metadata
dict
text
stringlengths
60
3.49M
{ "source": "jimenbian/sublime-timer", "score": 3 }
#### File: sublime-timer/sublime-timer/sublime-timer.py ```python import sublime, sublime_plugin import threading import time i=0 class timer(threading.Thread): #The timer class is derived from the class threading.Thread def __init__(self, num, interval): threading.Thread.__init__(self) self.thread_num = num self.interval = interval self.thread_stop = False def run(self): #Overwrite run() method, put what you want the thread do here global i while not self.thread_stop: sublime.set_timeout(write_time,1) i+=1 time.sleep(self.interval) def pause(self): self.thread_stop = True def zero(self): global i i=0 thread1 = timer(1, 1) class gtimerCommand(sublime_plugin.TextCommand): def run(self, edit): global thread1 thread=timer(1,1) if thread1.isAlive(): live=True else: thread.start() thread1=thread class gtimerpauseCommand(sublime_plugin.TextCommand): def run(self, edit): global thread1 thread1.pause() class gtimerzeroCommand(sublime_plugin.TextCommand): def run(self, edit): global thread1 thread1.zero() def write_time(): sublime.status_message(time_manage(i)) def time_manage(time_number): time_str='time:'+str(int(time_number/60))+'min '+str(time_number%60)+'s' return time_str ```
{ "source": "jimenezh/protocols.distributed_keygen", "score": 3 }
#### File: distributed_keygen/demos/distributed_keygen_example_local.py ```python import asyncio from pydoc import plainpager from typing import List from tno.mpc.communication import Pool from tno.mpc.protocols.distributed_keygen import DistributedPaillier corruption_threshold = 0 # corruption threshold key_length = 128 # bit length of private key prime_thresh = 2000 # threshold for primality check correct_param_biprime = 40 # correctness parameter for biprimality test stat_sec_shamir = ( 40 # statistical security parameter for secret sharing over the integers ) PARTIES = 2 # number of parties that will be involved in the protocol, you can change this to any number you like def setup_local_pool(server_port: int, ports: List[int]) -> Pool: pool = Pool() pool.add_http_server(server_port, "localhost") for client_port in (port for port in ports if port != server_port): pool.add_http_client(f"client{client_port}", "localhost", client_port) return pool local_ports = [3000 + i for i in range(PARTIES)] local_pools = [ setup_local_pool(server_port, local_ports) for server_port in local_ports ] loop = asyncio.get_event_loop() async_coroutines = [ DistributedPaillier.from_security_parameter( pool, corruption_threshold, key_length, prime_thresh, correct_param_biprime, stat_sec_shamir, distributed=False, ) for pool in local_pools ] print("Starting distributed key generation protocol.") distributed_paillier_schemes = loop.run_until_complete( asyncio.gather(*async_coroutines) ) server = distributed_paillier_schemes[0] analyst = distributed_paillier_schemes[1] print("n = ",server.public_key.n, " g = ", server.public_key.g ) print("Server secret key is ", server.secret_key.t) message = 12 ciphertext = server.encrypt(message) pserver = server.secret_key.partial_decrypt(ciphertext) panalyst = analyst.secret_key.partial_decrypt(ciphertext) plaintext_attempt = server.secret_key.decrypt({0: pserver, 1:panalyst } ) # plaintext = server.decrypt(ciphertext) print(f"Message: {message}\nCiphertext: {ciphertext}\nPartial decryptions: \n Server - {pserver} \n Analyst - {panalyst}") print("The protocol has completed.") ``` #### File: protocols/distributed_keygen/distributed_keygen.py ```python from __future__ import annotations import asyncio import copy import logging import math import secrets from dataclasses import asdict from random import randint from typing import Any, Dict, Iterable, List, Optional, Tuple, Union, cast, overload import sympy from typing_extensions import TypedDict from tno.mpc.communication import Serialization, SupportsSerialization from tno.mpc.communication.httphandlers import HTTPClient from tno.mpc.communication.pool import Pool from tno.mpc.encryption_schemes.paillier import ( Paillier, PaillierCiphertext, PaillierPublicKey, PaillierSecretKey, paillier, ) from tno.mpc.encryption_schemes.shamir import IntegerShares from tno.mpc.encryption_schemes.shamir import ( ShamirSecretSharingIntegers as IntegerShamir, ) from tno.mpc.encryption_schemes.shamir import ShamirSecretSharingScheme as Shamir from tno.mpc.encryption_schemes.shamir import ShamirShares, Shares from tno.mpc.encryption_schemes.templates.encryption_scheme import EncodedPlaintext from tno.mpc.encryption_schemes.utils import pow_mod from .paillier_shared_key import PaillierSharedKey class DistributedPaillier(Paillier, SupportsSerialization): """ Class that acts as one of the parties involved in distributed Paillier secret key generation. The pool represents the network of parties involved in the key generation protocol. """ default_key_length = 2048 default_prime_threshold = 2000 default_biprime_param = 40 default_sec_shamir = 40 default_corruption_threshold = 1 _global_instances: Dict[int, Dict[int, "DistributedPaillier"]] = {} _local_instances: Dict[int, "DistributedPaillier"] = {} @classmethod async def from_security_parameter( # type: ignore[override] cls, pool: Pool, corruption_threshold: int = default_corruption_threshold, key_length: int = default_key_length, prime_threshold: int = default_prime_threshold, correct_param_biprime: int = default_biprime_param, stat_sec_shamir: int = default_sec_shamir, distributed: bool = True, precision: int = 0, ) -> DistributedPaillier: r""" Function that takes security parameters related to secret sharing and Paillier and initiates a protocol to create a shared secret key between the parties in the provided pool. :param precision: precision of the fixed point encoding in Paillier :param pool: The network of involved parties :param corruption_threshold: Maximum number of allowed corruptions. We require for the number of parties in the pool and the corruption threshold that $$\text{number_of_parties} >= 2 * \text{corruption_threshold} + 1$$. This is because we need to multiply secret sharings that both use polynomials of degree corruption_threshold. The resulting secret sharing then becomes a polynomial of degree $2*\text{corruption_threshold}$ and it requires at least $2*text{corruption_threshold}+1$ evaluation points to reconstruct the secret in that sharing. :param key_length: desired bit length of the modulus $N$ :param prime_threshold: Upper bound on the number of prime numbers to check during primality tests :param correct_param_biprime: parameter that affects the certainty of the generated $N$ to be the product of two primes :param stat_sec_shamir: security parameter for the Shamir secret sharing over the integers :param distributed: Whether the different parties are run on different python instances :param precision: precision (number of decimals) to ensure :raise ValueError: In case the number of parties $n$ and the corruption threshold $t$ do not satisfy that $n \geq 2*t + 1$ :raise Exception: In case the parties agree on a session id that is already being used. :return: DistributedPaillier scheme containing a regular Paillier public key and a shared secret key. """ ( number_of_players, prime_length, prime_list, shamir_scheme, shares, other_parties, ) = cls.setup_input(pool, key_length, prime_threshold, corruption_threshold) index, party_indices, zero_share, session_id = await cls.setup_protocol( shamir_scheme, other_parties, pool ) # check if number_of_parties >= 2 * corruption_threshold + 1 if number_of_players < 2 * corruption_threshold + 1: raise ValueError( "For a secret sharing scheme that needs to do a homomorphic " f"multiplication, \nwhich is the case during distributed key generation " f"with Paillier,\nwe require for the number of parties n and the corruption " f"threshold t that n >= 2*t + 1.\n" f"The given pool contains {number_of_players} parties (n) and the given corruption " f"threshold (t) is {corruption_threshold}." ) # generate keypair public_key, secret_key = await cls.generate_keypair( stat_sec_shamir, number_of_players, corruption_threshold, shares, index, zero_share, pool, prime_list, prime_length, party_indices, correct_param_biprime, shamir_scheme, ) scheme = cls( public_key=public_key, secret_key=secret_key, precision=precision, pool=pool, index=index, party_indices=party_indices, shares=shares, session_id=session_id, distributed=distributed, ) # We need to distinguish the case where the parties share a python instance and where they # are run in different python instances. If the same python instance is used, then we need # to save a different DistributedPaillier instance for each party. If different python # instances are used, then we have exactly one DistributedPaillier instance in the python # instance for that session. if distributed: if session_id in cls._local_instances: raise Exception( "An already existing session ID is about to be overwritten. " "This can only happen if multiple sessions are run within the same python " "instance and one of those session has the same ID" ) cls._local_instances[session_id] = scheme else: if index in cls._global_instances: if session_id in cls._global_instances[index]: raise Exception( "An already existing session ID is about to be overwritten. " "This can only happen if multiple sessions are run within the same python " "instance and one of those session has the same ID" ) cls._global_instances[index][session_id] = scheme else: cls._global_instances[index] = {session_id: scheme} return scheme def __init__( self, public_key: PaillierPublicKey, secret_key: PaillierSharedKey, precision: int, pool: Pool, index: int, party_indices: Dict[str, int], shares: Shares, session_id: int, distributed: bool, **kwargs: Any, ) -> None: """ Initializes a DistributedPaillier instance with a public Paillier key and a shared secret Paillier key. :param public_key: The Paillier public key :param secret_key: The shared secret Paillier key :param precision: The precision of the resulting scheme :param pool: The pool with connections of parties involved in the shared secret key :param index: The index of the party who owns this instance within the pool :param party_indices: Dictionary mapping parties in the pool to their indices :param shares: Data class that stores and keeps track of shares during decryption :param session_id: The unique session identifier belonging to the protocol that generated the keys for this DistributedPaillier scheme. :param distributed: Boolean value indicating whether the protocol that generated the keys for this DistributedPaillier scheme was run in different Python instances (True) or in a single python instance (False) :param kwargs: Any keyword arguments that are passed to the super __init__ function """ super().__init__( public_key, cast(PaillierSecretKey, secret_key), precision, False, **kwargs ) # these variables are necessary during decryption self.pool = pool self.index = index self.shares = shares self.party_indices = party_indices self.session_id = session_id self.distributed = distributed def __eq__(self, other: object) -> bool: """ Compare this Distributed Paillier scheme with another to determine (in)equality. Does not take the secret key into account as it might not be known and the public key combined with the precision and the session id. :param other: Object to compare this Paillier scheme with. :return: Boolean value representing (in)equality of both objects. """ # Equality should still hold if the secret key is not available return ( isinstance(other, DistributedPaillier) and self.precision == other.precision and self.public_key == other.public_key and self.session_id == other.session_id ) # region Decryption async def decrypt( # type: ignore[override] self, ciphertext: PaillierCiphertext, apply_encoding: bool = True, receivers: Optional[List[str]] = None, ) -> Optional[paillier.Plaintext]: """ Decrypts the input ciphertext. Starts a protocol between the parties involved to create local decryptions, send them to the other parties and combine them into full decryptions for each party. :param ciphertext: Ciphertext to be decrypted. :param apply_encoding: Boolean indicating whether the decrypted ciphertext is decoded before it is returned. Defaults to True. :param receivers: An optional list specifying the names of the receivers, your own 'name' is "self". :return: Plaintext decrypted value. """ decrypted_ciphertext = await self._decrypt_raw(ciphertext, receivers) if decrypted_ciphertext is not None: return ( self.decode(decrypted_ciphertext) if apply_encoding else decrypted_ciphertext.value ) return None async def _decrypt_raw( # type: ignore[override] self, ciphertext: PaillierCiphertext, receivers: Optional[List[str]] = None ) -> Optional[EncodedPlaintext[int]]: """ Function that starts a protocol between the parties involved to create local decryptions, send them to the other parties and combine them into full decryptions for each party. :param ciphertext: The ciphertext to be decrypted. :param receivers: An optional list specifying the names of the receivers, your own 'name' is "self". :return: The encoded plaintext corresponding to the ciphertext. """ receivers_without_self: Optional[List[str]] if receivers is not None: # If we are part of the receivers, we expect the other parties to send us partial # decryptions self_receive = "self" in receivers # We will broadcast our partial decryption to all receivers, but we do not need to send # anything to ourselves. if self_receive: receivers_without_self = [recv for recv in receivers if recv != "self"] else: receivers_without_self = receivers else: # If no receivers are specified, we assume everyone will receive the partial decryptions self_receive = True receivers_without_self = receivers # generate the local partial decryption self.shares.partial_decryption.shares[self.index] = cast( PaillierSharedKey, self.secret_key ).partial_decrypt(ciphertext) # send the partial decryption to all other parties in the provided network self.broadcast( { "content": "partial_decryption", "value": self.shares.partial_decryption.shares[self.index], }, self.pool, receivers=receivers_without_self, ) if self_receive: # receive the partial decryption from the other parties await self.gather_shares( "partial_decryption", self.pool, self.shares, self.party_indices ) # combine all partial decryption to obtain the full decryption decryption = cast(PaillierSharedKey, self.secret_key).decrypt( self.shares.partial_decryption.shares ) return EncodedPlaintext(decryption, scheme=self) return None # endregion # region Communication @classmethod def asend( cls, pool: Pool, handler_name: str, message: Any, msg_id: Optional[str] = None ) -> None: """ Function that sends a message to a certain party in the pool :param pool: network of involved parties :param handler_name: receiver :param message: python object to be sent :param msg_id: optional """ pool.asend(handler_name, message, msg_id) @classmethod async def recv( cls, pool: Pool, handler_name: str, msg_id: Optional[str] = None ) -> Any: """ Function that receives a message from a certain party in the pool :param pool: network for involved parties :param handler_name: name of the party that sent the message :param msg_id: optional message id of the expected message :return: python object """ return await pool.recv(handler_name, msg_id) @classmethod def broadcast( cls, message: Any, pool: Pool, message_id: Optional[str] = None, receivers: Optional[List[str]] = None, ) -> None: """ Function that sends a message to all other parties in the pool :param message: python object :param pool: network of involved parties :param message_id: optional message ID :param receivers: optional list of receivers """ if receivers is not None: other_parties: Iterable[str] = receivers else: other_parties = pool.pool_handlers.keys() for party in other_parties: pool.asend(party, message, message_id) @classmethod async def recv_all(cls, pool: Pool) -> Tuple[Tuple[str, Any]]: """ Function that retrieves one message for each party :param pool: network of involved parties :return: list of tuples containing the party and their message """ other_parties = pool.pool_handlers.keys() async def result_tuple(party: str) -> Tuple[str, Any]: """ Get the Tuple containing party and message for the given party. :param party: Party for which a message should be received. :return: Tuple with first the party and second the message that was received from that party. """ msg = await cls.recv(pool, party) return party, msg return await asyncio.gather(*[result_tuple(party) for party in other_parties]) # type: ignore # endregion # region Setup functions @classmethod def setup_input( cls, pool: Pool, key_length: int, prime_threshold: int, corruption_threshold: int, ) -> Tuple[int, int, List[int], Shamir, Shares, List[str]]: r""" Function that sets initial variables for the process of creating a shared secret key :param pool: network of involved parties :param key_length: desired bit length of the modulus $N = p \cdot q$ :param prime_threshold: Bound on the number of prime numbers to be checked for primality tests :param corruption_threshold: Number of parties that are allowed to be corrupted :return: A tuple of initiated variables, containing first the number_of_players, second the length of the primes $p$ and $q$, third a list of small primes for the small_prime test (empty if the length of $p$ and $q$ is smaller than the prime_threshold), fourth a regular Shamir Sharing scheme, fifth a Shares data structure for holding relevant shares, and last a list of the names of other parties. """ number_of_players = len(pool.pool_handlers) + 1 # key length of primes p and q prime_length = key_length // 2 # if the primes are smaller than the small prime threshold, # there's no point in doing a small prime test if prime_length < math.log(prime_threshold): prime_threshold = 1 prime_list = list(sympy.primerange(3, prime_threshold + 1)) shamir_scheme = cls.__init_shamir_scheme( prime_length, number_of_players, corruption_threshold ) shares = Shares() other_parties = list(pool.pool_handlers.keys()) return ( number_of_players, prime_length, prime_list, shamir_scheme, shares, other_parties, ) @classmethod async def setup_protocol( cls, shamir_scheme: Shamir, other_parties: List[str], pool: Pool ) -> Tuple[int, Dict[str, int], ShamirShares, int]: """ Function that initiates a protocol to determine IDs and sets own ID Additionally, the protocol prepares a secret sharing of 0 under a 2t-out-of-n threshold scheme to be used later on. :param shamir_scheme: Shamir secret sharing scheme to be used for p and q :param other_parties: Names of the other parties in the pool :param pool: network of involved parties :return: This party's index, a dictionary with indices for the other parties, and a zero-sharing in a 2t-out-of-n thresholds scheme to be used later on, the session id """ # start indices protocol party_indices, session_id = await cls.get_indices(pool) # prepare zero sharing zero_sharing_scheme = Shamir( shamir_scheme.modulus, shamir_scheme.number_of_parties, shamir_scheme.polynomial_degree * 2, ) zero_sharing = zero_sharing_scheme.share_secret(0) index = party_indices["self"] # send zero shares to other parties for party in other_parties: party_share = zero_sharing.shares[party_indices[party]] cls.asend(pool, party, {"content": "zero", "value": party_share}) # receive all zero shares of others responses = await cls.recv_all(pool) assert all(d["content"] == "zero" for _, d in responses) shares = [d["value"] for _, d in responses] # local share of the final zero sharing final_zero_share = zero_sharing.shares[index] + sum(shares) zero_share = ShamirShares(zero_sharing_scheme, {index: final_zero_share}) return index, party_indices, zero_share, session_id @classmethod async def get_indices(cls, pool: Pool) -> Tuple[Dict[str, int], int]: """ Function that initiates a protocol to determine IDs (indices) for each party :param pool: network of involved parties :return: dictionary from party name to index, where the entry "self" contains this party's index """ success = False list_to_sort = [] while not success: success = True # generate random number random_number_self = randint(0, 1000000) # send random number to all other parties cls.broadcast(random_number_self, pool) # receive random numbers from the other parties responses = await cls.recv_all(pool) list_to_sort = [("self", random_number_self)] for party, random_number_party in responses: if random_number_party not in [rn for _, rn in list_to_sort]: list_to_sort.append((party, random_number_party)) else: success = False # sort the list based on the random numbers sorted_list = sorted(list_to_sort, key=lambda j: j[1]) party_indices = {} # extract the party names from the sorted list and assign an index based on the position. # this dictionary should be the same for each party for index, party in enumerate([party_name for party_name, _ in sorted_list]): party_indices[party] = index + 1 session_id = sum(i[1] for i in sorted_list) % 1000000 return party_indices, session_id @classmethod def __init_shamir_scheme( cls, prime_length: int, number_of_players: int, corruption_threshold: int ) -> Shamir: """ Function to initialize the regular Shamir scheme :param prime_length: bit length of the shamir prime :param number_of_players: number of parties involved in total (n) :param corruption_threshold: number of parties allowed to be corrupted :return: Shamir secret sharing scheme """ shamir_length = 2 * (prime_length + math.ceil((math.log2(number_of_players)))) shamir_scheme = Shamir( sympy.nextprime(2 ** shamir_length), number_of_players, corruption_threshold, ) return shamir_scheme @classmethod async def generate_keypair( cls, stat_sec_shamir: int, number_of_players: int, corruption_threshold: int, shares: Shares, index: int, zero_share: ShamirShares, pool: Pool, prime_list: List[int], prime_length: int, party_indices: Dict[str, int], correct_param_biprime: int, shamir_scheme: Shamir, ) -> Tuple[PaillierPublicKey, PaillierSharedKey]: """ Function to distributively generate a shared secret key and a corresponding public key :param stat_sec_shamir: security parameter for Shamir secret sharing over the integers :param number_of_players: number of parties involved in the protocol :param corruption_threshold: number of parties that are allowed to be corrupted :param shares: dictionary that keeps track of shares for parties for certain numbers :param index: index of this party :param zero_share: A secret sharing of $0$ in a $2t$-out-of-$n$ shamir secret sharing scheme :param pool: network of involved parties :param prime_list: list of prime numbers :param prime_length: desired bit length of $p$ and $q$ :param party_indices: mapping from party names to indices :param correct_param_biprime: correctness parameter that affects the certainty that the generated $N$ is a product of two primes :param shamir_scheme: $t$-out-of-$n$ Shamir secret sharing scheme :return: regular Paillier public key and a shared secret key """ secret_key = await cls.generate_secret_key( stat_sec_shamir, number_of_players, corruption_threshold, shares, index, zero_share, pool, prime_list, prime_length, party_indices, correct_param_biprime, shamir_scheme, ) modulus = secret_key.n public_key = PaillierPublicKey(modulus, modulus + 1) logging.info("Key generation complete") return public_key, secret_key @classmethod async def generate_pq( cls, shares: Shares, pool: Pool, index: int, prime_length: int, party_indices: Dict[str, int], shamir_scheme: Shamir, ) -> Tuple[ShamirShares, ShamirShares]: """ " Function to generate primes $p$ and $q$ :param shares: dictionary that keeps track of shares for parties for certain numbers :param pool: network of involved parties :param index: index of this party :param prime_length: desired bit length of $p$ and $q$ :param party_indices: mapping from party names to indices :param shamir_scheme: $t$-out-of-$n$ Shamir secret sharing scheme :return: sharings of $p$ and $q$ """ shares.p.additive = cls.generate_prime_additive_share(index, prime_length) cls.shamir_share_and_send( "p", shares, shamir_scheme, index, pool, party_indices ) await cls.gather_shares("p", pool, shares, party_indices) p_sharing = cls.__add_received_shamir_shares("p", shares, index, shamir_scheme) shares.q.additive = cls.generate_prime_additive_share(index, prime_length) cls.shamir_share_and_send( "q", shares, shamir_scheme, index, pool, party_indices ) await cls.gather_shares("q", pool, shares, party_indices) q_sharing = cls.__add_received_shamir_shares("q", shares, index, shamir_scheme) return p_sharing, q_sharing @classmethod def generate_prime_additive_share(cls, index: int, prime_length: int) -> int: r""" Generate a random value between $2^(\text{length}-1)$ and 2^\text{length}. the function will ensure that the random value is equal to $3 \mod 4$ for the fist player, and to $0 \mod 4$ for all other players. This is necessary to generate additive shares of $p$ and $q$, or the bi-primality test will not work. :param index: index of this party :param prime_length: desired bit length of primes $p$ and $q$ :return: a random integer of the desired bit length and value modulo $4$ """ if index == 1: mod4 = 3 else: mod4 = 0 random_number = secrets.randbits(prime_length - 3) << 2 additive_share: int = 2 ** (prime_length - 1) + random_number + mod4 return additive_share @classmethod def shamir_share_and_send( cls, content: str, shares: Shares, shamir_scheme: Shamir, index: int, pool: Pool, party_indices: Dict[str, int], ) -> None: """ Create a secret-sharing of the input value, and send each share to the corresponding player, together with the label content :param content: string identifying the number to be shared and sent :param shares: dictionary keeping track of shares for different parties and numbers :param shamir_scheme: $t$-out-of-$n$ Shamir secret sharing scheme :param index: index of this party :param pool: network of involved parties :param party_indices: mapping from party names to indices :raise NotImplementedError: In case the given content is not "p" or "q". """ # retrieve the local additive share for content value = asdict(shares)[content]["additive"] # create a shamir sharing of this value value_sharing = shamir_scheme.share_secret(value) # Save this player's shamir share of the local additive share if content == "p": shares.p.shares[index] = value_sharing.shares[index] elif content == "q": shares.q.shares[index] = value_sharing.shares[index] else: raise NotImplementedError( f"Don't know what to do with this content: {content}" ) # Send the other players' shares of the local additive share other_parties = pool.pool_handlers.keys() for party in other_parties: party_share = value_sharing.shares[party_indices[party]] cls.asend(pool, party, {"content": content, "value": party_share}) @classmethod def int_shamir_share_and_send( cls, content: str, shares: Shares, int_shamir_scheme: IntegerShamir, index: int, pool: Pool, party_indices: Dict[str, int], ) -> None: r""" Create a secret-sharing of the input value, and send each share to the corresponding player, together with the label content :param content: string identifying the number to be shared and sent :param shares: dictionary keeping track of shares for different parties and numbers :param int_shamir_scheme: Shamir secret sharing scheme over the integers :param index: index of this party :param pool: network of involved parties :param party_indices: mapping from party names to indices :raise NotImplementedError: In case the given content is not "lambda\_" or "beta". """ # retrieve the local additive share for content value = asdict(shares)[content]["additive"] # create a shamir sharing of this value value_sharing = int_shamir_scheme.share_secret(value) # Save this player's shamir share of the local additive share if content == "lambda_": shares.lambda_.shares[index] = value_sharing.shares[index] elif content == "beta": shares.beta.shares[index] = value_sharing.shares[index] else: raise NotImplementedError( f"Don't know what to do with this content: {content}" ) # Send the other players' shares of the local additive share other_parties = pool.pool_handlers.keys() for party in other_parties: party_share = value_sharing.shares[party_indices[party]] cls.asend(pool, party, {"content": content, "value": party_share}) @classmethod def __add_received_shamir_shares( cls, content: str, shares: Shares, index: int, shamir_scheme: Shamir ) -> ShamirShares: """ Fetch shares labeled with content and add them to own_share_value. :param content: string identifying the number to be retrieved :param shares: dictionary keeping track of shares for different parties and numbers :param index: index of this party :param shamir_scheme: $t$-out-of-$n$ Shamir secret sharing :return: sum of all the shares for the number identified by content """ shamir_shares = [ ShamirShares(shamir_scheme, {index: v}) for k, v in asdict(shares)[content]["shares"].items() ] for i in range(1, len(shamir_shares)): shamir_shares[0] += shamir_shares[i] return shamir_shares[0] @classmethod def __int_add_received_shares( cls, content: str, int_shamir_scheme: IntegerShamir, shares: Shares, index: int, corruption_threshold: int, ) -> IntegerShares: """ Fetch shares labeled with content and add them to own_share_value. :param content: string identifying the number to be retrieved :param int_shamir_scheme: Shamir secret sharing scheme over the integers :param shares: dictionary keeping track of shares for different parties and numbers :param index: index of this party :param corruption_threshold: number of parties that are allowed to be corrupted :return: sum of the integer sharing of the number identified by content """ integer_shares = [ IntegerShares( int_shamir_scheme, {index: v}, corruption_threshold, scaling=math.factorial(int_shamir_scheme.number_of_parties), ) for k, v in asdict(shares)[content]["shares"].items() ] for i in range(1, len(integer_shares)): integer_shares[0] += integer_shares[i] return integer_shares[0] @classmethod def __mul_received_v_and_check(cls, shares: Shares, modulus: int) -> bool: """ " Function to test whether a certain primality check holds :param shares: dictionary keeping track of shares for a certain value :param modulus: value of $N$ :return: true if the biprimality tests succeeds and false if it fails """ product = 1 for key, value in shares.v.shares.items(): if key != 1: product *= value value1 = shares.v.shares[1] # The below test determines if N is "probably" the product of two primes (if the # statement is True). Otherwise, N is definitely not the product of two primes. return ((value1 % modulus) == (product % modulus)) or ( (value1 % modulus) == (-product % modulus) ) @classmethod async def gather_shares( cls, content: str, pool: Pool, shares: Shares, party_indices: Dict[str, int], ) -> None: r""" Gather all shares with label content :param content: string identifying a number :param pool: network of involved parties :param shares: dictionary keeping track of shares of different parties for certain numbers :param party_indices: mapping from party names to indices :raise NotImplementedError: In case the given content is not any of the possible values for which we store shares ("p", "q", "n", "biprime", "lambda\_", "beta", "secret_key", "partial_decryption"). """ shares_from_other_parties = await cls.recv_all(pool) for party, message in shares_from_other_parties: msg_content = message["content"] err_msg = f"received a share for {msg_content}, but expected {content}" assert msg_content == content, err_msg if content == "p": shares.p.shares[party_indices[party]] = message["value"] elif content == "q": shares.q.shares[party_indices[party]] = message["value"] elif content == "n": shares.n.shares[party_indices[party]] = message["value"] elif content == "biprime": shares.biprime.shares[party_indices[party]] = message["value"] elif content == "v": shares.v.shares[party_indices[party]] = message["value"] elif content == "lambda_": shares.lambda_.shares[party_indices[party]] = message["value"] elif content == "beta": shares.beta.shares[party_indices[party]] = message["value"] elif content == "secret_key": shares.secret_key.shares[party_indices[party]] = message["value"] elif content == "partial_decryption": shares.partial_decryption.shares[party_indices[party]] = message[ "value" ] else: raise NotImplementedError( f"Don't know what to do with this content: {content}" ) @classmethod async def __biprime_test( cls, correct_param_biprime: int, shares: Shares, modulus: int, pool: Pool, index: int, party_indices: Dict[str, int], ) -> bool: """ Function to test for biprimality of $N$ :param correct_param_biprime: correctness parameter that affects the certainty that the generated modulus is biprime :param shares: dictionary keeping track of shares for different parties for certain numbers :param modulus: the modulus $N$ :param pool: network of involved parties :param index: index of this party :param party_indices: mapping from party name to indices :return: true if the test succeeds and false if it fails """ counter = 0 while counter < correct_param_biprime: test_value = secrets.randbelow(modulus) cls.broadcast({"content": "biprime", "value": test_value}, pool) shares.biprime.shares[index] = test_value await cls.gather_shares("biprime", pool, shares, party_indices) test_value = 0 for value in shares.biprime.shares.values(): test_value += value test_value = test_value % modulus if sympy.jacobi_symbol(test_value, modulus) == 1: if index == 1: v_value = int( pow_mod( test_value, (modulus - shares.p.additive - shares.q.additive + 1) // 4, modulus, ) ) else: v_value = int( pow_mod( test_value, (shares.p.additive + shares.q.additive) // 4, modulus, ) ) shares.v.shares[index] = v_value cls.broadcast({"content": "v", "value": v_value}, pool) await cls.gather_shares("v", pool, shares, party_indices) if cls.__mul_received_v_and_check(shares, modulus): counter += 1 else: return False return True @classmethod def __generate_lambda_addit_share( cls, index: int, modulus: int, shares: Shares, ) -> int: """ " Function to generate an additive share of lambda :param index: index of this party :param modulus: modulus $N$ :param shares: dictionary keeping track of shares for different parties for certain numbers :return: additive share of lambda """ if index == 1: return modulus - shares.p.additive - shares.q.additive + 1 # else return 0 - shares.p.additive - shares.q.additive @classmethod def __small_prime_divisors_test(cls, prime_list: List[int], modulus: int) -> bool: """ Function to test $N$ for small prime divisors :param prime_list: list of prime numbers :param modulus: modulus $N$ :return: true if $N$ has small divisors and false otherwise """ for prime in prime_list: if modulus % prime == 0: return True return False @classmethod async def compute_modulus( cls, shares: Shares, zero_share: ShamirShares, index: int, pool: Pool, prime_list: List[int], party_indices: Dict[str, int], prime_length: int, shamir_scheme: Shamir, correct_param_biprime: int, ) -> int: r""" Function that starts a protocol to generate candidates for $p$ and $q$ the multiplication of the two is then checked for biprimality to ensure it is a valid modulus. This is run until it succeeds. :param shares: dictionary that keeps track of shares for parties for certain numbers :param zero_share: A secret sharing of $0$ in a $2t$-out-of-$n$ shamir secret sharing scheme :param index: index of this party :param pool: network of involved parties :param prime_list: list of prime numbers :param party_indices: mapping from party names to indices :param prime_length: desired bit length of $p$ and $q$ :param shamir_scheme: $t$-out-of-$n$ Shamir secret sharing scheme :param correct_param_biprime: correctness parameter that affects the certainty that the generated $N$ is a product of two primes :return: modulus $N$ """ sp_err_counter = 0 bip_err_counter = 0 bip = False logging.info("Computing N") modulus = 0 counter = 0 while not bip: counter += 1 shares.biprime = Shares.Biprime() shares.v = Shares.V() # secreting sharings of p and q p_sharing, q_sharing = await cls.generate_pq( shares, pool, index, prime_length, party_indices, shamir_scheme ) # secret sharing of the modulus modulus_sharing = p_sharing * q_sharing # Add 0-share to fix distribution modulus_sharing += zero_share shares.n.shares[index] = modulus_sharing.shares[index] cls.broadcast( {"content": "n", "value": modulus_sharing.shares[index]}, pool ) await cls.gather_shares("n", pool, shares, party_indices) modulus_sharing.shares = shares.n.shares modulus = modulus_sharing.reconstruct_secret() if not cls.__small_prime_divisors_test(prime_list, modulus): bip = await cls.__biprime_test( correct_param_biprime, shares, modulus, pool, index, party_indices ) if not bip: bip_err_counter += 1 else: sp_err_counter += 1 logging.info(f"N = {modulus}") logging.info(f"Failures counter: sp={sp_err_counter} biprime={bip_err_counter}") return modulus @classmethod async def generate_secret_key( cls, stat_sec_shamir: int, number_of_players: int, corruption_threshold: int, shares: Shares, index: int, zero_share: ShamirShares, pool: Pool, prime_list: List[int], prime_length: int, party_indices: Dict[str, int], correct_param_biprime: int, shamir_scheme: Shamir, ) -> PaillierSharedKey: """ Functions that generates the modulus and sets up the sharing of the private key :param stat_sec_shamir: security parameter for the Shamir secret sharing over the integers :param number_of_players: total number of participants in this session (including self) :param corruption_threshold: Maximum number of allowed corruptions :param shares: dictionary that keeps track of shares for parties for certain numbers :param index: index of this party :param zero_share: A secret sharing of $0$ in a $2t$-out-of-$n$ shamir secret sharing scheme :param pool: network of involved parties :param prime_list: list of prime numbers :param prime_length: desired bit length of $p$ and $q$ :param party_indices: mapping from party names to indices :param correct_param_biprime: correctness parameter that affects the certainty that the generated $N$ is a product of two primes :param shamir_scheme: $t$-out-of-$n$ Shamir secret sharing scheme :return: shared secret key """ modulus = await cls.compute_modulus( shares, zero_share, index, pool, prime_list, party_indices, prime_length, shamir_scheme, correct_param_biprime, ) int_shamir_scheme = IntegerShamir( stat_sec_shamir, modulus, number_of_players, corruption_threshold, ) shares.lambda_.additive = cls.__generate_lambda_addit_share( index, modulus, shares ) cls.int_shamir_share_and_send( "lambda_", shares, int_shamir_scheme, index, pool, party_indices ) await cls.gather_shares("lambda_", pool, shares, party_indices) lambda_ = cls.__int_add_received_shares( "lambda_", int_shamir_scheme, shares, index, corruption_threshold ) theta = 0 secret_key_sharing: IntegerShares while True: shares.secret_key = Shares.SecretKey() shares.beta = Shares.Beta() shares.beta.additive = secrets.randbelow(modulus) cls.int_shamir_share_and_send( "beta", shares, int_shamir_scheme, index, pool, party_indices ) await cls.gather_shares("beta", pool, shares, party_indices) beta = cls.__int_add_received_shares( "beta", int_shamir_scheme, shares, index, corruption_threshold ) secret_key_sharing = lambda_ * beta temp_secret_key = copy.deepcopy(secret_key_sharing) temp_secret_key.shares = { key: (value % modulus) for key, value in temp_secret_key.shares.items() } shares.secret_key.shares = temp_secret_key.shares cls.broadcast( {"content": "secret_key", "value": temp_secret_key.shares[index]}, pool ) await cls.gather_shares("secret_key", pool, shares, party_indices) reconstructed_secret_key = temp_secret_key.reconstruct_secret( modulus=modulus ) theta = ( reconstructed_secret_key * math.factorial(int_shamir_scheme.number_of_parties) ** 3 ) % modulus if math.gcd(theta, modulus) != 0: break secret_key = PaillierSharedKey( n=modulus, t=corruption_threshold, player_id=index, theta=theta, share=secret_key_sharing, ) return secret_key class SerializedDistributedPaillier(Paillier.SerializedPaillier, TypedDict): session_id: int distributed: bool index: int def serialize( self, **_kwargs: Any ) -> DistributedPaillier.SerializedDistributedPaillier: r""" Serialization function for Distributed Paillier schemes, which will be passed to the communication module :param \**_kwargs: optional extra keyword arguments :return: Dictionary containing the serialization of this DistributedPaillier scheme. """ return { "session_id": self.session_id, "distributed": self.distributed, "index": self.index, "prec": self.precision, "pubkey": self.public_key, } @overload @staticmethod def deserialize( obj: DistributedPaillier.SerializedDistributedPaillier, *, origin: Optional[HTTPClient] = ..., **kwargs: Any, ) -> "DistributedPaillier": ... @overload @staticmethod def deserialize( obj: Paillier.SerializedPaillier, *, origin: Optional[HTTPClient] = ..., **kwargs: Any, ) -> "Paillier": ... @staticmethod def deserialize( obj: Union[ DistributedPaillier.SerializedDistributedPaillier, Paillier.SerializedPaillier, ], *, origin: Optional[HTTPClient] = None, **kwargs: Any, ) -> Union["DistributedPaillier", "Paillier"]: r""" Deserialization function for Distributed Paillier schemes, which will be passed to the communication module :param obj: serialization of a distributed paillier scheme. :param origin: HTTPClient representing where the message came from if applicable :param \**kwargs: optional extra keyword arguments :return: Deserialized DistributedPaillier scheme, local instance thereof, or a regular Paillier scheme in case this party is not part of the distributed session. """ session_id = obj.get("session_id", None) if isinstance(session_id, int): if obj.get("distributed", False): # The scheme should be stored in the local instances through the session ID # If it is not, then this party was not part of the initial protocol if session_id in DistributedPaillier._local_instances: return DistributedPaillier._local_instances[session_id] else: # The scheme should be stored in the global instances through the session ID # If it is not, then this party was not part of the initial protocol index = obj.get("index", None) if ( isinstance(index, int) and session_id in DistributedPaillier._global_instances[index] ): return DistributedPaillier._global_instances[index][session_id] # This party is not part of the distributed session, so we parse it as a Paillier scheme paillier_obj: Paillier.SerializedPaillier = { "prec": obj["prec"], "pubkey": obj["pubkey"], } return Paillier.deserialize(paillier_obj, origin=origin, **kwargs) # endregion # Load the serialization logic into the communication module if "DistributedPaillier" not in Serialization.custom_deserialization_funcs: Serialization.set_serialization_logic(DistributedPaillier, check_annotations=False) ``` #### File: distributed_keygen/test/test_distributed_keygen.py ```python import asyncio import math from typing import AsyncGenerator, Tuple, Union, cast import pytest from _pytest.fixtures import FixtureRequest from tno.mpc.communication import Pool, Serialization from tno.mpc.communication.test import event_loop # pylint: disable=unused-import from tno.mpc.communication.test.pool_fixtures_http import ( # pylint: disable=unused-import fixture_pool_http_3p, fixture_pool_http_4p, fixture_pool_http_5p, ) from tno.mpc.protocols.distributed_keygen import DistributedPaillier @pytest.fixture( name="pool_http", params=[3, 4, 5], ids=["3-party", "4-party", "5-party"], scope="module", ) async def fixture_pool_http( request: FixtureRequest, pool_http_3p: AsyncGenerator[Tuple[Pool, ...], None], pool_http_4p: AsyncGenerator[Tuple[Pool, ...], None], pool_http_5p: AsyncGenerator[Tuple[Pool, ...], None], ) -> AsyncGenerator[Tuple[Pool, ...], None]: """ Creates a collection of 3, 4 and 5 communication pools :param pool_http_3p: Pool of 3 HTTP clients. :param pool_http_4p: Pool of 4 HTTP clients. :param pool_http_5p: Pool of 5 HTTP clients. :param request: A fixture request used to indirectly parametrize. :raise NotImplementedError: raised when based on the given param, no fixture can be created :return: a collection of communication pools """ if request.param == 3: # type: ignore[attr-defined] return pool_http_3p if request.param == 4: # type: ignore[attr-defined] return pool_http_4p if request.param == 5: # type: ignore[attr-defined] return pool_http_5p raise NotImplementedError("This has not been implemented") @pytest.fixture( name="distributed_schemes", params=list(range(2)), ids=["corruption_threshold " + str(i) for i in range(2)], scope="module", ) @pytest.mark.asyncio async def fixture_distributed_schemes( pool_http: Tuple[Pool, ...], request: FixtureRequest, ) -> Tuple[DistributedPaillier, ...]: """ Constructs schemes to use for distributed key generation. :param pool_http: collection of communication pools :param request: Fixture request :return: a collection of schemes """ Serialization.custom_serialization_funcs.pop("DistributedPaillier") Serialization.custom_deserialization_funcs.pop("DistributedPaillier") Serialization.set_serialization_logic(DistributedPaillier, check_annotations=False) corruption_threshold: int = request.param # type: ignore[attr-defined] key_length = 64 prime_threshold = 200 correct_param_biprime = 20 stat_sec_shamir = 20 distributed_schemes = tuple( await asyncio.gather( *[ DistributedPaillier.from_security_parameter( pool_http[i], corruption_threshold, key_length, prime_threshold, correct_param_biprime, stat_sec_shamir, distributed=False, precision=8, ) for i in range(len(pool_http)) ] ) ) return cast( Tuple[DistributedPaillier, ...], distributed_schemes, ) @pytest.mark.asyncio @pytest.mark.parametrize( "plaintext", [1, 2, 3, -1, -2, -3, 1.5, 42.42424242, -1.5, -42.42424242] ) async def test_distributed_paillier_with_communication( distributed_schemes: Tuple[DistributedPaillier, ...], plaintext: Union[float, int], ) -> None: """ Tests distributed encryption and decryption using communication :param distributed_schemes: a collection of schemes :param plaintext: plaintext to encrypt and decrypt """ enc = {0: distributed_schemes[0].encrypt(plaintext)} for iplayer in range(1, len(distributed_schemes)): player_name = "local" + str(iplayer) await distributed_schemes[0].pool.send(player_name, enc[0]) enc[iplayer] = await distributed_schemes[iplayer].pool.recv("local0") dec = await asyncio.gather( *[ distributed_schemes[i].decrypt(enc[i]) for i in range(len(distributed_schemes)) ] ) assert all(d == plaintext for d in dec) @pytest.mark.asyncio @pytest.mark.parametrize( "plaintext", [1, 2, 3, -1, -2, -3, 1.5, 42.42424242, -1.5, -42.42424242] ) async def test_distributed_paillier_serialization( distributed_schemes: Tuple[DistributedPaillier, ...], plaintext: Union[float, int], ) -> None: """ Tests serialization of the distributed Paillier. :param distributed_schemes: a collection of schemes :param plaintext: plaintext to encrypt """ enc = {0: distributed_schemes[0].encrypt(plaintext)} for iplayer in range(1, len(distributed_schemes)): player_name = "local" + str(iplayer) await distributed_schemes[0].pool.send(player_name, enc[0]) await distributed_schemes[0].pool.send(player_name, distributed_schemes[0]) enc[iplayer] = await distributed_schemes[iplayer].pool.recv("local0") d_scheme_recv = await distributed_schemes[iplayer].pool.recv("local0") # check equality of received values assert enc[0] == enc[iplayer] assert d_scheme_recv == distributed_schemes[iplayer] == distributed_schemes[0] @pytest.mark.asyncio async def test_distributed_paillier_exception(pool_http: Tuple[Pool, ...]) -> None: """ Tests raising of exception when corruption threshold is set incorrectly. :param pool_http: collection of communication pools """ max_corruption_threshold = math.ceil(len(pool_http) / 2) - 1 corruption_threshold = max_corruption_threshold + 1 key_length = 64 prime_threshold = 200 correct_param_biprime = 20 stat_sec_shamir = 20 with pytest.raises(ValueError): _distributed_schemes = await asyncio.gather( *[ DistributedPaillier.from_security_parameter( pool_http[i], corruption_threshold, key_length, prime_threshold, correct_param_biprime, stat_sec_shamir, distributed=False, ) for i in range(len(pool_http)) ] ) @pytest.mark.asyncio @pytest.mark.parametrize( "plaintext", [1, 2, 3, -1, -2, -3, 1.5, 42.42424242, -1.5, -42.42424242] ) async def test_distributed_paillier_encrypt_decrypt( distributed_schemes: Tuple[DistributedPaillier, ...], plaintext: Union[float, int], ) -> None: """ Tests distributed encryption and decryption :param distributed_schemes: a collection of schemes :param plaintext: plaintext to encrypt and decrypt """ enc = distributed_schemes[0].encrypt(plaintext) dec = await asyncio.gather( *[distributed_schemes[i].decrypt(enc) for i in range(len(distributed_schemes))] ) assert all(d == plaintext for d in dec) @pytest.mark.asyncio @pytest.mark.parametrize( "receivers_id,result_indices", [ (0, (0,)), (1, (0, 1)), ], ) async def test_distributed_paillier_encrypt_decrypt_receivers( distributed_schemes: Tuple[DistributedPaillier, ...], receivers_id: int, result_indices: Tuple[int], ) -> None: """ Tests distributed decryption revealing the results to a subset of receivers only. :param distributed_schemes: a collection of schemes :param receivers_id: parties to reveal the decryptions to :param result_indices: indices of the parties that should have received the decryptions """ if receivers_id == 0: receiver0_list = [["local0"]] * len(distributed_schemes) receiver0_list[0] = ["self"] receivers = tuple(receiver0_list) elif receivers_id == 1: receivers01_list = [["local0", "local1"]] * len(distributed_schemes) receivers01_list[0] = ["self", "local1"] receivers01_list[1] = ["local0", "self"] receivers = tuple(receivers01_list) enc = distributed_schemes[0].encrypt(42) dec = await asyncio.gather( *[ distributed_schemes[i].decrypt(enc, receivers=receivers[i]) for i in range(len(distributed_schemes)) ] ) for i in range(len(distributed_schemes)): if i in result_indices: assert dec[i] == 42 else: assert dec[i] is None ```
{ "source": "JimenezJC/cozy-exchange", "score": 2 }
#### File: apps/profiles/admin.py ```python from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User # from .models import Profile # # class ProfileInline(admin.StackedInline): # """ # # """ # model = Profile # can_delete = False # verbose_name_plural = 'Profile' # fk_name = 'user' # # class CustomUserAdmin(UserAdmin): # inlines = (ProfileInline, ) # # def get_inline_instances(self, request, obj=None): # if not obj: # return list() # return super(CustomUserAdmin, self).get_inline_instances(request, obj) # # # admin.site.unregister(User) # admin.site.register(User, CustomUserAdmin) # class UserStripeAdmin(admin.ModelAdmin): # class Meta: # model = UserStripe # # admin.site.register(UserStripe, UserStripeAdmin) ``` #### File: apps/store/models.py ```python from django.db import models from django.conf import settings from django.utils import timezone from django.core.urlresolvers import reverse from django.core.validators import MaxValueValidator, MinValueValidator from .manager import CategoryManager, SubCatergoryManager, ItemManager, TransactionManager from django.db.models.signals import post_save import datetime class Category(models.Model): """This is a model for a predetermined list of clothing categories. List: Jackets, shirts, sweaters, sweatshirts, pants, t-shirts, hats, accessories, skate, bike, and other Attributes: name: A string of the name of a category slug: A slug to make our links more presentable on the web app """ name = models.CharField(max_length=50, db_index=True) slug = models.SlugField(max_length=50, db_index=True, unique=True) objects = CategoryManager() def __str__(self): return self.name class Meta: ordering = ('name',) verbose_name = 'category' verbose_name_plural = 'categories' def get_absolute_url(self): return reverse('store:item_list_by_category', args=[self.slug]) def save(self, **kwargs): """ This function is an override of the save function of Category so thaat we can automatically create a slug Args:s self: current instance of that object """ if not self.pk: slug = self.name slug = slug.lower() slug = slug.replace(" ","-") self.slug = slug super(Category, self).save(**kwargs) class SubCategory(models.Model): """ This is a model for a list of clothing sub-categories that are either predetermind or user input. Attributes: name: A string of the name of a sub-category parent: foreign key to the Category. the class SubCategory is a child to category. """ name = models.CharField(max_length=16) slug = models.SlugField(max_length = 16) parent = models.ForeignKey(Category, related_name = 'subCats') objects = SubCatergoryManager() def __str__(self): return self.name def save(self, **kwargs): """ This function is an override of the save function so that the subCategory object will be automiatcally updated everytime there is achange within the item Args: self: current instance of that object """ if not self.pk: slug = self.name slug = slug.lower() slug = slug.replace(" ","-") self.slug = slug super(SubCategory, self).save(**kwargs) class Meta: ordering = ('name',) verbose_name = 'subcategory' verbose_name_plural = 'subcategories' # Needs to be moved to profile # class Brand(models.Model): # name = models.CharField(max_length=32) # description = models.TextField(blank=True) # location = models.CharField(max_length = 50) # owner = models.ForeignKey('profiles.Profile') # email = models.EmailField(blank=True) # # def _str_(self): # return self.name class Item(models.Model): """ This is a model for items sold on the exchange. Attributes: name: A string of the name of the item slug: A slug to make our links more readable description: A string which should describe the item for the users materla: A string which should identify the materials used to make the item category: A foregin key to category to make items more organized subCategory: A foregin key to subCatergory to make our items even more organized avgSoldPrice: A number which will go through all items to achieve the avgSoldPrice lowestCurrListing: A number which will represent the lowest current avaible item. A query will be used to find this highestCurrListing: A number which will represent the highest current available item. A query will be used to find this lowestSoldListing: A number which will represent the lowest price a item has been sold for this item. highestSoldListing: A number which will represent the highest price a item has been sold for that item. lastActive: A date and time which represent when the last time the item has been edited available: A boolean which represents whether there are items avialble or not created = The date and time field that the item was created updated = the date and time field the item was last updated stock: a integer that represents the amount of items that are availble for the user to buy """ name = models.CharField(max_length=200, db_index=True, unique = True) slug = models.SlugField(max_length=200, db_index=True) image = models.ImageField() seller = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) # brand = models.ForeignKey(Brand) description = models.TextField(blank=True) #Change to location model material = models.TextField(blank=True) # related_name may not be needed. Research!!! category = models.ForeignKey(Category, related_name='Item') subCategory = models.ForeignKey(SubCategory) location = models.CharField(max_length = 50) price = models.DecimalField( default=1.00, validators=[MinValueValidator(1.0)], decimal_places=2, max_digits=10, ) lastActive = models.DateTimeField(default = timezone.now) visible = models.BooleanField(default = True) stock = models.PositiveIntegerField( default = 0 ) objects = ItemManager() def save(self, **kwargs): """ This function is an override of the save function so that the item object will be automiatcally updated everytime there is achange within the item Args: self: current instance of that object """ if not self.pk: slug = self.name slug = slug.lower() slug = slug.replace(" ","-") self.slug = slug super(Item, self).save(**kwargs) @property def category_name(self): return self.category.name @property def subCategory_name(self): return self.subCategory.name def __str__(self): return self.name class Meta: ordering = ('-lastActive',) index_together = (('id','slug'),) verbose_name_plural = 'Items' def get_absolute_url(self): return reverse('store:item_detail', args=[self.id, self.slug]) def __unicode__(self): return ('%d: %s' (self.id, self.name)) # Add a save to transactions class Transaction(models.Model): """ This is a model for items on the exchange. Attributes: seller: A foriegn key to a user object that sold the items buyer: A foreign key to a user object that is buying the items amountExchanged: the amount of money exchanged between seller and buyer item = A foreign key to the item object to mark it as sold deliveryAddress = a text field which contains the address of the seller receiveAddress = a text field which contains the address of the buyer ratingSeller = a decimal field which contains a rating for the seller 1-5 ratingBuyer = a decimal field which contains a rating for the buyer 1-5 isValid = a boolean field which stores whether the transaction will go through or cancel """ seller = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='Seller' ) buyer = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='Buyer' ) amountExchanged = models.DecimalField( decimal_places=2, max_digits=10 ) item = models.ForeignKey(Item, related_name = "Item") deliveryAddress = models.TextField() receiveAddress = models.TextField() timeSold = models.DateTimeField(auto_now = True) ratingSeller = models.DecimalField( decimal_places = 1, max_digits = 1 ) ratingBuyer = models.DecimalField( decimal_places = 1, max_digits = 1 ) isValid = models.BooleanField(default = True) objects = TransactionManager() ``` #### File: apps/store/permissions.py ```python from rest_framework.permissions import BasePermission, SAFE_METHODS class IsOwnerOrReadOnly(BasePermission): message = 'You must be the owner of this object' def has_object_permission(self, request, view, obj): if request.method in SAFE_METHODS: return True return obj.seller == request.user class IsBuyerOrSeller(BasePermission): message = 'You must either be the buyer or the seller of this listing' def has_object_permission(self,request,view,obj): if request.method in SAFE_METHODS: return True return (obj.seller == request.user) or obj.buyer == (request.user) ```
{ "source": "jimenezjose/fusion-engine-client", "score": 2 }
#### File: python/examples/message_decode.py ```python from argparse import ArgumentParser import os import sys root_dir = os.path.normpath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(root_dir) from fusion_engine_client.messages.core import MessagePayload from fusion_engine_client.parsers import FusionEngineDecoder def print_message(header, contents): if isinstance(contents, MessagePayload): parts = str(contents).split('\n') parts[0] += ' [sequence=%d, size=%d B]' % (header.sequence_number, header.get_message_size()) print('\n'.join(parts)) else: print('Decoded %s message [sequence=%d, size=%d B]' % (header.get_type_string(), header.sequence_number, header.get_message_size())) if __name__ == "__main__": parser = ArgumentParser(description="""\ Decode and print the contents of messages contained in a *.p1log file or other binary file containing FusionEngine messages. The binary file may also contain other types of data. """) parser.add_argument('file', type=str, help="The path to a binary file to be read.") options = parser.parse_args() f = open(options.file, 'rb') decoder = FusionEngineDecoder() while True: # Read the next message header. data = f.read(1024) if len(data) == 0: break # Decode the incoming data and print the contents of any complete messages. messages = decoder.on_data(data) for (header, message) in messages: print_message(header, message) ``` #### File: fusion_engine_client/analysis/file_index.py ```python from typing import Union from collections import namedtuple import io import os import numpy as np from ..messages import MessageHeader, MessageType, Timestamp from ..parsers import FusionEngineDecoder FileIndexEntry = namedtuple('Element', ['time', 'type', 'offset']) class FileIndexIterator(object): def __init__(self, np_iterator): self.np_iterator = np_iterator def __next__(self): if self.np_iterator is None: raise StopIteration() else: entry = next(self.np_iterator) return FileIndexEntry(time=Timestamp(entry[0]), type=MessageType(entry[1]), offset=entry[2]) class FileIndex(object): """! @brief An index of FusionEngine message entries within a `.p1log` file used to facilitate quick access. This class reads a `.p1i` file from disk containing FusionEngine message index entries. Each index entry includes the P1 time of the message (if applicable), the @ref MessageType, and the message offset within the file (in bytes). A @ref FileIndex instance may be used to quickly locate entries within a specific time range, or entries for one or more message types, without having to parse the variable-length messages in the `.p1log` file itself. @section file_index_examples Usage Examples @subsection file_index_iterate Iterate Over Elements @ref FileIndex supports supports two methods for accessing individual FusionEngine message entries. You can iterate over the @ref FileIndex class itself, accessing one @ref FileIndexEntry object at a time: ```py for entry in file_index: log_file.seek(entry.offset, io.SEEK_SET) ... ``` Alternatively, you can access any of the `time`, `type`, or `offset` arrays directly. Each of these members returns a NumPy `ndarray` object listing the P1 times (in seconds), @ref MessageType values, or byte offsets respectively: ```.py for offset in file_index.offset: log_file.seek(offset, io.SEEK_SET) ... ``` @subsection file_index_type Find All Messages For A Specific Type @ref FileIndex supports slicing by a single @ref MessageType: ```py for entry in file_index[MessageType.POSE]: log_file.seek(entry.offset, io.SEEK_SET) ... ``` or by a list containing one or more @ref MessageType values: ```py for entry in file_index[(MessageType.POSE, MessageType.GNSS_INFO)]: log_file.seek(entry.offset, io.SEEK_SET) ... ``` @subsection file_index_time Find All Messages For A Specific Time Range One of the most common uses is to search for messages within a specific time range. @ref FileIndex supports slicing by P1 time using `Timestamp` objects or `float` values: ```py for entry in file_index[Timestamp(2.0):Timestamp(5.0)]: log_file.seek(entry.offset, io.SEEK_SET) ... for entry in file_index[2.0:5.0]: log_file.seek(entry.offset, io.SEEK_SET) ... ``` As with all Python `slice()` operations, the start time is inclusive and the stop time is exclusive. Either time may be omitted to slice from the beginning or to the end of the data: ```py for entry in file_index[:5.0]: log_file.seek(entry.offset, io.SEEK_SET) ... for entry in file_index[2.0:]: log_file.seek(entry.offset, io.SEEK_SET) ... ``` @subsection file_index_by_index Access Messages By Index Similar to @ref file_index_time "slicing by time", if desired you can access elements within a specific range of indices within the file. For example, the following returns elements 2 through 7 in the file: ```py for entry in file_index[2:8]: log_file.seek(entry.offset, io.SEEK_SET) ... ``` """ # Note: To reduce the index file size, we've made the following limitations: # - Fractional timestamp is floored so time 123.4 becomes 123. The data read should not assume that an entry's # timestamp is its exact time _RAW_DTYPE = np.dtype([('int', '<u4'), ('type', '<u2'), ('offset', '<u8')]) _DTYPE = np.dtype([('time', '<f8'), ('type', '<u2'), ('offset', '<u8')]) def __init__(self, index_path: str = None, data_path: str = None, delete_on_error=True, data: Union[np.ndarray, list] = None, t0: Timestamp = None): """! @brief Construct a new @ref FileIndex instance. @param index_path The path to a `.p1i` index file to be loaded. @param data_path The path to the `.p1log` data file corresponding with `index_path`, used to validate the loaded index entries. If `None`, defaults to `filename.p1log` if it exists. @param delete_on_error If `True`, delete the index file if an error is detected before raising an exception. Otherwise, leave the file unchanged. @param data A NumPy `ndarray` or Python `list` containing information about each FusionEngine message in the `.p1log` file. For internal use. @param t0 The P1 time corresponding with the start of the `.p1log` file, if known. For internal use. """ if data is None: self._data = None else: if isinstance(data, list): self._data = np.array(data, dtype=FileIndex._DTYPE) elif data.dtype == FileIndex._DTYPE: self._data = data else: raise ValueError('Unsupported array format.') if index_path is not None: if self._data is None: self.load(index_path=index_path, data_path=data_path, delete_on_error=delete_on_error) else: raise ValueError('Cannot specify both path and data.') if t0 is not None: self.t0 = t0 elif self._data is None: self.t0 = None else: idx = np.argmax(~np.isnan(self._data['time'])) if idx >= 0: self.t0 = Timestamp(self._data['time'][idx]) else: self.t0 = None def load(self, index_path, data_path=None, delete_on_error=True): """! @brief Load a `.p1i` index file from disk. @param index_path The path to the file to be read. @param data_path The path to the `.p1log` data file corresponding with `index_path`, used to validate the loaded index entries. If `None`, defaults to `filename.p1log` if it exists. @param delete_on_error If `True`, delete the index file if an error is detected before raising an exception. Otherwise, leave the file unchanged. """ if os.path.exists(index_path): raw_data = np.fromfile(index_path, dtype=FileIndex._RAW_DTYPE) self._data = FileIndex._from_raw(raw_data) else: raise FileNotFoundError("Index file '%s' does not exist." % index_path) # If a .p1log data file exists for this index file, check that the data file size is consistent with the index. # If the index doesn't cover the full binary file, the user might have interrupted the read when it was being # generated, or they may have overwritten the .p1log file. if data_path is None: data_path = os.path.splitext(index_path)[0] + '.p1log' if not os.path.exists(data_path): # If the user didn't explicitly set data_path and the default file doesn't exist, it is not considered # an error. return elif not os.path.exists(data_path): raise ValueError("Specified data file '%s' not found." % data_path) with open(data_path, 'rb') as data_file: # Compute the data file size. data_file.seek(0, io.SEEK_END) data_file_size = data_file.tell() data_file.seek(0, 0) # Check for empty files. if data_file_size == 0 and len(self) != 0: if delete_on_error: os.remove(index_path) raise ValueError("Data file empty but index populated. [%d elements]" % len(self)) elif data_file_size != 0 and len(self) == 0: if delete_on_error: os.remove(index_path) raise ValueError("Index file empty but data file not 0 length. [size=%d B]" % data_file_size) # See if the index is larger than the data file. last_offset = self.offset[-1] if last_offset > data_file_size - MessageHeader.calcsize(): if delete_on_error: os.remove(index_path) raise ValueError("Last index entry past end of file. [size=%d B, start_offset=%d B]" % (data_file_size, last_offset)) # Read the header of the last entry to get its size, then use that to compute the expected data file size # from the offset in the last index entry. data_file.seek(last_offset, io.SEEK_SET) buffer = data_file.read(MessageHeader.calcsize()) data_file.seek(0, io.SEEK_SET) header = MessageHeader() header.unpack(buffer=buffer, warn_on_unrecognized=False) message_size_bytes = MessageHeader.calcsize() + header.payload_size_bytes index_size = last_offset + message_size_bytes if index_size != data_file_size: if delete_on_error: os.remove(index_path) raise ValueError("Size expected by index file does not match binary file. [size=%d B, expected=%d B]" % (data_file_size, index_size)) def save(self, index_path): """! @brief Save the contents of this index as a `.p1i` file. @param index_path The path to the file to be written. """ if self._data is not None: raw_data = FileIndex._to_raw(self._data) if os.path.exists(index_path): os.remove(index_path) raw_data.tofile(index_path) def __len__(self): if self._data is None: return 0 else: return len(self._data['time']) def __getattr__(self, key): if key == 'time': return self._data['time'] if self._data is not None else None elif key == 'type': return self._data['type'] if self._data is not None else None elif key == 'offset': return self._data['offset'] if self._data is not None else None else: raise AttributeError def __getitem__(self, key): # No data available. if self._data is None: return FileIndex() # Key is a string (e.g., index['type']), defer to getattr() (e.g., index.type). elif isinstance(key, str): return getattr(self, key) # Return entries for a specific message type. elif isinstance(key, MessageType): idx = self._data['type'] == key return FileIndex(data=self._data[idx], t0=self.t0) # Return entries for a list of message types. elif isinstance(key, (set, list, tuple)) and len(key) > 0 and isinstance(key[0], MessageType): idx = np.isin(self._data['type'], key) return FileIndex(data=self._data[idx], t0=self.t0) # Return a single element by index. elif isinstance(key, int): return FileIndex(data=self._data[key:(key + 1)], t0=self.t0) # Key is a slice in time. Return a subset of the data. elif isinstance(key, slice) and (isinstance(key.start, (Timestamp, float)) or isinstance(key.stop, (Timestamp, float))): # Time is continuous, so step sizes are not supported. if key.step is not None: raise ValueError('Step size not supported for time ranges.') else: start_idx = np.argmax(self._data['time'] >= key.start) if key.start is not None else 0 end_idx = np.argmax(self._data['time'] >= key.stop) if key.stop is not None else len(self._data) return FileIndex(data=self._data[start_idx:end_idx], t0=self.t0) # Key is an index slice or a list of individual element indices. Return a subset of the data. else: if isinstance(key, (set, list, tuple)): key = np.array(key) return FileIndex(data=self._data[key], t0=self.t0) def __iter__(self): if self._data is None: return FileIndexIterator(None) else: return FileIndexIterator(iter(self._data)) @classmethod def get_path(cls, data_path): """! @brief Get the `.p1i` index file path corresponding with a FusionEngine `.p1log` file. @param data_path The path to the `.p1log` file. @return The corresponding `.p1i` file path. """ return os.path.splitext(data_path)[0] + '.p1i' @classmethod def _from_raw(cls, raw_data): idx = raw_data['int'] == Timestamp._INVALID data = raw_data.astype(dtype=cls._DTYPE) data['time'][idx] = np.nan return data @classmethod def _to_raw(cls, data): time_sec = data['time'] idx = np.isnan(time_sec) raw_data = data.astype(dtype=cls._RAW_DTYPE) raw_data['int'][idx] = Timestamp._INVALID return raw_data class FileIndexBuilder(object): """! @brief Helper class for constructing a @ref FileIndex. This class can be used to construct a @ref FileIndex and a corresponding `.p1i` file when reading a `.p1log` file. """ def __init__(self): self.raw_data = [] def from_file(self, data_path: str): """! @brief Construct a @ref FileIndex from an existing `.p1log` file. @param data_path The path to the `.p1log` file. @return The generated @ref FileIndex instance. """ decoder = FusionEngineDecoder(return_offset=True) with open(data_path, 'rb') as f: # Read a chunk of data and process all messages found in it. data = f.read(65536) messages = decoder.on_data(data) for (header, message, offset_bytes) in messages: p1_time = message.__dict__.get('p1_time', None) self.append(message_type=header.message_type, offset_bytes=offset_bytes, p1_time=p1_time) return self.to_index() def append(self, message_type: MessageType, offset_bytes: int, p1_time: Timestamp = None): """! @brief Add an entry to the index data being accumulated. @param message_type The type of the FusionEngine message. @param offset_bytes The offset of the message within the `.p1log` file (in bytes). @param p1_time The P1 time of the message, or `None` if the message does not have P1 time. """ if p1_time is None: time_sec = np.nan else: time_sec = float(p1_time) self.raw_data.append((time_sec, int(message_type), offset_bytes)) def save(self, index_path): """! @brief Save the contents of the generated index as a `.p1i` file. @param index_path The path to the file to be written. """ index = self.to_index() index.save(index_path) return index def to_index(self): """! @brief Construct a @ref FileIndex from the current set of data. @return The generated @ref FileIndex instance. """ return FileIndex(data=self.raw_data) def __len__(self): return len(self.raw_data) ``` #### File: fusion_engine_client/utils/construct_utils.py ```python from construct import Adapter, Enum class NamedTupleAdapter(Adapter): """! @brief Adapter for automatically converting between construct streams and NamedTuples with corresponding fields. Usage Example: ```{.py} class VersionTuple(NamedTuple): major: int minor: int VersionRawConstruct = Struct( "major" / Int8ul, "minor" / Int16ul, ) VersionConstruct = NamedTupleAdapter(VersionTuple, VersionRawConstruct) UserConfigConstruct = Struct( "version" / VersionConstruct, "thing2" / Int32ul, ) UserConfigConstruct.build({'version': VersionTuple(2, 3), 'thing2': 4}) ``` """ def __init__(self, tuple_cls, *args): """! @brief Create an adapter for (de)serializing NamedTuples. @param tuple_cls The NamedTuple to adapt. """ super().__init__(*args) self.tuple_cls = tuple_cls def _decode(self, obj, context, path): # skip _io member return self.tuple_cls(*list(obj.values())[1:]) def _encode(self, obj, context, path): return obj._asdict() class ClassAdapter(Adapter): """! @brief Adapter for automatically converting between construct streams and a class with corresponding fields. Usage Example: ```{.py} class VersionClass: def __init__(self, major=0, minor=0): self.major = major self.minor = minor VersionRawConstruct = Struct( "major" / Int8ul, "minor" / Int16ul, ) VersionConstruct = ClassAdapter(VersionClass, VersionRawConstruct) UserConfigConstruct = Struct( "version" / VersionConstruct, "thing2" / Int32ul, ) UserConfigConstruct.build({'version': VersionClass(2, 3), 'thing2': 4}) ``` """ def __init__(self, cls, *args): """! @brief Create an adapter for (de)serializing a class. @param cls The class to adapt. """ super().__init__(*args) self.cls = cls def _decode(self, obj, context, path): val = self.cls() val.__dict__.update(obj) return val def _encode(self, obj, context, path): return obj.__dict__ class EnumAdapter(Adapter): """! @brief Adapter for automatically converting between construct Enum and python Enums. Usage Example: ```{.py} class ConfigType(IntEnum): FOO = 0 BAR = 1 ConfigConstruct = EnumAdapter(ConfigType, Enum(Int32ul, ConfigType)) UserConfigConstruct = Struct( "config_type" / ConfigConstruct, ) data = UserConfigConstruct.build({'config_type': ConfigType.ACTIVE}) assert ConfigType.ACTIVE == UserConfigConstruct.parse(data).config_type ``` """ def __init__(self, enum_cls, *args): """! @brief Create an adapter for (de)serializing Enums. @param enum_cls The Enum to adapt. """ super().__init__(*args) self.enum_cls = enum_cls def _decode(self, obj, context, path): return self.enum_cls(int(obj)) def _encode(self, obj, context, path): return obj def AutoEnum(construct_cls, enum_cls): """! @brief Wrapper for @ref EnumAdapter to make its arguments simpler. Usage Example: ```{.py} class ConfigType(IntEnum): FOO = 0 BAR = 1 UserConfigConstruct = Struct( "config_type" / AutoEnum(Int32ul, ConfigType), ) data = UserConfigConstruct.build({'config_type': ConfigType.ACTIVE}) assert ConfigType.ACTIVE == UserConfigConstruct.parse(data).config_type ``` """ return EnumAdapter(enum_cls, Enum(construct_cls, enum_cls)) ``` #### File: fusion_engine_client/utils/trace.py ```python import logging import sys __all__ = [] # Define Logger TRACE level and associated trace() function if it doesn't exist. if not hasattr(logging, 'TRACE'): logging.TRACE = logging.DEBUG - 1 if sys.version_info.major == 2: logging._levelNames['TRACE'] = logging.TRACE logging._levelNames[logging.TRACE] = 'TRACE' else: logging._nameToLevel['TRACE'] = logging.TRACE logging._levelToName[logging.TRACE] = 'TRACE' def trace(self, msg, *args, **kwargs): self.log(logging.TRACE, msg, *args, **kwargs) logging.Logger.trace = trace ``` #### File: python/tests/test_config.py ```python import pytest from fusion_engine_client.messages.configuration import ConfigurationSource, DeviceCourseOrientationConfig, InterfaceID, TransportType from fusion_engine_client.messages import (SetConfigMessage, Uart1BaudConfig, ConfigType, Direction, ConfigResponseMessage, GnssLeverArmConfig, InvalidConfig, OutputInterfaceConfigResponseMessage, OutputInterfaceConfig) import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.getLogger('point_one').setLevel(logging.DEBUG) def test_set_config(): BASE_SIZE = 8 set_msg = SetConfigMessage(DeviceCourseOrientationConfig(Direction.BACKWARD, Direction.DOWN)) assert len(set_msg.pack()) == BASE_SIZE + 4 set_msg = SetConfigMessage(GnssLeverArmConfig(1, 2, 3)) assert len(set_msg.pack()) == BASE_SIZE + 12 set_msg = SetConfigMessage() set_msg.config_object = Uart1BaudConfig(9600) uart_data = set_msg.pack() assert len(uart_data) == BASE_SIZE + 4 set_msg = SetConfigMessage() set_msg.unpack(uart_data) assert isinstance(set_msg.config_object, Uart1BaudConfig) assert set_msg.config_object.GetType() == ConfigType.UART1_BAUD assert set_msg.config_object.value == 9600 def test_bad_set_config(): BASE_SIZE = 8 set_msg = SetConfigMessage() with pytest.raises(TypeError): set_msg.pack() set_msg = SetConfigMessage() set_msg.config_object = "Dummy" with pytest.raises(TypeError): set_msg.pack() set_msg = SetConfigMessage() set_msg.config_object = InvalidConfig() uart_data = set_msg.pack() assert len(uart_data) == BASE_SIZE set_msg = SetConfigMessage() set_msg.unpack(uart_data) assert isinstance(set_msg.config_object, InvalidConfig) assert set_msg.config_object.GetType() == ConfigType.INVALID def test_config_data(): BASE_SIZE = 12 data_msg = ConfigResponseMessage() data_msg.config_object = GnssLeverArmConfig(1, 2, 3) assert len(data_msg.pack()) == BASE_SIZE + 12 data_msg = ConfigResponseMessage() data_msg.config_object = Uart1BaudConfig(9600) data_msg.config_source = ConfigurationSource.SAVED uart_data = data_msg.pack() assert len(uart_data) == BASE_SIZE + 4 data_msg = ConfigResponseMessage() data_msg.unpack(uart_data) assert isinstance(data_msg.config_object, Uart1BaudConfig) assert data_msg.config_object.GetType() == ConfigType.UART1_BAUD assert data_msg.config_object.value == 9600 assert data_msg.config_source == ConfigurationSource.SAVED def test_output_interface_data(): data_msg = OutputInterfaceConfigResponseMessage() data_msg.output_interface_data = [ OutputInterfaceConfig(InterfaceID(TransportType.SERIAL, 0), [1, 2]), ] packed_data = data_msg.pack() assert len(data_msg.pack()) == 4 + 4 + 4 + 2 data_msg = OutputInterfaceConfigResponseMessage() data_msg.output_interface_data = [ OutputInterfaceConfig(InterfaceID(TransportType.SERIAL, 0), [1, 2]), OutputInterfaceConfig(InterfaceID(TransportType.SERIAL, 1), [1]) ] data_msg.config_source = ConfigurationSource.SAVED packed_data = data_msg.pack() assert len(data_msg.pack()) == 4 + (4 + 4 + 2) + (4 + 4 + 1) data_msg = OutputInterfaceConfigResponseMessage() data_msg.unpack(packed_data) assert data_msg.config_source == ConfigurationSource.SAVED assert len(data_msg.output_interface_data) == 2 assert data_msg.output_interface_data[0].output_interface == InterfaceID(TransportType.SERIAL, 0) assert data_msg.output_interface_data[0].stream_indices == [1, 2] assert data_msg.output_interface_data[1].output_interface == InterfaceID(TransportType.SERIAL, 1) assert data_msg.output_interface_data[1].stream_indices == [1] ``` #### File: python/tests/test_file_index.py ```python import os import numpy as np import pytest from fusion_engine_client.analysis.file_index import FileIndex, FileIndexBuilder from fusion_engine_client.messages import MessageType, Timestamp, message_type_to_class from fusion_engine_client.parsers import FusionEngineEncoder RAW_DATA = [ (None, MessageType.VERSION_INFO, 0), (Timestamp(1.0), MessageType.POSE, 10), (Timestamp(2.0), MessageType.POSE, 20), (Timestamp(2.0), MessageType.GNSS_INFO, 30), (None, MessageType.VERSION_INFO, 40), (Timestamp(3.0), MessageType.POSE, 50), (Timestamp(4.0), MessageType.POSE, 60), ] def _test_time(time, raw_data): raw_time = [e[0] for e in raw_data] raw_is_none = [e is None for e in raw_time] idx = np.logical_or(time == raw_time, np.logical_and(np.isnan(time), raw_is_none)) return idx.all() def test_index(): index = FileIndex(data=RAW_DATA) assert len(index) == len(RAW_DATA) raw = [e for e in RAW_DATA if e[1] == MessageType.POSE] idx = index.type == MessageType.POSE assert np.sum(idx) == len(raw) assert _test_time(index.time[idx], raw) assert (index.offset[idx] == [e[2] for e in raw]).all() raw = [e for e in RAW_DATA if e[1] == MessageType.VERSION_INFO] idx = index.type == MessageType.VERSION_INFO assert _test_time(index.time[idx], raw) assert (index.offset[idx] == [e[2] for e in raw]).all() def test_iterator(): index = FileIndex(data=RAW_DATA) for i, entry in enumerate(index): assert entry.type == RAW_DATA[i][1] def test_type_slice(): index = FileIndex(data=RAW_DATA) pose_index = index[MessageType.POSE] raw = [e for e in RAW_DATA if e[1] == MessageType.POSE] assert len(pose_index) == len(raw) assert (pose_index.offset == [e[2] for e in raw]).all() pose_index = index[(MessageType.POSE, MessageType.GNSS_INFO)] raw = [e for e in RAW_DATA if e[1] == MessageType.POSE or e[1] == MessageType.GNSS_INFO] assert len(pose_index) == len(raw) assert (pose_index.offset == [e[2] for e in raw]).all() def test_index_slice(): index = FileIndex(data=RAW_DATA) # Access a single element. sliced_index = index[3] raw = [RAW_DATA[3]] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access to the end. sliced_index = index[3:] raw = RAW_DATA[3:] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access from the beginning. sliced_index = index[:3] raw = RAW_DATA[:3] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access a range. sliced_index = index[2:4] raw = RAW_DATA[2:4] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access individual indices. sliced_index = index[(2, 3, 5)] raw = [RAW_DATA[i] for i in (2, 3, 5)] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() def test_time_slice(): def _lower_bound(time): return next(i for i, e in enumerate(RAW_DATA) if (e[0] is not None and e[0] >= time)) index = FileIndex(data=RAW_DATA) # Access to the end. sliced_index = index[2.0:] raw = RAW_DATA[_lower_bound(2.0):] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access from the beginning. sliced_index = index[:3.0] raw = RAW_DATA[:_lower_bound(3.0)] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access a range. sliced_index = index[2.0:3.0] raw = RAW_DATA[_lower_bound(2.0):_lower_bound(3.0)] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() # Access by Timestamp. sliced_index = index[Timestamp(2.0):Timestamp(3.0)] raw = RAW_DATA[_lower_bound(2.0):_lower_bound(3.0)] assert _test_time(sliced_index.time, raw) assert (sliced_index.offset == [e[2] for e in raw]).all() def test_empty_index(): index = FileIndex() assert len(index) == 0 assert index.time is None def test_builder(tmpdir): builder = FileIndexBuilder() for entry in RAW_DATA: builder.append(p1_time=entry[0], message_type=entry[1], offset_bytes=entry[2]) assert len(builder) == len(RAW_DATA) index = builder.to_index() assert len(index) == len(RAW_DATA) index_path = tmpdir.join('index.p1i') index.save(index_path) assert os.path.exists(index_path) assert os.path.getsize(index_path) > 0 @pytest.fixture def data_path(tmpdir): prefix = tmpdir.join('my_data') # Construct an binary data file and a corresponding index. data_path = prefix + '.p1log' index_path = prefix + '.p1i' builder = FileIndexBuilder() encoder = FusionEngineEncoder() with open(data_path, 'wb') as f: for entry in RAW_DATA: builder.append(p1_time=entry[0], message_type=entry[1], offset_bytes=f.tell()) cls = message_type_to_class[entry[1]] message = cls() if entry[0] is not None and hasattr(message, 'p1_time'): message.p1_time = entry[0] f.write(encoder.encode_message(message)) builder.save(index_path) return data_path def test_validate_good(data_path): index_path = FileIndex.get_path(data_path) index = FileIndex(index_path=index_path, data_path=data_path) assert len(index) == len(RAW_DATA) def test_validate_index_empty(data_path): index_path = FileIndex.get_path(data_path) # Clear the index file. with open(index_path, 'wb'): pass with pytest.raises(ValueError): index = FileIndex(index_path=index_path, data_path=data_path) def test_validate_data_file_empty(data_path): index_path = FileIndex.get_path(data_path) # Clear the data file. with open(data_path, 'wb'): pass with pytest.raises(ValueError): index = FileIndex(index_path=index_path, data_path=data_path) def test_validate_index_too_small(data_path): index_path = FileIndex.get_path(data_path) # Strip one entry from the index file. file_size = os.path.getsize(index_path) with open(index_path, 'wb') as f: f.truncate(file_size - FileIndex._RAW_DTYPE.itemsize) with pytest.raises(ValueError): index = FileIndex(index_path=index_path, data_path=data_path) def test_validate_data_too_small(data_path): index_path = FileIndex.get_path(data_path) # Strip one entry from the index file. file_size = os.path.getsize(data_path) with open(data_path, 'wb') as f: f.truncate(file_size - 10) with pytest.raises(ValueError): index = FileIndex(index_path=index_path, data_path=data_path) def test_validate_data_too_large(data_path): index_path = FileIndex.get_path(data_path) # Strip one entry from the index file. file_size = os.path.getsize(data_path) with open(data_path, 'ab') as f: f.write(b'abcd') with pytest.raises(ValueError): index = FileIndex(index_path=index_path, data_path=data_path) ``` #### File: python/tests/test_file_reader.py ```python import numpy as np from fusion_engine_client.analysis.file_reader import FileReader, MessageData, TimeAlignmentMode from fusion_engine_client.messages import * def setup(): data = { PoseMessage.MESSAGE_TYPE: MessageData(PoseMessage.MESSAGE_TYPE, None), PoseAuxMessage.MESSAGE_TYPE: MessageData(PoseAuxMessage.MESSAGE_TYPE, None), GNSSInfoMessage.MESSAGE_TYPE: MessageData(GNSSInfoMessage.MESSAGE_TYPE, None), } message = PoseMessage() message.p1_time = Timestamp(1.0) message.velocity_body_mps = np.array([1.0, 2.0, 3.0]) data[PoseMessage.MESSAGE_TYPE].messages.append(message) message = PoseMessage() message.p1_time = Timestamp(2.0) message.velocity_body_mps = np.array([4.0, 5.0, 6.0]) data[PoseMessage.MESSAGE_TYPE].messages.append(message) message = PoseAuxMessage() message.p1_time = Timestamp(2.0) message.velocity_enu_mps = np.array([14.0, 15.0, 16.0]) data[PoseAuxMessage.MESSAGE_TYPE].messages.append(message) message = PoseAuxMessage() message.p1_time = Timestamp(3.0) message.velocity_enu_mps = np.array([17.0, 18.0, 19.0]) data[PoseAuxMessage.MESSAGE_TYPE].messages.append(message) message = GNSSInfoMessage() message.p1_time = Timestamp(2.0) message.gdop = 5.0 data[GNSSInfoMessage.MESSAGE_TYPE].messages.append(message) message = GNSSInfoMessage() message.p1_time = Timestamp(3.0) message.gdop = 6.0 data[GNSSInfoMessage.MESSAGE_TYPE].messages.append(message) return data def test_time_align_drop(): data = setup() FileReader.time_align_data(data, TimeAlignmentMode.DROP) assert len(data[PoseMessage.MESSAGE_TYPE].messages) == 1 assert float(data[PoseMessage.MESSAGE_TYPE].messages[0].p1_time) == 2.0 assert len(data[PoseAuxMessage.MESSAGE_TYPE].messages) == 1 assert float(data[PoseAuxMessage.MESSAGE_TYPE].messages[0].p1_time) == 2.0 assert len(data[GNSSInfoMessage.MESSAGE_TYPE].messages) == 1 assert float(data[GNSSInfoMessage.MESSAGE_TYPE].messages[0].p1_time) == 2.0 def test_time_align_insert(): data = setup() FileReader.time_align_data(data, TimeAlignmentMode.INSERT) assert len(data[PoseMessage.MESSAGE_TYPE].messages) == 3 assert float(data[PoseMessage.MESSAGE_TYPE].messages[0].p1_time) == 1.0 assert float(data[PoseMessage.MESSAGE_TYPE].messages[1].p1_time) == 2.0 assert float(data[PoseMessage.MESSAGE_TYPE].messages[2].p1_time) == 3.0 assert data[PoseMessage.MESSAGE_TYPE].messages[0].velocity_body_mps[0] == 1.0 assert data[PoseMessage.MESSAGE_TYPE].messages[1].velocity_body_mps[0] == 4.0 assert np.isnan(data[PoseMessage.MESSAGE_TYPE].messages[2].velocity_body_mps[0]) assert len(data[PoseAuxMessage.MESSAGE_TYPE].messages) == 3 assert float(data[PoseAuxMessage.MESSAGE_TYPE].messages[0].p1_time) == 1.0 assert float(data[PoseAuxMessage.MESSAGE_TYPE].messages[1].p1_time) == 2.0 assert float(data[PoseAuxMessage.MESSAGE_TYPE].messages[2].p1_time) == 3.0 assert np.isnan(data[PoseAuxMessage.MESSAGE_TYPE].messages[0].velocity_enu_mps[0]) assert data[PoseAuxMessage.MESSAGE_TYPE].messages[1].velocity_enu_mps[0] == 14.0 assert data[PoseAuxMessage.MESSAGE_TYPE].messages[2].velocity_enu_mps[0] == 17.0 assert len(data[GNSSInfoMessage.MESSAGE_TYPE].messages) == 3 assert float(data[GNSSInfoMessage.MESSAGE_TYPE].messages[0].p1_time) == 1.0 assert float(data[GNSSInfoMessage.MESSAGE_TYPE].messages[1].p1_time) == 2.0 assert float(data[GNSSInfoMessage.MESSAGE_TYPE].messages[2].p1_time) == 3.0 assert np.isnan(data[GNSSInfoMessage.MESSAGE_TYPE].messages[0].gdop) assert data[GNSSInfoMessage.MESSAGE_TYPE].messages[1].gdop == 5.0 assert data[GNSSInfoMessage.MESSAGE_TYPE].messages[2].gdop == 6.0 def test_time_align_specific(): data = setup() FileReader.time_align_data(data, TimeAlignmentMode.DROP, message_types=[PoseMessage.MESSAGE_TYPE, GNSSInfoMessage.MESSAGE_TYPE]) assert len(data[PoseMessage.MESSAGE_TYPE].messages) == 1 assert float(data[PoseMessage.MESSAGE_TYPE].messages[0].p1_time) == 2.0 assert len(data[PoseAuxMessage.MESSAGE_TYPE].messages) == 2 assert float(data[PoseAuxMessage.MESSAGE_TYPE].messages[0].p1_time) == 2.0 assert float(data[PoseAuxMessage.MESSAGE_TYPE].messages[1].p1_time) == 3.0 assert len(data[GNSSInfoMessage.MESSAGE_TYPE].messages) == 1 assert float(data[GNSSInfoMessage.MESSAGE_TYPE].messages[0].p1_time) == 2.0 ```
{ "source": "jimenezjose/Phoenix", "score": 3 }
#### File: resources/systems/__init__.py ```python from .status import HostnameStatus from api.db import get_table from flask_restful import ( Resource, reqparse) class Systems(Resource): """System resource for hostnames organization and details.""" def get(self): """GET request for all systems. Returns: Dictionary of data in hostnames table. Success: Status Code: 200 OK * hostnames table returned. """ # query for all hostnames in the database hostnames_table = get_table('hostnames') return {'hostnames' : hostnames_table}, 200 @staticmethod def add_all_resources(api, path): """Recursively adds all sub-resources in the 'system' resource. Args: api: flask_restful Api object. path: string path for current resource. Example: 'api/systems' """ # register systems as an api resource api.add_resource(Systems, path) # directly add sub-resources of system HostnameStatus.add_all_resources(api, '{}/<string:hostname_status>'.format(path)) ``` #### File: hostname/history/__init__.py ```python from api.db import ( add_filter_query_parameters, get_table, parse_filter_query_parameters, validate, zip_params) from flask_restful import ( Resource, reqparse) class TestHistory(Resource): """History resource to fetch all running tests, queued tests, and test history.""" def get(self, hostname_status, hostname): """GET request for all info on tests_runs associated with the hostname. Args: hostname: string name of system hostname passed through url. Returns: Table dictionary of tests_runs with applied query paramters for filtering. Success: Status Code: 200 OK * return tests runs information Failure: Status Code: 404 Not Found * Invalid url - invalid hostname_status or hostname """ validate(hostname_status=hostname_status, hostname=hostname, http_error_code=404) parser = reqparse.RequestParser() add_filter_query_parameters(parser, 'tests_runs') args = parser.parse_args() filter = parse_filter_query_parameters(args, 'tests_runs') # overwrite filter with static info from uri static_params = zip_params( hostname=hostname, hostname_status=hostname_status ) filter.update(static_params) # query for filtered test-history tests_runs = get_table('tests_runs', constraints=filter) return {'tests_runs' : tests_runs}, 200 @staticmethod def add_all_resources(api, path): """Recursively adds all sub-resources in the 'test' endpoint. Args: api: flask_restful Api object. path: string path for current resource. Example: 'api/systems/.../test' """ # register tests as an api resource with the given path api.add_resource(TestHistory, path) # directly add sub-resources of 'test-history' <HERE> ``` #### File: systems/status/__init__.py ```python from .hostname import Hostname from api.db import ( delete_hostname, get_running_tests, get_table, insert_hostname, is_retired, validate) from flask_restful import ( abort, Resource, reqparse) class HostnameStatus(Resource): """Statusflag that annotates a hostname system as 'retired' or 'active'.""" def get(self, hostname_status): """GET request for all systems labeled as given by the 'hostname_status' Args: hostname_status: string annotation of a system for a binary representation of an 'active' or 'retired' hostname. Returns: Dictoinary of the hostnames table with a filtered hostname_status. Success: Status Code: 200 OK * valid hostname_status provided. Failure: Status Code: 404 Not Found * hostname_status provided unknown - not {active, retired} - invalid url. """ validate(hostname_status=hostname_status, http_error_code=404) # Get all hostnames with given retired hostname status hostnames_table = get_table('hostnames', hostname_status=hostname_status) return {'hostnames' : hostnames_table}, 200 def post(self, hostname_status): """POST request to add a hostname to the database. Args: hostname_status: string annotation of a system for a binary representation of an 'active' Returns: Dictionary of inserted hostname with keys coinciding column names of the table hostnames. Success: Status Code: 201 Created * hostname inserted into the database. Failure: Status Code: 404 Not Found * status provided does not exist. * required arguments not supplied in request. Status Code: 405 Method Not Allowed * attempt to add a non-active hostname not allowed. Status Code: 409 Conflict * duplicate insertion for active hostname not allowed. """ validate(hostname_status=hostname_status, http_error_code=404) # require 'hostname' parameter from request. parser = reqparse.RequestParser() parser.add_argument('hostname', type=str, required=True) args = parser.parse_args() if is_retired(hostname_status): # Hostnames added to the database must be active, return status code 405 Method Not Allowed return {'message' : 'The method is not allowed for the requested URL.'}, 405 # check if working hostname already exists in db. existing_hostname = get_table('hostnames', hostname=args['hostname'], hostname_status=hostname_status) if existing_hostname: # active hostname already exists, returning conflict status code 409. return {'message' : '{} hostname, {}, already exists. Insertion not allowed.'.format(hostname_status, args['hostname'])}, 409 # otherwise, insert hostname into db. inserted_hostname = insert_hostname(args['hostname']) return inserted_hostname # take off hostname id for simplicity of function definition TODO def delete(self, hostname_status): """DELETE the hostname by setting the retired flag to True. Args: hostname_status: string annotation of a system to show retired status. Returns: Dictionary of deleted hostname with keys coinciding the column names of table hostnames. Success: Status Code: 200 OK * hostname deleted. Failure: Status Code: 404 Not Found * invalid url - hostname_status is not valid. Status Code: 400 Bad Request * no parameters were passed in the JSON body to the request. Status Code: 405 Method Not Allowed * attempt to do a DELETE request on invalid hostname_status in url Status Code: 409 Conflict * hostname did not exist in the database. * hostname is marked as retired in the database. * active hostname is busy with running tests. """ validate(hostname_status=hostname_status, http_error_code=404) if is_retired(hostname_status): # only remove active hostnames; return 405 Method Not Allowed return {'message' : 'The method is not allowed for the requested URL.'}, 405 # require 'hostname' parameter from request. parser = reqparse.RequestParser() parser.add_argument('hostname', type=str) parser.add_argument('hostnames_id', type=int) args = parser.parse_args() if args['hostname'] is None and args['hostnames_id'] is None: # at least one argument is required otherwise throw 400 Bad Request. errors = { 'hostname' : 'Missing parameter in JSON body', 'hostnames_id' : 'Missing parameter in JSON body', 'message' : 'At least one paramter is required', } abort(400, message=errors) # validate that hostname info exists in the db validate( hostname=args['hostname'], hostnames_id=args['hostnames_id'], http_error_code=409 ) # validate that the hostname is active active_hostname = get_table( 'hostnames', hostname=args['hostname'], hostnames_id=args['hostnames_id'], hostname_status=hostname_status ) if not active_hostname: # hostname is not active - validation check failed. supplied_args = {key : value for key, value in args.items() if value is not None} error_msg = 'No active hostname found with supplied args: {}'.format(supplied_args) abort(409, message=error_msg) # if hostname is running tests - abort DELETE request running_tests = get_running_tests(hostname=args['hostname'], hostnames_id=args['hostnames_id']) if running_tests: # system currently running tests - throw 409 Conflict error_msg = 'System is Busy. Currently processing {} tests.'.format(len(running_tests)) errors = {args['hostname'] : error_msg} abort(409, message=errors) # internally hostnames_id takes precedence over hostname string hostnames_deleted = delete_hostname(hostnames_id=args['hostnames_id'], hostname=args['hostname']) return {'hostnames' : hostnames_deleted}, 200 @staticmethod def add_all_resources(api, path): """Recursively adds all sub-resources in the 'system/<string:hostname_status>' resource. Args: api: flask_restful Api object. path: string path for current resource. Example: 'api/systems/active' """ # register systems as an api resource api.add_resource(HostnameStatus, path) # directly add sub-resources of systems/<string:hostname_status> Hostname.add_all_resources(api, '{}/<string:hostname>'.format(path)) ```
{ "source": "jimenezl/dotfiles", "score": 3 }
#### File: jimenezl/dotfiles/script.py ```python from subprocess import call import sys import os def main(): DOTFILES_DIR = os.path.dirname(os.path.abspath(__file__)) dot_config = DOTFILES_DIR + "/../.config" list_of_configs_file = open( DOTFILES_DIR + '/config/list_of_configs.txt', 'r') list_of_configs = [] for line in list_of_configs_file: list_of_configs.append(line.strip()) for program_name in list_of_configs: call( ["rsync", "-r", dot_config + "/" + program_name, DOTFILES_DIR + "/config"]) home_dir_configs_file = open( DOTFILES_DIR + '/home_dir/home_dir_configs.txt', 'r') home_dir_configs = [] for line in home_dir_configs_file: home_dir_configs.append(line.strip()) for file_name in home_dir_configs: call( ["rsync", "-r", DOTFILES_DIR + "/../" + file_name, DOTFILES_DIR + "/home_dir"]) if __name__ == '__main__': main() ```
{ "source": "Jimeng927/Deploy_a_dada_dashboard", "score": 3 }
#### File: Deploy_a_dada_dashboard/wrangling_scripts/wrangle_data.py ```python import pandas as pd import plotly.graph_objs as go #Clean the dataset df_br = pd.read_csv('data/birth_rate.csv', skiprows=4) df_le = pd.read_csv('data/life_expectancy.csv', skiprows=4) df_le = df_le.drop(['Country Code','Indicator Name','Indicator Code','2018','2019','Unnamed: 64'],axis=1) df_meta = pd.read_csv('data/Metadata_Country_API_SP.DYN.LE00.IN_DS2_en_csv_v2_820880.csv') df = df_br.merge(df_meta, on=['Country Code'], how='left') df = df.drop(['Country Code','Indicator Name','Indicator Code','2018','2019','Unnamed: 64','SpecialNotes','TableName','Unnamed: 5'],axis=1) countrylist = ['United States', 'China', 'Japan', 'Korea','Germany', 'United Kingdom', 'India', 'France', 'Brazil', 'Italy', 'Nigeria'] regionlist = ['East Asia & Pacific','Europe & Central Asia','Latin America & Caribbean','Middle East & North Africa','North America','South Asia','Sub-Saharan Africa'] incomelist= ['High income','Upper middle income','Lower middle income','Low income'] def return_figures(): """Creates four plotly visualizations Args: None Returns: list (dict): list containing the four plotly visualizations """ # first chart plots birth rates from 1960 to 2017 in top selected countries # as a line chart graph_one = [] dfc = df[df['Country Name'].isin(countrylist)] dfc = dfc.melt(id_vars='Country Name', value_vars = dfc.columns[1:-2]) dfc.columns = ['country','year', 'birth_rate'] dfc['year'] = dfc['year'].astype('datetime64[ns]').dt.year for country in countrylist: x_val = dfc[dfc['country'] == country].year.tolist() y_val = dfc[dfc['country'] == country].birth_rate.tolist() graph_one.append( go.Scatter( x = x_val, y = y_val, mode = 'lines', name = country) ) layout_one = dict(title = 'Birth Rates from Year 1960 to 2017', xaxis = dict(title = 'Year', dtick=5), yaxis = dict(title = 'Birth Rate (%)'), ) # second chart plots ararble land for 2015 as a bar chart graph_two = [] dfr = df.groupby('Region').mean().reset_index() dfr = dfr.melt(id_vars='Region', value_vars = dfr.columns[1:]) dfr.columns = ['region','year', 'birth_rate'] dfr['year'] = dfr['year'].astype('datetime64[ns]').dt.year for region in regionlist: x_val = dfr[dfr['region'] == region].year.tolist() y_val = dfr[dfr['region'] == region].birth_rate.tolist() graph_two.append( go.Scatter( x = x_val, y = y_val, mode = 'lines', name = region) ) layout_two = dict(title = 'Birth Rates by Region', xaxis = dict(title = 'Year', dtick=5), yaxis = dict(title = 'Birth Rate (%)'), ) # third chart plots percent of population that is rural from 1990 to 2015 graph_three = [] dfi = df.groupby('IncomeGroup').mean().reset_index() dfi = dfi.melt(id_vars='IncomeGroup', value_vars = dfi.columns[1:]) dfi.columns = ['income','year', 'birth_rate'] dfi['year'] = dfi['year'].astype('datetime64[ns]').dt.year for income in incomelist: x_val = dfi[dfi['income'] == income].year.tolist() y_val = dfi[dfi['income'] == income].birth_rate.tolist() graph_three.append( go.Scatter( x = x_val, y = y_val, mode = 'lines', name = income) ) layout_three = dict(title = 'Birth Rates by Income Group', xaxis = dict(title = 'Year', dtick=5), yaxis = dict(title = 'Birth Rate (%)'), ) # fourth chart shows rural population vs arable land graph_four = [] dfl = df_le[df_le['Country Name'].isin(countrylist)] dfl = dfl.melt(id_vars='Country Name', value_vars = dfl.columns[1:]) dfl.columns = ['country','year', 'life_expectancy'] dfl['year'] = dfl['year'].astype('datetime64[ns]').dt.year for country in countrylist: x_val = dfl[dfl['country'] == country].year.tolist() y_val = dfl[dfl['country'] == country].life_expectancy.tolist() graph_four.append( go.Scatter( x = x_val, y = y_val, mode = 'lines', name = country) ) layout_four = dict(title = 'Life Expectancy from Year 1960 to 2017', xaxis = dict(title = 'Year', dtick=5), yaxis = dict(title = 'Life Expectancy (years)'), ) # append all charts to the figures list figures = [] figures.append(dict(data=graph_one, layout=layout_one)) figures.append(dict(data=graph_two, layout=layout_two)) figures.append(dict(data=graph_three, layout=layout_three)) figures.append(dict(data=graph_four, layout=layout_four)) return figures ```
{ "source": "jimenofonseca/BSTS-SG", "score": 3 }
#### File: jimenofonseca/BSTS-SG/auxiliary.py ```python import calendar import datetime import matplotlib import numpy as np import pandas as pd import seaborn as sns from causalimpact import CausalImpact from matplotlib import pyplot as plt from sklearn.metrics import mean_squared_error from sklearn.model_selection import TimeSeriesSplit from config import INTERVENTION_CALENDAR class BlockingTimeSeriesSplit(): def __init__(self, n_splits): self.n_splits = n_splits def get_n_splits(self, X, y, groups): return self.n_splits def split(self, X, y=None, groups=None): n_samples = len(X) k_fold_size = n_samples // self.n_splits indices = np.arange(n_samples) margin = 0 for i in range(self.n_splits): start = i * k_fold_size stop = start + k_fold_size mid = int(0.8 * (stop - start)) + start yield indices[start: mid], indices[mid + margin: stop] class GrupedTimeseriesKFold(): def __init__(self, n_splits=5, groupby='smapee'): self.n_splits = n_splits self.groupby = groupby def split(self, X, y=None, groups=None, ): groups = X.groupby(self.groupby).groups split_trains1 = [] split_tests1 = [] split_trains2 = [] split_tests2 = [] split_trains3 = [] split_tests3 = [] split_trains4 = [] split_tests4 = [] split_trains5 = [] split_tests5 = [] for group, indexes in groups.items(): tscv = TimeSeriesSplit(n_splits=5) counter = 0 for train_index, test_index in tscv.split(indexes): if counter == 0: split_trains1.extend(indexes[train_index].values) split_tests1.extend(indexes[test_index].values) elif counter == 1: split_trains2.extend(indexes[train_index].values) split_tests2.extend(indexes[test_index].values) elif counter == 2: split_trains3.extend(indexes[train_index].values) split_tests3.extend(indexes[test_index].values) elif counter == 3: split_trains4.extend(indexes[train_index].values) split_tests4.extend(indexes[test_index].values) elif counter == 4: split_trains5.extend(indexes[train_index].values) split_tests5.extend(indexes[test_index].values) else: print("ERROR") counter += 1 cv = [(split_trains1, split_tests1), (split_trains2, split_tests2), (split_trains3, split_tests3), (split_trains4, split_tests4), (split_trains5, split_tests5)] for rxm, tx in cv: yield (np.array(rxm), np.array(tx)) def get_n_splits(self, X=None, y=None, groups=None): return self.n_splits def week_of_month(tgtdate): days_this_month = calendar.mdays[tgtdate.month] for i in range(1, days_this_month): d = datetime.datetime(tgtdate.year, tgtdate.month, i) if d.day - d.weekday() > 0: startdate = d break # now we canuse the modulo 7 appraoch return (tgtdate - startdate).days // 7 + 1 def graph_check_gbm_timeseries(data_mean, X_names, y_limits): visual = data_mean.set_index('timestamp') intervention_list = visual['INTERVENTION'].unique() # Set up the matplotlib figure f, axes = plt.subplots(4, 3, figsize=(15, 9)) sns.despine(left=True) fields_to_plot = ['CONSUMPTION_kWh'] + X_names for i, intervention in enumerate(intervention_list): plot = visual[visual['INTERVENTION'] == intervention] if list(plot['INTERVENTION'].values[0])[-1] == 'L': row = 0 column = int(list(plot['INTERVENTION'].values[0])[0]) - 1 else: row = int(list(plot['INTERVENTION'].values[0])[-1]) column = int(list(plot['INTERVENTION'].values[0])[0]) - 1 if intervention == '2T4': row = 1 column = 1 elif intervention == '2T5': row = 2 column = 1 ax = axes[row, column] ax.set_ylim(y_limits[0], y_limits[1]) plot[fields_to_plot].plot(ax=ax, title=intervention) font = {'family': 'Arial', 'size': 10} matplotlib.rc('font', **font) def graph_check_gbm_dist(data_mean, X_names): visual = data_mean.set_index('timestamp') visual['observation'] = np.log1p(visual.CONSUMPTION_kWh) intervention_list = visual['INTERVENTION'].unique() # Set up the matplotlib figure f, axes = plt.subplots(4, 3, figsize=(10, 9)) sns.despine(left=True) for i, intervention in enumerate(intervention_list): plot = visual[visual['INTERVENTION'] == intervention] if list(plot['INTERVENTION'].values[0])[-1] == 'L': row = 0 column = int(list(plot['INTERVENTION'].values[0])[0]) - 1 else: row = int(list(plot['INTERVENTION'].values[0])[-1]) column = int(list(plot['INTERVENTION'].values[0])[0]) - 1 if intervention == '2T4': row = 1 column = 1 elif intervention == '2T5': row = 2 column = 1 ax = axes[row, column] # plot observation sns.distplot(plot.observation, hist=False, ax=ax, kde_kws={"label": intervention}) # plit predction for field in X_names: value = np.log1p(plot[field]) legend = round(np.sqrt(mean_squared_error(value, plot.observation)), 4) sns.distplot(value, ax=ax, hist=False, kde_kws={"label": field.split("_")[-1] + " " + str(legend)}) def prepare_data_synthetic_bsts(data, INTERVENTION, X_names): # let's get the data for the first experiment of sensors in VIEW data_selection = data[data['INTERVENTION'] == INTERVENTION] dict_info = {'y': data_selection['CONSUMPTION_kWh']} for i, field in enumerate(X_names): dict_info["x" + str(i)] = data_selection[field] dat_final = pd.DataFrame(dict_info) return dat_final def prepare_data_control_bsts(data, INTERVENTION, X_names): # let's get the data for the first experiment of sensors in VIEW # let's get the data for the first experiment of sensors in VIEW df = data.copy() data_selection = df[df['INTERVENTION'] == INTERVENTION] data_control = df[df['INTERVENTION'] == list(INTERVENTION)[0] + 'CONTROL'] data_mean = data_selection.merge(data_control, left_index=True, right_index=True, suffixes=('', '_y')) dict_info = {'y':data_mean['CONSUMPTION_kWh'], 'x1':data_mean['CONSUMPTION_kWh_y']} data = pd.DataFrame(dict_info) return data, data_mean.index def graph_check_cumulative_bsts(data_mean, X_names): visual = data_mean.set_index('timestamp') intervention_list = visual['INTERVENTION'].unique() # Set up the matplotlib figure f, axes = plt.subplots(3, 3, figsize=(15, 9)) dataframe2 = pd.DataFrame() for i, intervention in enumerate(intervention_list): if list(intervention)[-1] == 'L': x = 1 # do nothing else: experiment = int(list(intervention)[0]) intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] end_intervention_date = intervention_data[3] # get position for the plot row = int(list(intervention)[-1]) - 1 column = int(list(intervention)[0]) - 1 if intervention == '2T4': row = 0 column = 1 elif intervention == '2T5': row = 1 column = 1 ax = axes[row, column] data = prepare_data_synthetic_bsts(data_mean.set_index('timestamp'), intervention, X_names) ci = CausalImpact(data, pre_period, post_period, prior_level_sd=None, standarize=True) ax = ci.plot(figsize=(5, 3), end_intervention_date=end_intervention_date, panels=['cumulative'], add_axes=ax) ax.set_title(intervention) # get data table = ci.summary_data pi_value = ci.p_value effect = str(round(table.loc['rel_effect', 'average'] * 100, 2)) + '/n' + '[' + str( round(table.loc['rel_effect_lower', 'average'] * 100, 2)) + ',' + str( round(table.loc['rel_effect_upper', 'average'] * 100, 2)) + ']' table_df = pd.DataFrame({'id': [intervention], 'effect': [effect], 'p_value': [pi_value]}) dataframe2 = dataframe2.append(table_df, ignore_index=True) print(dataframe2) plt.show() font = {'family': 'Arial', 'size': 10} matplotlib.rc('font', **font) def graph_check_all_bsts(data_mean, intervention, X_names, title): experiment = int(list(intervention)[0]) intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] end_intervention_date = intervention_data[3] data = prepare_data_synthetic_bsts(data_mean.set_index('timestamp'), intervention, X_names) x = data.copy() x = x.rename(columns={'y':'Observation', 'x0':'Bayes. Synth. Control Group'}) ci = CausalImpact(data, pre_period, post_period, prior_level_sd=None, standarize=True) font = {'family': 'Arial', 'size': 18} ci.plot(figsize=(7, 9), end_intervention_date=end_intervention_date, title=title) matplotlib.rc('font', **font) return ci, x def graph_check_all_bsts_control(data_mean, intervention, X_names, title): experiment = int(list(intervention)[0]) intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] end_intervention_date = intervention_data[3] data, time = prepare_data_control_bsts(data_mean.set_index('timestamp'), intervention, X_names) x = data.copy() x = x.rename(columns={'y':'Observation', 'x1':'Random. Control Group'}) ci = CausalImpact(data, pre_period, post_period, prior_level_sd=None, standarize=True) font = {'family': 'Arial', 'size': 18} ci.plot(figsize=(7, 9), end_intervention_date=end_intervention_date, title=title) matplotlib.rc('font', **font) return ci, x def graph_check_all_bsts_table(data_mean, intervention, X_names, n): experiment = int(list(intervention)[0]) intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] data = prepare_data_synthetic_bsts(data_mean.set_index('timestamp'), intervention, X_names) ci = CausalImpact(data, pre_period, post_period, prior_level_sd=None, standarize=True) table = ci.summary_data # Min_avg = ["-", # round(table.loc['predicted_lower', 'average'],2), # round(table.loc['abs_effect_lower','average'],2), # round(table.loc['rel_effect_lower','average']*100,2)] # M_avg = [round(table.loc['actual','average'],2), # round(table.loc['predicted', 'average'],2), # round(table.loc['abs_effect','average'],2), # round(table.loc['rel_effect','average']*100,2)] # SD_avg = ["-", # round(table.loc['predicted_sd', 'average'],2), # round(table.loc['abs_effect_sd','average'],2), # round(table.loc['rel_effect_sd','average']*100,2)] # Max_avg = ["-", # round(table.loc['predicted_upper','average'],2), # round(table.loc['abs_effect_upper','average'],2), # round(table.loc['rel_effect_upper','average']*100,2)] # # Min_cum = ["-", # round(table.loc['predicted_lower', 'cumulative'],2), # round(table.loc['abs_effect_lower','cumulative'],2), # round(table.loc['rel_effect_lower','cumulative']*100,2)] # M_cum = [round(table.loc['actual','cumulative'],2), # round(table.loc['predicted', 'cumulative'],2), # round(table.loc['abs_effect','cumulative'],2), # round(table.loc['rel_effect','cumulative']*100,2)] # SD_cum = ["-", # round(table.loc['predicted_sd', 'cumulative'],2), # round(table.loc['abs_effect_sd','cumulative'],2), # round(table.loc['rel_effect_sd','cumulative']*100,2)] # Max_acum = ["-", # round(table.loc['predicted_upper','cumulative'],2), # round(table.loc['abs_effect_upper','cumulative'],2), # round(table.loc['rel_effect_upper','cumulative']*100,2)] # # data = pd.DataFrame({"Treatment": ["Treatement "+intervention+ " (n="+str(n)+")", "","",""], # "Data": ["Observation (kWh)", # "Counterfactual (kWh)", # "Absolute effect (kWh)", # "Relative effect (%)"], # "Min_avg":Min_avg, # "M_avg":M_avg, # "SD_avg":SD_avg, # "Max_avg":Max_avg, # "Min_cum": Min_cum, # "M_cum": M_cum, # "SD_cum": SD_cum, # "Max_acum": Max_acum, # }) data = pd.DataFrame({"Treatment": ["Treatement " + intervention + "(n=" + str(n) + ")"], "Observation": str(round(table.loc['actual','average'],2))+" kWh", "Counterfactual\n(s.d.)": put_together_two(round(table.loc['predicted', 'average'],2), round(table.loc['predicted_sd', 'average'],2)), "Absolute effect\n[95% c.i.]": put_together_three(round(table.loc['abs_effect', 'average'],2), round(table.loc['abs_effect_lower', 'average'],2), round(table.loc['abs_effect_upper', 'average'],2)), "Percentage Change\n[95% c.i.]": put_together_three_perc(round(table.loc['rel_effect', 'average']*100,2), round(table.loc['rel_effect_lower', 'average']*100,2), round(table.loc['rel_effect_upper', 'average']*100,2)), "Observation ": str(round(table.loc['actual', 'cumulative'], 2))+" kWh", "Counterfactual\n(s.d.) ": put_together_two(round(table.loc['predicted', 'cumulative'], 2), round(table.loc['predicted_sd', 'cumulative'], 2)), "Absolute effect\n[95% c.i.] ": put_together_three(round(table.loc['abs_effect', 'cumulative'], 2), round(table.loc['abs_effect_lower', 'cumulative'], 2), round(table.loc['abs_effect_upper', 'cumulative'], 2)), "Percentage Change\n[95% c.i.] ": put_together_three_perc( round(table.loc['rel_effect', 'cumulative'] * 100, 2), round(table.loc['rel_effect_lower', 'cumulative'] * 100, 2), round(table.loc['rel_effect_upper', 'cumulative'] * 100, 2)), }) return data def graph_point_effects(data_mean, intervention, X_names): experiment = int(list(intervention)[0]) intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] data = prepare_data_synthetic_bsts(data_mean.set_index('timestamp'), intervention, X_names) ci = CausalImpact(data, pre_period, post_period, prior_level_sd=None, standarize=True) point_effects = ci.inferences['point_effects'].values return point_effects def put_together_two(a,b): return str(a)+" kWh\n("+str(b)+")" def put_together_three(a,b,c): return str(a)+" kWh\n["+str(b)+","+str(c)+"]" def put_together_three_perc(a,b,c): return str(a)+"%\n["+str(b)+","+str(c)+"]" ``` #### File: jimenofonseca/BSTS-SG/lgbm_imputer.py ```python import os import lightgbm as lgb import numpy as np import pandas as pd from sklearn.model_selection import GridSearchCV from custom_scorer_module import scorer_rmse from sklearn.metrics import make_scorer from auxiliary import GrupedTimeseriesKFold from config import SEED def imputer(df: pd.DataFrame, timestamp_feature_name: str, target_feature_name: str, numerical_features_list: list, categorical_features_list: list, id_column: str, window: int = 7, get_best_parameters: bool = False, params: dict = {'learning_rate': 0.01,'num_leaves': 16,'min_data_in_leaf': 1000,'num_iterations': 10000,'objective': 'rmse','metric': 'rmse'}, groupby:str='smapee' ): """ :param data: :param target_column: :param window: :param id_column: :return: """ data = df.copy() #because it gets changed and lgbm breaks # rolling data['rolling_back'] = data.groupby(by=id_column)[target_feature_name] \ .rolling(window=window, min_periods=1).mean().interpolate().values # reversed rolling data['rolling_forw'] = data.iloc[::-1].groupby(by=id_column)[target_feature_name] \ .rolling(window=window, min_periods=1).mean().interpolate().values # rolling mean for same hour of the week data['rolling_back_h'] = data.groupby(by=[id_column, 'dayofweek'])[target_feature_name] \ .rolling(window=3, min_periods=1).mean().interpolate().values data['rolling_back_h_f'] = data.iloc[::-1].groupby(by=[id_column, 'dayofweek'])[target_feature_name] \ .rolling(window=3, min_periods=1).mean().interpolate().values tr_idx, val_idx = ~data[target_feature_name].isnull(), data[target_feature_name].isnull() numerical_features_list = numerical_features_list + ['rolling_back', 'rolling_forw', 'rolling_back_h', 'rolling_back_h_f'] features_list = numerical_features_list + categorical_features_list if get_best_parameters: # train in the log domain data[target_feature_name] = np.log(1 + data[target_feature_name]) X = data.loc[tr_idx, features_list] X = X.reset_index(drop=True) y = data.loc[tr_idx, target_feature_name] y = y.reset_index(drop=True) grid_params = {'learning_rate': [0.001, 0.01, 0.1], 'num_leaves': [4, 16, 32, 64], 'max_depth': [-1], 'num_iterations': [10000], 'min_data_in_leaf': [20, 100, 200, 500], 'boosting': ['gbdt']} mdl = lgb.LGBMRegressor(n_jobs=1, metric='rmse', objective='rmse', seed=SEED) grid = GridSearchCV(mdl, grid_params, verbose=1, cv=GrupedTimeseriesKFold(groupby=groupby), n_jobs=-1, scoring=make_scorer(scorer_rmse, greater_is_better=False)) # Run the grid grid.fit(X, y) # Print the best parameters found print(grid.best_params_) print(grid.best_score_) else: evals_result = {} # to record eval results for plotting # train in the log domain data[target_feature_name] = np.log(1 + data[target_feature_name]) X = data.loc[tr_idx, features_list] y = data.loc[tr_idx, target_feature_name] lgb_train = lgb.Dataset(X, y, categorical_feature=categorical_features_list) lgb_eval = lgb.Dataset(X, y, categorical_feature=categorical_features_list) reg = lgb.train(params, lgb_train, valid_sets=(lgb_train, lgb_eval), evals_result=evals_result, early_stopping_rounds=5000, verbose_eval=10000) data[f'{target_feature_name}_imputed'] = np.nan data.loc[val_idx, f'{target_feature_name}_imputed'] = reg.predict(data.loc[val_idx, features_list]) data.loc[val_idx, f'{target_feature_name}'] = data.loc[val_idx, f'{target_feature_name}_imputed'].values # return to the real domain data[target_feature_name] = np.exp(data[target_feature_name]) - 1 data[f'{target_feature_name}_imputed'] = np.exp(data[f'{target_feature_name}_imputed']) - 1 #also get some idea of how it looks for all the data data[f'{target_feature_name}_all_imputed'] = np.exp(reg.predict(data[features_list]))-1 # check from what features_list our imputer learned the most lgb.plot_importance(reg, title=f'feature importance for "{target_feature_name}"') lgb.plot_metric(evals_result, metric='rmse') return data ```
{ "source": "JIMENOFONSECA/DEG-USA", "score": 2 }
#### File: DEG-USA/model/1_prepare_data_and_inference.py ```python import numpy as np import pandas as pd from enthalpygradients import EnthalpyGradient import time from model.auxiliary import read_weather_data_scenario from model.constants import COP_cooling, COP_heating, RH_base_cooling_perc, RH_base_heating_perc, T_base_cooling_C, \ T_base_heating_C, ACH_Commercial, ACH_Residential from pointers import METADATA_FILE_PATH, INTERMEDIATE_RESULT_FILE_PATH def main(): # local variables output_path = INTERMEDIATE_RESULT_FILE_PATH scenarios_array = pd.read_excel(METADATA_FILE_PATH, sheet_name='SCENARIOS')['SCENARIO'].values cities_array = pd.read_excel(METADATA_FILE_PATH, sheet_name='CITIES')['CITY'].values floor_area_predictions_df = pd.read_excel(METADATA_FILE_PATH, sheet_name="FLOOR_AREA").set_index('year') climate_region_array = pd.read_excel(METADATA_FILE_PATH, sheet_name='CITIES')['Climate Region'].values floor_area_climate_df = pd.read_excel(METADATA_FILE_PATH, sheet_name="FLOOR_AREA_CLIMATE").set_index('Climate Region') # calculate specific energy consumption per major city specific_thermal_consumption_per_city_df = calc_specific_energy_per_major_city(cities_array, climate_region_array, floor_area_climate_df, scenarios_array) # calculate weighted average per scenario data_weighted_average_df = calc_weighted_average_per_scenario(specific_thermal_consumption_per_city_df) # calculate the energy consumption per scenario incorporating variance in built areas data_final_df = calc_total_energy_consumption_per_scenario(data_weighted_average_df, floor_area_predictions_df, scenarios_array) #save the results to disk data_final_df.to_csv(output_path, index=False) print("done") def calc_total_energy_consumption_per_scenario(data_weighted_average_df, floor_area_predictions_df, scenarios_array): data_final_df = pd.DataFrame() for scenario in scenarios_array: data_scenario = data_weighted_average_df[data_weighted_average_df["SCENARIO"] == scenario] year = data_scenario['YEAR'].values[0] data_floor_area_scenario = floor_area_predictions_df.loc[float(year)] for sector in ['Residential', 'Commercial']: # calculate totals total_heating_kWhm2yr = \ data_scenario[data_scenario["BUILDING_CLASS"] == sector]['TOTAL_HEATING_kWh_m2_yr'].values[0] total_cooling_kWhm2yr = \ data_scenario[data_scenario["BUILDING_CLASS"] == sector]['TOTAL_COOLING_kWh_m2_yr'].values[0] # add uncertainty in total built area mean_m2 = data_floor_area_scenario['GFA_mean_' + sector + '_m2'] std_m2 = data_floor_area_scenario['GFA_sd_' + sector + '_m2'] GFA_m2 = np.random.normal(mean_m2, std_m2, 100) total_heating_EJ = GFA_m2 * total_heating_kWhm2yr * 3.6E-12 total_cooling_EJ = GFA_m2 * total_cooling_kWhm2yr * 3.6E-12 # list of fields to extract dict_data = pd.DataFrame({"SCENARIO": scenario, "YEAR": year, "BUILDING_CLASS": sector, "GFA_Bm2": GFA_m2 /1E9, "TOTAL_HEATING_kWh_m2_yr": total_heating_kWhm2yr, "TOTAL_COOLING_kWh_m2_yr": total_cooling_kWhm2yr, "TOTAL_HEATING_EJ": total_heating_EJ, "TOTAL_COOLING_EJ": total_cooling_EJ}) data_final_df = pd.concat([data_final_df, dict_data], ignore_index=True) return data_final_df def calc_weighted_average_per_scenario(specific_thermal_consumption_per_city_df): data_mean_per_scenario = specific_thermal_consumption_per_city_df.groupby( ["YEAR", "BUILDING_CLASS", "SCENARIO", "CLIMATE"], as_index=False).agg('mean') data_mean_per_scenario["TOTAL_HEATING_kWh_m2_yr"] = data_mean_per_scenario["TOTAL_HEATING_kWh_m2_yr"] * \ data_mean_per_scenario["WEIGHT"] data_mean_per_scenario["TOTAL_COOLING_kWh_m2_yr"] = data_mean_per_scenario["TOTAL_COOLING_kWh_m2_yr"] * \ data_mean_per_scenario["WEIGHT"] data_weighted_average = data_mean_per_scenario.groupby(["YEAR", "BUILDING_CLASS", "SCENARIO"], as_index=False).agg( 'sum') return data_weighted_average def calc_specific_energy_per_major_city(cities_array, climate_region_array, floor_area_climate_df, scenarios_array): specific_thermal_consumption_per_city_df = pd.DataFrame() for city, climate in zip(cities_array, climate_region_array): floor_area_climate = floor_area_climate_df.loc[climate] for scenario in scenarios_array: # read wheater data T_outdoor_C, RH_outdoor_perc = read_weather_data_scenario(city, scenario) # get the scanario year year_scenario = scenario.split("_")[-1] for sector, ACH in zip(['Residential', 'Commercial'], [ACH_Residential, ACH_Commercial]): # calculate energy use intensities # calculate specific energy consumption with daily enthalpy gradients model eg = EnthalpyGradient(T_base_cooling_C, RH_base_cooling_perc) sensible_cooling_kWhm2yr = eg.specific_thermal_consumption(T_outdoor_C, RH_outdoor_perc, type='cooling', ACH=ACH, COP=COP_cooling) latent_cooling_kWhm2yr = eg.specific_thermal_consumption(T_outdoor_C, RH_outdoor_perc, type='dehumidification', ACH=ACH, COP=COP_cooling) eg = EnthalpyGradient(T_base_heating_C, RH_base_heating_perc) sensible_heating_kWhm2yr = eg.specific_thermal_consumption(T_outdoor_C, RH_outdoor_perc, type='heating', ACH=ACH, COP=COP_heating) latent_heating_kWhm2yr = eg.specific_thermal_consumption(T_outdoor_C, RH_outdoor_perc, type='humidification', ACH=ACH, COP=COP_heating) # calculate specific totals total_heating_kWhm2yr = sensible_heating_kWhm2yr + latent_heating_kWhm2yr total_cooling_kWhm2yr = sensible_cooling_kWhm2yr + latent_cooling_kWhm2yr # list of fields to extract dict_data = pd.DataFrame({"CITY": city, "CLIMATE": climate, "WEIGHT": floor_area_climate['GFA_mean_' + sector + '_perc'], "SCENARIO": scenario, "YEAR": year_scenario, "BUILDING_CLASS": sector, "TOTAL_HEATING_kWh_m2_yr": total_heating_kWhm2yr, "TOTAL_COOLING_kWh_m2_yr": total_cooling_kWhm2yr}, index=[0]) specific_thermal_consumption_per_city_df = pd.concat( [specific_thermal_consumption_per_city_df, dict_data], ignore_index=True) print("city {} done".format(city)) return specific_thermal_consumption_per_city_df if __name__ == "__main__": t0 = time.time() main() t1 = round((time.time() - t0)/60,2) print("finished after {} minutes".format(t1)) ```
{ "source": "JIMENOFONSECA/FonnachtsBankApp", "score": 2 }
#### File: JIMENOFONSECA/FonnachtsBankApp/colors.py ```python import random # GET COLORS OF CEA COLORS_TO_RGB = {"red": "rgb(240,75,91)", "red_light": "rgb(246,148,143)", "red_lighter": "rgb(252,217,210)", "blue": "rgb(63,192,194)", "blue_light": "rgb(171,221,222)", "blue_lighter": "rgb(225,242,242)", "yellow": "rgb(255,209,29)", "yellow_light": "rgb(255,225,133)", "yellow_lighter": "rgb(255,243,211)", "brown": "rgb(174,148,72)", "brown_light": "rgb(201,183,135)", "brown_lighter": "rgb(233,225,207)", "purple": "rgb(171,95,127)", "purple_light": "rgb(198,149,167)", "purple_lighter": "rgb(231,214,219)", "green": "rgb(126,199,143)", "green_light": "rgb(178,219,183)", "green_lighter": "rgb(227,241,228)", "grey": "rgb(68,76,83)", "grey_light": "rgb(126,127,132)", "black": "rgb(35,31,32)", "white": "rgb(255,255,255)", "orange": "rgb(245,131,69)", "orange_light": "rgb(248,159,109)", "orange_lighter": "rgb(254,220,198)"} COLOR_CATEGORY = {'Salary': "yellow", 'Percentage of Income Spent': "blue", 'Percentage of Income Saved': "blue_light", 'Expenses': "blue_light", 'Positive Interest': "yellow_light", "Unknown Deposit": "grey_light", "Investments": "yellow", "Public transport": "green_light", 'Housing': "purple", 'Bills': "orange", 'Taxi': "green", 'Gym': "red_light", 'Supermarket': "brown_light", 'Health & Beauty': "brown", 'Trips': "red", 'Maricadas': "green", 'Restaurant': "purple_light", "Unknown Withdrawal": "grey", 'Taxes': "orange_light", "Rent Earnings": "red_light", "JF-PUBLICA": "red", "LF-PUBLICA": "red_light", "APT501": "blue_lighter", "LAX": "blue", "NIDAU": "blue_light", 'CDT-212960': "green", 'CDT-211160': 'green_light', 'CDT-214370': 'green_lighter', '120-045453-0': "orange", '063-015834-8': "orange_light", '92-785858-6': 'yellow', '31-296964-2': 'yellow_light', "REAL_ESTATE": "blue", "BONDS": "green", "RETIREMENT": "red", "CASH": "yellow", "SECURITIES": "orange", "Initial investment": "red", "Creditcard": "yellow", "Interests earned to date": "yellow", "Interest Earned": "yellow_light", "O&M Real Estate": "black"} def calculate_color(ACCOUNTS_CURRENCY): dictionary = {cat: COLORS_TO_RGB[color] for cat, color in COLOR_CATEGORY.items()} for account in ACCOUNTS_CURRENCY.keys(): if account not in dictionary.keys(): dictionary.update({account: random.choice(list(COLORS_TO_RGB.values()))}) return dictionary if __name__ == '__main__': x = 1 ``` #### File: FonnachtsBankApp/statement_parser/preprocessing_manual.py ```python from utils.support_functions import calculate_rate_exact_day, calculate_rate_exact_day_cop, \ calculate_rate_exact_day_cop_inversed from decimal import Decimal import os import pandas as pd from settings import CURRENCIES, calc_categories from statement_parser.preproccessing import get_category def conversion(x, to_currency): year = x[0] month = x[1] value = x[2] from_currency = x[3] # in case it is the same currency if from_currency == to_currency: return Decimal(str(round(value, 4))) # in case we have COP (not suppported with daily rates) if from_currency == 'COP': # we use an approximated way: rate = calculate_rate_exact_day_cop(to_currency) elif to_currency == 'COP': # we use an apporximated way: rate = calculate_rate_exact_day_cop_inversed(from_currency) else: rate = calculate_rate_exact_day(from_currency, month, year, to_currency) if value == "": return value else: #print(year,month,value, rate, from_currency, to_currency) new_with = Decimal(str(round(rate, 4))) * Decimal(str(round(value, 4))) return new_with def MANUAL_parser(file_path, directories): CATEGORIES, CATEGORIES_DEPOSIT, CATEGORIES_WITHDRAWAL = calc_categories(directories) # process data registry_accounts = [] # here we collect the name of the accounts we have read registry_currency_per_account = [] # here we collect the currency of every account registry_type_per_account = [] # here we collect the type of every account registry = pd.DataFrame() # here we collecte th xls = pd.ExcelFile(file_path) accounts = xls.sheet_names print('Reading the next accounts %s from file %s' % (accounts, file_path)) registry_accounts.extend(accounts) for account in accounts: # read it data_account = pd.read_excel(file_path, account) # calculate fields data_account["ACCOUNT"] = account # add name of account to the database # get currency and add it to registry_currency_per_account list currency_account = list(set(data_account["CURRENCY"].values)) # get currency of account type_account = list(set(data_account["TYPE"].values)) # get currency of account if len( currency_account) > 1: # whatch out, you are indicating two currencies for the same account. not possible Exception( "The account %s has two or more currencies %s, that is not supported" % (account, currency_account)) elif len( type_account) > 1: # whatch out, you are indicating two currencies for the same account. not possible Exception("The account %s has two or more types %s, that is not supported" % (account, type_account)) else: registry_currency_per_account.append(currency_account[0]) registry_type_per_account.append(type_account[0]) # add account to data_frame of accounts: registry = registry.append(data_account, ignore_index=True, sort=False) # category assignment withdrawal_boolean = [True if x > 0 and y <= 0 else False for x,y in zip(registry["DEBIT"].values, registry["CREDIT"].values)] registry["CAT"], _, _, _ = get_category(registry["DESC_1"], registry["DESC_1"], registry["DESC_1"], withdrawal_boolean, CATEGORIES) # sget metadata registry_metadata = pd.DataFrame({"ACCOUNT": registry_accounts, "TYPE": registry_type_per_account, "CURRENCY": registry_currency_per_account}) return registry, registry_metadata ``` #### File: FonnachtsBankApp/statement_parser/preprocessing_post.py ```python import os import camelot from PyPDF2 import PdfFileReader import pandas as pd from re import sub from decimal import Decimal import numpy as np import datetime from settings import calc_categories PAGES_BEGINNING = 0 # pages to skip at the beginning of the statment PAGES_END = 0 # pages to skip at the end of the statement conversion_numeric_month = {"01": "Jan", "02": "Feb", "03": "Mar", "04": "Apr", "05": "May", "06": "Jun", "07": "Jul", "08": "Aug", "09": "Sep", "10": "Oct", "11": "Nov", "12": "Dec"} def Parser_function(filepath, CATEGORIES): # get number of pages pdf = PdfFileReader(open(filepath, 'rb')) pages_pdf = pdf.getNumPages() # get iterator and empy series to fill in range_of_pages = range(PAGES_BEGINNING, pages_pdf - PAGES_END) date_str = [] withdrawal_Decimal = [] deposit_Decimal = [] description_str = [] description2_str = [] description3_str = [] withdrawal_boolean = [] index_where_total_is = [] real_month = [] # just because some extrats get money from past months. real_year = [] balance_Decimal = [] # go over each page and extract data for page in range_of_pages: if index_where_total_is != []: # if total is in the end of the page break print("Page No. ", page + 1) # read pdf into dataframe # set where to check in the statement if page + 1 == 1: # the first page is always different region = ['20,450,700,50'] else: region = ['20,750,700,50'] page_table_format = camelot.read_pdf(filepath, pages=str(page + 1), flavor='stream', table_areas=region) dataframe_table = page_table_format[0].df # indicate if total is in first column, this means there is an error and the region needs to change index_where_total_is2 = dataframe_table.index[dataframe_table[0] == "Total"].tolist() if index_where_total_is2 != []: print("read 3 columns, 4 expected, correcting...") page_table_format = camelot.read_pdf(filepath, pages=str(page + 1), flavor='stream', table_areas=['20,750,700,50']) dataframe_table = page_table_format[0].df index_where_total_is2 = [1] if index_where_total_is2 != []: print("read 3 columns, 4 expected, correcting...") page_table_format = camelot.read_pdf(filepath, pages=str(page + 1), flavor='stream', table_areas=['20,610,700,200']) dataframe_table = page_table_format[0].df index_where_total_is2 = [1] if len(dataframe_table.ix[0]) != 6: raise Exception("error, the table does not have the right number of columns, page", str(page + 1)) # indicate where the total is, to be used in the next loop index_where_total_is = dataframe_table.index[dataframe_table[1] == "Total"].tolist() # take out the last part if index_where_total_is != []: dataframe_table_raw = dataframe_table.drop(dataframe_table.index[index_where_total_is[0] + 1:]) else: dataframe_table_raw = dataframe_table # select the number of column with witdrawal columns_number = dataframe_table.shape[1] for column_index in range(columns_number): if "Lastschrift" in dataframe_table.loc[:, column_index].values: with_column_index = column_index if "Gutschrift" in dataframe_table.loc[:, column_index].values: depo_column_index = column_index if "Valuta" in dataframe_table.loc[:, column_index].values: date_column_index = column_index if "Text" in dataframe_table.loc[:, column_index].values: text_column_index = column_index if "Saldo" in dataframe_table.loc[:, column_index].values: balance_column_index = column_index # indicate the total of withdrawals and deposits: if index_where_total_is != []: index = index_where_total_is[0] if dataframe_table_raw.loc[index, with_column_index] == '': withdrawal_total_decimal = 0.0 else: withdrawal_total_decimal = Decimal( sub(r'[^\d.]', '', dataframe_table_raw.loc[index, with_column_index])) if dataframe_table_raw.loc[index, depo_column_index] == '': deposit_total_decimal = 0.0 else: deposit_total_decimal = Decimal(sub(r'[^\d.]', '', dataframe_table_raw.loc[index, depo_column_index])) # start filling in data len_dataframe = dataframe_table_raw.shape[0] for row in range(len_dataframe): date = dataframe_table_raw.loc[row, date_column_index] text = dataframe_table_raw.loc[row, text_column_index] if date != '' and date != "Valuta" and text.split()[0] != "ZINSABSCHLUSS": length_date = len(date.split('.')) if length_date > 1: year_str = "20" + date.split('.')[2] date_withyear = date.split('.')[0] + " " + date.split('.')[1] + " " + year_str real_month.append(conversion_numeric_month[date.split('.')[1]]) real_year.append(year_str) date_withyear_formatted = datetime.datetime.strptime(date_withyear, '%d %m %Y') date_str.append(date_withyear_formatted) # withdrawal and deposit if dataframe_table_raw.loc[row, with_column_index] == '': withdrawal_Decimal.append(Decimal(0.0)) withdrawal_boolean.append(False) else: x = dataframe_table_raw.loc[row, balance_column_index].replace(" ", "") balance_Decimal.append(x) withdrawal_Decimal.append( Decimal(sub(r'[^\d.]', '', dataframe_table_raw.loc[row, with_column_index]))) withdrawal_boolean.append(True) if dataframe_table_raw.loc[row, depo_column_index] == '': deposit_Decimal.append(Decimal(0.0)) else: x = dataframe_table_raw.loc[row, balance_column_index].replace(" ", "") balance_Decimal.append(x) deposit_Decimal.append( Decimal(sub(r'[^\d.]', '', dataframe_table_raw.loc[row, depo_column_index]))) if dataframe_table_raw.loc[row, with_column_index] == '' and dataframe_table_raw.loc[ row, depo_column_index] == '': balance_Decimal.append(Decimal(0.0)) # accumulate balance if the last value was '' if balance_Decimal[-1] == '': if len(balance_Decimal) > 1: balance_Decimal[-1] = balance_Decimal[-2] else: balance_Decimal[-1] = dataframe_table_raw.loc[row - 1, balance_column_index].replace(" ", "") if balance_Decimal[-1] == '': balance_Decimal[-1] = dataframe_table_raw.loc[ row - 2, balance_column_index].replace(" ", "") # descriptions description_str.append(dataframe_table_raw.loc[row, text_column_index]) if dataframe_table_raw.loc[row + 1, date_column_index] == '': description2_str.append(dataframe_table_raw.loc[row + 1, text_column_index]) else: description2_str.append('') try: if dataframe_table_raw.loc[row + 2, date_column_index] == '': description3_str.append(dataframe_table_raw.loc[row + 2, text_column_index]) else: description3_str.append('') except: description3_str.append('') # category assignment category_final2, category1_str, category2_str, category3_str = get_category(description2_str, description3_str, description_str, withdrawal_boolean, CATEGORIES) # assertment data if sum(withdrawal_Decimal) != withdrawal_total_decimal: print("Warning, the total of withdrawals does not match") if sum(deposit_Decimal) != deposit_total_decimal: print("Warning, the total of deposits does not match") statement_df = pd.DataFrame({"DATE": date_str, "DEBIT": withdrawal_Decimal, "CREDIT": deposit_Decimal, "BALANCE": balance_Decimal, "YEAR": real_year, "MONTH": real_month, "DESC_1": description_str, "DESC_2": description2_str, "DESC_3": description3_str, "CAT": category_final2, "CAT1": category1_str, "CAT2": category2_str, "CAT3": category3_str}) return statement_df def get_category(description2_str, description3_str, description_str, withdrawal_boolean, CATEGORIES): category_final = [] category_final2 = [] category1_str = np.vectorize(Categorization)(description_str, CATEGORIES) category2_str = np.vectorize(Categorization)(description2_str, CATEGORIES) category3_str = np.vectorize(Categorization)(description3_str, CATEGORIES) # get confirmation form the three subcategories describe = zip(category1_str, category2_str, category3_str) for cat1, cat2, cat3 in describe: if cat1 == "No Category" and cat2 == "No Category" and cat3 != "No Category": category_final.append(cat3) elif cat1 == cat2: category_final.append(cat1) elif cat2 != "No Category" and cat1 == "No Category": category_final.append(cat2) elif cat1 != "No Category": category_final.append(cat1) else: category_final.append("No Category") # get confirmation form the three subcategories for cat, width in zip(category_final, withdrawal_boolean): if cat == "No Category" and width == True: category_final2.append("Unknown Withdrawal") elif cat == "No Category" and width == False: category_final2.append("Unknown Deposit") else: category_final2.append(cat) return category_final2, category1_str, category2_str, category3_str def mysplit(s): head = s.rstrip('0123456789') tail = s[len(head):] return head, tail def hasNumbers(inputString): return any(char.isdigit() for char in inputString) def Categorization(description_str, CATEGORIES): # categorize full phrases cat_flag = True for category_str, names_inside_category in CATEGORIES.items(): # for name, age in dictionary.iteritems(): (for Python 2.x) if description_str in names_inside_category: cat = category_str cat_flag = False # categorize first word if cat_flag: for category_str, names_inside_category in CATEGORIES.items(): description_split = description_str.split(" ")[ 0] # for name, age in dictionary.iteritems(): (for Python 2.x) if description_split in names_inside_category: cat = category_str cat_flag = False # if after the coma the first word matches if cat_flag: for category_str, names_inside_category in CATEGORIES.items(): description_split = description_str.split(",") lenght_words = len(description_split) if lenght_words > 1: # (for Python 2.x) if description_split[1].split()[0] in names_inside_category: cat = category_str cat_flag = False # Check if there were payments in foreing currency (generally they are at the end) if cat_flag: for category_str, names_inside_category in CATEGORIES.items(): description_split = description_str.split() lenght_words = len(description_split) if lenght_words == 2 and hasNumbers(description_split[1]): description_split = description_split[-1][:3] if description_split in names_inside_category: cat = category_str cat_flag = False # Check if there were payments in foreing currency (some are at the beginning) if cat_flag: for category_str, names_inside_category in CATEGORIES.items(): description_split = description_str.split() lenght_words = len(description_split) if lenght_words == 1 and hasNumbers(description_split[0]): description_split = description_split[-1][:3] if description_split in names_inside_category: cat = category_str cat_flag = False # last resource, if the word is anywhere if cat_flag: for category_str, names_inside_category in CATEGORIES.items(): description_split = description_str.split(" ") lenght_words = len(description_split) if lenght_words > 1: # (for Python 2.x) for word in description_split: if word in names_inside_category: cat = category_str cat_flag = False if cat_flag: cat = "No Category" return cat def Metadata(filepath): page_table_format = camelot.read_pdf(filepath, pages=str(1), flavor='stream', table_areas=['20,600,700,50']) dataframe_table_raw = page_table_format[0].df # locate where is the name of the account index_where_date = dataframe_table_raw.index[dataframe_table_raw[0] == "Privatkonto"].tolist() if index_where_date == []: index_where_date = dataframe_table_raw.index[dataframe_table_raw[0] == "E-Sparkonto"].tolist() if index_where_date == []: index_where_date = dataframe_table_raw.index[dataframe_table_raw[0] == "E- Sparkonto"].tolist() index_where_date = index_where_date[0] + 1 date = dataframe_table_raw.loc[index_where_date, 0].split('-')[1] month_str = conversion_numeric_month[date.split('.')[1]] year_str = date.split('.')[-1] date_statement_str = date.split('.')[0] + " " + month_str + " " + year_str if dataframe_table_raw.shape[1] == 5: if "Kontonummer" in dataframe_table_raw.loc[index_where_date + 1, 2]: account_str = dataframe_table_raw.loc[index_where_date + 1, 2].split(" ", 1)[1] else: account_str = dataframe_table_raw.loc[index_where_date + 2, 2].split(" ", 1)[1] elif dataframe_table_raw.shape[1] == 6: if "Kontonummer" in dataframe_table_raw.loc[index_where_date + 1, 3]: account_str = dataframe_table_raw.loc[index_where_date + 1, 3].split(" ", 1)[1] else: account_str = dataframe_table_raw.loc[index_where_date + 2, 3].split(" ", 1)[1] elif dataframe_table_raw.shape[1] == 7: if "Kontonummer" in dataframe_table_raw.loc[index_where_date + 1, 4]: account_str = dataframe_table_raw.loc[index_where_date + 1, 4].split(" ", 1)[1] else: account_str = dataframe_table_raw.loc[index_where_date + 2, 4].split(" ", 1)[1] elif dataframe_table_raw.shape[1] == 3: if "Kontonummer" in dataframe_table_raw.loc[index_where_date + 2, 1]: account_str = dataframe_table_raw.loc[index_where_date + 2, 1].split(" ", 1)[1] else: account_str = dataframe_table_raw.loc[index_where_date + 2, 1].split(" ", 1)[1] else: print("error the frame shape was {}, valid are 5,6,7,3".format(dataframe_table_raw.shape[1])) return date_statement_str, month_str, year_str, account_str.replace(" ", "") def getListOfFiles(dirName): # create a list of file and sub directories # names in the given directory listOfFile = os.listdir(dirName) allFiles = list() # Iterate over all the entries for entry in listOfFile: # Create full path fullPath = os.path.join(dirName, entry) # If entry is a directory then get the list of files in this directory if os.path.isdir(fullPath): allFiles = allFiles + getListOfFiles(fullPath) elif fullPath.endswith(".pdf"): allFiles.append(fullPath) return allFiles # Read pdf into DataFrame def POSTFINANCE_parser(DIRECTORY, directories): registry = pd.DataFrame() CATEGORIES, CATEGORIES_DEPOSIT, CATEGORIES_WITHDRAWAL = calc_categories(directories) # process data # get list folders which indicate the years: all_files_paths = getListOfFiles(DIRECTORY) registry_accounts = [] for filepath in all_files_paths: # extract account number, balance and month of statement form the first page print("Working on file {}".format(filepath.split("/")[-1])) date_statement_str, month_str, year_str, account_str = Metadata(filepath) registry_accounts.append(account_str) print("Working on statement Postfinance {} of the account No. {}".format(date_statement_str, account_str)) # Iterate over the pages of the statement statement_df= Parser_function(filepath, CATEGORIES) statement_df["ACCOUNT"] = account_str statement_df["STATEMENT"] = date_statement_str statement_df["TYPE"] = "CASH" statement_df["CURRENCY"] = "CHF" registry = pd.concat([registry, statement_df], ignore_index=True) registry_accounts = list(set(registry_accounts)) registry_metadata = pd.DataFrame({"ACCOUNT": registry_accounts, "TYPE": ["CASH"]*len(registry_accounts), "CURRENCY": ["CHF"]*len(registry_accounts)}) return registry, registry_metadata ```
{ "source": "JIMENOFONSECA/HBLM-USA", "score": 2 }
#### File: HBLM-USA/model/4_prediction.py ```python import time import pandas as pd from model.auxiliary import parse_scenario_name, percentile from model.constants import MODEL_NAME from pointers import METADATA_FILE_PATH, INTERMEDIATE_RESULT_FILE_PATH, FINAL_RESULT_FILE_PATH def main(): # local variables intermediate_result = INTERMEDIATE_RESULT_FILE_PATH output_path = FINAL_RESULT_FILE_PATH scenarios_array = pd.read_excel(METADATA_FILE_PATH, sheet_name='SCENARIOS')['SCENARIO'].values # group per scenario and building class and calculate mean and variance data_consumption = pd.read_csv(intermediate_result) data_consumption = data_consumption.groupby(["BUILDING_CLASS", "SCENARIO"], as_index=False).agg([percentile(50), percentile(2.5), percentile(97.5)]) final_df = pd.DataFrame() for scenario in scenarios_array: ipcc_scenario_name = parse_scenario_name(scenario) year_scenario = scenario.split("_")[-1] for sector in ['Residential', 'Commercial']: use = "GFA_Bm2" mean_area = data_consumption.loc[sector, scenario][use, 'percentile_50'] est_97_5 = data_consumption.loc[sector, scenario][use, 'percentile_97.5'] est_2_5 = data_consumption.loc[sector, scenario][use, 'percentile_2.5'] dict_area_mean = {'Model': MODEL_NAME, 'Region': 'USA', 'Unit': 'bn m2/yr', 'Variable': 'Energy Service|Buildings|' + sector + '|Floor Space', 'Scenario': ipcc_scenario_name + ' - 50th percentile', 'Year': year_scenario, 'Value': mean_area, } dict_area_min = {'Model': MODEL_NAME, 'Region': 'USA', 'Unit': 'bn m2/yr', 'Variable': 'Energy Service|Buildings|' + sector + '|Floor Space', 'Scenario': ipcc_scenario_name + ' - 2.5th percentile', 'Year': year_scenario, 'Value': est_2_5, } dict_area_max = {'Model': MODEL_NAME, 'Region': 'USA', 'Unit': 'bn m2/yr', 'Variable': 'Energy Service|Buildings|' + sector + '|Floor Space', 'Scenario': ipcc_scenario_name + ' - 97.5th percentile', 'Year': year_scenario, 'Value': est_97_5, } use = "TOTAL_CONSUMPTION_EJ" mean_EJ = data_consumption.loc[sector, scenario][use, 'percentile_50'] est_97_5_EJ = data_consumption.loc[sector, scenario][use, 'percentile_97.5'] est_2_5_EJ = data_consumption.loc[sector, scenario][use, 'percentile_2.5'] dict_mean = {'Model': MODEL_NAME, 'Region': 'USA', 'Unit': 'EJ/yr', 'Variable': 'Final Energy|Buildings|' + sector, 'Scenario': ipcc_scenario_name + ' - 50th percentile', 'Year': year_scenario, 'Value': mean_EJ, } dict_min = {'Model': MODEL_NAME, 'Region': 'USA', 'Unit': 'EJ/yr', 'Variable': 'Final Energy|Buildings|' + sector, 'Scenario': ipcc_scenario_name + ' - 2.5th percentile', 'Year': year_scenario, 'Value': est_2_5_EJ, } dict_max = {'Model': MODEL_NAME, 'Region': 'USA', 'Unit': 'EJ/yr', 'Variable': 'Final Energy|Buildings|' + sector, 'Scenario': ipcc_scenario_name + ' - 97.5th percentile', 'Year': year_scenario, 'Value': est_97_5_EJ, } dataframe = pd.DataFrame([dict_mean, dict_min, dict_max, dict_area_mean, dict_area_min, dict_area_max]) final_df = pd.concat([final_df, dataframe], ignore_index=True) result = pd.pivot_table(final_df, values='Value', columns='Year', index=['Model', 'Scenario', 'Region', 'Variable', 'Unit']) result.to_csv(output_path) if __name__ == "__main__": t0 = time.time() main() t1 = round((time.time() - t0) / 60, 2) print("finished after {} minutes".format(t1)) ```
{ "source": "jimevans/buck", "score": 2 }
#### File: buck/programs/buck_repo.py ```python from __future__ import print_function import os import platform import subprocess import sys import tempfile import textwrap from timing import monotonic_time_nanos from tracing import Tracing from buck_tool import BuckTool, which, check_output, JAVA_MAX_HEAP_SIZE_MB from buck_tool import BuckToolException, RestartBuck import buck_version JAVA_CLASSPATHS = [ "build/abi_processor/classes", "build/classes", "build/dx_classes", "src", "third-party/java/android/sdklib.jar", "third-party/java/aopalliance/aopalliance.jar", "third-party/java/args4j/args4j-2.0.30.jar", "third-party/java/asm/asm-debug-all-5.0.3.jar", "third-party/java/closure-templates/soy-excluding-deps.jar", "third-party/java/commons-compress/commons-compress-1.8.1.jar", "third-party/java/dd-plist/dd-plist.jar", "third-party/java/ddmlib/ddmlib-22.5.3.jar", "third-party/java/eclipse/org.eclipse.core.contenttype_3.4.200.v20140207-1251.jar", "third-party/java/eclipse/org.eclipse.core.jobs_3.6.1.v20141014-1248.jar", "third-party/java/eclipse/org.eclipse.core.resources_3.9.1.v20140825-1431.jar", "third-party/java/eclipse/org.eclipse.core.runtime_3.10.0.v20140318-2214.jar", "third-party/java/eclipse/org.eclipse.equinox.common_3.6.200.v20130402-1505.jar", "third-party/java/eclipse/org.eclipse.equinox.preferences_3.5.200.v20140224-1527.jar", "third-party/java/eclipse/org.eclipse.jdt.core.prefs", "third-party/java/eclipse/org.eclipse.jdt.core_3.10.2.v20150120-1634.jar", "third-party/java/eclipse/org.eclipse.osgi_3.10.2.v20150203-1939.jar", "third-party/java/gson/gson-2.2.4.jar", "third-party/java/guava/guava-18.0.jar", "third-party/java/guice/guice-3.0.jar", "third-party/java/guice/guice-assistedinject-3.0.jar", "third-party/java/guice/guice-multibindings-3.0.jar", "third-party/java/icu4j/icu4j-54.1.1.jar", "third-party/java/infer-annotations/infer-annotations-1.5.jar", "third-party/java/ini4j/ini4j-0.5.2.jar", "third-party/java/jackson/jackson-annotations-2.0.5.jar", "third-party/java/jackson/jackson-core-2.0.5.jar", "third-party/java/jackson/jackson-databind-2.0.5.jar", "third-party/java/jackson/jackson-datatype-jdk7-2.5.0.jar", "third-party/java/jetty/jetty-all-9.2.10.v20150310.jar", "third-party/java/jsr/javax.inject-1.jar", "third-party/java/jsr/jsr305.jar", "third-party/java/nailgun/nailgun-server-0.9.2-SNAPSHOT.jar", "third-party/java/okhttp/okhttp-2.2.0.jar", "third-party/java/okio/okio-1.2.0.jar", "third-party/java/servlet-api/javax.servlet-api-3.1.0.jar", "third-party/java/slf4j/slf4j-api-1.7.2.jar", "third-party/java/stringtemplate/ST-4.0.8.jar", "third-party/java/xz-java-1.3/xz-1.3.jar", ] RESOURCES = { "abi_processor_classes": "build/abi_processor/classes", "android_agent_path": "assets/android/agent.apk", "buck_client": "build/ng", "buck_server": "bin/buck", "dx": "third-party/java/dx/etc/dx", "jacoco_agent_jar": "third-party/java/jacoco/jacocoagent.jar", "logging_config_file": "config/logging.properties", "native_exopackage_fake_path": "assets/android/native-exopackage-fakes.apk", "path_to_asm_jar": "third-party/java/asm/asm-debug-all-5.0.3.jar", "path_to_buck_py": "src/com/facebook/buck/parser/buck.py", "path_to_compile_asset_catalogs_build_phase_sh": ( "src/com/facebook/buck/apple/compile_asset_catalogs_build_phase.sh"), "path_to_compile_asset_catalogs_py": ( "src/com/facebook/buck/apple/compile_asset_catalogs.py"), "path_to_intellij_py": "src/com/facebook/buck/command/intellij.py", "path_to_pathlib_py": "third-party/py/pathlib/pathlib.py", "path_to_pex": "src/com/facebook/buck/python/pex.py", "path_to_python_test_main": "src/com/facebook/buck/python/__test_main__.py", "path_to_sh_binary_template": "src/com/facebook/buck/shell/sh_binary_template", "path_to_static_content": "webserver/static", "quickstart_origin_dir": "src/com/facebook/buck/cli/quickstart/android", "report_generator_jar": "build/report-generator.jar", "testrunner_classes": "build/testrunner/classes", } def get_ant_env(max_heap_size_mb): ant_env = os.environ.copy() ant_opts = ant_env.get('ANT_OPTS', '') if ant_opts.find('-Xmx') == -1: # Adjust the max heap size if it's not already specified. ant_max_heap_arg = '-Xmx{0}m'.format(max_heap_size_mb) if ant_opts: ant_opts += ' ' ant_opts += ant_max_heap_arg ant_env['ANT_OPTS'] = ant_opts return ant_env class BuckRepo(BuckTool): def __init__(self, buck_bin_dir, buck_project): super(BuckRepo, self).__init__(buck_project) self._buck_dir = self._platform_path(os.path.dirname(buck_bin_dir)) self._build_success_file = os.path.join( self._buck_dir, "build", "successful-build") dot_git = os.path.join(self._buck_dir, '.git') self._is_git = os.path.exists(dot_git) and os.path.isdir(dot_git) and which('git') and \ sys.platform != 'cygwin' self._is_buck_repo_dirty_override = os.environ.get('BUCK_REPOSITORY_DIRTY') buck_version = buck_project.buck_version if self._is_git and not buck_project.has_no_buck_check and buck_version: revision = buck_version[0] branch = buck_version[1] if len(buck_version) > 1 else None self._checkout_and_clean(revision, branch) self._build() def _checkout_and_clean(self, revision, branch): with Tracing('BuckRepo._checkout_and_clean'): if not self._revision_exists(revision): print(textwrap.dedent("""\ Required revision {0} is not available in the local repository. Buck is fetching updates from git. You can disable this by creating a '.nobuckcheck' file in your repository, but this might lead to strange bugs or build failures.""".format(revision)), file=sys.stderr) git_command = ['git', 'fetch'] git_command.extend(['--all'] if not branch else ['origin', branch]) try: subprocess.check_call( git_command, stdout=sys.stderr, cwd=self._buck_dir) except subprocess.CalledProcessError: raise BuckToolException(textwrap.dedent("""\ Failed to fetch Buck updates from git.""")) current_revision = self._get_git_revision() if current_revision != revision: print(textwrap.dedent("""\ Buck is at {0}, but should be {1}. Buck is updating itself. To disable this, add a '.nobuckcheck' file to your project root. In general, you should only disable this if you are developing Buck.""".format( current_revision, revision)), file=sys.stderr) try: subprocess.check_call( ['git', 'checkout', '--quiet', revision], cwd=self._buck_dir) except subprocess.CalledProcessError: raise BuckToolException(textwrap.dedent("""\ Failed to update Buck to revision {0}.""".format(revision))) if os.path.exists(self._build_success_file): os.remove(self._build_success_file) ant = self._check_for_ant() self._run_ant_clean(ant) raise RestartBuck() def _join_buck_dir(self, relative_path): return os.path.join(self._buck_dir, *(relative_path.split('/'))) def _is_dirty(self): if self._is_buck_repo_dirty_override: return self._is_buck_repo_dirty_override == "1" if not self._is_git: return False output = check_output( ['git', 'status', '--porcelain'], cwd=self._buck_dir) return bool(output.strip()) def _has_local_changes(self): if not self._is_git: return False output = check_output( ['git', 'ls-files', '-m'], cwd=self._buck_dir) return bool(output.strip()) def _get_git_revision(self): if not self._is_git: return 'N/A' return buck_version.get_git_revision(self._buck_dir) def _get_git_commit_timestamp(self): if self._is_buck_repo_dirty_override or not self._is_git: return -1 return buck_version.get_git_revision_timestamp(self._buck_dir) def _revision_exists(self, revision): returncode = subprocess.call( ['git', 'cat-file', '-e', revision], cwd=self._buck_dir) return returncode == 0 def _check_for_ant(self): ant = which('ant') if not ant: message = "You do not have ant on your $PATH. Cannot build Buck." if sys.platform == "darwin": message += "\nTry running 'brew install ant'." raise BuckToolException(message) return ant def _print_ant_failure_and_exit(self, ant_log_path): print(textwrap.dedent("""\ ::: 'ant' failed in the buck repo at '{0}', ::: and 'buck' is not properly built. It will be unusable ::: until the error is corrected. You can check the logs ::: at {1} to figure out what broke.""".format( self._buck_dir, ant_log_path)), file=sys.stderr) if self._is_git: raise BuckToolException(textwrap.dedent("""\ ::: It is possible that running this command will fix it: ::: git -C "{0}" clean -xfd""".format(self._buck_dir))) else: raise BuckToolException(textwrap.dedent("""\ ::: It is possible that running this command will fix it: ::: rm -rf "{0}"/build""".format(self._buck_dir))) def _run_ant_clean(self, ant): clean_log_path = os.path.join(self._buck_project.get_buck_out_log_dir(), 'ant-clean.log') with open(clean_log_path, 'w') as clean_log: exitcode = subprocess.call([ant, 'clean'], stdout=clean_log, cwd=self._buck_dir, env=get_ant_env(JAVA_MAX_HEAP_SIZE_MB)) if exitcode is not 0: self._print_ant_failure_and_exit(clean_log_path) def _run_ant(self, ant): ant_log_path = os.path.join(self._buck_project.get_buck_out_log_dir(), 'ant.log') with open(ant_log_path, 'w') as ant_log: exitcode = subprocess.call([ant], stdout=ant_log, cwd=self._buck_dir, env=get_ant_env(JAVA_MAX_HEAP_SIZE_MB)) if exitcode is not 0: self._print_ant_failure_and_exit(ant_log_path) def _build(self): with Tracing('BuckRepo._build'): if not os.path.exists(self._build_success_file): print( "Buck does not appear to have been built -- building Buck!", file=sys.stderr) ant = self._check_for_ant() self._run_ant_clean(ant) self._run_ant(ant) open(self._build_success_file, 'w').close() print("All done, continuing with build.", file=sys.stderr) def _has_resource(self, resource): return True def _get_resource(self, resource, exe=False): return self._join_buck_dir(RESOURCES[resource.name]) def _get_buck_version_uid(self): with Tracing('BuckRepo._get_buck_version_uid'): # First try to get the "clean" buck version. If it succeeds, # return it. clean_version = buck_version.get_clean_buck_version( self._buck_dir, allow_dirty=self._is_buck_repo_dirty_override == "1") if clean_version is not None: return clean_version # Otherwise, if there is a .nobuckcheck file, or if there isn't # a .buckversion file, fall back to a "dirty" version. if (self._buck_project.has_no_buck_check or not self._buck_project.buck_version): return buck_version.get_dirty_buck_version(self._buck_dir) if self._has_local_changes(): print(textwrap.dedent("""\ ::: Your buck directory has local modifications, and therefore ::: builds will not be able to use a distributed cache. ::: The following files must be either reverted or committed:"""), file=sys.stderr) subprocess.call( ['git', 'ls-files', '-m'], stdout=sys.stderr, cwd=self._buck_dir) elif os.environ.get('BUCK_CLEAN_REPO_IF_DIRTY') != 'NO': print(textwrap.dedent("""\ ::: Your local buck directory is dirty, and therefore builds will ::: not be able to use a distributed cache."""), file=sys.stderr) if sys.stdout.isatty(): print( "::: Do you want to clean your buck directory? [y/N]", file=sys.stderr) choice = raw_input().lower() if choice == "y": subprocess.call( ['git', 'clean', '-fd'], stdout=sys.stderr, cwd=self._buck_dir) raise RestartBuck() return buck_version.get_dirty_buck_version(self._buck_dir) def _get_extra_java_args(self): return [ "-Dbuck.git_commit={0}".format(self._get_git_revision()), "-Dbuck.git_commit_timestamp={0}".format( self._get_git_commit_timestamp()), "-Dbuck.git_dirty={0}".format(int(self._is_dirty())), ] def _get_bootstrap_classpath(self): return self._join_buck_dir("build/bootstrapper/bootstrapper.jar") def _get_java_classpath(self): return self._pathsep.join([self._join_buck_dir(p) for p in JAVA_CLASSPATHS]) ``` #### File: buck/programs/gen_buck_info.py ```python import os import json import sys import buck_version def main(argv): # Locate the root of the buck repo. We'll need to be there to # generate the buck version UID. path = os.getcwd() while not os.path.exists(os.path.join(path, '.buckconfig')): path = os.path.dirname(path) # Attempt to create a "clean" version, but fall back to a "dirty" # one if need be. version = buck_version.get_clean_buck_version(path) timestamp = -1 if version is None: version = buck_version.get_dirty_buck_version(path) else: timestamp = buck_version.get_git_revision_timestamp(path) json.dump( {'version': version, 'timestamp': timestamp}, sys.stdout, sort_keys=True, indent=2) sys.exit(main(sys.argv)) ``` #### File: cli/bootstrapper/class_loader_test.py ```python import os import subprocess import sys import unittest class ClassLoaderTest(unittest.TestCase): def test_should_not_pollute_classpath_when_processor_path_is_set(self): """ Tests that annotation processors get their own class path, isolated from Buck's. There was a bug caused by adding annotation processors and setting the processorpath for javac. In that case, Buck's version of guava would leak into the classpath of the annotation processor causing it to fail to run and all heck breaking loose.""" root_directory = os.getcwd() buck_path = os.path.join(root_directory, 'bin', 'buck') test_data_directory = os.path.join( root_directory, 'test', 'com', 'facebook', 'buck', 'cli', 'bootstrapper', 'testdata', 'old_guava') # Pass thru our environment, except disabling buckd so that we can be sure the right buck # is run. child_environment = dict(os.environ) child_environment["NO_BUCKD"] = "1" proc = subprocess.Popen( [buck_path, 'build', '//:example'], cwd=test_data_directory, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=child_environment) stdout, stderr = proc.communicate() # Copy output through to unittest's output so failures are easy to debug. Can't just # provide sys.stdout/sys.stderr to Popen because unittest has replaced the streams with # things that aren't directly compatible with Popen. sys.stdout.write(stdout) sys.stdout.flush() sys.stderr.write(stderr) sys.stderr.flush() self.assertEquals(0, proc.returncode) if __name__ == '__main__': unittest.main() ```
{ "source": "jimevans/infield-fly", "score": 3 }
#### File: jimevans/infield-fly/notification.py ```python import logging from twilio.rest import Client class Notifier: """Notifies a user via SMS using the Twilio API""" def __init__(self, account_sid, auth_token, sending_number): super().__init__() self.account_sid = account_sid self.auth_token = auth_token self.sending_number = sending_number @classmethod def create_default_notifier(cls, config): """Creates a notifier using the specified notification settings""" logger = logging.getLogger() if config.notification.sid is None or config.notification.sid == "": logger.warning("Twilio account SID not set. Not notifying.") return None if config.notification.auth_token is None or config.notification.auth_token == "": logger.warning("Twilio auth token not set. Not notifying.") return None if (config.notification.sending_number is None or config.notification.sending_number == ""): logger.warning("Twilio SMS sending number not set. Not notifying.") return None account_sid = config.notification.sid auth_token = config.notification.auth_token sender = config.notification.sending_number return Notifier(account_sid, auth_token, sender) def notify(self, phone_number, message_body): """Sends an SMS notification to the specified phone number with the specified body""" client = Client(self.account_sid, self.auth_token) message = client.messages.create( body = message_body, from_=self.sending_number, to=phone_number) return message.sid ```
{ "source": "JimEverest/scratch-vm", "score": 3 }
#### File: pydobot/backup/dobot.py ```python import serial import struct import time import threading import warnings from .message import Message from enums.PTPMode import PTPMode from enums.CommunicationProtocolIDs import CommunicationProtocolIDs from enums.ControlValues import ControlValues class Dobot: def __init__(self, port, verbose=False): threading.Thread.__init__(self) self._on = True self.verbose = verbose self.lock = threading.Lock() self.ser = serial.Serial(port, baudrate=115200, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS) is_open = self.ser.isOpen() if self.verbose: print('pydobot: %s open' % self.ser.name if is_open else 'failed to open serial port') self._set_queued_cmd_start_exec() self._set_queued_cmd_clear() self._set_ptp_joint_params(200, 200, 200, 200, 200, 200, 200, 200) self._set_ptp_coordinate_params(velocity=200, acceleration=200) self._set_ptp_jump_params(10, 200) self._set_ptp_common_params(velocity=100, acceleration=100) self._get_pose() """ Gets the current command index """ def _get_queued_cmd_current_index(self): msg = Message() msg.id = CommunicationProtocolIDs.GET_QUEUED_CMD_CURRENT_INDEX response = self._send_command(msg) idx = struct.unpack_from('L', response.params, 0)[0] return idx """ Gets the real-time pose of the Dobot """ def _get_pose(self): msg = Message() msg.id = CommunicationProtocolIDs.GET_POSE response = self._send_command(msg) self.x = struct.unpack_from('f', response.params, 0)[0] self.y = struct.unpack_from('f', response.params, 4)[0] self.z = struct.unpack_from('f', response.params, 8)[0] self.r = struct.unpack_from('f', response.params, 12)[0] self.j1 = struct.unpack_from('f', response.params, 16)[0] self.j2 = struct.unpack_from('f', response.params, 20)[0] self.j3 = struct.unpack_from('f', response.params, 24)[0] self.j4 = struct.unpack_from('f', response.params, 28)[0] if self.verbose: print("pydobot: x:%03.1f \ y:%03.1f \ z:%03.1f \ r:%03.1f \ j1:%03.1f \ j2:%03.1f \ j3:%03.1f \ j4:%03.1f" % (self.x, self.y, self.z, self.r, self.j1, self.j2, self.j3, self.j4)) return response def _read_message(self): time.sleep(0.1) b = self.ser.read_all() if len(b) > 0: msg = Message(b) if self.verbose: print('pydobot: <<', msg) return msg return def _send_command(self, msg, wait=False): self.lock.acquire() self._send_message(msg) response = self._read_message() self.lock.release() if not wait: return response expected_idx = struct.unpack_from('L', response.params, 0)[0] if self.verbose: print('pydobot: waiting for command', expected_idx) while True: current_idx = self._get_queued_cmd_current_index() if current_idx != expected_idx: time.sleep(0.1) continue if self.verbose: print('pydobot: command %d executed' % current_idx) break return response def _send_message(self, msg): time.sleep(0.1) if self.verbose: print('pydobot: >>', msg) self.ser.write(msg.bytes()) """ Executes the CP Command """ def _set_cp_cmd(self, x, y, z): msg = Message() msg.id = CommunicationProtocolIDs.SET_CP_CMD msg.ctrl = ControlValues.THREE msg.params = bytearray(bytes([0x01])) msg.params.extend(bytearray(struct.pack('f', x))) msg.params.extend(bytearray(struct.pack('f', y))) msg.params.extend(bytearray(struct.pack('f', z))) msg.params.append(0x00) return self._send_command(msg) """ Sets the status of the gripper """ def _set_end_effector_gripper(self, enable=False): msg = Message() msg.id = CommunicationProtocolIDs.SET_GET_END_EFFECTOR_GRIPPER msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray([0x01])) if enable is True: msg.params.extend(bytearray([0x01])) else: msg.params.extend(bytearray([0x00])) return self._send_command(msg) """ Sets the status of the suction cup """ def _set_end_effector_suction_cup(self, enable=False): msg = Message() msg.id = CommunicationProtocolIDs.SET_GET_END_EFFECTOR_SUCTION_CUP msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray([0x01])) if enable is True: msg.params.extend(bytearray([0x01])) else: msg.params.extend(bytearray([0x00])) return self._send_command(msg) """ Sets the velocity ratio and the acceleration ratio in PTP mode """ def _set_ptp_joint_params(self, v_x, v_y, v_z, v_r, a_x, a_y, a_z, a_r): msg = Message() msg.id = CommunicationProtocolIDs.SET_GET_PTP_JOINT_PARAMS msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray(struct.pack('f', v_x))) msg.params.extend(bytearray(struct.pack('f', v_y))) msg.params.extend(bytearray(struct.pack('f', v_z))) msg.params.extend(bytearray(struct.pack('f', v_r))) msg.params.extend(bytearray(struct.pack('f', a_x))) msg.params.extend(bytearray(struct.pack('f', a_y))) msg.params.extend(bytearray(struct.pack('f', a_z))) msg.params.extend(bytearray(struct.pack('f', a_r))) return self._send_command(msg) """ Sets the velocity and acceleration of the Cartesian coordinate axes in PTP mode """ def _set_ptp_coordinate_params(self, velocity, acceleration): msg = Message() msg.id = CommunicationProtocolIDs.SET_GET_PTP_COORDINATE_PARAMS msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray(struct.pack('f', velocity))) msg.params.extend(bytearray(struct.pack('f', velocity))) msg.params.extend(bytearray(struct.pack('f', acceleration))) msg.params.extend(bytearray(struct.pack('f', acceleration))) return self._send_command(msg) """ Sets the lifting height and the maximum lifting height in JUMP mode """ def _set_ptp_jump_params(self, jump, limit): msg = Message() msg.id = CommunicationProtocolIDs.SET_GET_PTP_JUMP_PARAMS msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray(struct.pack('f', jump))) msg.params.extend(bytearray(struct.pack('f', limit))) return self._send_command(msg) """ Sets the velocity ratio, acceleration ratio in PTP mode """ def _set_ptp_common_params(self, velocity, acceleration): msg = Message() msg.id = CommunicationProtocolIDs.SET_GET_PTP_COMMON_PARAMS msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray(struct.pack('f', velocity))) msg.params.extend(bytearray(struct.pack('f', acceleration))) return self._send_command(msg) """ Executes PTP command """ def _set_ptp_cmd(self, x, y, z, r, mode, wait): msg = Message() msg.id = CommunicationProtocolIDs.SET_PTP_CMD msg.ctrl = ControlValues.THREE msg.params = bytearray([]) msg.params.extend(bytearray([mode])) msg.params.extend(bytearray(struct.pack('f', x))) msg.params.extend(bytearray(struct.pack('f', y))) msg.params.extend(bytearray(struct.pack('f', z))) msg.params.extend(bytearray(struct.pack('f', r))) return self._send_command(msg, wait) """ Clears command queue """ def _set_queued_cmd_clear(self): msg = Message() msg.id = CommunicationProtocolIDs.SET_QUEUED_CMD_CLEAR msg.ctrl = ControlValues.ONE return self._send_command(msg) """ Start command """ def _set_queued_cmd_start_exec(self): msg = Message() msg.id = CommunicationProtocolIDs.SET_QUEUED_CMD_START_EXEC msg.ctrl = ControlValues.ONE return self._send_command(msg) """ Stop command """ def _set_queued_cmd_stop_exec(self): msg = Message() msg.id = CommunicationProtocolIDs.SET_QUEUED_CMD_STOP_EXEC msg.ctrl = ControlValues.ONE return self._send_command(msg) def close(self): self._on = False self.lock.acquire() self.ser.close() if self.verbose: print('pydobot: %s closed' % self.ser.name) self.lock.release() def go(self, x, y, z, r=0.): warnings.warn('go() is deprecated, use move_to() instead') self.move_to(x, y, z, r) def move_to(self, x, y, z, r, wait=False): self._set_ptp_cmd(x, y, z, r, mode=PTPMode.MOVL_XYZ, wait=wait) def suck(self, enable): self._set_end_effector_suction_cup(enable) def grip(self, enable): self._set_end_effector_gripper(enable) def speed(self, velocity=100., acceleration=100.): self._set_ptp_common_params(velocity, acceleration) self._set_ptp_coordinate_params(velocity, acceleration) def pose(self): response = self._get_pose() x = struct.unpack_from('f', response.params, 0)[0] y = struct.unpack_from('f', response.params, 4)[0] z = struct.unpack_from('f', response.params, 8)[0] r = struct.unpack_from('f', response.params, 12)[0] j1 = struct.unpack_from('f', response.params, 16)[0] j2 = struct.unpack_from('f', response.params, 20)[0] j3 = struct.unpack_from('f', response.params, 24)[0] j4 = struct.unpack_from('f', response.params, 28)[0] return x, y, z, r, j1, j2, j3, j4 ```
{ "source": "Jimexist/advent-of-code-python", "score": 4 }
#### File: advent-of-code-python/days/day1.py ```python import sys def first_half(fin): nums = [int(i) for i in fin] return sum(nums) def second_half(fin): nums = [int(i) for i in fin] seen = set() x = 0 while True: for i in nums: x += i if x in seen: return x seen.add(x) if __name__ == "__main__": print(second_half(sys.stdin)) ```
{ "source": "Jimexist/chinese-mnist-with-pytorch-lightning-resnet", "score": 3 }
#### File: Jimexist/chinese-mnist-with-pytorch-lightning-resnet/model.py ```python import os from pathlib import Path import pandas as pd import pytorch_lightning as pl from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from pytorch_lightning.metrics import Accuracy from sklearn.model_selection import StratifiedKFold from torch import nn, optim from torchvision.models import resnet18 try: from dataset import ChineseMNISTDataModule, ChineseMNISTDataset except: pass class ChineseMNISTResnetModel(pl.LightningModule): def __init__(self, learning_rate=1e-3): super().__init__() self.learning_rate = learning_rate self.num_classes = 15 resnet = resnet18(pretrained=True, progress=True) resnet.conv1 = nn.Conv2d( in_channels=1, out_channels=resnet.conv1.out_channels, kernel_size=resnet.conv1.kernel_size, stride=resnet.conv1.stride, dilation=resnet.conv1.dilation, bias=resnet.conv1.bias, ) resnet.fc = nn.Linear(512, self.num_classes) self.resnet = resnet self.accuracy = Accuracy(num_classes=self.num_classes) self.criterion = nn.CrossEntropyLoss() def forward(self, image): image = image.permute(0, 3, 1, 2).contiguous().float() return self.resnet(image) def training_step(self, batch, batch_idx: int): image, y = batch yhat = self(image) loss = self.criterion(yhat, y) acc = self.accuracy(yhat, y) return {"loss": loss, "acc": acc} def validation_step(self, batch, batch_idx: int): image, y = batch yhat = self(image) loss = self.criterion(yhat, y) acc = self.accuracy(yhat, y) return {"val_loss": loss, "val_acc": acc, "progress_bar": {"val_acc": acc}} def test_step(self, batch, batch_idx): metrics = self.validation_step(batch, batch_idx) return {"test_acc": metrics["val_acc"], "test_loss": metrics["val_loss"]} def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer def training(k_folds: int = 5): is_kaggle = os.path.isdir("/kaggle") data_root = Path("/kaggle/input/chinese-mnist" if is_kaggle else "archive") all_df = pd.read_csv(data_root / "chinese_mnist.csv") skf = StratifiedKFold(n_splits=k_folds, shuffle=True) checkpoint_callback = ModelCheckpoint( filepath=os.getcwd(), save_top_k=1, verbose=True, monitor="val_loss", mode="min", ) trainer = pl.Trainer( gpus=1, max_epochs=4, precision=16, val_check_interval=0.2, checkpoint_callback=checkpoint_callback, ) for train_indices, val_indices in skf.split(all_df, all_df.code): data_module = ChineseMNISTDataModule( data_root=data_root, all_df=all_df, train_indices=train_indices, val_indices=val_indices, ) model = ChineseMNISTResnetModel() trainer.fit(model, data_module) if __name__ == "__main__": training() ```
{ "source": "Jimexist/thrift", "score": 2 }
#### File: nodejs/examples/httpServer.py ```python import sys sys.path.append('gen-py') from hello import HelloSvc from thrift.protocol import TJSONProtocol from thrift.server import THttpServer class HelloSvcHandler: def hello_func(self): print("Hello Called") return "hello from Python" processor = HelloSvc.Processor(HelloSvcHandler()) protoFactory = TJSONProtocol.TJSONProtocolFactory() port = 9090 server = THttpServer.THttpServer(processor, ("localhost", port), protoFactory) print "Python server running on port " + str(port) server.serve() ``` #### File: src/transport/THeaderTransport.py ```python import struct import zlib from thrift.compat import BufferIO, byte_index from thrift.protocol.TBinaryProtocol import TBinaryProtocol from thrift.protocol.TCompactProtocol import TCompactProtocol, readVarint, writeVarint from thrift.Thrift import TApplicationException from thrift.transport.TTransport import ( CReadableTransport, TMemoryBuffer, TTransportBase, TTransportException, ) U16 = struct.Struct("!H") I32 = struct.Struct("!i") HEADER_MAGIC = 0x0FFF HARD_MAX_FRAME_SIZE = 0x3FFFFFFF class THeaderClientType(object): HEADERS = 0x00 FRAMED_BINARY = 0x01 UNFRAMED_BINARY = 0x02 FRAMED_COMPACT = 0x03 UNFRAMED_COMPACT = 0x04 class THeaderSubprotocolID(object): BINARY = 0x00 COMPACT = 0x02 class TInfoHeaderType(object): KEY_VALUE = 0x01 class THeaderTransformID(object): ZLIB = 0x01 READ_TRANSFORMS_BY_ID = { THeaderTransformID.ZLIB: zlib.decompress, } WRITE_TRANSFORMS_BY_ID = { THeaderTransformID.ZLIB: zlib.compress, } def _readString(trans): size = readVarint(trans) if size < 0: raise TTransportException( TTransportException.NEGATIVE_SIZE, "Negative length" ) return trans.read(size) def _writeString(trans, value): writeVarint(trans, len(value)) trans.write(value) class THeaderTransport(TTransportBase, CReadableTransport): def __init__(self, transport, allowed_client_types, default_protocol=THeaderSubprotocolID.BINARY): self._transport = transport self._client_type = THeaderClientType.HEADERS self._allowed_client_types = allowed_client_types self._read_buffer = BufferIO(b"") self._read_headers = {} self._write_buffer = BufferIO() self._write_headers = {} self._write_transforms = [] self.flags = 0 self.sequence_id = 0 self._protocol_id = default_protocol self._max_frame_size = HARD_MAX_FRAME_SIZE def isOpen(self): return self._transport.isOpen() def open(self): return self._transport.open() def close(self): return self._transport.close() def get_headers(self): return self._read_headers def set_header(self, key, value): if not isinstance(key, bytes): raise ValueError("header names must be bytes") if not isinstance(value, bytes): raise ValueError("header values must be bytes") self._write_headers[key] = value def clear_headers(self): self._write_headers.clear() def add_transform(self, transform_id): if transform_id not in WRITE_TRANSFORMS_BY_ID: raise ValueError("unknown transform") self._write_transforms.append(transform_id) def set_max_frame_size(self, size): if not 0 < size < HARD_MAX_FRAME_SIZE: raise ValueError("maximum frame size should be < %d and > 0" % HARD_MAX_FRAME_SIZE) self._max_frame_size = size @property def protocol_id(self): if self._client_type == THeaderClientType.HEADERS: return self._protocol_id elif self._client_type in (THeaderClientType.FRAMED_BINARY, THeaderClientType.UNFRAMED_BINARY): return THeaderSubprotocolID.BINARY elif self._client_type in (THeaderClientType.FRAMED_COMPACT, THeaderClientType.UNFRAMED_COMPACT): return THeaderSubprotocolID.COMPACT else: raise TTransportException( TTransportException.INVALID_CLIENT_TYPE, "Protocol ID not know for client type %d" % self._client_type, ) def read(self, sz): # if there are bytes left in the buffer, produce those first. bytes_read = self._read_buffer.read(sz) bytes_left_to_read = sz - len(bytes_read) if bytes_left_to_read == 0: return bytes_read # if we've determined this is an unframed client, just pass the read # through to the underlying transport until we're reset again at the # beginning of the next message. if self._client_type in (THeaderClientType.UNFRAMED_BINARY, THeaderClientType.UNFRAMED_COMPACT): return bytes_read + self._transport.read(bytes_left_to_read) # we're empty and (maybe) framed. fill the buffers with the next frame. self.readFrame(bytes_left_to_read) return bytes_read + self._read_buffer.read(bytes_left_to_read) def _set_client_type(self, client_type): if client_type not in self._allowed_client_types: raise TTransportException( TTransportException.INVALID_CLIENT_TYPE, "Client type %d not allowed by server." % client_type, ) self._client_type = client_type def readFrame(self, req_sz): # the first word could either be the length field of a framed message # or the first bytes of an unframed message. first_word = self._transport.readAll(I32.size) frame_size, = I32.unpack(first_word) is_unframed = False if frame_size & TBinaryProtocol.VERSION_MASK == TBinaryProtocol.VERSION_1: self._set_client_type(THeaderClientType.UNFRAMED_BINARY) is_unframed = True elif (byte_index(first_word, 0) == TCompactProtocol.PROTOCOL_ID and byte_index(first_word, 1) & TCompactProtocol.VERSION_MASK == TCompactProtocol.VERSION): self._set_client_type(THeaderClientType.UNFRAMED_COMPACT) is_unframed = True if is_unframed: bytes_left_to_read = req_sz - I32.size if bytes_left_to_read > 0: rest = self._transport.read(bytes_left_to_read) else: rest = b"" self._read_buffer = BufferIO(first_word + rest) return # ok, we're still here so we're framed. if frame_size > self._max_frame_size: raise TTransportException( TTransportException.SIZE_LIMIT, "Frame was too large.", ) read_buffer = BufferIO(self._transport.readAll(frame_size)) # the next word is either going to be the version field of a # binary/compact protocol message or the magic value + flags of a # header protocol message. second_word = read_buffer.read(I32.size) version, = I32.unpack(second_word) read_buffer.seek(0) if version >> 16 == HEADER_MAGIC: self._set_client_type(THeaderClientType.HEADERS) self._read_buffer = self._parse_header_format(read_buffer) elif version & TBinaryProtocol.VERSION_MASK == TBinaryProtocol.VERSION_1: self._set_client_type(THeaderClientType.FRAMED_BINARY) self._read_buffer = read_buffer elif (byte_index(second_word, 0) == TCompactProtocol.PROTOCOL_ID and byte_index(second_word, 1) & TCompactProtocol.VERSION_MASK == TCompactProtocol.VERSION): self._set_client_type(THeaderClientType.FRAMED_COMPACT) self._read_buffer = read_buffer else: raise TTransportException( TTransportException.INVALID_CLIENT_TYPE, "Could not detect client transport type.", ) def _parse_header_format(self, buffer): # make BufferIO look like TTransport for varint helpers buffer_transport = TMemoryBuffer() buffer_transport._buffer = buffer buffer.read(2) # discard the magic bytes self.flags, = U16.unpack(buffer.read(U16.size)) self.sequence_id, = I32.unpack(buffer.read(I32.size)) header_length = U16.unpack(buffer.read(U16.size))[0] * 4 end_of_headers = buffer.tell() + header_length if end_of_headers > len(buffer.getvalue()): raise TTransportException( TTransportException.SIZE_LIMIT, "Header size is larger than whole frame.", ) self._protocol_id = readVarint(buffer_transport) transforms = [] transform_count = readVarint(buffer_transport) for _ in range(transform_count): transform_id = readVarint(buffer_transport) if transform_id not in READ_TRANSFORMS_BY_ID: raise TApplicationException( TApplicationException.INVALID_TRANSFORM, "Unknown transform: %d" % transform_id, ) transforms.append(transform_id) transforms.reverse() headers = {} while buffer.tell() < end_of_headers: header_type = readVarint(buffer_transport) if header_type == TInfoHeaderType.KEY_VALUE: count = readVarint(buffer_transport) for _ in range(count): key = _readString(buffer_transport) value = _readString(buffer_transport) headers[key] = value else: break # ignore unknown headers self._read_headers = headers # skip padding / anything we didn't understand buffer.seek(end_of_headers) payload = buffer.read() for transform_id in transforms: transform_fn = READ_TRANSFORMS_BY_ID[transform_id] payload = transform_fn(payload) return BufferIO(payload) def write(self, buf): self._write_buffer.write(buf) def flush(self): payload = self._write_buffer.getvalue() self._write_buffer = BufferIO() buffer = BufferIO() if self._client_type == THeaderClientType.HEADERS: for transform_id in self._write_transforms: transform_fn = WRITE_TRANSFORMS_BY_ID[transform_id] payload = transform_fn(payload) headers = BufferIO() writeVarint(headers, self._protocol_id) writeVarint(headers, len(self._write_transforms)) for transform_id in self._write_transforms: writeVarint(headers, transform_id) if self._write_headers: writeVarint(headers, TInfoHeaderType.KEY_VALUE) writeVarint(headers, len(self._write_headers)) for key, value in self._write_headers.items(): _writeString(headers, key) _writeString(headers, value) self._write_headers = {} padding_needed = (4 - (len(headers.getvalue()) % 4)) % 4 headers.write(b"\x00" * padding_needed) header_bytes = headers.getvalue() buffer.write(I32.pack(10 + len(header_bytes) + len(payload))) buffer.write(U16.pack(HEADER_MAGIC)) buffer.write(U16.pack(self.flags)) buffer.write(I32.pack(self.sequence_id)) buffer.write(U16.pack(len(header_bytes) // 4)) buffer.write(header_bytes) buffer.write(payload) elif self._client_type in (THeaderClientType.FRAMED_BINARY, THeaderClientType.FRAMED_COMPACT): buffer.write(I32.pack(len(payload))) buffer.write(payload) elif self._client_type in (THeaderClientType.UNFRAMED_BINARY, THeaderClientType.UNFRAMED_COMPACT): buffer.write(payload) else: raise TTransportException( TTransportException.INVALID_CLIENT_TYPE, "Unknown client type.", ) # the frame length field doesn't count towards the frame payload size frame_bytes = buffer.getvalue() frame_payload_size = len(frame_bytes) - 4 if frame_payload_size > self._max_frame_size: raise TTransportException( TTransportException.SIZE_LIMIT, "Attempting to send frame that is too large.", ) self._transport.write(frame_bytes) self._transport.flush() @property def cstringio_buf(self): return self._read_buffer def cstringio_refill(self, partialread, reqlen): result = bytearray(partialread) while len(result) < reqlen: result += self.read(reqlen - len(result)) self._read_buffer = BufferIO(result) return self._read_buffer ``` #### File: py/test/thrift_transport.py ```python import unittest import os import _import_local_thrift # noqa from thrift.transport import TTransport class TestTFileObjectTransport(unittest.TestCase): def test_TFileObjectTransport(self): test_dir = os.path.dirname(os.path.abspath(__file__)) datatxt_path = os.path.join(test_dir, 'data.txt') buffer = '{"soft":"thrift","version":0.13,"1":true}' with open(datatxt_path, "w+") as f: buf = TTransport.TFileObjectTransport(f) buf.write(buffer) buf.flush() buf.close() with open(datatxt_path, "rb") as f: buf = TTransport.TFileObjectTransport(f) value = buf.read(len(buffer)).decode('utf-8') self.assertEqual(buffer, value) buf.close() os.remove(datatxt_path) class TestMemoryBuffer(unittest.TestCase): def test_memorybuffer_write(self): data = '{"1":[1,"hello"],"a":{"A":"abc"},"bool":true,"num":12345}' buffer_w = TTransport.TMemoryBuffer() buffer_w.write(data.encode('utf-8')) value = buffer_w.getvalue() self.assertEqual(value.decode('utf-8'), data) buffer_w.close() def test_memorybuffer_read(self): data = '{"1":[1, "hello"],"a":{"A":"abc"},"bool":true,"num":12345}' buffer_r = TTransport.TMemoryBuffer(data.encode('utf-8')) value_r = buffer_r.read(len(data)) value = buffer_r.getvalue() self.assertEqual(value.decode('utf-8'), data) self.assertEqual(value_r.decode('utf-8'), data) buffer_r.close() if __name__ == '__main__': unittest.main() ``` #### File: py/test/thrift_TZlibTransport.py ```python import unittest import random import string import _import_local_thrift # noqa from thrift.transport import TTransport from thrift.transport import TZlibTransport def generate_random_buff(): data = [] buf_len = 1024 * 32 index = 0 while index < buf_len: run_len = random.randint(1, 64) if index + run_len > buf_len: run_len = buf_len - index for i in range(run_len): data.extend(random.sample(string.printable, 1)) index += 1 new_data = ''.join(data) return new_data class TestTZlibTransport(unittest.TestCase): def test_write_then_read(self): buff = TTransport.TMemoryBuffer() trans = TTransport.TBufferedTransportFactory().getTransport(buff) zlib_trans = TZlibTransport.TZlibTransport(trans) data_w = generate_random_buff() zlib_trans.write(data_w.encode('utf-8')) zlib_trans.flush() value = buff.getvalue() zlib_trans.close() buff = TTransport.TMemoryBuffer(value) trans = TTransport.TBufferedTransportFactory().getTransport(buff) zlib_trans = TZlibTransport.TZlibTransport(trans) data_r = zlib_trans.read(len(data_w)) zlib_trans.close() try: self.assertEqual(data_w, data_r.decode('utf-8')) self.assertEqual(len(data_w), len(data_r.decode('utf-8'))) except AssertionError: raise def test_after_flushd_write_then_read(self): buff = TTransport.TMemoryBuffer() trans = TTransport.TBufferedTransportFactory().getTransport(buff) zlib_trans = TZlibTransport.TZlibTransport(trans) data_w_1 = "hello thrift !@#" * 50 zlib_trans.write(data_w_1.encode('utf-8')) zlib_trans.flush() data_w_2 = "{'name': 'thrift', 1: ['abcd' , 233, ('a','c')]}" * 20 zlib_trans.write(data_w_2.encode('utf-8')) zlib_trans.flush() value = buff.getvalue() zlib_trans.close() buff = TTransport.TMemoryBuffer(value) trans = TTransport.TBufferedTransportFactory().getTransport(buff) zlib_trans = TZlibTransport.TZlibTransport(trans) data_r = zlib_trans.read(len(data_w_1) + len(data_w_2)) zlib_trans.close() try: self.assertEqual(data_w_1 + data_w_2, data_r.decode('utf-8')) self.assertEqual(len(data_w_1) + len(data_w_2), len(data_r.decode('utf-8'))) except AssertionError: raise if __name__ == '__main__': unittest.main() ```
{ "source": "jimfenton/datatracker", "score": 3 }
#### File: ietf/doc/tests_js.py ```python import debug # pyflakes:ignore from ietf.doc.factories import WgDraftFactory, DocumentAuthorFactory from ietf.person.factories import PersonFactory from ietf.person.models import Person from ietf.utils.jstest import ( IetfSeleniumTestCase, ifSeleniumEnabled, selenium_enabled, presence_of_element_child_by_css_selector ) if selenium_enabled(): from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions @ifSeleniumEnabled class EditAuthorsTests(IetfSeleniumTestCase): def setUp(self): super(EditAuthorsTests, self).setUp() self.wait = WebDriverWait(self.driver, 2) def test_add_author_forms(self): def _fill_in_author_form(form_elt, name, email, affiliation, country): """Fill in an author form on the edit authors page The form_elt input should be an element containing all the relevant inputs. """ # To enter the person, type their name in the select2 search box, wait for the # search to offer the result, then press 'enter' to accept the result and close # the search input. person_span = form_elt.find_element(By.CLASS_NAME, 'select2-selection') self.scroll_to_element(person_span) person_span.click() input = self.driver.find_element(By.CSS_SELECTOR, '.select2-search__field[aria-controls*=author]') input.send_keys(name) result_selector = 'ul.select2-results__options[id*=author] > li.select2-results__option--selectable' self.wait.until( expected_conditions.text_to_be_present_in_element( (By.CSS_SELECTOR, result_selector), name )) input.send_keys('\n') # select the object # After the author is selected, the email select options will be populated. # Wait for that, then click on the option corresponding to the requested email. # This will only work if the email matches an address for the selected person. email_select = form_elt.find_element(By.CSS_SELECTOR, 'select[name$="email"]') email_option = self.wait.until( presence_of_element_child_by_css_selector(email_select, 'option[value="{}"]'.format(email)) ) email_option.click() # select the email # Fill in the affiliation and country. Finally, simple text inputs! affil_input = form_elt.find_element(By.CSS_SELECTOR, 'input[name$="affiliation"]') affil_input.send_keys(affiliation) country_input = form_elt.find_element(By.CSS_SELECTOR, 'input[name$="country"]') country_input.send_keys(country) def _read_author_form(form_elt): """Read values from an author form Note: returns the Person instance named in the person field, not just their name. """ hidden_person_input = form_elt.find_element(By.CSS_SELECTOR, 'select[name$="person"]') email_select = form_elt.find_element(By.CSS_SELECTOR, 'select[name$="email"]') affil_input = form_elt.find_element(By.CSS_SELECTOR, 'input[name$="affiliation"]') country_input = form_elt.find_element(By.CSS_SELECTOR, 'input[name$="country"]') return ( Person.objects.get(pk=hidden_person_input.get_attribute('value')), email_select.get_attribute('value'), affil_input.get_attribute('value'), country_input.get_attribute('value'), ) # Create testing resources draft = WgDraftFactory() DocumentAuthorFactory(document=draft) authors = PersonFactory.create_batch(2) # authors we will add orgs = ['some org', 'some other org'] # affiliations for the authors countries = ['France', 'Uganda'] # countries for the authors url = self.absreverse('ietf.doc.views_doc.edit_authors', kwargs=dict(name=draft.name)) # Star the test by logging in with appropriate permissions and retrieving the edit page self.login('secretary') self.driver.get(url) # The draft has one author to start with. Find the list and check the count. authors_list = self.driver.find_element(By.ID, 'authors-list') author_forms = authors_list.find_elements(By.CLASS_NAME, 'author-panel') self.assertEqual(len(author_forms), 1) # get the "add author" button so we can add blank author forms add_author_button = self.driver.find_element(By.ID, 'add-author-button') for index, auth in enumerate(authors): self.driver.execute_script("arguments[0].scrollIntoView();", add_author_button) # FIXME: no idea why this fails: # self.scroll_to_element(add_author_button) # Can only click if it's in view! self.driver.execute_script("arguments[0].click();", add_author_button) # FIXME: no idea why this fails: # add_author_button.click() # Create a new form. Automatically scrolls to it. author_forms = authors_list.find_elements(By.CLASS_NAME, 'author-panel') authors_added = index + 1 self.assertEqual(len(author_forms), authors_added + 1) # Started with 1 author, hence +1 _fill_in_author_form(author_forms[index + 1], auth.name, str(auth.email()), orgs[index], countries[index]) # Check that the author forms have correct (and distinct) values first_auth = draft.documentauthor_set.first() self.assertEqual( _read_author_form(author_forms[0]), (first_auth.person, str(first_auth.email), first_auth.affiliation, first_auth.country), ) for index, auth in enumerate(authors): self.assertEqual( _read_author_form(author_forms[index + 1]), (auth, str(auth.email()), orgs[index], countries[index]), ) # Must provide a "basis" (change reason) self.driver.find_element(By.ID, 'id_basis').send_keys('change <PASSWORD>') # Now click the 'submit' button and check that the update was accepted. submit_button = self.driver.find_element(By.CSS_SELECTOR, 'button[type="submit"]') self.driver.execute_script("arguments[0].click();", submit_button) # FIXME: no idea why this fails: # self.scroll_to_element(submit_button) # submit_button.click() # Wait for redirect to the document_main view self.wait.until( expected_conditions.url_to_be( self.absreverse('ietf.doc.views_doc.document_main', kwargs=dict(name=draft.name)) )) # Just a basic check that the expected authors show up. Details of the updates # are tested separately. self.assertEqual( list(draft.documentauthor_set.values_list('person', flat=True)), [first_auth.person.pk] + [auth.pk for auth in authors] ) ``` #### File: ietf/doc/views_bofreq.py ```python import debug # pyflakes:ignore import io from django import forms from django.contrib.auth.decorators import login_required from django.shortcuts import get_object_or_404, redirect, render from django.template.loader import render_to_string from django.urls import reverse as urlreverse from django.utils.html import escape from ietf.doc.mails import (email_bofreq_title_changed, email_bofreq_editors_changed, email_bofreq_new_revision, email_bofreq_responsible_changed) from ietf.doc.models import (Document, DocAlias, DocEvent, NewRevisionDocEvent, BofreqEditorDocEvent, BofreqResponsibleDocEvent, State) from ietf.doc.utils import add_state_change_event from ietf.doc.utils_bofreq import bofreq_editors, bofreq_responsible from ietf.ietfauth.utils import has_role, role_required from ietf.person.fields import SearchablePersonsField from ietf.utils import markdown from ietf.utils.response import permission_denied from ietf.utils.text import xslugify from ietf.utils.textupload import get_cleaned_text_file_content def bof_requests(request): reqs = Document.objects.filter(type_id='bofreq') for req in reqs: req.latest_revision_event = req.latest_event(NewRevisionDocEvent) req.responsible = bofreq_responsible(req) req.editors = bofreq_editors(req) sorted_reqs = sorted(sorted(reqs, key=lambda doc: doc.latest_revision_event.time, reverse=True), key=lambda doc: doc.get_state().order) return render(request, 'doc/bofreq/bof_requests.html',dict(reqs=sorted_reqs)) class BofreqUploadForm(forms.Form): ACTIONS = [ ("enter", "Enter content directly"), ("upload", "Upload content from file"), ] bofreq_submission = forms.ChoiceField(choices=ACTIONS, widget=forms.RadioSelect) bofreq_file = forms.FileField(label="Markdown source file to upload", required=False) bofreq_content = forms.CharField(widget=forms.Textarea(attrs={'rows':30}), required=False, strip=False) def clean(self): def require_field(f): if not self.cleaned_data.get(f): self.add_error(f, forms.ValidationError("You must fill in this field.")) return False else: return True submission_method = self.cleaned_data.get("bofreq_submission") content = '' if submission_method == "enter": if require_field("bofreq_content"): content = self.cleaned_data["bofreq_content"].replace("\r", "") default_content = render_to_string('doc/bofreq/bofreq_template.md',{}) if content==default_content: raise forms.ValidationError('The example content may not be saved. Edit it as instructed to document this BOF request.') elif submission_method == "upload": if require_field("bofreq_file"): content = get_cleaned_text_file_content(self.cleaned_data["bofreq_file"]) try: _ = markdown.markdown(content) except Exception as e: raise forms.ValidationError(f'Markdown processing failed: {e}') @login_required def submit(request, name): bofreq = get_object_or_404(Document, type="bofreq", name=name) previous_editors = bofreq_editors(bofreq) state_id = bofreq.get_state_slug('bofreq') if not (has_role(request.user,('Secretariat', 'Area Director', 'IAB')) or (state_id=='proposed' and request.user.person in previous_editors)): permission_denied(request,"You do not have permission to upload a new revision of this BOF Request") if request.method == 'POST': form = BofreqUploadForm(request.POST, request.FILES) if form.is_valid(): bofreq.rev = "%02d" % (int(bofreq.rev)+1) e = NewRevisionDocEvent.objects.create( type="new_revision", doc=bofreq, by=request.user.person, rev=bofreq.rev, desc='New revision available', time=bofreq.time, ) bofreq.save_with_history([e]) bofreq_submission = form.cleaned_data['bofreq_submission'] if bofreq_submission == "upload": content = get_cleaned_text_file_content(form.cleaned_data["bofreq_file"]) else: content = form.cleaned_data['bofreq_content'] with io.open(bofreq.get_file_name(), 'w', encoding='utf-8') as destination: destination.write(content) email_bofreq_new_revision(request, bofreq) return redirect('ietf.doc.views_doc.document_main', name=bofreq.name) else: init = {'bofreq_content':bofreq.text_or_error(), 'bofreq_submission':'enter', } form = BofreqUploadForm(initial=init) return render(request, 'doc/bofreq/upload_content.html', {'form':form,'doc':bofreq}) class NewBofreqForm(BofreqUploadForm): title = forms.CharField(max_length=255) field_order = ['title','bofreq_submission','bofreq_file','bofreq_content'] def __init__(self, requester, *args, **kwargs): self._requester = requester super().__init__(*args, **kwargs) def name_from_title(self, title): requester_slug = xslugify(self._requester.last_name()) title_slug = xslugify(title) name = f'bofreq-{requester_slug[:64]}-{title_slug[:128]}' return name.replace('_', '-') def clean_title(self): title = self.cleaned_data['title'] name = self.name_from_title(title) if name == self.name_from_title(''): raise forms.ValidationError('The filename derived from this title is empty. Please include a few descriptive words using ascii or numeric characters') if Document.objects.filter(name=name).exists(): raise forms.ValidationError('This title produces a filename already used by an existing BOF request') return title @login_required def new_bof_request(request): if request.method == 'POST': form = NewBofreqForm(request.user.person, request.POST, request.FILES) if form.is_valid(): title = form.cleaned_data['title'] name = form.name_from_title(title) bofreq = Document.objects.create( type_id='bofreq', name = name, title = title, abstract = '', rev = '00', ) bofreq.set_state(State.objects.get(type_id='bofreq',slug='proposed')) e1 = NewRevisionDocEvent.objects.create( type="new_revision", doc=bofreq, by=request.user.person, rev=bofreq.rev, desc='New revision available', time=bofreq.time, ) e2 = BofreqEditorDocEvent.objects.create( type="changed_editors", doc=bofreq, rev=bofreq.rev, by=request.user.person, desc= f'Editors changed to {request.user.person.name}', ) e2.editors.set([request.user.person]) bofreq.save_with_history([e1,e2]) alias = DocAlias.objects.create(name=name) alias.docs.set([bofreq]) bofreq_submission = form.cleaned_data['bofreq_submission'] if bofreq_submission == "upload": content = get_cleaned_text_file_content(form.cleaned_data["bofreq_file"]) else: content = form.cleaned_data['bofreq_content'] with io.open(bofreq.get_file_name(), 'w', encoding='utf-8') as destination: destination.write(content) email_bofreq_new_revision(request, bofreq) return redirect('ietf.doc.views_doc.document_main', name=bofreq.name) else: init = {'bofreq_content':escape(render_to_string('doc/bofreq/bofreq_template.md',{})), 'bofreq_submission':'enter', } form = NewBofreqForm(request.user.person, initial=init) return render(request, 'doc/bofreq/new_bofreq.html', {'form':form}) class ChangeEditorsForm(forms.Form): editors = SearchablePersonsField(required=False) @login_required def change_editors(request, name): bofreq = get_object_or_404(Document, type="bofreq", name=name) previous_editors = bofreq_editors(bofreq) state_id = bofreq.get_state_slug('bofreq') if not (has_role(request.user,('Secretariat', 'Area Director', 'IAB')) or (state_id=='proposed' and request.user.person in previous_editors)): permission_denied(request,"You do not have permission to change this document's editors") if request.method == 'POST': form = ChangeEditorsForm(request.POST) if form.is_valid(): new_editors = form.cleaned_data['editors'] if set(new_editors) != set(previous_editors): e = BofreqEditorDocEvent(type="changed_editors", doc=bofreq, rev=bofreq.rev, by=request.user.person) e.desc = f'Editors changed to {", ".join([p.name for p in new_editors])}' e.save() e.editors.set(new_editors) bofreq.save_with_history([e]) email_bofreq_editors_changed(request, bofreq, previous_editors) return redirect("ietf.doc.views_doc.document_main", name=bofreq.name) else: init = { "editors" : previous_editors } form = ChangeEditorsForm(initial=init) titletext = bofreq.get_base_name() return render(request, 'doc/bofreq/change_editors.html', {'form': form, 'doc': bofreq, 'titletext' : titletext, }, ) class ChangeResponsibleForm(forms.Form): responsible = SearchablePersonsField(required=False) def clean_responsible(self): responsible = self.cleaned_data['responsible'] not_leadership = list() for person in responsible: if not has_role(person.user, ('Area Director', 'IAB')): not_leadership.append(person) if not_leadership: raise forms.ValidationError('Only current IAB and IESG members are allowed. Please remove: '+', '.join([person.plain_name() for person in not_leadership])) return responsible @login_required def change_responsible(request,name): if not has_role(request.user,('Secretariat', 'Area Director', 'IAB')): permission_denied(request,"You do not have permission to change this document's responsible leadership") bofreq = get_object_or_404(Document, type="bofreq", name=name) previous_responsible = bofreq_responsible(bofreq) if request.method == 'POST': form = ChangeResponsibleForm(request.POST) if form.is_valid(): new_responsible = form.cleaned_data['responsible'] if set(new_responsible) != set(previous_responsible): e = BofreqResponsibleDocEvent(type="changed_responsible", doc=bofreq, rev=bofreq.rev, by=request.user.person) e.desc = f'Responsible leadership changed to {", ".join([p.name for p in new_responsible])}' e.save() e.responsible.set(new_responsible) bofreq.save_with_history([e]) email_bofreq_responsible_changed(request, bofreq, previous_responsible) return redirect("ietf.doc.views_doc.document_main", name=bofreq.name) else: init = { "responsible" : previous_responsible } form = ChangeResponsibleForm(initial=init) titletext = bofreq.get_base_name() return render(request, 'doc/bofreq/change_responsible.html', {'form': form, 'doc': bofreq, 'titletext' : titletext, }, ) class ChangeTitleForm(forms.Form): title = forms.CharField(max_length=255, label="Title", required=True) @login_required def edit_title(request, name): bofreq = get_object_or_404(Document, type="bofreq", name=name) editors = bofreq_editors(bofreq) state_id = bofreq.get_state_slug('bofreq') if not (has_role(request.user,('Secretariat', 'Area Director', 'IAB')) or (state_id=='proposed' and request.user.person in editors)): permission_denied(request, "You do not have permission to edit this document's title") if request.method == 'POST': form = ChangeTitleForm(request.POST) if form.is_valid(): bofreq.title = form.cleaned_data['title'] c = DocEvent(type="added_comment", doc=bofreq, rev=bofreq.rev, by=request.user.person) c.desc = "Title changed to '%s'"%bofreq.title c.save() bofreq.save_with_history([c]) email_bofreq_title_changed(request, bofreq) return redirect("ietf.doc.views_doc.document_main", name=bofreq.name) else: init = { "title" : bofreq.title } form = ChangeTitleForm(initial=init) titletext = bofreq.get_base_name() return render(request, 'doc/change_title.html', {'form': form, 'doc': bofreq, 'titletext' : titletext, }, ) class ChangeStateForm(forms.Form): new_state = forms.ModelChoiceField(State.objects.filter(type="bofreq", used=True), label="BOF Request State", empty_label=None, required=True) comment = forms.CharField(widget=forms.Textarea, help_text="Optional comment for the state change history entry.", required=False, strip=False) @role_required('Area Director', 'Secretariat', 'IAB') def change_state(request, name, option=None): bofreq = get_object_or_404(Document, type="bofreq", name=name) login = request.user.person if request.method == 'POST': form = ChangeStateForm(request.POST) if form.is_valid(): clean = form.cleaned_data new_state = clean['new_state'] comment = clean['comment'].rstrip() if comment: c = DocEvent(type="added_comment", doc=bofreq, rev=bofreq.rev, by=login) c.desc = comment c.save() prev_state = bofreq.get_state() if new_state != prev_state: bofreq.set_state(new_state) events = [] events.append(add_state_change_event(bofreq, login, prev_state, new_state)) bofreq.save_with_history(events) return redirect('ietf.doc.views_doc.document_main', name=bofreq.name) else: s = bofreq.get_state() init = dict(new_state=s.pk if s else None) form = ChangeStateForm(initial=init) return render(request, 'doc/change_state.html', dict(form=form, doc=bofreq, login=login, help_url=urlreverse('ietf.doc.views_help.state_help', kwargs=dict(type="bofreq")), )) ``` #### File: group/migrations/0054_enable_delegation.py ```python from django.db import migrations def forward(apps, schema_editor): GroupFeatures = apps.get_model('group','GroupFeatures') for type_id in ('dir', 'iabasg', 'program', 'review', 'team'): f = GroupFeatures.objects.get(type_id=type_id) if 'delegate' not in f.groupman_roles: f.groupman_roles.append('delegate') f.save() for type_id in ('adhoc', 'ag', 'iesg', 'irtf', 'ise', 'rag', 'dir', 'iabasg', 'program', 'review'): f = GroupFeatures.objects.get(type_id=type_id) if 'delegate' not in f.default_used_roles: f.default_used_roles.append('delegate') f.save() def reverse (apps, schema_editor): pass class Migration(migrations.Migration): dependencies = [ ('group', '0053_populate_groupfeatures_session_purposes'), ] operations = [ migrations.RunPython(forward,reverse), ] ``` #### File: group/migrations/0055_editorial_stream.py ```python from django.db import migrations def forward(apps, schema_editor): Group = apps.get_model('group', 'Group') GroupFeatures = apps.get_model('group', 'GroupFeatures') Group.objects.create( acronym='editorial', name='Editorial Stream', state_id='active', type_id='editorial', parent=None, ) templ = GroupFeatures.objects.get(type='rfcedtyp') templ.pk = None templ.type_id='editorial' templ.save() def reverse(apps, schema_editor): Group = apps.get_model('group', 'Group') GroupFeatures = apps.get_model('group', 'GroupFeatures') GroupFeatures.objects.filter(type='editorial').delete() Group.objects.filter(acronym='editorial').delete() class Migration(migrations.Migration): dependencies = [ ('group', '0054_enable_delegation'), ('name', '0043_editorial_stream_grouptype'), ] operations = [ migrations.RunPython(forward, reverse), ] ``` #### File: meeting/templatetags/editor_tags.py ```python import debug # pyflakes: ignore from django import template from django.utils.html import format_html register = template.Library() @register.simple_tag def constraint_icon_for(constraint_name, count=None): # icons must be valid HTML and kept up to date with tests.EditorTagTests.test_constraint_icon_for() icons = { 'conflict': '<span class="encircled">{reversed}1</span>', 'conflic2': '<span class="encircled">{reversed}2</span>', 'conflic3': '<span class="encircled">{reversed}3</span>', 'bethere': '<i class="bi bi-person"></i>{count}', 'timerange': '<i class="bi bi-calendar"></i>', 'time_relation': '&Delta;', 'wg_adjacent': '{reversed}<i class="bi bi-skip-end"></i>', 'chair_conflict': '{reversed}<i class="bi bi-person-circle"></i>', 'tech_overlap': '{reversed}<i class="bi bi-link"></i>', 'key_participant': '{reversed}<i class="bi bi-key"></i>', 'joint_with_groups': '<i class="bi bi-merge"></i>', 'responsible_ad': '<span class="encircled">AD</span>', } reversed_suffix = '-reversed' if constraint_name.slug.endswith(reversed_suffix): reversed = True cn = constraint_name.slug[: -len(reversed_suffix)] else: reversed = False cn = constraint_name.slug return format_html( icons[cn], count=count or '', reversed='-' if reversed else '', ) ``` #### File: name/migrations/0043_editorial_stream_grouptype.py ```python from django.db import migrations def forward(apps, schema_editor): GroupTypeName = apps.get_model('name', 'GroupTypeName') GroupTypeName.objects.create( slug = 'editorial', name = 'Editorial', desc = 'Editorial Stream Group', used = True, ) def reverse(apps, schema_editor): GroupTypeName = apps.get_model('name', 'GroupTypeName') GroupTypeName.objects.filter(slug='editorial').delete() class Migration(migrations.Migration): dependencies = [ ('name', '0042_editorial_stream'), ] operations = [ migrations.RunPython(forward, reverse), ] ``` #### File: ietf/release/tests.py ```python from pyquery import PyQuery from django.urls import reverse import debug # pyflakes:ignore from ietf.utils.test_utils import TestCase class ReleasePagesTest(TestCase): def test_about(self): url = reverse('ietf.release.views.release')+"about" r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) text = q('#content').text() for word in ["About", "2.00", "3.00", "4.00", "5.0.0", "6.0.0", "7.0.0", "8.0.0"]: self.assertIn(word, text) ``` #### File: secr/sreq/tests.py ```python import datetime from django.urls import reverse import debug # pyflakes:ignore from ietf.utils.test_utils import TestCase from ietf.group.factories import GroupFactory, RoleFactory from ietf.meeting.models import Session, ResourceAssociation, SchedulingEvent, Constraint from ietf.meeting.factories import MeetingFactory, SessionFactory from ietf.name.models import ConstraintName, TimerangeName from ietf.person.models import Person from ietf.secr.sreq.forms import SessionForm from ietf.utils.mail import outbox, empty_outbox, get_payload_text from pyquery import PyQuery SECR_USER='secretary' class SreqUrlTests(TestCase): def test_urls(self): MeetingFactory(type_id='ietf',date=datetime.date.today()) self.client.login(username="secretary", password="<PASSWORD>") r = self.client.get("/secr/") self.assertEqual(r.status_code, 200) r = self.client.get("/secr/sreq/") self.assertEqual(r.status_code, 200) testgroup=GroupFactory() r = self.client.get("/secr/sreq/%s/new/" % testgroup.acronym) self.assertEqual(r.status_code, 200) class SessionRequestTestCase(TestCase): def test_main(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) SessionFactory.create_batch(2, meeting=meeting, status_id='sched') SessionFactory.create_batch(2, meeting=meeting, status_id='disappr') # An additional unscheduled group comes from make_immutable_base_data url = reverse('ietf.secr.sreq.views.main') self.client.login(username="secretary", password="<PASSWORD>") r = self.client.get(url) self.assertEqual(r.status_code, 200) sched = r.context['scheduled_groups'] self.assertEqual(len(sched), 2) unsched = r.context['unscheduled_groups'] self.assertEqual(len(unsched), 8) def test_approve(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) ad = Person.objects.get(user__username='ad') area = RoleFactory(name_id='ad', person=ad, group__type_id='area').group mars = GroupFactory(parent=area, acronym='mars') # create session waiting for approval session = SessionFactory(meeting=meeting, group=mars, status_id='apprw') url = reverse('ietf.secr.sreq.views.approve', kwargs={'acronym':'mars'}) self.client.login(username="ad", password="<PASSWORD>") r = self.client.get(url) self.assertRedirects(r,reverse('ietf.secr.sreq.views.view', kwargs={'acronym':'mars'})) self.assertEqual(SchedulingEvent.objects.filter(session=session).order_by('-id')[0].status_id, 'appr') def test_cancel(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) ad = Person.objects.get(user__username='ad') area = RoleFactory(name_id='ad', person=ad, group__type_id='area').group session = SessionFactory(meeting=meeting, group__parent=area, group__acronym='mars', status_id='sched') url = reverse('ietf.secr.sreq.views.cancel', kwargs={'acronym':'mars'}) self.client.login(username="ad", password="<PASSWORD>") r = self.client.get(url) self.assertRedirects(r,reverse('ietf.secr.sreq.views.main')) self.assertEqual(SchedulingEvent.objects.filter(session=session).order_by('-id')[0].status_id, 'deleted') def test_edit(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) mars = RoleFactory(name_id='chair', person__user__username='marschairman', group__acronym='mars').group group2 = GroupFactory() group3 = GroupFactory() group4 = GroupFactory() iabprog = GroupFactory(type_id='program') SessionFactory(meeting=meeting,group=mars,status_id='sched') url = reverse('ietf.secr.sreq.views.edit', kwargs={'acronym':'mars'}) self.client.login(username="marschairman", password="<PASSWORD>") r = self.client.get(url) self.assertEqual(r.status_code, 200) attendees = 10 comments = 'need lights' mars_sessions = meeting.session_set.filter(group__acronym='mars') empty_outbox() post_data = {'num_session':'2', 'attendees': attendees, 'constraint_chair_conflict':iabprog.acronym, 'session_time_relation': 'subsequent-days', 'adjacent_with_wg': group2.acronym, 'joint_with_groups': group3.acronym + ' ' + group4.acronym, 'joint_for_session': '2', 'timeranges': ['thursday-afternoon-early', 'thursday-afternoon-late'], 'session_set-TOTAL_FORMS': '3', # matches what view actually sends, even with only 2 filled in 'session_set-INITIAL_FORMS': '1', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', 'session_set-0-id':mars_sessions[0].pk, 'session_set-0-name': mars_sessions[0].name, 'session_set-0-short': mars_sessions[0].short, 'session_set-0-purpose': mars_sessions[0].purpose_id, 'session_set-0-type': mars_sessions[0].type_id, 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': mars_sessions[0].on_agenda, 'session_set-0-remote_instructions': mars_sessions[0].remote_instructions, 'session_set-0-attendees': attendees, 'session_set-0-comments': comments, 'session_set-0-DELETE': '', # no session_set-1-id because it's a new request 'session_set-1-name': '', 'session_set-1-short': '', 'session_set-1-purpose': 'regular', 'session_set-1-type': 'regular', 'session_set-1-requested_duration': '3600', 'session_set-1-on_agenda': True, 'session_set-1-remote_instructions': mars_sessions[0].remote_instructions, 'session_set-1-attendees': attendees, 'session_set-1-comments': comments, 'session_set-1-DELETE': '', 'session_set-2-id': '', 'session_set-2-name': '', 'session_set-2-short': '', 'session_set-2-purpose': 'regular', 'session_set-2-type': 'regular', 'session_set-2-requested_duration': '', 'session_set-2-on_agenda': 'True', 'session_set-2-attendees': attendees, 'session_set-2-comments': '', 'session_set-2-DELETE': 'on', 'submit': 'Continue'} r = self.client.post(url, post_data, HTTP_HOST='example.com') redirect_url = reverse('ietf.secr.sreq.views.view', kwargs={'acronym': 'mars'}) self.assertRedirects(r, redirect_url) # Check whether updates were stored in the database sessions = Session.objects.filter(meeting=meeting, group=mars) self.assertEqual(len(sessions), 2) session = sessions[0] self.assertEqual(session.constraints().get(name='chair_conflict').target.acronym, iabprog.acronym) self.assertEqual(session.constraints().get(name='time_relation').time_relation, 'subsequent-days') self.assertEqual(session.constraints().get(name='wg_adjacent').target.acronym, group2.acronym) self.assertEqual( list(session.constraints().get(name='timerange').timeranges.all().values('name')), list(TimerangeName.objects.filter(name__in=['thursday-afternoon-early', 'thursday-afternoon-late']).values('name')) ) self.assertFalse(sessions[0].joint_with_groups.count()) self.assertEqual(list(sessions[1].joint_with_groups.all()), [group3, group4]) # Check whether the updated data is visible on the view page r = self.client.get(redirect_url) self.assertContains(r, 'Schedule the sessions on subsequent days') self.assertContains(r, 'Thursday early afternoon, Thursday late afternoon') self.assertContains(r, group2.acronym) self.assertContains(r, 'Second session with: {} {}'.format(group3.acronym, group4.acronym)) # check that a notification was sent self.assertEqual(len(outbox), 1) notification_payload = get_payload_text(outbox[0]) self.assertIn('1 Hour, 1 Hour', notification_payload) self.assertNotIn('1 Hour, 1 Hour, 1 Hour', notification_payload) # Edit again, changing the joint sessions and clearing some fields. The behaviour of # edit is different depending on whether previous joint sessions were recorded. empty_outbox() post_data = {'num_session':'2', 'attendees':attendees, 'constraint_chair_conflict':'', 'comments':'need lights', 'joint_with_groups': group2.acronym, 'joint_for_session': '1', 'session_set-TOTAL_FORMS': '3', # matches what view actually sends, even with only 2 filled in 'session_set-INITIAL_FORMS': '2', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', 'session_set-0-id':sessions[0].pk, 'session_set-0-name': sessions[0].name, 'session_set-0-short': sessions[0].short, 'session_set-0-purpose': sessions[0].purpose_id, 'session_set-0-type': sessions[0].type_id, 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': sessions[0].on_agenda, 'session_set-0-remote_instructions': sessions[0].remote_instructions, 'session_set-0-attendees': sessions[0].attendees, 'session_set-0-comments': sessions[1].comments, 'session_set-0-DELETE': '', 'session_set-1-id': sessions[1].pk, 'session_set-1-name': sessions[1].name, 'session_set-1-short': sessions[1].short, 'session_set-1-purpose': sessions[1].purpose_id, 'session_set-1-type': sessions[1].type_id, 'session_set-1-requested_duration': '3600', 'session_set-1-on_agenda': sessions[1].on_agenda, 'session_set-1-remote_instructions': sessions[1].remote_instructions, 'session_set-1-attendees': sessions[1].attendees, 'session_set-1-comments': sessions[1].comments, 'session_set-1-DELETE': '', 'session_set-2-id': '', 'session_set-2-name': '', 'session_set-2-short': '', 'session_set-2-purpose': 'regular', 'session_set-2-type': 'regular', 'session_set-2-requested_duration': '', 'session_set-2-on_agenda': 'True', 'session_set-2-attendees': attendees, 'session_set-2-comments': '', 'session_set-2-DELETE': 'on', 'submit': 'Continue'} r = self.client.post(url, post_data, HTTP_HOST='example.com') self.assertRedirects(r, redirect_url) # Check whether updates were stored in the database sessions = Session.objects.filter(meeting=meeting, group=mars) self.assertEqual(len(sessions), 2) session = sessions[0] self.assertFalse(session.constraints().filter(name='time_relation')) self.assertFalse(session.constraints().filter(name='wg_adjacent')) self.assertFalse(session.constraints().filter(name='timerange')) self.assertEqual(list(sessions[0].joint_with_groups.all()), [group2]) self.assertFalse(sessions[1].joint_with_groups.count()) # check that a notification was sent self.assertEqual(len(outbox), 1) notification_payload = get_payload_text(outbox[0]) self.assertIn('1 Hour, 1 Hour', notification_payload) self.assertNotIn('1 Hour, 1 Hour, 1 Hour', notification_payload) # Check whether the updated data is visible on the view page r = self.client.get(redirect_url) self.assertContains(r, 'First session with: {}'.format(group2.acronym)) def test_edit_constraint_bethere(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) mars = RoleFactory(name_id='chair', person__user__username='marschairman', group__acronym='mars').group session = SessionFactory(meeting=meeting, group=mars, status_id='sched') Constraint.objects.create( meeting=meeting, source=mars, person=Person.objects.get(user__username='marschairman'), name_id='bethere', ) self.assertEqual(session.people_constraints.count(), 1) url = reverse('ietf.secr.sreq.views.edit', kwargs=dict(acronym='mars')) self.client.login(username='marschairman', password='<PASSWORD>') attendees = '10' ad = Person.objects.get(user__username='ad') post_data = { 'num_session': '1', 'attendees': attendees, 'bethere': str(ad.pk), 'constraint_chair_conflict':'', 'comments':'', 'joint_with_groups': '', 'joint_for_session': '', 'delete_conflict': 'on', 'session_set-TOTAL_FORMS': '3', # matches what view actually sends, even with only 2 filled in 'session_set-INITIAL_FORMS': '1', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', 'session_set-0-id':session.pk, 'session_set-0-name': session.name, 'session_set-0-short': session.short, 'session_set-0-purpose': session.purpose_id, 'session_set-0-type': session.type_id, 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': session.on_agenda, 'session_set-0-remote_instructions': session.remote_instructions, 'session_set-0-attendees': attendees, 'session_set-0-comments': '', 'session_set-0-DELETE': '', 'session_set-1-id': '', 'session_set-1-name': '', 'session_set-1-short': '', 'session_set-1-purpose':'regular', 'session_set-1-type':'regular', 'session_set-1-requested_duration': '', 'session_set-1-on_agenda': 'True', 'session_set-1-attendees': attendees, 'session_set-1-comments': '', 'session_set-1-DELETE': 'on', 'session_set-2-id': '', 'session_set-2-name': '', 'session_set-2-short': '', 'session_set-2-purpose': 'regular', 'session_set-2-type': 'regular', 'session_set-2-requested_duration': '', 'session_set-2-on_agenda': 'True', 'session_set-2-attendees': attendees, 'session_set-2-comments': '', 'session_set-2-DELETE': 'on', 'submit': 'Save', } r = self.client.post(url, post_data, HTTP_HOST='example.com') redirect_url = reverse('ietf.secr.sreq.views.view', kwargs={'acronym': 'mars'}) self.assertRedirects(r, redirect_url) self.assertEqual([pc.person for pc in session.people_constraints.all()], [ad]) def test_edit_inactive_conflicts(self): """Inactive conflicts should be displayed and removable""" meeting = MeetingFactory(type_id='ietf', date=datetime.date.today(), group_conflicts=['chair_conflict']) mars = RoleFactory(name_id='chair', person__user__username='marschairman', group__acronym='mars').group session = SessionFactory(meeting=meeting, group=mars, status_id='sched') other_group = GroupFactory() Constraint.objects.create( meeting=meeting, name_id='conflict', # not in group_conflicts for the meeting source=mars, target=other_group, ) url = reverse('ietf.secr.sreq.views.edit', kwargs=dict(acronym='mars')) self.client.login(username='marschairman', password='<PASSWORD>') r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) # check that the inactive session is displayed found = q('input#id_delete_conflict[type="checkbox"]') self.assertEqual(len(found), 1) delete_checkbox = found[0] # check that the label on the checkbox is correct self.assertIn('Delete this conflict', delete_checkbox.tail) # check that the target is displayed correctly in the UI self.assertIn(other_group.acronym, delete_checkbox.find('../input[@type="text"]').value) attendees = '10' post_data = { 'num_session': '1', 'attendees': attendees, 'constraint_chair_conflict':'', 'comments':'', 'joint_with_groups': '', 'joint_for_session': '', 'delete_conflict': 'on', 'session_set-TOTAL_FORMS': '1', 'session_set-INITIAL_FORMS': '1', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', 'session_set-0-id':session.pk, 'session_set-0-name': session.name, 'session_set-0-short': session.short, 'session_set-0-purpose': session.purpose_id, 'session_set-0-type': session.type_id, 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': session.on_agenda, 'session_set-0-remote_instructions': session.remote_instructions, 'session_set-0-attendees': attendees, 'session_set-0-comments': '', 'session_set-0-DELETE': '', 'submit': 'Save', } r = self.client.post(url, post_data, HTTP_HOST='example.com') redirect_url = reverse('ietf.secr.sreq.views.view', kwargs={'acronym': 'mars'}) self.assertRedirects(r, redirect_url) self.assertEqual(len(mars.constraint_source_set.filter(name_id='conflict')), 0) def test_tool_status(self): MeetingFactory(type_id='ietf', date=datetime.date.today()) url = reverse('ietf.secr.sreq.views.tool_status') self.client.login(username="secretary", password="<PASSWORD>") r = self.client.get(url) self.assertEqual(r.status_code, 200) r = self.client.post(url, {'message':'locked', 'submit':'Lock'}) self.assertRedirects(r,reverse('ietf.secr.sreq.views.main')) def test_new_req_constraint_types(self): """Configurable constraint types should be handled correctly in a new request Relies on SessionForm representing constraint values with element IDs like id_constraint_<ConstraintName slug> """ meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) RoleFactory(name_id='chair', person__user__username='marschairman', group__acronym='mars') url = reverse('ietf.secr.sreq.views.new', kwargs=dict(acronym='mars')) self.client.login(username="marschairman", password="<PASSWORD>") for expected in [ ['conflict', 'conflic2', 'conflic3'], ['chair_conflict', 'tech_overlap', 'key_participant'], ]: meeting.group_conflict_types.clear() for slug in expected: meeting.group_conflict_types.add(ConstraintName.objects.get(slug=slug)) r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertCountEqual( [elt.attr('id') for elt in q.items('*[id^=id_constraint_]')], ['id_constraint_{}'.format(conf_name) for conf_name in expected], ) def test_edit_req_constraint_types(self): """Editing a request constraint should show the expected constraints""" meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) SessionFactory(group__acronym='mars', status_id='schedw', meeting=meeting, add_to_schedule=False) RoleFactory(name_id='chair', person__user__username='marschairman', group__acronym='mars') url = reverse('ietf.secr.sreq.views.edit', kwargs=dict(acronym='mars')) self.client.login(username='marschairman', password='<PASSWORD>') for expected in [ ['conflict', 'conflic2', 'conflic3'], ['chair_conflict', 'tech_overlap', 'key_participant'], ]: meeting.group_conflict_types.clear() for slug in expected: meeting.group_conflict_types.add(ConstraintName.objects.get(slug=slug)) r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertCountEqual( [elt.attr('id') for elt in q.items('*[id^=id_constraint_]')], ['id_constraint_{}'.format(conf_name) for conf_name in expected], ) class SubmitRequestCase(TestCase): def setUp(self): super(SubmitRequestCase, self).setUp() # Ensure meeting numbers are predictable. Temporarily needed while basing # constraint types on meeting number, expected to go away when #2770 is resolved. MeetingFactory.reset_sequence(0) def test_submit_request(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) ad = Person.objects.get(user__username='ad') area = RoleFactory(name_id='ad', person=ad, group__type_id='area').group group = GroupFactory(parent=area) group2 = GroupFactory(parent=area) group3 = GroupFactory(parent=area) group4 = GroupFactory(parent=area) session_count_before = Session.objects.filter(meeting=meeting, group=group).count() url = reverse('ietf.secr.sreq.views.new',kwargs={'acronym':group.acronym}) confirm_url = reverse('ietf.secr.sreq.views.confirm',kwargs={'acronym':group.acronym}) main_url = reverse('ietf.secr.sreq.views.main') attendees = '10' comments = 'need projector' post_data = {'num_session':'1', 'attendees':attendees, 'constraint_chair_conflict':'', 'comments':comments, 'adjacent_with_wg': group2.acronym, 'timeranges': ['thursday-afternoon-early', 'thursday-afternoon-late'], 'joint_with_groups': group3.acronym + ' ' + group4.acronym, 'joint_for_session': '1', 'session_set-TOTAL_FORMS': '1', 'session_set-INITIAL_FORMS': '0', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', # no 'session_set-0-id' to create a new session 'session_set-0-name': '', 'session_set-0-short': '', 'session_set-0-purpose': 'regular', 'session_set-0-type': 'regular', 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': True, 'session_set-0-remote_instructions': '', 'session_set-0-attendees': attendees, 'session_set-0-comments': comments, 'session_set-0-DELETE': '', 'submit': 'Continue'} self.client.login(username="secretary", password="<PASSWORD>") r = self.client.post(url,post_data) self.assertEqual(r.status_code, 200) # Verify the contents of the confirm view self.assertContains(r, 'Thursday early afternoon, Thursday late afternoon') self.assertContains(r, group2.acronym) self.assertContains(r, 'First session with: {} {}'.format(group3.acronym, group4.acronym)) post_data['submit'] = 'Submit' r = self.client.post(confirm_url,post_data) self.assertRedirects(r, main_url) session_count_after = Session.objects.filter(meeting=meeting, group=group, type='regular').count() self.assertEqual(session_count_after, session_count_before + 1) # test that second confirm does not add sessions r = self.client.post(confirm_url,post_data) self.assertRedirects(r, main_url) session_count_after = Session.objects.filter(meeting=meeting, group=group, type='regular').count() self.assertEqual(session_count_after, session_count_before + 1) # Verify database content session = Session.objects.get(meeting=meeting, group=group) self.assertEqual(session.constraints().get(name='wg_adjacent').target.acronym, group2.acronym) self.assertEqual( list(session.constraints().get(name='timerange').timeranges.all().values('name')), list(TimerangeName.objects.filter(name__in=['thursday-afternoon-early', 'thursday-afternoon-late']).values('name')) ) self.assertEqual(list(session.joint_with_groups.all()), [group3, group4]) def test_submit_request_invalid(self): MeetingFactory(type_id='ietf', date=datetime.date.today()) ad = Person.objects.get(user__username='ad') area = RoleFactory(name_id='ad', person=ad, group__type_id='area').group group = GroupFactory(parent=area) url = reverse('ietf.secr.sreq.views.new',kwargs={'acronym':group.acronym}) attendees = '10' comments = 'need projector' post_data = { 'num_session':'2', 'attendees':attendees, 'constraint_chair_conflict':'', 'comments':comments, 'session_set-TOTAL_FORMS': '1', 'session_set-INITIAL_FORMS': '1', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', # no 'session_set-0-id' to create a new session 'session_set-0-name': '', 'session_set-0-short': '', 'session_set-0-purpose': 'regular', 'session_set-0-type': 'regular', 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': True, 'session_set-0-remote_instructions': '', 'session_set-0-attendees': attendees, 'session_set-0-comments': comments, 'session_set-0-DELETE': '', } self.client.login(username="secretary", password="<PASSWORD>") r = self.client.post(url,post_data) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('#session-request-form')),1) self.assertContains(r, 'Must provide data for all sessions') def test_submit_request_check_constraints(self): m1 = MeetingFactory(type_id='ietf', date=datetime.date.today() - datetime.timedelta(days=100)) MeetingFactory(type_id='ietf', date=datetime.date.today(), group_conflicts=['chair_conflict', 'conflic2', 'conflic3']) ad = Person.objects.get(user__username='ad') area = RoleFactory(name_id='ad', person=ad, group__type_id='area').group group = GroupFactory(parent=area) still_active_group = GroupFactory(parent=area) Constraint.objects.create( meeting=m1, source=group, target=still_active_group, name_id='chair_conflict', ) inactive_group = GroupFactory(parent=area, state_id='conclude') inactive_group.save() Constraint.objects.create( meeting=m1, source=group, target=inactive_group, name_id='chair_conflict', ) session = SessionFactory(group=group, meeting=m1) self.client.login(username="secretary", password="<PASSWORD>") url = reverse('ietf.secr.sreq.views.new',kwargs={'acronym':group.acronym}) r = self.client.get(url + '?previous') self.assertEqual(r.status_code, 200) q = PyQuery(r.content) conflict1 = q('[name="constraint_chair_conflict"]').val() self.assertIn(still_active_group.acronym, conflict1) self.assertNotIn(inactive_group.acronym, conflict1) attendees = '10' comments = 'need projector' post_data = {'num_session':'1', 'attendees':attendees, 'constraint_chair_conflict': group.acronym, 'comments':comments, 'session_set-TOTAL_FORMS': '1', 'session_set-INITIAL_FORMS': '1', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', # no 'session_set-0-id' to create a new session 'session_set-0-name': '', 'session_set-0-short': '', 'session_set-0-purpose': session.purpose_id, 'session_set-0-type': session.type_id, 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': session.on_agenda, 'session_set-0-remote_instructions': session.remote_instructions, 'session_set-0-attendees': attendees, 'session_set-0-comments': comments, 'session_set-0-DELETE': '', 'submit': 'Continue'} r = self.client.post(url,post_data) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('#session-request-form')),1) self.assertContains(r, "Cannot declare a conflict with the same group") def test_request_notification(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) ad = Person.objects.get(user__username='ad') area = GroupFactory(type_id='area') RoleFactory(name_id='ad', person=ad, group=area) group = GroupFactory(acronym='ames', parent=area) group2 = GroupFactory(acronym='ames2', parent=area) group3 = GroupFactory(acronym='ames2', parent=area) group4 = GroupFactory(acronym='ames3', parent=area) RoleFactory(name_id='chair', group=group, person__user__username='ameschairman') resource = ResourceAssociation.objects.create(name_id='project') # Bit of a test data hack - the fixture now has no used resources to pick from resource.name.used=True resource.name.save() url = reverse('ietf.secr.sreq.views.new',kwargs={'acronym':group.acronym}) confirm_url = reverse('ietf.secr.sreq.views.confirm',kwargs={'acronym':group.acronym}) len_before = len(outbox) attendees = '10' post_data = {'num_session':'2', 'attendees':attendees, 'bethere':str(ad.pk), 'constraint_chair_conflict':group4.acronym, 'comments':'', 'resources': resource.pk, 'session_time_relation': 'subsequent-days', 'adjacent_with_wg': group2.acronym, 'joint_with_groups': group3.acronym, 'joint_for_session': '2', 'timeranges': ['thursday-afternoon-early', 'thursday-afternoon-late'], 'session_set-TOTAL_FORMS': '2', 'session_set-INITIAL_FORMS': '0', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', # no 'session_set-0-id' for new session 'session_set-0-name': '', 'session_set-0-short': '', 'session_set-0-purpose': 'regular', 'session_set-0-type': 'regular', 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': True, 'session_set-0-remote_instructions': '', 'session_set-0-attendees': attendees, 'session_set-0-comments': '', 'session_set-0-DELETE': '', # no 'session_set-1-id' for new session 'session_set-1-name': '', 'session_set-1-short': '', 'session_set-1-purpose': 'regular', 'session_set-1-type': 'regular', 'session_set-1-requested_duration': '3600', 'session_set-1-on_agenda': True, 'session_set-1-remote_instructions': '', 'session_set-1-attendees': attendees, 'session_set-1-comments': '', 'session_set-1-DELETE': '', 'submit': 'Continue'} self.client.login(username="ameschairman", password="<PASSWORD>") # submit r = self.client.post(url,post_data) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue('Confirm' in str(q("title")), r.context['form'].errors) # confirm post_data['submit'] = 'Submit' r = self.client.post(confirm_url,post_data) self.assertRedirects(r, reverse('ietf.secr.sreq.views.main')) self.assertEqual(len(outbox),len_before+1) notification = outbox[-1] notification_payload = get_payload_text(notification) sessions = Session.objects.filter(meeting=meeting,group=group) self.assertEqual(len(sessions), 2) session = sessions[0] self.assertEqual(session.resources.count(),1) self.assertEqual(session.people_constraints.count(),1) self.assertEqual(session.constraints().get(name='time_relation').time_relation, 'subsequent-days') self.assertEqual(session.constraints().get(name='wg_adjacent').target.acronym, group2.acronym) self.assertEqual( list(session.constraints().get(name='timerange').timeranges.all().values('name')), list(TimerangeName.objects.filter(name__in=['thursday-afternoon-early', 'thursday-afternoon-late']).values('name')) ) resource = session.resources.first() self.assertTrue(resource.desc in notification_payload) self.assertTrue('Schedule the sessions on subsequent days' in notification_payload) self.assertTrue(group2.acronym in notification_payload) self.assertTrue("Can't meet: Thursday early afternoon, Thursday late" in notification_payload) self.assertTrue('Second session joint with: {}'.format(group3.acronym) in notification_payload) self.assertTrue(ad.ascii_name() in notification_payload) self.assertIn(ConstraintName.objects.get(slug='chair_conflict').name, notification_payload) self.assertIn(group.acronym, notification_payload) self.assertIn('1 Hour, 1 Hour', notification_payload) self.assertNotIn('1 Hour, 1 Hour, 1 Hour', notification_payload) self.assertNotIn('The third session requires your approval', notification_payload) def test_request_notification_third_session(self): meeting = MeetingFactory(type_id='ietf', date=datetime.date.today()) ad = Person.objects.get(user__username='ad') area = GroupFactory(type_id='area') RoleFactory(name_id='ad', person=ad, group=area) group = GroupFactory(acronym='ames', parent=area) group2 = GroupFactory(acronym='ames2', parent=area) group3 = GroupFactory(acronym='ames2', parent=area) group4 = GroupFactory(acronym='ames3', parent=area) RoleFactory(name_id='chair', group=group, person__user__username='ameschairman') resource = ResourceAssociation.objects.create(name_id='project') # Bit of a test data hack - the fixture now has no used resources to pick from resource.name.used=True resource.name.save() url = reverse('ietf.secr.sreq.views.new',kwargs={'acronym':group.acronym}) confirm_url = reverse('ietf.secr.sreq.views.confirm',kwargs={'acronym':group.acronym}) len_before = len(outbox) attendees = '10' post_data = {'num_session':'2', 'third_session': 'true', 'attendees':attendees, 'bethere':str(ad.pk), 'constraint_chair_conflict':group4.acronym, 'comments':'', 'resources': resource.pk, 'session_time_relation': 'subsequent-days', 'adjacent_with_wg': group2.acronym, 'joint_with_groups': group3.acronym, 'joint_for_session': '2', 'timeranges': ['thursday-afternoon-early', 'thursday-afternoon-late'], 'session_set-TOTAL_FORMS': '3', 'session_set-INITIAL_FORMS': '0', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', # no 'session_set-0-id' for new session 'session_set-0-name': '', 'session_set-0-short': '', 'session_set-0-purpose': 'regular', 'session_set-0-type': 'regular', 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': True, 'session_set-0-remote_instructions': '', 'session_set-0-attendees': attendees, 'session_set-0-comments': '', 'session_set-0-DELETE': '', # no 'session_set-1-id' for new session 'session_set-1-name': '', 'session_set-1-short': '', 'session_set-1-purpose': 'regular', 'session_set-1-type': 'regular', 'session_set-1-requested_duration': '3600', 'session_set-1-on_agenda': True, 'session_set-1-remote_instructions': '', 'session_set-1-attendees': attendees, 'session_set-1-comments': '', 'session_set-1-DELETE': '', # no 'session_set-2-id' for new session 'session_set-2-name': '', 'session_set-2-short': '', 'session_set-2-purpose': 'regular', 'session_set-2-type': 'regular', 'session_set-2-requested_duration': '3600', 'session_set-2-on_agenda': True, 'session_set-2-remote_instructions': '', 'session_set-2-attendees': attendees, 'session_set-2-comments': '', 'session_set-2-DELETE': '', 'submit': 'Continue'} self.client.login(username="ameschairman", password="<PASSWORD>") # submit r = self.client.post(url,post_data) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue('Confirm' in str(q("title")), r.context['form'].errors) # confirm post_data['submit'] = 'Submit' r = self.client.post(confirm_url,post_data) self.assertRedirects(r, reverse('ietf.secr.sreq.views.main')) self.assertEqual(len(outbox),len_before+1) notification = outbox[-1] notification_payload = get_payload_text(notification) sessions = Session.objects.filter(meeting=meeting,group=group) self.assertEqual(len(sessions), 3) session = sessions[0] self.assertEqual(session.resources.count(),1) self.assertEqual(session.people_constraints.count(),1) self.assertEqual(session.constraints().get(name='time_relation').time_relation, 'subsequent-days') self.assertEqual(session.constraints().get(name='wg_adjacent').target.acronym, group2.acronym) self.assertEqual( list(session.constraints().get(name='timerange').timeranges.all().values('name')), list(TimerangeName.objects.filter(name__in=['thursday-afternoon-early', 'thursday-afternoon-late']).values('name')) ) resource = session.resources.first() self.assertTrue(resource.desc in notification_payload) self.assertTrue('Schedule the sessions on subsequent days' in notification_payload) self.assertTrue(group2.acronym in notification_payload) self.assertTrue("Can't meet: Thursday early afternoon, Thursday late" in notification_payload) self.assertTrue('Second session joint with: {}'.format(group3.acronym) in notification_payload) self.assertTrue(ad.ascii_name() in notification_payload) self.assertIn(ConstraintName.objects.get(slug='chair_conflict').name, notification_payload) self.assertIn(group.acronym, notification_payload) self.assertIn('1 Hour, 1 Hour, 1 Hour', notification_payload) self.assertIn('The third session requires your approval', notification_payload) class LockAppTestCase(TestCase): def setUp(self): super().setUp() self.meeting = MeetingFactory(type_id='ietf', date=datetime.date.today(),session_request_lock_message='locked') self.group = GroupFactory(acronym='mars') RoleFactory(name_id='chair', group=self.group, person__user__username='marschairman') SessionFactory(group=self.group,meeting=self.meeting) def test_edit_request(self): url = reverse('ietf.secr.sreq.views.edit',kwargs={'acronym':self.group.acronym}) self.client.login(username="secretary", password="<PASSWORD>") r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q(':disabled[name="submit"]')), 0) chair = self.group.role_set.filter(name_id='chair').first().person.user.username self.client.login(username=chair, password=f'{<PASSWORD>') r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q(':disabled[name="submit"]')), 1) def test_view_request(self): url = reverse('ietf.secr.sreq.views.view',kwargs={'acronym':self.group.acronym}) self.client.login(username="secretary", password="<PASSWORD>") r = self.client.get(url,follow=True) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q(':disabled[name="edit"]')), 1) def test_new_request(self): url = reverse('ietf.secr.sreq.views.new',kwargs={'acronym':self.group.acronym}) # try as WG Chair self.client.login(username="marschairman", password="<PASSWORD>") r = self.client.get(url, follow=True) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('#session-request-form')),0) # try as Secretariat self.client.login(username="secretary", password="<PASSWORD>") r = self.client.get(url,follow=True) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('#session-request-form')),1) class NotMeetingCase(TestCase): def test_not_meeting(self): MeetingFactory(type_id='ietf',date=datetime.date.today()) group = GroupFactory(acronym='mars') url = reverse('ietf.secr.sreq.views.no_session',kwargs={'acronym':group.acronym}) self.client.login(username="secretary", password="<PASSWORD>") empty_outbox() r = self.client.get(url,follow=True) # If the view invoked by that get throws an exception (such as an integrity error), # the traceback from this test will talk about a TransactionManagementError and # yell about executing queries before the end of an 'atomic' block # This is a sign of a problem - a get shouldn't have a side-effect like this one does self.assertEqual(r.status_code, 200) self.assertContains(r, 'A message was sent to notify not having a session') r = self.client.get(url,follow=True) self.assertEqual(r.status_code, 200) self.assertContains(r, 'is already marked as not meeting') self.assertEqual(len(outbox),1) self.assertTrue('Not having a session' in outbox[0]['Subject']) self.assertTrue('session-request@' in outbox[0]['To']) class RetrievePreviousCase(TestCase): pass # test error if already scheduled # test get previous exists/doesn't exist # test that groups scheduled and unscheduled add up to total groups # test access by unauthorized class SessionFormTest(TestCase): def setUp(self): super().setUp() self.meeting = MeetingFactory(type_id='ietf') self.group1 = GroupFactory() self.group2 = GroupFactory() self.group3 = GroupFactory() self.group4 = GroupFactory() self.group5 = GroupFactory() self.group6 = GroupFactory() attendees = '10' comments = 'need lights' self.valid_form_data = { 'num_session': '2', 'third_session': 'true', 'attendees': attendees, 'constraint_chair_conflict': self.group2.acronym, 'constraint_tech_overlap': self.group3.acronym, 'constraint_key_participant': self.group4.acronym, 'comments': comments, 'session_time_relation': 'subsequent-days', 'adjacent_with_wg': self.group5.acronym, 'joint_with_groups': self.group6.acronym, 'joint_for_session': '3', 'timeranges': ['thursday-afternoon-early', 'thursday-afternoon-late'], 'submit': 'Continue', 'session_set-TOTAL_FORMS': '3', 'session_set-INITIAL_FORMS': '0', 'session_set-MIN_NUM_FORMS': '1', 'session_set-MAX_NUM_FORMS': '3', # no 'session_set-0-id' for new session 'session_set-0-name': '', 'session_set-0-short': '', 'session_set-0-purpose': 'regular', 'session_set-0-type': 'regular', 'session_set-0-requested_duration': '3600', 'session_set-0-on_agenda': True, 'session_set-0-remote_instructions': '', 'session_set-0-attendees': attendees, 'session_set-0-comments': '', 'session_set-0-DELETE': '', # no 'session_set-1-id' for new session 'session_set-1-name': '', 'session_set-1-short': '', 'session_set-1-purpose': 'regular', 'session_set-1-type': 'regular', 'session_set-1-requested_duration': '3600', 'session_set-1-on_agenda': True, 'session_set-1-remote_instructions': '', 'session_set-1-attendees': attendees, 'session_set-1-comments': '', 'session_set-1-DELETE': '', # no 'session_set-2-id' for new session 'session_set-2-name': '', 'session_set-2-short': '', 'session_set-2-purpose': 'regular', 'session_set-2-type': 'regular', 'session_set-2-requested_duration': '3600', 'session_set-2-on_agenda': True, 'session_set-2-remote_instructions': '', 'session_set-2-attendees': attendees, 'session_set-2-comments': '', 'session_set-2-DELETE': '', } def test_valid(self): # Test with three sessions form = SessionForm(data=self.valid_form_data, group=self.group1, meeting=self.meeting) self.assertTrue(form.is_valid()) # Test with two sessions self.valid_form_data.update({ 'third_session': '', 'session_set-TOTAL_FORMS': '2', 'joint_for_session': '2' }) form = SessionForm(data=self.valid_form_data, group=self.group1, meeting=self.meeting) self.assertTrue(form.is_valid()) # Test with one session self.valid_form_data.update({ 'num_session': 1, 'session_set-TOTAL_FORMS': '1', 'joint_for_session': '1', 'session_time_relation': '', }) form = SessionForm(data=self.valid_form_data, group=self.group1, meeting=self.meeting) self.assertTrue(form.is_valid()) def test_invalid_groups(self): new_form_data = { 'constraint_chair_conflict': 'doesnotexist', 'constraint_tech_overlap': 'doesnotexist', 'constraint_key_participant': 'doesnotexist', 'adjacent_with_wg': 'doesnotexist', 'joint_with_groups': 'doesnotexist', } form = self._invalid_test_helper(new_form_data) self.assertEqual(set(form.errors.keys()), set(new_form_data.keys())) def test_valid_group_appears_in_multiple_conflicts(self): """Some conflict types allow overlapping groups""" new_form_data = { 'constraint_chair_conflict': self.group2.acronym, 'constraint_tech_overlap': self.group2.acronym, } self.valid_form_data.update(new_form_data) form = SessionForm(data=self.valid_form_data, group=self.group1, meeting=self.meeting) self.assertTrue(form.is_valid()) def test_invalid_group_appears_in_multiple_conflicts(self): """Some conflict types do not allow overlapping groups""" self.meeting.group_conflict_types.clear() self.meeting.group_conflict_types.add(ConstraintName.objects.get(slug='conflict')) self.meeting.group_conflict_types.add(ConstraintName.objects.get(slug='conflic2')) new_form_data = { 'constraint_conflict': self.group2.acronym, 'constraint_conflic2': self.group2.acronym, } form = self._invalid_test_helper(new_form_data) self.assertEqual(form.non_field_errors(), ['%s appears in conflicts more than once' % self.group2.acronym]) def test_invalid_conflict_with_self(self): new_form_data = { 'constraint_chair_conflict': self.group1.acronym, } self._invalid_test_helper(new_form_data) def test_invalid_session_time_relation(self): form = self._invalid_test_helper({ 'third_session': '', 'session_set-TOTAL_FORMS': 1, 'num_session': 1, 'joint_for_session': '1', }) self.assertEqual(form.errors, { 'session_time_relation': ['Time between sessions can only be used when two ' 'sessions are requested.'] }) def test_invalid_joint_for_session(self): form = self._invalid_test_helper({ 'third_session': '', 'session_set-TOTAL_FORMS': '2', 'num_session': 2, 'joint_for_session': '3', }) self.assertEqual(form.errors, { 'joint_for_session': [ 'Session 3 can not be the joint session, the session has not been requested.'] }) form = self._invalid_test_helper({ 'third_session': '', 'session_set-TOTAL_FORMS': '1', 'num_session': 1, 'joint_for_session': '2', 'session_time_relation': '', }) self.assertEqual(form.errors, { 'joint_for_session': [ 'Session 2 can not be the joint session, the session has not been requested.'] }) def test_invalid_missing_session_length(self): form = self._invalid_test_helper({ 'session_set-TOTAL_FORMS': '2', 'session_set-1-requested_duration': '', 'third_session': 'false', 'joint_for_session': None, }) self.assertEqual(form.session_forms.errors, [ {}, {'requested_duration': ['This field is required.']}, ]) form = self._invalid_test_helper({ 'session_set-1-requested_duration': '', 'session_set-2-requested_duration': '', 'joint_for_session': None, }) self.assertEqual( form.session_forms.errors, [ {}, {'requested_duration': ['This field is required.']}, {'requested_duration': ['This field is required.']}, ]) form = self._invalid_test_helper({ 'session_set-2-requested_duration': '', 'joint_for_session': None, }) self.assertEqual(form.session_forms.errors, [ {}, {}, {'requested_duration': ['This field is required.']}, ]) def _invalid_test_helper(self, new_form_data): form_data = dict(self.valid_form_data, **new_form_data) form = SessionForm(data=form_data, group=self.group1, meeting=self.meeting) self.assertFalse(form.is_valid()) return form ``` #### File: ietf/utils/bootstrap.py ```python import django_bootstrap5.renderers class SeparateErrorsFromHelpTextFieldRenderer(django_bootstrap5.renderers.FieldRenderer): def append_to_field(self, html): if self.field_help: html += '<div class="form-text">{}</div>'.format(self.field_help) for e in self.field_errors: html += '<div class="alert alert-danger my-3">{}</div>'.format(e) return html ``` #### File: ietf/utils/tests_meetecho.py ```python import datetime import requests import requests_mock from pytz import timezone, utc from unittest.mock import patch from urllib.parse import urljoin from django.conf import settings from django.test import override_settings from ietf.utils.tests import TestCase from .meetecho import Conference, ConferenceManager, MeetechoAPI, MeetechoAPIError API_BASE = 'https://meetecho-api.example.com' CLIENT_ID = 'datatracker' CLIENT_SECRET = '<PASSWORD>' API_CONFIG={ 'api_base': API_BASE, 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, } @override_settings(MEETECHO_API_CONFIG=API_CONFIG) class APITests(TestCase): retrieve_token_url = urljoin(API_BASE, 'auth/ietfservice/tokens') schedule_meeting_url = urljoin(API_BASE, 'meeting/interim/createRoom') fetch_meetings_url = urljoin(API_BASE, 'meeting/interim/fetchRooms') delete_meetings_url = urljoin(API_BASE, 'meeting/interim/deleteRoom') def setUp(self): super().setUp() self.requests_mock = requests_mock.Mocker() self.requests_mock.start() def tearDown(self): self.requests_mock.stop() super().tearDown() def test_retrieve_wg_tokens(self): data_to_fetch = { 'tokens': { 'acro': 'wg-token-value-for-acro', 'beta': 'different-token', 'gamma': 'this-is-not-the-same', } } self.requests_mock.post(self.retrieve_token_url, status_code=200, json=data_to_fetch) api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) api_response = api.retrieve_wg_tokens(['acro', 'beta', 'gamma']) self.assertTrue(self.requests_mock.called) request = self.requests_mock.last_request self.assertEqual( request.headers['Content-Type'], 'application/json', 'Incorrect request content-type', ) self.assertEqual( request.json(), { 'client': CLIENT_ID, 'secret': CLIENT_SECRET, 'wgs': ['acro', 'beta', 'gamma'], } ) self.assertEqual(api_response, data_to_fetch) def test_schedule_meeting(self): self.requests_mock.post( self.schedule_meeting_url, status_code=200, json={ 'rooms': { '3d55bce0-535e-4ba8-bb8e-734911cf3c32': { 'room': { 'id': 18, 'start_time': '2021-09-14 10:00:00', 'duration': 130, 'description': 'interim-2021-wgname-01', }, 'url': 'https://meetings.conf.meetecho.com/interim/?short=3d55bce0-535e-4ba8-bb8e-734911cf3c32', 'deletion_token': 'session-deletion-token', }, } }, ) api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) api_response = api.schedule_meeting( wg_token='<PASSWORD>', start_time=utc.localize(datetime.datetime(2021, 9, 14, 10, 0, 0)), duration=datetime.timedelta(minutes=130), description='interim-2021-wgname-01', extrainfo='message for staff', ) self.assertTrue(self.requests_mock.called) request = self.requests_mock.last_request self.assertIn('Authorization', request.headers) self.assertEqual( request.headers['Content-Type'], 'application/json', 'Incorrect request content-type', ) self.assertEqual(request.headers['Authorization'], 'bearer my-token', 'Incorrect request authorization header') self.assertEqual( request.json(), { 'duration': 130, 'start_time': '2021-09-14 10:00:00', 'extrainfo': 'message for staff', 'description': 'interim-2021-wgname-01', }, 'Incorrect request content' ) # same time in different time zones for start_time in [ utc.localize(datetime.datetime(2021, 9, 14, 10, 0, 0)), timezone('america/halifax').localize(datetime.datetime(2021, 9, 14, 7, 0, 0)), timezone('europe/kiev').localize(datetime.datetime(2021, 9, 14, 13, 0, 0)), timezone('pacific/easter').localize(datetime.datetime(2021, 9, 14, 5, 0, 0)), timezone('africa/porto-novo').localize(datetime.datetime(2021, 9, 14, 11, 0, 0)), ]: self.assertEqual( api_response, { 'rooms': { '3d55bce0-535e-4ba8-bb8e-734911cf3c32': { 'room': { 'id': 18, 'start_time': start_time, 'duration': datetime.timedelta(minutes=130), 'description': 'interim-2021-wgname-01', }, 'url': 'https://meetings.conf.meetecho.com/interim/?short=3d55bce0-535e-4ba8-bb8e-734911cf3c32', 'deletion_token': '<PASSWORD>', }, } }, f'Incorrect time conversion for {start_time.tzinfo.zone}', ) def test_fetch_meetings(self): self.maxDiff = 2048 self.requests_mock.get( self.fetch_meetings_url, status_code=200, json={ 'rooms': { '3d55bce0-535e-4ba8-bb8e-734911cf3c32': { 'room': { 'id': 18, 'start_time': '2021-09-14 10:00:00', 'duration': 130, 'description': 'interim-2021-wgname-01', }, 'url': 'https://meetings.conf.meetecho.com/interim/?short=3d55bce0-535e-4ba8-bb8e-734911cf3c32', 'deletion_token': '<PASSWORD>', }, 'e68e96d4-d38f-475b-9073-ecab46ca96a5': { 'room': { 'id': 23, 'start_time': '2021-09-15 14:30:00', 'duration': 30, 'description': 'interim-2021-wgname-02', }, 'url': 'https://meetings.conf.meetecho.com/interim/?short=e68e96d4-d38f-475b-9073-ecab46ca96a5', 'deletion_token': '<PASSWORD>', }, } }, ) api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) api_response = api.fetch_meetings(wg_token='<PASSWORD>') self.assertTrue(self.requests_mock.called) request = self.requests_mock.last_request self.assertIn('Authorization', request.headers) self.assertEqual(request.headers['Authorization'], 'bearer my-token', 'Incorrect request authorization header') self.assertEqual( api_response, { 'rooms': { '3d55bce0-535e-4ba8-bb8e-734911cf3c32': { 'room': { 'id': 18, 'start_time': utc.localize(datetime.datetime(2021, 9, 14, 10, 0, 0)), 'duration': datetime.timedelta(minutes=130), 'description': 'interim-2021-wgname-01', }, 'url': 'https://meetings.conf.meetecho.com/interim/?short=3d55bce0-535e-4ba8-bb8e-734911cf3c32', 'deletion_token': '<PASSWORD>', }, 'e68e96d4-d38f-475b-9073-ecab46ca96a5': { 'room': { 'id': 23, 'start_time': utc.localize(datetime.datetime(2021, 9, 15, 14, 30, 0)), 'duration': datetime.timedelta(minutes=30), 'description': 'interim-2021-wgname-02', }, 'url': 'https://meetings.conf.meetecho.com/interim/?short=e68e96d4-d38f-475b-9073-ecab46ca96a5', 'deletion_token': '<PASSWORD>', }, } }, ) def test_delete_meeting(self): data_to_fetch = {} self.requests_mock.post(self.delete_meetings_url, status_code=200, json=data_to_fetch) api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) api_response = api.delete_meeting(deletion_token='<PASSWORD>') self.assertTrue(self.requests_mock.called) request = self.requests_mock.last_request self.assertIn('Authorization', request.headers) self.assertEqual(request.headers['Authorization'], 'bearer delete-this-meeting-please', 'Incorrect request authorization header') self.assertIsNone(request.body, 'Delete meeting request has no body') self.assertCountEqual(api_response, data_to_fetch) def test_request_helper_failed_requests(self): self.requests_mock.register_uri(requests_mock.ANY, urljoin(API_BASE, 'unauthorized/url/endpoint'), status_code=401) self.requests_mock.register_uri(requests_mock.ANY, urljoin(API_BASE, 'forbidden/url/endpoint'), status_code=403) self.requests_mock.register_uri(requests_mock.ANY, urljoin(API_BASE, 'notfound/url/endpoint'), status_code=404) api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) for method in ['POST', 'GET']: for code, endpoint in ((401, 'unauthorized/url/endpoint'), (403, 'forbidden/url/endpoint'), (404, 'notfound/url/endpoint')): with self.assertRaises(Exception) as context: api._request(method, endpoint) self.assertIsInstance(context.exception, MeetechoAPIError) self.assertIn(str(code), str(context.exception)) def test_request_helper_exception(self): self.requests_mock.register_uri(requests_mock.ANY, urljoin(API_BASE, 'exception/url/endpoint'), exc=requests.exceptions.RequestException) api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) for method in ['POST', 'GET']: with self.assertRaises(Exception) as context: api._request(method, 'exception/url/endpoint') self.assertIsInstance(context.exception, MeetechoAPIError) def test_time_serialization(self): """Time de/serialization should be consistent""" time = datetime.datetime.now(utc).replace(microsecond=0) # cut off to 0 microseconds api = MeetechoAPI(API_BASE, CLIENT_ID, CLIENT_SECRET) self.assertEqual(api._deserialize_time(api._serialize_time(time)), time) @override_settings(MEETECHO_API_CONFIG=API_CONFIG) class ConferenceManagerTests(TestCase): def test_conference_from_api_dict(self): confs = Conference.from_api_dict( None, { 'session-1-uuid': { 'room': { 'id': 1, 'start_time': utc.localize(datetime.datetime(2022,2,4,1,2,3)), 'duration': datetime.timedelta(minutes=45), 'description': 'some-description', }, 'url': 'https://example.com/some/url', 'deletion_token': '<PASSWORD>', }, 'session-2-uuid': { 'room': { 'id': 2, 'start_time': utc.localize(datetime.datetime(2022,2,5,4,5,6)), 'duration': datetime.timedelta(minutes=90), 'description': 'another-description', }, 'url': 'https://example.com/another/url', 'deletion_token': '<PASSWORD>', }, } ) self.assertCountEqual( confs, [ Conference( manager=None, id=1, public_id='session-1-uuid', description='some-description', start_time=utc.localize(datetime.datetime(2022, 2, 4, 1, 2, 3)), duration=datetime.timedelta(minutes=45), url='https://example.com/some/url', deletion_token='<PASSWORD>', ), Conference( manager=None, id=2, public_id='session-2-uuid', description='another-description', start_time=utc.localize(datetime.datetime(2022, 2, 5, 4, 5, 6)), duration=datetime.timedelta(minutes=90), url='https://example.com/another/url', deletion_token='<PASSWORD>', ), ] ) @patch.object(ConferenceManager, 'wg_token', return_value='atoken') @patch('ietf.utils.meetecho.MeetechoAPI.fetch_meetings') def test_fetch(self, mock_fetch, _): mock_fetch.return_value = { 'rooms': { 'session-1-uuid': { 'room': { 'id': 1, 'start_time': utc.localize(datetime.datetime(2022,2,4,1,2,3)), 'duration': datetime.timedelta(minutes=45), 'description': 'some-description', }, 'url': 'https://example.com/some/url', 'deletion_token': '<PASSWORD>', }, } } cm = ConferenceManager(settings.MEETECHO_API_CONFIG) fetched = cm.fetch('acronym') self.assertEqual( fetched, [Conference( manager=cm, id=1, public_id='session-1-uuid', description='some-description', start_time=utc.localize(datetime.datetime(2022,2,4,1,2,3)), duration=datetime.timedelta(minutes=45), url='https://example.com/some/url', deletion_token='<PASSWORD>', )], ) self.assertEqual(mock_fetch.call_args[0], ('atoken',)) @patch.object(ConferenceManager, 'wg_token', return_value='atoken') @patch('ietf.utils.meetecho.MeetechoAPI.schedule_meeting') def test_create(self, mock_schedule, _): mock_schedule.return_value = { 'rooms': { 'session-1-uuid': { 'room': { 'id': 1, 'start_time': utc.localize(datetime.datetime(2022,2,4,1,2,3)), 'duration': datetime.timedelta(minutes=45), 'description': 'some-description', }, 'url': 'https://example.com/some/url', 'deletion_token': '<PASSWORD>', }, }, } cm = ConferenceManager(settings.MEETECHO_API_CONFIG) result = cm.create('group', 'desc', 'starttime', 'dur', 'extra') self.assertEqual( result, [Conference( manager=cm, id=1, public_id='session-1-uuid', description='some-description', start_time=utc.localize(datetime.datetime(2022,2,4,1,2,3)), duration=datetime.timedelta(minutes=45), url='https://example.com/some/url', deletion_token='<PASSWORD>', )] ) args, kwargs = mock_schedule.call_args self.assertEqual( kwargs, { 'wg_token': '<PASSWORD>', 'description': 'desc', 'start_time': 'starttime', 'duration': 'dur', 'extrainfo': 'extra', }) @patch('ietf.utils.meetecho.MeetechoAPI.delete_meeting') def test_delete_conference(self, mock_delete): cm = ConferenceManager(settings.MEETECHO_API_CONFIG) cm.delete_conference(Conference(None, None, None, None, None, None, None, 'delete-this')) args, kwargs = mock_delete.call_args self.assertEqual(args, ('delete-this',)) @patch('ietf.utils.meetecho.MeetechoAPI.delete_meeting') def test_delete_by_url(self, mock_delete): cm = ConferenceManager(settings.MEETECHO_API_CONFIG) cm.delete_conference(Conference(None, None, None, None, None, None, 'the-url', 'delete-this')) args, kwargs = mock_delete.call_args self.assertEqual(args, ('delete-this',)) ```
{ "source": "jimfhahn/Annif", "score": 3 }
#### File: annif/analyzer/simple.py ```python from . import analyzer class SimpleAnalyzer(analyzer.Analyzer): name = "simple" def __init__(self, param, **kwargs): self.param = param super().__init__(**kwargs) def _normalize_word(self, word): return word.lower() ``` #### File: annif/backend/http.py ```python import dateutil.parser import requests import requests.exceptions from annif.suggestion import SubjectSuggestion, ListSuggestionResult from annif.exception import OperationFailedException from . import backend class HTTPBackend(backend.AnnifBackend): name = "http" @property def is_trained(self): return self._get_project_info('is_trained') @property def modification_time(self): mtime = self._get_project_info('modification_time') if mtime is None: return None return dateutil.parser.parse(mtime) def _get_project_info(self, key): params = self._get_backend_params(None) try: req = requests.get(params['endpoint'].replace('/suggest', '')) req.raise_for_status() except requests.exceptions.RequestException as err: msg = f"HTTP request failed: {err}" raise OperationFailedException(msg) from err try: response = req.json() except ValueError as err: msg = f"JSON decode failed: {err}" raise OperationFailedException(msg) from err if key in response: return response[key] else: return None def _suggest(self, text, params): data = {'text': text} if 'project' in params: data['project'] = params['project'] try: req = requests.post(params['endpoint'], data=data) req.raise_for_status() except requests.exceptions.RequestException as err: self.warning("HTTP request failed: {}".format(err)) return ListSuggestionResult([]) try: response = req.json() except ValueError as err: self.warning("JSON decode failed: {}".format(err)) return ListSuggestionResult([]) if 'results' in response: results = response['results'] else: results = response try: subject_suggestions = [SubjectSuggestion( uri=hit['uri'], label=None, notation=None, score=hit['score']) for hit in results if hit['score'] > 0.0] except (TypeError, ValueError) as err: self.warning("Problem interpreting JSON data: {}".format(err)) return ListSuggestionResult([]) return ListSuggestionResult.create_from_index(subject_suggestions, self.project.subjects) ``` #### File: annif/backend/__init__.py ```python def _dummy(): from . import dummy return dummy.DummyBackend def _ensemble(): from . import ensemble return ensemble.EnsembleBackend def _fasttext(): try: from . import fasttext return fasttext.FastTextBackend except ImportError: raise ValueError("fastText not available, cannot use fasttext backend") def _http(): from . import http return http.HTTPBackend def _mllm(): from . import mllm return mllm.MLLMBackend def _nn_ensemble(): try: from . import nn_ensemble return nn_ensemble.NNEnsembleBackend except ImportError: raise ValueError("Keras and TensorFlow not available, cannot use " + "nn_ensemble backend") def _omikuji(): try: from . import omikuji return omikuji.OmikujiBackend except ImportError: raise ValueError("Omikuji not available, cannot use omikuji backend") def _pav(): from . import pav return pav.PAVBackend def _stwfsa(): from . import stwfsa return stwfsa.StwfsaBackend def _svc(): from . import svc return svc.SVCBackend def _tfidf(): from . import tfidf return tfidf.TFIDFBackend def _yake(): try: from . import yake return yake.YakeBackend except ImportError: raise ValueError("YAKE not available, cannot use yake backend") # registry of the above functions _backend_fns = { 'dummy': _dummy, 'ensemble': _ensemble, 'fasttext': _fasttext, 'http': _http, 'mllm': _mllm, 'nn_ensemble': _nn_ensemble, 'omikuji': _omikuji, 'pav': _pav, 'stwfsa': _stwfsa, 'svc': _svc, 'tfidf': _tfidf, 'yake': _yake } def get_backend(backend_id): if backend_id in _backend_fns: return _backend_fns[backend_id]() else: raise ValueError("No such backend type {}".format(backend_id)) ``` #### File: annif/backend/nn_ensemble.py ```python from io import BytesIO import shutil import os.path import numpy as np from scipy.sparse import csr_matrix, csc_matrix import joblib import lmdb from tensorflow.keras.layers import Input, Dense, Add, Flatten, Dropout, Layer from tensorflow.keras.models import Model, load_model from tensorflow.keras.utils import Sequence import tensorflow.keras.backend as K import annif.corpus import annif.parallel import annif.util from annif.exception import NotInitializedException, NotSupportedException from annif.suggestion import VectorSuggestionResult from . import backend from . import ensemble def idx_to_key(idx): """convert an integer index to a binary key for use in LMDB""" return b'%08d' % idx def key_to_idx(key): """convert a binary LMDB key to an integer index""" return int(key) class LMDBSequence(Sequence): """A sequence of samples stored in a LMDB database.""" def __init__(self, txn, batch_size): self._txn = txn cursor = txn.cursor() if cursor.last(): # Counter holds the number of samples in the database self._counter = key_to_idx(cursor.key()) + 1 else: # empty database self._counter = 0 self._batch_size = batch_size def add_sample(self, inputs, targets): # use zero-padded 8-digit key key = idx_to_key(self._counter) self._counter += 1 # convert the sample into a sparse matrix and serialize it as bytes sample = (csc_matrix(inputs), csr_matrix(targets)) buf = BytesIO() joblib.dump(sample, buf) buf.seek(0) self._txn.put(key, buf.read()) def __getitem__(self, idx): """get a particular batch of samples""" cursor = self._txn.cursor() first_key = idx * self._batch_size cursor.set_key(idx_to_key(first_key)) input_arrays = [] target_arrays = [] for key, value in cursor.iternext(): if key_to_idx(key) >= (first_key + self._batch_size): break input_csr, target_csr = joblib.load(BytesIO(value)) input_arrays.append(input_csr.toarray()) target_arrays.append(target_csr.toarray().flatten()) return np.array(input_arrays), np.array(target_arrays) def __len__(self): """return the number of available batches""" return int(np.ceil(self._counter / self._batch_size)) class MeanLayer(Layer): """Custom Keras layer that calculates mean values along the 2nd axis.""" def call(self, inputs): return K.mean(inputs, axis=2) class NNEnsembleBackend( backend.AnnifLearningBackend, ensemble.BaseEnsembleBackend): """Neural network ensemble backend that combines results from multiple projects""" name = "nn_ensemble" MODEL_FILE = "nn-model.h5" LMDB_FILE = 'nn-train.mdb' DEFAULT_PARAMETERS = { 'nodes': 100, 'dropout_rate': 0.2, 'optimizer': 'adam', 'epochs': 10, 'learn-epochs': 1, 'lmdb_map_size': 1024 * 1024 * 1024 } # defaults for uninitialized instances _model = None def default_params(self): params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() params.update(self.DEFAULT_PARAMETERS) return params def initialize(self, parallel=False): super().initialize(parallel) if self._model is not None: return # already initialized if parallel: # Don't load TF model just before parallel execution, # since it won't work after forking worker processes return model_filename = os.path.join(self.datadir, self.MODEL_FILE) if not os.path.exists(model_filename): raise NotInitializedException( 'model file {} not found'.format(model_filename), backend_id=self.backend_id) self.debug('loading Keras model from {}'.format(model_filename)) self._model = load_model(model_filename, custom_objects={'MeanLayer': MeanLayer}) def _merge_hits_from_sources(self, hits_from_sources, params): score_vector = np.array([np.sqrt(hits.as_vector(subjects)) * weight * len(hits_from_sources) for hits, weight, subjects in hits_from_sources], dtype=np.float32) results = self._model.predict( np.expand_dims(score_vector.transpose(), 0)) return VectorSuggestionResult(results[0]) def _create_model(self, sources): self.info("creating NN ensemble model") inputs = Input(shape=(len(self.project.subjects), len(sources))) flat_input = Flatten()(inputs) drop_input = Dropout( rate=float( self.params['dropout_rate']))(flat_input) hidden = Dense(int(self.params['nodes']), activation="relu")(drop_input) drop_hidden = Dropout(rate=float(self.params['dropout_rate']))(hidden) delta = Dense(len(self.project.subjects), kernel_initializer='zeros', bias_initializer='zeros')(drop_hidden) mean = MeanLayer()(inputs) predictions = Add()([mean, delta]) self._model = Model(inputs=inputs, outputs=predictions) self._model.compile(optimizer=self.params['optimizer'], loss='binary_crossentropy', metrics=['top_k_categorical_accuracy']) if 'lr' in self.params: self._model.optimizer.learning_rate.assign( float(self.params['lr'])) summary = [] self._model.summary(print_fn=summary.append) self.debug("Created model: \n" + "\n".join(summary)) def _train(self, corpus, params, jobs=0): sources = annif.util.parse_sources(self.params['sources']) self._create_model(sources) self._fit_model( corpus, epochs=int(params['epochs']), lmdb_map_size=int(params['lmdb_map_size']), n_jobs=jobs) def _corpus_to_vectors(self, corpus, seq, n_jobs): # pass corpus through all source projects sources = dict( annif.util.parse_sources(self.params['sources'])) # initialize the source projects before forking, to save memory self.info( f"Initializing source projects: {', '.join(sources.keys())}") for project_id in sources.keys(): project = self.project.registry.get_project(project_id) project.initialize(parallel=True) psmap = annif.parallel.ProjectSuggestMap( self.project.registry, list(sources.keys()), backend_params=None, limit=None, threshold=0.0) jobs, pool_class = annif.parallel.get_pool(n_jobs) self.info("Processing training documents...") with pool_class(jobs) as pool: for hits, uris, labels in pool.imap_unordered( psmap.suggest, corpus.documents): doc_scores = [] for project_id, p_hits in hits.items(): vector = p_hits.as_vector(self.project.subjects) doc_scores.append(np.sqrt(vector) * sources[project_id] * len(sources)) score_vector = np.array(doc_scores, dtype=np.float32).transpose() subjects = annif.corpus.SubjectSet((uris, labels)) true_vector = subjects.as_vector(self.project.subjects) seq.add_sample(score_vector, true_vector) def _open_lmdb(self, cached, lmdb_map_size): lmdb_path = os.path.join(self.datadir, self.LMDB_FILE) if not cached and os.path.exists(lmdb_path): shutil.rmtree(lmdb_path) return lmdb.open(lmdb_path, map_size=lmdb_map_size, writemap=True) def _fit_model(self, corpus, epochs, lmdb_map_size, n_jobs=1): env = self._open_lmdb(corpus == 'cached', lmdb_map_size) if corpus != 'cached': if corpus.is_empty(): raise NotSupportedException( 'Cannot train nn_ensemble project with no documents') with env.begin(write=True, buffers=True) as txn: seq = LMDBSequence(txn, batch_size=32) self._corpus_to_vectors(corpus, seq, n_jobs) else: self.info("Reusing cached training data from previous run.") # fit the model using a read-only view of the LMDB self.info("Training neural network model...") with env.begin(buffers=True) as txn: seq = LMDBSequence(txn, batch_size=32) self._model.fit(seq, verbose=True, epochs=epochs) annif.util.atomic_save( self._model, self.datadir, self.MODEL_FILE) def _learn(self, corpus, params): self.initialize() self._fit_model( corpus, int(params['learn-epochs']), int(params['lmdb_map_size'])) ``` #### File: Annif/annif/config.py ```python import os.path import configparser import tomli import annif import annif.util from glob import glob from annif.exception import ConfigurationException logger = annif.logger class AnnifConfigCFG: """Class for reading configuration in CFG/INI format""" def __init__(self, filename): self._config = configparser.ConfigParser() self._config.optionxform = annif.util.identity with open(filename, encoding='utf-8-sig') as projf: try: logger.debug( f"Reading configuration file {filename} in CFG format") self._config.read_file(projf) except (configparser.DuplicateOptionError, configparser.DuplicateSectionError) as err: raise ConfigurationException(err) @property def project_ids(self): return self._config.sections() def __getitem__(self, key): return self._config[key] class AnnifConfigTOML: """Class for reading configuration in TOML format""" def __init__(self, filename): with open(filename, "rb") as projf: try: logger.debug( f"Reading configuration file {filename} in TOML format") self._config = tomli.load(projf) except tomli.TOMLDecodeError as err: raise ConfigurationException( f"Parsing TOML file '{filename}' failed: {err}") @property def project_ids(self): return self._config.keys() def __getitem__(self, key): return self._config[key] class AnnifConfigDirectory: """Class for reading configuration from directory""" def __init__(self, directory): files = glob(os.path.join(directory, '*.cfg')) files.extend(glob(os.path.join(directory, '*.toml'))) logger.debug(f"Reading configuration files in directory {directory}") self._config = dict() for file in files: source_config = parse_config(file) for proj_id in source_config.project_ids: self._check_duplicate_project_ids(proj_id, file) self._config[proj_id] = source_config[proj_id] def _check_duplicate_project_ids(self, proj_id, file): if proj_id in self._config: # Error message resembles configparser's DuplicateSection message raise ConfigurationException( f'While reading from "{file}": project ID "{proj_id}" already ' 'exists in another configuration file in the directory.') @property def project_ids(self): return self._config.keys() def __getitem__(self, key): return self._config[key] def check_config(projects_config_path): if os.path.exists(projects_config_path): return projects_config_path else: logger.warning( 'Project configuration file or directory ' + f'"{projects_config_path}" is missing. Please provide one. ' + 'You can set the path to the project configuration ' + 'using the ANNIF_PROJECTS environment ' + 'variable or the command-line option "--projects".') return None def find_config(): for path in ('projects.cfg', 'projects.toml', 'projects.d'): if os.path.exists(path): return path logger.warning( 'Could not find project configuration ' + '"projects.cfg", "projects.toml" or "projects.d". ' + 'You can set the path to the project configuration ' + 'using the ANNIF_PROJECTS environment ' + 'variable or the command-line option "--projects".') return None def parse_config(projects_config_path): if projects_config_path: projects_config_path = check_config(projects_config_path) else: projects_config_path = find_config() if not projects_config_path: # not found return None if os.path.isdir(projects_config_path): return AnnifConfigDirectory(projects_config_path) elif projects_config_path.endswith('.toml'): # TOML format return AnnifConfigTOML(projects_config_path) else: # classic CFG/INI style format return AnnifConfigCFG(projects_config_path) ``` #### File: Annif/annif/datadir.py ```python import os import os.path class DatadirMixin: """Mixin class for types that need a data directory for storing files""" def __init__(self, datadir, typename, identifier): self._datadir_path = os.path.join(datadir, typename, identifier) @property def datadir(self): if not os.path.exists(self._datadir_path): try: os.makedirs(self._datadir_path) except FileExistsError: # apparently the datadir was created by another thread! pass return self._datadir_path ``` #### File: Annif/annif/exception.py ```python from click import ClickException class AnnifException(ClickException): """Base Annif exception. We define this as a subclass of ClickException so that the CLI can automatically handle exceptions. This exception cannot be instantiated directly - subclasses should be used instead.""" def __init__(self, message, project_id=None, backend_id=None): super().__init__(message) self.project_id = project_id self.backend_id = backend_id if self.prefix is None: raise TypeError("Cannot instantiate exception without a prefix.") # subclasses should set this to a descriptive prefix prefix = None def format_message(self): if self.project_id is not None: return "{} project '{}': {}".format(self.prefix, self.project_id, self.message) if self.backend_id is not None: return "{} backend '{}': {}".format(self.prefix, self.backend_id, self.message) return "{}: {}".format(self.prefix, self.message) class NotInitializedException(AnnifException): """Exception raised for attempting to use a project or backend that cannot be initialized, most likely since it is not yet functional because of lack of vocabulary or training.""" prefix = "Couldn't initialize" class ConfigurationException(AnnifException): """Exception raised when a project or backend is misconfigured.""" prefix = "Misconfigured" class NotSupportedException(AnnifException): """Exception raised when an operation is not supported by a project or backend.""" prefix = "Not supported" class OperationFailedException(AnnifException): """Exception raised when an operation fails for some unknown reason.""" prefix = "Operation failed" ``` #### File: Annif/annif/parallel.py ```python import multiprocessing import multiprocessing.dummy class BaseWorker: """Base class for workers that implement tasks executed via multiprocessing. The init method can be used to store data objects that are necessary for the operation. They will be stored in a class attribute that is accessible to the static worker method. The storage solution is inspired by this blog post: https://thelaziestprogrammer.com/python/multiprocessing-pool-a-global-solution # noqa """ args = None @classmethod def init(cls, args): cls.args = args # pragma: no cover class ProjectSuggestMap: """A utility class that can be used to wrap one or more projects and provide a mapping method that converts Document objects to suggestions. Intended to be used with the multiprocessing module.""" def __init__( self, registry, project_ids, backend_params, limit, threshold): self.registry = registry self.project_ids = project_ids self.backend_params = backend_params self.limit = limit self.threshold = threshold def suggest(self, doc): filtered_hits = {} for project_id in self.project_ids: project = self.registry.get_project(project_id) hits = project.suggest(doc.text, self.backend_params) filtered_hits[project_id] = hits.filter( project.subjects, self.limit, self.threshold) return (filtered_hits, doc.uris, doc.labels) def get_pool(n_jobs): """return a suitable multiprocessing pool class, and the correct jobs argument for its constructor, for the given amount of parallel jobs""" if n_jobs < 1: n_jobs = None pool_class = multiprocessing.Pool elif n_jobs == 1: # use the dummy wrapper around threading to avoid subprocess overhead pool_class = multiprocessing.dummy.Pool else: pool_class = multiprocessing.Pool return n_jobs, pool_class ``` #### File: Annif/annif/project.py ```python import enum import os.path from shutil import rmtree import annif import annif.transform import annif.analyzer import annif.corpus import annif.suggestion import annif.backend import annif.vocab from annif.datadir import DatadirMixin from annif.exception import AnnifException, ConfigurationException, \ NotSupportedException, NotInitializedException logger = annif.logger class Access(enum.IntEnum): """Enumeration of access levels for projects""" private = 1 hidden = 2 public = 3 class AnnifProject(DatadirMixin): """Class representing the configuration of a single Annif project.""" # defaults for uninitialized instances _transform = None _analyzer = None _backend = None _vocab = None initialized = False # default values for configuration settings DEFAULT_ACCESS = 'public' def __init__(self, project_id, config, datadir, registry): DatadirMixin.__init__(self, datadir, 'projects', project_id) self.project_id = project_id self.name = config.get('name', project_id) self.language = config['language'] self.analyzer_spec = config.get('analyzer', None) self.transform_spec = config.get('transform', 'pass') self.vocab_id = config.get('vocab', None) self.config = config self._base_datadir = datadir self.registry = registry self._init_access() def _init_access(self): access = self.config.get('access', self.DEFAULT_ACCESS) try: self.access = getattr(Access, access) except AttributeError: raise ConfigurationException( "'{}' is not a valid access setting".format(access), project_id=self.project_id) def _initialize_analyzer(self): if not self.analyzer_spec: return # not configured, so assume it's not needed analyzer = self.analyzer logger.debug("Project '%s': initialized analyzer: %s", self.project_id, str(analyzer)) def _initialize_subjects(self): try: subjects = self.subjects logger.debug("Project '%s': initialized subjects: %s", self.project_id, str(subjects)) except AnnifException as err: logger.warning(err.format_message()) def _initialize_backend(self, parallel): logger.debug("Project '%s': initializing backend", self.project_id) try: if not self.backend: logger.debug("Cannot initialize backend: does not exist") return self.backend.initialize(parallel) except AnnifException as err: logger.warning(err.format_message()) def initialize(self, parallel=False): """Initialize this project and its backend so that they are ready to be used. If parallel is True, expect that the project will be used for parallel processing.""" if self.initialized: return logger.debug("Initializing project '%s'", self.project_id) self._initialize_analyzer() self._initialize_subjects() self._initialize_backend(parallel) self.initialized = True def _suggest_with_backend(self, text, backend_params): if backend_params is None: backend_params = {} beparams = backend_params.get(self.backend.backend_id, {}) hits = self.backend.suggest(text, beparams) logger.debug( 'Got %d hits from backend %s', len(hits), self.backend.backend_id) return hits @property def analyzer(self): if self._analyzer is None: if self.analyzer_spec: self._analyzer = annif.analyzer.get_analyzer( self.analyzer_spec) else: raise ConfigurationException( "analyzer setting is missing", project_id=self.project_id) return self._analyzer @property def transform(self): if self._transform is None: self._transform = annif.transform.get_transform( self.transform_spec, project=self) return self._transform @property def backend(self): if self._backend is None: if 'backend' not in self.config: raise ConfigurationException( "backend setting is missing", project_id=self.project_id) backend_id = self.config['backend'] try: backend_class = annif.backend.get_backend(backend_id) self._backend = backend_class( backend_id, config_params=self.config, project=self) except ValueError: logger.warning( "Could not create backend %s, " "make sure you've installed optional dependencies", backend_id) return self._backend @property def vocab(self): if self._vocab is None: if self.vocab_id is None: raise ConfigurationException("vocab setting is missing", project_id=self.project_id) self._vocab = annif.vocab.AnnifVocabulary(self.vocab_id, self._base_datadir, self.language) return self._vocab @property def subjects(self): return self.vocab.subjects def _get_info(self, key): try: be = self.backend if be is not None: return getattr(be, key) except AnnifException as err: logger.warning(err.format_message()) return None @property def is_trained(self): return self._get_info('is_trained') @property def modification_time(self): return self._get_info('modification_time') def suggest(self, text, backend_params=None): """Suggest subjects the given text by passing it to the backend. Returns a list of SubjectSuggestion objects ordered by decreasing score.""" if not self.is_trained: if self.is_trained is None: logger.warning('Could not get train state information.') else: raise NotInitializedException('Project is not trained.') logger.debug('Suggesting subjects for text "%s..." (len=%d)', text[:20], len(text)) text = self.transform.transform_text(text) hits = self._suggest_with_backend(text, backend_params) logger.debug('%d hits from backend', len(hits)) return hits def train(self, corpus, backend_params=None, jobs=0): """train the project using documents from a metadata source""" if corpus != 'cached': corpus.set_subject_index(self.subjects) corpus = self.transform.transform_corpus(corpus) if backend_params is None: backend_params = {} beparams = backend_params.get(self.backend.backend_id, {}) self.backend.train(corpus, beparams, jobs) def learn(self, corpus, backend_params=None): """further train the project using documents from a metadata source""" corpus.set_subject_index(self.subjects) if backend_params is None: backend_params = {} beparams = backend_params.get(self.backend.backend_id, {}) corpus = self.transform.transform_corpus(corpus) if isinstance( self.backend, annif.backend.backend.AnnifLearningBackend): self.backend.learn(corpus, beparams) else: raise NotSupportedException("Learning not supported by backend", project_id=self.project_id) def hyperopt(self, corpus, trials, jobs, metric, results_file): """optimize the hyperparameters of the project using a validation corpus against a given metric""" if isinstance( self.backend, annif.backend.hyperopt.AnnifHyperoptBackend): optimizer = self.backend.get_hp_optimizer(corpus, metric) return optimizer.optimize(trials, jobs, results_file) raise NotSupportedException( "Hyperparameter optimization not supported " "by backend", project_id=self.project_id) def dump(self): """return this project as a dict""" return {'project_id': self.project_id, 'name': self.name, 'language': self.language, 'backend': {'backend_id': self.config.get('backend')}, 'is_trained': self.is_trained, 'modification_time': self.modification_time } def remove_model_data(self): """remove the data of this project""" datadir_path = self._datadir_path if os.path.isdir(datadir_path): rmtree(datadir_path) logger.info('Removed model data for project {}.' .format(self.project_id)) else: logger.warning('No model data to remove for project {}.' .format(self.project_id)) ``` #### File: Annif/tests/test_backend_fasttext.py ```python import logging import pytest import annif.backend import annif.corpus from annif.exception import NotSupportedException fasttext = pytest.importorskip("annif.backend.fasttext") def test_fasttext_default_params(project): fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={}, project=project) expected_default_params = { 'limit': 100, 'chunksize': 1, 'dim': 100, 'lr': 0.25, 'epoch': 5, 'loss': 'hs', } actual_params = fasttext.params for param, val in expected_default_params.items(): assert param in actual_params and actual_params[param] == val def test_fasttext_train(document_corpus, project, datadir): fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'dim': 100, 'lr': 0.25, 'epoch': 20, 'loss': 'hs'}, project=project) fasttext.train(document_corpus) assert fasttext._model is not None assert datadir.join('fasttext-model').exists() assert datadir.join('fasttext-model').size() > 0 def test_fasttext_train_cached_jobs(project, datadir): assert datadir.join('fasttext-train.txt').exists() datadir.join('fasttext-model').remove() fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'dim': 100, 'lr': 0.25, 'epoch': 20, 'loss': 'hs'}, project=project) fasttext.train("cached", jobs=2) assert fasttext._model is not None assert datadir.join('fasttext-model').exists() assert datadir.join('fasttext-model').size() > 0 def test_fasttext_train_unknown_subject(tmpdir, datadir, project): fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'dim': 100, 'lr': 0.25, 'epoch': 20, 'loss': 'hs'}, project=project) tmpfile = tmpdir.join('document.tsv') tmpfile.write("nonexistent\thttp://example.com/nonexistent\n" + "arkeologia\thttp://www.yso.fi/onto/yso/p1265") document_corpus = annif.corpus.DocumentFile(str(tmpfile)) fasttext.train(document_corpus) assert fasttext._model is not None assert datadir.join('fasttext-model').exists() assert datadir.join('fasttext-model').size() > 0 def test_fasttext_train_nodocuments(project, empty_corpus): fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'dim': 100, 'lr': 0.25, 'epoch': 20, 'loss': 'hs'}, project=project) with pytest.raises(NotSupportedException) as excinfo: fasttext.train(empty_corpus) assert 'training backend fasttext with no documents' in str(excinfo.value) def test_train_fasttext_params(document_corpus, project, caplog): logger = annif.logger logger.propagate = True fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 51, 'dim': 101, 'lr': 0.21, 'epoch': 21, 'loss': 'hs'}, project=project) params = {'dim': 1, 'lr': 42.1, 'epoch': 0} with caplog.at_level(logging.DEBUG): fasttext.train(document_corpus, params) parameters_heading = 'Backend fasttext: Model parameters:' assert parameters_heading in caplog.text for line in caplog.text.splitlines(): if parameters_heading in line: assert "'dim': 1" in line assert "'lr': 42.1" in line assert "'epoch': 0" in line def test_fasttext_train_pretrained(datadir, document_corpus, project, pretrained_vectors): assert pretrained_vectors.exists() assert pretrained_vectors.size() > 0 fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'dim': 100, 'lr': 0.25, 'epoch': 20, 'loss': 'hs', 'pretrainedVectors': str(pretrained_vectors)}, project=project) fasttext.train(document_corpus) assert fasttext._model is not None assert datadir.join('fasttext-model').exists() assert datadir.join('fasttext-model').size() > 0 def test_fasttext_train_pretrained_wrong_dim(datadir, document_corpus, project, pretrained_vectors): assert pretrained_vectors.exists() assert pretrained_vectors.size() > 0 fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'dim': 50, 'lr': 0.25, 'epoch': 20, 'loss': 'hs', 'pretrainedVectors': str(pretrained_vectors)}, project=project) with pytest.raises(ValueError): fasttext.train(document_corpus) assert fasttext._model is None def test_fasttext_suggest(project): fasttext_type = annif.backend.get_backend("fasttext") fasttext = fasttext_type( backend_id='fasttext', config_params={ 'limit': 50, 'chunksize': 1, 'dim': 100, 'lr': 0.25, 'epoch': 20, 'loss': 'hs'}, project=project) results = fasttext.suggest("""Arkeologiaa sanotaan joskus myös muinaistutkimukseksi tai muinaistieteeksi. Se on humanistinen tiede tai oikeammin joukko tieteitä, jotka tutkivat ihmisen menneisyyttä. Tutkimusta tehdään analysoimalla muinaisjäännöksiä eli niitä jälkiä, joita ihmisten toiminta on jättänyt maaperään tai vesistöjen pohjaan.""") assert len(results) > 0 hits = results.as_list(project.subjects) assert 'http://www.yso.fi/onto/yso/p1265' in [ result.uri for result in hits] assert 'arkeologia' in [result.label for result in hits] ``` #### File: Annif/tests/test_rest.py ```python import annif.rest def test_rest_list_projects(app): with app.app_context(): result = annif.rest.list_projects() project_ids = [proj['project_id'] for proj in result['projects']] # public project should be returned assert 'dummy-fi' in project_ids # hidden project should not be returned assert 'dummy-en' not in project_ids # private project should not be returned assert 'dummydummy' not in project_ids # project with no access level setting should be returned assert 'ensemble' in project_ids def test_rest_show_project_public(app): # public projects should be accessible via REST with app.app_context(): result = annif.rest.show_project('dummy-fi') assert result['project_id'] == 'dummy-fi' def test_rest_show_project_hidden(app): # hidden projects should be accessible if you know the project id with app.app_context(): result = annif.rest.show_project('dummy-en') assert result['project_id'] == 'dummy-en' def test_rest_show_project_private(app): # private projects should not be accessible via REST with app.app_context(): result = annif.rest.show_project('dummydummy') assert result.status_code == 404 def test_rest_show_project_nonexistent(app): with app.app_context(): result = annif.rest.show_project('nonexistent') assert result.status_code == 404 def test_rest_suggest_public(app): # public projects should be accessible via REST with app.app_context(): result = annif.rest.suggest( 'dummy-fi', text='example text', limit=10, threshold=0.0) assert 'results' in result def test_rest_suggest_hidden(app): # hidden projects should be accessible if you know the project id with app.app_context(): result = annif.rest.suggest( 'dummy-en', text='example text', limit=10, threshold=0.0) assert 'results' in result def test_rest_suggest_private(app): # private projects should not be accessible via REST with app.app_context(): result = annif.rest.suggest( 'dummydummy', text='example text', limit=10, threshold=0.0) assert result.status_code == 404 def test_rest_suggest_nonexistent(app): with app.app_context(): result = annif.rest.suggest( 'nonexistent', text='example text', limit=10, threshold=0.0) assert result.status_code == 404 def test_rest_suggest_novocab(app): with app.app_context(): result = annif.rest.suggest( 'novocab', text='example text', limit=10, threshold=0.0) assert result.status_code == 503 def test_rest_suggest_with_notations(app): with app.app_context(): result = annif.rest.suggest( 'dummy-fi', text='example text', limit=10, threshold=0.0) assert result['results'][0]['notation'] is None def test_rest_learn_empty(app): with app.app_context(): response = annif.rest.learn('dummy-en', []) assert response == (None, 204) # success, no output def test_rest_learn(app): documents = [{'text': 'the quick brown fox', 'subjects': [{'uri': 'http://example.org/fox', 'label': 'fox'}]}] with app.app_context(): response = annif.rest.learn('dummy-en', documents) assert response == (None, 204) # success, no output result = annif.rest.suggest( 'dummy-en', text='example text', limit=10, threshold=0.0) assert 'results' in result assert result['results'][0]['uri'] == 'http://example.org/fox' assert result['results'][0]['label'] == 'fox' def test_rest_learn_novocab(app): with app.app_context(): result = annif.rest.learn('novocab', []) assert result.status_code == 503 def test_rest_learn_nonexistent(app): with app.app_context(): result = annif.rest.learn('nonexistent', []) assert result.status_code == 404 def test_rest_learn_not_supported(app): with app.app_context(): result = annif.rest.learn('tfidf-fi', []) assert result.status_code == 503 ``` #### File: Annif/tests/test_transform_langfilter.py ```python import pytest import annif.transform pytest.importorskip("annif.transform.langfilter") def test_lang_filter(project): transf = annif.transform.get_transform("filter_lang", project) text = """ Kansalliskirjasto on kaikille avoin kulttuuriperintöorganisaatio, joka palvelee valtakunnallisesti kansalaisia, tiedeyhteisöjä ja muita yhteiskunnan toimijoita. The National Library of Finland is the oldest and largest scholarly library in Finland. It is responsible for the collection, description, preservation and accessibility of Finland’s published national heritage and the unique collections under its care. Nationalbiblioteket är Finlands största och äldsta vetenskapliga bibliotek, som ansvarar för utökning, beskrivning, förvaring och tillhandahållande av vårt nationella publikationsarv och av sina unika samlingar. Abc defghij klmnopqr stuwxyz abc defghij klmnopqr stuwxyz. Turvaamme Suomessa julkaistun tai Suomea koskevan julkaistun kulttuuriperinnön saatavuuden sekä välittämme ja tuotamme tietosisältöjä tutkimukselle, opiskelulle, kansalaisille ja yhteiskunnalle. Kehitämme palveluja yhteistyössä kirjastojen, arkistojen, museoiden ja muiden toimijoiden kanssa. """ text = ' '.join(text.split()) text_filtered = """ Kansalliskirjasto on kaikille avoin kulttuuriperintöorganisaatio, joka palvelee valtakunnallisesti kansalaisia, tiedeyhteisöjä ja muita yhteiskunnan toimijoita. Abc defghij klmnopqr stuwxyz abc defghij klmnopqr stuwxyz. Turvaamme Suomessa julkaistun tai Suomea koskevan julkaistun kulttuuriperinnön saatavuuden sekä välittämme ja tuotamme tietosisältöjä tutkimukselle, opiskelulle, kansalaisille ja yhteiskunnalle. Kehitämme palveluja yhteistyössä kirjastojen, arkistojen, museoiden ja muiden toimijoiden kanssa. """ text_filtered = ' '.join(text_filtered.split()) assert transf.transform_text(text) == text_filtered def test_lang_filter_text_min_length(project): text = "This is just some non-Finnish text of 52 characters." transf = annif.transform.get_transform("filter_lang", project) assert transf.transform_text(text) == text # Set a short text_min_length to apply language filtering: transf = annif.transform.get_transform( "filter_lang(text_min_length=50)", project) assert transf.transform_text(text) == "" def test_lang_filter_sentence_min_length(project): text = "This is a non-Finnish sentence of 42 chars. And this of 20 chars." transf = annif.transform.get_transform( "filter_lang(text_min_length=50)", project) assert transf.transform_text(text) == text # Set a short sentence_min_length to apply language filtering: transf = annif.transform.get_transform( "filter_lang(text_min_length=50,sentence_min_length=30)", project) assert transf.transform_text(text) == "And this of 20 chars." ```
{ "source": "jimfhahn/ils-middleware", "score": 2 }
#### File: tasks/folio/login.py ```python import json from ils_middleware.tasks.folio.request import FolioRequest from airflow.providers.http.operators.http import SimpleHttpOperator def FolioLogin(**kwargs) -> SimpleHttpOperator: """Logs into FOLIO and returns Okapi token.""" username = kwargs.get("username") password = kwargs.get("password") return FolioRequest( **kwargs, task_id="folio_login", endpoint="authn/login", response_filter=lambda response: response.json().get("x-okapi-token"), data=json.dumps({"username": username, "password": password}), ) ``` #### File: tasks/folio/request.py ```python from airflow.providers.http.operators.http import SimpleHttpOperator def FolioRequest(**kwargs) -> SimpleHttpOperator: tenant = kwargs.get("tenant") conn_id = kwargs.get("conn_id") dag = kwargs.get("dag") token = kwargs.get("token") response_filter = kwargs.get("response_filter") method = kwargs.get("method") endpoint = kwargs.get("endpoint") data = kwargs.get("data") task_id = kwargs.get("task_id", "folio_request") headers = { "Content-Type": "application/json", "Accept": "application/json", "x-okapi-tenant": tenant, } if token: headers["x-okapi-token"] = token return SimpleHttpOperator( task_id=task_id, http_conn_id=conn_id, method=method, headers=headers, data=data, endpoint=endpoint, dag=dag, response_filter=response_filter, ) ``` #### File: tasks/symphony/login.py ```python import json from ils_middleware.tasks.symphony.request import SymphonyRequest from airflow.providers.http.operators.http import SimpleHttpOperator def SymphonyLogin(**kwargs) -> SimpleHttpOperator: login = kwargs.get("login") password = kwargs.get("password") return SymphonyRequest( **kwargs, task_id="login_symphony", data=json.dumps({"login": login, "password": password}), headers={"Content-Type": "application/json", "Accept": "application/json"}, endpoint="user/staff/login", filter=lambda response: response.json().get("sessionToken") ) ``` #### File: tasks/amazon/test_sqs.py ```python import pytest from datetime import datetime from airflow import DAG from airflow.models import Variable from ils_middleware.tasks.amazon.sqs import SubscribeOperator @pytest.fixture def test_dag(): start_date = datetime(2021, 9, 16) return DAG("test_dag", default_args={"owner": "airflow", "start_date": start_date}) @pytest.fixture def mock_variable(monkeypatch): def mock_get(key, default=None): if key == "SQS_STAGE": return "http://aws.com/12345/" monkeypatch.setattr(Variable, "get", mock_get) def test_subscribe_operator_missing_kwargs(test_dag, mock_variable): """Test missing kwargs for SubscribeOperator.""" task = SubscribeOperator(dag=test_dag) assert task is not None assert task.sqs_queue == "None" assert task.aws_conn_id == "aws_sqs_dev" def test_subscribe_operator(test_dag, mock_variable): """Test with typical kwargs for SubscribeOperator.""" task = SubscribeOperator(queue="stanford-ils", sinopia_env="stage", dag=test_dag) assert task.sqs_queue.startswith("http://aws.com/12345/stanford-ils") assert task.aws_conn_id == "aws_sqs_stage" ``` #### File: tasks/folio/test_login.py ```python import pytest from datetime import datetime from airflow import DAG from ils_middleware.tasks.folio.login import FolioLogin @pytest.fixture def test_dag(): start_date = datetime(2021, 9, 20) return DAG("test_dag", default_args={"owner": "airflow", "start_date": start_date}) def test_subscribe_operator_missing_kwargs(test_dag): """Test missing kwargs for SubscribeOperator.""" task = FolioLogin(dag=test_dag) assert task.http_conn_id is None def test_subscribe_operator(test_dag): """Test with typical kwargs for SubscribeOperator.""" task = FolioLogin( conn_id="folio_dev_login", username="DEVSYS", password="<PASSWORD>", dag=test_dag ) assert task.http_conn_id.startswith("folio_dev_login") assert "DEVSYS" in task.data ``` #### File: tasks/symphony/test_new.py ```python from datetime import datetime import pytest from airflow import DAG from ils_middleware.tasks.symphony.new import NewMARCtoSymphony @pytest.fixture def test_dag(): start_date = datetime(2021, 9, 20) return DAG("test_dag", default_args={"owner": "airflow", "start_date": start_date}) def test_NewMARCtoSymphony(test_dag): """Tests NewMARCtoSymphony""" task = NewMARCtoSymphony( conn_id="symphony_dev_login", session_token="<KEY>", library_key="GREEN", marc_json={"leader": "basdfdaf adf", "fields": [{"tag": "245"}]}, dag=test_dag, ) assert task.http_conn_id.startswith("symphony_dev_login") assert task.endpoint.startswith("catalog/bib") assert "basdfdaf" in task.data ```
{ "source": "jimfinoc/superClock", "score": 3 }
#### File: jimfinoc/superClock/superClock.py ```python import urllib import urllib2 import sys import json import time import datetime import requests from Adafruit_7SegmentPlus import SevenSegment from optparse import OptionParser import myColorText import commands # Make sure your higher level directory has the JSON file called passwordFile.json # The file should contain the information in the JSON format. See below for an example # {"username": "<EMAIL>", "password": "<PASSWORD>!!!"} # all temps from the Nest site are stored in degrees Celsius BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) #for using PrintColor fileData = open('../passwordFile.json') usernameAndPassword = json.load(fileData) valueTimeDate = None #print "username:" + str(usernameAndPassword['username']) #print "password:" + str(usernameAndPassword['password']) print "Press CTRL+Z to exit" class Zone(datetime.tzinfo): def __init__(self,offset,isdst,name): self.offset = offset self.isdst = isdst self.name = name def utcoffset(self, dt): return datetime.timedelta(hours=self.offset) + self.dst(dt) def dst(self, dt): return datetime.timedelta(hours=1) if self.isdst else datetime.timedelta(0) def tzname(self,dt): return self.name GMT = Zone(0,False,'GMT') # True if DST is on # Fales if now DST EST = Zone(-5,True,'EST') print datetime.datetime.utcnow().strftime('%m/%d/%Y %H:%M:%S %Z') print datetime.datetime.now(GMT).strftime('%m/%d/%Y %H:%M:%S %Z') print datetime.datetime.now(EST).strftime('%m/%d/%Y %H:%M:%S %Z') def c_to_f(c): return c * 9.0 / 5.0 + 32.0 class Nest: def __init__(self, username, password, serial=None, index=0): self.username = username self.password = password self.serial = serial self.index = index def loads(self, res): if hasattr(json, "loads"): res = json.loads(res) else: res = json.read(res) return res def login(self): data = urllib.urlencode({"username": self.username, "password": self.password}) req = urllib2.Request("https://home.nest.com/user/login", data, {"user-agent":"Nest/1.1.0.10 CFNetwork/548.0.4"}) res = urllib2.urlopen(req).read() res = self.loads(res) self.transport_url = res["urls"]["transport_url"] self.access_token = res["access_token"] self.userid = res["userid"] def get_status(self): req = urllib2.Request(self.transport_url + "/v2/mobile/user." + self.userid, headers={"user-agent":"Nest/1.1.0.10 CFNetwork/548.0.4", "Authorization":"Basic " + self.access_token, "X-nl-user-id": self.userid, "X-nl-protocol-version": "1"}) res = urllib2.urlopen(req).read() res = self.loads(res) self.structure_id = res["structure"].keys()[0] if (self.serial is None): self.device_id = res["structure"][self.structure_id]["devices"][self.index] self.serial = self.device_id.split(".")[1] self.status = res def show_status(self): shared = self.status["shared"][self.serial] device = self.status["device"][self.serial] allvars = shared allvars.update(device) for k in sorted(allvars.keys()): print k + "."*(32-len(k)) + ":", allvars[k] # This assumes you have two Nest Thermostats. If you have more than 2, the number, index, after "None" # below will increment accordingly. If you only have one, it should just be 0. You have to create an object # for each nest thermostat. You could also specify the thermostats by serial number instead of the index. def displayTemperature(segment = SevenSegment(address=0x70), temperature = None): "this will display the temperature on the specific segment" segment.disp.clear() if (temperature==None): segment.disp.clear() segment.writeDigit(4, 0xF) return False else: segment.writeDigit(0, int(temperature) / 10) # Tens segment.writeDigit(1, int(temperature) % 10, True) # Ones segment.writeDigit(3, int(temperature) * 10 % 10) # Tenths segment.writeDigit(4, 0xF) # F return True def displayHumidity(segment = SevenSegment(address=0x70), humidity = None): "this will display the humidity on the specific segment" segment.disp.clear() if (humidity==None): # segment.writeDigit(0, 0xF) segment.setSpecialH(0) return False else: segment.setSpecialH(0) # displays an H in the 0 position # segment.writeDigit(1, int(temperature) % 10, True) # blank segment.writeDigit(3, int(humidity) / 10) # Tens segment.writeDigit(4, int(humidity) % 10) # Ones return True def displayTime(segment = SevenSegment(address=0x70),valueTimeDate = None): "this will display the time on the specific segment" segment.disp.clear() if (valueTimeDate==None): segment.disp.clear() return False else: segment.writeDigit(0, int(valueTimeDate.strftime('%H')[0])) # Thousand segment.writeDigit(1, int(valueTimeDate.strftime('%H')[1])) # Hundred # segment.writeDigit(2, 0xFFFF) # turn on colon segment.writeDigit(2, 0) # turn on colon segment.writeDigit(3, int(valueTimeDate.strftime('%M')[0])) # Ten segment.writeDigit(4, int(valueTimeDate.strftime('%M')[1])) # Ones return True def displayMonthDay(segment = SevenSegment(address=0x70),valueTimeDate = None): "this will display the day and month on the specific segment" if (valueTimeDate==None): segment.disp.clear() return False else: segment.writeDigit(0, int(valueTimeDate.strftime('%m')[0])) # month tens segment.writeDigit(1, int(valueTimeDate.strftime('%m')[1]),True) # month plus a decimal # segment.writeDigit(2, 0xFFFF) # turn off colon segment.writeDigit(3, int(valueTimeDate.strftime('%d')[0])) # day tens segment.writeDigit(4, int(valueTimeDate.strftime('%d')[1])) # day return True def displayYear(segment = SevenSegment(address=0x70),valueTimeDate = None): "this will display the year on the specific segment" # print valueTimeDate if (valueTimeDate==None): segment.disp.clear() return False else: segment.writeDigit(0, int(valueTimeDate.strftime('%Y')[0])) # Thousand segment.writeDigit(1, int(valueTimeDate.strftime('%Y')[1])) # Hundred # segment.writeDigit(2, 0) # turn off colon segment.writeDigit(3, int(valueTimeDate.strftime('%Y')[2])) # Ten segment.writeDigit(4, int(valueTimeDate.strftime('%Y')[3])) # Ones return True def create_parser(): parser = OptionParser(usage="superClock [options] command [command_options] [command_args]", description="Commands: help", version="1") # parser.add_option("-c", "--celsius", dest="celsius", action="store_true", default=False, # help="use celsius instead of farenheit") return parser def help(): print "syntax: superClock [options]" print "options:" print " --celsius ... Celsius instead of Farenheit. not yet implemented." print "" print "commands: help, onetime, repeat" print " help ... this menu" print " onetime ... default command (with help if omited)" print " repeat ... runs forever" #future development would allow a finite repeat numnber and a seperate mode for continous print "" print "examples:" print " superClock.py help" print " superClock.py onetime" print " superClock.py repeat" print "" def main(): cmd = "" parser = create_parser() (opts, args) = parser.parse_args() try: # localip = socket.gethostbyname(socket.gethostname()) localip = commands.getoutput("hostname -I") except: localip = "No ip addr" print localip if (len(args)==0): help() cmd = "onetime" else: cmd = args[0] print cmd if (cmd=="help"): help() sys.exit(-1) try: print "Initalizing the displays" segmentLevelBase = SevenSegment(address=0x70) segmentLevelZero = SevenSegment(address=0x72) segmentLevelOne = SevenSegment(address=0x74) print " Setting brightness" segmentLevelBase.disp.setBrightness(10) segmentLevelZero.disp.setBrightness(10) segmentLevelOne.disp.setBrightness(10) except: print "could not initalize the three seven segment displays" sys.exit(-1) print "" print "Trying to get data from the Nest Web" try: print "My Nest Data" n0 = Nest(usernameAndPassword['username'],usernameAndPassword['password'], None, 0) #Level Zero n1 = Nest(usernameAndPassword['username'],usernameAndPassword['password'], None, 1) #Level One print " Logging On" n1.login() n0.login() except: print " Nest.com failure" loopingQuestion = True while (loopingQuestion): print "" print "In the Loop" print "" print "Get the current Time" valueTimeDate = datetime.datetime.now(EST) print valueTimeDate try: print "" print "Sending time data to the external displays" displayTime(segmentLevelOne,valueTimeDate) displayMonthDay(segmentLevelZero,valueTimeDate) displayYear(segmentLevelBase, valueTimeDate) print"" print "sleeping for 4 seconds" time.sleep(4) except: print "cannot write time to sensors" print "" try: print " Getting Status" n1.get_status() n0.get_status() levelOneTemperature = int(c_to_f(n1.status["shared"][n1.serial]["current_temperature"])) levelOneHumidity = n1.status["device"][n1.serial]["current_humidity"] levelZeroTemperature = c_to_f(n0.status["shared"][n0.serial]["current_temperature"]) levelZeroHumidity = n0.status["device"][n0.serial]["current_humidity"] except: print " Nest.com failed. Setting Level's One and Zero to None" levelOneTemperature = None levelOneHumidity = None levelZeroTemperature = None levelZeroHumidity = None print "" print "Getting data from the internal web device" try: website = "http://10.0.1.214" print " getting the data from the site: ", website r = requests.get(website) print " pulling values" try: levelBaseTemperature = float(r.json()["Temperature"]) except: levelBaseTemperature = None try: levelBaseHumidity = float(r.json()["Humidity"]) except: levelBaseHumidity = None try: levelBaseTime = str(r.json()["Local Time"]) except: levelBaseTime = None except: print " error pulling data from ", website try: print "" print "trying to use color output" print "Level One Temperature" myColorText.printColor(str(levelOneTemperature), YELLOW) #colors are for readability print "Level One Humidity" myColorText.printColor(str(levelOneHumidity), YELLOW) #colors are for readability print "" print "Level Zero Temperature" myColorText.printColor(str(levelZeroTemperature), GREEN) #colors are for readability print "Level Zero Humidity" myColorText.printColor(str(levelZeroHumidity), GREEN) #colors are for readability print "" print "Level Base Time" myColorText.printColor(str(levelBaseTime), RED) #colors are for readability print "Level Base Temperature" myColorText.printColor(str(levelBaseTemperature), RED) #colors are for readability print "The value of the webpage temp" myColorText.printColor(str(levelBaseHumidity), RED) #colors are for readability print "" except: print " cannot print in color" try: print "sending temp data to the external displays" displayTemperature(segmentLevelOne,levelOneTemperature) displayTemperature(segmentLevelZero,levelZeroTemperature) displayTemperature(segmentLevelBase, levelBaseTemperature) print "" print "sleeping for 4 more seconds" time.sleep(4) print "sending humid data to the external displays" displayHumidity(segmentLevelOne,levelOneHumidity) displayHumidity(segmentLevelZero,levelZeroHumidity) displayHumidity(segmentLevelBase, levelBaseHumidity) print "sleeping for another 4 seconds" time.sleep(4) except: print "cannot write temp or humidity data to sensors" try: with open('/var/www/index.html', 'w') as f: x = {"Local ip": localip,"Local Time": datetime.datetime.now(EST).strftime('%m/%d/%Y %H:%M:%S %Z') ,"Level One Temperature": levelOneTemperature,"Level One Humidity": levelOneHumidity,"Level Zero Temperature": levelZeroTemperature,"Level Zero Humidity": levelZeroHumidity,} # x = {"Local ip": localip, 'Local Time' : datetime.datetime.now(EST).strftime('%m/%d/%Y %H:%M:%S %Z') , 'Temperature' : tempInF , "Location": "Basement"} json.dump(x,f) f.closed except: print "cannot open file at /var/www/index.html" print "" print "initial routine finished" print "" if (cmd=="repeat"): loopingQuestion = True else: loopingQuestion = False if __name__=="__main__": main() ```
{ "source": "jimflores5/SigFigs", "score": 3 }
#### File: jimflores5/SigFigs/SigFigsMain.py ```python import random from flask import Flask, request, redirect, render_template, session, flash import cgi from StringSigFigs import MakeNumber, RoundValue, CheckAnswer, CheckRounding, ApplySciNotation from CalcsWithSigFigs import addValues, subtractValues, multiplyValues, divideValues, findDecimalPlaces, addWithPlaceholders, subtractWithPlaceholders app = Flask(__name__) app.config['DEBUG'] = True app.secret_key = 'yrtsimehc' @app.route('/') def index(): session.clear() return render_template('index.html',title="Sig Fig Practice") @app.route('/countingsf', methods=['POST', 'GET']) def countingsf(): if request.method == 'POST': answer = request.form['answer'] actualSigFigs = request.form['actualSigFigs'] value = request.form['value'] if answer==actualSigFigs: flash('Correct! :-)', 'correct') else: flash('Try again, or click here to reveal the answer.', 'error') return render_template('countingSigFigs.html', value=value, sigFigs = actualSigFigs, answer = answer) sigFigs = random.randrange(1,7) power = random.randrange(-5,9) value = MakeNumber(sigFigs,power) return render_template('countingSigFigs.html',title="Counting Sig Figs", value=value, sigFigs = sigFigs) @app.route('/roundingsf', methods=['POST', 'GET']) def roundingsf(): if request.method == 'POST': answer = request.form['answer'] origValue = request.form['value'] sigFigs = int(request.form['sigFigs']) roundedValue = RoundValue(origValue, sigFigs) if CheckAnswer(roundedValue, answer): flash('Correct! :-)', 'correct') else: flash('Try again, or click here to reveal the answer.', 'error') return render_template('roundingSigFigs.html', value=origValue, sigFigs = sigFigs, answer = answer, roundedValue=roundedValue) iffyValue = True while iffyValue: sigFigs = random.randrange(1,7) power = random.randrange(-4,6) value = MakeNumber(9,power) result = RoundValue(value, sigFigs) iffyValue = CheckRounding(result,sigFigs) return render_template('roundingSigFigs.html',title="Rounding Sig Figs", value=value, sigFigs = sigFigs) @app.route('/sfcalcs', methods=['POST', 'GET']) def sfcalcs(): if request.method == 'POST': answer = request.form['answer'] result = request.form['result'] value1 = request.form['value1'] value2 = request.form['value2'] operation = request.form['operation'] if CheckAnswer(result, answer): flash('Correct! :-)', 'correct') else: flash('Try again, or click here to reveal the answer.', 'error') return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value1, value2 = value2, result = result, answer = answer, operation=operation) operators = ['+', '-', 'x', '/'] operation = random.randrange(4) #Randomly select +, -, * or / using integers 0 - 3, respectively. if operation < 2: #For + and -, create 2 values between 0.001 and 90 with 1 - 6 sig figs. iffyValue = True while iffyValue: sigFigs = random.randrange(1,7) power = random.randrange(-3,2) value = MakeNumber(sigFigs,power) iffyValue = CheckRounding(value,sigFigs) sigFigs1 = sigFigs power1 = power value1 = value iffyValue = True while iffyValue: sigFigs = random.randrange(1,7) power = random.randrange(-3,2) value = MakeNumber(sigFigs,power) iffyValue = CheckRounding(value,sigFigs) sigFigs2 = sigFigs power2 = power value2 = value else: #For * and /, create 2 values between 0.01 and 900 with 1 - 6 sig figs. sigFigs1 = random.randrange(1,7) power1 = random.randrange(-2,3) value1 = MakeNumber(sigFigs1,power1) sigFigs2 = random.randrange(1,7) power2 = random.randrange(-2,3) value2 = MakeNumber(sigFigs2,power2) if operation == 0: if (float(value1)>=10 and value1.find('.') == -1 and sigFigs1 < len(value1)) or (float(value2)>=10 and value2.find('.') == -1 and sigFigs2 < len(value2)): result = addWithPlaceholders(value1,value2) else: result = addValues(value1,value2) return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value1, value2 = value2, operation = operators[operation], result = result) elif operation == 1 and value1 > value2: if (float(value1)>=10 and value1.find('.') == -1 and sigFigs1 < len(value1)) or (float(value2)>=10 and value2.find('.') == -1 and sigFigs2 < len(value2)): result = subtractWithPlaceholders(value1,value2) else: result = subtractValues(value1,value2) return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value1, value2 = value2, operation = operators[operation], result = result) elif operation == 1 and float(value1) < float(value2): if (float(value1)>=10 and value1.find('.') == -1 and sigFigs1 < len(value1)) or (float(value2)>=10 and value2.find('.') == -1 and sigFigs2 < len(value2)): result = subtractWithPlaceholders(value2,value1) else: result = subtractValues(value2,value1) return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value2, value2 = value1, operation = operators[operation], result = result) elif operation == 2: result = multiplyValues(value1,sigFigs1,value2,sigFigs2) return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value1, value2 = value2, operation = operators[operation], result = result) elif float(value1)/float(value2)<1e-4: result = divideValues(value2,sigFigs2,value1,sigFigs1) return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value2, value2 = value1, operation = operators[operation], result = result) else: result = divideValues(value1,sigFigs1,value2,sigFigs2) return render_template('sfCalcs.html',title="Calculations with Sig Figs", value1 = value1, value2 = value2, operation = operators[operation], result = result) @app.route('/scinotation', methods=['POST', 'GET']) def scinotation(): if request.method == 'POST': sciNot = request.form['sciNot'] if sciNot=='True': #Given a value in sci notation, the user enters a number in standard notation. answer = request.form['answer'] result = request.form['value'] sciValue = request.form['sciValue'] power = request.form['power'] if CheckAnswer(result, answer): flash('Correct! :-)', 'correct') else: flash('Try again, or click here to reveal the answer.', 'error') return render_template('scientificNotation.html',title="Scientific Notation", value = result, sciValue=sciValue, power = power, sciNot = True, answer = answer) else: #Given a value in standard notation, the user enters a number in sci notation. answer = request.form['answer'] result = request.form['value'] sciValue = request.form['sciValue'] power = request.form['power'] exponent = request.form['exponent'] if CheckAnswer(power, exponent) and CheckAnswer(sciValue,answer): flash('Correct! :-)', 'correct') elif CheckAnswer(power, exponent) and not CheckAnswer(sciValue,answer): flash('Correct power. Wrong decimal value.', 'error') elif CheckAnswer(sciValue,answer) and not CheckAnswer(power, exponent): flash('Correct decimal value. Wrong power.', 'error') else: flash('Both entries are incorrect. Try again, or click to reveal the answer.', 'error') return render_template('scientificNotation.html',title="Scientific Notation", value = result, sciValue=sciValue, power = power, sciNot = False, answer = answer, exponent = exponent) sigFigs = random.randrange(1,5) power = random.randrange(-5,9) value = MakeNumber(sigFigs,power) sciValue = ApplySciNotation(value, sigFigs) if random.randrange(2) == 0: #Flip a coin: If '0', ask the user to change sci notation into standard notation. return render_template('scientificNotation.html',title="Scientific Notation", value = value, sciValue=sciValue, power = power, sciNot = True) else: #Otherwise ('1'), ask the user to change standard notation into sci notation. return render_template('scientificNotation.html',title="Scientific Notation", value=value, sciValue=sciValue, power = power, sciNot = False) @app.route('/sftutorial1', methods=['POST', 'GET']) def sftutorial1(): if request.method == 'POST': displayText = int(request.form['displayText']) displayText += 1 else: displayText=1 return render_template('sftutorial1.html',title="Sig Fig Tutorial", page = 1, displayText=displayText) @app.route('/sftutorial2', methods=['POST', 'GET']) def sftutorial2(): if request.method == 'POST': firstZeroRule = request.form['firstZeroRule'] session['firstZeroRule'] = firstZeroRule secondHalf = True if firstZeroRule == '': flash('Please enter a response.', 'error') secondHalf = False return render_template('sftutorial2.html', answer = firstZeroRule, page = 2, secondHalf = secondHalf) return render_template('sftutorial2.html',title="Sig Fig Tutorial", page = 2, secondHalf=False) @app.route('/sftutorial3', methods=['POST', 'GET']) def sftutorial3(): if request.method == 'POST': firstZeroRule = session.get('firstZeroRule', None) secondZeroRule = request.form['secondZeroRule'] session['secondZeroRule'] = secondZeroRule secondHalf = True if secondZeroRule == '': flash('Please enter a response.', 'error') secondHalf = False return render_template('sftutorial3.html', firstZeroRule = firstZeroRule, secondZeroRule = secondZeroRule, page = 3, secondHalf = secondHalf) firstZeroRule = session.get('firstZeroRule', None) return render_template('sftutorial3.html',title="Sig Fig Tutorial", page = 3, firstZeroRule = firstZeroRule, secondHalf=False) @app.route('/sftutorial4', methods=['POST', 'GET']) def sftutorial4(): firstZeroRule = session.get('firstZeroRule', None) secondZeroRule = session.get('secondZeroRule', None) return render_template('sftutorial4.html',title="Sig Fig Tutorial", page = 4, firstZeroRule=firstZeroRule, secondZeroRule=secondZeroRule) @app.route('/sftutorial5', methods=['POST', 'GET']) def sftutorial5(): return render_template('sftutorial5.html',title="Sig Fig Tutorial", page = 5) @app.route('/roundingtutorial1', methods=['POST', 'GET']) def roundingtutorial1(): return render_template('roundingtutorial1.html',title="Rounding Tutorial", page = 1) @app.route('/roundingtutorial2', methods=['POST', 'GET']) def roundingtutorial2(): if request.method == 'POST': displayText = int(request.form['displayText']) displayText += 1 roundedAnswer = request.form['5SigFigs'] answers = [] numCorrect = 0 if displayText == 4 and roundedAnswer != '12.386': flash('Not quite correct. Try again.', 'error') displayText = 3 elif displayText>5: correctAnswers = ['0.00798','0.0080','0.008'] for x in range(3): answers.append(request.form[str(3-x)+'SigFigs']) if CheckAnswer(correctAnswers[x],answers[x]): flash('Correct! :-)', 'correct') numCorrect += 1 else: flash('Try again.', 'error') else: displayText=1 roundedAnswer = '' answers = [] numCorrect = 0 return render_template('roundingtutorial2.html',title="Rounding Tutorial", page = 2, displayText=displayText, roundedAnswer = roundedAnswer, answers = answers, numCorrect = numCorrect) @app.route('/roundingtutorial3', methods=['POST', 'GET']) def roundingtutorial3(): if request.method == 'POST': displayText = int(request.form['displayText']) displayText += 1 example3 = request.form['example3'] answers = [] numCorrect = 0 if displayText == 2 and example3 != '2380': flash('Not quite correct. Try again.', 'error') displayText = 1 elif displayText > 3: correctAnswers = ['0.0998','0.10','0.1'] for x in range(3): answers.append(request.form[str(3-x)+'SigFigs']) if CheckAnswer(correctAnswers[x],answers[x]): flash('Correct! :-)', 'correct') numCorrect += 1 else: flash('Try again.', 'error') else: displayText=1 example3 = '' answers = [] numCorrect = 0 return render_template('roundingtutorial3.html',title="Rounding Tutorial", page = 3, displayText=displayText, answers = answers, example3 = example3, numCorrect = numCorrect) @app.route('/roundingtutorial4', methods=['POST', 'GET']) def roundingtutorial4(): return render_template('roundingtutorial4.html',title="Rounding Tutorial", page = 4) @app.route('/scinottutorial1', methods=['POST', 'GET']) def scinottutorial1(): if request.method == 'POST': displayText = int(request.form['displayText']) displayText += 1 if displayText == 2: decimal = request.form['decimal'] power = request.form['exponent'] decimals = ['1.5', '15', '150', '1500'] powers = ['3','2','1','0'] if decimal in decimals: index = decimals.index(decimal) if power != powers[index]: flash('Incorrect power. Try again.', 'error') displayText = 1 else: flash('Incorrect decimal value. Try again.', 'error') displayText = 1 else: decimal = '' power = '' else: displayText=1 decimal = '' power = '' return render_template('scinottutorial1.html',title="Scientific Notation Tutorial", page = 1, displayText = displayText, decimal = decimal, exponent=power) @app.route('/scinottutorial2', methods=['POST', 'GET']) def scinottutorial2(): if request.method == 'POST': decimals = [] powers = [] exponents = [] values = [] sciValues = [] numCorrect = 0 for item in range(4): decimals.append(request.form['decimal'+str(item)]) exponents.append(request.form['exponent'+str(item)]) values.append(request.form['value'+str(item)]) powers.append(request.form['power'+str(item)]) sciValues.append(request.form['sciValue'+str(item)]) if CheckAnswer(powers[item], exponents[item]) and CheckAnswer(sciValues[item],decimals[item]): flash('Correct! :-)', 'correct') numCorrect += 1 elif CheckAnswer(powers[item], exponents[item]) and not CheckAnswer(sciValues[item],decimals[item]): flash('Correct power. Wrong decimal value.', 'error') elif CheckAnswer(sciValues[item],decimals[item]) and not CheckAnswer(powers[item], exponents[item]): flash('Correct decimal value. Wrong power.', 'error') else: flash('Both entries are incorrect. Try again.', 'error') else: values = [] sciValues = [] powers = [] decimals = [] exponents = [] numCorrect = 0 for item in range(4): sigFigs = random.randrange(1,5) if item <= 1: power = random.randrange(0,7) else: power = random.randrange(-5,0) value = MakeNumber(sigFigs,power) values.append(value) powers.append(power) sciValues.append(ApplySciNotation(value, sigFigs)) return render_template('scinottutorial2.html',title="Scientific Notation Tutorial", page = 2, values = values, decimals = decimals, exponents = exponents, sciValues = sciValues, powers = powers, numCorrect = numCorrect) @app.route('/scinottutorial3', methods=['POST', 'GET']) def scinottutorial3(): if request.method == 'POST': values = [] sciValues = [] powers = [] answers = [] numCorrect = 0 for item in range(4): answers.append(request.form['answer'+str(item)]) values.append(request.form['value'+str(item)]) powers.append(request.form['power'+str(item)]) sciValues.append(request.form['sciValue'+str(item)]) if ',' in answers[item]: flash('Please remove the comma(s) from your answer.', 'error') elif CheckAnswer(values[item], answers[item]): flash('Correct! :-)', 'correct') numCorrect += 1 else: flash('Oops! Try again.', 'error') else: values = [] sciValues = [] powers = [] answers = [] numCorrect = 0 for item in range(4): sigFigs = random.randrange(1,5) if item <= 1: power = random.randrange(0,7) else: power = random.randrange(-5,0) powers.append(power) values.append(MakeNumber(sigFigs,power)) sciValues.append(ApplySciNotation(values[item], sigFigs)) return render_template('scinottutorial3.html',title="Scientific Notation Tutorial", page = 3, values = values, answers = answers, sciValues = sciValues, powers = powers, numCorrect = numCorrect) @app.route('/scinottutorial4', methods=['POST', 'GET']) def scinottutorial4(): return render_template('scinottutorial4.html',title="Scientific Notation Tutorial", page = 4) @app.route('/sfcalcstutorial1', methods=['POST', 'GET']) def sfcalcstutorial1(): if request.method == 'POST': imageText = ['Assume two students measure the length of a small tile. Their results are not the same, but the difference is small in this case.', 'To predict the length of two tiles, the students simply double their measurements. Note that the difference (uncertainty) in their results is LARGER than before.', 'For five tiles, something interesting happens with the error in the predicted lengths.', 'The difference between the results becomes too large to keep 2 decimal places, so the guess digit moves into the tenths place.', 'What if each student calculated the area of the tile?','Multiplying measurements also increases error.','Since two digits are now uncertain, we must round each answer to maintain a single guess digit.'] displayText = int(request.form['displayText']) + 1 imageName = 'SFCalcs'+str(displayText-1)+'.png' return render_template('sfcalcstutorial1.html',title="Calculations with Sig Figs Tutorial", page = 1, displayText = displayText, imageText = imageText, imageName = imageName) displayText = 1 return render_template('sfcalcstutorial1.html',title="Calculations with Sig Figs Tutorial", page = 1, displayText = displayText) @app.route('/sfcalcstutorial2', methods=['POST', 'GET']) def sfcalcstutorial2(): if request.method == 'POST': answers = [] results = [] values = [] numCorrect = 0 for item in range(4): values.append(request.form['value'+str(item)]) if item < 2: answers.append(request.form['answer'+str(item)]) results.append(request.form['result'+str(item)]) if CheckAnswer(results[item], answers[item]): flash('Correct! :-)', 'correct') numCorrect += 1 else: flash('Try again, or click to see the answer.', 'error') return render_template('sfcalcstutorial2.html',title="Calculations with Sig Figs Tutorial", page = 2, values = values, answers = answers, results = results, numCorrect = numCorrect) else: numCorrect = 0 answers = [] sigFigs = [] powers = [] values = [] results = [] for index in range(4): sigFigs.append(random.randrange(1,7)) powers.append(random.randrange(-2,3)) values.append(MakeNumber(sigFigs[index],powers[index])) flip = False if index == 1: results.append(multiplyValues(values[index-1],sigFigs[index-1],values[index],sigFigs[index])) elif index == 3 and float(values[index-1])/float(values[index])<1e-4: temp = values[index-1] values[index-1]=values[index] values[index]=temp results.append(divideValues(values[index-1],sigFigs[index-1],values[index],sigFigs[index])) elif index == 3: results.append(divideValues(values[index-1],sigFigs[index-1],values[index],sigFigs[index])) return render_template('sfcalcstutorial2.html',title="Calculations with Sig Figs Tutorial", page = 2, values = values, sigFigs = sigFigs, powers = powers, answers = answers, flip = flip, results = results, numCorrect = numCorrect) @app.route('/sfcalcstutorial3', methods=['POST', 'GET']) def sfcalcstutorial3(): if request.method == 'POST': answers = [] results = [] values = [] numCorrect = 0 for item in range(4): values.append(request.form['value'+str(item)]) if item < 2: answers.append(request.form['answer'+str(item)]) results.append(request.form['result'+str(item)]) if CheckAnswer(results[item], answers[item]): flash('Correct! :-)', 'correct') numCorrect += 1 else: flash('Try again, or click to see the answer.', 'error') return render_template('sfcalcstutorial3.html',title="Calculations with Sig Figs Tutorial", page = 3, values = values, answers = answers, results = results, numCorrect = numCorrect) else: numCorrect = 0 answers = [] sigFigs = [] powers = [] values = [] results = [] for index in range(4): iffyValue = True while iffyValue: sigFig = random.randrange(1,7) power = random.randrange(-3,2) value = MakeNumber(sigFig,power) iffyValue = CheckRounding(value,sigFig) sigFigs.append(sigFig) powers.append(power) values.append(value) if (float(values[0])>=10 and values[0].find('.') == -1 and sigFigs[0] < len(values[0])) or (float(values[1])>=10 and values[1].find('.') == -1 and sigFigs[1] < len(values[1])): results.append(addWithPlaceholders(values[0],values[1])) else: results.append(addValues(values[0],values[1])) if float(values[2]) < float(values[3]): values[2],values[3] = values[3],values[2] sigFigs[2],sigFigs[3] = sigFigs[3],sigFigs[2] if (float(values[2])>=10 and values[2].find('.') == -1 and sigFigs[2] < len(values[2])) or (float(values[3])>=10 and values[3].find('.') == -1 and sigFigs[3] < len(values[3])): results.append(subtractWithPlaceholders(values[2],values[3])) else: results.append(subtractValues(values[2],values[3])) return render_template('sfcalcstutorial3.html',title="Calculations with Sig Figs Tutorial", page = 3, values = values, sigFigs = sigFigs, powers = powers, answers = answers, results = results, numCorrect = numCorrect) @app.route('/sfcalcstutorial4', methods=['POST', 'GET']) def sfcalcstutorial4(): if request.method == 'POST': displayText = int(request.form['displayText']) response = int(request.form['response']) example = int(request.form['example']) if displayText == 0 and response < 2: answer = request.form['answer'] if example == 0 and answer=='3': response += 1 else: flash('This is NOT a trick question. Count again...', 'error') elif displayText <= 2 and response < 1: response += 1 example += 1 else: response = 0 example += 1 displayText += 1 else: displayText = 0 example = 0 response = 0 return render_template('sfcalcstutorial4.html',title="Calculations with Sig Figs Tutorial", page = 4, displayText = displayText, example = example, response = response) if __name__ == '__main__': app.run() ```
{ "source": "jimfmunro/AdventureGame", "score": 3 }
#### File: jimfmunro/AdventureGame/Game.py ```python import json import sqlite3 import cmd import textwrap import shutil import tempfile def get_room(id, dbfile='rooms.sqlite'): ret = None con = sqlite3.connect(dbfile) try: rows = con.execute("select json from rooms where id=?", (id,)) except Exception as e: print 'DB ERROR', e for row in rows: jsontext = row[0] d = json.loads(jsontext) d['id'] = id ret = Room(**d) break con.close() return ret class Room(): def __init__(self, id=0, name="A Room", description="An empty room", neighbors={}): self.id = id self.name = name self.description = description self.neighbors = neighbors def _neighbor(self, direction): if direction in self.neighbors: return self.neighbors[direction] else: return None def north(self): return self._neighbor('n') def south(self): return self._neighbor('s') def east(self): return self._neighbor('e') def west(self): return self._neighbor('w') class Game(cmd.Cmd): def __init__(self): cmd.Cmd.__init__(self) self.dbfile = 'rooms.sqlite' #tempfile.mktemp() #shutil.copyfile("rooms.sqlite", self.dbfile)] self.loc = get_room(1, self.dbfile) self.look() def move(self, dir): newroom = self.loc._neighbor(dir) if newroom is None: print("you can't go that way") else: self.loc = get_room(newroom, self.dbfile) self.look() if newroom==13: exit() def look(self): print('### %s ###' % self.loc.name) print("") for line in textwrap.wrap(self.loc.description, 72): print(line) def do_up(self, args): """Go up""" self.move('up') def do_down(self, args): """Go down""" self.move('down') def do_n(self, args): """Go north""" self.move('n') def do_s(self, args): """Go south""" self.move('s') def do_e(self, args): """Go east""" self.move('e') def do_w(self, args): """Go west""" self.move('w') def do_quit(self, args): """Leaves the game""" print("Thank you for playing") return True def do_save(self, args): """Saves the game""" shutil.copyfile(self.dbfile, args) print("The game was saved to {0}".format(args)) if __name__ == "__main__": g = Game() g.cmdloop() ```
{ "source": "jimfmunro/cookiecutter-django", "score": 3 }
#### File: {{cookiecutter.repo_name}}/users/test_models.py ```python from django.core.urlresolvers import reverse from django.test import TestCase from .models import User class ModelTestCase(TestCase): def test_model_create_admin(self): self.admin_user = User.objects.create(email='<EMAIL>', password="<PASSWORD>", is_superuser=True) self.non_admin_user = User.objects.create(email='<EMAIL>', password="<PASSWORD>", is_superuser=False) self.assertTrue(self.admin_user.is_superuser) self.assertFalse(self.non_admin_user.is_superuser) ```
{ "source": "jimforit/lagou", "score": 2 }
#### File: apps/enterprice/models.py ```python from django.db import models from db.base_model import BaseModel from user.models import User # Create your models here. class EnterPrice(BaseModel): id = models.AutoField('企业ID',primary_key=True) name = models.CharField('企业名称',max_length=50) product_desc = models.TextField('产品介绍') enterprice_desc = models.TextField('产品介绍') enterprice_gm = models.CharField(max_length=20, default="50-99人") enterprice_type = models.CharField(max_length=20,verbose_name="所属行业",default='移动互联网') finance_stage = models.CharField(max_length=10, verbose_name="融资阶段", default="不需要融资") logo = models.ImageField('logo',upload_to='enterprice/%Y/%m',max_length=100) address = models.CharField('企业地址',max_length=150,) city = models.CharField('城市',max_length=20,) user = models.ForeignKey(User,verbose_name="用户",on_delete=models.CASCADE) class Meta: verbose_name = '企业' verbose_name_plural = verbose_name def get_position_nums(self): #获取发布的求职岗位数量 return self.position_set.all().count() def __str__(self): return self.name ``` #### File: apps/interview/models.py ```python from django.db import models from db.base_model import BaseModel from job.models import Position from enterprice.models import EnterPrice from delivery.models import Delivery from user.models import User # Create your models here. class Interview(BaseModel): interview_status_enum=( ('YM','已面试'), ('JM','将面试'), ('LY', '录用'), ('WLY', '未录用'), ) id = models.AutoField('面试ID',primary_key=True) position = models.ForeignKey(Position,verbose_name = '职位',on_delete=models.CASCADE) enterprice = models.ForeignKey(EnterPrice,verbose_name = '企业',on_delete=models.CASCADE) user = models.ForeignKey(User,verbose_name = '候选人',on_delete=models.CASCADE) delivery = models.ForeignKey(Delivery,verbose_name = '投递',on_delete=models.CASCADE) interview_arrangement = models.TextField('面试安排') interview_status = models.CharField('面试状态',choices=interview_status_enum,max_length=2,default='JM') class Meta: verbose_name = '面试' verbose_name_plural = verbose_name def __str__(self): return self.enterprice,self.position ``` #### File: apps/interview/views.py ```python from django.shortcuts import render,redirect,reverse from django.views import View from db.login_mixin import LoginRequiredMixin from resume.models import Resume from interview.models import Interview from job.models import Position # Create your views here. class MyInterviewView(LoginRequiredMixin,View): '''面试邀请''' def get(self,request): interview_ym_list = Interview.objects.filter(interview_status="YM",user=request.user) interview_jm_list = Interview.objects.filter(interview_status="JM", user=request.user) return render(request, 'my_interviews.html',{"interview_ym_list":interview_ym_list,"interview_jm_list":interview_jm_list}) class InterviewView(LoginRequiredMixin,View): '''面试邀请函''' def get(self,request,resume_id): resume = Resume.objects.get(id=resume_id) position_list = Position.objects.filter(enterprice_id=request.user.enterprice_set.all()[0].id) return render(request, 'interview.html',{"resume":resume,"position_list":position_list}) class InvitationView(LoginRequiredMixin,View): '''邀约''' def get(self,request): if request.user.role.name == "recruiter": return render(request, 'profile.html') else: resume = Resume.objects.get(user_id=request.user.id) if resume.is_public == 0: block = "block" none = "none" class_name = "plus open" else: block = "none" none = "block" class_name = "plus" return render(request, 'invitation.html',{"block":block,"none":none,"class_name":class_name}) class InterviewRecordView(LoginRequiredMixin,View): '''面试邀请''' def get(self,request): interview_jm_list = Interview.objects.filter(interview_status="JM",enterprice=request.user.enterprice_set.all()[0]) resume_list = [] for applier in interview_jm_list: resume = applier.user.resume_set.all()[0] resume_list.append(resume) interview_ym_list = Interview.objects.filter(interview_status="YM",enterprice=request.user.enterprice_set.all()[0]) for applier in interview_ym_list: resume = applier.user.resume_set.all()[0] resume_list.append(resume) return render(request, 'interviews_record.html',{"interview_jm_list":interview_jm_list,"interview_ym_list":interview_ym_list,"resume_list":resume_list}) class InterviewResultView(LoginRequiredMixin,View): '''面试结果''' def get(self,request,interview_id): interview_detail = Interview.objects.get(id=interview_id) resume_info = interview_detail.user.resume_set.all()[0] return render(request, 'interview_result.html',{"interview_detail":interview_detail,"resume_info":resume_info}) class InterviewDetailView(LoginRequiredMixin,View): '''面试详情页面''' def get(self,request): return render(request, 'interview_detail.html') class InterviewCommentView(LoginRequiredMixin,View): '''面试评价''' def get(self,request): return render(request, 'interview_comment.html') ``` #### File: apps/offer/views.py ```python from django.shortcuts import render from django.views import View from db.login_mixin import LoginRequiredMixin from interview.models import Interview # Create your views here. class OfferView(LoginRequiredMixin,View): '''Offer提交页面''' def get(self,request,interview_id): interview = Interview.objects.get(id=interview_id) resume = interview.user.resume_set.all()[0] return render(request, 'offer.html',{"interview":interview,"resume":resume}) class OfferDetailView(LoginRequiredMixin,View): '''招聘需求页面''' def get(self,request): return render(request, 'offer_detail.html') ``` #### File: apps/user/views.py ```python from django.shortcuts import render from django.views import View from .forms import RegisterForm,LoginForm from .models import User from .models import Role from django.contrib.auth.hashers import make_password from django.contrib.auth import authenticate,login,logout from db.login_mixin import LoginRequiredMixin # Create your views here. class LoginView(View): '''用户登录''' def get(self,request): if request.user.is_authenticated: if request.user.nick_name: return render(request, "profile.html", {"user": request.user}) else: return render(request, "role.html", {"user": request.user}) return render(request, 'login.html') def post(self,request): form = LoginForm(request.POST) if form.is_valid(): email = form.cleaned_data["email"] password = form.cleaned_data["password"] user = authenticate(username=email,password=password) if user is not None: login(request,user) if request.user.nick_name: return render(request, 'profile.html',{"user":user}) else: return render(request, 'role.html') else: return render(request, 'login.html', {'message': '用户名或密码错误'}) else: return render(request, 'login.html', {'login_form': form}) class RegisterView(View): '''用户注册''' def post(self, request): form = RegisterForm(request.POST) if form.is_valid(): user = User.objects.filter(email=request.POST.get('email', '')) if user: message="邮箱已经注册" return render(request, 'register.html', {'message': message}) else: new_user = User() new_user.email = form.cleaned_data["email"] new_user.password = <PASSWORD>_password(form.cleaned_data["password"]) new_user.username = new_user.email role = Role.objects.filter(name="user").first() if role is not None: new_user.role_id = role else: role = Role() role.name = "user" role.save() new_user.role_id = role.id new_user.save() else: msg ={} if "email" in form.errors.keys(): msg={"message1":"请输入有效的电邮地址"} if "password" in form.errors.keys(): msg.update({"message2":"密码不能为空"}) print(msg) return render(request, 'register.html', {'register_form': msg}) return render(request, 'login.html', {'message': "注册成功,请登录"}) def get(self, request): form = RegisterForm() return render(request, 'register.html', {"form": form}) class UserView(View): '''用户登录''' def get(self,request): return render(request, 'profile.html') def post(self,request): return render(request,'register.html') class LagouView(View): '''用户登录''' def get(self,request): return render(request, 'lagou.html') class LogoutView(View): '''用户登录''' def get(self,request): logout(request) return render(request, 'login.html') class PofileView(LoginRequiredMixin,View): '''个人信息''' def get(self,request): return render(request, 'profile.html') class RoleView(LoginRequiredMixin,View): '''角色选择''' def get(self,request): return render(request,"role.html") ```
{ "source": "jim-ftw/hip-trebek", "score": 3 }
#### File: jim-ftw/hip-trebek/test_trebek.py ```python import os import unittest import json import trebek import entities import fakeredis import time import datetime # Reference this SO post on getting distances between strings: # http://stackoverflow.com/a/1471603/98562 def get_clue_json(): with open('test-json-output.json') as json_data: clue = json.load(json_data) return clue def fake_fetch_random_clue(): return entities.Question(**get_clue_json()) def fake_get_year_month(): now = datetime.datetime.now() year, month = divmod(now.month + 1, 12) if month == 0: month = 12 year = year -1 next_month = datetime.datetime(now.year + year, month, 1) return "{0}-{1}".format(next_month.year, str(next_month.month).zfill(2)) _fetch_count = 0 _invalid_clue = None def fetch_invalid_clue(): global _fetch_count, _invalid_clue clue = get_clue_json() if _fetch_count == 0: clue = _invalid_clue _fetch_count += 1 return entities.Question(**clue) class TestTrebek(unittest.TestCase): def setUp(self): d = self.get_setup_json() self.room_message = entities.HipChatRoomMessage(**d) self.trebek_bot = self.create_bot_with_dictionary(d) def tearDown(self): self.trebek_bot.redis.flushall() def get_setup_json(self): with open('test-room-message.json') as data: d = json.load(data) return d def create_bot_with_dictionary(self, room_dictionary): bot = trebek.Trebek(entities.HipChatRoomMessage(**room_dictionary)) bot.redis = fakeredis.FakeStrictRedis() bot.fetch_random_clue = fake_fetch_random_clue return bot def create_user_scores(self, bot = None): if bot != None: r = bot.redis else: r = self.trebek_bot.redis bot = self.trebek_bot hipchat = trebek.Trebek.hipchat_user_key r.set(hipchat.format(1), 'Aaron') r.set(hipchat.format(2), 'Allen') r.set(hipchat.format(3), 'Cordarrell') r.set(hipchat.format(4), 'Melvin') r.set(hipchat.format(5), 'Mark') r.set(hipchat.format(6), 'Richard') r.set(hipchat.format(7), '<NAME>') r.set(hipchat.format(8), 'Arian') r.set(hipchat.format(9), 'Zach') r.set(hipchat.format(10), '<NAME>') r.set(hipchat.format(11), 'Alex') r.set(hipchat.format(12), 'Michael') r.set(hipchat.format(13), 'Reggie') r.set(hipchat.format(14), 'Legacy Score') user = bot.user_score_prefix + ":{0}" r.set(user.format(1), 100) r.set(user.format(2), 20) r.set(user.format(3), 70) r.set(user.format(4), 50) r.set(user.format(5), 30) r.set(user.format(6), 200) r.set(user.format(7), 500) r.set(user.format(8), 5430) r.set(user.format(9), 412) r.set(user.format(10), 123) r.set(user.format(11), 225) r.set(user.format(12), 94) r.set(user.format(13), 87) # Regression test old score keys will still appear in lifetime loserboard r.set("user_score:{0}".format(14), 5) bot.get_year_month = fake_get_year_month user = bot.user_score_prefix + ":{0}" r.set(user.format(1), 100) r.set(user.format(2), 20) r.set(user.format(3), 70) r.set(user.format(4), 50) r.set(user.format(5), 30) r.set(user.format(6), 200) r.set(user.format(7), 500) r.set(user.format(8), 5430) r.set(user.format(9), 412) r.set(user.format(10), 123) r.set(user.format(11), 225) r.set(user.format(12), 94) r.set(user.format(13), 87) def test_when_value_not_included_default_to_200(self): test_clue = self.trebek_bot.fetch_random_clue() self.assertEqual(test_clue.value, 200) def test_when_answer_includes_html_answer_is_sanitized(self): # example answer: <i>Let\\'s Make a Deal</i> self.trebek_bot.fetch_random_clue = fake_fetch_random_clue test_clue = self.trebek_bot.fetch_random_clue() self.assertEqual(test_clue.answer, "Let's Make a Deal") def test_when_response_doesNot_begin_with_question_return_none(self): response = "some test response" assert self.trebek_bot.response_is_a_question(response) == None def test_when_response_is_question_return_true(self): response = "what is some test response" assert self.trebek_bot.response_is_a_question(response) def test_fuzzy_matching_of_answer(self): test_clue = fake_fetch_random_clue() self.assertFalse(self.trebek_bot.is_correct_answer("polygamist", "polyamourus")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is Let's Make a Deal")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is let's make a deal")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is Lets Make a Deal")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is Let's Make Deal")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is Let's Make a Dela")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is Let's Mae a Deal")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is Let's Make a Deal")) self.assertTrue(self.trebek_bot.is_correct_answer(test_clue.answer, "what is elt's Make a Deal")) self.assertTrue(self.trebek_bot.is_correct_answer("a ukulele", "a ukelele")) self.assertTrue(self.trebek_bot.is_correct_answer("Scrabble", "Scrablle")) self.assertTrue(self.trebek_bot.is_correct_answer("(Aristotle) Onassis", "Onassis")) self.assertTrue(self.trebek_bot.is_correct_answer("(William) Blake", "blake")) self.assertTrue(self.trebek_bot.is_correct_answer("wings (or feathers)", "feathers")) self.assertTrue(self.trebek_bot.is_correct_answer("A.D. (Anno Domini)", "AD")) self.assertTrue(self.trebek_bot.is_correct_answer("(Little Orphan) Annie", "annie")) self.assertTrue(self.trebek_bot.is_correct_answer("a turtle (or a tortoise)", "turtle")) self.assertTrue(self.trebek_bot.is_correct_answer("a turtle (or a tortoise)", "tortoise")) # self.assertTrue(self.trebek_bot.is_correct_answer("ben affleck and matt damon", "<NAME> & <NAME>")) def test_given_json_dictionary_hipchat_object_is_parsed(self): with open ('test-room-message.json') as data: d = json.load(data) t = entities.HipChatRoomMessage(**d) self.assertEqual(t.item.message.message, "jeopardy") self.assertEqual(t.item.message.user_from.name, "<NAME>") def test_message_object_trims_leading_slash_command(self): p = {} p['from'] = { 'id':None, 'links': None, 'mention_name':None, 'name': None, 'version': None} p['message'] = '/trebek jeopardy me' msg = entities.HipChatMessage(p) self.assertEqual(msg.message, "jeopardy me") def test_when_get_response_message_is_called_user_name_is_saved(self): self.trebek_bot.get_response_message() key = trebek.Trebek.hipchat_user_key.format('582174') self.assertTrue(self.trebek_bot.redis.exists(key)) user_name = self.trebek_bot.redis.get(trebek.Trebek.hipchat_user_key.format('582174')).decode() self.assertEqual("<NAME>", user_name) def test_number_is_formatted_as_currency(self): currency = self.trebek_bot.format_currency("100") self.assertEqual("$100", currency) currency = self.trebek_bot.format_currency("1000") self.assertEqual("$1,000", currency) currency = self.trebek_bot.format_currency("1000000000") self.assertEqual("$1,000,000,000", currency) currency = self.trebek_bot.format_currency("-100") self.assertEqual("<span style='color: red;'>-$100</span>", currency) currency = self.trebek_bot.format_currency("-1000000000") self.assertEqual("<span style='color: red;'>-$1,000,000,000</span>", currency) def test_user_requests_score_value_returned(self): d = self.get_setup_json() d['item']['message']['message'] = "/trebek score" bot = self.create_bot_with_dictionary(d) key = "{0}:{1}".format(bot.user_score_prefix, bot.room_message.item.message.user_from.id) bot.redis.set(key, 500) response = bot.get_response_message() self.assertEqual("$500", response) def test_user_leaderboard_value_returned(self): d = self.get_setup_json() d['item']['message']['message'] = "/trebek leaderboard" bot = self.create_bot_with_dictionary(d) self.create_user_scores(bot) response = bot.get_response_message() year, month = [int(x) for x in bot.get_year_month().split('-')] dt = datetime.datetime(year, month, 1) expected = "<p>Leaderboard for {0} {1}:</p>".format(dt.strftime("%B"), dt.year) expected += "<ol><li>Arian: $5,430</li>" expected += "<li><NAME>: $500</li>" expected += "<li>Zach: $412</li>" expected += "<li>Alex: $225</li>" expected += "<li>Richard: $200</li></ol>" self.assertEqual(expected, response) def test_user_loserboard_value_returned(self): d = self.get_setup_json() d['item']['message']['message'] = "/trebek show me the loserboard" bot = self.create_bot_with_dictionary(d) self.create_user_scores(bot) response = bot.get_response_message() year, month = [int(x) for x in bot.get_year_month().split('-')] dt = datetime.datetime(year, month, 1) expected = "<p>Loserboard for {0} {1}:</p>".format(dt.strftime("%B"), dt.year) expected += "<ol><li>Allen: $20</li>" expected += "<li>Mark: $30</li>" expected += "<li>Melvin: $50</li>" expected += "<li>Cordarrell: $70</li>" expected += "<li>Reggie: $87</li></ol>" self.assertEqual(expected, response) def test_jeopardy_round_can_start_from_nothing(self): response = self.trebek_bot.get_response_message() expected = "The category is <b>CLASSIC GAME SHOW TAGLINES</b> for $200: " expected += "<b>\"CAVEAT EMPTOR. LET THE BUYER BEWARE\"</b> (Air Date: 18-Oct-2001)" self.assertEqual(expected, response) def test_user_cannot_answer_same_question_twice(self): # Arrange clue = self.trebek_bot.get_jeopardy_clue() d = self.get_setup_json() user_answer_key = trebek.Trebek.user_answer_key.format( self.trebek_bot.room_id, clue.id, d['item']['message']['from']['id']) self.trebek_bot.redis.set(user_answer_key, 'true') self.trebek_bot.get_question() d['item']['message']['message'] = '/trebek this is an answer' bot = self.create_bot_with_dictionary(d) bot.redis = self.trebek_bot.redis # Act response = bot.get_response_message() # Assert self.assertEqual("You have already answered <NAME>. Let someone else respond.", response) def test_given_incorrect_answer_user_score_decreased(self): # Arrange d = self.get_setup_json() d['item']['message']['message'] = '/trebek some test answer' bot = self.create_bot_with_dictionary(d) bot.redis = fakeredis.FakeStrictRedis() bot.get_question() response = bot.get_response_message() user_score_key = "{0}:{1}".format(bot.user_score_prefix, self.trebek_bot.room_message.item.message.user_from.id) # Act score = bot.redis.get(user_score_key) bot.redis.flushdb() # Assert score_string = "<span style='color: red;'>-$200</span>" self.assertEqual(score_string, bot.format_currency(score)) self.assertEqual("That is incorrect, <NAME>. Your score is now {0}".format(score_string), response) def test_given_correct_answer_user_score_increased(self): # Arrange d = self.get_setup_json() d['item']['message']['message'] = "/trebek what is Let's Make a deal" bot = self.create_bot_with_dictionary(d) bot.redis = fakeredis.FakeStrictRedis() bot.get_question() response = bot.get_response_message() user_score_key = "{0}:{1}".format(bot.user_score_prefix, self.trebek_bot.room_message.item.message.user_from.id) # Act score = bot.redis.get(user_score_key) bot.redis.flushdb() # Assert self.assertEqual("$200", bot.format_currency(score)) self.assertEqual("That is correct, <NAME>. Your score is now $200 (Expected Answer: Let's Make a Deal)", response) def test_given_correct_answer_nonQuestion_form_user_score_decreased(self): # Arrange d = self.get_setup_json() d['item']['message']['message'] = "/trebek Let's Make a deal" bot = self.create_bot_with_dictionary(d) bot.redis = fakeredis.FakeStrictRedis() bot.get_question() response = bot.get_response_message() user_score_key = "{0}:{1}".format(bot.user_score_prefix, self.trebek_bot.room_message.item.message.user_from.id) # Act score = bot.redis.get(user_score_key) bot.redis.flushdb() # Assert score_string = "<span style='color: red;'>-$200</span>" self.assertEqual(score_string, bot.format_currency(score)) self.assertEqual("That is correct <NAME>, however responses should be in the form of a question. Your score is now {0}".format(score_string), response) def test_given_incorrect_answer_time_is_up_response(self): # Arrange d = self.get_setup_json() d['item']['message']['message'] = "/trebek foobar" bot = self.create_bot_with_dictionary(d) bot.redis = fakeredis.FakeStrictRedis() bot.get_question() clue = bot.get_active_clue() clue.expiration = time.time() - (bot.seconds_to_expire + 1) key = bot.clue_key.format(bot.room_id) bot.redis.set(key, json.dumps(clue, cls = entities.QuestionEncoder)) response = bot.get_response_message() user_score_key = "{0}:{1}".format(bot.user_score_prefix, self.trebek_bot.room_message.item.message.user_from.id) # Act score = bot.redis.get(user_score_key) bot.redis.flushdb() # Assert self.assertFalse(score) self.assertEqual(response, "Time is up! The correct answer was: <b>Let's Make a Deal</b>") def test_given_correct_answer_time_is_up_response(self): # Arrange d = self.get_setup_json() d['item']['message']['message'] = "/trebek what is Let's Make a deal" bot = self.create_bot_with_dictionary(d) bot.redis = fakeredis.FakeStrictRedis() bot.get_question() clue = bot.get_active_clue() clue.expiration = time.time() - (bot.seconds_to_expire + 1) key = bot.clue_key.format(bot.room_id) bot.redis.set(key, json.dumps(clue, cls = entities.QuestionEncoder)) response = bot.get_response_message() user_score_key = "{0}:{1}".format(bot.user_score_prefix, self.trebek_bot.room_message.item.message.user_from.id) # Act score = bot.redis.get(user_score_key) bot.redis.flushdb() # Assert self.assertFalse(score) self.assertEqual(response, "That is correct James A, however time is up. (Expected Answer: Let's Make a Deal)") def test_when_asked_for_answer_bot_responds_with_answer(self): d = self.get_setup_json() bot = self.create_bot_with_dictionary(d) bot.get_question() d['item']['message']['message'] = "/trebek answer" bot = self.create_bot_with_dictionary(d) response = bot.get_response_message() self.assertEqual("The answer was: Let's Make a Deal", response) def test_when_no_question_exists_answer_returns_no_active_clue(self): d = self.get_setup_json() d['item']['message']['message'] = "/trebek answer" bot = self.create_bot_with_dictionary(d) bot.redis.flushdb() response = bot.get_response_message() self.assertEqual("No active clue. Type '/trebek jeopardy' to start a round", response) def test_when_answer_contains_HTML_word_is_filtered(self): # e.g.: ANSWER: the <i>Stegosaurus</i> c = {'id':1, 'title': 'foo', 'created_at': 'bar', 'updated_at': 'foobar', 'clues_count':1} q = entities.Question(1, answer= "the <i>Stegosaurus</i>", category = c) self.assertEqual("the Stegosaurus", q.answer) # e.g.: ANSWER: <i>the Seagull</i> q = entities.Question(1, answer= "<i>the Seagull</i>", category = c) self.assertEqual("the Seagull", q.answer) q = entities.Question(1, answer= "Theodore Roosevelt", category = c) self.assertEqual("Theodore Roosevelt", q.answer) def test_when_fetched_clue_is_invalid_get_new_clue(self): global _invalid_clue, _fetch_count _fetch_count = 0 clue = get_clue_json() clue['invalid_count'] = 1 _invalid_clue = clue self.trebek_bot.fetch_random_clue = fetch_invalid_clue clue = self.trebek_bot.get_jeopardy_clue() self.assertEqual(clue.invalid_count, None) def test_when_fetched_clue_is_missing_question_get_new_clue(self): global _fetch_count, _invalid_clue _fetch_count = 0 clue = get_clue_json() clue['question'] = "" _invalid_clue = clue self.trebek_bot.fetch_random_clue = fetch_invalid_clue clue = self.trebek_bot.get_jeopardy_clue() self.assertNotEqual(clue.question.strip(), "") def test_when_fetched_clue_contains_visual_clue_request_new_clue(self): global _fetch_count, _invalid_clue _fetch_count = 0 clue = get_clue_json() clue['question'] = "the picture seen here, contains some test data" _invalid_clue = clue self.trebek_bot.fetch_random_clue = fetch_invalid_clue clue = self.trebek_bot.get_jeopardy_clue() self.assertFalse("seen here" in clue.question) def test_when_fetched_clue_contains_audio_clue_request_new_clue(self): global _fetch_count, _invalid_clue _fetch_count = 0 clue = get_clue_json() clue['question'] = "the audio heard here, contains some test data" _invalid_clue = clue self.trebek_bot.fetch_random_clue = fetch_invalid_clue clue = self.trebek_bot.get_jeopardy_clue() self.assertFalse("heard here" in clue.question) def test_when_new_month_arrives_score_resets_to_zero(self): self.trebek_bot.update_score(200) self.trebek_bot.get_year_month = fake_get_year_month self.assertEqual("$0", self.trebek_bot.get_user_score()) def test_lifetimescore_includes_multiple_months(self): # Seed other user's data (to reproduce bug) self.create_user_scores() self.trebek_bot.update_score(200) self.trebek_bot.get_year_month = fake_get_year_month self.trebek_bot.update_score(200) self.assertEqual("$400", self.trebek_bot.get_user_score(True)) def test_user_lifetime_loserboard_value_includes_multiple_months(self): d = self.get_setup_json() d['item']['message']['message'] = "/trebek show me the lifetime loserboard" bot = self.create_bot_with_dictionary(d) self.create_user_scores(bot) response = bot.get_response_message() expected = "<ol><li>Legacy Score: $5</li>" expected += "<li>Allen: $40</li>" expected += "<li>Mark: $60</li>" expected += "<li>Melvin: $100</li>" expected += "<li>Cordarrell: $140</li></ol>" self.assertEqual(expected, response) def test_user_lifetime_leaderboard_value_returned(self): d = self.get_setup_json() d['item']['message']['message'] = "/trebek lifetime leaderboard" bot = self.create_bot_with_dictionary(d) self.create_user_scores(bot) response = bot.get_response_message() expected = "<ol><li>Arian: $10,860</li>" expected += "<li><NAME>: $1,000</li>" expected += "<li>Zach: $824</li>" expected += "<li>Alex: $450</li>" expected += "<li>Richard: $400</li></ol>" self.assertEqual(expected, response) def main(): unittest.main() if __name__ == '__main__': main() ```
{ "source": "jimfulton/sphinxautoindex", "score": 2 }
#### File: lassodomain/sphinxcontrib/lassodomain.py ```python from docutils import nodes from sphinx import addnodes from sphinx.directives import ObjectDescription from sphinx.domains import Domain, ObjType from sphinx.domains.python import _pseudo_parse_arglist from sphinx.locale import l_, _ from sphinx.roles import XRefRole from sphinx.util.compat import Directive from sphinx.util.docfields import Field, TypedField from sphinx.util.nodes import make_refnode class SingleGroupedField(Field): """A doc field that is grouped; i.e., all fields of that type will be transformed into one field with its body being a comma-separated line. It does not have an argument. Each item can be linked using the given *bodyrolename*. SingleGroupedField should be used for doc fields that can occur more than once, but don't require a description. If *can_collapse* is true, this field will revert to a Field if only used once. Example:: :import: trait_first :import: trait_queriable """ is_grouped = True def __init__(self, name, names=(), label=None, bodyrolename=None, can_collapse=False): Field.__init__(self, name, names, label, False, None, bodyrolename) self.can_collapse = can_collapse def make_field(self, types, domain, items): fieldname = nodes.field_name('', self.label) if len(items) == 1 and self.can_collapse: return Field.make_field(self, types, domain, items[0]) bodynode = nodes.paragraph() for i, (fieldarg, content) in enumerate(items): bodynode += nodes.Text(', ') if i else None bodynode += self.make_xref(self.bodyrolename, domain, content[0].astext(), nodes.Text) fieldbody = nodes.field_body('', bodynode) return nodes.field('', fieldname, fieldbody) class SingleTypedField(SingleGroupedField): """A doc field that occurs once and can contain type information. It does not have an argument. The type can be linked using the given *typerolename*. Used in this domain to describe return values and types, which are specified with :return: and :rtype: and are combined into a single field list item. Example:: :return: description of the return value :rtype: optional description of the return type """ is_typed = True def __init__(self, name, names=(), typenames=(), label=None, typerolename=None, can_collapse=False): SingleGroupedField.__init__(self, name, names, label, None, can_collapse) self.typenames = typenames self.typerolename = typerolename def make_field(self, types, domain, items): def handle_item(fieldarg, content): par = nodes.paragraph() if fieldarg in types: par += nodes.Text(' (') fieldtype = types.pop(fieldarg) if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text): typename = ''.join(n.astext() for n in fieldtype) par += self.make_xref(self.typerolename, domain, typename) else: par += fieldtype par += nodes.Text(') ') par += content return par fieldname = nodes.field_name('', self.label) fieldarg, content = items[0] bodynode = handle_item(fieldarg, content) fieldbody = nodes.field_body('', bodynode) return nodes.field('', fieldname, fieldbody) class LSObject(ObjectDescription): """Description of a Lasso object. """ doc_field_types = [ # :param name: description # :ptype name: typename (optional) # - or - # :param typename name: description TypedField('parameter', names=('param', 'parameter'), typenames=('ptype', 'paramtype', 'type'), label=l_('Parameters'), typerolename='type', can_collapse=True), # :return: description # :rtype: typename (optional) SingleTypedField('return', names=('return', 'returns'), typenames=('rtype', 'returntype'), label=l_('Returns'), typerolename='type', can_collapse=True), # :author: name <email> SingleGroupedField('author', names=('author', 'authors'), label=l_('Author'), can_collapse=True), # :see: resource Field('seealso', names=('see', 'url'), label=l_('See also'), has_arg=False), # :parent: typename Field('parent', names=('parent', 'super'), label=l_('Parent type'), has_arg=False, bodyrolename='type'), # :import: trait_name SingleGroupedField('import', names=('import', 'imports'), label=l_('Imports'), bodyrolename='trait', can_collapse=True), ] def needs_arglist(self): """May return true if an empty argument list is to be generated even if the document contains none. """ return False def get_signature_prefix(self, sig): """May return a prefix to put before the object name in the signature. """ return '' def get_index_text(self, objectname, name_obj): """Return the text for the index entry of the object. """ raise NotImplementedError('must be implemented in subclasses') def handle_signature(self, sig, signode): """Transform a Lasso signature into RST nodes. """ sig = sig.strip().replace(' ', ' ').replace(' ::', '::').replace(':: ', '::') if '(' in sig: if ')::' in sig: sig, returntype = sig.rsplit('::', 1) else: returntype = None prefix, arglist = sig.split('(', 1) prefix = prefix.strip() arglist = arglist[:-1].strip().replace(' =', '=').replace('= ', '=') else: if '::' in sig: sig, returntype = sig.rsplit('::', 1) else: returntype = None prefix = sig arglist = None if '->' in prefix: objectprefix, name = prefix.rsplit('->', 1) objectprefix += '->' else: objectprefix = None name = prefix objectname = self.env.ref_context.get('ls:object') if objectprefix: fullname = objectprefix + name elif objectname: fullname = objectname + '->' + name else: objectname = '' fullname = name signode['object'] = objectname signode['fullname'] = fullname sig_prefix = self.get_signature_prefix(sig) if sig_prefix: signode += addnodes.desc_annotation(sig_prefix, sig_prefix) if objectprefix: signode += addnodes.desc_addname(objectprefix, objectprefix) signode += addnodes.desc_name(name, name) if self.needs_arglist(): if arglist: _pseudo_parse_arglist(signode, arglist) else: signode += addnodes.desc_parameterlist() if returntype: signode += addnodes.desc_returns(returntype, returntype) return fullname, objectprefix def add_target_and_index(self, name_obj, sig, signode): refname = name_obj[0].lower() if refname not in self.state.document.ids: signode['names'].append(name_obj[0]) signode['ids'].append(refname) signode['first'] = (not self.names) self.state.document.note_explicit_target(signode) objects = self.env.domaindata['ls']['objects'] if refname in objects: self.state_machine.reporter.warning( 'duplicate object description of %s, ' % refname + 'other instance in ' + self.env.doc2path(objects[refname][0]) + ', use :noindex: for one of them', line=self.lineno) objects[refname] = self.env.docname, self.objtype objectname = self.env.ref_context.get('ls:object') indextext = self.get_index_text(objectname, name_obj) if indextext: self.indexnode['entries'].append(('single', indextext, refname, '')) def before_content(self): # needed for automatic qualification of members (reset in subclasses) self.objname_set = False def after_content(self): if self.objname_set: self.env.ref_context['ls:object'] = None class LSDefinition(LSObject): """Description of an object definition (type, trait, thread). """ def get_signature_prefix(self, sig): return self.objtype + ' ' def get_index_text(self, objectname, name_obj): return _('%s (%s)') % (name_obj[0], self.objtype) def before_content(self): LSObject.before_content(self) if self.names: self.env.ref_context['ls:object'] = self.names[0][0] self.objname_set = True class LSTag(LSObject): """Description of an object with a signature (method, member). """ def needs_arglist(self): return True def get_index_text(self, objectname, name_obj): name = name_obj[0].split('->')[-1] if objectname or name_obj[1]: objectname = name_obj[0].split('->')[0] return _('%s() (%s member)') % (name, objectname) else: return _('%s() (method)') % name class LSTraitTag(LSTag): """Description of a tag within a trait (require, provide). """ def get_signature_prefix(self, sig): return self.objtype + ' ' def get_index_text(self, objectname, name_obj): name = name_obj[0].split('->')[-1] return _('%s() (%s %s)') % (name, objectname, self.objtype) class LSXRefRole(XRefRole): """Provides cross reference links for Lasso objects. """ def process_link(self, env, refnode, has_explicit_title, title, target): refnode['ls:object'] = env.ref_context.get('ls:object') if not has_explicit_title: title = title.lstrip('->') target = target.lstrip('~') if title[0:1] == '~': title = title[1:] arrow = title.rfind('->') if arrow != -1: title = title[arrow+2:] if target[0:2] == '->': target = target[2:] refnode['refspecific'] = True if '(' in target: target = target.partition('(')[0] if title.endswith('()'): title = title[:-2] return title, target class LassoDomain(Domain): """Lasso language domain. """ name = 'ls' label = 'Lasso' object_types = { 'method': ObjType(l_('method'), 'meth'), 'member': ObjType(l_('member'), 'meth'), 'provide': ObjType(l_('provide'), 'meth'), 'require': ObjType(l_('require'), 'meth'), 'type': ObjType(l_('type'), 'type'), 'trait': ObjType(l_('trait'), 'trait'), 'thread': ObjType(l_('thread'), 'thread'), } directives = { 'method': LSTag, 'member': LSTag, 'provide': LSTraitTag, 'require': LSTraitTag, # name and signature only 'type': LSDefinition, 'trait': LSDefinition, 'thread': LSDefinition, } roles = { 'meth': LSXRefRole(fix_parens=True), 'type': LSXRefRole(), 'trait': LSXRefRole(), 'thread': LSXRefRole(), } initial_data = { 'objects': {}, # fullname -> docname, objtype } def clear_doc(self, docname): for fullname, (fn, _) in list(self.data['objects'].items()): if fn == docname: del self.data['objects'][fullname] def merge_domaindata(self, docnames, otherdata): # XXX check duplicates for fullname, (fn, objtype) in otherdata['objects'].items(): if fn in docnames: self.data['objects'][fullname] = (fn, objtype) def find_obj(self, env, obj, name, typ, searchorder=0): if name[-2:] == '()': name = name[:-2] objects = self.data['objects'] newname = None if searchorder == 1: if obj and obj + '->' + name in objects: newname = obj + '->' + name else: newname = name else: if name in objects: newname = name elif obj and obj + '->' + name in objects: newname = obj + '->' + name return newname, objects.get(newname) def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): objectname = node.get('ls:object') searchorder = node.hasattr('refspecific') and 1 or 0 name, obj = self.find_obj(env, objectname, target.lower(), typ, searchorder) if not obj: return None return make_refnode(builder, fromdocname, obj[0], name, contnode, name) def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): objectname = node.get('ls:object') name, obj = self.find_obj(env, objectname, target.lower(), None, 1) if not obj: return [] return [('ls:' + self.role_for_objtype(obj[1]), make_refnode(builder, fromdocname, obj[0], name, contnode, name))] def get_objects(self): for refname, (docname, type) in self.data['objects'].items(): yield (refname, refname, type, docname, refname, 1) def setup(app): app.add_domain(LassoDomain) ```
{ "source": "jim-fun/evidently", "score": 3 }
#### File: evidently/utils/test_utils.py ```python import unittest import numpy as np from evidently.utils import NumpyEncoder class TestNumpyEncoder(unittest.TestCase): def setUp(self) -> None: self.encoder = NumpyEncoder() def test_int_convert(self): for _type in (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64): self.assertEqual(self.encoder.default(_type(55)), 55) def test_float_convert(self): np.testing.assert_almost_equal(self.encoder.default(np.float16(1.5)), 1.5) for _type in (np.float, np.float_, np.float32, np.float64): np.testing.assert_almost_equal(self.encoder.default(_type(.2)), .2) def test_bool_covert(self): self.assertEqual(self.encoder.default(np.bool(1)), True) self.assertEqual(self.encoder.default(np.bool(0)), False) self.assertEqual(self.encoder.default(np.bool_(1)), True) self.assertEqual(self.encoder.default(np.bool_(0)), False) def test_array_covert(self): self.assertEqual(self.encoder.default(np.array([0, 1, 2.1])), [0, 1, 2.1]) self.assertEqual(self.encoder.default(np.empty((0, 0))), []) self.assertEqual(self.encoder.default( np.array([[0, 1, 2.1], [0, 1, 2.1], [0, 1, 2.1]])), [[0, 1, 2.1], [0, 1, 2.1], [0, 1, 2.1]]) self.assertEqual(self.encoder.default(np.ones((2, 3))), [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) def test_none_covert(self): self.assertIsNone(self.encoder.default(np.void(3))) ```
{ "source": "jimga150/HealthNet", "score": 3 }
#### File: HealthNet/appointments/tests.py ```python from django.contrib.auth.models import User from django.test import TestCase from .models import * from core.models import Patient, Doctor, Hospital class AppointmentTests(TestCase): """ Tests for appointments """ def test_create_appointment(self): """ Checks if appointment can be created :return: True if the appointment is created """ date = 10 / 12 / 20 pat = Patient(User, date, "Male", "AB-", 10, 10, None, None, None, None) doc = Doctor(User, "634-1242") hosp = Hospital(name = 'Hospital 1') app = Appointment(patient=pat, doctor=doc, hospital=hosp, appointmentStart='1800-01-01 08:00:00', appointmentNotes='Note!') print(app.hospital.name) self.assertEqual(app.hospital.name != 'Hospital 2', True) ``` #### File: HealthNet/appointments/views.py ```python import datetime from core.models import Log from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.core.urlresolvers import reverse_lazy from django.db.models import Q from django.http import HttpResponseForbidden from django.shortcuts import render from django.utils import timezone from django.views.generic import DeleteView from django.views.generic import UpdateView from core.views import is_doctor, is_patient, is_admin from .forms import AppointmentForm from .models import Appointment def is_doc_or_patient(user): """ Helper function that checks if a user is a doctor or a patient :param user: The user to be checked :return: True if user is a doctor or a patient """ return is_doctor(user) or is_patient(user) def is_not_admin(user): """ Helper function that checks if a user is a doctor or a patient :param user: The user to be checked :return: True if user is a doctor or a patient """ return not is_admin(user) @login_required @user_passes_test(is_not_admin) def appointment_main(request): """ Appointment_main renders the main appointment page. It detects the user type (admin, patient, nurse, etc) and shows them the appropriate options :param request: The request with user information :return: The page to be rendered """ parent = "core/landing/baselanding.html" if request.user.groups.filter(name='Patient').exists(): appointments = Appointment.objects.filter(patient=request.user.patient).order_by('appointmentStart') return render(request, 'appointments/patientappointment.html', {'appointments': appointments, 'parent': parent}) elif request.user.groups.filter(name='Doctor').exists(): appointments = Appointment.objects.filter(doctor=request.user.doctor) return render(request, 'appointments/patientappointment.html', {'appointments': appointments, 'parent': parent}) if request.user.groups.filter(name='Nurse').exists(): date = datetime.date.today() start_week = date - datetime.timedelta(date.weekday()) end_week = start_week + datetime.timedelta(7) appointments = Appointment.objects.filter(hospital=request.user.nurse.hospital, appointmentStart__range=[start_week, end_week]) return render(request, 'appointments/patientappointment.html', {'appointments': appointments, 'parent': parent}) else: return HttpResponseForbidden() @login_required @user_passes_test(is_not_admin) def CreateAppointment(request): """ View to create an appointment. It ensures that the appointment is valid, and that there is not an appointment already at the time with the designated doctor :param request: The request with user information :return: The page to be rendered """ created = False already_exists = False parent = get_parent(request) if request.method == 'POST': appointment_form = AppointmentForm(data=request.POST) if appointment_form.is_valid(): appointment = appointment_form.save(commit=False) if Appointment.objects.filter( Q(appointmentStart=appointment.appointmentStart) & Q(doctor=appointment.doctor)).exists(): already_exists = True else: appointment_form.save() # Register Log log = Log.objects.create_Log(request.user, request.user.username, timezone.now(), "Appointment Created by " + request.user.username) log.save() created = True else: print("Error") print(appointment_form.errors) else: appointment_form = AppointmentForm() return render(request, "appointments/patientappointmentform.html", {'appointment_form': appointment_form, 'registered': created, 'already_exists': already_exists, 'parent': parent}) class EditAppointment(LoginRequiredMixin, UserPassesTestMixin, UpdateView): """ EditAppointment extends UpdateView, which is the generic class for editing preexisting objects This allows for a user to change their appointments """ model = Appointment template_name = 'appointments/appointmentedit.html' form_class = AppointmentForm success_url = reverse_lazy('appointment_home') def test_func(self): return is_not_admin(self.request.user) class DeleteAppointment(LoginRequiredMixin, UserPassesTestMixin, DeleteView): """ DeleteAppointment extends DeleteView, which is the generic class for deleting objects DeleteAppointment will delete the appointment, and is only visible to doctors and patients """ model = Appointment success_url = reverse_lazy('appointment_home') template_name = 'appointments/appointmentdelete.html' def test_func(self): return is_not_admin(self.request.user) def get_parent(request): """ A helper method that returns the appropriate parent for the designated user type :param request: The request with user information :return: The parent that a template will extend """ parent = 'core/landing/Patient.html' if request.user.groups.filter(name='Doctor').exists(): parent = 'core/landing/Doctor.html' elif request.user.groups.filter(name='Nurse').exists(): parent = 'core/landing/Nurse.html' elif request.user.groups.filter(name='Admin').exists(): parent = 'core/landing/Admin.html' return parent ``` #### File: calendarium/tests/tests.py ```python import json from django.forms.models import model_to_dict from django.test import TestCase from django.utils.timezone import timedelta from mixer.backend.django import mixer from ..constants import FREQUENCIES, OCCURRENCE_DECISIONS from ..forms import OccurrenceForm from ..utils import now from django.template.defaultfilters import slugify from ..models import Event, EventCategory, Occurrence, Rule from django.template import Context, Template from django.utils import timezone from ..templatetags.calendarium_tags import get_upcoming_events, get_week_URL from django_libs.tests.mixins import ViewRequestFactoryTestMixin from .. import views class OccurrenceFormTestCase(TestCase): """Test for the ``OccurrenceForm`` form class.""" longMessage = True def setUp(self): # single self.event = mixer.blend('calendarium.Event', rule=None, end_recurring_period=None) self.event_occurrence = next(self.event.get_occurrences( self.event.start)) def test_form(self): """Test if ``OccurrenceForm`` is valid and saves correctly.""" # Test for event data = model_to_dict(self.event_occurrence) initial = data.copy() data.update({ 'decision': OCCURRENCE_DECISIONS['all'], 'created_by': None, 'category': None, 'title': 'changed'}) form = OccurrenceForm(data=data, initial=initial) self.assertTrue(form.is_valid(), msg=( 'The OccurrenceForm should be valid')) form.save() event = Event.objects.get(pk=self.event.pk) self.assertEqual(event.title, 'changed', msg=( 'When save is called, the event\'s title should be "changed".')) class EventModelManagerTestCase(TestCase): """Tests for the ``EventModelManager`` custom manager.""" longMessage = True def setUp(self): # event that only occurs once self.event = mixer.blend('calendarium.Event', rule=None, start=now(), end=now() + timedelta(hours=1)) # event that occurs for one week daily with one custom occurrence self.event_daily = mixer.blend('calendarium.Event') self.occurrence = mixer.blend( 'calendarium.Occurrence', event=self.event, original_start=now(), original_end=now() + timedelta(days=1), title='foo_occurrence') class EventTestCase(TestCase): """Tests for the ``Event`` model.""" longMessage = True def setUp(self): self.not_found_event = mixer.blend( 'calendarium.Event', start=now() - timedelta(hours=24), end=now() - timedelta(hours=24), creation_date=now() - timedelta(hours=24), rule=None) self.event = mixer.blend( 'calendarium.Event', start=now(), end=now(), creation_date=now()) # category=mixer.blend('calendarium.EventCategory')) self.event_wp = mixer.blend( 'calendarium.Event', start=now(), end=now(), creation_date=now(), ) self.occurrence = mixer.blend( 'calendarium.Occurrence', original_start=now(), original_end=now() + timedelta(days=1), event=self.event, title='foo_occurrence') self.single_time_event = mixer.blend('calendarium.Event', rule=None) def test_get_title(self): """Test for ``__str__`` method.""" title = "The Title" event = mixer.blend( 'calendarium.Event', start=now(), end=now(), creation_date=now(), title=title) self.assertEqual(title, str(event), msg=( 'Method ``__str__`` did not output event title.')) def test_get_absolute_url(self): """Test for ``get_absolute_url`` method.""" event = mixer.blend( 'calendarium.Event', start=now(), end=now(), creation_date=now()) event.save() self.assertTrue(str(event.pk) in str(event.get_absolute_url()), msg=( 'Method ``get_absolute_url`` did not contain event id.')) def test_create_occurrence(self): """Test for ``_create_occurrence`` method.""" occurrence = self.event._create_occurrence(now()) self.assertEqual(type(occurrence), Occurrence, msg=( 'Method ``_create_occurrence`` did not output the right type.')) class EventCategoryTestCase(TestCase): """Tests for the ``EventCategory`` model.""" longMessage = True def test_instantiation(self): """Test for instantiation of the ``EventCategory`` model.""" event_category = EventCategory() self.assertTrue(event_category) def test_get_name(self): """Test for ``__str__`` method.""" name = "The Name" event_category = EventCategory(name=name) self.assertEqual(name, str(event_category), msg=( 'Method ``__str__`` did not output event category name.')) def test_get_slug(self): """Test slug in ``save`` method.""" name = "The Name" event_category = EventCategory(name=name) event_category.save() self.assertEqual(slugify(name), str(event_category.slug), msg=( 'Method ``save`` did not set event category slug as expected.')) class EventRelationTestCase(TestCase): """Tests for the ``EventRelation`` model.""" longMessage = True def test_instantiation(self): """Test for instantiation of the ``EventRelation`` model.""" event_relation = mixer.blend('calendarium.EventRelation') self.assertTrue(event_relation) class OccurrenceTestCase(TestCase): """Tests for the ``Occurrence`` model.""" longMessage = True def test_instantiation(self): """Test for instantiation of the ``Occurrence`` model.""" occurrence = Occurrence() self.assertTrue(occurrence) def test_delete_period(self): """Test for the ``delete_period`` function.""" occurrence = mixer.blend('calendarium.Occurrence') occurrence.delete_period('all') self.assertEqual(Occurrence.objects.all().count(), 0, msg=( 'Should delete only the first occurrence.')) event = mixer.blend( 'calendarium.Event', start=now() - timedelta(hours=0), end=now() - timedelta(hours=0)) occurrence = mixer.blend( 'calendarium.Occurrence', event=event, start=now() - timedelta(hours=0), end=now() - timedelta(hours=0)) occurrence.delete_period('this one') self.assertEqual(Occurrence.objects.all().count(), 0, msg=( 'Should delete only the first occurrence.')) event = mixer.blend( 'calendarium.Event', start=now() - timedelta(hours=0), end=now() - timedelta(hours=0)) event.save() occurrence = mixer.blend( 'calendarium.Occurrence', event=event, start=now() - timedelta(hours=0), end=now() - timedelta(hours=0)) occurrence.delete_period('following') self.assertEqual(Event.objects.all().count(), 0, msg=( 'Should delete the event and the occurrence.')) occurrence_1 = mixer.blend( 'calendarium.Occurrence', start=now(), end=now() + timedelta(days=1), original_start=now() + timedelta(hours=1)) occurrence_2 = mixer.blend( 'calendarium.Occurrence', start=now(), end=now() + timedelta(days=1), original_start=now() + timedelta(hours=1)) occurrence_2.event = occurrence_1.event occurrence_2.save() occurrence_2.delete_period('this one') occurrence_3 = mixer.blend( 'calendarium.Occurrence', start=now(), end=now() + timedelta(days=1), original_start=now() + timedelta(hours=1)) occurrence_3.event = occurrence_1.event occurrence_3.save() occurrence_4 = mixer.blend( 'calendarium.Occurrence', start=now(), end=now() + timedelta(days=1), original_start=now() + timedelta(hours=1)) occurrence_4.event = occurrence_1.event occurrence_4.save() occurrence_3.delete_period('this one') occurrence_1.delete_period('following') self.assertEqual(Occurrence.objects.all().count(), 0, msg=( 'Should delete all occurrences with this start date.')) class RuleTestCase(TestCase): """Tests for the ``Rule`` model.""" longMessage = True def test_instantiation(self): """Test for instantiation of the ``Rule`` model.""" rule = Rule() self.assertTrue(rule) class RenderUpcomingEventsTestCase(TestCase): """Tests for the ``render_upcoming_events`` tag.""" longMessage = True def setUp(self): self.occurrence = mixer.blend( 'calendarium.Occurrence', start=timezone.now() + timezone.timedelta(days=1), end=timezone.now() + timezone.timedelta(days=2), original_start=timezone.now() + timezone.timedelta(seconds=20), event__start=timezone.now() + timezone.timedelta(days=1), event__end=timezone.now() + timezone.timedelta(days=2), event__title='foo', ) def test_render_tag(self): t = Template('{% load calendarium_tags %}{% render_upcoming_events %}') self.assertIn('foo', t.render(Context())) class GetUpcomingEventsTestCase(TestCase): """Tests for the ``get_upcoming_events`` tag.""" longMessage = True def setUp(self): self.occurrence = mixer.blend( 'calendarium.Occurrence', start=timezone.now() + timezone.timedelta(days=1), end=timezone.now() + timezone.timedelta(days=2), original_start=timezone.now() + timezone.timedelta(seconds=20), event__start=timezone.now() + timezone.timedelta(days=1), event__end=timezone.now() + timezone.timedelta(days=2), ) def test_tag(self): result = get_upcoming_events() self.assertEqual(len(result), 1) class GetWeekURLTestCase(TestCase): """Tests for the ``get_week_URL`` tag.""" longMessage = True def test_tag(self): result = get_week_URL( timezone.datetime.strptime('2016-02-07', '%Y-%m-%d')) self.assertEqual(result, u'/calendar/2016/week/5/') class CalendariumRedirectViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``CalendariumRedirectView`` view.""" view_class = views.CalendariumRedirectView def test_view(self): resp = self.client.get(self.get_url()) self.assertEqual(resp.status_code, 200) class MonthViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``MonthView`` view class.""" view_class = views.MonthView def get_view_kwargs(self): return {'year': self.year, 'month': self.month} def setUp(self): self.year = now().year self.month = now().month def test_view(self): """Test for the ``MonthView`` view class.""" # regular call resp = self.is_callable() self.assertEqual( resp.template_name[0], 'calendarium/calendar_month.html', msg=( 'Returned the wrong template.')) self.is_postable(data={'next': True}, to_url_name='calendar_month') self.is_postable(data={'previous': True}, to_url_name='calendar_month') self.is_postable(data={'today': True}, to_url_name='calendar_month') # called with a invalid category pk self.is_callable(data={'category': 'abc'}) # called with a non-existant category pk self.is_callable(data={'category': '999'}) # called with a category pk category = mixer.blend('calendarium.EventCategory') self.is_callable(data={'category': category.pk}) # called with wrong values self.is_not_callable(kwargs={'year': 2000, 'month': 15}) class WeekViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``WeekView`` view class.""" view_class = views.WeekView def get_view_kwargs(self): return {'year': self.year, 'week': self.week} def setUp(self): self.year = now().year # current week number self.week = now().date().isocalendar()[1] def test_view(self): """Tests for the ``WeekView`` view class.""" resp = self.is_callable() self.assertEqual( resp.template_name[0], 'calendarium/calendar_week.html', msg=( 'Returned the wrong template.')) self.is_postable(data={'next': True}, to_url_name='calendar_week') self.is_postable(data={'previous': True}, to_url_name='calendar_week') self.is_postable(data={'today': True}, to_url_name='calendar_week') resp = self.is_callable(ajax=True) self.assertEqual( resp.template_name[0], 'calendarium/partials/calendar_week.html', msg=('Returned the wrong template for AJAX request.')) self.is_not_callable(kwargs={'year': self.year, 'week': '60'}) class DayViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``DayView`` view class.""" view_class = views.DayView def get_view_kwargs(self): return {'year': self.year, 'month': self.month, 'day': self.day} def setUp(self): self.year = 2001 self.month = 2 self.day = 15 def test_view(self): """Tests for the ``DayView`` view class.""" resp = self.is_callable() self.assertEqual( resp.template_name[0], 'calendarium/calendar_day.html', msg=( 'Returned the wrong template.')) self.is_postable(data={'next': True}, to_url_name='calendar_day') self.is_postable(data={'previous': True}, to_url_name='calendar_day') self.is_postable(data={'today': True}, to_url_name='calendar_day') self.is_not_callable(kwargs={'year': self.year, 'month': '14', 'day': self.day}) class EventUpdateViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``EventUpdateView`` view class.""" view_class = views.EventUpdateView def get_view_kwargs(self): return {'pk': self.event.pk} def setUp(self): self.event = mixer.blend('calendarium.Event') self.user = mixer.blend('auth.User', is_superuser=True) def test_view(self): self.is_callable(user=self.user) class EventCreateViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``EventCreateView`` view class.""" view_class = views.EventCreateView def setUp(self): self.user = mixer.blend('auth.User', is_superuser=True) def test_view(self): self.is_callable(user=self.user) self.is_callable(user=self.user, data={'delete': True}) self.assertEqual(Event.objects.all().count(), 0) class EventDetailViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``EventDetailView`` view class.""" view_class = views.EventDetailView def get_view_kwargs(self): return {'pk': self.event.pk} def setUp(self): self.event = mixer.blend('calendarium.Event') def test_view(self): self.is_callable() class OccurrenceViewTestCaseMixin(object): """Mixin to avoid repeating code for the Occurrence views.""" def get_view_kwargs(self): return { 'pk': self.event.pk, 'year': self.event.start.date().year, 'month': self.event.start.date().month, 'day': self.event.start.date().day, } def setUp(self): self.rule = mixer.blend('calendarium.Rule', name='daily') self.event = mixer.blend( 'calendarium.Event', created_by=mixer.blend('auth.User'), start=now() - timedelta(days=1), end=now() + timedelta(days=5), rule=self.rule) class OccurrenceDetailViewTestCase( OccurrenceViewTestCaseMixin, ViewRequestFactoryTestMixin, TestCase): """Tests for the ``OccurrenceDetailView`` view class.""" view_class = views.OccurrenceDetailView class OccurrenceUpdateViewTestCase( OccurrenceViewTestCaseMixin, ViewRequestFactoryTestMixin, TestCase): """Tests for the ``OccurrenceUpdateView`` view class.""" view_class = views.OccurrenceUpdateView class UpcomingEventsAjaxViewTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``UpcomingEventsAjaxView`` view class.""" view_class = views.UpcomingEventsAjaxView def test_view(self): self.is_callable() def test_view_with_count(self): self.is_callable(data={'count': 5}) def test_view_with_category(self): cat = mixer.blend('calendarium.EventCategory') self.is_callable(data={'category': cat.slug}) ``` #### File: HealthNet/core/forms.py ```python from django.utils import timezone from django import forms from django.contrib.auth.models import User from datetimewidget.widgets import DateWidget from .models import Patient, Hospital, Doctor, Nurse class UserRegForm(forms.ModelForm): """ Form for user registration """ password = forms.CharField(widget=forms.PasswordInput()) class Meta: model = User fields = ('username', 'password', 'email', 'first_name', 'last_name') def __init__(self, *args, **kwargs): super(UserRegForm, self).__init__(*args, **kwargs) self.fields['username'].widget.attrs.update({'class': 'form-control'}) self.fields['password'].widget.attrs.update({'class': 'form-control'}) self.fields['email'].widget.attrs.update({'class': 'form-control'}) self.fields['first_name'].widget.attrs.update({'class': 'form-control'}) self.fields['last_name'].widget.attrs.update({'class': 'form-control'}) def is_valid(self): return super(UserRegForm, self).is_valid() and \ User.objects.all().filter(email=self.cleaned_data['email']).count() == 0 class UserUpdateForm(forms.ModelForm): """ Form for user updates """ class Meta: model = User fields = ['email', 'first_name', 'last_name'] class PatientRegForm(forms.ModelForm): """ Form for patient registration Note: Seperate from user registration form """ now = timezone.now() birthday = forms.DateField(widget=DateWidget(usel10n=True, bootstrap_version=3)) preferred_hospital = forms.ModelChoiceField(queryset=Hospital.objects.all(), required=False) # hospital = forms.ModelChoiceField(queryset=Hospital.objects.all(), required=True) emergency_contact = forms.EmailField(label="Emergency Contact Email Address:") class Meta: model = Patient fields = ('birthday', 'sex', 'blood_type', 'height', 'weight', 'allergies', 'medical_history', 'insurance_info', 'emergency_contact', 'preferred_hospital') # , 'hospital') def __init__(self, *args, **kwargs): super(PatientRegForm, self).__init__(*args, **kwargs) self.fields['birthday'].widget.attrs.update({'class': 'form-control'}) self.fields['sex'].widget.attrs.update({'class': 'form-control'}) self.fields['blood_type'].widget.attrs.update({'class': 'form-control'}) self.fields['height'].widget.attrs.update({'class': 'form-control'}) self.fields['weight'].widget.attrs.update({'class': 'form-control'}) self.fields['allergies'].widget.attrs.update({'class': 'form-control'}) self.fields['insurance_info'].widget.attrs.update({'class': 'form-control'}) self.fields['emergency_contact'].widget.attrs.update({'class': 'form-control'}) self.fields['preferred_hospital'].widget.attrs.update({'class': 'form-control'}) self.fields['medical_history'].widget.attrs.update({'class': 'form-control'}) # self.fields['hospital'].widget.attrs.update({'class': 'form-control'}) class NurseRegForm(forms.ModelForm): """ Form for Nurse registration Note: Seperate from user registration form """ now = timezone.now() phoneNum = forms.IntegerField(label="Phone Number") hospital = forms.ModelChoiceField(queryset=Hospital.objects.all(), required=True, label="Hospital") class Meta: model = Nurse fields = ('phoneNum', 'hospital') class DoctorRegForm(forms.ModelForm): """ Form for Doctor registration Note: Seperate from user registration form """ phoneNum = forms.IntegerField(label="Phone Number") hospital = forms.ModelChoiceField(queryset=Hospital.objects.all(), required=True, label="Hospital") class Meta: model = Doctor fields = ('phoneNum', 'hospital') class LoginForm(forms.ModelForm): """ Form for logging in """ class Meta: model = User username = forms.CharField(max_length=50) password = forms.CharField(max_length=50) fields = ["username", "password"] class PatientForm(forms.ModelForm): """ Form for accessing Patient Data """ class Meta: model = Patient fields = ['birthday', 'sex', 'height', 'weight', 'allergies', 'medical_history', 'insurance_info', 'emergency_contact', 'preferred_hospital'] class PatientMediForm(forms.ModelForm): """ Form for accessing Patient Medical Data """ class Meta: model = Patient fields = ('sex', 'blood_type', 'height', 'weight', 'allergies', 'medical_history') class UploadFileForm(forms.Form): """ Form for Uploading Files """ file = forms.FileField() class NewHospitalForm(forms.ModelForm): """ Form for creating a new Hospital """ class Meta: model = Hospital fields = ('name',) ``` #### File: HealthNet/core/views.py ```python from io import TextIOWrapper from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.core.urlresolvers import reverse, reverse_lazy from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render, redirect from django.template import RequestContext from django.views.generic import UpdateView, CreateView, DetailView from prescriptions.models import Prescription from .forms import * from .models import * def is_patient(user): """ Helper function that checks if a user is a patient :param user: The user to be checked :return: True if user is a patient """ if user: return user.groups.filter(name='Patient').count() != 0 return False def is_doctor(user): """ Helper function that checks if a user is a doctor :param user: The user to be checked :return: True if user is a doctor """ if user: return user.groups.filter(name='Doctor').count() != 0 return False def is_nurse(user): """ Helper function that checks if a user is a nurse :param user: The user to be checked :return: True if user is a nurse """ if user: return user.groups.filter(name='Nurse').count() != 0 return False def is_doctor_or_nurse(user): """ Uses above functions combined to fit the @user_passes_test mixin :param user: The User in question :return: True if the user is a Doctor or Nurse """ return is_doctor(user) or is_nurse(user) def not_patient(user): """ Users is_patient funtion to test if user is of patient type :param user: The User in question :return: True if user is not a patient """ return not is_patient(user) def is_admin(user): """ Helper function that checks if a user is an admin :param user: The user to be checked :return: True if user is an admin """ if user: return user.groups.filter(name='Admin').count() != 0 return False def user_login(request): """ Renders the user login page, and redirects the user to the appropriate landing page :param request: The request with user information :return: The page to be rendered """ if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user: if user.is_active: login(request, user) # Register Log log = Log.objects.create_Log(user, user.username, timezone.now(), user.username + " logged in") log.save() return HttpResponseRedirect(reverse('landing')) else: return HttpResponse("Your Account has been Deactivated") else: print("Invalid login: {0}".format(username)) context = RequestContext(request) context['login_failure'] = True return render(request, 'core/login.html', context) else: return render(request, 'core/login.html', RequestContext(request)) @login_required def user_logout(request): """ Logs out a user, and logs it :param request: The request with user information :return: The page to be rendered """ # Register Log log = Log.objects.create_Log(request.user, request.user.username, timezone.now(), request.user.username + " logged out") log.save() logout(request) return HttpResponseRedirect(reverse('login')) @login_required @user_passes_test(is_patient) def patient_landing(request): """ Renders the patient landing page :param request: The request with user information :return: The page to be rendered """ return render(request, 'core/landing/Patient.html') @login_required def profile(request): """ Displays the user Profile Information :param request: The request with user information :return: The page to be rendered """ parent = get_parent(request) return render(request, 'core/landing/pages/profile.html', {'parent': parent}) def QueryListtoString(query): """ Used to convert Query lists to readable strings, used in the following Medical Information Export function. :param query: the query to convert :return: the readable string """ ans = "" for q in query.iterator(): ans = ans + str(q) + '\n' return ans def MediInfoExport(Patient_exporting: Patient, assoc_user: User, is_email): """ Generic getter for a patient's complete medical information into a readable format in a String :param Patient_exporting: The Patient exporting their info :param assoc_user: The Patient's associated User :param is_email: True if this is being sent in an email (adds greeting), false otherwise :return: The complete text export """ Name = 'Name: ' + str(assoc_user.get_full_name()) Email = 'Email: ' + str(assoc_user.email) Birthday = 'Birthday: ' + str(Patient_exporting.birthday) Gender = 'Sex: ' + str(dict(Patient_exporting.SEX_CHOICE)[Patient_exporting.sex]) Blood_Type = 'Blood-Type: ' + str(dict(Patient_exporting.BLOOD_TYPE)[Patient_exporting.blood_type]) Height = 'Height: ' + str(Patient_exporting.height) Weight = 'Weight: ' + str(Patient_exporting.weight) + ' lbs' Allergies = 'Allergies: \r\n' + str(Patient_exporting.allergies) Medical_History = 'Medical-History: \r\n' + str(Patient_exporting.medical_history) Prescriptions = 'Prescriptions: \r\n' + \ str(QueryListtoString(Prescription.objects.all().filter(patient=Patient_exporting))) Insurance_Info = 'Insurance-Info: ' + str(Patient_exporting.insurance_info) Preferred_Hospital = 'Preferred-Hospital: ' + str(Patient_exporting.preferred_hospital) PHospital = 'Current-Hospital: ' + str(Patient_exporting.hospital) Emergency_Contact = 'Emergency-Contact: ' + str(Patient_exporting.emergency_contact) ans = Name + '\r\n' + \ Email + '\r\n' + \ Birthday + '\r\n' + \ Gender + '\r\n' + \ Blood_Type + '\r\n' + \ Height + '\r\n' + \ Weight + '\r\n\r\n' + \ Allergies + '\r\n\r\n' + \ Medical_History + '\r\n\r\n' + \ Prescriptions + '\r\n\r\n' + \ Insurance_Info + '\r\n' + \ Preferred_Hospital + '\r\n' + \ PHospital + '\r\n' + \ Emergency_Contact + '\r\n' if is_email: return 'Hello ' + str(assoc_user.first_name) + \ ', \n\n\tYou are receiving this email as an export of your medical information from ' + \ str(Patient_exporting.hospital) + '. Below you\'ll find the medical record export. ' \ 'Thank you for using HealthNet!\n\n' + ans return ans @login_required @user_passes_test(is_patient) def email(request): """ Sends the patient an email with a full summary of their medical information. :param request: The request with user information :return: The success landing page """ Pat = Patient.objects.all().get(user=request.user) if request.user.email_user('Medical Information Export: ' + request.user.get_full_name(), MediInfoExport(Pat, request.user, True), '<EMAIL>', fail_silently=True, ): return render(request, 'core/landing/pages/email_success.html') else: return render(request, 'core/landing/pages/profile.html', {'parent': get_parent(request)}) @login_required @user_passes_test(is_patient) def download(request): """ Serves patients full summary as a downloadable text file. :param request: The request with user information :return: Downloadable text file, in lieu of a conventional response """ Pat = Patient.objects.all().get(user=request.user) content = MediInfoExport(Pat, request.user, False) response = HttpResponse(content, content_type='text/plain') response['Content-Disposition'] = 'attachment; filename="%s_Info.txt"' % \ str(request.user.get_full_name()).replace(' ', '-') return response def listtostring(listin): """ Converts a simple list into a space separated sentence, effectively reversing str.split(" ") :param listin: the list to convert :return: the readable string """ ans = "" for l in listin: ans = ans + str(l) + " " return ans.strip() def read_new_Patient(filename, encoding, doctor_user): """ Reads in a new Patient from the specific file, assumes that the patient instance already exists and is associated with an existing user, but not necessarily populated. :param doctor_user: User of Doctor signing off on Patient import, used when constructing Prescriptions :param filename: Name of the file to read from :param encoding: UTF-8, ANSI, etc etc :return: The newly populated Patient class (after its been saved) """ # print("reading new patient...") file = TextIOWrapper(filename.file, encoding=encoding) new_patient = None Allergies_mode = False Prescriptions_mode = False Medical_History_mode = False Allergies = '' Medical_History = '' Prescriptions = [] for line in file.readlines(): print("Line: " + line) words = line.strip().split(" ") print(words) instance_var = words[0] # print("Current variable is " + instance_var) if Allergies_mode: if line.strip() != '': # print('found allergy: ' + line.strip()) Allergies = Allergies + line.strip() else: # print('And that\'s it for allergies') Allergies_mode = False new_patient.allergies = Allergies elif Medical_History_mode: if line.strip() != '': # print('found medical history: ' + line.strip()) Medical_History = Medical_History + line.strip() else: # print('And that\'s it for medical history') Medical_History_mode = False new_patient.medical_history = Medical_History elif Prescriptions_mode: if line.strip() != '': # print('found prescription: ' + line.strip()) Prescriptions.append(line.strip()) else: # print('And that\'s it for prescriptions') Prescriptions_mode = False for p in Prescriptions: Prescription.fromString(p, new_patient.id, doctor_user) if instance_var == 'Email:': Email = words[1] print("found email: " + Email) user = User.objects.get(email=Email) new_patient = Patient.objects.get(user=user) print(new_patient) elif instance_var == 'Birthday:': print("found b-day: " + words[1]) new_patient.birthday = words[1] elif instance_var == 'Sex:': print("found sex: " + words[1]) new_patient.sex = words[1] elif instance_var == 'Blood-Type:': print("found b-type: " + words[1]) new_patient.blood_type = words[1] elif instance_var == 'Height:': print("found height: " + words[1]) new_patient.height = words[1] elif instance_var == 'Weight:': print("found weight: " + words[1]) new_patient.weight = words[1] elif instance_var == 'Allergies:': print("found Allergies") Allergies_mode = True elif instance_var == 'Medical-History::': print("found Medical History") Medical_History_mode = True elif instance_var == 'Prescriptions:': print("found prescriptions") Prescriptions_mode = True elif instance_var == 'Insurance-Info:': insurance = listtostring(words[1:]) print("found Insurance: " + insurance) new_patient.insurance_info = insurance elif instance_var == 'Preferred-Hospital:': p_hospital = listtostring(words[1:]) print("found hospital: " + p_hospital) new_patient.preferred_hospital = Hospital.objects.get(name=p_hospital) elif instance_var == 'Emergency-Contact:': print("found e-contact: " + words[1]) new_patient.emergency_contact = words[1] # elif instance_var == 'Current-Hospital:': # c_hospital = listtostring(words[1:]) # print("found hospital: " + c_hospital) # new_patient.hospital = Hospital.objects.get(name=c_hospital) return new_patient.save() @login_required @user_passes_test(is_doctor_or_nurse) def upload_patient_info(request): """ View for uploading a text file with pateint information :param request: request with possible file upload :return: the current page again with possible confirmation """ uploaded = False if request.method == 'POST': attempted = True form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): read_new_Patient(request.FILES['file'], request.encoding, request.user) uploaded = True else: uploaded = False else: attempted = False form = UploadFileForm() return render(request, 'core/upload_patient.html', {'form': form, 'attempted': attempted, 'upload_success': uploaded}) @login_required @user_passes_test(is_nurse) def nurse_landing(request): """ Renders the patient landing page :param request: The request with user information :return: The page to be rendered """ return render(request, 'core/landing/Nurse.html') @login_required @user_passes_test(is_doctor) def doctor_landing(request): """ Renders the doctor landing page :param request: The request with user information :return: The page to be rendered """ return render(request, 'core/landing/Doctor.html') @login_required @user_passes_test(is_admin) def admin_landing(request): """ Renders the admin landing page :param request: The request with user information :return: The page to be rendered """ return render(request, 'core/landing/Admin.html') @login_required @user_passes_test(is_admin) def registerStaff(request): """ Renders the registration selection page :param request: The request with user information :return: The page to be rendered """ return render(request, 'core/landing/pages/registration_select.html') @login_required @user_passes_test(is_admin) def register_nurse_page(request): """ Registers a nurse as well as it's one-to-one user. Error checks fields, and ensures that all data is valid before creation :param request: The request with user information :return: The page to be rendered """ registered = False if request.method == 'POST': user_form = UserRegForm(data=request.POST) other_form = NurseRegForm(data=request.POST) if user_form.is_valid() and other_form.is_valid(): group = Group.objects.get(name='Nurse') user = user_form.save() if User.objects.all().filter(email=user.email).count() > 0: # throw an error, this became an issue pass user.set_password(<PASSWORD>) user.groups.add(group) user.save() nprofile = other_form.save(commit=False) nprofile.user = user nprofile.save() # Register Log log = Log.objects.create_Log(nprofile.user, nprofile.user.username, timezone.now(), "Nurse Registered") log.save() registered = True # else: # print("Error") # print(user_form.errors, other_form.errors) else: user_form = UserRegForm() other_form = NurseRegForm() return render(request, "core/landing/pages/registrationPages/staff_registration.html", {'user_form': user_form, 'other_form': other_form, 'registered': registered, 'stafftype': "nurse"}) @login_required @user_passes_test(is_admin) def register_doctor_page(request): """ Registers a doctor as well as it's one-to-one user. Error checks fields, and ensures that all data is valid before creation :param request: The request with user information :return: The page to be rendered """ registered = False if request.method == 'POST': user_form = UserRegForm(data=request.POST) other_form = DoctorRegForm(data=request.POST) if user_form.is_valid() and other_form.is_valid(): group = Group.objects.get(name='Doctor') user = user_form.save() if User.objects.all().filter(email=user.email).count() > 0: # throw an error, this became an issue pass user.set_password(<PASSWORD>) user.groups.add(group) user.save() dprofile = other_form.save(commit=False) dprofile.user = user dprofile.save() # Register Log log = Log.objects.create_Log(dprofile.user, dprofile.user.username, timezone.now(), "Doctor Registered") log.save() registered = True # else: # print("Error") # print(user_form.errors, other_form.errors) else: user_form = UserRegForm() other_form = DoctorRegForm() return render(request, "core/landing/pages/registrationPages/staff_registration.html", {'user_form': user_form, 'other_form': other_form, 'registered': registered, 'stafftype': "doctor"}) @login_required @user_passes_test(is_admin) def register_admin_page(request): """ Registers a admin as well as it's one-to-one user. Error checks fields, and ensures that all data is valid before creation :param request: The request with user information :return: The page to be rendered """ registered = False if request.method == 'POST': user_form = UserRegForm(data=request.POST) if user_form.is_valid(): group = Group.objects.get(name='Admin') user = user_form.save() if User.objects.all().filter(email=user.email).count() > 0: # throw an error, this became an issue pass user.set_password(<PASSWORD>) user.groups.add(group) user.save() sadmin = Admin.objects.create(user=user) sadmin.save() # Register Log log = Log.objects.create_Log(sadmin.user, sadmin.user.username, timezone.now(), "Admin Registered") log.save() registered = True # else: # print("Error") # print(user_form.errors) else: user_form = UserRegForm() return render(request, "core/landing/pages/registrationPages/admin_registration.html", {'user_form': user_form, 'registered': registered, 'stafftype': "admin"}) @login_required def landing(request): """ Renders the landing page :param request: The request with user information :return: The page to be rendered """ context = {} parent = get_parent(request) if 'Patient' in parent: context['Patient_ID'] = Patient.objects.all().get(user=request.user).id print("Patient! id is " + str(context['Patient_ID'])) return render(request, 'core/landing/baselanding.html', context) def register_patient_page(request): """ Registers a patient as well as it's one-to-one user. Error checks fields, and ensures that all data is valid before creation :param request: The request with user information :return: The page to be rendered """ registered = False context = {} if request.method == 'POST': user_form = UserRegForm(data=request.POST) patient_form = PatientRegForm(data=request.POST) if user_form.is_valid() and patient_form.is_valid(): group = Group.objects.get(name='Patient') user = user_form.save() user.set_password(user.password) user.groups.add(group) user.save() pprofile = patient_form.save(commit=False) pprofile.user = user if User.objects.filter(email=pprofile.emergency_contact).exists(): pprofile.emergency_contact_user = User.objects.get(email=pprofile.emergency_contact) pprofile.hospital = pprofile.preferred_hospital pprofile.save() # Register Log log = Log.objects.create_Log(pprofile.user, pprofile.user.username, timezone.now(), "Patient Registered") log.save() registered = True else: print("Error") print(user_form.errors, patient_form.errors) else: user_form = UserRegForm() patient_form = PatientRegForm() context['user_form'] = user_form context['patient_form'] = patient_form context['registered'] = registered return render(request, "core/registerpatient.html", context) def main(request): """ Renders the main page :param request: The request with user information :return: The page to be rendered """ # return render(request, 'core/main/base.html') return render(request, 'core/main/homepage.html') @login_required def patient_tests(request): """ Renders the patient test page, nto yet implemented :param request: The request with user information :return: The page to be rendered """ return redirect(reverse('results_home')) @login_required def editownprofile(request): """ Allows user to update their profile information, plus certain User info :param request: The request with possible form info :return: The Edit page """ parent = get_parent(request) person = None if 'Patient' in parent: person = Patient.objects.get(user=request.user) elif 'Doctor' in parent: person = Doctor.objects.get(user=request.user) elif 'Nurse' in parent: person = Nurse.objects.get(user=request.user) if request.method == 'POST': user_form = UserUpdateForm(data=request.POST, instance=request.user) person_form = None if 'Patient' in parent: person_form = PatientForm(data=request.POST, instance=person) elif 'Doctor' in parent: person_form = DoctorRegForm(data=request.POST, instance=person) elif 'Nurse' in parent: person_form = NurseRegForm(data=request.POST, instance=person) if user_form.is_valid(): user = user_form.save() if person_form is not None and person_form.is_valid(): pprofile = person_form.save(commit=False) pprofile.user = user if person is Patient and User.objects.filter(email=pprofile.emergency_contact).exists(): pprofile.emergency_contact_user = User.objects.get(email=pprofile.emergency_contact) pprofile.save() log = Log.objects.create_Log(request.user, request.user.username, timezone.now(), "User updated own info") log.save() else: # print("Error") # print(user_form.errors, person_form.errors) pass return render(request, 'core/landing/pages/profile.html', {'parent': parent}) else: user_form = UserUpdateForm(instance=request.user) person_form = None if 'Patient' in parent: person_form = PatientForm(instance=person) elif 'Doctor' in parent: person_form = DoctorRegForm(instance=person) elif 'Nurse' in parent: person_form = NurseRegForm(instance=person) return render(request, 'core/landing/pages/edit_profile.html', {'user_form': user_form, 'patient_form': person_form}) class EditPatientMediInfo(LoginRequiredMixin, UserPassesTestMixin, UpdateView): """ EditPatientMediInfo extends UpdateView, which is the generic class for editing preexisting objects This allows for a user to change their information """ model = Patient template_name = 'core/edit_medi_info.html' form_class = PatientMediForm def get_object(self, queryset=None): p_id = self.kwargs['patient_id'] patient = Patient.objects.get(pk=p_id) log = Log.objects.create_Log(self.request.user, self.request.user.username, timezone.now(), "Patient(\"" + patient.user.get_full_name() + "\", id " + p_id + ") Medical Info updated") log.save() return patient def test_func(self): return is_doctor(self.request.user) @login_required @user_passes_test(not_patient) def view_patients(request): """ Simple view for fetching all the patients in the system onto a list and viewing them by name :param request: The request :return: rendered list page with patient context """ labels = ["Name", "Email", "Birthday", "Hospital", "Admission Status"] context = {"Patients": Patient.objects.all(), "Labels": labels} return render(request, 'core/view_patients.html', context) @login_required @user_passes_test(is_admin) def logs(request): """ Shows all log objects :param request: The request with user information :return: The page to be rendered """ Logs = Log.objects.order_by('time').reverse() return render(request, 'core/logs.html', {'logs': Logs}) def get_parent(request): """ A helper method that returns the appropriate parent for the designated user type :param request: The request with user information :return: The parent that a template will extend """ parent = 'core/landing/Patient.html' if request.user.groups.filter(name='Doctor').exists(): parent = 'core/landing/Doctor.html' elif request.user.groups.filter(name='Nurse').exists(): parent = 'core/landing/Nurse.html' elif request.user.groups.filter(name='Admin').exists(): parent = 'core/landing/Admin.html' return parent def swag(request): return render(request, 'core/landing/pages/registrationPages/swag.html') @login_required @user_passes_test(is_doctor_or_nurse) def admitPatient(request, patient_id): """ Allows Doctors and Nurses to admnit existing Patients :param request: self explanatory :param patient_id: ID number of the Patient to admit :return: view_patients list, after Patient has been admitted """ patient = Patient.objects.get(pk=patient_id) if patient.admitted: patient.admitted = False else: patient.admitted = True patient.save() labels = ["Name", "Email", "Birthday", "Hospital", "Admission Status"] context = {"Patients": Patient.objects.all(), "Labels": labels} return render(request, 'core/view_patients.html', context) class NewHospital(CreateView, UserPassesTestMixin, LoginRequiredMixin): """ View class for Hospital admins to make new hospital instances. """ model = Hospital template_name = 'core/new_hospital.html' form_class = NewHospitalForm success_url = reverse_lazy('landing') def test_func(self): return is_admin(self.request.user) class ViewPatientMediInfo(LoginRequiredMixin, UserPassesTestMixin, DetailView): """ Viewer for patient Medical Info by nurses or Doctors """ model = Patient template_name = 'core/view_medi_info.html' def get_context_data(self, **kwargs): context = super(ViewPatientMediInfo, self).get_context_data(**kwargs) p_id = self.kwargs['patient_id'] context['Patient'] = Patient.objects.get(pk=p_id) context['is_doctor'] = is_doctor(self.request.user) return context def get_object(self, queryset=None): p_id = self.kwargs['patient_id'] patient = Patient.objects.get(pk=p_id) log = Log.objects.create_Log(self.request.user, self.request.user.username, timezone.now(), "Patient(\"" + patient.user.get_full_name() + "\", id " + p_id + ") Medical Info viewed") log.save() return patient def test_func(self): return is_doctor_or_nurse(self.request.user) ``` #### File: HealthNet/messaging/models.py ```python from django.db import models from django.contrib.auth.models import User class MessageManager: """ Message Manager that helps create Messages without too much code """ def createMessage(self, sender, recipient, text, subject): message = self.createMessage(sender=sender, recipient=recipient, text=text, subject=subject) return message class Message(models.Model): """ Message Model that creates a messsage object, using the sender, recipient, text, subject of the message and stores it in the database """ sender = models.ForeignKey(User, related_name='sender') recipient = models.ForeignKey(User, related_name='recipient') text = models.CharField(max_length=1000) subject = models.CharField(max_length=100, null=False) date = models.DateTimeField() viewed = models.BooleanField(default=False) objects = MessageManager() def __str__(self): return self.subject ``` #### File: HealthNet/messaging/views.py ```python from django.contrib.auth.models import User from django.shortcuts import render from .models import Message from .forms import MessageForm from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse_lazy from django.views.generic.edit import UpdateView, DeleteView from django.utils import timezone from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin @login_required def index(request): """ displays the main page of the messaging system :param request: Self explanatory :return: render containing the html page and all the messages for the user """ messages = Message.objects.filter(recipient=request.user).order_by('date').reverse() return render(request, "messages_main.html", {'messages': messages}) @login_required def createMessage(request): """ Creates a message that can be sent to other users :param request: Self explanatory :return: render containing the html page and the info needed for the message to be sent """ if request.method == 'POST': message_form = MessageForm(request.POST) if message_form.is_valid(): message = message_form.save(commit=False) message.date = timezone.now() message.sender = request.user message_form.save() return HttpResponseRedirect(reverse_lazy('messages_home')) else: message_form = MessageForm() message_form.fields['recipient'].queryset=User.objects.all().exclude(pk=request.user.id) return render(request, 'messages_create.html', {'message_form': message_form}) class UpdateMessage(LoginRequiredMixin, UpdateView): """ Allows for messages to be edited """ model = Message template_name = 'messages_edit.html' form_class = MessageForm success_url = reverse_lazy('messages_home') class DeleteMessage(LoginRequiredMixin, DeleteView): """ Allows for messages to be deleted """ model = Message template_name = 'messages_delete.html' success_url = reverse_lazy('messages_home') ``` #### File: HealthNet/prescriptions/models.py ```python from django.db import models from django.utils import timezone from core.models import Patient, Doctor class Prescription(models.Model): """ Defines a Prescription """ patient = models.ForeignKey(Patient, verbose_name='Patient') doctor = models.ForeignKey(Doctor, verbose_name="Doctor") date_prescribed = models.DateTimeField() drug = models.CharField(max_length=500) dosage = models.DecimalField(max_digits=6, decimal_places=3) DOSE_CHOICES = ( ("mg", "milligrams"), ("ug", "micrograms"), ("pg", "picograms"), ("g", "grams") ) Dose_units = models.CharField(max_length=10, choices=DOSE_CHOICES, default="mg") rate = models.PositiveSmallIntegerField() TIME_CHOICES = ( ("/D", "per Day"), ("/h", "per Hour"), ("/W", "per Week"), ("/M", "per Month") ) Time_units = models.CharField(max_length=9, choices=TIME_CHOICES, default="/D") def __str__(self): return str(self.patient) + ": " + str(self.rate) + " dose(s) of " + str(self.dosage) + " " + \ str(dict(self.DOSE_CHOICES)[self.Dose_units]) + " of " + str(self.drug) + " " + \ str(dict(self.TIME_CHOICES)[self.Time_units]) @classmethod def fromString(cls, Prescription_string, patient_id, doctor_user): """ Constructs an instance of a Prescription by reading one of its own __str__ exports. :param Prescription_string: String representation of the Prescription :param patient_id: ID of the patient being prescribed to :param doctor_user: User of Doctor who is signing off on this import. :return: Saved Prescription """ words = Prescription_string.split(" ") if len(words) != 11: print("Cannot make prescription from String [" + Prescription_string + "]") return None patient = Patient.objects.get(pk=patient_id) rate = int(words[2]) dosage = float(words[5]) Dose_units = "mg" Dose_units_verbose = words[6] for d in Prescription.DOSE_CHOICES: if d[1] == Dose_units_verbose: Dose_units = d[0] drug = words[8] Time_units = "/D" Time_units_verbose = words[9] + " " + words[10] for t in Prescription.TIME_CHOICES: if t[1] == Time_units_verbose: Time_units = t[0] tosave = cls(patient=patient, doctor=Doctor.objects.get(user=doctor_user), date_prescribed=timezone.now(), drug=drug, dosage=dosage, Dose_units=Dose_units, rate=rate, Time_units=Time_units) tosave.save() return tosave ``` #### File: HealthNet/prescriptions/views.py ```python from django.shortcuts import redirect from .forms import PrescriptionForm from core.views import is_doctor, is_nurse, is_admin, is_patient from core.models import * from .models import Prescription from django.contrib.auth.decorators import login_required, user_passes_test from django.utils import timezone from django.shortcuts import render from django.core.urlresolvers import reverse def not_admin(user): """ :param user: The User in question :return: True if the user is anything but an Admin """ return not is_admin(user) def is_doctor_or_nurse(user): """ :param user: The User in question :return: True if the user is a Doctor or Nurse """ return is_doctor(user) or is_nurse(user) @login_required @user_passes_test(is_doctor) def new_prescription(request): """ Page for the form a doctor fills out to prescribe a drug :param request: the request with possible form submission :return: Prescription form or redirect to listing page (below) """ if request.method == 'POST': prescription_form = PrescriptionForm(data=request.POST) validity = prescription_form.is_valid() if validity: prescription = prescription_form.save(commit=False) prescription.date_prescribed = timezone.now() prescription.doctor = Doctor.objects.all().get(user=request.user) prescription.save() log = Log.objects.create_Log(request.user, request.user.username, timezone.now(), "Prescription filled out") log.save() else: print("Error") print(prescription_form.errors) if 'submit_singular' in request.POST and validity: return redirect('prescriptions') elif 'submit_another' in request.POST: prescription_form = PrescriptionForm() else: prescription_form = PrescriptionForm() context = {"prescription_form": prescription_form} return render(request, 'prescriptions/makenew.html', context) def get_prescription_list_for(cpatient): """ Generic getter for a specific patient's prescription list :param cpatient: Patient to fetch list for :return: context of Prescription list """ Prescriptions = Prescription.objects.all().filter(patient=cpatient) per = [] for p in Prescriptions.iterator(): per.append(str(dict(p.TIME_CHOICES)[p.Time_units])) p_list = zip(Prescriptions, per) return {"Labels": ["Doctor", "Drug", "Dosage", "Rate"], "Name": str(cpatient), "Prescriptions": p_list} @login_required @user_passes_test(not_admin) def prescriptions(request): """ Lists either all patients in the hospital with links to their prescription lists, or the prescriptions applied to a single defined patient. :param request: The request sent in, not used here :return: List page rendering """ context = {} if is_doctor(request.user) or is_nurse(request.user): context["Labels"] = ["Name", "Prescriptions"] patients = Patient.objects.all() prescription_nums = [] for pat in patients.iterator(): prescription_nums.append(Prescription.objects.filter(patient=pat).count()) context["Patients"] = zip(patients, prescription_nums) elif is_patient(request.user): cpatient = Patient.objects.get(user=request.user) context = get_prescription_list_for(cpatient) context["is_doctor"] = is_doctor(request.user) context["is_doctor"] = is_doctor(request.user) return render(request, 'prescriptions/list.html', context) @login_required @user_passes_test(is_doctor_or_nurse) def prescriptions_list(request, patient_id): """ Page that doctors and nurses are sent to when accessing a single patient's prescription list. :param request: The request sent in, not used here :param patient_id: ID of the patient who's being listed :return: List page rendering """ cpatient = Patient.objects.get(pk=patient_id) context = get_prescription_list_for(cpatient) context["is_doctor"] = is_doctor(request.user) return render(request, 'prescriptions/list.html', context) @login_required @user_passes_test(is_doctor) def delete_prescription(request, prescription_id): """ Page for confirming/deleting a single prescription :param request: The request sent in, not used here :param prescription_id: ID number of the prescription in question :return: Redirect or confirmation page """ prescription = Prescription.objects.get(pk=prescription_id) patient_id = prescription.patient.id if request.method == 'POST': prescription.delete() return redirect(reverse('list prescriptions for patient', kwargs={'patient_id': patient_id})) context = {"Prescription": prescription, 'patient_id': patient_id} return render(request, 'prescriptions/delete.html', context) ``` #### File: HealthNet/sysstats/tests.py ```python from django.core.urlresolvers import reverse from django.test import TestCase from core.models import * class TheOnlyTestThisNeeds(TestCase): """ The only test that this needs """ @classmethod def setUpTestData(cls): Group.objects.create(name='Patient') Group.objects.create(name='Doctor') Group.objects.create(name='Nurse') Group.objects.create(name='Admin') cls.hospital = Hospital.objects.create(name="Hospital1") cls.P_user = User.objects.create(username="TestPatient", password="password", email="<EMAIL>", first_name="PTest", last_name="LastName") cls.N_user = User.objects.create(username="TestNurse", password="password", email="<EMAIL>", first_name="NTest", last_name="LastName") cls.D_user = User.objects.create(username="TestDoctor", password="password", email="<EMAIL>", first_name="DTest", last_name="LastName") cls.A_user = User.objects.create(username="TestAdmin", password="password", email="<EMAIL>", first_name="ATest", last_name="LastName") cls.patient = Patient.objects.create(user=cls.P_user, birthday="1980-1-1", sex="M", blood_type="B-", height="65", weight="180", allergies="Pollen", medical_history="Type 2 Diabetes", insurance_info="Geico", hospital=cls.hospital, emergency_contact="<EMAIL>" ) # print(cls.P_user.groups) cls.nurse = Nurse.objects.create(user=cls.N_user, hospital=cls.hospital, phoneNum="2408937770") # print(cls.N_user.groups) cls.doctor = Doctor.objects.create(user=cls.D_user, hospital=cls.hospital, phoneNum="4438483228") # print(cls.D_user.groups) cls.admin = Admin.objects.create(user=cls.A_user) # print(cls.A_user.groups) def test_denying_nologinuser(self): response = self.client.get(reverse('statistics'), follow=True) self.assertRedirects(response, '/login/?next=/stats/') response = self.client.post(reverse('statistics'), follow=True) self.assertRedirects(response, '/login/?next=/stats/') def test_valid_call(self): self.client.login(username='TestAdmin', password='password') response = self.client.get(reverse('statistics')) self.assertTrue(response.status_code < 400) ``` #### File: HealthNet/testResults/views.py ```python from django.contrib.auth.decorators import login_required, user_passes_test from django.shortcuts import render from core.views import is_patient, is_doctor from .forms import ResultForm from .models import Results from core.models import Log, Patient from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse_lazy from django.views.generic.edit import UpdateView, DeleteView from django.utils import timezone from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin def is_doctor_or_patient(user): """ Checks if user logged in is of type doctor or patient :param user: user logged in :return: True if user is a doctor or patient """ return is_doctor(user) or is_patient(user) @login_required @user_passes_test(is_doctor_or_patient) def index(request): """ displays the main page of the test results system :param request: Self explanatory :return: render containing the html page and all the tests for the user """ results = Results.objects.order_by('date').reverse() return render(request, "results_main.html", {'results': results}) @login_required @user_passes_test(is_doctor) def createResult(request): """ Creates a Test Result that can be released to a specific patient :param request: Self explanatory :return: render containing the html page and the info needed for the test result """ if request.method == 'POST': results_form = ResultForm(request.POST, request.FILES) if results_form.is_valid(): result = results_form.save(commit=False) result.doctor = request.user result.date = timezone.now() result.file = request.FILES['files'] results_form.save() # Register Log log = Log.objects.create_Log(request.user, request.user.username, timezone.now(), request.user.username + " created Test Result") log.save() return HttpResponseRedirect(reverse_lazy('results_home')) else: results_form = ResultForm() return render(request, 'results_create.html', {'results_form' : results_form}) class UpdateTest(LoginRequiredMixin, UserPassesTestMixin, UpdateView): """ Allows for edits to be made to the Test Result """ model = Results template_name = 'results_edit.html' form_class = ResultForm success_url = reverse_lazy('results_home') def test_func(self): return is_doctor(self.request.user) class DeleteTest(LoginRequiredMixin, UserPassesTestMixin, DeleteView): """ Allows for the test result to be deleted """ model = Results template_name = 'results_delete.html' success_url = reverse_lazy('results_home') def test_func(self): return is_doctor(self.request.user) @login_required @user_passes_test(is_patient) def view_for_patient(request): """ Display specifically for patients as to make sure they can't create tests themselves :param request: Self explanatory :return: render containing the html page and all the tests for the patient """ patient = Patient.objects.all().get(user=request.user) results = Results.objects.all().filter(patient=patient).filter(released=True).order_by('date').reverse() print(str(results)) return render(request, "results_main.html", {'results': results}) ```
{ "source": "JIM-GLITCH/ant-simulator", "score": 3 }
#### File: JIM-GLITCH/ant-simulator/runtest-searchmap.py ```python import subprocess mapnumber=4 antComAlgorithm=1 numAnts=100 mapMaxX =160 mapMaxY =320 trial=1 TEST='searchmap' def run_one_test(trial): print("map {} algrithm {} trial {}: running..".format(mapnumber,antComAlgorithm,trial)) taskFinishedTime=subprocess.call(['love','./', str(mapnumber),str(antComAlgorithm),str(numAnts),str(mapMaxX),str(mapMaxY),TEST,str(trial) ], shell=True) # with open("map{}_algorithm{}_ants{}.txt".format(mapnumber,antComAlgorithm,numAnts),'a') as f: # f.write('{}\n'.format(taskFinishedTime)) return taskFinishedTime for mapMaxX,mapMaxY in [(160,320),(320,320),(320,800),(640,800)]: # for numAnts in [800,400,200,100]: # for trial in range(1,10+1): run_one_test(trial) ```
{ "source": "jimgong92/allezViens", "score": 3 }
#### File: jimgong92/allezViens/communication.py ```python from flask.ext.mail import Mail, Message from run import mail #Sends email notifying user about posted route def sendValidationEmail(to, url): header = 'Allez Viens Validation' sender = '<EMAIL>' replyTo = '<EMAIL>' url = 'allez-viens.herokuapp.com/trip/' + url body = "Please click <a href='" + url + "'>this link</a> to validate and edit your route.</br> If you did not request this, please disregard this email." sendEmail([to], replyTo, sender, header, body) #Sends email notifying user about pick def sendPickNotificationEmail(to, replyTo, url): header = 'Allez Viens User Contacted You' sender = '<EMAIL>' url = 'allez-viens.herokuapp.com/trip/' + url body = "A user at Allez Viens has expressed interest in riding with you regarding <a href='" + url + "'>this route.</a> <br><br>Replying to this message will reply directly to the user." sendEmail([to], replyTo, sender, header, body) #Sends email via smtp service using template def sendEmail(to, replyTo, sender, header, body): msg = Message( header, recipients=to, reply_to = replyTo, sender = sender ) msg.body = "body" msg.html = body mail.send(msg) #For Development, uncomment to use function from command line # with app.app_context(): # mail.send(msg) ```
{ "source": "jimgoo/auto-sklearn", "score": 2 }
#### File: components/regression/libsvm_svr.py ```python import resource import numpy as np from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.conditions import InCondition from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter, CategoricalHyperparameter, \ UnParametrizedHyperparameter from autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm from autosklearn.pipeline.constants import * class LibSVM_SVR(AutoSklearnRegressionAlgorithm): def __init__(self, kernel, C, epsilon, tol, shrinking, gamma=0.1, degree=3, coef0=0.0, verbose=False, max_iter=-1, random_state=None): self.kernel = kernel self.C = C self.epsilon = epsilon self.tol = tol self.shrinking = shrinking self.degree = degree self.gamma = gamma self.coef0 = coef0 self.verbose = verbose self.max_iter = max_iter self.random_state = random_state self.estimator = None def fit(self, X, Y): import sklearn.svm try: soft, hard = resource.getrlimit(resource.RLIMIT_AS) if soft > 0: soft /= 1024 * 1024 maxrss = resource.getrusage(resource.RUSAGE_SELF)[2] / 1024 cache_size = (soft - maxrss) / 1.5 else: cache_size = 200 except Exception: cache_size = 200 self.C = float(self.C) self.epsilon = float(self.epsilon) self.tol = float(self.tol) self.shrinking = self.shrinking == 'True' self.degree = int(self.degree) self.gamma = float(self.gamma) if self.coef0 is None: self.coef0 = 0.0 else: self.coef0 = float(self.coef0) self.verbose = int(self.verbose) self.max_iter = int(self.max_iter) self.estimator = sklearn.svm.SVR( kernel=self.kernel, C=self.C, epsilon=self.epsilon, tol=self.tol, shrinking=self.shrinking, degree=self.degree, gamma=self.gamma, coef0=self.coef0, cache_size=cache_size, verbose=self.verbose, max_iter=self.max_iter ) self.scaler = sklearn.preprocessing.StandardScaler(copy=True) self.scaler.fit(Y.reshape((-1, 1))) Y_scaled = self.scaler.transform(Y.reshape((-1, 1))).ravel() self.estimator.fit(X, Y_scaled) return self def predict(self, X): if self.estimator is None: raise NotImplementedError if self.scaler is None: raise NotImplementedError Y_pred = self.estimator.predict(X) return self.scaler.inverse_transform(Y_pred) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'SVR', 'name': 'Support Vector Regression', 'handles_regression': True, 'handles_classification': False, 'handles_multiclass': False, 'handles_multilabel': False, 'prefers_data_normalized': True, 'is_deterministic': True, 'input': (SPARSE, DENSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): # Copied from libsvm_c C = UniformFloatHyperparameter( name="C", lower=0.03125, upper=32768, log=True, default=1.0) kernel = CategoricalHyperparameter( name="kernel", choices=['linear', 'poly', 'rbf', 'sigmoid'], default="rbf") degree = UniformIntegerHyperparameter( name="degree", lower=1, upper=5, default=3) # Changed the gamma value to 0.0 (is 0.1 for classification) gamma = UniformFloatHyperparameter( name="gamma", lower=3.0517578125e-05, upper=8, log=True, default=0.1) # TODO this is totally ad-hoc coef0 = UniformFloatHyperparameter( name="coef0", lower=-1, upper=1, default=0) # probability is no hyperparameter, but an argument to the SVM algo shrinking = CategoricalHyperparameter( name="shrinking", choices=["True", "False"], default="True") tol = UniformFloatHyperparameter( name="tol", lower=1e-5, upper=1e-1, default=1e-3, log=True) max_iter = UnParametrizedHyperparameter("max_iter", -1) # Random Guess epsilon = UniformFloatHyperparameter(name="epsilon", lower=0.001, upper=1, default=0.1, log=True) cs = ConfigurationSpace() cs.add_hyperparameters([C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, epsilon]) degree_depends_on_kernel = InCondition(child=degree, parent=kernel, values=('poly', 'rbf', 'sigmoid')) gamma_depends_on_kernel = InCondition(child=gamma, parent=kernel, values=('poly', 'rbf')) coef0_depends_on_kernel = InCondition(child=coef0, parent=kernel, values=('poly', 'sigmoid')) cs.add_conditions([degree_depends_on_kernel, gamma_depends_on_kernel, coef0_depends_on_kernel]) return cs ``` #### File: test/test_metric/test_metrics.py ```python import unittest import numpy as np import sklearn.metrics import autosklearn.metrics.classification_metrics class TestScorer(unittest.TestCase): def test_predict_scorer_binary(self): y_true = np.array([0, 0, 1, 1]) y_pred = np.array([[1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 1.0]]) scorer = autosklearn.metrics._PredictScorer( 'accuracy', sklearn.metrics.accuracy_score, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) y_pred = np.array([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) y_pred = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) scorer = autosklearn.metrics._PredictScorer( 'bac', autosklearn.metrics.classification_metrics.balanced_accuracy, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) scorer = autosklearn.metrics._PredictScorer( 'accuracy', sklearn.metrics.accuracy_score, -1, {}) y_pred = np.array([[1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0) def test_predict_scorer_multiclass(self): y_true = np.array([0, 1, 2]) y_pred = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) scorer = autosklearn.metrics._PredictScorer( 'accuracy', sklearn.metrics.accuracy_score, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) y_pred = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.333333333) y_pred = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.333333333) scorer = autosklearn.metrics._PredictScorer( 'bac', autosklearn.metrics.classification_metrics.balanced_accuracy, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.333333333) scorer = autosklearn.metrics._PredictScorer( 'accuracy', sklearn.metrics.accuracy_score, -1, {}) y_pred = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0) def test_predict_scorer_multilabel(self): y_true = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_pred = np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) scorer = autosklearn.metrics._PredictScorer( 'accuracy', sklearn.metrics.accuracy_score, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) y_pred = np.array([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.25) y_pred = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.25) scorer = autosklearn.metrics._PredictScorer( 'bac', autosklearn.metrics.classification_metrics.balanced_accuracy, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) scorer = autosklearn.metrics._PredictScorer( 'accuracy', sklearn.metrics.accuracy_score, -1, {}) y_pred = np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0) def test_predict_scorer_regression(self): y_true = np.arange(0, 1.01, 0.1) y_pred = y_true.copy() scorer = autosklearn.metrics._PredictScorer( 'r2', sklearn.metrics.r2_score, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) y_pred = np.ones(y_true.shape) * np.mean(y_true) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.0) def test_proba_scorer_binary(self): y_true = [0, 0, 1, 1] y_pred = [[1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 1.0]] scorer = autosklearn.metrics._ProbaScorer( 'accuracy', sklearn.metrics.log_loss, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.0) y_pred = [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.69314718055994529) y_pred = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.69314718055994529) scorer = autosklearn.metrics._ProbaScorer( 'accuracy', sklearn.metrics.log_loss, -1, {}) y_pred = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -0.69314718055994529) def test_proba_scorer_multiclass(self): y_true = [0, 1, 2] y_pred = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] scorer = autosklearn.metrics._ProbaScorer( 'accuracy', sklearn.metrics.log_loss, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.0) y_pred = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0986122886681098) y_pred = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0986122886681096) scorer = autosklearn.metrics._ProbaScorer( 'accuracy', sklearn.metrics.log_loss, -1, {}) y_pred = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0986122886681096) def test_proba_scorer_multilabel(self): y_true = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_pred = np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) scorer = autosklearn.metrics._ProbaScorer( 'accuracy', sklearn.metrics.log_loss, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.34657359027997314) y_pred = np.array([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.69314718055994529) y_pred = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.69314718055994529) scorer = autosklearn.metrics._ProbaScorer( 'accuracy', sklearn.metrics.log_loss, -1, {}) y_pred = np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -0.34657359027997314) def test_threshold_scorer_binary(self): y_true = [0, 0, 1, 1] y_pred = np.array([[1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 1.0]]) scorer = autosklearn.metrics._ThresholdScorer( 'accuracy', sklearn.metrics.roc_auc_score, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) y_pred = np.array([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) y_pred = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) scorer = autosklearn.metrics._ThresholdScorer( 'accuracy', sklearn.metrics.roc_auc_score, -1, {}) y_pred = np.array([[1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0) def test_threshold_scorer_multilabel(self): y_true = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_pred = np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) scorer = autosklearn.metrics._ThresholdScorer( 'accuracy', sklearn.metrics.roc_auc_score, 1, {}) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) y_pred = np.array([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) y_pred = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 0.5) scorer = autosklearn.metrics._ThresholdScorer( 'accuracy', sklearn.metrics.roc_auc_score, -1, {}) y_pred = np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0) def test_sign_flip(self): y_true = np.arange(0, 1.01, 0.1) y_pred = y_true.copy() scorer = autosklearn.metrics.make_scorer( 'r2', sklearn.metrics.r2_score, greater_is_better=True) score = scorer(y_true, y_pred + 1.0) self.assertAlmostEqual(score, -9.0) score = scorer(y_true, y_pred + 0.5) self.assertAlmostEqual(score, -1.5) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, 1.0) scorer = autosklearn.metrics.make_scorer( 'r2', sklearn.metrics.r2_score, greater_is_better=False) score = scorer(y_true, y_pred + 1.0) self.assertAlmostEqual(score, 9.0) score = scorer(y_true, y_pred + 0.5) self.assertAlmostEqual(score, 1.5) score = scorer(y_true, y_pred) self.assertAlmostEqual(score, -1.0) class TestMetricsDoNotAlterInput(unittest.TestCase): def test_regression_metrics(self): for metric, scorer in autosklearn.metrics.REGRESSION_METRICS.items(): y_true = np.random.random(100).reshape((-1, 1)) y_pred = y_true.copy() + np.random.randn(100, 1) * 0.1 y_true_2 = y_true.copy() y_pred_2 = y_pred.copy() self.assertTrue(np.isfinite(scorer(y_true_2, y_pred_2))) np.testing.assert_array_almost_equal(y_true, y_true_2, err_msg=metric) np.testing.assert_array_almost_equal(y_pred, y_pred_2, err_msg=metric) def test_classification_metrics(self): for metric, scorer in autosklearn.metrics.CLASSIFICATION_METRICS.items(): y_true = np.random.randint(0, 2, size=(100, 1)) y_pred = np.random.random(200).reshape((-1, 2)) y_pred = np.array([y_pred[i] / np.sum(y_pred[i]) for i in range(100)]) y_true_2 = y_true.copy() y_pred_2 = y_pred.copy() try: self.assertTrue(np.isfinite(scorer(y_true_2, y_pred_2))) np.testing.assert_array_almost_equal(y_true, y_true_2, err_msg=metric) np.testing.assert_array_almost_equal(y_pred, y_pred_2, err_msg=metric) except ValueError as e: if e.args[0] == 'Sample-based precision, recall, fscore is ' \ 'not meaningful outside multilabel ' \ 'classification. See the accuracy_score instead.': pass else: raise e ```
{ "source": "jimgoo/Merlion", "score": 2 }
#### File: ts_datasets/anomaly/nab.py ```python import datetime import glob import json import logging import os import re import requests import numpy as np import pandas as pd import tqdm from ts_datasets.anomaly.base import TSADBaseDataset logger = logging.getLogger(__name__) class NAB(TSADBaseDataset): """ Wrapper to load datasets found in the Numenta Anomaly Benchmark (https://github.com/numenta/NAB). The NAB contains a range of datasets and are categorized by their domains. """ valid_subsets = [ "all", "artificial", "artificialWithAnomaly", "realAWSCloudwatch", "realAdExchange", "realKnownCause", "realTraffic", "realTweets", ] def __init__(self, subset="all", rootdir=None): """ :param subset: One of the elements in subsets. :param rootdir: The root directory at which the dataset can be found. """ super().__init__() assert subset in self.valid_subsets, f"subset should be in {self.valid_subsets}, but got {subset}" self.subset = subset if rootdir is None: fdir = os.path.dirname(os.path.abspath(__file__)) merlion_root = os.path.abspath(os.path.join(fdir, "..", "..", "..")) rootdir = os.path.join(merlion_root, "data", "nab") if subset == "artificial": subsets = ["artificialNoAnomaly", "artificialWithAnomaly"] elif subset == "all": subsets = [ "artificialNoAnomaly", "artificialWithAnomaly", "realAWSCloudwatch", "realAdExchange", "realKnownCause", "realTraffic", "realTweets", ] else: subsets = [subset] self.download(rootdir, subsets) dsetdirs = [os.path.join(rootdir, s) for s in subsets] labelfile = os.path.join(rootdir, "labels/combined_windows.json") with open(labelfile) as json_file: label_list = json.load(json_file) csvs = sum([sorted(glob.glob(f"{d}/*.csv")) for d in dsetdirs], []) for i, csv in enumerate(sorted(csvs)): df = pd.read_csv(csv) df.iloc[:, 0] = pd.to_datetime(df.iloc[:, 0]) df = df.sort_values(by="timestamp") if len(df["timestamp"][df["timestamp"].diff() == datetime.timedelta(0)]) != 0: df = df.drop_duplicates(subset="timestamp", keep="first") logger.warning(f"Time series {csv} (index {i}) has timestamp duplicates. Kept first values.") all_dt = np.unique(np.diff(df["timestamp"])).astype(int) gcd_dt = all_dt[0] for dt in all_dt[1:]: gcd_dt = np.gcd(gcd_dt, dt) gcd_dt = pd.to_timedelta(gcd_dt) labels = self.load_labels(csv, label_list, gcd_dt) df["anomaly"] = df["timestamp"].apply(lambda x: x in labels) df = df.set_index("timestamp") # First 15% of data is "probationary", i.e. model can use it to # warm-start without being tested. See Figure 2 of the NAB # paper https://arxiv.org/pdf/1510.03336.pdf n = len(df) * 0.15 df["trainval"] = pd.Series(np.arange(len(df)) <= n, index=df.index) md_cols = ["anomaly", "trainval"] self.metadata.append(df[md_cols]) self.time_series.append(df[[c for c in df.columns if c not in md_cols]]) @staticmethod def load_labels(datafile, label_list, freq): filename = "/".join(re.sub(r"\\", "/", datafile).split("/")[-2:]) label_list = label_list[filename] labels = pd.DatetimeIndex([]) for lp in label_list: start = pd.to_datetime(lp[0]) end = pd.to_datetime(lp[1]) labels = labels.append(pd.date_range(start=start, end=end, freq=freq)) return labels @property def max_lead_sec(self): """ The anomalies in the NAB dataset are already windows which permit early detection. So we explicitly disallow any earlier detection. """ return 0 def download(self, rootdir, subsets): csvs = [ "artificialNoAnomaly/art_daily_no_noise.csv", "artificialNoAnomaly/art_daily_perfect_square_wave.csv", "artificialNoAnomaly/art_daily_small_noise.csv", "artificialNoAnomaly/art_flatline.csv", "artificialNoAnomaly/art_noisy.csv", "artificialWithAnomaly/art_daily_flatmiddle.csv", "artificialWithAnomaly/art_daily_jumpsdown.csv", "artificialWithAnomaly/art_daily_jumpsup.csv", "artificialWithAnomaly/art_daily_nojump.csv", "artificialWithAnomaly/art_increase_spike_density.csv", "artificialWithAnomaly/art_load_balancer_spikes.csv", "realAWSCloudwatch/ec2_cpu_utilization_24ae8d.csv", "realAWSCloudwatch/ec2_cpu_utilization_53ea38.csv", "realAWSCloudwatch/ec2_cpu_utilization_5f5533.csv", "realAWSCloudwatch/ec2_cpu_utilization_77c1ca.csv", "realAWSCloudwatch/ec2_cpu_utilization_825cc2.csv", "realAWSCloudwatch/ec2_cpu_utilization_ac20cd.csv", "realAWSCloudwatch/ec2_cpu_utilization_c6585a.csv", "realAWSCloudwatch/ec2_cpu_utilization_fe7f93.csv", "realAWSCloudwatch/ec2_disk_write_bytes_1ef3de.csv", "realAWSCloudwatch/ec2_disk_write_bytes_c0d644.csv", "realAWSCloudwatch/ec2_network_in_257a54.csv", "realAWSCloudwatch/ec2_network_in_5abac7.csv", "realAWSCloudwatch/elb_request_count_8c0756.csv", "realAWSCloudwatch/grok_asg_anomaly.csv", "realAWSCloudwatch/iio_us-east-1_i-a2eb1cd9_NetworkIn.csv", "realAWSCloudwatch/rds_cpu_utilization_cc0c53.csv", "realAWSCloudwatch/rds_cpu_utilization_e47b3b.csv", "realAdExchange/exchange-2_cpc_results.csv", "realAdExchange/exchange-2_cpm_results.csv", "realAdExchange/exchange-3_cpc_results.csv", "realAdExchange/exchange-3_cpm_results.csv", "realAdExchange/exchange-4_cpc_results.csv", "realAdExchange/exchange-4_cpm_results.csv", "realKnownCause/ambient_temperature_system_failure.csv", "realKnownCause/cpu_utilization_asg_misconfiguration.csv", "realKnownCause/ec2_request_latency_system_failure.csv", "realKnownCause/machine_temperature_system_failure.csv", "realKnownCause/nyc_taxi.csv", "realKnownCause/rogue_agent_key_hold.csv", "realKnownCause/rogue_agent_key_updown.csv", "realTraffic/TravelTime_387.csv", "realTraffic/TravelTime_451.csv", "realTraffic/occupancy_6005.csv", "realTraffic/occupancy_t4013.csv", "realTraffic/speed_6005.csv", "realTraffic/speed_7578.csv", "realTraffic/speed_t4013.csv", "realTweets/Twitter_volume_AAPL.csv", "realTweets/Twitter_volume_AMZN.csv", "realTweets/Twitter_volume_CRM.csv", "realTweets/Twitter_volume_CVS.csv", "realTweets/Twitter_volume_FB.csv", "realTweets/Twitter_volume_GOOG.csv", "realTweets/Twitter_volume_IBM.csv", "realTweets/Twitter_volume_KO.csv", "realTweets/Twitter_volume_PFE.csv", "realTweets/Twitter_volume_UPS.csv", ] labelfile = "labels/combined_windows.json" path = os.path.join(rootdir, labelfile) if not os.path.isfile(path): print("Downloading label file...") os.makedirs(os.path.dirname(path), exist_ok=True) url = f"https://github.com/numenta/NAB/raw/master/{labelfile}" r = requests.get(url, stream=True) with open(path, "wb") as f: for chunk in r.iter_content(chunk_size=16 * 1024 ** 2): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() csvs = [f for f in csvs if not os.path.isfile(os.path.join(rootdir, f)) and f.split("/")[0] in subsets] for csv in tqdm.tqdm(csvs, desc="NAB Download", disable=len(csvs) == 0): path = os.path.join(rootdir, csv) if not os.path.isfile(path): os.makedirs(os.path.dirname(path), exist_ok=True) url = f"https://github.com/numenta/NAB/raw/master/data/{csv}" r = requests.get(url, stream=True) with open(path, "wb") as f: for chunk in r.iter_content(chunk_size=16 * 1024 ** 2): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() ```
{ "source": "jimgoo/zipline-fork", "score": 2 }
#### File: tests/pipeline/test_factor.py ```python from nose_parameterized import parameterized from numpy import arange, array, empty, eye, nan, ones, datetime64 from numpy.random import randn, seed from zipline.errors import UnknownRankMethod from zipline.pipeline import Factor, Filter, TermGraph from zipline.pipeline.factors import RSI from zipline.utils.test_utils import check_allclose, check_arrays from .base import BasePipelineTestCase class F(Factor): inputs = () window_length = 0 class Mask(Filter): inputs = () window_length = 0 class FactorTestCase(BasePipelineTestCase): def setUp(self): super(FactorTestCase, self).setUp() self.f = F() def test_bad_input(self): with self.assertRaises(UnknownRankMethod): self.f.rank("not a real rank method") def test_rank_ascending(self): # Generated with: # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]], dtype=float) expected_ranks = { 'ordinal': array([[1., 3., 4., 5., 2.], [2., 4., 5., 1., 3.], [3., 5., 1., 2., 4.], [4., 1., 2., 3., 5.], [1., 3., 4., 5., 2.]]), 'average': array([[1.5, 3., 4., 5., 1.5], [2.5, 4., 5., 1., 2.5], [3.5, 5., 1., 2., 3.5], [4.5, 1., 2., 3., 4.5], [1.5, 3., 4., 5., 1.5]]), 'min': array([[1., 3., 4., 5., 1.], [2., 4., 5., 1., 2.], [3., 5., 1., 2., 3.], [4., 1., 2., 3., 4.], [1., 3., 4., 5., 1.]]), 'max': array([[2., 3., 4., 5., 2.], [3., 4., 5., 1., 3.], [4., 5., 1., 2., 4.], [5., 1., 2., 3., 5.], [2., 3., 4., 5., 2.]]), 'dense': array([[1., 2., 3., 4., 1.], [2., 3., 4., 1., 2.], [3., 4., 1., 2., 3.], [4., 1., 2., 3., 4.], [1., 2., 3., 4., 1.]]), } def check(terms): graph = TermGraph(terms) results = self.run_graph( graph, initial_workspace={self.f: data}, mask=self.build_mask(ones((5, 5))), ) for method in terms: check_arrays(results[method], expected_ranks[method]) check({meth: self.f.rank(method=meth) for meth in expected_ranks}) check({ meth: self.f.rank(method=meth, ascending=True) for meth in expected_ranks }) # Not passing a method should default to ordinal. check({'ordinal': self.f.rank()}) check({'ordinal': self.f.rank(ascending=True)}) def test_rank_descending(self): # Generated with: # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]], dtype=float) expected_ranks = { 'ordinal': array([[4., 3., 2., 1., 5.], [3., 2., 1., 5., 4.], [2., 1., 5., 4., 3.], [1., 5., 4., 3., 2.], [4., 3., 2., 1., 5.]]), 'average': array([[4.5, 3., 2., 1., 4.5], [3.5, 2., 1., 5., 3.5], [2.5, 1., 5., 4., 2.5], [1.5, 5., 4., 3., 1.5], [4.5, 3., 2., 1., 4.5]]), 'min': array([[4., 3., 2., 1., 4.], [3., 2., 1., 5., 3.], [2., 1., 5., 4., 2.], [1., 5., 4., 3., 1.], [4., 3., 2., 1., 4.]]), 'max': array([[5., 3., 2., 1., 5.], [4., 2., 1., 5., 4.], [3., 1., 5., 4., 3.], [2., 5., 4., 3., 2.], [5., 3., 2., 1., 5.]]), 'dense': array([[4., 3., 2., 1., 4.], [3., 2., 1., 4., 3.], [2., 1., 4., 3., 2.], [1., 4., 3., 2., 1.], [4., 3., 2., 1., 4.]]), } def check(terms): graph = TermGraph(terms) results = self.run_graph( graph, initial_workspace={self.f: data}, mask=self.build_mask(ones((5, 5))), ) for method in terms: check_arrays(results[method], expected_ranks[method]) check({ meth: self.f.rank(method=meth, ascending=False) for meth in expected_ranks }) # Not passing a method should default to ordinal. check({'ordinal': self.f.rank(ascending=False)}) def test_rank_after_mask(self): # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]], dtype=float) mask_data = ~eye(5, dtype=bool) initial_workspace = {self.f: data, Mask(): mask_data} graph = TermGraph( { "ascending_nomask": self.f.rank(ascending=True), "ascending_mask": self.f.rank(ascending=True, mask=Mask()), "descending_nomask": self.f.rank(ascending=False), "descending_mask": self.f.rank(ascending=False, mask=Mask()), } ) expected = { "ascending_nomask": array([[1., 3., 4., 5., 2.], [2., 4., 5., 1., 3.], [3., 5., 1., 2., 4.], [4., 1., 2., 3., 5.], [1., 3., 4., 5., 2.]]), "descending_nomask": array([[4., 3., 2., 1., 5.], [3., 2., 1., 5., 4.], [2., 1., 5., 4., 3.], [1., 5., 4., 3., 2.], [4., 3., 2., 1., 5.]]), # Diagonal should be all nans, and anything whose rank was less # than the diagonal in the unmasked calc should go down by 1. "ascending_mask": array([[nan, 2., 3., 4., 1.], [2., nan, 4., 1., 3.], [2., 4., nan, 1., 3.], [3., 1., 2., nan, 4.], [1., 2., 3., 4., nan]]), "descending_mask": array([[nan, 3., 2., 1., 4.], [2., nan, 1., 4., 3.], [2., 1., nan, 4., 3.], [1., 4., 3., nan, 2.], [4., 3., 2., 1., nan]]), } results = self.run_graph( graph, initial_workspace, mask=self.build_mask(ones((5, 5))), ) for method in results: check_arrays(expected[method], results[method]) @parameterized.expand([ # Test cases computed by doing: # from numpy.random import seed, randn # from talib import RSI # seed(seed_value) # data = abs(randn(15, 3)) # expected = [RSI(data[:, i])[-1] for i in range(3)] (100, array([41.032913785966, 51.553585468393, 51.022005016446])), (101, array([43.506969935466, 46.145367530182, 50.57407044197])), (102, array([46.610102205934, 47.646892444315, 52.13182788538])), ]) def test_rsi(self, seed_value, expected): rsi = RSI() today = datetime64(1, 'ns') assets = arange(3) out = empty((3,), dtype=float) seed(seed_value) # Seed so we get deterministic results. test_data = abs(randn(15, 3)) out = empty((3,), dtype=float) rsi.compute(today, assets, out, test_data) check_allclose(expected, out) ``` #### File: zipline/assets/asset_writer.py ```python from abc import ( ABCMeta, abstractmethod, ) from collections import namedtuple import re import pandas as pd import numpy as np from six import with_metaclass import sqlalchemy as sa from zipline.errors import SidAssignmentError from zipline.assets._assets import Asset SQLITE_MAX_VARIABLE_NUMBER = 999 # Define a namedtuple for use with the load_data and _load_data methods AssetData = namedtuple('AssetData', 'equities futures exchanges root_symbols') # Default values for the equities DataFrame _equities_defaults = { 'symbol': None, 'asset_name': None, 'start_date': 0, 'end_date': 2 ** 62 - 1, 'first_traded': None, 'exchange': None, } # Default values for the futures DataFrame _futures_defaults = { 'symbol': None, 'root_symbol': None, 'asset_name': None, 'start_date': 0, 'end_date': 2 ** 62 - 1, 'first_traded': None, 'exchange': None, 'notice_date': None, 'expiration_date': None, 'auto_close_date': None, 'contract_multiplier': 1, } # Default values for the exchanges DataFrame _exchanges_defaults = { 'timezone': None, } # Default values for the root_symbols DataFrame _root_symbols_defaults = { 'root_symbol_id': None, 'sector': None, 'description': None, 'exchange': None, } # Fuzzy symbol delimiters that may break up a company symbol and share class _delimited_symbol_delimiter_regex = r'[./\-_]' _delimited_symbol_default_triggers = frozenset({np.nan, None, ''}) def split_delimited_symbol(symbol): """ Takes in a symbol that may be delimited and splits it in to a company symbol and share class symbol. Also returns the fuzzy symbol, which is the symbol without any fuzzy characters at all. Parameters ---------- symbol : str The possibly-delimited symbol to be split Returns ------- ( str, str , str ) A tuple of ( company_symbol, share_class_symbol, fuzzy_symbol) """ # return blank strings for any bad fuzzy symbols, like NaN or None if symbol in _delimited_symbol_default_triggers: return ('', '', '') split_list = re.split(pattern=_delimited_symbol_delimiter_regex, string=symbol, maxsplit=1) # Break the list up in to its two components, the company symbol and the # share class symbol company_symbol = split_list[0] if len(split_list) > 1: share_class_symbol = split_list[1] else: share_class_symbol = '' # Strip all fuzzy characters from the symbol to get the fuzzy symbol fuzzy_symbol = re.sub(pattern=_delimited_symbol_delimiter_regex, repl='', string=symbol) return (company_symbol, share_class_symbol, fuzzy_symbol) def _generate_output_dataframe(data_subset, defaults): """ Generates an output dataframe from the given subset of user-provided data, the given column names, and the given default values. Parameters ---------- data_subset : DataFrame A DataFrame, usually from an AssetData object, that contains the user's input metadata for the asset type being processed defaults : dict A dict where the keys are the names of the columns of the desired output DataFrame and the values are the default values to insert in the DataFrame if no user data is provided Returns ------- DataFrame A DataFrame containing all user-provided metadata, and default values wherever user-provided metadata was missing """ # The columns provided. cols = set(data_subset.columns) desired_cols = set(defaults) # Drop columns with unrecognised headers. data_subset.drop(cols - desired_cols, axis=1, inplace=True) # Get those columns which we need but # for which no data has been supplied. need = desired_cols - cols # Combine the users supplied data with our required columns. output = pd.concat( (data_subset, pd.DataFrame( {k: defaults[k] for k in need}, data_subset.index, )), axis=1, copy=False ) return output class AssetDBWriter(with_metaclass(ABCMeta)): """ Class used to write arbitrary data to SQLite database. Concrete subclasses will implement the logic for a specific input datatypes by implementing the _load_data method. Methods ------- write_all(engine, allow_sid_assignment=True, constraints=False) Write the data supplied at initialization to the database. init_db(engine, constraints=False) Create the SQLite tables (called by write_all). load_data() Returns data in standard format. """ CHUNK_SIZE = SQLITE_MAX_VARIABLE_NUMBER def __init__(self, equities=None, futures=None, exchanges=None, root_symbols=None): if equities is None: equities = self.defaultval() self._equities = equities if futures is None: futures = self.defaultval() self._futures = futures if exchanges is None: exchanges = self.defaultval() self._exchanges = exchanges if root_symbols is None: root_symbols = self.defaultval() self._root_symbols = root_symbols @abstractmethod def defaultval(self): raise NotImplementedError def write_all(self, engine, allow_sid_assignment=True): """ Write pre-supplied data to SQLite. Parameters ---------- engine : Engine An SQLAlchemy engine to a SQL database. allow_sid_assignment: bool, optional If True then the class can assign sids where necessary. constraints : bool, optional If True then create SQL ForeignKey and PrimaryKey constraints. """ self.allow_sid_assignment = allow_sid_assignment # Begin an SQL transaction. with engine.begin() as txn: # Create SQL tables. self.init_db(txn) # Get the data to add to SQL. data = self.load_data() # Write the data to SQL. self._write_exchanges(data.exchanges, txn) self._write_root_symbols(data.root_symbols, txn) self._write_futures(data.futures, txn) self._write_equities(data.equities, txn) def _write_df_to_table(self, df, tbl, bind): df.to_sql( tbl.name, bind.connection, index_label=[col.name for col in tbl.primary_key.columns][0], if_exists='append', chunksize=self.CHUNK_SIZE, ) def _write_assets(self, assets, asset_tbl, asset_type, bind): self._write_df_to_table(assets, asset_tbl, bind) pd.DataFrame({self.asset_router.c.sid.name: assets.index.values, self.asset_router.c.asset_type.name: asset_type}).to_sql( self.asset_router.name, bind.connection, if_exists='append', index=False, chunksize=self.CHUNK_SIZE, ) def _write_exchanges(self, exchanges, bind): self._write_df_to_table(exchanges, self.futures_exchanges, bind) def _write_root_symbols(self, root_symbols, bind): self._write_df_to_table(root_symbols, self.futures_root_symbols, bind) def _write_futures(self, futures, bind): self._write_assets(futures, self.futures_contracts, 'future', bind) def _write_equities(self, equities, bind): self._write_assets(equities, self.equities, 'equity', bind) def init_db(self, engine): """Connect to database and create tables. Parameters ---------- engine : Engine An engine to a SQL database. constraints : bool, optional If True, create SQL ForeignKey and PrimaryKey constraints. """ metadata = sa.MetaData(bind=engine) self.equities = sa.Table( 'equities', metadata, sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('symbol', sa.Text), sa.Column('company_symbol', sa.Text, index=True), sa.Column('share_class_symbol', sa.Text), sa.Column('fuzzy_symbol', sa.Text, index=True), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer, nullable=False), sa.Column('exchange', sa.Text), ) self.futures_exchanges = sa.Table( 'futures_exchanges', metadata, sa.Column( 'exchange', sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column('timezone', sa.Text), ) self.futures_root_symbols = sa.Table( 'futures_root_symbols', metadata, sa.Column( 'root_symbol', sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column('root_symbol_id', sa.Integer), sa.Column('sector', sa.Text), sa.Column('description', sa.Text), sa.Column( 'exchange', sa.Text, sa.ForeignKey(self.futures_exchanges.c.exchange), ), ) self.futures_contracts = sa.Table( 'futures_contracts', metadata, sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('symbol', sa.Text, unique=True, index=True), sa.Column( 'root_symbol', sa.Text, sa.ForeignKey(self.futures_root_symbols.c.root_symbol), index=True ), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer, nullable=False), sa.Column( 'exchange', sa.Text, sa.ForeignKey(self.futures_exchanges.c.exchange), ), sa.Column('notice_date', sa.Integer, nullable=False), sa.Column('expiration_date', sa.Integer, nullable=False), sa.Column('auto_close_date', sa.Integer, nullable=False), sa.Column('contract_multiplier', sa.Float), ) self.asset_router = sa.Table( 'asset_router', metadata, sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True), sa.Column('asset_type', sa.Text), ) # Create the SQL tables if they do not already exist. metadata.create_all(checkfirst=True) return metadata def load_data(self): """ Returns a standard set of pandas.DataFrames: equities, futures, exchanges, root_symbols """ data = self._load_data() ############################### # Generate equities DataFrame # ############################### # HACK: If company_name is provided, map it to asset_name if ('company_name' in data.equities.columns and 'asset_name' not in data.equities.columns): data.equities['asset_name'] = data.equities['company_name'] if 'file_name' in data.equities.columns: data.equities['symbol'] = data.equities['file_name'] equities_output = _generate_output_dataframe( data_subset=data.equities, defaults=_equities_defaults, ) # Split symbols to company_symbols and share_class_symbols tuple_series = equities_output['symbol'].apply(split_delimited_symbol) split_symbols = pd.DataFrame( tuple_series.tolist(), columns=['company_symbol', 'share_class_symbol', 'fuzzy_symbol'], index=tuple_series.index ) equities_output = equities_output.join(split_symbols) # Upper-case all symbol data equities_output['symbol'] = \ equities_output.symbol.str.upper() equities_output['company_symbol'] = \ equities_output.company_symbol.str.upper() equities_output['share_class_symbol'] = \ equities_output.share_class_symbol.str.upper() equities_output['fuzzy_symbol'] = \ equities_output.fuzzy_symbol.str.upper() # Convert date columns to UNIX Epoch integers (nanoseconds) for date_col in ('start_date', 'end_date', 'first_traded'): equities_output[date_col] = \ self.dt_to_epoch_ns(equities_output[date_col]) ############################## # Generate futures DataFrame # ############################## futures_output = _generate_output_dataframe( data_subset=data.futures, defaults=_futures_defaults, ) # Convert date columns to UNIX Epoch integers (nanoseconds) for date_col in ('start_date', 'end_date', 'first_traded', 'notice_date', 'expiration_date', 'auto_close_date'): futures_output[date_col] = \ self.dt_to_epoch_ns(futures_output[date_col]) # Convert symbols and root_symbols to upper case. futures_output['symbol'] = futures_output.symbol.str.upper() futures_output['root_symbol'] = futures_output.root_symbol.str.upper() ################################ # Generate exchanges DataFrame # ################################ exchanges_output = _generate_output_dataframe( data_subset=data.exchanges, defaults=_exchanges_defaults, ) ################################### # Generate root symbols DataFrame # ################################### root_symbols_output = _generate_output_dataframe( data_subset=data.root_symbols, defaults=_root_symbols_defaults, ) return AssetData(equities=equities_output, futures=futures_output, exchanges=exchanges_output, root_symbols=root_symbols_output) @staticmethod def dt_to_epoch_ns(dt_series): index = pd.to_datetime(dt_series.values) try: index = index.tz_localize('UTC') except TypeError: index = index.tz_convert('UTC') return index.view(np.int64) @abstractmethod def _load_data(self): """ Subclasses should implement this method to return data in a standard format: a pandas.DataFrame for each of the following tables: equities, futures, exchanges, root_symbols. For each of these DataFrames the index columns should be the integer unique identifier for the table, which are sid, sid, exchange_id and root_symbol_id respectively. """ raise NotImplementedError('load_data') class AssetDBWriterFromList(AssetDBWriter): """ Class used to write list data to SQLite database. """ defaultval = list def _load_data(self): # 0) Instantiate empty dictionaries _equities, _futures, _exchanges, _root_symbols = {}, {}, {}, {} # 1) Populate dictionaries # Return the largest sid in our database, if one exists. id_counter = sa.select( [sa.func.max(self.asset_router.c.sid)] ).execute().scalar() # Base sid creation on largest sid in database, or 0 if # no sids exist. if id_counter is None: id_counter = 0 else: id_counter += 1 for output, data in [(_equities, self._equities), (_futures, self._futures), ]: for identifier in data: if isinstance(identifier, Asset): sid = identifier.sid metadata = identifier.to_dict() output[sid] = metadata elif hasattr(identifier, '__int__'): output[identifier.__int__()] = {'symbol': None} else: if self.allow_sid_assignment: output[id_counter] = {'symbol': identifier} id_counter += 1 else: raise SidAssignmentError(identifier=identifier) exchange_counter = 0 for identifier in self._exchanges: if hasattr(identifier, '__int__'): _exchanges[identifier.__int__()] = {} else: _exchanges[exchange_counter] = {'exchange': identifier} exchange_counter += 1 root_symbol_counter = 0 for identifier in self._root_symbols: if hasattr(identifier, '__int__'): _root_symbols[identifier.__int__()] = {} else: _root_symbols[root_symbol_counter] = \ {'root_symbol': identifier} root_symbol_counter += 1 # 2) Convert dictionaries to pandas.DataFrames. _equities = pd.DataFrame.from_dict(_equities, orient='index') _futures = pd.DataFrame.from_dict(_futures, orient='index') _exchanges = pd.DataFrame.from_dict(_exchanges, orient='index') _root_symbols = pd.DataFrame.from_dict(_root_symbols, orient='index') # 3) Return the data inside a named tuple. return AssetData(equities=_equities, futures=_futures, exchanges=_exchanges, root_symbols=_root_symbols) class AssetDBWriterFromDictionary(AssetDBWriter): """ Class used to write dictionary data to SQLite database. Expects to be initialised with dictionaries in the following format: {id_0: {attribute_1 : ...}, id_1: {attribute_2: ...}, ...} """ defaultval = dict def _load_data(self): _equities = pd.DataFrame.from_dict(self._equities, orient='index') _futures = pd.DataFrame.from_dict(self._futures, orient='index') _exchanges = pd.DataFrame.from_dict(self._exchanges, orient='index') _root_symbols = pd.DataFrame.from_dict(self._root_symbols, orient='index') return AssetData(equities=_equities, futures=_futures, exchanges=_exchanges, root_symbols=_root_symbols) class AssetDBWriterFromDataFrame(AssetDBWriter): """ Class used to write pandas.DataFrame data to SQLite database. """ defaultval = pd.DataFrame def _load_data(self): # Check whether identifier columns have been provided. # If they have, set the index to this column. # If not, assume the index already cotains the identifier information. for df, id_col in [ (self._equities, 'sid'), (self._futures, 'sid'), (self._exchanges, 'exchange'), (self._root_symbols, 'root_symbol'), ]: if id_col in df.columns: df.set_index([id_col], inplace=True) return AssetData(equities=self._equities, futures=self._futures, exchanges=self._exchanges, root_symbols=self._root_symbols) ```
{ "source": "jimgreen/Viscid", "score": 2 }
#### File: Viscid/doc/public_doccheck.py ```python from __future__ import print_function import os import sys import types # from types import BufferType, ModuleType sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), ".."))) import viscid # from viscid.plot import vpyplot as vlt # from viscid.plot import vlab def main(): doc_fname = os.path.join(os.path.dirname(sys.argv[0]), "functions.rst") with open(doc_fname, 'r') as fin: doc = fin.read() without_sphinx = [] without_docstr = [] sphinx_instance_blklst = [] sphinx_module_blklst = [] docstr_instance_blklst = [] docstr_module_blklst = [] for attr_name in dir(viscid): if attr_name.startswith("_"): continue attr = getattr(viscid, attr_name) if callable(attr): if not hasattr(attr, "__name__"): setattr(attr, "__name__", attr_name) if "`viscid.{0}`".format(attr_name) not in doc: if any(isinstance(attr, t) for t in sphinx_instance_blklst): pass elif any(m in attr.__module__ for m in sphinx_module_blklst): pass else: without_sphinx.append(attr) if not attr.__doc__: if any(isinstance(attr, t) for t in docstr_instance_blklst): pass elif any(m in attr.__module__ for m in docstr_module_blklst): pass else: without_docstr.append(attr) N = 62 # this is annoying, and it's clearly not motivating me to update the docs without_sphinx = [] # !!!!!!!!!!!!!!!!! if without_docstr or without_sphinx: print("*" * N, file=sys.stderr) print(" documentation issues... ", file=sys.stderr) else: print("*" * N, file=sys.stderr) print(" all public functions are doumented ", file=sys.stderr) print("*" * N, file=sys.stderr) if without_docstr: err_str = "*" * N + "\n" err_str += "The following public functions are missing docstrings\n" err_str += "-" * N for fn in without_docstr: err_str += "\n - {0}.{1}".format(fn.__module__, fn.__name__) print(err_str, file=sys.stderr) if without_sphinx: err_str = "*" * N + "\n" err_str += "The following public functions are not present in\n" err_str += "`{0}`:\n".format(doc_fname) err_str += "-" * N for fn in without_sphinx: err_str += "\n - viscid.{0}".format(fn.__name__) print(err_str, file=sys.stderr) if without_docstr or without_sphinx: print("*" * N, file=sys.stderr) if without_docstr and without_sphinx: ret = 4 elif without_docstr: ret = 1 elif without_sphinx: ret = 0 # temporarily allow functions that are not in functinos.rst else: ret = 0 return ret if __name__ == "__main__": sys.exit(main()) ## ## EOF ## ``` #### File: Viscid/tests/misc_ecfc_slice_save.py ```python from __future__ import division, print_function import os import sys import viscid from viscid.plot import vpyplot as vlt def main(): f = viscid.load_file("~/dev/work/tmedium/*.3d.[-1].xdmf") grid = f.get_grid() gslc = "x=-26f:12.5f, y=-15f:15f, z=-15f:15f" # gslc = "x=-12.5f:26f, y=-15f:15f, z=-15f:15f" b_cc = f['b_cc'][gslc] b_cc.name = "b_cc" b_fc = f['b_fc'][gslc] b_fc.name = "b_fc" e_cc = f['e_cc'][gslc] e_cc.name = "e_cc" e_ec = f['e_ec'][gslc] e_ec.name = "e_ec" pp = f['pp'][gslc] pp.name = 'pp' pargs = dict(logscale=True, earth=True) # vlt.clf() # ax1 = vlt.subplot(211) # vlt.plot(f['pp']['y=0f'], **pargs) # # vlt.plot(viscid.magnitude(f['b_cc']['y=0f']), **pargs) # # vlt.show() # vlt.subplot(212, sharex=ax1, sharey=ax1) # vlt.plot(viscid.magnitude(viscid.fc2cc(f['b_fc'])['y=0f']), **pargs) # vlt.show() basename = './tmediumR.3d.{0:06d}'.format(int(grid.time)) viscid.save_fields(basename + '.h5', [b_cc, b_fc, e_cc, e_ec, pp]) f2 = viscid.load_file(basename + ".xdmf") pargs = dict(logscale=True, earth=True) vlt.clf() ax1 = vlt.subplot(211) vlt.plot(f2['pp']['y=0f'], style='contour', levels=5, colorbar=None, colors='k', **pargs) vlt.plot(viscid.magnitude(f2['b_cc']['y=0f']), **pargs) vlt.subplot(212, sharex=ax1, sharey=ax1) vlt.plot(viscid.magnitude(viscid.fc2cc(f2['b_fc'])['y=0f']), **pargs) vlt.show() os.remove(basename + '.h5') os.remove(basename + '.xdmf') return 0 if __name__ == "__main__": sys.exit(main()) ## ## EOF ## ``` #### File: Viscid/tests/test_ascii.py ```python from __future__ import print_function import argparse import sys import os import matplotlib.pyplot as plt from viscid_test_common import next_plot_fname import viscid from viscid import vutil from viscid.plot import vpyplot as vlt def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) f = viscid.load_file(os.path.join(viscid.sample_dir, "test.asc")) vlt.plot(f['c1'], show=False) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() return 0 if __name__ == "__main__": sys.exit(_main()) ## ## EOF ## ``` #### File: Viscid/tests/test_div.py ```python from __future__ import print_function import argparse import sys from timeit import default_timer as time import matplotlib.pyplot as plt import numpy as np from viscid_test_common import next_plot_fname import viscid from viscid import logger from viscid import vutil from viscid.plot import vpyplot as vlt try: import numexpr as ne HAS_NUMEXPR = True except ImportError: HAS_NUMEXPR = False def run_div_test(fld, exact, title='', show=False, ignore_inexact=False): t0 = time() result_numexpr = viscid.div(fld, preferred="numexpr", only=False) t1 = time() logger.info("numexpr magnitude runtime: %g", t1 - t0) result_diff = viscid.diff(result_numexpr, exact)['x=1:-1, y=1:-1, z=1:-1'] if not ignore_inexact and not (result_diff.data < 5e-5).all(): logger.warn("numexpr result is far from the exact result") logger.info("min/max(abs(numexpr - exact)): %g / %g", np.min(result_diff.data), np.max(result_diff.data)) planes = ["y=0f", "z=0f"] nrows = 2 ncols = len(planes) ax = plt.subplot2grid((nrows, ncols), (0, 0)) ax.axis("equal") for i, p in enumerate(planes): plt.subplot2grid((nrows, ncols), (0, i), sharex=ax, sharey=ax) vlt.plot(result_numexpr, p, show=False) plt.subplot2grid((nrows, ncols), (1, i), sharex=ax, sharey=ax) vlt.plot(result_diff, p, show=False) plt.suptitle(title) vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow() def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--prof", action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) dtype = 'float64' # use 512 512 256 to inspect memory related things x = np.array(np.linspace(-0.5, 0.5, 256), dtype=dtype) y = np.array(np.linspace(-0.5, 0.5, 256), dtype=dtype) z = np.array(np.linspace(-0.5, 0.5, 64), dtype=dtype) v = viscid.empty([x, y, z], name="V", nr_comps=3, center="cell", layout="interlaced") exact_cc = viscid.empty([x, y, z], name="exact_cc", center='cell') Xcc, Ycc, Zcc = exact_cc.get_crds_cc(shaped=True) # pylint: disable=W0612 if HAS_NUMEXPR: v['x'] = ne.evaluate("(sin(Xcc))") # + Zcc v['y'] = ne.evaluate("(cos(Ycc))") # + Xcc# + Zcc v['z'] = ne.evaluate("-((sin(Zcc)))") # + Xcc# + Ycc exact_cc[:, :, :] = ne.evaluate("cos(Xcc) - sin(Ycc) - cos(Zcc)") else: v['x'] = (np.sin(Xcc)) # + Zcc v['y'] = (np.cos(Ycc)) # + Xcc# + Zcc v['z'] = -((np.sin(Zcc))) # + Xcc# + Ycc exact_cc[:, :, :] = np.cos(Xcc) - np.sin(Ycc) - np.cos(Zcc) if args.prof: print("Without boundaries") viscid.timeit(viscid.div, v, bnd=False, timeit_repeat=10, timeit_print_stats=True) print("With boundaries") viscid.timeit(viscid.div, v, bnd=True, timeit_repeat=10, timeit_print_stats=True) logger.info("node centered tests") v_nc = v.as_centered('node') exact_nc = viscid.empty_like(v_nc['x']) X, Y, Z = exact_nc.get_crds_nc(shaped=True) # pylint: disable=W0612 if HAS_NUMEXPR: exact_nc[:, :, :] = ne.evaluate("cos(X) - sin(Y) - cos(Z)") else: exact_nc[:, :, :] = np.cos(X) - np.sin(Y) - np.cos(Z) # FIXME: why is the error so much larger here? run_div_test(v_nc, exact_nc, title='Node Centered', show=args.show, ignore_inexact=True) logger.info("cell centered tests") v_cc = v_nc.as_centered('cell') run_div_test(v_cc, exact_cc, title="Cell Centered", show=args.show) return 0 if __name__ == "__main__": sys.exit(_main()) ## ## EOF ## ``` #### File: Viscid/viscid/amr_field.py ```python from __future__ import print_function import numpy as np import viscid # from viscid.compat import string_types from viscid.field import Field try: from viscid.calculator import cycalc _HAS_CYCALC = True except ImportError: # in case cycalc isn't built _HAS_CYCALC = False __all__ = ["is_list_of_fields"] def is_list_of_fields(lst): """is a sequence a sequence of Field objects?""" for item in lst: if not isinstance(item, Field): return False return True class _FieldListCallableAttrWrapper(object): objs = None attrname = None post_func = None def __init__(self, objs, attrname, post_func=None): # print(">>> runtime wrapping:", attrname) for o in objs: if not hasattr(o, attrname): raise AttributeError("{0} has no attribute {1}" "".format(o, attrname)) self.objs = objs self.attrname = attrname self.post_func = post_func def __call__(self, *args, **kwargs): lst = [getattr(o, self.attrname)(*args, **kwargs) for o in self.objs] if self.post_func: return self.post_func(lst) else: return lst class AMRField(object): """Field-like Contains an AMRSkeleton and a list of Fields. This mimiks a Field, but it is NOT a subclass of Field. Many methods of Field are wrapped and return a new AMRField. If an attribute of Field is not explicitly wrapped, this class will try to runtime-wrap that method and return a new AMRField or a list containing the result. This will not work for special methods since python will not send those through __getattr__ or __getattribute__. """ _TYPE = "amr" skeleton = None patches = None nr_patches = None def __init__(self, fields, skeleton): if not is_list_of_fields(fields): raise TypeError("AMRField can only contain Fields:", fields) self.skeleton = skeleton self.patches = fields self.nr_patches = len(fields) @property def xl(self): return np.min(self.skeleton.xl, axis=0) @property def xh(self): return np.max(self.skeleton.xh, axis=0) def get_slice_extent(self, selection): extent = self.patches[0]._src_crds.get_slice_extent(selection) for i in range(3): if np.isnan(extent[0, i]): extent[0, i] = self.xl[i] if np.isnan(extent[1, i]): extent[1, i] = self.xh[i] return extent ########### ## slicing def _prepare_amr_slice(self, selection): """ return list of patches that contain selection """ # FIXME: it's not good to reach in to src_field[0]'s private methods # like this, but it's also not good to implement these things twice # print("??", len(self.patches)) if len(self.patches) == 0: raise ValueError("AMR field must contain patches to be slicable") selection, _ = self.patches[0]._prepare_slice(selection) extent = self.patches[0]._src_crds.get_slice_extent(selection) inds = [] # these are patches that look like they contain selection # but might not due to finite precision errors when # calculating xh maybe = [] for i, fld in enumerate(self.patches): # - if xl - atol > the extent of the slice in any direction, then # there's no overlap # - if xh <= the lower corner of the slice in any direction, then # there's no overlap # the atol and equals are done to match cases where extent overlaps # the lower corner, but not the upper corner # logic goes this way cause extent has NaNs in # dimensions that aren't specified in selection... super-kludge # also, temporarily disable warnings on NaNs in numpy invalid_err_level = np.geterr()['invalid'] np.seterr(invalid='ignore') atol = 100 * np.finfo(fld.crds.xl_nc.dtype).eps if (not np.any(np.logical_or(fld.crds.xl_nc - atol > extent[1], fld.crds.xh_nc <= extent[0]))): if np.any(np.isclose(fld.crds.xh_nc, extent[0], atol=atol)): maybe.append(i) else: inds.append(i) np.seterr(invalid=invalid_err_level) # if we found some maybes, but no real hits, then use the maybes if maybe and not inds: inds = maybe if len(inds) == 0: viscid.logger.error("selection {0} not in any patch @ time {1}" "".format(selection, self.patches[0].time)) if self.skeleton: s = (" skeleton: xl= {0} xh = {1}" "".format(self.skeleton.global_xl, self.skeleton.global_xh)) viscid.logger.error(s) inds = None flds = None elif len(inds) == 1: inds = inds[0] flds = self.patches[inds] else: flds = [self.patches[i] for i in inds] return flds, inds def _finalize_amr_slice(self, fld_lst): # pylint: disable=no-self-use skeleton = None # FIXME for fld in fld_lst: if isinstance(fld, (int, float, np.number)): m = ("Trying to make an AMRField where 1+ patches " "is just a number... You probably slice_reduced " "a field down to a scalar value") viscid.logger.error(m) return AMRField(fld_lst, skeleton) def patch_indices(self, selection): """get the indices of the patches that overlap selection Args: selection (slice, str): anything that can slice a field Returns: list of indices """ _, inds = self._prepare_amr_slice(selection) return inds def slice(self, selection): fld_lst, _ = self._prepare_amr_slice(selection) if not isinstance(fld_lst, list): return fld_lst.slice(selection) fld_lst = [fld.slice(selection) for fld in fld_lst] return self._finalize_amr_slice(fld_lst) def slice_reduce(self, selection): fld_lst, _ = self._prepare_amr_slice(selection) if not isinstance(fld_lst, list): return fld_lst.slice_reduce(selection) fld_lst = [fld.slice_reduce(selection) for fld in fld_lst] return self._finalize_amr_slice(fld_lst) def slice_and_keep(self, selection): fld_lst, _ = self._prepare_amr_slice(selection) if not isinstance(fld_lst, list): return fld_lst.slice_and_keep(selection) fld_lst = [fld.slice_and_keep(selection) for fld in fld_lst] return self._finalize_amr_slice(fld_lst) def interpolated_slice(self, selection): fld_lst, _ = self._prepare_amr_slice(selection) if not isinstance(fld_lst, list): raise RuntimeError("can't interpolate to that slice?") ret_lst = [fld.interpolated_slice(selection) for fld in fld_lst] return self._finalize_amr_slice(ret_lst) ################### ## special methods def __getitem__(self, item): return self.slice(item) def __setitem__(self, key, value): raise NotImplementedError() def __delitem__(self, item): raise NotImplementedError() def __enter__(self): return self def __exit__(self, exc_type, value, traceback): """clear all caches""" for blk in self.patches: blk.clear_cache() return None def wrap_field_method(self, attrname, *args, **kwargs): """Wrap methods whose args are Fields and return a Field""" # make sure all args have same number of patches as self is_field = [None] * len(args) for i, arg in enumerate(args): try: if arg.nr_patches != self.nr_patches and arg.nr_patches != 1: raise ValueError("AMR fields in math operations must " "have the same number of patches") is_field[i] = True except AttributeError: is_field[i] = False lst = [None] * self.nr_patches other = [None] * len(args) # FIXME: There must be a better way for i, patch in enumerate(self.patches): for j, arg in enumerate(args): if is_field[j]: try: other[j] = arg.patches[i] except IndexError: other[j] = arg.patches[0] else: other[j] = arg lst[i] = getattr(patch, attrname)(*other, **kwargs) if np.asarray(lst[0]).size == 1: # operation reduced to scalar arr = np.array(lst) return getattr(arr, attrname)(**kwargs) else: return AMRField(lst, self.skeleton) # TODO: as of numpy 1.10, this will be called on ufuncs... this # will help some of the FIXMEs in __array__ # def __numpy_ufunc__(self, ufunc, method, i, inputs, **kwargs): # pass def __array__(self, *args, **kwargs): # FIXME: This is heinously inefficient for large arrays because it # makes an copy of all the arrays... but I don't see # a way around this because ufuncs expect a single array # FIXME: adding a dimension to the arrays will break cases like # np.sum(fld, axis=-1), cause that -1 will now be the patch # dimension patches = [patch.__array__(*args, **kwargs) for patch in self.patches] for i, patch in enumerate(patches): patches[i] = np.expand_dims(patch, 0) # the vstack will copy all the arrays, this is what __numpy_ufunc__ # will be able to avoid arr = np.vstack(patches) # roll the patch dimension to the last dimension... this is for ufuncs # that take an axis argument... this way axis will only be confused # if it's negative, this is the main reason to use __numpy_ufunc__ # in the future arr = np.rollaxis(arr, 0, len(arr.shape)) return arr def __array_wrap__(self, arr, context=None): # pylint: disable=unused-argument # print(">> __array_wrap__", arr.shape, context) flds = [] for i in range(arr.shape[-1]): patch_arr = arr[..., i] fld = self.patches[i].__array_wrap__(patch_arr, context=context) flds.append(fld) return AMRField(flds, self.skeleton) def __add__(self, other): return self.wrap_field_method("__add__", other) def __sub__(self, other): return self.wrap_field_method("__sub__", other) def __mul__(self, other): return self.wrap_field_method("__mul__", other) def __div__(self, other): return self.wrap_field_method("__div__", other) def __truediv__(self, other): return self.wrap_field_method("__truediv__", other) def __floordiv__(self, other): return self.wrap_field_method("__floordiv__", other) def __mod__(self, other): return self.wrap_field_method("__mod__", other) def __divmod__(self, other): return self.wrap_field_method("__divmod__", other) def __pow__(self, other): return self.wrap_field_method("__pow__", other) def __lshift__(self, other): return self.wrap_field_method("__lshift__", other) def __rshift__(self, other): return self.wrap_field_method("__rshift__", other) def __and__(self, other): return self.wrap_field_method("__and__", other) def __xor__(self, other): return self.wrap_field_method("__xor__", other) def __or__(self, other): return self.wrap_field_method("__or__", other) def __radd__(self, other): return self.wrap_field_method("__radd__", other) def __rsub__(self, other): return self.wrap_field_method("__rsub__", other) def __rmul__(self, other): return self.wrap_field_method("__rmul__", other) def __rdiv__(self, other): return self.wrap_field_method("__rdiv__", other) def __rtruediv__(self, other): return self.wrap_field_method("__rtruediv__", other) def __rfloordiv__(self, other): return self.wrap_field_method("__rfloordiv__", other) def __rmod__(self, other): return self.wrap_field_method("__rmod__", other) def __rdivmod__(self, other): return self.wrap_field_method("__rdivmod__", other) def __rpow__(self, other): return self.wrap_field_method("__rpow__", other) def __iadd__(self, other): return self.wrap_field_method("__iadd__", other) def __isub__(self, other): return self.wrap_field_method("__isub__", other) def __imul__(self, other): return self.wrap_field_method("__imul__", other) def __idiv__(self, other): return self.wrap_field_method("__idiv__", other) def __itruediv__(self, other): return self.wrap_field_method("__itruediv__", other) def __ifloordiv__(self, other): return self.wrap_field_method("__ifloordiv__", other) def __imod__(self, other): return self.wrap_field_method("__imod__", other) def __ipow__(self, other): return self.wrap_field_method("__ipow__", other) def __neg__(self): return self.wrap_field_method("__neg__") def __pos__(self): return self.wrap_field_method("__pos__") def __abs__(self): return self.wrap_field_method("__abs__") def __invert__(self): return self.wrap_field_method("__invert__") def __lt__(self, other): return self.wrap_field_method("__lt__", other) def __le__(self, other): return self.wrap_field_method("__le__", other) def __eq__(self, other): return self.wrap_field_method("__eq__", other) def __ne__(self, other): return self.wrap_field_method("__ne__", other) def __gt__(self, other): return self.wrap_field_method("__gt__", other) def __ge__(self, other): return self.wrap_field_method("__ge__", other) def any(self, **kwargs): return self.wrap_field_method("any", **kwargs) def all(self, **kwargs): return self.wrap_field_method("all", **kwargs) def argmax(self, **kwargs): return self.wrap_field_method("argmax", **kwargs) def argmin(self, **kwargs): return self.wrap_field_method("argmin", **kwargs) def argpartition(self, **kwargs): return self.wrap_field_method("argpartition", **kwargs) def argsort(self, **kwargs): return self.wrap_field_method("argsort", **kwargs) def cumprod(self, **kwargs): return self.wrap_field_method("cumprod", **kwargs) def cumsum(self, **kwargs): return self.wrap_field_method("cumsum", **kwargs) def max(self, **kwargs): return self.wrap_field_method("max", **kwargs) def mean(self, **kwargs): return self.wrap_field_method("mean", **kwargs) def min(self, **kwargs): return self.wrap_field_method("min", **kwargs) def partition(self, **kwargs): return self.wrap_field_method("partition", **kwargs) def prod(self, **kwargs): return self.wrap_field_method("prod", **kwargs) def std(self, **kwargs): return self.wrap_field_method("std", **kwargs) def sum(self, **kwargs): return self.wrap_field_method("sum", **kwargs) def __getattr__(self, name): # define a callback to finalize # print("!! getting attr::", name) if callable(getattr(self.patches[0], name)): def _wrap(lst): try: return AMRField(lst, self.skeleton) except TypeError: return lst return _FieldListCallableAttrWrapper(self.patches, name, _wrap) else: # return [getattr(fld, name) for fld in self.patches] ret0 = getattr(self.patches[0], name) # Check that all patches have the same value. Maybe this should # have a debugging flag attached to it since it will take time. try: all_same = all(getattr(blk, name) == ret0 for blk in self.patches[1:]) except ValueError: all_same = all(np.all(getattr(blk, name) == ret0) for blk in self.patches[1:]) if not all_same: raise ValueError("different patches of the AMRField have " "different values for attribute: {0}" "".format(name)) return ret0 ## ## EOF ## ``` #### File: viscid/calculator/mpause.py ```python from __future__ import print_function, division import os import numpy as np import viscid __all__ = ["paraboloid", "paraboloid_normal", "fit_paraboloid", "get_mp_info", "find_mp_edges"] _dtf = 'f8' _paraboloid_dt = np.dtype([('x0', _dtf), ('y0', _dtf), ('z0', _dtf), ('ax', _dtf), ('ay', _dtf), ('az', _dtf)]) def paraboloid(y, z, x0, y0, z0, ax, ay, az): """Generic paraboloid function""" return ax * (((y - y0) / ay)**2 + ((z - z0) / az)**2) + x0 def paraboloid_normal(y, z, x0, y0, z0, ax, ay, az, normalize=True): # pylint: disable=unused-argument """Normal vector of a generic paraboloid""" dyF = 2.0 * (y - y0) / ay**2 dzF = 2.0 * (z - z0) / az**2 dxF = (-1.0 / ax) * np.ones_like(dyF) normal = np.array([dxF, dyF, dzF]) if normalize: normal = normal / np.linalg.norm(normal, axis=0) return normal def fit_paraboloid(fld, p0=(9.0, 0.0, 0.0, 1.0, -1.0, -1.0), tolerance=0.0): """Fit paraboloid it GSE coordinates x ~ y**2 + z**2 Args: fld (:py:class:`viscid.field.ScalarField`): field of x values p0 (sequence): initial guess for parabaloid (x0, y0, z0, ax, ay, az), where (x0, y0, z0) is the nose location (should be subsolar for 0 dipole tilt), and the ay, az, and az coefficients determine the curvature Returns: numpy.recarray: record array of parameters with length 2; the 1st value is the fit value, and the 2nd is one sigma of the fit """ from scipy.optimize import curve_fit def paraboloid_yz(yz, x0, y0, z0, ax, ay, az): return paraboloid(yz[0], yz[1], x0, y0, z0, ax, ay, az) Y, Z = fld.meshgrid_flat(prune=True) popt, pcov = curve_fit(paraboloid_yz, np.vstack((Y, Z)), fld.data.reshape(-1), p0=p0) perr = np.sqrt(np.diag(pcov)) parab = np.recarray([2], dtype=_paraboloid_dt) parab[:] = [popt, perr] if tolerance: for n in parab.dtype.names: if n != "ax" and np.abs(parab[1][n] / parab[0][n]) > tolerance: viscid.logger.warn("paraboloid parameter {0} didn't converge to " "within {1:g}%\n{0} = {2:g} +/- {3:g}" "".format(n, 100 * tolerance, parab[0][n], parab[1][n])) return parab def get_mp_info(pp, b, j, e, cache=True, cache_dir=None, slc="x=5.5f:11.0f, y=-4.0f:4.0f, z=-3.6f:3.6f", fit="mp_xloc", fit_p0=(9.0, 0.0, 0.0, 1.0, -1.0, -1.0)): """Get info about m-pause as flattened fields Notes: The first thing this function does is mask locations where the GSE-y current density < 1e-4. This masks out the bow shock and current free regions. This works for southward IMF, but it is not very general. Parameters: pp (ScalarcField): pressure b (VectorField): magnetic field j (VectorField): current density e (VectorField, None): electric field (same centering as b). If None, then the info that requires E will be filled with NaN cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs slc (str): slice that gives a box that contains the m-pause fit (str): to which resulting field should the paraboloid be fit, defaults to mp_xloc, but pp_max_xloc might be useful in some circumstances fit_p0 (tuple): Initial guess vector for paraboloid fit Returns: dict: Unless otherwise noted, the entiries are 2D (y-z) fields - **mp_xloc** location of minimum abs(Bz), this works better than max of J^2 for FTEs - **mp_sheath_edge** location where Jy > 0.1 * Jy when coming in from the sheath side - **mp_sphere_edge** location where Jy > 0.1 * Jy when coming in from the sphere side - **mp_width** difference between m-sheath edge and msphere edge - **mp_shear** magnetic shear taken 6 grid points into the m-sheath / m-sphere - **pp_max** max pp - **pp_max_xloc** location of max pp - **epar_max** max e parallel - **epar_max_xloc** location of max e parallel - **paraboloid** numpy.recarray of paraboloid fit. The parameters are given in the 0th element, and the 1st element contains the 1-sigma values for the fit Raises: RuntimeError: if using MHD crds instead of GSE crds """ if not cache_dir: cache_dir = pp.find_info("_viscid_dirname", "./") run_name = pp.find_info("run", None) if cache and run_name: t = pp.time mp_fname = "{0}/{1}.mpause.{2:06.0f}".format(cache_dir, run_name, t) else: mp_fname = "" try: force = cache.strip().lower() == "force" except AttributeError: force = False try: if force or not mp_fname or not os.path.isfile(mp_fname + ".xdmf"): raise IOError() mp_info = {} with viscid.load_file(mp_fname + ".xdmf") as dat: fld_names = ["mp_xloc", "mp_sheath_edge", "mp_sphere_edge", "mp_width", "mp_shear", "pp_max", "pp_max_xloc", "epar_max", "epar_max_xloc"] for fld_name in fld_names: mp_info[fld_name] = dat[fld_name]["x=0"] except (IOError, KeyError): mp_info = {} crd_system = viscid.as_crd_system(b, None) if crd_system != 'gse': raise RuntimeError("get_mp_info can't work in MHD crds, " "switch to GSE please") if j.nr_patches == 1: pp_block = pp[slc] b_block = b[slc] j_block = j[slc] if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = e[slc] else: # interpolate an amr grid so we can proceed obnd = pp.get_slice_extent(slc) dx = np.min(pp.skeleton.L / pp.skeleton.n, axis=0) nx = np.ceil((obnd[1] - obnd[0]) / dx) vol = viscid.seed.Volume(obnd[0], obnd[1], nx, cache=True) pp_block = vol.wrap_field(viscid.interp_trilin(pp, vol), name="P").as_cell_centered() b_block = vol.wrap_field(viscid.interp_trilin(b, vol), name="B").as_cell_centered() j_block = vol.wrap_field(viscid.interp_trilin(j, vol), name="J").as_cell_centered() if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = vol.wrap_field(viscid.interp_trilin(e, vol), name="E").as_cell_centered() # jsq = viscid.dot(j_block, j_block) bsq = viscid.dot(b_block, b_block) # extract ndarrays and mask out bow shock / current free regions maskval = 1e-4 jy_mask = j_block['y'].data < maskval masked_bsq = 1.0 * bsq masked_bsq.data = np.ma.masked_where(jy_mask, bsq) xcc = j_block.get_crd_cc('x') nx = len(xcc) mp_xloc = np.argmin(masked_bsq, axis=0) # indices mp_xloc = mp_xloc.wrap(xcc[mp_xloc.data]) # location pp_max = np.max(pp_block, axis=0) pp_max_xloc = np.argmax(pp_block, axis=0) # indices pp_max_xloc = pp_max_xloc.wrap(xcc[pp_max_xloc.data]) # location epar = viscid.project(e_block, b_block) epar_max = np.max(epar, axis=0) epar_max_xloc = np.argmax(epar, axis=0) # indices epar_max_xloc = pp_max_xloc.wrap(xcc[epar_max_xloc.data]) # location _ret = find_mp_edges(j_block, 0.1, 0.1, maskval=maskval) sheath_edge, msphere_edge, mp_width, sheath_ind, sphere_ind = _ret # extract b and b**2 at sheath + 6 grid points and sphere - 6 grid pointns # clipping cases where things go outside the block. clipped ponints are # set to nan step = 6 # extract b if b_block.layout == "flat": comp_axis = 0 ic, _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ic, ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ic, ix, iy, iz] elif b_block.layout == "interlaced": comp_axis = 3 _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape[:-1]]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ix, iy, iz] # extract b**2 bmag_sheath = np.sqrt(np.sum(b_sheath**2, axis=comp_axis)) bmag_sphere = np.sqrt(np.sum(b_sphere**2, axis=comp_axis)) costheta = (np.sum(b_sheath * b_sphere, axis=comp_axis) / (bmag_sphere * bmag_sheath)) costheta = np.where((sheath_ind + step < nx) & (sphere_ind - step >= 0), costheta, np.nan) mp_shear = mp_width.wrap((180.0 / np.pi) * np.arccos(costheta)) # don't bother with pretty name since it's not written to file # plane_crds = b_block.crds.slice_keep('x=0', cc=True) # fld_kwargs = dict(center="Cell", time=b.time) mp_width.name = "mp_width" mp_xloc.name = "mp_xloc" sheath_edge.name = "mp_sheath_edge" msphere_edge.name = "mp_sphere_edge" mp_shear.name = "mp_shear" pp_max.name = "pp_max" pp_max_xloc.name = "pp_max_xloc" epar_max.name = "epar_max" epar_max_xloc.name = "epar_max_xloc" mp_info = {} mp_info["mp_width"] = mp_width mp_info["mp_xloc"] = mp_xloc mp_info["mp_sheath_edge"] = sheath_edge mp_info["mp_sphere_edge"] = msphere_edge mp_info["mp_shear"] = mp_shear mp_info["pp_max"] = pp_max mp_info["pp_max_xloc"] = pp_max_xloc mp_info["epar_max"] = epar_max mp_info["epar_max_xloc"] = epar_max_xloc # cache new fields to disk if mp_fname: viscid.save_fields(mp_fname + ".h5", mp_info.values()) try: _paraboloid_params = fit_paraboloid(mp_info[fit], p0=fit_p0) mp_info["paraboloid"] = _paraboloid_params except ImportError as _exception: try: msg = _exception.message except AttributeError: msg = _exception.msg mp_info["paraboloid"] = viscid.DeferredImportError(msg) mp_info["mp_width"].pretty_name = "Magnetopause Width" mp_info["mp_xloc"].pretty_name = "Magnetopause $X_{gse}$ Location" mp_info["mp_sheath_edge"].pretty_name = "Magnetosheath Edge" mp_info["mp_sphere_edge"].pretty_name = "Magnetosphere Edge" mp_info["mp_shear"].pretty_name = "Magnetic Shear" mp_info["pp_max"].pretty_name = "Max Pressure" mp_info["pp_max_xloc"].pretty_name = "Max Pressure Location" mp_info["epar_max"].pretty_name = "Max E Parallel" mp_info["epar_max_xloc"].pretty_name = "Max E Parallel Location" return mp_info def find_mp_edges(j_block, msphere_thresh=0.1, sheath_thresh=0.1, maskval=1e-4): """Find x location of msphere and msheath edges using current (J) Note: GSE coordinates only please Args: j_block (VectorField): Current density containing the whole magnetopause msphere_thresh (float): thereshold of current on the magnetosphere side as a fraction of the maximum current density, i.e., 0.1 is 10% of the max sheath_thresh (float): thereshold of current on the magnetosheath side as a fraction of the maximum current density, i.e., 0.1 is 10% of the max maskval (float, None): if not None, then mask out J values less than maskval; useful for masking out bowshock, and current free regions Returns: tuple: sheath and sphere fields / values - **sheath_edge**: float or 2D ScalarField of x values - **msphere_edge**: float or 2D ScalarField of x values - **mp_width**: **sheath_edge** - **msphere_edge** - **sheath_ind**: index of sheath_edge x location - **sphere_ind**: index of msphere_edge x location """ if maskval is not None: jy_mask = j_block['y'].data < maskval else: jy_mask = np.zeros_like(j_block['y'].data, dtype='bool') xcc = j_block.get_crd_cc('x') nx = len(xcc) masked_jy = 1.0 * j_block['y'] masked_jy.data = np.ma.masked_where(jy_mask, j_block['y']) jy_absmax = np.amax(np.abs(masked_jy), axis=0, keepdims=True) msphere_mask = (masked_jy > msphere_thresh * jy_absmax) sheath_mask = (masked_jy > sheath_thresh * jy_absmax) jy_absmax = None sphere_ind = np.argmax(msphere_mask, axis=0) if isinstance(sphere_ind, viscid.field.Field): msphere_edge = np.where(sphere_ind > 0, xcc[sphere_ind.data], np.nan) msphere_edge = sphere_ind.wrap(msphere_edge) else: msphere_edge = np.where(sphere_ind > 0, xcc[sphere_ind], np.nan) # reverse it to go from the other direction sheath_ind = nx - 1 - np.argmax(sheath_mask['x=::-1'], axis=0) if isinstance(sheath_ind, viscid.field.Field): sheath_edge = np.where(sheath_ind < (nx - 1), xcc[sheath_ind.data], np.nan) sheath_edge = sheath_ind.wrap(sheath_edge) else: sheath_edge = np.where(sheath_ind < (nx - 1), xcc[sheath_ind], np.nan) # in MHD crds, it my be sufficient to swap msp and msh at this point mp_width = sheath_edge - msphere_edge return sheath_edge, msphere_edge, mp_width, sheath_ind, sphere_ind def _main(): f = viscid.load_file("$WORK/xi_fte_001/*.3d.[4050f].xdmf") mp = get_mp_info(f['pp'], f['b'], f['j'], f['e_cc'], fit='mp_xloc', slc="x=6.5f:10.5f, y=-4f:4f, z=-4.8f:3f", cache=False) y, z = mp['pp_max_xloc'].meshgrid_flat(prune=True) x = mp['pp_max_xloc'].data.reshape(-1) Y, Z = mp['pp_max_xloc'].meshgrid(prune=True) x2 = paraboloid(Y, Z, *mp['paraboloid'][0]) skip = 117 n = paraboloid_normal(Y, Z, *mp['paraboloid'][0]).reshape(3, -1)[:, ::skip] minvar_y = Y.reshape(-1)[::skip] minvar_z = Z.reshape(-1)[::skip] minvar_n = np.zeros([3, len(minvar_y)]) for i in range(minvar_n.shape[0]): p0 = [0.0, minvar_y[i], minvar_z[i]] p0[0] = mp['pp_max_xloc']['y={0[0]}f, z={0[1]}f'.format(p0)] minvar_n[:, i] = viscid.find_minvar_lmn_around(f['b'], p0, l=2.0, n=64)[2, :] # 2d plots, normals don't look normal in the matplotlib projection if False: # pylint: disable=using-constant-test from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt normals = paraboloid_normal(Y, Z, *mp['paraboloid'][0]) p0 = np.array([x2, Y, Z]).reshape(3, -1) p1 = p0 + normals.reshape(3, -1) vlt.scatter_3d(np.vstack([x, y, z])[:, ::skip], equal=True) for i in range(0, p0.shape[1], skip): plt.gca().plot([p0[0, i], p1[0, i]], [p0[1, i], p1[1, i]], [p0[2, i], p1[2, i]], color='c') # z2 = _ellipsiod(X, Y, *popt) plt.gca().plot_surface(Y, Z, x2, color='r') vlt.show() # mayavi 3d plots, normals look better here if True: # pylint: disable=using-constant-test from viscid.plot import vlab vlab.points3d(x[::skip], y[::skip], z[::skip], scale_factor=0.25, color=(0.0, 0.0, 1.0)) mp_width = mp['mp_width']['x=0'] mp_sheath_edge = mp['mp_sheath_edge']['x=0'] mp_sphere_edge = mp_sheath_edge - mp_width vlab.mesh(x2, Y, Z, scalars=mp_width.data) vlab.mesh(mp_sheath_edge.data, Y, Z, opacity=0.75, color=(0.75, ) * 3) vlab.mesh(mp_sphere_edge.data, Y, Z, opacity=0.75, color=(0.75, ) * 3) n = paraboloid_normal(Y, Z, *mp['paraboloid'][0]).reshape(3, -1)[:, ::skip] vlab.quiver3d(x2.reshape(-1)[::skip], Y.reshape(-1)[::skip], Z.reshape(-1)[::skip], n[0], n[1], n[2], color=(1, 0, 0)) vlab.quiver3d(x2.reshape(-1)[::skip], Y.reshape(-1)[::skip], Z.reshape(-1)[::skip], minvar_n[0], minvar_n[1], minvar_n[2], color=(0, 0, 1)) vlab.show() if __name__ == "__main__": import sys # pylint: disable=wrong-import-position,wrong-import-order sys.exit(_main()) ## ## EOF ## ``` #### File: viscid/calculator/plasma.py ```python from __future__ import print_function, division import numpy as np try: import numexpr as ne _HAS_NUMEXPR = True except ImportError: _HAS_NUMEXPR = False from viscid import field from viscid import logger # from viscid.calculator import calc __all__ = ["calc_psi", "calc_beta"] def calc_psi(B, rev=False): """Calc Flux function (only valid in 2d) Parameters: B (VectorField): magnetic field, should only have two spatial dimensions so we can infer the symmetry dimension rev (bool): since this integration doesn't like going through undefined regions (like within 1 earth radius of the origin for openggcm), you can use this to start integrating from the opposite corner. Returns: ScalarField: 2-D scalar flux function Raises: ValueError: If B has <> 2 spatial dimensions """ # TODO: if this is painfully slow, i bet just putting this exact # code in a cython module would make it a bunch faster, the problem # being that the loops are in python instead of some broadcasting # numpy type thing B = B.slice_reduce(":") # try to guess if a dim of a 3D field is invariant reduced_axes = [] if B.nr_sdims > 2: slcs = [slice(None)] * B.nr_sdims for i, nxi in enumerate(B.sshape): if nxi <= 2: slcs[i] = 0 reduced_axes.append(B.crds.axes[i]) slcs.insert(B.nr_comp, slice(None)) B = B[slcs] # ok, so the above didn't work... just nip out the smallest dim? if B.nr_sdims == 3: slcs = [slice(None)] * B.nr_sdims i = np.argmin(B.sshape) slcs[i] = 0 reduced_axes.append(B.crds.axes[i]) logger.warning("Tried to get the flux function of a 3D field. " "I can't do that, so I'm\njust ignoring the {0} " "dimension".format(reduced_axes[-1])) slcs.insert(B.nr_comp, slice(None)) B = B[slcs] if B.nr_sdims != 2: raise ValueError("flux function only implemented for 2D fields") comps = "" for comp in "xyz": if comp in B.crds.axes: comps += comp # ex: comps = "yz", comp_inds = [1, 2] comp_inds = [dict(x=0, y=1, z=2)[comp] for comp in comps] # Note: what follows says y, z, but it has been generalized # to any two directions, so hy isn't necessarily hy, but it's # easier to see at a glance if it's correct using a specific # example ycc, zcc = B.get_crds(comps) comp_views = B.component_views() hy, hz = comp_views[comp_inds[0]], comp_views[comp_inds[1]] dy = ycc[1:] - ycc[:-1] dz = zcc[1:] - zcc[:-1] ny, nz = len(ycc), len(zcc) A = np.empty((ny, nz), dtype=B.dtype) if rev: A[-1, -1] = 0.0 for i in range(ny - 2, -1, -1): A[i, -1] = A[i + 1, -1] - dy[i] * 0.5 * (hz[i, -1] + hz[i + 1, -1]) for j in range(nz - 2, -1, -1): A[:, j] = A[:, j + 1] + dz[j] * 0.5 * (hy[:, j + 1] + hy[:, j]) else: A[0, 0] = 0.0 for i in range(1, ny): A[i, 0] = A[i - 1, 0] + dy[i - 1] * 0.5 * (hz[i, 0] + hz[i - 1, 0]) for j in range(1, nz): A[:, j] = A[:, j - 1] - dz[j - 1] * 0.5 * (hy[:, j - 1] + hy[:, j]) psi = field.wrap_field(A, B.crds, name="psi", center=B.center, pretty_name=r"$\psi$", parents=[B]) if reduced_axes: slc = "..., " + ", ".join("{0}=None".format(ax) for ax in reduced_axes) psi = psi[slc] return psi def calc_beta(pp, B, scale=1.0): """Calc plasma beta (2.0 * p / B^2) Parameters: pp (ScalarField or ndarray): pressure B (VectorField): magnetic field scale (float, optional): overall scale factor Returns: ScalarField: Plasma beta Note: For OpenGGCM, where pp is in pPa and B is in nT, scale should be 40.0. """ two = np.array([2.0], dtype=pp.dtype) bx, by, bz = B.component_views() if _HAS_NUMEXPR: ldict = dict(scale=scale, bx=bx, by=by, bz=bz, pp=pp, two=two) result = ne.evaluate("scale * two * pp / sqrt(bx**2 + by**2 + bz**2)", local_dict=ldict) else: result = scale * two * pp / np.sqrt(bx**2 + by**2 + bz**2) context = dict(name="beta", pretty_name=r"$\beta_{pl}$") return pp.wrap(result, context=context) ## ## EOF ## ``` #### File: viscid/calculator/separator.py ```python from __future__ import division, print_function from itertools import count import numpy as np import viscid from viscid.compat import string_types from viscid.cython import streamline UNEVEN_MASK = 0b1000 UNEVEN_HALF = 0.65 __all__ = ["trace_separator", "topology_bitor_clusters", "get_sep_pts_bitor", "get_sep_pts_bisect"] def trace_separator(grid, b_slcstr="x=-25f:15f, y=-30f:30f, z=-15f:15f", r=1.0, plot=False, trace_opts=None, cache=True, cache_dir=None): """Trace a separator line from most dawnward null **Still in testing** Uses the bisection algorithm. Args: grid (Grid): A grid that has a "b" field b_slcstr (str): Some valid slice for B field r (float): spatial step of separator line plot (bool): make debugging plots trace_opts (dict): passed to streamline function cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs Raises: IOError: Description Returns: tuple: (separator_lines, nulls) - **separator_lines** (list): list of M 3xN ndarrays that represent M separator lines with N points - **nulls** (ndarray): 3xN array of N null points """ if not cache_dir: cache_dir = grid.find_info("_viscid_dirname", "./") run_name = grid.find_info("run") sep_fname = "{0}/{1}.sep.{2:06.0f}".format(cache_dir, run_name, grid.time) try: if isinstance(cache, string_types) and cache.strip().lower() == "force": raise IOError() with np.load(sep_fname + ".npz") as dat: sep_iter = (f for f in dat.files if f.startswith("arr_")) _it = sorted(sep_iter, key=lambda s: int(s[len("arr_"):])) seps = [dat[n] for n in _it] nulls = dat['nulls'] except IOError: _b = grid['b'][b_slcstr] _, nulls = viscid.find_nulls(_b['x=-30f:15f'], ibound=5.0) # get most dawnward null, nulls2 is all nulls except p0 nullind = np.argmin(nulls[1, :]) p0 = nulls[:, nullind] nulls2 = np.concatenate([nulls[:, :nullind], nulls[:, (nullind + 1):]], axis=1) if plot: from viscid.plot import vlab vlab.plot_earth_3d(crd_system='gse') vlab.points3d(nulls2[0], nulls2[1], nulls2[2], color=(0, 0, 0), scale_factor=1.0) vlab.points3d(nulls[0, nullind], nulls[1, nullind], nulls[2, nullind], color=(1, 1, 1), scale_factor=1.0) seed = viscid.Sphere(p0=p0, r=r, ntheta=30, nphi=60, theta_endpoint=True, phi_endpoint=True) p1 = viscid.get_sep_pts_bisect(_b, seed, max_depth=12, plot=plot, trace_opts=trace_opts) # print("p1 shape", p1.shape) # if p1.shape[1] > 2: # raise RuntimeError("Invalid B field, should be no branch @ null") seps = [] sep_stubs = [] for i in range(p1.shape[1]): sep_stubs.append([p0, p1[:, i]]) # print("??", sep_stubs) while sep_stubs: sep = sep_stubs.pop(0) # print("!!! new stub") for i in count(): # print("::", i) seed = viscid.SphericalPatch(p0=sep[-1], p1=sep[-1] - sep[-2], r=r, nalpha=240, nbeta=240) pn = viscid.get_sep_pts_bisect(_b, seed, max_depth=8, plot=plot, trace_opts=trace_opts) if pn.shape[1] == 0: # print("END: pn.shape[1] == 0") break # print("++", nulls2.shape, pn.shape) closest_null_dist = np.min(np.linalg.norm(nulls2 - pn[:, :1], axis=0)) # print("closest_null_dist:", closest_null_dist) if closest_null_dist < 1.01 * r: # print("END: within 1.01 of a null") break # print("??", pn) for j in range(1, pn.shape[1]): # print("inserting new stub") sep_stubs.insert(0, [sep[-1], pn[:, j]]) sep.append(pn[:, 0]) # print("sep", sep) seps.append(np.stack(sep, axis=1)) if cache: np.savez_compressed(sep_fname, *seps, nulls=nulls) return seps, nulls def topology_bitor_clusters(fld, min_depth=1, max_depth=10, multiple=True, plot=False, sep_val=streamline.TOPOLOGY_MS_SEPARATOR, mask_limit=0b1111, periodic="00", pt_bnds=()): """Find separator as intersection of all global topologies Neighbors are bitwise ORed until at least one value matches `sep_val` which is presumably (Close | Open N | Open S | SW). This happens between min_depth and max_depth times, where the resolution of each iteration is reduced by a factor of two, ie, worst case 2**(max_depth). Args: fld (Field): Topology (bitmask) as a field min_depth (int): Iterate at least this many times max_depth (int): Iterate at most this many times multiple (bool): passed to :py:func:`viscid.cluster` sep_val (int): Value of bitmask that indicates a separator plot (bool): Make a 2D plot of Fld and the sep candidates mask_limit (int): if > 0, then bitmask fld with mask_limit, i.e., fld = fld & mask_limit (bitwise and) periodic (sequence): indicate whether that direction is periodic, and if so, whether the coordinate arrays are overlapped or not. Values can be True, False, or '+'. '+' indicates that x[0] and x[-1] are not colocated, so assume they're dx apart where dx = x[-1] - x[-2]. pt_bnd (sequence): Boundaries that come to a point, i.e., all values along that boundary are neighbors such as the poles of a sphere. Specified like "0-" for lower boundary of dimension 0 or "1+" for the upper boundary of dimension 1. Returns: ndarray: 2xN for N clusters of separator points in the same coordinates as `fld` """ pd = [False if pi == "0" else bool(pi) for pi in periodic] fld = fld.slice_reduce(":") if mask_limit: fld = np.bitwise_and(fld, mask_limit) a = fld.data x, y = fld.get_crds() for i in range(max_depth): if pd[0]: a[(0, -1), :] |= a[(-1, 0), :] if pd[1]: a[:, (0, -1)] |= a[:, (-1, 0)] a = (a[ :-1, :-1] | a[ :-1, 1: ] | # pylint: disable=bad-whitespace a[1: , :-1] | a[1: , 1: ]) # pylint: disable=bad-whitespace x = 0.5 * (x[1:] + x[:-1]) y = 0.5 * (y[1:] + y[:-1]) # bitwise_or an entire bounary if all points are neighbors, like # at the poles of a sphere for bnd in pt_bnds: slc = [slice(None), slice(None)] slc[int(bnd[0])] = -1 if bnd[1] == "+" else 0 a[slc] = np.bitwise_or.reduce(a[slc]) indx, indy = np.where(a == sep_val) if i + 1 >= min_depth and len(indx): break pts = viscid.cluster(indx, indy, x, y, multiple=multiple, periodic=periodic) if plot: from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt vlt.clf() ax0 = vlt.subplot(121) vlt.plot(fld, title=True) vlt.subplot(122, sharex=ax0, sharey=ax0) or_fld = viscid.arrays2field((x, y), a, name="OR") vlt.plot(or_fld, title=True) _x, _y = or_fld.get_crds() plt.plot(_x[indx], _y[indy], 'ko') plt.plot(pts[0], pts[1], 'y^') plt.show() return pts def _prep_trace_opt_defaults(trace_opts): if trace_opts is None: trace_opts = dict() else: trace_opts = dict(trace_opts) trace_opts.setdefault('ibound', 2.5) trace_opts.setdefault('output', viscid.OUTPUT_TOPOLOGY) trace_opts.setdefault('max_length', 300.0) trace_opts.setdefault('topo_style', 'msphere') return trace_opts def get_sep_pts_bitor(fld, seed, trace_opts=None, make_3d=True, **kwargs): """bitor topologies to find separator points in uv map from seed Args: fld (VectorField): Magnetic Field seed (viscid.seed.SeedGen): Any Seed generator with a 2d local representation trace_opts (dict): kwargs for calc_streamlines make_3d (bool): convert result from uv to 3d space **kwargs: passed to :py:func:`topology_bitor_clusters` Returns: 3xN ndarray of N separator points in uv space or 3d space depending on the `make_3d` kwarg """ trace_opts = _prep_trace_opt_defaults(trace_opts) topo = viscid.calc_streamlines(fld, seed, **trace_opts)[1] try: pt_bnds = seed.pt_bnds except AttributeError: pt_bnds = () try: periodic = seed.periodic except AttributeError: periodic = "00" kwargs.setdefault('pt_bnds', pt_bnds) kwargs.setdefault('periodic', periodic) pts = topology_bitor_clusters(topo, **kwargs) if make_3d: pts = seed.uv_to_3d(pts) return pts def perimeter_check_bitwise_or(arr): """Does perimeter of arr topologies contain a separator? Returns: bool """ return bool(np.bitwise_or.reduce(arr) == streamline.TOPOLOGY_MS_SEPARATOR) def get_sep_pts_bisect(fld, seed, trace_opts=None, min_depth=3, max_depth=7, plot=False, perimeter_check=perimeter_check_bitwise_or, make_3d=True): """bisect uv map of seed to find separator points Args: fld (VectorField): Magnetic Field seed (viscid.seed.SeedGen): Any Seed generator with a 2d local representation trace_opts (dict): kwargs for calc_streamlines min_depth (int): Min allowable bisection depth max_depth (int): Max bisection depth plot (bool): Useful for debugging the algorithm perimeter_check (func): Some func that returns a bool with the same signature as :py:func:`perimeter_check_bitwise_or` make_3d (bool): convert result from uv to 3d space Returns: 3xN ndarray of N separator points in uv space or 3d space depending on the `make_3d` kwarg """ trace_opts = _prep_trace_opt_defaults(trace_opts) pts_even = _get_sep_pts_bisect(fld, seed, trace_opts=trace_opts, min_depth=0, max_depth=2, plot=False, perimeter_check=perimeter_check, make_3d=False) pts_uneven = _get_sep_pts_bisect(fld, seed, trace_opts=trace_opts, min_depth=0, max_depth=2, plot=False, perimeter_check=perimeter_check, make_3d=False, start_uneven=True) if pts_uneven.shape[1] > pts_even.shape[1]: start_uneven = True else: start_uneven = False # start_uneven = True return _get_sep_pts_bisect(fld, seed, trace_opts=trace_opts, min_depth=min_depth, max_depth=max_depth, plot=plot, start_uneven=start_uneven, perimeter_check=perimeter_check, make_3d=make_3d) def _get_sep_pts_bisect(fld, seed, trace_opts=None, min_depth=3, max_depth=7, plot=False, perimeter_check=perimeter_check_bitwise_or, make_3d=True, start_uneven=False, _base_quadrent="", _uneven_mask=0, _first_recurse=True): if len(_base_quadrent) == max_depth: return [_base_quadrent] # causes pylint to complain if trace_opts is None: trace_opts = dict() nx, ny = seed.uv_shape (xlim, ylim) = seed.uv_extent if _first_recurse and start_uneven: _uneven_mask = UNEVEN_MASK if _first_recurse and plot: from viscid.plot import vlab from viscid.plot import vpyplot as vlt vlt.clf() _, all_topo = viscid.calc_streamlines(fld, seed, **trace_opts) vlt.plot(np.bitwise_and(all_topo, 15), show=False) verts, arr = seed.wrap_mesh(all_topo.data) vlab.mesh(verts[0], verts[1], verts[2], scalars=arr, opacity=0.75) # quadrents and lines are indexed as follows... # directions are counter clackwise around the quadrent with # lower index (which matters for lines which are shared among # more than one quadrent, aka, lines 1,2,6,7). Notice that even # numbered lines are horizontal, like the interstate system :) # -<--10-----<-8--- # | ^ ^ # 11 2 9 3 7 # \/ | | # --<-2-----<-6---- # | ^ ^ # 3 0 1 1 5 # \/ | | # ----0->-----4->-- # find low(left), mid(center), and high(right) crds in x and y low_quad = "{0}{1:x}".format(_base_quadrent, 0 | _uneven_mask) high_quad = "{0}{1:x}".format(_base_quadrent, 3 | _uneven_mask) xl, xm, yl, ym = _quadrent_limits(low_quad, xlim, ylim) _, xh, _, yh = _quadrent_limits(high_quad, xlim, ylim) segsx, segsy = [None] * 12, [None] * 12 topo = [None] * 12 nxm, nym = nx //2, ny // 2 # make all the line segments segsx[0], segsy[0] = np.linspace(xl, xm, nxm), np.linspace(yl, yl, nxm) segsx[1], segsy[1] = np.linspace(xm, xm, nym), np.linspace(yl, ym, nym) segsx[2], segsy[2] = np.linspace(xm, xl, nxm), np.linspace(ym, ym, nxm) segsx[3], segsy[3] = np.linspace(xl, xl, nym), np.linspace(ym, yl, nym) segsx[4], segsy[4] = np.linspace(xm, xh, nxm), np.linspace(yl, yl, nxm) segsx[5], segsy[5] = np.linspace(xh, xh, nym), np.linspace(yl, ym, nym) segsx[6], segsy[6] = np.linspace(xh, xm, nxm), np.linspace(ym, ym, nxm) segsx[7], segsy[7] = np.linspace(xh, xh, nym), np.linspace(ym, yh, nym) segsx[8], segsy[8] = np.linspace(xh, xm, nxm), np.linspace(yh, yh, nxm) segsx[9], segsy[9] = np.linspace(xm, xm, nym), np.linspace(ym, yh, nym) segsx[10], segsy[10] = np.linspace(xm, xl, nxm), np.linspace(yh, yh, nxm) segsx[11], segsy[11] = np.linspace(xl, xl, nym), np.linspace(yh, ym, nym) allx = np.concatenate(segsx) ally = np.concatenate(segsy) # print("plot::", _base_quadrent, '|', _uneven_mask, '|', len(allx), len(ally)) pts3d = seed.to_3d(seed.uv_to_local(np.array([allx, ally]))) _, all_topo = viscid.calc_streamlines(fld, pts3d, **trace_opts) topo[0] = all_topo[:len(segsx[0])] cnt = len(topo[0]) for i, segx in zip(count(1), segsx[1:]): topo[i] = all_topo[cnt:cnt + len(segx)] # print("??", i, cnt, cnt + len(segx), np.bitwise_and.reduce(topo[i])) cnt += len(topo[i]) # assemble the lines into the four quadrents quad_topo = [None] * 4 # all arrays snip off the last element since those are # duplicated by the next line... reversed arrays do the # snipping with -1:0:-1 quad_topo[0] = np.concatenate([topo[0][:-1], topo[1][:-1], topo[2][:-1], topo[3][:-1]]) quad_topo[1] = np.concatenate([topo[4][:-1], topo[5][:-1], topo[6][:-1], topo[1][-1:0:-1]]) quad_topo[2] = np.concatenate([topo[2][-1:0:-1], topo[9][:-1], topo[10][:-1], topo[11][:-1]]) quad_topo[3] = np.concatenate([topo[6][-1:0:-1], topo[7][:-1], topo[8][:-1], topo[9][-1:0:-1]]) # now that the quad arrays are populated, decide which quadrents # still contain the separator (could be > 1) required_uneven_subquads = False ret = [] for i in range(4): if perimeter_check(quad_topo[i]): next_quad = "{0}{1:x}".format(_base_quadrent, i | _uneven_mask) subquads = _get_sep_pts_bisect(fld, seed, trace_opts=trace_opts, min_depth=min_depth, max_depth=max_depth, plot=plot, _base_quadrent=next_quad, _uneven_mask=0, _first_recurse=False) ret += subquads if len(ret) == 0: perimeter = np.concatenate([topo[0][::-1], topo[4][::-1], topo[5][::-1], topo[7][::-1], topo[8][::-1], topo[10][::-1], topo[11][::-1], topo[3][::-1]]) if _uneven_mask: if len(_base_quadrent) > min_depth: print("sep trace issue, but min depth reached: {0} > {1}" "".format(len(_base_quadrent), min_depth)) ret = [_base_quadrent] else: print("sep trace issue, the separator ended prematurely") elif perimeter_check(perimeter): ret = _get_sep_pts_bisect(fld, seed, trace_opts=trace_opts, min_depth=min_depth, max_depth=max_depth, plot=plot, _base_quadrent=_base_quadrent, _uneven_mask=UNEVEN_MASK, _first_recurse=False) required_uneven_subquads = True if plot and not required_uneven_subquads: from viscid.plot import vlab from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt _pts3d = seed.to_3d(seed.uv_to_local(np.array([allx, ally]))) vlab.points3d(_pts3d[0], _pts3d[1], _pts3d[2], all_topo.data.reshape(-1), scale_mode='none', scale_factor=0.02) plt.scatter(allx, ally, color=np.bitwise_and(all_topo, 15), vmin=0, vmax=15, marker='o', edgecolor='y', s=40) if _first_recurse: # turn quadrent strings into locations xc = np.empty(len(ret)) yc = np.empty(len(ret)) for i, r in enumerate(ret): xc[i], yc[i] = _quadrent_center(r, xlim, ylim) pts_uv = np.array([xc, yc]) if plot: from viscid.plot import vlab from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt plt.plot(pts_uv[0], pts_uv[1], "y*", ms=20, markeredgecolor='k', markeredgewidth=1.0) vlt.show(block=False) vlab.show(stop=True) # return seed.to_3d(seed.uv_to_local(pts_uv)) # if pts_uv.size == 0: # return None if make_3d: return seed.uv_to_3d(pts_uv) else: return pts_uv else: return ret def _quadrent_limits(quad_str, xlim, ylim): xmin, xmax = xlim ymin, ymax = ylim xl, xh = xmin, xmax yl, yh = ymin, ymax for _, quad in enumerate(quad_str): try: quadi = int(quad, base=16) except TypeError: raise midpt = UNEVEN_HALF if quadi & UNEVEN_MASK else 0.5 xm = xl + midpt * (xh - xl) if quadi & 1: xl = xm else: xh = xm ym = yl + midpt * (yh - yl) if quadi & 2: yl = ym else: yh = ym return xl, xh, yl, yh def _quadrent_center(quad_str, xlim, ylim): xl, xh, yl, yh = _quadrent_limits(quad_str, xlim, ylim) midpt = UNEVEN_HALF if int(quad_str[-1], base=16) & UNEVEN_MASK else 0.5 xm = xl + midpt * (xh - xl) ym = yl + midpt * (yh - yl) return xm, ym def _make_square_segments(xl, xh, yl, yh, nx, ny): x = np.linspace(xl, xh, nx) y = np.linspace(yl, yh, ny) bottom = np.vstack((x, [y[0]] * x.shape[0])) right = np.vstack(([x[-1]] * y.shape[0], y)) top = np.vstack((x[::-1], [y[-1]] * x.shape[0])) left = np.vstack(([x[0]] * (y.shape[0] - 1), y[::-1][:-1])) return bottom, right, top, left def _make_square(xl, xh, yl, yh, nx, ny): bottom, right, top, left = _make_square_segments(xl, xh, yl, yh, nx, ny) return np.concatenate((bottom, right, top, left), axis=1) # def perimeter_check_pattern(arr): # """Does perimeter of arr topologies contain a separator? # Returns: # bool # """ # cyc = np.array([x[0] for x in groupby(arr)]) # cyc = np.roll(cyc, -1 * np.argmin(cyc)) # cyc_rev = np.roll(cyc[::-1], -1 * (len(cyc) - 1)) # watch_list = [(0, 1, 2, 4)] # return bool(cyc in watch_list or cyc_rev in watch_list) ## ## EOF ## ``` #### File: viscid/compat/element_tree.py ```python from viscid import logger force_native_xml = True try: if force_native_xml: raise ImportError from lxml import etree logger.debug("Using lxml library") def parse(fname, **kwargs): return etree.parse(fname, **kwargs) def xinclude(tree, base_url=None, **kwargs): """Summary Args: tree (Tree): The object returned by parse base_url (str): Not used **kwargs: passed to tree.xinclude() """ # TODO: ignore if an xincluded xdmf file doesn't exist? if base_url: logger.warn("lxml will ignore base_url: %s", base_url) return tree.xinclude(**kwargs) except ImportError: from xml.etree import ElementTree from viscid.compat import _xdmf_include logger.debug("Using native xml library") def parse(fname, **kwargs): return ElementTree.parse(fname, **kwargs) def xinclude(tree, base_url=None, **kwargs): """Summary Args: tree (Tree): The object returned by parse base_url (str): Interpret xinclude paths relative to this **kwargs: passed to _xdmf_include.include """ root = tree.getroot() _xdmf_include.include(root, base_url=base_url, **kwargs) ``` #### File: Viscid/viscid/dipole.py ```python from __future__ import print_function, division import sys import numpy as np import viscid from viscid import field from viscid import seed from viscid.calculator import interp_trilin # from viscid import vutil try: import numexpr as ne # pylint: disable=wrong-import-order _HAS_NUMEXPR = True except ImportError: _HAS_NUMEXPR = False __all__ = ['guess_dipole_moment', 'make_dipole', 'fill_dipole', 'calc_dip', 'set_in_region', 'make_spherical_mask', 'xyz2lsrlp', 'dipole_map', 'dipole_map_value'] # note that this global is used immutably (ie, not rc file configurable) DEFAULT_STRENGTH = 1.0 / 3.0574e-5 def guess_dipole_moment(b, r=2.0, strength=DEFAULT_STRENGTH, cap_angle=40, cap_ntheta=121, cap_nphi=121, plot=False): """guess dipole moment from a B field""" viscid.warn("guess_dipole_moment doesn't seem to do better than 1.6 " "degrees, you may want to use cotr instead.") cap = seed.SphericalCap(r=r, angle=cap_angle, ntheta=cap_ntheta, nphi=cap_nphi) b_cap = interp_trilin(b, cap) # FIXME: this doesn't get closer than 1.6 deg @ (theta, mu) = (0, 7.5) # so maybe the index is incorrect somehow? idx = np.argmax(viscid.magnitude(b_cap).data) pole = cap.points()[:, idx] # FIXME: it should be achievabe to get strength from the magimum magnitude, # up to the direction pole = strength * pole / np.linalg.norm(pole) # # not sure where 0.133 comes from, this is probably not correct # pole *= 0.133 * np.dot(pole, b_cap.data.reshape(-1, 3)[idx, :]) * r**3 if plot: from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt vlt.plot(viscid.magnitude(b_cap)) vlt.plot(viscid.magnitude(b_cap), style='contour', levels=10, colors='k', colorbar=False, ax=plt.gca()) vlt.show() return pole def make_dipole(m=(0, 0, -DEFAULT_STRENGTH), strength=None, l=None, h=None, n=None, twod=False, dtype='f8', nonuniform=False, crd_system='gse', name='b'): """Generate a dipole field with magnetic moment m [x, y, z]""" if l is None: l = [-5] * 3 if h is None: h = [5] * 3 if n is None: n = [256] * 3 x = np.array(np.linspace(l[0], h[0], n[0]), dtype=dtype) y = np.array(np.linspace(l[1], h[1], n[1]), dtype=dtype) z = np.array(np.linspace(l[2], h[2], n[2]), dtype=dtype) if twod: y = np.array(np.linspace(-0.1, 0.1, 2), dtype=dtype) if nonuniform: z += 0.01 * ((h[2] - l[2]) / n[2]) * np.sin(np.linspace(0, np.pi, n[2])) B = field.empty([x, y, z], nr_comps=3, name=name, center='cell', layout='interlaced', dtype=dtype) B.set_info('crd_system', viscid.as_crd_system(crd_system)) B.set_info('cotr', viscid.dipole_moment2cotr(m, crd_system=crd_system)) return fill_dipole(B, m=m, strength=strength) def fill_dipole(B, m=(0, 0, -DEFAULT_STRENGTH), strength=None, mask=None): """set B to a dipole with magnetic moment m Args: B (Field): Field to fill with a dipole m (ndarray, or datetime64-like): Description strength (float): if given, rescale the dipole moment even if it was given explicitly mask (Field): boolean field as mask, B will be filled where the mask is True Returns: Field: B """ # FIXME: should really be taking the curl of a vector field if mask: Bdip = field.empty_like(B) else: Bdip = B # Xcc, Ycc, Zcc = B.get_crds_cc(shaped=True) # pylint: disable=W0612 Xv, Yv, Zv = B.get_crds_vector(shaped=True) # pylint: disable=W0612 _crd_lst = [[_x, _y, _z] for _x, _y, _z in zip(Xv, Yv, Zv)] dtype = B.dtype one = np.array([1.0], dtype=dtype) # pylint: disable=W0612 three = np.array([3.0], dtype=dtype) # pylint: disable=W0612 if viscid.is_datetime_like(m): m = viscid.get_dipole_moment(m, crd_system=B) else: m = np.asarray(m, dtype=dtype) if strength is not None: m = (strength / np.linalg.norm(m)) * m mx, my, mz = m # pylint: disable=W0612 # geneate a dipole field for the entire grid # Note: this is almost the exact same as calc_dip, but since components # are done one-at-a-time, it requires less memory since it copies the # result of each component into Bdip separately if _HAS_NUMEXPR: for i, cn in enumerate("xyz"): _X, _Y, _Z = _crd_lst[i] _XI = _crd_lst[i][i] _mi = m[i] rsq = ne.evaluate("_X**2 + _Y**2 + _Z**2") # pylint: disable=W0612 mdotr = ne.evaluate("mx * _X + my * _Y + mz * _Z") # pylint: disable=W0612 Bdip[cn] = ne.evaluate("((three * _XI * mdotr / rsq) - _mi) / rsq**1.5") else: for i, cn in enumerate("xyz"): _X, _Y, _Z = _crd_lst[i] _XI = _crd_lst[i][i] _mi = m[i] rsq = _X**2 + _Y**2 + _Z**2 mdotr = mx * _X + my * _Y + mz * _Z Bdip[cn] = ((three * _XI * mdotr / rsq) - _mi) / rsq**1.5 if mask: B.data[...] = np.choose(mask.astype('i'), [B, Bdip]) return B def calc_dip(pts, m=(0, 0, -DEFAULT_STRENGTH), strength=None, crd_system='gse', dtype=None): """Calculate a dipole field at various points Args: pts (ndarray): Nx3 array of points at which to calculate the dipole. Should use the same crd system as `m` m (sequence, datetime): dipole moment strength (None, float): If given, rescale m to this magnitude crd_system (str): Something from which cotr can divine the coordinate system for both `pts` and `m`. This is only used if m is given as a datetime and we need to figure out the dipole moment at a given time in a given crd system dtype (str, np.dtype): dtype of the result, defaults to the same datatype as `pts` Returns: ndarray: Nx3 dipole field vectors for N points """ pts = np.asarray(pts, dtype=dtype) if len(pts.shape) == 1: pts = pts.reshape(1, 3) single_pt = True else: single_pt = False if dtype is None: dtype = pts.dtype one = np.array([1.0], dtype=dtype) # pylint: disable=W0612 three = np.array([3.0], dtype=dtype) # pylint: disable=W0612 if viscid.is_datetime_like(m): m = viscid.get_dipole_moment(m, crd_system=crd_system) else: m = np.asarray(m, dtype=dtype) if strength is not None: m = (strength / np.linalg.norm(m)) * m mx, my, mz = m # pylint: disable=W0612 m = m.reshape(1, 3) # geneate a dipole field for the entire grid # Note: this is almost the same as fill_dipole, but all components # are calculated simultaneously, and so this uses more memory if _HAS_NUMEXPR: _X, _Y, _Z = pts.T rsq = ne.evaluate("_X**2 + _Y**2 + _Z**2") # pylint: disable=W0612 mdotr = ne.evaluate("mx * _X + my * _Y + mz * _Z") # pylint: disable=W0612 Bdip = ne.evaluate("((three * pts * mdotr / rsq) - m) / rsq**1.5") else: _X, _Y, _Z = pts.T rsq = _X**2 + _Y**2 + _Z**2 mdotr = mx * _X + my * _Y + mz * _Z Bdip = ((three * pts * mdotr / rsq) - m) / rsq**1.5 if single_pt: Bdip = Bdip[0, :] return Bdip def set_in_region(a, b, alpha=1.0, beta=1.0, mask=None, out=None): """set `ret = alpha * a + beta * b` where mask is True""" alpha = np.asarray(alpha, dtype=a.dtype) beta = np.asarray(beta, dtype=a.dtype) a_dat = a.data if isinstance(a, viscid.field.Field) else a b_dat = b.data if isinstance(b, viscid.field.Field) else b b = None if _HAS_NUMEXPR: vals = ne.evaluate("alpha * a_dat + beta * b_dat") else: vals = alpha * a_dat + beta * b_dat a_dat = b_dat = None if out is None: out = field.empty_like(a) if mask is None: out.data[...] = vals else: if hasattr(mask, "nr_comps") and mask.nr_comps: mask = mask.as_centered(a.center).as_layout(a.layout) try: out.data[...] = np.choose(mask, [out.data, vals]) except ValueError: out.data[...] = np.choose(mask.data.reshape(list(mask.sshape) + [1]), [out.data, vals]) return out def make_spherical_mask(fld, rmin=0.0, rmax=None, rsq=None): """make a mask that is True between rmin and rmax""" if rmax is None: rmax = np.sqrt(0.9 * np.finfo('f8').max) if True and fld.nr_comps and fld.center.lower() in ('edge', 'face'): mask = np.empty(fld.shape, dtype='bool') Xv, Yv, Zv = fld.get_crds_vector(shaped=True) # pylint: disable=W0612 _crd_lst = [[_x, _y, _z] for _x, _y, _z in zip(Xv, Yv, Zv)] # csq = [c**2 for c in fld.get_crds_vector(shaped=True)] for i in range(3): rsq = np.sum([c**2 for c in _crd_lst[i]], axis=0) _slc = [slice(None)] * len(fld.shape) _slc[fld.nr_comp] = i mask[_slc] = np.bitwise_and(rsq >= rmin**2, rsq < rmax**2) return fld.wrap_field(mask, dtype='bool') else: rsq = np.sum([c**2 for c in fld.get_crds(shaped=True)], axis=0) mask = np.bitwise_and(rsq >= rmin**2, rsq < rmax**2) if fld.nr_comps: fld = fld['x'] return fld.wrap_field(mask, dtype='bool') def _precondition_pts(pts): """Make sure pts are a 2d ndarray with length 3 in 1st dim""" pts = np.asarray(pts) if len(pts.shape) == 1: pts = pts.reshape((3, 1)) return pts def xyz2lsrlp(pts, cotr=None, crd_system='gse'): """Ceovert x, y, z -> l-shell, r, lambda, phi [sm coords] - r, theta, phi = viscid.cart2sph(pts in x, y, z) - lambda = 90deg - theta - r = L cos^2(lambda) Args: pts (ndarray): 3xN for N (x, y, z) points cotr (None): if given, use cotr to perform mapping to / from sm crd_system (str): crd system of pts Returns: ndarray: 4xN array of N (l-shell, r, lamda, phi) points """ pts = _precondition_pts(pts) crd_system = viscid.as_crd_system(crd_system) cotr = viscid.as_cotr(cotr) # pts -> sm coords pts_sm = cotr.transform(crd_system, 'sm', pts) del pts # sm xyz -> r theta phi pts_rlp = viscid.cart2sph(pts_sm) # theta -> lamda (latitude) pts_rlp[1, :] = 0.5 * np.pi - pts_rlp[1, :] # get the L-shell from lamda and r lshell = pts_rlp[0:1, :] / np.cos(pts_rlp[1:2, :])**2 return np.concatenate([lshell, pts_rlp], axis=0) def dipole_map(pts, r=1.0, cotr=None, crd_system='gse', as_spherical=False): """Map pts along an ideal dipole to radius r lambda = 90deg - theta; r = L cos^2(lambda) cos^2(lambda) = cos^2(lambda_0) * (r / r_0) Args: pts (ndarray): 3xN for N (x, y, z) points r (float): radius to map to cotr (None): if given, use cotr to perform mapping to / from sm crd_system (str): crd system of pts as_spherical(bool): if True, then the return array is (t, theta, phi) with theta in the range [0, 180] and phi [0, 360] (in degrees) Returns: ndarray: 3xN array of N (x, y, z) points all at a distance r_mapped from the center of the dipole """ pts = _precondition_pts(pts) crd_system = viscid.as_crd_system(crd_system) cotr = viscid.as_cotr(cotr) lsrlp = xyz2lsrlp(pts, cotr=cotr, crd_system=crd_system) del pts # this masking causes trouble # lsrlp = np.ma.masked_where(r lsrlp[0:1, :], lsrlp) # lsrlp = np.ma.masked_where(np.array([[r] * 3]).T > lsrlp[0:1, :], lsrlp) # rlp: r, lamda (latitude), phi rlp_mapped = np.empty_like(lsrlp[1:, :]) rlp_mapped[0, :] = r # root is determined by sign of latitude in sm? root = np.sign(lsrlp[2:3, :]) rlp_mapped[1, :] = root * np.arccos(np.sqrt(r / lsrlp[0:1, :])) rlp_mapped[2, :] = lsrlp[3:4, :] del lsrlp rlp_mapped[1, :] = 0.5 * np.pi - rlp_mapped[1, :] # lamda (latitude) -> theta if as_spherical: ret = rlp_mapped # is now r, theta, phi ret[1:, :] = np.rad2deg(ret[1:, :]) # rotate angle phi by 360 until ret[2, :] is all between 0 and 360 ret[2, :] -= 360.0 * (ret[2, :] // 360.0) else: ret = cotr.transform('sm', crd_system, viscid.sph2cart(rlp_mapped)) return ret def dipole_map_value(fld, pts, r=1.0, fillna=None, cotr=None, crd_system=None, interp_kind='linear'): """Map values assuming they're constant along ideal dipole lines Args: fld (Field): values to interpolate onto the mapped pts pts (ndarray): 3xN for N (x, y, z) points that will be mapped r (float): radius of resulting map cotr (None): if given, use cotr to perform mapping in sm crd_system (str): crd system of pts interp_kind (str): how to interpolate fld onto source points Returns: ndarray: ndarray of mapped values, one for each of the N points """ if crd_system is None: crd_system = viscid.as_crd_system(fld, 'gse') if fld.is_spherical: # TODO: verify that crd_system works as expected for ionosphere # fields (ie, meaning of +x and phi = 0) fld = viscid.as_spherefield(fld, order=('theta', 'phi'))['r=newaxis, ...'] else: pass # pts should be shaped 3xNX*NY*NZ or similar such that the points # are in the same order as the flattened c-contiguous array mapped_pts = dipole_map(pts, r=r, cotr=cotr, crd_system=crd_system, as_spherical=fld.is_spherical) ret = viscid.interp(fld, mapped_pts, kind=interp_kind, wrap=False) if fillna is not None: ret[np.isnan(ret)] = fillna return ret def _main(): crd_system = 'gse' print(viscid.get_dipole_moment_ang(dip_tilt=45.0, dip_gsm=0.0, crd_system=crd_system)) print(viscid.get_dipole_moment_ang(dip_tilt=0.0, dip_gsm=45.0, crd_system=crd_system)) print(viscid.get_dipole_moment_ang(dip_tilt=45.0, dip_gsm=45.0, crd_system=crd_system)) print("---") ptsNP = np.array([[+2, -2, +2], [+2, -1, +2], [+2, 1, +2], [+2, 2, +2]]).T ptsSP = np.array([[+2, -2, -2], [+2, -1, -2], [+2, 1, -2], [+2, 2, -2]]).T ptsNN = np.array([[-2, -2, +2], [-2, -1, +2], [-2, 1, +2], [-2, 2, +2]]).T ptsSN = np.array([[-2, -2, -2], [-2, -1, -2], [-2, 1, -2], [-2, 2, -2]]).T mapped_ptsNP = dipole_map(ptsNP) mapped_ptsNN = dipole_map(ptsNN) mapped_ptsSP = dipole_map(ptsSP) mapped_ptsSN = dipole_map(ptsSN) try: from viscid.plot import vlab colors1 = np.array([(0.6, 0.2, 0.2), (0.2, 0.2, 0.6), (0.6, 0.6, 0.2), (0.2, 0.6, 0.6)]) colors2 = colors1 * 0.5 vlab.points3d(ptsNP, scale_factor=0.4, color=tuple(colors1[0])) vlab.points3d(ptsNN, scale_factor=0.4, color=tuple(colors1[1])) vlab.points3d(ptsSP, scale_factor=0.4, color=tuple(colors1[2])) vlab.points3d(ptsSN, scale_factor=0.4, color=tuple(colors1[3])) vlab.points3d(mapped_ptsNP, scale_factor=0.4, color=tuple(colors2[0])) vlab.points3d(mapped_ptsNN, scale_factor=0.4, color=tuple(colors2[1])) vlab.points3d(mapped_ptsSP, scale_factor=0.4, color=tuple(colors2[2])) vlab.points3d(mapped_ptsSN, scale_factor=0.4, color=tuple(colors2[3])) b = make_dipole() vlab.plot_lines(viscid.calc_streamlines(b, mapped_ptsNP, ibound=0.5)[0]) vlab.plot_lines(viscid.calc_streamlines(b, mapped_ptsNN, ibound=0.5)[0]) vlab.show() except ImportError: print("Mayavi not installed, no 3D plots", file=sys.stderr) if __name__ == "__main__": _main() ``` #### File: Viscid/viscid/extools.py ```python from __future__ import print_function import os import subprocess as sub __all__ = ['make_animation', 'meshlab_convert'] def make_animation(movie_fname, prefix, framerate=5, qscale=2, keep=False, args=None, frame_idx_fmt="_%06d", program="ffmpeg", yes=False): """ make animation by calling program (only ffmpeg works for now) using args, which is a namespace filled by the argparse options from add_animate_arguments. Plots are expected to be named ${args.prefix}_000001.png where the number is in order from 1 up """ if args is not None: prefix = args.prefix framerate = args.framerate qscale = args.qscale movie_fname = args.animate keep = args.keep if movie_fname: cmd = "yes | {0}".format(program) if yes else program if program == "ffmpeg": sub.Popen("{0} -r {1} -i {3}{4}.png -pix_fmt yuv420p " "-qscale {2} {5}".format(cmd, framerate, qscale, prefix, frame_idx_fmt, movie_fname), shell=True).communicate() if movie_fname is None and prefix is not None: keep = True if not keep: sub.Popen("rm -f {0}_*.png".format(prefix), shell=True).communicate() return None def meshlab_convert(fname, fmt="dae", quiet=True): """Run meshlabserver to convert 3D mesh files Uses `MeshLab <http://meshlab.sourceforge.net/>`_, which is a great little program for playing with 3D meshes. The best part is that OS X's Preview can open the COLLADA (`*.dae`) format. How cool is that? Args: fname (str): file to convert fmt (str): extension of result, defaults to COLLADA format quiet (bool): redirect output to :py:attr:`os.devnull` Returns: None """ iname = fname oname = '.'.join(iname.split('.')[:-1]) + "." + fmt.strip() redirect = "&> {0}".format(os.devnull) if quiet else "" cmd = ("meshlabserver -i {0} -o {1} -m vc vn fc fn {2}" "".format(iname, oname, redirect)) sub.Popen(cmd, shell=True, stdout=None, stderr=None) ## ## EOF ## ``` #### File: Viscid/viscid/multiplot.py ```python from __future__ import print_function import itertools from viscid.compat import izip from viscid import logger from viscid import parallel __all__ = ['multiplot'] def multiplot(vfile, plot_func=None, nr_procs=1, time_slice=":", **kwargs): """Make lots of plots Calls plot_func (or `_do_multiplot` if plot_func is None) with 2 positional arguments (int, Grid), and all the kwargs given to multiplot. Grid is determined by vfile.iter_times(time_slice). plot_func gets additional keyword arguments first_run (bool) and first_run_result (whatever is returned from plot_func by the first call). This is the function used by the ``p2d`` script. It may be useful to you. Args: vfile (VFile, Grid): Something that has iter_times plot_func (callable): Function that makes a single plot. It must take an int (index of time slice), a Grid, and any number of keyword argumets. If None, _do_multiplot is used nr_procs (int): number of parallel processes to farm out plot_func to time_slice (str): passed to vfile.iter_times() **kwargs: passed as keword aguments to plot_func """ # make sure time slice yields >= 1 actual time slice try: next(vfile.iter_times(time_slice)) except StopIteration: raise ValueError("Time slice '{0}' yields no data".format(time_slice)) if plot_func is None: plot_func = _do_multiplot grid_iter = izip(itertools.count(), vfile.iter_times(time_slice)) args_kw = kwargs.copy() args_kw["first_run"] = True args_kw["first_run_result"] = None if "subplot_params" not in args_kw.get("kwopts", {}): r = parallel.map(1, plot_func, [next(grid_iter)], args_kw=args_kw, force_subprocess=(nr_procs > 1)) # now get back to your regularly scheduled programming args_kw["first_run"] = False args_kw["first_run_result"] = r[0] parallel.map(nr_procs, plot_func, grid_iter, args_kw=args_kw) def _do_multiplot(tind, grid, plot_vars=None, global_popts=None, kwopts=None, share_axes=False, show=False, subplot_params=None, first_run_result=None, first_run=False, **kwargs): import matplotlib.pyplot as plt from viscid.plot import vpyplot as vlt logger.info("Plotting timestep: %d, %g", tind, grid.time) if plot_vars is None: raise ValueError("No plot_vars given to `_do_multiplot` :(") if kwargs: logger.info("Unused kwargs: {0}".format(kwargs)) if kwopts is None: kwopts = {} transpose = kwopts.get("transpose", False) plot_size = kwopts.get("plot_size", None) dpi = kwopts.get("dpi", None) out_prefix = kwopts.get("out_prefix", None) out_format = kwopts.get("out_format", "png") selection = kwopts.get("selection", None) timeformat = kwopts.get("timeformat", ".02f") tighten = kwopts.get("tighten", False) # wicked hacky # subplot_params = kwopts.get("subplot_params", _subplot_params) # nrows = len(plot_vars) nrows = len([pv[0] for pv in plot_vars if not pv[0].startswith('^')]) ncols = 1 if transpose: nrows, ncols = ncols, nrows if nrows == 0: logger.warn("I have no variables to plot") return fig = plt.gcf() if plot_size is not None: fig.set_size_inches(*plot_size, forward=True) if dpi is not None: fig.set_dpi(dpi) shareax = None this_row = -1 for i, fld_meta in enumerate(plot_vars): if not fld_meta[0].startswith('^'): this_row += 1 same_axis = False else: same_axis = True fld_name_meta = fld_meta[0].lstrip('^') fld_name_split = fld_name_meta.split(',') if '=' in fld_name_split[0]: # if fld_name is actually an equation, assume # there's no slice, and commas are part of the # equation fld_name = ",".join(fld_name_split) fld_slc = "" else: fld_name = fld_name_split[0] fld_slc = ",".join(fld_name_split[1:]) if selection is not None: # fld_slc += ",{0}".format(selection) if fld_slc != "": fld_slc = ",".join([fld_slc, selection]) else: fld_slc = selection if fld_slc.strip() == "": fld_slc = None # print("fld_time:", fld.time) if this_row < 0: raise ValueError("first plot can't begin with a +") row = this_row col = 0 if transpose: row, col = col, row if not same_axis: ax = plt.subplot2grid((nrows, ncols), (row, col), sharex=shareax, sharey=shareax) if i == 0 and share_axes: shareax = ax if "plot_opts" not in fld_meta[1]: fld_meta[1]["plot_opts"] = global_popts elif global_popts is not None: fld_meta[1]["plot_opts"] = "{0},{1}".format( fld_meta[1]["plot_opts"], global_popts) with grid.get_field(fld_name, slc=fld_slc) as fld: vlt.plot(fld, masknan=True, **fld_meta[1]) # print("fld cache", grid[fld_meta[0]]._cache) if timeformat and timeformat.lower() != "none": plt.suptitle(grid.format_time(timeformat)) # for adjusting subplots / tight_layout and applying the various # hacks to keep plots from dancing around in movies if not subplot_params and first_run_result: subplot_params = first_run_result if tighten: tighten = dict(rect=[0, 0.03, 1, 0.90]) ret = vlt.auto_adjust_subplots(tight_layout=tighten, subplot_params=subplot_params) if not first_run: ret = None if out_prefix: plt.savefig("{0}_{1:06d}.{2}".format(out_prefix, tind + 1, out_format)) if show: plt.show() plt.clf() return ret ## ## EOF ## ``` #### File: Viscid/viscid/npdatetime.py ```python from __future__ import print_function, division from datetime import datetime, timedelta from distutils.version import LooseVersion try: from itertools import izip except ImportError: izip = zip import re import sys import numpy as np if sys.version_info[0] == 3: string_types = str, else: string_types = basestring, # pylint: disable=undefined-variable __all__ = ['PrecisionError', 'as_datetime64', 'as_timedelta64', 'as_datetime', 'as_timedelta', 'to_datetime64', 'to_timedelta64', 'to_datetime', 'to_timedelta', 'as_isotime', 'to_isotime', 'format_time', 'format_datetime', 'is_valid_datetime64', 'is_valid_timedelta64', 'datetime_as_seconds', 'timedelta_as_seconds', 'time_as_seconds', 'datetime64_as_years', 'asarray_datetime64', 'linspace_datetime64', 'round_time', 'regularize_time', 'time_sum', 'time_diff', 'is_datetime_like', 'is_timedelta_like', 'is_time_like'] _NP_TZ = LooseVersion(np.__version__) < LooseVersion('1.11') TIME_UNITS = ('as', 'fs', 'ps', 'ns', 'us', 'ms', 's', 'm', 'h') TIME_SCALE = (1e3, 1e3, 1e3, 1e3, 1e3, 1e3, 60, 60) DATE_UNITS = ('D', 'W', 'M', 'Y') ORDERED_UNITS = list(TIME_UNITS) + list(DATE_UNITS) DATETIME_BASE = "datetime64" DELTA_BASE = "timedelta64" class PrecisionError(ArithmeticError): """Used if conversion to a time unit truncates value to 0""" pass # This class is for Python2.6 compatability since in 2.6, timedelta has # no total_seconds method class TimeDeltaCompat(timedelta): @staticmethod def __new__(*args, **kwargs): # pylint: disable=no-method-argument if len(args) == 2 and isinstance(args[1], (timedelta, np.timedelta64)): return timedelta.__new__(args[0], args[1].days, args[1].seconds, args[1].microseconds) else: return timedelta.__new__(*args, **kwargs) def total_seconds(self): try: return super(TimeDeltaCompat, self).total_seconds() except AttributeError: return (self.microseconds + (self.seconds + self.days * 24 * 3600) * 10**6) / 10**6 def _format_unit(unit, base=DATETIME_BASE): if unit: return "{0}[{1}]".format(base, unit) else: return base def _as_dtype(t): if isinstance(t, np.dtype): return t else: return t.dtype def _get_base_unit(t): name = _as_dtype(t).name base = name[:name.rfind('[')] unit = name[name.rfind('[') + 1:name.rfind(']')] return base, unit def _get_unit(t): return _get_base_unit(t)[1] def _is_datetime64(t): return _as_dtype(t).type == np.datetime64 def _is_dateunit(t): return _is_datetime64(t) and _get_unit(t) in DATE_UNITS def _is_timeunit(t): return _is_datetime64(t) and _get_unit(t) in TIME_UNITS def _as_datetime64_scalar(time, unit=None): unit_args = [unit] if unit else [] if is_timedelta_like(time): scalar = as_timedelta64(time, unit=unit).astype(_format_unit(None)) elif isinstance(time, string_types): try: time = as_isotime(time) except (TypeError, ValueError): pass # Let ValueErrors happen in numpy constructors below if _is_timeunit(np.datetime64(time).dtype) and _NP_TZ: has_tz = bool(re.match(r".*([+-][0-9]{2,4}|Z)$", time)) if not has_tz: time += 'Z' scalar = np.datetime64(time, *unit_args) elif unit_args and hasattr(time, 'astype'): scalar = time.astype(_format_unit(unit_args[0])) else: scalar = np.datetime64(time, *unit_args) return scalar def _as_timedelta64_scalar(time, unit=None): unit_args = [unit] if unit else [] flt_unit = unit if unit else 's' # turn 'H:M:S.ms', 'M:S.ms', 'S.ms' into floating point seconds if isinstance(time, string_types):# and ':' in time: time = [float(t) for t in time.split(':')][::-1] if len(time) > 1 and unit is not None: raise ValueError("When giving time as a string, units are automatic") if len(time) > 3: raise ValueError("Timedelta as string only goes up to hours") t_flt = 0.0 for factor, t in zip([1, 60, 60 * 60], time): t_flt += factor * t time = t_flt flt_unit = 's' # turn floating point time into integer with the correct unit if is_datetime_like(time): time = as_datetime64(time) - as_datetime64(np.timedelta64(0, 's')) elif isinstance(time, (np.timedelta64, timedelta)): time = np.timedelta64(time).astype(_format_unit(unit, base=DELTA_BASE)) elif isinstance(time, (int, float, np.integer, np.floating)): orig_time, orig_flt_unit = time, flt_unit unit_idx = TIME_UNITS.index(flt_unit) while not np.isclose(time, int(np.round(time)), rtol=1e-4, atol=1e-18): if unit_idx <= 0: raise ValueError("Floating point time {0} [{1}] is too precise " "for any time unit?".format(orig_time, orig_flt_unit)) unit_idx -= 1 time *= TIME_SCALE[unit_idx] flt_unit = TIME_UNITS[unit_idx] time = np.timedelta64(int(np.round(time)), flt_unit) unit, unit_args = flt_unit, [flt_unit] return np.timedelta64(time, *unit_args) def as_isotime(time): """Try to convert times in string format to ISO 8601 Raises: TypeError: Elements are not strings ValueError: numpy.datetime64(time) fails """ if isinstance(time, (list, tuple, np.ndarray)): scalar = False else: scalar = True time = [time] ret = [None] * len(time) for i, t in enumerate(time): if isinstance(t, string_types): t = t.strip().upper().lstrip('UT') if re.match(r"^[0-9]{2}([0-9]{2}:){3,5}[0-9]{1,2}(\.[0-9]*)?$", t): # Handle YYYY:MM:DD:hh:mm:ss.ms -> YYYY-MM-DDThh:mm:ss.ms # YYYY:MM:DD:hh:mm:s.ms -> YYYY-MM-DDThh:mm:s.ms # YYYY:MM:DD:hh:mm:ss -> YYYY-MM-DDThh:mm:ss # YYYY:MM:DD:hh:mm -> YYYY-MM-DDThh:mm # YYYY:MM:DD:hh -> YYYY-MM-DDThh # -- all this _tsp nonsense is to take care of s.ms; annoying _tsp = t.replace('.', ':').split(':') _tsp[0] = _tsp[0].zfill(4) _tsp[1:6] = [_s.zfill(2) for _s in _tsp[1:6]] t = ":".join(_tsp[:6]) if len(_tsp) > 6: t += "." + _tsp[6] # -- ret[i] = t[:10].replace(':', '-') + 'T' + t[11:] elif re.match(r"^[0-9]{2}([0-9]{2}:){2}[0-9]{2}$", t): # Handle YYYY:MM:DD -> YYYY-MM-DD ret[i] = t.replace(':', '-') else: ret[i] = t try: np.datetime64(ret[i]) except ValueError: raise else: raise TypeError("Can only turn strings to ISO 8601 time format " "({0})".format(type(t))) if scalar: return ret[0] else: if isinstance(time, np.ndarray): return np.array(time, dtype=time.dtype) else: return ret def as_datetime64(time, unit=None): """Convert to a Numpy datetime64 scalar or array Args: time: some python datetime or string in ISO 8601 format, could also be a sequence of these to return a Numpy ndarray unit (str): one of {Y,M,W,D,h,m,s,m,s,us,ns,ps,fs,as} Returns: np.datetime64[unit] or array with dtype np.datetime64[unit] """ if isinstance(time, np.ndarray): time = time.astype(_format_unit(unit)) elif isinstance(time, (list, tuple)): time = np.array([_as_datetime64_scalar(ti, unit=unit) for ti in time], dtype=_format_unit(unit)) else: time = _as_datetime64_scalar(time, unit=unit) return time def as_timedelta64(time, unit=None): """Convert to a timedelta64 type Args: time (timedelta-like): an int/float/string/... to convert unit (None): This is the unit of the input, the result will be the most coarse unit that can store the time """ # if isinstance(time, np.ndarray): # time = time.astype(_format_unit(None, base=DELTA_BASE)) if isinstance(time, (np.ndarray, list, tuple)): time = np.array([_as_timedelta64_scalar(ti, unit=unit) for ti in time]) else: time = _as_timedelta64_scalar(time, unit=unit) return time def as_datetime(time, unit=None): """Convert time to a Numpy ndarray of datetime.datetime objects Args: time: some python datetime or string in ISO 8601 format, could also be a sequence of these to return a Numpy ndarray unit (str): one of {Y,M,W,D,h,m,s,m,s,us,ns,ps,fs,as} Returns: np.ndarray of native datetime.datetime objects (dtype = object) """ try: dt64 = as_datetime64(time, unit=unit) except ValueError: dt64 = as_datetime64(as_timedelta64(time, unit=unit)) return round_time(dt64, 'us').astype(datetime) def as_timedelta(time, unit=None, allow0=True): """Convert time to a Numpy ndarray of datetime.datetime objects Note: Python timedelta objects are accurate up to microseconds Args: time: some python datetime or string in ISO 8601 format, could also be a sequence of these to return a Numpy ndarray unit (str): one of {Y,M,W,D,h,m,s,m,s,us,ns,ps,fs,as} allow0 (bool): If False, then raise PrecisionError if a value has been rounded to 0 Returns: np.ndarray of native datetime.datetime objects (dtype = object) """ time = as_timedelta64(time, unit=unit) ret = round_time(time, unit='us', allow0=allow0).astype(timedelta) if not isinstance(ret, np.ndarray) and not hasattr(ret, "total_seconds"): ret = TimeDeltaCompat(ret) elif isinstance(ret, np.ndarray) and not hasattr(ret[0], "total_seconds"): ret = np.array([TimeDeltaCompat(r) for r in ret]) return ret def asarray_datetime64(arr, unit=None, conservative=False): """If is_valid_datetime64, then return a datetime64 array Args: arr (sequence): something that can become an arary unit (str): one of {Y,M,W,D,h,m,s,m,s,us,ns,ps,fs,as} conservative (bool): If True, then only turn arr into a date-time array if it really looks like it """ if conservative: if is_datetime_like(arr): return as_datetime64(arr, unit=unit) else: return np.asarray(arr) else: try: return as_datetime64(arr, unit=unit) except ValueError: return np.asarray(arr) def linspace_datetime64(start, stop, n, endpoint=True, unit=None): """Make an evenly space ndarray from start to stop with n values""" start = as_datetime64(start, unit=unit) stop = as_datetime64(stop, unit=unit) start, stop = regularize_time([start, stop], most_precise=True) fltarr = np.linspace(start.astype('i8'), stop.astype('i8'), n, endpoint=endpoint, dtype='f8') return np.round(fltarr, 0).astype('i8').astype(start.dtype) def _most_precise_t_unit(tlst): """Find the most precise time unit from the bunch Args: tlst: datetime64 or timedelta64 instances Returns: str: unit of the most precise time """ units = [_get_base_unit(t)[1] for t in tlst] unit_idx = [ORDERED_UNITS.index(u) for u in units] return units[np.argmin(unit_idx)] def _adjust_t_unit(t, unit, cfunc=None, allow0=True): """adjust the unit of t using cfunc Args: t (datetime64, timedelta64): time to convert unit: target unit cfunc (callable): one of `as_datetime64` or `as_timedelta64` allow0 (bool): If False, then raise PrecisionError if a value has been truncated to 0 Raises: OverflowError: if all elements of tlst can't fit in the same unit PrecisionError: if rounding a time truncated it to 0 and not `allow0` """ orig_base, orig_unit = _get_base_unit(t) if cfunc is None: cfunc_lookup = {'datetime64': as_datetime64, 'timedelta64': as_timedelta64} cfunc = cfunc_lookup[orig_base] if orig_unit == unit: t1 = t elif ORDERED_UNITS.index(unit) < ORDERED_UNITS.index(orig_unit): # we want a more precise unit... raise an OverflowError if the # new unit can not store the most coarse part of t t1 = cfunc(t, unit=unit) # converting back to orig_unit and checking t == t2 effectively # checks to make sure we haven't overflowed into the sign bit # since this isn't checked by Numpy internally. if the conversion # overflowed a 64-bit int completely, an OverflowError has already # been raised t2 = cfunc(t1, unit=orig_unit) if t != t2: raise OverflowError("Time {0} could not be refined to unit '{1}' " "because it overflowed into the sign bit ({2})." "".format(str(t), unit, str(t1))) else: # we want a less precise unit, i.e., round t to the new unit... raise # a PrecisionError if t was rounded to 0 t1 = cfunc(t, unit=unit) if not allow0 and t1.astype('i8') == 0 and t.astype('i8') != 0: raise PrecisionError("The time {0} was truncated to 0 when " "rounded to the nearest '{1}'" "".format(str(t), unit)) return t1 def round_time(tlst, unit, allow0=True): """Round a time or list of times to minimum level of coarseness Note: * When rounding, some values might be rounded to 0. If you rather raise a PrecisionError, then give `allow0=False`. Args: tlst (timelike, list): single or list of datetime64 or timedelta64 unit (str): units of result will be at least as coarse as this unit allow0 (bool): If False, then raise PrecisionError if a value has been truncated to 0 Returns: timelike or list: `tlst` rounded to a unit at least as coarse as `unit` """ cfunc_lookup = {'datetime64': as_datetime64, 'timedelta64': as_timedelta64} if not isinstance(tlst, (list, tuple, np.ndarray)): tlst = [tlst] single_val = True else: single_val = False bases_units = [_get_base_unit(t) for t in tlst] bases = [bu[0] for bu in bases_units] units = [bu[1] for bu in bases_units] unit_idxs = [ORDERED_UNITS.index(u) for u in units] unit0_idx = ORDERED_UNITS.index(unit) ret = [] for t, base, unit_idx in izip(tlst, bases, unit_idxs): cfunc = cfunc_lookup[base] if unit_idx >= unit0_idx: ret.append(t) else: ret.append(_adjust_t_unit(t, unit, cfunc=cfunc, allow0=allow0)) if single_val: return ret[0] else: if isinstance(tlst, np.ndarray): return np.asarray(ret) else: return ret def regularize_time(tlst, unit=None, most_precise=False, allow_rounding=True, allow0=True): """Convert a list of times to a common unit Notes: * If some times are too fine to fit in the same unit as the rest of the times, then they will be rounded to a more coarse unit. If you rather raise an OverflowError, then give `allow_rounding=False`. * When rounding, some values might be rounded to 0. If you rather raise a PrecisionError, then give `allow0=False`. Args: tlst (timelike, list): single or list of datetime64 or timedelta64 unit (str): If given, regularize all times to this unit, otherwise, regularize them to the most precise of the bunch most_precise (bool): If True, then convert all times to the most precise unit that fits all the times allow_rounding (bool): if any time is too small to be represented in the desired unit, then use a more coarse unit and round values so that everything fits allow0 (bool): If False, then raise PrecisionError if a value has been rounded to 0 Returns: timelike or list: single or list of times all in the same unit """ cfunc_lookup = {'datetime64': as_datetime64, 'timedelta64': as_timedelta64} if not isinstance(tlst, (list, tuple, np.ndarray)): tlst = [tlst] single_val = True else: single_val = False if unit is None: unit = _most_precise_t_unit(tlst) bases_units = [_get_base_unit(t) for t in tlst] bases = [bu[0] for bu in bases_units] cfuncs = [cfunc_lookup[b] for b in bases] # round values to successively more coarse units until we get to # a unit that can contain all the times in our list for u in ORDERED_UNITS[ORDERED_UNITS.index(unit):]: ret = [] try: for t, cfunc in izip(tlst, cfuncs): ret.append(_adjust_t_unit(t, u, cfunc, allow0=allow0)) except OverflowError: if not allow_rounding: raise else: unit = u break # if we want the most precise unit that fits everything, then keep # refining the unit until we get an OverflowError if most_precise: for u in reversed(ORDERED_UNITS[:ORDERED_UNITS.index(unit)]): try: nxt = [] for t, cfunc in izip(ret, cfuncs): nxt.append(_adjust_t_unit(t, u, cfunc, allow0=allow0)) except OverflowError: break else: ret = nxt if single_val: return ret[0] else: if isinstance(tlst, np.ndarray): return np.asarray(ret) else: return ret def time_sum(t0, tdelta, unit=None, most_precise=False, allow_rounding=True, allow0=True): """Add timedelta64 to datetime64 at highest precision w/o overflow Notes: * If `allow_rounding`, then the result may not be in `unit`. If you rather raise an OverflowError, give `allow_rounding=False` * If t0 can not be represented using the same units as tdelta, then tdelta could be rounded to 0. If you rather raise a PrecisionError, then give `allow0=False` Args: t0 (datetime64): starting date tdelta (timedelta64): timedelta to add unit (str): If given, regularize all times to this unit, otherwise, regularize them to the most precise of the bunch most_precise (bool): If True, then convert all times to the most precise unit that fits all the times allow_rounding (bool): if tdelta is too small to be represented in the same unit as t0, then round it to the finest unit that fits both t0 and tdelta allow0 (bool): If False, and a value is rounded to 0 in a given unit, then raise a PrecisionError Returns: datetime64: t0 + tdelta """ t0 = as_datetime64(t0) tdelta = as_timedelta64(tdelta) t0, tdelta = regularize_time([t0, tdelta], unit=unit, most_precise=most_precise, allow_rounding=allow_rounding, allow0=allow0) return t0 + tdelta def time_diff(t1, t2, unit=None, most_precise=False): """Diff two datetime64s at highest precision w/o overflow Note: If `allow_rounding`, then the result may not be in `unit`. If you rather raise an OverflowError, give `allow_rounding=False` Args: t1 (datetime64): `t1` for `t1 - t2` t2 (datetime64): `t2` for `t1 - t2` unit (str): If given, regularize all times to this unit, otherwise, regularize them to the most precise of the bunch most_precise (bool): If True, then convert all times to the most precise unit that fits all the times Returns: timedelta64: t1 - t2 """ t1 = as_datetime64(t1) t2 = as_datetime64(t2) t1, t2 = regularize_time([t1, t2], unit=unit, most_precise=most_precise) return t1 - t2 def is_valid_datetime64(arr, unit=None): """Returns True iff arr can be made into a datetime64 array""" try: as_datetime64(arr, unit=unit) return True except ValueError: return False def is_valid_timedelta64(arr, unit=None): """Returns True iff arr can be made into a timedelta64 array""" try: as_timedelta64(arr, unit=unit) return True except ValueError: return False def datetime_as_seconds(a, decimals=0, unit=None): """round datetime a to the nearest decimals seconds""" a_as_dt64 = as_datetime64(a, unit=unit) _epoch = regularize_time(a_as_dt64, unit='s') frac = time_diff(a_as_dt64, _epoch) / np.timedelta64(1, 's') rounded = np.round(frac, decimals) return as_datetime64(_epoch + as_timedelta64(rounded, unit='s')) def timedelta_as_seconds(a, decimals=0, unit=None): """round timedelta a to the nearest decimals seconds Note: works for 'fs', but not 'as' """ a_td64 = as_timedelta64(a, unit=unit) rounded = np.round(a_td64 / as_timedelta64(1, 's'), decimals) return as_timedelta64(rounded, unit='s') def time_as_seconds(a, decimals=0, unit=None): """round a to the nearest decimal seconds""" if is_datetime_like(a): return datetime_as_seconds(a, decimals=decimals, unit=unit) elif is_timedelta_like(a, conservative=True): return timedelta_as_seconds(a, decimals=decimals, unit=unit) else: return np.round(a, decimals=decimals) def format_datetime(time, fmt="%Y-%m-%d %H:%M:%S.%.02f"): """Shortcut to :py:func:`format_time` for a datetime format""" return format_time(time, fmt=fmt) def format_time(time, fmt='.02f', basetime=None): """Format time as a string Args: t (float): time style (str): for this method, can be:: ----------------------- ------- ---------------------------- style time string ----------------------- ------- ---------------------------- 'hms' 90015.0 "25:00:15" 'hmss' 90015.0 "25:00:15 (090015)" 'dhms' 900.0 "0 days 00:15:00" 'dhmss' 900.0 "0 days 00:15:00 (000900)" '.02f' 900.0 '900.00' '%Y-%m-%d %H:%M:%S' 900.0 '1970-01-01 00:15:00' '%Y-%m-%d %H:%M:%S.%1f' 900.0 '1970-01-01 00:15:00.0' ----------------------- ------- ---------------------------- Note that the last one can involve any formatting strings understood by datetime.strftime basetime (np.datetime64): if formatting just number of seconds from something like ".02f", then use this time as 0 seconds Returns: str """ dttime = as_datetime(time) ret = "" if basetime is None: basetime = as_datetime64(0.0) if fmt.lower() == 'ut': fmt = '%Y-%m-%d %H:%M:%S' if fmt in ('dhms', 'dhmss', 'hms', 'hmss'): # These are special time-style formatters if fmt.startswith('d'): days = int(as_timedelta64(dttime) / np.timedelta64(1, 'D')) if days == 1: days_str = '{0} day'.format(days) else: days_str = '{0} days '.format(days) else: days_str = '' ret = datetime.strftime(dttime, days_str + '%H:%M:%S') if fmt.endswith('ss'): _tt = time_diff(dttime, basetime) / np.timedelta64(1, 's') ret += " ({0:06d})".format(int(_tt)) elif '%' not in fmt: # if there's no % symbol, then it's probably not a strftime format, # so use fmt as normal string formatting of total_seconds _tt = (as_datetime64(time) - basetime) / np.timedelta64(1, 's') ret = "{0:{1}}".format(_tt, fmt.strip()) else: if not fmt: msec_fmt = ['1'] fmt = "%Y-%m-%d %H:%M:%S.%f" else: msec_fmt = re.findall(r"%\.?([0-9]*)f", fmt) fmt = re.sub(r"%\.?([0-9]*)f", "%f", fmt) tstr = datetime.strftime(dttime, fmt) # now go back and for any %f -> [0-9]{6}, reformat the precision it = list(izip(msec_fmt, re.finditer("[0-9]{6}", tstr))) for ffmt, m in reversed(it): a, b = m.span() val = float("0." + tstr[a:b]) ifmt = int(ffmt) if len(ffmt) > 0 else 6 f = "{0:0.{1}f}".format(val, ifmt)[2:] tstr = tstr[:a] + f + tstr[b:] ret = tstr return ret def _check_like(val, _np_types, _native_types, check_str=None): # pylint: disable=too-many-return-statements """ Checks the follwing: - if val is instance of _np_types or _native_types - if val is a list or ndarray of _np_types or _native_types - if val is a string or list of strings that can be parsed by check_str Does not check: - if val is an ndarray of strings that can be parsed by check_str """ _all_types = _np_types + _native_types if isinstance(val, _all_types): return True elif isinstance(val, string_types): return check_str and check_str(val) elif isinstance(val, (list, tuple)): for v in val: if isinstance(v, string_types): if check_str and check_str(v): continue if not isinstance(v, _all_types): return False return True elif hasattr(val, 'dtype'): if val.dtype == np.object: return all(isinstance(v, _native_types) for v in val) else: return val.dtype.type in _np_types else: return False def datetime64_as_years(time): """Get time as floating point years since the year 0""" time = as_datetime64(time) epoch_year = 1970 epoch = as_datetime64("{0}-01-01T00:00:00.0".format(epoch_year)) tdelta = time_diff(time, epoch, most_precise=True) years = tdelta / np.timedelta64(1, 'D') / 365.242 + epoch_year return years def is_datetime_like(val, conservative=False): # pylint: disable=unused-argument """Returns True iff val is datetime-like""" if conservative and val is None: return False if conservative: try: int(val) return False except (ValueError, TypeError): pass return _check_like(val, (np.datetime64, ), (datetime, ), is_valid_datetime64) def is_timedelta_like(val, conservative=False): """Returns True iff val is timedelta-like""" if conservative: if val is None: return False if isinstance(val, string_types): try: int(val) return False except (ValueError, TypeError): pass return _check_like(val, (np.timedelta64, ), (timedelta, ), is_valid_timedelta64) else: return _check_like(val, (np.timedelta64, np.floating, np.integer), (timedelta, float, int), is_valid_timedelta64) def is_time_like(val, conservative=False): """Returns True iff val is datetime-like or timedelta-like""" return (is_datetime_like(val, conservative=conservative) or is_timedelta_like(val, conservative=conservative)) to_datetime64 = as_datetime64 to_timedelta64 = as_timedelta64 to_datetime = as_datetime to_timedelta = as_timedelta to_isotime = as_isotime def _main(): verb = True d0 = as_datetime64('2010-06-21') d1 = as_datetime64('2014-12-15T03:00:00.0003') d2 = as_datetime64('1970-01-01', 'as') t0 = as_timedelta64(60, 'm') t1 = as_timedelta64(121, 'us') t2 = as_timedelta64(1536, 'as') l0 = [d0, d1, t0, t1, t2] if verb: print("l0", l0, "\n") # # TEST `round_time` and `regularize_time` # l1 = regularize_time(l0, unit='us') if verb: print("l1", l1, "\n") l2 = round_time(l0, 'us') if verb: print("l1", l2, "\n") l3 = round_time(l1, 's') if verb: print("l3", l3, "\n") l4 = round_time(l0, 'fs', allow0=False) if verb: print("l4", l4, "\n") assert l1 == l2 assert l1 != l3 try: _ = regularize_time(l0, unit='us', allow0=False) except PrecisionError: pass else: assert 0, "rounding 1536 atto secs -> us should have caused an error" try: _ = regularize_time(l0, allow_rounding=False) except OverflowError: pass else: assert 0, "2010-06-21 should not be representable in atto secs" try: _ = round_time(l0, 's', allow0=False) except PrecisionError: pass else: assert 0, "rounding 1536 atto secs -> secs should have caused an error" # # TEST `time_sum` # print(d0, "+", t1, "=", time_sum(d0, t1)) print(d0, "+", t2, "=", time_sum(d0, t2)) try: time_sum(d0, t2, allow0=False) except PrecisionError: pass else: assert 0, "rounding 1536 atto secs -> us should have caused an error" try: time_sum(d0, t2, allow_rounding=False) except OverflowError: pass else: assert 0, "2010-06-21 should not be representable in atto secs" # # TEST `time_diff` # print(d0, "-", d1, "=", time_diff(d0, d1)) print(d0, "-", d1, "=", time_diff(d0, d1, most_precise=True)) print(d0, "-", d1, "=", time_diff(d0, d1, unit='s')) print(d0, "-", d2, "=", time_diff(d0, d2)) print(d0, "-", d2, "=", time_diff(d0, d2, unit='s')) print(d0, "-", d2, "=", time_diff(d0, d2, unit='Y')) # # TEST linspace_datetime64 # lst = linspace_datetime64(as_datetime64('1930-03-04'), as_datetime64('2010-02-14T12:30:00'), 10) print(lst, lst.dtype) if __name__ == "__main__": sys.exit(_main()) ## ## EOF ## ``` #### File: Viscid/viscid/parallel.py ```python from __future__ import print_function, division from math import ceil import threading import multiprocessing as mp import multiprocessing.pool from contextlib import closing from itertools import repeat import sys import numpy as np import viscid from viscid.compat import izip, futures, string_types __all__ = ["chunk_list", "chunk_slices", "chunk_interslices", "chunk_sizes", "map", "map_async"] # Non daemonic processes are probably a really bad idea class NoDaemonProcess(mp.Process): """Using this is probably a bad idea""" # make 'daemon' attribute always return False @staticmethod def _get_daemon(): return False def _set_daemon(self, value): pass daemon = property(_get_daemon, _set_daemon) class NoDaemonPool(multiprocessing.pool.Pool): # pylint: disable=W0223 """ I am vulnerable to armies of undead worker processes, chances are you don't actually want to use me """ Process = NoDaemonProcess class _MapThread(threading.Thread): def __init__(self, result_container, index, **kwargs): self.results = result_container self.index = index self.target = kwargs.pop("target") self.args = kwargs.pop("args", []) self.kwargs = kwargs.pop("kwargs", {}) super(_MapThread, self).__init__(**kwargs) def run(self): self.results[self.index] = self.target(*self.args, **self.kwargs) def chunk_list(seq, nchunks, size=None): """Chunk a list slice seq into chunks of nchunks size, seq can be a anything sliceable such as lists, numpy arrays, etc. These chunks will be 'contiguous', see :meth:`chunk_interslice` for picking every nth element. Parameters: size: if given, set nchunks such that chunks have about 'size' elements Returns: nchunks slices of length N = (len(lst) // nchunks) or N - 1 See Also: Use :meth:`chunk_iterator` to chunk up iterators Example: >>> it1, it2, it3 = chunk_list(range(8), 3) >>> it1 == range(0, 3) # 3 vals True >>> it2 == range(3, 6) # 3 vals True >>> it3 == range(6, 8) # 2 vals True """ nel = len(seq) if size is not None: nchunks = int(ceil(nel / nchunks)) ret = chunk_slices(nel, nchunks) for i in range(nchunks): ret[i] = seq[slice(*ret[i])] return ret def chunk_slices(nel, nchunks, size=None): r"""Make continuous chunks Get the slice info (can be unpacked and passed to the slice builtin as in slice(\*ret[i])) for nchunks contiguous chunks in a list with nel elements Parameters: nel: how many elements are in one pass of the original list nchunks: how many chunks to make size: if given, set nchunks such that chunks have about 'size' elements Returns: a list of (start, stop) tuples with length nchunks Example: >>> sl1, sl2 = chunk_slices(5, 2) >>> sl1 == (0, 3) # 3 vals True >>> sl2 == (3, 5) # 2 vals True """ if size is not None: nchunks = int(ceil(nel / nchunks)) nlong = nel % nchunks # nshort guarenteed < nchunks lenshort = nel // nchunks lenlong = lenshort + 1 ret = [None] * nchunks start = 0 for i in range(nlong): ret[i] = (start, start + lenlong) start += lenlong for i in range(nlong, nchunks): ret[i] = (start, start + lenshort) start += lenshort return ret def chunk_interslices(nchunks): """Make staggered chunks Similar to chunk_slices, but pick every nth element instead of getting a contiguous patch for each chunk Parameters: nchunks: how many chunks to make Returns: a list of (start, stop, step) tuples with length nchunks Example: >>> chunk_slices(2) == [(0, None, 2), (1, None, 2)] True """ ret = [None] * nchunks for i in range(nchunks): ret[i] = (i, None, nchunks) return ret def chunk_sizes(nel, nchunks, size=None): """For chunking up lists, how big is each chunk Parameters: nel: how many elements are in one pass of the original list nchunks: is inferred from the length of iter_list size: if given, set nchunks such that chunks have about 'size' elements Returns: an ndarray of the number of elements in each chunk, this should be the same for chunk_list, chunk_slices and chunk_interslices Example: >>> nel1, nel2 = chunk_sizes(5, 2) >>> nel1 == 2 True >>> nel2 == 3 True """ if size is not None: nchunks = int(ceil(nel / nchunks)) nlong = nel % nchunks # nshort guarenteed < nchunks lenshort = nel // nchunks lenlong = lenshort + 1 ret = np.empty((nchunks,), dtype="int") ret[:nlong] = lenlong ret[nlong:] = lenshort return ret def _star_passthrough(args): """ this is so we can give a zipped iterable to func """ # args[0] is function, args[1] is positional args, and args[2] is kwargs return args[0](*(args[1]), **(args[2])) def sanitize_nr_procs(nr_procs): if isinstance(nr_procs, string_types): nr_procs = nr_procs.strip().lower() if nr_procs == "all" or nr_procs == "auto": nr_procs = mp.cpu_count() return int(nr_procs) def map(nr_procs, func, args_iter, args_kw=None, timeout=1e8, daemonic=True, threads=False, pool=None, force_subprocess=False): """Just like ``subprocessing.map``? same as :meth:`map_async`, except it waits for the result to be ready and returns it Note: When using threads, this is WAY faster than map_async since map_async uses the builtin python ThreadPool. I have no idea why that's slower than making threads by hand. """ nr_procs = sanitize_nr_procs(nr_procs) if args_kw is None: args_kw = {} # don't waste time spinning up a new process if threads: args = [(func, ai, args_kw) for ai in args_iter] with futures.ThreadPoolExecutor(max_workers=nr_procs) as executor: ret = [val for val in executor.map(_star_passthrough, args)] elif pool is None and nr_procs == 1 and not force_subprocess: args_iter = izip(repeat(func), args_iter, repeat(args_kw)) ret = [_star_passthrough(args) for args in args_iter] else: p, r = map_async(nr_procs, func, args_iter, args_kw=args_kw, daemonic=daemonic, threads=threads, pool=pool) ret = r.get(int(timeout)) # in principle this join should return almost immediately since # we already called r.get p.join() return ret def map_async(nr_procs, func, args_iter, args_kw=None, daemonic=True, threads=False, pool=None): """Wrap python's ``map_async`` This has some utility stuff like star passthrough Run func on nr_procs with arguments given by args_iter. args_iter should be an iterable of the list of arguments that can be unpacked for each invocation. kwargs are passed to func as keyword arguments Returns: (tuple) (pool, multiprocessing.pool.AsyncResult) Note: When using threads, this is WAY slower than map since map_async uses the builtin python ThreadPool. I have no idea why that's slower than making threads by hand. Note: daemonic can be set to False if one needs to spawn child processes in func, BUT this could be vulnerable to creating an undead army of worker processes, only use this if you really really need it, and know what you're doing Example: >>> func = lambda i, letter: print i, letter >>> p, r = map_async(2, func, itertools.izip(itertools.count(), 'abc')) >>> r.get(1e8) >>> p.join() >>> # the following is printed from 2 processes 0 a 1 b 2 c """ nr_procs = sanitize_nr_procs(nr_procs) if args_kw is None: args_kw = {} if not threads and sys.platform == 'darwin' and ("mayavi.mlab" in sys.modules or "mayavi" in sys.modules): import mayavi if mayavi.ETSConfig.toolkit == 'qt4': viscid.logger.critical("Using multiprocessing with Mayavi + Qt4 " "will cause segfaults on join.\n" "A workaround is to use the wx backend " "(`os.environ['ETS_TOOLKIT'] = 'wx'`).") args_iter = izip(repeat(func), args_iter, repeat(args_kw)) # if given a pool, don't close it when we're done delegating tasks if pool is not None: return pool, pool.map_async(_star_passthrough, args_iter) else: if threads: pool = mp.pool.ThreadPool(nr_procs) elif daemonic: pool = mp.Pool(nr_procs) else: pool = NoDaemonPool(nr_procs) with closing(pool) as p: return p, p.map_async(_star_passthrough, args_iter) ## ## EOF ## ``` #### File: viscid/plot/vlab.py ```python from __future__ import print_function, division import os import sys import numpy as np import mayavi from mayavi import mlab from mayavi.modules.axes import Axes from mayavi.sources.builtin_surface import BuiltinSurface from mayavi.sources.vtk_data_source import VTKDataSource from traits.trait_errors import TraitError from tvtk.api import tvtk import viscid from viscid import field def add_source(src, figure=None): """Add a vtk data source to a figure Args: src (VTKDataSource): Description figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` Returns: None """ if not figure: figure = mlab.gcf() if src not in figure.children: engine = figure.parent engine.add_source(src, scene=figure) return src def add_lines(lines, scalars=None, figure=None, name="NoName"): """Add list of lines to a figure Args: lines (list): See :py:func:`lines2source` scalars (ndarray): See :py:func:`lines2source` figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` name (str): name of vtk object Returns: :py:class:`mayavi.sources.vtk_data_source.VTKDataSource` """ src = lines2source(lines, scalars=scalars, name=name) add_source(src, figure=figure) return src def add_field(fld, figure=None, center="", name=""): """Add a Viscid Field to a mayavi figure Args: fld (Field): Some Viscid Field figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` center (str): 'cell' or 'node', leave blank to use fld.center name (str): name of vtk object, leave black for fld.name Returns: :py:class:`mayavi.sources.vtk_data_source.VTKDataSource` """ src = field2source(fld, center=center, name=name) add_source(src, figure=figure) return src def points2source(vertices, scalars=None, name="NoName"): # if scalars: # scalars = [scalars] verts, scalars, _, other = viscid.vutil.prepare_lines([vertices], scalars) src = mlab.pipeline.scalar_scatter(verts[0], verts[1], verts[2]) if scalars is not None: if scalars.dtype == np.dtype('u1'): sc = tvtk.UnsignedCharArray() sc.from_array(scalars.T) scalars = sc src.mlab_source.dataset.point_data.scalars = scalars src.mlab_source.dataset.modified() src.name = name return src def lines2source(lines, scalars=None, name="NoName"): """Turn a list of lines as ndarrays into vtk data source Args: lines (list): List of 3xN, 4xN, 6xN ndarrays of xyz, xyzs, or xyzrgb data for N points along the line. N need not be the same for all lines. scalars (ndarray, list): Scalars for each point, or each line. See :py:func:`viscid.vutil.prepare_lines` for more details name (str): name of vtk object Returns: :py:class:`mayavi.sources.vtk_data_source.VTKDataSource` See Also: * :py:func:`viscid.vutil.prepare_lines` """ r = viscid.vutil.prepare_lines(lines, scalars, do_connections=True) lines, scalars, connections, other = r src = mlab.pipeline.scalar_scatter(lines[0], lines[1], lines[2]) if scalars is not None: if scalars.dtype == np.dtype('u1'): sc = tvtk.UnsignedCharArray() sc.from_array(scalars.T) scalars = sc src.mlab_source.dataset.point_data.scalars = scalars src.mlab_source.dataset.modified() src.mlab_source.dataset.lines = connections src.name = name return src def field2source(fld, center=None, name=None): """Convert a field to a vtk data source This dispatches to either :meth:`field_to_point_source` or :meth:`field_to_cell_source` depending on the centering of `fld`. Parameters: fld: field to convert center (str): Either "cell", "node", or "" to use the same centering as fld name (str): Add specific name. Leave as "" to use fld.name Returns: mayavi source Raises: NotImplementedError: If center (or fld.center) is not recognized """ if not center: center = fld.center center = center.lower() if center == "node": src = field2point_source(fld, name=name) elif center == "cell": src = field2cell_source(fld, name=name) else: raise NotImplementedError("cell / node only for now") return src def field2point_source(fld, name=None): """Convert a field to a vtk point data source""" grid, arr = _prep_field(fld) dat_target = grid.point_data if fld.iscentered("Cell"): grid.dimensions = tuple(fld.crds.shape_cc) grid.x_coordinates = fld.get_crd_cc(0) # ('x') grid.y_coordinates = fld.get_crd_cc(1) # ('y') grid.z_coordinates = fld.get_crd_cc(2) # ('z') elif fld.iscentered("Node"): grid.dimensions = tuple(fld.crds.shape_nc) grid.x_coordinates = fld.get_crd_nc(0) # ('x') grid.y_coordinates = fld.get_crd_nc(1) # ('y') grid.z_coordinates = fld.get_crd_nc(2) # ('z') else: raise ValueError("cell or node only please") src = _finalize_source(fld, arr, grid, dat_target) if name: src.name = name return src def field2cell_source(fld, name=None): """Convert a field to a vtk cell data source""" grid, arr = _prep_field(fld) dat_target = grid.cell_data if fld.iscentered("Cell"): grid.dimensions = tuple(fld.crds.shape_nc) grid.x_coordinates = fld.get_crd_nc(0) # ('x') grid.y_coordinates = fld.get_crd_nc(1) # ('y') grid.z_coordinates = fld.get_crd_nc(2) # ('z') elif fld.iscentered("Node"): raise NotImplementedError("can't do lossless cell data from nodes yet") else: raise ValueError("cell or node only please") src = _finalize_source(fld, arr, grid, dat_target) if name: src.name = name return src def _prep_field(fld): grid = tvtk.RectilinearGrid() # note, the transpose operations are b/c fld.data is now xyz ordered, # but vtk expects zyx data if isinstance(fld, field.ScalarField): zyx_dat = fld.data.T arr = np.reshape(zyx_dat, (-1,)) # vtk expects zyx data, but fld.data is now xyz elif isinstance(fld, field.VectorField): if fld.layout == field.LAYOUT_INTERLACED: zyx_dat = np.transpose(fld.data, (2, 1, 0, 3)) arr = np.reshape(zyx_dat, (-1, 3)) elif fld.layout == field.LAYOUT_FLAT: zyx_dat = np.transpose(fld.data, (0, 3, 2, 1)) arr = np.reshape(np.rollaxis(zyx_dat, 0, len(fld.shape)), (-1, 3)) else: raise ValueError() else: raise ValueError("Unexpected fld type: {0}".format(type(fld))) # swap endian if needed if str(arr.dtype).startswith(">"): arr = arr.byteswap().newbyteorder() return grid, arr def _finalize_source(fld, arr, grid, dat_target): if isinstance(fld, field.ScalarField): dat_target.scalars = arr dat_target.scalars.name = fld.name elif isinstance(fld, field.VectorField): dat_target.vectors = arr dat_target.vectors.name = fld.name src = VTKDataSource(data=grid) src.name = fld.name return src def _prep_vector_source(v_src, scalars): """Side-effect: v_src will be modified if scalars are given""" if isinstance(v_src, viscid.field.Field): v_src = field2source(v_src, center='node') if scalars is not None: if isinstance(scalars, viscid.field.Field): scalars = field2source(scalars, center='node') v_src._point_scalars_list.append(scalars.name) # pylint: disable=protected-access v_src.data.point_data.scalars = scalars.data.point_data.scalars v_src.point_scalars_name = scalars.name return v_src, scalars def scalar_cut_plane(src, center=None, **kwargs): """Wraps `mayavi.mlab.pipeline.scalar_cut_plane` Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) If you call this multiple times with the same `viscid.field.Field`, you should consider using field2source yourself and passing the Mayavi source object Args: src (Mayavi Source or ScalarField): If src is a ScalarField, then the field is wrapped into a Mayavi Source and added to the figure center (str): centering for the Mayavi source, 'cell' will make the grid visible, while 'node' will interpolate between points **kwargs: Passed to `mayavi.mlab.pipeline.scalar_cut_plane` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.scalar_cut_plane.ScalarCutPlane` """ if isinstance(src, viscid.field.Field): src = field2source(src, center=center) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) scp = mlab.pipeline.scalar_cut_plane(src, **kwargs) apply_cmap(scp, **cmap_kwargs) return scp def vector_cut_plane(v_src, scalars=None, color_mode='vector', **kwargs): """Wraps `mayavi.mlab.pipeline.vector_cut_plane` Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) If you call this multiple times with the same `viscid.field.Field`, you should consider using field2source yourself and passing the Mayavi source object Args: v_src (Mayavi Source, or VectorField): Vector to cut-plane. If a Mayavi Source, then it must be node centered. scalars (Mayavi Source, or ScalarField): Optional scalar data. If a Mayavi Source, then it must be node centered. This will enable scale_mode and color_mode by 'scalar' color_mode (str): Color by 'vector', 'scalar', or 'none' **kwargs: Passed to `mayavi.mlab.pipeline.vector_cut_plane` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.vector_cut_plane.VectorCutPlane` """ v_src, scalars = _prep_vector_source(v_src, scalars) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) vcp = mlab.pipeline.vector_cut_plane(v_src, **kwargs) apply_cmap(vcp, mode='vector', **cmap_kwargs) apply_cmap(vcp, mode='scalar', **cmap_kwargs) vcp.glyph.color_mode = 'color_by_{0}'.format(color_mode.strip().lower()) return vcp def mesh_from_seeds(seeds, scalars=None, **kwargs): """Wraps `mayavi.mlab.mesh` for Viscid seed generators Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) Args: seeds (Viscid.SeedGen): Some seed generator with a 2D mesh representation scalars (ndarray, ScalarField): data mapped onto the mesh, i.e., the result of viscid.interp_trilin(seeds, ...) **kwargs: Passed to `mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.surface.Surface` """ if scalars is not None: vertices, scalars = seeds.wrap_mesh(scalars) else: vertices, = seeds.wrap_mesh() return mesh(vertices[0], vertices[1], vertices[2], scalars=scalars, **kwargs) def mesh(x, y, z, scalars=None, **kwargs): """Wraps `mayavi.mlab.mesh` Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) Args: x (TYPE): 2D array of vertices' x-values y (TYPE): 2D array of vertices' y-values z (TYPE): 2D array of vertices' z-values scalars (ndarray, ScalarField): optional scalar data **kwargs: Passed to `mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.surface.Surface` """ if scalars is not None: if isinstance(scalars, viscid.field.Field): scalars = scalars.data scalars = scalars.reshape(x.shape) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) m = mlab.mesh(x, y, z, scalars=scalars, **kwargs) if scalars is not None: apply_cmap(m, **cmap_kwargs) return m def quiver3d(*args, **kwargs): """Wraps `mayavi.mlab.quiver3d` Args: *args: passed to `mayavi.mlab.quiver3d` **kwargs: Other Arguments are popped, then kwargs is passed to `mayavi.mlab.quiver3d` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: TYPE: Description """ kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) quivers = mlab.quiver3d(*args, **kwargs) apply_cmap(quivers, mode='scalar', **cmap_kwargs) apply_cmap(quivers, mode='vector', **cmap_kwargs) return quivers def points3d(*args, **kwargs): """Wraps `mayavi.mlab.points3d` Args: *args: passed to `mayavi.mlab.points3d` **kwargs: Other Arguments are popped, then kwargs is passed to `mayavi.mlab.points3d` Keyword Arguments: modify_args (bool): if True (default), then check if args is a single 2d sequence of shape 3xN or Nx3. Then split them up appropriately. if False, then args are passed through to mlab.points3d unchanged, nomatter what. cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: TYPE: Description """ modify_args = kwargs.pop('modify_args', True) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) if modify_args and len(args) < 3: a0 = np.asarray(args[0]) if len(a0.shape) > 1 and a0.shape[0] == 3: args = [a0[0, :].reshape(-1), a0[1, :].reshape(-1), a0[2, :].reshape(-1)] + list(args[1:]) elif len(a0.shape) > 1 and a0.shape[1] == 3: args = [a0[:, 0].reshape(-1), a0[:, 1].reshape(-1), a0[:, 2].reshape(-1)] + list(args[1:]) points = mlab.points3d(*args, **kwargs) apply_cmap(points, **cmap_kwargs) return points def streamline(v_src, scalars=None, **kwargs): """Wraps `mayavi.mlab.pipeline.streamline`; mind the caveats Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) Side-effect: If scalars are given, then v_src is modified to point to the scalar data! If v_src and scalars are Mayavi sources, they must be node centered. If you call this multiple times with the same v_src and scalars, you should consider using field2source yourself and passing the Mayavi source objects, unless you're using different scalars with the same vector field, since this function has side-effects on the vector sourc. Args: v_src (Mayavi Source, or VectorField): Vector to streamline. If a Mayavi Source, then it must be node centered. scalars (Mayavi Source, or ScalarField): Optional scalar data. If a Mayavi Source, then it must be node centered. **kwargs: Passed to `mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.streamline.Streamline` """ v_src, scalars = _prep_vector_source(v_src, scalars) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) sl = mlab.pipeline.streamline(v_src, **kwargs) apply_cmap(sl, mode='vector', **cmap_kwargs) apply_cmap(sl, mode='scalar', **cmap_kwargs) return sl def iso_surface(src, backface_culling=True, **kwargs): """Wraps `mayavi.mlab.pipeline.iso_surface`; mind the caveats Note that backfaces are culled by default. Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) If src is a Mayavi source, it must be node centered. If you call this multiple times with the same `viscid.field.Field`, you should consider using field2source yourself and passing the Mayavi source object Args: src (Mayavi Source or ScalarField): If src is a ScalarField, then the field is wrapped into a Mayavi Source and added to the figure. If a Mayavi Source, then it must be node centered. backface_culling (bool): Cull backfaces by default. Useful for translucent surfaces. **kwargs: Passed to `mayavi.mlab.pipeline.scalar_cut_plane` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.iso_surface.IsoSurface` """ if isinstance(src, viscid.field.Field): src = field2source(src, center='node') kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) iso = mlab.pipeline.iso_surface(src, **kwargs) apply_cmap(iso, **cmap_kwargs) iso.actor.property.backface_culling = backface_culling return iso def plot_line(line, scalars=None, **kwargs): """Wrap :py:func:`plot_lines` for a single line""" if scalars is not None: scalars = [scalars] return plot_lines([line], scalars=scalars, **kwargs) def plot_lines(lines, scalars=None, style="tube", figure=None, name="Lines", tube_radius=0.05, tube_sides=6, **kwargs): """Make 3D mayavi plot of lines Scalars can be a bunch of single values, or a bunch of rgb data to set the color of each line / vertex explicitly. This is explained in :py:func:`lines2source`. Example: A common use case of setting the line color from a topology will want to use :py:func:`viscid.topology2color`:: >>> import viscid >>> from viscid.plot import vlab >>> >>> B = viscid.make_dipole() >>> seeds = viscid.Line([-4, 0, 0], [4, 0, 0]) >>> lines, topology = viscid.calc_streamlines(B, seeds, >>> ibound=0.05) >>> scalars = viscid.topology2color(topology) >>> vlab.plot_lines(lines, scalars, tube_radius=0.02) >>> vlab.savefig("dipole.x3d") >>> viscid.meshlab_convert("dipole.x3d", "dae") >>> vlab.show() Parameters: lines (list): See :py:func:`lines2source` scalars (TYPE): See :py:func:`lines2source` style (str): 'tube' or 'none' figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` name (str): Description tube_radius (float): Radius if style == 'tube' tube_sides (int): Angular resolution if style == 'tube' **kwargs: passed to :meth:`mayavi.mlab.pipeline.surface`. This is useful for setting a colormap among other things. Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: Mayavi surface module Raises: ValueError: if style is neither tube nor strip """ style = style.lower() if not figure: figure = mlab.gcf() src = lines2source(lines, scalars=scalars, name=name) # always use the stripper since actually turns a collection of line # segments into a line... that way capping will cap lines, not line # segments, etc. lines = mlab.pipeline.stripper(src, figure=figure) if style == "tube": lines = mlab.pipeline.tube(lines, figure=figure, tube_radius=tube_radius, tube_sides=tube_sides) elif style == "none" or not style: pass else: raise ValueError("Unknown style for lines: {0}".format(style)) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) surface = mlab.pipeline.surface(lines, **kwargs) apply_cmap(surface, **cmap_kwargs) return surface def plot_ionosphere(fld, radius=1.063, figure=None, bounding_lat=0.0, rotate=None, crd_system="gse", **kwargs): """Plot an ionospheric field Args: fld (Field): Some spherical (phi, theta) / (lot, lat) field radius (float): Defaults to 1Re + 400km == 1.063Re figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` bounding_lat (float): Description rotate (None, sequence, str, datetime64): sequence of length 4 that contains (angle, ux, uy, uz) for the angle and axis of a rotation, or a UT time as string or datetime64 to rotate earth to a specific date/time, or a cotr object in conjunction with crd_system crd_system (str, other): Used if rotate is datetime-like. Can be one of ('gse', 'mhd'), or anything that returns from :py:func:`viscid.as_crd_system`. **kwargs: passed to :py:func:`mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` No Longer Raises: ValueError: Description """ if figure is None: figure = mlab.gcf() fld = viscid.as_spherefield(fld, order=('phi', 'theta'), units='deg') phil, thetal = fld.xl phih, thetah = fld.xh nphi, ntheta = fld.shape sphere = viscid.Sphere([0, 0, 0], r=radius, ntheta=ntheta, nphi=nphi, thetalim=(thetal, thetah), philim=(phil, phih), theta_phi=False) verts, arr = sphere.wrap_mesh(fld.data) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) if 'name' not in kwargs: kwargs['name'] = fld.name m = mlab.mesh(verts[0], verts[1], verts[2], scalars=arr, figure=figure, **kwargs) if bounding_lat: rp = 1.5 * radius z = radius * np.cos((np.pi / 180.0) * bounding_lat) clip = mlab.pipeline.data_set_clipper(m.module_manager.parent) clip.widget.widget.place_widget(-rp, rp, -rp, rp, -z, z) clip.update_pipeline() clip.widget.widget.enabled = False insert_filter(clip, m.module_manager) # m.module_manager.parent.parent.filter.auto_orient_normals = True else: pass # m.module_manager.parent.filter.auto_orient_normals = True m.actor.mapper.interpolate_scalars_before_mapping = True apply_cmap(m, **cmap_kwargs) m.actor.actor.rotate_z(180) _apply_rotation(m, 'sm', rotate, crd_system=crd_system) return m def plot_nulls(nulls, Acolor=(0.0, 0.263, 0.345), Bcolor=(0.686, 0.314, 0.0), Ocolor=(0.239, 0.659, 0.557), **kwargs): kwargs.setdefault('scale_mode', 'none') kwargs.setdefault('scale_factor', 0.3) if not isinstance(nulls, dict): empty = np.ones((3, 0)) nulls = dict(O=[empty, nulls], A=[empty, empty], B=[empty, empty]) Opts = nulls['O'][1] if Ocolor is not None and Opts.shape[1]: mlab.points3d(Opts[0], Opts[1], Opts[2], color=Ocolor, name="Onulls", **kwargs) Apts = nulls['A'][1] if Ocolor is not None and Opts.shape[1]: mlab.points3d(Apts[0], Apts[1], Apts[2], color=Acolor, name="Anulls", **kwargs) Bpts = nulls['B'][1] if Bcolor is not None and Bpts.shape[1]: mlab.points3d(Bpts[0], Bpts[1], Bpts[2], color=Bcolor, name="Bnulls", **kwargs) def fancy_axes(figure=None, target=None, nb_labels=5, xl=None, xh=None, tight=False, symmetric=False, padding=0.05, opacity=0.7, face_color=None, line_width=2.0, grid_color=None, labels=True, label_color=None, label_shadow=True, consolidate_labels=True): """Make axes with 3 shaded walls and a grid similar to matplotlib Args: figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` target (Mayavi Element): If either xl or xh are not given, then get that limit from a bounding box around `target` nb_labels (int, sequence): number of labels in all, or each (x, y, z) directions xl (float, sequence): lower corner of axes xh (float, sequence): upper corner of axes tight (bool): If False, then let xl and xh expand to make nicer labels. This uses matplotlib to determine new extrema symmetric (bool): If True, then xl + xh = 0 padding (float): add padding as a fraction of the total length opacity (float): opacity of faces face_color (sequence): color (r, g, b) of faces line_width (float): Width of grid lines grid_color (sequence): Color of grid lines labels (bool): Whether or not to put axis labels on label_color (sequence): color of axis labels label_shadow (bool): Add shadows to all labels consolidate_labels (bool): if all nb_labels are the same, then only make one axis for the labels Returns: VTKDataSource: source to which 2 surfaces and 3 axes belong """ if figure is None: figure = mlab.gcf() # setup xl and xh if xl is None or xh is None: _outline = mlab.outline(target, figure=figure) if xl is None: xl = _outline.bounds[0::2] if xh is None: xh = _outline.bounds[1::2] _outline.remove() nb_labels = np.broadcast_to(nb_labels, (3,)) xl = np.array(np.broadcast_to(xl, (3,))) xh = np.array(np.broadcast_to(xh, (3,))) L = xh - xl xl -= padding * L xh += padding * L # now adjust xl and xh to be prettier if symmetric: tight = False if not tight: from matplotlib.ticker import AutoLocator for i in range(len(xl)): # pylint: disable=consider-using-enumerate l = AutoLocator() l.create_dummy_axis() l.set_view_interval(xl[i], xh[i]) locs = l() xl[i] = locs[0] xh[i] = locs[-1] dx = (xh - xl) / (nb_labels - 1) grid = tvtk.ImageData(dimensions=nb_labels, origin=xl, spacing=dx) src = VTKDataSource(data=grid) src.name = "fancy_axes" if face_color is None: face_color = figure.scene.background if grid_color is None: grid_color = figure.scene.foreground if label_color is None: label_color = grid_color face = mlab.pipeline.surface(src, figure=figure, opacity=opacity, color=face_color) face.actor.property.frontface_culling = True if line_width: grid = mlab.pipeline.surface(src, figure=figure, opacity=1.0, color=grid_color, line_width=line_width, representation='wireframe') grid.actor.property.frontface_culling = True if labels: def _make_ax_for_labels(_i, all_axes=False): if all_axes: _ax = Axes(name='axes-labels') else: _ax = Axes(name='{0}-axis-labels'.format('xyz'[_i])) # VTK bug... y_axis and z_axis are flipped... how is VTK still # the de-facto 3d plotting library? if _i == 0: _ax.axes.x_axis_visibility = True _ax.axes.y_axis_visibility = False _ax.axes.z_axis_visibility = False elif _i == 1: _ax.axes.x_axis_visibility = False _ax.axes.y_axis_visibility = False _ax.axes.z_axis_visibility = True # VTK bug elif _i == 2: _ax.axes.x_axis_visibility = False _ax.axes.y_axis_visibility = True # VTK bug _ax.axes.z_axis_visibility = False else: raise ValueError() _ax.property.opacity = 0.0 _ax.axes.number_of_labels = nb_labels[_i] # import IPython; IPython.embed() _ax.title_text_property.color = label_color _ax.title_text_property.shadow = label_shadow _ax.label_text_property.color = label_color _ax.label_text_property.shadow = label_shadow src.add_module(_ax) if consolidate_labels and np.all(nb_labels[:] == nb_labels[0]): _make_ax_for_labels(0, all_axes=True) else: _make_ax_for_labels(0, all_axes=False) _make_ax_for_labels(1, all_axes=False) _make_ax_for_labels(2, all_axes=False) return src axes = mlab.axes xlabel = mlab.xlabel ylabel = mlab.ylabel zlabel = mlab.zlabel title = mlab.title outline = mlab.outline orientation_axes = mlab.orientation_axes view = mlab.view def _extract_cmap_kwargs(kwargs): cmap_kwargs = dict() cmap_kwargs["cmap"] = kwargs.pop("cmap", None) cmap_kwargs["alpha"] = kwargs.pop("alpha", None) cmap_kwargs["clim"] = kwargs.pop("clim", None) cmap_kwargs["symmetric"] = kwargs.pop("symmetric", False) cmap_kwargs["logscale"] = kwargs.pop("logscale", False) return kwargs, cmap_kwargs def colorbar(*args, **kwargs): """Wraps mayavi.mlab.colorbar and adjusts cmap if you so choose""" cmap = kwargs.pop("cmap", False) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) cmap_kwargs.pop("cmap") ret = mlab.colorbar(*args, **kwargs) apply_cmap(ret, cmap=cmap, **cmap_kwargs) return ret def scalarbar(*args, **kwargs): """Wraps mayavi.mlab.scalarbar and adjusts cmap if you so choose""" cmap = kwargs.pop("cmap", False) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) cmap_kwargs.pop("cmap") ret = mlab.scalarbar(*args, **kwargs) apply_cmap(ret, cmap=cmap, **cmap_kwargs) return ret def vectorbar(*args, **kwargs): """Wraps mayavi.mlab.vectorbar and adjusts cmap if you so choose""" cmap = kwargs.pop("cmap", False) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) cmap_kwargs.pop("cmap") ret = mlab.vectorbar(*args, **kwargs) apply_cmap(ret, cmap=cmap, **cmap_kwargs) return ret def get_cmap(cmap=None, lut=None, symmetric=False): """Get a Matplotlib colormap as an rgba ndarray Args: cmap (str): name of colormap, or an ndarray of rgb(a) colors lut (int): number of entries desired in the lookup table Returns: ndarray: Nx4 array of N rgba colors """ import matplotlib if symmetric and not cmap: cmap = matplotlib.rcParams.get("viscid.symmetric_cmap", None) try: cm = matplotlib.cm.get_cmap(name=cmap, lut=lut) rgba = (255 * np.asarray(cm(np.linspace(0, 1, cm.N)))).astype('i') except TypeError: rgba = np.asarray(cmap) if np.all(rgba >= 0.0) and np.all(rgba <= 1.0): rgba = (255 * rgba).astype('i') else: rgba = rgba.astype('i') if np.any(rgba < 0) or np.any(rgba > 255): raise ValueError("cmap ndarray must have color values between " "0 and 255 or 0.0 and 1.0") if rgba.shape[1] not in (3, 4) and rgba.shape[0] in (3, 4): rgba = np.array(rgba.T) if rgba.shape[1] == 3: rgba = np.hstack([rgba, 255 * np.ones_like(rgba[:, :1])]) return rgba def apply_cmap(target, cmap=None, lut=None, alpha=None, mode='scalar', clim=None, symmetric=False, logscale=False): """Apply a Matplotlib colormap to a Mayavi object & adjust limits Args: target: Some Mayavi object on mode to apply the colormap cmap (sequence, None, False): name of a Matplotlib colormap, or a sequence of rgb(a) colors, or None to use the default, or False to leave the colormap alone. lut (int): number of entries desired in the lookup table alpha (number, sequence): scalar or array that sets the alpha (opacity) channel in the range [0..255]. This is expanded to both ends of the colormap using linear interpolation, i.e., [0, 255] will be a linear ramp from transparent to opaque over the whole colormap. mode (str): one of 'scalar', 'vector', or 'other' clim (sequence): contains (vmin, vmax) for color scale symmetric (bool): force the limits on the colorbar to be symmetric around 0, and if no `cmap` is given, then also use the default symmetric colormap logscale (bool): Use a logarithmic color scale Raises: AttributeError: Description ValueError: Description """ mode = mode.strip().lower() # get the mayavi lut object try: if mode == "scalar": mvi_lut = target.module_manager.scalar_lut_manager.lut elif mode == "vector": mvi_lut = target.module_manager.vector_lut_manager.lut else: if mode != "other": raise ValueError("mode should be 'scalar', 'vector', or " "'other'; not '{0}'".format(mode)) raise AttributeError() except AttributeError: mvi_lut = target.lut # set the limits on the colorbar if isinstance(clim, (list, tuple)): mvi_lut.range = [clim[0], clim[1]] elif clim == 0: symmetric = True elif clim: symmetric = clim if logscale and symmetric: viscid.logger.warn("logscale and symmetric are mutually exclusive;" "ignoring symmetric.") if logscale: mvi_lut.scale = 'log10' elif symmetric: # float(True) -> 1 val = float(symmetric) * np.max(np.abs(mvi_lut.range)) mvi_lut.range = [-val, val] vmin, vmax = mvi_lut.range is_symmetric = bool(np.isclose(vmax, -1 * vmin, atol=0)) # now set the colormap changed = False if cmap is False: rgba = None if alpha is None else mvi_lut.table.to_array() else: rgba = get_cmap(cmap=cmap, lut=lut, symmetric=is_symmetric) changed = True if alpha is not None: alpha = np.asarray(alpha).reshape(-1) rgba[:, -1] = np.interp(np.linspace(0, 1, len(rgba)), np.linspace(0, 1, len(alpha)), alpha) changed = True if changed: mvi_lut.table = rgba def insert_filter(filtr, module_manager): """Insert a filter above an existing module_manager Args: filter (TYPE): Description module_manager (TYPE): Description """ filtr.parent.children.remove(module_manager) filtr.children.append(module_manager) def _apply_rotation(obj, from_system, rotate=None, crd_system='gse'): if hasattr(rotate, "get_rotation_wxyz"): rotate = rotate.get_rotation_wxyz(from_system, crd_system) else: cotr = viscid.as_cotr(rotate) rotate = cotr.get_rotation_wxyz(from_system, crd_system) if len(rotate) != 4: raise ValueError("Rotate should be [angle, ux, uy, uz], got {0}" "".format(rotate)) obj.actor.actor.rotate_wxyz(*rotate) def plot_blue_marble(r=1.0, figure=None, nphi=128, ntheta=64, map_style=None, lines=False, res=2, rotate=None, crd_system='gse'): """Plot Earth using the Natural Earth dataset maps Args: r (float): radius of earth figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` nphi (int): phi resolution of Earth's mesh ntheta (int): theta resolution of Earth's mesh map_style (str): Nothing for standard map, or 'faded' lines (bool): Whether or not to show equator, tropics, arctic circles, and a couple meridians. res (int): Resolution in thousands of pixels longitude (must be one of 1, 2, 4, 8) rotate (None, sequence, str, datetime64): sequence of length 4 that contains (angle, ux, uy, uz) for the angle and axis of a rotation, or a UT time as string or datetime64 to rotate earth to a specific date/time, or a cotr object in conjunction with crd_system crd_system (str, other): Used if rotate is datetime-like. Can be one of ('gse', 'mhd'), or anything that returns from :py:func:`viscid.as_crd_system`. Returns: (VTKDataSource, mayavi.modules.surface.Surface) """ # make a plane, then deform it into a sphere eps = 1e-4 ps = tvtk.PlaneSource(origin=(r, r * np.pi - eps, r * 0.0), point1=(r, r * np.pi - eps, r * 2 * np.pi), point2=(r, eps, 0.0), x_resolution=nphi, y_resolution=ntheta) ps.update() transform = tvtk.SphericalTransform() tpoly = tvtk.TransformPolyDataFilter(transform=transform, input_connection=ps.output_port) tpoly.update() src = VTKDataSource(data=tpoly.output, name="blue_marble") surf = mlab.pipeline.surface(src) # now load a jpg, and use it to texture the sphere linestr = '_lines' if lines else '' assert map_style in (None, '', 'faded') assert res in (1, 2, 4, 8) map_style = '_{0}'.format(map_style) if map_style else '' img_name = "images/earth{0}{1}_{2}k.jpg".format(map_style, linestr, res) fname = os.path.realpath(os.path.dirname(__file__) + '/' + img_name) img = tvtk.JPEGReader(file_name=fname) texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) surf.actor.enable_texture = True surf.actor.texture = texture surf.actor.property.color = (1.0, 1.0, 1.0) # rotate 180deg b/c i can't rotate the texture to make the prime meridian surf.actor.actor.rotate_z(180) _apply_rotation(surf, 'geo', rotate, crd_system=crd_system) add_source(src, figure=figure) return src, surf plot_natural_earth = plot_blue_marble def plot_earth_3d(figure=None, daycol=(1, 1, 1), nightcol=(0, 0, 0), radius=1.0, res=24, crd_system="gse", night_only=False, **kwargs): """Plot a black and white sphere (Earth) showing sunward direction Parameters: figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` daycol (tuple, optional): color of dayside (RGB) nightcol (tuple, optional): color of nightside (RGB) res (optional): rosolution of teh sphere crd_system (str, other): One of ('mhd', 'gse'), or anything that returns from :py:func:`viscid.as_crd_system`. Returns: Tuple (day, night) as vtk sources """ if figure is None: figure = mlab.gcf() crd_system = viscid.as_crd_system(crd_system) if crd_system == "mhd": theta_dusk, theta_dawn = 270, 90 elif crd_system == "gse": theta_dusk, theta_dawn = 90, 270 else: # use GSE convention? theta_dusk, theta_dawn = 90, 270 night = BuiltinSurface(source='sphere', name='night') night.data_source.set(center=(0, 0, 0), radius=radius, start_theta=theta_dusk, end_theta=theta_dawn, theta_resolution=res, phi_resolution=res) mod = mlab.pipeline.surface(night, color=nightcol, figure=figure, **kwargs) mod.actor.property.backface_culling = True if not night_only: day = BuiltinSurface(source='sphere', name='day') day.data_source.set(center=(0, 0, 0), radius=radius, start_theta=theta_dawn, end_theta=theta_dusk, theta_resolution=res, phi_resolution=res) mod = mlab.pipeline.surface(day, color=daycol, figure=figure, **kwargs) mod.actor.property.backface_culling = True else: day = None return day, night def to_mpl(figure=None, ax=None, size=None, antialiased=True, hide=True, fit=None, **kwargs): """Display a mayavi figure inline in an Jupyter Notebook. This function takes a screenshot of a figure and blits it to a matplotlib figure using matplotlib.pyplot.imshow() Args: figure: A mayavi figure, if not specified, uses mlab.gcf() ax: Matplotlib axis of the destination (plt.gca() if None) size (None, tuple): if given, resize the scene in pixels (x, y) antialiased (bool): Antialias mayavi plot hide (bool): if True, try to hide the render window fit (None, bool): Resize mpl window to fit image exactly. If None, then fit if figure does not currently exist. **kwargs: passed to mayavi.mlab.screenshot() """ if figure is None: figure = mlab.gcf() if size is not None: resize(size, figure=figure) pixmap = mlab.screenshot(figure, antialiased=antialiased, **kwargs) # try to hide the window... Qt backend only if hide: hide_window(figure) if ax is None: from matplotlib import pyplot as plt # if there are no figures, and fit is None, then fit if fit is None: fit = not bool(plt.get_fignums) ax = plt.gca() if fit: pltfig = ax.figure dpi = pltfig.get_dpi() pltfig.set_size_inches([s / dpi for s in figure.scene.get_size()], forward=True) pltfig.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0) ax.imshow(pixmap) ax.axis('off') def figure(*args, **kwargs): offscreen = kwargs.pop('offscreen', False) hide = kwargs.pop('hide', None) fig = mlab.figure(*args, **kwargs) # if size was set, run resize to account for the height of window # decorations if 'size' in kwargs: resize(kwargs['size'], figure=fig) # hide window by default? if hide or (hide is None and offscreen): hide_window(fig) # send it offscreen? if offscreen: make_fig_offscreen(fig, hide=False) return fig def make_fig_offscreen(figure, hide=True): if hide: hide_window(figure) figure.scene.off_screen_rendering = True return figure def show(stop=False): """Calls :meth:`mayavi.mlab.show(stop=stop)`""" mlab.show(stop=stop) def clf(figure=None): """Clear source data, then clear figure Args: figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` """ if not figure: figure = mlab.gcf() clear_data(figure) mlab.clf(figure) def remove_source(src): """Safely remove a specific vtk source Args: src (vtk_data_source): vtk data source to remove """ src.stop() try: try: src.data.release_data() except TraitError: src.data.release_data_flag = 1 src.cell_scalars_name = '' src.cell_tensors_name = '' src.cell_vectors_name = '' src.point_scalars_name = '' src.point_tensors_name = '' src.point_vectors_name = '' except AttributeError: pass src.start() src.stop() src.remove() def clear_data(figures=None): """Workaround for Mayavi / VTK memory leak This is needed when Mayavi/VTK keeps a reference to source data when you would expect it to be freed like on a call to `mlab.clf()` or when removing sources from the pipeline. Note: This must be called when the pipeline still has the source, so before a call to `mlab.clf()`, etc. 1. Set release_data_flag on all sources' data 2. Remove reference to the data 3. Remove the data source Args: figures (None, mayavi.core.scene.Scene, or 'all'): if None, gets current scene; if Scene object, just that one; if 'all', act on all scenes in the current engine. Can also be a list of Scene objects """ if figures is None: figures = [mlab.gcf()] elif figures == "all": figures = mlab.get_engine().scenes if not isinstance(figures, (list, tuple)): figures = [figures] if all(fig is None for fig in figures): return for fig in figures: # # fig stop / start kills mayavi now, not sure why # fig.stop() for child in list(fig.children): remove_source(child) # fig.start() return def resize(size, figure=None): """Summary Args: size (tuple): width, height in pixels figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` Returns: None """ if figure is None: figure = mlab.gcf() try: # scene.set_size doesn't seem to work when rendering on screen, so # go into the backend and do it by hand if mlab.options.offscreen: figure.scene.set_size(size) elif figure.scene.off_screen_rendering: viscid.logger.warn("viscid.plot.vlab.resize doesn't work for " "figures that are off-screened this way. Try " "creating the figure with viscid.plot.vlab." "figure(size=(w, h), offscreen=True)") else: toolkit = mayavi.ETSConfig.toolkit if toolkit == 'qt4': sc = figure.scene window_height = sc.control.parent().size().height() render_height = sc.render_window.size[1] h = window_height - render_height sc.control.parent().resize(size[0], size[1] + h) elif toolkit == 'wx': w, h = size[0], size[1] figure.scene.control.Parent.Parent.SetClientSizeWH(w, h) else: viscid.logger.warn("Unknown mayavi backend {0} (not qt4 or " "wx); not resizing.".format(toolkit)) except Exception as e: # pylint: disable=broad-except viscid.logger.warn("Resize didn't work:: {0}".format(repr(e))) def hide_window(figure, debug=False): """Try to hide the window; only does something on Qt backend""" try: # fig.scene.control.parent().hide() figure.scene.control.parent().showMinimized() except Exception as e: # pylint: disable=broad-except,unused-variable if debug: print("Window hide didn't work::", repr(e)) def savefig(*args, **kwargs): """Wrap mayavi.mlab.savefig with offscreen hack""" fig = mlab.gcf() prev_offscreen_state = fig.scene.off_screen_rendering if sys.platform != "darwin": fig.scene.off_screen_rendering = True mlab.savefig(*args, **kwargs) if fig.scene.off_screen_rendering != prev_offscreen_state: fig.scene.off_screen_rendering = prev_offscreen_state def interact(stack_depth=0, **kwargs): viscid.vutil.interact(stack_depth=stack_depth + 1, mvi_ns=True, **kwargs) plot3d_lines = plot_lines plot_lines3d = plot_lines ## ## EOF ## ``` #### File: Viscid/viscid/_rc.py ```python from __future__ import print_function import os import traceback import viscid from viscid import vjson from viscid.compat.vimportlib import import_module class RCPathError(Exception): message = "" def __init__(self, message=""): self.message = message super(RCPathError, self).__init__(message) def _get_obj(rt, path): if len(path) == 0: return rt try: if not hasattr(rt, path[0]): try: # if path[0] is not an attribute of rt, then try # importing it module_name = "{0}.{1}".format(rt.__name__, path[0]) import_module(module_name) except ImportError: # nope, the attribute really doesn't exist raise AttributeError("root {0} has no attribute " "{1}".format(rt, path[0])) return _get_obj(getattr(rt, path[0]), path[1:]) except AttributeError: # can't re-raise AttributeError since this is recursive # and we're catching AttributeError, so the info about # what part of the path DNE would be lost raise RCPathError("'{0}' has no attribute '{1}'" "".format(rt.__name__, path[0])) def set_attribute(path, value): # try: # value = _parse_rc_value(value) # except RCValueError as e: # viscid.logger.warn("Skipping bad ~/.viscidrc value:: {0}\n".format(value) # " {0}".format(str(e))) # return None p = path.split('.') obj = _get_obj(viscid, p[:-1]) if not hasattr(obj, p[-1]): viscid.logger.warn("from rc file; '{0}' has no attribute '{1}'.\n" "If this isn't a typeo then the functionality may " "have moved.".format(".".join(p[:-1]), p[-1])) setattr(obj, p[-1], value) return obj def load_rc_file(fname): touched_objects = [] try: with open(os.path.expanduser(os.path.expandvars(fname)), 'r') as f: try: import yaml rc_obj = yaml.load(f) except ImportError: try: rc_obj = vjson.load(f) except ValueError as e: tb = traceback.format_exc() tb = '\n'.join(' ' * 4 + line_ for line_ in tb.split('\n')) m = ("{0}\n{1}\n" "JSON parsing of {2} failed. If the file is using " "Yaml syntax, please install PyYaml." "".format(tb, str(e), f.name)) raise ValueError(m) for path, val in rc_obj.items(): try: touched_objects.append(set_attribute(path, val)) except RCPathError as e: viscid.logger.warn("from rc file; {0}\n" "If this isn't a typeo then the " "functionality may have moved." "".format(str(e))) except IOError: pass for obj in set(touched_objects): try: obj.post_rc_actions() except AttributeError: pass ## ## EOF ## ``` #### File: viscid/readers/athena_hst.py ```python from __future__ import print_function import re import numpy as np from viscid.readers import vfile from viscid import field from viscid import coordinate class AthenaHstFile(vfile.VFile): # pylint: disable=abstract-method """An Athena time history file""" _detector = r"^\s*(.*)\.(hst)\s*$" def __init__(self, fname, **kwargs): """ Keyword Arguments: float_type_name (str): should be 'f4' or 'f8' if you know the data type of the file's data. """ super(AthenaHstFile, self).__init__(fname, **kwargs) def _parse(self): # get field names from header with open(self.fname, 'r') as f: line = f.readline() line = f.readline().lstrip("#").strip() fld_names = re.split(r"\[[0-9]+\]=", line)[1:] fld_names = [fn.strip() for fn in fld_names] # crds here are really times dat = np.loadtxt(self.fname, unpack=True) t = dat[0] crds = coordinate.wrap_crds("nonuniform_cartesian", [('t', t)]) g = self._make_grid(self, name="AthenaHstGrid") g.set_crds(crds) g.time = 0 for i in range(1, len(fld_names)): fld = self._make_field(g, "Scalar", fld_names[i], crds, dat[i], center="Node") g.add_field(fld) self.add(g) self.activate(0) ## ## EOF ## ``` #### File: viscid/readers/athena_xdmf.py ```python import os import re from viscid.readers import xdmf from viscid.readers import athena class AthenaFileXDMF(athena.AthenaFile, xdmf.FileXDMF): # pylint: disable=abstract-method """File type for Athena style convenience stuff Makes AthenaGrid the default grid and handles grouping multiple files. """ _detector = r"^\s*(.*)\.([0-9]+)\.(ath.xdmf)\s*$" _collection = None @classmethod def group_fnames(cls, fnames): return athena.group_athena_files_common(cls._detector, fnames) @classmethod def collective_name_from_group(cls, fnames): return athena.athena_collective_name_from_group(cls._detector, fnames) def load(self, fname): if not isinstance(fname, list): fname = [fname] if len(fname) > 1: self._collection = fname else: self._collection = None super(AthenaFileXDMF, self).load(fname[0]) basename = os.path.basename(self.fname) self.set_info('run', re.match(self._detector, basename).group(1)) def _parse(self): if self._collection is not None: # assume we have a collection of temporal files, because why not data_temporal = self._make_dataset(self, dset_type="temporal", name="AthenaXDMFTemporalCollection") for fname in self._collection: grids = self._parse_file(fname, data_temporal) for _grid in grids: data_temporal.add(_grid) data_temporal.activate(0) self.add(data_temporal) self.activate(0) else: super(AthenaFileXDMF, self)._parse() ## ## EOF ## ``` #### File: viscid/readers/ggcm_jrrle.py ```python from __future__ import print_function import os import re from datetime import datetime, timedelta import numpy as np from viscid import grid from viscid.readers import vfile from viscid.readers import openggcm from viscid.readers._fortfile_wrapper import FortranFile from viscid.compat import OrderedDict try: from viscid.readers import _jrrle except ImportError as e: from viscid.verror import UnimportedModule msg = "Fortran readers not available since they were not built correctly" _jrrle = UnimportedModule(e, msg=msg) read_ascii = False class JrrleFileWrapper(FortranFile): """Interface for actually opening / reading a jrrle file""" fields_seen = None seen_all_fields = None def __init__(self, filename): self._read_func = [_jrrle.read_jrrle1d, _jrrle.read_jrrle2d, _jrrle.read_jrrle3d] self.fields_seen = OrderedDict() self.seen_all_fields = False super(JrrleFileWrapper, self).__init__(filename) def read_field(self, fld_name, ndim): """Read a field given a seekable location Parameters: loc(int): position in file we can seek to ndim(int): dimensionality of field Returns: tuple (field name, dict of meta data, array) """ meta = self.inquire(fld_name) arr = np.empty(meta['dims'], dtype='float32', order='F') self._read_func[ndim - 1](self.unit, arr, fld_name, read_ascii) return meta, arr def inquire_all_fields(self, reinquire=False): if reinquire: self.seen_all_fields = False self.fields_seen = OrderedDict() if self.seen_all_fields: return self.rewind() while not self.seen_all_fields: self.inquire_next() # last_seen, meta = self.inquire_next() # if meta is not None: # print(last_seen, "lives at", meta["file_position"]) self.advance_one_line() def inquire(self, fld_name): try: meta = self.fields_seen[fld_name] self.seek(meta['file_position']) return meta except KeyError: try: last_added = next(reversed(self.fields_seen)) self.seek(self.fields_seen[last_added]['file_position']) self.advance_one_line() except StopIteration: pass # we haven't read any fields yet, that's ok while not self.seen_all_fields: found_fld_name, meta = self.inquire_next() if found_fld_name == fld_name: return meta self.advance_one_line() raise KeyError("file '{0}' has no field '{1}'" "".format(self.filename, fld_name)) def inquire_next(self): """Collect the meta-data from the next field in the file Returns: tuple (field name, dict of meta data) both of which will be None if there are no more Fields Note: After this operation is done, the file-pointer will be reset to the position it was before the inquiry. """ if not self.isopen: raise RuntimeError("file is not open") varname = np.array(" "*80, dtype="S80") tstring = np.array(" "*80, dtype="S80") found_field, ndim, nx, ny, nz, it = _jrrle.inquire_next(self._unit, varname, tstring) varname = str(np.char.decode(varname)).strip() tstring = str(np.char.decode(tstring)).strip() if not found_field: self.seen_all_fields = True return None, None if varname in self.fields_seen: meta = self.fields_seen[varname] else: dims = tuple(x for x in (nx, ny, nz) if x > 0) meta = dict(timestr=tstring, inttime=it, ndim=ndim, dims=dims, file_position=self.tell()) self.fields_seen[varname] = meta return varname, meta class JrrleDataWrapper(vfile.DataWrapper): """Interface for lazily pointing to a jrrle field""" file_wrapper = None filename = None fld_name = None expected_shape = None def __init__(self, file_wrapper, fld_name, expected_shape): """Lazy wrapper for a field in a jrrle file Parameters: expected_shape (tuple): shape of data in the file (xyz) """ super(JrrleDataWrapper, self).__init__() self.file_wrapper = file_wrapper self.filename = file_wrapper.filename self.fld_name = fld_name # translate to zyx self.expected_shape = expected_shape @property def shape(self): """ Returns: zyx shape since that's the shape __array__ returns """ return self.expected_shape[::-1] @property def dtype(self): return np.dtype("float32") def __array__(self, *args, **kwargs): with self.file_wrapper as f: ndim = len(self.expected_shape) # fld_name, meta, arr = f.read_field_at(self.loc, ndim) meta, arr = f.read_field(self.fld_name, ndim) arr = np.array(arr.flatten(order='F').reshape(meta['dims'][::-1]), order='C') # meta's dims are xyz (from file), but ex if meta['dims'] != self.expected_shape: raise RuntimeError("Field '{0}' from file '{1}' has shape {2} " "instead of {3}".format(self.fld_name, self.filename, meta['dims'], self.expected_shape)) return arr.astype(self.dtype) def read_direct(self, *args, **kwargs): return self.__array__() def len(self): return self.shape[0] def __getitem__(self, item): return self.__array__().__getitem__(item) class GGCMFileJrrleMHD(openggcm.GGCMFileFortran): # pylint: disable=abstract-method """Jimmy's run length encoding files""" _detector = r"^\s*(.*)\.(p[xyz]_[0-9]+|3df)" \ r"\.([0-9]{6})\s*$" _fwrapper_type = JrrleFileWrapper _data_item_templates = None _def_fld_center = "Cell" def __init__(self, filename, **kwargs): super(GGCMFileJrrleMHD, self).__init__(filename, **kwargs) def _shape_discovery_hack(self, filename): with self.get_file_wrapper(filename) as f: _, meta = f.inquire_next() return meta['dims'] def _parse_file(self, filename, parent_node): # we do minimal file parsing here for performance. we just # make data wrappers from the templates we got from the first # file in the group, and package them up into grids # find the time from the first field's meta data int_time = int(re.match(self._detector, filename).group(3)) time = float(int_time) _grid = self._make_grid(parent_node, name="<JrrleGrid>", **self._grid_opts) self.time = time _grid.time = time _grid.set_crds(self._crds) templates = self._fld_templates if templates is None: templates = self._make_template(filename) # make a DataWrapper and a Field for each template that we # have from the first file that we parsed, then add it to # the _grid if self._iono: data_wrapper = JrrleDataWrapper else: data_wrapper = JrrleDataWrapper for item in templates: data = data_wrapper(self.get_file_wrapper(filename), item['fld_name'], item['shape']) fld = self._make_field(_grid, "Scalar", item['fld_name'], self._crds, data, center=self._def_fld_center, time=time, zyx_native=True) _grid.add_field(fld) return _grid def _make_template(self, filename): """read meta data for all fields in a file to get a list of field names and shapes, all the required info to make a JrrleDataWrapper """ with self.get_file_wrapper(filename) as f: f.inquire_all_fields() template = [] meta = None for fld_name, meta in f.fields_seen.items(): d = dict(fld_name=fld_name, shape=meta['dims']) template.append(d) if meta is not None: if self.find_info('basetime', default=None) is None: basetime, _ = self.parse_timestring(meta['timestr']) if self.parents: self.parents[0].set_info("basetime", basetime) else: self.set_info("basetime", basetime) return template @classmethod def collective_name_from_group(cls, fnames): fname0 = fnames[0] basename = os.path.basename(fname0) run = re.match(cls._detector, basename).group(1) fldtype = re.match(cls._detector, basename).group(2) new_basename = "{0}.{1}".format(run, fldtype) return os.path.join(os.path.dirname(fname0), new_basename) class GGCMFileJrrleIono(GGCMFileJrrleMHD): # pylint: disable=abstract-method """Jimmy's run length encoding files""" _detector = r"^\s*(.*)\.(iof)\.([0-9]{6})\s*$" _iono = True _grid_type = grid.Grid _def_fld_center = "Node" # class JrrleIonoDataWrapper(JrrleDataWrapper): # @property # def shape(self): # ret = tuple([n - 1 for n in reversed(self.expected_shape)]) # return ret # def __array__(self, *args, **kwargs): # arr = super(JrrleIonoDataWrapper, self).__array__(*args, **kwargs) # ndim = len(self.expected_shape) # return arr[[slice(None, -1)]*ndim] ## ## EOF ## ``` #### File: viscid/readers/gkeyll.py ```python from __future__ import print_function, division import os import re from operator import itemgetter import numpy as np try: import h5py HAS_H5PY = True except ImportError: HAS_H5PY = False from viscid.readers.vfile_bucket import ContainerFile from viscid.readers.hdf5 import FileHDF5, H5pyDataWrapper from viscid import grid from viscid import field from viscid.coordinate import wrap_crds base_hydro_names = ['rho', 'rhoux', 'rhouy', 'rhouz', 'e'] base_hydro_pretty_names = [r'$\rho$', r'$\rhou_x$', r'$\rhou_y$', r'$\rhou_z$', r'$e$'] base_5m_names = ['rho_e', 'rhoux_e', 'rhouy_e', 'rhouz_e', 'e_e', 'rho_i', 'rhoux_i', 'rhouy_i', 'rhouz_i', 'e_i', 'Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz'] base_5m_pretty_names = [ r'$\rho_e$', r'$\rho u_{x,e}$', r'$\rho u_{y,e}$', r'$\rho u_{z,e}$', r'$e_e$', r'$\rho_i$', r'$\rho u_{x,i}$', r'$\rho u_{y,i}$', r'$\rho u_{z,i}$', r'$e_i$', r'$E_x$', r'$E_y$', r'$E_z$', r'$B_x$', r'$B_y$', r'$B_z$'] base_10m_names = ['rho_e', 'rhoux_e', 'rhouy_e', 'rhouz_e', 'pxx_e', 'pxy_e', 'pxz_e', 'pyy_e', 'pyz_e', 'pzz_e', 'rho_i', 'rhoux_i', 'rhouy_i', 'rhouz_i', 'pxx_i', 'pxy_i', 'pxz_i', 'pyy_i', 'pyz_i', 'pzz_i', 'Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz'] base_10m_pretty_names = [ r'$\rho_e$', r'$\rho u_{x,e}$', r'$\rho u_{y,e}$', r'$\rho u_{z,e}$', r'$\mathcal{P}_{xx,e}$', r'$\mathcal{P}_{xy,e}$', r'$\mathcal{P}_{xz,e}$', r'$\mathcal{P}_{yy,e}$', r'$\mathcal{P}_{yz,e}$', r'$\mathcal{P}_{zz,e}$', r'$\rho_i$', r'$\rho u_{x,i}$', r'$\rho u_{y,i}$', r'$\rho u_{z,i}$', r'$\mathcal{P}_{xx,i}$', r'$\mathcal{P}_{xy,i}$', r'$\mathcal{P}_{xz,i}$', r'$\mathcal{P}_{yy,i}$', r'$\mathcal{P}_{yz,i}$', r'$\mathcal{P}_{zz,i}$', r'$E_x$', r'$E_y$', r'$E_z$', r'$B_x$', r'$B_y$', r'$B_z$'] _type_info = {len(base_hydro_names): {'field_type': 'hydro', 'names': base_hydro_names, 'pretty_names': base_hydro_pretty_names}, len(base_5m_names): {'field_type': 'five-moment', 'names': base_5m_names, 'pretty_names': base_5m_pretty_names}, len(base_10m_names): {'field_type': 'ten-moment', 'names': base_10m_names, 'pretty_names': base_10m_pretty_names}} class GkeyllGrid(grid.Grid): """""" def _assemble_vector(self, base_name, comp_names="xyz", suffix="", forget_source=False, **kwargs): opts = dict(forget_source=forget_source, **kwargs) # caching behavior depends on self.longterm_field_caches comps = [self[base_name + c + suffix] for c in comp_names] return field.scalar_fields_to_vector(comps, name=base_name, **opts) def _get_ux_e(self): ux_e = self['rhoux_e'] / self['rho_e'] ux_e.name = 'ux_e' ux_e.pretty_name = r'$u_{x,e}$' return ux_e def _get_uy_e(self): uy_e = self['rhouy_e'] / self['rho_e'] uy_e.name = 'uy_e' uy_e.pretty_name = r'$u_{y,e}$' return uy_e def _get_uz_e(self): uz_e = self['rhouz_e'] / self['rho_e'] uz_e.name = 'uz_e' uz_e.pretty_name = r'$u_{z,e}$' return uz_e def _get_Pxx_e(self): Pxx_e = self['pxx_e'] - self['rhoux_e']*self['rhoux_e'] / self['rho_e'] Pxx_e.name = 'Pxx_e' Pxx_e.pretty_name = r'$P_{xx,e}$' return Pxx_e def _get_Pyy_e(self): Pyy_e = self['pyy_e'] - self['rhoux_e']*self['rhoux_e'] / self['rho_e'] Pyy_e.name = 'Pyy_e' Pyy_e.pretty_name = r'$P_{yy,e}$' return Pyy_e def _get_Pzz_e(self): Pzz_e = self['pzz_e'] - self['rhoux_e']*self['rhoux_e'] / self['rho_e'] Pzz_e.name = 'Pzz_e' Pzz_e.pretty_name = r'$P_{zz,e}$' return Pzz_e def _get_Pxy_e(self): Pxy_e = self['pxy_e'] - self['rhoux_e']*self['rhouy_e'] / self['rho_e'] Pxy_e.name = 'Pxy_e' Pxy_e.pretty_name = r'$P_{xy,e}$' return Pxy_e def _get_Pxz_e(self): Pxz_e = self['pxz_e'] - self['rhoux_e']*self['rhouz_e'] / self['rho_e'] Pxz_e.name = 'Pxz_e' Pxz_e.pretty_name = r'$P_{xz,e}$' return Pxz_e def _get_Pyz_e(self): Pyz_e = self['pyz_e'] - self['rhouy_e']*self['rhouz_e'] / self['rho_e'] Pyz_e.name = 'Pyz_e' Pyz_e.pretty_name = r'$P_{yz,e}$' return Pyz_e def _get_ux_i(self): ux_i = self['rhoux_i'] / self['rho_i'] ux_i.name = 'ux_i' ux_i.pretty_name = r'$u_{x,i}$' return ux_i def _get_uy_i(self): uy_i = self['rhouy_i'] / self['rho_i'] uy_i.name = 'uy_i' uy_i.pretty_name = r'$u_{y,i}$' return uy_i def _get_uz_i(self): uz_i = self['rhouz_i'] / self['rho_i'] uz_i.name = 'uz_i' uz_i.pretty_name = r'$u_{z,i}$' return uz_i def _get_Pxx_i(self): Pxx_i = self['pxx_i'] - self['rhoux_i']*self['rhoux_i'] / self['rho_i'] Pxx_i.name = 'Pxx_i' Pxx_i.pretty_name = r'$P_{xx,i}$' return Pxx_i def _get_Pyy_i(self): Pyy_i = self['pyy_i'] - self['rhoux_i']*self['rhoux_i'] / self['rho_i'] Pyy_i.name = 'Pyy_i' Pyy_i.pretty_name = r'$P_{yy,i}$' return Pyy_i def _get_Pzz_i(self): Pzz_i = self['pzz_i'] - self['rhoux_i']*self['rhoux_i'] / self['rho_i'] Pzz_i.name = 'Pzz_i' Pzz_i.pretty_name = r'$P_{zz,i}$' return Pzz_i def _get_Pxy_i(self): Pxy_i = self['pxy_i'] - self['rhoux_i']*self['rhouy_i'] / self['rho_i'] Pxy_i.name = 'Pxy_i' Pxy_i.pretty_name = r'$P_{xy,i}$' return Pxy_i def _get_Pxz_i(self): Pxz_i = self['pxz_i'] - self['rhoux_i']*self['rhouz_i'] / self['rho_i'] Pxz_i.name = 'Pxz_i' Pxz_i.pretty_name = r'$P_{xz,i}$' return Pxz_i def _get_Pyz_i(self): Pyz_i = self['pyz_i'] - self['rhouy_i']*self['rhouz_i'] / self['rho_i'] Pyz_i.name = 'Pyz_i' Pyz_i.pretty_name = r'$P_{yz,i}$' return Pyz_i def _get_u_e(self): # get from [ux_e, uy_e, uz_e] return self._assemble_vector("u", suffix='_e', _force_layout=self.force_vector_layout, pretty_name='u_e') def _get_u_i(self): # get from [ux_i, uy_i, uz_i] return self._assemble_vector("u", suffix='_i', _force_layout=self.force_vector_layout, pretty_name='u_i') def _get_b(self): # get from [Bx, By, Bz] return self._assemble_vector("B", _force_layout=self.force_vector_layout, pretty_name="b") class GkeyllFile(FileHDF5, ContainerFile): # pylint: disable=abstract-method """""" _detector = r"^\s*(.*)_(q)_([0-9]+).(h5)\s*$" _grid_type = GkeyllGrid SAVE_ONLY = False _fwrapper = None _crds = None _fld_templates = None def __init__(self, fname, crds=None, fld_templates=None, **kwargs): assert HAS_H5PY self._crds = crds self._fld_templates = fld_templates super(GkeyllFile, self).__init__(fname, **kwargs) @classmethod def group_fnames(cls, fnames): """Group File names The default implementation just returns fnames, but some file types might do something fancy here Parameters: fnames (list): names that can be logically grouped, as in a bunch of file names that are different time steps of a given run Returns: A list of things that can be given to the constructor of this class """ infolst = [] for name in fnames: m = re.match(cls._detector, name) grps = m.groups() d = dict(runname=grps[0], ftype=grps[1], fname=m.string) try: d["frame"] = int(grps[2]) except (TypeError, ValueError): # grps[2] is none for "RUN.3d.xdmf" files d["frame"] = -1 infolst.append(d) # careful with sorting, only consecutive files will be grouped infolst.sort(key=itemgetter("frame")) infolst.sort(key=itemgetter("ftype")) infolst.sort(key=itemgetter("runname")) info_groups = [] info_group = [infolst[0]] for info in infolst[1:]: last = info_group[-1] if info['runname'] == last['runname'] and \ info['ftype'] == last['ftype']: info_group.append(info) else: info_groups.append(info_group) info_group = [info] info_groups.append(info_group) # turn info_groups into groups of just file names groups = [] for info_group in info_groups: groups.append([info['fname'] for info in info_group]) return groups @classmethod def collective_name_from_group(cls, fnames): fname0 = fnames[0] basename = os.path.basename(fname0) run = re.match(cls._detector, basename).group(1) fldtype = re.match(cls._detector, basename).group(2) new_basename = "{0}.{1}.STAR.h5".format(run, fldtype) return os.path.join(os.path.dirname(fname0), new_basename) def get_file_wrapper(self, filename): if self._fwrapper is None: # self._fwrapper = GGCMFortbinFileWrapper(filename) return h5py.File(filename, 'r') else: raise NotImplementedError() # assert (self._fwrapper.filename == filename or # glob2(self._fwrapper.filename) == glob2(filename)) # return self._fwrapper def set_file_wrapper(self, wrapper): raise NotImplementedError("This must be done at file init") def load(self, fname): if isinstance(fname, list): self._collection = fname else: self._collection = [fname] fname0 = self._collection[0] fname1 = self.collective_name(fname) basename = os.path.basename(fname0) self.set_info('run', re.match(self._detector, basename).group(1)) self.set_info('fieldtype', re.match(self._detector, basename).group(2)) super(GkeyllFile, self).load(fname1) def _parse(self): if len(self._collection) == 1: # load a single file if self._crds is None: self._crds = self.make_crds(self.fname) _grid = self._parse_file(self.fname, self) self.add(_grid) self.activate(0) else: # load each file, and add it to the bucket if self._crds is None: self._crds = self.make_crds(self._collection[0]) data_temporal = self._make_dataset(self, dset_type="temporal", name="GkeyllTemporalCollection") self._fld_templates = self._make_template(self._collection[0]) for fname in self._collection: f = self._load_child_file(fname, index_handle=False, file_type=type(self), crds=self._crds, fld_templates=self._fld_templates) data_temporal.add(f) data_temporal.activate(0) self.add(data_temporal) self.activate(0) def _parse_file(self, filename, parent_node): # we do minimal file parsing here for performance. we just # make data wrappers from the templates we got from the first # file in the group, and package them up into grids # frame = int(re.match(self._detector, filename).group(3)) _grid = self._make_grid(parent_node, name="<GkeyllGrid>", **self._grid_opts) # FIXME: To get the time at load, we have to open all hdf5 files # which defeats the purpose of making templates etc. in attempt to # be lazy. Maybe there's a way to use frame above? with h5py.File(filename, 'r') as f: step = f['timeData'].attrs['vsStep'] time = f['timeData'].attrs['vsTime'] self.set_info("step", step) self.time = time _grid.time = time _grid.set_crds(self._crds) if self._fld_templates is None: self._fld_templates = self._make_template(filename) for i, meta in enumerate(self._fld_templates): # FIXME: the transpose goes xyz -> zyx h5_data = H5pyDataWrapper(self.fname, "StructGridField", comp_dim=-1, comp_idx=i) fld = field.wrap_field(h5_data, self._crds, meta['fld_name'], center="cell", pretty_name=meta['pretty_name']) _grid.add_field(fld) return _grid def _make_template(self, filename): """""" with self.get_file_wrapper(filename) as f: shape = f["StructGridField"].shape sshape = shape[:-1] nr_fields = shape[-1] try: type_info = _type_info[nr_fields] except KeyError: try: # if the two scalar corrections potentials are stored type_info = dict(_type_info[nr_fields - 2]) type_info['names'].append('EXTRA1') type_info['pretty_names'].append('EXTRA1') type_info['names'].append('EXTRA2') type_info['pretty_names'].append('EXTRA2') except KeyError: raise RuntimeError("Could not desipher type (hydro, 5m, 10m)") template = [] # TODO: use nr_fields to figure out the names of the fields? for i in range(nr_fields): d = dict(fldnum=i, shape=sshape, fld_name=type_info['names'][i], pretty_name=type_info['pretty_names'][i]) template.append(d) self.set_info("field_type", type_info['field_type']) return template @staticmethod def _get_single_crd(h5file, idx, nr_crds): gridType = h5file['StructGrid'].attrs['vsKind'].decode() if gridType in ['uniform']: if idx >= len(h5file['StructGrid'].attrs['vsNumCells']): raise IndexError() lower = h5file['StructGrid'].attrs['vsLowerBounds'][idx] upper = h5file['StructGrid'].attrs['vsUpperBounds'][idx] num = h5file['StructGrid'].attrs['vsNumCells'][idx] return [lower, upper, num + 1] elif gridType in ['rectilinear']: crd_arr = h5file['StructGrid/axis%d'%idx][:] return crd_arr elif gridType in ['structured']: if idx == 0: crd_arr = h5file['StructGrid'][:, 0, 0, 0] elif idx == 1: crd_arr = h5file['StructGrid'][0, :, 0, 1] elif idx == 2: crd_arr = h5file['StructGrid'][0, 0, :, 2] return crd_arr else: raise RuntimeError("Gkeyll StructGrid.vsKind not understood: {0}" "".format(repr(gridType))) def make_crds(self, fname): with h5py.File(fname, 'r') as f: clist = [] # FIXME: xyz crds = "xyz" nr_crds = len(f['StructGridField'].shape) - 1 for i in range(nr_crds): try: clist.append((crds[i], self._get_single_crd(f, i, nr_crds))) except IndexError: pass if f['StructGrid'].attrs['vsKind'].decode() in ['uniform']: # FIXME: this goes xyz -> zyx crds = wrap_crds("uniform_cartesian", clist) else: crds = wrap_crds("nonuniform_cartesian", clist) return crds ## ## EOF ## ``` #### File: viscid/readers/__init__.py ```python import viscid # import vfile from viscid.readers.vfile import VFile from viscid.readers import vfile_bucket # these imports are necessary to register file types from viscid.readers import xdmf from viscid.readers import hdf5 from viscid.readers import numpy_binary from viscid.readers import ascii # these imports register convenience readers for data from # specific sim packages from viscid.readers import ggcm_xdmf from viscid.readers import ggcm_fortbin from viscid.readers import psc from viscid.readers import gkeyll from viscid.readers import athena_bin from viscid.readers import athena_tab from viscid.readers import athena_hst from viscid.readers import athena_xdmf from viscid.readers import ggcm_jrrle __all__ = ['load_file', 'load_files', 'unload_file', 'unload_all_files', 'reload_file', 'get_file', 'save_grid', 'save_field', 'save_fields'] __filebucket__ = vfile_bucket.VFileBucket() def load(fnames): """Generic load Dispatches to :meth:`load_file` or :meth:`load_files`. This function is deprecated. Parameters: fnames: One or many file names Returns: one or many VFiles """ # this is not a deprecated warning since by default those aren't shown # and i want this to be a loud and clear do not use :) viscid.logger.warn("readers.load is deprecated in favor of load_file or " "load_files") files = load_files(fnames) if isinstance(fnames, (list, tuple)): return files else: return files[0] def load_file(fname, force_reload=False, **kwargs): """Load a file Parameters: fnames (list): single file name, or list of files that are part of the same time series. Glob patterns and slices are accepted, see :doc:`/tips_and_tricks` for more info. fname (str): a file name, relative to CWD force_reload (bool): Force reload if file is already in memory **kwargs: passed to the VFile constructor See Also: * :doc:`/tips_and_tricks` Returns: A VFile instance """ return __filebucket__.load_file(fname, force_reload=force_reload, **kwargs) def load_files(fnames, force_reload=False, **kwargs): """Load a list of files Parameters: fnames (list): list of file names. Glob patterns and slices are accepted, see :doc:`/tips_and_tricks` for more info. force_reload (bool): Force reload if file is already in memory **kwargs: passed to the VFile constructor See Also: * :doc:`/tips_and_tricks` Returns: A list of VFile instances. The length may not be the same as the length of fnames, and the order may not be the same in order to accommodate globs and file grouping. """ return __filebucket__.load_files(fnames, force_reload=force_reload, **kwargs) def unload_file(handle): """call unload on the handle in the bucket""" __filebucket__[handle].unload() def reload_file(handle): """call reload on the handle in the bucket""" __filebucket__[handle].reload() def get_file(handle): """ return a file that's already been loaded by either number (as in nth file loaded), of file name """ return __filebucket__[handle] def save_grid(fname, grd, **kwargs): """ save a grid, filetype is inferred from fname """ ftype = VFile.detect_type(fname) ftype.save_grid(fname, grd, **kwargs) def save_field(fname, fld, **kwargs): """ save a field, filetype is inferred from fname""" ftype = VFile.detect_type(fname) ftype.save_field(fname, fld, **kwargs) def save_fields(fname, flds, **kwargs): """ save a list of fields, filetype is inferred from fname """ ftype = VFile.detect_type(fname, mode='w') ftype.save_fields(fname, flds, **kwargs) def unload_all_files(): """Hammer-of-Thor the cache""" __filebucket__.remove_all_items() ``` #### File: viscid/readers/numpy_binary.py ```python from __future__ import print_function import os import numpy as np from viscid import logger from viscid.readers import vfile from viscid import coordinate class NPZDataWrapper(vfile.DataWrapper): """ """ fname = None loc = None _shape = None _dtype = None def __init__(self, fname, loc): super(NPZDataWrapper, self).__init__() self.fname = fname self.loc = loc def _read_info(self): # this takes super long when reading 3 hrs worth of ggcm data # over sshfs # import pdb; pdb.set_trace() try: with np.load(self.fname) as f: dset = f[self.loc] self._shape = dset.shape self._dtype = dset.dtype except IOError: logger.error("Problem opening npz file, '%s'", self.fname) raise @property def shape(self): """ only ask for this if you really need it; can be a speed problem for large temporal datasets over sshfs """ if self._shape is None: self._read_info() return self._shape @property def dtype(self): """ only ask for this if you really need it; can be a speed problem for large temporal datasets over sshfs """ if self._dtype is None: self._read_info() return self._dtype def wrap_func(self, func_name, *args, **kwargs): with np.load(self.fname) as f: return getattr(f[self.loc], func_name)(*args, **kwargs) def __array__(self, *args, **kwargs): return self.wrap_func("__array__", *args, **kwargs) def read_direct(self, *args, **kwargs): raise NotImplementedError() def len(self): return self.wrap_func("len") def __getitem__(self, item): return self.wrap_func("__getitem__", item) class FileNumpyNPZ(vfile.VFile): """ open an ascii file with viscid format, or if not specified, assume it's in gnuplot format, gnuplot format not yet specified """ _detector = r".*\.(npz)\s*$" _KEY_CRDS = "crd_names" _KEY_FLDS = {"node": "field_names_nc", "cell": "field_names_cc", "face": "field_names_fc", "edge": "field_names_ec"} def __init__(self, fname, **kwargs): super(FileNumpyNPZ, self).__init__(fname, **kwargs) def _wrap_lazy_field(self, parent_node, file_name, fld_name, crds, center): lazy_arr = NPZDataWrapper(file_name, fld_name) if len(lazy_arr.shape) == crds.nr_dims: fldtype = "Scalar" elif len(lazy_arr.shape) == crds.nr_dims + 1: fldtype = "Vector" else: raise IOError("can't infer field type") return self._make_field(parent_node, fldtype, fld_name, crds, lazy_arr, center=center) def _parse(self): g = self._make_grid(self, **self._grid_opts) with np.load(self.fname) as f: fld_names = f.keys() crd_names = [] # try to get crds names from an array of strings called _KEY_CRDS # else, assume it's x, y, z and see if that works try: clist = [(ax, f[ax]) for ax in f[self._KEY_CRDS]] crd_names = f[self._KEY_CRDS] fld_names.remove(self._KEY_CRDS) except KeyError: for axisname in "xyz": if axisname in f: crd_names.append(axisname) clist = [(cn, NPZDataWrapper(self.fname, cn)) for cn in crd_names] crds = coordinate.wrap_crds("nonuniform_cartesian", clist) g.set_crds(crds) for c in clist: # we should be sure by now that the keys exist fld_names.remove(c[0]) # try to get field names from arrays of nc, cc, ec, fc # fields for fld_center, names_key in self._KEY_FLDS.items(): try: names = f[names_key] fld_names.remove(names_key) except KeyError: names = [] for name in names: fld = self._wrap_lazy_field(g, self.fname, name, crds, fld_center) g.add_field(fld) fld_names.remove(name) # load any remaining fields as though they were node centered for name in fld_names: fld = self._wrap_lazy_field(g, self.fname, name, crds, "Node") g.add_field(fld) self.add(g) self.activate(0) def save(self, fname=None, **kwargs): if fname is None: fname = self.fname flds = list(self.iter_fields()) self.save_fields(fname, flds) @classmethod def save_fields(cls, fname, flds, **kwargs): assert len(flds) > 0 fname = os.path.expanduser(os.path.expandvars(fname)) fld_dict = {} # setup crds # FIXME: all coordinates are saved as non-uniform, the proper # way to do this is to have let coordinate format its own # hdf5 / xdmf / numpy binary output clist = flds[0].crds.get_clist(full_arrays=True) axis_names = [] for axis_name, crdarr in clist: fld_dict[axis_name] = crdarr axis_names.append(axis_name) fld_dict[cls._KEY_CRDS] = np.array(axis_names) # setup fields # dict comprehension invalid in Python 2.6 # fld_names = {key.lower(): [] for key in cls._KEY_FLDS.keys()} fld_names = {} for key in cls._KEY_FLDS.keys(): fld_names[key.lower()] = [] for fld in flds: fld_names[fld.center.lower()].append(fld.name) fld_dict[fld.name] = fld.data for center, names_lst in fld_names.items(): fld_dict[cls._KEY_FLDS[center.lower()]] = np.array(names_lst) if fname.endswith(".npz"): fname = fname[:-4] np.savez(fname, **fld_dict) ## ## EOF ## ``` #### File: viscid/readers/xdmf.py ```python from __future__ import print_function import os import sys # from xml.etree import ElementTree import numpy as np from viscid.compat import element_tree from viscid import logger from viscid.readers.vfile_bucket import ContainerFile from viscid.readers.hdf5 import FileLazyHDF5 from viscid import amr_grid from viscid import coordinate # class XDMFDataItem(data_item.DataItem): # def set_precision(): # nptype = np.dtype({'Float': 'float', 'Int': 'int', 'UInt': 'unit', # 'Char': 'int', 'UChar': 'int'}[numbertype] + str(8*precision)) class FileXDMF(ContainerFile): # pylint: disable=abstract-method """ on init, parse an xdmf file into datasets, grids, and fields """ _detector = r".*\.(xmf|xdmf)\s*$" _xdmf_defaults = { "Attribute": { "Name": None, "AttributeType": "Scalar", # Vector,Tensor,Tensor6,Matrix,GlobalID "Center": "node" # cell,Grid,face,edge }, "DataItem": { "Name": None, "ItemType": "Uniform", # Collection, tree, # HyperSlab, coordinates, Funciton "Dimensions": None, # KJI order "NumberType": "Float", # Int, UInt, Char, UChar "Precision": 4, # 1, 4, 8 "Format": "XML", # HDF, Binary "Endian": "Native", # Big, Little "Compression": "Raw", # Zlib, Bzip2 "Seek": 0 }, "Domain": { "Name": None }, "Geometry": { "GeometryType": "XYZ" # XY, X_Y_Z, VxVyVz, Origin_DxDyDz }, "Grid": { "Name": None, "GridType": "Uniform", # Collection,Tree,Subset "CollectionType": "Spatial", # Temporal "Section": "DataItem" # All }, "Information": { "Name": None, "Value": None }, "Xdmf": { "Version": None }, "Topology": { "Name": None, "TopologyType": None, # Polyvertex | Polyline | Polygon | # Triangle | Quadrilateral | Tetrahedron | # Pyramid| Wedge | Hexahedron | Edge_3 | # Triagle_6 | Quadrilateral_8 | # Tetrahedron_10 | Pyramid_13 | Wedge_15 | # Hexahedron_20 | Mixed | # 2DSMesh | 2DRectMesh | 2DCoRectMesh | # 3DSMesh | 3DRectMesh | 3DCoRectMesh "NodesPerElement": None, "NumberOfElement": None, "Dimensions": None, "Order": None, "BaseOffset": 0 }, "Time": { "Type": "Single", "Value": None } } h5_root_dir = None _last_amr_skeleton = None # experimental, should be moved # tree = None def __init__(self, fname, h5_root_dir=None, **kwargs): """XDMF File""" if h5_root_dir is not None: h5_root_dir = os.path.expandvars(h5_root_dir) self.h5_root_dir = os.path.expanduser(h5_root_dir) super(FileXDMF, self).__init__(fname, **kwargs) def _parse(self): grids = self._parse_file(self.fname, self) for grid in grids: self.add(grid) if len(self.children) > 0: self.activate(0) def _parse_file(self, fname, parent_node): # lxml has better xpath support, so it's preferred, but it stops # if an xinclude doesn't exist, so for now use our custom extension # of the default python xml lib # if HAS_LXML: # # sweet, you have it... use the better xml library # tree = etree.parse(self.fname) # pylint: disable=E0602 # tree.xinclude() # TODO: gracefully ignore include problems # root = tree.getroot() grids = [] tree = element_tree.parse(fname) element_tree.xinclude(tree, base_url=fname) root = tree.getroot() # search for all root grids, and parse them domain_grids = root.findall("./Domain/Grid") for dg in domain_grids: grd = self._parse_grid(dg, parent_node) grids.append(grd) return grids def _fill_attrs(self, el): defs = self._xdmf_defaults[el.tag] ret = {} for opt, defval in defs.items(): if defval is None: ret[opt] = el.get(opt) else: ret[opt] = type(defval)(el.get(opt, defval)) return ret def _parse_grid(self, el, parent_node=None, time=None): attrs = self._fill_attrs(el) grd = None crds = None # parse topology, or cascade parent grid's topology topology = el.find("./Topology") topoattrs = None if topology is not None: topoattrs = self._fill_attrs(topology) elif parent_node and parent_node.topology_info: topoattrs = parent_node.topology_info # parse geometry, or cascade parent grid's geometry geometry = el.find("./Geometry") geoattrs = None if geometry is not None: crds, geoattrs = self._parse_geometry(geometry, topoattrs) elif parent_node and parent_node.geometry_info: geoattrs = parent_node.geometry_info crds = parent_node.crds # this can be None and that's ok # parse time if time is None: t = el.find("./Time") if t is not None: pt, tattrs = self._parse_time(t) if tattrs["Type"] == "Single": time = pt # cascade a parent grid's time if time is None and parent_node and parent_node.time is not None: time = parent_node.time gt = attrs["GridType"] if gt == "Collection": times = None ct = attrs["CollectionType"] if ct == "Temporal": grd = self._make_dataset(parent_node, dset_type="temporal", name=attrs["Name"]) self._inject_info(el, grd) ttag = el.find("./Time") if ttag is not None: times, tattrs = self._parse_time(ttag) elif ct == "Spatial": grd = self._make_dataset(parent_node, name=attrs["Name"]) self._inject_info(el, grd) else: logger.warn("Unknown collection type %s, ignoring grid", ct) for i, subgrid in enumerate(el.findall("./Grid")): t = times[i] if (times is not None and i < len(times)) else time # print(subgrid, grd, t) self._parse_grid(subgrid, parent_node=grd, time=time) if len(grd.children) > 0: grd.activate(0) elif gt == "Uniform": if not (topoattrs and geoattrs): logger.warn("Xdmf Uniform grids must have " "topology / geometry.") else: grd = self._make_grid(parent_node, name=attrs["Name"], **self._grid_opts) self._inject_info(el, grd) for attribute in el.findall("./Attribute"): fld = self._parse_attribute(grd, attribute, crds, topoattrs, time) if time: fld.time = time grd.add_field(fld) elif gt == "Tree": logger.warn("Xdmf Tree Grids not implemented, ignoring " "this grid") elif gt == "Subset": logger.warn("Xdmf Subset Grids not implemented, ignoring " "this grid") else: logger.warn("Unknown grid type %s, ignoring this grid", gt) # fill attributes / data items # if grid and gt == "Uniform": # for a in el.findall("./Attribute"): # fld = self._parse_attribute(a) # grid.add_field(fld) if grd: if time is not None: grd.time = time if topoattrs is not None: grd.topology_info = topoattrs if geoattrs is not None: grd.geometry_info = geoattrs if crds is not None: grd.set_crds(crds) # EXPERIMENTAL AMR support, _last_amr_grid shouldn't be an attribute # of self, since that will only remember the most recently generated # amr grid, but that's ok for now # if gt == "Uniform": # print(">!", crds._TYPE, crds.xl_nc, grd.time) # print(">!?", type(parent_node), parent_node.children._ordered, # len(parent_node.children)) if gt == "Collection" and ct == "Spatial": grd, is_amr = amr_grid.dataset_to_amr_grid(grd, self._last_amr_skeleton) if is_amr: self._last_amr_skeleton = grd.skeleton if parent_node is not None: parent_node.add(grd) return grd # can be None def _parse_geometry(self, geo, topoattrs): """ geo is the element tree item, returns Coordinate object and xml attributes """ geoattrs = self._fill_attrs(geo) # crds = None crdlist = None crdtype = None crdkwargs = {} topotype = topoattrs["TopologyType"] # parse geometry into crds geotype = geoattrs["GeometryType"] if geotype.upper() == "XYZ": data, attrs = self._parse_dataitem(geo.find("./DataItem"), keep_flat=True) # x = data[0::3] # y = data[1::3] # z = data[2::3] # crdlist = (('z', z), ('y', y), ('x', x)) # quietly do nothing... we don't support unstructured grids # or 3d spherical yet, and 2d spherical can be figured out # if we assume the grid spans the whole sphere crdlist = None elif geotype.upper() == "XY": data, attrs = self._parse_dataitem(geo.find("./DataItem"), keep_flat=True) # x = data[0::2] # y = data[1::2] # z = np.zeros(len(x)) # crdlist = (('z', z), ('y', y), ('x', x)) # quietly do nothing... we don't support unstructured grids # or 3d spherical yet, and 2d spherical can be figured out # if we assume the grid spans the whole sphere crdlist = None elif geotype.upper() == "X_Y_Z": crdlookup = {'x': 0, 'y': 1, 'z': 2} crdlist = [['x', None], ['y', None], ['z', None]] # can't use ./DataItem[@Name='X'] so python2.6 works dataitems = geo.findall("./DataItem") for di in dataitems: crd_name = di.attrib["Name"].lower() data, attrs = self._parse_dataitem(di, keep_flat=True) crdlist[crdlookup.pop(crd_name)][1] = data if len(crdlookup) > 0: raise RuntimeError("XDMF format error: Coords not specified " "for {0} dimesions" "".format(list(crdlookup.keys()))) crdkwargs["full_arrays"] = True elif geotype.upper() == "VXVYVZ": crdlookup = {'x': 0, 'y': 1, 'z': 2} crdlist = [['x', None], ['y', None], ['z', None]] # can't use ./DataItem[@Name='VX'] so python2.6 works dataitems = geo.findall("./DataItem") for di in dataitems: crd_name = di.attrib["Name"].lstrip('V').lower() data, attrs = self._parse_dataitem(di, keep_flat=True) crdlist[crdlookup.pop(crd_name)][1] = data if len(crdlookup) > 0: raise RuntimeError("XDMF format error: Coords not specified " "for {0} dimesions" "".format(list(crdlookup.keys()))) crdkwargs["full_arrays"] = True elif geotype.upper() == "ORIGIN_DXDYDZ": # this is for grids with uniform spacing dataitems = geo.findall("./DataItem") data_o, _ = self._parse_dataitem(dataitems[0]) data_dx, _ = self._parse_dataitem(dataitems[1]) dtyp = data_o.dtype nstr = None if topoattrs["Dimensions"]: nstr = topoattrs["Dimensions"] elif topoattrs["NumberOfElements"]: nstr = topoattrs["NumberOfElements"] else: raise ValueError("ORIGIN_DXDYDZ has no number of elements...") n = [int(num) for num in nstr.split()] # FIXME: OpenGGCM output uses ZYX ordering even though the xdmf # website says it should be XYZ, BUT, the file opens correctly # in Paraview with zyx, so... I guess i need to do this [::-1] # nonsense here data_o, data_dx, n = data_o[::-1], data_dx[::-1], n[::-1] crdlist = [None] * 3 for i, crd in enumerate(['x', 'y', 'z']): n_nc, n_cc = n[i], n[i] - 1 crd_arr = [data_o[i], data_o[i] + (n_cc * data_dx[i]), n_nc] crdlist[i] = (crd, crd_arr) crdkwargs["dtype"] = dtyp crdkwargs["full_arrays"] = False else: logger.warn("Invalid GeometryType: %s", geotype) if topotype in ['3DCoRectMesh', '2DCoRectMesh']: crdtype = "uniform_cartesian" elif topotype in ['3DRectMesh', '2DRectMesh']: if crdkwargs.get("full_arrays", True): crdtype = "nonuniform_cartesian" else: # HACK, hopefully not used ever crdtype = "uniform_cartesian" elif topotype in ['2DSMesh']: crdtype = "uniform_spherical" # HACK! ######## this doesn't quite work, but it's too heavy to be useful ######## anyway... if we assume a 2d spherical grid spans the ######## whole sphere, and radius doesnt matter, all we need are ######## the nr_phis / nr_thetas, so let's just do that # # this asserts that attrs["Dimensions"] will have the xyz # # dimensions # # turn x, y, z -> phi, theta, r # dims = [int(s) for # s in reversed(topoattrs["Dimensions"].split(' '))] # dims = [1] * (3 - len(dims)) + dims # nr, ntheta, nphi = [d for d in dims] # # dtype = crdlist[0][1].dtype # # phi, theta, r = [np.empty((n,), dtype=dtype) for n in dims] # x, y, z = (crdlist[i][1].reshape(dims) for i in range(3)) # nphitheta = nphi * ntheta # r = np.sqrt(x[::nphitheta, 0, 0]**2 + y[::nphitheta, 0, 0]**2 + # z[::nphitheta, 0, 0]**2) # ir = nr // 2 # things get squirrly near the extrema # theta = (180.0 / np.pi) * \ # (np.arccos(z[ir, :, ::nphi] / r[ir]).reshape(-1)) # itheta = ntheta // 2 # phi = (180.0 / np.pi) * \ # np.arctan2(y[ir, itheta, :], x[ir, itheta, :]) # print(dims, nr, ntheta, nphi) # print("r:", r.shape, r) # print("theta:", theta.shape, theta) # print("phi:", phi.shape, phi) # raise RuntimeError() ######## general names in spherical crds # ntheta, nphi = [int(s) for s in topoattrs["Dimensions"].split(' ')] # crdlist = [['theta', [0.0, 180.0, ntheta]], # ['phi', [0.0, 360.0, nphi]]] ######## names on a map ntheta, nphi = [int(s) for s in topoattrs["Dimensions"].split(' ')] crdlist = [['phi', [0.0, 360.0, nphi]], ['theta', [0.0, 180.0, ntheta]]] crdkwargs["full_arrays"] = False crdkwargs["units"] = 'deg' elif topotype in ['3DSMesh']: raise NotImplementedError("3D spherical grids not yet supported") else: raise NotImplementedError("Unstructured grids not yet supported") crds = coordinate.wrap_crds(crdtype, crdlist, **crdkwargs) return crds, geoattrs def _parse_attribute(self, parent_node, item, crds, topoattrs, time=0.0): """ Args: parent_node (Dataset, Grid, or None): Hint what the parent will be. Necessary if _make_field makes decisions based on the info dict """ attrs = self._fill_attrs(item) data, dataattrs = self._parse_dataitem(item.find("./DataItem")) name = attrs["Name"] center = attrs["Center"] fldtype = attrs["AttributeType"] fld = self._make_field(parent_node, fldtype, name, crds, data, center=center, time=time, zyx_native=True) self._inject_info(item, fld) return fld def _parse_dataitem(self, item, keep_flat=False): """ returns the data as a numpy array, or HDF data item """ attrs = self._fill_attrs(item) dimensions = attrs["Dimensions"] if dimensions: dimensions = [int(d) for d in dimensions.split(' ')] numbertype = attrs["NumberType"] precision = attrs["Precision"] nptype = np.dtype({'Float': 'f', 'Int': 'i', 'UInt': 'u', 'Char': 'i', 'UChar': 'u'}[numbertype] + str(precision)) fmt = attrs["Format"] if fmt == "XML": arr = np.fromstring(item.text, sep=' ', dtype=nptype) if dimensions and not keep_flat: arr = arr.reshape(dimensions) return arr, attrs if fmt == "HDF": fname, loc = item.text.strip().split(':') # FIXME: startswith '/' is unix path name specific if self.h5_root_dir is not None: fname = os.path.join(self.h5_root_dir, fname) elif not fname.startswith('/'): fname = os.path.join(self.dirname, fname) h5file = self._load_child_file(fname, index_handle=False, file_type=FileLazyHDF5) arr = h5file.get_data(loc) return arr, attrs if fmt == "Binary": raise NotImplementedError("binary xdmf data not implemented") logger.warn("Invalid DataItem Format.") return (None, None) def _parse_time(self, timetag): """ returns the time(s) as float, or numpy array, time attributes""" attrs = self._fill_attrs(timetag) timetype = attrs["Type"] if timetype == 'Single': return float(timetag.get('Value')), attrs elif timetype == 'List': return self._parse_dataitem(timetag.find('.//DataItem'))[0], attrs elif timetype == 'Range': raise NotImplementedError("Time Range not yet implemented") # dat, dattrs = self._parse_dataitem(timetag.find('.//DataItem')) # TODO: this is not the most general, but I think it'll work # as a first stab, plus I will probably not need Range ever # tgridtag = timetag.find("ancestor::Grid[@GridType='Collection']" # "[@CollectionType='Temporal'][1]")) # n = len(tgridtag.find(.//Grid[@GridType='Collection'] # [CollectionType=['Spatial']])) # return np.linspace(dat[0], dat[1], n) # return np.arange(dat[0], dat[1]) elif timetype == 'HyperSlab': dat, dattrs = self._parse_dataitem(timetag.find('.//DataItem')) arr = np.array([dat[0] + i * dat[1] for i in range(int(dat[2]))]) return arr, attrs else: logger.warn("invalid TimeType.\n") def _parse_information(self, information): """ parse generic information tag """ attrs = self._fill_attrs(information) name = attrs["Name"] val = attrs["Value"] if val is None: _di = information.find(".//DataItem") if _di: val, _ = self._parse_dataitem(_di) else: val = information.text return name, val def _inject_info(self, el, target): for _, information in enumerate(el.findall("./Information")): _name, _val = self._parse_information(information) target.set_info(_name, _val) def _main(): import viscid f = FileXDMF(os.path.join(viscid.sample_dir, 'local_0001.py_0.xdmf')) sys.stderr.write("{0}\n".format(f)) return 0 if __name__ == '__main__': sys.exit(_main()) ## ## EOF ## ```
{ "source": "JIMhackKING/seahub-1", "score": 2 }
#### File: api2/endpoints/dtable.py ```python import os import logging import time import jwt from rest_framework.views import APIView from rest_framework.authentication import SessionAuthentication from rest_framework.permissions import IsAuthenticated from rest_framework import status from rest_framework.response import Response from django.utils.translation import ugettext as _ from pysearpc import SearpcError from seaserv import seafile_api, ccnet_api from seahub.api2.authentication import TokenAuthentication from seahub.api2.throttling import UserRateThrottle from seahub.api2.utils import api_error from seahub.dtable.models import Workspaces, DTables from seahub.base.templatetags.seahub_tags import email2nickname from seahub.group.utils import group_id_to_name from seahub.utils import is_valid_dirent_name, is_org_context, normalize_file_path, \ check_filename_with_rename, gen_file_upload_url from seahub.settings import MAX_UPLOAD_FILE_NAME_LEN, DTABLE_PRIVATE_KEY from seahub.dtable.utils import check_dtable_permission from seahub.constants import PERMISSION_ADMIN, PERMISSION_READ_WRITE logger = logging.getLogger(__name__) FILE_TYPE = '.dtable' WRITE_PERMISSION_TUPLE = (PERMISSION_READ_WRITE, PERMISSION_ADMIN) class WorkspacesView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated, ) throttle_classes = (UserRateThrottle, ) def get(self, request): """get all workspaces """ username = request.user.username org_id = -1 if is_org_context(request): org_id = request.user.org.org_id if org_id and org_id > 0: groups = ccnet_api.get_org_groups_by_user(org_id, username) else: groups = ccnet_api.get_groups(username, return_ancestors=True) owner_list = list() owner_list.append(username) for group in groups: group_user = '%s@seafile_group' % group.id owner_list.append(group_user) workspace_list = list() for owner in owner_list: try: workspace = Workspaces.objects.get_workspace_by_owner(owner) except Exception as e: logger.error(e) error_msg = 'Internal Server Error.' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) if not workspace: if '@seafile_group' in owner: continue # permission check if not request.user.permissions.can_add_repo(): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) try: if org_id and org_id > 0: repo_id = seafile_api.create_org_repo( _("My Workspace"), _("My Workspace"), "dtable@seafile", org_id ) else: repo_id = seafile_api.create_repo( _("My Workspace"), _("My Workspace"), "dtable@seafile" ) except Exception as e: logger.error(e) error_msg = 'Internal Server Error.' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) workspace = Workspaces.objects.create_workspace(owner, repo_id) # resource check repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: logger.warning('Library %s not found.' % repo_id) continue res = workspace.to_dict() table_list = DTables.objects.get_dtable_by_workspace(workspace) res["table_list"] = table_list if '@seafile_group' in owner: group_id = owner.split('@')[0] res["owner_name"] = group_id_to_name(group_id) res["owner_type"] = "Group" else: res["owner_name"] = email2nickname(owner) res["owner_type"] = "Personal" workspace_list.append(res) return Response({"workspace_list": workspace_list}, status=status.HTTP_200_OK) class DTablesView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated, ) throttle_classes = (UserRateThrottle, ) def post(self, request): """create a table file Permission: 1. owner 2. group member """ # argument check table_owner = request.POST.get('owner') if not table_owner: error_msg = 'owner invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) table_name = request.POST.get('name') if not table_name: error_msg = 'name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) table_file_name = table_name + FILE_TYPE if not is_valid_dirent_name(table_file_name): error_msg = 'name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # resource check workspace = Workspaces.objects.get_workspace_by_owner(table_owner) if not workspace: if not request.user.permissions.can_add_repo(): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) org_id = -1 if is_org_context(request): org_id = request.user.org.org_id try: if org_id and org_id > 0: repo_id = seafile_api.create_org_repo( _("My Workspace"), _("My Workspace"), "dtable@seafile", org_id ) else: repo_id = seafile_api.create_repo( _("My Workspace"), _("My Workspace"), "dtable@seafile" ) except Exception as e: logger.error(e) error_msg = 'Internal Server Error.' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) try: workspace = Workspaces.objects.create_workspace(table_owner, repo_id) except Exception as e: logger.error(e) error_msg = 'Internal Server Error.' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not check_dtable_permission(username, workspace): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # repo status check repo_status = repo.status if repo_status != 0: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # create new empty table table_file_name = check_filename_with_rename(repo_id, '/', table_file_name) try: seafile_api.post_empty_file(repo_id, '/', table_file_name, username) except SearpcError as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) try: dtable = DTables.objects.create_dtable(username, workspace, table_name) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) return Response({"table": dtable.to_dict()}, status=status.HTTP_201_CREATED) class DTableView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated, ) throttle_classes = (UserRateThrottle, ) def put(self, request, workspace_id): """rename a table Permission: 1. owner 2. group member """ # argument check old_table_name = request.data.get('old_name') if not old_table_name: error_msg = 'old_name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) new_table_name = request.data.get('new_name') if not new_table_name: error_msg = 'new_name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) new_table_file_name = new_table_name + FILE_TYPE if not is_valid_dirent_name(new_table_file_name): error_msg = 'new_name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if len(new_table_file_name) > MAX_UPLOAD_FILE_NAME_LEN: error_msg = 'new_name is too long.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # resource check workspace = Workspaces.objects.get_workspace_by_id(workspace_id) if not workspace: error_msg = 'Workspace %s not found.' % workspace_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) dtable = DTables.objects.get_dtable(workspace, old_table_name) if not dtable: error_msg = 'dtable %s not found.' % old_table_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) old_table_file_name = old_table_name + FILE_TYPE old_table_path = normalize_file_path(old_table_file_name) table_file_id = seafile_api.get_file_id_by_path(repo_id, old_table_path) if not table_file_id: error_msg = 'file %s not found.' % old_table_file_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not check_dtable_permission(username, workspace): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # repo status check repo_status = repo.status if repo_status != 0: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # rename table new_table_file_name = check_filename_with_rename(repo_id, '/', new_table_file_name) try: seafile_api.rename_file(repo_id, '/', old_table_file_name, new_table_file_name, username) except SearpcError as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) try: dtable.name = new_table_name dtable.modifier = username dtable.save() except Exception as e: logger.error(e) error_msg = 'Internal Server Error.' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) return Response({"table": dtable.to_dict()}, status=status.HTTP_200_OK) def delete(self, request, workspace_id): """delete a table Permission: 1. owner 2. group member """ # argument check table_name = request.data.get('name') if not table_name: error_msg = 'name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) table_file_name = table_name + FILE_TYPE # resource check workspace = Workspaces.objects.get_workspace_by_id(workspace_id) if not workspace: error_msg = 'Workspace %s not found.' % workspace_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) dtable = DTables.objects.get_dtable(workspace, table_name) if not dtable: error_msg = 'dtable %s not found.' % table_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) table_path = normalize_file_path(table_file_name) table_file_id = seafile_api.get_file_id_by_path(repo_id, table_path) if not table_file_id: error_msg = 'file %s not found.' % table_file_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not check_dtable_permission(username, workspace): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # repo status check repo_status = repo.status if repo_status != 0: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # delete asset asset_dir_path = '/asset/' + str(dtable.uuid) asset_dir_id = seafile_api.get_dir_id_by_path(repo_id, asset_dir_path) if asset_dir_id: parent_dir = os.path.dirname(asset_dir_path) file_name = os.path.basename(asset_dir_path) try: seafile_api.del_file(repo_id, parent_dir, file_name, username) except SearpcError as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) # delete table try: seafile_api.del_file(repo_id, '/', table_file_name, username) except SearpcError as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) try: DTables.objects.delete_dtable(workspace, table_name) except Exception as e: logger.error(e) error_msg = 'Internal Server Error.' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) return Response({'success': True}, status=status.HTTP_200_OK) class DTableAssetUploadLinkView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def get(self, request, workspace_id): """get table file upload link Permission: 1. owner 2. group member 3. shared user with `rw` or `admin` permission """ # argument check table_name = request.GET.get('name', None) if not table_name: error_msg = 'name invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # resource check workspace = Workspaces.objects.get_workspace_by_id(workspace_id) if not workspace: error_msg = 'Workspace %s not found.' % workspace_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) dtable = DTables.objects.get_dtable(workspace, table_name) if not dtable: error_msg = 'dtable %s not found.' % table_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if check_dtable_permission(username, workspace, dtable) not in WRITE_PERMISSION_TUPLE: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) try: token = seafile_api.get_fileserver_access_token(repo_id, 'dummy', 'upload', '', use_onetime=False) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) upload_link = gen_file_upload_url(token, 'upload-api') # create asset dir asset_dir_path = '/asset/' + str(dtable.uuid) asset_dir_id = seafile_api.get_dir_id_by_path(repo_id, asset_dir_path) if not asset_dir_id: seafile_api.mkdir_with_parents(repo_id, '/', asset_dir_path[1:], username) dtable.modifier = username dtable.save() res = dict() res['upload_link'] = upload_link res['parent_path'] = asset_dir_path return Response(res) class DTableAccessTokenView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def get(self, request, workspace_id, name): """get dtable access token """ table_name = name table_file_name = table_name + FILE_TYPE # resource check workspace = Workspaces.objects.get_workspace_by_id(workspace_id) if not workspace: error_msg = 'Workspace %s not found.' % workspace_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) dtable = DTables.objects.get_dtable(workspace, table_name) if not dtable: error_msg = 'dtable %s not found.' % table_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) table_path = normalize_file_path(table_file_name) table_file_id = seafile_api.get_file_id_by_path(repo_id, table_path) if not table_file_id: error_msg = 'file %s not found.' % table_file_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not check_dtable_permission(username, workspace, dtable): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # generate json web token payload = { 'exp': int(time.time()) + 86400 * 3, 'dtable_uuid': dtable.uuid.hex, 'username': username, } try: access_token = jwt.encode( payload, DTABLE_PRIVATE_KEY, algorithm='HS256' ) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) return Response({'access_token': access_token}) ``` #### File: api2/endpoints/dtable_related_users.py ```python import logging from rest_framework.views import APIView from rest_framework.authentication import SessionAuthentication from rest_framework.permissions import IsAuthenticated from rest_framework import status from rest_framework.response import Response import seaserv from seaserv import seafile_api from seahub.api2.authentication import TokenAuthentication from seahub.api2.throttling import UserRateThrottle from seahub.api2.utils import api_error, get_user_common_info from seahub.dtable.models import Workspaces, DTables from seahub.dtable.utils import check_dtable_permission, list_dtable_related_users from seahub.utils import normalize_file_path from seahub.api2.endpoints.dtable import FILE_TYPE logger = logging.getLogger(__name__) class DTableRelatedUsersView(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated,) throttle_classes = (UserRateThrottle,) def get(self, request, workspace_id, name): """list dtable related users """ table_name = name table_file_name = table_name + FILE_TYPE # resource check workspace = Workspaces.objects.get_workspace_by_id(workspace_id) if not workspace: error_msg = 'Workspace %s not found.' % workspace_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) if '@seafile_group' in workspace.owner: group_id = workspace.owner.split('@')[0] group = seaserv.get_group(group_id) if not group: error_msg = 'Group %s not found.' % group_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) repo_id = workspace.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) dtable = DTables.objects.get_dtable(workspace, table_name) if not dtable: error_msg = 'dtable %s not found.' % table_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) table_path = normalize_file_path(table_file_name) table_file_id = seafile_api.get_file_id_by_path(repo_id, table_path) if not table_file_id: error_msg = 'file %s not found.' % table_file_name return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username if not check_dtable_permission(username, workspace, dtable): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # main user_list = list() try: email_list = list_dtable_related_users(workspace, dtable) for email in email_list: user_info = get_user_common_info(email) user_list.append(user_info) except Exception as e: logger.error(e) return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, 'Internal Server Error') return Response({'user_list': user_list}) ``` #### File: management/commands/send_file_updates.py ```python from datetime import datetime import logging import os import re from django.core.management.base import BaseCommand from django.core.urlresolvers import reverse from django.utils.html import escape as e from django.utils import translation from django.utils.translation import ugettext as _ from seahub.avatar.templatetags.avatar_tags import avatar from seahub.avatar.util import get_default_avatar_url from seahub.base.templatetags.seahub_tags import email2nickname from seahub.constants import HASH_URLS from seahub.options.models import ( UserOptions, KEY_FILE_UPDATES_EMAIL_INTERVAL, KEY_FILE_UPDATES_LAST_EMAILED_TIME ) from seahub.profile.models import Profile from seahub.utils import (get_site_name, seafevents_api, send_html_email, get_site_scheme_and_netloc) from seahub.utils.timeutils import utc_to_local # Get an instance of a logger logger = logging.getLogger(__name__) ########## Utility Functions ########## def td(con): return con # return '<td>%s</td>' % con def a_tag(con, href='#', style=''): return '<a href="%s" style="%s">%s</a>' % (href, style, e(con)) def repo_url(repo_id, repo_name): p = reverse('lib_view', args=[repo_id, repo_name, '']) return get_site_scheme_and_netloc() + p def file_url(repo_id, file_path): p = reverse('view_lib_file', args=[repo_id, file_path]) return get_site_scheme_and_netloc() + p def dir_url(repo_id, repo_name, dir_path): p = reverse('lib_view', args=[repo_id, repo_name, dir_path.strip('/')]) return get_site_scheme_and_netloc() + p def user_info_url(username): p = reverse('user_profile', args=[username]) return get_site_scheme_and_netloc() + p ####################################### class Command(BaseCommand): help = 'Send Email notifications to user if he/she has ' 'file updates notices every period of seconds .' label = "notifications_send_file_updates" def handle(self, *args, **options): logger.debug('Start sending file updates emails...') self.do_action() logger.debug('Finish sending file updates emails.\n') def get_avatar(self, username, default_size=32): img_tag = avatar(username, default_size) pattern = r'src="(.*)"' repl = r'src="%s\1"' % get_site_scheme_and_netloc() return re.sub(pattern, repl, img_tag) def get_avatar_src(self, username, default_size=32): avatar_img = self.get_avatar(username, default_size) m = re.search('<img src="(.*?)".*', avatar_img) if m: return m.group(1) else: return '' def get_default_avatar(self, default_size=32): # user default avatar img_tag = """<img src="%s" width="%s" height="%s" class="avatar" alt="" />""" % \ (get_default_avatar_url(), default_size, default_size) pattern = r'src="(.*)"' repl = r'src="%s\1"' % get_site_scheme_and_netloc() return re.sub(pattern, repl, img_tag) def get_default_avatar_src(self, default_size=32): avatar_img = self.get_default_avatar(default_size) m = re.search('<img src="(.*?)".*', avatar_img) if m: return m.group(1) else: return '' def get_user_language(self, username): return Profile.objects.get_user_language(username) def format_file_operation(self, ev): lib_link = a_tag(ev.repo_name, repo_url(ev.repo_id, ev.repo_name)) small_lib_link = a_tag(ev.repo_name, repo_url(ev.repo_id, ev.repo_name), 'color:#868e96;font-size:87.5%;') if ev.obj_type == 'repo': if ev.op_type == 'create': op = _('Created library') details = td(lib_link) elif ev.op_type == 'rename': op = _('Renamed library') details = td('%s => %s' % (e(ev.old_repo_name), lib_link)) elif ev.op_type == 'delete': op = _('Deleted library') details = td(e(ev.repo_name)) elif ev.op_type == 'recover': op = _('Restored library') details = td(lib_link) else: # ev.op_type == 'clean-up-trash': if ev.days == 0: op = _('Removed all items from trash.') else: op = _('Removed items older than %s days from trash.' % ev.days) details = td(lib_link) elif ev.obj_type == 'file': file_name = os.path.basename(ev.path) file_link = a_tag(file_name, file_url(ev.repo_id, ev.path)) if ev.op_type == 'create': op = _('Created file') details = td("%s<br />%s" % (file_link, small_lib_link)) elif ev.op_type == 'delete': op = _('Deleted file') details = td("%s<br />%s" % (e(file_name), small_lib_link)) elif ev.op_type == 'recover': op = _('Restored file') details = td("%s<br />%s" % (file_link, small_lib_link)) elif ev.op_type == 'rename': op = _('Renamed file') old_name = os.path.basename(ev.old_path) details = td("%s => %s<br />%s" % ( e(old_name), file_link, small_lib_link) ) elif ev.op_type == 'move': op = _('Moved file') file_path_link = a_tag(ev.path, file_url(ev.repo_id, ev.path)) details = td('%s => %s<br />%s' % ( e(ev.old_path), file_path_link, small_lib_link) ) else: # ev.op_type == 'edit': op = _('Updated file') details = td("%s<br />%s" % (file_link, small_lib_link)) else: # dir dir_name = os.path.basename(ev.path) dir_link = a_tag(dir_name, dir_url(ev.repo_id, ev.repo_name, ev.path)) if ev.op_type == 'create': op = _('Created folder') details = td('%s<br />%s' % (dir_link, small_lib_link)) elif ev.op_type == 'delete': op = _('Deleted folder') details = td('%s<br />%s' % (e(dir_name), small_lib_link)) elif ev.op_type == 'recover': op = _('Restored folder') details = td('%s<br />%s' % (dir_link, small_lib_link)) elif ev.op_type == 'rename': op = _('Renamed folder') old_name = os.path.basename(ev.old_path) details = td('%s => %s<br />%s' % (e(old_name), dir_link, small_lib_link)) else: # ev.op_type == 'move': op = _('Moved folder') details = td('%s => %s<br />%s' % (e(ev.old_path), dir_link, small_lib_link)) return (op, details) def do_action(self): today = datetime.utcnow().replace(hour=0).replace(minute=0).replace( second=0).replace(microsecond=0) emails = [] user_file_updates_email_intervals = [] for ele in UserOptions.objects.filter( option_key=KEY_FILE_UPDATES_EMAIL_INTERVAL): try: user_file_updates_email_intervals.append( (ele.email, int(ele.option_val)) ) emails.append(ele.email) except Exception as e: logger.error(e) continue user_last_emailed_time_dict = {} for ele in UserOptions.objects.filter( option_key=KEY_FILE_UPDATES_LAST_EMAILED_TIME).filter( email__in=emails): try: user_last_emailed_time_dict[ele.email] = datetime.strptime( ele.option_val, "%Y-%m-%d %H:%M:%S") except Exception as e: logger.error(e) continue for (username, interval_val) in user_file_updates_email_intervals: # save current language cur_language = translation.get_language() # get and active user language user_language = self.get_user_language(username) translation.activate(user_language) logger.debug('Set language code to %s for user: %s' % ( user_language, username)) self.stdout.write('[%s] Set language code to %s' % ( str(datetime.now()), user_language)) # get last_emailed_time if any, defaults to today last_emailed_time = user_last_emailed_time_dict.get(username, today) now = datetime.utcnow().replace(microsecond=0) if (now - last_emailed_time).seconds < interval_val: continue # get file updates(from: last_emailed_time, to: now) for repos # user can access res = seafevents_api.get_user_activities_by_timestamp( username, last_emailed_time, now) if not res: continue # remove my activities res = [x for x in res if x.op_user != username] if not res: continue # format mail content & send file updates email to user try: for ele in res: ele.user_avatar = self.get_avatar_src(ele.op_user) ele.local_timestamp = utc_to_local(ele.timestamp) ele.op_user_link = a_tag(email2nickname(ele.op_user), user_info_url(ele.op_user)) ele.operation, ele.op_details = self.format_file_operation(ele) except Exception as e: logger.error('Failed to format mail content for user: %s' % username) logger.error(e, exc_info=True) continue nickname = email2nickname(username) contact_email = Profile.objects.get_contact_email_by_user(username) c = { 'name': nickname, 'updates_count': len(res), 'updates': res, } try: send_html_email(_('New file updates on %s') % get_site_name(), 'notifications/file_updates_email.html', c, None, [contact_email]) # set new last_emailed_time UserOptions.objects.set_file_updates_last_emailed_time( username, now) except Exception as e: logger.error('Failed to send email to %s, error detail: %s' % (contact_email, e)) self.stderr.write('[%s] Failed to send email to %s, error ' 'detail: %s' % (str(now), contact_email, e)) finally: # reset lang translation.activate(cur_language) ``` #### File: api/endpoints/test_dtable_api_token.py ```python import json from django.core.urlresolvers import reverse from seaserv import seafile_api, ccnet_api from tests.common.utils import randstring from seahub.dtable.models import Workspaces from seahub.test_utils import BaseTestCase from seahub.group.utils import is_group_admin_or_owner class DTableAPITokensTest(BaseTestCase): def setUp(self): # create workspace self.workspace = Workspaces.objects.create_workspace( self.user.username, self.repo.id ) self.group_id = self.group.id self.login_as(self.user) # create dtable self.dtable_url = reverse('api-v2.1-dtables') resp = self.client.post(self.dtable_url, {'name': 'table6', 'owner': self.user.username}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp["table"]["name"] == 'table6' # url self.api_tokens_url = reverse('api-v2.1-dtable-api-tokens', args=[self.workspace.id, 'table6']) def tearDown(self): assert len(Workspaces.objects.all()) == 1 workspace = Workspaces.objects.get_workspace_by_owner(self.user.username) workspace_id = workspace.id Workspaces.objects.delete_workspace(workspace_id) self.remove_repo() def test_can_create(self): resp = self.client.post(self.api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['api_token'] assert json_resp['app_name'] == 'mail_client' assert json_resp['api_token'] assert json_resp['generated_by'] == self.user.username assert json_resp['generated_at'] assert json_resp['last_access'] assert json_resp['permission'] == 'rw' def test_can_not_create_by_not_owner(self): self.logout() self.login_as(self.admin) resp = self.client.post(self.api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(403, resp.status_code) def test_can_create_by_group_admin(self): repo = seafile_api.get_repo(self.create_repo( name='group-repo', desc='', username=self.user.username, passwd=None)) workspace = Workspaces.objects.create_workspace( str(self.group_id) + '@seafile_group', repo.id) # create dtable self.dtable_url = reverse('api-v2.1-dtables') resp = self.client.post(self.dtable_url, {'name': 'table11', 'owner': str(self.group_id) + '@seafile_group'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp["table"]["name"] == 'table11' # main self.logout() self.add_admin_to_group() ccnet_api.group_set_admin(self.group_id, self.admin.username) assert is_group_admin_or_owner(self.group_id, self.admin.username) self.login_as(self.admin) api_tokens_url = reverse('api-v2.1-dtable-api-tokens', args=[workspace.id, 'table11']) resp = self.client.post(api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['api_token'] assert json_resp['app_name'] == 'mail_client' assert json_resp['api_token'] assert json_resp['generated_by'] == self.admin.username assert json_resp['generated_at'] assert json_resp['last_access'] assert json_resp['permission'] == 'rw' Workspaces.objects.delete_workspace(workspace.id) self.remove_repo(repo.id) def test_can_not_create_by_group_member(self): repo = seafile_api.get_repo(self.create_repo( name='group-repo', desc='', username=self.user.username, passwd=None)) workspace = Workspaces.objects.create_workspace( str(self.group_id) + '@seafile_group', repo.id) # create dtable self.dtable_url = reverse('api-v2.1-dtables') resp = self.client.post(self.dtable_url, {'name': 'table11', 'owner': str(self.group_id) + '@seafile_group'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp["table"]["name"] == 'table11' # main self.logout() self.add_admin_to_group() self.login_as(self.admin) api_tokens_url = reverse('api-v2.1-dtable-api-tokens', args=[workspace.id, 'table11']) resp = self.client.post(api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(403, resp.status_code) Workspaces.objects.delete_workspace(workspace.id) self.remove_repo(repo.id) def test_can_list(self): # create resp = self.client.post(self.api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['api_token'] assert json_resp['app_name'] == 'mail_client' assert json_resp['api_token'] assert json_resp['generated_by'] == self.user.username assert json_resp['generated_at'] assert json_resp['last_access'] assert json_resp['permission'] == 'rw' # list resp = self.client.get(self.api_tokens_url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['api_tokens'] assert json_resp['api_tokens'][0] assert json_resp['api_tokens'][0]['app_name'] == 'mail_client' assert json_resp['api_tokens'][0]['api_token'] assert json_resp['api_tokens'][0]['generated_by'] == self.user.username assert json_resp['api_tokens'][0]['generated_at'] assert json_resp['api_tokens'][0]['last_access'] assert json_resp['api_tokens'][0]['permission'] == 'rw' class DTableAPITokenTest(BaseTestCase): def setUp(self): # create workspace self.workspace = Workspaces.objects.create_workspace( self.user.username, self.repo.id ) self.group_id = self.group.id self.login_as(self.user) # create dtable self.dtable_url = reverse('api-v2.1-dtables') resp = self.client.post(self.dtable_url, {'name': 'table8', 'owner': self.user.username}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp["table"]["name"] == 'table8' self.api_tokens_url = reverse('api-v2.1-dtable-api-tokens', args=[self.workspace.id, 'table8']) # create api token resp = self.client.post(self.api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['api_token'] assert json_resp['app_name'] == 'mail_client' assert json_resp['api_token'] assert json_resp['generated_by'] == self.user.username assert json_resp['generated_at'] assert json_resp['last_access'] assert json_resp['permission'] == 'rw' self.api_token = json_resp['api_token'] self.app_name = json_resp['app_name'] # url self.api_token_url = reverse('api-v2.1-dtable-api-token', args=[self.workspace.id, 'table8', self.app_name]) def tearDown(self): assert len(Workspaces.objects.all()) == 1 workspace = Workspaces.objects.get_workspace_by_owner(self.user.username) workspace_id = workspace.id Workspaces.objects.delete_workspace(workspace_id) self.remove_repo() def test_can_delete(self): resp = self.client.delete(self.api_token_url) self.assertEqual(200, resp.status_code) def test_can_not_delete_by_not_owner(self): self.logout() self.login_as(self.admin) resp = self.client.delete(self.api_token_url) self.assertEqual(403, resp.status_code) def test_can_put(self): data = 'permission=r' resp = self.client.put(self.api_token_url, data, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) def test_can_not_put_by_not_owner(self): self.logout() self.login_as(self.admin) data = 'permission=r' resp = self.client.put(self.api_token_url, data, 'application/x-www-form-urlencoded') self.assertEqual(403, resp.status_code) def test_can_not_put_by_exist_permission(self): data = 'permission=rw' resp = self.client.put(self.api_token_url, data, 'application/x-www-form-urlencoded') self.assertEqual(400, resp.status_code) def test_can_not_put_by_invalid_permission(self): data = 'permission=z' resp = self.client.put(self.api_token_url, data, 'application/x-www-form-urlencoded') self.assertEqual(400, resp.status_code) class DTableAppAccessTokenTest(BaseTestCase): def setUp(self): # create workspace self.workspace = Workspaces.objects.create_workspace( self.user.username, self.repo.id ) self.group_id = self.group.id self.login_as(self.user) # create dtable self.dtable_url = reverse('api-v2.1-dtables') resp = self.client.post(self.dtable_url, {'name': 'table9', 'owner': self.user.username}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp["table"]["name"] == 'table9' self.api_tokens_url = reverse('api-v2.1-dtable-api-tokens', args=[self.workspace.id, 'table9']) # create api token resp = self.client.post(self.api_tokens_url, {'app_name': 'mail_client', 'permission': 'rw'}) self.assertEqual(201, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['api_token'] assert json_resp['app_name'] == 'mail_client' assert json_resp['api_token'] assert json_resp['generated_by'] == self.user.username assert json_resp['generated_at'] assert json_resp['last_access'] assert json_resp['permission'] == 'rw' self.api_token = json_resp['api_token'] # url self.app_access_token_url = reverse( 'api-v2.1-dtable-app-access-token', args=[self.workspace.id, 'table9']) def tearDown(self): assert len(Workspaces.objects.all()) == 1 workspace = Workspaces.objects.get_workspace_by_owner(self.user.username) workspace_id = workspace.id Workspaces.objects.delete_workspace(workspace_id) self.remove_repo() def test_can_get_app_access_token_by_api_token(self): self.logout() headers = {'HTTP_AUTHORIZATION': 'Token ' + str(self.api_token)} resp = self.client.get(self.app_access_token_url, **headers) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['access_token'] assert json_resp['dtable_uuid'] def test_can_not_get_app_access_token_by_invalid_api_token(self): self.logout() headers = {'HTTP_AUTHORIZATION': 'Token ' + str(self.api_token[:-5] + randstring(5))} resp = self.client.get(self.app_access_token_url, **headers) self.assertEqual(404, resp.status_code) ```
{ "source": "JimHafner/GovLens", "score": 3 }
#### File: management/commands/create_scraper_user.py ```python from django.core.management.base import BaseCommand from django.contrib.auth.models import User from rest_framework.authtoken.models import Token SCRAPER_USERNAME = "scraper" class Command(BaseCommand): help = "Get or create a scraper user with a Django REST Framework token" def add_arguments(self, parser): pass def handle(self, *args, **options): user, created = User.objects.get_or_create(username=SCRAPER_USERNAME) user.save() if created: self.stdout.write(f"Created new user with username {SCRAPER_USERNAME}") else: self.stdout.write(f"User {SCRAPER_USERNAME} already exists.") token, created = Token.objects.get_or_create(user=user) self.stdout.write(f"The token for the user {SCRAPER_USERNAME} is {token}") ```
{ "source": "JimHagan/apm-report", "score": 2 }
#### File: JimHagan/apm-report/apm-report.py ```python import os import csv from python_graphql_client import GraphqlClient FORMATTED_CSV_ORDER = [ 'Tribe', 'Squad', 'squad', 'name', 'reporting', 'language', 'Environment', 'Application', 'applicationId', 'Cost-Center', 'feature', 'Location', 'accountid', 'Service', 'trustedAccountId', 'feature', 'account', 'squad', 'Alerting', 'Contact', 'guid', 'accountId', 'permalink', 'has_traces', 'apmSummary_apdexScore', 'apmSummary_errorRate', 'apmSummary_hostCount', 'apmSummary_instanceCount', 'apmSummary_nonWebThroughput', 'apmSummary_Throughput', 'apmSummary_webThroughput', ] def get_trace_app_index(): # This file was generated by the following query: # FROM TransactionTrace select count(*) facet applicationIds since 3 days ago limit max # with open('traces_by_app.csv', 'r') as f: app_index = set() reader = csv.DictReader(f) for row in reader: apps = (row['Application Ids']).split(":") for app in apps: if app: app_index.add(int(app)) #print(app_index) return app_index def get_apm_metadata(): headers = {} headers['Api-Key'] = os.getenv('USER_API_KEY') headers['Content-Type'] = 'application/json' client = GraphqlClient(endpoint="https://api.newrelic.com/graphql") client.headers=headers query = """ { actor { entitySearch(queryBuilder: {domain: APM, type: APPLICATION, name: ""}) { results { entities { tags { key values } guid name reporting permalink accountId account { id name } ... on ApmApplicationEntityOutline { guid name apmSummary { apdexScore errorRate hostCount instanceCount nonWebResponseTimeAverage nonWebThroughput responseTimeAverage throughput webResponseTimeAverage webThroughput } applicationId } } } } } } """ _result = client.execute(query=query) return [data for data in _result['data']['actor']['entitySearch']['results']['entities']] apps_with_traces = get_trace_app_index() data = get_apm_metadata() key_set = set() apm_objects = [] for item in data: scrubbed = {} scrubbed['Tribe'] = 'UNKNOWN' scrubbed['reporting'] = False scrubbed['accountid'] = item['account']['id'] scrubbed['account'] = item['account']['name'] scrubbed['name'] = item['name'] scrubbed['applicationId'] = item['applicationId'] if item['applicationId'] in apps_with_traces: scrubbed['has_traces'] = True else: scrubbed['has_traces'] = False if (item['apmSummary']): scrubbed['apmSummary_apdexScore'] = item['apmSummary']['apdexScore'] scrubbed['apmSummary_errorRate'] = item['apmSummary']['errorRate'] scrubbed['apmSummary_hostCount'] = item['apmSummary']['hostCount'] scrubbed['apmSummary_instanceCount'] = item['apmSummary']['instanceCount'] scrubbed['apmSummary_nonWebThroughput'] = item['apmSummary']['nonWebThroughput'] scrubbed['apmSummary_Throughput'] = item['apmSummary']['throughput'] scrubbed['apmSummary_webThroughput'] = item['apmSummary']['webThroughput'] scrubbed['reporting'] = item['reporting'] scrubbed['permalink'] = item['permalink'] for tag in item['tags']: scrubbed[tag['key']] = tag['values'][0] for k in scrubbed.keys(): key_set.add(k) apm_objects.append(scrubbed) apm_objects.sort(key = lambda i: (i['Tribe'], i['reporting'])) with open('apm-report.csv', 'w') as f: w = csv.DictWriter(f, FORMATTED_CSV_ORDER, extrasaction='ignore') w.writeheader() w.writerows(apm_objects) ```
{ "source": "jim-hart/article-rate-limit-snippets", "score": 3 }
#### File: jim-hart/article-rate-limit-snippets/class_decorator.py ```python import functools import threading import time import timeit timer = timeit.default_timer class throttle: def __init__(self, limit): if callable(limit): self.wrapped = self._wrap(limit) self.limit = -1 else: self.wrapped = None self.limit = 1 / limit self.lock = threading.Lock() self.last = -1 def __call__(self, *args, **kwargs): if self.wrapped is None: self.wrapped = self._wrap(args[0]) return self else: return self._wait(*args, **kwargs) def __get__(self, instance, owner): return functools.partial(self, instance) def _wait(self, *args, **kwargs): with self.lock: elapsed = timer() - self.last if elapsed < self.limit: print(f'\twaiting {self.limit - elapsed:.3f}s') time.sleep(self.limit - elapsed) else: print(f'\tthrottle not required') self.last = timer() return self.wrapped(*args, **kwargs) def _wrap(self, func): functools.update_wrapper(self, func) return func ``` #### File: jim-hart/article-rate-limit-snippets/example.py ```python import threading import time from class_decorator_with_inheritance import throttle class Example: @throttle(limit=2) def do_work(self): pass @throttle(limit=5) def do_work(): pass @throttle # disabled def do_fast_work(): pass def run_example(label, target, times, limit): print(f'--- running: {label}, limit: {limit}/s ---') time.sleep(1) threads = [] for _ in range(times): thread = threading.Thread(target=target) thread.start() threads.append(thread) for thread in threads: thread.join() print() if __name__ == '__main__': example = Example() run_example('method@do_work', target=example.do_work, times=5, limit=2) run_example('function@do_work', target=do_work, times=5, limit=5) run_example( 'function@do_fast_work', target=do_fast_work, times=5, limit='inf') ```
{ "source": "jim-hart/steam-id-discord-bot", "score": 2 }
#### File: steam-id-discord-bot/steam_id_discord_bot/__main__.py ```python from decouple import config from discord.ext import commands from join_code import JoinCode def main(): bot = commands.Bot(command_prefix='!') bot.add_cog(JoinCode(bot)) bot.run(config('CLIENT_TOKEN')) if __name__ == '__main__': main() ```
{ "source": "JimHaughwout/datetimestats", "score": 3 }
#### File: datetimestats/datetimestats/datetimestats.py ```python import datetime as dt import pytz _OPER_ERR_MSG = """unsupported operand. datetimestat requires Iterable of datetime objects (all naive or all with tz). You passed: """ _LEN_ERR_MSG = """zero-length operand datetimestat requires Iterable of length greater than zero. You passed an empty iterable. """ _VAL_ERR_MSG = """unsupported value. datetimestat requires Iterable of datetime objects. Iterable contained: """ def validate_dt(candidate): """ .. py:function:: validate_dt(candidate) If candidate is a datetime object, return it. Otherwise raise a TypeError. :param object candidate: object to validate :return: candidate (if validated) :rtype: datetime.datetime :raises TypeError: if object is not of type datetime.datetime """ if not isinstance(candidate, dt.datetime): raise TypeError(_VAL_ERR_MSG + str(candidate)) else: return candidate def mean(dt_list): """ .. py:function:: mean(dt_list) Returns the mean datetime from an Iterable collection of datetime objects. Collection can be all naive datetime objects or all datatime objects with tz (if non-naive datetimes are provided, result will be cast to UTC). However, collection cannot be a mix of naive and non-naive datetimes. Can handle micro-second level datetime differences. Can handle Collection of datetime objects with different timezones. Works with lists or pandas.Series. :param collection.Iterable dt_list: Iterable list or Series of datetime objects :return: mean datetime :rtype: datetime.datetime :raises TypeError: if operand is not type Iterable or if operand contains naive and non-naive datetime objects or if result is not type datetime.datetime """ try: list_size = len(dt_list) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) if list_size == 1: mean_dt = dt_list[0] elif (list_size == 2) and (dt_list[0] == dt_list[1]): mean_dt = dt_list[0] else: try: if dt_list[0].tzinfo: base_dt = dt.datetime(1970, 1, 1, 0, 0, 0, tzinfo=pytz.utc) else: base_dt = dt.datetime(1970, 1, 1) delta_total = 0 for item in dt_list: delta_total += (item - base_dt).total_seconds() delta = delta_total / float(list_size) mean_dt = base_dt + dt.timedelta(seconds=delta) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) except IndexError: raise IndexError(_LEN_ERR_MSG) return validate_dt(mean_dt) def median(dt_list): """ .. py:function:: median(dt_list) Returns the median datetime from an Iterable collection of datetime objects. Collection can be all naive datetime objects or all datatime objects with tz. If non-naive datetimes are provided and list size is odd, result will be middle-most datetime (with whatever time zone is provided). If list size is even, result will be datetimestats.mean of two middle-most values (in UTC). However, collection cannot be a mix of naive and non-naive datetimes. Includes short-circuiting steps to speed computations on small collections. If Collection has even number of elements it will return the mean of inner two middle values. Can handle micro-second level datetime differences. Can handle Collection of datetime objects with different timezones. Works with lists or pandas.Series. :param collection.Iterable dt_list: Iterable list or Series of datetime objects :return: median datetime :rtype: datetime.datetime :raises TypeError: if operand is not type Iterable or if operand contains naive and non-naive datetime objects or if result is not type datetime.datetime """ try: sorted_dt_list = sorted(dt_list) list_size = len(sorted_dt_list) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) if list_size == 0: raise IndexError(_LEN_ERR_MSG) elif list_size == 1: median_dt = sorted_dt_list[0] elif list_size == 2: median_dt = mean(sorted_dt_list) elif list_size % 2: middle = list_size >> 1 median_dt = sorted_dt_list[middle] else: upper = list_size >> 1 lower = upper - 1 middle = [sorted_dt_list[lower], sorted_dt_list[upper]] median_dt = mean(middle) return validate_dt(median_dt) def min(dt_list): """ .. py:function:: min(dt_list) Returns the earliest datetime from an Iterable collection of datetime objects. Collection can be all naive datetime objects or all datatime objects with tz. However, collection cannot be a mix of naive and non-naive datetimes. Can handle micro-second level datetime differences. Can handle Collection of datetime objects with different timezones. Works with lists or pandas.Series. :param collection.Iterable dt_list: Iterable list or Series of datetime objects :return: min datetime :rtype: datetime.datetime :raises TypeError: if operand is not type Iterable or if operand contains naive and non-naive datetime objects or if result is not type datetime.datetime """ try: sorted_dt_list = sorted(dt_list) return validate_dt(sorted_dt_list[0]) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) def max(dt_list): """ .. py:function:: max(dt_list) Returns the latest datetime from an Iterable collection of datetime objects. Collection can be all naive datetime objects or all datatime objects with tz. However, collection cannot be a mix of naive and non-naive datetimes. Can handle micro-second level datetime differences. Can handle Collection of datetime objects with different timezones. Works with lists or pandas.Series. :param collection.Iterable dt_list: Iterable list or Series of datetime objects :return: min datetime :rtype: datetime.datetime :raises TypeError: if operand is not type Iterable or if operand contains naive and non-naive datetime objects or if result is not type datetime.datetime """ try: sorted_dt_list = sorted(dt_list) return validate_dt(sorted_dt_list[-1]) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) ```
{ "source": "JimHaughwout/geo_utils", "score": 3 }
#### File: JimHaughwout/geo_utils/geocode_addresses.py ```python from sys import argv, exit, exc_info from pygeocoder import Geocoder from time import sleep from csv import DictReader, DictWriter import getopt # INPUT SETTINGS - Infile Attributes # Set these to the requesite column names used in your input CSV # ST_NUM_KEY, POSTAL_KEY and COUNTRY_KEY are optional ST_NUM_KEY = None STREET_KEY = 'stp_address' CITY_KEY = 'cty_name' STATE_KEY = 'stp_state' POSTAL_KEY = 'stp_zipcode' COUNTRY_KEY = None def geocode_address(address="77 Massachusetts Avenue, Cambridge, MA"): """ Geocode an address query :param string address: the address you which to encode Result is class GeocoderResult with following useful properties: lat, lng = result.coordinates latitude = result.latitude longitude = result.longitude street_number = result.street_number street = result.route city/locality = result.city county = result.county neighborhood = result.neighborhood state = result.state province = result.province postal_code = result.postal_code country = result.country formatted_address = result.formatted_address valid_address is TRUE or FALSE :returns GeocoderResult result: Resulting pygeocoder object """ assert isinstance(address, str), "geocode_address TypeError: Did not pass a str: %s" % addr try: result = Geocoder.geocode(address) except: #Catch all extraneous exceptions and exit e = exc_info()[1] print "Geocoder %s for %s" % (e, address) result = None return result def process_address(addr): """ Processes an address dictionary: - Extracts address for geocoding based on INPUT SETTINGS - Geocodes it - Append the resulting geocoding features to the dict :param dict addr: address dictionary from CSV import :returns dict addr: original address dict appended with geocode features :returns boolean geocodeable: True=Geocodable address, False=Not """ assert isinstance(addr, dict), "process_address TypeError: Did not pass a valid dict: %s" % addr result = geocode_address(extract_address(addr)) if result == None: geocodeable = False else: geocodeable = result.valid_address addr['geocodable'] = geocodeable addr['g_latitude'] = result.latitude if geocodeable else None addr['g_longitude'] = result.longitude if geocodeable else None addr['g_street_num'] = result.street_number if geocodeable else None addr['g_street'] = result.route if geocodeable else None addr['g_city'] = result.city if geocodeable else None addr['g_county'] = result.county if geocodeable else None addr['g_neighborhood'] = result.neighborhood if geocodeable else None addr['g_state'] = result.state if geocodeable else None addr['g_province'] = result.province if geocodeable else None addr['g_postal_code'] = result.postal_code if geocodeable else None addr['g_country'] = result.country if geocodeable else None addr['g_formatted_address'] = result.formatted_address if geocodeable else None return addr, geocodeable def extract_address(csv_row): """ Build addres string for geocoding from CSV dict keys Exits with error if required fields are not present. :param dict csv_row: Imported CSV row as a dict (via csv.DictReader) :returns dict address: Resulting extracted 1-line address for CSV row """ assert isinstance(csv_row, dict), "extract_address TypeError: Did not pass a valid dict: %s" % csv_row try: address = "" if ST_NUM_KEY: address += "%s " % csv_row[ST_NUM_KEY] address += "%s, %s, %s" % (csv_row[STREET_KEY], csv_row[CITY_KEY], csv_row[STATE_KEY]) if POSTAL_KEY: address += " %s" % csv_row[POSTAL_KEY] if COUNTRY_KEY: address += ", %s" % csv_row[COUNTRY_KEY] except: e = exc_info()[1] exit("build_address Error: %s\nCould not build address from %s" % (e, csv_row)) return address def print_usage_and_exit(msg=None): """ Pretty print exit on error :param str msg: Message to append to show user. """ print "\nUsage: python %s [-s][-h]" % argv[0] print "\t-h Print usage help" print "\t-s Source CSV file - Required" if msg: print msg + "\n" exit(1) def parse_opts(argv): """ Parse opts, ensure we have required opts to determine mode, source, target. Checks if source file is a .csv. Generated outfile based on infile name. :param list argv: Arguments passed on Python invocation :returns str infile: CSV input filename :returns str outfile: Generated CSV output filename """ infile = None try: opts, args = getopt.getopt(argv, "hs:") if not opts: print_usage_and_exit('No options supplied') except getopt.GetoptError as e: print_usage_and_exit('Could not parse options: %s' % e) for opt, arg in opts: if opt == '-h': print_usage_and_exit() elif opt == '-s': infile = arg if not(infile): print_usage_and_exit('-s source_file not specified') elif infile[-4:] != '.csv': print_usage_and_exit('source_file is not a .csv file') else: outfile = infile[:-4] + '_geocoded.csv' return infile, outfile def main(argv): """ Main method. Reads in file based on INPUT SETTINGS Geocodes addresses and adds geocoder attributes to output Write alls to target csv and prints summary. """ infile, outfile = parse_opts(argv) # Build a list of processed addresses processed_list = list() address_count = 0 geocodeable_count = 0 try: with open(infile) as csv_infile: reader = DictReader(csv_infile) print "Importing from %s" % infile for csv_row in reader: sleep(0.2) # So we do not exceed 10 / second API limit print '.', addr_result, geocodeable = process_address(csv_row) processed_list.append(addr_result) address_count += 1 if geocodeable: geocodeable_count += 1 except IOError as e: print_usage_and_exit(("\nCould not open %r to read: %s" % (infile, e))) # Write results to file (original plus new geocoder attriutes) try: with open(outfile, 'wb') as csv_outfile: target = DictWriter(csv_outfile, processed_list[0].keys()) target.writeheader() target.writerows(processed_list) except IOError as e: print_usage_and_exit(("\nCould not open %r to write: %s" % (outfile, e))) geocode_rate = float(geocodeable_count) / float(address_count) * 100.0 print "\nImported %d records. %d (%.2f %%) were geocodeable." % (address_count, geocodeable_count, geocode_rate) print "Wrote results to %s." % outfile if __name__ == '__main__': main(argv[1:]) ```
{ "source": "JimHaughwout/roll_stats", "score": 4 }
#### File: JimHaughwout/roll_stats/roll_it.py ```python from random import randint from itertools import repeat """ Implementing parts of https://www.geeknative.com/61483/12-different-ways-roll-dnd-character/ """ def best_rolls(num_rolls, top=3, discard_ones=False, base=6, advantage=True): """ Returns sum of top number of specified roles for a given base """ rolls = list() for _ in repeat(None, num_rolls): if discard_ones: rolls.append(randint(2, base)) else: rolls.append(randint(1, base)) rolls.sort(reverse=advantage) return sum(rolls[:top]) def three_d6(count=6): """ Roll 3d6 and assign the totals to your attributes in any order you want """ stats = list() for _ in repeat(None, count): roll = best_rolls(num_rolls=3, top=3, discard_ones=False) stats.append(roll) stats.sort(reverse=True) return stats def four_d6_drop_worst(count=6): """ Roll 4d6, drop the lowest in each roll """ stats = list() for _ in repeat(None, count): roll = best_rolls(num_rolls=4, top=3, discard_ones=False) stats.append(roll) stats.sort(reverse=True) return stats def five_d6_drop_worst(count=6): """ Roll 3d6 and assign the totals to your attributes in any order you want """ stats = list() for _ in repeat(None, count): roll = best_rolls(num_rolls=5, top=3, discard_ones=False) stats.append(roll) stats.sort(reverse=True) return stats def four_d6_drop_worst_best_of_n(tries= 8, top=6): """ Roll 4d6, drop the lowest die in each roll and do it 8 times. Assign the best 6 totals to your attributes """ stats = list() for _ in repeat(None, tries): roll = best_rolls(num_rolls=4, top=3, discard_ones=False) stats.append(roll) stats.sort(reverse=True) return stats[:top] def four_d6_reroll_below_n(count=6, min_stat=8): """ Roll 4d6, drop the lowest die and re-roll any total that is below 8. """ stats = list() for _ in repeat(None, count): roll = min_stat - 1 while (roll < min_stat): roll = best_rolls(num_rolls=4, top=3, discard_ones=False) stats.append(roll) stats.sort(reverse=True) return stats def four_d6_replace_below_n(count=6, min_stat=8): """ Roll 4d6, drop the lowest die and re-roll any total that is below 8. """ stats = list() for _ in repeat(None, count): roll = best_rolls(num_rolls=4, top=3, discard_ones=False) stats.append(max(roll, min_stat)) stats.sort(reverse=True) return stats def reroll_if_no_stat_above_x(x=15): """ Roll 4d6, drop the lowest die but reroll the entire collection if no total is above 15. """ max_stat = 0 while (max_stat < x): stats = four_d6_drop_worst() max_stat = max(stats) return stats def reroll_if_total_below_x(x=70): """ Roll 4d6, drop the lowest die and reroll the lowest total until the cumulative total value is over 70 (or 75, etc) """ total = 0 while (total < x): stats = four_d6_drop_worst() total = sum(stats) return stats def four_d6_drop_worst_reroll_1s(count=6): """ Roll 4d6, reroll 1s and drop the lowest die """ stats = list() for _ in repeat(None, count): roll = best_rolls(num_rolls=4, top=3, discard_ones=True) stats.append(roll) stats.sort(reverse=True) return stats def four_d6_drop_worst_only_one_above_x(x=16, count=6): """ Roll 4d6s, drop the lowest and assign as required however only one stat can be 16 or higher. Note: This could iterate many times, but should be fast enough for humans """ stats = list() count_above_max = 0 while(count_above_max != 1): stats = four_d6_drop_worst() count_above_max = sum(i > x for i in stats) return stats def roll_2d6_plus6(count=6): """ Roll 2d6+6 and assign as required """ stats = list() for _ in repeat(None, count): stat = best_rolls(num_rolls=2, top=2, discard_ones=False, base=6) + 6 stats.append(stat) stats.sort(reverse=True) return stats ## Try and print all techniques print "3d6: \t\t\t\t", three_d6() print "4d6: \t\t\t\t", four_d6_drop_worst() print "5d6: \t\t\t\t", five_d6_drop_worst() print "2d6+6\t\t\t\t", roll_2d6_plus6() print "4d6 (6 of 8):\t\t\t", four_d6_drop_worst_best_of_n() print "4d6, reroll below 8:\t\t", four_d6_reroll_below_n() print "4d6, never below 8:\t\t", four_d6_replace_below_n() print "4d6, reroll if none > 15:\t", reroll_if_no_stat_above_x() print "4d6, reroll if total < 70:\t", reroll_if_total_below_x() print "4d6, reroll 1s:\t\t\t", four_d6_drop_worst_reroll_1s() print "4d6, only one can be > 16:\t", four_d6_drop_worst_only_one_above_x() ```
{ "source": "JimHaughwout/utils", "score": 4 }
#### File: JimHaughwout/utils/csv_io.py ```python import csv import json """ CSV I/O. Reads in CSV, converts rows and writes out Uses a generator pattern for memory efficiency """ INFILE = 'foo.csv' OUTFILE = 'bar.csv' def isodate_it(x): """ Excel dumps all date times to CSV in crappy m/d/y H:M format. This parses this Excel format into an ISO-8601 datetime in UTC """ try: dt, ts = x.split() m, d, y = dt.split('/') H, M = ts.split(':') x_prime = "%s-%s-%s %s:%s:00.000" % (y.zfill(2), m.zfill(2), d.zfill(2), H.zfill(2), M.zfill(2)) y = datetime.datetime.strptime(x_prime, "%y-%m-%d %H:%M:%S.%f").strftime("%Y-%m-%dT%H:%M:%S.000Z") return y except: print_usage_and_exit("Could not convert to ISO date:\n%r\n\n" % x) def covert(row): row['ts'] = isodate_it(row['ts']) return row row_cnt = 1 with open(OUTFILE, 'wb') as target: writer = csv.writer(target) with open(INFILE, 'r') as source: data = csv.DictReader(source) for row in data: if row_cnt > 1: writer.writerow(row.values()) else: writer.writerow(row.keys()) writer.writerow(row.values()) row_cnt += 1 ```
{ "source": "jimhester/arrow", "score": 3 }
#### File: pyarrow/tests/pandas_examples.py ```python from collections import OrderedDict import numpy as np import pandas as pd import pyarrow as pa def dataframe_with_arrays(): """ Dataframe with numpy arrays columns of every possible primtive type. Returns ------- df: pandas.DataFrame schema: pyarrow.Schema Arrow schema definition that is in line with the constructed df. """ dtypes = [('i1', pa.int8()), ('i2', pa.int16()), ('i4', pa.int32()), ('i8', pa.int64()), ('u1', pa.uint8()), ('u2', pa.uint16()), ('u4', pa.uint32()), ('u8', pa.uint64()), ('f4', pa.float32()), ('f8', pa.float64())] arrays = OrderedDict() fields = [] for dtype, arrow_dtype in dtypes: fields.append(pa.field(dtype, pa.list_(arrow_dtype))) arrays[dtype] = [ np.arange(10, dtype=dtype), np.arange(5, dtype=dtype), None, np.arange(1, dtype=dtype) ] fields.append(pa.field('str', pa.list_(pa.string()))) arrays['str'] = [ np.array([u"1", u"ä"], dtype="object"), None, np.array([u"1"], dtype="object"), np.array([u"1", u"2", u"3"], dtype="object") ] fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms')))) arrays['datetime64'] = [ np.array(['2007-07-13T01:23:34.123456789', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ms]'), None, None, np.array(['2007-07-13T02', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ms]'), ] df = pd.DataFrame(arrays) schema = pa.Schema.from_fields(fields) return df, schema def dataframe_with_lists(): """ Dataframe with list columns of every possible primtive type. Returns ------- df: pandas.DataFrame schema: pyarrow.Schema Arrow schema definition that is in line with the constructed df. """ arrays = OrderedDict() fields = [] fields.append(pa.field('int64', pa.list_(pa.int64()))) arrays['int64'] = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4], None, [0] ] fields.append(pa.field('double', pa.list_(pa.float64()))) arrays['double'] = [ [0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.], None, [0.] ] fields.append(pa.field('str_list', pa.list_(pa.string()))) arrays['str_list'] = [ [u"1", u"ä"], None, [u"1"], [u"1", u"2", u"3"] ] df = pd.DataFrame(arrays) schema = pa.Schema.from_fields(fields) return df, schema ``` #### File: pyarrow/tests/test_array.py ```python import pytest import sys import numpy as np import pandas as pd import pandas.util.testing as tm import pyarrow as pa import pyarrow.formatting as fmt def test_total_bytes_allocated(): assert pa.total_allocated_bytes() == 0 def test_repr_on_pre_init_array(): arr = pa.Array() assert len(repr(arr)) > 0 def test_getitem_NA(): arr = pa.from_pylist([1, None, 2]) assert arr[1] is pa.NA def test_list_format(): arr = pa.from_pylist([[1], None, [2, 3, None]]) result = fmt.array_format(arr) expected = """\ [ [1], NA, [2, 3, NA] ]""" assert result == expected def test_string_format(): arr = pa.from_pylist(['', None, 'foo']) result = fmt.array_format(arr) expected = """\ [ '', NA, 'foo' ]""" assert result == expected def test_long_array_format(): arr = pa.from_pylist(range(100)) result = fmt.array_format(arr, window=2) expected = """\ [ 0, 1, ... 98, 99 ]""" assert result == expected def test_to_pandas_zero_copy(): import gc arr = pa.from_pylist(range(10)) for i in range(10): np_arr = arr.to_pandas() assert sys.getrefcount(np_arr) == 2 np_arr = None # noqa assert sys.getrefcount(arr) == 2 for i in range(10): arr = pa.from_pylist(range(10)) np_arr = arr.to_pandas() arr = None gc.collect() # Ensure base is still valid # Because of py.test's assert inspection magic, if you put getrefcount # on the line being examined, it will be 1 higher than you expect base_refcount = sys.getrefcount(np_arr.base) assert base_refcount == 2 np_arr.sum() def test_array_slice(): arr = pa.from_pylist(range(10)) sliced = arr.slice(2) expected = pa.from_pylist(range(2, 10)) assert sliced.equals(expected) sliced2 = arr.slice(2, 4) expected2 = pa.from_pylist(range(2, 6)) assert sliced2.equals(expected2) # 0 offset assert arr.slice(0).equals(arr) # Slice past end of array assert len(arr.slice(len(arr))) == 0 with pytest.raises(IndexError): arr.slice(-1) # Test slice notation assert arr[2:].equals(arr.slice(2)) assert arr[2:5].equals(arr.slice(2, 3)) assert arr[-5:].equals(arr.slice(len(arr) - 5)) with pytest.raises(IndexError): arr[::-1] with pytest.raises(IndexError): arr[::2] def test_dictionary_from_numpy(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) mask = np.array([False, False, True, False, False, False]) d1 = pa.DictionaryArray.from_arrays(indices, dictionary) d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) for i in range(len(indices)): assert d1[i].as_py() == dictionary[indices[i]] if mask[i]: assert d2[i] is pa.NA else: assert d2[i].as_py() == dictionary[indices[i]] def test_dictionary_from_boxed_arrays(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) iarr = pa.Array.from_numpy(indices) darr = pa.Array.from_numpy(dictionary) d1 = pa.DictionaryArray.from_arrays(iarr, darr) for i in range(len(indices)): assert d1[i].as_py() == dictionary[indices[i]] def test_dictionary_with_pandas(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) mask = np.array([False, False, True, False, False, False]) d1 = pa.DictionaryArray.from_arrays(indices, dictionary) d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) pandas1 = d1.to_pandas() ex_pandas1 = pd.Categorical.from_codes(indices, categories=dictionary) tm.assert_series_equal(pd.Series(pandas1), pd.Series(ex_pandas1)) pandas2 = d2.to_pandas() ex_pandas2 = pd.Categorical.from_codes(np.where(mask, -1, indices), categories=dictionary) tm.assert_series_equal(pd.Series(pandas2), pd.Series(ex_pandas2)) ``` #### File: pyarrow/tests/test_schema.py ```python import pytest import pyarrow as pa import numpy as np # XXX: pyarrow.schema.schema masks the module on imports sch = pa._schema def test_type_integers(): dtypes = ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'] for name in dtypes: factory = getattr(pa, name) t = factory() assert str(t) == name def test_type_list(): value_type = pa.int32() list_type = pa.list_(value_type) assert str(list_type) == 'list<item: int32>' def test_type_string(): t = pa.string() assert str(t) == 'string' def test_type_timestamp_with_tz(): tz = 'America/Los_Angeles' t = pa.timestamp('ns', tz=tz) assert t.unit == 'ns' assert t.tz == tz def test_type_from_numpy_dtype_timestamps(): cases = [ (np.dtype('datetime64[s]'), pa.timestamp('s')), (np.dtype('datetime64[ms]'), pa.timestamp('ms')), (np.dtype('datetime64[us]'), pa.timestamp('us')), (np.dtype('datetime64[ns]'), pa.timestamp('ns')) ] for dt, pt in cases: result = sch.type_from_numpy_dtype(dt) assert result == pt def test_field(): t = pa.string() f = pa.field('foo', t) assert f.name == 'foo' assert f.nullable assert f.type is t assert repr(f) == "Field('foo', type=string)" f = pa.field('foo', t, False) assert not f.nullable def test_schema(): fields = [ pa.field('foo', pa.int32()), pa.field('bar', pa.string()), pa.field('baz', pa.list_(pa.int8())) ] sch = pa.schema(fields) assert len(sch) == 3 assert sch[0].name == 'foo' assert sch[0].type == fields[0].type assert sch.field_by_name('foo').name == 'foo' assert sch.field_by_name('foo').type == fields[0].type assert repr(sch) == """\ foo: int32 bar: string baz: list<item: int8>""" def test_field_empty(): f = pa.Field() with pytest.raises(ReferenceError): repr(f) def test_schema_equals(): fields = [ pa.field('foo', pa.int32()), pa.field('bar', pa.string()), pa.field('baz', pa.list_(pa.int8())) ] sch1 = pa.schema(fields) print(dir(sch1)) sch2 = pa.schema(fields) assert sch1.equals(sch2) del fields[-1] sch3 = pa.schema(fields) assert not sch1.equals(sch3) ```
{ "source": "jim-hill-r/BlueSteel", "score": 2 }
#### File: frontend/deploy/deployConfigure.py ```python from datetime import datetime from common import uploadDirectoryToS3 def deploy(): release = datetime.utcnow().isoformat() print ('Deploying configure release... ' + release) uploadDirectoryToS3('../src/configure/dist/pwa','eel3-app','configure/' + release,'us-east-2') print (release + ' successfully deployed.') if __name__ == '__main__': deploy() ``` #### File: infra/provision/s3.py ```python import json try: import boto3 except ImportError: print(f'Error: boto3 is required. Please install.') print(f'Try: pip install boto3') def provision(bucket, region): s3 = boto3.client('s3', region_name=region) print ('Creating app s3 bucket...') try: location = {'LocationConstraint': region} s3.create_bucket(Bucket=bucket,CreateBucketConfiguration=location) except: print('Exception: Probably already exists') #TODO: Check that this is already exists and ignore website_configuration = { 'ErrorDocument': {'Key': 'error.html'}, 'IndexDocument': {'Suffix': 'index.html'}, } policy = { 'Version': '2012-10-17', 'Statement': [{ 'Sid': 'AddPerm', 'Effect': 'Allow', 'Principal': '*', 'Action': ['s3:GetObject'], 'Resource': f'arn:aws:s3:::{bucket}/*' }] } # Convert the policy from JSON dict to string policy = json.dumps(policy) # Set the website configuration s3 = boto3.client('s3') s3.put_bucket_website(Bucket=bucket,WebsiteConfiguration=website_configuration) s3.put_bucket_policy(Bucket=bucket, Policy=policy) if __name__ == '__main__': provision('eel3-app','us-east-2') ```
{ "source": "jimhoekstra/machine-learning", "score": 2 }
#### File: machine_learning_jh/metrics/mse.py ```python import numpy as np def mse(y_true, y_pred): return np.mean((y_true - y_pred)**2) ```
{ "source": "jimholdaway/pythonista", "score": 3 }
#### File: pythonista/extensions/Web Image.py ```python import appex import photos import os import piexif from PIL import Image def main(): """ Script for iOS share extensions in Photos app to remove EXIF data from image when shared. Original image is preserved. Image with no EXIF is saved as JPEG to camera roll with creation date and time as filename. Requires piexif. Add piexif to the site_packages_3 folder or use stash to use pip """ if not appex.is_running_extension(): print("This extension is designed to work with iOS share functionality, select and share photos from the Photos app") else: img = appex.get_image(image_type="pil") if img: if "exif" in img.info: exif_dict = piexif.load(img.info["exif"]) if piexif.ImageIFD.Orientation in exif_dict["0th"]: orientation = exif_dict["0th"][piexif.ImageIFD.Orientation] if piexif.ExifIFD.DateTimeOriginal in exif_dict["Exif"]: date_time = exif_dict["Exif"][piexif.ExifIFD.DateTimeOriginal] path = date_time.decode("utf-8").replace(' ', '') path = path.replace(':', '') path = f"{path}.jpg" else: path = "web_image.jpg" print('No EXIF data') if orientation == 2: img = img.transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 3: img = img.rotate(180) elif orientation == 4: img = img.rotate(180).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 5: img = img.rotate(-90, expand=True).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 6: img = img.rotate(-90, expand=True) elif orientation == 7: img = img.rotate(90, expand=True).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 8: img = img.rotate(90, expand=True) img.save(path, quality = 95) photos.create_image_asset(path) os.remove(path) else: print('No input image found') if __name__ == '__main__': main() ``` #### File: scripts/jpg_exif_remove/jpg_exif_remove.py ```python import sys import argparse import os import piexif from PIL import Image def jpg_exif_remove(args): """ Removes EXIF data from directory of jpeg images whilst preserving image orientation and quality. Parameters ---------- in_dir: string, directory containing jpgs to have EXIF removed, default 'images' out_dir: string, destination directory of cleaned jpgs, default 'images_cleaned' abs_path: boolean, if True in_dir and out_dir must be full absolute paths """ # Set args in_dir = args.in_dir out_dir = args.out_dir abs_path = args.abs_path # Set paths according to arg boolean if (abs_path == True): in_path = in_dir out_path = out_dir elif (abs_path == False): in_path = os.getcwd() + "/" + in_dir + "/" out_path = os.getcwd() + "/" + out_dir + "/" else: print("Option 'abs_path' must be boolean") # Check if output path exists, create if not try: if not os.path.exists(os.path.dirname(out_path)): os.makedirs(os.path.dirname(out_path)) except OSError as e: if e.errno != errno.EEXIST: raise # Loop through files in input path directory for filename in os.listdir(in_path): img = Image.open(in_path + filename) # Check if image has EXIF data if "exif" in img.info: exif_dict = piexif.load(img.info["exif"]) # Check if EXIF data has orientation entry if piexif.ImageIFD.Orientation in exif_dict["0th"]: orientation = exif_dict["0th"].pop(piexif.ImageIFD.Orientation) # Rotate according to orientation entry if orientation == 2: img = img.transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 3: img = img.rotate(180) elif orientation == 4: img = img.rotate(180).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 5: img = img.rotate(-90, expand=True).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 6: img = img.rotate(-90, expand=True) elif orientation == 7: img = img.rotate(90, expand=True).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 8: img = img.rotate(90, expand=True) # Save image without EXIF, with max useful quality, no subsampling img.save(out_path + filename, quality = 95, subsampling = 0) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Open JPEGs in a directory, removes EXIF data and saves to another directory. If default arguments are not used, ALL arguments must be set.") parser.add_argument("in_dir", nargs='?', type=str, default="images", help="Path to directory of images to have EXIF removed") parser.add_argument("out_dir", nargs='?', type=str, default="images_cleaned", help="Path of directory to save EXIF removed images too") parser.add_argument("abs_path", nargs='?', type=bool, default=False, help="Set to true is absolute path to be used") args = parser.parse_args() jpg_exif_remove(args) ```
{ "source": "Jim-Holmstroem/guildai", "score": 2 }
#### File: guild/commands/publish_impl.py ```python from __future__ import absolute_import from __future__ import division import os from guild import batch_util from guild import cli from guild import publish as publishlib from guild import util from . import runs_impl def publish(args, ctx=None): if args.files and args.all_files: cli.error("--files and --all-files cannot both be used") if args.refresh_index: _refresh_publish_index(args) else: _publish(args, ctx) _report_dir_size(args) def _publish(args, ctx): preview = "You are about to publish the following run(s) to %s:" % ( args.dest or publishlib.DEFAULT_DEST_HOME ) confirm = "Continue?" no_runs = "No runs to publish." def publish_f(runs, formatted): _publish_runs(runs, formatted, args) _refresh_publish_index(args, no_dest=True) def select_runs_f(args, ctx, default_runs_arg, force_deleted): runs = runs_impl.runs_op_selected(args, ctx, default_runs_arg, force_deleted) return [ run for run in runs if args.include_batch or not batch_util.is_batch(run) ] runs_impl.runs_op( args, ctx, False, preview, confirm, no_runs, publish_f, runs_impl.ALL_RUNS_ARG, True, select_runs_f, ) def _publish_runs(runs, formatted, args): if args.all_files: copy_files = publishlib.COPY_ALL_FILES elif args.files or args.include_links: copy_files = publishlib.COPY_DEFAULT_FILES else: copy_files = None for run, frun in zip(runs, formatted): cli.out( "Publishing [%s] %s... " % (frun["short_id"], frun["operation"]), nl=False ) frun["_run"] = run try: publishlib.publish_run( run, dest=args.dest, template=args.template, copy_files=copy_files, include_links=args.include_links, md5s=not args.no_md5, formatted_run=frun, ) except publishlib.PublishError as e: cli.error("error publishing run %s:\n%s" % (run.id, e)) else: dest = args.dest or publishlib.DEFAULT_DEST_HOME size = util.dir_size(os.path.join(dest, run.id)) cli.out("using %s" % util.format_bytes(size)) def _refresh_publish_index(args, no_dest=False): if no_dest: dest_suffix = "" else: dest_suffix = " in %s" % (args.dest or publishlib.DEFAULT_DEST_HOME) print("Refreshing runs index%s" % dest_suffix) publishlib.refresh_index(args.dest) def _report_dir_size(args): dest = args.dest or publishlib.DEFAULT_DEST_HOME size = util.dir_size(dest) cli.out("Published runs using %s" % util.format_bytes(size)) ``` #### File: guild/commands/watch_impl.py ```python from __future__ import absolute_import from __future__ import division import logging import os import re import sys import time import psutil from guild import cli from guild import run as runlib from guild import util from guild import var from . import remote_impl_support from . import runs_impl log = logging.getLogger("guild") def main(args, ctx): if args.pid: _check_non_pid_args(args) _watch_pid(args) elif args.remote: _watch_remote(args) elif args.run: run = runs_impl.one_run(args, ctx) _watch_run(run) else: _watch_default_running(args) def _check_non_pid_args(args): if args.run or args.ops or args.labels or args.unlabeled: cli.error("--pid may not be used with other options") def _watch_pid(args): run = _run_for_pid_arg(args.pid) _watch_run(run) def _run_for_pid_arg(pid): return util.find_apply( [ _run_for_job_pidfile, _run_for_pidfile, _run_for_pid, _handle_no_run_for_pid_arg, ], pid, ) def _run_for_job_pidfile(pid_arg): m = re.search(r"(.+)/\.guild/JOB$", pid_arg) if not m: return None run_dir = m.group(1) return runlib.for_dir(run_dir) def _run_for_pidfile(pid_arg): pid = _read_pid(pid_arg) if pid is None: return None return _run_for_pid(pid) def _read_pid(path): try: f = open(path, "r") except IOError as e: if e.errno != 2: raise return None else: raw = f.readline().strip() try: return int(raw) except ValueError: cli.error("pidfile %s does not contain a valid pid" % path) def _run_for_pid(pid): pid = _try_int(pid) if pid is None: return None for run_id, run_dir in var.iter_run_dirs(): run = runlib.Run(run_id, run_dir) if run.pid and (run.pid == pid or _parent_pid(run.pid) == pid): return run cli.error("cannot find run for pid %i" % pid) def _try_int(pid): try: return int(pid) except ValueError: return None def _parent_pid(pid): try: p = psutil.Process(pid) except psutil.NoSuchProcess: return None else: return p.parent().pid def _handle_no_run_for_pid_arg(pid_arg): # Assume pid_arg is a pidfile path. cli.error("%s does not exist" % pid_arg) def _watch_run(run): try: _tail(run) _print_run_status(run) except KeyboardInterrupt: _stopped_msg(run) def _stopped_msg(run): msg = "\nStopped watching %s" % run.id if run.pid and psutil.Process(run.pid).is_running(): msg += " (still running)" cli.out(msg) def _tail(run): if os.getenv("NO_WATCHING_MSG") != "1": cli.out("Watching run %s" % run.id, err=True) if run.pid is None: _print_output(run) return proc = psutil.Process(run.pid) output_path = run.guild_path("output") f = _wait_for_output(proc, output_path) if not f: return with f: while True: line = f.readline() if line: sys.stdout.write(line) sys.stdout.flush() elif proc.is_running(): time.sleep(0.1) else: break def _wait_for_output(proc, output_path): while proc.is_running(): f = _try_open(output_path) if f: return f time.sleep(1.0) return _try_open(output_path) def _print_output(run): output_path = run.guild_path("output") f = _try_open(output_path) if not f: return while True: line = f.readline() if not line: break sys.stdout.write(line) sys.stdout.flush() def _try_open(path): try: return open(path, "r") except (IOError, OSError) as e: if e.errno != 2: raise return None def _print_run_status(run): cli.out("Run %s stopped with a status of '%s'" % (run.id, run.status), err=True) def _watch_default_running(args): args.running = True runs = runs_impl.filtered_runs(args) if not runs: cli.error( "nothing to watch\n" "You can view the output of a specific run using " "'guild watch RUN'." ) _watch_run(runs[0]) def _watch_remote(args): try: remote_impl_support.watch_run(args) except KeyboardInterrupt: cli.out("\nStopped watching remote run") ``` #### File: guildai/guild/deps.py ```python from __future__ import absolute_import from __future__ import division import logging import os import re from guild import namespace from guild import resolver as resolverlib from guild import resource from guild import util log = logging.getLogger("guild") RESOURCE_TERM = r"[a-zA-Z0-9_\-\.]+" class DependencyError(Exception): pass class ResolutionContext(object): def __init__(self, target_dir, opdef, resource_config): self.target_dir = target_dir self.opdef = opdef self.resource_config = resource_config class Resource(object): def __init__(self, resdef, location, ctx): self.resdef = resdef self.location = location self.ctx = ctx self.config = self._init_resource_config() self.dependency = None def _init_resource_config(self): for name, config in self.ctx.resource_config.items(): if name in [self.resdef.fullname, self.resdef.name]: return config return None def resolve(self, unpack_dir=None): resolved_acc = [] for source in self.resdef.sources: paths = self.resolve_source(source, unpack_dir) resolved_acc.extend(paths) return resolved_acc def resolve_source(self, source, unpack_dir=None): resolver = resolverlib.for_resdef_source(source, self) if not resolver: raise DependencyError( "unsupported source '%s' in %s resource" % (source, self.resdef.name) ) try: source_paths = resolver.resolve(unpack_dir) except resolverlib.ResolutionError as e: msg = "could not resolve '%s' in %s resource: %s" % ( source, self.resdef.name, e, ) if source.help: msg += "\n%s" % source.help raise DependencyError(msg) except Exception as e: log.exception( "resolving required source '%s' in %s resource", source, self.resdef.name, ) raise DependencyError( "unexpected error resolving '%s' in %s resource: %r" % (source, self.resdef.name, e) ) else: for path in source_paths: self._link_to_source(path, source) return source_paths def _link_to_source(self, source_path, source): source_path = util.strip_trailing_sep(source_path) link = self._link_path(source_path, source) _symlink(source_path, link) def _link_path(self, source_path, source): basename = os.path.basename(source_path) res_path = self.resdef.path or "" if source.path: res_path = os.path.join(res_path, source.path) if os.path.isabs(res_path): raise DependencyError( "invalid path '%s' in %s resource (path must be relative)" % (res_path, self.resdef.name) ) if source.rename: basename = _rename_source(basename, source.rename) return os.path.join(self.ctx.target_dir, res_path, basename) def _rename_source(name, rename): for spec in rename: try: renamed = re.sub(spec.pattern, spec.repl, name) except Exception as e: raise DependencyError( "error renaming source %s (%r %r): %s" % (name, spec.pattern, spec.repl, e) ) else: if renamed != name: return renamed return name def _symlink(source_path, link): assert os.path.isabs(link), link if os.path.lexists(link) or os.path.exists(link): log.debug("%s already exists, skipping link", link) return util.ensure_dir(os.path.dirname(link)) log.debug("resolving source %s as link %s", source_path, link) rel_source_path = _rel_source_path(source_path, link) util.symlink(rel_source_path, link) def _rel_source_path(source, link): source_dir, source_name = os.path.split(source) real_link = util.realpath(link) link_dir = os.path.dirname(real_link) source_rel_dir = os.path.relpath(source_dir, link_dir) return os.path.join(source_rel_dir, source_name) class ResourceProxy(object): def __init__(self, dependency, name, config, ctx): self.dependency = dependency self.name = name self.config = config self.ctx = ctx def resolve(self): source_path = self.config # the only type of config supported if not os.path.exists(source_path): raise DependencyError( "could not resolve %s: %s does not exist" % (self.name, source_path) ) log.info("Using %s for %s resource", source_path, self.name) basename = os.path.basename(source_path) link = os.path.join(self.ctx.target_dir, basename) _symlink(source_path, link) return [source_path] def _dep_desc(dep): return "%s:%s" % (dep.opdef.modeldef.name, dep.opdef.name) def resolve(dependencies, ctx): resolved = {} for res in resources(dependencies, ctx): log.info("Resolving %s dependency", res.resdef.name) resolved_sources = res.resolve() log.debug("resolved sources for %s: %r", res.dependency, resolved_sources) if not resolved_sources: log.warning("Nothing resolved for %s dependency", res.resdef.name) resolved.setdefault(res.resdef.name, []).extend(resolved_sources) return resolved def resources(dependencies, ctx): flag_vals = util.resolve_all_refs(ctx.opdef.flag_values()) return [_dependency_resource(dep, flag_vals, ctx) for dep in dependencies] def _dependency_resource(dep, flag_vals, ctx): if dep.inline_resource: return _inline_resource(dep.inline_resource, ctx) spec = util.resolve_refs(dep.spec, flag_vals) try: res = util.find_apply( [_model_resource, _guildfile_resource, _packaged_resource], spec, ctx ) except DependencyError as e: if spec in ctx.resource_config: log.warning(str(e)) return ResourceProxy(dep, spec, ctx.resource_config[spec], ctx) raise if res: res.dependency = spec return res raise DependencyError( "invalid dependency '%s' in operation '%s'" % (spec, ctx.opdef.fullname) ) def _inline_resource(resdef, ctx): return Resource(resdef, resdef.modeldef.guildfile.dir, ctx) def _model_resource(spec, ctx): m = re.match(r"(%s)$" % RESOURCE_TERM, spec) if m is None: return None res_name = m.group(1) return _modeldef_resource(ctx.opdef.modeldef, res_name, ctx) def _modeldef_resource(modeldef, res_name, ctx): resdef = modeldef.get_resource(res_name) if resdef is None: raise DependencyError( "resource '%s' required by operation '%s' is not defined" % (res_name, ctx.opdef.fullname) ) return Resource(resdef, modeldef.guildfile.dir, ctx) def _guildfile_resource(spec, ctx): m = re.match(r"(%s):(%s)$" % (RESOURCE_TERM, RESOURCE_TERM), spec) if m is None: return None model_name = m.group(1) modeldef = ctx.opdef.guildfile.models.get(model_name) if modeldef is None: raise DependencyError( "model '%s' in resource '%s' required by operation " "'%s' is not defined" % (model_name, spec, ctx.opdef.fullname) ) res_name = m.group(2) return _modeldef_resource(modeldef, res_name, ctx) def _packaged_resource(spec, ctx): m = re.match(r"(%s)/(%s)$" % (RESOURCE_TERM, RESOURCE_TERM), spec) if m is None: return None pkg_name = m.group(1) res_name = m.group(2) try: resources = list(resource.for_name(res_name)) except LookupError: pass else: for res in resources: if namespace.apply_namespace(res.dist.project_name) == pkg_name: location = os.path.join( res.dist.location, res.dist.key.replace(".", os.path.sep) ) return Resource(res.resdef, location, ctx) raise DependencyError( "resource '%s' required by operation '%s' is not installed" % (spec, ctx.opdef.fullname) ) ``` #### File: guild/remotes/s3.py ```python from __future__ import absolute_import from __future__ import division import hashlib import itertools import logging import os import subprocess import sys import uuid from guild import click_util from guild import log as loglib from guild import remote as remotelib from guild import util from guild import var from guild.commands import runs_impl log = logging.getLogger("guild.remotes.s3") RUNS_PATH = ["runs"] DELETED_RUNS_PATH = ["trash", "runs"] class S3Remote(remotelib.Remote): def __init__(self, name, config): self.name = name self.bucket = config["bucket"] self.root = config.get("root", "/") self.region = config.get("region") self.env = _init_env(config.get("env")) self.local_sync_dir = lsd = self._local_sync_dir() self._runs_dir = os.path.join(lsd, *RUNS_PATH) self._deleted_runs_dir = os.path.join(lsd, *DELETED_RUNS_PATH) def _local_sync_dir(self): base_dir = var.remote_dir(self.name) uri_hash = hashlib.md5(self._s3_uri().encode()).hexdigest() return os.path.join(base_dir, "meta", uri_hash) def _s3_uri(self, *subpath): joined_path = _join_path(self.root, *subpath) return "s3://%s/%s" % (self.bucket, joined_path) def list_runs(self, verbose=False, **filters): self._sync_runs_meta() runs_dir = self._runs_dir_for_filters(**filters) if not os.path.exists(runs_dir): return args = click_util.Args(verbose=verbose, **filters) args.archive = runs_dir args.deleted = False args.remote = None args.json = False runs_impl.list_runs(args) def _runs_dir_for_filters(self, deleted, **_filters): if deleted: return self._deleted_runs_dir else: return self._runs_dir def _sync_runs_meta(self, force=False): log.info(loglib.dim("Synchronizing runs with %s"), self.name) if not force and self._meta_current(): return self._clear_local_meta_id() sync_args = [ self._s3_uri(), self.local_sync_dir, "--exclude", "*", "--include", "*/.guild/opref", "--include", "*/.guild/attrs/*", "--include", "*/.guild/LOCK*", "--include", "meta-id", "--delete", ] self._s3_cmd("sync", sync_args, to_stderr=True) def _meta_current(self): local_id = self._local_meta_id() if local_id is None: log.debug("local meta-id not found, meta not current") return False remote_id = self._remote_meta_id() log.debug("local meta-id: %s", local_id) log.debug("remote meta-id: %s", remote_id) return local_id == remote_id def _clear_local_meta_id(self): id_path = os.path.join(self.local_sync_dir, "meta-id") util.ensure_deleted(id_path) def _local_meta_id(self): id_path = os.path.join(self.local_sync_dir, "meta-id") return util.try_read(id_path, apply=str.strip) def _remote_meta_id(self): with util.TempFile("guild-s3-") as tmp: args = [ "--bucket", self.bucket, "--key", _join_path(self.root, "meta-id"), tmp.path, ] self._s3api_output("get-object", args) return open(tmp.path, "r").read().strip() def _s3api_output(self, name, args): cmd = [_aws_cmd()] if self.region: cmd.extend(["--region", self.region]) cmd.extend(["s3api", name] + args) log.debug("aws cmd: %r", cmd) try: return subprocess.check_output( cmd, env=self._cmd_env(), stderr=subprocess.STDOUT ) except subprocess.CalledProcessError as e: raise remotelib.RemoteProcessError.for_called_process_error(e) def _cmd_env(self): env = dict(os.environ) if self.env: env.update(self.env) return env def _s3_cmd(self, name, args, to_stderr=False): cmd = [_aws_cmd()] if self.region: cmd.extend(["--region", self.region]) cmd.extend(["s3", name] + args) log.debug("aws cmd: %r", cmd) try: _subprocess_call(cmd, to_stderr, self._cmd_env()) except subprocess.CalledProcessError as e: raise remotelib.RemoteProcessError.for_called_process_error(e) def filtered_runs(self, **filters): self._sync_runs_meta() args = click_util.Args(**filters) args.archive = self._runs_dir args.remote = None args.runs = [] return runs_impl.runs_for_args(args) def delete_runs(self, **opts): self._sync_runs_meta() args = click_util.Args(**opts) args.archive = self._runs_dir if args.permanent: preview = ( "WARNING: You are about to permanently delete " "the following runs on %s:" % self.name ) confirm = "Permanently delete these runs?" else: preview = "You are about to delete the following runs on %s:" % self.name confirm = "Delete these runs?" no_runs_help = "Nothing to delete." def delete_f(selected): self._delete_runs(selected, args.permanent) self._new_meta_id() self._sync_runs_meta(force=True) try: runs_impl.runs_op( args, None, False, preview, confirm, no_runs_help, delete_f, confirm_default=not args.permanent, ) except SystemExit as e: self._reraise_system_exit(e) def _reraise_system_exit(self, e, deleted=False): if not e.args[0]: raise e exit_code = e.args[1] msg = e.args[0].replace( "guild runs list", "guild runs list %s-r %s" % (deleted and "-d " or "", self.name), ) raise SystemExit(msg, exit_code) def _delete_runs(self, runs, permanent): for run in runs: run_uri = self._s3_uri(*(RUNS_PATH + [run.id])) if permanent: self._s3_rm(run_uri) else: deleted_uri = self._s3_uri(*(DELETED_RUNS_PATH + [run.id])) self._s3_mv(run_uri, deleted_uri) def _s3_rm(self, uri): rm_args = ["--recursive", uri] self._s3_cmd("rm", rm_args) def _s3_mv(self, src, dest): mv_args = ["--recursive", src, dest] self._s3_cmd("mv", mv_args) def restore_runs(self, **opts): self._sync_runs_meta() args = click_util.Args(**opts) args.archive = self._deleted_runs_dir preview = "You are about to restore the following runs on %s:" % self.name confirm = "Restore these runs?" no_runs_help = "Nothing to restore." def restore_f(selected): self._restore_runs(selected) self._new_meta_id() self._sync_runs_meta(force=True) try: runs_impl.runs_op( args, None, False, preview, confirm, no_runs_help, restore_f, confirm_default=True, ) except SystemExit as e: self._reraise_system_exit(e, deleted=True) def _restore_runs(self, runs): for run in runs: deleted_uri = self._s3_uri(*(DELETED_RUNS_PATH + [run.id])) restored_uri = self._s3_uri(*(RUNS_PATH + [run.id])) self._s3_mv(deleted_uri, restored_uri) def purge_runs(self, **opts): self._sync_runs_meta() args = click_util.Args(**opts) args.archive = self._deleted_runs_dir preview = ( "WARNING: You are about to permanently delete " "the following runs on %s:" % self.name ) confirm = "Permanently delete these runs?" no_runs_help = "Nothing to purge." def purge_f(selected): self._purge_runs(selected) self._new_meta_id() self._sync_runs_meta(force=True) try: runs_impl.runs_op( args, None, False, preview, confirm, no_runs_help, purge_f, confirm_default=False, ) except SystemExit as e: self._reraise_system_exit(e, deleted=True) def _purge_runs(self, runs): for run in runs: uri = self._s3_uri(*(DELETED_RUNS_PATH + [run.id])) self._s3_rm(uri) def status(self, verbose=False): try: self._s3api_output("get-bucket-location", ["--bucket", self.bucket]) except remotelib.RemoteProcessError as e: self._handle_status_error(e) else: sys.stdout.write( "%s (S3 bucket %s) is available\n" % (self.name, self.bucket) ) def _handle_status_error(self, e): output = e.output.decode() if "NoSuchBucket" in output: raise remotelib.OperationError( "%s is not available - %s does not exist" % (self.name, self.bucket) ) else: raise remotelib.OperationError( "%s is not available: %s" % (self.name, output) ) def start(self): log.info("Creating S3 bucket %s", self.bucket) try: self._s3_cmd("mb", ["s3://%s" % self.bucket]) except remotelib.RemoteProcessError: raise remotelib.OperationError() def reinit(self): self.start() def stop(self): log.info("Deleting S3 bucket %s", self.bucket) try: self._s3_cmd("rb", ["--force", "s3://%s" % self.bucket]) except remotelib.RemoteProcessError: raise remotelib.OperationError() def get_stop_details(self): return "- S3 bucket %s will be deleted - THIS CANNOT BE UNDONE!" % self.bucket def push(self, runs, delete=False): for run in runs: self._push_run(run, delete) self._new_meta_id() self._sync_runs_meta(force=True) def _push_run(self, run, delete): local_run_src = os.path.join(run.path, "") remote_run_dest = self._s3_uri(*RUNS_PATH + [run.id]) + "/" args = ["--no-follow-symlinks", local_run_src, remote_run_dest] if delete: args.insert(0, "--delete") log.info("Copying %s to %s", run.id, self.name) self._s3_cmd("sync", args) def _new_meta_id(self): meta_id = _uuid() with util.TempFile("guild-s3-") as tmp: with open(tmp.path, "w") as f: f.write(meta_id) args = [ "--bucket", self.bucket, "--key", _join_path(self.root, "meta-id"), "--body", tmp.path, ] self._s3api_output("put-object", args) def pull(self, runs, delete=False): for run in runs: self._pull_run(run, delete) def _pull_run(self, run, delete): remote_run_src = self._s3_uri(*RUNS_PATH + [run.id]) + "/" local_run_dest = os.path.join(var.runs_dir(), run.id, "") args = [remote_run_src, local_run_dest] if delete: args.insert(0, "--delete") log.info("Copying %s from %s", run.id, self.name) self._s3_cmd("sync", args) def label_runs(self, **opts): raise NotImplementedError("TODO") def run_info(self, **opts): self._sync_runs_meta() args = click_util.Args(**opts) args.archive = self._runs_dir args.remote = None args.private_attrs = False runs_impl.run_info(args, None) def one_run(self, run_id_prefix): raise NotImplementedError("TODO") def run_op(self, opspec, flags, restart, no_wait, stage, **opts): raise remotelib.OperationNotSupported() def watch_run(self, **opts): raise remotelib.OperationNotSupported() def check(self, **opts): raise remotelib.OperationNotSupported() def stop_runs(self, **opts): raise remotelib.OperationNotSupported() def _init_env(env_config): if isinstance(env_config, dict): return env_config elif isinstance(env_config, str): return _env_from_file(env_config) else: log.warning("invalid value for remote env %r - ignoring", env_config) return {} def _env_from_file(path): if path.lower().endswith(".gpg"): env_str = _try_read_gpg(path) else: env_str = util.try_read(path) if not env_str: log.warning("cannot read remote env from %s - ignorning", path) return {} return _decode_env(env_str) def _try_read_gpg(path): path = os.path.expanduser(path) cmd = _gpg_cmd() + [path] try: p = subprocess.Popen( cmd, env=os.environ, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) except OSError as e: log.error("cannot decode %s with command '%s' (%s)", path, " ".join(cmd), e) else: out, err = p.communicate() if p.returncode != 0: log.error(err.decode(errors="replace").strip()) return None return out.decode(errors="replace") def _gpg_cmd(): gpg_env = os.getenv("GPG_CMD") if gpg_env: return util.shlex_split(gpg_env) return ["gpg", "-d"] def _decode_env(s): return dict([_split_env_line(line) for line in s.split("\n")]) def _split_env_line(s): parts = s.split("=", 1) if len(parts) == 1: parts.append("") return _strip_export(parts[0]), parts[1] def _strip_export(s): s = s.strip() if s.startswith("export "): s = s[7:] return s def _aws_cmd(): cmd = util.which("aws") if not cmd: raise remotelib.OperationError( "AWS Command Line Interface (CLI) is not available\n" "Refer to https://docs.aws.amazon.com/cli for help installing it." ) return cmd def _join_path(root, *parts): path = [part for part in itertools.chain([root], parts) if part not in ("/", "")] return "/".join(path) def _subprocess_call(cmd, to_stderr, env): if to_stderr: _subprocess_call_to_stderr(cmd, env) else: subprocess.check_call(cmd, env=env) def _subprocess_call_to_stderr(cmd, env): p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) while True: line = p.stdout.readline() if not line: break sys.stderr.write(line.decode()) def _list(d): try: return os.listdir(d) except OSError as e: if e.errno != 2: raise return [] def _ids_for_prefixes(prefixes): def strip(s): if s.endswith("/"): return s[:-1] return s return [strip(p) for p in prefixes] def _uuid(): try: return uuid.uuid1().hex except ValueError: # Workaround https://bugs.python.org/issue32502 return uuid.uuid4().hex ``` #### File: guildai/guild/view.py ```python from __future__ import absolute_import from __future__ import division import logging import os import socket import subprocess import sys import threading import time from werkzeug.exceptions import NotFound from werkzeug.utils import redirect from guild import serving_util from guild import util from guild import var log = logging.getLogger("guild") MODULE_DIR = os.path.dirname(__file__) TB_RUNS_MONITOR_INTERVAL = 5 TB_REFRESH_INTERVAL = 5 class ViewData(object): """Interface for providing View related data.""" def runs(self): """Returns a list of unformatted runs. """ raise NotImplementedError() def runs_data(self): """Returns a list of formatted runs data. """ raise NotImplementedError() def one_run(self, run_id_prefix): """Returns one unformatted run for a run ID prefix. The scope must be extended to all runs - not just runs per the current filter. If a run doesn't exist that matches `run_id_prefix` returns None. """ def one_run_data(self, run_id_prefix): """Returns a formatted run for a run ID prefix. If a run doesn't exist that matches `run_id_prefix` returns None. """ raise NotImplementedError() def config(self): """Returns dict of config for request params. Config dict must contain: cwd string Cwd used for runs titleLabel string Label suitable for browser title version string Guild version """ raise NotImplementedError() class DevServer(threading.Thread): def __init__(self, host, port, view_port): super(DevServer, self).__init__() self.host = host or socket.gethostname() self.port = port self.view_port = view_port self._view_base_url = util.local_server_url(host, view_port) self._ready = False def run(self): args = [ self._devserver_bin(), "--host", self.host, "--config", self._devserver_config(), "--progress", ] env = { "HOST": self.host, "PORT": str(self.port), "VIEW_BASE": self._view_base_url, "PATH": os.environ["PATH"], } p = subprocess.Popen(args, env=env) p.wait() def wait_for_ready(self): url_base = util.local_server_url(self.host, self.port) while not self._ready: ping_url = "{}/assets/favicon.png".format(url_base) try: util.http_get(ping_url) except util.HTTPConnectionError: time.sleep(0.1) else: self._ready = True @staticmethod def _devserver_bin(): path = os.path.join(MODULE_DIR, "view/node_modules/.bin/webpack-dev-server") if not os.path.exists(path): raise AssertionError( "{} does not exits - did you resolve node dependencies by " "running npm install?".format(path) ) return path @staticmethod def _devserver_config(): return os.path.join(MODULE_DIR, "view/build/webpack.dev.conf.js") class TBServer(object): def __init__(self, tensorboard, key, data): self._tb = tensorboard self._key = key self._data = data self.log_dir = None self._monitor = None self._app = None self._started = False @property def running(self): return self._started def start(self): if self._started: raise RuntimeError("already started") self.log_dir = util.mktempdir("guild-tensorboard-") self._monitor = self._tb.RunsMonitor( self.log_dir, self._list_runs, TB_RUNS_MONITOR_INTERVAL ) self._monitor.run_once(exit_on_error=True) self._monitor.start() self._app = self._tb.create_app( self.log_dir, TB_REFRESH_INTERVAL, path_prefix=self._path_prefix() ) self._started = True def _list_runs(self): if self._key == "0": return self._data.runs() else: run = self._data.one_run(self._key) if not run: return [] return [run] def _path_prefix(self): return "/tb/{}/".format(self._key) def __call__(self, env, start_resp): if not self.running: raise RuntimeError("not started") assert self._app return self._app(env, start_resp) def stop(self): if not self._started: raise RuntimeError("not started") self._monitor.stop() util.rmtempdir(self.log_dir) class TBServers(object): def __init__(self, data): self._lock = threading.Lock() self._servers = {} self._data = data self._tb = None def __enter__(self): self._lock.acquire() def __exit__(self, *_exc): self._lock.release() def __getitem__(self, key): return self._servers[key] def start_server(self, key, _run=None): tensorboard = self._ensure_tensorboard() server = TBServer(tensorboard, key, self._data) log.debug("starting TensorBoard server (%s)", server) server.start() self._servers[key] = server log.debug( "using log dir %s for TensorBoard server (%s)", server.log_dir, server ) return server def _ensure_tensorboard(self): if self._tb is None: from guild import tensorboard self._tb = tensorboard return self._tb def iter_servers(self): for key in self._servers: yield self._servers[key] def stop_servers(self): for server in self._servers.values(): if server.running: log.debug("stopping TensorBoard server (%s)", server) server.stop() class DistFiles(serving_util.StaticDir): def __init__(self): dist_dir = os.path.join(MODULE_DIR, "view/dist") super(DistFiles, self).__init__(dist_dir) class RunFiles(serving_util.StaticBase): def __init__(self): super(RunFiles, self).__init__({"/files": var.runs_dir()}) def handle(self, _req): def app(env, start_resp0): def start_resp(status, headers): headers.append(("Access-Control-Allow-Origin", "*")) start_resp0(status, headers) return self._app(env, start_resp) return app class RunOutput(object): def __init__(self): self._output_run_id = None self._output = None def handle(self, req, run): self._ensure_output(run) start = req.args.get("s", None, int) end = req.args.get("e", None, int) lines = [ (time, stream, line) for time, stream, line in self._output.read(start, end) ] return serving_util.json_resp(lines) def _ensure_output(self, run_id): if self._output_run_id == run_id: return run_dir = os.path.join(var.runs_dir(), run_id) if not os.path.exists(run_dir): raise NotFound() self._output = util.RunOutputReader(run_dir) self._output_run_id = run_id def serve_forever(data, host, port, no_open=False, dev=False, logging=False): if dev: _serve_dev(data, host, port, no_open, logging) else: _serve_prod(data, host, port, no_open, logging) def _serve_dev(data, host, port, no_open, logging): view_port = util.free_port(port + 1) dev_server = DevServer(host, port, view_port) dev_server.start() dev_server.wait_for_ready() view_url = util.local_server_url(host, view_port) if not no_open: util.open_url(util.local_server_url(host, port)) sys.stdout.write(" I Guild View backend: {}\n".format(view_url)) _start_view(data, host, view_port, logging) sys.stdout.write("\n") def _serve_prod(data, host, port, no_open, logging): view_url = util.local_server_url(host, port) if not no_open: try: util.open_url(view_url) except util.URLOpenError: sys.stdout.write("Unable to open browser window for Guild View\n") sys.stdout.write("Running Guild View at {}\n".format(view_url)) _start_view(data, host, port, logging) sys.stdout.write("\n") def _start_view(data, host, port, logging): tb_servers = TBServers(data) app = _view_app(data, tb_servers) server = serving_util.make_server(host, port, app, logging) sys.stdout.flush() server.serve_forever() tb_servers.stop_servers() def _view_app(data, tb_servers): dist_files = DistFiles() run_files = RunFiles() run_output = RunOutput() routes = serving_util.Map( [ ("/runs", _handle_runs, (data,)), ("/compare", _handle_compare, (data,)), ("/files/<path:_>", run_files.handle, ()), ("/runs/<run>/output", run_output.handle, ()), ("/config", _handle_config, (data,)), ("/tb/", _route_tb, ()), ("/tb/<key>/", _handle_tb_index, (tb_servers, data)), ("/tb/<key>/<path:_>", _handle_tb, (tb_servers,)), ("/", dist_files.handle_index, ()), ("/<path:_>", dist_files.handle, ()), ] ) return serving_util.App(routes) def _handle_runs(req, data): runs_data = _runs_data(req, data) return serving_util.json_resp(runs_data) def _runs_data(req, data): try: run_id_prefix = req.args["run"] except KeyError: return data.runs_data() else: data = data.one_run_data(run_id_prefix) if not data: raise NotFound() return [data] def _handle_compare(_req, data): compare_data = data.compare_data() return serving_util.json_resp(compare_data) def _handle_config(_req, data): return serving_util.json_resp(data.config()) def _route_tb(req): if "run" in req.args: key = req.args["run"] else: key = "0" return redirect("/tb/{}/".format(key), code=303) def _handle_tb_index(req, tb_servers, data, key): try: return _handle_tb(req, tb_servers, key) except NotFound: if key != "0": key = _try_run_id(key, data) with tb_servers: return tb_servers.start_server(key) def _handle_tb(_req, tb_servers, key): with tb_servers: try: return tb_servers[key] except KeyError: raise NotFound() def _try_run_id(key, data): run = data.one_run(key) if not run: raise NotFound() return run.id ```
{ "source": "jimhs/snippets", "score": 3 }
#### File: algo/arrays/missing_ranges.py ```python def mr(a, p, q): """ in: a: sorted 1d array p: low end q: high end ou: r: list of range tuples """ r = [] s = p a = sorted(a) if a == []: return [(p, q)] for i in a: if s == i: # bypassing the cut s += 1 # elif i > s: else: r.append((s, i-1)) # bypassing the cut s = i + 1 # dealing the tailing range if s <= q: r.append((s, q)) return r ``` #### File: algo/arrays/summary_ranges.py ```python def sr(a): """ in: a: 1d array ou: list of range tupples """ r = [] i = 0 # enter loop directly, no need to worry 1-el list while i < len(a): n = a[i] # w/i boundary and in sequence while i + 1 < len(a) and a[i + 1] - a[i] == 1: i += 1 if a[i] != n: r.append((n, a[i])) else: r.append((n, n)) i += 1 return r ``` #### File: python/cookbook/meta.py ```python import weakref import logging import types import abc import operator import sys import collections import bisect from collections import OrderedDict from inspect import Signature, Parameter, signature from time import localtime #from decorator import LazyProperty # cookbook 9.13 class NoInstance(type): def __call__(self, *args, **kwargs): raise TypeError('cant instantiate directly') class Singleton(type): def __init__(self, *args, **kwargs): self.__instance = None super().__init__(*args, **kwargs) def __call__(self, *args, **kwargs): if self.__instance is None: self.__instance = super().__call__(*args, **kwargs) return self.__instance else: return self.__instance class Cached(type): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__cache = weakref.WeakValueDictionary() def __call__(self, *args): if args in self.__cache: return self.__cache[args] else: obj = super().__call__(*args) self.__cache[args] = obj return obj class Spam(metaclass=Cached): def __init__(self, name): print('creating spam({!r})'.format(name)) self.name = name @staticmethod def grok(x): print('spam.grok:',x) # cookbook 8.13 # base class, use a descriptor to set value class Descriptor: def __init__(self, name=None, **opts): self.name = name for key, value in opts.items(): setattr(self, key, value) def __set__(self, instance, value): instance.__dict__[self.name] = value class Typed(Descriptor): _expected_type = type(None) def __set__(self, instance, value): if not isinstance(value, self._expected_type): raise TypeError('expected '+ str(self._expected_type)) super().__set__(instance, value) # descriptors for enforcing value class Unsigned(Descriptor): def __set__(self, instance, value): if value < 0 : raise ValueError('expect >= 0') super().__set__(instance, value) class MaxSized(Descriptor): def __init__(self, name=None, **opts): if 'size' not in opts: raise TypeError("missing 'size' option") super().__init__(name, **opts) def __set__(self, instance, value): if len(value) > self.size : raise ValueError('size must be <= ' + str(self.size)) super().__set__(instance, value) # cookbook 9.14 # a set of descriptors for various types #class Typed: # _expected_type = type(None) # def __init__(self, name=None): # self._name = name # # def __set__(self, instance, value): # if not isinstance(value, self._expected_type): # raise TypeError('expected '+ str(self._expected_type)) # instance.__dict__[self._name] = value #OPTIMIZE page 284~287 include some other similar methods class Interger(Typed): _expected_type = int class Float(Typed): _expected_type = float class String(Typed): _expected_type = str class UnsignedInterger(Interger, Unsigned): pass class UnsignedFloat(Float, Unsigned): pass class SizedString(String, MaxSized): pass # metaclass that use an OrderedDict for class body class OrderedMeta(type): def __new__(cls, clsname, bases, clsdict): d = dict(clsdict) order = [] for name, value in clsdict.items(): if isinstance(value, Typed): value._name = name order.append(name) d['_order'] = order return type.__new__(cls, clsname, bases, d) @classmethod def __prepare__(cls, clsname, bases): return OrderedDict() class Structure(metaclass=OrderedMeta): def as_csv(self): return ','.join(str(getattr(self, name)) for name in self._order) _stock_formats = { 'str_' : '{0.share} shares of {0.name} @{0.price}', 'repr_' : 'Stock({0.name!r}, {0.share!r}, {0.price!r})', 'desc_' : 'name={0.name!r}, share={0.share}, price={0.price}' } class Stock(Structure): # name = String() # share = Interger() # price = Float() name = SizedString('name', size=4) share = UnsignedInterger('share') price = UnsignedFloat('price') #??? 'name' in __slots__ conflicts with class variable # __slots__ = ['name', 'share', 'price'] def __init__(self, name, share, price): self.name = name self.share = share self.price = price # 8.1 def __str__(self): return _stock_formats['str_'].format(self) #??? eval(repr(s)) == s, is False def __repr__(self): return _stock_formats['repr_'].format(self) def __format__(self, code): if code == '': code = 'desc_' fmt = _stock_formats[code] return fmt.format(self) # @decorator.lazyproperty @property def amo(self): print('calculating amo...') return self.share * self.price # cookbook 9.14 # prevents duplicated method def class NoDupOrderedDict(OrderedDict): def __init__(self, clsname): self.clsname = clsname super().__init__() def __setitem__(self, name, value): if name in self: raise TypeError('{} already defined in {}'.format(name, self.clsname)) super().__setitem__(name, value) class OrderedMeta(type): def __new__(cls, clsname, bases, clsdict): d= dict(clsdict) d['_order'] = [name for name in clsdict if name[0] != '_'] return type.__new__(cls, clsname, bases, d) @classmethod def __prepare__(cls, clsname, bases): return NoDupOrderedDict(clsname) # duplicated example class DupA(metaclass=OrderedMeta): def spam(self): pass def spam2(self): pass # cookbook 9.16 # fixed parm signature # make a signature for a func(x, y=42, *, z=None) parms = [Parameter('x', Parameter.POSITIONAL_OR_KEYWORD), Parameter('y', Parameter.POSITIONAL_OR_KEYWORD, default=42), Parameter('z', Parameter.KEYWORD_ONLY, default=None)] sig = Signature(parms) # print(sig) def func(*args, **kwargs): bound_value = sig.bind(*args, **kwargs) for name, value in bound_value.arguments.items(): print(name, value) # cookbook 9.16 # fixed parm signature 2 def make_sig(*names): parms = [Parameter(name, Parameter.POSITIONAL_OR_KEYWORD) for name in names] return Signature(parms) class SigStructure: __signature__ = make_sig() def __init__(self, *args, **kwargs): bound_value = self.__signature__.bind(*args, **kwargs) for name, value in bound_value.arguments.items(): setattr(self, name, value) # example class SigStock(SigStructure): __signature__ = make_sig('name', 'share', 'price') class SigPoint(SigStructure): __signature__ = make_sig('x', 'y') # cookbook 9.17 class NoMixedCaseMeta(type): def __new__(cls, clsname, bases, clsdict): for name in clsdict: if name.lower() != name: raise TypeError('bad attribute name ' + name) return super().__new__(cls, clsname, bases, clsdict) class NMCMRoot(metaclass=NoMixedCaseMeta): pass class NMCM_A(NMCMRoot): def foo_bar(self): pass ''' class NMCM_B(NMCMRoot): def fooBar(self): pass ''' class MatchSignatureMeta(type): def __init__(self, clsname, bases, clsdict): super().__init__(clsname, bases, clsdict) sup = super(self, self) for name, value in clsdict.items(): if name.startswith('_') or not callable(value): continue # get the prev def and compare the sig prev_dfn = getattr(sup, name, None) if prev_dfn: prev_sig = signature(prev_dfn) val_sig = signature(value) if prev_sig != val_sig: logging.warning('signature mismatch in %s: %s != %s', value.__qualname__, prev_sig, val_sig) # example class MSMRoot(metaclass=MatchSignatureMeta): pass class MSM_A(MSMRoot): def foo(self, x, y): pass def bar(self, x, *, z): pass class MSM_B(MSM_A): def foo(self, a, b): pass def bar(self, x, z): pass # cookbook 9.18 # making a class manually through parts # method def __init__(self, name, share, price): self.name = name self.share = share self.price = price def cost(self): return self.share * self.price cls_dict = { '__init__' : __init__, 'cost' : cost, } # made a class Stock2 = types.new_class('Stock2', (), {'metaclass': abc.ABCMeta}, lambda ns: ns.update(cls_dict)) Stock2.__module__ = __name__ # making a class using named tuple and frame hack def named_tuple(classname, fieldname): # populate a dictionary of field property accessors cls_dict = {name: property(operator.itemgetter(n)) for n, name in enumerate(fieldname)} # make a __new__ function and add to class dict def __new__(cls, *args): if len(args) != len(fieldname): raise TypeError('expect {} arguments'.format(len(fieldname))) return tuple.__new__(cls, args) cls_dict['__new__'] = __new__ # make the class cls = types.new_class(classname, (tuple,), {}, lambda ns: ns.update(cls_dict)) # set the module to that of the caller cls.__module = sys._getframe(1).f_globals['__name__'] return cls # initiate class members when define class StructTupleMeta(type): def __init__(cls, *args, **kwargs): super().__init__(*args, **kwargs) for n, name in enumerate(cls._fields): setattr(cls, name, property(operator.itemgetter(n))) class StructTuple(tuple, metaclass= StructTupleMeta): _fields = [] def __new__(cls, *args): if len(args) != len(cls._fields): raise ValueError('expect {} arguments'.format(len(cls._fields))) return super().__new__(cls, args) class Stock3(StructTuple): _fields = ['name', 'share', 'price'] class Point(StructTuple): _fields = ['x', 'y'] # cookbook 9.21 # avoid duplicated type check def typed_property(name, expected_type): storage_name = '_' + name @property def prop(self): return getattr(self, storage_name) @prop.setter def prop(self, value): if not isinstance(value, expected_type): raise TypeError('{} must be {}'.format(name, expected_type)) setattr(self, storage_name, value) return prop # example class Person: name = typed_property('name', str) age = typed_property('age', int) def __init__(self, name, age): self.name = name self.age = age # cookbook 8.14 # customized container class SortedItems(collections.Sequence): def __init__(self, initial=None): self._items = sorted(initial) if initial is not None else [] # required sequence methods def __getitem__(self, index): return self._items[index] def __len__(self): return len(self._items) # method for adding item to right location def add(self, item): bisect.insort(self._items, item) # cookbook 8.15 # proxy and delegate # basic structure class Delegate_From: def foo(self, x): print(self.__class__) pass def bar(self): print(self.__class__) pass class Delegate_To: def __init__(self): self._a = Delegate_From() def spam(self): pass def __getattr__(self, name): return getattr(self._a, name) # a proxy class that wraps around another obj, # but only exposes its public attributes class Proxy: def __init__(self, obj): self._obj = obj # delegate attr lookup to internal obj def __getattr__(self, name): print('getting attr:', name) return getattr(self._obj, name) # delegate attr assignment def __setattr__(self, name, value): if name.startswith('_'): super().__setattr__(name, value) else: print('setting attr:', name, value) setattr(self._obj, name, value) # delegate attr deletion def __delattr__(self, name): if name.startswith('_'): super().__delattr__(name) else: print('deleting attr:', name) delattr(self._obj, name) # cookbook 8.17 # de-serializing class Date: def __init__(self, year, month, day): self.year = year self.month = month self.day = day @classmethod def today(cls): d = cls.__new__(cls) t = localtime() d.year = t.tm_year d.month = t.tm_mon d.day = t.tm_mday return d # cookbook 8.18 # Mixin ```
{ "source": "jimialex/django-wise-template-mysql", "score": 2 }
#### File: v1/serializers/password.py ```python from rest_framework import serializers from rest_framework.exceptions import ValidationError from rest_framework.serializers import Serializer from apps.accounts import response_codes from apps.accounts.api.v1.serializers.login import UsernameOrEmailSerializer from apps.accounts.models import User from django.utils.translation import ugettext_lazy as _ PASSWORD_MAX_LENGTH = User._meta.get_field('password').max_length # noqa: WPS437 user_read_only_fields = ( 'id', 'username', 'date_joined', 'last_login', 'new_email', 'password', 'is_superuser', 'is_staff', 'is_active', 'date_joined', 'email_token', 'token', 'groups', 'user_permissions', ) class CheckValidPasswordMixin(serializers.Serializer): """Validates a password.""" password = serializers.CharField( help_text=_('<PASSWORD>'), max_length=PASSWORD_MAX_LENGTH, ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.request = self.context.get('request', None) self.user = getattr(self.request, 'user', None) def validate_password(self, password): if not self.user.check_password(password): raise ValidationError(**response_codes.INVALID_PASSWORD) return password class PasswordSetSerializer(serializers.Serializer): """Validates a password and its confirmation.""" password = serializers.CharField( help_text=_('<PASSWORD>'), max_length=PASSWORD_MAX_LENGTH, ) confirm_password = serializers.CharField( help_text=_('<PASSWORD>'), max_length=PASSWORD_MAX_LENGTH, ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.user = self.context['request'].user def validate_password(self, password): # noqa: D102 if self.user.has_usable_password(): raise ValidationError(**response_codes.USER_HAS_PASSWORD) return password def validate(self, attrs): # noqa: D102 attrs = super().validate(attrs) if attrs['password'] != attrs['confirm_password']: raise ValidationError(**response_codes.PASSWORD_MISTMATCH) return attrs class PasswordUpdateSerializer(CheckValidPasswordMixin): """Validates a new password and its confirmation.""" new_password = serializers.CharField( help_text=_('<PASSWORD>'), max_length=PASSWORD_MAX_LENGTH, ) confirm_password = serializers.CharField( help_text=_('<PASSWORD>'), max_length=PASSWORD_MAX_LENGTH, ) def validate(self, attrs): # noqa: D102 attrs = super().validate(attrs) # it's repeated for readability if attrs['new_password'] != attrs['confirm_password']: raise ValidationError(**response_codes.PASSWORD_MISTMATCH) return attrs class PasswordResetSerializer(UsernameOrEmailSerializer): """Serializer to request a password reset e-mail.""" redirect_uri = serializers.URLField(required=False) class PasswordResetConfirmSerializer(Serializer): """Serializer to request and validate password.""" DEFAULT_PASSWORD_LENGTH = 128 token = serializers.CharField() password = serializers.CharField(max_length=DEFAULT_PASSWORD_LENGTH) ``` #### File: functional/api_views/test_google_login.py ```python import pytest from django.urls import reverse from doubles import allow from rest_framework import status from rest_framework.exceptions import NotAuthenticated from apps.accounts.api.v1.serializers.session import SessionSerializer from apps.accounts.response_codes import INVALID_GOOGLE_TOKEN_ID, INVALID_GOOGLE_TOKEN_ISSUER from apps.accounts.services.session import SessionService @pytest.mark.django_db class GoogleLoginTests: google_login_url = reverse('api-accounts:v1:google-login') def test_missing_token(self, api_client): response = api_client.post(self.google_login_url, {}) response_json = response.json() assert 'token' in response_json assert response_json['token'][0]['code'] == 'required' def test_valid_token(self, api_client, test_user): allow(SessionService).process_google_token.and_return(test_user) login_data = {'token': 'valid_<PASSWORD>'} response = api_client.post(self.google_login_url, login_data) response_json = response.json() assert response.status_code == status.HTTP_200_OK user_data = SessionSerializer(test_user).data assert response_json.keys() == user_data.keys() def test_invalid_token(self, api_client): allow(SessionService).process_google_token.and_raise( NotAuthenticated(**INVALID_GOOGLE_TOKEN_ID) ) login_data = {'token': '<PASSWORD>'} response = api_client.post(self.google_login_url, login_data) response_json = response.json() assert response.status_code == status.HTTP_401_UNAUTHORIZED assert response_json.get('code') == INVALID_GOOGLE_TOKEN_ID.get('code') def test_invalid_issuer(self, api_client): allow(SessionService).process_google_token.and_raise( NotAuthenticated(**INVALID_GOOGLE_TOKEN_ISSUER) ) login_data = {'token': 'invalid_token'} response = api_client.post(self.google_login_url, data=login_data) response_json = response.json() assert response.status_code == status.HTTP_401_UNAUTHORIZED assert response_json.get('code') == INVALID_GOOGLE_TOKEN_ISSUER.get('code') ``` #### File: unit/services/test_session.py ```python import json import pytest import requests_mock from doubles import allow from rest_framework import status from rest_framework.exceptions import NotAuthenticated from apps.accounts.models import User from apps.accounts.response_codes import ( INVALID_GOOGLE_TOKEN_ISSUER, INVALID_GOOGLE_TOKEN_ID, INVALID_CREDENTIALS, INACTIVE_ACCOUNT, INVALID_FACEBOOK_ACCESS_TOKEN, ) from apps.accounts.services.session import SessionService from apps.accounts.services.user import UserService from google.oauth2 import id_token @pytest.mark.django_db class SessionServiceTests: @staticmethod def test_process_google_token(test_user): allow(id_token).verify_oauth2_token.and_return({ 'iss': SessionService.GOOGLE_ACCOUNTS_URL, }) allow(UserService).create_or_update_for_social_networks.and_return(test_user) user = SessionService.process_google_token('valid_token') assert user is not None assert isinstance(user, User) @staticmethod def test_process_google_token_invalid_issuer(): allow(id_token).verify_oauth2_token.and_return({ 'iss': 'https://any.server', }) with pytest.raises(NotAuthenticated) as exec_info: SessionService.process_google_token('valid_token') assert exec_info.value.detail.code == INVALID_GOOGLE_TOKEN_ISSUER['code'] @staticmethod def test_process_google_token_invalid_token(): allow(id_token).verify_oauth2_token.and_raise(ValueError('Token Error')) with pytest.raises(NotAuthenticated) as exec_info: SessionService.process_google_token('valid_token') assert exec_info.value.detail.code == INVALID_GOOGLE_TOKEN_ID['code'] @staticmethod def test_process_facebook_valid_access_token(test_user): allow(UserService).create_or_update_for_social_networks.and_return(test_user) access_token = 'valid_access_token' with requests_mock.mock() as mock: mock.get( SessionService.make_facebook_profile_url(access_token), text=json.dumps({ 'email': test_user.email, 'first_name': test_user.first_name, 'last_name': test_user.last_name, }), status_code=status.HTTP_200_OK, ) user = SessionService.process_facebook_token(access_token) assert user is not None assert isinstance(user, User) @staticmethod def test_process_facebook_token_invalid_access_token(): access_token = 'invalid_access_token' with requests_mock.mock() as mock: mock.get( SessionService.make_facebook_profile_url(access_token), text=json.dumps({'error': 'facebook_raised_error'}), status_code=status.HTTP_200_OK, ) with pytest.raises(NotAuthenticated) as exec_info: SessionService.process_facebook_token(access_token) assert exec_info.value.detail.code == INVALID_FACEBOOK_ACCESS_TOKEN['code'] @staticmethod def test_process_facebook_token_invalid_access_token_from_format(test_user): access_token = 'invalid_access_token' with requests_mock.mock() as mock: mock.get( SessionService.make_facebook_profile_url(access_token), text='', status_code=status.HTTP_200_OK, ) with pytest.raises(NotAuthenticated) as exec_info: SessionService.process_facebook_token(access_token) assert exec_info.value.detail.code == INVALID_FACEBOOK_ACCESS_TOKEN['code'] @staticmethod def test_make_user_session(test_user): session = SessionService.make_user_session(test_user) assert 'access_token' in session assert 'refresh_token' in session @staticmethod def test_validate_session(test_user): plain_password = '<PASSWORD>' test_user.set_password(<PASSWORD>_password) test_user.save() assert SessionService.validate_session(test_user, plain_password) @staticmethod def test_validate_session_invalid_credentials(test_user): with pytest.raises(NotAuthenticated) as exec_info: SessionService.validate_session(None, 'new_password') assert exec_info.value.detail.code == INVALID_CREDENTIALS['code'] with pytest.raises(NotAuthenticated) as exec_info: SessionService.validate_session(test_user, 'new_password') assert exec_info.value.detail.code == INVALID_CREDENTIALS['code'] @staticmethod def test_validate_session_inactive_account(test_user): plain_password = '<PASSWORD>' test_user.set_password(<PASSWORD>) test_user.is_active = False test_user.save() with pytest.raises(NotAuthenticated) as exec_info: SessionService.validate_session(test_user, plain_password) assert exec_info.value.detail.code == INACTIVE_ACCOUNT['code'] ``` #### File: accounts/views/reset_password.py ```python from django.views import View from django.shortcuts import render from apps.accounts.forms import ResetPasswordForm from apps.accounts.models.choices import ActionCategory from apps.accounts.models.pending_action import PendingAction class ResetPasswordView(View): """Process a password reset.""" def get(self, request, token, **kwargs): """Renders the html template to init password reset.""" context = {} try: context['pending_action'] = PendingAction.objects.get( token=token, category=ActionCategory.RESET_PASSWORD.value ) except PendingAction.DoesNotExist: context['pending_action'] = None return render(request, 'transactions/reset_password.html', context) def post(self, request, token, **kwargs): """Processes password reset.""" context = {} try: pending_action = PendingAction.objects.get( token=token, category=ActionCategory.RESET_PASSWORD.value ) context['pending_action'] = pending_action user = pending_action.user form = ResetPasswordForm(data=request.POST) context['form'] = form if form.is_valid(): password = form.cleaned_data['<PASSWORD>'] user.set_password(password) user.save() pending_action.delete() return render(request, 'transactions/reset_password_done.html', context) except PendingAction.DoesNotExist: context['pending_action'] = None return render(request, 'transactions/reset_password.html', context) ``` #### File: contrib/api/responses.py ```python from rest_framework import status as status_code from rest_framework.response import Response from django.utils.translation import ugettext_lazy as _ class DoneResponse(Response): # noqa: D107 """Base class for REST Exceptions based on CEH from @vicobits.""" def __init__(self, detail=None, code=None, status=None): # noqa: D107 response = { 'message': detail if detail else _('Successful operation!'), 'code': code if code else 'successful_action', } status = status or status_code.HTTP_200_OK super().__init__(data=response, status=status) ``` #### File: unit/api/test_exceptions.py ```python from rest_framework.exceptions import NotAuthenticated, ValidationError from rest_framework_simplejwt.exceptions import InvalidToken, AuthenticationFailed from apps.contrib.api.exceptions import SimpleJWTExceptionParser def test_invalid_token_format(): received_exc = InvalidToken() exc = SimpleJWTExceptionParser.parse(received_exc) assert isinstance(exc, NotAuthenticated) def test_authentication_failed_format(): received_exc = AuthenticationFailed() exc = SimpleJWTExceptionParser.parse(received_exc) assert isinstance(exc, NotAuthenticated) def test_another_exception_format(): received_exc = ValidationError() exc = SimpleJWTExceptionParser.parse(received_exc) assert type(received_exc) == type(exc) ``` #### File: tests/unit/test_logger.py ```python from apps.contrib.logging import Logger class LoggerTests: message = 'ANYTHING' def test_debug(self): assert Logger.debug(self.message) is None def test_info(self): assert Logger.info(self.message) is None def test_error(self): assert Logger.error(self.message) is None def test_warning(self): assert Logger.warning(self.message) is None ``` #### File: utils/testing/decorators.py ```python from contextlib import contextmanager @contextmanager def temporarily(obj, **kwargs): original_values = {k: getattr(obj, k) for k in kwargs} for k, v in kwargs.items(): setattr(obj, k, v) obj.save(update_fields=kwargs.keys()) try: yield finally: for k, v in original_values.items(): setattr(obj, k, v) obj.save(update_fields=original_values.keys()) ```
{ "source": "jimi-c/ansible_demo_website", "score": 2 }
#### File: ansible_demo_website/main/views.py ```python from __future__ import unicode_literals from django.contrib.auth import login as django_login, logout as django_logout from django.contrib.auth.models import User from django.core.exceptions import PermissionDenied from django.http import HttpResponse from django.shortcuts import render, redirect from django.views.decorators.cache import cache_page # Create your views here. def get_base_context(): context = dict() return context def index(request): context = get_base_context() return render(request, 'main.html', context) def register_user(request): username = request.GET.get('username', None) if username is not None: new_user, created = User.objects.get_or_create(username=username) if created: new_user.first_name = request.GET.get('first_name', '') new_user.last_name = request.GET.get('last_name', '') new_user.save() return redirect('/') def login(request): username = request.GET.get('username', 'admin') user = User.objects.get(username=username) django_login(request, user) return redirect('/') def logout(request): django_logout(request) return redirect('/') def private_page(request): if not request.user.is_authenticated(): raise PermissionDenied context = get_base_context() return render(request, 'private.html', context) ```
{ "source": "jimichailidis/UVA_AML18", "score": 3 }
#### File: UVA_AML18/week_3/cnn.py ```python import os print(os.getcwd()) from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD from dataset_utils import load_mnist import numpy as np from convolution_layer import ConvLayer from maxpool_layer import MaxPool2x2 from flatten_layer import FlattenLayer import sys def iterate_minibatches(x, y, batch_size=16, verbose=True): assert len(x) == len(y) indices = np.arange(len(x)) np.random.shuffle(indices) for i, start_idx in enumerate(range(0, len(x) - batch_size + 1, batch_size)): if verbose: print('\rBatch: {}/{}'.format(i + 1, len(x) // batch_size), end='') sys.stdout.flush() excerpt = indices[start_idx:start_idx + batch_size] yield x[excerpt], y[excerpt] def get_cnn(): nn = SequentialNN() nn.add(ConvLayer(1, 2, filter_size=3)) # The output is of size N_obj 2 28 28 nn.add(ReLU()) # The output is of size N_obj 2 28 28 nn.add(MaxPool2x2()) # The output is of size N_obj 2 14 14 nn.add(ConvLayer(2, 4, filter_size=3)) # The output is of size N_obj 4 14 14 nn.add(ReLU()) # The output is of size N_obj 4 14 14 nn.add(MaxPool2x2()) # The output is of size N_obj 4 7 7 nn.add(FlattenLayer()) # The output is of size N_obj 196 nn.add(Dense(4 * 7 * 7, 32)) nn.add(ReLU()) nn.add(Dense(32, 1)) return nn nn = get_cnn() loss = Hinge() optimizer = SGD(nn) train = list(load_mnist(dataset='training', path='.')) train_images = np.array([im[1] for im in train]) train_targets = np.array([im[0] for im in train]) # We will train a 0 vs. 1 classifier x_train = train_images[train_targets < 2][:1000] y_train = train_targets[train_targets < 2][:1000] y_train = y_train * 2 - 1 y_train = y_train.reshape((-1, 1)) x_train = x_train.astype('float32') / 255.0 x_train = x_train.reshape((-1, 1, 28, 28)) # It will train for about 5 minutes num_epochs = 3 batch_size = 32 # We will store the results here history = {'loss': [], 'accuracy': []} # `num_epochs` represents the number of iterations for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch + 1, num_epochs)) # We perform iteration a one-by-one iteration of the mini-batches for x_batch, y_batch in iterate_minibatches(x_train, y_train, batch_size): # Predict the target value y_pred = nn.forward(x_batch) # Compute the gradient of the loss loss_grad = loss.backward(y_pred, y_batch) # Perform backwards pass nn.backward(x_batch, loss_grad) # Update the params optimizer.update_params() # Save loss and accuracy values history['loss'].append(loss.forward(y_pred, y_batch)) prediction_is_correct = (y_pred > 0) == (y_batch > 0) history['accuracy'].append(np.mean(prediction_is_correct)) print() #%% import matplotlib.pyplot as plt # Let's plot the results to get a better insight plt.figure(figsize=(8, 5)) ax_1 = plt.subplot() ax_1.plot(history['loss'], c='g', lw=2, label='train loss') ax_1.set_ylabel('loss', fontsize=16) ax_1.set_xlabel('#batches', fontsize=16) ax_2 = plt.twinx(ax_1) ax_2.plot(history['accuracy'], lw=3, label='train accuracy') ax_2.set_ylabel('accuracy', fontsize=16) ``` #### File: UVA_AML18/week_3/flatten_layer.py ```python from Blocks import Layer def flatten_forward(x_input): """Perform the reshaping of the tensor of size `(K, L, M, N)` to the tensor of size `(K, L*M*N)` # Arguments x_input: np.array of size `(K, L, M, N)` # Output output: np.array of size `(K, L*M*N)` """ K, L, M, N = x_input.shape output = x_input.reshape(K, L*M*N) return output def flatten_grad_input(x_input, grad_output): """Calculate partial derivative of the loss with respect to the input # Arguments x_input: partial derivative of the loss with respect to the output np.array of size `(K, L*M*N)` # Output output: partial derivative of the loss with respect to the input np.array of size `(K, L, M, N)` """ K, L, M, N = x_input.shape grad_input = grad_output.reshape(K, L, M, N) return grad_input class FlattenLayer(Layer): def forward(self, x_input): self.output = flatten_forward(x_input) return self.output def backward(self, x_input, grad_output): output = flatten_grad_input(x_input, grad_output) return output ```
{ "source": "jimi-c/receptor", "score": 3 }
#### File: receptor/receptor/node.py ```python import asyncio import logging from .protocol import BasicProtocol, create_peer logger = logging.getLogger(__name__) def mainloop(receptor, ping_interval=None, loop=asyncio.get_event_loop(), skip_run=False): config = receptor.config if config.server.server_enable: listener = loop.create_server( lambda: BasicProtocol(receptor, loop), config.server.address, config.server.port, ssl=config.get_server_ssl_context()) loop.create_task(listener) logger.info("Serving on %s:%s", config.server.address, config.server.port) for peer in config.peers: loop.create_task(create_peer(receptor, loop, *peer.split(":", 1))) if ping_interval: ping_time = (((int(loop.time()) + 1) // ping_interval) + 1) * ping_interval loop.call_at(ping_time, loop.create_task, send_pings_and_reschedule(receptor, loop, ping_time, ping_interval)) if not skip_run: try: loop.run_until_complete(receptor.shutdown_handler()) except KeyboardInterrupt: pass finally: loop.stop() async def send_pings_and_reschedule(receptor, loop, ping_time, ping_interval): logger.debug(f'Scheduling mesh ping.') for node_id in receptor.router.get_nodes(): await receptor.router.ping_node(node_id) loop.call_at(ping_time + ping_interval, loop.create_task, send_pings_and_reschedule( receptor, loop, ping_time + ping_interval, ping_interval)) ```
{ "source": "JimiJenneskens/sqlalchemy-challenge", "score": 3 }
#### File: JimiJenneskens/sqlalchemy-challenge/climate_app.py ```python from flask import Flask, json, jsonify import datetime as dt import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from sqlalchemy import inspect engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save references to each table Measurement = Base.classes.measurement Station = Base.classes.station session = Session(engine) app = Flask(__name__) # List all routes that are available. @app.route("/") def welcome(): session = Session(engine) return ( f"Welcome to the Homepage<br/>" f"<br/>" f"Available routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/start_date<br/>" f"/api/v1.0/start_date/end_date/" ) # Return the JSON representation of your dictionary @app.route('/api/v1.0/precipitation/') def precipitation(): session = Session(engine) last_date = session.query(Measurement.date).order_by(Measurement.date.desc()).first().date last_date = dt.datetime.strptime(last_date, "%Y-%m-%d") first_date = last_date - dt.timedelta(days=365) last_year_data = session.query(Measurement.date, Measurement.prcp).filter(Measurement.date >= first_date).all() return jsonify(last_year_data) # Return a JSON-list of stations from the dataset. @app.route('/api/v1.0/stations/') def stations(): session = Session(engine) stations = session.query(Station.station).all() return jsonify(stations) # Return a JSON-list of Temperature Observations from the dataset. @app.route('/api/v1.0/tobs/') def tobs(): session = Session(engine) stations = session.query(Measurement.station,func.count(Measurement.station)).group_by(Measurement.station).order_by(func.count(Measurement.station).desc()).all() most_active_station = stations[0][0] station_data = session.query(Measurement.date, Measurement.tobs).filter(Measurement.station == most_active_station).all() station_data = list(np.ravel(station_data)) return jsonify(station_data) # Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start date @app.route('/api/v1.0/<start_date>/') def calc_temps_start(start_date): session = Session(engine) results = session.query(func.min(Measurement.tobs),func.avg(Measurement.tobs),func.max(Measurement.tobs)).filter(Measurement.date > start_date).all() temps = list(np.ravel(results)) return jsonify(temps) # Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start-end range. @app.route('/api/v1.0/<start_date>/<end_date>/') def calc_temps_start_end(start_date, end_date): session = Session(engine) results = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() temps = list(np.ravel(results)) return jsonify(temps) if __name__ == "__main__": app.run(debug=True) ```
{ "source": "JimiLab/RecSys2018", "score": 2 }
#### File: JimiLab/RecSys2018/DataManager.py ```python import os import math import json import time from tqdm import tqdm import random from collections import defaultdict import numpy as np from sklearn.externals import joblib from scipy.sparse import lil_matrix, csr_matrix import re from nltk.tokenize import word_tokenize from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords class DataManager: """ Sets up Empty Data Manager object Main data structure is three list of lists: playlist ID, track IDs where track ID is found in the dictionary uri_to_id and id_to_uri Each list represents the three parts of the data set: train, test, challenge """ def __init__(self, path, track_prior, train_size=10000, test_size=2000, challenge_file=None, min_track_prior=0.0): self.DATA_DIR = path self.CHALLENGE_FILE = challenge_file self.track_prior = track_prior self.min_track_prior = min_track_prior self.data_cache = dict() self.train_size = train_size self.train = [] self.train_title = [] self.train_description = [] self.word_index_playlist = defaultdict(dict) # token -> playlist -> score self.word_index_track = defaultdict(dict) # token -> track _ ->score self.test_size = math.ceil(test_size/10.0)*10 # needs to be a multiple of 10 self.subtest_size = self.test_size /10 self.test = [] # all test lists are of size 10 for each of the 10 subchallanges self.test_uri = [] self.test_truth = [] self.test_truth_uri = [] self.test_title = [] for i in range(10): self.test.append([]) self.test_uri.append([]) self.test_truth.append([]) self.test_truth_uri.append([]) self.test_title.append([]) self.subtest_name = ["title only", "title / first", "title / first 5", "first 5", "title / first 10", "first 10 ", "title / first 25", "title / random 25 ", "title / first 100", "title / random 100" ] self.subtest_setup = [(True, 0, True), (True, 1, True), (True, 5, True), (False, 5, True), (True, 10, True), (False, 10, True), (True, 25, True), (True, 25, False), (True, 100, True), (True, 100, False)] # (has_title, num_tracks, first_or_random) self.challenge = [] self.challenge_title = [] self.uri_to_id = dict() self.id_to_uri = dict() self.track_frequency = [] self.track_timestamps = [] #list of modified timestamps for playlists in which the track appears self.artist_to_track_id = defaultdict(list) self.album_to_track_id = defaultdict(list) self.pid_to_spotify_pid = [] self.X = None self.X_test = None self.X_test_words = None self.X_challenge = None self.X_challenge_words = None self.popularity_vec = None # prior probability of track occuring on a playlist self.prefix = "spotify:track:" self.stemmer = PorterStemmer() self.stop_words = set(stopwords.words('english')) def text_process(self, str): str = self.normalize_name(str) tokens = word_tokenize(str) stemmed_tokens = list() for word in tokens: if word not in self.stop_words: stemmed_tokens.append(self.stemmer.stem(word)) return stemmed_tokens def normalize_name(self, name): name = name.lower() name = re.sub(r"[.,\/#!$%\^\*;:{}=\_`~()@]", ' ', name) name = re.sub(r'\s+', ' ', name).strip() return name def add_tokens_to_index(self, index, id, title, description): str_lists =[[self.normalize_name(title)], self.text_process(title), self.text_process(description)] weights = [1.0, 0.5, 0.25] for i in range(len(str_lists)): for t in str_lists[i]: if t in index.keys(): if id in index[t]: index[t][id] += weights[i] else: index[t][id] = weights[i] else: index[t] = {id : weights[i]} def tfidf_index(self, index, num_docs, mode="ltc"): print("Word Index Mode", mode) #num_docs = len(index) for term in index.keys(): idf = 1 if (mode[1] == 't'): idf = math.log10(num_docs / len(index[term].keys())) for id in index[term]: tf = index[term][id] if mode[0] == 'l': tf = 1+ math.log10(tf) index[term][id] = tf * idf if tf*idf < 0: pass #length normalization - 2-pass algorithm - sum of squares if mode[2] == 'c': doc_len = defaultdict(float) for term in index.keys(): for id in index[term].keys(): doc_len[id] += index[term][id] ** 2 for term in index.keys(): for id in index[term].keys(): index[term][id] /= math.sqrt(doc_len[id]) # check to make sure that each playlist is length 1 #check_doc_len = defaultdict(float) #for term in self.word_index_playlist.keys(): # for pid in self.word_index_playlist[term].keys(): # check_doc_len[pid] += self.word_index_playlist[term][pid] ** 2 #pass def _add_train_playlist(self, playlist): pid = len(self.train) self.train.append([]) title = playlist["name"] self.train_title.append(title) description = "" if "description" in playlist: description = playlist["description"] self.train_description.append(description) self.add_tokens_to_index(self.word_index_playlist, pid, title, description) modified = playlist["modified_at"] for track in playlist['tracks']: track_uri = track['track_uri'] track_uri = track_uri[len(self.prefix):] if self.track_prior[track_uri] < self.min_track_prior: continue # new track that has never been encountered before if track_uri not in self.uri_to_id.keys(): tid = len(self.id_to_uri) self.uri_to_id[track_uri] = tid self.id_to_uri[tid] = [track['track_uri'], track['track_name'], track['artist_uri'], track['artist_name'], track['album_uri'], track['album_name']] self.track_frequency.append(0) self.track_timestamps.append(list()) self.artist_to_track_id[track['artist_uri']].append(tid) self.album_to_track_id[track['album_uri']].append(tid) track_id = self.uri_to_id[track_uri] self.train[pid].append(track_id) self.track_frequency[track_id] += 1 self.track_timestamps[track_id].append(modified) self.add_tokens_to_index(self.word_index_track, track_id, title, description) def _add_test_playlist(self, playlist): subtest = random.randint(0,9) # if subtest is already full if len(self.test_uri[subtest]) >= self.subtest_size: return num_tracks = playlist["num_tracks"] # not enough tracks to hid any tracks # (minimum number of track holdout in challenge data set is 5) if num_tracks - 5 <= self.subtest_setup[subtest][1]: return pid = len(self.test[subtest]) self.test_title[subtest].append(self.normalize_name(playlist["name"])) uri_list = list() for track in playlist['tracks']: track_uri = track['track_uri'] track_uri = track_uri[len(self.prefix):] uri_list.append(track_uri) #random tracks from playlist if self.subtest_setup[subtest][2] == False: random.shuffle(uri_list) # number of tracks in the playlist split = self.subtest_setup[subtest][1] self.test_uri[subtest].append(uri_list[0:split]) self.test_truth_uri[subtest].append(uri_list[split:]) pass def load_playlist_data(self, mode='ltc'): """ Loads MPD JSON data files sequentially. Create train and test list of lists where each track is represented by internal id if track does not appear in training set, it is represented with an id = -1 in the test set playlist list Args: None Returns: None """ total_size = self.train_size+self.test_size train_test_ratio = self.test_size / total_size num_files_to_load = 1000 # num_files_to_load = math.ceil(total_size / 1000)+1 train_done = False test_done = False pbar = tqdm(total=self.train_size) pbar.write('~~~~~~~ LOADING PLAYLIST DATA ~~~~~~~') for file in os.listdir(self.DATA_DIR)[:num_files_to_load]: if train_done and test_done: break if not file.startswith("mpd.slice"): continue data = json.load(open(self.DATA_DIR + file)) for playlist in data['playlists']: # break if we have enough data if train_done and test_done: break is_train = random.uniform(0, 1) > train_test_ratio # POTENTIAL DATA LEAKER - Once training is full, everything else can be a test playlist # skip playlist if we have already loaded enough of them for either train or test if is_train and train_done: is_train = False if not is_train and test_done: continue if is_train: self._add_train_playlist(playlist) train_done = len(self.train) >= self.train_size if train_done: pass pbar.update(1) else: self._add_test_playlist(playlist) test_done = True for i in range(10): if len(self.test_uri[i]) < self.subtest_size: test_done = False break pbar.close() # TODO: need to explore variants of TF-IDF self.tfidf_index(self.word_index_playlist, len(self.train), mode=mode) self.tfidf_index(self.word_index_track, len(self.id_to_uri), mode=mode) # resolve test playlist against training track corpus # set unknown tracks to have id < 0 (e.g., -1, -2, -3, ... for s in range(10): miss_idx = -1 for p in range(len(self.test_uri[s])): self.test[s].append([]) self.test_truth[s].append([]) for uri in self.test_uri[s][p]: if uri not in self.uri_to_id.keys(): self.test[s][p].append(-1) else: self.test[s][p].append(self.uri_to_id[uri]) for uri in self.test_truth_uri[s][p]: if uri not in self.uri_to_id.keys(): self.test_truth[s][p].append(miss_idx) miss_idx -= 1 else: self.test_truth[s][p].append(self.uri_to_id[uri]) return def load_challenge_data(self): data = json.load(open(self.CHALLENGE_FILE)) pbar = tqdm(total=10000) pbar.write('~~~~~~~ LOADING PLAYLIST DATA ~~~~~~~') for playlist in data['playlists']: self.pid_to_spotify_pid.append(playlist['pid']) if 'name' in playlist: self.challenge_title.append(self.normalize_name(playlist['name'])) else: self.challenge_title.append("") track_ids = list() for track in playlist['tracks']: track_uri = track['track_uri'] track_uri = track_uri[len(self.prefix):] if track_uri not in self.uri_to_id.keys(): track_ids.append(-1) else: track_ids.append(self.uri_to_id[track_uri]) self.challenge.append(track_ids) pbar.update(1) self.challenge_size = len(self.challenge) pbar.close() def pickle_data(self, filename): # Use file handle to ensure file exists upon serialization with open(filename, 'wb') as file: joblib.dump(self, file) def create_train_matrix(self): print(" - train matrix") num_rows = len(self.train) num_cols = len(self.id_to_uri) self.X = lil_matrix((num_rows, num_cols), dtype=np.int8) for p in range(num_rows): if p % 10000 == 0: print(p, " of ", num_rows) for t in self.train[p]: self.X[p, t] = 1 self.X = self.X.tocsr() def create_test_top_track_matrix(self): print(" - test top tracks from artist and album matrix") num_subtest = len(self.test) num_rows = len(self.test[0]) num_cols = len(self.id_to_uri) self.X_test_top_tracks = list() # BUG HERE Make this 0 to num_subtest for s in range(0,num_subtest): mat = lil_matrix((num_rows, num_cols), dtype=np.int8) for p in range(num_rows): for track_id in self.test[s][p]: if track_id >= 0: artist_uri = self.id_to_uri[track_id][2] for top_track_id in self.artist_top_tracks[artist_uri]: if track_id != top_track_id: mat[p, top_track_id] = 1 album_uri = self.id_to_uri[track_id][4] for top_track_id in self.album_top_tracks[album_uri]: if track_id != top_track_id: mat[p, top_track_id] = 1 self.X_test_top_tracks.append(mat.tocsc()) def create_challenge_top_track_matrix(self): print(" - challenge top tracks from artist and album matrix") num_rows = len(self.challenge) num_cols = len(self.id_to_uri) mat = lil_matrix((num_rows, num_cols), dtype=np.int8) for p in range(num_rows): for track_id in self.challenge[p]: if track_id >= 0: artist_uri = self.id_to_uri[track_id][2] for top_track_id in self.artist_top_tracks[artist_uri]: if track_id != top_track_id: mat[p, top_track_id] = 1 album_uri = self.id_to_uri[track_id][4] for top_track_id in self.album_top_tracks[album_uri]: if track_id != top_track_id: mat[p, top_track_id] = 1 self.X_challenge_top_tracks= mat.tocsc() def create_test_matrix(self): print(" - test matrix") num_subtest = len(self.test) num_rows = len(self.test[0]) num_cols = len(self.id_to_uri) self.X_test = list() for s in range(num_subtest): mat = lil_matrix((num_rows, num_cols), dtype=np.int8) for p in range(num_rows): for t in self.test[s][p]: if t >= 0 : mat[p,t] = 1 self.X_test.append(mat) return def create_challenge_matrix(self): print(" - challenge matrix") num_rows = len(self.challenge) num_cols = len(self.id_to_uri) self.X_challenge = lil_matrix((num_rows, num_cols), dtype=np.int8) for p in range(num_rows): for t in self.challenge[p]: if t >= 0: self.X_challenge[p, t] = 1 def calculate_popularity(self, top_k = 5): print("Calculating Track Prior Proabability, Top Artist Tracks, and Top Album Tracks ") self.popularity_vec = np.array(self.track_frequency) / self.train_size self.artist_top_tracks = defaultdict(list) for k,v in self.artist_to_track_id.items(): track_pops = self.popularity_vec[v] idx = np.argsort(1 / track_pops)[0:min(top_k, len(track_pops))].tolist() #sort artist track by popularity for i in idx: self.artist_top_tracks[k].append(v[i]) self.album_top_tracks = defaultdict(list) for k, v in self.album_to_track_id.items(): track_pops = self.popularity_vec[v] idx = np.argsort(1 / track_pops)[0:min(top_k, len(track_pops))].tolist() # sort artist track by popularity for i in idx: self.album_top_tracks[k].append(v[i]) def create_test_word_matrix_by_playlist_neighbors(self): print(" - test title and description word matrix by playlist neighbors:") num_subtest = len(self.test) num_rows = len(self.test[0]) num_cols = len(self.id_to_uri) self.X_test_words = list() pbar = tqdm(total=num_subtest) for s in range(0,num_subtest): mat = csr_matrix((num_rows, num_cols), dtype="float32") for p in range(num_rows): tokens = self.text_process(self.test_title[s][p]) if len(tokens) > 1: # add complete title as search token tokens.append(self.normalize_name(self.test_title[s][p])) if len(tokens) == 0: continue query_token_score = 1/math.sqrt(len(tokens)) scores = defaultdict(float) for token in tokens: if token in self.word_index_playlist.keys(): for pid in self.word_index_playlist[token]: scores[pid] += self.word_index_playlist[token][pid] * query_token_score #average playlist vectors for all playlists with matching terms temp_mat = self.X[list(scores.keys()), :].todense() temp_score = np.array(list(scores.values())) temp_vec = np.sum(np.multiply(temp_mat.T, temp_score).T, axis=0) /(1+math.log(1+len(scores))) # denominator is is used to scale the output so that the maximum value is close to 1 mat[p, :] = temp_vec self.X_test_words.append(mat) pbar.update(1) print("done.") def create_test_word_matrix_by_track_index(self): print(" - test title and description word matrix by track index:") num_subtest = len(self.test) num_rows = len(self.test[0]) num_cols = len(self.id_to_uri) self.X_test_words = list() pbar = tqdm(total=num_subtest) for s in range(0,num_subtest): mat = lil_matrix((num_rows, num_cols), dtype="float32") for p in range(num_rows): tokens = self.text_process(self.test_title[s][p]) if len(tokens) > 1: # add complete title as search token tokens.append(self.normalize_name(self.test_title[s][p])) if len(tokens) == 0: continue query_token_score = 1/math.sqrt(len(tokens)) for token in tokens: if token in self.word_index_track.keys(): for tid in self.word_index_track[token]: mat[p,tid] += self.word_index_track[token][tid] * query_token_score self.X_test_words.append(mat.tocsr()) pbar.update(1) print("done.") def create_challenge_word_matrix_by_playlist_neighbors(self): print(" - challenge title and description word matrix") num_rows = len(self.challenge) num_cols = len(self.id_to_uri) mat = csr_matrix((num_rows, num_cols), dtype="float32") pbar = tqdm(total=num_rows) for p in range(num_rows): tokens = self.text_process(self.challenge_title[p]) query_token_score = 1 / math.sqrt(max(1,len(tokens))) scores = defaultdict(float) for token in tokens: if token in self.word_index_playlist.keys(): for pid in self.word_index_playlist[token]: scores[pid] += self.word_index_playlist[token][pid] * query_token_score # average playlist vectors for all playlists with matching terms temp_mat = self.X[list(scores.keys()), :].todense() temp_score = np.array(list(scores.values())) temp_vec = np.sum(np.multiply(temp_mat.T, temp_score).T, axis=0) / (1 + math.log(1 + len(scores))) # denominator is is used to scale the output so that the maximum value is close to 1 mat[p, :] = temp_vec pbar.update(1) pbar.close() self.X_challenge_words = mat def create_challenge_word_matrix_by_track_index(self): print(" - challenge title and description word matrix by track index:") num_rows = len(self.challenge) num_cols = len(self.id_to_uri) mat = lil_matrix((num_rows, num_cols), dtype="float32") pbar = tqdm(total=num_rows) for p in range(num_rows): pbar.update(1) # REMOVE LATER: don't compute word matrix for last 5 subchallenges sets #if p > 5000: # continue tokens = self.text_process(self.challenge_title[p]) if len(tokens) > 1: # add complete title as search token tokens.append(self.normalize_name(self.challenge_title[p])) if len(tokens) == 0: continue query_token_score = 1/math.sqrt(len(tokens)) for token in tokens: if token in self.word_index_track.keys(): for tid in self.word_index_track[token]: mat[p,tid] += self.word_index_track[token][tid] * query_token_score self.X_challenge_words = mat.tocsr() pbar.close() print("done.") def create_matrices(self ): self.create_train_matrix() self.create_test_matrix() #self.create_test_word_matrix_by_playlist_neighbors() self.create_test_word_matrix_by_track_index() self.create_test_top_track_matrix() if self.CHALLENGE_FILE is not None: self.create_challenge_matrix() #self.create_challenge_word_matrix_by_playlist_neighbors() self.create_challenge_word_matrix_by_track_index() self.create_challenge_top_track_matrix() # END OF CLASS def calculate_track_priors(path, pickle_file): prefix = "spotify:track:" playlist_count = 0 track_prior = defaultdict(float) for file in os.listdir(path): print(file) data = json.load(open(path + file)) for playlist in data['playlists']: playlist_count += 1 for track in playlist['tracks']: track_uri = track['track_uri'] track_uri = track_uri[len(prefix):] track_prior[track_uri] += 1.0 for k in track_prior.keys(): track_prior[k] /= playlist_count joblib.dump(track_prior, pickle_file) return track_prior def load_data(train_size=10000, test_size=2000, load_challenge=False, create_matrices=False, generate_data=False, create_pickle_file=True, mode="ltc", min_track_prior= 0.0): """ Fixed Path Names """ data_folder = os.path.join(os.getcwd(), 'data/mpd.v1/data/') challenge_file = os.path.join(os.getcwd(), 'data/challenge.v1/challenge_set.json') pickle_folder = os.path.join(os.getcwd(), 'data/pickles/') c_str = "" c_file = None if load_challenge: c_str = "_with_challenge" c_file = challenge_file m_str = "" if create_matrices: m_str = "_with_matrices" pickle_file = pickle_folder + "MPD_" + str(math.floor(train_size/1000.0)) + "KTrain_" + \ str(math.floor(test_size / 1000.0)) + \ "KTest" + c_str + m_str + ".pickle" pickle_exists = os.path.isfile(pickle_file) if generate_data or not pickle_exists: track_prior_pickle_file = pickle_folder + "track_prior.pickle" if os.path.isfile(track_prior_pickle_file): print("Loading Track Priors") track_prior = joblib.load(track_prior_pickle_file) else: print("Calculating Track Priors") track_prior = calculate_track_priors(data_folder, track_prior_pickle_file) d = DataManager(data_folder, track_prior, train_size=train_size, test_size=test_size, challenge_file=c_file, min_track_prior=min_track_prior) print("Load Playlist Data") d.load_playlist_data(mode=mode) d.calculate_popularity() if load_challenge: print("Load Challenge Set Data") d.load_challenge_data() if create_matrices: print("Calculate Numpy Matrices") d.create_matrices() if create_pickle_file: print("Pickle Data into file: "+pickle_file) d.pickle_data(pickle_file) else: print("Load data from Pickle File: "+pickle_file) d = joblib.load(pickle_file) return d if __name__ == '__main__': generate_data_arg = True # True - load data for given parameter settings # False - only load data if pickle file doesn't already exist train_size_arg = 1000 # number of playlists for training test_size_arg = 1000 # number of playlists for testing load_challenge_arg = False # loads challenge data when creating a submission to contest create_matrices_arg = True # creates numpy matrices for train, test, and (possibly) challenge data create_pickle_file_arg = True #takes time to create pickle file text_index_mode_arg = "ntc" min_track_prior_arg = 0.0002 data_in = load_data(train_size_arg, test_size_arg, load_challenge_arg, create_matrices_arg, generate_data_arg, create_pickle_file_arg, text_index_mode_arg, min_track_prior_arg) pass ``` #### File: JimiLab/RecSys2018/predict_with_LSA.py ```python from sklearn.decomposition import TruncatedSVD from predict import * from DataManager import load_data import math import numpy as np np.seterr(divide='ignore', invalid='ignore') # Z-score divide by zero is handled from tqdm import tqdm import os from metrics import get_all_metrics from scipy.sparse import lil_matrix, csc_matrix from scipy.stats import zscore import random from sklearn.externals import joblib from bayes_opt import BayesianOptimization import matplotlib.mlab as mlab import matplotlib.pyplot as plt class PredictWithLSA: def __init__(self, data, num_components=64, lsa_min_track_prior=0.0): """ :param data: :param num_components: :param lsa_min_track_prior: minimum proportion of playlists that a tracks has to appear in to be used for SVD projection. Default is 0.0, but a good baseline is 0.0002 or 0.02% of playlists. This retains about 22.5% of tracks. """ # Call init on super class Predict.__init__(self) self.d = data # DataManager Object self.num_components = num_components self.num_predictions = 500 self.svd = TruncatedSVD(n_components=self.num_components) self.min_track_prior = lsa_min_track_prior self.lsa_track_mask = np.extract(self.d.popularity_vec > self.min_track_prior, np.arange(0,self.d.popularity_vec.shape[0])) self.lsa_id_to_column = dict() for i in range(len(self.lsa_track_mask)): self.lsa_id_to_column[self.lsa_track_mask[i]] = i def learn_model(self): if not hasattr(self.d, 'X'): print("Pickle File does not have pre-computed numpy X matrix. Aborting") return print("Learning LSA model...", end="") self.svd.fit(self.d.X[:, self.lsa_track_mask]) print("done.") def predict_from_matrices(self, X, pop_vec, X_top_tracks, X_words, weights, z_score=True, random_baseline=False): #return np.random.randint(0, 10000 ,size=(X.shape[0], self.num_predictions)) embedded_test_vecs = self.svd.transform(X[:, self.lsa_track_mask]) lsa_vecs_hat_compressed = self.svd.inverse_transform(embedded_test_vecs) if z_score: lsa_vecs_hat_compressed = zscore(lsa_vecs_hat_compressed, axis=1, ddof=1) np.nan_to_num(lsa_vecs_hat_compressed, copy=False) lsa_vecs_hat = csc_matrix(X.shape, dtype="float32") lsa_vecs_hat[:, self.lsa_track_mask] = lsa_vecs_hat_compressed # linear combination of LSA score, popularity, and top tracks from artist and album test_vecs_hat = weights[0] * lsa_vecs_hat + \ weights[1] * pop_vec + \ weights[2] * X_top_tracks + \ weights[3] * X_words # effectively remove known tracks that already appear in the test playlists by given large negative weight test_vecs_hat = test_vecs_hat - X * 99999999 test_rank = np.argsort(-1 * test_vecs_hat, axis=1) if random_baseline: # Change to True for Random Baseline np.random.shuffle(test_rank.T) return test_rank[:, 0:self.num_predictions] def predict_from_words(self, mat): test_rank = np.argsort(-1 * mat.todense(), axis=1) return test_rank[:, 0:self.num_predictions] def predict_playlists(self, weights, z_score=False, random_baseline=False): """ weights = (lsa_weight, popularity_weight, related_tracks_weight, word_weight) weights can either be a tuple with 4 weights, or a list of 10 tuples of 4 weights each """ #print("\nStarting playlist prediction...") print("Weights (LSA, Pop, Related Track, Title Words):", weights ) num_subtest = len(self.d.test) num_playlists = len(self.d.test[0]) metric_names = ["r_prec", "ndcg", "clicks"] num_metrics = len(metric_names) results = np.zeros((num_subtest,num_playlists, num_metrics), dtype=float) # create all popularity vecs so that 1st place is pop of 1.0 pop_vec = self.d.popularity_vec / np.max(self.d.popularity_vec) #pbar = tqdm(total=num_subtest) #pbar.write('~~~~~~~ Predicting Playlists ~~~~~~~') for st in range(num_subtest): if type(weights) == list: w = weights[st] else: w = weights test_rank = self.predict_from_matrices(self.d.X_test[st].tocsc(), pop_vec, self.d.X_test_top_tracks[st], self.d.X_test_words[st], w) #test_rank = self.predict_from_words(self.d.X_test_words[st]) for pl in range(num_playlists): rank_list = test_rank[pl,:].tolist()[0] result = get_all_metrics(self.d.test_truth[st][pl], rank_list, self.num_predictions) results[st][pl] = np.array(result) # ignores test set songs not found in training set #pbar.update(1) #pbar.close() average_result = np.mean(results, axis=1) print("Number Training Playlists and Tracks:", self.d.X.shape) print("Min Track Prior ", self.d.min_track_prior) print("LSA dims: ", self.num_components) print("LSA Track Corpus Size:", self.lsa_track_mask.size, "(LSA min track prior =", self.min_track_prior,")") print() self.print_subtest_results(self.d.subtest_name, metric_names, average_result) print() self.print_overall_results(metric_names, np.mean(average_result, axis=0)) return average_result def predict_playlists_bayes(self, st, w0, w1, w2, w3): st = int(st) # repace this later num_playlists = len(self.d.test[0]) metric_names = ["r_prec", "ndcg", "clicks"] num_metrics = len(metric_names) results = np.zeros((num_playlists, num_metrics), dtype=float) # create all popularity vecs so that 1st place is pop of 1.0 pop_vec = self.d.popularity_vec / np.max(self.d.popularity_vec) w = (w0, w1, w2, w3) test_rank = self.predict_from_matrices(self.d.X_test[st].tocsc(), pop_vec, self.d.X_test_top_tracks[st], self.d.X_test_words[st], w) for pl in range(num_playlists): rank_list = test_rank[pl, :].tolist()[0] result = get_all_metrics(self.d.test_truth[st][pl], rank_list, self.num_predictions) results[pl] = np.array(result) average_result = np.mean(results, axis=0) return average_result[1] def generate_submission(self, filepath, weights, z_score=False): print("Encoding and Recoding Challenge Set Matrix") f = open(filepath, 'w') f.write("team_info,main,JimiLab,<EMAIL>\n") num_subtest = 10 num_playlists = len(self.d.challenge) # 10000 subtest_size = int(len(self.d.challenge) / num_subtest) # 1000 #rank = np.zeros(num_playlists, self.num_predictions) # create all popularity vecs so that 1st place is pop of 1.0 pop_vec = self.d.popularity_vec / np.max(self.d.popularity_vec) pbar = tqdm(total=num_subtest) pbar.write('~~~~~~~ Generating Ranks by Subchallenge ~~~~~~~') for i in range(num_subtest): start = i*subtest_size end = start+subtest_size if type(weights) == list: w = weights[i] else: w = weights rank = self.predict_from_matrices(self.d.X_challenge[start:end, :].tocsc(), pop_vec, self.d.X_challenge_top_tracks[start:end, :], self.d.X_challenge_words[start:end, :], w) (num_rows, num_columns) = rank.shape for pid in range(num_rows): spotify_pid = self.d.pid_to_spotify_pid[start+pid] f.write(str(spotify_pid)) for tid in range(num_columns): track_id = rank[pid, tid] f.write("," + str(self.d.id_to_uri[track_id][0])) f.write("\n") pbar.update(1) pbar.close() f.close() if __name__ == '__main__': """ Parameters for Loading Data """ generate_data_arg = True # True - load data for given parameter settings # False - only load data if pickle file doesn't already exist create_pickle_file_arg = True #create a pickle file train_size_arg = 500000 # number of playlists for training test_size_arg = 5000 # number of playlists for testing load_challenge_arg = True # loads challenge data when creating a submission to contest create_matrices_arg = True # creates numpy matrices for train, test, and (possibly) challenge dat (should always be True) random_baseline_arg = False # set to true if you want to run random baseline min_track_prior_arg = 0.0001 text_index_text_mode_arg = "ntn" num_components_arg = 128 lsa_min_track_prior_arg = 0.0002 # minimum prior probability needed to keep track in LSA training matrix size (default 0.0002 or 2 / 10000 playlists lsa_zscore_arg = True # zscore the output of the LSA weight after embedding and projecting back into the original space lsa_weight_arg = .4 # weight of LSA in linear combination popularity_weight_arg = 0.0001 # set to 0 for no popularity bias, set to 1 for popularity baseline related_track_weight_arg = .4 # weight for top tracks from albums and artists already in the playlist words_weight_arg = .2 weights = (lsa_weight_arg, popularity_weight_arg, related_track_weight_arg, words_weight_arg) a = [(0.4, 0.3, 0.1, 0.2), #100 per subtest (0.3, 0.1, 0.2, 0.4), (0.5, 0.0, 0.3, 0.2), (0.4, 0.0, 0.4, 0.2), (0.4, 0.0, 0.4, 0.2), (0.5, 0.0, 0.3, 0.2), (0.5, 0.0, 0.3, 0.2), (0.4, 0.0, 0.6, 0.0), (0.8, 0.0, 0.0, 0.2), (0.4, 0.0, 0.6, 0.0)] b = [(0.6, 0.15, 0.2, 0.05), # 400 per subtest (0.25, 0.0001, 0.6, 0.15), (0.8, 0.0001, 0.01, 0.16), (0.25, 0.0001, 0.6, 0.15), (0.7, 0.2, 0.01, 0.09), (0.25, 0.0001, 0.6, 0.15), (0.8, 0.0001, 0.01, 0.19), (0.6, 0.15, 0.2, 0.05), (0.6, 0.15, 0.2, 0.05), (0.95, 0.0, 0.01, 0.04)] c = [(1, 1, 0.47, 0.35), #optimized (0.5, 0.2, 0.88, 0.37), (1, 1, 1, 0.25), (1, 0, 0.61, 0.52), (0.14, 0.0025, 0.7121, 0.058), (0.63, 0.1, 0.8, 0.15), (0.79, 0.41, 0.54, 0.13), (0.49, 0, 1, 0), (0.63, 0.99, 0.99, 0.04), (0.61, 0, 1, 0)] dd = [(0.35, 0.35, 0.17, 0.12), #optimized and normalized (0.26, 0.10, 0.45, 0.19), (0.31, 0.31, 0.31, 0.08), (0.47, 0.00, 0.29, 0.24), (0.15, 0.00, 0.78, 0.06), (0.38, 0.06, 0.48, 0.09), (0.42, 0.22, 0.29, 0.07), (0.33, 0.00, 0.67, 0.00), (0.24, 0.37, 0.37, 0.02), (0.38, 0.00, 0.62, 0.00)] e = [(0.0, 0.3, 0.1, 0.2), # doug guess (0.3, 0.1, 0.2, 0.4), (0.5, 0.0, 0.3, 0.2), (0.5, 0.0, 0.5, 0.0), (0.4, 0.0, 0.4, 0.2), (0.5, 0.0, 0.5, 0.0), (0.5, 0.0, 0.3, 0.1), (0.5, 0.0, 0.4, 0.1), (0.5, 0.0, 0.4, 0.1), (0.5, 0.0, 0.4, 0.1)] f = [(0.0, 0.5, 0.3, 0.2), # doug guess simplfied (0.3, 0.1, 0.2, 0.4), (0.5, 0.0, 0.3, 0.2), (0.5, 0.0, 0.5, 0.0), (0.4, 0.0, 0.4, 0.2), (0.5, 0.0, 0.5, 0.0), (0.6, 0.0, 0.4, 0.0), (0.6, 0.0, 0.4, 0.0), (0.6, 0.0, 0.4, 0.0), (0.6, 0.0, 0.4, 0.0)] fiveK_weights = [(0.48270270281836813, 0.7448876242714548, 0.8873458428769633, 0.15564998404090447), (0.6665980154381933, 0.9053823615161176, 0.4117130073449573, 0.2148710518378656), (0.8827692081275599, 0.5576141929834891, 0.49192775259341104, 0.2999736449122169), (0.8800370593956184, 0.7937380143368223, 0.8841046630093821, 0.34700353058398903), (0.5274603443643752, 0.07455477305947611, 0.1880354271110969, 0.03071420816074444), (0.6307804397623651, 0.27749035743731953, 0.7761038220705893, 0.06690470605221444), (0.9193785447942945, 0.6314566605491208, 0.716798086280039, 0.13545127867094608), (0.5828181810021488, 0.970491938366122, 0.7521723287576919, 0.02099917789974426), (0.6775291332800575, 0.5180995363786292, 0.7337840488893119, 0.029505250640784464), (0.9999999982720098, 2.158247870415833e-09, 1.0, 0.0)] super_weights = [dd] submission_file_arg = os.path.join(os.getcwd(), 'data/submissions/lsa_test_June28_600K.csv') print("Starting Program") d = load_data(train_size_arg, test_size_arg, load_challenge_arg, create_matrices_arg, generate_data_arg, create_pickle_file_arg, text_index_text_mode_arg, min_track_prior_arg) lsa = PredictWithLSA(d, num_components=num_components_arg, lsa_min_track_prior=lsa_min_track_prior_arg) lsa.learn_model() if False: weight_arr = [(.25, .25, .25, .25), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0,0,0,1), (.7, .1, .1, .1), (.1, .7, .1, .1),(.1, .1, .7, .1),(.1, .1, .1, .7), (.4, .1, .1, .4), (.4, .1, .4, .1), (.4, .4, .1, .1), (.1, .4, .4, .1), (.1, .4, .1, .4), (.1, .1, .1, .4), (.3, .3, .3, .1), (.3, .3, .1, .3), (.3, .1, .3, .3), (.1, .3, .3, .3)] for weights in weight_arr: lsa.predict_playlists(weights, z_score=lsa_zscore_arg) if False: filename = "data/pickles/test_results50.pickle" num_trials = 25 weight_options = [.0, .0001, .001, .01, .05, 0.1, 0.15, .2, .25, .3, .4, .5, .6, .7, .75, .8, .85, .9, .95, .99, .999, .9999, 1.0] weight_list = [] results = np.zeros((10, 3, num_trials), dtype=float) best_weights = list() for i in range(num_trials): lsa_w = random.choice(weight_options) while (True): pop_w = random.choice(weight_options) if pop_w + lsa_w <= 1.0: break while (True): rt_w = random.choice(weight_options) if pop_w + lsa_w + rt_w <= 1.0: break weights = (max(0.0, lsa_w), max(0.0, pop_w), max(0.0, rt_w), max(0.0, 1-lsa_w-pop_w-rt_w) ) print("\nTrial: ", i) results[:, :, i] = lsa.predict_playlists(weights, z_score=lsa_zscore_arg) weight_list.append(weights) joblib.dump([weight_list, results], filename) ncdg = results[:, 1, :] top_score = -1 * np.sort(-1 * ncdg, axis=1)[:, 0] top_idx = np.argsort(-1 * ncdg, axis=1)[:, 0] for i in range(top_idx.shape[0]): print(i, top_idx[i], top_score[i], weight_list[top_idx[i]]) # print(weight_list[top_idx[i]]) best_weights.append(weight_list[top_idx[i]]) print(np.mean(top_score)) print("Results with Best Weights:") lsa.predict_playlists(best_weights, z_score=lsa_zscore_arg, random_baseline=random_baseline_arg) print(best_weights) if True: #Bayesian Optimation: best_weights = list() #ncdg = lsa.predict_playlists_bayes(0, .33, .33, .33) for st in range(10): bo = BayesianOptimization(lsa.predict_playlists_bayes, {'st':(st,st), 'w0': (0,1), 'w1':(0,1), 'w2':(0,1), 'w3':(0,1)}) bo.maximize(init_points=20, n_iter=5, acq='ucb', kappa=5) print(bo.res['max']) d = bo.res['max'] p = d['max_params'] best_weights.append((p['w0'], p['w1'], p['w2'], p['w3'])) lsa.predict_playlists(best_weights, z_score=lsa_zscore_arg, random_baseline=random_baseline_arg) print(best_weights) if False: for sub_weights in super_weights: print(sub_weights) lsa.predict_playlists(sub_weights, z_score=lsa_zscore_arg, random_baseline=random_baseline_arg) if load_challenge_arg: #best_weights = [(0.48270270281836813, 0.7448876242714548, 0.8873458428769633, 0.15564998404090447), (0.6665980154381933, 0.9053823615161176, 0.4117130073449573, 0.2148710518378656), (0.8827692081275599, 0.5576141929834891, 0.49192775259341104, 0.2999736449122169), (0.8800370593956184, 0.7937380143368223, 0.8841046630093821, 0.34700353058398903), (0.5274603443643752, 0.07455477305947611, 0.1880354271110969, 0.03071420816074444), (0.6307804397623651, 0.27749035743731953, 0.7761038220705893, 0.06690470605221444), (0.9193785447942945, 0.6314566605491208, 0.716798086280039, 0.13545127867094608), (0.5828181810021488, 0.970491938366122, 0.7521723287576919, 0.02099917789974426), (0.6775291332800575, 0.5180995363786292, 0.7337840488893119, 0.029505250640784464), (0.9999999982720098, 2.158247870415833e-09, 1.0, 0.0)] #lsa.predict_playlists(best_weights, z_score=lsa_zscore_arg, random_baseline=random_baseline_arg) print("Generating Submission file:", submission_file_arg) lsa.generate_submission(submission_file_arg, best_weights, z_score=lsa_zscore_arg) print("done") ```
{ "source": "jimilee/image-classification", "score": 2 }
#### File: image-classification/models/conformer.py ```python import torch from torch import nn, Tensor from torch.nn import functional as F from .layers import MLP, DropPath, trunc_normal_ class Attention(nn.Module): def __init__(self, dim, head): super().__init__() self.head = head self.scale = (dim // head) ** -0.5 self.qkv = nn.Linear(dim, dim*3) self.proj = nn.Linear(dim, dim) def forward(self, x: Tensor) -> Tensor: B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.head, C // self.head).permute(2, 0, 3, 1, 4) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) return x class Block(nn.Module): def __init__(self, dim, head, dpr=0.): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = Attention(dim, head) self.drop_path = DropPath(dpr) if dpr > 0. else nn.Identity() self.norm2 = nn.LayerNorm(dim) self.mlp = MLP(dim, int(dim*4)) def forward(self, x: Tensor) -> Tensor: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class ConvBlock(nn.Module): def __init__(self, c1, c2, s=1, res_conv=False): super().__init__() ch = c2 // 4 self.res_conv = res_conv self.conv1 = nn.Conv2d(c1, ch, 1, 1, 0, bias=False) self.bn1 = nn.BatchNorm2d(ch) self.conv2 = nn.Conv2d(ch, ch, 3, s, 1, bias=False) self.bn2 = nn.BatchNorm2d(ch) self.conv3 = nn.Conv2d(ch, c2, 1, 1, 0, bias=False) self.bn3 = nn.BatchNorm2d(c2) self.act = nn.ReLU() if self.res_conv: self.residual_conv = nn.Conv2d(c1, c2, 1, s, 0, bias=False) self.residual_bn = nn.BatchNorm2d(c2) def zero_init_last_bn(self): nn.init.zeros_(self.bn3.weight) def forward(self, x: Tensor, x_t: Tensor = None, return_x2=True): residual = x x = self.act(self.bn1(self.conv1(x))) x = self.conv2(x) if x_t is None else self.conv2(x+x_t) x2 = self.act(self.bn2(x)) x = self.bn3(self.conv3(x2)) if self.res_conv: residual = self.residual_bn(self.residual_conv(residual)) x += residual x = self.act(x) if return_x2: return x, x2 return x class FCUDown(nn.Module): def __init__(self, c1, c2, dw_stride): super().__init__() self.conv_project = nn.Conv2d(c1, c2, 1, 1, 0) self.sample_pooling = nn.AvgPool2d(dw_stride, dw_stride) self.ln = nn.LayerNorm(c2) self.act = nn.GELU() def forward(self, x, x_t): x = self.conv_project(x) x = self.sample_pooling(x).flatten(2).transpose(1, 2) x = self.ln(x) x = self.act(x) x = torch.cat([x_t[:, 0][:, None, :], x], dim=1) return x class FCUUp(nn.Module): def __init__(self, c1, c2, up_stride): super().__init__() self.up_stride = up_stride self.conv_project = nn.Conv2d(c1, c2, 1, 1, 0) self.bn = nn.BatchNorm2d(c2) self.act = nn.ReLU() def forward(self, x: Tensor, H, W) -> Tensor: B, _, C = x.shape x = x[:, 1:].transpose(1, 2).reshape(B, C, H, W) x = self.act(self.bn(self.conv_project(x))) x = F.interpolate(x, size=(H*self.up_stride, W*self.up_stride)) return x class ConvTransBlock(nn.Module): def __init__(self, c1, c2, res_conv, stride, dw_stride, embed_dim, head=12, dpr=0., last_fusion=False): super().__init__() expansion = 4 self.dw_stride = dw_stride self.cnn_block = ConvBlock(c1, c2, stride, res_conv) if last_fusion: self.fusion_block = ConvBlock(c2, c2, 2, True) else: self.fusion_block = ConvBlock(c2, c2) self.squeeze_block = FCUDown(c2//expansion, embed_dim, dw_stride) self.expand_block = FCUUp(embed_dim, c2//expansion, dw_stride) self.trans_block = Block(embed_dim, head, dpr) def forward(self, x, x_t): x, x2 = self.cnn_block(x) _, _, H, W = x2.shape x_st = self.squeeze_block(x2, x_t) x_t = self.trans_block(x_st+x_t) x_t_r = self.expand_block(x_t, H//self.dw_stride, W//self.dw_stride) x = self.fusion_block(x, x_t_r, return_x2=False) return x, x_t conformer_settings = { 'T': [1, 384, 6, 0.1], # [channel_ratio, embed_dim, head, dpr] 'S': [4, 384, 6, 0.2], 'B': [6, 576, 9, 0.3] } class Conformer(nn.Module): # this model works with any image size, even non-square image size def __init__(self, model_name: str = 'S', pretrained: str = None, num_classes: int = 1000, *args, **kwargs) -> None: super().__init__() assert model_name in conformer_settings.keys(), f"Conformer model name should be in {list(conformer_settings.keys())}" channel_ratio, embed_dim, head, drop_path_rate = conformer_settings[model_name] depth = 12 self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # Stem self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.act = nn.ReLU() self.maxpool = nn.MaxPool2d(3, 2, 1) # Stage1 stage1_channel = int(64*channel_ratio) self.conv_1 = ConvBlock(64, stage1_channel, res_conv=True) self.trans_patch_conv = nn.Conv2d(64, embed_dim, 4, 4, 0) self.trans_1 = Block(embed_dim, head, dpr[0]) # Stage2-4 self.conv_trans_2 = ConvTransBlock(stage1_channel, stage1_channel, False, 1, 4, embed_dim, head, dpr[1]) self.conv_trans_3 = ConvTransBlock(stage1_channel, stage1_channel, False, 1, 4, embed_dim, head, dpr[2]) self.conv_trans_4 = ConvTransBlock(stage1_channel, stage1_channel, False, 1, 4, embed_dim, head, dpr[3]) # Stage5-8 self.conv_trans_5 = ConvTransBlock(stage1_channel, stage1_channel*2, True, 2, 2, embed_dim, head, dpr[4]) self.conv_trans_6 = ConvTransBlock(stage1_channel*2, stage1_channel*2, False, 1, 2, embed_dim, head, dpr[5]) self.conv_trans_7 = ConvTransBlock(stage1_channel*2, stage1_channel*2, False, 1, 2, embed_dim, head, dpr[6]) self.conv_trans_8 = ConvTransBlock(stage1_channel*2, stage1_channel*2, False, 1, 2, embed_dim, head, dpr[7]) # Stage9-12 self.conv_trans_9 = ConvTransBlock(stage1_channel*2, stage1_channel*4, True, 2, 1, embed_dim, head, dpr[8]) self.conv_trans_10 = ConvTransBlock(stage1_channel*4, stage1_channel*4, False, 1, 1, embed_dim, head, dpr[9]) self.conv_trans_11 = ConvTransBlock(stage1_channel*4, stage1_channel*4, False, 1, 1, embed_dim, head, dpr[10]) self.conv_trans_12 = ConvTransBlock(stage1_channel*4, stage1_channel*4, False, 1, 1, embed_dim, head, dpr[11], True) self.depth = depth self.trans_norm = nn.LayerNorm(embed_dim) # self.pooling = nn.AdaptiveAvgPool2d(1) self.conv_cls_head = nn.Linear(int(256*channel_ratio), num_classes) self.trans_cls_head = nn.Linear(embed_dim, num_classes) trunc_normal_(self.cls_token, std=.02) self._init_weights(pretrained) def _init_weights(self, pretrained: str = None) -> None: if pretrained: self.load_state_dict(torch.load(pretrained, map_location='cpu')) else: for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)): nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {"cls_token"} def forward(self, x: Tensor) -> Tensor: B = x.shape[0] cls_tokens = self.cls_token.expand(B, -1, -1) # stem x_base = self.maxpool(self.act(self.bn1(self.conv1(x)))) # stage 1 x = self.conv_1(x_base, return_x2=False) x_t = self.trans_patch_conv(x_base).flatten(2).transpose(1, 2) x_t = torch.cat([cls_tokens, x_t], dim=1) x_t = self.trans_1(x_t) # stage 2-12 for i in range(2, self.depth+1): x, x_t = eval(f'self.conv_trans_{i}')(x, x_t) # x_p = self.pooling(x).flatten(1) # conv_cls = self.conv_cls_head(x_p) x_t = self.trans_norm(x_t) trans_cls = self.trans_cls_head(x_t[:, 0]) return trans_cls if __name__ == '__main__': model = Conformer('S', 'checkpoints/conformer/Conformer_small_patch16.pth') x = torch.zeros(1, 3, 224, 224) y = model(x) print(y.shape) ``` #### File: image-classification/models/convnext.py ```python import torch from torch import nn, Tensor from .layers import DropPath class LayerNorm(nn.Module): """Channel first layer norm """ def __init__(self, normalized_shape, eps=1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps def forward(self, x: Tensor) -> Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class Block(nn.Module): def __init__(self, dim, dpr=0., init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 7, 1, 3, groups=dim) self.norm = nn.LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4*dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4*dim, dim) self.gamma = nn.Parameter(init_value * torch.ones((dim)), requires_grad=True) if init_value > 0 else None self.drop_path = DropPath(dpr) if dpr > 0. else nn.Identity() def forward(self, x: Tensor) -> Tensor: input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # NCHW to NHWC x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x class Stem(nn.Sequential): def __init__(self, c1, c2, k, s): super().__init__( nn.Conv2d(c1, c2, k, s), LayerNorm(c2) ) class Downsample(nn.Sequential): def __init__(self, c1, c2, k, s): super().__init__( LayerNorm(c1), nn.Conv2d(c1, c2, k, s) ) convnext_settings = { 'T': [[3, 3, 9, 3], [96, 192, 384, 768]], # [depths, dims] 'S': [[3, 3, 27, 3], [96, 192, 384, 768]], 'B': [[3, 3, 27, 3], [128, 256, 512, 1024]] } class ConvNeXt(nn.Module): def __init__(self, model_name: str = 'B', pretrained: str = None, num_classes: int = 1000, *args, **kwargs) -> None: super().__init__() assert model_name in convnext_settings.keys(), f"ConvNeXt model name should be in {list(convnext_settings.keys())}" depths, embed_dims = convnext_settings[model_name] drop_path_rate = 0. self.downsample_layers = nn.ModuleList([ Stem(3, embed_dims[0], 4, 4), *[Downsample(embed_dims[i], embed_dims[i+1], 2, 2) for i in range(3)] ]) self.stages = nn.ModuleList() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential(*[ Block(embed_dims[i], dpr[cur+j]) for j in range(depths[i])]) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(embed_dims[-1], eps=1e-6) self.head = nn.Linear(embed_dims[-1], num_classes) # use as a backbone # for i in range(4): # self.add_module(f"norm{i}", LayerNorm(embed_dims[i])) self._init_weights(pretrained) def _init_weights(self, pretrained: str = None) -> None: if pretrained: self.load_state_dict(torch.load(pretrained, map_location='cpu')['model']) else: for n, m in self.named_modules(): if isinstance(m, nn.Linear): if n.startswith('head'): nn.init.zeros_(m.weight) nn.init.zeros_(m.bias) else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) def return_features(self, x): outs = [] for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) norm_layer = getattr(self, f"norm{i}") outs.append(norm_layer(x)) return outs def forward(self, x: torch.Tensor): for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) x = self.norm(x.mean([-2, -1])) # GAP NCHW to NC x = self.head(x) return x if __name__ == '__main__': model = ConvNeXt('B', 'C:\\Users\\sithu\\Documents\\weights\\backbones\\convnext\\convnext_base_1k_224_ema.pth') x = torch.randn(1, 3, 224, 224) y = model(x) print(y.shape) ``` #### File: image-classification/models/__init__.py ```python from pathlib import Path from .resnet import ResNet, resnet_settings from .cyclemlp import CycleMLP, cyclemlp_settings from .cswin import CSWin, cswin_settings from .gfnet import GFNet, gfnet_settings from .pvt import PVTv2, pvtv2_settings from .shuffle import Shuffle, shuffle_settings from .rest import ResT, rest_settings from .conformer import Conformer, conformer_settings from .micronet import MicroNet, micronet_settings from .poolformer import PoolFormer, poolformer_settings from .patchconvnet import PatchConvnet, patchconvnet_settings from .hiremlp import HireMLP, hiremlp_settings from .wavemlp import WaveMLP, wavemlp_settings from .convnext import ConvNeXt, convnext_settings from .uniformer import UniFormer, uniformer_settings __all__ = [ 'ResNet', 'MicroNet', 'ConvNeXt', 'GFNet', 'PVTv2', 'ResT', 'Conformer', 'Shuffle', 'CSWin', 'CycleMLP', 'HireMLP', 'WaveMLP', 'PoolFormer', 'PatchConvnet', 'UniFormer', ] def get_model(model_name: str, model_variant: str, pretrained: str = None, num_classes: int = 1000, image_size: int = 224): assert model_name in __all__, f"Unavailable model name >> {model_name}.\nList of available model names: {__all__}" if pretrained is not None: assert Path(pretrained).exists(), "Please set the correct pretrained model path" return eval(model_name)(model_variant, pretrained, num_classes, image_size) ``` #### File: image-classification/models/layers.py ```python import torch import math import warnings from torch import nn, Tensor class MLP(nn.Module): def __init__(self, dim, hidden_dim, out_dim=None) -> None: super().__init__() out_dim = out_dim or dim self.fc1 = nn.Linear(dim, hidden_dim) self.act = nn.GELU() self.fc2 = nn.Linear(hidden_dim, out_dim) def forward(self, x: Tensor) -> Tensor: return self.fc2(self.act(self.fc1(x))) class PatchEmbedding(nn.Module): """Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, embed_dim=768): super().__init__() assert img_size % patch_size == 0, 'Image size must be divisible by patch size' img_size = (img_size, img_size) if isinstance(img_size, int) else img_size self.grid_size = (img_size[0] // patch_size, img_size[1] // patch_size) self.num_patches = self.grid_size[0] * self.grid_size[1] self.proj = nn.Conv2d(3, embed_dim, patch_size, patch_size) def forward(self, x: torch.Tensor) -> Tensor: x = self.proj(x) # b x hidden_dim x 14 x 14 x = x.flatten(2).swapaxes(1, 2) # b x (14*14) x hidden_dim return x class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Copied from timm This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ def __init__(self, p: float = None): super().__init__() self.p = p def forward(self, x: Tensor) -> Tensor: if self.p == 0. or not self.training: return x kp = 1 - self.p shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = kp + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize return x.div(kp) * random_tensor def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) ``` #### File: image-classification/models/patchconvnet.py ```python import torch from torch import nn, Tensor from .layers import DropPath class MLP(nn.Module): def __init__(self, dim, hidden_dim, out_dim=None) -> None: super().__init__() out_dim = out_dim or dim self.fc1 = nn.Linear(dim, hidden_dim) self.act = nn.GELU() self.fc2 = nn.Linear(hidden_dim, out_dim) def forward(self, x: Tensor) -> Tensor: return self.fc2(self.act(self.fc1(x))) class LearnedAggreationLayer(nn.Module): def __init__(self, dim, head=1): super().__init__() self.head = head self.scale = (dim // head) ** -0.5 self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.proj = nn.Linear(dim, dim) def forward(self, x: Tensor) -> Tensor: B, N, C = x.shape q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.head, C//self.head).permute(0, 2, 1, 3) k = self.k(x).reshape(B, N, self.head, C//self.head).permute(0, 2, 1, 3) v = self.v(x).reshape(B, N, self.head, C//self.head).permute(0, 2, 1, 3) q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C) x_cls = self.proj(x_cls) return x_cls class SqueezeExcite(nn.Module): def __init__(self, in_chs, rd_ratio=0.25) -> None: super().__init__() rd_channels = round(in_chs * rd_ratio) self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1) self.act1 = nn.ReLU(True) self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1) self.gate = nn.Sigmoid() def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.act1(self.conv_reduce(x_se)) x_se = self.conv_expand(x_se) return x * self.gate(x_se) class SEBlock(nn.Module): def __init__(self, dim) -> None: super().__init__() self.qkv_pos = nn.Sequential( nn.Conv2d(dim, dim, 1), nn.GELU(), nn.Conv2d(dim, dim, 3, 1, 1, groups=dim), nn.GELU(), SqueezeExcite(dim), nn.Conv2d(dim, dim, 1) ) def forward(self, x): B, N, C = x.shape H = W = int(N ** 0.5) x = x.transpose(-1, -2) x = x.reshape(B, C, H, W) x = self.qkv_pos(x) x = x.reshape(B, C, N) x = x.transpose(-1, -2) return x class Block(nn.Module): def __init__(self, dim, dpr=0., init_values=1e-6) -> None: super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = SEBlock(dim) self.drop_path = DropPath(dpr) if dpr > 0. else nn.Identity() self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) def forward(self, x): return x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) class BlockToken(nn.Module): def __init__(self, dim, head, dpr=0., init_values=1e-6): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = LearnedAggreationLayer(dim, head) self.drop_path = DropPath(dpr) if dpr > 0. else nn.Identity() self.norm2 = nn.LayerNorm(dim) self.mlp = MLP(dim, int(dim*3)) self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) def forward(self, x: Tensor, x_cls: Tensor) -> Tensor: u = torch.cat([x_cls, x], dim=1) x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) return x_cls class Stem(nn.Module): def __init__(self, dim): super().__init__() self.proj = nn.Sequential( nn.Sequential(nn.Conv2d(3, dim//8, 3, 2, 1, bias=False)), nn.GELU(), nn.Sequential(nn.Conv2d(dim//8, dim//4, 3, 2, 1, bias=False)), nn.GELU(), nn.Sequential(nn.Conv2d(dim//4, dim//2, 3, 2, 1, bias=False)), nn.GELU(), nn.Sequential(nn.Conv2d(dim//2, dim, 3, 2, 1, bias=False)) ) def forward(self, x: Tensor) -> Tensor: return self.proj(x).flatten(2).transpose(1, 2) patchconvnet_settings = { 'S60': [384, 60, 0.], # [embed_dim, depth, drop_path_rate] 'S120': [384, 120, 0.], 'B60': [768, 60, 0.] } class PatchConvnet(nn.Module): def __init__(self, model_name: str = 'S60', pretrained: str = None, num_classes: int = 1000, *args, **kwargs) -> None: super().__init__() assert model_name in patchconvnet_settings.keys(), f"PatchConvnet model name should be in {list(patchconvnet_settings.keys())}" embed_dim, depth, drop_path_rate = patchconvnet_settings[model_name] self.patch_embed = Stem(embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [drop_path_rate for _ in range(depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block(embed_dim, dpr[i]) for i in range(depth)]) self.blocks_token_only = nn.ModuleList([ BlockToken(embed_dim, 1, 0) for i in range(1)]) self.norm = nn.LayerNorm(embed_dim) self.total_len = 1 + depth self.head = nn.Linear(embed_dim, num_classes) self._init_weights(pretrained) def _init_weights(self, pretrained: str = None) -> None: if pretrained: self.load_state_dict(torch.load(pretrained, map_location='cpu')) else: for n, m in self.named_modules(): if isinstance(m, nn.Linear): if n.startswith('head'): nn.init.zeros_(m.weight) nn.init.zeros_(m.bias) else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) def forward(self, x: Tensor) -> Tensor: B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) for blk in self.blocks: x = blk(x) for blk in self.blocks_token_only: cls_tokens = blk(x, cls_tokens) x = torch.cat([cls_tokens, x], dim=1) x = self.norm(x) x = self.head(x[:, 0]) return x if __name__ == '__main__': model = PatchConvnet('B60', 'C:\\Users\\sithu\\Documents\\weights\\backbones\\patchconvnet\\b60_224_1k.pth') x = torch.zeros(1, 3, 224, 224) y = model(x) print(y.shape) ```
{ "source": "jimilee/rcnnpose-pytorch-tracker", "score": 2 }
#### File: rcnnpose-pytorch-tracker/rcnnpose/estimator.py ```python import numpy as np import torch import torchvision class BodyPoseEstimator(object): def __init__(self, pretrained=False): self._estimator_m = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=pretrained) self._estimator_k = torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=pretrained) if torch.cuda.is_available(): print('cuda is available.') self._estimator_m = self._estimator_m.cuda() self._estimator_k = self._estimator_k.cuda() self._estimator_m.eval() self._estimator_k.eval() def __call__(self, image, masks=True, keypoints=True): x = self._transform_image(image) if torch.cuda.is_available(): x = x.cuda() m = self._predict_masks(x) if masks else [None] k = self._predict_keypoints(x) if keypoints else [None] return {'estimator_m': m[0], 'estimator_k': k[0]} def _transform_image(self, image): return torchvision.transforms.ToTensor()(image) def _predict_masks(self, x): with torch.no_grad(): return self._estimator_m([x]) def _predict_keypoints(self, x): with torch.no_grad(): return self._estimator_k([x]) @staticmethod def get_masks(dictionary, label=1, score_threshold=0.5): masks = [] if dictionary: for i in (dictionary['labels'] == label).nonzero().view(-1): if dictionary['scores'][i] > score_threshold: mask = dictionary['masks'][i].detach().cpu().squeeze().numpy() > 0.5 masks.append(mask) return np.asarray(masks, dtype=np.uint8) @staticmethod def get_keypoints(dictionary, label=1, score_threshold=0.5): #dictionary has 'boxes', 'labels', 'scores', 'keypoints', 'keypoints_scores' keypoints = [] if dictionary: for i in (dictionary['labels'] == label).nonzero().view(-1): if dictionary['scores'][i] > score_threshold: keypoint = dictionary['keypoints'][i].detach().cpu().squeeze().numpy() keypoints.append(keypoint) return np.asarray(keypoints, dtype=np.int32) @staticmethod def get_embeddings(dictionary, label=1, score_threshold=0.5): # dictionary has 'boxes', 'labels', 'scores', 'keypoints', 'keypoints_scores' embeddings = [] if dictionary: for i in (dictionary['labels'] == label).nonzero().view(-1): if dictionary['scores'][i] > score_threshold: embedding = dictionary['keypoints'][i].detach().cpu().squeeze().numpy() embeddings.append(embedding) return np.asarray(embeddings, dtype=np.float) @staticmethod def get_boxes(dictionary, label=1, score_threshold=0.5): boxes = [] if dictionary: # print(dictionary) for i in (dictionary['labels'] == label).nonzero().view(-1): if dictionary['scores'][i] > score_threshold: box = dictionary['boxes'][i].detach().cpu().squeeze().numpy() boxes.append(box) return np.asarray(boxes, dtype=np.int32) ```
{ "source": "Jimilian/jenkinsator", "score": 2 }
#### File: Jimilian/jenkinsator/jenkinsator.py ```python from __future__ import absolute_import, print_function import sys import netrc import argparse try: import jenkins as jenkins_api except ImportError as e: no_module_error = "No module named " if(e.message.startswith(no_module_error)): module_name = e.message[len(no_module_error):] if module_name == "jenkins": module_name = "python-jenkins" print(e) print("Please, install it via: sudo python -m pip install", module_name) sys.exit(1) else: raise e class DryJenkins(object): def get_nodes(self): return [{"name": "dry node", "offline": True}] def get_plugins(self, depth): return {("DryRun Plugin", "dry run plugin"): {"version": 1}} def __getattribute__(self, name): if name == "get_nodes": return lambda: DryJenkins.get_nodes(self) if name == "get_plugins": return lambda depth: DryJenkins.get_plugins(self, depth) return (lambda *args: "DRY_RUN") def get_items_from_file(list_file): jobs = set() for line in open(list_file): job_name = line.strip().replace("\n", "") if job_name: jobs.add(job_name) return jobs def url_to_host(url): return url.replace("http://", "").replace("https://", "") def connect(url, login, password): if not login and not password: host = url_to_host(url) try: secrets = netrc.netrc() secret = secrets.authenticators(host) except IOError: print("Please, provide login and password as parameters " "or put them to .netrc file as default values for the host:", host) secret = None if secret is None: return None login, _, password = secret return jenkins_api.Jenkins(url, login, password) def validate_params(params): # noqa: C901 if args.action == "job": if args.dump_to_file and (not params.name or params.list_from_file): print("`--dump-to-file` can be used only with `--name`") return False if args.create_from_file and (not params.name or params.list_from_file): print("`--create-from-file` can be used only with `--name`") return False elif args.action == "node": if params.get_nodes: return True elif args.action == "script": if params.execute_from_file: return True else: print("Please, specify `--execute-from-file` option") return False else: return True if not params.name and not params.list_from_file: print("Please, provide job name ('--name') or file with job names ('--list-from-file')") return False if params.name and params.list_from_file: print("Using '--name' and '--list-from-file' at the same time is not supported") return False if args.enable and args.disable: print("--enable and --disable can not be used together") return False return True def main(args): if not args.dry_run: jenkins = connect(args.jenkins, args.login, args.password) else: jenkins = DryJenkins() print("Succesfully connected to %s." % args.jenkins, "Version is", jenkins.get_version()) do_action(args, jenkins) def do_action(args, jenkins): actions = {"job": lambda x, y: process_jobs(x, y), "node": lambda x, y: process_nodes(x, y), "plugin": lambda x, y: process_plugins(x, y), "script": lambda x, y: process_script(x, y)} action = actions[args.action] action(jenkins, args) def process_script(jenkins, args): with open(args.execute_from_file) as f: script = f.read() res = jenkins.run_script(script) if res: print(res) def process_plugins(jenkins, args): for plugin, desc in sorted(jenkins.get_plugins(depth=1).items(), key=lambda x: x[0][1]): print("{0}: {1}".format(plugin[1], desc["version"])) def process_nodes(jenkins, args): what_to_do = get_what_to_do(args, "node") if what_to_do: generic_action(jenkins, args, what_to_do) elif args.get_nodes: get_all_nodes(jenkins, args) elif args.replace: replace(jenkins, args, "node") return def get_all_nodes(jenkins, args): show_all = args.get_nodes == "all" for node in jenkins.get_nodes(): if show_all or node['offline'] == (args.get_nodes == "offline"): print(node['name']) def get_config(jenkins, name, key): try: if key == "job": return jenkins.get_job_config(name) if key == "node": return jenkins.get_node_config(name) print("Invalid key for get_config:", key) except jenkins_api.NotFoundException: print("Can't find the {0}: {1}".format(key, name)) return None def get_items(args): items = None if args.name: items = [args.name] if args.list_from_file: items = get_items_from_file(args.list_from_file) return items def update_config(jenkins, item, new_config, key): if key == "job": jenkins.reconfig_job(item, new_config) if key == "node": jenkins.reconfig_node(item, new_config) return def replace(jenkins, args, key): splitter = args.replace[0] statement = args.replace[1:] if statement.count(splitter) != 1: print() print("You selected bad splitter '{0}', " "because it occurs in your replacement as well. " "Please, choose another one.".format(splitter)) return items = get_items(args) for item in items: original_config = get_config(jenkins, item, key) if not original_config: continue orig, target = args.replace[1:].split(splitter) new_config = original_config.replace(orig, target) if original_config == new_config: print("Config was not changed for the {0}: {1}".format(key, item)) else: update_config(jenkins, item, new_config, key) print("Config was updated for the {0}: {1}".format(key, item)) return def start_jobs(jenkins, args): items = get_items(args) for item in items: print("Run:", item) jenkins.build_job(item, {"fake_parameter": "x"}) return def create_from_file(jenkins, args): with open(args.create_from_file) as f: jenkins.create_job(args.name, f.read()) print("Job `%s` was created from the file: %s" % (args.name, args.create_from_file)) def dump_to_file(jenkins, args, key): config = get_config(jenkins, args.name, key) if not config: return if not args.dry_run: with open(args.dump_to_file, "w") as f: f.write(config) print("Configuration for the {0} `{1}` was dumped to the file: {2}". format(key, args.name, args.dump_to_file)) return def generic_action(jenkins, args, key): actions = {"Delete job": lambda x: jenkins.delete_job(x), "Delete node": lambda x: jenkins.delete_node(x), "Disable node": lambda x: jenkins.disable_node(x), "Disable job": lambda x: jenkins.disable_job(x), "Enable job": lambda x: jenkins.enable_job(x), "Enable node": lambda x: jenkins.enable_node(x), "Dump job": lambda _: dump_to_file(jenkins, args, "job"), "Dump node": lambda _: dump_to_file(jenkins, args, "node")} for item in get_items(args): action = actions[key] action(item) print("{0}: {1}".format(key, item)) def process_jobs(jenkins, args): what_to_do = get_what_to_do(args, "job") if what_to_do: generic_action(jenkins, args, what_to_do) elif args.replace: replace(jenkins, args, "job") elif args.create_from_file: create_from_file(jenkins, args) elif args.start: start_jobs(jenkins, args) return def get_what_to_do(args, key): if args.enable: return "Enable " + key elif args.disable: return "Disable " + key elif args.delete: return "Delete " + key elif args.dump_to_file: return "Dump " + key return None if __name__ == '__main__': parser = argparse.ArgumentParser(description='Jenkinsator helps to orchestrate Jenkins master') parser.add_argument(dest="jenkins", action="store", help="Jenkins master [full url]") parser.add_argument('--login', help="login to access Jenkins [INSECURE - use .netrc]") parser.add_argument('--password', help="password to access Jenkins [INSECURE - use .netrc]") parser.add_argument('--dry-run', action="store_true", help="do not perform any action") subparsers = parser.add_subparsers(title='Actions', dest="action", help="Choose action type you want to perform") job_parser = subparsers.add_parser("job") job_parser.add_argument('--create-from-file', help="create the job from configuration file") job_parser.add_argument('--start', action="store_true", help="starts the job") node_parser = subparsers.add_parser("node") for sub_parser, key in [(job_parser, "job"), (node_parser, "node")]: sub_parser.add_argument('--list-from-file', help="file to retrive the list of " + key + "s to be processed [one per line]") sub_parser.add_argument('--name', help=key + " to be processed [full name]") sub_parser.add_argument('--dump-to-file', help="dump" + key + " configuration to the file") sub_parser.add_argument('--enable', action="store_true", help="enable the " + key) sub_parser.add_argument('--disable', action="store_true", help="disable the " + key) sub_parser.add_argument('--delete', action="store_true", help="delete the " + key) sub_parser.add_argument('--replace', help="Replace some pattern in the configuration. " "Use first symbol to configure the splitter " "and the rest of parameter to define the " "original value and desired one, i.e." "`?aaa?bbb` specifies `?` as a splitter and " "replaces all occurances of `aaa` by `bbb`") node_parser.add_argument('--get-nodes', choices=["offline", "online", "all"], help="dump list of all connected nodes") plugin_parser = subparsers.add_parser("plugin") plugin_parser.add_argument("--list-all", action="store_true", help="list all available plugins") script_parser = subparsers.add_parser("script") script_parser.add_argument("--execute-from-file", action="store", help="execute custom Groovy scipt from specified file") args = parser.parse_args() if not validate_params(args): sys.exit(1) sys.exit(main(args)) ```
{ "source": "jimimased/HyperGAN", "score": 2 }
#### File: HyperGAN/examples/2d-measure-accuracy.py ```python import argparse import os import uuid import tensorflow as tf import hypergan as hg import hyperchamber as hc import matplotlib.pyplot as plt from hypergan.loaders import * from hypergan.util.hc_tf import * from hypergan.generators import * import math def parse_args(): parser = argparse.ArgumentParser(description='Train a 2d test!', add_help=True) parser.add_argument('--batch_size', '-b', type=int, default=32, help='Examples to include in each batch. If using batch norm, this needs to be preserved when in server mode') parser.add_argument('--device', '-d', type=str, default='/gpu:0', help='In the form "/gpu:0", "/cpu:0", etc. Always use a GPU (or TPU) to train') parser.add_argument('--format', '-f', type=str, default='png', help='jpg or png') parser.add_argument('--config', '-c', type=str, default='2d-test', help='config name') parser.add_argument('--distribution', '-t', type=str, default='circle', help='what distribution to test, options are circle, modes') return parser.parse_args() def no_regularizer(amt): return None def custom_discriminator_config(): return { 'create': custom_discriminator } def custom_generator_config(): return { 'create': custom_generator } def custom_discriminator(gan, config, x, g, xs, gs, prefix='d_'): net = tf.concat(axis=0, values=[x,g]) net = linear(net, 128, scope=prefix+'lin1') net = tf.nn.relu(net) net = linear(net, 128, scope=prefix+'lin2') return net def custom_generator(config, gan, net): net = linear(net, 128, scope="g_lin_proj") net = batch_norm_1(gan.config.batch_size, name='g_bn_1')(net) net = tf.nn.relu(net) net = linear(net, 2, scope="g_lin_proj3") net = tf.tanh(net) return [net] def d_pyramid_search_config(): return hg.discriminators.pyramid_discriminator.config( activation=[tf.nn.relu, lrelu, tf.nn.relu6, tf.nn.elu], depth_increase=[1.5,1.7,2,2.1], final_activation=[tf.nn.relu, tf.tanh, None], layer_regularizer=[batch_norm_1, layer_norm_1, None], layers=[2,1], fc_layer_size=[32,16,8,4,2], fc_layers=[0,1,2], first_conv_size=[4,8,2,1], noise=[False, 1e-2], progressive_enhancement=[False], strided=[True, False], create=d_pyramid_create ) def g_resize_conv_search_config(): return resize_conv_generator.config( z_projection_depth=[8,16,32], activation=[tf.nn.relu,tf.tanh,lrelu,resize_conv_generator.generator_prelu], final_activation=[None,tf.nn.tanh,resize_conv_generator.minmax], depth_reduction=[2,1.5,2.1], layer_filter=None, layer_regularizer=[layer_norm_1,batch_norm_1], block=[resize_conv_generator.standard_block, resize_conv_generator.inception_block, resize_conv_generator.dense_block], resize_image_type=[1], create_method=g_resize_conv_create ) def g_resize_conv_create(config, gan, net): gan.config.x_dims = [8,8] gan.config.channels = 1 gs = resize_conv_generator.create(config,gan,net) filter = [1,4,8,1] stride = [1,4,8,1] gs[0] = tf.nn.avg_pool(gs[0], ksize=filter, strides=stride, padding='SAME') #gs[0] = linear(tf.reshape(gs[0], [gan.config.batch_size, -1]), 2, scope="g_2d_lin") gs[0] = tf.reshape(gs[0], [gan.config.batch_size, 2]) return gs def d_pyramid_create(gan, config, x, g, xs, gs, prefix='d_'): with tf.variable_scope("d_input_projection", reuse=False): x = linear(x, 8*8, scope=prefix+'input_projection') x = tf.reshape(x, [gan.config.batch_size, 8, 8, 1]) with tf.variable_scope("d_input_projection", reuse=True): g = linear(g, 8*8, scope=prefix+'input_projection') g = tf.reshape(g, [gan.config.batch_size, 8, 8, 1]) return hg.discriminators.pyramid_discriminator.discriminator(gan, config, x, g, xs, gs, prefix) def batch_accuracy(a, b): "Each point of a is measured against the closest point on b. Distance differences are added together." tiled_a = a tiled_a = tf.reshape(tiled_a, [int(tiled_a.get_shape()[0]), 1, int(tiled_a.get_shape()[1])]) tiled_a = tf.tile(tiled_a, [1, int(tiled_a.get_shape()[0]), 1]) tiled_b = b tiled_b = tf.reshape(tiled_b, [1, int(tiled_b.get_shape()[0]), int(tiled_b.get_shape()[1])]) tiled_b = tf.tile(tiled_b, [int(tiled_b.get_shape()[0]), 1, 1]) difference = tf.abs(tiled_a-tiled_b) difference = tf.reduce_min(difference, axis=1) difference = tf.reduce_sum(difference, axis=1) return tf.reduce_sum(difference, axis=0) args = parse_args() def train(): selector = hg.config.selector(args) config_name="2d-measure-accuracy-"+str(uuid.uuid4()) config = selector.random_config() config_filename = os.path.expanduser('~/.hypergan/configs/'+config_name+'.json') trainers = [] rms_opts = { 'g_momentum': [0,0.1,0.01,1e-6,1e-5,1e-1,0.9,0.999, 0.5], 'd_momentum': [0,0.1,0.01,1e-6,1e-5,1e-1,0.9,0.999, 0.5], 'd_decay': [0.8, 0.9, 0.99,0.999,0.995,0.9999,1], 'g_decay': [0.8, 0.9, 0.99,0.999,0.995,0.9999,1], 'clipped_gradients': [False, 1e-2], 'clipped_d_weights': [False, 1e-2], 'd_learn_rate': [1e-3,1e-4,5e-4,1e-6,4e-4, 5e-5], 'g_learn_rate': [1e-3,1e-4,5e-4,1e-6,4e-4, 5e-5] } stable_rms_opts = { "clipped_d_weights": 0.01, "clipped_gradients": False, "d_decay": 0.995, "d_momentum": 1e-05, "d_learn_rate": 0.001, "g_decay": 0.995, "g_momentum": 1e-06, "g_learn_rate": 0.0005, } trainers.append(hg.trainers.rmsprop_trainer.config(**rms_opts)) adam_opts = {} adam_opts = { 'd_learn_rate': [1e-3,1e-4,5e-4,1e-2,1e-6], 'g_learn_rate': [1e-3,1e-4,5e-4,1e-2,1e-6], 'd_beta1': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8], 'd_beta2': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8], 'g_beta1': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8], 'g_beta2': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8], 'd_epsilon': [1e-8, 1, 0.1, 0.5], 'g_epsilon': [1e-8, 1, 0.1, 0.5], 'd_clipped_weights': [False, 0.01], 'clipped_gradients': [False, 0.01] } trainers.append(hg.trainers.adam_trainer.config(**adam_opts)) sgd_opts = { 'd_learn_rate': [1e-3,1e-4,5e-4,1e-2,1e-6], 'g_learn_rate': [1e-3,1e-4,5e-4,1e-2,1e-6], 'd_clipped_weights': [False, 0.01], 'clipped_gradients': [False, 0.01] } trainers.append(hg.trainers.sgd_trainer.config(**sgd_opts)) encoders = [] projections = [] projections.append([hg.encoders.uniform_encoder.modal, hg.encoders.uniform_encoder.identity]) projections.append([hg.encoders.uniform_encoder.modal, hg.encoders.uniform_encoder.sphere, hg.encoders.uniform_encoder.identity]) projections.append([hg.encoders.uniform_encoder.binary, hg.encoders.uniform_encoder.sphere]) projections.append([hg.encoders.uniform_encoder.sphere, hg.encoders.uniform_encoder.identity]) projections.append([hg.encoders.uniform_encoder.modal, hg.encoders.uniform_encoder.sphere]) projections.append([hg.encoders.uniform_encoder.sphere, hg.encoders.uniform_encoder.identity, hg.encoders.uniform_encoder.gaussian]) encoder_opts = { 'z': [16], 'modes': [2,4,8,16], 'projections': projections } stable_encoder_opts = { "max": 1, "min": -1, "modes": 8, "projections": [[ "function:hypergan.encoders.uniform_encoder.modal", "function:hypergan.encoders.uniform_encoder.sphere", "function:hypergan.encoders.uniform_encoder.identity" ]], "z": 16 } losses = [] lamb_loss_opts = { 'reverse':[True, False], 'reduce': [tf.reduce_mean,hg.losses.wgan_loss.linear_projection,tf.reduce_sum,tf.reduce_logsumexp], 'labels': [ [-1, 1, 0], [0, 1, 1], [0, -1, -1], [1, -1, 0], [0, -1, 1], [0, 1, -1], [0, 0.5, -0.5], [0.5, -0.5, 0], [0.5, 0, -0.5] ], 'alpha':[0,1e-3,1e-2,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99,0.999], 'beta':[0,1e-3,1e-2,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99,0.999] } lsgan_loss_opts = { 'reduce': [tf.reduce_mean,hg.losses.wgan_loss.linear_projection,tf.reduce_sum,tf.reduce_logsumexp], 'labels': [ [-1, 1, 0], [0, 1, 1], [0, -1, -1], [1, -1, 0], [0, -1, 1], [0, 1, -1], [0, 0.5, -0.5], [0.5, -0.5, 0], [0.5, 0, -0.5] ] } stable_loss_opts = { "alpha": 0.5, "beta": [0.5, 0.8], "discriminator": None, "label_smooth": 0.26111111111111107, "labels": [[ 0, -1, -1 ]], "reduce": "function:tensorflow.python.ops.math_ops.reduce_mean", "reverse": True } #losses.append([hg.losses.wgan_loss.config(**loss_opts)]) losses.append([hg.losses.lamb_gan_loss.config(**lamb_loss_opts)]) #losses.append([hg.losses.lamb_gan_loss.config(**stable_loss_opts)]) #losses.append([hg.losses.lamb_gan_loss.config(**stable_loss_opts)]) losses.append([hg.losses.lsgan_loss.config(**lsgan_loss_opts)]) #encoders.append([hg.encoders.uniform_encoder.config(**encoder_opts)]) encoders.append([hg.encoders.uniform_encoder.config(**stable_encoder_opts)]) custom_config = { 'model': args.config, 'batch_size': args.batch_size, 'trainer': trainers, 'generator': custom_generator_config(), 'discriminators': [[custom_discriminator_config()]], 'losses': losses, 'encoders': encoders } custom_config_selector = hc.Selector() for key,value in custom_config.items(): custom_config_selector.set(key, value) print("Set ", key, value) custom_config_selection = custom_config_selector.random_config() for key,value in custom_config_selection.items(): config[key]=value config['dtype']=tf.float32 config = hg.config.lookup_functions(config) def circle(x): spherenet = tf.square(x) spherenet = tf.reduce_sum(spherenet, 1) lam = tf.sqrt(spherenet) return x/tf.reshape(lam,[int(lam.get_shape()[0]), 1]) def modes(x): return tf.round(x*2)/2.0 if args.distribution == 'circle': x = tf.random_normal([args.batch_size, 2]) x = circle(x) elif args.distribution == 'modes': x = tf.random_uniform([args.batch_size, 2], -1, 1) x = modes(x) elif args.distribution == 'sin': x = tf.random_uniform((1, args.batch_size), -10.5, 10.5 ) x = tf.transpose(x) r_data = tf.random_normal((args.batch_size,1), mean=0, stddev=0.1) xy = tf.sin(0.75*x)*7.0+x*0.5+r_data*1.0 x = tf.concat([xy,x], 1)/16.0 elif args.distribution == 'arch': offset1 = tf.random_uniform((1, args.batch_size), -10, 10 ) xa = tf.random_uniform((1, 1), 1, 4 ) xb = tf.random_uniform((1, 1), 1, 4 ) x1 = tf.random_uniform((1, args.batch_size), -1, 1 ) xcos = tf.cos(x1*np.pi + offset1)*xa xsin = tf.sin(x1*np.pi + offset1)*xb x = tf.transpose(tf.concat([xcos,xsin], 0))/16.0 initial_graph = { 'x':x, 'num_labels':1, } print("Starting training for: "+config_filename) selector.save(config_filename, config) with tf.device(args.device): gan = hg.GAN(config, initial_graph) accuracy_x_to_g=batch_accuracy(gan.graph.x, gan.graph.g[0]) accuracy_g_to_x=batch_accuracy(gan.graph.g[0], gan.graph.x) s = [int(g) for g in gan.graph.g[0].get_shape()] slice1 = tf.slice(gan.graph.g[0], [0,0], [s[0]//2, -1]) slice2 = tf.slice(gan.graph.g[0], [s[0]//2,0], [s[0]//2, -1]) accuracy_g_to_g=batch_accuracy(slice1, slice2) x_0 = gan.sess.run(gan.graph.x) z_0 = gan.sess.run(gan.graph.z[0]) gan.initialize_graph() ax_sum = 0 ag_sum = 0 diversity = 0.00001 dlog = 0 last_i = 0 tf.train.start_queue_runners(sess=gan.sess) for i in range(500000): d_loss, g_loss = gan.train() if(np.abs(d_loss) > 100 or np.abs(g_loss) > 100): ax_sum = ag_sum = 100000.00 break if i % 1000 == 0 and i != 0: ax, ag, agg, dl = gan.sess.run([accuracy_x_to_g, accuracy_g_to_x, accuracy_g_to_g, gan.graph.d_log], {gan.graph.x: x_0, gan.graph.z[0]: z_0}) print("ERROR", ax, ag) if np.abs(ax) > 50.0 or np.abs(ag) > 50.0: ax_sum = ag_sum = 100000.00 break #if(i % 10000 == 0 and i != 0): # g_vars = [var for var in tf.trainable_variables() if 'g_' in var.name] # init = tf.initialize_variables(g_vars) # gan.sess.run(init) if(i > 490000): ax, ag, agg, dl = gan.sess.run([accuracy_x_to_g, accuracy_g_to_x, accuracy_g_to_g, gan.graph.d_log], {gan.graph.x: x_0, gan.graph.z[0]: z_0}) diversity += agg ax_sum += ax ag_sum += ag dlog = dl with open("results.csv", "a") as myfile: myfile.write(config_name+","+str(ax_sum)+","+str(ag_sum)+","+ str(ax_sum+ag_sum)+","+str(ax_sum*ag_sum)+","+str(dlog)+","+str(diversity)+","+str(ax_sum*ag_sum*(1/diversity))+","+str(last_i)+"\n") tf.reset_default_graph() gan.sess.close() while(True): train() ``` #### File: hypergan/samplers/audio_sampler.py ```python def sample(): g = sess.run(generator) #TODO: Refactor x_one = tf.slice(generator,[0,0,0],[1,config['mp3_size'], config['channels']]) x_one = tf.reshape(x_one, [config['mp3_size'],config['channels']]) audio = sess.run(ffmpeg.encode_audio(x_one, 'wav', config['mp3_bitrate'])) print("SAVING WITH BITRATE", config['mp3_bitrate'], config['mp3_size']) fobj = open("samples/g.wav", mode='wb') fobj.write(audio) fobj.close() plt.clf() plt.figure(figsize=(2,2)) plt.plot(g[0]) plt.xlim([0, config['mp3_size']]) plt.ylim([-2, 2.]) plt.ylabel("Amplitude") plt.xlabel("Time") plt.savefig('visualize/g.png') x_one = tf.slice(generator,[1,0,0],[1,config['mp3_size'], config['channels']]) x_one = tf.reshape(x_one, [config['mp3_size'],config['channels']]) audio = sess.run(ffmpeg.encode_audio(x_one, 'wav', config['mp3_bitrate'])) fobj = open("samples/g2.wav", mode='wb') fobj.write(audio) fobj.close() plt.clf() plt.figure(figsize=(2,2)) plt.plot(g[1]) plt.xlim([0, config['mp3_size']]) plt.ylim([-2, 2.]) plt.ylabel("Amplitude") plt.xlabel("Time") plt.savefig('visualize/g2.png') return [] def sample(): return [{'image':'visualize/input.png','label':'input'},{'image':'visualize/g.png','label':'g'}, {'image':'visualize/g2.png','label':'g2'}] ``` #### File: hypergan/samplers/batch_sampler.py ```python from hypergan.util.ops import * from hypergan.samplers.common import * z = None def sample(gan, sample_file): sess = gan.sess config = gan.config global z generator = gan.graph.g[0] y_t = gan.graph.y z_t = gan.graph.z x = np.linspace(0,1, 4) y = np.linspace(0,1, 6) z = np.random.uniform(-1, 1, [config['batch_size'], int(z_t[0].get_shape()[1])]) g=tf.get_default_graph() with g.as_default(): tf.set_random_seed(1) sample = sess.run(generator, feed_dict={z_t[0]: z}) stacks = [np.hstack(sample[x*8:x*8+8]) for x in range(4)] plot(config, np.vstack(stacks), sample_file) return [{'image':sample_file, 'label':'grid'}] ``` #### File: hypergan/samplers/common.py ```python import numpy as np from scipy.misc import imsave def plot(config, image, file): """ Plot an image.""" image = np.squeeze(image) imsave(file, image) ``` #### File: hypergan/samplers/static_batch_sampler.py ```python from hypergan.util.ops import * from hypergan.samplers.common import * #mask_noise = None z = None y = None def sample(gan, sample_file): sess = gan.sess config = gan.config global z, y generator = gan.graph.g[0] y_t = gan.graph.y z_t = gan.graph.z[0] # TODO support multiple z x = np.linspace(0,1, 4) if z is None: z = sess.run(z_t) y = sess.run(y_t) g=tf.get_default_graph() with g.as_default(): tf.set_random_seed(1) sample = sess.run(generator, feed_dict={z_t: z, y_t: y}) #plot(self.config, sample, sample_file) stacks = [np.hstack(sample[x*8:x*8+8]) for x in range(4)] plot(config, np.vstack(stacks), sample_file) return [{'image':sample_file, 'label':'grid'}] ``` #### File: hypergan/trainers/common.py ```python import tensorflow as tf def capped_optimizer(optimizer, cap, loss, vars): gvs = optimizer.compute_gradients(loss, var_list=vars) def create_cap(grad,var): if(grad == None) : print("Warning: No gradient for variable ",var.name) return None return (tf.clip_by_value(grad, -cap, cap), var) capped_gvs = [create_cap(grad,var) for grad, var in gvs] capped_gvs = [x for x in capped_gvs if x != None] return optimizer.apply_gradients(capped_gvs) ``` #### File: hypergan/trainers/momentum_trainer.py ```python import tensorflow as tf import numpy as np import hyperchamber as hc from .common import * def config(): selector = hc.Selector() selector.set('create', create) selector.set('run', run) selector.set('d_learn_rate', 1e-3) selector.set('discriminator_epsilon', 1e-8) selector.set('discriminator_beta1', 0.9) selector.set('discriminator_beta2', 0.999) selector.set('g_learn_rate', 1e-3) selector.set('generator_epsilon', 1e-8) selector.set('generator_beta1', 0.9) selector.set('generator_beta2', 0.999) selector.set('capped', False) selector.set('clipped_discriminator', False) return selector.random_config() def create(config, gan, d_vars, g_vars): d_loss = gan.graph.d_loss g_loss = gan.graph.g_loss g_lr = np.float32(config.g_learn_rate) d_lr = np.float32(config.d_learn_rate) gan.graph.d_vars = d_vars if(config.capped): g_optimizer = capped_optimizer(tf.train.MomentumOptimizer, g_lr, g_loss, g_vars) d_optimizer = capped_optimizer(tf.train.MomentumOptimizer, d_lr, d_loss, d_vars) else: g_optimizer = tf.train.MomentumOptimizer(g_lr, 0.975).minimize(g_loss, var_list=g_vars) d_optimizer = tf.train.MomentumOptimizer(d_lr, 0.975).minimize(d_loss, var_list=d_vars) return g_optimizer, d_optimizer iteration = 0 def run(gan): sess = gan.sess config = gan.config x_t = gan.graph.x g_t = gan.graph.g d_log_t = gan.graph.d_log g_loss = gan.graph.g_loss d_loss = gan.graph.d_loss d_fake_loss = gan.graph.d_fake_loss d_real_loss = gan.graph.d_real_loss g_optimizer = gan.graph.g_optimizer d_optimizer = gan.graph.d_optimizer d_class_loss = gan.graph.d_class_loss d_vars = gan.graph.d_vars _, d_cost, d_log = sess.run([d_optimizer, d_loss, d_log_t]) # in WGAN paper, values are clipped. This might not work, and is slow. if(config.clipped_discriminator): clip = [tf.assign(d,tf.clip_by_value(d, -config.clip_value, config.clip_value)) for d in d_vars] sess.run(clip) if(d_class_loss is not None): _, g_cost,d_fake,d_real,d_class = sess.run([g_optimizer, g_loss, d_fake_loss, d_real_loss, d_class_loss]) #print("%2d: g cost %.2f d_loss %.2f d_real %.2f d_class %.2f d_log %.2f" % (iteration, g_cost,d_cost, d_real, d_class, d_log )) else: _, g_cost,d_fake,d_real = sess.run([g_optimizer, g_loss, d_fake_loss, d_real_loss]) #print("%2d: g cost %.2f d_loss %.2f d_real %.2f d_log %.2f" % (iteration, g_cost,d_cost, d_real, d_log )) global iteration iteration+=1 return d_cost, g_cost ``` #### File: hypergan/vendor/vggnet_loader.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import op_def_registry import os.path import re import sys import tarfile import numpy as np from six.moves import urllib import tensorflow as tf import hypergan.loaders.resize_image_patch MODEL_DIR='/tmp/imagenet' # pylint: disable=line-too-long DATA_URL = 'https://github.com/pavelgonchar/colornet/blob/master/vgg/tensorflow-vgg16/vgg16-20160129.tfmodel?raw=true' # pylint: enable=line-too-long def create_graph(image, output_layer): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(os.path.join( MODEL_DIR, 'vgg16-20160129.tfmodel?raw=true'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) for node in graph_def.node: print(node.name) #if(node.name != "DecodeJpeg" and node.name != "ResizeBilinear" and node.name != "DecodeJpeg/contents"): node.device = "/cpu:0" result= tf.import_graph_def(graph_def, name='vggnet', input_map={"images":reshape_input(image)}, return_elements=[output_layer]) result = result[0] return result def get_features(image): graph = create_graph(image, 'Relu_1:0') return tf.squeeze(graph[0]) def reshape_input(img): reshaped_image = tf.identity(tf.squeeze(img)) tf.Tensor.set_shape(reshaped_image, [None, None, None]) reshaped_image = lib.loaders.resize_image_patch.resize_image_with_crop_or_pad(reshaped_image, 224, 224, dynamic_shape=True) r = tf.fill([224, 224], 103.939) g = tf.fill([224, 224], 116.779) b = tf.fill([224, 224], 123.68) offset = tf.transpose(tf.stack([r,g,b]), [2, 1, 0]) reshaped_image -= offset #reshaped_image = tf.transpose(reshaped_image, [0, 2, 1]) reshaped_image = tf.expand_dims(reshaped_image, 0) print("RESHAPED", reshaped_image) return reshaped_image def maybe_download_and_extract(): """Download and extract model tar file.""" dest_directory = MODEL_DIR if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') ```
{ "source": "jimimvp/CausalProb", "score": 2 }
#### File: CausalProb/models/nf_confounder_model2.py ```python from models.normalizing_flow.architectures import RealNVP import jax.numpy as jnp from jax.config import config from jax.experimental import stax # neural network library from jax.experimental.stax import Dense, Relu, normal # neural network layers from jax import random config.update("jax_enable_x64", True) class NeuralNet: def __init__(self, dim: int, seed: int = 0): self.dim = dim self.net_init, self.net_apply = stax.serial(Dense(8, W_init=normal()), Relu, Dense(8, W_init=normal()), Relu, Dense(self.dim, W_init=normal())) self.seed = seed def shift_and_log_scale_fn(self, u: jnp.array, params: jnp.array) -> list: s = self.net_apply(params, u) return jnp.split(s, 2, axis=-1) def init_params(self, seed: int = 0) -> tuple: in_shape = (-1, self.dim) out_shape, layer_params = self.net_init(random.PRNGKey(self.seed + seed), in_shape) return out_shape, layer_params def define_model(dim=2): f, finv, lpu, draw_u, init_params, ldij = dict(), dict(), dict(), dict(), dict(), dict() nf = RealNVP(dim=dim, seed=42) nn2 = NeuralNet(dim=2, seed=43) nn4 = NeuralNet(dim=4, seed=44) # V def _f_V1(u: jnp.array, theta: dict, parents: dict): return nf.forward(u, theta['V1']) f['V1'] = _f_V1 def _finv_V1(v: jnp.array, theta: dict, parents: dict): return nf.backward(v, theta['V1']) finv['V1'] = lambda v, theta, parents: _finv_V1(v, theta, parents)[0] ldij['V1'] = lambda v, theta, parents: jnp.sum(_finv_V1(v, theta, parents)[1], -1) lpu['V1'] = lambda u, theta: nf.evaluate_base_logpdf(u) draw_u['V1'] = lambda size, theta: nf.sample_base(size) init_params['V1'] = lambda seed: nf.init_all_params(seed) # X def _f_X(u: jnp.array, theta: dict, parents: dict): v1 = parents['V1'] return nf.forward(v1, theta['V1->X']) + nf.forward(u, theta['U_X->X']) f['X'] = _f_X def _finv_X(v: jnp.array, theta: dict, parents: dict): v1 = parents['V1'] return nf.backward(v - nf.forward(v1, theta['V1->X']), theta['U_X->X']) finv['X'] = lambda v, theta, parents: _finv_X(v, theta, parents)[0] ldij['X'] = lambda v, theta, parents: jnp.sum(_finv_X(v, theta, parents)[1], -1) lpu['X'] = lambda u, theta: nf.evaluate_base_logpdf(u) draw_u['X'] = lambda size, theta: nf.sample_base(size) init_params['V1->X'] = lambda seed: nn2.init_params(seed)[1] init_params['U_X->X'] = lambda seed: nf.init_all_params(seed) # Y def _f_Y(u: jnp.array, theta: dict, parents: dict): v1, x = parents['V1'], parents['X'] return nf.forward(v1, theta['V1->Y']) + nf.forward(x, theta['X->Y']) + nf.forward(u, theta['U_Y->Y']) f['Y'] = _f_Y def _finv_Y(v: jnp.array, theta: dict, parents: dict): v1, x = parents['V1'], parents['X'] return nf.backward(v - nf.forward(v1, theta['V1->Y']) - nf.forward(x, theta['X->Y']), theta['U_Y->Y']) finv['Y'] = lambda v, theta, parents: _finv_Y(v, theta, parents)[0] ldij['Y'] = lambda v, theta, parents: jnp.sum(_finv_Y(v, theta, parents)[1], -1) lpu['Y'] = lambda u, theta: nf.evaluate_base_logpdf(u) draw_u['Y'] = lambda size, theta: nf.sample_base(size) init_params['V1--X->Y'] = lambda seed: nn4.init_params(seed)[1] init_params['U_Y->Y'] = lambda seed: nf.init_all_params(seed) return dict(f=f, finv=finv, lpu=lpu, draw_u=draw_u, init_params=init_params, ldij=ldij) ``` #### File: CausalProb/tests/test_models.py ```python from causalprob import CausalProb import unittest import jax.numpy as jnp import numpy as np class TestNFConfounderModel(unittest.TestCase): def test_is_inverse_function(self): from models.nf_confounder_model import define_model dim = 2 model = define_model(dim=dim) cp = CausalProb(model=model) theta = {k: cp.init_params[k](i) for i, k in enumerate(cp.init_params)} u, v = cp.fill({k: cp.draw_u[k](1, theta, seed) for seed, k in enumerate(cp.draw_u)}, {}, theta, cp.draw_u.keys()) for rv in cp.f: assert jnp.allclose(cp.finv[rv](cp.f[rv](u[rv], theta, v), theta, v), u[rv]) def test_determinant(self): from models.nf_confounder_model import define_model dim = 2 model = define_model(dim=dim) cp = CausalProb(model=model) theta = {k: cp.init_params[k](i) for i, k in enumerate(cp.init_params)} u, v = cp.fill({k: cp.draw_u[k](1, theta, seed) for seed, k in enumerate(cp.draw_u)}, {}, theta, cp.draw_u.keys()) for rv in cp.ldij: assert jnp.allclose(jnp.round(cp.ldij[rv](v[rv], theta, v).squeeze(), 4), jnp.round( jnp.log( jnp.abs( jnp.linalg.det( cp.dfinvv_dv(rv, {k: _v.squeeze(0) for k, _v in v.items()}, theta)))), 4)) ```
{ "source": "jiminald/energenie-webpower", "score": 3 }
#### File: jiminald/energenie-webpower/server.py ```python import os import json import atexit import bottle from time import sleep from bottle import route, request, response, template, static_file from gpiozero import Energenie # Set Document Root by using the current file directory DOCUMENT_ROOT = os.path.dirname(os.path.abspath(__file__)) # Load JSON config with open(DOCUMENT_ROOT+'/config.json', 'r') as f: CONFIG = json.load(f) # print(json.dumps(CONFIG, indent=4, sort_keys=True)) # Dynamically load the sockets we're controlling sockets = [0] for key, val in CONFIG['sockets'].items(): # Convert the key from a string to an integer key = int(key) # Create our connection to the socket and set the default state of the socket sockets.insert(key, Energenie(key, bool(val['default_state']))) # Function to control the socket def energenie_socket_power(id, action): # Open a connection to the socket socket = sockets[id] # Do action if action == 'off': socket.off() elif action == 'on': socket.on() # Sleep, to ensure the command is sent sleep(0.05) # Function to control the socket def energenie_socket_state(id): # Open a connection to the socket socket = sockets[id] # Find out what state the socket is in (On or Off) val = socket.value # Give this back to whomever asked for it return val # Close everything when we quit the script def on_exit(): for key, val in CONFIG['sockets'].items(): key = int(key) sockets[key].close() # Register the shutdown function atexit.register(on_exit) # Create the bottle web server app = bottle.Bottle() # Public assets and resources @app.route('/public/<filename:re:.+>') def server_public(filename): return static_file(filename, root=DOCUMENT_ROOT+"/public") # Serve up config.json @app.route('/config.json') def server_config(): return static_file('config.json', root=DOCUMENT_ROOT) # Serve up the state of the socket @app.route('/state/<socket_id:int>') def socket_state(socket_id): return '{"state":"%s"}' % str(energenie_socket_state(socket_id)).lower() # Change the Socket State @app.route('/state/<socket_id:int>/<action>') def socket_state_trigger(socket_id, action): energenie_socket_power(socket_id, action) return socket_state(socket_id) # Serve up the default index.html page @app.route('/') def server_home(): return static_file('index.html', root=DOCUMENT_ROOT+"/public") # Start web server app.run(host=CONFIG['http_host'], port=CONFIG['http_port']) ```
{ "source": "jiminald/homeassistant-unraid", "score": 2 }
#### File: custom_components/unraid/__init__.py ```python import logging import os.path, time # Home assistant import voluptuous as vol from homeassistant import config_entries import homeassistant.helpers.config_validation as cv # GraphQL import requests from requests.exceptions import Timeout from requests.exceptions import ConnectionError import json # Constants from .const import ( DOMAIN, HOSTS, CONF_HOST, CONF_API_KEY, GRAPHQL_ENDPOINTS, SENSOR_LIST, ) # Config schema CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_API_KEY): cv.string, # vol.Optional(CONF_BINARY_SENSOR): vol.All( # cv.ensure_list, [BINARY_SENSOR_SCHEMA] # ), # vol.Optional(CONF_SENSOR): vol.All(cv.ensure_list, [SENSOR_SCHEMA]), # vol.Optional(CONF_SWITCH): vol.All(cv.ensure_list, [SWITCH_SCHEMA]), } ) }, extra=vol.ALLOW_EXTRA, ) # Set logger name _LOGGER = logging.getLogger(__name__) # def setup(hass, config): async def async_setup(hass, config): """Set up the Unraid component using YAML""" # Check config is setup if config.get(DOMAIN) is None: # We get here if the integration is set up using config flow return True # Debug log we're starting _LOGGER.debug("YAML Setup started") # Setup data dict hass.data[DOMAIN] = {} # Get "global" configuration. host = config[DOMAIN].get(CONF_HOST) api_key = config[DOMAIN].get(CONF_API_KEY) # Config the unRAID Client try: api = UnraidClient( hass, host, api_key ) # Prepare JSON objects for sensor_name in SENSOR_LIST: api._json_object[sensor_name] = {} # Store data hass.data[DOMAIN] = {"config": config[DOMAIN], "api": api} # Load sensors hass.helpers.discovery.load_platform('sensor', DOMAIN, {"host": host}, config) # Add config Flow hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={} ) ) except Exception: _LOGGER.error("(YAML) unRAID Fatal Error: %s - Failed to connect to API", host) return True async def async_setup_entry(hass, config_entry): """Set up this integration using UI.""" conf = hass.data.get(DOMAIN) if config_entry.source == config_entries.SOURCE_IMPORT: if conf is None: hass.async_create_task( hass.config_entries.async_remove(config_entry.entry_id) ) return False # Debug log we're starting _LOGGER.debug("UI Setup started") # Create DATA dict hass.data[DOMAIN] = {} # Get "global" configuration. host = config_entry.data.get(CONF_HOST) api_key = config_entry.data.get(CONF_API_KEY) # _LOGGER.debug("host: %s", host) # _LOGGER.debug("api_key %s", api_key) try: _LOGGER.debug("(UI) Do API") api = UnraidClient( hass, host, api_key ) _LOGGER.debug("(UI) Do sensors") for sensor_name in SENSOR_LIST: api._json_object[sensor_name] = {} _LOGGER.debug("(UI) Do data") hass.data[DOMAIN] = {"config": config_entry.data, "api": api} # Load sensors # _LOGGER.debug("(UI) Do load of sensors") # hass.helpers.discovery.load_platform('sensor', DOMAIN, {"host": host}, config_entry.data) except Exception: _LOGGER.error("(UI) unRAID Fatal Error: %s - Failed to connect to API", host) # Add binary_sensor # hass.async_add_job( # hass.config_entries.async_forward_entry_setup(config_entry, "binary_sensor") # ) # # Add sensor hass.async_add_job( hass.config_entries.async_forward_entry_setup(config_entry, "sensor") ) # # # Add switch # hass.async_add_job( # hass.config_entries.async_forward_entry_setup(config_entry, "switch") # ) return True class UnraidClient: """Handle GraphQL communications""" def __init__(self, hass, host, api_key): """Initialize the Unraid GraphQL Client.""" self._host = host self._api_key = api_key self._hass = hass self._json_object = {} def poll_graphql(self, graphql='All'): # Get all sensor data graphql_query = '' if not graphql == 'All': graphql_query += GRAPHQL_ENDPOINTS[graphql] else: for sensor_name in SENSOR_LIST: graphql_query += GRAPHQL_ENDPOINTS[sensor_name] + ',' # Make request try: _LOGGER.debug("Host = %s", self._host) # Dump the request query _LOGGER.debug('Request GraphQL = %s', graphql) _LOGGER.debug('Request = {%s}', graphql_query) result = requests.post( self._host + '/graph', headers = { 'x-api-key': self._api_key, }, json = { 'query': '{'+ graphql_query +'}', }, ) json_result = json.loads(result.content) # Debug of JSON result _LOGGER.debug("Result = %s", json_result) # Process JSON if not graphql == 'All': self._json_object[graphql] = { 'json': json_result['data'][graphql], 'data': flatten_json(json_result['data'][graphql]) } else: for sensor_name in SENSOR_LIST: self._json_object[sensor_name] = { 'json': json_result['data'][sensor_name], 'data': flatten_json(json_result['data'][sensor_name]) } return self._json_object except Timeout: _LOGGER.debug('The request timed out') except ConnectionError as ce: _LOGGER.debug('Connection Error = %s', ce) else: _LOGGER.debug('The request did not time out') return self._json_object def flatten_json(y, prefix=""): out = {} def flatten(x, name=''): if type(x) is dict: for a in x: flatten(x[a], name + a + '_') elif type(x) is list: i = 0 for a in x: flatten(a, name + str(i) + '_') i += 1 else: out[name[:-1]] = x flatten(y, prefix) return out ```
{ "source": "JimInCO/bishopric_tools", "score": 2 }
#### File: bishopric_tools/people/forms.py ```python from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from django import forms from people.models import Member class MemberAddForm(forms.ModelForm): class Meta: model = Member exclude = ["active"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.add_input(Submit("submit", "Create Member")) self.helper.form_id = "add-form" ``` #### File: bishopric_tools/people/lookups.py ```python from ajax_select import register, LookupChannel from django.db.models import Q from .models import Member @register("members") class TagsLookup(LookupChannel): model = Member def get_query(self, q, request): query = Q(first_name__icontains=q) | Q(last_name__icontains=q) return self.model.objects.filter(query).order_by("last_name") def format_item_display(self, item): return u"<span class='tag'>{}</span>".format(item.full_name) def get_result(self, obj): """ result is the simple text that is the completion of what the person typed """ return obj.id ``` #### File: bishopric_tools/people/models.py ```python from datetime import date from django.db import models from django.urls import reverse from model_utils import Choices from events.models import Talk class Member(models.Model): GENDER = Choices((0, "female", "female"), (1, "male", "male")) lds_id = models.CharField(max_length=11, unique=True) gender = models.IntegerField(choices=GENDER) first_name = models.CharField(max_length=30, verbose_name="First name") last_name = models.CharField(max_length=40, verbose_name="Last name") birth_year = models.PositiveIntegerField(verbose_name="Birth Year") # Contact information email = models.EmailField(verbose_name="E-Mail", blank=True, null=True) phone = models.CharField(max_length=20, verbose_name="Phone Number", blank=True, null=True) street1 = models.CharField(max_length=50) street2 = models.CharField(max_length=50, blank=True, null=True) city = models.CharField(max_length=60) state = models.CharField(max_length=2) zip_code = models.CharField(max_length=10, blank=True, null=True) # Still in the ward active = models.BooleanField(default=True) # Notes notes = models.TextField(blank=True) @property def full_name(self): """Returns the person's full name""" return "{} {}".format(self.first_name, self.last_name) @property def formal_name(self): """Returns the person's Title (Brother/Sister) and last name""" if self.gender == 0: return "Sister {}".format(self.last_name) else: return "Brother {}".format(self.last_name) @property def age(self): """Returns the person's age""" return int((date.today().year - self.birth_year)) @property def adult(self): return self.age >= 19 @property def last_talk_date(self): talks = Talk.objects.filter(speaker=self).order_by("-date") if len(talks) > 0: return talks[0].date else: return None def get_absolute_url(self): return reverse("members:detail", args=[str(self.pk)]) def __str__(self): return self.full_name ``` #### File: bishopric_tools/people/views.py ```python from django.views.generic import ListView, CreateView, DetailView from events.models import Talk from . import forms from . import models class MemberDetail(DetailView): model = models.Member slug_field = "pk" slug_url_kwarg = "pk" def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["talks"] = Talk.objects.filter(speaker=self.object).order_by("-date") return ctx class MemberList(ListView): model = models.Member queryset = model.objects.filter(active=True) class MemberAddView(CreateView): model = models.Member form_class = forms.MemberAddForm ```
{ "source": "Jiminger/CSMuseum", "score": 3 }
#### File: Jiminger/CSMuseum/app.py ```python from flask import Flask from flask import render_template from markupsafe import Markup import arduino_controller import db_controller app = Flask(__name__) # Prototype using Case 3 Page as the Index page. @app.route('/') def index(): arduino_controller.light_specific_case(3) return render_template("case_3.html") @app.route('/item_<item_id>') def item_page(item_id): item_info = db_controller.get_item_information(3, item_id) arduino_controller.light_specific_item(3, item_id) return render_template("item.html", item_name=item_info[0][0], item_desc=Markup(item_info[0][1]), img_path=item_info[0][2]) """ This code can be used to later extend the program to light up all three museum cases. # Index Page @app.route('/') def index(): arduino_controller.light_entire_museum() return render_template("index.html") # Case One Pages @app.route('/case_1/') def case_1(): # controller.turn_on_case(1) return render_template("case_1.html") # Case Two Pages @app.route('/case_2/') def case_2(): # controller.turn_on_case(2) return render_template("case_2.html") # Case Three Pages @app.route('/case_3/') def case_3(): # controller.turn_on_case(3) return render_template("case_3.html") @app.route('/case_<case_id>/item_<item_id>') def item_page(case_id, item_id): item_info = db_controller.get_item_information(case_id, item_id) arduino_controller.light_specific_item(case_id, item_id) return render_template("item.html", item_name=item_info[0][0], item_desc=Markup(item_info[0][1]), img_path=item_info[0][2]) """ if __name__ == "__main__": app.run() ``` #### File: Jiminger/CSMuseum/db_controller.py ```python import mysql.connector import info def open_connection(): my_db = mysql.connector.connect( host="localhost", user=info.get_db_user(), password=info.get_db_pass(), database="CSMuseum" ) my_cursor = my_db.cursor() return my_db, my_cursor def close_connection(connection): for c in connection: c.close() def format_input(start_index, end_index): return '<' + str(start_index) + ',' + str(end_index) + '>' def get_item_indexes(case_id, item_id): connection = open_connection() my_cursor = connection[1] my_cursor.execute("SELECT start_index, end_index FROM Items WHERE case_id= " + str(case_id) + " AND item_id =" + str(item_id) + ";") my_result = my_cursor.fetchall() close_connection(connection) return format_input(str(my_result[0][0]), str(my_result[0][1])) def get_item_information(case_id, item_id): connection = open_connection() my_cursor = connection[1] my_cursor.execute("SELECT item_name, item_desc, img_path FROM Items WHERE case_id =" + str(case_id) + " AND item_id =" + str(item_id) + ";") my_result = my_cursor.fetchall() close_connection(connection) return my_result ```
{ "source": "jimingham/llvm-project", "score": 3 }
#### File: expression/calculator_mode/TestCalculatorMode.py ```python import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestCalculatorMode(TestBase): mydir = TestBase.compute_mydir(__file__) def test__calculator_mode(self): """Test calling expressions in the dummy target.""" self.expect("expression 11 + 22", "11 + 22 didn't get the expected result", substrs=["33"]) # Now try it with a specific language: self.expect("expression -l c -- 11 + 22", "11 + 22 didn't get the expected result", substrs=["33"]) ```
{ "source": "jiming-liu/overpick_Scrapy", "score": 3 }
#### File: Spider5i5j/spiders/city5i5j.py ```python import scrapy import demjson from Spider5i5j.items import Spider5I5JItem from Spider5i5j.spiders.startURL import startURL class city5i5j(scrapy.Spider): name = 'city5i5j' allowed_domains = ['5i5j.com'] start_urls = ['http://cs.5i5j.com/exchange'] def parse(self, response): city_page_query = '//body/nav/div/div/ul[@class="city-more-r"]/li/a' for info in response.xpath(city_page_query): item = Spider5I5JItem() item['houseCity'] = info.xpath('text()').extract()[0] item['houseCityURL'] = info.xpath('attribute::href').extract()[0] yield item ``` #### File: Spider5i5j/spiders/ershoufang5i5j.py ```python import scrapy import demjson from Spider5i5j.items import Spider5I5JItem from Spider5i5j.spiders.startURL import startURL class ershoufang5i5j(scrapy.Spider): name = 'ershoufang5i5j' allowed_domains = ['5i5j.com'] start_urls = startURL.ershoufangURL def parse(self, response): house_page_query = '//body/section/div/div/div/ul[@class="list-body"]/li' house_page_root = response.request.url.split('/')[2] for info in response.xpath(house_page_query): house_page_href = info.xpath('a/attribute::href').extract()[0] house_page_url = 'http://'+ house_page_root + house_page_href yield scrapy.Request(house_page_url,callback=self.parse_house_page) def parse_house_page(self,response): item = Spider5I5JItem() item['houseTitle'] = response.xpath('//html/head/title/text()').extract()[0].split('_')[0] #此XPath节点可以获得房屋的所有基本信息 house_info_query = '//body/section/div/div/ul' area_query = 'li/ul/li[3]/text()' item['houseArea'] = response.xpath(house_info_query).xpath(area_query).extract()[0] name_query = 'li[3]/text()' item['houseName'] = response.xpath(house_info_query).xpath(name_query).extract()[0] #此XPath节点获得房屋的历史价格信息和最早发布时间 #这里初始化房屋售价为一个字典 item['housePrice'] = {} histroy_price_query = '//body/section/div/section/div/script/text()' histroy_price_json = response.xpath(histroy_price_query).extract()[0].split(';')[1].split('=')[1] histroy_price_dejson = demjson.decode(histroy_price_json) histroy_price_data = histroy_price_dejson['xAxis'][0]['data'] histroy_time = len(histroy_price_data) i = 0 while i < histroy_time : histroy_price_guapai = histroy_price_dejson['series'][0]['data'][i] histroy_price_chengjiao = histroy_price_dejson['series'][1]['data'][i] item['housePrice'][histroy_price_data[i]] = { 'price_guapai' : histroy_price_guapai, 'price_chengjiao' : histroy_price_chengjiao } i += 1 #最早的历史时间就是发帖的时间 item['housePublishedTime'] = histroy_price_data[0] #这里请求房屋的地址和城市 item['houseAddress'] = response.xpath('//body/section/div/section/div[@class="xq-intro-info"]/ul/li[3]/text()').extract()[0] item['houseCity'] = response.xpath('//body').re(r'mapCityName.*;?')[0].split('\"')[-2] #这里请求房屋的地址和城市 item['houseAddress'] = response.xpath('//body/section/div/section/div[@class="xq-intro-info"]/ul/li[3]/text()').extract()[0] item['houseCity'] = response.xpath('//body').re(r'mapCityName.*;?')[0].split('\"')[-2] item['houseBaiduLongitude'] = response.xpath('//body').re(r'mapY.*;?')[0].split('=')[-1].split(';')[0].replace('"','') item['houseBaiduLatitude'] = response.xpath('//body').re(r'mapX.*;?')[0].split('=')[-1].split(';')[0].replace('"','') yield item ``` #### File: SpiderGanji/SpiderGanji/pipelines.py ```python import sys import csv import time import string class SpiderganjiPipeline(object): def process_item(self, item, spider): return item class xinfangGanjiPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): if spider.name != 'xinfangGanji': return item #判断是否存在历史价格数据 #这里要用字典类型中的get方法来判断,否则会报错。 #原因是如果housePrice不存在,那么字典旧无法索引找到此项,返回错误;而使用get方法则返回空。 if not item.get('housePrice'): return item #打开写入的文件和CSV写入模块 self.file = open('xinfangGanji.csv','ab') csvWriter = csv.writer(self.file) #获得发布时间的月份 time_tmp = string.atof(item['housePublishedTime'][0:10]) time_list = time.localtime(time_tmp) if time_list[1] < 10: times = '%d'%time_list[0]+'0'+'%d'%time_list[1] else: times = '%d'%time_list[0]+'%d'%time_list[1] #格式化item为CSV格式数据 house_area = item['houseArea'] price_chengjiao_tmp = item['housePrice'] price_guapai_tmp = item['housePrice'] price_chengjiao = string.atof(price_chengjiao_tmp) / string.atof(house_area) * 10000 price_guapai = string.atof(price_guapai_tmp) / string.atof(house_area) * 10000 house_name = item['houseName'].strip() line = (times,house_name,item['houseCity'],price_chengjiao,price_guapai,item['houseArea'],item['houseAddress'],item['houseBaiduLatitude'],item['houseBaiduLongitude'],item['houseTitle']) csvWriter.writerow(line) return item class ershoufangGanjiPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): if spider.name != 'ershoufangGanji': return item #判断是否存在历史价格数据 #这里要用字典类型中的get方法来判断,否则会报错。 #原因是如果housePrice不存在,那么字典旧无法索引找到此项,返回错误;而使用get方法则返回空。 if not item.get('housePrice'): return item #打开写入的文件和CSV写入模块 self.file = open('ershoufangfangGanji.csv','ab') csvWriter = csv.writer(self.file) #获得发布时间的月份 time_tmp = string.atof(item['housePublishedTime'][0:10]) time_list = time.localtime(time_tmp) if time_list[1] < 10: times = '%d'%time_list[0]+'0'+'%d'%time_list[1] else: times = '%d'%time_list[0]+'%d'%time_list[1] #格式化item为CSV格式数据 price_chengjiao = item['housePrice'] price_guapai = item['housePrice'] house_name = item['houseName'].strip() line = (times,house_name,item['houseCity'],price_chengjiao,price_guapai,item['houseArea'].strip(),item['houseAddress'],item['houseBaiduLatitude'],item['houseBaiduLongitude'],item['houseTitle']) csvWriter.writerow(line) return item class zufangGanjiPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): if spider.name != 'zufangGanji': return item #判断是否存在历史价格数据 #这里要用字典类型中的get方法来判断,否则会报错。 #原因是如果housePrice不存在,那么字典旧无法索引找到此项,返回错误;而使用get方法则返回空。 if not item.get('housePrice'): return item #打开写入的文件和CSV写入模块 self.file = open('zufangfangGanji.csv','ab') csvWriter = csv.writer(self.file) #获得发布时间的月份 time_tmp = string.atof(item['housePublishedTime'][0:10]) time_list = time.localtime(time_tmp) if time_list[1] < 10: times = '%d'%time_list[0]+'0'+'%d'%time_list[1] else: times = '%d'%time_list[0]+'%d'%time_list[1] #格式化item为CSV格式数据 price_chengjiao = item['housePrice'] price_guapai = item['housePrice'] house_name = item['houseName'].strip() line = (times,house_name,item['houseCity'],price_chengjiao,price_guapai,item['houseArea'].strip(),item['houseAddress'],item['houseBaiduLatitude'],item['houseBaiduLongitude'],item['houseTitle']) csvWriter.writerow(line) return item class cityGanjiPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): if spider.name != 'cityGanji': return item self.file = open('startURL_quanguo.txt','ab') i = 1 while i < 71: i_str = '%d'%i line_1 = ' \''+item['houseCityURL'].encode('utf-8') + 'fang12/o' + i_str + '/\',' line_2 = ' \''+item['houseCityURL'].encode('utf-8') + 'fang5/o' + i_str + '/\',' line_3 = ' \''+item['houseCityURL'].encode('utf-8') + 'fang1/o' + i_str + '/\',' print >> self.file , line_1 print >> self.file , line_2 print >> self.file , line_3 i += 1 return item ``` #### File: SpiderLianjia/SpiderLianjia/pipelines.py ```python import csv import sys import string class SpiderlianjiaPipeline(object): def process_item(self, item, spider): return item class xinfangLianjiaPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): #判断是否为链家新房爬虫 if spider.name != 'xinfangLianjia': return item #判断是否存在历史价格数据 #这里要用字典类型中的get方法来判断,否则会报错。 #原因是如果housePrice不存在,那么字典旧无法索引找到此项,返回错误;而使用get方法则返回空。 if not item.get('houseHistoryPrice'): return item #打开写入的文件和CSV写入模块 self.file = open('xinfangLianjia.csv','ab') csvWriter = csv.writer(self.file) #列表化时间、房价数据 time_list = item['houseHistoryPrice']['time'].strip('[]').replace('"','').split(',') price_chengjiao_list = item['houseHistoryPrice']['price_chengjiao'].strip('[]').split(',') price_guapai_list = item['houseHistoryPrice']['price_guapai'].strip('[]').split(',') #格式化item为CSV格式数据 for house in time_list: price_index = time_list.index(house) price_chengjiao = price_chengjiao_list[price_index] price_guapai = price_guapai_list[price_index] line = (house,item['houseName'],item['houseCity'],price_chengjiao,price_guapai,item['houseAddress'],item['houseBaiduLatitude'],item['houseBaiduLongitude'],item['houseTitle']) csvWriter.writerow(line) return item class ershoufangLianjiaPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): if spider.name != 'ershoufangLianjia': return item #判断是否存在历史价格数据 #这里要用字典类型中的get方法来判断,否则会报错。 #原因是如果housePrice不存在,那么字典旧无法索引找到此项,返回错误;而使用get方法则返回空。 if not item.get('houseHistoryPrice'): return item #打开写入的文件和CSV写入模块 self.file = open('ershoufangLianjia.csv','ab') csvWriter = csv.writer(self.file) #格式化item为CSV格式数据 for house in item['houseHistoryPrice']['time']: price_index = item['houseHistoryPrice']['time'].index(house) price_chengjiao_tmp = string.atof(item['houseHistoryPrice']['price'][price_index]) price_guapai_tmp = string.atof(item['houseHistoryPrice']['price'][price_index]) house_area = string.atof(item['houseArea']) price_chengjiao = price_chengjiao_tmp * house_area / 10000 price_guapai = price_guapai_tmp * house_area / 10000 if price_chengjiao == 0: price_chengjiao = item['housePrice'] price_guapai = item['housePrice'] line = (house,item['houseName'],item['houseCity'],price_chengjiao,price_guapai,house_area,'N/A',item['houseBaiduLatitude'],item['houseBaiduLongitude'],item['houseTitle']) csvWriter.writerow(line) return item class zufangLianjiaPipeline(object): def __init__(self): reload(sys) sys.setdefaultencoding('utf-8') def process_item(self,item,spider): if spider.name != 'zufangLianjia': return item #判断是否存在历史价格数据 #这里要用字典类型中的get方法来判断,否则会报错。 #原因是如果housePrice不存在,那么字典旧无法索引找到此项,返回错误;而使用get方法则返回空。 if not item.get('houseHistoryPrice'): return item #打开写入的文件和CSV写入模块 self.file = open('zufangLianjia.csv','ab') csvWriter = csv.writer(self.file) #格式化item为CSV格式数据 for house in item['houseHistoryPrice']['time']: price_index = item['houseHistoryPrice']['time'].index(house) price_chengjiao = string.atof(item['houseHistoryPrice']['price'][price_index]) price_guapai = string.atof(item['houseHistoryPrice']['price'][price_index]) house_area = string.atof(item['houseArea']) if price_chengjiao == 0: price_chengjiao = item['housePrice'] price_guapai = item['housePrice'] line = (house,item['houseName'],item['houseCity'],price_chengjiao,price_guapai,house_area,'N/A',item['houseBaiduLatitude'],item['houseBaiduLongitude'],item['houseTitle']) csvWriter.writerow(line) return item ```
{ "source": "JiminKung/Violet-LogMin", "score": 3 }
#### File: Violet-LogMin/widgets/boot_page.py ```python import yaml import tkinter as tk from utils.utils import centered_display from widgets.violet import Voilet with open("violet-logmin.yaml", mode='r', encoding="utf-8") as f: WIDGET_CONFIG = yaml.load(f, Loader=yaml.FullLoader)["widget"] BOOT_PAGE_CONFIG = WIDGET_CONFIG["boot_page"] WELCOME_LABEL_FRAME_CONFIG = WIDGET_CONFIG["welcome_label_frame"] WELCOME_LABEL_CONFIG = WIDGET_CONFIG["welcome_label"] CHOICE_FRAME_CONFIG = WIDGET_CONFIG["choice_frame"] ENGLISH_BUTTON_CONFIG = WIDGET_CONFIG["english_button"] CHINESE_BUTTON_CONFIG = WIDGET_CONFIG["chinese_button"] class BootPage(tk.Tk): def __init__(self): super().__init__() self.language = "" self.context_box = {"boot_page": self} self.title(BOOT_PAGE_CONFIG["title"]) self.iconbitmap(default=BOOT_PAGE_CONFIG["icon"]) self.window_width = BOOT_PAGE_CONFIG["window_width"] self.window_height = BOOT_PAGE_CONFIG["window_height"] if not BOOT_PAGE_CONFIG["resizeable"]: self.resizable(0, 0) self.welcome_label_frame = None self.welcome_label = None self.choice_frame = None self.english_button = None self.chinese_button = None self.setup() centered_display(self) def setup(self): self.welcome_label_frame = tk.LabelFrame(self, text=WELCOME_LABEL_FRAME_CONFIG["text"], labelanchor=WELCOME_LABEL_FRAME_CONFIG["labelanchor"], font=(WELCOME_LABEL_FRAME_CONFIG["font_family"], WELCOME_LABEL_FRAME_CONFIG["font_size"], WELCOME_LABEL_FRAME_CONFIG["font_weight"])) self.welcome_label_frame.pack(pady=WELCOME_LABEL_FRAME_CONFIG["pady"]) self.welcome_label = tk.Label(self.welcome_label_frame, text=WELCOME_LABEL_CONFIG["text"], wraplength=WELCOME_LABEL_CONFIG["wraplength"], justify=WELCOME_LABEL_CONFIG["justify"], font=(WELCOME_LABEL_CONFIG["font_family"], WELCOME_LABEL_CONFIG["font_size"], WELCOME_LABEL_CONFIG["font_weight"])) self.welcome_label.pack(side=WELCOME_LABEL_CONFIG["side"], padx=WELCOME_LABEL_CONFIG["padx"], pady=WELCOME_LABEL_CONFIG["pady"]) self.choice_frame = tk.Frame(self) self.choice_frame.pack(padx=CHOICE_FRAME_CONFIG["padx"], pady=CHOICE_FRAME_CONFIG["pady"]) self.english_button = tk.Button(self.choice_frame, text=ENGLISH_BUTTON_CONFIG["text"], font=(ENGLISH_BUTTON_CONFIG["font_family"], ENGLISH_BUTTON_CONFIG["font_size"], ENGLISH_BUTTON_CONFIG["font_weight"]), command=self.choose_english) self.english_button.pack(side=ENGLISH_BUTTON_CONFIG["side"], padx=ENGLISH_BUTTON_CONFIG["padx"]) self.chinese_button = tk.Button(self.choice_frame, text=CHINESE_BUTTON_CONFIG["text"], font=(CHINESE_BUTTON_CONFIG["font_family"], CHINESE_BUTTON_CONFIG["font_size"], CHINESE_BUTTON_CONFIG["font_weight"]), command=self.choose_chinese) self.chinese_button.pack(side=CHINESE_BUTTON_CONFIG["side"], padx=CHINESE_BUTTON_CONFIG["padx"]) def choose_english(self): self.language = "English" self.boot_violet() def choose_chinese(self): self.language = "Chinese" self.boot_violet() def boot_violet(self): violet = Voilet(self.context_box, self.language) self.withdraw() violet.mainloop() def exit(self): self.destroy() ``` #### File: Violet-LogMin/widgets/proscenium.py ```python import yaml import tkinter as tk with open("violet-logmin.yaml", mode='r', encoding="utf-8") as f: CONFIG = yaml.load(f, Loader=yaml.FullLoader) WIDGET_CONFIG = CONFIG["widget"] PROSCENIUM_FRAME_CONFIG = WIDGET_CONFIG["proscenium_frame"] PROSCENIUM_TEXT_CONFIG = WIDGET_CONFIG["proscenium_text"] PROSCENIUM_SCROLLBAR_CONFIG = WIDGET_CONFIG["proscenium_scrollbar"] DIALOGUE_CONFIG = CONFIG["dialogue"] LOGMIN_DIALOGUE_CONFIG = DIALOGUE_CONFIG["LogMin"] VIOLET_DIALOGUE_CONFIG = DIALOGUE_CONFIG["Violet"] VIOLET_LOGMIN_DIALOGUE_CONFIG = DIALOGUE_CONFIG["Violet-LogMin"] class ProsceniumFrame(tk.LabelFrame): def __init__(self, master, context_box, language): self.context_box = context_box self.context_box["proscenium_frame"] = self self.language = language super().__init__(master=master, text=PROSCENIUM_FRAME_CONFIG[language]["text"], labelanchor=PROSCENIUM_FRAME_CONFIG["labelanchor"], font=(PROSCENIUM_FRAME_CONFIG["font_family"], PROSCENIUM_FRAME_CONFIG["font_size"], PROSCENIUM_FRAME_CONFIG["font_weight"])) self.pack(side=PROSCENIUM_FRAME_CONFIG["side"], padx=PROSCENIUM_FRAME_CONFIG["padx"], pady=PROSCENIUM_FRAME_CONFIG["pady"], fill="x") self.proscenium_text = None self.proscenium_scrollbar = None self.setup() def setup(self): self.proscenium_text = tk.Text(self, wrap=PROSCENIUM_TEXT_CONFIG["wrap"], font=(PROSCENIUM_TEXT_CONFIG["font_family"], PROSCENIUM_TEXT_CONFIG["font_size"], PROSCENIUM_TEXT_CONFIG["font_weight"])) self.proscenium_scrollbar = tk.Scrollbar(self, orient=PROSCENIUM_SCROLLBAR_CONFIG["orient"]) self.proscenium_scrollbar.config(command=self.proscenium_text.yview) self.proscenium_text.config(yscrollcommand=self.proscenium_scrollbar.set) self.proscenium_scrollbar.pack(side=PROSCENIUM_SCROLLBAR_CONFIG["side"], fill=PROSCENIUM_SCROLLBAR_CONFIG["fill"]) self.proscenium_text.pack(padx=PROSCENIUM_TEXT_CONFIG["padx"], pady=PROSCENIUM_TEXT_CONFIG["pady"], fill=PROSCENIUM_TEXT_CONFIG["fill"]) self.proscenium_text.see("end") self.perform_opening_act() self.list_cast() def perform_opening_act(self): welcome_lines = VIOLET_LOGMIN_DIALOGUE_CONFIG["role"] + \ VIOLET_LOGMIN_DIALOGUE_CONFIG[self.language]["welcome"] + "\n\n" introduction_lines = VIOLET_LOGMIN_DIALOGUE_CONFIG["role"] + \ VIOLET_LOGMIN_DIALOGUE_CONFIG[self.language]["introduction"] + "\n\n" website_lines = VIOLET_LOGMIN_DIALOGUE_CONFIG["role"] + \ VIOLET_LOGMIN_DIALOGUE_CONFIG[self.language]["website"] + "\n\n" self.proscenium_text.insert("end", welcome_lines) self.proscenium_text.insert("end", introduction_lines) self.proscenium_text.insert("end", website_lines) self.proscenium_text.config(state="disabled") def list_cast(self): self.proscenium_text.config(state="normal") violet_introduction_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["introduction"] + "\n\n" logmin_introduction_lines = LOGMIN_DIALOGUE_CONFIG["role"] + \ LOGMIN_DIALOGUE_CONFIG[self.language]["introduction"] + "\n\n" tutorial_lines = VIOLET_LOGMIN_DIALOGUE_CONFIG["role"] + \ VIOLET_LOGMIN_DIALOGUE_CONFIG[self.language]["tutorial"] + "\n\n" self.proscenium_text.insert("end", violet_introduction_lines) self.proscenium_text.insert("end", logmin_introduction_lines) self.proscenium_text.insert("end", tutorial_lines) self.proscenium_text.config(state="disabled") # self.proscenium_text.see("end") def throw_miss_selecting_exception(self): self.proscenium_text.config(state="normal") violet_miss_selecting_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["miss_selecting"] + "\n\n" self.proscenium_text.insert("end", violet_miss_selecting_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") def throw_empty_input_exception(self): self.proscenium_text.config(state="normal") violet_empty_input_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["empty_input"] + "\n\n" self.proscenium_text.insert("end", violet_empty_input_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") def throw_log_unchange_exception(self): self.proscenium_text.config(state="normal") violet_log_unchange_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["log_unchange"] + "\n\n" self.proscenium_text.insert("end", violet_log_unchange_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") def display_selected_member(self, member): self.proscenium_text.config(state="normal") violet_select_member_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["select_member"]\ .format(member["name"], member["address"]) + "\n\n" self.proscenium_text.insert("end", violet_select_member_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") def display_send_permission(self): self.proscenium_text.config(state="normal") violet_send_permission_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["send_permission"] + "\n\n" self.proscenium_text.insert("end", violet_send_permission_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") def display_send_cancel_instruction(self): self.proscenium_text.config(state="normal") violet_send_cancel_lines = VIOLET_DIALOGUE_CONFIG["role"] + \ VIOLET_DIALOGUE_CONFIG[self.language]["send_cancel"] + "\n\n" self.proscenium_text.insert("end", violet_send_cancel_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") def display_send_finished(self, receiver): full_name = receiver["sur_name"] + receiver["given_name"] self.proscenium_text.config(state="normal") logmin_send_finished_lines = LOGMIN_DIALOGUE_CONFIG["role"] + \ LOGMIN_DIALOGUE_CONFIG[self.language]["send_finished"] \ .format(full_name, receiver["address"]) + "\n\n" self.proscenium_text.insert("end", logmin_send_finished_lines) self.proscenium_text.config(state="disabled") self.proscenium_text.see("end") ```
{ "source": "JiminLeeDev/BaekJoonPython", "score": 4 }
#### File: BaekJoonPython/problems/10870.py ```python def FindFibonacciNumber(n): if n <= 1: return n return FindFibonacciNumber(n - 1) + FindFibonacciNumber(n - 2) def Num10870(): n = int(input()) print(FindFibonacciNumber(n)) Num10870() ``` #### File: BaekJoonPython/problems/10872.py ```python def Get_Factorial(N, result): if N == 0: return result else: return Get_Factorial(N - 1, result * N) def Num10872(): N = int(input()) result = Get_Factorial(N, 1) print(result) Num10872() ``` #### File: BaekJoonPython/problems/11729.py ```python def move(n, a, b, c): if n == 1: print(str(a) + " " + str(c)) else: move(n - 1, a, c, b) print(str(a) + " " + str(c)) move(n - 1, b, a, c) def Num11729(): n = int(input()) print(2 ** n -1) move(n, 1, 2, 3) Num11729() ``` #### File: BaekJoonPython/problems/2447.py ```python def draw_patern(n, src): result = [] if n == 1: return src for y in range(3): for x in src: if y == 1: result.append(x + " " * len(x) + x) else: result.append(x * 3) return draw_patern(n // 3, result) def Num2447(): n = int(input()) result = draw_patern(n, ["*"]) for line in result: print(line) Num2447() ``` #### File: BaekJoonPython/problems/2581.py ```python def Num2581(): M = int(input()) N = int(input()) minPrimeNum = 0 sumPrimeNum = 0 primeNums = [] for dividend in range(M, N+1): if dividend == 1: continue primeNums.append(dividend) sumPrimeNum += dividend for divisor in range(2, dividend): if dividend % divisor == 0: primeNums.pop() sumPrimeNum -= dividend break if len(primeNums) == 0: print("-1") else: minPrimeNum = primeNums[0] sumPrimeNum = sum(primeNums) print(str(sumPrimeNum)) print(str(minPrimeNum)) Num2581() ``` #### File: BaekJoonPython/problems/3009.py ```python def Num3009(): coordinate = [ [int(splitedInput) for splitedInput in input().split()] for i in range(3) ] xSet = [coordinate[i][0] for i in range(3)] ySet = [coordinate[i][1] for i in range(3)] x = 0 y = 0 for idx in range(3): if xSet.count(xSet[idx]) == 1: x = xSet[idx] if ySet.count(ySet[idx]) == 1: y = ySet[idx] print(str(x) + " " + str(y)) Num3009() ``` #### File: BaekJoonPython/problems/4153.py ```python def Num4153(): while True: testcase = input().split() if testcase.count("0") == 3: return triangle = [int(t) for t in testcase] triangle.sort() if triangle[0] ** 2 + triangle[1] ** 2 == triangle[2] ** 2: print("right") else: print("wrong") Num4153() ``` #### File: BaekJoonPython/problems/7568.py ```python def Num7568(): N = int(input()) bodyList = [[int(i) for i in input().split()] for i in range(N)] result = "" grades = [] for body1 in bodyList: grade = 0 for body2 in bodyList: if body1[0] < body2[0] and body1[1] < body2[1]: grade += 1 grades.append(grade + 1) for grade in grades: result += str(grade) + " " print(result) Num7568() ``` #### File: BaekJoonPython/problems/9020.py ```python def Num9029(): nums = [True] * 10000 for n in range(2, int(len(nums) ** 0.5) + 1): if nums[n] == True: for compositionNum in range(n + n, len(nums), n): nums[compositionNum] = False testcase = int(input()) while testcase == 0: n = int(input()) numberOfN = [(i, n - i) for i in range(1, n // 2 + 1)] goldbachNums = [] for i in numberOfN: a = i[0] b = i[1] if nums[a] and nums[b]: goldbachNums.append((a, b, (a - b) ** 2)) goldbachNums.sort(key=lambda goldbachNum: int(goldbachNum[2])) result = str(goldbachNums[0][0]) + " " + str(goldbachNums[0][1]) print(result) testcase -= 1 Num9029() ```
{ "source": "JiminLeeDev/JMBlog", "score": 2 }
#### File: JMBlog/views/main_views.py ```python import flask from flask.templating import render_template bp = flask.Blueprint("main", __name__, url_prefix="/") @bp.route("/") def Index(): return render_template("index.html") ```
{ "source": "jimin-shin/oppia", "score": 2 }
#### File: jobs/decorators/audit_decorators.py ```python from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import collections import inspect from core.platform import models from jobs.types import audit_errors import python_utils import apache_beam as beam from apache_beam import typehints _ALL_MODEL_CLASSES = frozenset(models.Registry.get_all_storage_model_classes()) _ALL_BASE_MODEL_CLASSES = frozenset( models.Registry.get_storage_model_classes([models.NAMES.base_model])) _MODEL_CLASSES_BY_BASE_CLASS = { base_model_cls: frozenset({base_model_cls}).union( cls for cls in _ALL_MODEL_CLASSES if issubclass(cls, base_model_cls)) for base_model_cls in _ALL_BASE_MODEL_CLASSES } class AuditsExisting(python_utils.OBJECT): """Decorator for registering DoFns that audit storage models. DoFns registered by this decorator should assume that the models they receive as input do not have `deleted=True`. When decorating a DoFn that inherits from another, it overwrites the base class. For example, ValidateExplorationModelId overwrites ValidateModelId if and only if ValidateExplorationModelId inherits from ValidateModelId. """ _DO_FNS_BY_MODEL_KIND = collections.defaultdict(set) def __init__(self, *model_cls_args): """Initializes the decorator to target the given models. Args: *model_cls_args: tuple(class). The models the decorator will target. If an argument is a base class, all of its subclasses will be targeted as well. Raises: TypeError. When a non-model type is provided. """ if not model_cls_args: raise ValueError('Must provide at least one model') self._model_classes = set() for cls in model_cls_args: if cls in _MODEL_CLASSES_BY_BASE_CLASS: self._model_classes.update(_MODEL_CLASSES_BY_BASE_CLASS[cls]) elif cls in _ALL_MODEL_CLASSES: self._model_classes.add(cls) else: raise TypeError( '%r is not a model registered in core.platform' % cls) def __call__(self, do_fn): """Decorator which registers the given DoFn to the targeted models. This decorator also installs type constraints on the DoFn to guard it from invalid argument types. Args: do_fn: DoFn. The DoFn to decorate. Returns: do_fn. The decorated DoFn. Raises: TypeError. When the input argument is not a DoFn. """ if not issubclass(do_fn, beam.DoFn): raise TypeError('%r is not a subclass of DoFn' % do_fn) # The "mro" (method resolution order) of a class is the list of types # the class is derived from, including itself, in the order they are # searched for methods and attributes. # To learn more see: https://stackoverflow.com/a/2010732/4859885. base_classes_of_do_fn = set(inspect.getmro(do_fn)) for cls in self._model_classes: registered_do_fns = self._DO_FNS_BY_MODEL_KIND[cls.__name__] if any(issubclass(r, do_fn) for r in registered_do_fns): # Always keep the most-derived DoFn. continue registered_do_fns -= base_classes_of_do_fn registered_do_fns.add(do_fn) # Decorate the DoFn with type constraints that raise an error when # arguments or return values have the wrong type. with_input_types, with_output_types = ( typehints.with_input_types(typehints.Union[self._model_classes]), typehints.with_output_types(audit_errors.BaseAuditError)) return with_input_types(with_output_types(do_fn)) @classmethod def get_do_fns_for_model_kind(cls, model_kind): """Returns the list of DoFns registered to the given model kind. Args: model_kind: str. The kind/name of the model. Returns: list(DoFn). The DoFns registered to the model kind. """ return list(cls._DO_FNS_BY_MODEL_KIND[model_kind]) ``` #### File: jobs/transforms/base_model_audits.py ```python from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import datetime import re from core.platform import models import feconf from jobs import jobs_utils from jobs.decorators import audit_decorators from jobs.types import audit_errors import apache_beam as beam (base_models,) = models.Registry.import_models([models.NAMES.base_model]) MAX_CLOCK_SKEW_SECS = datetime.timedelta(seconds=1) class ValidateDeletedModel(beam.DoFn): """DoFn to check whether models marked for deletion are stale. Deleted models do not use a decorator for registration. This DoFn must be called explicitly by runners. """ def process(self, input_model): """Yields audit errors that are discovered in the input model. Args: input_model: datastore_services.Model. Entity to validate. Yields: ModelExpiredError. An error class for expired models. """ model = jobs_utils.clone_model(input_model) expiration_date = ( datetime.datetime.utcnow() - feconf.PERIOD_TO_HARD_DELETE_MODELS_MARKED_AS_DELETED) if model.last_updated < expiration_date: yield audit_errors.ModelExpiredError(model) @audit_decorators.AuditsExisting(base_models.BaseModel) class ValidateBaseModelId(beam.DoFn): """DoFn to validate model ids. Models with special ID checks should derive from this class and override the MODEL_ID_REGEX attribute or the entire process() method, then decorate it to target the appropriate model(s). """ MODEL_ID_REGEX = re.compile('^[A-Za-z0-9-_]{1,%s}$') def process(self, input_model): """Function that defines how to process each element in a pipeline of models. Args: input_model: datastore_services.Model. Entity to validate. Yields: ModelIdRegexError. An error class for models with invalid IDs. """ model = jobs_utils.clone_model(input_model) regex = self.MODEL_ID_REGEX if not regex.match(model.id): yield audit_errors.ModelIdRegexError(model, regex.pattern) @audit_decorators.AuditsExisting(base_models.BaseCommitLogEntryModel) class ValidatePostCommitIsPrivate(beam.DoFn): """DoFn to check if post_commmit_status is private when post_commit_is_private is true and vice-versa. """ def process(self, input_model): """Function validates that post_commit_is_private is true iff post_commit_status is private Args: input_model: base_models.BaseCommitLogEntryModel. Entity to validate. Yields: ModelInvalidCommitStatus. Error for commit_type validation. """ model = jobs_utils.clone_model(input_model) expected_post_commit_is_private = ( model.post_commit_status == feconf.POST_COMMIT_STATUS_PRIVATE) if model.post_commit_is_private != expected_post_commit_is_private: yield audit_errors.InvalidCommitStatusError(model) @audit_decorators.AuditsExisting(base_models.BaseModel) class ValidateModelTimestamps(beam.DoFn): """DoFn to check whether created_on and last_updated timestamps are valid. """ def process(self, input_model): """Function that defines how to process each element in a pipeline of models. Args: input_model: datastore_services.Model. Entity to validate. Yields: ModelMutatedDuringJobError. Error for models mutated during the job. InconsistentTimestampsError. Error for models with inconsistent timestamps. """ model = jobs_utils.clone_model(input_model) if model.created_on > (model.last_updated + MAX_CLOCK_SKEW_SECS): yield audit_errors.InconsistentTimestampsError(model) current_datetime = datetime.datetime.utcnow() if (model.last_updated - MAX_CLOCK_SKEW_SECS) > current_datetime: yield audit_errors.ModelMutatedDuringJobError(model) ```
{ "source": "jimiolaniyan/tracksuite", "score": 2 }
#### File: tracksuite/datasets/imagenetvid.py ```python from torch.utils.data.dataset import Dataset class ImageNetVIDDataSet(Dataset): def __init__(self, path, mode='train'): self.path = path ``` #### File: tracksuite/utils/metrics.py ```python import numpy as np def calculate_iou(bboxes1, bboxes2): """ This calculates the intersection over union of N bounding boxes in the form N x [left, top, right, bottom], e.g for N=2: >> bb = [[21,34,45,67], [67,120, 89, 190]] :param bboxes1: np array: N x 4 ground truth bounding boxes :param bboxes2: np array: N x 4 target bounding boxes :return: iou: ratio between 0 and 1 """ if len(bboxes1.shape) == 1: bboxes1 = bboxes1.reshape(1, bboxes1.shape[0]) if len(bboxes2.shape) == 1: bboxes2 = bboxes2.reshape(1, bboxes2.shape[0]) if bboxes1.shape[0] != bboxes2.shape[0] or bboxes1.shape[1] != bboxes2.shape[1]: raise ValueError('Bounding boxes must be of equal dimension') left_intersection = np.maximum(bboxes1[:, 0], bboxes2[:, 0]) top_intersection = np.maximum(bboxes1[:, 1], bboxes2[:, 1]) right_intersection = np.minimum(bboxes1[:, 2], bboxes2[:, 2]) bottom_intersection = np.minimum(bboxes1[:, 3], bboxes2[:, 3]) w_intersection = right_intersection - left_intersection h_intersection = bottom_intersection - top_intersection intersection_area = w_intersection * h_intersection bboxes1_area = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1]) bboxes2_area = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1]) union_area = bboxes1_area + bboxes2_area - intersection_area iou = np.clip(intersection_area/union_area, 0, 1) return iou ```
{ "source": "jimisantana/ai_gpc", "score": 2 }
#### File: allowed/gpc/Gpc.py ```python import re from os import system, path from threading import Thread import pandas as pd import numpy as np from traceback import format_exc from datetime import datetime import pickle from transformers import BertTokenizer, BertForSequenceClassification import torch from torch.utils.data import TensorDataset, DataLoader, SequentialSampler PATH_TMP = './files_temp' COL_TEXT_SEP = '__sys_gpc_text_sep__' PAD_MAX_TOKENS = 25 BATCH_SIZE_AKA_MAX_ROWS_PER_GUESS_TO_FIT_GPU_MEM = int(4e3) # BATCH_SIZE_AKA_MAX_ROWS_PER_GUESS_TO_FIT_GPU_MEM = int(1e3) # small batches PRINT_EVERY_N = int(1e4) # PRINT_EVERY_N = int(1) # print every time MAX_TEST_ROWS = int(2e4) # TODO TEMP TEST DEBUG path2here = '.' dict_label_iid_pkl = f'{path2here}/model_save/dict_label_iid.pkl' dict_label_t_pkl = f'{path2here}/model_save/dict_label_t.pkl' dict_label_iid: dict = None dict_label_t: dict = None tokenizer: BertTokenizer = None model: BertForSequenceClassification = None # endregion globals """ originating from this tute - the test/eval inference part http://mccormickml.com/2019/07/22/BERT-fine-tuning/ """ # region cuda # If there's a GPU available... if torch.cuda.is_available(): # Tell PyTorch to use the GPU. device = torch.device("cuda") print('There are %d GPU(s) available.' % torch.cuda.device_count()) print('We will use the GPU:', torch.cuda.get_device_name(0)) # TODO - find out how to use all GPUs # If not... else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") # endregion cuda # region load model def load_model_n_stuff(): print('ai_gpc loading model and tokenizer...') global dict_label_iid, dict_label_t global tokenizer, model if path.exists(dict_label_iid_pkl): with open(dict_label_iid_pkl, 'rb') as f: dict_label_iid = pickle.load(f) if path.exists(dict_label_t_pkl): with open(dict_label_t_pkl, 'rb') as f: dict_label_t = pickle.load(f) tokenizer = BertTokenizer.from_pretrained(f'{path2here}/model_save') model = BertForSequenceClassification.from_pretrained(f'{path2here}/model_save') print('setting model to', device) model.to(device) # GPU or CPU model.cuda() model.eval() # if is_cuda: # model.cuda() load_model_n_stuff() # endregion load model r_dang_chars = re.compile(r'[{}"]+') # dang stay for dangerous? # region M A I N MAIN function to be called from flask def gpc(name: str = 'file_name_unique_without_extension', top_cat: int = -1, top_cat_t: str = None): def fn(name2: str = 'file_name_unique_without_extension'): try: system(f'cd {PATH_TMP}; tar -zxvf {name2}.feather.tar.gz') ppath = f'{PATH_TMP}/{name2}.feather' df = pd.read_feather(ppath) print(f'original len {len(df)} titles') if len(df) > MAX_TEST_ROWS: df = df.sample(n=MAX_TEST_ROWS) print(f'doing inference on {len(df)} titles') with Gpc(df, top_cat, top_cat_t) as obj: df = obj.prepare_and_guess() obj.dump('end gpc instance... - we should be DONE ... maybe') print('end gpc static... - we should be DONE') except: err = format_exc() print(err) # async t = Thread(target=fn, args=(name,)) t.start() # TODO TEMP DEBUG t.join() # endregion M A I N MAIN function to be called from flask # ============= # MAIN method in Gpc class is: prepare_and_guess() # ============= class Gpc: def __init__(self, df: pd.DataFrame = None, top_cat: int = -1, top_cat_t: str = None): super().__init__() self.df = df self.top_cat = top_cat self.top_cat_t = top_cat_t self.column = COL_TEXT_SEP self.input_ids_test = [] self.labels_test = [] self.attention_masks_test = [] self.texts_test = [] self.test_dataloader: DataLoader = None self.d: datetime = datetime.now() def __del__(self): try: del self.df del self.input_ids_test del self.labels_test del self.attention_masks_test del self.texts_test del self.test_dataloader except: format_exc() def __enter__(self): return self def __exit__(self, ttype, value, traceback): self.__del__() # ============= # MAIN # ============= def prepare_and_guess(self) -> pd.DataFrame: self.texts_test = self.df[self.column].tolist() self.labels_test = [0] * len(self.texts_test) # dummy self.input_ids_test, self.attention_masks_test, self.labels_test = self.encode_stuff() test_dataset = TensorDataset(self.input_ids_test, self.attention_masks_test, self.labels_test) self.test_dataloader = DataLoader( test_dataset, sampler=SequentialSampler(test_dataset), # batch_size=len(test_dataset) # AKA - single batch - nope! no mem for that batch_size=BATCH_SIZE_AKA_MAX_ROWS_PER_GUESS_TO_FIT_GPU_MEM, # tests num_workers=8, # maybe this is the culprit as suggested by user12750353 in stackoverflow # pin_memory=True pin_memory=False ) # ======= # call MAIN - that's what we are here for - the main GPU thing # ======= # self.dump('start predictions...') predictions = self.guess() # self.dump('end predictions...') print('pytorch tensor shape is', predictions.shape) label_indices = torch.argmax(predictions, dim=1) self.dump('start loop df append...') df = [] for i, o in enumerate(self.texts_test): # t, iid, s = self.find_with_top_level(predictions[i]) label_index = label_indices[i] t = dict_label_t.get(label_index) # s = predictions[label_index] # A! A! A! getting a number from the GPU to real CPU word is a shit load of time! Nope! # df.append( # { # 'text': o, # 't': dict_label_t.get(label_index), # 'iid': dict_label_iid.get(label_index), # 's': predictions[label_index] # } # ) self.dump('end loop df append...') self.dump('start df...') df = pd.DataFrame(df) self.dump('end df...') return df # GPU def guess(self): # ======= # MAIN - that's what we are here for - the main GPU thing # ======= print() print("that's what we are here for - the main GPU inference thing...") print() # predictions, true_labels = [], [] predictions = None # torch.cuda.empty_cache() for i, batch in enumerate(self.test_dataloader): print() self.dump('start empty cache...', i, 1) # torch.cuda.empty_cache() self.dump('end empty cache...', i, 1) self.dump('start to device...', i, 1) # region test shuffle # if not i: # batch = tuple(t.to(device) for t in batch) # to GPU when gpu (or CPU otherwise) # else: # for t in batch: # t[...] = t[torch.randperm(t.shape[0], device=t.device)] # endregion test shuffle # region to device, where first batch is fast, next ones are slow # there are just 3 tensors in each batch: input_ids, input_mask, labels batch = tuple(t.to(device) for t in batch[:2]) # to GPU when gpu (or CPU otherwise) # region to device, where first batch is fast, next ones are slow # batch = list(t.to(device) for t in batch) # no real improvement # batch = batch.to(device) # nope - this is just a list self.dump('end to device...', i, 1) # , b_labels - labels are not used b_input_ids, b_input_mask = batch self.dump('start outputs...', i, 1) # torch.cuda.empty_cache() with torch.no_grad(): # torch.cuda.empty_cache() outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) self.dump('end outputs...', i, 1) self.dump('logits...', i, 1) logits = outputs[0] self.dump('start detach...', i, 1) logits = logits.detach() self.dump('end detach...', i, 1) del outputs predictions = logits if predictions is None else torch.cat((predictions, logits), 0) del logits del b_input_ids del b_input_mask # del b_labels for o in batch: del o del batch return predictions def find_with_top_level(self, predictions: torch.tensor) -> (str, int, float): if self.top_cat < 0: # # label_index = np.argmax(predictions) # label_index = torch.argmax(predictions) # return dict_label_t.get(label_index), dict_label_iid.get(label_index), predictions[label_index] return dict_label_t.get(0), dict_label_iid.get(0), 0 t = None iid = None score = None # # for label_index in np.argsort(predictions)[::-1]: # for label_index in torch.argsort(predictions)[::-1]: # # t = dict_label_t.get(label_index) # # if self.top_cat_t in t: # iid = dict_label_iid.get(label_index) # score = predictions[label_index] # break # else: # t = None if not t: t = self.top_cat_t iid = self.top_cat score = 0. return t, iid, score # just on CPU def encode_stuff(self) -> (list, list, list): # just on cpu - TODO - make on multiple cpu's print('disregard this - this runs on CPU and should be distributed along multi CPUs') print() for i, sent in enumerate(self.texts_test): if not i % PRINT_EVERY_N: print(f'encode_stuff {i}') encoded_dict = tokenizer.encode_plus( sent, # Sentence to encode. add_special_tokens=True, # Add '[CLS]' and '[SEP]' max_length=PAD_MAX_TOKENS, # Pad & truncate all sentences. was 64 truncation=True, padding='max_length', return_attention_mask=True, # Construct attn. masks. return_tensors='pt', # Return pytorch tensors. ) self.input_ids_test.append(encoded_dict['input_ids']) self.attention_masks_test.append(encoded_dict['attention_mask']) return torch.cat(self.input_ids_test, dim=0), \ torch.cat(self.attention_masks_test, dim=0), \ torch.tensor(self.labels_test) # --- measure and print times def dump(self, pref='blah', i = -1, print_every_n=None): if not print_every_n: print_every_n = PRINT_EVERY_N if i>-1 and not i % print_every_n: print(pref, (datetime.now() - self.d).total_seconds()) self.d = datetime.now() ```
{ "source": "jimishapatel/statistic", "score": 3 }
#### File: statistic/Statistics/samplestand.py ```python from Calculator.subtraction import subtraction from Calculator.division import division from Statistics.sampledata import sampledata from Calculator.squareroot import squareroot from Calculator.square import square from Statistics.mean import mean from Calculator.addition import addition def samplestand(data, sample_size): dev = 0 sample = sampledata(data, sample_size) sample_values = len(sample) x_bar = mean() x = sample_values n = subtraction(sample_values, 1) for dev in sample: dev = subtraction(x, x_bar) square_x_bar = square(dev) add = addition(square_x_bar, square_x_bar) result = division(add, n) return squareroot(result) ``` #### File: statistic/Statistics/zscore.py ```python from Statistics.mean import mean from Statistics.samplestand import samplestand from Calculator.subtraction import subtraction from Calculator.division import division def zscore(data): x = 64 u = mean(data) sample_sd = samplestand(data) y = subtraction(x, u) return division(sample_sd, y) ```
{ "source": "jimist/midi_genetic", "score": 3 }
#### File: jimist/midi_genetic/genetic.py ```python import random from sklearn.externals import joblib import numpy as np class Genetic: miss_start = -1 miss_end = -1 genome_length = 0 notes_before = [] notes_after = [] mutation_rate = 0.1 guesser = None total_best_score = 1000000 best_population = [] def __init__(self, song): for index, note in enumerate(song): if note == 0 and self.miss_start == -1: self.miss_start = index if note != 0 and self.miss_start != -1 and self.miss_end == -1: self.miss_end = index self.genome_length = self.miss_end - self.miss_start self.notes_before = song[self.miss_start - 20:self.miss_start] self.notes_after = song[self.miss_end:self.miss_end + 20] self.max = max(song) for index, note in enumerate(song): if note == 0: song[index] = self.max self.min = min(song) self.guesser = joblib.load("guesser") def make_population(self, count): populations = [] for i in range(count): temp_list = [random.randint(self.min, self.max) for iter in range(self.genome_length)] populations.append(temp_list) # print("generated {} populations with length of {}!".format(count, self.genome_length)) return populations def score_population(self, pop): pop = self.notes_before[-5:] + pop + self.notes_after[:5] total_score = 0 reducers = [] test_data = [] for index, note in enumerate(pop[5:-5]): real_index = index + 5 test_data_temp = pop[real_index - 5: real_index] + pop[real_index + 1:real_index + 5] # print(test_data_temp) reducer = test_data_temp[0] reducers.append(reducer) for ii, nn in enumerate(test_data_temp): test_data_temp[ii] = nn - reducer test_data.append(test_data_temp) test_results = self.guesser.predict(np.array(test_data)) for ti, tv in enumerate(test_results): test_results[ti] = tv + reducers[ti] for index, note in enumerate(pop[5:-5]): guessed_note = test_results[index] # find out what was supposed to be here temp_score = abs(guessed_note - note) # print(temp_score) total_score += temp_score # print(total_score) return total_score def mutate_population(self, pop): rand_position = random.randint(0, self.genome_length - 1) random_note = random.randint(self.min, self.max) # print("mutating a population at position {} with the note {}!".format(rand_position, random_note)) pop[rand_position] = random_note # print(pop[rand_position]) return pop def mix_genomes(self, g1, g2): pivot1 = random.randint(0, self.genome_length / 2) pivot2 = random.randint(pivot1 + (self.genome_length / 4), self.genome_length) rg1 = g1.copy() # return genome 1 rg2 = g2.copy() # return genome 2 rg1[pivot1:pivot2] = g2[pivot1: pivot2] rg2[pivot1:pivot2] = g1[pivot1: pivot2] # print("-----------") # print(pivot1, pivot2) # print(g1) # print(rg1) # print(g2) # print(rg2) mutation_rand = random.uniform(0.00, 10.00) if mutation_rand <= (self.mutation_rate * 10): rg1 = self.mutate_population(rg1) # print("mutate rg1!") mutation_rand = random.uniform(0.00, 10.00) if mutation_rand <= (self.mutation_rate * 10): rg2 = self.mutate_population(rg2) # print("mutate rg2!") return rg1, rg2 def run(self, iterations_count=5): populations_count = 100 populations = self.make_population(populations_count) scores = [0] * populations_count i = 0 while True: # score each population min_score = 10000 for j, pop in enumerate(populations): scores[j] = self.score_population(populations[j]) if scores[j] < self.total_best_score: self.total_best_score = scores[j] self.best_population = pop if scores[j] < min_score: min_score = scores[j] # print("best score was {}".format(min_score)) # sort populations by score. since the lower the score the better population is, first 30 are the best populations = [x for _, x in sorted(zip(scores, populations))] # after sorting populations break if the iteration counts are finished if i > iterations_count: break new_population = [0] * populations_count # mix the first 30 for the first 60 of populations for index, pop in enumerate(populations[:int(0.3 * populations_count)]): couple_pop = populations[int(0.6 * populations_count) - index] # print(index, int(0.6 * populations_count) - index) new_population[index * 2], new_population[(index * 2) + 1] = self.mix_genomes(pop, couple_pop) # make 40 new genomes for the least 40 populations new_population[int(0.6 * populations_count):] = self.make_population(int(0.4 * populations_count)) populations = new_population i += 1 print("best score in total was {}".format(self.total_best_score)) print(self.best_population) return self.best_population ```
{ "source": "jimit105/leetcode-submissions", "score": 3 }
#### File: problems/arranging_coins/solution.py ```python class Solution: def arrangeCoins(self, n: int) -> int: return int((2*n+0.25)**0.5 - 0.5) ``` #### File: problems/backspace_string_compare/solution.py ```python class Solution: def backspaceCompare(self, s: str, t: str) -> bool: def build(st): ans = [] for c in st: if c != '#': ans.append(c) elif ans: ans.pop() return ''.join(ans) return build(s) == build(t) ``` #### File: problems/best_sightseeing_pair/solution.py ```python import math class Solution: def maxScoreSightseeingPair(self, values: List[int]) -> int: max_end_right = values[0] res = -math.inf for i in range(1, len(values)): max_end_right = max(max_end_right, values[i - 1] + i - 1) res = max(res, max_end_right + values[i] - i) return res ``` #### File: problems/can_place_flowers/solution.py ```python class Solution: def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool: l = len(flowerbed) flowerbed = [0] + flowerbed + [0] for i in range(1, l+1): if flowerbed[i] == flowerbed[i-1] == flowerbed[i+1] == 0: flowerbed[i] = 1 n -= 1 if n <= 0: return True return False ``` #### File: problems/check_if_a_number_is_majority_element_in_a_sorted_array/solution.py ```python import bisect class Solution: def isMajorityElement(self, nums: List[int], target: int) -> bool: half = len(nums) // 2 left = bisect.bisect_left(nums, target) if left > half: return False right = bisect.bisect_right(nums, target, lo=left+half, hi=min(left+half+1, len(nums))) return (right - left) > half ``` #### File: problems/combination_sum/solution.py ```python class Solution: def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: def backtrack(remain, comb, next_start): if remain == 0: results.append(comb.copy()) return elif remain < 0: return for i in range(next_start, len(candidates)): comb.append(candidates[i]) backtrack(remain - candidates[i], comb, i) comb.pop() results = [] backtrack(target, [], 0) return results ``` #### File: problems/count_equal_and_divisible_pairs_in_an_array/solution.py ```python class Solution: def countPairs(self, nums: List[int], k: int) -> int: n = len(nums) count = 0 for i in range(n): for j in range(i+1, n): if nums[i] == nums[j] and (i * j) % k == 0: count += 1 return count ``` #### File: problems/count_integers_with_even_digit_sum/solution.py ```python class Solution: def sum_digits(self, num): return 0 if num == 0 else int(num % 10) + self.sum_digits(num // 10) def countEven(self, num: int) -> int: count = 0 for i in range(1, num + 1): if self.sum_digits(i) % 2 == 0: count += 1 return count ``` #### File: problems/diameter_of_binary_tree/solution.py ```python class Solution: def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int: diameter = 0 def find_longest_path(node): nonlocal diameter if not node: return 0 left_path = find_longest_path(node.left) right_path = find_longest_path(node.right) diameter = max(diameter, left_path+right_path) return max(left_path, right_path)+1 find_longest_path(root) return diameter ``` #### File: problems/duplicate_zeros/solution.py ```python class Solution(object): def duplicateZeros(self, arr): """ :type arr: List[int] :rtype: None Do not return anything, modify arr in-place instead. """ i = 0 while i in range(len(arr)): if arr[i] == 0: arr.insert(i+1, 0) i += 2 arr.pop() else: i += 1 return None ``` #### File: problems/group_anagrams/solution.py ```python from collections import defaultdict class Solution: def groupAnagrams(self, strs: List[str]) -> List[List[str]]: hashmap = defaultdict(list) for s in strs: hashmap[tuple(sorted(s))].append(s) return hashmap.values() ``` #### File: problems/largest_number_at_least_twice_of_others/solution.py ```python class Solution: def dominantIndex(self, nums: List[int]) -> int: max1, max2 = 0, 0 max1_idx = 0 for i, n in enumerate(nums): if n >= max1: max2 = max1 max1 = n max1_idx = i elif n > max2: max2 = n return max1_idx if max1 >= 2 * max2 else -1 ``` #### File: problems/lru_cache/solution.py ```python from collections import OrderedDict class LRUCache(OrderedDict): def __init__(self, capacity: int): self.capacity = capacity def get(self, key: int) -> int: if key not in self: return -1 self.move_to_end(key) return self[key] def put(self, key: int, value: int) -> None: if key in self: self.move_to_end(key) self[key] = value if len(self) > self.capacity: self.popitem(last = False) # Your LRUCache object will be instantiated and called as such: # obj = LRUCache(capacity) # param_1 = obj.get(key) # obj.put(key,value) ``` #### File: problems/minimize_deviation_in_array/solution.py ```python import heapq import math class Solution: def minimumDeviation(self, nums: List[int]) -> int: # heapq is min-heap # So use negative values to mimic max-heap evens = [] minimum = math.inf for num in nums: if num % 2 == 0: evens.append(-num) minimum = min(minimum, num) else: evens.append(-num*2) minimum = min(minimum, num * 2) heapq.heapify(evens) min_deviation = math.inf while evens: current_val = -heapq.heappop(evens) min_deviation = min(min_deviation, current_val - minimum) if current_val % 2 == 0: minimum = min(minimum, current_val // 2) heapq.heappush(evens, -current_val // 2) else: # if the maximum is odd number, break break return min_deviation ``` #### File: problems/minimum_moves_to_reach_target_score/solution.py ```python class Solution: def minMoves(self, target: int, maxDoubles: int) -> int: moves = 0 if 1 << maxDoubles == target: return maxDoubles while target > 1: if target % 2 == 0 and maxDoubles: target = target >> 1 moves += 1 maxDoubles -= 1 elif not maxDoubles: diff = target - 1 target -= diff moves += diff else: target -= 1 moves += 1 print(target, moves) return moves ``` #### File: problems/n-queens_ii/solution.py ```python class Solution: def totalNQueens(self, n: int) -> int: def backtrack(row, diagonals, anti_diagonals, cols): # Base Case - When all queens have been placed if row == n: return 1 solutions = 0 for col in range(n): curr_diag = row - col curr_anti_diag = row + col # If the queen cannot be placed if col in cols or curr_diag in diagonals or curr_anti_diag in anti_diagonals: continue # Place the queen cols.add(col) diagonals.add(curr_diag) anti_diagonals.add(curr_anti_diag) # Move to the next row solutions += backtrack(row + 1, diagonals, anti_diagonals, cols) # All valid paths have been explored in the above function call, so remove the queen cols.remove(col) diagonals.remove(curr_diag) anti_diagonals.remove(curr_anti_diag) return solutions return backtrack(0, set(), set(), set()) ``` #### File: problems/palindrome_partitioning/solution.py ```python class Solution: def partition(self, s: str) -> List[List[str]]: res = [] def isPalindrome(start_idx, end_idx): while start_idx <= end_idx: if s[start_idx] != s[end_idx]: return False start_idx += 1 end_idx -=1 return True def dfs(start_idx, path): if start_idx >= len(s): res.append(path) for i in range(len(s) - start_idx): if isPalindrome(start_idx, start_idx+i): dfs(start_idx+i+1, path + [s[start_idx : start_idx+i+1]]) dfs(0, []) return res ``` #### File: problems/plus_one_linked_list/solution.py ```python class Solution: def plusOne(self, head: ListNode) -> ListNode: # if input is all 9s e.g. 99, then we need additional node sentinel = ListNode(val = 0, next = head) not_nine = sentinel # find the rightmost not-nine while head: if head.val != 9: not_nine = head head = head.next # add 1 to the value and move to next node not_nine.val += 1 not_nine = not_nine.next # set following 9s to zero e.g. 1299 -> 1300 while not_nine: not_nine.val = 0 not_nine = not_nine.next return sentinel if sentinel.val else sentinel.next ``` #### File: problems/product_of_array_except_self/solution.py ```python class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: n = len(nums) answer = [0] * n answer[0] = 1 for i in range(1, n): answer[i] = answer[i-1] * nums[i-1] right = 1 for i in range(n-1, -1, -1): answer[i] = answer[i] * right right *= nums[i] return answer # Time: O(n) - traversing the elements two times independently # Space: O(1) - one additional variable - right ``` #### File: problems/remove_duplicates_from_sorted_list/solution.py ```python class Solution: def deleteDuplicates(self, head: Optional[ListNode]) -> Optional[ListNode]: if not head: return head current = head while current is not None and current.next is not None: if current.next.val == current.val: current.next = current.next.next else: current = current.next return head ``` #### File: problems/reverse_integer/solution.py ```python class Solution: def reverse(self, x: int) -> int: rev_x = int(str(abs(x))[::-1]) return_x = rev_x if x > 0 else -1*rev_x return return_x if -2 ** 31 <= return_x <= 2 ** 31 - 1 else 0 ``` #### File: problems/roman_to_integer/solution.py ```python values = { "I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000, "IV": 4, "IX": 9, "XL": 40, "XC": 90, "CD": 400, "CM": 900 } class Solution: def romanToInt(self, s: str) -> int: total = 0 i = 0 while i < len(s): # subtractive case if i < len(s) - 1 and s[i : i + 2] in values: total += values[s[i : i + 2]] i += 2 else: total += values[s[i]] i += 1 return total ``` #### File: problems/single_number/solution.py ```python from collections import Counter class Solution: def singleNumber(self, nums: List[int]) -> int: a = 0 for i in nums: a ^= i return a ``` #### File: problems/sort_characters_by_frequency/solution.py ```python class Solution: def frequencySort(self, s: str) -> str: count = Counter(s) result = '' for k, v in count.most_common(): result += k*v return result ``` #### File: problems/sort_colors/solution.py ```python class Solution: def sortColors(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ nums.sort() ``` #### File: problems/squares_of_a_sorted_array/solution.py ```python class Solution: def sortedSquares(self, nums: List[int]) -> List[int]: n = len(nums) left, right = 0, n-1 result = [0] * n for i in range(n-1, -1, -1): if abs(nums[left]) < abs(nums[right]): square = nums[right] right -= 1 else: square = nums[left] left += 1 result[i] = square ** 2 return result ``` #### File: problems/subarray_sum_equals_k/solution.py ```python class Solution: def subarraySum(self, nums: List[int], k: int) -> int: count = 0 total = 0 hashmap = {} # {sum_i : no. of occurrences of sum_i} hashmap[0] = 1 for i in range(len(nums)): total += nums[i] if (total - k) in hashmap.keys(): count += hashmap.get(total - k) hashmap[total] = hashmap.get(total, 0) + 1 return count ``` #### File: problems/subtract_the_product_and_sum_of_digits_of_an_integer/solution.py ```python class Solution: def subtractProductAndSum(self, n: int) -> int: prod = 1 sum_ = 0 while n > 0: last_digit = n % 10 prod *= last_digit sum_ += last_digit n //= 10 return prod - sum_ ``` #### File: problems/triangle/solution.py ```python from functools import lru_cache class Solution: def minimumTotal(self, triangle: List[List[int]]) -> int: @lru_cache(maxsize = None) def min_path(row, col): path = triangle[row][col] if row < len(triangle) - 1: path += min(min_path(row + 1, col), min_path(row + 1, col + 1)) return path return min_path(0, 0) ``` #### File: problems/word_pattern/solution.py ```python class Solution: def wordPattern(self, pattern: str, s: str) -> bool: map_index = {} words = s.split() if len(pattern) != len(words): return False for i in range(len(words)): c = pattern[i] w = words[i] char_key = 'char_{}'.format(c) word_key = 'word_{}'.format(w) if char_key not in map_index: map_index[char_key] = i if word_key not in map_index: map_index[word_key] = i if map_index[char_key] != map_index[word_key]: return False return True ```
{ "source": "jimit23/SPLP_expts", "score": 3 }
#### File: jimit23/SPLP_expts/bio_val.py ```python import numpy as np import networkx as nx import xlsxwriter import math def read_gt(gt_file, nodes): with open(('final_datasets/complex_datasets/gold_standard/' + gt_file + '.txt'), 'r') as f: gt_raw = [] for item in f: gt_raw.append(item.split()) if gt_file == 'sgd': # determine ground truth communities gt_comms = [] gt_nodes = [] for g in gt_raw: gt_comms.append(str(g[1])) gt_nodes.append(str(g[0])) gt_comms = list(set(gt_comms)) gt_nodes = list(set(gt_nodes)) # append to "nodes" the nodes not in it but found in gt_nodes ex_nodes_count = 0 for gn in gt_nodes: if gn not in nodes: nodes.append(gn) ex_nodes_count += 1 # form ground truth theta gt_theta = np.zeros((len(nodes), len(gt_comms))) for g in gt_raw: n_index = nodes.index(g[0]) c_index = gt_comms.index(g[1]) gt_theta[n_index, c_index] = 1.0 elif gt_file == 'mips_3_100': # append to "nodes" the nodes not in it but found in gt_nodes gt_nodes = set() for g in gt_raw: gt_nodes.update(g) ex_nodes_count = 0 for gn in gt_nodes: if gn not in nodes: nodes.append(gn) ex_nodes_count += 1 # form ground truth theta gt_theta = np.zeros((len(nodes), len(gt_raw))) for j in range(len(gt_raw)): for cn in gt_raw[j]: n_index = nodes.index(cn) gt_theta[n_index, j] = 1.0 return gt_theta, ex_nodes_count, nodes def calc_mmr(pred_c, gt_c, dataset, gt_dataset): # predicted and ground truth comms count pred_count = pred_c.shape[1] gt_count = gt_c.shape[1] # create bipartite graph G = nx.Graph() G.add_nodes_from(range(pred_count + gt_count)) for i in range(pred_count): for j in range(gt_count): predvec = pred_c[:, i] gtvec = gt_c[:, j] w = (np.dot(predvec, gtvec)/(np.dot(np.linalg.norm(predvec), np.linalg.norm(gtvec))))**2 G.add_edge(i, j + pred_count, weight = w) print('created weighted bipartite graph using predicted and ground truth communities') matching = list(nx.algorithms.max_weight_matching(G)) # save matching with open('matching_' + dataset + '_' + gt_dataset + '.txt', 'w') as fp: for row in matching: fp.write(str(row) + '\n') print('computed and saved max weight matching') mmr = 0 for e in matching: mmr += G.get_edge_data(e[0], e[1])['weight'] mmr /= gt_count return mmr def calc_frac(pred_c, gt_c): # predicted and ground truth comms count pred_count = pred_c.shape[1] gt_count = gt_c.shape[1] match_count = 0 for i1 in range(gt_count): for j1 in range(pred_count): gtvec = gt_c[:, i1] predvec = pred_c[:, j1] curr_match = (np.dot(predvec, gtvec) / (np.dot(np.linalg.norm(predvec), np.linalg.norm(gtvec)))) ** 2 if curr_match >= 0.25: match_count += 1 break return match_count/gt_count def calc_acc(pred_c, gt_c): # predicted and ground truth comms count pred_count = pred_c.shape[1] gt_count = gt_c.shape[1] t = np.zeros((gt_count, pred_count)) for i1 in range(gt_count): for j1 in range(pred_count): t[i1, j1] = np.dot(gt_c[:, i1], pred_c[:, j1]) sn_num = 0.0 sn_den = 0.0 for q in range(gt_count): sn_num += np.max(t[q, :]) sn_den += np.sum(gt_c[:, q]) sn = sn_num / sn_den ppv_num = 0.0 ppv_den = 0.0 for j1 in range(pred_count): ppv_num += np.max(t[:, j1]) ppv_den += np.sum(t[:, j1]) ppv = ppv_num / ppv_den return math.sqrt(sn*ppv) #----------------------------------------------------------------------------------------------------- # parameter choices # select dataset from: krogan2006_core, krogan2006_extended, collins2007 dataset = 'krogan2006_core' # select validation (ground truth) dataset from: mips_3_100, sgd gt_dataset = 'mips_3_100' discard_small = False cs_tol = 0.0 # threshold for comm size based on third largest entry in community vector binary_memberships = True # whether to consider binary or fractional memberships rounding_tol = 0.5 # quantity for rounding fractional data to binary merge_comms = True merge_tol = 0.8 #----------------------------------------------------------------------------------------------------- # load nodes list with open(('nodes_' + dataset + '.txt'), 'r') as f: nodes = [] for item in f: nodes.append(item.strip('\n')) gt_comms, ex_nodes_count, nodes = read_gt(gt_dataset, nodes) print('computed ground truth communities for ' + gt_dataset) # load cvx opt solutions optsols = np.load('opt_sols_' + dataset + '.npy') n = optsols.shape[1] k = optsols.shape[0] optsols = np.transpose(np.squeeze(optsols, axis = 2)) print('finished loading cvx optimal solutions') print('original # of communities: ' + str(k)) # convert opt sols to 0-1 if binary_memberships: optsols = (optsols > rounding_tol).astype(int) print('rounded fractional memberships to obtain binary memberships') # remove communities based on their third largest values if discard_small: i = 0 rem = 0 while i < optsols.shape[1]: c = optsols[:, i] c = np.sort(c) if c[-3] <= cs_tol: optsols = np.delete(optsols, i, axis = 1) rem += 1 else: i += 1 print('# of communities after removing communities with <= 2 nodes: ' + str(k-rem)) # remove duplicate communities optsols = np.unique(optsols, axis=1) print('# of communities after removing duplicates: ' + str(optsols.shape[1])) # merge highly overlapping communities if merge_comms and binary_memberships: num_merges = 1 while num_merges > 0: num_merges = 0 for i in range(optsols.shape[1]): j = i+1 while j in range(i+1, optsols.shape[1]): ovr = (np.dot(optsols[:, i], optsols[:, j]))**2 ovr /= np.sum(optsols[:, i]) ovr /= np.sum(optsols[:, j]) if ovr >= merge_tol: optsols[:, i] = np.maximum(optsols[:, i], optsols[:, j]) optsols = np.delete(optsols, j, axis=1) num_merges += 1 else: j += 1 # check no highly overlapping communities remain ovr = np.zeros((optsols.shape[1], optsols.shape[1])) for i in range(optsols.shape[1]): for j in range(optsols.shape[1]): if i != j: curr_ovr = (np.dot(optsols[:, i], optsols[:, j]))**2 curr_ovr /= (np.linalg.norm(optsols[:, i]))**2 curr_ovr /= (np.linalg.norm(optsols[:, j]))**2 ovr[i, j] = curr_ovr assert np.max(ovr) < merge_tol print('# of communities after merging highly overlapping ones: ' + str(optsols.shape[1])) if binary_memberships and discard_small: assert np.min(np.sum(optsols, axis=0)) >= 3.0 # pad optsols for extra nodes found in ground truth data to obtain predicted communities pred_comms = np.concatenate((optsols, np.zeros((ex_nodes_count, optsols.shape[1])))) print('smallest predicted community size: ' + str(np.min(np.sum(pred_comms, axis=0)))) print('largest predicted community size: ' + str(np.max(np.sum(pred_comms, axis=0)))) # save bipartite graph data # save nodes with open('nodes_' + dataset + '_' + gt_dataset + '.txt', 'w') as fp: for item in nodes: fp.write("%s\n" % item) np.save('pred_comms_' + dataset + '_' + gt_dataset + '.npy', pred_comms) np.save('gt_comms_' + dataset + '_' + gt_dataset + '.npy', gt_comms) print('finished saving bipartite graph data') # obtain three scores - mmr, frac, acc # obtain mmr mmr = calc_mmr(pred_comms, gt_comms, dataset, gt_dataset) print('mmr: ' + str(mmr)) # obtain frac frac = calc_frac(pred_comms, gt_comms) print('frac: ' + str(frac)) # obtain acc acc = calc_acc(pred_comms, gt_comms) print('geo accuracy: ' + str(acc)) comp_score = mmr + frac + acc print('composite score: ' + str(comp_score)) # # save a sample community vector # sample_com_vec = np.ndarray.tolist(pred_comms[:, 120]) # sample = [] # for i in range(len(nodes)): # sample.append([nodes[i], sample_com_vec[i]]) # with xlsxwriter.Workbook('sample.xlsx') as wb: # ws = wb.add_worksheet() # for row_num, data in enumerate(sample): # ws.write_row(row_num, 0, data) ```
{ "source": "JimitMehta1807/Inspiquote", "score": 2 }
#### File: JimitMehta1807/Inspiquote/main.py ```python from Resources.quotes_fetch import Quotes from bots.config import create_api from post import posting from bots.tags import check_mentions from bots.direct_message import direct_message_initial from bots.retweet_fav import retweet_fav_post import time import random api = create_api() quote_class = Quotes() quote_author = random.choice([quote_class.quotes_fav(),quote_class.quotable()]) quote = "\"" + quote_author[0] + "\" " + "- " + quote_author[1] def tags(): last_id = 1 last_id = check_mentions(api,last_id,quote) def message(): direct_message_initial(api) def tweet_quote(): api.update_status(quote) def post(): posting(api) def retweet_fun(): retweet_fav_post(api) ```
{ "source": "jimixjay/acestats", "score": 2 }
#### File: front/services/ingest_matches_service.py ```python from service_objects import services import numpy as np import pandas as pd from django.db import connection import datetime from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface class IngestMatchesService(services.Service): def process(self): cursor = connection.cursor() errors = '' total_matches_updated = 0 total_matches_inserted = 0 tourneys = {} surfaces = {} tourney_levels = {} players = {} for year in range(1990, 2021): csv_file = pd.read_csv('https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master/atp_matches_' + str(year) + '.csv', header=1, names=self.getColumns()) for row in csv_file.itertuples(): created_at = datetime.datetime.now() updated_at = datetime.datetime.now() #try: id = str(row.tourney_id) + '-' + str(row.match_num) match = Match.objects.filter(id=id) if (not match): match = Match() match.id = id match.year = row.tourney_id.split('-')[0] match.match_num = row.match_num match.result = row.score match.best_of = row.best_of match.minutes = None if np.isnan(row.minutes) else row.minutes match.round = row.round if not tourneys.get(str(row.tourney_id)): tourney = Tourney.objects.filter(id=row.tourney_id) if (not tourney): tourney = Tourney() tourney.id = row.tourney_id tourney.name = row.tourney_name tourney.date = datetime.datetime.strptime(str(int(row.tourney_date)), '%Y%m%d').date() tourney.created_at = created_at tourney.updated_at = updated_at if not surfaces.get(str(row.surface)): surfaces[str(row.surface)] = self.getSurface(str(row.surface)) tourney.surface = surfaces[str(row.surface)] if not tourney_levels.get(str(row.tourney_level)): tourney_levels[str(row.tourney_level)] = self.getTourneyLevel(str(row.tourney_level)) tourney.tourney_level = tourney_levels[str(row.tourney_level)] tourney.created_at = created_at tourney.updated_at = updated_at tourney.save() else: tourney = tourney[0] tourneys[str(row.tourney_id)] = tourney match.tourney = tourneys[str(row.tourney_id)] match.created_at = created_at match.updated_at = updated_at match.save() total_matches_inserted += 1 else: match[0].year = row.tourney_id.split('-')[0] match[0].save() total_matches_updated += 1 match = match[0] match_stats_id = str(row.tourney_id) + '-' + str(row.match_num) + '-' + str(row.winner_id) match_stats = Match_Stats.objects.filter(id=match_stats_id) if (not match_stats): seed = row.winner_seed if pd.isnull(row.winner_seed) or not str(row.winner_seed).isnumeric(): seed = None match_stats = Match_Stats() match_stats.id = match_stats_id match_stats.type = "" match_stats.seed = seed match_stats.aces = None if np.isnan(row.w_ace) else row.w_ace match_stats.double_faults = None if np.isnan(row.w_df) else row.w_df match_stats.service_points = None if np.isnan(row.w_svpt) else row.w_svpt match_stats.first_services = None if np.isnan(row.w_1stIn) else row.w_1stIn match_stats.first_services_won = None if np.isnan(row.w_1stWon) else row.w_1stWon match_stats.second_services_won = None if np.isnan(row.w_2ndWon) else row.w_2ndWon match_stats.service_game_won = None if np.isnan(row.w_SvGms) else row.w_SvGms match_stats.break_points_saved = None if np.isnan(row.w_bpSaved) else row.w_bpSaved match_stats.break_points_played = None if np.isnan(row.w_bpFaced) else row.w_bpFaced match_stats.rank = None if np.isnan(row.winner_rank) else row.winner_rank match_stats.rank_points = None if np.isnan(row.winner_rank_points) else row.winner_rank_points match_stats.is_winner = True match_stats.created_at = created_at match_stats.updated_at = updated_at players[row.winner_id] = self.getPlayer(str(row.winner_id)) match_stats.player = players[row.winner_id] match_stats.match = match match_stats.save() match_stats_id = str(row.tourney_id) + '-' + str(row.match_num) + '-' + str(row.loser_id) match_stats = Match_Stats.objects.filter(id=match_stats_id) if (not match_stats): seed = row.loser_seed if pd.isnull(row.loser_seed) or not str(row.loser_seed).isnumeric(): seed = None match_stats = Match_Stats() match_stats.id = match_stats_id match_stats.type = "" match_stats.seed = seed match_stats.aces = None if np.isnan(row.l_ace) else row.l_ace match_stats.double_faults = None if np.isnan(row.l_df) else row.l_df match_stats.service_points = None if np.isnan(row.l_svpt) else row.l_svpt match_stats.first_services = None if np.isnan(row.l_1stIn) else row.l_1stIn match_stats.first_services_won = None if np.isnan(row.l_1stWon) else row.l_1stWon match_stats.second_services_won = None if np.isnan(row.l_2ndWon) else row.l_2ndWon match_stats.service_game_won = None if np.isnan(row.l_SvGms) else row.l_SvGms match_stats.break_points_saved = None if np.isnan(row.l_bpSaved) else row.l_bpSaved match_stats.break_points_played = None if np.isnan(row.l_bpFaced) else row.l_bpFaced match_stats.rank = None if np.isnan(row.loser_rank) else row.loser_rank match_stats.rank_points = None if np.isnan(row.loser_rank_points) else row.loser_rank_points match_stats.is_winner = False match_stats.created_at = created_at match_stats.updated_at = updated_at players[row.loser_id] = self.getPlayer(str(row.loser_id)) match_stats.player = players[row.loser_id] match_stats.match = match match_stats.save() #except: # assert False, (row.tourney_date, ) #errors = errors + '|||' + str(row.tourney_id) + '-' + str(row.match_num) return {'inserts': total_matches_inserted, 'updates': total_matches_updated} def getColumns(self): return ["tourney_id","tourney_name","surface","draw_size","tourney_level","tourney_date","match_num","winner_id","winner_seed","winner_entry","winner_name","winner_hand","winner_ht","winner_ioc","winner_age", "loser_id","loser_seed","loser_entry","loser_name","loser_hand","loser_ht","loser_ioc","loser_age","score","best_of","round","minutes","w_ace","w_df","w_svpt","w_1stIn","w_1stWon","w_2ndWon","w_SvGms","w_bpSaved", "w_bpFaced","l_ace","l_df","l_svpt","l_1stIn","l_1stWon","l_2ndWon","l_SvGms","l_bpSaved","l_bpFaced","winner_rank","winner_rank_points","loser_rank","loser_rank_points"] def getPlayer(self, id): player = Player.objects.filter(id=id) if (not player): return None else: player = player[0] return player def getSurface(self, name): surface = Surface.objects.filter(name=name) if (not surface): surface = Surface() surface.name = name surface.created_at = datetime.datetime.now() surface.updated_at = datetime.datetime.now() surface.save() else: surface = surface[0] return surface def getTourneyLevel(self, code): tourney_level = Tourney_Level.objects.filter(code=code) if (not tourney_level): tourney_level = Tourney_Level() tourney_level.code = code tourney_level.name = code tourney_level.created_at = datetime.datetime.now() tourney_level.updated_at = datetime.datetime.now() tourney_level.save() else: tourney_level = tourney_level[0] return tourney_level ```
{ "source": "jimjag/crayon", "score": 2 }
#### File: crayon/Scripts/syncU3.py ```python import os import sys import shutil def main(): files = {} web_dest_dir = os.path.join('..', 'Compiler', 'Platforms', 'JavaScriptApp', 'ResourcesU3') from_dir = os.path.join('..', 'U3', 'src', 'render') for file in [ 'nori.js', 'nori_audio.js', 'nori_canvas.js', 'nori_context.js', 'nori_events.js', 'nori_gamepad.js', 'nori_gl.js', 'nori_layout.js', 'nori_util.js' ]: from_file = os.path.join(from_dir, file) files[from_file] = [ os.path.join(web_dest_dir, file.replace('.', '_') + '.txt') ] msghub_client = os.path.join('..', 'Libraries', 'MessageHub', 'client') files[os.path.join(msghub_client, 'js', 'messagehub.js')] = [ os.path.join(web_dest_dir, 'messagehub_js.txt') ] msghub_nodejs_client = os.path.join(msghub_client, 'nodejs', 'messagehubclient') print(msghub_nodejs_client ) for file in os.listdir(msghub_nodejs_client): files[os.path.join(msghub_nodejs_client, file)] = [os.path.join('..', 'U3', 'src', 'messagehubclient', file)] for src_file in files.keys(): for dst_file in files[src_file]: shutil.copy(src_file, dst_file) print(src_file + ' --> ' + dst_file) print("Done.") main() ``` #### File: crayon/Scripts/u3packager.py ```python import os import sys import shutil def run_command(cmd): c = os.popen(cmd) t = c.read() c.close() return t _current_dir = [os.getcwd()] def push_cd(dir): _current_dir.append(os.path.abspath(dir)) os.chdir(dir) def pop_cd(): _current_dir.pop() os.chdir(_current_dir[-1]) def main(args): platform = 'windows' if len(args) == 1: platform = args[0] isWindows = platform == 'windows' isMac = platform == 'mac' isLinux = platform == 'linux' if isLinux: print("Linux not supported yet") return if not isWindows and not isMac: print("Unknown platform: '" + platform + "'") return print("Building U3 for " + platform) if isWindows: props = { 'arch': 'win32', 'electron-out': 'u3window-win32-x64', 'u3-out': 'win', 'bin-name': 'u3window.exe', } elif isMac: props = { 'arch': 'darwin', 'electron-out': 'u3window-darwin-x64', 'u3-out': 'mac', 'bin-name': 'u3window', } else: raise Exception() push_cd(os.path.join('..', 'U3')) if os.path.exists('dist'): shutil.rmtree('dist') os.mkdir('dist') run_command('electron-packager src u3window --platform=' + props['arch'] + ' --arch=x64 --out=dist/temp --lang=en-US') source = os.path.join('dist', 'temp', props['electron-out']) target = os.path.join('dist', props['u3-out']) shutil.move(source, target) print('U3/dist/' + props['u3-out'] + '/' + props['bin-name'] + ' created') shutil.rmtree(os.path.join('dist', 'temp')) pop_cd() main(sys.argv[1:]) ```
{ "source": "jimjag/scancode-toolk", "score": 2 }
#### File: tests/scancode/test_cli.py ```python import io import json import os import pytest from commoncode import fileutils from commoncode.testcase import FileDrivenTesting from commoncode.system import on_linux from commoncode.system import on_mac from commoncode.system import on_macos_14_or_higher from commoncode.system import on_windows from commoncode.system import py36 from commoncode.system import py37 from scancode.cli_test_utils import check_json_scan from scancode.cli_test_utils import load_json_result from scancode.cli_test_utils import load_json_result_from_string from scancode.cli_test_utils import run_scan_click from scancode.cli_test_utils import run_scan_plain test_env = FileDrivenTesting() test_env.test_data_dir = os.path.join(os.path.dirname(__file__), 'data') """ Most of these tests spawn new process as if launched from the command line. Some of these CLI tests are dependent on py.test monkeypatch to ensure we are testing the actual command outputs as if using a real command line call. Some are using a plain subprocess to the same effect. """ def test_package_option_detects_packages(monkeypatch): test_dir = test_env.get_test_loc('package', copy=True) result_file = test_env.get_temp_file('json') args = ['--package', test_dir, '--json', result_file] run_scan_click(args, monkeypatch=monkeypatch) assert os.path.exists(result_file) result = open(result_file).read() assert 'package.json' in result def test_verbose_option_with_packages(monkeypatch): test_dir = test_env.get_test_loc('package', copy=True) result_file = test_env.get_temp_file('json') args = ['--package', '--verbose', test_dir, '--json', result_file] result = run_scan_click(args, monkeypatch=monkeypatch) assert 'package.json' in result.output assert os.path.exists(result_file) result = open(result_file).read() assert 'package.json' in result def test_copyright_option_detects_copyrights(): test_dir = test_env.get_test_loc('copyright', copy=True) result_file = test_env.get_temp_file('json') run_scan_click(['--copyright', test_dir, '--json', result_file]) assert os.path.exists(result_file) assert len(open(result_file).read()) > 10 def test_verbose_option_with_copyrights(monkeypatch): test_dir = test_env.get_test_loc('copyright', copy=True) result_file = test_env.get_temp_file('json') args = ['--copyright', '--verbose', test_dir, '--json', result_file] result = run_scan_click(args, monkeypatch=monkeypatch) assert os.path.exists(result_file) assert 'copyright_acme_c-c.c' in result.output assert len(open(result_file).read()) > 10 def test_scanned_resource_no_attribute_emails(): test_dir = test_env.get_test_loc('attribute_error_data/apache-1.1.txt') result_file = test_env.get_temp_file('bb.json') args = ['-clp', '--json-pp', result_file, test_dir, '--filter-clues'] result = run_scan_click(args) assert "'ScannedResource' object has no attribute 'emails'" not in result.output def test_unwanted_log_warning_message(): test_dir = test_env.get_test_loc('unwanted_log_message.txt') result_file = test_env.get_temp_file('json') args = ['-c', '--json-pp', result_file, test_dir] result = run_scan_click(args) assert 'No handlers could be found for logger "bs4.dammit"' not in result.output def test_license_option_detects_licenses(): test_dir = test_env.get_test_loc('license', copy=True) result_file = test_env.get_temp_file('json') args = ['--license', test_dir, '--json', result_file, '--verbose'] run_scan_click(args) assert os.path.exists(result_file) assert len(open(result_file).read()) > 10 def test_can_call_run_scan_as_a_function(): from scancode.cli import run_scan test_dir = test_env.get_test_loc('license', copy=True) rc, results = run_scan(test_dir, license=True, copyright=True, return_results=True) assert rc assert len(results['files']) == 2 assert not results['headers'][0]['errors'] def test_run_scan_includes_outdated_in_extra(): from scancode.cli import run_scan test_dir = test_env.get_test_loc('license', copy=True) rc, results = run_scan(test_dir, outdated='out of date', return_results=True) assert rc assert results['headers'][0]['extra_data']['OUTDATED'] == 'out of date' def test_usage_and_help_return_a_correct_script_name_on_all_platforms(): result = run_scan_click(['--help']) assert 'Usage: scancode [OPTIONS]' in result.output # this was showing up on Windows assert 'scancode-script.py' not in result.output result = run_scan_click([], expected_rc=2) assert 'Usage: scancode [OPTIONS]' in result.output # this was showing up on Windows assert 'scancode-script.py' not in result.output result = run_scan_click(['-xyz'], expected_rc=2) # this was showing up on Windows assert 'scancode-script.py' not in result.output def test_scan_info_does_collect_info(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--info', '--strip-root', test_dir, '--json', result_file] run_scan_click(args) expected = test_env.get_test_loc('info/basic.expected.json') check_json_scan(expected, result_file, regen=False) def test_scan_info_does_collect_info_with_root(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') run_scan_click(['--info', test_dir, '--json', result_file]) expected = test_env.get_test_loc('info/basic.rooted.expected.json') check_json_scan(expected, result_file, regen=False) def test_scan_info_returns_full_root(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--info', '--full-root', test_dir, '--json', result_file] run_scan_click(args) result_data = json.loads(open(result_file).read()) file_paths = [f['path'] for f in result_data['files']] assert len(file_paths) == 12 root = fileutils.as_posixpath(test_dir) assert all(p.startswith(root) for p in file_paths) def test_scan_info_returns_correct_full_root_with_single_file(): test_file = test_env.get_test_loc('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--info', '--full-root', test_file, '--json', result_file] run_scan_click(args) result_data = json.loads(open(result_file).read()) files = result_data['files'] # we have a single file assert len(files) == 1 scanned_file = files[0] # and we check that the path is the full path without repeating the file name assert scanned_file['path'] == fileutils.as_posixpath(test_file) def test_scan_info_returns_does_not_strip_root_with_single_file(): test_file = test_env.get_test_loc('single/iproute.c') result_file = test_env.get_temp_file('json') args = ['--info', '--strip-root', test_file, '--json', result_file] run_scan_click(args) expected = test_env.get_test_loc('single/iproute.expected.json') check_json_scan(expected, result_file, remove_file_date=True, regen=False) @pytest.mark.scanslow def test_scan_info_license_copyrights(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--info', '--license', '--copyright', '--strip-root', test_dir, '--json', result_file] run_scan_click(args) check_json_scan(test_env.get_test_loc('info/all.expected.json'), result_file, regen=False) def test_scan_noinfo_license_copyrights_with_root(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--email', '--url', '--license', '--copyright', test_dir, '--json', result_file] run_scan_click(args) expected = test_env.get_test_loc('info/all.rooted.expected.json') check_json_scan(expected, result_file, regen=False) def test_scan_email_url_info(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--email', '--url', '--info', '--strip-root', test_dir, '--json', result_file] run_scan_click(args) expected = test_env.get_test_loc('info/email_url_info.expected.json') check_json_scan(expected, result_file, regen=False) def test_scan_should_not_fail_on_faulty_pdf_or_pdfminer_bug_but_instead_keep_trucking_with_json(): test_file = test_env.get_test_loc('failing/patchelf.pdf') result_file = test_env.get_temp_file('test.json') args = ['--copyright', '--strip-root', test_file, '--json', result_file] result = run_scan_click(args, expected_rc=0) expected = test_env.get_test_loc('failing/patchelf.expected.json') check_json_scan(expected, result_file, regen=False) assert 'Some files failed to scan' not in result.output assert 'patchelf.pdf' not in result.output def test_scan_with_timeout_errors(): test_file = test_env.get_test_loc('failing/patchelf.pdf') result_file = test_env.get_temp_file('test.json') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['-e', '--test-slow-mode', '--timeout', '0.01', '--verbose', test_file, '--json', result_file] result = run_scan_click(args, expected_rc=1) assert 'ERROR: Processing interrupted: timeout' in result.output assert 'patchelf.pdf' in result.output result_json = json.loads(open(result_file).read()) assert result_json['files'][0]['scan_errors'][0].startswith('ERROR: for scanner: emails') assert result_json['headers'][0]['errors'] def test_scan_with_errors_always_includes_full_traceback(): test_file = test_env.get_test_loc('failing/patchelf.pdf') result_file = test_env.get_temp_file('test.json') # we use a short timeout and a --test-error-mode --email scan to simulate an error args = ['-e', '--test-error-mode', '--verbose', test_file, '--json', result_file] result = run_scan_click(args, expected_rc=1) assert 'ScancodeError: Triggered email failure' in result.output assert 'patchelf.pdf' in result.output result_json = json.loads(open(result_file).read()) assert result_json['files'][0]['scan_errors'][0].startswith('ERROR: for scanner: emails') assert result_json['headers'][0]['errors'] def test_failing_scan_return_proper_exit_code_on_failure(): test_file = test_env.get_test_loc('failing/patchelf.pdf') result_file = test_env.get_temp_file('test.json') args = ['-e', '--test-error-mode', test_file, '--json', result_file] run_scan_click(args, expected_rc=1) def test_scan_should_not_fail_on_faulty_pdf_or_pdfminer_bug_but_instead_report_errors_and_keep_trucking_with_html(): test_file = test_env.get_test_loc('failing/patchelf.pdf') result_file = test_env.get_temp_file('test.html') args = ['--copyright', '--timeout', '1', test_file, '--html', result_file] run_scan_click(args) def test_scan_license_should_not_fail_with_output_to_html_and_json(): test_dir = test_env.get_test_loc('dual_output_with_license', copy=True) result_file_html = test_env.get_temp_file('html') result_file_json = test_env.get_temp_file('json') args = ['--license', test_dir, '--json', result_file_json, '--html', result_file_html, '--verbose'] result = run_scan_click(args) assert 'Object of type License is not JSON serializable' not in result.output def test_scan_should_not_fail_on_faulty_pdf_or_pdfminer_bug_but_instead_report_errors_and_keep_trucking_with_html_app(): test_file = test_env.get_test_loc('failing/patchelf.pdf') result_file = test_env.get_temp_file('test.app.html') args = ['--copyright', '--timeout', '1', test_file, '--html-app', result_file] run_scan_click(args) def test_scan_works_with_multiple_processes(): test_dir = test_env.get_test_loc('multiprocessing', copy=True) # run the same scan with one or three processes result_file_1 = test_env.get_temp_file('json') args = ['--copyright', '--processes', '1', test_dir, '--json', result_file_1] run_scan_click(args) result_file_3 = test_env.get_temp_file('json') args = ['--copyright', '--processes', '3', test_dir, '--json', result_file_3] run_scan_click(args) res1 = json.loads(open(result_file_1).read()) res3 = json.loads(open(result_file_3).read()) assert sorted(res1['files'], key=lambda x: tuple(x.items())) == sorted(res3['files'], key=lambda x: tuple(x.items())) def test_scan_works_with_no_processes_in_threaded_mode(): test_dir = test_env.get_test_loc('multiprocessing', copy=True) # run the same scan with zero or one process result_file_0 = test_env.get_temp_file('json') args = ['--copyright', '--processes', '0', test_dir, '--json', result_file_0] result0 = run_scan_click(args) assert 'Disabling multi-processing' in result0.output result_file_1 = test_env.get_temp_file('json') args = ['--copyright', '--processes', '1', test_dir, '--json', result_file_1] run_scan_click(args) res0 = json.loads(open(result_file_0).read()) res1 = json.loads(open(result_file_1).read()) assert sorted(res0['files'], key=lambda x: tuple(x.items())) == sorted(res1['files'], key=lambda x: tuple(x.items())) def test_scan_works_with_no_processes_non_threaded_mode(): test_dir = test_env.get_test_loc('multiprocessing', copy=True) # run the same scan with zero or one process result_file_0 = test_env.get_temp_file('json') args = ['--copyright', '--processes', '-1', test_dir, '--json', result_file_0] result0 = run_scan_click(args) assert 'Disabling multi-processing and multi-threading' in result0.output result_file_1 = test_env.get_temp_file('json') args = ['--copyright', '--processes', '1', test_dir, '--json', result_file_1] run_scan_click(args) res0 = json.loads(open(result_file_0).read()) res1 = json.loads(open(result_file_1).read()) assert sorted(res0['files'], key=lambda x: tuple(x.items())) == sorted(res1['files'], key=lambda x: tuple(x.items())) def test_scan_works_with_multiple_processes_and_timeouts(): test_dir = test_env.get_test_loc('timeout') result_file = test_env.get_temp_file('json') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['--email', '--processes', '2', '--timeout', '0.01', # this will guarantee that an email scan takes at least one second '--test-slow-mode', '--strip-root', test_dir, '--json', result_file] run_scan_click(args, expected_rc=1) expected = [ [(u'path', u'test1.txt'), (u'type', u'file'), (u'emails', []), (u'scan_errors', [u'ERROR: for scanner: emails:\nERROR: Processing interrupted: timeout after 0 seconds.'])], [(u'path', u'test2.txt'), (u'type', u'file'), (u'emails', []), (u'scan_errors', [u'ERROR: for scanner: emails:\nERROR: Processing interrupted: timeout after 0 seconds.'])], [(u'path', u'test3.txt'), (u'type', u'file'), (u'emails', []), (u'scan_errors', [u'ERROR: for scanner: emails:\nERROR: Processing interrupted: timeout after 0 seconds.'])] ] result_json = json.loads(open(result_file).read()) assert sorted(sorted(x.items()) for x in result_json['files']) == sorted(sorted(x) for x in expected) def check_scan_does_not_fail_when_scanning_unicode_files_and_paths(verbosity): test_dir = test_env.get_test_loc(u'unicodepath/uc') result_file = test_env.get_temp_file('json') args = [ '--info', '--license', '--copyright', '--package', '--email', '--url', '--strip-root', test_dir , '--json', result_file ] + ([verbosity] if verbosity else []) results = run_scan_click(args) # the paths for each OS ends up encoded differently. # See for details: # https://github.com/nexB/scancode-toolkit/issues/390 # https://github.com/nexB/scancode-toolkit/issues/688 # https://github.com/nexB/scancode-toolkit/issues/1635 if on_macos_14_or_higher: expected = 'unicodepath/unicodepath.expected-mac14.json' + verbosity elif on_linux: expected = 'unicodepath/unicodepath.expected-linux.json' + verbosity elif on_mac: expected = 'unicodepath/unicodepath.expected-mac.json' + verbosity elif on_windows: expected = 'unicodepath/unicodepath.expected-win.json' + verbosity check_json_scan(test_env.get_test_loc(expected), result_file, remove_file_date=True, regen=False) return results def test_scan_does_not_fail_when_scanning_unicode_files_and_paths_default(): result = check_scan_does_not_fail_when_scanning_unicode_files_and_paths('') assert result.output def test_scan_does_not_fail_when_scanning_unicode_files_and_paths_verbose(): result = check_scan_does_not_fail_when_scanning_unicode_files_and_paths('--verbose') assert result.output def test_scan_does_not_fail_when_scanning_unicode_files_and_paths_quiet(): result = check_scan_does_not_fail_when_scanning_unicode_files_and_paths('--quiet') assert not result.output @pytest.mark.skipif(on_windows, reason='Python tar cannot extract these files on Windows') def test_scan_does_not_fail_when_scanning_unicode_test_files_from_express(): # On Windows, Python tar cannot extract these files. Other # extractors either fail or change the file name, making the test # moot. Git cannot check these files. So for now it makes no sense # to test this on Windows at all. Extractcode works fine, but does # rename the problematic files. test_path = u'unicode_fixtures.tar.gz' test_dir = test_env.extract_test_tar_raw(test_path) test_dir = os.fsencode(test_dir) args = ['-n0', '--info', '--license', '--copyright', '--package', '--email', '--url', '--strip-root', '--json', '-', test_dir] run_scan_click(args) def test_scan_can_handle_licenses_with_unicode_metadata(): test_dir = test_env.get_test_loc('license_with_unicode_meta') result_file = test_env.get_temp_file('json') run_scan_click(['--license', test_dir, '--json', result_file]) def test_scan_quiet_to_file_does_not_echo_anything(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--quiet', '--info', test_dir, '--json', result_file] result = run_scan_click(args) assert not result.output def test_scan_quiet_to_stdout_only_echoes_json_results(): test_dir = test_env.extract_test_tar('info/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--quiet', '--info', test_dir, '--json-pp', result_file] result_to_file = run_scan_click(args) assert not result_to_file.output # also test with an output of JSON to stdout args = ['--quiet', '--info', test_dir, '--json-pp', '-'] result_to_stdout = run_scan_click(args) # outputs to file or stdout should be identical result1_output = open(result_file).read() json_result1_output = load_json_result_from_string(result1_output) json_result_to_stdout = load_json_result_from_string(result_to_stdout.output) # cleanup JSON assert json_result_to_stdout == json_result1_output def test_scan_verbose_to_stdout_does_not_echo_ansi_escapes(): test_dir = test_env.extract_test_tar('info/basic.tgz') args = ['--verbose', '--info', test_dir, '--json', '-'] result = run_scan_click(args) assert '[?' not in result.output def test_scan_can_return_matched_license_text(): test_file = test_env.get_test_loc('license_text/test.txt') expected_file = test_env.get_test_loc('license_text/test.expected') result_file = test_env.get_temp_file('json') args = ['--license', '--license-text', '--strip-root', test_file, '--json', result_file] run_scan_click(args) check_json_scan(test_env.get_test_loc(expected_file), result_file, regen=False) @pytest.mark.skipif(on_windows, reason='This test cannot run on windows as these are not legal file names.') def test_scan_can_handle_weird_file_names(): test_dir = test_env.extract_test_tar('weird_file_name/weird_file_name.tar.gz') result_file = test_env.get_temp_file('json') args = ['-c', '-i', '--strip-root', test_dir, '--json', result_file] result = run_scan_click(args) assert "KeyError: 'sha1'" not in result.output # Some info vary on each OS # See https://github.com/nexB/scancode-toolkit/issues/438 for details expected = 'weird_file_name/expected-posix.json' check_json_scan(test_env.get_test_loc(expected), result_file, regen=False) @pytest.mark.skipif(on_macos_14_or_higher or on_windows, reason='Cannot handle yet byte paths on macOS 10.14+. ' 'See https://github.com/nexB/scancode-toolkit/issues/1635') def test_scan_can_handle_non_utf8_file_names_on_posix(): test_dir = test_env.extract_test_tar_raw('non_utf8/non_unicode.tgz') result_file = test_env.get_temp_file('json') args = ['-i', '--strip-root', test_dir, '--json', result_file] run_scan_click(args) # the paths for each OS end up encoded differently. # See for details: # https://github.com/nexB/scancode-toolkit/issues/390 # https://github.com/nexB/scancode-toolkit/issues/688 if on_linux: expected = 'non_utf8/expected-linux.json' elif on_mac: expected = 'non_utf8/expected-mac.json' elif on_windows: expected = 'non_utf8/expected-win.json' check_json_scan(test_env.get_test_loc(expected), result_file, regen=False) def test_scan_can_run_from_other_directory(): test_file = test_env.get_test_loc('altpath/copyright.c') expected_file = test_env.get_test_loc('altpath/copyright.expected.json') result_file = test_env.get_temp_file('json') work_dir = os.path.dirname(result_file) args = ['-ci', '--strip-root', test_file, '--json', result_file] run_scan_plain(args, cwd=work_dir) check_json_scan(test_env.get_test_loc(expected_file), result_file, remove_file_date=True, regen=False) def test_scan_logs_errors_messages_not_verbosely_on_stderr(): test_file = test_env.get_test_loc('errors/many_copyrights.c') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['-e', '--test-slow-mode', '-n', '0', '--timeout', '0.0001', test_file, '--json', '-'] _rc, stdout, stderr = run_scan_plain(args, expected_rc=1) assert 'Some files failed to scan properly:' in stderr assert 'Path: many_copyrights.c' in stderr assert 'ERROR: Processing interrupted: timeout after 0 seconds.' in stdout, stdout assert 'ERROR: Processing interrupted: timeout after 0 seconds.' not in stderr, stderr def test_scan_logs_errors_messages_not_verbosely_on_stderr_with_multiprocessing(): test_file = test_env.get_test_loc('errors/many_copyrights.c') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['-e', '--test-slow-mode', '-n', '2', '--timeout', '0.0001', test_file, '--json', '-'] _rc, stdout, stderr = run_scan_plain(args, expected_rc=1) assert 'Some files failed to scan properly:' in stderr assert 'Path: many_copyrights.c' in stderr assert 'ERROR: Processing interrupted: timeout after 0 seconds.' in stdout assert 'ERROR: Processing interrupted: timeout after 0 seconds.' not in stderr def test_scan_logs_errors_messages_verbosely(): test_file = test_env.get_test_loc('errors/many_copyrights.c') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['-e', '--test-slow-mode', '--verbose', '-n', '0', '--timeout', '0.0001', test_file, '--json', '-'] _rc, stdout, stderr = run_scan_plain(args, expected_rc=1) assert 'Some files failed to scan properly:' in stderr assert 'Path: many_copyrights.c' in stderr assert 'ERROR: Processing interrupted: timeout after 0 seconds.' in stdout assert 'ERROR: for scanner: emails:' in stdout assert 'ERROR: Processing interrupted: timeout after 0 seconds.' in stderr assert 'ERROR: for scanner: emails:' in stderr def test_scan_logs_errors_messages_verbosely_with_verbose_and_multiprocessing(): test_file = test_env.get_test_loc('errors/many_copyrights.c') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['-e', '--test-slow-mode', '--verbose', '-n', '2', '--timeout', '0.0001', test_file, '--json', '-'] _rc, stdout, stderr = run_scan_plain(args, expected_rc=1) assert 'Some files failed to scan properly:' in stderr assert 'Path: many_copyrights.c' in stderr assert 'ERROR: Processing interrupted: timeout after 0 seconds.' in stdout assert 'ERROR: Processing interrupted: timeout after 0 seconds.' in stderr @pytest.mark.scanslow def test_scan_does_not_report_errors_on_incorrect_package_manifest(): test_file = test_env.get_test_loc('errors/broken_packages') args = ['-pi', '--verbose', '-n', '0', test_file, '--json', '-'] _rc, stdout, stderr = run_scan_plain(args, expected_rc=0) assert 'Some files failed to scan properly:' not in stderr assert 'ERROR: Processing interrupted: timeout after 0 seconds.' not in stdout assert 'ERROR: Processing interrupted: timeout after 0 seconds.' not in stderr def test_scan_progress_display_is_not_damaged_with_long_file_names_plain(): test_dir = test_env.get_test_loc('long_file_name') result_file = test_env.get_temp_file('json') args = ['--copyright', test_dir, '--json', result_file] _rc, stdout, stderr = run_scan_plain(args) expected1 = 'Scanned: abcdefghijklmnopqr...234567890123456789.c' expected2 = 'Scanned: 0123456789012345678901234567890123456789.c' expected3 = 'abcdefghijklmnopqrtu0123456789012345678901234567890123456789abcdefghijklmnopqrtu0123456789012345678901234567890123456789.c' assert expected1 not in stdout assert expected2 not in stdout assert expected3 not in stdout assert expected1 not in stderr assert expected2 not in stderr assert expected3 not in stderr def test_scan_progress_display_is_not_damaged_with_long_file_names(monkeypatch): test_dir = test_env.get_test_loc('long_file_name') result_file = test_env.get_temp_file('json') args = ['--copyright', test_dir, '--json', result_file] result = run_scan_click(args, monkeypatch=monkeypatch) if on_windows: expected1 = 'Scanned: 0123456789012345678901234567890123456789.c' expected2 = 'Scanned: abcdefghijklmnopqrt...0123456789012345678' expected3 = 'abcdefghijklmnopqrtu0123456789012345678901234567890123456789abcdefghijklmnopqrtu0123456789012345678901234567890123456789.c' try: assert expected1 in result.output assert expected2 not in result.output assert expected3 not in result.output except: print() print('output:') print(result.output) print() raise else: expected1 = 'Scanned: abcdefghijklmnopqr...234567890123456789.c' expected2 = 'Scanned: 0123456789012345678901234567890123456789.c' expected3 = 'abcdefghijklmnopqrtu0123456789012345678901234567890123456789abcdefghijklmnopqrtu0123456789012345678901234567890123456789.c' assert expected1 in result.output assert expected2 in result.output assert expected3 not in result.output def test_scan_does_scan_php_composer(): test_file = test_env.get_test_loc('composer/composer.json') expected_file = test_env.get_test_loc('composer/composer.expected.json') result_file = test_env.get_temp_file('results.json') run_scan_click(['--package', test_file, '--json', result_file]) check_json_scan(expected_file, result_file, regen=False) def test_scan_does_scan_rpm(): test_file = test_env.get_test_loc('rpm/fping-2.4-0.b2.rhfc1.dag.i386.rpm') expected_file = test_env.get_test_loc('rpm/fping-2.4-0.b2.rhfc1.dag.i386.rpm.expected.json') result_file = test_env.get_temp_file('results.json') run_scan_click(['--package', test_file, '--json', result_file]) check_json_scan(expected_file, result_file, regen=False) def test_scan_cli_help(regen=False): expected_file = test_env.get_test_loc('help/help.txt') result = run_scan_click(['--help']) result = result.output if regen: with io.open(expected_file, 'w', encoding='utf-8') as ef: ef.write(result) def no_spaces(s): return ' '.join(s.split()) expected = open(expected_file).read() if no_spaces(result) != no_spaces(expected): assert result == expected def test_scan_errors_out_with_unknown_option(): test_file = test_env.get_test_loc('license_text/test.txt') args = ['--json--info', test_file] result = run_scan_click(args, expected_rc=2) assert 'Error: No such option: --json--info'.lower() in result.output.lower() def test_scan_to_json_without_FILE_does_not_write_to_next_option(): test_file = test_env.get_test_loc('license_text/test.txt') args = ['--json', '--info', test_file] result = run_scan_click(args, expected_rc=2) assert ( 'Error: Invalid value for "--json": Illegal file name ' 'conflicting with an option name: --info.' ).replace("'", '"') in result.output.replace("'", '"') def test_scan_errors_out_with_conflicting_root_options(): test_file = test_env.get_test_loc('license_text/test.txt') result_file = test_env.get_temp_file('results.json') args = ['--strip-root', '--full-root', '--json', result_file, '--info', test_file] result = run_scan_click(args, expected_rc=2) assert ('Error: The option --strip-root cannot be used together with the ' '--full-root option(s) and --full-root is used.') in result.output def test_scan_errors_out_with_conflicting_verbosity_options(): test_file = test_env.get_test_loc('license_text/test.txt') result_file = test_env.get_temp_file('results.json') args = ['--quiet', '--verbose', '--json', result_file, '--info', test_file] result = run_scan_click(args, expected_rc=2) assert ('Error: The option --quiet cannot be used together with the ' '--verbose option(s) and --verbose is used. You can set only one of ' 'these options at a time.') in result.output def test_scan_valid_duration_field_in_json_output_headers(): test_file = test_env.get_test_loc('license_text/test.txt') result_file = test_env.get_temp_file('results.json') args = ['--json', result_file, test_file] run_scan_click(args) with open(result_file) as result: headers = json.loads(result.read())['headers'] assert headers[0]['duration'] >= 0 @pytest.mark.scanslow @pytest.mark.skipif(on_windows, reason='Somehow this test fails for now on Python 3') def test_scan_with_timing_json_return_timings_for_each_scanner(): test_dir = test_env.extract_test_tar('timing/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--email', '--url', '--license', '--copyright', '--info', '--package', '--timing', '--json', result_file, test_dir] run_scan_click(args) file_results = load_json_result(result_file)['files'] # NB: these keys are the name of the scan plugins in setup.py expected = set(['emails', 'urls', 'licenses', 'copyrights', 'info', 'packages']) check_timings(expected, file_results) @pytest.mark.scanslow @pytest.mark.skipif(on_windows, reason='Somehow this test fails for now on Python 3') def test_scan_with_timing_jsonpp_return_timings_for_each_scanner(): test_dir = test_env.extract_test_tar('timing/basic.tgz') result_file = test_env.get_temp_file('json') args = ['--email', '--url', '--license', '--copyright', '--info', '--package', '--timing', '--verbose', '--json-pp', result_file, test_dir] run_scan_click(args) file_results = load_json_result(result_file)['files'] # NB: these keys are the name of the scan plugins in setup.py expected = set(['emails', 'urls', 'licenses', 'copyrights', 'info', 'packages']) check_timings(expected, file_results) def check_timings(expected, file_results): for res in file_results: scan_timings = res['scan_timings'] if not res['type'] == 'file': # should be an empty dict for dirs assert not scan_timings continue assert scan_timings for scanner, timing in scan_timings.items(): assert scanner in expected assert timing @pytest.mark.scanslow def test_summary_counts_when_using_disk_cache(): test_file = test_env.get_test_loc('summaries/counts') result_file = test_env.get_temp_file('json') args = ['--info', '-n', '-1', '--max-in-memory', '-1', test_file, '--json', result_file] result = run_scan_click(args, expected_rc=0) assert ('44 resource(s): 33 file(s) and 11 directorie(s)') in result.output def test_scan_should_not_fail_with_low_max_in_memory_setting_when_ignoring_files(): test_file = test_env.get_test_loc('summaries/client') result_file = test_env.get_temp_file('json') args = ['--info', '-n', '-1', '--ignore', '*.gif', '--max-in-memory=1', test_file, '--json', result_file] run_scan_click(args, expected_rc=0) def test_get_displayable_summary(): from scancode.cli import get_displayable_summary from commoncode.resource import Codebase # Set up test codebase test_codebase = test_env.get_test_loc('summaries/client') codebase = Codebase(test_codebase, strip_root=True) codebase.timings['scan'] = 0 scan_names = 'foo, bar, baz' processes = 23 errors = ['failed to scan ABCD'] results = get_displayable_summary(codebase, scan_names, processes, errors) expected = ( [u'Some files failed to scan properly:', u'failed to scan ABCD'], [ u'Summary: foo, bar, baz with 23 process(es)', u'Errors count: 1', u'Scan Speed: 0.00 files/sec. ', u'Initial counts: 0 resource(s): 0 file(s) and 0 directorie(s) ', u'Final counts: 0 resource(s): 0 file(s) and 0 directorie(s) ', u'Timings:', u' scan_start: None', u' scan_end: None'] ) assert results == expected def test_display_summary_edge_case_scan_time_zero_should_not_fail(): from io import StringIO import sys from scancode.cli import display_summary from commoncode.resource import Codebase # Set up test codebase test_codebase = test_env.get_test_loc('summaries/client') codebase = Codebase(test_codebase, strip_root=True) codebase.timings['scan'] = 0 scan_names = 'foo, bar, baz' processes = 23 errors = ['failed to scan ABCD'] try: # Redirect summary output from `stderr` to `result` result = StringIO() sys.stderr = result # Output from `display_summary` will be in `result` display_summary(codebase, scan_names, processes, errors) finally: # Set `stderr` back sys.stderr = sys.__stderr__ def test_check_error_count(): test_dir = test_env.get_test_loc('failing') result_file = test_env.get_temp_file('json') # we use a short timeout and a --test-slow-mode --email scan to simulate an error args = ['-e', '--test-slow-mode', '--timeout', '0.1', test_dir, '--json', result_file] result = run_scan_click(args, expected_rc=1) output = result.output output = output.replace('\n', ' ').replace(' ', ' ') output = output.split(' ') error_files = output.count('Path:') error_count = output[output.index('count:') + 1] assert str(error_files) == str(error_count) on_mac_new_py = on_mac and not (py36 or py37) def test_scan_keep_temp_files_is_false_by_default(): test_file = test_env.get_test_loc('tempfiles/samples') result_file = test_env.get_temp_file('json') # mock using a well defined temporary directory temp_directory = test_env.get_temp_dir() env = dict(os.environ) env.update({'SCANCODE_TEMP': temp_directory}) args = [ '--info', test_file, '--json', result_file, # this forces using a temp file cache so that we have temp files '--max-in-memory', '-1'] _ = run_scan_plain(args, expected_rc=0, env=env) # the SCANCODE_TEMP dir is not deleted, but it should be empty assert os.path.exists(temp_directory) # this does not make sense but that's what is seen in practice expected = 2 if (on_windows or on_mac_new_py) else 1 assert len(list(os.walk(temp_directory))) == expected def test_scan_keep_temp_files_keeps_files(): test_file = test_env.get_test_loc('tempfiles/samples') result_file = test_env.get_temp_file('json') # mock using a well defined temporary directory temp_directory = test_env.get_temp_dir() env = dict(os.environ) env.update({'SCANCODE_TEMP': temp_directory}) args = [ '--keep-temp-files', '--info', test_file, '--json', result_file, # this forces using a temp file cache '--max-in-memory', '-1'] _rc, _stdout, _stderr = run_scan_plain(args, expected_rc=0, env=env) # the SCANCODE_TEMP dir is not deleted, but it should not be empty assert os.path.exists(temp_directory) # this does not make sense but that's what is seen in practice expected = 8 if (on_windows or on_mac_new_py) else 7 assert len(list(os.walk(temp_directory))) == expected def test_scan_errors_out_without_an_input_path(): args = ['--json-pp', '-'] result = run_scan_click(args, expected_rc=2) assert 'Error: Invalid value: At least one input path is required.' in result.output def test_merge_multiple_scans(): test_file_1 = test_env.get_test_loc('merge_scans/sample.json') test_file_2 = test_env.get_test_loc('merge_scans/thirdparty.json') result_file = test_env.get_temp_file('json') args = ['--from-json', test_file_1, '--from-json', test_file_2, '--json', result_file] run_scan_click(args, expected_rc=0) expected = test_env.get_test_loc('merge_scans/expected.json') with open(expected) as f: expected_files = json.loads(f.read())['files'] with open(result_file) as f: result_files = json.loads(f.read())['files'] assert result_files == expected_files def test_VirtualCodebase_output_with_from_json_is_same_as_original(): test_file = test_env.get_test_loc('virtual_idempotent/codebase.json') result_file = test_env.get_temp_file('json') args = ['--from-json', test_file, '--json-pp', result_file] run_scan_click(args) expected = load_json_result(test_file, remove_file_date=True) results = load_json_result(result_file, remove_file_date=True) expected.pop('summary', None) results.pop('summary', None) expected_headers = expected.pop('headers', []) results_headers = results.pop('headers', []) assert json.dumps(results , indent=2) == json.dumps(expected, indent=2) assert len(results_headers) == len(expected_headers) + 1 ```
{ "source": "JimJam07/DevBot", "score": 3 }
#### File: devbot/github_login/login.py ```python import click from github import Github import requests import pickle from ..decorators.auth_state import check_auth_state from ..decorators.user_filepath import get_user_filepath @click.command() @click.option('--username', prompt="Your Github Username") @click.option('--password', prompt=True, hide_input=True) @get_user_filepath @check_auth_state def login(username, password, is_authenticated, user, user_file_path): if is_authenticated: print(f"\033[93mYou've already logged in as {user.get_user().login}. Run `devbot logout` to Log out\033[0m") return res = requests.get('https://api.github.com', auth=(username, password)) if res.status_code < 400: user = Github(username, password) print(f"\033[92mLogged in Successfully\033[0m") pickle.dump(user, open(user_file_path, "wb")) else: print(f"\033[91mCould not log in\033[0m") ``` #### File: devbot/github_logout/logout.py ```python import click import os from ..decorators.auth_state import check_auth_state from ..decorators.user_filepath import get_user_filepath @click.command() @get_user_filepath @check_auth_state def logout(is_authenticated, user, user_file_path): if is_authenticated: os.remove(user_file_path) print(f"\033[92mLogged out Successfully\033[0m") else: print(f"\033[91mYou're not logged in. run `devbot login` to login\033[0m") ```
{ "source": "jimjh/arc_cache", "score": 4 }
#### File: arc_cache/arc_cache/decorator.py ```python from functools import wraps, partial, _make_key from collections import namedtuple, OrderedDict as od _CacheInfo = namedtuple('CacheInfo', ['hits', 'misses', 'max_size', 't1_size', 't2_size', 'split']) def _shift(src, dst): """Pops the first item in ``src`` and moves it to ``dst``.""" key, value = src.popitem(last=False) dst.append(key) def _pop(src): """Pops the first item in ``src``.""" src.pop(0) def _delta(x, y): """Computes |y|/|x|.""" return max(float(len(y))/float(len(x)), 1.0) def _adapt_plus(b1, b2, max_size, p): return min(p + _delta(b1, b2), float(max_size)) def _adapt_minus(b2, b1, p): return max(p - _delta(b2, b1), 0.0) def arc_cache(max_size=128, typed=False): """Decorator to memoize the given callable using an adaptive replacement cache. :param max_size: maximum number of elements in the cache :type max_size: int :param typed: cache arguments of different types separately :type typed: bool ``max_size`` must be a positive integer. If ``typed`` is ``True``, arguments of different types will be cached separately. For example, ``f(3.0)`` and ``f(3)`` will be treated as distinct calls with distinct results. Arguments to the cached function must be hashable. View the cache statistics named tuple ``(hits, misses, max_size, t1_size, t2_size, split)`` with ``f.cache_info()``. Reset the cache using ``f.cache_clear()``. TODO worry about thread-safety """ if not isinstance(max_size, int): raise TypeError('max_size must be of type int.') if max_size is None or 0 >= max_size: raise ValueError('max_size must be a positive integer. If you want an' ' unbounded cache, use functools.lru_cache.') def decorating_function(func): # one instance of each var per decorated function # in LRU to MRU order t1, b1, t2, b2 = od(), [], od(), [] p = max_size / 2 hits = misses = 0 # == invariants == # l1: elements were used only once # l2: elements were used at least twice # len(l1) ≤ c # len(l2) ≤ 2c # len(l1) + len(l2) ≤ 2c # t1, t2, b1, and b2 are always pairwise disjoint # if len(l1) + len(l2) < c, then both b1 and b2 are empty # conversely, if b1/b2 is not empty, then len(l1) + len(l2) ≥ c # if len(l1) + len(l2) ≥ c, then len(t1) + len(t2) = c evict_t1 = partial(_shift, t1, b1) evict_t2 = partial(_shift, t2, b2) evict_b1 = partial(_pop, b1) evict_b2 = partial(_pop, b2) adapt_plus = partial(_adapt_plus, b1, b2, max_size) adapt_minus = partial(_adapt_minus, b2, b1) def evict_t1_t2(): if t1 and len(t1) > p: evict_t1() else: evict_t2() def evict_l1(): # DBL: evict from l1, slide everything back if b1: # i.e. |t1| < max_size evict_b1() evict_t1_t2() else: t1.popitem(last=False) def evict_l2(): total = len(t1) + len(b1) + len(t2) + len(b2) if total >= max_size: if total == 2 * max_size: # DBL: if lists are full, evict from l2 evict_b2() # ARC: if cache is full, evict from t1/t2 evict_t1_t2() # else: cache is not full, don't evict from t1/t2 @wraps(func) def wrapper(*args, **kwargs): nonlocal p, hits, misses key = _make_key(args, kwargs, typed) # ARC hit: Case I if key in t1: hits += 1 result = t1[key] del t1[key] t2[key] = result # MRU in t2 return result elif key in t2: hits += 1 t2.move_to_end(key) # MRU in t2 return t2[key] # ARC miss misses += 1 result = func(*args, **kwargs) if key in b1: # Case II: hit in l1 p = adapt_plus(p) # by invariant, the cache must be full, so evict from t1 or t2 evict_t1_t2() t2[key] = result elif key in b2: # Case III: hit in l2 # by invariant, the cache must be full, so evict from t1 or t2 p = adapt_minus(p) evict_t1_t2() t2[key] = result else: # Case IV: cache miss in DBL(2c) len_l1 = len(t1) + len(b1) if len_l1 == max_size: evict_l1() elif len_l1 < max_size: evict_l2() # if cache is not full, add it to t1 even if we exceed p t1[key] = result # MRU in t1 return result def cache_info(): return _CacheInfo(hits, misses, max_size, len(t1), len(t2), p) def cache_clear(): nonlocal hits, misses, p nonlocal t1, b1, t2, b2 t1, b1, t2, b2 = od(), [], od(), [] p = max_size / 2 hits = misses = 0 wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return wrapper return decorating_function ``` #### File: arc_cache/tests/test_import.py ```python import arc_cache def test_import(): """from arc_cache import arc_cache works""" assert 'arc_cache' in vars(arc_cache) assert callable(arc_cache.arc_cache) ```
{ "source": "jimjh/challenges", "score": 3 }
#### File: snakes_and_ladders/python/main.py ```python import sys from collections import deque class Board: def __init__(self, leaps_dict, N=100): self.N = N self.leaps = leaps_dict def next_moves(self, idx): roll_moves = [] for i in range(idx + 1, idx + 7): if i in self.leaps: roll_moves.append(self.leaps[i]) elif i <= self.N: roll_moves.append(i) return roll_moves def solve(self): Q = set([0]) num_rolls = 0 while True: NQ = set() for curr_square in Q: if curr_square == self.N: return num_rolls NQ |= set(self.next_moves(curr_square)) Q = NQ num_rolls += 1 # grab input stdin = sys.stdin T = int(stdin.next().strip()) # number of test cases for case in xrange(0, T): stdin.next() # ignore num_ladders, num_snakes leap_lines = stdin.next().strip() + ' ' + stdin.next().strip() leaps_dict = dict([map(int, l.split(',')) for l in leap_lines.split(' ')]) B = Board(leaps_dict) print B.solve() ```
{ "source": "jimjimliu/LOL_Match_Prediction", "score": 3 }
#### File: jimjimliu/LOL_Match_Prediction/Live_Game_Prediction.py ```python from keras.models import load_model import tensorflow as tf from Live_Game import Live_Game import numpy as np from UTIL import utils from sklearn.preprocessing import StandardScaler import time class GamePredict(): def __init__(self, player_name): self.player_name = player_name def predict(self): ''' :return: ''' "load the model from file" # load neural network NN_clf = tf.keras.models.load_model("MODELS/FNN.h5") # load LR LR_clf = utils.load_pkl('LR', "MODELS") # load baseline BL_clf = tf.keras.models.load_model("MODELS/FNN_baseline.h5") # load naive bayes GNB_clf = utils.load_pkl('NB', 'MODELS') while True: try: "get active game data" game = Live_Game(self.player_name) game_data, game_lineup = game.live_game() # print(game_data) # print(len(game_data)) # ss = StandardScaler() # start_data = ss.fit_transform(start_data) # game_data = ss.fit_transform(game_data) NN_prob = NN_clf.predict(game_data) LR_prob = LR_clf.predict_proba(game_data) # BL_prob = BL_clf.predict(game_lineup) # GNB_prob = GNB_clf.predict_proba(game_data) print("Neural network: ", NN_prob) print("Logistic regression: ", LR_prob) # print("baseline model: ", BL_prob) # print("Naive bayes: ", GNB_prob) final_pred = np.divide(np.add(NN_prob, LR_prob), 2) # print(final_pred) print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) ) red_win_rate = round(final_pred[0][0], 4) blue_win_rate = round(final_pred[0][1], 4) print("Blue team win rate: {}%".format(blue_win_rate*100)) print("Red team win rate: {}%".format(red_win_rate*100)) # predict every 1 minutes time.sleep(60) except Exception as e: print(e) print("No Active Game Found for User {}.".format(self.player_name)) break return if __name__ == '__main__': player_name = "<NAME>" GamePredict(player_name).predict() ```
{ "source": "jimjimliu/Riot-Watcher", "score": 2 }
#### File: valorant/urls/MatchApiUrls.py ```python from .ValEndpoint import ValEndpoint class MatchEndpoint(ValEndpoint): def __init__(self, url: str, **kwargs): super().__init__(f"/match/v1{url}", **kwargs) class MatchApiUrls: by_id = MatchEndpoint("/matches/{match_id}") matchlist_by_puuid = MatchEndpoint("/matchlists/by-puuid/{puuid}") ```
{ "source": "jimjing/MAndM", "score": 3 }
#### File: MAndM/code/globalConfig.py ```python import logging import ConfigParser import sys, os import time def get_mAndm_root(): # Climb the tree to find out where we are p = os.path.abspath(__file__) t = "" while t != "code": (p, t) = os.path.split(p) if p == "" or p == "/": print "I have no idea where I am; this is ridiculous" return None return os.path.join(p, "code") def setupLogging(loggerLevel=None): # Set up loggers for printing error messages class ColorLogFormatter(logging.Formatter): def __init__(self, *args, **kwds): super(ColorLogFormatter, self).__init__(*args, **kwds) self.plain_formatter = logging.Formatter(" [ %(module)s ] %(message)s") self.debug_formatter = logging.Formatter(" --> [%(levelname)s] (%(processName)s) (%(filename)s, line %(lineno)s): %(message)s") self.detailed_formatter = logging.Formatter(" --> [%(levelname)s] (%(pathname)s, line %(lineno)s): %(message)s") def colorize(self, level, string): if sys.platform in ['win32', 'cygwin']: # Message with color is not yet supported in Windows return string # elif not hasattr(sys.stderr, "isatty") or not sys.stderr.isatty(): # # Only try to colorize if outputting to a terminal # return string else: colors = {'ERROR': 91, 'WARNING': 93, 'INFO': 97, 'DEBUG': 94, 'Level 1': 100, 'Level 2': 105, 'Level 4': 104, 'Level 6': 102, 'Level 8': 101} return "\033[{0}m{1}\033[0m".format(colors[level], string) def format(self, record): if record.levelname == "INFO": precolor = self.plain_formatter.format(record) elif record.levelname == "DEBUG": precolor = self.debug_formatter.format(record) else: precolor = self.detailed_formatter.format(record) return self.colorize(record.levelname, precolor) mAndm_logger = logging.getLogger('mAndm_logger') # make sure rospy does not overwrite our logger #logging.root = logging.getLogger('mAndm_logger') h = logging.StreamHandler() f = ColorLogFormatter() h.setFormatter(f) if not mAndm_logger.handlers: mAndm_logger.addHandler(h) cfg = ConfigParser.ConfigParser() try: cfg.read(os.path.join(os.path.dirname(os.path.realpath(__file__)),"global.cfg")) loggerLevel = cfg.get("logging", "level").lower() except: logging.warning("Could not parse global.cfg file; using defaults") loggerLevel = "info" if loggerLevel == 'error': mAndm_logger.setLevel(logging.ERROR) elif loggerLevel == 'warning': mAndm_logger.setLevel(logging.WARNING) elif loggerLevel == 'info': mAndm_logger.setLevel(logging.INFO) elif loggerLevel == 'debug': mAndm_logger.setLevel(logging.DEBUG) elif loggerLevel == 'notset': #mAndm_logger.setLevel(logging.NOTSET) # for some reason logging.NOTSET does not work mAndm_logger.setLevel(int(1)) else: mAndm_logger.setLevel(int(loggerLevel)) # Choose the timer func with maximum accuracy for given platform if sys.platform in ['win32', 'cygwin']: best_timer = time.clock else: best_timer = time.time # Set-up logging automatically on import setupLogging() ``` #### File: src/highlevel_planner/file_interface.py ```python import os import xml.etree.ElementTree as ET import yaml import rospy from highlevel_planner.configuration_object import ConfigurationObject class FileInterface: def __init__(self): pass def _loadFile(self, path): if not os.path.isfile (path): raise IOError('Cannot find file: {}'.format(path)) with open(path,'r') as f: output = f.read() return output def loadConfigurationFile(self, path): configuration_object = ConfigurationObject() data = self._loadFile(path) root = ET.fromstring(data) for module_node in root.iter('ModuleState'): configuration_object.addModuleFromXml(module_node) for connection_node in root.iter('Connection'): configuration_object.addConnectionFromXml(connection_node) return configuration_object def loadAutFile(self, path): data = self._loadFile(path) def loadMappingFile(self, path): data = self._loadFile(path) return yaml.load(data) if __name__ == "__main__": CFL = FileInterface() ``` #### File: aprilposehandler/scripts/poseFilter.py ```python import rospy import tf import numpy from functools import partial from std_msgs.msg import String import std_msgs.msg from geometry_msgs.msg import PoseArray, PointStamped, Pose from apriltags_ros.msg import AprilTagDetectionArray, AprilTagDetection class PoseFilter: def __init__(self): rospy.init_node('pose_filter', anonymous=True) self.sub_topics = ["/camera/tag_detections","/cameraUP/tag_detections"] self.subs = {} self.tf = None self.camera_data = {} self.tag_list = [] def initialize(self): self.tf = tf.TransformListener() for name in self.sub_topics: cb = partial(self.callback, topic=name) self.subs[name] = rospy.Subscriber(name, AprilTagDetectionArray, cb) self.camera_data[name] = {} def talker(self): pub = rospy.Publisher('tag_detections_merged', AprilTagDetectionArray, queue_size=10) rate = rospy.Rate(1) # 10hz while not rospy.is_shutdown(): detection_array = AprilTagDetectionArray() for tag in self.tag_list: detections_from_cameras = [] for topic in self.camera_data.keys(): if (tag in self.camera_data[topic].keys()): if (self.camera_data[topic][tag] != None): detections_from_cameras.append(self.camera_data[topic][tag]) self.camera_data[topic][tag] = None if (len(detections_from_cameras)>0): merged_detection = AprilTagDetection() merged_detection.id = tag merged_detection.size = detections_from_cameras[0].size merged_detection.pose.header = detections_from_cameras[0].pose.header pose_list = [d.pose.pose for d in detections_from_cameras] merged_detection.pose.pose = self.averagePose (pose_list) detection_array.detections.append(merged_detection) pub.publish(detection_array) rate.sleep() def averagePose (self, pose_list): p = Pose() p.position.x = numpy.mean([pose.position.x for pose in pose_list]) p.position.y = numpy.mean([pose.position.y for pose in pose_list]) p.position.z = numpy.mean([pose.position.z for pose in pose_list]) p.orientation = pose_list[0].orientation return p def callback(self, data, topic): for detection in data.detections: if (detection.id not in self.tag_list): self.tag_list.append(detection.id) self.camera_data[topic][detection.id] = detection #point_in_world = self.tf.transformPoint("/world", ps) def listener(self): # spin() simply keeps python from exiting until this node is stopped rospy.spin() if __name__ == '__main__': try: pf = PoseFilter() pf.initialize() pf.talker() except rospy.ROSInterruptException: pass ``` #### File: code/test_motion_planner_files/test_action.py ```python import rospy import actionlib import time from mandm_motion_planner.msg import PlanAndExecuteTrajAction, PlanAndExecuteTrajFeedback, PlanAndExecuteTrajResult class PlanAndExecuteTrajServer: def __init__(self): self.server = actionlib.SimpleActionServer('plan_and_execute_traj', PlanAndExecuteTrajAction, self.execute, False) print "we are starting...!" self.feedback = PlanAndExecuteTrajFeedback() self.result = PlanAndExecuteTrajResult() print "feedback:" + str(self.feedback) print type(self.feedback) print self.feedback.rough_plan_found print self.feedback.executing_rough_plan print self.feedback.executing_grasp print "result:" + str(self.result) print type(self.result) print self.result.rough_execution_result print self.result.rough_planning_result print self.result.grasp_result self.server.start() def execute(self, goal): # Do lots of awesome groundbreaking robot stuff here print "we are executing...!" print goal.tag_name print goal.target_pose print goal.action_type self.result.grasp_result = True self.server.publish_feedback(self.feedback) print dir(self.server) time.sleep(5) self.feedback.rough_plan_found = True self.server.publish_feedback(self.feedback) self.server.set_succeeded(result=self.result) if __name__ == '__main__': rospy.init_node('plan_and_execute_traj_server') server = PlanAndExecuteTrajServer() rospy.spin() ``` #### File: code/test_motion_planner_files/trajectory_main.py ```python import rospy from baxter_pykdl import baxter_kinematics import time import baxter_interface from baxter_interface import CHECK_VERSION import os, sys # Climb the tree to find out where we are p = os.path.abspath(__file__) t = "" while t != "code": (p, t) = os.path.split(p) if p == "": print "I have no idea where I am; this is ridiculous" sys.exit(1) sys.path.append(os.path.join(p,"code")) import globalConfig import logging mAndm_logger = logging.getLogger('mAndm_logger') import trajHelper import numpy import time """ This python file gives an overview of how to do planning """ # inputs: current joint location, goal position of gripper # outputs return trajectory def set_j(limb, joint_name, desired_pos): current_position = limb.joint_angle(joint_name) joint_command = {joint_name: desired_pos} limb.set_joint_positions(joint_command) def inverse_kinematics_wrapper(position, orientation=[], seed=[]): """ takes in seed in radians. convert to degrees and feed into inverse_kinematics in pyKDL. then convert outputto radians and return. """ seed_degrees = [] if seed: #seed = seed_degrees # in radians now for x in seed: seed_degrees.append(x*180/numpy.pi) # convert from radians to degree mAndm_logger.log(2,"seed_degrees:" + str(seed_degrees)) if orientation and seed_degrees: output_angles_degrees = kin.inverse_kinematics(position, orientation=orientation, seed=seed_degrees) elif orientation: output_angles_degrees = kin.inverse_kinematics(position, orientation=orientation) elif seed_degrees: output_angles_degrees = kin.inverse_kinematics(position, seed=seed_degrees) else: output_angles_degrees = kin.inverse_kinematics(position) mAndm_logger.log(2,"output_angles_degrees:" + str(output_angles_degrees)) output_angles_radians = [] if output_angles_degrees is not None: for x in output_angles_degrees: output_angles_radians.append(x/180*numpy.pi) else: output_angles_radians = None mAndm_logger.log(2,"output_angles_radians:" + str(output_angles_radians)) return output_angles_radians limb = 'right' # enable robot rospy.init_node('baxter_kinematics') rs = baxter_interface.RobotEnable(CHECK_VERSION) mAndm_logger.info("Enabling robot... ") rs.enable() waypointEx = trajHelper.WayPointExecution(limb) #waypointEx._limb.move_to_neutral() #do IK kin = baxter_kinematics(limb) # find current position mAndm_logger.debug('kin.forward_position_kinematics():' + str(kin.forward_position_kinematics())) current_gripper_pos = kin.forward_position_kinematics() current_gripper_pos = [0.582583, -0.180819, 0.216003] #[x, y, z] rot = [0.03085, 0.9945, 0.0561, 0.0829] # later on only test it here. inverse to forward mAndm_logger.debug('current_gripper_pos:' + str(current_gripper_pos)) mAndm_logger.debug('current_gripper_pos[:3]:' + str(current_gripper_pos[:3])) mAndm_logger.debug('rot:' + str(rot)) current_joint_angles = [waypointEx._limb.joint_angle(jnt) for jnt in waypointEx._limb.joint_names()] mAndm_logger.debug('current_joint_angles:' + str(current_joint_angles)) output_angles_radians = kin.inverse_kinematics(current_gripper_pos[:3], orientation=rot, seed=current_joint_angles) print output_angles_radians #next_joint_angles = inverse_kinematics_wrapper(current_gripper_pos[:3], seed=current_joint_angles) #mAndm_logger.debug('next_joint_angles:' + str(next_joint_angles)) output_angles_radians = ( output_angles_radians + numpy.pi) % (2 * numpy.pi ) - numpy.pi #output_angles_radians = numpy.unwrap(output_angles_radians, axis=0) # wrap around 0 to 2 pi print output_angles_radians # now make sure the angles are within range # radians jointRanges = {'S0':[-1.7016 ,+1.7016],\ 'S1':[-2.147 ,+1.047],\ 'E0':[-3.0541 , +3.0541],\ 'E1':[-0.05 ,+2.618 ],\ 'W0':[-3.059 ,+3.059],\ 'W1':[-1.5707 ,+2.094],\ 'W2':[-3.059 ,+3.059]} # some angles are out of range.. don't know what to do.. # i guess try their IK example provided. not with pyKDL next_joint_angles_dict = dict(zip(waypointEx._limb.joint_names(), output_angles_radians)) mAndm_logger.debug('next_joint_angles_dict:' + str(next_joint_angles_dict)) current_gripper_pos = kin.forward_position_kinematics(next_joint_angles_dict) mAndm_logger.debug('from inverse_gripper_pos:' + str(current_gripper_pos)) # traj accuracy problem waypointEx._limb.set_joint_positions(next_joint_angles_dict) #need to check proximity yourselves time.sleep(10.0) current_joint_angles = waypointEx._limb.joint_angles() mAndm_logger.debug('current_joint_angles:' + str(current_joint_angles)) current_gripper_pos = kin.forward_position_kinematics(current_joint_angles) mAndm_logger.debug('from inverse_gripper_pos:' + str(current_gripper_pos)) # constraints wasn't too right, as in it is over (KDL returns things that cannot be executed.) # # !!! replace with random pose? # pos = [0.582583, -0.180819, 0.216003] #[x, y, z] # #pos = [0.582583, -0.90819, 0.216003] #[x, y, z] # rot = [0.03085, 0.9945, 0.0561, 0.0829] # [i, j, k, w] # stepPose = [] # noOfSteps = 10 # inverseTrialsThres = 10 # # now separate pos into steps # for idx, coordPose in enumerate(pos): # stepPose.append(numpy.linspace(current_gripper_pos[idx], coordPose, noOfSteps)) # mAndm_logger.debug('stepPose:' + str(stepPose)) # # now append waypoints # #mAndm_logger.debug("waypointEx._limb.joint_names():" + str(waypointEx._limb.joint_names())) # #mAndm_logger.debug("waypointEx._limb.joint_angles():" + str(waypointEx._limb.joint_angles())) # current_joint_angles = [waypointEx._limb.joint_angle(jnt) for jnt in waypointEx._limb.joint_names()] # step_joint_angles = current_joint_angles # for x in range(noOfSteps): # # can also add seed # currentStep = [subArray[x] for subArray in stepPose] # mAndm_logger.log(4, 'currentStep:' + str(currentStep)) # mAndm_logger.log(6, 'step_joint_angles:' + str(step_joint_angles)) # #mAndm_logger.debug(kin.inverse_kinematics(pos, orientation=rot, seed=cur_cmd)) # return joint angles # next_joint_angles = inverse_kinematics_wrapper(currentStep, seed=step_joint_angles) # mAndm_logger.log(6, "next_joint_angles:" + str(next_joint_angles)) # return joint angles # # inverseTrailsCount = 0 # # while inverseTrailsCount < inverseTrialsThres: # # next_joint_angles = inverse_kinematics_wrapper(currentStep, seed=step_joint_angles) # # #next_joint_angles = inverse_kinematics_wrapper(currentStep) # # mAndm_logger.log(6, "next_joint_angles:" + str(next_joint_angles)) # return joint angles # # # try a couple times. # # if next_joint_angles is not None: # # inverseTrailsCount += inverseTrialsThres # # else: # # inverseTrailsCount += 1 # # add new joints if it exists # if next_joint_angles is not None: # waypointEx.addWaypoint(next_joint_angles) # step_joint_angles = next_joint_angles # waypointEx.playWaypoints(timeout=20.0) # mAndm_logger.debug('kin.forward_position_kinematics():' + str(kin.forward_position_kinematics())) # rospy.spin() # # radians # jointRanges = {'S0':[-1.7016 ,+1.7016],\ # 'S1':[-2.147 ,+1.047],\ # 'E0':[-3.0541 , +3.0541],\ # 'E1':[-0.05 ,+2.618 ],\ # 'W0':[-3.059 ,+3.059],\ # 'W1':[-1.5707 ,+2.094],\ # 'W2':[-3.059 ,+3.059]} # # what have done # # try different methods to move arm (trajectory executor with server/client) # # ended up with just move_to_joint positions (blocking) # # problems # # not accurate end pos: accuracy problem (set_positions - non-blocking) # # radians/degrees not sure (testing with forward inverse kinamatices that requires # # modification of the library) # # moving on # # check object/arm collisions # # RRT # # also find out how far each arm can reach ``` #### File: verified_torque_controller/scripts/verified_torque_control_motion.py ```python import rospy import actionlib import os.path import matlab.engine from dynamic_reconfigure.server import ( Server, ) from std_msgs.msg import ( Empty, ) import baxter_interface from baxter_examples.cfg import ( JointSpringsExampleConfig, ) from baxter_interface import CHECK_VERSION from baxter_pykdl import baxter_kinematics from geometry_msgs.msg import ( PoseStamped, Pose, Point, Quaternion, ) from verified_torque_controller.msg import verified_motionAction, verified_motionFeedback, verified_motionResult class verifiedMotionServer: def __init__(self, reconfig_server): self.server = actionlib.SimpleActionServer('execute_verified_motion', verified_motionAction, self.execute, False) self.feedback = None self.result = None self._dyn = reconfig_server # control parameters self._rate = 1000.0 # Hz self._missed_cmds = 20.0 # Missed cycles before triggering timeout # Include gripper(s) #self._left_gripper = baxter_interface.gripper.Gripper("left") # Limbs,limb parameters self.limb = {} self.limb["left_arm"] = baxter_interface.Limb('left') self.limb["right_arm"] = baxter_interface.Limb('right') self._left_arm = baxter_interface.Limb('left') self._kin = {} self._kin["left_arm"] = baxter_kinematics('left') self._kin["right_arm"] = baxter_kinematics('right') self._springs = dict() self._damping = dict() self._start_angles = dict() self._goal_angles = dict() self._spring_modifier = [] self._damping_modifier = [] self._sim_time = [] # Initialize Matlab # Start matlab print("\n Starting MATLAB...") self.eng = matlab.engine.start_matlab() # start matlab print("Matlab started.") print("Initializing robotic toolbox files ...") self.eng.baxter_matlab_robotics_toolbox_setup(nargout = 0) print("Initialized.") # Is this necessary? # verify robot is enabled print("Getting robot state... ") self._rs = baxter_interface.RobotEnable(CHECK_VERSION) self._init_state = self._rs.state().enabled print("Enabling robot... ") self._rs.enable() #self.move_to_neutral('left_arm') #self.move_to_neutral('right_arm') print('Starting server ...') self.server.start() def execute(self, goal): print('======= motion request recieved from client ...') self.feedback = verified_motionFeedback() self.result = verified_motionResult() #self.move_to_neutral(goal.arm) self._spring_modifier = goal.motion_parameters[0] self._damping_modifier = goal.motion_parameters[1] self._sim_time = goal.motion_parameters[2] #print(self._spring_modifier) #print(self._damping_modifier) # Generate goal angles (inverse kinematics) self._start_angles = self.limb[goal.arm].joint_angles() found_solution = self.generate_target_angles(goal.arm,goal.EFF_movement) if not found_solution: self.result.error_message = "No inverse kinematics solution found." self.server.set_aborted(result=self.result) return # Verify the motion # Compute flowstar file - verify the controller print("Computing Flow* file, verifying the motion ...") #self._update_parameters(goal.arm) #timeEnd = matlab.double([self._sim_time]) #springMod = matlab.double([self._spring_modifier]) #dampingMod = matlab.double([self._damping_modifier]) #maxMinValues = self.eng.generate_flowstar_file(self._start_angles,self._goal_angles,self._springs,self._damping,timeEnd,springMod, dampingMod) #print(maxMinValues) print("... verified.") # set control rate control_rate = rospy.Rate(self._rate) # for safety purposes, set the control rate command timeout. # if the specified number of command cycles are missed, the robot # will timeout and disable self.limb[goal.arm].set_command_timeout((1.0 / self._rate) * self._missed_cmds) #print('you made it this far?') ctrlTime = self._sim_time # in seconds ctrlTrigger = True #start = rospy.Time.now() startTime = rospy.get_time() print("Implementing torque control ...") dataSavePath = '/home/scotto/Documents/MATLAB/flowstar_plots' fileName = 'python_EFF_motion_data' timeVec = [] effX = [] effY = [] effZ = [] while ctrlTrigger: #nowTime = rospy.Time.now() nowTime = rospy.get_time() #timeDiff = nowTime.secs - startTime.secs timeDiff = nowTime - startTime # Record time/position data timeVec.append(timeDiff) currentEFFposition = self.limb[goal.arm].endpoint_pose() effX.append(currentEFFposition['position'].x) effY.append(currentEFFposition['position'].y) effZ.append(currentEFFposition['position'].z) # End recording stuffs if timeDiff >= ctrlTime: ctrlTrigger = False self._update_forces(goal.arm) control_rate.sleep() print("Exiting torque control ...") self.limb[goal.arm].exit_control_mode() print("Torqe control complete.") self.result.motion_complete = True self.server.set_succeeded(result=self.result) # Record position and time data # Concatenate data concatenatedData = [] for i in range(0, len(timeVec)): concatenatedData.append(str(timeVec[i]) + ' ' + str(effX[i]) + ' ' + str(effY[i]) + ' ' + str(effZ[i])) completeName = os.path.join(dataSavePath,fileName + '.txt') file1 = open(completeName, "w+") for item in concatenatedData: file1.write("%s\n" % item) file1.close() def generate_target_angles(self,arm,targetXYZ): print("Generating target joint angles ...") # Matlab - inverse kinematics # Find EFF Position Eff_Start_baxter_7 = self.limb[arm].endpoint_pose() # EFF Position here is different than that used by the DH parameters #print('Baxter start EFF') #print(Eff_Start_baxter_7) #EFF_left = self._left_arm.endpoint_pose() #print('Alternate EFF:') #print(EFF_left) #print('Arm start angles:') #print(self.limb[arm].joint_angles()) move_x = targetXYZ[0] move_y = targetXYZ[1] move_z = targetXYZ[2] pykdl_end_point = [Eff_Start_baxter_7['position'].x + move_x, Eff_Start_baxter_7['position'].y + move_y, Eff_Start_baxter_7['position'].z + move_z] pykdl_end_orientation = [Eff_Start_baxter_7['orientation'].x, Eff_Start_baxter_7['orientation'].y, Eff_Start_baxter_7['orientation'].z, Eff_Start_baxter_7['orientation'].w] #print('pykdl end point') #print(pykdl_end_point) #print('pykdl end orientation') #print(pykdl_end_orientation) #print("KDL forward kinematics test:") #print(self._kin[arm].forward_position_kinematics()) pykdl_end_angles = self._kin[arm].inverse_kinematics(pykdl_end_point,pykdl_end_orientation) #print('PYKDL angles:') #print(pykdl_end_angles) if len(pykdl_end_angles) == 0: # Error - no solution found ikin_solution_found = False return ikin_solution_found else: ikin_solution_found = True angles = self.limb[arm].joint_angles() if arm == 'left_arm': angles['left_s0'] = pykdl_end_angles[0] angles['left_s1'] = pykdl_end_angles[1] angles['left_e0'] = pykdl_end_angles[2] angles['left_e1'] = pykdl_end_angles[3] angles['left_w0'] = pykdl_end_angles[4] angles['left_w1'] = pykdl_end_angles[5] angles['left_w2'] = pykdl_end_angles[6] elif arm == 'right_arm': angles['right_s0'] = pykdl_end_angles[0] angles['right_s1'] = pykdl_end_angles[1] angles['right_e0'] = pykdl_end_angles[2] angles['right_e1'] = pykdl_end_angles[3] angles['right_w0'] = pykdl_end_angles[4] angles['right_w1'] = pykdl_end_angles[5] angles['right_w2'] = pykdl_end_angles[6] self._goal_angles = angles print("Goal angles determined.") #print('Final angle positions:') #print(angles) return ikin_solution_found def _update_forces(self,arm): """ Calculates the current angular difference between the start position and the current joint positions applying the joint torque spring forces as defined on the dynamic reconfigure server. """ # get latest spring constants self._update_parameters(arm) # disable cuff interaction #self._pub_cuff_disable.publish() # create our command dict cmd = dict() # record current angles/velocities cur_pos = self.limb[arm].joint_angles() cur_vel = self.limb[arm].joint_velocities() # calculate current forces for joint in self._start_angles.keys(): # spring portion #cmd[joint] = self._springs[joint] * (self._start_angles[joint] - cur_pos[joint]) cmd[joint] = self._springs[joint] * self._spring_modifier * (self._goal_angles[joint] - cur_pos[joint]) # damping portion cmd[joint] -= self._damping[joint] * self._damping_modifier * cur_vel[joint] # command new joint torques self.limb[arm].set_joint_torques(cmd) def _update_parameters(self,arm): for joint in self.limb[arm].joint_names(): self._springs[joint] = self._dyn.config[joint[-2:] + '_spring_stiffness'] self._damping[joint] = self._dyn.config[joint[-2:] + '_damping_coefficient'] def move_to_neutral(self,arm): """ Moves the limb to neutral location. """ print("Moving to the neutral arm position") self.limb[arm].move_to_neutral() def clean_shutdown(self): """ Switches out of joint torque mode to exit cleanly """ print("\nExiting process...") self.limb["left_arm"].exit_control_mode() self.limb["right_arm"].exit_control_mode() #if not self._init_state and self._rs.state().enabled: # print("Disabling robot...") # self._rs.disable() def main(): print("Initializing node... ") rospy.init_node("verified_arm_motion") dynamic_cfg_srv = Server(JointSpringsExampleConfig, lambda config, level: config) server = verifiedMotionServer(dynamic_cfg_srv) rospy.on_shutdown(server.clean_shutdown) rospy.spin() if __name__ == "__main__": main() ```
{ "source": "jimjkelly/celery-simple-elasticsearch", "score": 2 }
#### File: celery-simple-elasticsearch/celery_simple_elasticsearch/tasks.py ```python from django.core.exceptions import ImproperlyConfigured from django.core.management import call_command from django.db.models.loading import get_model from django.utils.importlib import import_module from celery.utils.log import get_task_logger from .conf import settings if settings.CELERY_SIMPLE_ELASTICSEARCH_TRANSACTION_SAFE \ and not getattr(settings, 'CELERY_ALWAYS_EAGER', False): from djcelery_transactions import PostTransactionTask as Task else: from celery.task import Task # noqa logger = get_task_logger(__name__) class CelerySimpleElasticSearchSignalHandler(Task): using = settings.CELERY_SIMPLE_ELASTICSEARCH_DEFAULT_ALIAS max_retries = settings.CELERY_SIMPLE_ELASTICSEARCH_MAX_RETRIES default_retry_delay = settings.CELERY_SIMPLE_ELASTICSEARCH_RETRY_DELAY def split_identifier(self, identifier, **kwargs): """ Break down the identifier representing the instance. Converts 'notes.note.23' into ('notes.note', 23). """ bits = identifier.split('.') if len(bits) < 2: logger.error("Unable to parse object " "identifer '%s'. Moving on..." % identifier) return (None, None) pk = bits[-1] # In case Django ever handles full paths... object_path = '.'.join(bits[:-1]) return (object_path, pk) def get_method(self, method_identifier): """ Given a method identifier, return the method """ class_string, method_string = method_identifier.rsplit('.', 1) try: class_obj = self.get_model_class(class_string) except ImproperlyConfigured: # We assume that just means this isn't a Django model - try # loading it as a module: class_obj = import_module(class_string) method = getattr(class_obj, method_string, None) if not method: msg = 'Could not get method from "{}"'.format(method_identifier) logger.error(msg) raise ValueError(msg) return method def get_model_class(self, object_path, **kwargs): """ Fetch the model's class in a standarized way. """ bits = object_path.split('.') app_name = '.'.join(bits[:-1]) classname = bits[-1] model_class = get_model(app_name, classname) if model_class is None: raise ImproperlyConfigured("Could not load model '%s'." % object_path) return model_class def get_instance(self, model_class, pk, **kwargs): """ Fetch the instance in a standarized way. """ instance = None try: instance = model_class._default_manager.get(pk=pk) except model_class.DoesNotExist: logger.error("Couldn't load %s.%s.%s. Somehow it went missing?" % (model_class._meta.app_label.lower(), model_class._meta.object_name.lower(), pk)) except model_class.MultipleObjectsReturned: logger.error("More than one object with pk %s. Oops?" % pk) return instance def run(self, action, identifier, instantiator=None, **kwargs): """ Trigger the actual index handler depending on the given action. """ # First get the object path and pk (e.g. ('notes.note', 23)) object_path, pk = self.split_identifier(identifier, **kwargs) if object_path is None or pk is None: msg = "Couldn't handle object with identifier %s" % identifier logger.error(msg) raise ValueError(msg) # Then get the model class for the object path model_class = self.get_model_class(object_path, **kwargs) if instantiator: instantiator_method = self.get_method(instantiator) else: instantiator_method = self.get_instance instance = instantiator_method(model_class, pk) if hasattr(model_class, 'get_index_name'): current_index_name = model_class.get_index_name() else: current_index_name = settings.ELASTICSEARCH_INDEX action_method = self.get_method(action) try: action_method(instance) except Exception as exc: logger.exception(exc) self.retry(exc=exc) else: logger.debug('Successfully executed {} on {} for index {}'.format( action, identifier, current_index_name, )) class CelerySimpleElasticSearchUpdateIndex(Task): """ A celery task class to be used to call the update_index management command from Celery. """ def run(self, apps=None, **kwargs): defaults = { 'batchsize': settings.CELERY_SIMPLE_ELASTICSEARCH_COMMAND_BATCH_SIZE, 'age': settings.CELERY_SIMPLE_ELASTICSEARCH_COMMAND_AGE, 'remove': settings.CELERY_SIMPLE_ELASTICSEARCH_COMMAND_REMOVE, 'using': [settings.CELERY_SIMPLE_ELASTICSEARCH_DEFAULT_ALIAS], 'workers': settings.CELERY_SIMPLE_ELASTICSEARCH_COMMAND_WORKERS, 'verbosity': settings.CELERY_SIMPLE_ELASTICSEARCH_COMMAND_VERBOSITY, } defaults.update(kwargs) if apps is None: apps = settings.CELERY_SIMPLE_ELASTICSEARCH_COMMAND_APPS # Run the update_index management command logger.info("Starting update index") call_command('--rebuild', *apps, **defaults) logger.info("Finishing update index") ``` #### File: celery-simple-elasticsearch/celery_simple_elasticsearch/utils.py ```python from django.core.exceptions import ImproperlyConfigured from django.utils.importlib import import_module from django.db import connection, transaction from .conf import settings def get_update_task(task_path=None): default_task = settings.CELERY_SIMPLE_ELASTICSEARCH_DEFAULT_TASK import_path = task_path or default_task module, attr = import_path.rsplit('.', 1) try: mod = import_module(module) except ImportError as e: raise ImproperlyConfigured('Error importing module %s: "%s"' % (module, e)) try: Task = getattr(mod, attr) except AttributeError: raise ImproperlyConfigured('Module "%s" does not define a "%s" ' 'class.' % (module, attr)) return Task() def enqueue_task(action, instance, instantiator=None): """ Common utility for enqueing a task for the given action and model instance. Optionally provide an instantiator that handles instance instantiation. """ def submit_task(): if transaction.get_connection().in_atomic_block: with transaction.atomic(): task.delay(action, identifier, instantiator) else: task.delay(action, identifier, instantiator) action = get_method_identifier(action) identifier = get_object_identifier(instance) if instantiator: instantiator = get_method_identifier(instantiator) kwargs = {} if settings.CELERY_SIMPLE_ELASTICSEARCH_QUEUE: kwargs['queue'] = settings.CELERY_SIMPLE_ELASTICSEARCH_QUEUE if settings.CELERY_SIMPLE_ELASTICSEARCH_COUNTDOWN: kwargs['countdown'] = settings.CELERY_SIMPLE_ELASTICSEARCH_COUNTDOWN task = get_update_task() if hasattr(connection, 'on_commit'): connection.on_commit( lambda: submit_task() ) else: submit_task() def get_object_identifier(obj): """ This function will provide a dot notated reference to the item to identify. """ return u'{}.{}.{}'.format( obj._meta.app_label, obj.__class__.__name__, obj.id ) def get_method_identifier(identify): """ This function provides a dot notated reference to a bound function """ return u'{}.{}.{}'.format( identify.im_self._meta.app_label, identify.im_self.__name__, identify.im_func.__name__ ) ```
{ "source": "jimj/sopelmodules", "score": 2 }
#### File: jimj/sopelmodules/mongosupport.py ```python from pymongo import MongoClient import sopel.module def setup(bot): mongoclient = MongoClient() bot.mongodb = mongoclient.ircbot @sopel.module.commands('findone') @sopel.module.require_admin def findone(bot, trigger): collection = bot.mongodb[trigger.group(2)] doc = collection.find_one() bot.reply('found %s' % doc) ``` #### File: jimj/sopelmodules/quote.py ```python import random import re from sopel.module import commands, example #Matches: <@+nickNames123> _NICKNAME = '(<[^\s]+>)' @commands('quote') def quote(bot, trigger): quotes = bot.mongodb.quotes input = trigger.group(2) if trigger.group(2) else '' quotable = re.findall(_NICKNAME, input) if quotable: who, quote = parse_quotable_params(input) store_quote(quotes, who, quote) bot.reply('quote stored.') else: nick, search = parse_search_params(input) bot.say(get_random_quote(quotes, nick, search)) def parse_search_params(params): param_re = '(?P<nick>\w+)?\s?(?P<search>\/.*\/)?$' params = re.match(param_re, params) if params: search = params.group('search') if search: search = search.strip().replace('/','') return (params.group('nick'), search) else: return (None, None) def parse_quotable_params(params): param_re = '(?P<realname>\w+)?\s*[\d:]{0,5}\s*(?P<quote><.*)' params = re.match(param_re, params) quoted = [params.group('realname')] if params.group('realname') else [] quote = params.group('quote') nicks = re.findall(_NICKNAME, quote) if nicks: nicks = [re.subn(r'[@<>+]', '', n)[0] for n in nicks] quoted = [nick.lower() for nick in set(quoted + nicks)] return (quoted, quote) def get_random_quote(quotes, nick, search): query = {} if nick: query['nick'] = nick.lower() if search: query['quote'] = re.compile(search, re.IGNORECASE) ids = quotes.find(query, []) num_quotes = ids.count() if num_quotes == 0: return "No quotes found." quote = random.randint(0, num_quotes - 1) quote = quotes.find({'_id': ids[quote]['_id']}, ['quote']) return quote[0]['quote'] def store_quote(quotes, quoted, quote): quote_doc = { 'nick': quoted, 'network': 'slashnet', 'quote': quote } quotes.insert(quote_doc) ```
{ "source": "jimjudd/imitationbot", "score": 2 }
#### File: jimjudd/imitationbot/log_messages.py ```python import requests import logging import sys from rate_check import rate_check import redis from urlparse import urlparse import os import time import csv from pymongo import MongoClient import datetime from pprint import pprint import json #Setup Logger logger = logging.getLogger(__name__) #Set Environment Variables ROOM_ID = os.getenv('ROOM_ID') MONGODB_URI = os.getenv('MONGODB_URI') USER_KEY = os.getenv('USER_KEY') REDIS_URL = os.getenv('REDIS_URL') base_url = "https://api.hipchat.com/v2/" message_log_file = 'message_log.csv' #get messages and add to csv def get_messages(): uri = urlparse(REDIS_URL) r = redis.StrictRedis(host = uri.hostname, port = uri.port, password = <PASSWORD>) last_run = r.get('last_run') if last_run: pass else: last_run = 1 now = int(time.time()) f = open(message_log_file, 'wb') writer = csv.writer(f) writer.writerow( ('user_id', 'user_name', 'message')) f.close() url = base_url + 'room/' + str(ROOM_ID) + '/history' payload = { 'auth_token': USER_KEY, 'max-results': 999, 'reverse': 'true', 'date': now, 'include_deleted': 'false', 'end-date': last_run } get_room_history = requests.get(url, params = payload) rate_check(get_room_history.headers) write_to_log(get_room_history.text) response = json.loads(get_room_history.text) while 'next' in response['links']: url = response['links']['next'] payload = {'auth_token': USER_KEY} get_room_history = requests.get(url, params = payload) rate_check(get_room_history.headers) response = get_room_history.json() write_to_log(get_room_history.text) logger.debug('iteration ' + str(response['startIndex'])) time.sleep(.1) r.set('last_run', now) def write_to_log(response): message_log = open(message_log_file, 'ab') log = json.loads(response) for item in log['items']: if 'id' in item['from']: user_id = item['from']['id'] name = item['from']['name'] name = name.encode('utf-8').strip() message = item['message'] if message: message = message.encode('utf-8').strip() else: message = '' messages = open(message_log_file, 'ab') unicodewriter = csv.writer(messages) unicodewriter.writerow((user_id, name, message)) messages.close() def update_trainer(): client = MongoClient(MONGODB_URI) db = client.get_default_database() collection = client.messages posts = db.posts user_ids = [] #https://api.mongodb.com/python/current/tutorial.html with open(message_log_file, 'rb') as message_file: messagereader = csv.DictReader(message_file) for row in messagereader: user_id = row['user_id'] if user_id not in user_ids: user_ids.append(user_id) for user_id in iter(user_ids): logger.debug('starting user_id: ' + str(user_id)) messages = '' entry = posts.find_one({"_id": user_id}) if entry: messages = entry['text'] messages = messages.encode('utf-8').strip() message_file.seek(0) for row in messagereader: if row['user_id'] == str(user_id): messages += '\n' messages += row['message'] post = { 'author': 'imitationBot', 'text': messages, 'tags': ['messages', str(user_id)], 'date': datetime.datetime.utcnow(), '_id': user_id } post_id = posts.update_one({'_id': user_id}, {'$set':post}, upsert = True) logger.debug('inserted mongodb document ' + str(user_id)) logger.info('trainers updated') os.remove(message_log_file) if __name__ == '__main__': get_messages() update_trainer() ``` #### File: jimjudd/imitationbot/markov_gen.py ```python import markovify from pymongo import MongoClient import logging import os import re import nltk import requests logger = logging.getLogger(__name__) MONGODB_URI = os.getenv('MONGODB_URI') USER_KEY = os.getenv('USER_KEY') class POSifiedText(markovify.Text): def word_split(self, sentence): words = re.split(self.word_split_pattern, sentence) words = [ "::".join(tag) for tag in nltk.pos_tag(words) ] return words def word_join(self, words): sentence = " ".join(word.split("::")[0] for word in words) return sentence def gen_markov(user_id): client = MongoClient(MONGODB_URI) db = client.get_default_database() posts = db.posts entry = posts.find_one({"_id": str(user_id)}) if entry: corpus = entry['text'] text_model = markovify.Text(corpus) return text_model.make_sentence() else: logger.info('No corpus for user' + str(user_id)) ```
{ "source": "jimjyang/concepttordf", "score": 3 }
#### File: concepttordf/concepttordf/betydningsbeskrivelse.py ```python from abc import ABC from enum import Enum class RelationToSource(Enum): sitatFraKilde = "quoteFromSource" basertPåKilde = "basedOnSource" egendefinert = "noSource" class Betydningsbeskrivelse(ABC): def __init__(self, b: dict = None): if b is not None: if 'text' in b: self.text = b['text'] if 'remark' in b: self.remark = b['remark'] if 'scope' in b: self.scope = b['scope'] if 'relationtosource' in b: self.relationtosource = b['relationtosource'] if 'source' in b: self.source = b['source'] if 'modified' in b: self.modified = b['modified'] @property def type(self): return self._type @type.setter def type(self, type): self._type = type @property def text(self) -> dict: return self._text @text.setter def text(self, text: dict): self._text = text @property def remark(self) -> dict: return self._remark @remark.setter def remark(self, remark: dict): self._remark = remark @property def scope(self) -> dict: return self._scope @scope.setter def scope(self, scope: dict): self._scope = scope @property def relationtosource(self) -> str: return self._relationtosource @relationtosource.setter def relationtosource(self, relationtosource: str): self._relationtosource = relationtosource @property def source(self) -> dict: return self._source @source.setter def source(self, source: dict): self._source = source @property def modified(self) -> dict: return self._modified @modified.setter def modified(self, modified: dict): self._modified = modified ``` #### File: concepttordf/concepttordf/contact.py ```python from rdflib import Graph, Literal, BNode, Namespace, RDF, URIRef DCT = Namespace('http://purl.org/dc/terms/') SKOSXL = Namespace('http://www.w3.org/2008/05/skos-xl#') VCARD = Namespace('http://www.w3.org/2006/vcard/ns#') SKOS = Namespace('http://www.w3.org/2004/02/skos/core#') SKOSNO = Namespace('http://difi.no/skosno#') class Contact: """A class representing a contact """ def __init__(self, contact: dict = None): self._g = Graph() if contact is not None: if 'name' in contact: self._name = contact['name'] if 'email' in contact: self._email = contact['email'] if 'url' in contact: self._url = contact['url'] if 'telephone' in contact: self._telephone = contact['telephone'] @property def name(self) -> dict: return self._name @name.setter def name(self, name: dict): self._name = name @property def email(self) -> str: return self._email @email.setter def email(self, email: str): self._email = email @property def telephone(self) -> str: return self._telephone @telephone.setter def telephone(self, telephone: str): self._telephone = telephone @property def url(self) -> str: return self._url @url.setter def url(self, url: str): self._url = url def to_graph(self) -> Graph: self._add_contact_to_graph() return self._g def to_rdf(self, format='turtle') -> str: """Maps the contact to rdf and returns a serialization as a string according to format""" return self.to_graph().serialize(format=format, encoding='utf-8') # ----- def _add_contact_to_graph(self): """Adds the concept to the Graph _g""" self._g.bind('vcard', VCARD) if hasattr(self, 'identifier'): _self = URIRef(self.identifier) else: _self = BNode() self._g.add((_self, RDF.type, VCARD.Organization)) # name if hasattr(self, 'name'): for key in self.name: self._g.add((_self, VCARD.hasOrganizationName, Literal(self.name[key], lang=key))) # email if hasattr(self, 'email'): self._g.add((_self, VCARD.hasEmail, URIRef('mailto:' + self.email))) # telephone if hasattr(self, 'telephone'): self._g.add((_self, VCARD.hasTelephone, URIRef('tel:' + self.telephone))) # url if hasattr(self, 'url'): self._g.add((_self, VCARD.hasURL, URIRef(self.url))) ```
{ "source": "jimkiiru/james-kiiru-bc17-week1", "score": 3 }
#### File: james-kiiru-bc17-week1/day2/OOP.py ```python class Account(object): def __init__(self, holder, number, balance,credit_line=1500): self.Holder = holder self.Number = number self.Balance = balance self.CreditLine = credit_line def deposit(self, amount): self.Balance = amount def withdraw(self, amount): if(self.Balance - amount < -self.CreditLine): # coverage insufficient return False else: self.Balance -= amount return True def balance(self): return self.Balance def transfer(self, target, amount): if(self.Balance - amount < -self.CreditLine): # coverage insufficient return False else: self.Balance -= amount target.Balance += amount return True ``` #### File: james-kiiru-bc17-week1/day3/HttpAndWeb.py ```python import requests def Get(url, PostId): try: isinstance(int(PostId), int) if int(PostId) <= 100 and int(PostId) > 0: r = requests.get(url + PostId) return r else: print("Number must be between 1 and 100") except ValueError as err: raise(err) return "No Results" def Post(PostUrl,title, body, userId=11): Post= { 'title': title, 'body': body, 'userId': userId } request = requests.post(PostUrl, data=Postdata) return request def main(): print("Python HTTP API command line app %s\n" %("-"*31)) print("Simple Python HTTP API command line app") url = "https://jsonplaceholder.typicode.com/posts/" PostId = input("Enter a number between 1 and 100: ") get = Get(url,PostId) print("GET Response data\n\t%s\n%s\n\tStatus code\n\t%s\n%s\n\tHeaders\n\t%s\n%s" % ("-"*17,get.text, "-"*11, get.status_code,"-"*7, get.headers)) title = input("Enter a title for your post: ") body = input("Enter a body for your post: ") post = Post(url,title,body) print("\tPOST Response data\n\t%s\n%s\n\tStatus code\n\t%s\n%s\n\tHeaders\n\t%s\n%s" % ("-"*17,post.text, "-"*11, post.status_code,"-"*7, post.headers)) if __name__ == '__main__': main() ``` #### File: james-kiiru-bc17-week1/day4/BinarySearch.py ```python class BinarySearch(list): def __init__(self, a, b): self.a = a self.b = b def search(self, itemToSearch): i = 0 lowerItemIndex = 0 higherItemIndex = self.a - 1 midpoint = lowerItemIndex + (higherItemIndex - lowerItemIndex)//2 if itemToSearch == midpoint: i = i + 1 return {i: midpoint} elif itemToSearch > midpoint: # item is in the upper half of the list lowerItemIndex = midpoint + 1 midpoint = lowerItemIndex + (higherItemIndex - lowerItemIndex)//2 self.search(itemToSearch) elif itemToSearch < midpoint: # item is in the lower half of the listt higherItemIndex = midpoint - 1 midpoint = lowerItemIndex + (higherItemIndex - lowerItemIndex)//2 self.search(itemToSearch) ```
{ "source": "JimKing100/Decision_Tree", "score": 4 }
#### File: Decision_Tree/final/decision_tree1.py ```python import numpy as np # A decision tree node class Node: def __init__(self, gini, num_samples, num_samples_per_class, pred_class): self.gini = gini self.num_samples = num_samples self.num_samples_per_class = num_samples_per_class self.pred_class = pred_class self.feature_index = 0 self.threshold = 0 self.left = None self.right = None # Print a decision tree def print_tree(self, feature_names, class_names, show_details): lines, _, _, _ = self._print_aux( feature_names, class_names, show_details, root=True ) for line in lines: print(line) # See https://stackoverflow.com/a/54074933/1143396 for similar code. def _print_aux(self, feature_names, class_names, show_details, root=False): is_leaf = not self.right if is_leaf: lines = [class_names[self.pred_class]] else: lines = [ "{} < {:.2f}".format(feature_names[self.feature_index], self.threshold) ] if show_details: lines += [ "gini = {:.2f}".format(self.gini), "samples = {}".format(self.num_samples), str(self.num_samples_per_class), ] width = max(len(line) for line in lines) height = len(lines) if is_leaf: lines = ["║ {:^{width}} ║".format(line, width=width) for line in lines] lines.insert(0, "╔" + "═" * (width + 2) + "╗") lines.append("╚" + "═" * (width + 2) + "╝") else: lines = ["│ {:^{width}} │".format(line, width=width) for line in lines] lines.insert(0, "┌" + "─" * (width + 2) + "┐") lines.append("└" + "─" * (width + 2) + "┘") lines[-2] = "┤" + lines[-2][1:-1] + "├" width += 4 # for padding if is_leaf: middle = width // 2 lines[0] = lines[0][:middle] + "╧" + lines[0][middle + 1:] return lines, width, height, middle # If not a leaf, must have two children. left, n, p, x = self.left._print_aux(feature_names, class_names, show_details) right, m, q, y = self.right._print_aux(feature_names, class_names, show_details) top_lines = [n * " " + line + m * " " for line in lines[:-2]] # fmt: off middle_line = x * " " + "┌" + (n - x - 1) * "─" + lines[-2] + y * "─" + "┐" + (m - y - 1) * " " bottom_line = x * " " + "│" + (n - x - 1) * " " + lines[-1] + y * " " + "│" + (m - y - 1) * " " # fmt: on if p < q: left += [n * " "] * (q - p) elif q < p: right += [m * " "] * (p - q) zipped_lines = zip(left, right) lines = ( top_lines + [middle_line, bottom_line] + [a + width * " " + b for a, b in zipped_lines] ) middle = n + width // 2 if not root: lines[0] = lines[0][:middle] + "┴" + lines[0][middle + 1:] return lines, n + m + width, max(p, q) + 2 + len(top_lines), middle class DTreeClassifier: def __init__(self, max_depth=None): self.max_depth = max_depth # Fit the model using data in a dataframe def fit(self, X, y): self.n_classes_ = len(set(y)) self.n_features_ = X.shape[1] X = X.to_numpy() self.tree_ = self._build_tree(X, y) return self.tree_ # Make a prediction def predict(self, X): X = X.to_numpy() return [self._predict(inputs) for inputs in X] # Calculate the accuracy def accuracy(self, actual, predicted): act = actual.to_numpy() correct = 0 for i in range(len(act)): if act[i] == predicted[i]: correct += 1 return correct / float(len(act)) * 100 # Print the decision tree def print_tree(self, feature_names, class_names, show_details=True): self.tree_.print_tree(feature_names, class_names, show_details) # Compute the gini def _gini(self, y): size = y.size return 1.0 - sum((np.sum(y == c) / size) ** 2 for c in range(self.n_classes_)) # Find the best split def _best_split(self, X, y): size = y.size if size <= 1: return None, None # Count of each class in the current node num_parent = [np.sum(y == c) for c in range(self.n_classes_)] # Gini of current node. best_gini = 1.0 - sum((n / size) ** 2 for n in num_parent) best_idx, best_thr = None, None # Loop through all features. for idx in range(self.n_features_): # Sort data along selected feature. thresholds, classes = zip(*sorted(zip(X[:, idx], y))) num_left = [0] * self.n_classes_ num_right = num_parent.copy() for i in range(1, size): c = int(classes[i - 1]) num_left[c] += 1 num_right[c] -= 1 gini_left = 1.0 - sum( (num_left[x] / i) ** 2 for x in range(self.n_classes_) ) gini_right = 1.0 - sum( (num_right[x] / (size - i)) ** 2 for x in range(self.n_classes_) ) # The gini of a split is the weighted average of the gini # impurity of the children. gini = (i * gini_left + (size - i) * gini_right) / size # Don't split identical values if thresholds[i] == thresholds[i - 1]: continue if gini < best_gini: best_gini = gini best_idx = idx best_thr = (thresholds[i] + thresholds[i - 1]) / 2 return best_idx, best_thr # Build the decision tree recursively finding the best split def _build_tree(self, X, y, depth=0): # Population for each class in current node. # The predicted class is the one with the largest population num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)] predicted_class = np.argmax(num_samples_per_class) node = Node(gini=self._gini(y), num_samples=y.size, num_samples_per_class=num_samples_per_class, pred_class=predicted_class ) # Split recursively until maximum depth is reached. if depth < self.max_depth: idx, thr = self._best_split(X, y) if idx is not None: indices_left = X[:, idx] < thr X_left, y_left = X[indices_left], y[indices_left] X_right, y_right = X[~indices_left], y[~indices_left] node.feature_index = idx node.threshold = thr node.left = self._build_tree(X_left, y_left, depth + 1) node.right = self._build_tree(X_right, y_right, depth + 1) return node # Predict class for a single sample def _predict(self, inputs): node = self.tree_ while node.left: if inputs[node.feature_index] < node.threshold: node = node.left else: node = node.right return node.pred_class ``` #### File: Decision_Tree/final/decision_tree.py ```python import numpy as np import sys # A decision tree node class Node: class_counter = 0 def __init__(self, gini, num_samples, num_samples_per_class, pred_class): self.gini = gini self.num_samples = num_samples self.num_samples_per_class = num_samples_per_class self.pred_class = pred_class self.feature_index = 0 self.threshold = 0 self.index = Node.class_counter self.left = None self.right = None Node.class_counter += 1 class DTreeClassifier: def __init__(self, max_depth=None): self.max_depth = max_depth # Fit the model using data in a dataframe def fit(self, X, y): self.n_classes_ = len(set(y)) self.n_features_ = X.shape[1] X = X.to_numpy() self.tree_ = self._build_tree(X, y) return self.tree_ # Make a prediction def predict(self, X): X = X.to_numpy() return [self._predict(inputs) for inputs in X] # Calculate the accuracy def accuracy(self, actual, predicted): act = actual.to_numpy() correct = 0 for i in range(len(act)): if act[i] == predicted[i]: correct += 1 return correct / float(len(act)) * 100 # Print a decision tree def print_tree(self, node, feature_names, depth=0): self.feature_names = feature_names indent = ' ' * (depth * 5) if node is not None: is_leaf = not node.right if is_leaf: print(indent, node.pred_class) else: print(indent, feature_names[node.feature_index], '<', node.threshold) print(indent, 'gini=', node.gini) print(indent, 'samples=', node.num_samples) print(indent, 'samples/class', node.num_samples_per_class) print(' ') self.print_tree(node.left, feature_names, depth + 1) self.print_tree(node.right, feature_names, depth + 1) # Print a dot decision tree def print_tree_dot(self, node, feature_names, class_names): dot_file = open('data/output.dot', 'w') self._print_tree(node, feature_names, class_names, dot_file) print('}', file=dot_file) dot_file.close() # Traverse the tree breadth-first, printing dot code for each node def _print_tree(self, node, feature_names, class_names, dot_file, depth=0): output_str = '' if depth == 0: print('digraph Tree {', file=dot_file) print('node [shape=box] ;', file=dot_file) self.feature_names = feature_names if node is not None: is_leaf = not node.right if is_leaf: output_str = str(node.index) + ' ' + \ '[label=\"' + \ str(class_names[node.pred_class]) + '\\' else: output_str = str(node.index) + ' ' + \ '[label=\"' + \ feature_names[node.feature_index] + ' < ' + str(node.threshold) + '\\' output_str += 'ngini = ' + str(node.gini) + '\\' + \ 'nsamples = ' + str(node.num_samples) + '\\' + \ 'nvalue = ' + str(node.num_samples_per_class) + \ '\"] ;' print(output_str, file=dot_file) if is_leaf is False: print(str(node.index) + ' -> ' + str(node.left.index), file=dot_file) self._print_tree(node.left, feature_names, class_names, dot_file, depth + 1) if is_leaf is False: print(str(node.index) + ' -> ' + str(node.right.index), file=dot_file) self._print_tree(node.right, feature_names, class_names, dot_file, depth + 1) # Compute the gini def _gini(self, y): size = y.size return 1.0 - sum((np.sum(y == c) / size) ** 2 for c in range(self.n_classes_)) # Find the best split def _best_split(self, X, y): size = y.size if size <= 1: return None, None # Count of each class in the current node num_parent = [np.sum(y == c) for c in range(self.n_classes_)] # Gini of current node. best_gini = 1.0 - sum((n / size) ** 2 for n in num_parent) best_idx, best_thr = None, None # Loop through all features. for idx in range(self.n_features_): # Sort data along selected feature. thresholds, classes = zip(*sorted(zip(X[:, idx], y))) num_left = [0] * self.n_classes_ num_right = num_parent.copy() for i in range(1, size): c = int(classes[i - 1]) num_left[c] += 1 num_right[c] -= 1 gini_left = 1.0 - sum( (num_left[x] / i) ** 2 for x in range(self.n_classes_) ) gini_right = 1.0 - sum( (num_right[x] / (size - i)) ** 2 for x in range(self.n_classes_) ) # The gini of a split is the weighted average of the gini # impurity of the children. gini = (i * gini_left + (size - i) * gini_right) / size # Don't split identical values if thresholds[i] == thresholds[i - 1]: continue if gini < best_gini: best_gini = gini best_idx = idx best_thr = (thresholds[i] + thresholds[i - 1]) / 2 return best_idx, best_thr # Build the decision tree recursively finding the best split def _build_tree(self, X, y, depth=0): # Population for each class in current node. # The predicted class is the one with the largest population num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)] predicted_class = np.argmax(num_samples_per_class) node = Node(gini=self._gini(y), num_samples=y.size, num_samples_per_class=num_samples_per_class, pred_class=predicted_class ) # Split recursively until maximum depth is reached. if depth < self.max_depth: idx, thr = self._best_split(X, y) if idx is not None: indices_left = X[:, idx] < thr X_left, y_left = X[indices_left], y[indices_left] X_right, y_right = X[~indices_left], y[~indices_left] node.feature_index = idx node.threshold = thr node.left = self._build_tree(X_left, y_left, depth + 1) node.right = self._build_tree(X_right, y_right, depth + 1) return node # Predict class for a single sample def _predict(self, inputs): node = self.tree_ while node.left: if inputs[node.feature_index] < node.threshold: node = node.left else: node = node.right return node.pred_class ``` #### File: Decision_Tree/src/tester2.py ```python import pandas as pd from sklearn.preprocessing import LabelEncoder class DTree: def __init__(self, max_depth, min_size): self.max_depth = max_depth self.min_size = min_size self.root = None # Calculate the Gini index for a split dataset def __gini_index(self, groups, classes): # count all samples at split point n_instances = float(sum([len(group) for group in groups])) # Sum weighted Gini index for each group gini = 0.0 for group in groups: size = float(len(group)) # Avoid divide by zero if size == 0: continue score = 0.0 # Score the group based on the score for each class for class_val in classes: p = [row[-1] for row in group].count(class_val) / size score += (p * p) # Weight the group score by its relative size gini += (1.0 - score) * (size / n_instances) return gini # Split a dataset based on an attribute and an attribute value def __test_split(self, index, value, data): left = [] right = [] for row in data: if row[index] < value: left.append(row) else: right.append(row) return left, right # Create a terminal node value def __to_terminal(self, group): outcomes = [row[-1] for row in group] return max(set(outcomes), key=outcomes.count) # Select the best split point for a dataset def __get_split(self, data): class_values = list(set(row[-1] for row in data)) b_index = 999 b_value = 999 b_score = 999 b_groups = None for index in range(len(data[0])-1): for row in data: groups = self.__test_split(index, row[index], data) gini = self.__gini_index(groups, class_values) if gini < b_score: b_index = index b_value = row[index] b_score = gini b_groups = groups return{'index': b_index, 'value': b_value, 'groups': b_groups} # Create child splits for a node or make terminal def __split(self, node, max_depth, min_size, depth): left, right = node['groups'] del(node['groups']) # Check for a no split if not left or not right: node['left'] = node['right'] = self.__to_terminal(left + right) return # Check for max depth if depth >= max_depth: node['left'], node['right'] = self.__to_terminal(left), self.__to_terminal(right) return # Process left child if len(left) <= min_size: node['left'] = self.__to_terminal(left) else: node['left'] = self.__get_split(left) self.__split(node['left'], self.max_depth, self.min_size, depth + 1) # Process right child if len(right) <= min_size: node['right'] = self.__to_terminal(right) else: node['right'] = self.__get_split(right) self.__split(node['right'], self.max_depth, self.min_size, depth + 1) # Print the decision tree def print_tree(self, node, depth=0): if isinstance(node, dict): print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value']))) self.print_tree(node['left'], depth + 1) self.print_tree(node['right'], depth + 1) else: print('%s[%s]' % ((depth*' ', node))) # Fit the training data, build the decision tree def fit(self, X, y): train = pd.concat([X, y], axis=1) train = train.to_numpy() self.train = train self.root = self.__get_split(train) self.__split(self.root, self.max_depth, self.min_size, 1) return self.root def predict_item(self, node, row): self.node = node self.row = row if row[node['index']] < node['value']: if isinstance(node['left'], dict): return self.predict_item(node['left'], row) else: return node['left'] else: if isinstance(node['right'], dict): return self.predict_item(node['right'], row) else: return node['right'] def predict(self, X): test = X.to_numpy() self.test = test predictions = list() for row in self.test: prediction = self.predict_item(self.root, row) predictions.append(prediction) return(predictions) iris_data = pd.read_csv('https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv') labelencoder = LabelEncoder() iris_data['variety'] = labelencoder.fit_transform(iris_data['variety']) train1 = iris_data.to_numpy() # print(train1) train = pd.read_csv('data/test.csv') target = 'Y' features = train.columns.drop(target) X = train[features] y = train[target] print(train) """ train = [[2.771244718, 1.784783929, 0], [1.728571309, 1.169761413, 0], [3.678319846, 2.81281357, 0], [3.961043357, 2.61995032, 0], [2.999208922, 2.209014212, 0], [7.497545867, 3.162953546, 1], [9.00220326, 3.339047188, 1], [7.444542326, 0.476683375, 1], [10.12493903, 3.234550982, 1], [6.642287351, 3.319983761, 1]] """ tree = DTree(max_depth=2, min_size=1) clf = tree.fit(X, y) tree.print_tree(clf) test = train print(test) y_pred = tree.predict(test) print(y_pred) """ # Predict with a stump train = train.to_numpy() stump = {'index': 0, 'right': 1, 'value': 6.642287351, 'left': 0} for row in train: prediction = tree.predict(stump, row) print('Expected=%d, Got=%d' % (row[-1], prediction)) """ """ train = iris_data target = 4 features = train.columns.drop(target) X = train[features] y = train[target] print(y) tree = DTree(max_depth=5, min_size=10) clf = tree.fit(X, y) """ ```
{ "source": "JimKing100/ds_helper", "score": 3 }
#### File: JimKing100/ds_helper/test_ds_helper.py ```python import pandas as pd from ds_helper_data import df_utils def test_nulls(): df = pd.read_csv('https://raw.githubusercontent.com/JimKing100/DS-Unit-3-Sprint-1-Software-Engineering/master/module1-python-modules-packages-and-environments/drink_test.csv') assert df_utils.nulls(df) is None def test_date_conv(): df = pd.read_csv('https://raw.githubusercontent.com/JimKing100/DS-Unit-3-Sprint-1-Software-Engineering/master/module1-python-modules-packages-and-environments/MarinSalesJanJune2019.csv') df_utils.date_conv(df, 'Listing Date') assert 'Listing Date_year' in df.columns def test_state_conv(): assert df_utils.state_conv('California') == "CA" ```
{ "source": "JimKing100/DS-Unit-3-Sprint-1-Software-Engineering", "score": 4 }
#### File: DS-Unit-3-Sprint-1-Software-Engineering/Sprint_Challenge/acme.py ```python import random # Create the class class Product: # Define the constructor with the instance attributes def __init__(self, name, price=10, weight=20, flammability=0.5): self.id = random.randint(1000000, 9999999) self.name = name self.price = price self.weight = weight self.flammability = flammability # Create the greets method def stealability(self): price_weight = self.price / self.weight if price_weight < 0.5: print('Not so stealable') else: if (price_weight >= 0.5 and price_weight < 1.0): print('Kinda stealable') else: print('Very stealable') def explode(self): flame_weight = self.flammability * self.weight if flame_weight < 10: print('...fizzle') else: if (flame_weight >= 10 and flame_weight < 50): print('...boom!') else: print('...BABOOM!') class BoxingGlove(Product): # Define the constructor with the instance attributes def __init__(self, name, price=10, weight=10, flammability=0.5): super().__init__(name, price, weight, flammability) def explode(self): print("...it's a glove.") def punch(self): if self.weight < 5: print('That tickles') else: if (self.weight >= 5 and self.weight < 15): print('Hey that hurt!') else: print('OUCH!') ```
{ "source": "JimKing100/PrivacyContest", "score": 3 }
#### File: PrivacyContest/src/simulate_row.py ```python import random import globals # Create two concurrent lists representing a split row # - row is the front end of the row with sec_estimate faredecode_dict # - row1 is the back end of the row def simulate_row(epsilon, taxi_id, spd, cp, fr): row = {} row1 = {} # Create row = epsilon, taxi_id, shift, company_id, pcs, dca, payment_type, sec_estimate row['epsilon'] = epsilon row['taxi_id'] = taxi_id row['shift'] = int(str(spd)[1:3]) row['company_id'] = int(str(cp)[1:4]) pca = int(str(spd)[3:5]) if pca == 0: pca = -1 row['pickup_community_area'] = pca dca = int(str(spd)[5:7]) if dca == 0: dca = -1 row['dropoff_community_area'] = dca pay = int(str(cp)[4:5]) if pay == 9: pay = -1 row['payment_type'] = pay pca_dca = str(spd)[3:7] sec_estimate = globals.prox_dict[pca_dca] row['sec_estimate'] = sec_estimate # Create row1 = fare, tips, trip_total, trip_seconds, trip_miles fare_range = int(str(fr)[0:2]) tips_range = int(str(fr)[2:4]) if fare_range == 21: v = 50 else: v = globals.faredecode_dict[fare_range] if v == 0: value = 0 elif v == 50: value = random.randrange(50, 100) else: value = random.randrange(v - 5, v) row1['fare'] = value fare = value if tips_range == 21: v = 20 else: v = globals.tipsdecode_dict[tips_range] if v == 0: value = 0 elif v == 20: value = random.randrange(20, 50) else: value = random.randrange(v - 2, v) row1['tips'] = value tips = value row1['trip_total'] = fare + tips sec_range = int(str(fr)[4:6]) miles_range = int(str(fr)[6:8]) if sec_range == 61: v = 5000 else: v = globals.secdecode_dict[sec_range] if v == 0: value = 0 elif v == 5000: value = random.randrange(5000, 10000) else: value = random.randrange(v - 100, v) row1['trip_seconds'] = value if miles_range == 21: v = 20 else: v = globals.milesdecode_dict[miles_range] if v == 0: value = 0 elif v == 20: value = random.randrange(20, 50) else: value = random.randrange(v - 2, v) row1['trip_miles'] = value return row, row1 ```
{ "source": "JimKing100/sprint_aq", "score": 2 }
#### File: sprint_aq/TEST/app.py ```python from decouple import config from flask import Flask, render_template from TEST.models import DB, Record # import requests import openaq def create_app(): # Create Flask web server, makes the application app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = config('DATABASE_URL') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False DB.init_app(app) # Routes determine location @app.route("/") def home(): DB.drop_all() DB.create_all() api = openaq.OpenAQ() status, body = api.measurements(city='Los Angeles', parameter='pm25') for i in range(0, 100): date1 = body['results'][i]['date']['utc'] value1 = body['results'][i]['value'] db_record = Record(id=i, datetime=date1, value=value1) DB.session.add(db_record) DB.session.commit() records = Record.query.filter(Record.value > 10) return render_template('home.html', title=date1, records=records) return app ```
{ "source": "JimKing100/techsearch", "score": 3 }
#### File: techsearch/TECHSEARCH/app.py ```python from flask import Flask, request, render_template import pandas as pd import re import string def create_app(): # Create Flask web server, makes the application app = Flask(__name__) # Routes determine location @app.route("/") def home(): return render_template('index.html') @app.route("/search", methods=['GET']) def input(): return render_template('search.html') @app.route("/output", methods=['POST']) def output(): df = pd.read_csv('https://raw.githubusercontent.com/JimKing100/techsearch/master/data/scrape_results1.csv') df = df.drop(df.columns[0], axis=1) title = request.values['title'] city = request.values['city'] result_df = df.loc[(df['job'] == title) & (df['city'] == city)] r_title = result_df['job'].iloc[0] r_city = result_df['city'].iloc[0] r_count = result_df['counts'].iloc[0] r_lsalary = result_df['low_salary'].iloc[0] r_hsalary = result_df['high_salary'].iloc[0] r_skills = re.sub('['+string.punctuation+']', '', result_df['skills'].iloc[0]).split() return render_template('response.html', title='Search Results', r_title=r_title, r_city=r_city, r_count=r_count, r_lsalary=r_lsalary, r_hsalary=r_hsalary, r_skills=r_skills ) @app.route("/about") def about(): return render_template('about.html') return app ```
{ "source": "jimklo/sublime-rst-completion", "score": 3 }
#### File: jimklo/sublime-rst-completion/helpers.py ```python import re from sublime import Region import sublime_plugin class BaseBlockCommand(sublime_plugin.TextCommand): def _get_row_text(self, row): if row < 0 or row > self.view.rowcol(self.view.size())[0]: raise RuntimeError('Cannot find table bounds.') point = self.view.text_point(row, 0) region = self.view.line(point) text = self.view.substr(region) return text def get_cursor_position(self): return self.view.rowcol(self.view.sel()[0].begin()) def get_block_bounds(self): """given the cursor position as started point, returns the limits and indentation""" row, col = self.get_cursor_position() upper = lower = row try: while self._get_row_text(upper - 1).strip(): upper -= 1 except Exception as e: print(e) pass else: upper += 1 try: while self._get_row_text(lower + 1).strip(): lower += 1 except Exception as e: print(e) pass else: lower -= 1 block_region = Region(self.view.text_point(upper - 1, 0), self.view.text_point(lower + 2, 0)) lines = [self.view.substr(region) for region in self.view.lines(block_region)] indent = re.match('^(\s*).*$', self._get_row_text(upper - 1)).group(1) return block_region, lines, indent ```
{ "source": "JimKnowler/profile-visualiser", "score": 3 }
#### File: JimKnowler/profile-visualiser/profileparser.py ```python class ProfileParser: def __init__(self, consumer): self._consumer = consumer def load_file(self, filename): with open(filename, "r") as file: for line_number, line in enumerate(file): try: line = line.rstrip() self.parse(line) except Exception as e: print "exception while parsing line ", line_number print ">> line: [", line, "]" print ">>", e raise e def parse(self, line): if line.startswith('#'): # ignore comment lines return split_line = line.split(' ',1) line_type = split_line[0] if line_type == 'T': split_line = line.split(' ',2) thread_id = int(split_line[1]) thread_label = split_line[2] self._consumer.on_thread(thread_id, thread_label) elif line_type == 'F': split_line = line.split(' ',3) thread_id = int(split_line[1]) function_id = int(split_line[2]) function_label = split_line[3] self._consumer.on_function(thread_id, function_id, function_label) elif line_type == 'S': split_line = line.split(' ',3) thread_id = int(split_line[1]) function_id = int(split_line[2]) time = int(split_line[3]) self._consumer.on_sample_start(thread_id, function_id, time) elif line_type == 'E': split_line = line.split(' ',3) thread_id = int(split_line[1]) function_id = int(split_line[2]) time = int(split_line[3]) self._consumer.on_sample_finish(thread_id, function_id, time) elif line_type == 'V': split_line = line.split(' ',3) thread_id = int(split_line[1]) event_id = int(split_line[2]) event_label = split_line[3] self._consumer.on_event(thread_id, event_id, event_label) elif line_type == 'Y': split_line = line.split(' ',3) thread_id = int(split_line[1]) event_id = int(split_line[2]) time = int(split_line[3]) self._consumer.on_event_emit(thread_id, event_id, time) elif line_type == 'C': split_line = line.split(' ',2) counter_id = int(split_line[1]) counter_label = split_line[2] self._consumer.on_counter(counter_id, counter_label) elif line_type == 'D': split_line = line.split(' ',3) counter_id = int(split_line[1]) time = int(split_line[2]) counter_value = int(split_line[3]) self._consumer.on_counter_value(counter_id, time, counter_value) ```