a) ep_ret += r ep_len += 1 # If env.render is uncommented, the experience loop is displayed (visualized) # in real time (much slower, but excelent debugging) # env.render() # save experience in buffer and log buf.store(o, a, r, v_t, logp_t) logger.store(VVals=v_t) # Update obs (critical!) o = o2 # Treat the end of a trajectory terminal = d or (ep_len == max_ep_len) if terminal or (t == local_steps_per_epoch - 1) or env_info.get('discard_episode', False): if not (terminal): print('Warning: trajectory cut off by epoch at %d steps.' % ep_len) # if trajectory didn't reach terminal state, bootstrap value target if d: last_val = 0 else: _, info = policies[0].sess_run(o, sess_act=sess) last_val = info['vpred'] # Compute advantage estimates and rewards-to-go buf.finish_path(last_val) if terminal: # only save EpRet / EpLen if trajectory finished logger.store(EpRet=ep_ret, EpLen=ep_len) o, ep_ret, ep_len = env.reset(), 0, 0 for policy in policies: policy.reset() # Save model if (epoch % save_freq == 0) or (epoch == epochs - 1): print("Saved epoch: ", epoch) logger.save_state({'env': env}, None) # Perform PPO update! update() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('VVals', with_min_and_max=True) logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossV', average_only=True) logger.log_tabular('DeltaLossPi', average_only=True) logger.log_tabular('DeltaLossV', average_only=True) logger.log_tabular('Entropy', average_only=True) logger.log_tabular('KL', average_only=True) logger.log_tabular('ClipFrac', average_only=True) logger.log_tabular('StopIter', average_only=True) logger.log_tabular('Time', time.time() - start_time) logger.dump_tabular() # ==================================================================================================== # # ==================================================================================================== # # ==================================================================================================== # if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='HalfCheetah-v2') parser.add_argument('--hid', type=int, default=64) parser.add_argument('--l', type=int, default=2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--cpu', type=int, default=4) parser.add_argument('--steps', type=int, default=4000) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--exp_name', type=str, default='ppo') args = parser.parse_args() mpi_fork(args.cpu) # run parallel code with mpi from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed) ppo(lambda: gym.make(args.env), actor_critic=core.mlp_actor_critic, ac_kwargs=dict(hidden_sizes=[args.hid] * args.l), gamma=args.gamma, seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs, logger_kwargs=logger_kwargs) ```
{ "source": "jihan1218/shepherd_gym", "score": 2 }
#### File: shepherd_gym/examples/shepherd_curriculum.py ```python import gym import argparse import numpy as np import shepherd_gym # import stable-baselines utilities from stable_baselines import PPO2 from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.common.policies import MlpPolicy,MlpLstmPolicy def main(): parser = argparse.ArgumentParser(description='PPO baseline implementation') parser.add_argument('-e', '--experiment', type=str, default='ppo_test', help='name of experiment') parser.add_argument('-w', '--env', type=str, default='Shepherd-v0', help='name of gym environment') parser.add_argument('-m', '--mode', type=str, default='train', help='mode to run experiment') parser.add_argument('-p', '--policy', type=str, default='mlp', help='type of policy network') parser.add_argument('-t', '--timesteps', type=int, default=10000, help='number of timesteps to train') parser.add_argument('-d', '--datapath', type=str, default='../data', help='path to save results') args = parser.parse_args() mode = args.mode env_name = args.env policy = args.policy data_path = args.datapath timesteps = args.timesteps experiment = args.experiment exp_path = '{}/{}'.format(data_path,experiment) log_path = '{}/log_{}'.format(exp_path, timesteps) model_path = '{}/model_{}'.format(exp_path, timesteps) env = gym.make(env_name) env = shepherd_gym.wrappers.SamplerWrapper(env, demo_path='../data/curriculum', increment_freq=250) env = DummyVecEnv([lambda: env]) if policy=='mlp': policy_type = MlpPolicy else: policy_type = MlpLstmPolicy model = PPO2(policy_type, env, verbose=1, tensorboard_log=log_path, nminibatches=1) if mode == 'train': model.learn(total_timesteps=timesteps) model.save(model_path) else: model.load(model_path) env.render() obs = env.reset() for _ in range(1000): action, _states = model.predict(obs) obs, _, _, _ = env.step(action) env.render() # complete simulation env.close() if __name__=='__main__': main() ``` #### File: shepherd_gym/envs/shepherd_env.py ```python import warnings warnings.filterwarnings("ignore") # ipython debugging from IPython.terminal.debugger import set_trace as keyboard # core modules import gym import random import numpy as np from gym import spaces import matplotlib.pyplot as plt class ShepherdEnv(gym.Env): """ Define the shepherding environment. The environment treats the dog as the agent and the sheep as a part of the environment. State: 1) Position of center of mass (x,y) 2) Position of farthest sheep (x,y) 3) Position of target (x,y) 4) Position of dog (x,y) 5) Radius of sheep (r) 6) Distance to target (d) Action: 1) Increment in position of dog (x,y) Reward: 1) Negative of farthest sheep distance to com (d_f) 2) Negative of com distance to target (d_t) """ def __init__(self, continuous=False, num_sheep=25, info_mode=0, fixed_reset=False, sparse_reward=False): # initialize observation space obs_low = np.array(10*[-1000.0]) obs_high = np.array(10*[1000.0]) self.observation_space = spaces.Box(low=obs_low, high=obs_high) # setup environment type self.continuous = continuous # initialize action space if self.continuous: act_low = np.array([-np.pi]) act_high = np.array([np.pi]) self.action_space = spaces.Box(low=act_low, high=act_high) else: self.action_space = spaces.Discrete(8) # limit episode length self.max_steps = 500 # conditions to terminate self.boundary = 400.0 self.max_radius = 100.0 self.max_distance = 400.0 # create buffer and episode variable self.curr_step = -1 self.curr_episode = -1 # radius for sheep to be considered as collected by dog self.dog_collect_radius = 2.0 # parameters for initialization self.init_sheep_root = 200.0 self.init_sheep_range = 50.0 self.init_dog_distance = 60.0 # weight multipliers for sheep forces self.com_term = 1.05 self.noise_term = 0.3 self.inertia_term = 0.5 self.repulsion_dog_term = 1.0 self.repulsion_sheep_term = 2.0 # constants used to update environment self.delta_sheep_pose = 1.0 self.dog_repulsion_dist = 70.0 self.sheep_repulsion_dist = 2.0 # assign number of sheep self.num_sheep = num_sheep # flag to show simulation, false by default self.info_mode = info_mode self.fixed_reset = fixed_reset # info variables self.episode_length = 0.0 self.episode_reward = 0.0 # flag for sparse reward self.sparse_reward = sparse_reward # initialize plot figure self.fig = None def step(self, action): """ The dog takes a step in the environment Parameters ---------- action : float array Returns ------- ob, reward, episode_over, info : tuple observation (float array) : observation after dog position is updated. reward (float) : amount of reward achieved by dog in the previous step. episode_over (bool) : flag that indicates if the environment is reset or not. info (dict) : useful information about the environment for debugging. """ success = False self.curr_step += 1 self._take_action(action) self._take_action(action) self._take_action(action) # initialize reward and get state reward = 0.0 ob = self._get_state() # give dense rewards if not self.sparse_reward: reward = self._get_reward() # bad terminal conditions if self.curr_step >= self.max_steps \ or self.target_distance >= self.max_distance \ or self.mean_radius_sheep >= self.max_radius: self.finish = True if self.sparse_reward: reward = -1.0 # good terminal conditions if self.target_distance <= 1.0: success = True self.finish = True if self.sparse_reward: reward = 1.0 # update rl parameters self.episode_length += 1 self.episode_reward += reward # generate info return parameter if self.info_mode == 1 and self.finish: info = {'r':self.episode_reward, 'l':self.episode_length, 's': success} else: info = {'n':self.num_sheep, 's': success} return ob, reward, self.finish, info def reset(self): """ Reset the environment and return the init state Returns ------- observation (float array) : initial observation after reset. """ # initialize gym env variables self.finish = False self.curr_step = -1 self.curr_episode += 1 # initialize target position self.target = np.random.uniform(-10.0,10.0,size=(2)) # initialize sheep positions if self.fixed_reset: init_sheep_pose = np.array([75.0, 75.0]) self.sheep_poses = (np.random.uniform(-50.0, 50.0, size=(self.num_sheep,2))) + init_sheep_pose[None,:] else: init_sheep_pose = np.random.uniform(-self.init_sheep_root, self.init_sheep_root, size=(2)) self.sheep_poses = (np.random.uniform(-self.init_sheep_range, self.init_sheep_range, size=(self.num_sheep,2))) \ + init_sheep_pose[None,:] self.sheep_com = self.sheep_poses.mean(axis=0) # get the farthest sheep and radius of the sheep dist_to_com = np.linalg.norm((self.sheep_poses - self.sheep_com[None,:]), axis=1) self.farthest_sheep = self.sheep_poses[np.argmax(dist_to_com),:] self.radius_sheep = np.array([np.max(dist_to_com)]) # update distance to target self.target_distance = np.linalg.norm(self.target - self.sheep_com) # initialize values for reward estimation self.init_radius_sheep = self.radius_sheep self.init_target_distance = self.target_distance # initialize dog position if self.fixed_reset: init_dog_pose = np.array([0.0,75.0]) else: init_theta = np.random.uniform(-np.pi,np.pi) init_dog_pose = init_sheep_pose + self.init_dog_distance*np.array([np.cos(init_theta), np.sin(init_theta)]) self.dog_pose = init_dog_pose # initialize inertia self.inertia = np.ones((self.num_sheep, 2)) # initialize episode reward and length self.episode_reward = 0 self.episode_length = 0 # get the state, reward, finish, info state = self._get_state() return state def reset_from_state(self, state): """ Reset the environment from given state Returns ------- observation (float array) : initial observation after reset. """ # initialize gym env variables self.finish = False self.curr_step = -1 self.curr_episode += 1 # initialize target position self.target = state[4:6] # initialize sheep com self.sheep_com = state[0:2] # get the farthest sheep and radius of the sheep self.farthest_sheep = state[2:4] self.radius_sheep = np.array([state[8]]) # update distance to target self.target_distance = np.array([state[9]]) # initialize sheep position self.sheep_poses = (np.random.uniform(-0.75*self.radius_sheep, 0.75*self.radius_sheep, size=(self.num_sheep,2))) \ + self.sheep_com[None,:] rnd_ind = np.random.choice(self.num_sheep) self.sheep_poses[rnd_ind,:] = state[2:4] # initialize values for reward estimation self.init_radius_sheep = self.radius_sheep self.init_target_distance = self.target_distance # initialize dog position init_dog_pose = state[6:8] self.dog_pose = init_dog_pose # initialize inertia self.inertia = np.ones((self.num_sheep, 2)) # initialize episode reward and length self.episode_reward = 0 self.episode_length = 0 # get the state, reward, finish, info state = self._get_state() return state def close(self): """Clean exit for environment""" if self.fig: plt.close('all') plt.ioff() def seed(self, seed): """Function to set the seed of env""" random.seed(seed) np.random.seed(seed) def _take_action(self, action): """Update position of dog based on action and env""" if isinstance(action, list) or isinstance(action, np.ndarray): action = action[0] if self.continuous: increment = np.array([1.5*np.cos(action),1.5*np.sin(action)]) else: increment = np.array([0.0,0.0]) if action == 0: increment[0] = 1.5 elif action == 1: increment[0] = 1.225 increment[1] = 1.225 elif action == 2: increment[1] = 1.5 elif action == 3: increment[0] = -1.225 increment[1] = 1.225 elif action == 4: increment[0] = -1.5 elif action == 5: increment[0] = -1.225 increment[1] = -1.225 elif action == 6: increment[1] = -1.5 elif action == 7: increment[0] = 1.225 increment[1] = -1.225 else: print('NOP!') self.dog_pose += increment self._update_environment() def _update_environment(self): """Update environment based on new position of dog""" # compute a distance matrix distance_matrix = np.zeros((self.num_sheep,self.num_sheep)) for i in range(self.num_sheep): for j in range(i): dist = np.linalg.norm(self.sheep_poses[i,:] - self.sheep_poses[j,:]) distance_matrix[i,j] = dist distance_matrix[j,i] = dist # find the sheep which are within 2 meters distance xvals, yvals = np.where((distance_matrix < self.sheep_repulsion_dist) & (distance_matrix != 0)) interact = np.hstack((xvals[:,None],yvals[:,None])) # compute the repulsion forces within sheep repulsion_sheep = np.zeros((self.num_sheep,2)) for val in range(self.num_sheep): iv = interact[interact[:,0] == val,1] transit = self.sheep_poses[val,:][None,:] - self.sheep_poses[iv,:] transit /= np.linalg.norm(transit, axis=1, keepdims=True) repulsion_sheep[val,:] = np.sum(transit, axis=0) repulsion_sheep /= np.linalg.norm(repulsion_sheep, axis=1, keepdims=True) repulsion_sheep[np.isnan(repulsion_sheep)] = 0 # find sheep near dog dist_to_dog = np.linalg.norm((self.sheep_poses - self.dog_pose[None,:]), axis=1) sheep_inds = np.where(dist_to_dog < self.dog_repulsion_dist) near_sheep = sheep_inds[0] # repulsion from dog repulsion_dog = np.zeros((self.num_sheep,2)) repulsion_dog[near_sheep,:] = self.sheep_poses[near_sheep,:] - self.dog_pose[None,:] repulsion_dog /= np.linalg.norm(repulsion_dog, axis=1, keepdims=True) repulsion_dog[np.isnan(repulsion_dog)] = 0 # attraction to COM attraction_com = np.zeros((self.num_sheep,2)) attraction_com[near_sheep,:] = self.sheep_com[None,:] - self.sheep_poses[near_sheep,:] attraction_com /= np.linalg.norm(attraction_com, axis=1, keepdims=True) attraction_com[np.isnan(attraction_com)] = 0 # error term noise = np.random.randn(self.num_sheep,2) noise /= np.linalg.norm(noise, axis=1, keepdims=True) # compute sheep motion direction self.inertia = self.inertia_term*self.inertia + self.com_term*attraction_com + \ self.repulsion_sheep_term*repulsion_sheep + self.repulsion_dog_term*repulsion_dog + \ self.noise_term*noise # normalize the inertia terms self.inertia /= np.linalg.norm(self.inertia, axis=1, keepdims=True) self.inertia[np.isnan(self.inertia)] = 0 # find new sheep position self.sheep_poses += self.delta_sheep_pose*self.inertia self.sheep_com = np.mean(self.sheep_poses,axis=0) # get the farthest sheep and radius of the sheep dist_to_com = np.linalg.norm((self.sheep_poses - self.sheep_com[None,:]), axis=1) self.radius_sheep = np.array([np.max(dist_to_com)]) self.mean_radius_sheep = np.array([np.mean(dist_to_com)]) self.farthest_sheep = self.sheep_poses[np.argmax(dist_to_com),:] # update distance to target self.target_distance = np.linalg.norm(self.target - self.sheep_com) def _get_reward(self): """Return reward based on action of the dog""" # compute reward depending on the radius and distance to target radius_reward = -(self.radius_sheep*0.9)/self.init_sheep_root target_reward = -(self.target_distance*0.9)/self.init_sheep_root reward = target_reward + radius_reward # ensure it is always an array if not type(reward) is np.ndarray: reward = np.array([reward]) return reward[0] def _get_state(self): """Return state based on action of the dog""" # stack all variables and return state array state = np.hstack((self.sheep_com, self.farthest_sheep, self.target, self.dog_pose, self.radius_sheep, self.target_distance)) return state def render(self, mode='default', subgoal=None): if self.curr_step%5 == 0: if not self.fig: # create a figure self.fig = plt.figure() plt.ion() plt.show() plt.clf() theta = np.linspace(0.0,2*np.pi, num=100) plt.plot(self.boundary*np.cos(theta), self.boundary*np.sin(theta), '-k', linewidth=3) plt.scatter(self.target[0], self.target[1], c='g', s=40, label='Goal') plt.scatter(self.dog_pose[0], self.dog_pose[1], c='r', s=50, label='Dog') plt.scatter(self.sheep_poses[:,0], self.sheep_poses[:,1], c='b', s=50, label='Sheep') if mode == 'detailed': plt.scatter(subgoal[0], subgoal[1], c='m', s=75, label='Int Goal') plt.title('Shepherding') plt.xlim([-self.boundary,self.boundary]) plt.ylim([-self.boundary,self.boundary]) plt.legend() plt.draw() plt.pause(0.01) return ``` #### File: shepherd_gym/wrappers/demo_sampler.py ```python import os import pickle import numpy as np from shepherd_gym.wrappers import Wrapper class SamplerWrapper(Wrapper): env = None def __init__(self, env, demo_path, increment_freq=100, initial_window_width=10, window_increment=10): # inherit from base wrapper class super().__init__(env) # load demo dataset self.demo_path = demo_path with open('{}/curriculum.npz'.format(self.demo_path),'rb') as f: self.demo_data = pickle.load(f) # number of trajectories self.num_traj = len(self.demo_data) # initialize number of demos sampled self.demo_sampled = 0 # initialize sampling variables self.increment_freq = increment_freq self.window_size = initial_window_width self.window_increment = window_increment def reset(self): # get a state sample state = self.sample() return self.env.reset_from_state(state) def sample(self): # get a random episode index ep_ind = np.random.choice(self.num_traj) states = self.demo_data[ep_ind] # sample uniformly eps_len = states.shape[0] index = np.random.randint(max(eps_len - self.window_size, 0), eps_len) state = states[index] # increment window size self.demo_sampled += 1 if self.demo_sampled >= self.increment_freq: if self.window_size < eps_len: self.window_size += self.window_increment self.demo_sampled = 0 # return the state return state ```
{ "source": "jihang-zhang/acoustic_word_embeds_gated_cnn", "score": 3 }
#### File: acoustic_word_embeds_gated_cnn/code/average_precision.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division # -- from scipy.special import comb from scipy.spatial.distance import pdist import numpy as np def average_precision(data, labels): """ Calculate average precision and precision-recall breakeven, and return the average precision / precision-recall breakeven calculated using `same_dists` and `diff_dists`. ------------------------------------------------------------------- returns average_precision, precision-recall break even : (float, float) """ num_examples = len(labels) num_pairs = int(comb(num_examples, 2)) # build up binary array of matching examples matches = np.zeros(num_pairs, dtype=np.bool) i = 0 for n in range(num_examples): j = i + num_examples - n - 1 matches[i:j] = (labels[n] == labels[n + 1:]).astype(np.int32) i = j num_same = np.sum(matches) # calculate pairwise distances and sort matches dists = pdist(data, metric="cosine") matches = matches[np.argsort(dists)] # calculate precision, average precision, and recall precision = np.cumsum(matches) / np.arange(1, num_pairs + 1) average_precision = np.sum(precision * matches) / num_same recall = np.cumsum(matches) / num_same # multiple precisions can be at single recall point, take max for n in range(num_pairs - 2, -1, -1): precision[n] = max(precision[n], precision[n + 1]) # calculate precision-recall breakeven prb_ix = np.argmin(np.abs(recall - precision)) prb = (recall[prb_ix] + precision[prb_ix]) / 2. return average_precision ```
{ "source": "jihao/traccar-cn-hass", "score": 2 }
#### File: custom_components/traccar_cn/device_tracker.py ```python from datetime import datetime, timedelta import logging import voluptuous as vol from homeassistant.components.device_tracker import PLATFORM_SCHEMA from homeassistant.const import ( CONF_HOST, CONF_PORT, CONF_SSL, CONF_VERIFY_SSL, CONF_PASSWORD, CONF_USERNAME, CONF_SCAN_INTERVAL, CONF_MONITORED_CONDITIONS, CONF_EVENT) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.event import async_track_time_interval from homeassistant.util import slugify from .const import ( ATTR_ADDRESS, ATTR_CATEGORY, ATTR_GEOFENCE, ATTR_MOTION, ATTR_SPEED, ATTR_TRACKER, ATTR_TRACCAR_ID, ATTR_STATUS, EVENT_DEVICE_MOVING, EVENT_COMMAND_RESULT, EVENT_DEVICE_FUEL_DROP, EVENT_GEOFENCE_ENTER, EVENT_DEVICE_OFFLINE, EVENT_DRIVER_CHANGED, EVENT_GEOFENCE_EXIT, EVENT_DEVICE_OVERSPEED, EVENT_DEVICE_ONLINE, EVENT_DEVICE_STOPPED, EVENT_MAINTENANCE, EVENT_ALARM, EVENT_TEXT_MESSAGE, EVENT_DEVICE_UNKNOWN, EVENT_IGNITION_OFF, EVENT_IGNITION_ON, EVENT_ALL_EVENTS, CONF_MAX_ACCURACY, CONF_SKIP_ACCURACY_ON) from .helper import gcj02towgs84 _LOGGER = logging.getLogger(__name__) DEFAULT_SCAN_INTERVAL = timedelta(seconds=30) SCAN_INTERVAL = DEFAULT_SCAN_INTERVAL PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=8082): cv.port, vol.Optional(CONF_SSL, default=False): cv.boolean, vol.Optional(CONF_VERIFY_SSL, default=True): cv.boolean, vol.Required(CONF_MAX_ACCURACY, default=0): vol.All(vol.Coerce(int), vol.Range(min=0)), vol.Optional(CONF_SKIP_ACCURACY_ON, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_MONITORED_CONDITIONS, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_EVENT, default=[]): vol.All(cv.ensure_list, [vol.Any(EVENT_DEVICE_MOVING, EVENT_COMMAND_RESULT, EVENT_DEVICE_FUEL_DROP, EVENT_GEOFENCE_ENTER, EVENT_DEVICE_OFFLINE, EVENT_DRIVER_CHANGED, EVENT_GEOFENCE_EXIT, EVENT_DEVICE_OVERSPEED, EVENT_DEVICE_ONLINE, EVENT_DEVICE_STOPPED, EVENT_MAINTENANCE, EVENT_ALARM, EVENT_TEXT_MESSAGE, EVENT_DEVICE_UNKNOWN, EVENT_IGNITION_OFF, EVENT_IGNITION_ON, EVENT_ALL_EVENTS)]), }) async def async_setup_scanner(hass, config, async_see, discovery_info=None): """Validate the configuration and return a Traccar scanner.""" from pytraccar.api import API session = async_get_clientsession(hass, config[CONF_VERIFY_SSL]) api = API(hass.loop, session, config[CONF_USERNAME], config[CONF_PASSWORD], config[CONF_HOST], config[CONF_PORT], config[CONF_SSL]) scanner = TraccarScanner( api, hass, async_see, config.get(CONF_SCAN_INTERVAL, SCAN_INTERVAL), config[CONF_MAX_ACCURACY], config[CONF_SKIP_ACCURACY_ON], config[CONF_MONITORED_CONDITIONS], config[CONF_EVENT]) return await scanner.async_init() class TraccarScanner: """Define an object to retrieve Traccar data.""" def __init__(self, api, hass, async_see, scan_interval, max_accuracy, skip_accuracy_on, custom_attributes, event_types): """Initialize.""" from stringcase import camelcase self._event_types = {camelcase(evt): evt for evt in event_types} self._custom_attributes = custom_attributes self._scan_interval = scan_interval self._async_see = async_see self._api = api self.connected = False self._hass = hass self._max_accuracy = max_accuracy self._skip_accuracy_on = skip_accuracy_on async def async_init(self): """Further initialize connection to Traccar.""" await self._api.test_connection() if self._api.connected and not self._api.authenticated: _LOGGER.error("Authentication for Traccar failed") return False await self._async_update() async_track_time_interval(self._hass, self._async_update, self._scan_interval) return True async def _async_update(self, now=None): """Update info from Traccar.""" if not self.connected: _LOGGER.debug('Testing connection to Traccar') await self._api.test_connection() self.connected = self._api.connected if self.connected: _LOGGER.info("Connection to Traccar restored") else: return _LOGGER.debug('Updating device data') await self._api.get_device_info(self._custom_attributes) self._hass.async_create_task(self.import_device_data()) if self._event_types: self._hass.async_create_task(self.import_events()) self.connected = self._api.connected async def import_device_data(self): """Import device data from Traccar.""" for device_unique_id in self._api.device_info: device_info = self._api.device_info[device_unique_id] device = None attr = {} skip_accuracy_filter = False attr[ATTR_TRACKER] = 'traccar' if device_info.get('address') is not None: attr[ATTR_ADDRESS] = device_info['address'] if device_info.get('geofence') is not None: attr[ATTR_GEOFENCE] = device_info['geofence'] if device_info.get('category') is not None: attr[ATTR_CATEGORY] = device_info['category'] if device_info.get('speed') is not None: attr[ATTR_SPEED] = device_info['speed'] if device_info.get('motion') is not None: attr[ATTR_MOTION] = device_info['motion'] if device_info.get('traccar_id') is not None: attr[ATTR_TRACCAR_ID] = device_info['traccar_id'] for dev in self._api.devices: if dev['id'] == device_info['traccar_id']: device = dev break if device is not None and device.get('status') is not None: attr[ATTR_STATUS] = device['status'] for custom_attr in self._custom_attributes: if device_info.get(custom_attr) is not None: attr[custom_attr] = device_info[custom_attr] if custom_attr in self._skip_accuracy_on: skip_accuracy_filter = True accuracy = 0.0 if device_info.get('accuracy') is not None: accuracy = device_info['accuracy'] if (not skip_accuracy_filter and self._max_accuracy > 0 and accuracy > self._max_accuracy): _LOGGER.debug('Excluded position by accuracy filter: %f (%s)', accuracy, attr[ATTR_TRACCAR_ID]) continue coords = gcj02towgs84(device_info.get('longitude'), device_info.get('latitude')) await self._async_see( dev_id=slugify(device_info['device_id']), gps=(coords[1], coords[0]), # device_info.get('latitude'), device_info.get('longitude') gps_accuracy=accuracy, battery=device_info.get('battery'), attributes=attr) async def import_events(self): """Import events from Traccar.""" device_ids = [device['id'] for device in self._api.devices] end_interval = datetime.utcnow() start_interval = end_interval - self._scan_interval events = await self._api.get_events( device_ids=device_ids, from_time=start_interval, to_time=end_interval, event_types=self._event_types.keys()) if events is not None: for event in events: device_name = next(( dev.get('name') for dev in self._api.devices if dev.get('id') == event['deviceId']), None) self._hass.bus.async_fire( 'traccar_' + self._event_types.get(event["type"]), { 'device_traccar_id': event['deviceId'], 'device_name': device_name, 'type': event['type'], 'serverTime': event['serverTime'], 'attributes': event['attributes'] }) ```
{ "source": "Jihaoyun/gem5", "score": 3 }
#### File: configs/fault_injector/ControlFaultParser.py ```python import re import sys class Node: def __init__(self, nodeType, nodeValue): self.left = None self.right = None self.id = -1 self.nodeType = nodeType self.nodeValue = nodeValue class ControlFaultEntry: trigger = None action = None def __init__(self, trigger, action): self.trigger = trigger self.action = action class ControlFaultParser: def __init__(self, fileName): try: self.faultsFile = open(fileName, "r") except IOError: raise def hasNext(self): # Read trigger string self.currentLine = self.faultsFile.readline() if self.currentLine == '': return False while self.currentLine[0] == '#': self.currentLine = self.faultsFile.readline() if self.currentLine == '': return False self.currentTriggerLine = self.currentLine # Read action line self.currentLine = self.faultsFile.readline() if self.currentLine == '': return False while self.currentLine[0] == '#': self.currentLine = self.faultsFile.readline() if self.currentLine == '': return False self.currentActionLine = self.currentLine return True def next(self): if self.currentLine[0] == '#': return None return ControlFaultEntry( self.parseTriggerString(self.currentTriggerLine), self.parseActionString(self.currentActionLine) ) def clean(self, string): string = string.replace(" ", "") string = string.replace("\n", "") strList = list(string) if(strList[0] == '(' and strList[len(string)-1] == ')'): strList[0] = ' ' strList[len(string)-1] = ' ' return ''.join(strList).replace(" ", "") def parseTrigger(self, string): string = self.clean(string) opsre = r".*(&|\||\<|\>|=|\!).*" #Check if final case if re.match(opsre, string) is None: if string == "index": return Node("i", string) else: return Node("c", str(int(string, 16))) #Find most extern operator counter = 0; for i in range(len(string)): if re.match(opsre, string[i]) is not None \ and counter == 0: op = string[i] if(op == '!'): if string[i+1] != '(': sys.exit("Missing '(' After '!'") tmpNode = Node("o", op) tmpNode.right = \ self.parseTrigger(self.clean(string[(i+1):])) else: if(string[i+1] == '=' or \ string[i+1] == '&' or \ string[i+1] == '|'): i+=1 op += string[i] leftString = string[:(i-1)] else: leftString = string[:(i)] rightString = string[(i+1):] tmpNode = Node("o", op) tmpNode.left = self.parseTrigger(self.clean(leftString)) tmpNode.right = self.parseTrigger(self.clean(rightString)) return tmpNode else: if(string[i] == '('): counter += 1 if(string[i] == ')'): counter -= 1 def parseAction(self, string): #Check if final case if re.match(r".*[&|^~<>].*", string) is None: if string == "index": return Node("i", string) else: return Node("c", str(int(string, 16))) #Find most extern operator counter = 0; for i in range(len(string)): if re.match(r".*[&|^~<>].*", string[i]) is not None \ and counter == 0: op = string[i] if(op == '~'): if string[i+1] != '(': sys.exit("Missing '(' After '~'") tmpNode = Node("o", op) tmpNode.right = \ self.parseAction(self.clean(string[(i+1):])) else: if(string[i+1] == '<' or string[i+1] == '>'): i+=1 op += string[i] leftString = string[:(i-1)] else: leftString = string[:(i)] rightString = string[(i+1):] tmpNode = Node("o", op) tmpNode.left = self.parseAction(self.clean(leftString)) tmpNode.right = self.parseAction(self.clean(rightString)) return tmpNode else: if(string[i] == '('): counter += 1 if(string[i] == ')'): counter -= 1 def visit(self, n): self.nodeString += str(n.id) + " " + n.nodeType + " " + \ n.nodeValue + " " if n.left is not None: self.edgeCount += 1 self.nodeCount += 1 n.left.id = self.nodeCount self.edgeString += str(n.id) + " " + str(n.left.id) + " " self.visit(n.left) if n.right is not None: self.edgeCount += 1 self.nodeCount += 1 n.right.id = self.nodeCount self.edgeString += str(n.id) + " " + str(n.right.id) + " " self.visit(n.right) def parseTriggerString(self, string): self.nodeCount = 0 self.edgeCount = 0 self.nodeString = "" self.edgeString = "" rootNode = self.parseTrigger(string) rootNode.id = 0 self.visit(rootNode) self.nodeCount += 1 return str(self.nodeCount) + " " + str(self.edgeCount) + " " \ + self.nodeString + " " + self.edgeString def parseActionString(self, string): self.nodeCount = 0 self.edgeCount = 0 self.nodeString = "" self.edgeString = "" rootNode = self.parseAction(string) rootNode.id = 0 self.visit(rootNode) self.nodeCount += 1 return str(self.nodeCount) + " " + str(self.edgeCount) + " " \ + self.nodeString + " " + self.edgeString #Examples if __name__ == "__main__": p = ControlFaultParser("control_fault.txt") n = 1 while p.hasNext(): cfe = p.next() print cfe.trigger print cfe.action ``` #### File: configs/fault_injector/FaultParser.py ```python class FaultEntry: def __init__(self, label, stuckBit, field, entry, bitPosition, tickBegin, tickEnd): self.label = label self.stuckBit = stuckBit self.field = field self.entry = entry self.bitPosition = bitPosition self.permanent = (int(tickBegin) == 0 and int(tickEnd) == -1) self.tickBegin = tickBegin self.tickEnd = tickEnd def __str__(self): return ("Label: " + self.label + "\n" + "StuckBit: " + str(self.stuckBit) + "\n" + "Field: " + str(self.field) + "\n" + "Entry: " + str(self.entry) + "\n" + "BitPosition: " + str(self.bitPosition) + "\n" + "Permanent: " + str(self.permanent) + "\n" + "TickBegin: " + str(self.tickBegin) + "\n" + "TickEnd: " + str(self.tickEnd) + "\n") class FaultParser: def __init__(self, fileName): try: self.faultsFile = open(fileName, "r") except IOError: raise def hasNext(self): self.currentLine = self.faultsFile.readline() if self.currentLine == '': return False while self.currentLine[0] == '#' or\ len(self.currentLine.split(":")) < 2: self.currentLine = self.faultsFile.readline() if self.currentLine == '': return False return True def next(self): if self.currentLine[0] == '#' or len(self.currentLine.split(":")) < 2: return None # Delete all whitespaces line = "".join(self.currentLine.strip().replace(" ", "").split()) label = line.split(":")[0] entries = line.split(":")[1].split(",") return FaultEntry( label, entries[0], entries[1], entries[2], entries[3], entries[4], entries[5]) ``` #### File: Jihaoyun/gem5/fault_generator.py ```python import os import argparse parser = argparse.ArgumentParser(description = 'gem5 with fault injection') parser.add_argument('-log', '--log-file', type = str, dest = 'logFile', help = 'The input file of debug info of Gem5 simulator') parser.add_argument('-in', '--input-fault', type = str, dest = 'faultFile', help = 'The input file of faults') parser.add_argument('-out', '--output-fault', type = str, dest = 'newFaultFile', help = 'The output file of faults') args = parser.parse_args() class FaultEntry: def __init__(self, stuckBit, category, reg, bitPosition, tick): self.stuckBit = stuckBit self.category = category self.reg = reg self.bitPosition = bitPosition self.tick = tick class RegFaultGenerator: def __init__(self, filename): try: self.file = open(filename, "r") except IOError: raise def setFault(self, stuckBit, category, reg, bitPosition, tick): self.fault = FaultEntry(stuckBit, category, reg, bitPosition, tick) def haveNext(self): self.nextLine = self.file.readline().strip() if self.nextLine == "": return False return True def next(self): currentLine = self.nextLine.replace(" ","").split(":") if currentLine[2] == "PseudoInst" and currentLine[4] == "rpns()": if eval(currentLine[0]) < eval(self.fault.tick): faultLine = ",".join([self.fault.stuckBit, self.fault.category, self.fault.reg,\ self.fault.bitPosition, currentLine[0], currentLine[0]]) return faultLine return "" class FaultParser: def __init__(self, filename): try: self.file = open(filename, "r") except IOError: raise def haveNext(self): self.nextLine = self.file.readline().strip() if self.nextLine == "": return False if self.nextLine[0] == '#': return False return True def next(self): currentLine = self.nextLine.replace(" ","") entries = currentLine.split(",") return FaultEntry(entries[0], entries[1], entries[2], entries[3], entries[4]) if __name__ == '__main__': newFaultFP = open(args.newFaultFile, "w") faultFP = FaultParser(args.faultFile) lineLabel = 0 while faultFP.haveNext(): fault = faultFP.next() logFP = RegFaultGenerator(args.logFile) logFP.setFault(fault.stuckBit, fault.category, fault.reg, fault.bitPosition, fault.tick) while logFP.haveNext(): newLine = logFP.next() if not newLine == "": newFaultFP.write("FAULT" + str(lineLabel) + ":" + newLine + "\n") lineLabel = lineLabel + 1 newFaultFP.close() ``` #### File: Jihaoyun/gem5/stats.py ```python import sys from os import listdir from os.path import isdir import argparse # GOLDEN instance reference name GOLDEN = 'GOLDEN.txt' # Command line arguments parser = argparse.ArgumentParser(description='Gem5 Stats') parser.add_argument('-d', '--dir', type=str, dest='directory', required=True, help='The root directory of the stats files to be parsed') parser.add_argument('-g', '--graphical', dest='graphicalStats', action='store_true', help='It is true if we want to display graphical stats') parser.set_defaults(graphicalStats=False) parser.add_argument('-s', '--stats', type=str, dest='stats', required=True, nargs='+', help='The statistics we want to display') parser.add_argument('-c', '--csv', dest='csvStats', action='store_true', help='If true a CSV file will be generated for the given statistics') parser.set_defaults(csvStats=False) args = parser.parse_args() # This data structure contains key-value fields where # key is equal to a file name and value is equa to # its respective parsed Stat object statInstances = {} # Print some simple statistics def printstat(stats, props): for p in props: print p, "values" for inst in stats: print inst, stats[inst].get(p, 'not found') # Display a barchart displaying the given statistics def showgraph(stats, props): # Iterate over all stats for p in props: # Store labels for the horizontal axis labels = [] # Store values fro the vertical axis values = [] for inst in stats: labels.append(inst) values.append(stats[inst].get(p, 0)) # Put GOLDEN value at first position idx = labels.index(GOLDEN) labels[idx], labels[0] = labels[0], labels[idx] values[idx], values[0] = values[0], values[idx] # Plot labels and values fig, ax = plt.subplots() rects = ax.bar(np.arange(len(labels)), tuple(values), width=0.3, color='r') ax.set_ylabel(p) ax.set_title('Variation of ' + p) ax.set_xticklabels(tuple(labels)) ax.set_xticks(np.arange(len(labels)) + 0.3 / 2) autolabel(rects, ax) plt.show() # Create a CSV file containing one row per instance and the requested stats def createcsv(stats, props): with open('stats.csv', 'w') as csvfile: swriter = csv.writer(csvfile, delimiter=",",quotechar="|",quoting=csv.QUOTE_MINIMAL) # Iterate over all instances for inst in stats: row = [] row.append(inst) # Instance name should be the first entry # Iterate all the requested stats for p in props: row.append(stats[inst].get(p, 0)) # Write the CSV entry swriter.writerow(row) # Attach a text label above each bar displaying its height def autolabel(rects, ax): for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., 1.05*height, '%d' % int(height), ha='center', va='bottom') # List all files in the directory if __name__ == "__main__": # Load statistics # Star by listing all the files in the directory for f in listdir(args.directory): # If the file is a directory skip it if isdir(f): continue # Otherwise start reading the file with open("/".join([args.directory, f])) as statFile: # Create the new statistic object stat = {} # Read all statistics for line in statFile: fields = line.split() # if the line has less then 2 fields, skip it if len(fields) < 2: continue # If the first character of the first field is '-' # it means that the line is something written as # an info message by Gem5 if len(fields[0]) > 0 and fields[0][0] == "-": continue # Otherwise get its key-value pair # And store it into the Stat object stat[fields[0]] = fields[1] # Store the stat object statInstances[f] = stat # If we are in command line mode just display the requested statistics if not args.graphicalStats: printstat(statInstances, args.stats) # Else show some graphics else: # Import the requested libraries import numpy as np import matplotlib.pyplot as plt # Plot stats showgraph(statInstances, args.stats) # Create the CSV stat file if required if args.csvStats: # Import the requested library import csv # Generate CSV file createcsv(statInstances, args.stats); ``` #### File: util/cpt_upgraders/etherswitch.py ```python def upgrader(cpt): for sec in cpt.sections(): if sec == "system": options = cpt.items(sec) for it in options: opt_split = it[0].split('.') new_sec_name = opt_split[1] old_opt_name = opt_split[len(opt_split) - 1] if "outputFifo" in new_sec_name: new_sec_name = new_sec_name.rstrip("outputFifo") new_sec_name += ".outputFifo" new_sec_name = "system.system.%s" %(new_sec_name) if not cpt.has_section(new_sec_name): cpt.add_section(new_sec_name) if old_opt_name == "size": cpt.set(new_sec_name, "_size", it[1]) elif old_opt_name == "packets": cpt.set(new_sec_name, "fifosize", it[1]) else: cpt.set(new_sec_name, old_opt_name, it[1]) cpt.remove_option(sec, it[0]) ```
{ "source": "JIHarrison/BundleTool", "score": 2 }
#### File: JIHarrison/BundleTool/misc_Dialog_ui.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_misc_Dialog(object): def setupUi(self, misc_Dialog): misc_Dialog.setObjectName("misc_Dialog") misc_Dialog.resize(442, 500) self.buttonBox = QtWidgets.QDialogButtonBox(misc_Dialog) self.buttonBox.setGeometry(QtCore.QRect(210, 450, 221, 41)) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setCenterButtons(False) self.buttonBox.setObjectName("buttonBox") self.gaskets_label = QtWidgets.QLabel(misc_Dialog) self.gaskets_label.setGeometry(QtCore.QRect(30, 160, 47, 13)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.gaskets_label.setFont(font) self.gaskets_label.setObjectName("gaskets_label") self.shop_bundle_label = QtWidgets.QLabel(misc_Dialog) self.shop_bundle_label.setGeometry(QtCore.QRect(30, 360, 91, 20)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.shop_bundle_label.setFont(font) self.shop_bundle_label.setObjectName("shop_bundle_label") self.hex_label = QtWidgets.QLabel(misc_Dialog) self.hex_label.setGeometry(QtCore.QRect(30, 280, 51, 20)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.hex_label.setFont(font) self.hex_label.setObjectName("hex_label") self.studs_label = QtWidgets.QLabel(misc_Dialog) self.studs_label.setGeometry(QtCore.QRect(30, 240, 47, 13)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.studs_label.setFont(font) self.studs_label.setObjectName("studs_label") self.gaskets2_label = QtWidgets.QLabel(misc_Dialog) self.gaskets2_label.setGeometry(QtCore.QRect(30, 200, 47, 13)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.gaskets2_label.setFont(font) self.gaskets2_label.setObjectName("gaskets2_label") self.redraw_label = QtWidgets.QLabel(misc_Dialog) self.redraw_label.setGeometry(QtCore.QRect(30, 320, 47, 16)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.redraw_label.setFont(font) self.redraw_label.setObjectName("redraw_label") self.tubesheet_label = QtWidgets.QLabel(misc_Dialog) self.tubesheet_label.setGeometry(QtCore.QRect(16, 40, 61, 20)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.tubesheet_label.setFont(font) self.tubesheet_label.setObjectName("tubesheet_label") self.baffles_label = QtWidgets.QLabel(misc_Dialog) self.baffles_label.setGeometry(QtCore.QRect(30, 120, 47, 13)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.baffles_label.setFont(font) self.baffles_label.setObjectName("baffles_label") self.tubes_label = QtWidgets.QLabel(misc_Dialog) self.tubes_label.setGeometry(QtCore.QRect(30, 80, 47, 13)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.tubes_label.setFont(font) self.tubes_label.setObjectName("tubes_label") self.part_number_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit.setGeometry(QtCore.QRect(130, 40, 113, 20)) self.part_number_lineEdit.setObjectName("part_number_lineEdit") self.part_number_lineEdit_2 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_2.setGeometry(QtCore.QRect(130, 80, 113, 20)) self.part_number_lineEdit_2.setObjectName("part_number_lineEdit_2") self.part_number_lineEdit_3 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_3.setGeometry(QtCore.QRect(130, 120, 113, 20)) self.part_number_lineEdit_3.setObjectName("part_number_lineEdit_3") self.part_number_lineEdit_4 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_4.setGeometry(QtCore.QRect(130, 160, 113, 20)) self.part_number_lineEdit_4.setObjectName("part_number_lineEdit_4") self.part_number_lineEdit_5 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_5.setGeometry(QtCore.QRect(130, 200, 113, 20)) self.part_number_lineEdit_5.setObjectName("part_number_lineEdit_5") self.part_number_lineEdit_6 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_6.setGeometry(QtCore.QRect(130, 240, 113, 20)) self.part_number_lineEdit_6.setObjectName("part_number_lineEdit_6") self.part_number_lineEdit_7 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_7.setGeometry(QtCore.QRect(130, 280, 113, 20)) self.part_number_lineEdit_7.setObjectName("part_number_lineEdit_7") self.part_number_lineEdit_8 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_8.setGeometry(QtCore.QRect(130, 320, 113, 20)) self.part_number_lineEdit_8.setObjectName("part_number_lineEdit_8") self.part_number_lineEdit_9 = QtWidgets.QLineEdit(misc_Dialog) self.part_number_lineEdit_9.setGeometry(QtCore.QRect(130, 360, 113, 20)) self.part_number_lineEdit_9.setObjectName("part_number_lineEdit_9") self.parts_number_label = QtWidgets.QLabel(misc_Dialog) self.parts_number_label.setGeometry(QtCore.QRect(140, 10, 91, 16)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.parts_number_label.setFont(font) self.parts_number_label.setObjectName("parts_number_label") self.spinBox = QtWidgets.QSpinBox(misc_Dialog) self.spinBox.setGeometry(QtCore.QRect(250, 40, 42, 22)) self.spinBox.setObjectName("spinBox") self.spinBox_2 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_2.setGeometry(QtCore.QRect(250, 80, 42, 22)) self.spinBox_2.setObjectName("spinBox_2") self.spinBox_3 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_3.setGeometry(QtCore.QRect(250, 120, 42, 22)) self.spinBox_3.setObjectName("spinBox_3") self.spinBox_4 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_4.setGeometry(QtCore.QRect(250, 160, 42, 22)) self.spinBox_4.setObjectName("spinBox_4") self.spinBox_5 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_5.setGeometry(QtCore.QRect(250, 200, 42, 22)) self.spinBox_5.setObjectName("spinBox_5") self.spinBox_6 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_6.setGeometry(QtCore.QRect(250, 240, 42, 22)) self.spinBox_6.setObjectName("spinBox_6") self.spinBox_7 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_7.setGeometry(QtCore.QRect(250, 280, 42, 22)) self.spinBox_7.setObjectName("spinBox_7") self.spinBox_8 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_8.setGeometry(QtCore.QRect(250, 320, 42, 22)) self.spinBox_8.setObjectName("spinBox_8") self.spinBox_9 = QtWidgets.QSpinBox(misc_Dialog) self.spinBox_9.setGeometry(QtCore.QRect(250, 360, 42, 22)) self.spinBox_9.setObjectName("spinBox_9") self.tubesheet_unit_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.tubesheet_unit_cost_lineEdit.setGeometry(QtCore.QRect(310, 40, 113, 20)) self.tubesheet_unit_cost_lineEdit.setObjectName("tubesheet_unit_cost_lineEdit") self.tubes_unit_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.tubes_unit_cost_lineEdit.setGeometry(QtCore.QRect(310, 80, 113, 20)) self.tubes_unit_cost_lineEdit.setObjectName("tubes_unit_cost_lineEdit") self.baffles_unit_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.baffles_unit_cost_lineEdit.setGeometry(QtCore.QRect(310, 120, 113, 20)) self.baffles_unit_cost_lineEdit.setObjectName("baffles_unit_cost_lineEdit") self.gaskets_unit_cost_lineEdit_1 = QtWidgets.QLineEdit(misc_Dialog) self.gaskets_unit_cost_lineEdit_1.setGeometry(QtCore.QRect(310, 160, 113, 20)) self.gaskets_unit_cost_lineEdit_1.setObjectName("gaskets_unit_cost_lineEdit_1") self.gaskets_unit_cost_lineEdit_2 = QtWidgets.QLineEdit(misc_Dialog) self.gaskets_unit_cost_lineEdit_2.setGeometry(QtCore.QRect(310, 200, 113, 20)) self.gaskets_unit_cost_lineEdit_2.setObjectName("gaskets_unit_cost_lineEdit_2") self.studs_unit_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.studs_unit_cost_lineEdit.setGeometry(QtCore.QRect(310, 240, 113, 20)) self.studs_unit_cost_lineEdit.setObjectName("studs_unit_cost_lineEdit") self.hex_nuts_unit_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.hex_nuts_unit_cost_lineEdit.setGeometry(QtCore.QRect(310, 280, 113, 20)) self.hex_nuts_unit_cost_lineEdit.setObjectName("hex_nuts_unit_cost_lineEdit") self.redraw_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.redraw_cost_lineEdit.setGeometry(QtCore.QRect(310, 320, 113, 20)) self.redraw_cost_lineEdit.setObjectName("redraw_cost_lineEdit") self.shop_hours_cost_lineEdit = QtWidgets.QLineEdit(misc_Dialog) self.shop_hours_cost_lineEdit.setGeometry(QtCore.QRect(310, 360, 113, 20)) self.shop_hours_cost_lineEdit.setObjectName("shop_hours_cost_lineEdit") self.doubleSpinBox = QtWidgets.QDoubleSpinBox(misc_Dialog) self.doubleSpinBox.setGeometry(QtCore.QRect(240, 410, 61, 22)) self.doubleSpinBox.setObjectName("doubleSpinBox") self.markup_label = QtWidgets.QLabel(misc_Dialog) self.markup_label.setGeometry(QtCore.QRect(240, 390, 47, 13)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.markup_label.setFont(font) self.markup_label.setObjectName("markup_label") self.label = QtWidgets.QLabel(misc_Dialog) self.label.setGeometry(QtCore.QRect(330, 410, 91, 21)) font = QtGui.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setFrameShape(QtWidgets.QFrame.StyledPanel) self.label.setText("") self.label.setObjectName("label") self.per_item_label = QtWidgets.QLabel(misc_Dialog) self.per_item_label.setGeometry(QtCore.QRect(320, 10, 81, 16)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.per_item_label.setFont(font) self.per_item_label.setObjectName("per_item_label") self.total_cost_label = QtWidgets.QLabel(misc_Dialog) self.total_cost_label.setGeometry(QtCore.QRect(330, 390, 71, 16)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.total_cost_label.setFont(font) self.total_cost_label.setObjectName("total_cost_label") self.retranslateUi(misc_Dialog) self.buttonBox.accepted.connect(misc_Dialog.accept) self.buttonBox.rejected.connect(misc_Dialog.reject) QtCore.QMetaObject.connectSlotsByName(misc_Dialog) misc_Dialog.setTabOrder(self.part_number_lineEdit, self.spinBox) misc_Dialog.setTabOrder(self.spinBox, self.tubesheet_unit_cost_lineEdit) misc_Dialog.setTabOrder(self.tubesheet_unit_cost_lineEdit, self.part_number_lineEdit_2) misc_Dialog.setTabOrder(self.part_number_lineEdit_2, self.spinBox_2) misc_Dialog.setTabOrder(self.spinBox_2, self.tubes_unit_cost_lineEdit) misc_Dialog.setTabOrder(self.tubes_unit_cost_lineEdit, self.part_number_lineEdit_3) misc_Dialog.setTabOrder(self.part_number_lineEdit_3, self.spinBox_3) misc_Dialog.setTabOrder(self.spinBox_3, self.baffles_unit_cost_lineEdit) misc_Dialog.setTabOrder(self.baffles_unit_cost_lineEdit, self.part_number_lineEdit_4) misc_Dialog.setTabOrder(self.part_number_lineEdit_4, self.spinBox_4) misc_Dialog.setTabOrder(self.spinBox_4, self.gaskets_unit_cost_lineEdit_1) misc_Dialog.setTabOrder(self.gaskets_unit_cost_lineEdit_1, self.part_number_lineEdit_5) misc_Dialog.setTabOrder(self.part_number_lineEdit_5, self.spinBox_5) misc_Dialog.setTabOrder(self.spinBox_5, self.gaskets_unit_cost_lineEdit_2) misc_Dialog.setTabOrder(self.gaskets_unit_cost_lineEdit_2, self.part_number_lineEdit_6) misc_Dialog.setTabOrder(self.part_number_lineEdit_6, self.spinBox_6) misc_Dialog.setTabOrder(self.spinBox_6, self.studs_unit_cost_lineEdit) misc_Dialog.setTabOrder(self.studs_unit_cost_lineEdit, self.part_number_lineEdit_7) misc_Dialog.setTabOrder(self.part_number_lineEdit_7, self.spinBox_7) misc_Dialog.setTabOrder(self.spinBox_7, self.hex_nuts_unit_cost_lineEdit) misc_Dialog.setTabOrder(self.hex_nuts_unit_cost_lineEdit, self.part_number_lineEdit_8) misc_Dialog.setTabOrder(self.part_number_lineEdit_8, self.spinBox_8) misc_Dialog.setTabOrder(self.spinBox_8, self.redraw_cost_lineEdit) misc_Dialog.setTabOrder(self.redraw_cost_lineEdit, self.part_number_lineEdit_9) misc_Dialog.setTabOrder(self.part_number_lineEdit_9, self.spinBox_9) misc_Dialog.setTabOrder(self.spinBox_9, self.shop_hours_cost_lineEdit) misc_Dialog.setTabOrder(self.shop_hours_cost_lineEdit, self.doubleSpinBox) def retranslateUi(self, misc_Dialog): _translate = QtCore.QCoreApplication.translate misc_Dialog.setWindowTitle(_translate("misc_Dialog", "Dialog")) self.gaskets_label.setText(_translate("misc_Dialog", "Gaskets")) self.shop_bundle_label.setText(_translate("misc_Dialog", "Shop Hours")) self.hex_label.setText(_translate("misc_Dialog", "Hex Nuts")) self.studs_label.setText(_translate("misc_Dialog", "Studs")) self.gaskets2_label.setText(_translate("misc_Dialog", "Gaskets")) self.redraw_label.setText(_translate("misc_Dialog", "Redraw")) self.tubesheet_label.setText(_translate("misc_Dialog", "Tubesheet")) self.baffles_label.setText(_translate("misc_Dialog", "Baffles")) self.tubes_label.setText(_translate("misc_Dialog", "Tubes")) self.parts_number_label.setText(_translate("misc_Dialog", "Parts Numbers")) self.markup_label.setText(_translate("misc_Dialog", "Mark Up")) self.per_item_label.setText(_translate("misc_Dialog", "Cost Per Item")) self.total_cost_label.setText(_translate("misc_Dialog", "Total Cost:")) ```
{ "source": "jihernrod/cabrera", "score": 2 }
#### File: cabrera/configuration/config.py ```python CONF ={ "Stocks": ["T", "LOG.MC", "INTC", "BN.PA", "ENG.MC", "BBVA.MC", "NTGY.MC", "TEF.MC", "MAP.MC", "CSCO", "KO"], "Fundamental_url": "https://www.alphavantage.co/query?function=OVERVIEW&symbol=%s&apikey=G762XMM5O6NTMLMI", "IncomeStatement_url": "https://www.alphavantage.co/query?function=INCOME_STATEMENT&symbol=%s&apikey=G762XMM5O6NTMLMI", "BalanceSheet_url": "https://www.alphavantage.co/query?function=BALANCE_SHEET&symbol=%s&apikey=G762XMM5O6NTMLMI", "CashFlow_url": "https://www.alphavantage.co/query?function=CASH_FLOW&symbol=%s&apikey=G762XMM5O6NTMLMI", "Earnings_url": "https://www.alphavantage.co/query?function=EARNINGS&symbol=%s&apikey=G762XMM5O6NTMLMI", "Fundamental_file_name": "fundamental_%s.csv", "IncomeStatement_file_name": "incomeStatement_%s.csv", "BalanceSheet_file_name": "balanceSheet_%s.csv", "CashFlow_file_name": "cashFlow_%s.csv", "Earnings_file_name": "earnings_%s.csv", "Download_folder": "D:\\tmp", "Download_Delay": 15 } def get(key, default_value = None): return CONF.get(key, default_value) ``` #### File: cabrera/market_downloader/fundamentals.py ```python import requests import pandas as pd import time import os import datetime import configuration.config as default_configuration stock_list = default_configuration.get("Stocks") now = datetime.datetime.now() day_str = now.strftime("%Y%m%d") class NotReturnData(Exception): pass def download_fundamental_data(fundatmental_url, fundamental_file_name, output_adapter_functor = None): list_stocks = [] for stock in stock_list: print("Getting info [%s] of [%s]" % (fundatmental_url, stock)) response = requests.get( fundatmental_url % stock) if output_adapter_functor: try: list_stocks.extend(output_adapter_functor(response.json())) except NotReturnData as nrd: print ("Err: "+ str(nrd)) else: list_stocks.append(response.json()) time.sleep(default_configuration.get("Download_Delay")) dataframe = pd.DataFrame(list_stocks) file_name = fundamental_file_name % (day_str) dataframe.to_csv( os.path.join(default_configuration.get("Download_folder"), file_name)) print("Export info [%s]" % file_name) def adapter_annual_reports(x): if "annualReports" not in x: raise NotReturnData("Data is not completed") for report in x["annualReports"]: report["symbol"] =x["symbol"] return x["annualReports"] def adapter_annual_earnings(x): if "annualEarnings" not in x: raise NotReturnData("Data is not completed") for report in x["annualEarnings"]: report["symbol"] = x["symbol"] return x["annualEarnings"] if __name__ == "__main__": urls = ["IncomeStatement_url", "BalanceSheet_url", "CashFlow_url"] files_to_export = [ "IncomeStatement_file_name", "BalanceSheet_file_name", "CashFlow_file_name"] for url, file in zip(urls, files_to_export): download_fundamental_data(default_configuration.get(url), default_configuration.get(file), output_adapter_functor=lambda x: adapter_annual_reports(x)) download_fundamental_data(default_configuration.get("Earnings_url"), default_configuration.get("Earnings_file_name"), output_adapter_functor=lambda x: adapter_annual_earnings(x)) download_fundamental_data(default_configuration.get("Fundamental_url"), default_configuration.get("Fundamental_file_name")) ``` #### File: cabrera/test/Actions.py ```python import unittest import actions.getDashBoard as getDashBoardAction import adapters.getDashBoardMatrixAdapter as getDashBoardMatrixAdapter class TestActionsClass(unittest.TestCase): def test_GetDashBoardAction(self): getDashBoardMatrixAdapter.GetDashBoardActionMatrixAdapter().adapt(getDashBoardAction.GetDashBoardAction().do()) if __name__ == '__main__': unittest.main() ``` #### File: cabrera/yinterface/yInterface.py ```python import yfinance as yf import pprint import os import pandas def get_ticker_info(list_tickers = [], period = "5y"): ticker_info = {} for ticker in list_tickers: msft = yf.Ticker(ticker) ticker_info[ticker]={} # get stock info ticker_info[ticker]["stock_info"] = msft.info # get historical market data hist = msft.history(period=period) ticker_info[ticker]["hist_market_data"] = hist # show actions (dividends, splits) ticker_info[ticker]["actions"] = msft.actions # show dividends ticker_info[ticker]["dividends"] = msft.dividends # show splits ticker_info[ticker]["splits"] = msft.splits # show financials ticker_info[ticker]["financials"] = msft.financials ticker_info[ticker]["quarterly_financials"] = msft.quarterly_financials # show major holders ticker_info[ticker]["major_holders"] = msft.major_holders # show institutional holders ticker_info[ticker]["institutional_holders"] = msft.institutional_holders # show balance sheet ticker_info[ticker]["balance_sheet"] = msft.balance_sheet ticker_info[ticker]["quarterly_balance_sheet"] = msft.quarterly_balance_sheet # show cashflow ticker_info[ticker]["cashflow"] = msft.cashflow ticker_info[ticker]["quarterly_cashflow"] = msft.quarterly_cashflow # show earnings ticker_info[ticker]["earnings"] = msft.earnings ticker_info[ticker]["quarterly_earnings"] = msft.quarterly_earnings # show sustainability ticker_info[ticker]["sustainability"] = msft.sustainability # show analysts recommendations ticker_info[ticker]["recommendations"] = msft.recommendations # show next event (earnings, etc) ticker_info[ticker]["calendar"] = msft.calendar # show ISIN code - *experimental* # ISIN = International Securities Identification Number ticker_info[ticker]["isin"] = msft.isin return ticker_info def dump_yfinanze(list_tickers, path): for ticker, value in list_tickers.items(): new_dict = {} for key, factor in value.items(): if isinstance(factor, pandas.DataFrame) : new_dict[key] = factor.to_dict('records') elif isinstance(factor, pandas.Series): new_dict[key] = factor.to_dict() else: new_dict[key]= factor with open(os.path.join(path, ticker+".pprint"), 'w') as f: pprint.pprint(new_dict, f) if __name__=="__main__": dump_yfinanze(get_ticker_info(['MAP.MC']), "d:\\tmp\\dumps") ```
{ "source": "jiherrero4/spark", "score": 3 }
#### File: jiherrero4/spark/creaSala.py ```python import json import os import requests import sys createRoom() def createRoom(): # Define header used for authentication myToken="<KEY>" roomTitle="PruebaCreacionSala" headers = { "Authorization": "Bearer "+myToken, "Content-type": "application/json" } # Define the action to be taken in the HTTP request roomInfo = { "title": roomTitle } # Execute HTTP POST request to create the Spark Room r = requests.post("https://api.ciscospark.com/v1/rooms",headers=headers, json=roomInfo) room = r.json() # Print the result of the HTTP POST request print(room) ```
{ "source": "jihjihk/torchtech", "score": 3 }
#### File: torchtech/source/test2.py ```python from flask import Flask, request, redirect import urllib import json import codecs import sqlite3 import geopy import requests from geopy.distance import vincenty from geopy.geocoders import Nominatim import xml.etree.ElementTree as ET import os from twilio.rest import Client from twilio.twiml.messaging_response import MessagingResponse def initialize(): url = "https://api.myjson.com/bins/hkjsr" data = urllib.urlopen(url).read() trees = json.loads(data) conn = sqlite3.connect('hack1.sqlite') cur = conn.cursor() cur.executescript(''' DROP TABLE IF EXISTS People; CREATE TABLE People ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, name TEXT UNIQUE, num TEXT UNIQUE, location TEXT UNIQUE )''') for tree in trees: name = tree['name'] num = tree['num'] location = tree['location'] cur.execute('''INSERT OR IGNORE INTO People (name,num,location) VALUES ( ? , ? , ? )''', ( name,num,location ) ) conn.commit() return def twil(num,user_add): account_sid = 'ACed10e34bac3a56da30b364c7eb639799' auth_token = '<PASSWORD>' client = Client(account_sid,auth_token) client.messages.create( to = num, from_ = "+13475149453", body = "SOS. Help needed at location : %s"%(user_add) ) return 1 #see if person said yes or no later def smallest(back): freegeoip = "http://freegeoip.net/json" geo_r = requests.get(freegeoip) geo_json = json.loads(geo_r.text) user_position = [geo_json["latitude"], geo_json["longitude"]] lat_lon_sos = (user_position[0], user_position[1]) user_add = Nominatim().reverse(lat_lon_sos) conn = sqlite3.connect('hack1.sqlite') cursor = conn.cursor() table = cursor.execute("SELECT * FROM People;") nearest = None curr = None thisname = None thisnum = None rows = 0 for row in table: rows += 1 for i in range (1,rows+1): cursor.execute('''SELECT max(id) FROM People''') i = cursor.fetchone()[0] cursor.execute('''SELECT name FROM People WHERE id = (?)''',(i,)) name = cursor.fetchone()[0] cursor.execute('''SELECT num FROM People WHERE id = (?)''',(i,)) num = cursor.fetchone()[0] cursor.execute('''SELECT location FROM People WHERE id = (?)''',(i,)) location = cursor.fetchone()[0] loc = Nominatim().geocode(location) row_loc = (loc.latitude, loc.longitude) dist = vincenty(lat_lon_sos, row_loc).miles if nearest == None or dist < nearest: nearest = dist thisname = name thisnum = num place = curr back.append([name,num,location]) cursor.execute(''' DELETE FROM People WHERE name = ( ? )''', (thisname, )) conn.commit() return twil(thisnum,user_add) def sending(): back = list() first = smallest(back) while True: if first != 1: first = smallest() else: break conny = sqlite3.connect('hack1.sqlite') curry = conny.cursor() for item in back: curry.execute('''INSERT OR IGNORE INTO People (name,num,location) VALUES ( ? , ? , ? )''', (item[0],item[1],item[2] ) ) def main(): initialize() sending() ```
{ "source": "jiho2007/mfrac", "score": 2 }
#### File: mfrac/mfrac/error.py ```python class FractionError(Exception): def __init__(self, msg): super().__init__(msg) ``` #### File: mfrac/mfrac/frac.py ```python try: from .error import FractionError except: FractionError = TypeError class frac: def __init__(self, n, m=1): try: float(n)+float(m) #check except: raise FractionError('Invalid Argument Type') if type(n) == frac: self.n = n.n self.n = n.m self.n = n #분자 self.m = m #분모 if type(n) == str: self.n = float(n) if type(m) == str: self.m = float(m) if type(n) != int and n % 1 == 0: #int화 self.n = int(n) if type(m) != int and m % 1 == 0: self.m = int(m) def __repr__(self): #str로 변환 return 'frac({}, {})'.format(self.n, self.m) def __str__(self): return '{}/{}'.format(self.n, self.m) def __format__(self, s): return self.__str__() def __reversed__(self): return frac(self.m, self.n) def __add__(self, f): #덧셈 if type(f) == frac: return frac(self.n*f.m + self.m*f.n, self.m * f.m).reduc() return frac(self.n + f*self.m, self.m).reduc() def __sub__(self, f): #뺄셈 if type(f) == frac: if self.n * f.m > self.m * f.n: rn = self.n*f.m - self.m*f.n elif self.n * f.m < self.m * f.n: rn = self.m*f.n - self.n*f.m else: return 0 return frac(rn, self.m*f.m).reduc() return self.__sub__(frac(f)) def __mul__(self, f): #곱셈 if type(f) == frac: return frac(self.n*f.n, self.m) / f.m return frac(self.n*f, self.m).reduc() def __truediv__(self, f): #나눗셈 if type(f) == frac: return self.__mul__(frac(f.m, f.n)) return frac(self.n, self.m*f).reduc() def __radd__(self, f): #순서반대 덧셈 return self.__add__(f) def __rsub__(self, f): #순서반대 뺄셈 if type(f) == frac: return f.__sub__(self) return self.__sub__(frac(self.m*f, self.m)) def __rmul__(self, f): #순서반대 곱셈 return self._mul__(f) def __rtruediv__(self, f): #순서반대 나눗셈 if type(f) == frac: return f.__truediv__(self) return frac(self.m, self.n).__mul__(f) def __eq__(self, f): #같은지 비교 if type(f) == frac: a = self.common(f) b = f.common(self) return a.n == b.n and a.m == b.m return self.__eq__(frac(f)) def __ne__(self, f): #같지 않은지 비교 return not self.__eq__(f) def __lt__(self, f): #작은지 비교 if type(f) == frac: a = self.common(f) b = f.common(self) return a.n < b.n and a.m == b.m return self.__lt__(frac(f)) def __le__(self, f): #작거나 같은지 비교 if type(f) == frac: a = self.common(f) b = f.common(self) return a.n <= b.n and a.m == b.m return self.__le__(frac(f)) def __gt__(self, f): #큰지 비교 if type(f) == frac: a = self.common(f) b = f.common(self) return a.n > b.n and a.m == b.m return self.__lt__(frac(f)) def __ge__(self, f): #크거나 같은지 비교 if type(f) == frac: a = self.common(f) b = f.common(self) return a.n >= b.n and a.m == b.m return self.__le__(frac(f)) def __float__(self): #소수 return float(self.n) / float(self.m) def __int__(self): #소수버림 값 return int(self.float()) def __mod__(self, f): #n과 m 설정 메서드 if type(f) == frac: self.__init__(f) a = list(f) #check that f is iterable self.n, self.m = f return self def reduc(self): #약분 if self.m<self.n: c=self.m elif self.n<self.m: c=self.n else: return frac(1) for i in range(c, 0, -1): if self.n%i == 0 and self.m%i == 0: return frac(self.n/i, self.m/i) return frac(self.n, self.m) def common(self, f): #통분 if type(f) == frac: return frac(self.n*f.m, self.m*f.m) return frac(self.n*f, self.m*f) ```