metadata
dict
text
stringlengths
60
3.49M
{ "source": "jimkon/adaptive-discretization", "score": 3 }
#### File: adaptive-discretization/adiscr/ntree.py ```python import numpy as np import math import types from adiscr.node import * from adiscr.tree_vis import * def actions_per_level(level, dims): return 2**(level*dims) def compute_level(n, dims): actions = [1] level = 0 while actions[level] < n: level += 1 actions.append(actions[level-1]+actions_per_level(level, dims)) if actions[level] == n: return level else: return level-1 class Tree: def __init__(self, dims, size, error_function='direct'): """ dims: integer > 0 size: integer > 0 error_function: ['direct', 'sqrt', 'square', 'cubic'] or a lambda function """ assert dims > 0, "dims is < 1" assert size > 0, "size is < 1" assert (error_function in ['direct', 'sqrt', 'square', 'cubic']) or isinstance( error_function, types.FunctionType), "error_function has to be one of ['direct', 'sqrt', 'square', 'cubic'] or a function" self._dimensions = int(dims) self._size = int(size) Node._init_branch_matrix(self._dimensions) if error_function is 'direct': self._error_function = lambda d: d elif error_function is 'sqrt': self._error_function = lambda d: d**0.5 elif error_function is 'square': self._error_function = lambda d: d**2 elif error_function is 'cubic': self._error_function = lambda d: d**3 else: self._error_function = error_function self._branch_factor = self._dimensions * 2 root = Node(None, None, self._error_function, dims) self._nodes = [root] self._root = root init_level = compute_level(size, self._dimensions) for i in range(init_level): self.add_layer() self._total_distance = 0 self._total_distance_count = 0 def search_nearest_node(self, point, increase=True): point = self.correct_point(point.flatten()) node, dist = self._root.search(point, increase) self._total_distance += dist self._total_distance_count += 1 return node def update(self): _points_before = np.array(self.get_points()) to_prune = self._prune_prospectives() pruned = 0 for node in to_prune: node.delete() pruned += 1 excess = self.get_current_size() - self.get_size() expanded = self._expand_usefull_nodes(pruned - excess) self._refresh_nodes() self._reset_values() _points_after = np.array(self.get_points()) if pruned == expanded: for i in range(len(_points_after)): if np.linalg.norm(_points_before[i] - _points_after[i]) > 0: return True return False else: return True def feed(self, samples): for sample in samples: self.search_nearest_node(sample) def feed_and_update(self, samples): self.feed(samples) return self.update() def adapt_to_samples(self, samples, max_iterations=10): print("Adaption begun,", len(samples), "samples, max iterations", max_iterations) count = 0 flag = True while flag and count < max_iterations: flag = self.feed_and_update(samples) print("Iteration", count, ", adapted:", not flag) count += 1 return not flag def _prune_prospectives(self): nodes = self.get_prunable_nodes() mean_value = self.get_mean_value() result = [] for node in nodes: estimated_future_value = node.get_value() + node.get_value_increase_if_cut() if(estimated_future_value < mean_value): result.append(node) return result def _expand_usefull_nodes(self, n): nodes = sorted(self.get_nodes(recalculate=True), key=lambda node: node.get_value()) suggestions = list(node.suggest_for_expand() for node in nodes) count_expantions = 0 i = len(nodes) while count_expantions < n and i >= 0: i -= 1 if(nodes[i].get_value() == 0): continue to_expand = suggestions[i] new_nodes = [] for suggestion in to_expand: max_new_nodes = n - count_expantions - len(new_nodes) new_nodes.extend(suggestion.expand( nodes[i].get_location(), new_nodes_limit=max_new_nodes)) self._nodes.extend(new_nodes) count_expantions += len(new_nodes) return count_expantions def get_node(self, index): node = self.get_nodes()[index] return node def recursive_traversal(self, func=(lambda node: node), traverse_cond_func=(lambda node: True), collect_cond_func=(lambda node: True)): res = [] self._root.recursive_collection(res, func, traverse_cond_func, collect_cond_func) return res def get_values(self): return self.recursive_traversal(func=(lambda node: node.get_value())) def get_total_value(self): return np.sum(self.get_values()) def get_prunable_nodes(self): return self.recursive_traversal(collect_cond_func=(lambda node: node.is_leaf())) def get_expendable_nodes(self): return self.recursive_traversal(collect_cond_func=(lambda node: node.is_expandable())) def get_mean_error(self): if self._total_distance_count == 0: return 0 return np.sum(self.get_values()) / self._total_distance_count def get_mean_value(self): return np.sum(self.get_values()) / self.get_current_size() def _get_max_mean_distance(self): return 1 / (4 * self.get_current_size()) def _reset_values(self): self.recursive_traversal(func=lambda node: node.reset_value()) self._total_distance = 0 self._total_distance_count = 0 def add_layer(self): to_expand = self.get_expendable_nodes() for node in to_expand: new_nodes = node.expand() self._nodes.extend(new_nodes) def get_nodes(self, recalculate=False): if recalculate: self._nodes = self.recursive_traversal() return self._nodes def _refresh_nodes(self): self._nodes = self.recursive_traversal() def get_points(self): return np.array(list(node.get_location() for node in self.get_nodes())) def get_current_size(self): return len(self._nodes) def get_size(self): return self._size def print_all_nodes(self): nodes = self._nodes print('tree contains', len(nodes), 'nodes, min level=', self._min_level) for node in nodes: print(node) def plot(self, red_levels=False, save=False, filename='', plot_density_flag=False): plot(self, save=save, red_levels=red_levels, path=filename, plot_density_flag=plot_density_flag) @staticmethod def correct_point(point): new_point = [] for c in point: if c > 1: new_point.append(1) elif c < 0: new_point.append(0) else: new_point.append(c) return new_point ```
{ "source": "jimkon/Deep-Reinforcement-Learning-in-Large-Discrete-Action-Spaces", "score": 3 }
#### File: Deep-Reinforcement-Learning-in-Large-Discrete-Action-Spaces/src/action_space.py ```python import numpy as np import itertools import pyflann import matplotlib.pyplot as plt from util.data_process import plot_3d_points """ This class represents a n-dimensional unit cube with a specific number of points embeded. Points are distributed uniformly in the initialization. A search can be made using the search_point function that returns the k (given) nearest neighbors of the input point. """ class Space: def __init__(self, low, high, points): self._low = np.array(low) self._high = np.array(high) self._range = self._high - self._low self._dimensions = len(low) self.__space = init_uniform_space([0] * self._dimensions, [1] * self._dimensions, points) self._flann = pyflann.FLANN() self.rebuild_flann() def rebuild_flann(self): self._index = self._flann.build_index(self.__space, algorithm='kdtree') def search_point(self, point, k): p_in = self.import_point(point) search_res, _ = self._flann.nn_index(p_in, k) knns = self.__space[search_res] p_out = [] for p in knns: p_out.append(self.export_point(p)) if k == 1: p_out = [p_out] return np.array(p_out) def import_point(self, point): return (point - self._low) / self._range def export_point(self, point): return self._low + point * self._range def get_space(self): return self.__space def shape(self): return self.__space.shape def get_number_of_actions(self): return self.shape()[0] def plot_space(self, additional_points=None): dims = self._dimensions if dims > 3: print( 'Cannot plot a {}-dimensional space. Max 3 dimensions'.format(dims)) return space = self.get_space() if additional_points is not None: for i in additional_points: space = np.append(space, additional_points, axis=0) if dims == 1: for x in space: plt.plot([x], [0], 'o') plt.show() elif dims == 2: for x, y in space: plt.plot([x], [y], 'o') plt.show() else: plot_3d_points(space) class Discrete_space(Space): """ Discrete action space with n actions (the integers in the range [0, n)) 0, 1, 2, ..., n-2, n-1 """ def __init__(self, n): # n: the number of the discrete actions super().__init__([0], [n - 1], n) def export_point(self, point): return super().export_point(point).astype(int) def init_uniform_space(low, high, points): dims = len(low) points_in_each_axis = round(points**(1 / dims)) axis = [] for i in range(dims): axis.append(list(np.linspace(low[i], high[i], points_in_each_axis))) space = [] for _ in itertools.product(*axis): space.append(list(_)) return np.array(space) ``` #### File: src/ddpg/actor_net_bn.py ```python import tensorflow as tf import math import batch_norm import numpy as np LEARNING_RATE = 0.0001 TAU = 0.001 BATCH_SIZE = 64 N_HIDDEN_1 = 400 N_HIDDEN_2 = 300 class ActorNet_bn: """ Actor Network Model with Batch Normalization of DDPG Algorithm """ def __init__(self, num_states, num_actions): tf.reset_default_graph() self.g = tf.Graph() with self.g.as_default(): self.sess = tf.InteractiveSession() # actor network model parameters: self.actor_state_in = tf.placeholder("float", [None, num_states]) self.W1_a = tf.Variable(tf.random_uniform( [num_states, N_HIDDEN_1], -1 / math.sqrt(num_states), 1 / math.sqrt(num_states))) self.B1_a = tf.Variable(tf.random_uniform( [N_HIDDEN_1], -1 / math.sqrt(num_states), 1 / math.sqrt(num_states))) self.W2_a = tf.Variable(tf.random_uniform( [N_HIDDEN_1, N_HIDDEN_2], -1 / math.sqrt(N_HIDDEN_1), 1 / math.sqrt(N_HIDDEN_1))) self.B2_a = tf.Variable(tf.random_uniform( [N_HIDDEN_2], -1 / math.sqrt(N_HIDDEN_1), 1 / math.sqrt(N_HIDDEN_1))) self.W3_a = tf.Variable(tf.random_uniform([N_HIDDEN_2, num_actions], -0.003, 0.003)) self.B3_a = tf.Variable(tf.random_uniform([num_actions], -0.003, 0.003)) self.is_training = tf.placeholder(tf.bool, []) self.H1_t = tf.matmul(self.actor_state_in, self.W1_a) self.H1_a_bn = batch_norm(self.H1_t, N_HIDDEN_1, self.is_training, self.sess) self.H1_a = tf.nn.softplus(self.H1_a_bn.bnorm) + self.B1_a self.H2_t = tf.matmul(self.H1_a, self.W2_a) self.H2_a_bn = batch_norm(self.H2_t, N_HIDDEN_2, self.is_training, self.sess) self.H2_a = tf.nn.tanh(self.H2_a_bn.bnorm) + self.B2_a self.actor_model = tf.matmul(self.H2_a, self.W3_a) + self.B3_a # target actor network model parameters: self.t_actor_state_in = tf.placeholder("float", [None, num_states]) self.t_W1_a = tf.Variable(tf.random_uniform( [num_states, N_HIDDEN_1], -1 / math.sqrt(num_states), 1 / math.sqrt(num_states))) self.t_B1_a = tf.Variable(tf.random_uniform( [N_HIDDEN_1], -1 / math.sqrt(num_states), 1 / math.sqrt(num_states))) self.t_W2_a = tf.Variable(tf.random_uniform( [N_HIDDEN_1, N_HIDDEN_2], -1 / math.sqrt(N_HIDDEN_1), 1 / math.sqrt(N_HIDDEN_1))) self.t_B2_a = tf.Variable(tf.random_uniform( [N_HIDDEN_2], -1 / math.sqrt(N_HIDDEN_1), 1 / math.sqrt(N_HIDDEN_1))) self.t_W3_a = tf.Variable(tf.random_uniform([N_HIDDEN_2, num_actions], -0.003, 0.003)) self.t_B3_a = tf.Variable(tf.random_uniform([num_actions], -0.003, 0.003)) self.t_is_training = tf.placeholder(tf.bool, []) self.t_H1_t = tf.matmul(self.t_actor_state_in, self.t_W1_a) self.t_H1_a_bn = batch_norm(self.t_H1_t, N_HIDDEN_1, self.t_is_training, self.sess, self.H1_a_bn) self.t_H1_a = tf.nn.softplus(self.t_H1_a_bn.bnorm) + self.t_B1_a self.t_H2_t = tf.matmul(self.t_H1_a, self.t_W2_a) self.t_H2_a_bn = batch_norm(self.t_H2_t, N_HIDDEN_2, self.t_is_training, self.sess, self.H2_a_bn) self.t_H2_a = tf.nn.tanh(self.t_H2_a_bn.bnorm) + self.t_B2_a self.t_actor_model = tf.matmul(self.t_H2_a, self.t_W3_a) + self.t_B3_a # cost of actor network: # gets input from action_gradient computed in critic network file self.q_gradient_input = tf.placeholder("float", [None, num_actions]) self.actor_parameters = [self.W1_a, self.B1_a, self.W2_a, self.B2_a, self.W3_a, self.B3_a, self.H1_a_bn.scale, self.H1_a_bn.beta, self.H2_a_bn.scale, self.H2_a_bn.beta] # /BATCH_SIZE) changed -self.q_gradient to - self.parameters_gradients = tf.gradients( self.actor_model, self.actor_parameters, -self.q_gradient_input) self.optimizer = tf.train.AdamOptimizer( learning_rate=LEARNING_RATE, epsilon=1e-08).apply_gradients(zip(self.parameters_gradients, self.actor_parameters)) # initialize all tensor variable parameters: self.sess.run(tf.initialize_all_variables()) # To make sure actor and target have same intial parmameters copy the parameters: # copy target parameters self.sess.run([ self.t_W1_a.assign(self.W1_a), self.t_B1_a.assign(self.B1_a), self.t_W2_a.assign(self.W2_a), self.t_B2_a.assign(self.B2_a), self.t_W3_a.assign(self.W3_a), self.t_B3_a.assign(self.B3_a)]) def evaluate_actor(self, state_t): return self.sess.run(self.actor_model, feed_dict={self.actor_state_in: state_t, self.is_training: False}) def evaluate_target_actor(self, state_t_1): return self.sess.run(self.t_actor_model, feed_dict={self.t_actor_state_in: state_t_1, self.t_is_training: False}) def train_actor(self, actor_state_in, q_gradient_input): self.sess.run([self.optimizer, self.H1_a_bn.train_mean, self.H1_a_bn.train_var, self.H2_a_bn.train_mean, self.H2_a_bn.train_var, self.t_H1_a_bn.train_mean, self.t_H1_a_bn.train_var, self.t_H2_a_bn.train_mean, self.t_H2_a_bn.train_var], feed_dict={self.actor_state_in: actor_state_in, self.t_actor_state_in: actor_state_in, self.q_gradient_input: q_gradient_input, self.is_training: True, self.t_is_training: True}) def update_target_actor(self): self.sess.run([ self.t_W1_a.assign(TAU * self.W1_a + (1 - TAU) * self.t_W1_a), self.t_B1_a.assign(TAU * self.B1_a + (1 - TAU) * self.t_B1_a), self.t_W2_a.assign(TAU * self.W2_a + (1 - TAU) * self.t_W2_a), self.t_B2_a.assign(TAU * self.B2_a + (1 - TAU) * self.t_B2_a), self.t_W3_a.assign(TAU * self.W3_a + (1 - TAU) * self.t_W3_a), self.t_B3_a.assign(TAU * self.B3_a + (1 - TAU) * self.t_B3_a), self.t_H1_a_bn.updateTarget, self.t_H2_a_bn.updateTarget, ]) ``` #### File: src/ddpg/batch_norm.py ```python import tensorflow as tf decay = 0.95 TAU = 0.001 class Batch_norm: def __init__(self, inputs, size, is_training, sess, parForTarget=None, bn_param=None): self.sess = sess self.scale = tf.Variable(tf.random_uniform([size], 0.9, 1.1)) self.beta = tf.Variable(tf.random_uniform([size], -0.03, 0.03)) self.pop_mean = tf.Variable(tf.random_uniform([size], -0.03, 0.03), trainable=False) self.pop_var = tf.Variable(tf.random_uniform([size], 0.9, 1.1), trainable=False) self.batch_mean, self.batch_var = tf.nn.moments(inputs, [0]) self.train_mean = tf.assign(self.pop_mean, self.pop_mean * decay + self.batch_mean * (1 - decay)) self.train_var = tf.assign(self.pop_var, self.pop_var * decay + self.batch_var * (1 - decay)) def training(): return tf.nn.batch_normalization(inputs, self.batch_mean, self.batch_var, self.beta, self.scale, 0.0000001) def testing(): return tf.nn.batch_normalization(inputs, self.pop_mean, self.pop_var, self.beta, self.scale, 0.0000001) if parForTarget != None: self.parForTarget = parForTarget self.updateScale = self.scale.assign( self.scale * (1 - TAU) + self.parForTarget.scale * TAU) self.updateBeta = self.beta.assign(self.beta * (1 - TAU) + self.parForTarget.beta * TAU) self.updateTarget = tf.group(self.updateScale, self.updateBeta) self.bnorm = tf.cond(is_training, training, testing) ``` #### File: src/util/data_update.py ```python import data import numpy as np import sys sys.path.insert( 0, "/home/jim/Desktop/dip/Deep-Reinforcement-Learning-in-Large-Discrete-Action-Spaces/src/") import action_space def get_all_pkl_files(directory): from os import listdir from os.path import isfile, join, dirname, realpath, splitext mypath = directory # mypath = DIRECTORY onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] files = [] for f in onlyfiles: if splitext(f)[1] in '.zip': files.append(f) return files def update_pickle_file(file_name, eps=0, k=0, v=0): d_old = data_old.Data(file_name) d_old.load() print(file_name, 'loaded') # d_old.print_fields() d_new = data.Data() d_new.set_agent('Wolp', int(d_old.get_data('max_actions')[0]), k, v) d_new.set_experiment(d_old.get_data('experiment')[0], [-3], [3], eps) space = action_space.Space([-3], [3], int(d_old.get_data('max_actions')[0])) # print(space.get_space()) # d_new.print_data() done = d_old.get_data('done') actors_result = d_old.get_data('actors_result') actions = d_old.get_data('actions') state_0 = d_old.get_data('state_0').tolist() state_1 = d_old.get_data('state_1').tolist() state_2 = d_old.get_data('state_2').tolist() state_3 = d_old.get_data('state_3').tolist() rewards = d_old.get_data('rewards').tolist() ep = 0 temp = 0 l = len(done) for i in range(l): d_new.set_action(space.import_point(actions[i]).tolist()) d_new.set_actors_action(space.import_point(actors_result[i]).tolist()) d_new.set_ndn_action(space.import_point( space.search_point(actors_result[i], 1)[0]).tolist()) state = [state_0[i], state_1[i], state_2[i], state_3[i]] d_new.set_state(state) d_new.set_reward(1) if done[i] > 0: # print(ep, i - temp, 'progress', i / l) temp = i ep += 1 # if ep % 200 == 199: # d_new.finish_and_store_episode() # else: d_new.end_of_episode() d_new.save() if __name__ == "__main__": folder = "results/obj/" files = get_all_pkl_files(folder) f = 'data_10000_Wolp3_Inv100k10#0.json.zip' d = data.load(folder + f) for episode in d.data['simulation']['episodes']: episode['rewards'] = 0 episode['actions'] = 0 episode['ndn_actions'] = 0 episode['actors_actions'] = 0 # episode['states'] = 0 d.save('saved/') ```
{ "source": "jimkon/rl", "score": 3 }
#### File: rl/tests/test_utils.py ```python import unittest from rl_lib.utils.utils import * class TestMapper(unittest.TestCase): def setUp(self): self.mapper = Mapper() def test_map(self): self.assertTrue((self.mapper.map([-2, -3, 5]) == np.array([-2, -3, 5])).all(), self.mapper.map([-2, -3, 5])) self.assertTrue((self.mapper.map([6, 1, 11]) == np.array([6, 1, 11])).all(), self.mapper.map([6, 1, 11])) self.assertTrue((self.mapper.map([2, -1, 8]) == np.array([2, -1, 8])).all(), self.mapper.map([2, -1, 8])) self.assertTrue((self.mapper.map([-1, 0, 5.6]) == np.array([-1, 0, 5.6])).all(), self.mapper.map([-1, 0, 5.6])) class TestStandardMapper(unittest.TestCase): def setUp(self): self.mapper = StandardMapper([-2, -3, 5], [6, 1, 11]) def test_map(self): self.assertTrue((self.mapper.map([-2, -3, 5]) == np.zeros(3)).all(), self.mapper.map([-2, -3, 5])) self.assertTrue((self.mapper.map([6, 1, 11]) == np.ones(3)).all(), self.mapper.map([6, 1, 11])) self.assertTrue((self.mapper.map([2, -1, 8]) == np.ones(3)*.5).all(), self.mapper.map([2, -1, 8])) self.assertTrue(((self.mapper.map([-1, 0, 5.6]) - [.125, .75, .1])<1e-10).all(), self.mapper.map([-1, 0, 5.6])) class TestUnitMapper(unittest.TestCase): def setUp(self): self.mapper = UnitMapper([-2, -3, 5], [6, 1, 11]) def test_map(self): self.assertTrue((self.mapper.map([-2, -3, 5]) == -np.ones(3)).all(), self.mapper.map([-2, -3, 5])) self.assertTrue((self.mapper.map([6, 1, 11]) == np.ones(3)).all(), self.mapper.map([6, 1, 11])) self.assertTrue((self.mapper.map([2, -1, 8]) == np.zeros(3)).all(), self.mapper.map([2, -1, 8])) self.assertTrue(((self.mapper.map([-1, 0, 5.6]) - [-.75, .5, -.8])<1e-10).all(), self.mapper.map([-1, 0, 5.6])) if __name__ == '__main__': unittest.main(verbosity=2) ```
{ "source": "jimkutter/rpi_lcars", "score": 2 }
#### File: app/screens/authorize.py ```python from datetime import datetime, timedelta import pygame from pygame.mixer import Sound from screens.base_screen import BaseScreen from ui import colours from ui.widgets.background import LcarsBackgroundImage from ui.widgets.gifimage import LcarsGifImage from ui.widgets.lcars_widgets import LcarsButton from ui.widgets.lcars_widgets import LcarsText class CodeButton(LcarsButton): def __init__(self, colour, pos, text, handler=None, rectSize=None): super().__init__(colour, pos, text, handler, rectSize) self.code = None class ScreenAuthorize(BaseScreen): def __init__(self, app): super().__init__(app, None, None) self.login_timeout = None self.reset_timer() def setup(self, all_sprites): all_sprites.add(LcarsBackgroundImage("assets/lcars_screen_2.png"), layer=0) all_sprites.add(LcarsGifImage("assets/gadgets/stlogorotating.gif", (103, 369), 50), layer=0) all_sprites.add(LcarsText(colours.ORANGE, (270, -1), "AUTHORIZATION REQUIRED", 2), layer=0) all_sprites.add(LcarsText(colours.BLUE, (330, -1), "ONLY AUTHORIZED PERSONNEL MAY ACCESS THIS TERMINAL", 1.5), layer=1) all_sprites.add(LcarsText(colours.BLUE, (360, -1), "TOUCH TERMINAL TO PROCEED", 1.5), layer=1) greek_alphabet = [ "alpha", "beta", "gamma", "delta", "epsilon", "zeta", "eta", "theta", "iota", "kappa", "lambda", "mu", "nu", "xi", "omicron", "pi", "rho", "sigma", "tau", "upsilon", "phi", "chi", "psi", "omega", ] x_orig = 127 y_orig = 75 padding = 20 width = 122 height = 44 row = 0 col = 0 for letter in greek_alphabet: x = x_orig + (col * (width + padding / 2)) y = y_orig + (row * (height + padding / 2)) button = CodeButton(colours.GREY_BLUE, (y, x), letter.upper(), self.button_handler) button.code = letter col = col + 1 if col > 3: row = row + 1 col = 0 all_sprites.add(button, layer=2) self.layer1 = all_sprites.get_sprites_from_layer(1) self.layer2 = all_sprites.get_sprites_from_layer(2) # sounds if not self.app.is_screen_off: Sound("assets/audio/panel/215.wav").play() self.sound_granted = Sound("assets/audio/accessing.wav") self.sound_beep1 = Sound("assets/audio/panel/201.wav") self.sound_denied = Sound("assets/audio/access_denied.wav") self.sound_deny1 = Sound("assets/audio/deny_1.wav") self.sound_deny2 = Sound("assets/audio/deny_2.wav") ############ # SET PIN CODE WITH THIS VARIABLE ############ self.pin = self.app.config['pin'] ############ self.reset() def reset(self): # Variables for PIN code verification self.correct = 0 self.pin_i = 0 self.granted = False for sprite in self.layer1: sprite.visible = True for sprite in self.layer2: sprite.visible = False def screen_update(self): super().screen_update() if self.login_timeout: auth_delta = self.login_timeout - datetime.now() if int(auth_delta.total_seconds()) == 0: self.reset() def handleEvents(self, event, fpsClock): if event.type == pygame.MOUSEBUTTONDOWN: # Play sound self.sound_beep1.play() self.app.screen_on() if event.type == pygame.MOUSEBUTTONUP: if not self.layer2[0].visible: self.show_login_controls() elif self.pin_i == len(self.pin): # Ran out of button presses if self.correct == len(self.pin): self.sound_granted.play() from screens.main import ScreenMain self.loadScreen(ScreenMain(self.app)) else: self.sound_deny2.play() self.sound_denied.play() self.reset() return False def show_login_controls(self): for sprite in self.layer1: sprite.visible = False for sprite in self.layer2: sprite.visible = True Sound("assets/audio/enter_authorization_code.wav").play() self.reset_timer() def button_handler(self, item, event, clock): self.reset_timer() if self.pin[self.pin_i] == item.code: self.correct += 1 print(self.correct) self.pin_i += 1 def reset_timer(self): self.login_timeout = datetime.now() + timedelta(seconds=self.app.config['login_timeout']) ``` #### File: app/screens/register_hue.py ```python from screens.base_screen import BaseScreen from ui.widgets.lcars_widgets import * class ScreenRegister(BaseScreen): def __init__(self, app): super().__init__(app, "assets/lcars_screen_1.png", "REGISTER HUE") def setup(self, all_sprites): super().setup(all_sprites) # info text all_sprites.add(LcarsText(colours.WHITE, (192, 174), "Push the connect button on your hue bridge.", 1.5), layer=3) all_sprites.add(LcarsButton(colours.ORANGE, (240, 150), "ABORT", self.cancel_handler), layer=4) all_sprites.add(LcarsButton(colours.BLUE, (240, 450), "CONFIRM", self.ok_handler), layer=4) def cancel_handler(self, item, event, clock): from screens.main import ScreenMain self.loadScreen(ScreenMain(self.app)) def ok_handler(self, item, event, clock): from screens.lighting import ScreenLightGroups self.loadScreen(ScreenLightGroups(self.app)) ```
{ "source": "jimlaloi/eComma", "score": 3 }
#### File: jimlaloi/eComma/ecomma_Prep.py ```python from xml.dom import minidom, getDOMImplementation from xml.dom.minidom import parse, parseString from faker import Faker from collections import defaultdict import re import json # Put the course number here before saving and running the script coursenumber = '36360' # Open the files and parse them with minidom ch2data = open('ecomma_comments_export_%s_Ch2.xml' % coursenumber, encoding="UTF-8") ch2doc = parse(ch2data) ch3data = open('ecomma_comments_export_%s_Ch3.xml' % coursenumber, encoding="UTF-8") ch3doc = parse(ch3data) ch4data = open('ecomma_comments_export_%s_Ch4.xml' % coursenumber, encoding="UTF-8") ch4doc = parse(ch4data) ch5data = open('ecomma_comments_export_%s_Ch5.xml' % coursenumber, encoding="UTF-8") ch5doc = parse(ch5data) #ch6data = open('ecomma_comments_export_%s_Ch6.xml' % coursenumber, encoding="UTF-8") #ch6doc = parse(ch6data) #ch7data = open('ecomma_comments_export_%s_Ch7.xml' % coursenumber, encoding="UTF-8") #ch7doc = parse(ch7data) # Add a Chapter node to each comment for node in ch2doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Chapter')) == 0: ChapterNode = ch2doc.createElement('Chapter') chapter = ch2doc.createTextNode('2') tab = ch2doc.createTextNode(' ') node.appendChild(tab) node.appendChild(ChapterNode) node.lastChild.appendChild(chapter) newline = ch2doc.createTextNode('\n ') node.appendChild(newline) for node in ch3doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Chapter')) == 0: ChapterNode = ch3doc.createElement('Chapter') chapter = ch3doc.createTextNode('3') tab = ch3doc.createTextNode(' ') node.appendChild(tab) node.appendChild(ChapterNode) node.lastChild.appendChild(chapter) newline = ch3doc.createTextNode('\n ') node.appendChild(newline) for node in ch4doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Chapter')) == 0: ChapterNode = ch4doc.createElement('Chapter') chapter = ch4doc.createTextNode('4') tab = ch4doc.createTextNode(' ') node.appendChild(tab) node.appendChild(ChapterNode) node.lastChild.appendChild(chapter) newline = ch4doc.createTextNode('\n ') node.appendChild(newline) for node in ch5doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Chapter')) == 0: ChapterNode = ch5doc.createElement('Chapter') chapter = ch5doc.createTextNode('5') tab = ch5doc.createTextNode(' ') node.appendChild(tab) node.appendChild(ChapterNode) node.lastChild.appendChild(chapter) newline = ch5doc.createTextNode('\n ') node.appendChild(newline) # for node in ch6doc.getElementsByTagName('node'): # if len(node.getElementsByTagName('Chapter')) == 0: # ChapterNode = ch6doc.createElement('Chapter') # chapter = ch6doc.createTextNode('6') # tab = ch6doc.createTextNode(' ') # node.appendChild(tab) # node.appendChild(ChapterNode) # node.lastChild.appendChild(chapter) # newline = ch6doc.createTextNode('\n ') # node.appendChild(newline) # for node in ch7doc.getElementsByTagName('node'): # if len(node.getElementsByTagName('Chapter')) == 0: # ChapterNode = ch7doc.createElement('Chapter') # chapter = ch7doc.createTextNode('7') # tab = ch7doc.createTextNode(' ') # node.appendChild(tab) # node.appendChild(ChapterNode) # node.lastChild.appendChild(chapter) # newline = ch7doc.createTextNode('\n ') # node.appendChild(newline) # Create new xml which merges comments from all the chapters impl = getDOMImplementation() doc = impl.createDocument(None, "nodes", None) for node in ch2doc.getElementsByTagName('node'): doc.firstChild.appendChild(node) for node in ch3doc.getElementsByTagName('node'): doc.firstChild.appendChild(node) for node in ch4doc.getElementsByTagName('node'): doc.firstChild.appendChild(node) for node in ch5doc.getElementsByTagName('node'): doc.firstChild.appendChild(node) # for node in ch6doc.getElementsByTagName('node'): # doc.firstChild.appendChild(node) # for node in ch7doc.getElementsByTagName('node'): # doc.firstChild.appendChild(node) # Get list of students to redact from the data with open('redactlist_%s.txt' % coursenumber) as f: redactlist = f.read().splitlines() # Redact comments by students on the redactlist NodesToRedact = [node for node in doc.getElementsByTagName("Author") if node.firstChild.nodeValue in redactlist] for node in NodesToRedact: doc.documentElement.removeChild(node.parentNode); # Change student names to fake names # First, get the list of student names studentlist = [] for node in doc.getElementsByTagName('Author'): studentlist.append(node.firstChild.nodeValue) def unique(sequence): seen = set() return [x for x in sequence if not (x in seen or seen.add(x))] studentlist = unique(studentlist) # Next, create a dictionary where each name is assigned a fake value fake = Faker() fake.seed(coursenumber) #Use the same seed every time, but a different seed for each course studentdict = {i:fake.name() for i in studentlist} with open('fakenames_%s.txt' % coursenumber, 'w') as f: f.write(json.dumps(studentdict)) # Add wordcount node to each comment for node in doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Wordcount')) == 0: WordcountNode = doc.createElement('Wordcount') CommentNode = node.childNodes[9] CommentText = CommentNode.firstChild.nodeValue countthewords = str(len(CommentText.split(" "))) wordcount = doc.createTextNode(countthewords) node.appendChild(WordcountNode) node.lastChild.appendChild(wordcount) newline = doc.createTextNode('\n ') node.appendChild(newline) # Add Language node to each comment for node in doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Language')) == 0: LanguageNode = doc.createElement('Language') defaultlanguage = doc.createTextNode('English') node.appendChild(LanguageNode) node.lastChild.appendChild(defaultlanguage) newline = doc.createTextNode('\n ') node.appendChild(newline) # Add Affordance node to each comment for node in doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Affordance')) == 0: AffordanceNode = doc.createElement('Affordance') node.appendChild(AffordanceNode) newline = doc.createTextNode('\n ') node.appendChild(newline) # Add Speech Act node to each comment for node in doc.getElementsByTagName('node'): if len(node.getElementsByTagName('Speech-Act')) == 0: SpeechActNode = doc.createElement('Speech-Act') node.appendChild(SpeechActNode) newline = doc.createTextNode('\n') node.appendChild(newline) # Write the data to a new file with open('ecomma_prepped_%s.xml' % coursenumber,'w+', encoding="UTF-8") as newfile: doc.writexml(newfile) # Define function for replacing names with fake names def find_replace_multi(string, dictionary): for item in dictionary.keys(): # sub item for item's paired value in string string = re.sub(item, dictionary[item], string) return string # Replace names with fake names, and fix encoding of some special characters with open('ecomma_prepped_%s.xml' % coursenumber, "r+", encoding = "UTF-8") as f: data = f.read() data = data.replace('&quot;','"') data = data.replace("&#039;","'") data = find_replace_multi(data, studentdict) f.seek(0) f.write(data) f.truncate() ```
{ "source": "jimlawless/AoC2020", "score": 3 }
#### File: AoC2020/Day_9/puzzle9.py ```python def checkNums(start,length,val,partOne): global nums for k in range(start,length): if(k==partOne): continue if ((nums[k]+nums[partOne])==val): print("{} + {} = {}".format(nums[k],nums[partOne],val)) return True return False nums=[] infile = open("input.txt","r") for line in infile: line=line.rstrip() nums.append(int(line)) infile.close() consider=25 for i in range(consider,len(nums)): num=nums[i] found=False for j in range(i-consider,i): res=checkNums(i-consider,i,num,j) if res: found=True break if not found: print("Sum not found for {}".format(num)) exit(0) ```
{ "source": "jimlawton/codility", "score": 3 }
#### File: 02/odd_occurrences_in_array/test_challenge.py ```python from challenge import solution def test_challenge_all(): # Single entry slot assert solution([99]) == 99 # Answer in last slot assert solution([2, 2, 3, 3, 4]) == 4 # Answer in first slot assert solution([2, 3, 3, 4, 4]) == 2 # Answer in middle slot assert solution([2, 2, 3, 4, 4]) == 3 # Different positions assert solution([9, 3, 9, 3, 9, 7, 9]) == 7 assert solution([9, 3, 9, 3, 9, 1, 9]) == 1 assert solution([9, 1, 9, 1, 9, 2, 9]) == 2 assert solution([9, 1, 9, 1, 9, 2, 9]) == 2 # Benchmark def test_challenge_a(benchmark): assert benchmark(solution, [99]) == 99 def test_challenge_b(benchmark): assert benchmark(solution, [2, 2, 3, 3, 4]) == 4 def test_challenge_c(benchmark): assert benchmark(solution, [9, 3, 9, 3, 9, 7, 9]) == 7 ``` #### File: 03/frog_imp/test_challenge.py ```python from challenge import solution def test_challenge(): # Use 0 or 1 # Use upper and lower limits assert solution(10, 85, 30) == 3 ``` #### File: 03/perm_missing_elem/test_challenge.py ```python from challenge import solution def test_challenge(): # Create empty array (dependent on test) # Create single entry array # Create an array with the answer at the start # Create an array with the answer at the end # Create an array with the answer in the middle # Single entry slot assert(solution([2, 3, 1, 5]) == 4) ``` #### File: 04/perm_check/challenge.py ```python def solution(A): N = len(A) if N == 1: if A[0] == 1: return 1 else: return 0 count = {} for i in range(N): if A[i] not in count: count[A[i]] = 0 count[A[i]] += 1 if count[A[i]] > 1: return 0 # print(count) values = count.keys() # print(values) if max(values) == N: return 1 return 0 ```
{ "source": "jimlawton/gdrive-linux", "score": 2 }
#### File: jimlawton/gdrive-linux/dirtree.py ```python from UserDict import DictMixin # Singleton sentinel. class _Null(object): pass class _Node(dict): """A class representing a node in the directory tree. >>> n = _Node() >>> n[1] = 1 >>> n[1] 1 >>> n = { 1: 1, 2: 2, 3: 3 } >>> n {1: 1, 2: 2, 3: 3} >>> 1 in n True >>> 4 in n False >>> n[5] Traceback (most recent call last): File "/usr/lib64/python2.7/doctest.py", line 1289, in __run compileflags, 1) in test.globs File "<doctest __main__._Node[7]>", line 1, in <module> n[5] KeyError: 5 """ def __init__(self, value=_Null): super(_Node, self).__init__() # The base dictionary object. self.path = None # Stores the path to this node. self.value = value self.children = {} def numkeys(self): '''Return the number of keys in the subtree rooted at this node.''' numk = 0 if self.value is not _Null: numk = sum(child.numkeys() for child in self.children.itervalues()) return numk def __repr__(self): valstr = '_Null' if self.value is not _Null: valstr = repr(self.value) return '(%s, {%s})' % (valstr, ', '.join('%r: %r' % cstr for cstr in self.children.iteritems())) def __getstate__(self): return (self.value, self.children) def __setstate__(self, state): self.value, self.children = state class DirectoryTree(DictMixin, object): """A prefix tree (Trie) implementation to represent a directory tree. >>> t = DirectoryTree() >>> t.add("/a/b/c/d") >>> t.add("/a/b/c/d/e") >>> t.add("/foo/bar") >>> print t DirectoryTree({'': '/', '/a/b/c/d': '/a/b/c/d', '/a/b/c/d/e': '/a/b/c/d/e', '/foo/bar': '/foo/bar'}) >>> t.keys() ['', '/a/b/c/d', '/a/b/c/d/e', '/foo/bar'] >>> t.values() ['/', '/a/b/c/d', '/a/b/c/d/e', '/foo/bar'] >>> t.items() [('', '/'), ('/a/b/c/d', '/a/b/c/d'), ('/a/b/c/d/e', '/a/b/c/d/e'), ('/foo/bar', '/foo/bar')] >>> t.search("/a/b/c") ['/a/b/c/d', '/a/b/c/d/e'] """ def __init__(self, seq=None, **kwargs): self._root = _Node('/') self.update(seq, **kwargs) def __len__(self): return self._root.numkeys() def __iter__(self): return self.iterkeys() def __contains__(self, key): node = self._find(key) return node is not None and node.value is not _Null def __getitem__(self, key): node = self._find(key) if node is None or node.value is _Null: raise KeyError return node.value def __setitem__(self, key, value): node = self._root for part in key.split('/'): next_node = node.children.get(part) if next_node is None: node = node.children.setdefault(part, _Node()) else: node = next_node node.value = value def __delitem__(self, key): parts = [] node = self._root for part in key.split('/'): parts.append(node, part) node = node.children.get(part) if node is None: break if node is None or node.value is _Null: raise KeyError node.value = _Null while node.value is _Null and not node.children and parts: node, part = parts.pop() del node.children[part] def __repr__(self): return '%s({%s})' % (self.__class__.__name__, ', '.join('%r: %r' % t for t in self.iteritems())) def __str__(self): lines = ["{"] for key, value in self.iteritems(): lines.append("%s: %s" % (key, value)) lines.append("}") return '\n'.join(lines) def _find(self, key): node = self._root for part in key.split('/'): node = node.children.get(part) if node is None: break return node def keys(self, prefix=None): "Return a list of the trie keys." return list(self.iterkeys(prefix)) def values(self, prefix=None): "Return a list of the trie values." return list(self.itervalues(prefix)) def items(self, prefix=None): "Return a list of the trie (key, value) tuples." return list(self.iteritems(prefix)) def iteritems(self, prefix=None): "Return an iterator over the trie (key, value) tuples." parts = [] def generator(node, parts=parts): if node.value is not _Null: yield ('/'.join(parts), node.value) for part, child in node.children.iteritems(): parts.append(part) for subresult in generator(child): yield subresult del parts[-1] node = self._root if prefix is not None: for part in prefix.split('/'): parts.append(part) node = node.children.get(part) if node is None: node = _Node() break return generator(node) def iterkeys(self, prefix=None): "Return an iterator over the trie keys." return (key for key, value in self.iteritems(prefix)) def itervalues(self, prefix=None): "Return an iterator over the trie values." return (value for key, value in self.iteritems(prefix)) def add(self, path, value=None): "Add a path to the trie." if value is not None: self[path] = value else: self[path] = path def search(self, prefix=None): "Return a list of keys in the trie matching the supplied prefix." return list(self.iterkeys(prefix)) if __name__ == "__main__": import doctest doctest.testmod() ``` #### File: jimlawton/gdrive-linux/gdrive.py ```python import sys import optparse import pprint import gdocs from drived import DriveDaemon from drive_config import DriveConfig session = None commands = {} aliases = {} def command(func): if not func.__doc__: sys.exit("Error: commands must have formatted docstrings!") commands[func.func_name] = func func_aliases = [alias for alias in aliases.iterkeys() if aliases[alias].func_name == func.func_name] if func_aliases: func.__doc__ += "Aliases: %s" % ",".join(func_aliases) return func def alias(name): def decorator(func): if name in commands: sys.exit("Error, this alias has the same name as a command!") aliases[name] = func return func return decorator @command def help(argv): """Print help message. gdrive help [COMMAND] If no argument is specified, print a list of commands with a short description of each. If a command is specified, print help on that command. """ if not argv: return usage() for cmd in commands: if cmd == argv[0]: print commands[cmd].__doc__.split('\n', 1)[1] return print >>sys.stderr, "Unknown command '%s'" % argv[0] def usage(): "Print usage." print "Google Drive command-line interface" print print "Commands:" print print "Note: use gdrive help <command> to view usage for a specific command." print lines = [] cmdlist = commands.keys() cmdlist.sort() for cmd in cmdlist: lines.append((cmd, commands[cmd].__doc__.splitlines()[0])) space = max(len(line[0]) + 3 for line in lines) for line in lines: print " %-*s%s" % (space, line[0], line[1]) print @command def start(argv): """Start GDrive daemon. gdrive start Starts the GDrive daemon, gdrived, if it is not already running. """ daemon = DriveDaemon() daemon.start() @command def stop(argv): """Stop GDrive daemon. gdrive stop Stops the GDrive daemon, gdrived, if it is running. """ daemon = DriveDaemon() daemon.stop() @command def status(argv): """Show the status of the GDrive daemon. gdrive status Shows the status of the GDrive daemon. """ daemon = DriveDaemon() print daemon.status() @command def restart(argv): """Restart GDrive daemon. gdrive restart Restarts the GDrive daemon, gdrived. """ daemon = DriveDaemon() daemon.restart() @command @alias("ls") def list(argv): """List folder contents. gdrive list <path> Lists the contents of the specified path. If no path is specified, then the root folder is assumed. """ if len(argv) == 0: root = '/' else: root = argv[0] folders, files = session.readFolder(root) for path in folders: print path for path in files: print path, session.getFileSize(path), session.getFileDate(path), session.getFileChecksum(path) @command def filestatus(argv): """Show the status of a file. gdrive filestatus <path> Shows the status of the specified path. """ path = None if len(argv) == 0: return usage() else: path = argv[0] print session.filestatus(path, interactive=True) @command def md5(argv): """Print the MD5 checksums of the local and remote copies of the specified remote file path. gdrive md5 <path> prints the local and remote MD5 checksums of the specified path. """ path = None if len(argv) == 0: return usage() else: path = argv[0] config = DriveConfig() rhash = session.getRemoteFileChecksum(path) lpath = config.getLocalPath(path) lhash = session.getLocalFileChecksum(lpath) print "Local: path=%s md5=%s Remote: path=%s md5=%s" % (lpath, lhash, path, rhash) @command @alias("up") def update(argv): """Update a folder. gdrive update <path> Update the contents of the specified path, recursively. If no path is specified, then the entire GDrive will be updated. """ if len(argv) == 0: path = '/' else: path = argv[0] session.update(path, download=True, interactive=True) @command @alias("get") def download(argv): """Download a file or folder. gdrive download [<path> [<localpath>]] Download the contents of the specified path, recursively. If no path is specified, then the entire GDrive will be downloaded. This command will create a local copy of the specified file or folder tree, or if it exists already, will update it to match the server contents. If a local path is specified, then the file or folder will be downloaded at that path. If no localpath is specified, then the "localstore"/"path" configuration option will be used. """ localpath = None if len(argv) == 0: path = '/' else: path = argv[0] if len(argv) > 1: localpath = argv[1] session.download(path, localpath, interactive=True) @command @alias("put") def upload(argv): """Upload a file or folder. gdrive upload <localpath> [<path>] Upload the contents of the specified path, recursively. A local path must be specified. This command will create a server copy of the specified file or folder tree, or if it exists already on the server, will update it to match the local contents. If a remote path is specified, then the file or folder will be uploaded at that path relative to the root of the server tree. """ path = None if len(argv) == 0: return usage() else: localpath = argv[0] if len(argv) > 1: path = argv[1] session.upload(localpath, path, interactive=True) @command def reset(argv): """Reset GDrive cached metadata. gdrive reset This command clears cached GDrive metadata and recreates it by querying the server. """ session.reset() @command def dump(argv): """Dump GDrive cached metadata. gdrive dump This command dumps cached GDrive metadata. """ session.dump() @command def info(argv): """Print general information. gdrive info Prints out general information, e.g. total number of files/folders, quotas used, etc. """ pprint.pprint(session.getInfo()) def _parseArgs(): "Parse command-line arguments." helpStr = """ %prog [options] Utility to access Google Drive. """ parser = optparse.OptionParser(description=helpStr) parser.add_option('-v', '--verbose', dest='verbose', action='store_true', default=False, help='Turn on extra logging') parser.add_option('-d', '--debug', dest='debug', action='store_true', default=False, help='Turn on debug logging') (options, args) = parser.parse_args() return (options, args) def main(argv): "Main function." (opts, args) = _parseArgs() cmdfound = False i = 0 for i in range(len(args)): if args[i] in commands or args[i] in aliases: cmdfound = True break if not cmdfound: usage() return None global session session = gdocs.Session(verbose=opts.verbose, debug=opts.debug) if session == None: sys.exit("Error, could not create Google Docs session!") res = None if args[i] in commands: res = commands[args[i]](args[i+1:]) elif args[i] in aliases: res = aliases[args[i]](args[i+1:]) return res if __name__ == "__main__": result = main(sys.argv) if result != None: sys.exit(result) ```
{ "source": "jimlee0817/ML_INCOME_PREDICTION", "score": 3 }
#### File: ML_INCOME_PREDICTION/Logistic_Regression/Income_Prediction.py ```python import sys import numpy as np X_TRAIN_PATH = sys.argv[1] Y_TRAIN_PATH = sys.argv[2] print("Running the File", sys.argv[0]) print("Directory 1: ", X_TRAIN_PATH) print("Directory 2: ", Y_TRAIN_PATH) ''' For Testing ''' ''' X_TRAIN_PATH = 'X_train' Y_TRAIN_PATH = 'Y_train' ''' X_train = np.genfromtxt(X_TRAIN_PATH, delimiter=',', skip_header=1) Y_train = np.genfromtxt(Y_TRAIN_PATH, delimiter=',', skip_header=1) """Do the normalization of the data""" def normalizeColumn(X, specifiedColumns = None, X_mean = None, X_stdev = None): if specifiedColumns == None: specifiedColumns = np.arange(X.shape[1]) length = len(specifiedColumns) X_mean = np.reshape(np.mean(X[:,specifiedColumns], 0), (1, length)) X_stdev = np.reshape(np.std(X[:,specifiedColumns], 0), (1, length)) X[:,specifiedColumns] = np.divide(np.subtract(X[:, specifiedColumns], X_mean), X_stdev) return X, X_mean, X_stdev '''Shuffle the data in a random order''' def shuffle(X, Y): randomIndex = np.arange(len(X)) np.random.shuffle(randomIndex) return (X[randomIndex], Y[randomIndex]) '''Split the data into training data and validation data''' def splitTrainAndValidationData(X, Y, validation_size = 0.1): train_size = int(round(len(X) * (1 - validation_size))) return X[0:train_size], Y[0:train_size], X[train_size:None], Y[train_size:None] def sigmoid(Z): return np.clip(1 / (1 + np.exp(-Z)), 1e-6, 1-1e-6) def getY(X,w,b): return sigmoid(np.add(np.matmul(X, w),b)) def getRoundY(y): for i in range(len(y)): if y[i] < 0.5: y[i] = 0 else: y[i] = 1 return y def computeCrossEntropy(y, y_label): return -np.dot(y_label, np.log(y)) - np.dot(1 - y_label, np.log(1 - y)) def getLoss(y, y_label): return computeCrossEntropy(y, y_label) def getGradient(X, y_label, w, b): y = getY(X, w, b) loss = y_label - y w_grad = -np.mean(np.multiply(loss.T, X.T), axis = 1) b_grad = -np.mean(loss) return w_grad, b_grad def getAccuracy(y, y_label): return np.sum(y == y_label) / len(y) def train(X, Y, method = 'GRADIENT_ADAM'): validation_size = 0.1 X_train, y_label, X_validation, y_validation = splitTrainAndValidationData(X, Y, validation_size) print(X_train.shape) print(y_label.shape) print(X_validation.shape) print(y_validation.shape) '''Initialize the weight and bias''' w = np.zeros(X_train.shape[1]) b = np.zeros([1]) eipsilon = 1e-8 if method == 'GRADIENT_ADAM': beta1 = 0.9 beta2 = 0.999 v_w = np.zeros(w.shape) s_w = np.zeros(w.shape) v_b = np.zeros(b.shape) s_b = np.zeros(b.shape) max_interation = 41 batch_size = 25 learningRate = 0.0001 step = 1 trainAccuracy_list = [] trainLoss_list = [] validationAccuracy_list = [] validationLoss_list = [] for epoch in range(max_interation): X_train_epoch, y_train_epoch = shuffle(X_train, y_label) for i in range(int(np.floor(len(X_train)) / batch_size)): X_train_batch = X_train_epoch[i * batch_size: (i + 1) * batch_size] y_train_batch = y_train_epoch[i * batch_size: (i + 1) * batch_size] if method == 'GRADIENT': w_grad, b_grad = getGradient(X_train_batch, y_train_batch, w, b) w = w - learningRate / np.sqrt(step) * w_grad b = b - learningRate / np.sqrt(step) * b_grad elif method == 'GRADIENT_ADAM': w_grad, b_grad = getGradient(X_train_batch, y_train_batch, w, b) v_w = beta1 * v_w + (1 - beta1) * w_grad s_w = beta2 * s_w + (1 - beta2) * w_grad ** 2 v_b = beta1 * v_b + (1 - beta1) * b_grad s_b = beta2 * s_b + (1 - beta2) * b_grad ** 2 v_w_correction = v_w / (1 - beta1 ** step) s_w_correction = s_w / (1 - beta2 ** step) v_b_correction = v_b / (1 - beta1 ** step) s_b_correction = s_b / (1 - beta2 ** step) w = w - learningRate * v_w_correction / (np.sqrt(s_w_correction) + eipsilon) b = b - learningRate * v_b_correction / (np.sqrt(s_b_correction) + eipsilon) step += 1 y_train_predicted = getY(X_train, w, b) trainLoss_list.append(getLoss(y_train_predicted, y_label) / len(y_train_predicted)) y_train_predicted = getRoundY(y_train_predicted) trainAccuracy_list.append(getAccuracy(y_train_predicted, y_label)) y_validation_predicted = getY(X_validation, w, b) validationLoss_list.append(getLoss(y_validation_predicted, y_validation) / len(y_validation_predicted)) y_validation_predicted = getRoundY(y_validation_predicted) validationAccuracy_list.append(getAccuracy(y_validation_predicted, y_validation)) print("Epoch", epoch, " Training Accuracy: ", (getAccuracy(y_train_predicted, y_label)), " Validation Accuracy: ", (getAccuracy(y_validation_predicted, y_validation))) return w, b, trainAccuracy_list, validationAccuracy_list, trainLoss_list, validationLoss_list X_train, X_mean, X_stdev = normalizeColumn(X_train) weight, bias, trainAccList, validationAccList, trainLossList, validationLossList = train(X_train, Y_train, method = 'GRADIENT_ADAM') ''' import matplotlib.pyplot as plt plt.figure(1) plt.plot(trainAccList) plt.plot(validationAccList) plt.figure(2) plt.plot(trainLossList) plt.plot(validationLossList) plt.legend(['train', 'validation']) plt.show() ''' ```
{ "source": "jimlee4262/webscrape", "score": 3 }
#### File: jimlee4262/webscrape/app.py ```python from flask import Flask, url_for, render_template, redirect from flask_pymongo import PyMongo import scrape_mars #create flask setup app = Flask(__name__) #establish mongoDB connection w/ pymongo mongo = PyMongo(app, uri="mongodb://localhost:27017/mars_app") #render index.html template using data from Mongo @app.route("/") def index(): #Find data with mongoDB mars = mongo.db.mars.find_one() print(mars) #return template & data return render_template("index.html", mars=mars) #trigger scrape fxn @app.route("/scrape") def scraper(): mars_information=scrape_mars.scrape() #update mongoDB update & upsert mongo.db.mars.update({}, mars_information, upsert=True) #redirect home return redirect("/") if __name__ == "__main__": app.run(debug = True) ``` #### File: jimlee4262/webscrape/scrape_mars.py ```python from splinter import Browser from bs4 import BeautifulSoup import pandas as pd import time #initizalize splinter function def initiate_browser(): executable_path = {'executable_path': 'chromedriver.exe'} return Browser("chrome", **executable_path, headless=False) def scrape(): browser = initiate_browser() #NASA nasaurl = 'https://mars.nasa.gov/news/' browser.visit(nasaurl) time.sleep(10) #beautiful soup nasahtml = browser.html nasasoup = BeautifulSoup(nasahtml, 'html.parser') #scrape the top headline and description article = nasasoup.find('div', class_='list_text') header = article.find('div', class_='content_title').text paragraph = article.find('div', class_='article_teaser_body').text #JPL Image jplurl = 'https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars' browser.visit(jplurl) #Beautiful Soup jplhtml = browser.html jplsoup = BeautifulSoup(jplhtml, 'html.parser') #JPL Image featured_image_url = "https://www.jpl.nasa.gov" + jplsoup.find('img', class_='thumb')['src'] #Twitter twitterurl = 'https://twitter.com/marswxreport?lang=en' browser.visit(twitterurl) time.sleep(10) #Beautiful Soup twitterhtml = browser.html time.sleep(10) twittersoup = BeautifulSoup(twitterhtml, 'html.parser') #Get recent tweet mars_weather = twittersoup.find('div', class_='css-901oao r-hkyrab r-1qd0xha r-a023e6 r-16dba41 r-ad9z0x r-bcqeeo r-bnwqim r-qvutc0').\ find('span', class_="css-901oao css-16my406 r-1qd0xha r-ad9z0x r-bcqeeo r-qvutc0").\ text #Mars Facts marsfacturl = 'https://space-facts.com/mars/' #Gettting the Mars Table via Pandas tables = pd.read_html(marsfacturl) df = tables[0] #setting up the columns df.columns=['Mars Planet Profile', 'Numbers'] #use the Mars Planet profile column as the index df = df.set_index(['Mars Planet Profile']) #converting html table string w/ pandas df_html = df.to_html() df_html = df_html.replace('\n', '') #Mars Hemispheres marshem = 'https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(marshem) marshtml = browser.html marssoup = BeautifulSoup(marshtml, 'html.parser') #Get the link for each Hemisphere hemisphere_link=[] #Run a loop to get the list of links hemisphere_information = marssoup.find_all('div', class_='description') for links in hemisphere_information: info = links.find('a', class_='itemLink product-item') link = info['href'] complete_link = (f'https://astrogeology.usgs.gov{link}') hemisphere_link.append(complete_link) #loop through the links to get the title and image hemisphere_dictionary = [] for i in range(len(hemisphere_link)): browser.visit(hemisphere_link[i]) html = browser.html soup = BeautifulSoup(html, 'html.parser') image_link = soup.find('img',class_= 'wide-image')['src'] complete_image_link = (f'https://astrogeology.usgs.gov{image_link}') image_name = soup.find('h2',class_='title').text image_dictionary = {'title':image_name, 'link':complete_image_link} hemisphere_dictionary.append(image_dictionary) #Close the browser browser.quit() mars_information = {"Mars_Headline": header, "Mars_Description": paragraph, "jpl_link": featured_image_url, "table_html": df_html, "twitter": mars_weather, "hemisphere": hemisphere_dictionary} return mars_information ```
{ "source": "jimleroux/interview_problems", "score": 3 }
#### File: enphaseAI/utils/matplotlib_plotter.py ```python import os import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np from enphaseAI.utils.constants import FIGURE_DIR def basic_plot( name: str, data: np.ndarray, labels: np.ndarray, xlabel: str = "x", ylabel: str = "y" ) -> None: plt.style.use("ggplot") fig, ax = plt.subplots() clusters = set(labels) num_ele = data.shape[0] num_clusters = len(clusters) ax.set_xlabel(xlabel, fontsize=15) ax.set_ylabel(ylabel, fontsize=15) ax.tick_params(labelsize=15) colors = [cm.Set1(lab + 1) for lab in labels] for i in range(num_clusters): cluster = list(clusters)[i] x = data[labels == cluster, 0] y = data[labels == cluster, 1] scatter = ax.scatter(x, y, color=np.array(colors)[labels == cluster], label=str(int(cluster))) plt.tight_layout() plt.legend() plt.savefig(os.path.join(FIGURE_DIR, name)) plt.show() ```
{ "source": "jimle-uk/mygpxdata", "score": 3 }
#### File: mygpxdata/mygpxdata/parser.py ```python from .xmlquery import XMLQuery class Parser(object): def __init__(self): pass def load(self, filename): pass def run(self): pass def parse(self, filename): self.load(filename) return self.run() class XMLParser(Parser): def __init__(self): super(XMLParser, self).__init__() self._xmlQuery = XMLQuery() def load(self, filename): self._xmlQuery.open(filename) def run(self): return self._xmlQuery.toDict() ``` #### File: mygpxdata/mygpxdata/utils.py ```python import math import datetime # ============================================================================== # dates # ============================================================================== def convertTimestamp(timestamp, date_format="%Y-%m-%dT%H:%M:%SZ"): return datetime.datetime.strptime(timestamp, date_format) # ============================================================================== # math # ============================================================================== pi = math.pi glOffset = math.pow(2, 28) glRadius = glOffset / pi def lonToX(lon): return round(glOffset + glRadius * lon * pi); def latToY(lat): return round(glOffset - glRadius * math.log((1 + math.sin(lat * pi)) / (1 - math.sin(lat * pi))) / 2); def calculateBounds(coordinates): """ caculates the upper and lower bounds of the coordinate set """ x_values = [coordinate[0] for coordinate in coordinates] y_values = [coordinate[1] for coordinate in coordinates] max_x, min_x = max(x_values), min(x_values) max_y, min_y = max(y_values), min(y_values) return min_x, max_x, min_y, max_y def calculateScale(w, h, min_x, max_x, min_y, max_y): """ returns scale factor between route bounds (dx,dy) and the canvas """ dx = max_x - min_x dy = max_y - min_y scale = dy if dx < dy else dx scale_x = float(w)/scale scale_y = float(h)/scale return scale_x, scale_y def calculateOffset(w, h, min_x, max_x, min_y, max_y): """ calculates offset of the svg path to position it center within the regions of canvas. """ offset_x = (w/2) - ((max_x - min_x)/2) offset_y = 0 - (h/2) - ((max_y - min_y)/2) return (offset_x, offset_y) def calculateAngle(p1, p2): """ calculates angle between p1 and p2. Returns angle in degrees. """ dx = p2[0] - p1[0] dy = p2[1] - p1[1] rads = math.atan2(dy, dx) degs = math.degrees(rads) return degs # ============================================================================== # track # ============================================================================== def flatten(l): return [i for n in l for i in n] def trackSegmentsToCoordinates(segments): coordinates = [] for seg in segments: coordinates.append([(lonToX(float(trkpt.get('lon'))), latToY(float(trkpt.get('lat')))) for trkpt in seg]) return coordinates def transformCoordinates(coordinates, min_x, min_y, scale_x, scale_y): """ Manipulates coordinates to ensure they display within the bounds of canvas """ transformed_coordinates = [] for seg in coordinates: transformed_coordinates.append([((trkpt[0]-min_x)*scale_x,(trkpt[1]-min_y)*scale_y) for trkpt in seg]) return transformed_coordinates def filterCoordinatesByAngle(coordinates, degrees=0): """ filters out coordinates based on difference in angle between coordinate (C) and previous coordinate (B) and previous coordinate (B) and previous-previous coordinate (A). eg: [ (1,1), # coordinate (A) (2,2), # coordinate (B) (3,3), # coordinate (C) ] primary use case is to exclude coordinates which do not diverge much from previous coordinate if terms of direction. We assume if they're not diverging much, then it is safe to assume direction is a relatively straight line. We can then omit the coordinate and reduce the number of coordinates to render giving us a much smoother route. ie. if -degrees < CB - BA > +degrees then include else omit """ retVal = [] A = None B = None for coordinate in coordinates: C = coordinate angle_1 = calculateAngle(A, B) if A and B else 0 angle_2 = calculateAngle(B, C) if B else 0 A,B = (B,C) if B else (A,C) if abs(angle_2 - angle_1) >= degrees: retVal.append(coordinate) return retVal ``` #### File: mygpxdata/tests/tests_utils.py ```python import unittest import math class TestUtils(unittest.TestCase): def setUp(self): self.lonlat = [ ( "-0.137579000", "51.419945000" ), ( "-0.137578000", "51.419945000" ), ( "-0.137979000", "51.420126000" ), ( "-0.138086000", "51.420218000" ), ( "-0.138302000", "51.420234000" ), ( "-0.138433000", "51.420290000" ), ( "-0.138589000", "51.420313000" ), ( "-0.138712000", "51.420373000" ), ( "-0.138751000", "51.420468000" )] self.trkseg = [[{ "lon": "-0.137579000", "lat": "51.419945000" }]] def test_pi(self): self.assertEqual(utils.pi, math.pi) def test_glOffset(self): self.assertEqual(utils.glOffset, math.pow(2, 28)) def test_glRadius(self): self.assertEqual(utils.glRadius, math.pow(2, 28) / math.pi) def test_lonToX(self): x = [utils.lonToX(float(x[0])) for x in self.lonlat] expected_results = [231504374.0, 231504643.0, 231397000.0, 231368278.0, 231310296.0, 231275131.0, 231233255.0, 231200237.0, 231189768.0] self.assertEqual(x, expected_results) def test_latToY(self): y = [utils.lonToX(float(x[1])) for x in self.lonlat] expected_results = [14071371840.0, 14071371840.0, 14071420426.0, 14071445122.0, 14071449417.0, 14071464450.0, 14071470624.0, 14071486730.0, 14071512231.0] self.assertEqual(y, expected_results) def test_calculateBounds(self): expected_results = ('-0.137578000', '-0.138751000', '51.419945000', '51.420468000') self.assertEqual(utils.calculateBounds(self.lonlat), expected_results) def test_calculateScale(self): test_a = {"w":100, "h":100, "min_x":1, "max_x":10, "min_y":1, "max_y":10} expected_a = (11.11111111111111, 11.11111111111111) test_b = {"w":200, "h":100, "min_x":1, "max_x":10, "min_y":1, "max_y":10} expected_b = (22.22222222222222, 11.11111111111111) test_c = {"w":100, "h":200, "min_x":1, "max_x":10, "min_y":1, "max_y":10} expected_c = (11.11111111111111, 22.22222222222222) test_d = {"w":-100, "h":-100, "min_x":-1, "max_x":-10, "min_y":-1, "max_y":-10} self.assertEqual(utils.calculateScale(**test_a), expected_a) self.assertEqual(utils.calculateScale(**test_b), expected_b) self.assertEqual(utils.calculateScale(**test_c), expected_c) self.assertEqual(utils.calculateScale(**test_d), expected_a) def test_calculateOffset(self): test_a = {"w":100, "h":100, "min_x":1, "max_x":10, "min_y":1, "max_y":10} expected_a = (46, -54) test_b = {"w":200, "h":100, "min_x":1, "max_x":10, "min_y":1, "max_y":10} expected_b = (96, -54) test_c = {"w":100, "h":200, "min_x":1, "max_x":10, "min_y":1, "max_y":10} expected_c = (46, -104) test_d = {"w":-100, "h":-100, "min_x":-1, "max_x":-10, "min_y":-1, "max_y":-10} expected_d = (-45, 55) self.assertEqual(utils.calculateOffset(**test_a), expected_a) self.assertEqual(utils.calculateOffset(**test_b), expected_b) self.assertEqual(utils.calculateOffset(**test_c), expected_c) self.assertEqual(utils.calculateOffset(**test_d), expected_d) def test_calculateAngle(self): self.assertEquals(utils.calculateAngle((0,0), (1,1)), 45.0) # north east self.assertEquals(utils.calculateAngle((0,0), (0,1)), 90) # north self.assertEquals(utils.calculateAngle((0,0), (-1,1)), 135.0) # north west self.assertEquals(utils.calculateAngle((0,0), (-1,0)), 180.0) # west self.assertEquals(utils.calculateAngle((0,0), (-1,-1)), -135) # south west self.assertEquals(utils.calculateAngle((0,0), (0,-1)), -90.0) # south self.assertEquals(utils.calculateAngle((0,0), (1,-1)), -45) # south east self.assertEquals(utils.calculateAngle((0,0), (0,0)), 0) # east def test_flatten(self): test_a = [[1,2,3]] expected_a = [1,2,3] test_b = [[1,2,3], [4,5,6]] expected_b = [1,2,3,4,5,6] test_c = [[1,2,3],[4,5,6],[7],[8,9]] expected_c = [1,2,3,4,5,6,7,8,9] self.assertEquals(utils.flatten(test_a), expected_a) self.assertEquals(utils.flatten(test_b), expected_b) self.assertEquals(utils.flatten(test_c), expected_c) def test_trackSegmentsToCoordinates(self): self.assertEquals(utils.trackSegmentsToCoordinates(self.trkseg), [[(231504374.0, 445151444.0)]]) def test_transformCoordinates(self): coordinates = utils.trackSegmentsToCoordinates(self.trkseg) test_a = {"coordinates": coordinates, "min_x": coordinates[0][0][0], "min_y": coordinates[0][0][1], "scale_x": 1, "scale_y": 1} expected_a = [[(0.0, 0.0)]] test_b = {"coordinates": coordinates, "min_x": 0, "min_y": 0, "scale_x": 200, "scale_y": 200} expected_b = [[(46300874800.0, 89030288800.0)]] self.assertEquals(utils.transformCoordinates(**test_a), expected_a) self.assertEquals(utils.transformCoordinates(**test_b), expected_b) def test_filterCoordinatesByAngle(self): coordinates = [ (0,0), # 0 (1,1), # 45.0 (1,1.4), # 45.0 (-1,-1), # -219.8 (-1.2,-1), # 309.8 (-1,-1) # -180 ] self.assertEquals(len(utils.filterCoordinatesByAngle(coordinates, degrees=45)), 5) self.assertEquals(len(utils.filterCoordinatesByAngle(coordinates, degrees=180)), 3) self.assertEquals(len(utils.filterCoordinatesByAngle(coordinates, degrees=200)), 2) self.assertEquals(len(utils.filterCoordinatesByAngle(coordinates, degrees=300)), 1) if __name__ == '__main__': if __package__ is None: import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) from mygpxdata import utils unittest.main() ```
{ "source": "Jim-Lin/dark-classifier", "score": 3 }
#### File: dark-classifier/tensorflow/label_image.py ```python import numpy as np import tensorflow as tf import argparse def create_graph(model): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(model, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def run_inference_on_image(args): answer = None if not tf.gfile.Exists(args.image): tf.logging.fatal('File does not exist %s', args.image) return answer image_data = tf.gfile.FastGFile(args.image, 'rb').read() # Creates graph from saved GraphDef. create_graph(args.model) with tf.Session() as sess: softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) top_k = predictions.argsort()[-3:][::-1] # Getting top 3 predictions f = open(args.labels, 'rb') lines = f.readlines() labels = [str(w).replace("\n", "") for w in lines] for node_id in top_k: human_string = labels[node_id] score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score)) answer = labels[top_k[0]] return answer if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--image', type=str, help='imagePath', required=True ) parser.add_argument( '--model', type=str, help='modelFullPath', required=True ) parser.add_argument( '--labels', type=str, help='labelsFullPath', required=True ) args = parser.parse_args() run_inference_on_image(args) ``` #### File: dark-classifier/util/move_image.py ```python import datetime import os import shutil root = "/home/shuai/face/" today = datetime.date.today().strftime('%Y-%m-%d') root_training_images_today = root + today + "-training-images/" root_training_images = root + "training-images/" root_aligned_images_today = root + today + "-aligned-images/" root_aligned_images = root + "aligned-images/" def main(args): ids = [f for f in os.listdir(args[0]) if not f.startswith('.')] for actress_id in ids: dir_from = os.path.join(args[0], actress_id) dir_to = os.path.join(args[1], actress_id) if not os.path.exists(dir_to): os.makedirs(dir_to) files = [f for f in os.listdir(dir_from) if not f.startswith('.')] for file in files: file_from = os.path.join(dir_from, file) file_to = os.path.join(dir_to, file) if not os.path.isfile(file_to): shutil.move(file_from, file_to) print file_from print file_to if __name__ == '__main__': if os.path.exists(root_training_images_today): main([root_training_images_today, root_training_images]) shutil.rmtree(root_training_images_today) if os.path.exists(root_aligned_images_today): main([root_aligned_images_today, root_aligned_images]) shutil.rmtree(root_aligned_images_today) ```
{ "source": "jimlloyd/siteswap-states", "score": 3 }
#### File: jimlloyd/siteswap-states/states.py ```python import sys from optparse import OptionParser empty = '-' inhand = 'x' def Quoted(s): """Return the string s within quotes.""" return '"' + str(s) + '"' def PatternStrToList(pattern): """Return a list of integers for the given pattern string. PatternStrToList('531') -> [5, 3, 1] """ return [ord(p)-ord('0') for p in pattern] def PatternListToStr(pattern): """Return a pattern string for the given list of integers. PatternListToStr([5,3,1]) -> '531' """ return ''.join([chr(p) for p in pattern]) class SiteSwapStates: """A class that contains a state space graph for siteswap juggling for a given number of balls and a maximum throw height.""" def __init__(self, options): """The primary data structure is the states dictionary. The keys of the states dict are state strings, e.g. 'xxx--'. The value for any such key is a dictionary that stores all valid transitions from the key state. Using 3 balls with max throw of 5, the base state is 'xxx--'. self.states['xxx--'] is a dictionary containing the two valid transitions: {4: 'xx-x-', 5: 'xx--x'}.""" self.nBalls = options.nBalls self.maxThrow = options.maxThrow self.states = {} self.ComputeStates() def BaseState(self): """Return the base state for the given nBalls and maxThrow. E.g. for 3 balls max throw 5 the base state is 'xxx--'.""" return inhand*self.nBalls + empty*(self.maxThrow-self.nBalls) def ComputeStates(self): """Compute the entire state space graph""" todo = set() # The set of states for which transitions have not yet been calculated. done = set() # The set of states for which transitions have already been calculated. # start with the base state, although we could start with any valid state. todo.add(self.BaseState()) while todo: state = todo.pop() done.add(state) assert state not in self.states transitions = {} self.states[state] = transitions now = state[0] assert now==inhand or now==empty canthrow = now==inhand newstate = state[1:] + empty if not canthrow: transitions[0] = newstate else: for i in range(self.maxThrow): if newstate[i] == empty: t = list(newstate) t[i] = inhand s = ''.join(t) transitions[i+1] = s if s not in done: todo.add(s) def PrintStates(self): for state in reversed(sorted(self.states.keys())): transitions = self.states[state] print "Transitions for", state, "are:", transitions def PrintDot(self): print "Digraph states {" print "rankdir=LR;" for fromState in reversed(sorted(self.states.keys())): transitions = self.states[fromState] for throw in sorted(transitions.keys()): fromLabel = Quoted(fromState) toLabel = Quoted(transitions[throw]) edgeLabel = Quoted(throw) print "%s -> %s [label=%s]" % (fromLabel, toLabel, edgeLabel) print "}" parser = OptionParser() parser.add_option("-b", "--balls", dest="nBalls", type="int", default=3, help="Number of balls being juggled") parser.add_option("-m", "--maxThrow", dest="maxThrow", type="int", default=5, help="Maximum throw height") (options, args) = parser.parse_args() siteSwapStates = SiteSwapStates(options) siteSwapStates.PrintDot() ```
{ "source": "jimlmq/DyeVim", "score": 2 }
#### File: python/dye/dyevim.py ```python from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division from .buffer import Buffer from .window import Window from .utils import log from .utils.dict import Dict from collections import defaultdict import vim DV_SUPPORTED_FILETYPES = set( [ 'c', 'cpp' ] ) DV_UNIQUE_WID_VAR = 'DyeVimUniqueWId' class DyeVim( object ): def __init__( self, ycm ): #log.InitLogging('debug') ycm.RegisterFileParseReadyCallback( self.OnSemanticTokensReady ) self._ycm = ycm self._buffers = Dict( lambda bufnr: Buffer( bufnr, self._ycm ) ) self._windows = Dict( lambda wid: Window( wid, self._GetWIdBuffer( wid ) ) ) self._windowBuffer = defaultdict( int ) self._initialized_filetypes = set() self._nextUniqueWId = 1 def OnSemanticTokensReady( self, bufnr ): if not self._IsFileTypeSupported(): return log.info( 'OnSemanticTokensReady buffer: {0}'.format( bufnr ) ) if vim.current.buffer.number != bufnr: return self._windows[ self._GetCurrentWId() ].OnUpdateTokens() def OnCursorMoved( self ): if self._IsFileTypeSupported(): self._windows[ self._GetCurrentWId() ].OnCursorMoved() def OnWindowEnter( self ): self._SetCurrentWId() def OnBufferEnter( self ): wid = self._GetCurrentWId() if not self._IsFileTypeSupported(): self._windows[ wid ].ClearWindow() return self._InitializeCurrentFiletypeIfNeeded() bnr = vim.current.buffer.number if self._windowBuffer[ wid ] != bnr: self._windowBuffer[ wid ] = bnr self._windows[ wid ].OnBufferChanged( self._buffers[ bnr ] ) def OnFileTypeChanged( self ): wid = self._GetCurrentWId() if not self._IsFileTypeSupported(): self._windows[ wid ].ClearWindow() return self._InitializeCurrentFiletypeIfNeeded() wid = self._GetCurrentWId() bnr = vim.current.buffer.number self._windows[ wid ].OnBufferChanged( self._buffers[ bnr ] ) def _InitializeCurrentFiletypeIfNeeded( self ): ft = vim.current.buffer.options[ 'filetype' ] if not isinstance(ft, str): ft = str(ft, encoding='utf-8') if ft not in self._initialized_filetypes: try: vim.command('call dyevim#ft#' + ft + '#Setup()') except: pass self._initialized_filetypes.add( ft ) def _IsFileTypeSupported( self ): ft = vim.current.buffer.options[ 'filetype' ] if not isinstance(ft, str): ft = str(ft, encoding='utf-8') return ft in DV_SUPPORTED_FILETYPES def _GetCurrentWId( self ): try: return vim.current.window.vars[ DV_UNIQUE_WID_VAR ] except: return 0 def _SetCurrentWId( self ): if not vim.current.window.vars.has_key( DV_UNIQUE_WID_VAR ): wid = self._nextUniqueWId vim.current.window.vars[ DV_UNIQUE_WID_VAR ] = self._nextUniqueWId self._nextUniqueWId += 1 if not self._IsFileTypeSupported(): return self._InitializeCurrentFiletypeIfNeeded() bnr = vim.current.buffer.number if self._windowBuffer[ wid ] != bnr: self._windowBuffer[ wid ] = bnr self._windows[ wid ].OnBufferChanged( self._buffers[ bnr ] ) def _GetWIdBuffer( self, wid ): return self._buffers[ self._windowBuffer[ wid ] ] ``` #### File: dye/tests/interval_set_test.py ```python from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division from dye.interval.interval import Interval from dye.interval.interval_set import IntervalSet from nose.tools import eq_, ok_, raises def String_test(): # 100% coverity baby eq_( "%s" % IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ) ), "([1, 10], [20, 30])" ) def Construction_test(): eq_( IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ) ), IntervalSet( Interval( 20, 30 ), Interval( 1, 10 ) ) ) def Contains_test(): s = IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 40, 50 ) ) ok_( Interval( 1, 10 ) in s ) ok_( Interval( 25, 27 ) in s ) ok_( Interval( 40, 48 ) in s ) ok_( Interval( 8, 11 ) not in s ) ok_( Interval( 11, 15 ) not in s ) ok_( Interval( 5, 25 ) not in s ) ok_( Interval( 25, 45 ) not in s ) ok_( Interval( 15, 35 ) not in s ) ok_( Interval( 0, 55 ) not in s ) ok_( 1 in s ) ok_( 30 in s ) ok_( 45 in s ) ok_( 0 not in s ) ok_( 11 not in s ) ok_( 35 not in s ) ok_( 39 not in s ) ok_( 55 not in s ) def Union_test(): s = IntervalSet() s |= Interval( 1, 10 ) eq_( s, IntervalSet( Interval( 1, 10 ) ) ) s |= Interval( 20, 30 ) eq_( s, IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ) ) ) s |= Interval( 40, 50 ) eq_( s, IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 40, 50 ) ) ) eq_( s | Interval( 11, 19 ), IntervalSet( Interval( 1, 30 ), Interval( 40, 50 ) ) ) eq_( s | Interval( 11, 15 ), IntervalSet( Interval( 1, 15 ), Interval( 20, 30 ), Interval( 40, 50 ) ) ) eq_( s | Interval( 32, 39 ), IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 32, 50 ) ) ) eq_( s | Interval( 32, 38 ), IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 32, 38 ), Interval( 40, 50 ) ) ) eq_( s | Interval(15, 35), IntervalSet( Interval( 1, 10 ), Interval( 15, 35 ), Interval( 40, 50 ) ) ) eq_( s | Interval(5, 45), IntervalSet( Interval( 1, 50 ) ) ) eq_( s | IntervalSet( Interval( 11, 19 ), Interval( 35, 39 ) ), IntervalSet( Interval( 1, 30 ), Interval( 35, 50 ) ) ) def Intersect_test(): s = IntervalSet() eq_( s & Interval( 1, 10 ), IntervalSet() ) s = IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 40, 50 ) ) eq_( s & Interval( 11, 19 ), IntervalSet() ) eq_( s & Interval( 5, 15 ), IntervalSet( Interval( 5, 10 ) ) ) eq_( s & Interval( 5, 25 ), IntervalSet( Interval( 5, 10 ), Interval( 20, 25 ) ) ) eq_( s & Interval( 0, 51 ), s ) def Subtract_test(): s = IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 40, 50 ) ) eq_( s - Interval( 1, 50 ), IntervalSet() ) eq_( s - Interval( 1, 9 ), IntervalSet( Interval( 10, 10 ), Interval( 20, 30 ), Interval( 40, 50 ) ) ) eq_( s - Interval( 25, 25 ), IntervalSet( Interval( 1, 10 ), Interval( 20, 24 ), Interval( 26, 30 ), Interval( 40, 50 ) ) ) eq_( s - Interval( 12, 18 ), IntervalSet( Interval( 1, 10 ), Interval( 20, 30 ), Interval( 40, 50 ) ) ) def BestQueryRange_test(): s = IntervalSet() r = s.GetIntervalForQuery( Interval( 30, 40 ), 10 ) eq_( r, Interval( 30, 40 ) ) s |= r # [ [30, 40] ] r = s.GetIntervalForQuery( Interval( 29, 29 ), 10 ) eq_( r, Interval( 20, 29 ) ) s |= r # [ [20, 40] ] r = s.GetIntervalForQuery( Interval( 31, 41 ), 10 ) eq_( r, Interval( 41, 50 ) ) s |= r # [ [20, 50] ] r = s.GetIntervalForQuery( Interval( 60, 60 ), 10 ) eq_( r, Interval( 60, 69 ) ) s |= r # [ [20, 50], [60, 69] ] r = s.GetIntervalForQuery( Interval( 59, 68 ), 10 ) eq_( r, Interval( 51, 59 ) ) s |= r # [ [20, 69] ] r = s.GetIntervalForQuery( Interval( 85, 100 ), 10 ) eq_( r, Interval( 85, 100 ) ) s |= r # [ [20, 69], [85, 100] ] r = s.GetIntervalForQuery( Interval( 61, 70 ), 10 ) eq_( r, Interval( 70, 79 ) ) # [ [20, 69], [85, 100] ] r = s.GetIntervalForQuery( Interval( 83, 92 ), 10 ) eq_( r, Interval( 75, 84 ) ) # [ [20, 69], [85, 100] ] r = s.GetIntervalForQuery( Interval( 72, 81 ), 10 ) eq_( r, Interval( 72, 81 ) ) s |= r # [ [20, 69], [72, 81], [85, 100] ] r = s.GetIntervalForQuery( Interval( 105, 106 ), 10 ) eq_( r, Interval( 105, 114 ) ) s |= r # [ [20, 69], [72, 81], [85, 100], [105, 114] ] r = s.GetIntervalForQuery( Interval( 70, 104 ), 10 ) eq_( r, IntervalSet( Interval( 70, 71 ), Interval( 82, 84 ), Interval( 101, 104 ) ) ) s |= r # [20, 114] eq_( s, IntervalSet( Interval( 20, 114 ) ) ) s = IntervalSet() r = s.GetIntervalForQuery( Interval( 9, 9 ), 20 ) eq_( r, Interval( 9, 28 ) ) s |= r # [9, 28] r = s.GetIntervalForQuery( Interval( 8, 8 ), 20 ) eq_( r, Interval( 1, 8 ) ) s |= r # [1, 28] r = s.GetIntervalForQuery( Interval( 35, 40 ), 10 ) eq_( r, Interval( 35, 44 ) ) s |= r # [ [1, 28], [35, 44] ] r = s.GetIntervalForQuery( Interval( 30, 31 ), 10 ) eq_( r, Interval( 29, 34 ) ) r = s.GetIntervalForQuery( Interval( 26, 31 ), 10 ) eq_( r, Interval( 29, 34 ) ) s |= r # [1, 44] eq_( s, IntervalSet( Interval( 1, 44 ) ) ) @raises(TypeError) def ContainsError_test(): IntervalSet( Interval( 2, 8 ) ) in IntervalSet( Interval( 1, 10 ) ) @raises(TypeError) def IntersectError_test(): IntervalSet( Interval( 2, 8 ) ) & IntervalSet( Interval( 1, 10 ) ) @raises(TypeError) def SubtractError_test(): IntervalSet( Interval( 1, 10 ) ) - IntervalSet( Interval( 2, 8 ) ) ``` #### File: dye/utils/log.py ```python from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import logging def InitLogging( level = None ): logging_level = None if level == 'info': logging_level = logging.INFO elif level == 'debug': logging_level = logging.DEBUG if not logging_level: return global info, debug info = _info if logging_level == logging.DEBUG: debug = _debug logger = logging.getLogger( 'dyevim' ) logger.setLevel( logging_level ) fh = logging.FileHandler( 'dyevim.log' ) fh.setLevel( logging_level ) logger.addHandler( fh ) def debug( *args ): pass def info( *args ): pass def _get(): return logging.getLogger( 'dyevim' ) def _debug( *args ): _get().debug( *args ) def _info( *args ): _get().info( *args ) ``` #### File: dye/utils/vimsupport.py ```python from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import vim def GetCurrentBufferNumber(): return vim.current.buffer.number def BufNumberToName( bufnr ): return vim.eval( 'bufname({0})'.format( bufnr ) ) def GetCurrentTopLine(): return int( vim.eval( 'line("w0")' ) ) def GetCurrentBottomLine(): return int( vim.eval( 'line("w$")' ) ) def GetCurrentWindowHeight(): return int( vim.current.window.height ) def GetFileType( bufnr ): return vim.buffers[ bufnr ].options[ 'filetype' ] def GetBufferLen( bufnr ): return len( vim.buffers[ bufnr ] ) def GetLineLen( bufnr, line ): # line index is 1 based, but vim python interface is 0 based return len( vim.buffers[ bufnr ][ line - 1 ] ) def GetIntValue( name ): return int( vim.eval( name ) ) def PostVimWarning( message ): # Displaying a new message while previous ones are still on the status line # might lead to a hit-enter prompt or the message appearing without a # newline so we do a redraw first. vim.command( 'redraw' ) vim.command( 'echohl WarningMsg' ) vim.command( "echom '{0}'".format( message ) ) vim.command( 'echohl None' ) ```
{ "source": "Jim-Luo/MyQQRobot2", "score": 3 }
#### File: Jim-Luo/MyQQRobot2/learn.py ```python import re import time learnList={ } def learnProcess(bot, contact, content): for label,reply in learnList.items(): if re.search(re.compile(label),content): for term in learnList[label]: bot.SendTo(contact,term) time.sleep(0.5) def learnListAppend(bot, contact, content): try: contentList=content.split(' ') rawContentList = contentList[2:] learnList[contentList[1]] = rawContentList except: bot.SendTo(contact,'额,你说啥?') else: bot.SendTo(contact,'学习了') ```
{ "source": "JimLusk/python-algorithms", "score": 4 }
#### File: JimLusk/python-algorithms/array-product-sans-current.py ```python originalNumberList = [1, 2, 3, 4, 5] resultNumberList = [] def construct_array_product_sans_current(): #calculate product of all numbers in given set for i in range(len(originalNumberList)) : if i==0: result = originalNumberList[i] else: result=result * originalNumberList[i] for j in range(len(originalNumberList)) : resultNumberList.insert(j, result/originalNumberList[j]) return resultNumberList print("Original Number List: " + str(originalNumberList)) print("Result Number List: " + str(construct_array_product_sans_current())) ```
{ "source": "JimMadge/Advent-of-Code-2020", "score": 4 }
#### File: Advent-of-Code-2020/adventofcode/day02.py ```python import re regex = re.compile(r"(\d+)-(\d+) ([a-z]): ([a-z]+)") def parse_line(line): match = re.match(regex, line) if match: return (int(match[1]), int(match[2]), match[3], match[4]) return None def valid_password1(minimum, maximum, character, password): return minimum <= password.count(character) <= maximum def valid_password2(first_pos, second_pos, character, password): a = password[first_pos-1] == character b = password[second_pos-1] == character return (a and not b) or (b and not a) def count_valid_passwords(validator, lines): return sum([validator(*parse_line(line)) for line in lines]) ``` #### File: Advent-of-Code-2020/adventofcode/day04.py ```python import re required_fields = [ "byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid", # "cid", ] def process_passports(passports): # Split each key:value pair by ":" and create a dictionary for each # passport return [ dict(item.split(":") for item in passport.split()) for passport in passports.split("\n\n") ] def valid_passport(passport): return all([key in passport.keys() for key in required_fields]) def count_valid_passports(passports): return sum( [valid_passport(passport) for passport in passports] ) height_range = { "cm": (150, 193), "in": (59, 76) } hair_colour = re.compile(r"#[0-9A-Fa-f]{6}") eye_colours = ["amb", "blu", "brn", "gry", "grn", "hzl", "oth"] passport_number = re.compile(r"\d{9}") def valid_passport2(passport): if not all([key in passport.keys() for key in required_fields]): return False if not 1920 <= int(passport["byr"]) <= 2002: return False if not 2010 <= int(passport["iyr"]) <= 2020: return False if not 2020 <= int(passport["eyr"]) <= 2030: return False if (height_unit := passport["hgt"][-2:]) in ["cm", "in"]: if not (height_range[height_unit][0] <= int(passport["hgt"][:-2]) <= height_range[height_unit][1]): return False else: return False if not hair_colour.fullmatch(passport["hcl"]): return False if not passport["ecl"] in eye_colours: return False if not passport_number.fullmatch(passport["pid"]): return False return True def count_valid_passports2(passports): return sum( [valid_passport2(passport) for passport in passports] ) ``` #### File: Advent-of-Code-2020/adventofcode/day10.py ```python from collections import Counter from functools import cache def pick_order(adapters): # Add outlet and device return sorted(adapters[:] + [0] + [max(adapters) + 3]) def count_jumps(adapters): jumps = Counter() for i in range(len(adapters)-1): difference = abs(adapters[i] - adapters[i+1]) jumps[difference] += 1 return jumps def jump_product(adapters): jumps = count_jumps(adapters) return jumps[1] * jumps[3] def count_routes(adapters): adapters = [0] + sorted(adapters) @cache def routes(index): # If we have reached the end this is the only route if index == len(adapters) - 1: return 1 return sum( routes(i) for i in range(index+1, min(index+4, len(adapters))) if adapters[i] - adapters[index] <= 3 ) return routes(0) ``` #### File: Advent-of-Code-2020/adventofcode/day11.py ```python from itertools import chain class Seat(object): def __init__(self, occupied=False): self.occupied = occupied self.neighbours = [] self.pending_flip = False def flip(self): self.occupied = not self.occupied self.pending_flip = False def occupied_neighbours(self): return sum(neighbour.occupied for neighbour in self.neighbours) def read_plan(plan): d = { 'L': Seat, '.': lambda: None, } seats = [] for line in plan.splitlines(): seats.append( [d[char]() for char in line] ) return seats displacements = [ (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), ] def create_neighbours(seats): height = len(seats) width = len(seats[0]) for i in range(height): for j in range(width): # Skip empty space if seats[i][j] is None: continue # Try each neighbour for displacement in displacements: ni = i + displacement[0] nj = j + displacement[1] # Skip if neighbouring tile is out of bounds if ni >= height: continue if ni < 0: continue if nj >= width: continue if nj < 0: continue # Only add if neighbouring tile is a seat (not None) if (neighbour := seats[ni][nj]): seats[i][j].neighbours.append(neighbour) def create_neighbours2(seats): height = len(seats) width = len(seats[0]) for i in range(height): for j in range(width): # Skip empty space if seats[i][j] is None: continue # Try each direction for displacement in displacements: # Look further until a neighbour is found multiplier = 1 while True: ni = i + displacement[0]*multiplier nj = j + displacement[1]*multiplier # End if neighbouring tile is out of bounds if ni >= height: break if ni < 0: break if nj >= width: break if nj < 0: break # Only add if neighbouring tile is a seat (not None) if (neighbour := seats[ni][nj]): seats[i][j].neighbours.append(neighbour) break multiplier += 1 def step(seats, visible=4): flipped = 0 for seat in chain.from_iterable(seats): if seat is None: continue if seat.occupied: if seat.occupied_neighbours() >= visible: seat.pending_flip = True else: if seat.occupied_neighbours() == 0: seat.pending_flip = True for seat in chain.from_iterable(seats): if seat is None: continue if seat.pending_flip: seat.flip() flipped += 1 return flipped def optimise(seats, visible=4): flipped = 1 while flipped != 0: flipped = step(seats, visible) def count_occupied(seats): count = 0 for seat in chain.from_iterable(seats): if seat is None: continue if seat.occupied: count += 1 return count def settle(plan): seats = read_plan(plan) create_neighbours(seats) optimise(seats) return count_occupied(seats) def settle2(plan): seats = read_plan(plan) create_neighbours2(seats) optimise(seats, 5) return count_occupied(seats) ``` #### File: Advent-of-Code-2020/adventofcode/day12.py ```python from enum import Enum, auto class Direction(Enum): EAST = auto() NORTH = auto() WEST = auto() SOUTH = auto() def translate(pos, direction, distance): if direction == "N": pos = (pos[0]+distance, pos[1]) elif direction == "S": pos = (pos[0]-distance, pos[1]) elif direction == "E": pos = (pos[0], pos[1]+distance) elif direction == "W": pos = (pos[0], pos[1]-distance) return pos def turn(heading, direction, degrees): turns = { "L": { Direction.EAST: Direction.NORTH, Direction.NORTH: Direction.WEST, Direction.WEST: Direction.SOUTH, Direction.SOUTH: Direction.EAST }, "R": { Direction.EAST: Direction.SOUTH, Direction.SOUTH: Direction.WEST, Direction.WEST: Direction.NORTH, Direction.NORTH: Direction.EAST } } n_turns = degrees // 90 for turn in range(n_turns): heading = turns[direction][heading] return heading def forward(pos, heading, distance): if heading == Direction.EAST: pos = (pos[0], pos[1]+distance) elif heading == Direction.NORTH: pos = (pos[0]+distance, pos[1]) elif heading == Direction.WEST: pos = (pos[0], pos[1]-distance) elif heading == Direction.SOUTH: pos = (pos[0]-distance, pos[1]) return pos def update_position(instruction, pos, heading): action, arg = instruction[0], int(instruction[1:]) if action in ["N", "S", "E", "W"]: pos = translate(pos, action, arg) elif action in ["L", "R"]: heading = turn(heading, action, arg) elif action == "F": pos = forward(pos, heading, arg) return pos, heading def follow_route(route): pos = (0, 0) heading = Direction.EAST for instruction in route.splitlines(): pos, heading = update_position(instruction, pos, heading) return pos, heading def manhattan_distance(pos): return abs(pos[0]) + abs(pos[1]) def rotate(waypoint, direction, degrees): n_turns = degrees // 90 for i in range(n_turns): if direction == "L": waypoint = (waypoint[1], -waypoint[0]) if direction == "R": waypoint = (-waypoint[1], waypoint[0]) return waypoint def forward2(pos, waypoint, distance): return (pos[0]+waypoint[0]*distance, pos[1]+waypoint[1]*distance) def update_position2(instruction, pos, waypoint): action, arg = instruction[0], int(instruction[1:]) if action in ["N", "S", "E", "W"]: waypoint = translate(waypoint, action, arg) elif action in ["L", "R"]: waypoint = rotate(waypoint, action, arg) elif action == "F": pos = forward2(pos, waypoint, arg) return pos, waypoint def follow_route2(route): pos = (0, 0) waypoint = (1, 10) for instruction in route.splitlines(): pos, waypoint = update_position2(instruction, pos, waypoint) return pos ``` #### File: Advent-of-Code-2020/adventofcode/day15.py ```python def memory_game(starting_numbers, end_turn=2020): # Create log of numbers when they were last said and if this is the first # time they have been said numbers = dict() # Initialise using starting numbers except for the last numbers = {number: turn for turn, number in enumerate(starting_numbers[:-1], start=1)} # Play the game last_number = starting_numbers[-1] for turn in range(len(starting_numbers)+1, end_turn+1): if last_number in numbers.keys(): # Current number is difference between last turn and previous time # last number was said current_number = (turn - 1) - numbers[last_number] else: # First time number was said, current number is 0 current_number = 0 numbers[last_number] = turn - 1 last_number = current_number return current_number ``` #### File: adventofcode/tests/test_day02.py ```python from ..day02 import (parse_line, valid_password1, valid_password2, count_valid_passwords) import pytest test_lines = [ "1-3 a: abcde", "1-3 b: cdefg", "2-9 c: ccccccccc" ] def test_parse_line(): assert parse_line("1-3 a: abcde") == (1, 3, "a", "abcde") test_data = zip(test_lines, [True, False, True]) @pytest.mark.parametrize("test_line,result", test_data) def test_valid_password1(test_line, result): assert valid_password1(*parse_line(test_line)) == result test_data = zip(test_lines, [True, False, False]) @pytest.mark.parametrize("test_line,result", test_data) def test_valid_password2(test_line, result): assert valid_password2(*parse_line(test_line)) == result def test_count_valid_passwords(): assert count_valid_passwords(valid_password1, test_lines) == 2 def test_count_valid_passwords2(): assert count_valid_passwords(valid_password2, test_lines) == 1 ``` #### File: adventofcode/tests/test_day06.py ```python from ..day06 import count_any_affirmative, count_all_affirmative from textwrap import dedent test_data = dedent("""\ abc a b c ab ac a a a a b""") def test_count_any_affirmative(): assert count_any_affirmative(test_data.split("\n\n")) == 11 def test_count_all_affirmative(): assert count_all_affirmative(test_data.split("\n\n")) == 6 ```
{ "source": "JimMadge/aws-fpga", "score": 2 }
#### File: tests/simulation_tests/test_sims.py ```python from __future__ import print_function import logging import os from os.path import dirname, realpath import pytest import subprocess import sys import traceback import re try: import aws_fpga_utils import aws_fpga_test_utils from aws_fpga_test_utils.AwsFpgaTestBase import AwsFpgaTestBase except ImportError as e: traceback.print_tb(sys.exc_info()[2]) print("error: {}\nMake sure to source hdk_setup.sh".format(sys.exc_info()[1])) sys.exit(1) logger = aws_fpga_utils.get_logger(__name__) class TestSims(AwsFpgaTestBase): """ Pytest test class. NOTE: Cannot have an __init__ method. """ ADD_SIMULATOR = True ADD_BATCH = True @classmethod def setup_class(cls): """ Do any setup required for tests. """ AwsFpgaTestBase.setup_class(cls, __file__) AwsFpgaTestBase.assert_hdk_setup() cls.RUN_SIM_SCRIPT = dirname(realpath(__file__)) + "/run_sim.sh" assert os.path.exists(cls.RUN_SIM_SCRIPT) cls.set_simulation_error_signatures() cls.set_simulation_pass_signatures() return @classmethod def set_simulation_error_signatures(cls): """ Adding compiled errors """ cls.failure_messages = [ r'.*\*{0,3}\s*ERROR\s*\*{0,3}', r'.*\*{0,3}\s*TEST[\s_-]{0,2}FAILED\s*\*{0,3}.*', r'.*Detected\s*[1-9]\d*\s*error[s]?.*' ] cls.compiled_failure_messages = [] for failure_message in cls.failure_messages: cls.compiled_failure_messages.append(re.compile(failure_message)) @classmethod def set_simulation_pass_signatures(cls): """ Adding compiled pass signatures """ cls.pass_messages = [ r'.*[\*\!]{0,3}\s*TEST[\s_-]{0,2}PASSED\s*[\*\!]{0,3}.*', ] cls.compiled_pass_messages = [] for pass_message in cls.pass_messages: cls.compiled_pass_messages.append(re.compile(pass_message)) @classmethod def parse_simulation_output(cls, test_name, test_type, test_stdout, test_stderr): """ Parse stdout and stderr and see if the test had any fail signatures Also check if Test Passed. a no Test passed signature is """ failure_messages = [] pass_messages = [] # Check failures for stdout_line in test_stdout: for fail_regex in cls.compiled_failure_messages: if fail_regex.match(stdout_line): failure_messages.append(stdout_line) # Check passes for stdout_line in test_stdout: for pass_regex in cls.compiled_pass_messages: if pass_regex.match(stdout_line): pass_messages.append(stdout_line) return_dict = { "passes": pass_messages, "fails": failure_messages } return return_dict def run_sim(self, test_dir="", test_name="", test_type="", simulator="", batch=""): vivado_version = os.environ.get('VIVADO_TOOL_VERSION', 'unknown') # Error on defaults if not(test_dir and test_name and test_type): self.fail("Please enter non empty test_dir, test_name and test_type when calling run_sim") command_line = [self.RUN_SIM_SCRIPT, '--test-name', test_name, '--test-dir', test_dir, '--test-type', test_type, '--simulator', simulator, '--batch', batch, '--vivado-version', vivado_version ] (rc, stdout_lines, stderr_lines) = self.run_cmd(" ".join(command_line)) # write simulation output if simulator == "vivado": simulator_version = "{}_{}".format(simulator, vivado_version) else: simulator_version = simulator stdout_file_name = "{}/{}_{}_{}.stdout.sim.log".format(test_dir, test_name, test_type, simulator_version) with open(stdout_file_name, 'w') as f: for item in stdout_lines: f.write("%s\n" % item) # Only write if there is something to write if stderr_lines: stderr_file_name = "{}/{}_{}_{}.stderr.sim.log".format(test_dir, test_name, test_type, simulator_version) with open(stderr_file_name, 'w') as f: for item in stderr_lines: f.write("%s\n" % item) # Check exit code assert rc == 0, "Sim failed. Received Non-Zero return code" return_dict = self.parse_simulation_output(test_name=test_name, test_type=test_type, test_stdout=stdout_lines, test_stderr=stderr_lines) # Check for fail signatures assert [] == return_dict["fails"], "Found failures {}".format(return_dict["fails"]) # Check for pass signatures. We need at least one to make the test as a pass assert [] != return_dict["passes"], "Found no matching pass statements" # cl_dram_dma sv def test_cl_dram_dma__dram_dma__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_axi_mstr__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_axi_mstr' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_rnd__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_rnd' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_rnd__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_rnd' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_rnd__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_rnd' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_rnd__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_rnd' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_4k_crossing__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_4k_crossing' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_single_beat_4k__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_single_beat_4k' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_single_beat_4k__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_single_beat_4k' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_single_beat_4k__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_single_beat_4k' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_single_beat_4k__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_single_beat_4k' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcis_concurrent__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcis_concurrent' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcis_concurrent__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcis_concurrent' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcis_concurrent__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcis_concurrent' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcis_concurrent__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcis_concurrent' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__host_pcim__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_host_pcim' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcim_concurrent__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcim_concurrent' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcim_concurrent__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcim_concurrent' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcim_concurrent__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcim_concurrent' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_pcim_concurrent__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_pcim_concurrent' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_sda_concurrent__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_sda_concurrent' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_sda_concurrent__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_sda_concurrent' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_sda_concurrent__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_sda_concurrent' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dma_sda_concurrent__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dma_sda_concurrent' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__ddr__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_ddr' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__clk_recipe__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_clk_recipe' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__int__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_int' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_wc__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_wc' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_wc__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_wc' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_wc__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_wc' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_wc__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_wc' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_len__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_len' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_len__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_len' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_len__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_len' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_len__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_len' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_pcis_axsize__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_pcis_axsize' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_pcis_axsize__sv_fast(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_pcis_axsize' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_pcis_axsize__sv_fast_ecc_direct(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_pcis_axsize' test_type = 'sv_fast_ecc_direct' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__peek_poke_pcis_axsize__sv_fast_ecc_rnd(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_peek_poke_pcis_axsize' test_type = 'sv_fast_ecc_rnd' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__ddr_peek_poke__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_ddr_peek_poke' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__ddr_peek_bdr_walking_ones__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_ddr_peek_bdr_walking_ones' test_type = 'sv_ddr_bkdr' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_dram_bdr_row_col_combo__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_dram_bdr_row_col_combo' test_type = 'sv_ddr_bkdr' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_mem_model_bdr_wr__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_mem_model_bdr_wr' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_mem_model_bdr_rd__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_mem_model_bdr_rd' test_type = 'sv_fast' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__axi_mstr_multi_rw__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_axi_mstr_multi_rw' test_type = 'sv' def test_cl_dram_dma__bar1__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_bar1' test_type = 'sv' def test_cl_dram_dma__dram_dma_allgn_addr_4k__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_allgn_addr_4k' test_type = 'sv' def test_ddr_peek_bdr_walking_ones__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_ddr_peek_bdr_walking_ones' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_uram_example c def test_cl_uram_example__uram_example__c(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_uram_example/verif/scripts' test_name = 'test_uram_example' test_type = 'c' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_dram_dma c def test_cl_dram_dma__sda__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_sda' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) def test_cl_dram_dma__dram_dma_hwsw_cosim__c(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_dram_dma/verif/scripts' test_name = 'test_dram_dma_hwsw_cosim' test_type = 'c' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_hello_world sv def test_cl_hello_world__hello_world__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_hello_world/verif/scripts' test_name = 'test_hello_world' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_test_gl_cntr sv def test_cl_hello_world__gl_cntr__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_hello_world/verif/scripts' test_name = 'test_gl_cntr' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_hello_world vhdl def test_cl_vhdl_hello_world__hello_world__vhdl(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_hello_world_vhdl/verif/scripts' test_name = 'test_hello_world' test_type = 'vhdl' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_hello_world c def test_cl_hello_world__hello_world__c(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_hello_world/verif/scripts' test_name = 'test_hello_world' test_type = 'c' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_sde_c2h sv def test_cl_sde__test_simple_c2h__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_sde/verif/scripts' test_name = 'test_simple_c2h' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) # cl_sde_h2c sv def test_cl_sde__test_simple_h2c__sv(self, simulator, batch): test_dir = self.WORKSPACE + '/hdk/cl/examples/cl_sde/verif/scripts' test_name = 'test_simple_h2c' test_type = 'sv' self.run_sim(test_dir=test_dir, test_name=test_name, test_type=test_type, simulator=simulator, batch=batch) ``` #### File: SDAccel/tests/test_find_sdaccel_examples.py ```python from __future__ import print_function import os from os.path import dirname, realpath import json try: import aws_fpga_utils import aws_fpga_test_utils from aws_fpga_test_utils.AwsFpgaTestBase import AwsFpgaTestBase except ImportError as e: traceback.print_tb(sys.exc_info()[2]) print("error: {}\nMake sure to source shared/bin/setup_test_env.sh".format(sys.exc_info()[1])) sys.exit(1) logger = aws_fpga_utils.get_logger(__name__) class TestFindSDAccelExamples(AwsFpgaTestBase): ''' Pytest test class. NOTE: Cannot have an __init__ method. ''' ADD_XILINX_VERSION = True @classmethod def setup_class(cls): ''' Do any setup required for tests. ''' AwsFpgaTestBase.setup_class(cls, __file__) return def test_find_example_makefiles(self, xilinxVersion): assert os.path.exists(self.xilinx_sdaccel_examples_dir), "The Xilinx SDAccel example dir does not exist: {}".format(self.xilinx_sdaccel_examples_dir) assert os.listdir(self.xilinx_sdaccel_examples_dir) != [], "Xilinx SDAccel example submodule not cloned or does not exist" xilinx_examples_makefiles = [] xilinx_sdaccel_example_map = {} for root, dirs, files in os.walk(self.xilinx_sdaccel_examples_dir): ignore = False if os.path.exists(root + "/description.json") and os.path.exists(root + "/Makefile"): with open(root + "/description.json", "r") as description_file: description = json.load(description_file) if "containers" in description: if len(description["containers"]) > 1: ignore = True logger.info("Ignoring {} as >1 containers found in description.json.".format(root)) else: ignore = True logger.info("Ignoring {} as no containers found in description.json.".format(root)) continue if "nboard" in description: if "xilinx_aws-vu9p-f1-04261818" in description["nboard"]: ignore = True logger.info("Ignoring {} as F1 device found in nboard.".format(root)) continue else: ignore = True logger.warn("Ignoring: {} as no Makefile/description.json exist".format(root)) if not ignore: xilinx_examples_makefiles.append(root) logger.info("Adding: " + root) assert len(xilinx_examples_makefiles) != 0, "Could not find any Xilinx SDAccel example in %s" % self.xilinx_sdaccel_examples_dir # Remove the workspace path so that the next node can reference this path directly # So we don't face cases like /workspace@3 .. xilinx_examples_makefiles = [os.path.relpath(full_path, self.WORKSPACE) for full_path in xilinx_examples_makefiles] for example_path in xilinx_examples_makefiles: example_test_class = example_path.replace('/', '__').capitalize() xilinx_sdaccel_example_map[example_test_class] = example_path with open(self.xilinx_sdaccel_examples_list_file, 'w') as outfile: json.dump(xilinx_sdaccel_example_map, outfile) # Also write the archive file with open(self.xilinx_sdaccel_examples_list_file + "." + xilinxVersion, 'w') as archive_file: json.dump(xilinx_sdaccel_example_map, archive_file) assert os.path.getsize(self.xilinx_sdaccel_examples_list_file) > 0, "%s is a non zero file. We need to have some data in the file" % self.xilinx_sdaccel_examples_list_file ``` #### File: sdk/tests/test_py_bindings.py ```python import os from os.path import basename, dirname, realpath import pytest import sys import traceback import requests import time import signal import subprocess import re try: import aws_fpga_utils import aws_fpga_test_utils from aws_fpga_test_utils.AwsFpgaTestBase import AwsFpgaTestBase except ImportError as e: traceback.print_tb(sys.exc_info()[2]) print "error: {}\nMake sure to source sdk_setup.sh".format(sys.exc_info()[1]) sys.exit(1) logger = aws_fpga_utils.get_logger(__name__) class TestPyBindings(AwsFpgaTestBase): ''' Pytest test class. NOTE: Cannot have an __init__ method. Test all example CLs with different strategies and clock recipes. ''' def setup_class(cls): ''' Do any setup required for tests. ''' AwsFpgaTestBase.setup_class(cls, __file__) AwsFpgaTestBase.assert_sdk_setup() assert AwsFpgaTestBase.running_on_f1_instance(), "This test must be run on an F1 instance. Running on {}".format(aws_fpga_test_utils.get_instance_type()) (cls.cl_hello_world_agfi, cl_hello_world_afi) = cls.get_agfi_from_readme('cl_hello_world') def setup_method(self, test_method): os.putenv('BSWAPPER_AFI', self.cl_hello_world_agfi) os.putenv('BSWAPPER_SLOT', "0") os.putenv('BSWAPPER_REG', "0x500") def teardown_method(self, test_method): pass def stop_server(self): if hasattr(self, 'pid'): cmd = ['sudo', 'kill', '-2', str(self.pid)] logger.info("Signalling {}".format(self.pid)) logger.info("using command {}".format(cmd)) subprocess.call(cmd) def test_flask_app(self): server_script = os.environ['SDK_DIR'] + "/tests/test_py.sh" cmd = ['sudo', '-E', server_script] try: logger.info("Starting server using {}".format(cmd)) server = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if server.stdout is not None: server.stdout.flush() line = server.stdout.readline() mo = re.match("CHILDPID (\d+)?", line) if mo is not None: self.pid = mo.group(1) logger.info("Server PID: {}".format(self.pid)) except: logger.error(traceback.print_exc()) max_retries = 30 retry = 0 while True: if retry >= max_retries: logger.info("Exceeded max retries...") self.stop_server() sys.exit(1) # Add sleep before first check as flask server may still be coming up. time.sleep(1) try: r1 = requests.get('http://127.0.0.1:5000/status') if r1.status_code != 200: logger.info("Recived response {}".format(r1.status_code)) else: if r1.text == "FPGA_STATUS_LOADED": logger.info("Server ready") break else: logger.info("FPGA not loaded with AFI yet.") except: logger.info("Exception caught during status check.") logger.info(traceback.print_exc()) logger.info("Retry status check...") retry += 1 payload = { 'input_data' : '0x12345678'} r2 = requests.get('http://1192.168.127.12:5000/', params=payload) logger.info("Stopping server") self.stop_server() if r2.status_code == 200: swapped_val = r2.text logger.info("Swapped value: {}".format(swapped_val)) if swapped_val != "0x78563412": logger.info("Swapped value not correct!") sys.exit(2) else: logger.info("Status received {}".format(r.status_code)) sys.exit(3) ``` #### File: shared/tests/test_check_src_headers.py ```python import boto3 import logging import os from os.path import basename, dirname, realpath import pytest import re import sys import traceback import check_src_headers import fileprovider try: import aws_fpga_test_utils from aws_fpga_test_utils.AwsFpgaTestBase import AwsFpgaTestBase import aws_fpga_utils except ImportError as e: traceback.print_tb(sys.exc_info()[2]) print "error: {}\nMake sure to source shared/tests/bin/setup_test_env.sh".format(sys.exc_info()[1]) sys.exit(1) logger = aws_fpga_utils.get_logger(__name__) class TestCheckSrcHeaders(AwsFpgaTestBase): ''' Pytest test class. NOTE: Cannot have an __init__ method. Create AFI from DCP. ''' @classmethod def setup_class(cls): ''' Do any setup required for tests. ''' AwsFpgaTestBase.setup_class(cls, __file__) return def test_check_src_headers(self): # fileprovider.logger.setLevel(logging.DEBUG) # check_project_headers.logger.setLevel(logging.DEBUG) rc = check_src_headers.check_headers('.') assert rc == 0 ```
{ "source": "JimMadge/healthy", "score": 2 }
#### File: healthy/healthy/__main__.py ```python import docker # type: ignore from docker.models.containers import Container # type: ignore from typing import Optional def main() -> None: client = docker.from_env() for container in client.containers.list(): health_check(container) def health_check(container: Container) -> None: name = container.name status = get_health_status(container) if status is None: status = "no health check" skip_statuses = ["no health check", "healthy"] restart_statuses = ["unhealthy"] if status in skip_statuses: output(name, status, "skipping") elif status in restart_statuses: output(name, status, "restarting") container.restart() else: output(name, status, "skipping") def get_health_status(container: Container) -> Optional[str]: state = container.attrs["State"] if "Health" in state.keys(): return str(state["Health"]["Status"]) else: return None def output(name: str, status: str, action: str) -> None: print(f"{name} - {status} - {action}") if __name__ == "__main__": # pragma no cover main() ```
{ "source": "JimMadge/OpenCL-Reduction-Example", "score": 2 }
#### File: OpenCL-Reduction-Example/reduction/reduction.py ```python import numpy as np import pathlib import pyopencl as cl from pyopencl import mem_flags as mf kernel_file = pathlib.Path(__file__).parent.absolute()/"reduction.cl" kernel_source = open(kernel_file).read() def redsum(array, context, program): # Create queue queue = cl.CommandQueue(context) # Set the work-group size (number of work-items per work-group) group_size = 256 # Pad an array a_h = pad(array, group_size) # Determine number of work-groups (work-items / work-group size) work_groups = a_h.shape[0]//group_size # Assign array of sum per work group p_h = np.zeros(work_groups) # Determine memory per work group (total size of array in bytes / number of # work groups, or, size of element of array in bytes * of work-group size) local_memory_size = a_h.nbytes//work_groups # Create buffers a_d = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_h) b_d = cl.LocalMemory(local_memory_size) p_d = cl.Buffer(context, mf.WRITE_ONLY, p_h.nbytes) # Call kernel redsum = program.sum redsum(queue, a_h.shape, (group_size,), a_d, b_d, p_d) cl.enqueue_copy(queue, p_h, p_d) # Sum of residuals return np.sum(p_h) def redsum_axis0(array, context, program, group_size=256): # Create queue queue = cl.CommandQueue(context) # Pad array a_h = pad(array, group_size) print(a_h.shape) n_cols = a_h.shape[1] col_length = a_h.shape[0] # Determine number of work-groups (work-items / work-group size) work_groups_per_col = col_length//group_size # Assign array of sum per work group p_h = np.zeros((work_groups_per_col, n_cols)) print(p_h.shape) # Determine memory per work group (total size of array in bytes / number of # work groups, or, size of element of array in bytes * of work-group size) local_memory_size = a_h[:, 0].nbytes//work_groups_per_col print(local_memory_size) # Create buffers a_d = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_h) b_d = cl.LocalMemory(local_memory_size) p_d = cl.Buffer(context, mf.WRITE_ONLY, p_h.nbytes) # Call kernel redsum = program.sum_axis0 redsum(queue, a_h.shape, (group_size, 1,), a_d, b_d, p_d) cl.enqueue_copy(queue, p_h, p_d) # Sum residuals print(p_h) return np.sum(p_h, axis=0) def redsum_axis1(array, context, program, group_size=256): # Create queue queue = cl.CommandQueue(context) # Pad array a_h = pad(array, group_size, axis=1) n_rows = a_h.shape[0] row_length = a_h.shape[1] # Determine number of work-groups (work-items / work-group size) work_groups_per_row = row_length//group_size # Assign array of sum per work group p_h = np.zeros((n_rows, work_groups_per_row)) # Determine memory per work group (total size of array in bytes / number of # work groups, or, size of element of array in bytes * of work-group size) local_memory_size = a_h[0].nbytes//work_groups_per_row # Create buffers a_d = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_h) b_d = cl.LocalMemory(local_memory_size) p_d = cl.Buffer(context, mf.WRITE_ONLY, p_h.nbytes) # Call kernel redsum = program.sum_axis1 redsum(queue, a_h.shape, (1, group_size,), a_d, b_d, p_d) cl.enqueue_copy(queue, p_h, p_d) # Sum residuals return np.sum(p_h, axis=1) def pad(array, group_size, axis=0): """ Pad an array with zeros so that it is a multiple of the group size. :arg array: Array to pad. :type array: :class:`numpy.ndarray` :arg int group_size: OpenCL group size. :arg int axis: The axis to pad with zeros. Default is 0. :returns: `array` padded with an appropriate number of zeros. :rtype: :class:`numpy.ndarray` """ array_size = array.shape[axis] remainder = array_size % group_size if remainder == 0: return array else: padding = group_size - array_size % group_size padding_shape = list(array.shape) padding_shape[axis] = padding return np.concatenate( (array, np.zeros(padding_shape, dtype=array.dtype)), axis=axis ) ``` #### File: reduction/test/conftest.py ```python from .. import kernel_source import pyopencl as cl import pytest @pytest.fixture(scope="session") def context(): platform = cl.get_platforms() devices = platform[0].get_devices(cl.device_type.GPU) if devices == []: devices = platform[0].get_devices(cl.device_type.DEFAULT) context = cl.Context([devices[0]]) return context @pytest.fixture(scope="session") def program(context): program = cl.Program(context, kernel_source).build() return program ```
{ "source": "jimmahoney/tron-bot-jim", "score": 3 }
#### File: bots/python/MyTronBot.py ```python import tron, random def which_move(board): return random.choice(board.moves()) for board in tron.Board.generate(): tron.move(which_move(board)) ``` #### File: bots/python/right_hand.py ```python import random, tron, utilities history = utilities.BotHistory() debug = utilities.LogFile("logs/right_hand", randomizeName=True) def lookForWall(board): """ Return a move along a right hand wall, or a random move. """ for direction in tron.DIRECTIONS: directionString = utilities.direction2string[direction] debug.log(" looking %s for open with wall right " % directionString) right = utilities.rightwards[direction] if board.passable(board.rel(direction)) \ and not board.passable(board.rel(right)): debug.log(" yup, let's do that.") return direction debug.log(" no motion along a wall found; picking randomly.") return random.choice(board.moves()) def which_move(board): history.update(board) debug.log("move %i" % history.length()) if history.length() == 1: debug.log(" 1st move") direction = lookForWall(board) else: oldDirection = history.lastDirection() debug.log(" was moving %s" % utilities.direction2string[oldDirection]) direction = utilities.rightwards[oldDirection] finalTry = utilities.rightwards[direction] while True: directionString = utilities.direction2string[direction] debug.log(" looking at %s ..." % directionString) if board.passable(board.rel(direction)): debug.log(" yup, am moving %s" % directionString) return direction elif direction == finalTry: debug.log(" no where to go - moving north to die") return tron.NORTH else: debug.log(" turning left ...") direction = utilities.leftwards[direction] # --- main ------------------- for board in tron.Board.generate(): tron.move(which_move(board)) ```
{ "source": "jimmahoney/tron-engine", "score": 3 }
#### File: tron-engine/bots/failbot.py ```python import tron, random def which_move(board): return 'yup' for board in tron.Board.generate(): tron.move(which_move(board)) ``` #### File: tron-engine/bots/fill2.py ```python import random, tron ########## Find free area around square ############## def area_finder(board,square_coordinates): if not board.passable(square_coordinates): return 0 UNSEEN='u' SEEN='s' area=0 #Create map to keep track of which areas have been seen by algorithm map=[] for line in xrange(board.height): map.append([]) for line in map: for i in xrange(board.width): line.append(UNSEEN) #Expand out into adjacent unseen squares fringe=[square_coordinates] map[square_coordinates[0]][square_coordinates[1]]=SEEN while len(fringe) > 0: area+=1 for sq in board.adjacent(fringe[0]): if board.passable(sq): if map[sq[0]][sq[1]]==UNSEEN: fringe.append(sq) map[sq[0]][sq[1]]=SEEN del fringe[0] return area def which_move(board): #unused test info dump to file ''' f=open("tronoutput.txt", 'w') s='' for line in board.board: s=s+str(line)+'\n' f.write(s) f.close ''' moves=(1,2,3,4) # Make move into largest free area or default to north. best_move=1 best_area = 0 for move in moves: sq=board.rel(move) area = area_finder(board,sq) if area > best_area: best_area = area best_move = move return best_move # Get board and make move for board in tron.Board.generate(): tron.move(which_move(board)) ``` #### File: tron-engine/bots/kamikazebot.py ```python import math, tron def distance(one, two): # Finds the distance between two points y1, x1 = one y2, x2 = two distance = math.sqrt((y2 - y1)**2+(x2 - x1)**2) return distance def which_move(board): # Chooses which move to make each turn moves = list(board.moves()) decision = moves[0] for dir in moves: if distance(board.rel(dir), board.them()) <= distance (board.rel(decision), board.them()): decision = dir return decision # make a move each turn for board in tron.Board.generate(): tron.move(which_move(board)) ``` #### File: tron-engine/bots/logbot.py ```python import random, tron, time DEBUG = False if DEBUG: # On csmarlboro.org, change 'everyone' to your username. # Keep the rest of the path - that folder is world writable. # This opens that file for appending, and writes one line # to it with the date and time. logfile = '/var/www/csmarlboro/tron/logs/everyone.txt' tron.init_error_log(logfile) tron.warn("Starting logbot") # Change this to whatever you like. def debug(message): if DEBUG: tron.warn(message) def which_move(board): """ Return the direction to move (1,2,3,4) given a Board object. """ choices = board.moves() debug('') debug(' legal moves are' + str(choices)) move = random.choice(choices) debug(' chosen move is ' + str(move)) ## test: take longer than the 1 sec allowd. # time.sleep(2) ## test: occasionaly crash (divide by zero error) # if random.randint(1,10) == 3: a = 1/0 return move # You probably don't need to change this part. for board in tron.Board.generate(): tron.move(which_move(board)) ``` #### File: tron-engine/bots/tron.py ```python import sys, os, datetime # --- start debugging stuff --------------------------------------------- ## To set up your bot for debugging : ## ## 1. From the command line, create a logfile in a world-writable folder, ## and make that file writeable by anyone. ## On csmarlboro.org, I've set up /var/www/csmarlboro/tron/logs ## to be a good place; create a file with your username there. ## (Change 'you' to your username, so only your bot's messages go there.) ## ## $ touch /var/www/csmarlboro/tron/logs/you.txt # Create it. ## $ chmod o+w /var/www/csmarlboro/tron/logs/you.txt # Set permissions. ## ## 2. In your robot.py file, send all errors and warn() output ## to that file. (Note that this means you'll need to look there ## to see errors, even when running it yourself.) ## Use a an absolute path (starting with /) so that the file ## will have the same name no matter what folder the bot is run from. ## Use your username for "you" in what's below. ## ## import tron ## tron.init_logfile('/var/www/csmarlboro/tron/logs/you.txt') ## ## 3. For debugging print statements, use the "warn" function " ## in your robot.py file. For example if you want to ## log the value of variable foo in some function bar : ## ## tron.warn(' in function bar, foo={}'.format(foo)) ## ## 4. Run your bot, either manually from the command line, ## or with the terminal "run" script, or in a tournament. ## Then each game will append to the logfile, starting ## with a line like "=== starting bot at ... ===" ## ## 5. Look in that file to see what happened. From the command line ## ## $ tail /var/www/csmarlboro/tron/logs/you.txt ## ## or ## ## $ less /home/user/tron_logfile.txt ## ## See logbot.py for an example. ## ## Questions? Ask someone. ## def warn(message): """ Send a warning message to stderr. This works well with the logfile set with init_logfile(path) """ # Note that message is a string, so use " ... {} ".format() or str() # to convert variables to strings, i.e. warn("a={}".format(a)) sys.stderr.write(message + "\n") def init_error_log(logfilename): """ send stderr to a logfile, which will then have errors and warn(messages) appended to it. """ # USE A FULL PATH, i.e. /var/www/csmarlboro/tron/logs/you.txt # so that this will work no matter which folder the bot is run from, and # MAKE SURE THAT FILE IS WRITABLE, i.e. # $ export logfile=/var/www/csmarlboro/tron/logs/you.txt # $ touch $logfile # Create it if need be, # $ chmod o+w $logfile # and make it world writable. # # Adapted from pages given by googling "python stderr to file" sys.stderr = open(logfilename, "a") # set stderr to file and append to it warn("=== starting python bot at {} ===".format( datetime.datetime.now().ctime())) # --- end debugging stuff ------------------------------------------------ NORTH = 1 EAST = 2 SOUTH = 3 WEST = 4 FLOOR = ' ' WALL = '#' ME = '1' THEM = '2' DIRECTIONS = (NORTH, EAST, SOUTH, WEST) def direction(which): """ Return a string (e.g. 'north') from a direction number (e.g. 1) """ return ['', 'north', 'east', 'south', 'west'][which] def move(direction): """ Send a move to the referee. """ print direction sys.stdout.flush() def _invalid_input(message): print >>sys.stderr, "Invalid input: %s" % message sys.exit(1) def _readline(buf): while not '\n' in buf: tmp = os.read(0, 1024) # standard input, max 1kB if not tmp: break buf += tmp if not buf.strip(): return None, buf if not '\n' in buf: _invalid_input('unexpected EOF after "%s"' % buf) index = buf.find('\n') line = buf[0:index] rest = buf[index + 1:] return line, rest class Board(object): """ The Tron Board """ def __init__(self, width, height, board): self.board = board self.height = height self.width = width self._me = None self._them = None @staticmethod def _read(buf): meta, buf = _readline(buf) if not meta: return None, buf dim = meta.split(' ') if len(dim) != 2: _invalid_input("expected dimensions on first line") try: width, height = int(dim[0]), int(dim[1]) except ValueError: _invalid_input("malformed dimensions on first line") lines = [] while len(lines) != height: line, buf = _readline(buf) if not line: _invalid_input("unexpected EOF reading board") lines.append(line) board = [line[:width] for line in lines] if len(board) != height or any(len(board[y]) != width for y in xrange(height)): _invalid_input("malformed board") return Board(width, height, board), buf @staticmethod def generate(): """ Generate board objects, once per turn. """ buf = '' while True: board, buf = Board._read(buf) if not board: break yield board if buf.strip(): _invalid_input("garbage after last board: %s" % buf) def __getitem__(self, coords): """ Retrieve the object at the specified coordinates. Use it like this: if board[3, 2] == tron.THEM: # oh no, the other player is at (3,2) run_away() Coordinate System: The coordinate (y, x) corresponds to row y, column x. The top left is (0, 0) and the bottom right is (board.height - 1, board.width - 1). Out-of-range coordinates are always considered walls. Items on the board: tron.FLOOR - an empty square tron.WALL - a wall or trail of a bot tron.ME - your bot tron.THEM - the enemy bot """ y, x = coords if not 0 <= x < self.width or not 0 <= y < self.height: return WALL return self.board[y][x] def me(self): """ Returns your position on the board. It is always true that board[board.me()] == tron.ME. """ if not self._me: self._me = self._find(ME) return self._me def them(self): """ Finds the other player's position on the board. It is always true that board[board.them()] == tron.THEM. """ if not self._them: self._them = self._find(THEM) return self._them def _find(self, obj): for y in xrange(self.height): for x in xrange(self.width): if self[y, x] == obj: return y, x raise KeyError("object '%s' is not in the board" % obj) def passable(self, coords): """ Determine if a position in the board is passable. You can only safely move onto passable tiles, and only floor tiles are passable. """ return self[coords] == FLOOR def rel(self, direction, origin=None): """ Calculate which tile is in the given direction from origin. The default origin is you. Therefore, board.rel(tron.NORTH)) is the tile north of your current position. Similarly, board.rel(tron.SOUTH, board.them()) is the tile south of the other bot's position. """ if not origin: origin = self.me() y, x = origin if direction == NORTH: return y - 1, x elif direction == SOUTH: return y + 1, x elif direction == EAST: return y, x + 1 elif direction == WEST: return y, x - 1 else: raise KeyError("not a valid direction: %s" % direction) def adjacent(self, origin): """ Calculate the four locations that are adjacent to origin. Particularly, board.adjacent(board.me()) returns the four tiles to which you can move to this turn. This does not return tiles diagonally adjacent to origin. """ return [self.rel(dir, origin) for dir in DIRECTIONS] def moves(self): """ Calculate which moves are safe to make this turn. Any move in the returned list is a valid move. There are two ways moving to one of these tiles could end the game: 1. At the beginning of the following turn, there are no valid moves. 2. The other player also moves onto this tile, and you collide. """ possible = dict((dir, self.rel(dir)) for dir in DIRECTIONS) passable = [dir for dir in possible if self.passable(possible[dir])] if not passable: # it seems we have already lost return [NORTH] return passable def as_string(self): """ Return a printable string of the current board. """ result = "" for line in self.board: result += line + "\n" return result ``` #### File: tron-engine/engines/player.py ```python import signal, os, sys, string, tempfile from time import clock from subprocess import Popen, PIPE P0BOARD = string.maketrans('1\x81\x82\x83\x842\xa1\xa2\xa3\xa4.*\x88\x89\x8a\xa8\xa9\xaa',' ########') P1BOARD = string.maketrans('1\x81\x82\x83\x842\xa1\xa2\xa3\xa4.*\x88\x89\x8a\xa8\xa9\xaa','1111122222########') P2BOARD = string.maketrans('1\x81\x82\x83\x842\xa1\xa2\xa3\xa4.*\x88\x89\x8a\xa8\xa9\xaa','2222211111########') has_alarm = (hasattr(signal, 'SIGALRM') and hasattr(signal, 'alarm')) if not has_alarm: print "Warning: System does not support alarm(); timeouts will not be strictly enforced." if not hasattr(os, 'kill'): try: import win32api except ImportError: print "Warning: System does not support kill(); process may end up spinning upon process exit." def kill(pid, sig=signal.SIGTERM): # http://www.python.org/doc/faq/windows/ import win32api if sig != signal.SIGTERM: raise OSError("Sending any signal except SIGTERM is not supported on Windows.") handle = win32api.OpenProcess(1, 0, pid) return (0 != win32api.TerminateProcess(handle, 0)) use_shell = True else: kill = os.kill use_shell = True class TimeoutException(Exception): pass def alarm(*args): raise TimeoutException("Time limit exceeded.") def set_alarm(timeout=1): if has_alarm: old_alarm=signal.signal(signal.SIGALRM, alarm) signal.alarm(timeout) return old_alarm else: return clock() + timeout def reset_alarm(old_alarm): if has_alarm: signal.alarm(0) signal.signal(signal.SIGALRM, old_alarm) else: if clock() > old_alarm: raise TimeoutException("Time limit exceeded.") class PlayerFailedException(Exception): def __init__(self, player_symbol, player_name, msg): self.player = "bot {} {}".format(player_symbol, player_name) Exception.__init__(self, "{} failed: {}".format(self.player, msg)) """ http://code.activestate.com/recipes/134892/ """ class _Getch: """Gets a single character from standard input. Does not echo to the screen.""" def __init__(self): try: self.impl = _GetchWindows() except ImportError: self.impl = _GetchUnix() def __call__(self): return self.impl() class _GetchUnix: def __init__(self): import tty, sys def __call__(self): import sys, tty, termios fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(sys.stdin.fileno()) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch class _GetchWindows: def __init__(self): import msvcrt def __call__(self): import msvcrt return msvcrt.getch() class Player(object): MOVES = {'N':'1', 'E':'2', 'S':'3', 'W':'4', 'I':'1', 'J':'4', 'K':'3', 'L':'2'} def __init__(self, cmd, name): if cmd == '-': self.interactive = True self.last_move = 'N' try: self.get_input = _Getch() except: self.get_input = raw_input else: self.interactive = False self.stderr = tempfile.TemporaryFile() self.process = Popen(cmd, shell=use_shell, stdin=PIPE, stdout=PIPE, stderr=self.stderr) self.name = name def readchar(self): while True: c = self.process.stdout.read(1) if c and c.isspace(): continue return c def readline(self): return self.process.stdout.readline() def writeline(self, s): self.process.stdin.write(s+'\n') self.process.stdin.flush() def send_eof(self): if not self.interactive: self.process.stdin.close() def getmove(self, board, player): try: if self.interactive: sys.stdout.write("Move (i/j/k/l or n/e/s/w) [%s]? "%self.last_move) ret = self.get_input().strip() ret = ret[:1].upper() if not ret: ret = self.last_move else: self.last_move = ret if ret in self.MOVES: ret = self.MOVES[ret] else: self.writeline(board.getdims()) for l in board.getboard(): if player == '1': self.writeline(l.translate(P1BOARD)) else: self.writeline(l.translate(P2BOARD)) old_alarm = set_alarm(timeout=1) ret = self.readchar() reset_alarm(old_alarm) assert ret in '1234', \ "Player made an invalid move '{}'".format(ret) assert ret != '', "Player made blank move ''." return int(ret) except Exception, e: self.stderr.seek(0) stderr_text = "\n------ {} stderr ------\n".format(self.name) + \ self.stderr.read() + "\n" raise PlayerFailedException(player, self.name, str(e) + stderr_text) def send_signal(self, sig): if self.process.poll() is None: try: kill(self.process.pid, sig) except: return False return True return False def sigterm(self): if self.interactive: return True return self.send_signal(signal.SIGTERM) def sigkill(self): if self.interactive: return True if hasattr(signal, 'SIGKILL'): return self.send_signal(signal.SIGKILL) else: return self.send_signal(signal.SIGTERM) ```
{ "source": "jimmahoney/umber", "score": 3 }
#### File: src/misc/test_getattr.py ```python class Foo: def __getattr__(self, key): if not 'name' in self.__dir__(): self.name = 'unknown' return self.__getattribute__(key) f = Foo() name = f.name print(f" name = {name} ") age = f.age print(f" age = {age} ") ``` #### File: misc/uwsgitest/utest.py ```python from flask import Flask app = Flask(__name__) @app.route("/utest/") def hello(): return "<h1 style='color:blue'>Hello from 'utest' !</h1>" if __name__ == "__main__": app.run(host='0.0.0.0') ``` #### File: umber/src/model.py ```python import os, yaml, re, mimetypes, shutil, random from functools import reduce from flask import url_for from werkzeug.security import generate_password_hash, check_password_hash from peewee import ( SqliteDatabase, Model, TextField, IntegerField, PrimaryKeyField, ForeignKeyField ) from bs4 import BeautifulSoup from utilities import ( markdown2html, link_translate, static_url, md5, Time, ext_to_filetype, filetype_to_icon, size_in_bytes, stringify_access, print_debug, clean_access_dict ) from settings import ( os_db, umber_url, protocol, hostname, umber_mime_types, os_root, os_courses, photos_url, url_base, os_default_course, site_course_path, site_home, due_grace_hours ) import gitlocal db = SqliteDatabase(os_db) class BaseModel(Model): class Meta: database = db # (peewee requires this 'database' name) def __repr__(self): # e.g. fields = ', '.join(["{}={}".format(x[0],repr(x[1])) for x in list(self.__dict__['_data'].items())]) return '<{}({}) at 0x{:X}>'.format(self.__class__.__name__, fields, id(self)) @classmethod def first(cls): return cls.select().first() @classmethod def all(cls): return list(cls.select().execute()) class Person(BaseModel): class Meta: db_table = 'Person' person_id = PrimaryKeyField(db_column='person_id') username = TextField(unique=True) password = TextField() name = TextField() email = TextField() notes = TextField() _by_username = {} # cache _admins = None @staticmethod def from_comma_string(comma_string): """ Return people list from a string of usernames e.g. "john,mary" """ return list(map(Person.by_username, comma_string.split(','))) @staticmethod def searchname(partialname, maxresults=32): """ search for a name or username - returning up to a given number """ people = Person.select().where( \ Person.name.contains(partialname) | \ Person.username.contains(partialname)) \ .order_by(Person.username).limit(maxresults) return [p.username for p in people] @staticmethod def create_person(username, name, email, password='', is_admin=False): # TODO : restrict legal usernames ... # * prohibit leading '_' (reserved for system) # * lowercase_only? underbar? numbers? # * enforce uniqueness with db.atomic(): (user, created) = Person.get_or_create(username=username) if created: user.name = name user.email = email if not password: password = str(random.getrandbits(32)) user.set_password(password) user.save() # enroll_site has in it db.atomic() too ... # the docs say its OK to nest them. Course.enroll_site(user, is_admin=is_admin) return user @staticmethod def edit_person(username, name, email, password): try: with db.atomic(): user = Person.by_username(username) user.name = name user.email = email if password != '': user.set_password(password) user.save() except: print_debug('OOPS : Person.edit_user(username="{}") failed' \ .format(username)) def course_data(self): """ return courses that this person is registered in as a dict with keys role,course,url,semester """ registrations = list(Registration.select() .where(Registration.person == self)) registrations.sort(key=lambda r: r.course.name) registrations.sort(key=lambda r: r.course.start_date, reverse=True) return [{'role':r.role.name, 'course':r.course.name, 'url':r.course.url, 'semester':Time(r.course.start_date).semester()} for r in registrations if not r.course.name == 'Umber'] def get_username(self, username): return Person.by_username(username) def make_admin(self): """ Turn this person into a site admin """ with db.atomic(): umber = Course.get_site() site_registration = Registration.get(course=umber, person=self) site_registration.role = Role.by_name('admin') site_registration.save() def works(self, course): query = (Work.select() .where( Work.person == self, Work.course == course )) return list(query.execute()) def _save(self): """ save to database and invalidate caches """ try: del Person._by_username[self.username] except KeyError: pass Person._admins = None self.save() def set_password(self, passwordtext): with db.atomic(): self.password = generate_password_hash(passwordtext) self._save() def check_password(self, passwordtext): return check_password_hash(self.password, passwordtext) def get_role(self, course): """ Return role of this person in that course """ if self.username in course.username_to_role: return course.username_to_role[self] else: return Role.by_name('visitor') def get_last_first(self): names = self.name.split(' ') return names[-1] + ', ' + names[0] # -- Flask-Login methods & tools -- @staticmethod def get_anonymous(): """ Create and return an anonymous Person """ # Not saved to database (i.e. save() not called). # Not logged in. anon = Person(name='anonymous', username='') anon.anonymous = True return anon def is_authenticated(self): return not self.is_anonymous() def is_active(self): return not self.is_anonymous() def is_anonymous(self): try: return self.anonymous except: return False def is_admin(self): """ return True if this user is an admin, false otherwise """ return self.username in Person.admins() def get_id(self): if self.username == None: return str('') else: return str(self.username) def get_photo_url(self): return photos_url + '/' + self.username + '.jpg' @staticmethod def generic_photo_url(): return photos_url + '/generic_student.png' @staticmethod def by_username(username): """ Returns anonymous person if not found """ if username not in Person._by_username: try: person = Person.get(username = username) #person = Person.select() \ # .where(Person.username==username).first() except: return Person.get_anonymous() Person._by_username[username] = person return Person._by_username[username] @staticmethod def by_rolename(rolename): """ Return list of users who have a given type of registration """ # ... in any registration record i.e. any course return list(Person.select() .join(Registration) .where(Registration.role == Role.by_name(rolename)) .execute()) @staticmethod def admins(): """ Return list of administrators """ if not Person._admins: Person._admins = {p.username : True for p in Person.by_rolename('admin')} return Person._admins class Course(BaseModel): class Meta: db_table = 'Course' course_id = PrimaryKeyField(db_column='course_id') active = IntegerField() assignments_md5 = TextField() credits = IntegerField() end_date = TextField() name = TextField() name_as_title = TextField() notes = TextField() path = TextField(unique=True) start_date = TextField() _site_course = None # course for site data def prepared(self): """ setup this instance after it's attributes are set """ # This method is essentially __init__ for these database objects. self._set_users() self.assignments = self._get_assignments() if not self.start_date: self.semester = '' else: self.semester = Time(self.start_date).semester() # url without request though that info is also in request self.url = umber_url + '/' + self.path self.abspath = os.path.join(os_courses, self.path) def __getattr__(self, key): # Define some attributes (.url, .abspath, .students, ...) # when they're needed. # # June 2019 : there is no "prepared" in python3's peewee; # see https://github.com/coleifer/peewee/issues/1479 # So I need another way to call this after instantiating a Course. # See docs.python.org/3/reference/expressions.html#attribute-references; # ... I can override __getattr__ to fill 'em in when first accessed. if not 'abspath' in self.__dir__(): self.prepared() return self.__getattribute__(key) def _set_users(self): """ define self.students, .faculty, .guests, .username_to_role """ # .students includes tutors; # username_to_rolename lists their role as 'tutor' registrations = list(Registration.select() .where((Registration.course == self) & (Registration.status != 'drop'))) self.students = [reg.person for reg in registrations if reg.role == Role.by_name('student')] self.faculty = [reg.person for reg in registrations if reg.role == Role.by_name('faculty')] self.guests = [reg.person for reg in registrations if reg.role == Role.by_name('guest')] self.students.sort(key=lambda s: s.name) self.faculty.sort(key=lambda s: s.name) self.username_to_role = {reg.person.username : reg.role for reg in registrations} self.username_to_rolename = {reg.person.username : reg.rolename() for reg in registrations} @staticmethod def get_all(): """ Return all but the 'Umber' course, sorted by semester & name """ result = [c for c in Course.all() if not c.name == 'Umber'] result.sort(key=lambda c: c.name) result.sort(key=lambda c: c.start_date, reverse=True) return result @staticmethod def create_course(name, path, start='', name_as_title='', copyfrom=os_default_course, user=None): if name_as_title == '': name_as_title = name if start == '': now = str(Time()) now_year = now[:4] now_month = now[5:7] if now_month < '06': start = now_year + '-' + '01-01' # spring elif now_month < '09': start = now_year + '-' + '06-01' # summer else: start = now_year + '-' + '09-01' # fall with db.atomic(): (course, created) = Course.get_or_create( name = name, path = path, start_date = start, name_as_title = name_as_title ) # Create a disk folder for a course by copying # files from some other course. # (If 'copyfrom' isn't defined, then those course files # had better already exist ... which is the case # for defaultcourse and democourse.) if copyfrom: abspath = os.path.join(os_courses, path) abscopyfrom = os.path.join(os_courses, copyfrom) shutil.copytree(abscopyfrom, abspath) # remove the old copied .git folder shutil.rmtree(os.path.join(abspath, '.git'), ignore_errors=True) gitlocal.init_add_commit(course, user) # initalize its .git folder return course @staticmethod def get_site(): """ return site admin course 'Umber' """ if not Course._site_course: Course._site_course = Course.get(name='Umber') return Course._site_course @staticmethod def create_site(): """ create site couse 'Umber' """ # for site resoruces i.e. help files, user id photos etc. with db.atomic(): (sitecourse, created) = Course.get_or_create( name = 'Umber', name_as_title = 'Umber<div>a course<br>managment<br>system</div>', path = site_course_path, start_date = '2018-01-01') return sitecourse def get_shortname(self): """ used in html title ; see Page.html_title """ # TODO : ... something shorter ? return self.name def is_site(self): """ true if this is the site course """ return self.path == site_course_path def person_to_role(self, person): """ Return role of person in course, or visitor """ return self.username_to_role.get(person.username, Role.by_name('visitor')) def username_is_member(self, username): return username in self.username_to_role def _get_assignments(self): return list(Assignment.select() \ .where(Assignment.course == self) \ .order_by(Assignment.nth)) def drop(self, user): """ Drop user (Person or username) from this course """ # (Students who are registered may have submitted work. # Rather than delete their files and database records, # I'm just changing their status to 'drop', and ignoring # those people in _set_users try: person = user name = person.name # Is this a Person object? except AttributeError: person = Person.by_username(user) # No - treat it as a username. name = person.name if name == 'anonymous' or name == '': return "error in drop with user '{}'".format(str(user)) with db.atomic(): registration = Registration.get(person=person, course=self) registration.status = 'drop' registration.date = str(Time()) registration.save() # refresh course data self._set_users() return "OK, dropped {}.".format(name) def get_profile_url(self): # site course ends with / ; others don't ... slightly different behavior. if self.url[-1] == '/': return self.url + 'sys/user' else: return self.url + '/sys/user' def get_home_url(self): """ return url for course home page """ if self.is_site(): # special case : Umber course home is docs/home, # so that all public stuff can be in docs/* home_path = site_home else: home_path = 'home' return os.path.join(self.url, home_path) def get_registered(self, rolename=None): registrations = list(Registration.select() .where((Registration.course == self) & (Registration.status != 'drop'))) if rolename == 'tutor': people = [reg.person for reg in registrations if reg.grade == 'tutor'] elif not rolename: people = [reg.person for reg in registrations] elif rolename == 'student': people = [reg.person for reg in registrations if (reg.role.name == rolename and reg.grade != 'tutor')] else: people = [reg.person for reg in registrations if reg.role.name==rolename] people.sort(key=lambda p: p.get_last_first()) return people def email_everyone_html(self): return "mailto:" + ','.join([p.email for p in self.get_registered()]) def has_username(self, username): return username in self.username_to_role def get_faculty_data(self): """ return {'email', 'name'} of faculty """ return [{'email':person.email, 'name':person.name} for person in self.faculty] def grade_data_list(self, student): """ return student's view grade list for templates/grades.html """ # See the description below for the faculty grid. result = list(self.get_assignments_with_extras()) for ass in result: # Hmmm - not sure why this needs .person_id here, but errors without. # Maybe something about how the jinja2 template treats variables? # Or because the assignment has had its fields modified?? ass.work = ass.get_work(student.person_id) (grade, css_grade) = ass.work.get_grade_css(faculty_view=True) ass.work_grade = grade ass.work_css_grade = "grade-{}".format(css_grade) ass.duedate = Time(ass.due).assigndate() return result def grade_data_grid(self): """ return faculty's grade grid for templates/grades.html """ # Returned data is list of dicts, one per student. # Each student dict includes list of student works, one per assignment. # The grade will be shown as # '…' if not submitted and not yet due # 'overdue' if not submitted and past due date # 'ungraded' if submitted and not graded # work.grade if submitted and graded # # The grade css class is "grade-*" # where * is one of (green,darkgreen,darkred,red,black) # for faculty viewing the color is : # red overdue : due > today and not submitted # brown faculty modified date > student seen date # darkgreen student modified date > faculty seen date # green ungraded : student has submitted; faculty hasn't graded # black none of above # for student viewing the color is : # brown ungraded : student has submitted; faculty hasn't graded # brown student modified; faculty hasn't seen # dark green faculty modified; student hasn't seen # green overdue : due > today and not submitted # black none of above # # The basic idea of the colors is that # green-ish means the viewer should respond (i.e. "go") # red-ish means that the other person should do something # (i.e. a problem) # result = [] for stud in self.students: # skip grade line for student if they are a tutor if self.username_to_rolename[stud.username] == 'tutor': continue works = [] for ass in self.assignments: work = ass.get_work(stud) (grade, css_grade) = work.get_grade_css(faculty_view=True) works.append({'url': work.get_url(), 'css_grade': 'grade-{}'.format(css_grade), 'grade': grade, 'id': work.work_id }) result.append({'email': stud.email, 'name' : stud.name, 'works': works }) return result def get_assignment_by_nth(self, nth): """ Return nth assignment in this course """ try: return Assignment.select() \ .where(Assignment.course == self, \ Assignment.nth == nth) \ .first() except: return None def update_assignments(self, assignments_data): """ Update course assignments from a dict of assignments_data[nth][name, due, blurb] """ # Note: passed argument is *not* made up of Assignment objects. # Note: this is designed to update *all* assignments. db_assignments = {a.nth : a for a in self._get_assignments()} with db.atomic(): for nth in assignments_data: if nth not in db_assignments: (db_assignments[nth], status) = Assignment.get_or_create( course=self, nth=nth) db_assignments[nth].name = assignments_data[nth]['name'] duedate = assignments_data[nth]['due'] db_assignments[nth].due = str(Time.parse(duedate)) new_blurb = assignments_data[nth]['blurb'] old_blurb = db_assignments[nth].blurb #print_debug(f" debug update_assignments : '{duedate}'") #print_debug(f" md5(new_blurb) = '{md5(new_blurb)}'") #print_debug(f" new_blurb = '{new_blurb}' ") #print_debug(f" ass.blurb_hash = '{db_assignments[nth].blurb_hash}'") #print_debug(f" ass.blurb = '{old_blurb}' ") #print_debug(f" new == old ? {new_blurb == old_blurb}") if md5(new_blurb) != db_assignments[nth].blurb_hash: # is this changed? db_assignments[nth].blurb = new_blurb # yes: update it db_assignments[nth].blurb_hash = md5(new_blurb) db_assignments[nth].blurb_html = markdown2html( link_translate(self, new_blurb)) #print_debug(" updating cache ") #else: #print_debug(" NOT updating cache ") db_assignments[nth].save() self.assignments = self._get_assignments() def get_assignments_with_extras(self): """ Return list of assignments in this course with extra info """ # ... i.e. prepare the data for html display now = Time() # print(" now = " + str(now)) if len(self.assignments) == 0: self.assignment_nth_plus1 = 1 else: self.assignment_nth_plus1 = self.assignments[-1].nth + 1 for ass in self.assignments: duedate = Time(ass.due) if duedate < now: #print(" PAST : duedate = " + str(duedate)) ass.dateclass = 'assign-date-past' else: #print(" FUTURE : duedate = " + str(duedate)) ass.dateclass = 'assign-date' ass.date = duedate.assigndate() # for assignment list display ass.ISOdate = duedate.assignISOdate() # ditto return self.assignments def nav_page(self, user): """ return course's navigation page """ # TODO: put this in a "try" and do something reasonable if it fails. # (otherwise, pages in courses without sys/navigation.md will crash.) # TODO: should this be cached to self._nav_page ? # (Need it for both displaying and editing course's navigation page.) return Page.get_from_path(os.path.join(self.path, 'sys', 'navigation.md'), user=user) def nav_html(self, user, page): """ Return html for course's navigation menu for a given user & a given page """ return self.nav_page(user).nav_content_as_html(page) @staticmethod def enroll_site(person, datestring=None, is_admin=False): """ enroll a person in the site course """ # All users should be in this course. if not datestring: datestring = str(Time()) site_course = Course.get_site() if is_admin: site_role = Role.by_name('admin') else: site_role = Role.by_name('member') with db.atomic(): (reg, created) = Registration.get_or_create( person = person, course = site_course) if created or is_admin: # update role & date reg.role = site_role reg.date = datestring reg.status = '' reg.save() site_course._set_users() def make_student_work_folders(self): for person in self.students: student_abspath = os.path.join(self.abspath, 'students', person.username) if not os.path.exists(student_abspath): Page.new_folder(student_abspath, user=person, accessdict= {'read':person.username, 'write':person.username}) work_abspath = os.path.join(student_abspath, 'work') if not os.path.exists(work_abspath): Page.new_folder(work_abspath, user=person) def enroll(self, person, rolename, datestring=None, create_work=False): """ Enroll a person in this course with this role. """ # If there is an existing registration for the course&person, modify it. # Also enroll this person in the site couse if they aren't already # and if this isn't the site course itself. # Optionally create their work folder (if it doesn't already exist) # # add tutors by using student role with registration.grade='tutor' is_tutor = rolename=='tutor' if rolename == 'tutor': rolename = 'student' if not datestring: datestring = str(Time()) with db.atomic(): (reg, created) = Registration.get_or_create( person = person, course = self) reg.role = Role.by_name(rolename) reg.grade = 'tutor' if is_tutor else '' reg.status = '' # if re-enrolling would have been 'drop' reg.date = datestring reg.save() if not self.name == 'Umber': Course.enroll_site(person, datestring=datestring) if create_work: # Create folder for student work within the course folder. # The absolute path for their student work folder is # e.g. course/students/johnsmith/ with its .access.yaml # & course/students/johnsmith/work/ student_abspath = os.path.join(self.abspath, 'students', person.username) Page.new_folder(student_abspath, user=person, accessdict= {'read':person.username, 'write':person.username}) work_abspath = os.path.join(student_abspath, 'work') Page.new_folder(work_abspath, user=person) # refresh students self._set_users() class Page(BaseModel): # --- path, filename, url definitions --- # With settings on my laptop development machine as # os_courses /Users/mahoney/academics/umber/courses # then for the 'notes/week1' file within a course at 'fall/math' , # the parts are # url: http://127.0.0.1:5000/ umber / fall/math / notes/week1 # protocol hostname url_base path................... # file: /Users/mahoney/academics/umber/courses / fall/math / notes/week1 # os_courses path................... # Following python's os.path phrasing, other terms used here are # basename last word in address (same as os.path.basename) # abspath e.g. /Users/mahoney/.../fall/math/notes/week1 # dirname e.g. /Users/mahoney/.../fall/math/notes # This url would have in its flask request object the attributes # request.url_root 'http://localhost:8090/' # request.path '/umber/fall/math/notes/week1' # # Note that Page.path (e.g. fall/math/notes/week1) # does not have a leading slash or contain the url_base, # while request.path (e.g. /umber/fall/math/notes/week1) does. # # The Page object will also contain various extra data # that isn't stored in the sql database but is instead # pulled from the filesystem. class Meta: db_table = 'Page' # Each course has some sys/* pages which get special treatment. # Also here are site/sys/* pages for editing users and courses, # which are only accessible within the 'site' course. system_pages = ('assignments', 'navigation', 'error', 'folder', 'grades', 'roster', 'user', 'users', 'course', 'courses', 'registration', 'newuser', 'newcourse') editable_system_pages = ('assignments', 'navigation', 'grades', 'user', 'course') page_id = PrimaryKeyField(db_column='page_id') html = TextField() html_lastmodified = TextField() notes = TextField() path = TextField(unique=True) course = ForeignKeyField(model=Course, db_column='course_id', to_field='course_id') _mime_types = None @staticmethod def new_folder(abspath, accessdict=None, user=None): """ Create a new folder with the given abspath. Add it into the github repo. Optionally create its .access.yaml file. """ if os.path.exists(abspath): # bail without doing anything of this already exists # print_debug(' new_folder {} already exists '.format(abspath)) return None try: os.makedirs(abspath) # makes intermediate folders if need be. except: # bail with error message if the OS system won't do it. print_debug(' os.makdir("{}") failed '.format(abspath)) return None # Add an empty .keep file in this new folder, # as a workaround to force git to include this new folder. # (Git pays attention to files, not folders.) open(os.path.join(abspath, '.keep'), 'w').close() # unix 'touch' # Create the new folder object. path = os.path.relpath(abspath, os_courses) folder = Page.get_from_path(path, user=user) if accessdict: # don't do a git commit here - wait to do whole folder folder.write_access_file(accessdict, do_git=False) gitlocal.add_commit(folder) return folder @classmethod def get_from_path(cls, path, revision=None, action=None, user=None): """ Get or create a Page and set up all its internal data i.e. course, file info, user permissions, etc """ (page, iscreated) = Page.get_or_create(path=path) if user == None: user = Person.get_anonymous() page.user = user page.action = action page.revision = revision page._setup_file_properties() # sets page.is_file etc page.gitpath = os.path.join(os_courses, page.path_with_ext) page.login_google_url = url_for('login_google', pagepath=path) page.course = page.get_course() try: if page.course.page_error: ### Unexpected (to me anyway) behavior here : ### page.course = None ### if page.course: # This throws an error! ### ... ### Apparently the peewee database code has put hooks into ### the Page object to do tricky stuff for "page.course", ### seems to drop into peewee and complain. ### I'm avoiding this by returning the Umber site course ### but with a .page_error attribute set. ### In umber.py this will turn the request into 404 not found. return page except AttributeError: # .page_error field not set; keep going. pass page.relpath = page._get_relpath() page._setup_sys() # do this before .get_access() page.access = page.get_access() # gets .access.yaml property. page._setup_user_permissions() # sets page.can['read'] etc if revision or action=='history': page._setup_revision_data() # sets page.history etc page._setup_attachments() # sets .has_attachments page._setup_work() # page.html_title = page.get_html_title() return page def get_html_title(self): """ Return string for the <title></title> html tag. """ try: return self.course.get_shortname() + ' : ' + self.relpath except: return self.path def get_gitpath(self, abspath=None): """ Return file path of page (or abspath file) relative to course path, including file extension if any """ # This abspath option is used in gitlocal.py and umber.py:ajax_upload ; # for attachments the page is not the upload file. _abspath = self.abspath if abspath==None else abspath return os.path.relpath(_abspath, self.course.abspath) def _get_relpath(self): """ Return path of page relative to course path, e.g. notes/home for path=demo/notes/home in course 'demo' """ # self.course must be already set. return os.path.relpath(self.path, self.course.path) def attachments_folder(self): return self.abspath.replace(self.ext, '.attachments') def _setup_attachments(self): if self.is_file and self.ext == '.md': attach_dir = self.attachments_folder() if os.path.exists(attach_dir) and os.path.isdir(attach_dir): self.attachments = self.children(abspath=attach_dir) else: self.attachments = [] self.has_attachments = len(self.attachments) > 0 else: self.attachments = [] self.has_attachments = False def _setup_work(self): """ see if this is a students/<name>/work/<number> student work page; define .is_work and .work, set up .work for html display, update """ # print(' _setup_work : relpath = {}'.format(self.relpath)) m = re.match(r'students/(\w+)/work/(\d+)(\?.*)?', self.relpath) if m: now = Time() self.is_work = True (work_username, work_nth, ignore) = m.groups() work_nth = int(work_nth) self.work_person = Person.by_username(work_username) self.work_assignment = self.course.get_assignment_by_nth(work_nth) self.work = self.work_assignment.get_work(self.work_person) duedate = Time(self.work_assignment.due) self.work_due = duedate.assigndatedetail() # ... but give students a extra grace period of a few hours # before marking things as "late"; # this let's me get "end of day" to something reasonable, # without changing server timezone duedate.arrow = duedate.arrow.shift(hours=due_grace_hours) if self.work.submitted: submitdate = Time(self.work.submitted) self.work_submitted = submitdate.assigndate() self.work_is_late = submitdate > duedate else: self.work_submitted = '' self.work_is_late = now > duedate self.work_grade = self.work.grade # update *_seen fields in the database # TODO : think about whether there's a better # transactional way to update the database here. if self.user_role.name == 'faculty': self.work.faculty_seen = str(now) self.work.save() if self.user.username == work_username: self.work.student_seen = str(now) self.work.save() else: self.is_work = False #self.work = None #self.work_assignment = None #self.work_person = None #self.work_due = '' #self.work_submitted = '' #self.work_is_late = False #self.work_grade = '' def _setup_sys(self): """ define .is_sys. if it is, also define .sys_template, ./sys_edit_template """ # If relpath is 'sys/assignments', then is_sys will be true, # the template will be 'umber/sys/assignments.html' # and the edit template will be 'umber/sys/edit_assignments.html', # (and the access permissions will be in the first line of the template.) self.is_sys = self.relpath[:4] == 'sys/' # -- default values for sys templates for all pages -- if self.is_sys: which = self.relpath[4:] if which == '': which = 'folder' if which not in Page.system_pages: which = 'error' self.sys_template = 'sys/' + which + '.html' if which in Page.editable_system_pages: self.sys_edit_template = 'sys/edit_' + which + '.html' else: self.sys_edit_template = 'sys/editerror.html' def get_course(self): """ return this page's course """ # And if there is no course for this page, # return the site course but also set an error within it. # # extract path pieces e.g. ['demo', 'home'] path_parts = self.path.split('/') # build partial paths e.g. ['demo', 'demo/home'] # (stackoverflow.com/questions/13221896/python-partial-sum-of-numbers) paths = reduce(lambda x,y: x + [x[-1]+'/'+y], path_parts[1:], path_parts[0:1]) # build peewee's "where condition" to find matching courses. condition = Course.path for c in paths: condition = condition | Course.path % c # Get list of matching courses from database. # Choose the one with the longest path, # if more than on was found ... # which would only happen for courses directories # embedded within another course, which shouldn't happen. # TODO: make sure to test for that issue during new course creation query = Course.select().where(condition) courses = list(query.execute()) # if courses: return max(courses, key=lambda c: len(c.path)) else: # Couldn't find a course for that page, so return # the default course with a flag indicating the error. umber = Course.get_site() umber.page_error = True return umber def write_access_file(self, accessdict, do_git=True): """ Given an access dict from user input e.g. {'read':'students', 'write':['faculty','bob']} , write it to a .access.yaml file, and return its abspath. """ assert self.is_dir # this page should be a folder accesspath = os.path.join(self.abspath, '.access.yaml') accessfile = open(accesspath, 'w') # open or create # replace yaml permissions # (yaml.dump turns u'string' into ugly stuff so I convert to str(). accessfile.write(yaml.dump(clean_access_dict(accessdict))) accessfile.close() if do_git: # I've left an option to avoid this to handle # the case of a new folder efficiently, since # we can in that case commit the whole folder in one go # after this .access.yaml is created. gitlocal.add_commit(self) return accesspath def get_access(self): """ Return .access dict from .access.yaml in an enclosing folder or from the first line of a sys_template """ # e.g. {'read': ['janedoe', 'johnsmith'], 'write': 'faculty'} # default if we don't find it. #access_dict = {'read':'all', 'write':'faculty'} if self.is_sys: ## navigation is a special case : since it's a faculty editable file, ## I'll fill it it manually and not require that it have ## the {# #} first line. if self.relpath == 'sys/navigation' or \ self.relpath == 'sys/navigation.md': access_dict = {'read':'member', 'write':'faculty'} else: ## all other system files have an access spec as their first line ## e.g. {# {'read':'all', 'write':'faculty' #} template = os.path.join(os_root, 'templates', self.sys_template) firstline = open(template).readline() try: access_dict = eval(firstline.replace('{#','').replace('#}','')) except: # something fairly safe as a fall-back access_dict = {'read':'faculty', 'write':'faculty'} else: if self.is_dir: abspath = self.abspath else: abspath = os.path.dirname(self.abspath) while len(abspath) >= len(os_courses): accesspath = os.path.join(abspath, '.access.yaml') if os.path.exists(accesspath): accessfile = open(accesspath) # see https://msg.pyyaml.org/load access_dict = yaml.full_load(accessfile) accessfile.close() if type(access_dict) == type({}): # OK, we found an access dict, so stop here. break abspath = os.path.dirname(abspath) # i.e. "cd .." if 'read' not in access_dict: access_dict['read'] = '' if 'write' not in access_dict: access_dict['write'] = '' # clean up for display : self.read_access = stringify_access(access_dict['read']) self.write_access = stringify_access(access_dict['write']) return access_dict def _setup_user_permissions(self): """ Set page.can['read'], page.can['write'], page.user_role, page.user_rank from page.user, page.access, and page.course """ # Note that admins who are faculty in a given course # will have a displayed role of 'faculty' in that course # but will have admin access to nav menus etc. assert self.course != None # call self.set_course() first. assert self.access != None # call self.set_access() first. assert self.user != None self.user_role = self.course.person_to_role(self.user) # this includes 'tutor' even though there is no 'tutor' role; # and so I'm using this one in the displayed login role try: self.user_rolename = self.course.username_to_rolename[ self.user.username] except: self.user_rolename = 'visitor' self.user_rank = self.user_role.rank if self.user_role.name in ('faculty', 'admin') and not self.is_sys: # faculty & admin can read or write anything # ... but not system pages - I don't want 'edit' tab on all pages. self.can = {'read': True, 'write': True} return if self.user.is_admin(): # Let site admins do what they want in any course. # Change their display name to 'admin' if it isn't 'faculty'. # i.e. leave 'faculty' or 'student' display names as is. self.user_rank = Role.by_name('admin').rank if self.user_role.name != 'faculty': self.user_role = Role.by_name('admin') self.can = {'read':False, 'write':False} # default is deny access for permission in ('read', 'write'): yaml_rights = self.access[permission] access_needed = 10 # i.e. more than anyone has by default # can be list e.g. ['faculty', 'bob'] or string 'students' if type(yaml_rights) == type(''): yaml_rights = [ yaml_rights ] for name_or_role in yaml_rights: if name_or_role == self.user.username: self.can[permission] = True break elif name_or_role in Role.name_alias: access_needed = min(access_needed, \ Role.by_name(name_or_role).rank) if self.user_rank >= access_needed: self.can[permission] = True def get_mimetype(self): """ Return e.g. 'image/jpeg' for '.jpg' file """ if not Page._mime_types: mimetypes.init() Page._mime_types = mimetypes.types_map.copy() for key in umber_mime_types: Page._mime_types[key] = umber_mime_types[key] if self.ext == '': return 'text/plain' return Page._mime_types.get(self.ext, 'application/octet-stream') def children(self, abspath=''): """ return page for each file or folder below this folder """ result = [] if abspath == '': abspath = self.abspath try: path = os.path.relpath(abspath, os_courses) for name in sorted(os.listdir(abspath)): if name[0] == '.': # skip invisible files e.g. .access.yaml continue result.append(Page.get_from_path(os.path.join(path, name), user=self.user)) except OSError: # i.e. if abspath isn't a directory. pass return result def icon_url(self): """ return url for icon for this file type """ return static_url(filetype_to_icon[self.filetype]) def _setup_revision_data(self): """ read and store within page the git file revision data """ # The log is a list of tuples [(revision, date, author), ...] log = gitlocal.get_history(self) if len(log) == 0: link = self.url date = self.lastmodified.daydatetimesec() author = '' self.githashes = tuple() self.history = ([link, 'current', date, author], ) self.revision_date = date self.revision_commit = '' self.revision_prev_url = '' self.revision_next_url = '' self.revision_count = 1 self.revision = None # No git revision stored. else: self.githashes = tuple((githash for (githash, date, author) in log)) self.history = [None] * len(log) for i in range(len(log)): # say len(log) == 4 # nth => (new) current 3 2 1 (old) # i => 0 1 2 3 (old) if i == 0: nth = 'current' url = self.url else: nth = len(log) - i url = self.url + '?revision={}'.format(nth) # history => 0:url 1:nth 2:date 3:author self.history[i] = tuple((url, nth, log[i][1], log[i][2])) self.revision_count = len(log) self.revision_date = self.history[0][2] if self.revision: self.revision = int(self.revision) index = self.revision_count - self.revision self.revision_date = self.history[index][2] self.revision_commit = self.githashes[index] self.revision_next_url = self.url + '?revision={}'.format( min(self.revision + 1, len(log))) self.revision_prev_url = self.url + '?revision={}'.format( max(self.revision - 1, 1)) def _setup_file_properties(self): """ given self.path, set a bunch of information about the file including self.absfilename, self.exists, self.is_file, self.is_dir, self.lastmodified, self.breadcrumbs """ self.abspath = os.path.join(os_courses, self.path) self.path_with_ext = self.path # default, unless modified below if not os.path.exists(self.abspath): for ext in ['.md', '.html']: if ext == '.md' and os.path.exists(self.abspath + ext): self.abspath = self.abspath + ext self.path_with_ext = self.path + ext (ignore, self.ext) = os.path.splitext(self.abspath) self.exists = os.path.exists(self.abspath) #print_debug(f'debug _setup_file_properties : path={self.path} exists={self.exists} ') if not self.exists and self.ext == '': # creating a new file, so make it a .md markdown file self.ext = '.md' self.abspath += '.md' self.name_with_ext = os.path.split(self.abspath)[-1] if self.ext == '': self.name = self.name_with_ext else: self.name = self.name_with_ext[: - len(self.ext) ] # self.name_underlined = self.name + '\n' + '='*len(self.name) self.path_no_name = self.path[: - len(self.name) ] self.is_file = os.path.isfile(self.abspath) self.is_dir = os.path.isdir(self.abspath) if self.exists: stat = os.stat(self.abspath) #print_debug(f'debug _setup_file_properties : stat={str(stat)}') self.lastmodified = Time(stat.st_mtime) if self.is_dir: self.size = None self.filetype = 'directory' self.name_with_ext += '/' elif self.is_file: self.size = stat.st_size self.filetype = ext_to_filetype.get(self.ext, 'unknown') else: self.size = None self.filetype = 'unknown' else: self.lastmodified = None self.size = None # -- build url links for page breadcrumbs -- url_list = [url_base] + self.path.split('/') urlsofar = protocol + hostname self.breadcrumbs = '<a href="{}">{}</a>'.format(urlsofar, urlsofar) while url_list: pathpart = '/' + url_list.pop(0) urlsofar += pathpart self.breadcrumbs += '&nbsp;' + '<a href="{}">{}</a>'.format( urlsofar, pathpart) self.url = umber_url + '/' + self.path self.url_for_print_version = self.url + '?print=1' self.bytesize = size_in_bytes(self.size) def revision_content_as_html(self): content = gitlocal.get_revision(self) content_with_links = link_translate(self.course, content) return markdown2html(content_with_links) def content(self): """ Return file or github (revision) data for a page """ # python3 gotchas: # for text, I convert to a python3 string (utf8) # but for other (i.e. binary) data, I leave as python3 bytes if self.exists and self.is_file: if self.revision: text = gitlocal.get_revision(self) else: with open(self.abspath, 'rb') as _file: text_bytes = _file.read() try: text = text_bytes.decode('utf8') except: text = text_bytes # e.g. *.png files else: text = '' #print_debug(" page.content : page.action = '{}'".format(page.action)) return text def write_content(self, new_content): """ Write new data to page's file; return number of bytes written """ if self.can['write']: # shouldn't get here without this anyway with open(self.abspath, 'wb') as _file: # open as binary ... need to write bytes. try: new_bytes = new_content.encode('utf8') except: new_bytes = new_content bytes_written = _file.write(new_bytes) return bytes_written def content_as_html(self): """ Return file contents as html. """ # This also handles revisions since self.content() does. if not self.exists: return '' elif self.ext == '.md': # I'm caching the html version of .md pages in the sql database # (for the current version) # checking to see if the cache is stale with # the file's lastmodified and a sql db html_lastmodified fields. #print_debug(f" debug content_as_html cache") #print_debug(f" lastmodified='{self.lastmodified}' ; " + \ # f"html_lastmodified='{self.html_lastmodified}'") if self.revision: content = self.content() # pull from git repo content_with_links = link_translate(self.course, content) self.html = markdown2html(content_with_links) self.html_lastmodified = str(self.lastmodified) elif str(self.lastmodified) != self.html_lastmodified: #print_debug(f" updating {self.path}") with db.atomic(): content = self.content() # pull from file content_with_links = link_translate(self.course, content) self.html = markdown2html(content_with_links) self.html_lastmodified = str(self.lastmodified) self.save() #else: #print_debug(f" using cache {self.path}") # cache : just use .html already read from sql html = self.html else: # Not markdown, so send the file (txt, html, ...) as is. html = self.content() # from file or git repo return html def action_query(self): """ Return empty string or '&action=edit' if editing """ if self.action == 'edit': return '&action=edit' else: return '' def nav_content_as_html(self, page): """ Return authorized parts of html & markdown at html . """ # Here self is the navigation.md page. # TODO: unlinkify current page # TODO: This implementation is pretty ugly. # Perhaps just do this explicitly without BeautifulSoup? # And make some tests ... # Each course has a menu navigation page which is a mixture of html # and markdown, including access tags that look like this : # <div access='student'> # ... # </div> # This method converts the content of that file to html, # keeping only the parts that this user is allowed to see. # # And do the link_translate first, before any markdown stuff, # so that it can see the context. content = self.content() content = link_translate(self.course, content) # parser = BeautifulSoup(content, 'html.parser') for role in list(Role.name_rank.keys()): divs = parser.find_all('div', access=role) if self.user_rank < Role.by_name(role).rank: for div in divs: div.extract() # remove this div from its parent parser insides = [] marker = '.~*#!#*~.' # something that won't be in the html. for divm in parser.find_all('div', markdown=1): contents = ''.join(divm.stripped_strings) mstring = markdown2html(contents) insides.append(mstring) divm.string = marker html = str(parser) # convert beautiful soup object to formatted unicode while insides: inside = insides.pop(0) html = html.replace(marker, inside, 1) # If the current page is one of the links in the nav menu, # that link should be unlinkified ... which I'm doing # with another (ugh) pass through BeautifulSoup, # now that markdown has run. # ------------- # TODO do the right thing for file.md, file.html, # and folder ; currently only "file" and "folder/" will work # in the nav markdown; the other non-canonical with redirectrs won't. # (So check other options in a loop, eh?) parser = BeautifulSoup(html, 'html.parser') anchor = parser.find('a', href=page.url) if anchor: span = parser.new_tag('span') span['class'] = 'thispage' span.string = anchor.string parser.find('a', href=page.url).replace_with(span) html = str(parser) return html class Assignment(BaseModel): class Meta: db_table = 'Assignment' assignment_id = PrimaryKeyField(db_column='assignment_id') nth = IntegerField(null=False, unique=True) active = IntegerField() blurb = TextField() blurb_hash = TextField() blurb_html = TextField() due = TextField(null=True) name = TextField() notes = TextField() course = ForeignKeyField(model=Course, db_column='course_id', to_field='course_id') def get_url(self): return '{}/sys/assignments#{}'.format(self.course.url, self.nth) def name_smaller(self): """ return html version of assignment name with <br> instead of spaces """ return self.name.replace(' ', '<br>') def get_work(self, person): """ Return Work for this assignment by given student """ # i.e. work = assignment.get_work(student) with db.atomic(): (work, created) = Work.get_or_create(assignment = self, person = person) if created: work.grade = '' # | I would have expected this to be work.notes = '' # | created with the sql defaults ... work.submitted = '' # | but apparently not. work.student_modified = '' work.faculty_modified = '' work.student_seen = '' work.faculty_seen = '' work.page = 0 work.save() return work class Role(BaseModel): class Meta: db_table = 'Role' role_id = PrimaryKeyField(db_column='role_id') name = TextField() rank = IntegerField() name_rank = {'admin': 5, 'faculty': 4, 'student': 3, 'member': 2, 'visitor': 1 } name_alias = {'admin': 'admin', 'administrator': 'admin', 'faculty': 'faculty', 'student': 'student', 'students': 'student', 'tutor': 'student', 'class': 'student', 'guests': 'member', 'guest': 'member', 'member': 'member', 'all': 'visitor', 'any': 'visitor', 'visitor': 'visitor' } _cache = {} @staticmethod def by_name(name): if not name in Role.name_rank: if name in Role.name_alias: name = Role.name_alias[name] else: name = 'visitor' if not name in Role._cache: Role._cache[name] = Role.get(name=name) return Role._cache[name] @staticmethod def unalias(alias): """ Convert alias to its standard role name. """ return Role.name_alias[alias] @staticmethod def create_defaults(): with db.atomic(): for (name, rank) in list(Role.name_rank.items()): Role.get_or_create(name=name, rank=rank) class Registration(BaseModel): class Meta: db_table = 'Registration' registration_id = PrimaryKeyField(db_column='registration_id') credits = IntegerField() date = TextField(null=True) grade = TextField() midterm = TextField() status = TextField() course = ForeignKeyField(model=Course, db_column='course_id', to_field='course_id') person = ForeignKeyField(model=Person, db_column='person_id', to_field='person_id') role = ForeignKeyField(model=Role, db_column='role_id', to_field='role_id') def rolename(self): """ return rolname for this registration, including 'tutor' """ return 'tutor' if self.grade=='tutor' else self.role.name class Work(BaseModel): class Meta: db_table = 'Work' work_id = PrimaryKeyField(db_column='work_id') grade = TextField() notes = TextField() submitted = TextField() student_modified = TextField(db_column='student_modified') student_seen = TextField(db_column='student_seen') faculty_modified = TextField(db_column='faculty_modified') faculty_seen = TextField(db_column='faculty_seen') assignment = ForeignKeyField(model=Assignment, db_column='assignment_id', to_field='assignment_id') person = ForeignKeyField(model=Person, db_column='person_id', to_field='person_id') page = ForeignKeyField(model=Page, db_column='page_id', to_field='page_id') @staticmethod def edit_grades(id_grade_dict): """ id_grade_dict is web form with some {'work_<id>':new_grade} extract id's & change grades """ # the dict also has other keys i.e. 'submit_work'; ignore them. try: with db.atomic(): for key in id_grade_dict: if key[:5] == 'work_': id = int(key[5:]) work = Work.get(work_id=id) # See get_grade_css for special grades ..., # The special grades "...", "overdue', 'ungraded' # are created when the actual grade is not set yet. grade = id_grade_dict[key] if grade in ('…', '...', 'overdue', 'ungraded'): grade = '' work.grade = grade work.save() except: print_debug('OOPS : Work.edit_grades(id_grade_dict="{}") failed' \ .format(id_grade_dict)) def get_url(self): # Also see templates/assignments.html return '{}/students/{}/work/{}.md'.format(self.assignment.course.url, self.person.username, self.assignment.nth) def get_grade_css(self, faculty_view): css_class = 'black' # the default # duedate = Time(self.assignment.due) duedate.arrow = duedate.arrow.shift(hours=due_grace_hours) now = Time() before_due_date = now < duedate # # Set blank times to '1901' to avoid errors. faculty_modified = self.faculty_modified or '1901' faculty_seen = self.faculty_seen or '1901' student_modified = self.student_modified or '1901' student_seen = self.student_seen or '1901' #print_debug(" faculty_modified = '{}'".format(faculty_modified)) #print_debug(" faculty_seen = '{}'".format(faculty_seen)) #print_debug(" student_modified = '{}'".format(student_modified)) #print_debug(" student_seen = '{}'".format(student_seen)) if faculty_view: if Time(faculty_modified) > Time(student_seen): css_class = 'brown' if Time(student_modified) > Time(faculty_seen): css_class = 'darkgreen' if not self.submitted: if before_due_date: grade = '…' else: grade = 'overdue' css_class = 'red' else: if not self.grade: grade = 'ungraded' css_class = 'green' else: grade = self.grade else: if Time(student_modified) > Time(faculty_seen): css_class = 'brown' if Time(faculty_modified) > Time(student_seen): css_class = 'darkgreen' if not self.submitted: if before_due_date: grade = '…' else: grade = 'l͟a͟t͟e͟' # l͟a͟t͟e͟ css_class = 'green' else: if not self.grade: grade = 'ungraded' css_class = 'brown' else: grade = self.grade if self.grade: # If a grade has been assigned, show it. Period. grade = self.grade return (grade, css_class) def init_db(): """ Create base database objects """ # i.e. roles & site course. # The Roles data must be in place for the login system to work. # And the Umber course must exist for user photos and site docs # and admin user role. # The sql database must already exist; see bin/init_db . # All these are "get_or_create", so running 'em multiple times won't hurt. Role.create_defaults() Course.create_site() def populate_production_db(interactive=False): """ create initial objects for production database """ # see umber/bin/init_db from utilities import toggle_debug toggle_debug() make_admin = False if interactive: make_admin = input(' Create admin? (y/n) ').lower()[0] == 'y' if admin: admin_username = input(' Admin username? ') admin_name = input(' Admin full name? ') admin_passwd = input(' <PASSWORD>? ') admin_email = input(' Admin email? ') with db.atomic(): defaultcourse = Course.create_course( name = 'Default Course', name_as_title = 'Default<br>Course', path = 'default_course', start = '2018-01-01', copyfrom = False ) if make_admin: (admin, created) = Person.get_or_create(username = admin_username) if created: admin.name = admin_name admin.email = admin_email password = <PASSWORD> else: if interactive: print(f' username "{admin_username}" already exists') print(' ... setting their is_admin=True') print(' ... leaving their name & email unchanged.') admin.is_admin = True admin.save() toggle_debug() def populate_db(): """ Create test & example development objects """ # i.e. democourse, jane, ted, john, adam; examples and tests. #print("Populating development database.") from utilities import toggle_debug toggle_debug() with db.atomic(): student = Role.by_name('student') faculty = Role.by_name('faculty') democourse = Course.create_course( name = 'Demo Course', name_as_title = 'Demo<br>Course', path = 'demo', start = '2018-01-01', copyfrom = False ) defaultcourse = Course.create_course( name = 'Default Course', name_as_title = 'Default<br>Course', path = 'default_course', start = '2018-01-01', copyfrom = False ) jane = Person.create_person( username = 'janedoe', name = '<NAME>', email = '<EMAIL>', password = '<PASSWORD>' ) john = Person.create_person( username = 'johnsmith', name = '<NAME>', email = '<EMAIL>', password = '<PASSWORD>' ) ted = Person.create_person( username = 'tedteacher', name = '<NAME>', email = '<EMAIL>', password = '<PASSWORD>' ) tammy = Person.create_person( username = 'tammytutor', name = '<NAME>', email = '<EMAIL>', password = '<PASSWORD>' ) adam = Person.create_person( username = 'adamadmin', name = '<NAME>', email = '<EMAIL>', password = '<PASSWORD>', is_admin = True ) default_date = '2018-01-02' democourse.enroll(john, 'student', default_date, create_work=False) democourse.enroll(jane, 'student', default_date, create_work=False) democourse.enroll(tammy, 'tutor', default_date, create_work=False) democourse.enroll(ted, 'faculty', default_date, create_work=False) # Assignments are set with a dict {nth: {name, due, blurb}. assignments_data = { 1: {'name': 'week 1', 'due': '2018-01-23', 'blurb': 'Do chap 1 exercises 1 to 10.'}, 2: {'name': 'week 2', 'due': 'Jan 28 2018 5pm', 'blurb': 'Write a four part fugue.'} } democourse.update_assignments(assignments_data) assign1 = democourse.get_assignment_by_nth(1) johns_work = assign1.get_work(john) johns_work.grade = 'B' johns_work.submitted = '2018-01-22T18:20:23-05:00' # on time johns_work.student_seen = johns_work.submitted johns_work.student_modified = johns_work.submitted johns_work.faculty_seen = '2018-01-28T16:00:00-05:00' johns_work.faculty_modified = johns_work.faculty_seen johns_work.save() janes_work = assign1.get_work(jane) janes_work.submitted = '2018-02-04T22:23:24-05:00', # past due # janes_work.grade = '' # not graded yet janes_work.student_seen = janes_work.submitted janes_work.student_modified = janes_work.submitted janes_work.save() toggle_debug() if __name__ == '__main__': import doctest doctest.testmod() ```
{ "source": "jimman2003/meson", "score": 2 }
#### File: mesonbuild/interpreterbase/decorators.py ```python from .. import mesonlib, mlog from .baseobjects import TV_func, TYPE_var from .disabler import Disabler from .exceptions import InterpreterException, InvalidArguments from .helpers import check_stringlist, get_callee_args from ._unholder import _unholder from functools import wraps import abc import itertools import typing as T def noPosargs(f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: args = get_callee_args(wrapped_args)[2] if args: raise InvalidArguments('Function does not take positional arguments.') return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) def builtinMethodNoKwargs(f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: node = wrapped_args[0].current_node method_name = wrapped_args[2] kwargs = wrapped_args[4] if kwargs: mlog.warning(f'Method {method_name!r} does not take keyword arguments.', 'This will become a hard error in the future', location=node) return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) def noKwargs(f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: kwargs = get_callee_args(wrapped_args)[3] if kwargs: raise InvalidArguments('Function does not take keyword arguments.') return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) def stringArgs(f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: args = get_callee_args(wrapped_args)[2] assert(isinstance(args, list)) check_stringlist(args) return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) def noArgsFlattening(f: TV_func) -> TV_func: setattr(f, 'no-args-flattening', True) # noqa: B010 return f def noSecondLevelHolderResolving(f: TV_func) -> TV_func: setattr(f, 'no-second-level-holder-flattening', True) # noqa: B010 return f def permissive_unholder_return(f: TV_func) -> T.Callable[..., TYPE_var]: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: res = f(*wrapped_args, **wrapped_kwargs) return _unholder(res, permissive=True) return T.cast(T.Callable[..., TYPE_var], wrapped) def disablerIfNotFound(f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: kwargs = get_callee_args(wrapped_args)[3] disabler = kwargs.pop('disabler', False) ret = f(*wrapped_args, **wrapped_kwargs) if disabler and not ret.found(): return Disabler() return ret return T.cast(TV_func, wrapped) class permittedKwargs: def __init__(self, permitted: T.Set[str]): self.permitted = permitted # type: T.Set[str] def __call__(self, f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: s, node, args, kwargs, _ = get_callee_args(wrapped_args) for k in kwargs: if k not in self.permitted: mlog.warning(f'''Passed invalid keyword argument "{k}".''', location=node) mlog.warning('This will become a hard error in the future.') return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) def typed_pos_args(name: str, *types: T.Union[T.Type, T.Tuple[T.Type, ...]], varargs: T.Optional[T.Union[T.Type, T.Tuple[T.Type, ...]]] = None, optargs: T.Optional[T.List[T.Union[T.Type, T.Tuple[T.Type, ...]]]] = None, min_varargs: int = 0, max_varargs: int = 0) -> T.Callable[..., T.Any]: """Decorator that types type checking of positional arguments. This supports two different models of optional aguments, the first is the variadic argument model. Variadic arguments are a possibly bounded, possibly unbounded number of arguments of the same type (unions are supported). The second is the standard default value model, in this case a number of optional arguments may be provided, but they are still ordered, and they may have different types. This function does not support mixing variadic and default arguments. :name: The name of the decorated function (as displayed in error messages) :varargs: They type(s) of any variadic arguments the function takes. If None the function takes no variadic args :min_varargs: the minimum number of variadic arguments taken :max_varargs: the maximum number of variadic arguments taken. 0 means unlimited :optargs: The types of any optional arguments parameters taken. If None then no optional paramters are taken. Some examples of usage blow: >>> @typed_pos_args('mod.func', str, (str, int)) ... def func(self, state: ModuleState, args: T.Tuple[str, T.Union[str, int]], kwargs: T.Dict[str, T.Any]) -> T.Any: ... pass >>> @typed_pos_args('method', str, varargs=str) ... def method(self, node: BaseNode, args: T.Tuple[str, T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any: ... pass >>> @typed_pos_args('method', varargs=str, min_varargs=1) ... def method(self, node: BaseNode, args: T.Tuple[T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any: ... pass >>> @typed_pos_args('method', str, optargs=[(str, int), str]) ... def method(self, node: BaseNode, args: T.Tuple[str, T.Optional[T.Union[str, int]], T.Optional[str]], kwargs: T.Dict[str, T.Any]) -> T.Any: ... pass When should you chose `typed_pos_args('name', varargs=str, min_varargs=1)` vs `typed_pos_args('name', str, varargs=str)`? The answer has to do with the semantics of the function, if all of the inputs are the same type (such as with `files()`) then the former is correct, all of the arguments are string names of files. If the first argument is something else the it should be separated. """ def inner(f: TV_func) -> TV_func: @wraps(f) def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: args = get_callee_args(wrapped_args)[2] # These are implementation programming errors, end users should never see them. assert isinstance(args, list), args assert max_varargs >= 0, 'max_varags cannot be negative' assert min_varargs >= 0, 'min_varags cannot be negative' assert optargs is None or varargs is None, \ 'varargs and optargs not supported together as this would be ambiguous' num_args = len(args) num_types = len(types) a_types = types if varargs: min_args = num_types + min_varargs max_args = num_types + max_varargs if max_varargs == 0 and num_args < min_args: raise InvalidArguments(f'{name} takes at least {min_args} arguments, but got {num_args}.') elif max_varargs != 0 and (num_args < min_args or num_args > max_args): raise InvalidArguments(f'{name} takes between {min_args} and {max_args} arguments, but got {num_args}.') elif optargs: if num_args < num_types: raise InvalidArguments(f'{name} takes at least {num_types} arguments, but got {num_args}.') elif num_args > num_types + len(optargs): raise InvalidArguments(f'{name} takes at most {num_types + len(optargs)} arguments, but got {num_args}.') # Add the number of positional arguments required if num_args > num_types: diff = num_args - num_types a_types = tuple(list(types) + list(optargs[:diff])) elif num_args != num_types: raise InvalidArguments(f'{name} takes exactly {num_types} arguments, but got {num_args}.') for i, (arg, type_) in enumerate(itertools.zip_longest(args, a_types, fillvalue=varargs), start=1): if not isinstance(arg, type_): if isinstance(type_, tuple): shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in type_)) else: shouldbe = f'"{type_.__name__}"' raise InvalidArguments(f'{name} argument {i} was of type "{type(arg).__name__}" but should have been {shouldbe}') # Ensure that we're actually passing a tuple. # Depending on what kind of function we're calling the length of # wrapped_args can vary. nargs = list(wrapped_args) i = nargs.index(args) if varargs: # if we have varargs we need to split them into a separate # tuple, as python's typing doesn't understand tuples with # fixed elements and variadic elements, only one or the other. # so in that case we need T.Tuple[int, str, float, T.Tuple[str, ...]] pos = args[:len(types)] var = list(args[len(types):]) pos.append(var) nargs[i] = tuple(pos) elif optargs: if num_args < num_types + len(optargs): diff = num_types + len(optargs) - num_args nargs[i] = tuple(list(args) + [None] * diff) else: nargs[i] = args else: nargs[i] = tuple(args) return f(*nargs, **wrapped_kwargs) return T.cast(TV_func, wrapper) return inner class ContainerTypeInfo: """Container information for keyword arguments. For keyword arguments that are containers (list or dict), this class encodes that information. :param container: the type of container :param contains: the types the container holds :param pairs: if the container is supposed to be of even length. This is mainly used for interfaces that predate the addition of dictionaries, and use `[key, value, key2, value2]` format. :param allow_empty: Whether this container is allowed to be empty There are some cases where containers not only must be passed, but must not be empty, and other cases where an empty container is allowed. """ def __init__(self, container: T.Type, contains: T.Union[T.Type, T.Tuple[T.Type, ...]], *, pairs: bool = False, allow_empty: bool = True) : self.container = container self.contains = contains self.pairs = pairs self.allow_empty = allow_empty def check(self, value: T.Any) -> T.Optional[str]: """Check that a value is valid. :param value: A value to check :return: If there is an error then a string message, otherwise None """ if not isinstance(value, self.container): return f'container type was "{type(value).__name__}", but should have been "{self.container.__name__}"' iter_ = iter(value.values()) if isinstance(value, dict) else iter(value) for each in iter_: if not isinstance(each, self.contains): if isinstance(self.contains, tuple): shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in self.contains)) else: shouldbe = f'"{self.contains.__name__}"' return f'contained a value of type "{type(each).__name__}" but should have been {shouldbe}' if self.pairs and len(value) % 2 != 0: return 'container should be of even length, but is not' if not value and not self.allow_empty: return 'container is empty, but not allowed to be' return None _T = T.TypeVar('_T') class _NULL_T: """Special null type for evolution, this is an implementation detail.""" _NULL = _NULL_T() class KwargInfo(T.Generic[_T]): """A description of a keyword argument to a meson function This is used to describe a value to the :func:typed_kwargs function. :param name: the name of the parameter :param types: A type or tuple of types that are allowed, or a :class:ContainerType :param required: Whether this is a required keyword argument. defaults to False :param listify: If true, then the argument will be listified before being checked. This is useful for cases where the Meson DSL allows a scalar or a container, but internally we only want to work with containers :param default: A default value to use if this isn't set. defaults to None, this may be safely set to a mutable type, as long as that type does not itself contain mutable types, typed_kwargs will copy the default :param since: Meson version in which this argument has been added. defaults to None :param deprecated: Meson version in which this argument has been deprecated. defaults to None :param validator: A callable that does additional validation. This is mainly intended for cases where a string is expected, but only a few specific values are accepted. Must return None if the input is valid, or a message if the input is invalid :param convertor: A callable that converts the raw input value into a different type. This is intended for cases such as the meson DSL using a string, but the implementation using an Enum. This should not do validation, just converstion. :param deprecated_values: a dictionary mapping a value to the version of meson it was deprecated in. :param since_values: a dictionary mapping a value to the version of meson it was added in. :param not_set_warning: A warning messsage that is logged if the kwarg is not set by the user. """ def __init__(self, name: str, types: T.Union[T.Type[_T], T.Tuple[T.Type[_T], ...], ContainerTypeInfo], *, required: bool = False, listify: bool = False, default: T.Optional[_T] = None, since: T.Optional[str] = None, since_values: T.Optional[T.Dict[str, str]] = None, deprecated: T.Optional[str] = None, deprecated_values: T.Optional[T.Dict[str, str]] = None, validator: T.Optional[T.Callable[[_T], T.Optional[str]]] = None, convertor: T.Optional[T.Callable[[_T], object]] = None, not_set_warning: T.Optional[str] = None): self.name = name self.types = types self.required = required self.listify = listify self.default = default self.since_values = since_values self.since = since self.deprecated = deprecated self.deprecated_values = deprecated_values self.validator = validator self.convertor = convertor self.not_set_warning = not_set_warning def evolve(self, *, name: T.Union[str, _NULL_T] = _NULL, required: T.Union[bool, _NULL_T] = _NULL, listify: T.Union[bool, _NULL_T] = _NULL, default: T.Union[_T, None, _NULL_T] = _NULL, since: T.Union[str, None, _NULL_T] = _NULL, since_values: T.Union[T.Dict[str, str], None, _NULL_T] = _NULL, deprecated: T.Union[str, None, _NULL_T] = _NULL, deprecated_values: T.Union[T.Dict[str, str], None, _NULL_T] = _NULL, validator: T.Union[T.Callable[[_T], T.Optional[str]], None, _NULL_T] = _NULL, convertor: T.Union[T.Callable[[_T], TYPE_var], None, _NULL_T] = _NULL) -> 'KwargInfo': """Create a shallow copy of this KwargInfo, with modifications. This allows us to create a new copy of a KwargInfo with modifications. This allows us to use a shared kwarg that implements complex logic, but has slight differences in usage, such as being added to different functions in different versions of Meson. The use the _NULL special value here allows us to pass None, which has meaning in many of these cases. _NULL itself is never stored, always being replaced by either the copy in self, or the provided new version. """ return type(self)( name if not isinstance(name, _NULL_T) else self.name, self.types, listify=listify if not isinstance(listify, _NULL_T) else self.listify, required=required if not isinstance(required, _NULL_T) else self.required, default=default if not isinstance(default, _NULL_T) else self.default, since=since if not isinstance(since, _NULL_T) else self.since, since_values=since_values if not isinstance(since_values, _NULL_T) else self.since_values, deprecated=deprecated if not isinstance(deprecated, _NULL_T) else self.deprecated, deprecated_values=deprecated_values if not isinstance(deprecated_values, _NULL_T) else self.deprecated_values, validator=validator if not isinstance(validator, _NULL_T) else self.validator, convertor=convertor if not isinstance(convertor, _NULL_T) else self.convertor, ) def typed_kwargs(name: str, *types: KwargInfo) -> T.Callable[..., T.Any]: """Decorator for type checking keyword arguments. Used to wrap a meson DSL implementation function, where it checks various things about keyword arguments, including the type, and various other information. For non-required values it sets the value to a default, which means the value will always be provided. If type tyhpe is a :class:ContainerTypeInfo, then the default value will be passed as an argument to the container initializer, making a shallow copy :param name: the name of the function, including the object it's attached ot (if applicable) :param *types: KwargInfo entries for each keyword argument. """ def inner(f: TV_func) -> TV_func: @wraps(f) def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: _kwargs, subproject = get_callee_args(wrapped_args, want_subproject=True)[3:5] # Cast here, as the convertor function may place something other than a TYPE_var in the kwargs kwargs = T.cast(T.Dict[str, object], _kwargs) all_names = {t.name for t in types} unknowns = set(kwargs).difference(all_names) if unknowns: # Warn about unknown argumnts, delete them and continue. This # keeps current behavior ustr = ', '.join([f'"{u}"' for u in sorted(unknowns)]) mlog.warning(f'{name} got unknown keyword arguments {ustr}') for u in unknowns: del kwargs[u] for info in types: value = kwargs.get(info.name) if value is not None: if info.since: feature_name = info.name + ' arg in ' + name FeatureNew.single_use(feature_name, info.since, subproject) if info.deprecated: feature_name = info.name + ' arg in ' + name FeatureDeprecated.single_use(feature_name, info.deprecated, subproject) if info.listify: kwargs[info.name] = value = mesonlib.listify(value) if isinstance(info.types, ContainerTypeInfo): msg = info.types.check(value) if msg is not None: raise InvalidArguments(f'{name} keyword argument "{info.name}" {msg}') else: if not isinstance(value, info.types): if isinstance(info.types, tuple): shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in info.types)) else: shouldbe = f'"{info.types.__name__}"' raise InvalidArguments(f'{name} keyword argument "{info.name}"" was of type "{type(value).__name__}" but should have been {shouldbe}') if info.validator is not None: msg = info.validator(value) if msg is not None: raise InvalidArguments(f'{name} keyword argument "{info.name}" {msg}') warn: bool if info.deprecated_values is not None: for n, version in info.deprecated_values.items(): if isinstance(value, (dict, list)): warn = n in value else: warn = n == value if warn: FeatureDeprecated.single_use(f'"{name}" keyword argument "{info.name}" value "{n}"', version, subproject) if info.since_values is not None: for n, version in info.since_values.items(): if isinstance(value, (dict, list)): warn = n in value else: warn = n == value if warn: FeatureNew.single_use(f'"{name}" keyword argument "{info.name}" value "{n}"', version, subproject) elif info.required: raise InvalidArguments(f'{name} is missing required keyword argument "{info.name}"') else: # set the value to the default, this ensuring all kwargs are present # This both simplifies the typing checking and the usage # Create a shallow copy of the container (and do a type # conversion if necessary). This allows mutable types to # be used safely as default values if isinstance(info.types, ContainerTypeInfo): assert isinstance(info.default, info.types.container), f'In function {name} default value of {info.name} is not a valid type, got {type(info.default)}, expected {info.types.container}[{info.types.contains}]' for item in info.default: assert isinstance(item, info.types.contains), f'In function {name} default value of {info.name}, container has invalid value of {item}, which is of type {type(item)}, but should be {info.types.contains}' kwargs[info.name] = info.types.container(info.default) else: assert isinstance(info.default, info.types), f'In funcion {name} default value of {info.name} is not a valid type, got {type(info.default)} expected {info.types}' kwargs[info.name] = info.default if info.not_set_warning: mlog.warning(info.not_set_warning) if info.convertor: kwargs[info.name] = info.convertor(kwargs[info.name]) return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapper) return inner class FeatureCheckBase(metaclass=abc.ABCMeta): "Base class for feature version checks" # In python 3.6 we can just forward declare this, but in 3.5 we can't # This will be overwritten by the subclasses by necessity feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] def __init__(self, feature_name: str, version: str, extra_message: T.Optional[str] = None): self.feature_name = feature_name # type: str self.feature_version = version # type: str self.extra_message = extra_message or '' # type: str @staticmethod def get_target_version(subproject: str) -> str: # Don't do any checks if project() has not been parsed yet if subproject not in mesonlib.project_meson_versions: return '' return mesonlib.project_meson_versions[subproject] @staticmethod @abc.abstractmethod def check_version(target_version: str, feature_Version: str) -> bool: pass def use(self, subproject: str) -> None: tv = self.get_target_version(subproject) # No target version if tv == '': return # Target version is new enough if self.check_version(tv, self.feature_version): return # Feature is too new for target version, register it if subproject not in self.feature_registry: self.feature_registry[subproject] = {self.feature_version: set()} register = self.feature_registry[subproject] if self.feature_version not in register: register[self.feature_version] = set() if self.feature_name in register[self.feature_version]: # Don't warn about the same feature multiple times # FIXME: This is needed to prevent duplicate warnings, but also # means we won't warn about a feature used in multiple places. return register[self.feature_version].add(self.feature_name) self.log_usage_warning(tv) @classmethod def report(cls, subproject: str) -> None: if subproject not in cls.feature_registry: return warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject)) fv = cls.feature_registry[subproject] for version in sorted(fv.keys()): warning_str += '\n * {}: {}'.format(version, fv[version]) mlog.warning(warning_str) def log_usage_warning(self, tv: str) -> None: raise InterpreterException('log_usage_warning not implemented') @staticmethod def get_warning_str_prefix(tv: str) -> str: raise InterpreterException('get_warning_str_prefix not implemented') def __call__(self, f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: subproject = get_callee_args(wrapped_args, want_subproject=True)[4] if subproject is None: raise AssertionError(f'{wrapped_args!r}') self.use(subproject) return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) @classmethod def single_use(cls, feature_name: str, version: str, subproject: str, extra_message: T.Optional[str] = None) -> None: """Oneline version that instantiates and calls use().""" cls(feature_name, version, extra_message).use(subproject) class FeatureNew(FeatureCheckBase): """Checks for new features""" # Class variable, shared across all instances # # Format: {subproject: {feature_version: set(feature_names)}} feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] @staticmethod def check_version(target_version: str, feature_version: str) -> bool: return mesonlib.version_compare_condition_with_min(target_version, feature_version) @staticmethod def get_warning_str_prefix(tv: str) -> str: return f'Project specifies a minimum meson_version \'{tv}\' but uses features which were added in newer versions:' def log_usage_warning(self, tv: str) -> None: args = [ 'Project targeting', f"'{tv}'", 'but tried to use feature introduced in', f"'{self.feature_version}':", f'{self.feature_name}.', ] if self.extra_message: args.append(self.extra_message) mlog.warning(*args) class FeatureDeprecated(FeatureCheckBase): """Checks for deprecated features""" # Class variable, shared across all instances # # Format: {subproject: {feature_version: set(feature_names)}} feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] @staticmethod def check_version(target_version: str, feature_version: str) -> bool: # For deprecation checks we need to return the inverse of FeatureNew checks return not mesonlib.version_compare_condition_with_min(target_version, feature_version) @staticmethod def get_warning_str_prefix(tv: str) -> str: return 'Deprecated features used:' def log_usage_warning(self, tv: str) -> None: args = [ 'Project targeting', f"'{tv}'", 'but tried to use feature deprecated since', f"'{self.feature_version}':", f'{self.feature_name}.', ] if self.extra_message: args.append(self.extra_message) mlog.warning(*args) class FeatureCheckKwargsBase(metaclass=abc.ABCMeta): @property @abc.abstractmethod def feature_check_class(self) -> T.Type[FeatureCheckBase]: pass def __init__(self, feature_name: str, feature_version: str, kwargs: T.List[str], extra_message: T.Optional[str] = None): self.feature_name = feature_name self.feature_version = feature_version self.kwargs = kwargs self.extra_message = extra_message def __call__(self, f: TV_func) -> TV_func: @wraps(f) def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: kwargs, subproject = get_callee_args(wrapped_args, want_subproject=True)[3:5] if subproject is None: raise AssertionError(f'{wrapped_args!r}') for arg in self.kwargs: if arg not in kwargs: continue name = arg + ' arg in ' + self.feature_name self.feature_check_class.single_use( name, self.feature_version, subproject, self.extra_message) return f(*wrapped_args, **wrapped_kwargs) return T.cast(TV_func, wrapped) class FeatureNewKwargs(FeatureCheckKwargsBase): feature_check_class = FeatureNew class FeatureDeprecatedKwargs(FeatureCheckKwargsBase): feature_check_class = FeatureDeprecated ```
{ "source": "jimman2003/openlibrary-to-sqlite", "score": 3 }
#### File: jimman2003/openlibrary-to-sqlite/download.py ```python import urllib.request from tqdm import tqdm ## Taken right from the docs at https://github.com/tqdm/tqdm class TqdmUpTo(tqdm): """Provides `update_to(n)` which uses `tqdm.update(delta_n)`.""" def update_to(self, b=1, bsize=1, tsize=None): """ b : int, optional Number of blocks transferred so far [default: 1]. bsize : int, optional Size of each block (in tqdm units) [default: 1]. tsize : int, optional Total size (in tqdm units). If [default: None] remains unchanged. """ if tsize is not None: self.total = tsize return self.update(b * bsize - self.n) # also sets self.n = b * bsize def download_file_with_progress_bar(url, destination): with TqdmUpTo(unit='B', unit_scale=True, unit_divisor=1024, miniters=1, desc=url.split('/')[-1]) as t: # all optional kwargs urllib.request.urlretrieve(url, filename=destination, reporthook=t.update_to, data=None) t.total = t.n ``` #### File: jimman2003/openlibrary-to-sqlite/main.py ```python import os from database import create_works_database, load_database from download import download_file_with_progress_bar import subprocess import logging DATABASE_LOCATION = "openlibrary_works.sqlite3" def do_everything(): if not os.path.isfile(DATABASE_LOCATION): dump_file_location = "ol_dump_works_latest.txt.gz" if not os.path.isfile(dump_file_location): logging.info("dump not detected, downloading") url = "https://openlibrary.org/data/ol_dump_works_latest.txt.gz" download_file_with_progress_bar(url, dump_file_location) con = create_works_database(DATABASE_LOCATION) load_database(con, dump_file_location) subprocess.run(["datasette", DATABASE_LOCATION, "--setting", "sql_time_limit_ms", "35000"]) do_everything() ```
{ "source": "jimmayjr/swn-gen", "score": 3 }
#### File: swn-gen/swn/hexutils.py ```python import exception import math # Notes ------------------------------------------------------------------------ # Flat topped hex vertices # 2_______1 # / \ # / \ # 3/ \0 # \ / # \ / # 4\_______/5 # Axial coordinate conversions ------------------------------------------------- ## Axial to cube. def axial_to_cube(q, r): x = q z = r y = -x-z return(x,y,z) ## Axial to odd-q. def axial_to_odd_q(q, r): (x, y, z) = axial_to_cube(q, r) (row, col) = cube_to_odd_q(x, y, z) return(row, col) # Cube coordinate conversions -------------------------------------------------- ## Cube to axial. def cube_to_axial(x, y, z): q = x r = z return(q, r) ## Cube to odd-q. def cube_to_odd_q(x, y, z): col = x row = z + (x - (x&1)) / 2 return(row, col) # Offset coordinate conversions ------------------------------------------------ ## Odd-q to axial. def odd_q_to_axial(row, col): (x. y, z) = odd_q_to_cube(row, col) (q, r) = cube_to_axial(x, y, z) return(q, r) ## Odd-q to cube. def odd_q_to_cube(row, col): x = col z = row - (col - (col&1)) / 2 y = -x-z return(x, y, z) # Rounding --------------------------------------------------------------------- def axial_round(q, r): (x, y, z) = axial_to_cube(q, r) (rx, ry, rz) = cube_round(x, y, z) (rq, rr) = cube_to_axial(rx, ry, rz) return(rQ, rR) def cube_round(x, y, z): rX = round(x) rY = round(y) rZ = round(z) xDiff = abs(rX - x) yDiff = abs(rY - y) zDiff = abs(rZ - z) if ( (xDiff > yDiff) and (xDiff > zDiff) ): rX = -rY-rZ elif ( yDiff > zDiff ): rY = -rX-rZ else: rZ = -rX-rY return(int(rX), int(rY), int(rZ)) def odd_q_round(row, col): (x, y, z) = odd_q_to_cube(row, col) (rX, rY, rZ) = cube_round(x, y, z) (rRow, rCol) = cube_to_odd_q(rX, rY, rZ) return(rRow, rCol) # Distances -------------------------------------------------------------------- ## Axial coordinate distance. def axial_distance(aQ, aR, bQ, bR): (aX, aY, aZ) = axial_to_cube(aQ, aR) (bX, bY, bZ) = axial_to_cube(bQ, bR) return(cube_distance(aX, aY, aZ, bX, bY, bZ)) ## Cube coordinate distance. def cube_distance(aX, aY, aZ, bX, bY, bZ): return((abs(aX - bX) + abs(aY - bY) + abs(aZ - bZ))/2) ## Odd-r coordinate distance. def odd_q_distance(aRow, aCol, bRow, bCol): (aX, aY, aZ) = odd_q_to_cube(aRow, aCol) (bX, bY, bZ) = odd_q_to_cube(bRow, bCol) return(cube_distance(aX, aY, aZ, bX, bY, bZ)) # Neighbors -------------------------------------------------------------------- def axial_neighbors(q, r): (x, y, z) = axialtoCube(q, r) cn = cube_neighbors(x, y, z) neighbors = list() for c in cn: neighbors.append(cube_to_axial(c[0], c[1], c[2])) return(neighbors) def cube_neighbors(x, y, z): relNeighbors = [[ 1,-1, 0], [ 1, 0,-1], [ 0, 1,-1], [-1, 1, 0], [-1, 0, 1], [0, -1, 1]] neighbors = list() for rn in relNeighbors: neighbors.append([x+rn[0], y+rn[1], z+rn[2]]) return(neighbors) def odd_q_neighbors(row, col): neighbors = list() (x, y, z) = odd_q_to_cube(row, col) cn = cube_neighbors(x, y, z) neighbors = list() for c in cn: neighbors.append(cube_to_odd_q(c[0], c[1], c[2])) return(neighbors) # Lines ------------------------------------------------------------------------ def axial_line(aQ, aR, bQ, bR): (aX, aY, aZ) = axial_to_cube(aQ, aR) (bX, bY, bZ) = axial_to_cube(bQ, bR) cubeLineList = cube_line(aX, aY, aZ, bX, bY, bZ) axialLineList = list() for cl in cubeLineList: axialLineList.append(cube_to_axial(cl[0], cl[1], cl[2])) return(axialLineList) def cube_line(aX, aY, aZ, bX, bY, bZ): d = cube_distance(aX, aY, aZ, bX, bY, bZ) line = list() for step in range(d+1): (rX, rY, rZ) = cube_linterp(aX, aY, aZ, bX, bY, bZ,1.0/d*step) line.append(cube_round(rX, rY, rZ)) return(line) def odd_q_line(aRow, aCol, bRow, bCol): (aX, aY, aZ) = odd_q_to_cube(aRow, aCol) (bX, bY, bZ) = odd_q_to_cube(bRow, bCol) cubeLineList = cube_line(aX, aY, aZ, bX, bY, bZ) oddQLineList = list() for cl in cubeLineList: oddQLineList.append(cube_to_odd_q(cl[0], cl[1], cl[2])) return(oddQLineList) # Linear interpolation --------------------------------------------------------- def axial_linterp(aQ, aR, bQ, bR, t): (aX, aY, aZ) = axial_to_cube(aQ,aR) (bX, bY, bZ) = axial_to_cube(bQ,bR) (x, y, z) = cube_linterp(aX, aY, aZ, bX, bY, bZ, t) (q, r) = cube_to_axial(x, y, z) return(q, r) def cube_linterp(aX, aY, aZ, bX, bY, bZ, t): x = aX + (bX - aX) * t y = aY + (bY - aY) * t z = aZ + (bZ - aZ) * t return(x, y, z) # Pixel conversions ------------------------------------------------------------ def flat_height(size): # Check arguments exception.arg_check(size, float) # Get width width = flat_width(size) # Calculate height return(math.sqrt(3.)/2.*width) def flat_horizontal_spacing(size): # Check arguments exception.arg_check(size, float) # Calculate horizontal spacing return(flat_width(size)*3./4.) def flat_vertical_spacing(size): # Check arguments exception.arg_check(size, float) # Calculate vertical spacing return(flat_height(size)) def flat_width(size): # Check arguments exception.arg_check(size, float) # Calculate width return(size*2.) def flat_vertex(size, vertex): # Check arguments exception.arg_check(vertex,int) # Vertex angle deg = 60.*vertex rad = (math.pi/180.)*deg # Pixel position return(size*math.cos(rad), size*math.sin(rad)) def odd_q_center(size, row, col): # Check arguments exception.arg_check(size, float) exception.arg_check(row, int) exception.arg_check(col, int) # Hex size width = flat_width(size) height = flat_height(size) # Center cX = width*((1./2.) + (3./4.)*float(col)) # Center position Y # Even columns if (col % 2 == 0): cY = height*((1./2.)+float(row)) # Odd columns else: cY = height*(1.+float(row)) # Center position return(cX, cY) ``` #### File: swn-gen/swn/random.py ```python import numpy as np SEED_ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' SEED_ALPHABET_DICT = dict((c, i) for i, c in enumerate(SEED_ALPHABET)) SEED_MAX = 'ZZZZZ' SEED_MAX_CHAR_LEN = 5 # ZZZZZ is under max uint32, ZZZZZZ is above max uint32 ## Dice roll + modifer # # Rolls N number of D dice, adding M as a modifier to the result. # @param num Number of dice to roll. # @param die Which sided die to roll. # @param mod Modifier to add to the roll sum result. Default is 0. def dice_roll(num,die,mod=0): return(sum(np.random.random_integers(1,die,num))+mod) ## Random Seed # # Randomly selects a seed string and then sets is as the seed. def random_seed(): randomSeedUInt = np.random.random_integers(0,seed_alphabet_decode(SEED_MAX)) randomSeedString = seed_alphabet_encode(randomSeedUInt) set_seed(randomSeedUInt) return(randomSeedString) ## Random seed alphabet decode # # Decodes a seed into an unsigned integer. # @param seedString String to be decoded. def seed_alphabet_decode(seedString): # Check length if (len(seedString)>SEED_MAX_CHAR_LEN): raise(InvalidSeedLengthError("Seed length exceeds max allowed: length %s and max %s" % (len(seedString),SEED_MAX_CHAR_LEN))) # Check for invalid characters for char in seedString: if (char not in SEED_ALPHABET): raise(InvalidSeedCharError("Invalid seed character: %s in %s" % (char,seedString))) # Convert to uInt reverse_base = SEED_ALPHABET_DICT length = len(reverse_base) ret = 0 for i, c in enumerate(seedString[::-1]): ret += (length ** i) * reverse_base[c] return(ret) ## Random seed alphabet encode # # Encodes an unsigned integer into the seed alphabet. # @param seedUInt Integer to be encoded. def seed_alphabet_encode(seedUInt): if (seedUInt<0): raise(InvalidSeedNumberError("Negative number: %i" % seedUInt)) if (seedUInt>seed_alphabet_decode(SEED_MAX)): raise(InvalidSeedNumberError("Seed too large: %i" % seedUInt)) base=SEED_ALPHABET length = len(base) ret = '' while seedUInt != 0: ret = base[seedUInt % length] + ret seedUInt /= length return(ret) ## Set random number generator seed # # Set the seed for the numpy random number generator. # @param seedInt def set_seed(seedInt): np.random.seed(seedInt) ## Invalid seed character exception class. class InvalidSeedCharError(Exception): pass ## Invalid seed length exception class. class InvalidSeedLengthError(Exception): pass ## Invalid seed number exception class. class InvalidSeedNumberError(Exception): pass ```
{ "source": "jimmayxu/scVI", "score": 3 }
#### File: scVI/de/de_compare.py ```python import argparse import os import matplotlib.pyplot as plt from utils import name_to_dataset from de_models import ScVIClassic, Wilcoxon, EdgeR def parse_args(): parser = argparse.ArgumentParser(description='Compare methods for a given dataset') parser.add_argument('--dataset', type=str, help='Name of considered dataset') parser.add_argument('--nb_genes', type=int, default=None) parser.add_argument('--save_dir', type=str, default=None) return parser.parse_args() if __name__ == '__main__': # args = parse_args() # dataset_name = args.dataset # nb_genes = args.nb_genes dataset_name = "powsimr" nb_genes = 1200 save_dir = '.' dataset = name_to_dataset[dataset_name]() if nb_genes is not None: dataset.subsample_genes(new_n_genes=nb_genes) models = [ ScVIClassic(dataset=dataset, reconstruction_loss='zinb', n_latent=5, full_cov=False, do_mean_variance=False, name='scVI_classic'), # ScVIClassic(dataset=dataset, reconstruction_loss='zinb', n_latent=5, # full_cov=False, do_mean_variance=True, # name='scVI_mean_variance'), # ScVIClassic(dataset=dataset, reconstruction_loss='zinb', # n_latent=5, full_cov=True, do_mean_variance=False, name='scVI_full_covariance'), # EdgeR(dataset=dataset, name='EdgeR'), # Wilcoxon(dataset=dataset, name='Wilcoxon'), ] results = {} dataframes = {} for model in models: model_name = model.name model.full_init() model.train() model_perfs = model.predict_de() dataframes[model_name] = model_perfs results[model_name] = model.precision_recall_curve() ### import numpy as np model_perfs.loc[:, 'scVI_classic_gamma_score'] = np.abs(model_perfs['scVI_classic_gamma_bayes1']) results['scVI_classic_gamma'] = model.precision_recall_curve(model_perfs.scVI_classic_gamma_score) assert dataset_name == 'powsimr' res_df = dataset.gene_properties # Precision Recall curve: for key in results: precision, recall, mAP = results[key] plt.plot(recall, precision, alpha=1.0, label='{}@AP={:0.2f}'.format(key, mAP)) plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Precision Recall for all models') plt.legend() plt.savefig(os.path.join(save_dir, '{}_precision_recall.png'.format(dataset_name))) plt.show() # Saving dataframes if needed for later use for key in dataframes: res_df = res_df.join(dataframes[key]) res_df.to_csv(os.path.join(save_dir, '{}_de.tsv'.format(dataset_name)), sep='\t') ``` #### File: de/de_models/scvi_classic.py ```python from scvi.models import VAE, MeanVarianceVAE from scvi.inference import UnsupervisedTrainer from .de_model import DEModel import numpy as np class ScVIClassic(DEModel): def __init__(self, dataset, reconstruction_loss, n_latent, full_cov=False, do_mean_variance=False, name=''): super().__init__(dataset=dataset, name=name) self.reconstruction_loss = reconstruction_loss self.n_latent = n_latent self.full_cov = full_cov if do_mean_variance: self.model_type = MeanVarianceVAE else: self.model_type = VAE self.model = None self.trainer = None self.is_fully_init = False # early_stopping_kwargs={'early_stopping_metric': 'll', # 'save_best_state_metric': 'll', # 'patience': 15, 'threshold': 3} def full_init(self): self.model = self.model_type(n_input=self.dataset.nb_genes, n_batch=self.dataset.n_batches, reconstruction_loss=self.reconstruction_loss, n_latent=self.n_latent, full_cov=self.full_cov) self.trainer = UnsupervisedTrainer(model=self.model, gene_dataset=self.dataset, use_cuda=True, train_size=0.7, kl=1, frequency=1) self.is_fully_init = True def train(self, **train_params): assert self.is_fully_init if len(train_params) == 0: train_params = {'n_epochs': 150, 'lr': 1e-3} self.trainer.train(**train_params) def predict_de(self, n_samples=10000, M_permutation=100000, n_for_each=10, idx1=None, idx2=None, mode='rho'): assert mode in ['rho', 'gamma'] full = self.trainer.create_posterior(self.model, self.dataset, indices=np.arange(len(self.dataset))) if idx1 is None and idx2 is None: cell_pos1 = np.where(self.dataset.labels.ravel() == 0)[0][:n_for_each] cell_pos2 = np.where(self.dataset.labels.ravel() == 1)[0][:n_for_each] cell_idx1 = np.isin(np.arange(len(self.dataset)), cell_pos1) cell_idx2 = np.isin(np.arange(len(self.dataset)), cell_pos2) else: cell_idx1 = idx1 cell_idx2 = idx2 de_res = full.differential_expression_score(cell_idx1, cell_idx2, n_samples=n_samples, M_permutation=M_permutation) de_res_gamma = full.differential_expression_gamma(cell_idx1, cell_idx2, n_samples=n_samples, M_permutation=M_permutation) de_res.loc[:, 'gamma_bayes1'] = de_res_gamma de_res = de_res.sort_index() self.de_pred = de_res.bayes1.abs() de_res.columns = [self.name+'_'+col for col in de_res.columns] return de_res ``` #### File: scVI/main/new.py ```python import torch import numpy as np torch.manual_seed(0) np.random.seed(0) import pandas as pd import scanpy as sc sc.settings.verbosity = 0 import scanpy as sc import os , sys sys.path.append(os.path.abspath("../..")) n_epochs_all = None test_mode = False def if_not_test_else(x, y): if not test_mode: return x else: return y sys.path.append(os.path.abspath("../..")) n_epochs_all = None test_mode = False def if_not_test_else(x, y): if not test_mode: return x else: return y torch.manual_seed(0) np.random.seed(0) save_path = "data/" filename = "../data/ica_bone_marrow_h5.h5" adata = sc.read_10x_h5(filename) adata.var_names_make_unique() adata.obs_names_make_unique() # adata.shape # adata.obs_names # adata.var_names sc.pp.filter_cells(adata, min_genes= 200) sc.pp.filter_genes(adata, min_cells=3) sc.pp.filter_cells(adata, min_genes=1) mito_genes = adata.var_names.str.startswith("MT-") adata.obs["percent_mito"] = ( np.sum(adata[:, mito_genes].X, axis=1).A1 / np.sum(adata.X, axis=1).A1 ) adata.obs["n_counts"] = adata.X.sum(axis=1).A1 adata = adata[adata.obs["n_genes"] < 2500, :] adata = adata[adata.obs["percent_mito"] < 0.05, :] """ Normalization and more filtering We only keep highly variable genes """ adata_original = adata.copy() sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4) sc.pp.log1p(adata) min_mean = if_not_test_else(0.0125, -np.inf) max_mean = if_not_test_else(3, np.inf) min_disp = if_not_test_else(0.5, -np.inf) max_disp = if_not_test_else(None, np.inf) sc.pp.highly_variable_genes( adata, min_mean=min_mean, max_mean=max_mean, min_disp=min_disp, max_disp=max_disp # n_top_genes=500 ) adata.raw = adata highly_variable_genes = adata.var["highly_variable"] adata = adata[:, highly_variable_genes] sc.pp.regress_out(adata, ["n_counts", "percent_mito"]) sc.pp.scale(adata, max_value=10) # Also filter the original adata genes adata_original = adata_original[:, highly_variable_genes] print(highly_variable_genes.sum()) # We also store adata_original into adata.raw # (which was designed for this purpose but actually has limited functionnalities) adata.raw = adata_original """ Compute the scVI latent space """ import scvi from scvi.dataset.anndata import AnnDataset from scvi.inference import UnsupervisedTrainer from scvi.models.vae import VAE from typing import Tuple def compute_scvi_latent( adata: sc.AnnData, n_latent: int = 5, n_epochs: int = 100, lr: float = 1e-3, use_batches: bool = False, use_cuda: bool = True, ) -> Tuple[scvi.inference.Posterior, np.ndarray]: """Train and return a scVI model and sample a latent space :param adata: sc.AnnData object non-normalized :param n_latent: dimension of the latent space :param n_epochs: number of training epochs :param lr: learning rate :param use_batches :param use_cuda :return: (scvi.Posterior, latent_space) """ # Convert easily to scvi dataset scviDataset = AnnDataset(adata) # Train a model vae = VAE( scviDataset.nb_genes, n_batch=scviDataset.n_batches * use_batches, n_latent=n_latent, ) trainer = UnsupervisedTrainer(vae, scviDataset, train_size=1.0, use_cuda=use_cuda) trainer.train(n_epochs=n_epochs, lr=lr) #### # Extract latent space posterior = trainer.create_posterior( trainer.model, scviDataset, indices=np.arange(len(scviDataset)) ).sequential() latent, _, _ = posterior.get_latent() return posterior, latent n_epochs = 10 if n_epochs_all is None else n_epochs_all scvi_posterior, scvi_latent = compute_scvi_latent( adata_original, n_epochs=n_epochs, n_latent=6 ) adata.obsm["X_scvi"] = scvi_latent """ Finding marker genes """ def rank_genes_groups_bayes( adata: sc.AnnData, scvi_posterior: scvi.inference.Posterior, n_samples: int = None, M_permutation: int = None, n_genes: int = 25, label_name: str = "louvain_scvi", ) -> pd.DataFrame: """ Rank genes for characterizing groups. Computes Bayes factor for each cluster against the others to test for differential expression. See Nature article (https://rdcu.be/bdHYQ) :param adata: sc.AnnData object non-normalized :param scvi_posterior: :param n_samples: :param M_permutation: :param n_genes: :param label_name: The groups tested are taken from adata.obs[label_name] which can be computed using clustering like Louvain (Ex: sc.tl.louvain(adata, key_added=label_name) ) :return: Summary of Bayes factor per gene, per cluster """ # Call scvi function per_cluster_de, cluster_id = scvi_posterior.one_vs_all_degenes( cell_labels=np.asarray(adata.obs[label_name].values).astype(int).ravel(), min_cells=1, n_samples=n_samples, M_permutation=M_permutation, ) # convert to ScanPy format -- this is just about feeding scvi results into a format readable by ScanPy markers = [] scores = [] names = [] for i, x in enumerate(per_cluster_de): subset_de = x[:n_genes] markers.append(subset_de) scores.append(tuple(subset_de["bayes1"].values)) names.append(tuple(subset_de.index.values)) markers = pd.concat(markers) dtypes_scores = [(str(i), "<f4") for i in range(len(scores))] dtypes_names = [(str(i), "<U50") for i in range(len(names))] scores = np.array([tuple(row) for row in np.array(scores).T], dtype=dtypes_scores) scores = scores.view(np.recarray) names = np.array([tuple(row) for row in np.array(names).T], dtype=dtypes_names) names = names.view(np.recarray) adata.uns["rank_genes_groups_scvi"] = { "params": { "groupby": "", "reference": "rest", "method": "", "use_raw": True, "corr_method": "", }, "scores": scores, "names": names, } return markers ``` #### File: scvi/dataset/powsimr.py ```python from . import GeneExpressionDataset import numpy as np import os from scipy.interpolate import interp1d import pandas as pd import torch.distributions as distributions batch_lfc = distributions.Normal(loc=0.0, scale=0.25) class SignedGamma: def __init__(self, dim, proba_pos=0.75, shape=2, rate=4): self.proba_pos = proba_pos self.shape = shape self.rate = rate self.dim = dim def sample(self, size): if type(size) == int: sample_size = (size, self.dim) else: sample_size = list(size) + [self.dim] signs = 2.0 * distributions.Bernoulli(probs=0.75).sample(sample_size) - 1.0 gammas = distributions.Gamma(concentration=self.shape, rate=self.rate).sample( sample_size ) return signs * gammas class PowSimSynthetic(GeneExpressionDataset): def __init__( self, cluster_to_samples=[20, 100, 30, 25, 500], n_genes=10000, n_genes_zi=100, p_dropout=0.4, real_data_path=None, de_p=0.1, de_lfc=None, batch_p=0.0, batch_lfc=None, batch_pattern=None, marker_p=0.0, marker_lfc=0.0, do_spike_in=False, do_downsample=False, geneset=False, cst_mu=None, mode="NB", seed=42, ): # TODO: replace current ZI policy by the one implemented by powsim # In their case I guess it is similar to ZIFA """ :param cluster_to_samples: :param n_genes: :param de_p: :param de_lfc: :param batch_p: :param batch_lfc: :param marker_p: :param marker_lfc: :param do_spike_in: :param do_downsample: :param geneset: :param mode: :param seed: """ super().__init__() np.random.seed(seed) dir_path = os.path.dirname(os.path.realpath(__file__)) real_data_path = os.path.join(dir_path, "kolodziejczk_param.csv") self.real_data_df = pd.read_csv(real_data_path) if de_lfc is None: de_lfc = SignedGamma(dim=len(cluster_to_samples)) n_cells_total = sum(cluster_to_samples) self.n_clusters = len(cluster_to_samples) self.cluster_to_samples = cluster_to_samples self.phenotypes = np.concatenate( [ self._get_one_hot(idx=idx, n_idx_total=self.n_clusters, size=val) for (idx, val) in enumerate(self.cluster_to_samples) ] ) labels = np.array([v.argmax() for v in self.phenotypes]) assert len(labels) == len(self.phenotypes) self.mode = mode assert self.mode in ["NB", "ZINB"] self.geneset = geneset assert not self.geneset self.do_downsample = do_downsample assert not do_downsample assert not do_spike_in # Gene expression parameters n_genes_de = int(n_genes * de_p) n_genes_batch = int(batch_p * n_genes) n_genes_marker = int(marker_p * n_genes) assert n_genes_marker == 0 assert n_genes_batch == 0 assert n_genes_de > 0, "No genes differentially expressed" # Diff exp genes self.de_lfc = np.zeros((n_genes, self.n_clusters)) self.de_genes_idx = np.random.choice(a=n_genes, size=n_genes_de, replace=False) self.de_lfc[self.de_genes_idx] = self.unvectorize( de_lfc.sample((len(self.de_genes_idx),)) ) # ZI (uniform for now) self.zi_genes_idx = np.random.choice(a=n_genes, size=n_genes_zi, replace=False) self.p_dropout = p_dropout # Batch affected genes if n_genes_batch != 0: batch_genes_id = np.random.choice( a=n_genes, size=n_genes_batch, replace=False ) self.batch_lfc = np.zeros(n_genes, self.n_clusters) self.batch_lfc[batch_genes_id] = self.unvectorize( batch_lfc.sample((len(batch_genes_id),)) ) assert batch_pattern in ["uncorrelated", "orthogonal", "correlated"] self.batch_pattern = batch_pattern else: self.batch_lfc = None self.batch_pattern = None # Marker genes if n_genes_marker != 0: pass else: self.marker_lfc = None self.ids = self.de_genes_idx self.lfc = self.de_lfc self._log_mu_mat = None self._mu_mat = None self._sizes = None self.cst_mu = cst_mu sim_data = self.generate_data(n_cells_total=n_cells_total, n_genes=n_genes) # sim_data[sim_data >= 1000] = 1000 assert sim_data.shape == (n_cells_total, n_genes) sim_data = np.expand_dims(sim_data, axis=0) labels = np.expand_dims(labels, axis=0) gene_names = np.arange(n_genes).astype(str) self.populate_from_per_batch_list( sim_data, labels_per_batch=labels, gene_names=gene_names, ) gene_data = { "lfc{}".format(idx): arr for (idx, arr) in enumerate(self.de_lfc.T) } self.gene_properties = pd.DataFrame(data=gene_data, index=gene_names) def generate_data(self, n_cells_total, n_genes): if self.batch_lfc is None: model_matrix = self.phenotypes coeffs = self.lfc batch = None else: if self.batch_pattern == "uncorrelated": raise NotImplementedError elif self.batch_pattern == "orthogonal": raise NotImplementedError else: raise NotImplementedError # Generating data based on those parameters if self.mode == "NB": new_data = self.generate_nb(model_matrix, coeffs, n_cells_total, n_genes) elif self.mode == "ZINB": new_data = self.generate_zinb(model_matrix, coeffs, n_cells_total, n_genes) return new_data def generate_nb(self, model_matrix, coeffs, n_cells_total, nb_genes): """ DIFFERENCE WITH ORIGINAL IMPLEMENTATION HERE WE WORK WITH N_CELLS, N_GENES REPRESENTATIONS :param model_matrix: Mask Matrice (n_cells, n_clusters) :param coeffs: LFC Coefficients (n_genes, n_clusters) :return: """ if self.cst_mu is not None: true_means = self.cst_mu * np.ones(nb_genes) else: mu = self.real_data_df["means"] true_means = np.random.choice(a=mu, size=nb_genes, replace=True) true_means = true_means true_means[true_means >= 200] = 200 print(true_means.min(), true_means.mean(), true_means.max()) log_mu = np.log2(1.0 + true_means) print(log_mu.min(), log_mu.mean(), log_mu.max()) # log_mu = np.minimum(log_mu, 5.0) # NN interpolation interpolator_mean = interp1d( self.real_data_df.x, self.real_data_df.y, kind="nearest", bounds_error=False, fill_value="extrapolate", ) size_mean = interpolator_mean(log_mu) interpolator_std = interp1d( self.real_data_df.x, self.real_data_df.sd, kind="nearest", bounds_error=False, fill_value="extrapolate", ) size_std = interpolator_std(log_mu) # TODO: Verify Size log_sizes = np.random.normal(loc=size_mean, scale=size_std) assert log_sizes.shape == size_std.shape # all_facs = np.ones(n_samples) # effective_means = np.repeat(true_means, repeats=n_samples, axis=0) # assert effective_means.shape == (self.nb_genes, n_samples) effective_means = true_means # when no size factor log_effective = np.log2(effective_means + 1.0) _perturbations = model_matrix.dot(coeffs.T) log_mu_mat = np.log2(effective_means + 1.0) + model_matrix.dot(coeffs.T) log_mu_mat[log_mu_mat < 0] = log_effective.min() mu_mat = 2 ** log_mu_mat sizes = 2 ** log_sizes self._log_mu_mat = log_mu_mat self._mu_mat = mu_mat self._sizes = sizes nb_proba = sizes / (sizes + mu_mat) # TODO: Verify no mistakes here sim_data = np.random.negative_binomial( n=sizes, p=nb_proba, size=(n_cells_total, nb_genes) ) return sim_data def generate_zinb(self, model_matrix, coeffs, n_cells_total, nb_genes): sim_data = self.generate_nb(model_matrix, coeffs, n_cells_total, nb_genes) # Zero inflation zi_probas = np.ones_like(sim_data) zi_probas[:, self.zi_genes_idx] = 1.0 - self.p_dropout draws = np.random.rand(n_cells_total, nb_genes) do_drop = draws >= zi_probas sim_data = do_drop * sim_data return sim_data @staticmethod def _get_one_hot(idx, n_idx_total, size): res = np.zeros((size, n_idx_total)) res[:, idx] = 1 return res @staticmethod def unvectorize(vec): if len(vec.shape) == 1: return vec.reshape((-1, 1)) return vec ``` #### File: scvi/dataset/svensson.py ```python from . import GeneExpressionDataset from .anndataset import AnnDatasetFromAnnData, DownloadableAnnDataset import torch import pickle import os import numpy as np import pandas as pd import anndata class AnnDatasetKeywords(GeneExpressionDataset): def __init__(self, data, select_genes_keywords=[]): super().__init__() if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) ] for keyword in select_genes_keywords: idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in idx_and_gene_names if keyword.lower() in gene_name.lower() ] gene_indices = np.array([idx for idx, _ in idx_and_gene_names]) gene_names = np.array([gene_name for _, gene_name in idx_and_gene_names]) expression_mat = np.array(anndataset.X[:, gene_indices].todense()) select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = (expression_mat > 0).mean(axis=0) > 0.21 gene_names = gene_names[select_genes] expression_mat = expression_mat[:, select_genes] print("Final dataset shape :", expression_mat.shape) self.populate_from_data(X=expression_mat, gene_names=gene_names) class ZhengDataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) zheng = anndata.read(os.path.join(current_dir, "zheng_gemcode_control.h5ad")) super(ZhengDataset, self).__init__(zheng, select_genes_keywords=["ercc"]) class MacosDataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) macos = anndata.read(os.path.join(current_dir, "macosko_dropseq_control.h5ad")) super(MacosDataset, self).__init__(macos, select_genes_keywords=["ercc"]) class KleinDataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) klein = anndata.read( os.path.join(current_dir, "klein_indrops_control_GSM1599501.h5ad") ) super(KleinDataset, self).__init__(klein, select_genes_keywords=["ercc"]) class Sven1Dataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven1 = svens[svens.obs.query('sample == "20311"').index] super(Sven1Dataset, self).__init__(sven1, select_genes_keywords=["ercc"]) class Sven2Dataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven2 = svens[svens.obs.query('sample == "20312"').index] super(Sven2Dataset, self).__init__(sven2, select_genes_keywords=["ercc"]) class AnnDatasetRNA(GeneExpressionDataset): def __init__(self, data, n_genes=100): super().__init__() if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data # Select RNA genes idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) if "ercc" not in gene_name.lower() ] gene_indices = np.array([idx for idx, _ in idx_and_gene_names]) gene_names = np.array([gene_name for _, gene_name in idx_and_gene_names]) expression_mat = np.array(anndataset.X[:, gene_indices].todense()) # Find n_genes most expressed genes (wrt average gene expression) argsort_genes_exp = np.argsort(np.mean(expression_mat, axis=0)) expression_mat = expression_mat[:, argsort_genes_exp[-n_genes:]] gene_names = gene_names[argsort_genes_exp[-n_genes:]] # Remove zero cells, then zero genes select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = (expression_mat > 0).mean(axis=0) >= 0.21 gene_names = gene_names[select_genes] expression_mat = expression_mat[:, select_genes] print("Final dataset shape :", expression_mat.shape) self.populate_from_data(X=expression_mat, gene_names=gene_names) class KleinDatasetRNA(AnnDatasetRNA): def __init__(self, n_genes=100): current_dir = os.path.dirname(os.path.realpath(__file__)) klein = anndata.read( os.path.join(current_dir, "klein_indrops_control_GSM1599501.h5ad") ) super(KleinDatasetRNA, self).__init__(klein, n_genes=n_genes) class Sven1DatasetRNA(AnnDatasetRNA): def __init__(self, n_genes=100): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven1 = svens[svens.obs.query('sample == "20311"').index] super(Sven1DatasetRNA, self).__init__(sven1, n_genes=n_genes) class Sven2DatasetRNA(AnnDatasetRNA): def __init__(self, n_genes=100): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven2 = svens[svens.obs.query('sample == "20312"').index] super(Sven2DatasetRNA, self).__init__(sven2, n_genes=n_genes) class AnnDatasetMixed(GeneExpressionDataset): def __init__(self, data, matching_func="l2", n_matches=3, threshold=0.01): super().__init__() assert matching_func in [ "l2", "l2_sort", "means", "cosine", "cosine_sort", "random", ] self.matching_func = matching_func self.n_matches = n_matches if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data expression_mat = np.array(anndataset.X.todense()) # Select ERCC genes ercc_idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) if "ercc" in gene_name.lower() ] # Eliminate zero cells and zero genes select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = expression_mat.sum(axis=0) > 0 expression_mat = expression_mat[:, select_genes] # Select ERCC genes gene_names = np.array( [ gene_name for idx, gene_name in enumerate(list(anndataset.var.index)) if select_genes[idx] ] ) ercc_gene_indices = np.array( [ idx for idx, gene_name in enumerate(gene_names) if "ercc" in gene_name.lower() ] ) # Match ERCC genes with RNA genes, select matched genes selected_matched_genes = self._match_genes(expression_mat, ercc_gene_indices) expression_mat = expression_mat[:, selected_matched_genes] gene_names = gene_names[selected_matched_genes] # Remove induced zero cells and keep only genes present in at least 21% of cells select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = (expression_mat > 0).mean(axis=0) >= threshold gene_names = gene_names[select_genes] expression_mat = expression_mat[:, select_genes] print("Final dataset shape :", expression_mat.shape) print( "ERCC genes :", len([gene_name for gene_name in gene_names if "ercc" in gene_name.lower()]), ) self.is_ercc = np.array( ["ercc" in gene_name.lower() for gene_name in gene_names] ) self.populate_from_data(X=expression_mat, gene_names=gene_names) def _matching_func(self, ref_col, mat): if self.matching_func == "l2": return np.linalg.norm(mat - ref_col, axis=0) elif self.matching_func == "l2_sort": return np.linalg.norm( np.sort(mat, axis=0) - np.sort(ref_col, axis=0), axis=0 ) elif self.matching_func == "means": return np.abs(np.mean(mat, axis=0) - np.mean(ref_col)) elif self.matching_func == "cosine": return 1.0 - np.sum(mat * ref_col, axis=0) / ( np.linalg.norm(mat, axis=0) * np.linalg.norm(ref_col) ) elif self.matching_func == "cosine_sort": return 1.0 - np.sum( np.sort(mat, axis=0) * np.sort(ref_col, axis=0), axis=0 ) / (np.linalg.norm(mat, axis=0) * np.linalg.norm(ref_col)) elif self.matching_func == "random": np.random.seed(0) return np.random.uniform(0.0, 100.0, size=(mat.shape[1],)) else: raise Exception("Matching function not recognized") def _match_given_gene(self, expression_mat, ref_gene_index, selected_genes): scores = self._matching_func( expression_mat[:, ref_gene_index][:, np.newaxis], expression_mat ) scores[selected_genes] = np.inf new_matches = np.arange(expression_mat.shape[1])[ np.argsort(scores)[: self.n_matches] ] selected_genes[new_matches] = True return selected_genes def _match_genes(self, expression_mat, ref_gene_indices): selected_genes = np.zeros(shape=(expression_mat.shape[1],), dtype=bool) selected_genes[ref_gene_indices] = True if self.n_matches > 0: for ref_gene_index in ref_gene_indices: selected_genes = self._match_given_gene( expression_mat, ref_gene_index, selected_genes ) return selected_genes class KleinDatasetMixed(AnnDatasetMixed): def __init__(self, matching_func="l2", n_matches=3, threshold=0.01): current_dir = os.path.dirname(os.path.realpath(__file__)) klein = anndata.read( os.path.join(current_dir, "klein_indrops_control_GSM1599501.h5ad") ) super(KleinDatasetMixed, self).__init__( klein, matching_func=matching_func, n_matches=n_matches, threshold=threshold ) class Sven1DatasetMixed(AnnDatasetMixed): def __init__(self, matching_func="l2", n_matches=3, threshold=0.01): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven1 = svens[svens.obs.query('sample == "20311"').index] super(Sven1DatasetMixed, self).__init__( sven1, matching_func=matching_func, n_matches=n_matches, threshold=threshold ) class Sven2DatasetMixed(AnnDatasetMixed): def __init__(self, matching_func="l2", n_matches=3, threshold=0.01): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven2 = svens[svens.obs.query('sample == "20312"').index] super(Sven2DatasetMixed, self).__init__( sven2, matching_func=matching_func, n_matches=n_matches, threshold=threshold ) ``` #### File: scvi/inference/posterior.py ```python import copy import os import logging from typing import List, Optional, Union, Tuple import numpy as np import pandas as pd import scipy import torch import torch.distributions as distributions from matplotlib import pyplot as plt from scipy.stats import kde, entropy from sklearn.cluster import KMeans from sklearn.manifold import TSNE from sklearn.metrics import adjusted_rand_score as ARI from sklearn.metrics import normalized_mutual_info_score as NMI from sklearn.metrics import silhouette_score from sklearn.mixture import GaussianMixture as GMM from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor from sklearn.utils.linear_assignment_ import linear_assignment from torch.utils.data import DataLoader from torch.utils.data.sampler import SequentialSampler, SubsetRandomSampler, RandomSampler from scipy.special import betainc from torch.distributions import Normal, kl_divergence as kl from scvi.dataset import GeneExpressionDataset from scvi.models.log_likelihood import compute_elbo, compute_reconstruction_error, compute_marginal_log_likelihood logger = logging.getLogger(__name__) class SequentialSubsetSampler(SubsetRandomSampler): def __iter__(self): return iter(self.indices) class Posterior: r"""The functional data unit. A `Posterior` instance is instantiated with a model and a gene_dataset, and as well as additional arguments that for Pytorch's `DataLoader`. A subset of indices can be specified, for purposes such as splitting the data into train/test or labelled/unlabelled (for semi-supervised learning). Each trainer instance of the `Trainer` class can therefore have multiple `Posterior` instances to train a model. A `Posterior` instance also comes with many methods or utilities for its corresponding data. :param model: A model instance from class ``VAE``, ``VAEC``, ``SCANVI`` :param gene_dataset: A gene_dataset instance like ``CortexDataset()`` :param shuffle: Specifies if a `RandomSampler` or a `SequentialSampler` should be used :param indices: Specifies how the data should be split with regards to train/test or labelled/unlabelled :param use_cuda: Default: ``True`` :param data_loader_kwarg: Keyword arguments to passed into the `DataLoader` Examples: Let us instantiate a `trainer`, with a gene_dataset and a model >>> gene_dataset = CortexDataset() >>> vae = VAE(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels, use_cuda=True) >>> trainer = UnsupervisedTrainer(vae, gene_dataset) >>> trainer.train(n_epochs=50) A `UnsupervisedTrainer` instance has two `Posterior` attributes: `train_set` and `test_set` For this subset of the original gene_dataset instance, we can examine the differential expression, log_likelihood, entropy batch mixing, ... or display the TSNE of the data in the latent space through the scVI model >>> trainer.train_set.differential_expression_stats() >>> trainer.train_set.reconstruction_error() >>> trainer.train_set.entropy_batch_mixing() >>> trainer.train_set.show_t_sne(n_samples=1000, color_by="labels") """ def __init__( self, model, gene_dataset: GeneExpressionDataset, shuffle=False, indices=None, use_cuda=True, data_loader_kwargs=dict(), ): """ When added to annotation, has a private name attribute """ self.model = model self.gene_dataset = gene_dataset self.to_monitor = [] self.use_cuda = use_cuda if indices is not None and shuffle: raise ValueError("indices is mutually exclusive with shuffle") if indices is None: if shuffle: sampler = RandomSampler(gene_dataset) else: sampler = SequentialSampler(gene_dataset) else: if hasattr(indices, "dtype") and indices.dtype is np.dtype("bool"): indices = np.where(indices)[0].ravel() sampler = SubsetRandomSampler(indices) self.data_loader_kwargs = copy.copy(data_loader_kwargs) self.data_loader_kwargs.update( {"collate_fn": gene_dataset.collate_fn_builder(), "sampler": sampler} ) self.data_loader = DataLoader(gene_dataset, **self.data_loader_kwargs) def accuracy(self): pass accuracy.mode = "max" @property def indices(self): if hasattr(self.data_loader.sampler, "indices"): return self.data_loader.sampler.indices else: return np.arange(len(self.gene_dataset)) @property def nb_cells(self): if hasattr(self.data_loader.sampler, "indices"): return len(self.data_loader.sampler.indices) else: return self.gene_dataset.nb_cells def __iter__(self): return map(self.to_cuda, iter(self.data_loader)) def to_cuda(self, tensors): return [t.cuda() if self.use_cuda else t for t in tensors] def update(self, data_loader_kwargs): posterior = copy.copy(self) posterior.data_loader_kwargs = copy.copy(self.data_loader_kwargs) posterior.data_loader_kwargs.update(data_loader_kwargs) posterior.data_loader = DataLoader(self.gene_dataset, **posterior.data_loader_kwargs) return posterior def sequential(self, batch_size=128): return self.update({"batch_size": batch_size, "sampler": SequentialSubsetSampler(indices=self.indices)}) def corrupted(self): return self.update( {"collate_fn": self.gene_dataset.collate_fn_builder(corrupted=True)} ) def uncorrupted(self): return self.update({"collate_fn": self.gene_dataset.collate_fn_builder()}) @torch.no_grad() def get_latents(self, n_samples=1, other=None, device='gpu'): """ Computes all quantities of interest for DE in a sequential order WARNING: BATCH EFFECTS NOT TAKEN INTO ACCOUNT AS FOR NOW # TODO: TAKE THEM INTO ACCOUNT (NOT THAT HARD) :param n_samples: :param other: :return: """ zs = [] labels = [] scales = [] n_bio_batches = self.gene_dataset.n_batches with torch.no_grad(): for tensors in self.sequential(): sample_batch, _, _, batch_index, label = tensors outputs = self.model.inference(sample_batch, batch_index, n_samples=n_samples) z = outputs['z'] norm_library = 4. * torch.ones_like(sample_batch[:, [0]]) scale_batch = [] if other is not None: for bio_batch in range(n_bio_batches): batch_index = 1.0 * torch.ones_like(sample_batch[:, [0]]) scale_batch.append( self.model.decoder.forward('gene', z, norm_library, batch_index)[0] ) # each elem of scale_batch has shape (n_samples, n_batch, n_genes) scale_batch = torch.cat(scale_batch, dim=0) if device == 'cpu': label = label.cpu() z = z.cpu() if other is not None: scale_batch = scale_batch.cpu() # print(label.device, z.device, scale_batch.device) labels.append(label) zs.append(z) scales.append(scale_batch) if n_samples > 1: # Then each z element has shape (n_samples, n_batch, n_latent) # Hence we concatenate on dimension 1 zs = torch.cat(zs, dim=1) if other is not None: scales = torch.cat(scales, dim=1) # zs = zs.transpose(0, 1) # zs = zs.transpose(1, 2) # New shape (n_batch, b) else: zs = torch.cat(zs) labels = torch.cat(labels) if other is not None: return zs, labels, scales return zs, labels @torch.no_grad() def get_data(self): """ :return: """ xs, labels = [], [] for tensors in self.sequential(): sample_batch, _, _, batch_index, label = tensors xs.append(sample_batch.cpu()) labels.append(label.cpu()) xs = torch.cat(xs) labels = torch.cat(labels) return xs, labels @torch.no_grad() def elbo(self): elbo = compute_elbo(self.model, self) logger.debug("ELBO : %.4f" % elbo) return elbo elbo.mode = "min" @torch.no_grad() def reconstruction_error(self): reconstruction_error = compute_reconstruction_error(self.model, self) logger.debug("Reconstruction Error : %.4f" % reconstruction_error) return reconstruction_error reconstruction_error.mode = "min" @torch.no_grad() def marginal_ll(self, n_mc_samples=1000, ratio_loss=False): ll = compute_marginal_log_likelihood(self.model, self, n_mc_samples, ratio_loss=ratio_loss) logger.debug("True LL : %.4f" % ll) return ll @torch.no_grad() def get_latent(self, sample=False): """ Output posterior z mean or sample, batch index, and label :param sample: z mean or z sample :return: three np.ndarrays, latent, batch_indices, labels """ latent = [] batch_indices = [] labels = [] for tensors in self: sample_batch, local_l_mean, local_l_var, batch_index, label = tensors give_mean = not sample latent += [self.model.sample_from_posterior_z(sample_batch, give_mean=give_mean).cpu()] batch_indices += [batch_index.cpu()] labels += [label.cpu()] return np.array(torch.cat(latent)), np.array(torch.cat(batch_indices)), np.array(torch.cat(labels)).ravel() @torch.no_grad() def entropy_batch_mixing(self, **kwargs): if self.gene_dataset.n_batches == 2: latent, batch_indices, labels = self.get_latent() be_score = entropy_batch_mixing(latent, batch_indices, **kwargs) logger.debug("Entropy batch mixing :", be_score) return be_score entropy_batch_mixing.mode = "max" @torch.no_grad() def differential_expression_stats(self, M_sampling=100): """ Output average over statistics in a symmetric way (a against b) forget the sets if permutation is True :param M_sampling: number of samples :return: Tuple px_scales, all_labels where: - px_scales: scales of shape (M_sampling, n_genes) - all_labels: labels of shape (M_sampling, ) """ px_scales = [] all_labels = [] batch_size = max(self.data_loader_kwargs["batch_size"] // M_sampling, 2) # Reduce batch_size on GPU if len(self.gene_dataset) % batch_size == 1: batch_size += 1 for tensors in self.update({"batch_size": batch_size}): sample_batch, _, _, batch_index, labels = tensors px_scales += [ np.array( ( self.model.get_sample_scale( sample_batch, batch_index=batch_index, y=labels, n_samples=M_sampling ) ).cpu() ) ] # Align the sampling if M_sampling > 1: px_scales[-1] = (px_scales[-1].transpose((1, 0, 2))).reshape(-1, px_scales[-1].shape[-1]) all_labels += [np.array((labels.repeat(1, M_sampling).view(-1, 1)).cpu())] px_scales = np.concatenate(px_scales) all_labels = np.concatenate(all_labels).ravel() # this will be used as boolean return px_scales, all_labels @torch.no_grad() def sample_scale_from_batch(self, n_samples, batchid=None, selection=None): #TODO: Implement log probas px_scales = [] if selection is None: raise ValueError("selections should be a list of cell subsets indices") else: if selection.dtype is np.dtype("bool"): selection = np.asarray(np.where(selection)[0].ravel()) old_loader = self.data_loader for i in batchid: idx = np.random.choice(np.arange(len(self.gene_dataset))[selection], n_samples) sampler = SubsetRandomSampler(idx) self.data_loader_kwargs.update({"sampler": sampler}) self.data_loader = DataLoader(self.gene_dataset, **self.data_loader_kwargs) px_scales.append(self.get_harmonized_scale(i)) self.data_loader = old_loader px_scales = np.concatenate(px_scales) return px_scales, None @torch.no_grad() def sample_poisson_from_batch(self, n_samples, batchid=None, selection=None): # TODO: Refactor? px_scales = [] log_probas = [] if selection is None: raise ValueError("selections should be a list of cell subsets indices") else: if selection.dtype is np.dtype('bool'): selection = np.asarray(np.where(selection)[0].ravel()) old_loader = self.data_loader for i in batchid: idx = np.random.choice(np.arange(len(self.gene_dataset))[selection], n_samples) sampler = SubsetRandomSampler(idx) self.data_loader_kwargs.update({'sampler': sampler}) self.data_loader = DataLoader(self.gene_dataset, **self.data_loader_kwargs) for tensors in self: sample_batch, local_l_mean, local_l_var, batch_index, label = tensors px_scale, px_dispersion, px_rate, px_dropout, qz_m, qz_v, z, ql_m, ql_v, library = \ self.model.inference(sample_batch, batch_index, label) # px_rate = self.get_harmonized_scale(i) # p = px_rate / (px_rate + px_dispersion.cpu().numpy()) # r = px_dispersion.cpu().numpy() # p = (px_scale / (px_scale + px_dispersion)).cpu().numpy() p = (px_rate / (px_rate + px_dispersion)).cpu().numpy() r = px_dispersion.cpu().numpy() l_train = np.random.gamma(r, p / (1 - p)) px_scales.append(l_train) log_px_z = self.model._reconstruction_loss(sample_batch, px_rate, px_dispersion, px_dropout) log_pz = Normal(torch.zeros_like(qz_m), torch.ones_like(qz_v)).log_prob(z).sum( dim=-1) log_qz_x = Normal(qz_m, qz_v.sqrt()).log_prob(z).sum(dim=-1) log_p = log_pz + log_px_z - log_qz_x log_probas.append(log_p.cpu().numpy()) self.data_loader = old_loader px_scales = np.concatenate(px_scales) log_probas = np.concatenate(log_probas) return px_scales, log_probas @torch.no_grad() def sample_gamma_params_from_batch(self, n_samples, batchid=None, selection=None): shapes_res, scales_res = [], [] dispersions = [] if selection is None: raise ValueError("selections should be a list of cell subsets indices") else: if selection.dtype is np.dtype('bool'): selection = np.asarray(np.where(selection)[0].ravel()) old_loader = self.data_loader for i in batchid: idx = np.random.choice(np.arange(len(self.gene_dataset))[selection], n_samples) sampler = SubsetRandomSampler(idx) self.data_loader_kwargs.update({'sampler': sampler}) self.data_loader = DataLoader(self.gene_dataset, **self.data_loader_kwargs) # # # fixed_batch = float(i) for tensors in self: sample_batch, local_l_mean, local_l_var, batch_index, label = tensors px_scale, px_dispersion, px_rate = self.model.inference(sample_batch, batch_index, label)[0:3] # px_rate = self.get_harmonized_scale(i) # p = px_rate / (px_rate + px_dispersion.cpu().numpy()) # r = px_dispersion.cpu().numpy() # p = (px_scale / (px_scale + px_dispersion)).cpu().numpy() p = (px_rate / (px_rate + px_dispersion)).cpu().numpy() r = px_dispersion.cpu().numpy() shapes_batch = r scales_batch = p / (1.0 - p) if len(shapes_batch.shape) == 1: shapes_batch = np.repeat(shapes_batch.reshape((1, -1)), repeats=scales_batch.shape[0], axis=0) shapes_res.append(shapes_batch) scales_res.append(scales_batch) self.data_loader = old_loader shapes_res = np.concatenate(shapes_res) scales_res = np.concatenate(scales_res) assert shapes_res.shape == scales_res.shape, (shapes_res.shape, scales_res.shape) return shapes_res, scales_res @torch.no_grad() def differential_expression_gamma(self, idx1, idx2, batchid1=None, batchid2=None, genes=None, n_samples=None, M_permutation=None, all_stats=True, sample_pairs=True): n_samples = 5000 if n_samples is None else n_samples M_permutation = 10000 if M_permutation is None else M_permutation if batchid1 is None: batchid1 = np.arange(self.gene_dataset.n_batches) if batchid2 is None: batchid2 = np.arange(self.gene_dataset.n_batches) shapes1, scales1 = self.sample_gamma_params_from_batch(selection=idx1, batchid=batchid1, n_samples=n_samples) shapes2, scales2 = self.sample_gamma_params_from_batch(selection=idx2, batchid=batchid2, n_samples=n_samples) print(shapes1.shape, scales1.shape, shapes2.shape, scales2.shape) all_labels = np.concatenate((np.repeat(0, len(shapes1)), np.repeat(1, len(shapes2))), axis=0) if genes is not None: shapes1 = shapes1[:, self.gene_dataset._gene_idx(genes)] scales1 = scales1[:, self.gene_dataset._gene_idx(genes)] shapes2 = shapes2[:, self.gene_dataset._gene_idx(genes)] scales2 = scales2[:, self.gene_dataset._gene_idx(genes)] shapes = np.concatenate((shapes1, shapes2), axis=0) scales = np.concatenate((scales1, scales2), axis=0) assert shapes.shape == scales.shape, (shapes.shape, scales.shape) data = (shapes, scales) bayes1 = get_bayes_gamma(data, all_labels, cell_idx=0, M_permutation=M_permutation, permutation=False, sample_pairs=sample_pairs) bayes1 = pd.Series(data=bayes1, index=self.gene_dataset.gene_names) return bayes1 @torch.no_grad() def differential_expression_score( self, idx1: Union[List[bool], np.ndarray], idx2: Union[List[bool], np.ndarray], batchid1: Optional[Union[List[int], np.ndarray]] = None, batchid2: Optional[Union[List[int], np.ndarray]] = None, genes: Optional[Union[List[str], np.ndarray]] = None, n_samples: int = None, sample_pairs: bool = True, M_permutation: int = None, all_stats: bool = True, sample_gamma: bool = False, importance_sampling: bool = False ): """Computes gene specific Bayes factors using masks idx1 and idx2 To that purpose we sample the Posterior in the following way: 1. The posterior is sampled n_samples times for each subpopulation 2. For computation efficiency (posterior sampling is quite expensive), instead of comparing element-wise the obtained samples, we can permute posterior samples. Remember that computing the Bayes Factor requires sampling q(z_A | x_A) and q(z_B | x_B) :param idx1: bool array masking subpopulation cells 1. Should be True where cell is from associated population :param idx2: bool array masking subpopulation cells 2. Should be True where cell is from associated population :param batchid1: List of batch ids for which you want to perform DE Analysis for subpopulation 1. By default, all ids are taken into account :param batchid2: List of batch ids for which you want to perform DE Analysis for subpopulation 2. By default, all ids are taken into account :param genes: list Names of genes for which Bayes factors will be computed :param n_samples: Number of times the posterior will be sampled for each pop :param sample_pairs: Activates step 2 described above. Simply formulated, pairs obtained from posterior sampling (when calling `sample_scale_from_batch`) will be randomly permuted so that the number of pairs used to compute Bayes Factors becomes M_permutation. :param M_permutation: Number of times we will "mix" posterior samples in step 2. Only makes sense when sample_pairs=True :param all_stats: If False returns Bayes factors alone else, returns not only Bayes Factor of population 1 vs population 2 but other metrics as well, mostly used for sanity checks, such as - Bayes Factors of 2 vs 1 - Bayes factors obtained when indices used to computed bayes are chosen randomly (ie we compute Bayes factors of Completely Random vs Completely Random). These can be seen as control tests. - Gene expression statistics (mean, scale ...) :return: """ n_samples = 5000 if n_samples is None else n_samples M_permutation = 10000 if M_permutation is None else M_permutation if batchid1 is None: batchid1 = np.arange(self.gene_dataset.n_batches) if batchid2 is None: batchid2 = np.arange(self.gene_dataset.n_batches) if sample_gamma: px_scale1, log_probas1 = self.sample_poisson_from_batch(selection=idx1, batchid=batchid1, n_samples=n_samples) px_scale2, log_probas2 = self.sample_poisson_from_batch(selection=idx2, batchid=batchid2, n_samples=n_samples) else: px_scale1, log_probas1 = self.sample_scale_from_batch(selection=idx1, batchid=batchid1, n_samples=n_samples) px_scale2, log_probas2 = self.sample_scale_from_batch(selection=idx2, batchid=batchid2, n_samples=n_samples) px_scale_mean1 = px_scale1.mean(axis=0) px_scale_mean2 = px_scale2.mean(axis=0) px_scale = np.concatenate((px_scale1, px_scale2), axis=0) if log_probas1 is not None: log_probas = np.concatenate((log_probas1, log_probas2), axis=0) else: log_probas = None # print('px_scales1 shapes', px_scale1.shape) # print('px_scales2 shapes', px_scale2.shape) all_labels = np.concatenate((np.repeat(0, len(px_scale1)), np.repeat(1, len(px_scale2))), axis=0) if genes is not None: px_scale = px_scale[:, self.gene_dataset.genes_to_index(genes)] bayes1 = get_bayes_factors(px_scale, all_labels, cell_idx=0, M_permutation=M_permutation, permutation=False, sample_pairs=sample_pairs, importance_sampling=importance_sampling, log_ratios=log_probas) if all_stats is True: bayes1_permuted = get_bayes_factors(px_scale, all_labels, cell_idx=0, M_permutation=M_permutation, permutation=True, sample_pairs=sample_pairs, importance_sampling=importance_sampling, log_ratios=log_probas) bayes2 = get_bayes_factors(px_scale, all_labels, cell_idx=1, M_permutation=M_permutation, permutation=False, sample_pairs=sample_pairs, importance_sampling=importance_sampling, log_ratios=log_probas) bayes2_permuted = get_bayes_factors(px_scale, all_labels, cell_idx=1, M_permutation=M_permutation, permutation=True, sample_pairs=sample_pairs, importance_sampling=importance_sampling, log_ratios=log_probas) mean1, mean2, nonz1, nonz2, norm_mean1, norm_mean2 = \ self.gene_dataset.raw_counts_properties(idx1, idx2) res = pd.DataFrame([bayes1, bayes1_permuted, bayes2, bayes2_permuted, mean1, mean2, nonz1, nonz2, norm_mean1, norm_mean2, px_scale_mean1, px_scale_mean2], index=["bayes1", "bayes1_permuted", "bayes2", "bayes2_permuted", "mean1", "mean2", "nonz1", "nonz2", "norm_mean1", "norm_mean2", "scale1", "scale2"], columns=self.gene_dataset.gene_names).T res = res.sort_values(by=["bayes1"], ascending=False) return res else: return pd.Series(data=bayes1, index=self.gene_dataset.gene_names) @torch.no_grad() def one_vs_all_degenes( self, subset: Optional[Union[List[bool], np.ndarray]] = None, cell_labels: Optional[Union[List, np.ndarray]] = None, min_cells: int = 10, n_samples: int = None, sample_pairs: bool = False, M_permutation: int = None, output_file: bool = False, save_dir: str = "./", filename="one2all", ): """ Performs one population vs all others Differential Expression Analysis given labels or using cell types, for each type of population :param subset: None Or bool array masking subset of cells you are interested in (True when you want to select cell). In that case, it should have same length than `gene_dataset` :param cell_labels: optional: Labels of cells :param min_cells: Ceil number of cells used to compute Bayes Factors :param n_samples: Number of times the posterior will be sampled for each pop :param sample_pairs: Activates pair random permutations. Simply formulated, pairs obtained from posterior sampling (when calling `sample_scale_from_batch`) will be randomly permuted so that the number of pairs used to compute Bayes Factors becomes M_permutation. :param M_permutation: Number of times we will "mix" posterior samples in step 2. Only makes sense when sample_pairs=True :param output_file: Bool: save file? :param save_dir: :param filename: :return: Tuple (de_res, de_cluster) - de_res is a list of length nb_clusters (based on provided labels or on hardcoded cell types). de_res[i] contains Bayes Factors for population number i vs all the rest - de_cluster returns the associated names of clusters Are contains in this results only clusters for which we have at least `min_cells` elements to compute predicted Bayes Factors """ if cell_labels is not None: if len(cell_labels) != len(self.gene_dataset): raise ValueError(" the length of cell_labels have to be " "the same as the number of cells") if (cell_labels is None) and not hasattr(self.gene_dataset, 'cell_types'): raise ValueError("If gene_dataset is not annotated with labels and cell types," " then must provide cell_labels") # Input cell_labels take precedence over cell type label annotation in dataset elif cell_labels is not None: cluster_id = np.unique(cell_labels[cell_labels >= 0]) # Can make cell_labels < 0 to filter out cells when computing DE else: cluster_id = self.gene_dataset.cell_types cell_labels = self.gene_dataset.labels.ravel() de_res = [] de_cluster = [] for i, x in enumerate(cluster_id): if subset is None: idx1 = (cell_labels == i) idx2 = (cell_labels != i) else: idx1 = (cell_labels == i) * subset idx2 = (cell_labels != i) * subset if np.sum(idx1) > min_cells and np.sum(idx2) > min_cells: de_cluster.append(x) # TODO: Understand issue when Sample_pairs=True res = self.differential_expression_score(idx1=idx1, idx2=idx2, M_permutation=M_permutation, n_samples=n_samples, sample_pairs=sample_pairs) res["clusters"] = np.repeat(x, len(res.index)) de_res.append(res) if output_file: # store as an excel spreadsheet writer = pd.ExcelWriter(save_dir + "differential_expression.%s.xlsx" % filename, engine="xlsxwriter") for i, x in enumerate(de_cluster): de_res[i].to_excel(writer, sheet_name=str(x)) writer.close() return de_res, de_cluster def within_cluster_degenes( self, cell_labels: Optional[Union[List, np.ndarray]] = None, min_cells: int = 10, states: Union[List[bool], np.ndarray] = [], batch1: Optional[Union[List[int], np.ndarray]] = None, batch2: Optional[Union[List[int], np.ndarray]] = None, subset: Optional[Union[List[bool], np.ndarray]] = None, n_samples: int = None, sample_pairs: bool = False, M_permutation: int = None, output_file: bool = False, save_dir: str = "./", filename: str = "within_cluster", ): """ Performs Differential Expression within clusters for different cell states :param cell_labels: optional: Labels of cells :param min_cells: Ceil number of cells used to compute Bayes Factors :param states: States of the cells. :param batch1: List of batch ids for which you want to perform DE Analysis for subpopulation 1. By default, all ids are taken into account :param batch2: List of batch ids for which you want to perform DE Analysis for subpopulation 2. By default, all ids are taken into account :param subset: MASK: Subset of cells you are insterested in. :param n_samples: Number of times the posterior will be sampled for each pop :param sample_pairs: Activates pair random permutations. Simply formulated, pairs obtained from posterior sampling (when calling `sample_scale_from_batch`) will be randomly permuted so that the number of pairs used to compute Bayes Factors becomes M_permutation. :param M_permutation: Number of times we will "mix" posterior samples in step 2. Only makes sense when sample_pairs=True :param output_file: Bool: save file? :param save_dir: :param filename: :return: Tuple (de_res, de_cluster) - de_res is a list of length nb_clusters (based on provided labels or on hardcoded cell types). de_res[i] contains Bayes Factors for population number i vs all the rest - de_cluster returns the associated names of clusters Are contains in this results only clusters for which we have at least `min_cells` elements to compute predicted Bayes Factors """ if len(self.gene_dataset) != len(states): raise ValueError(" the length of states have to be the same as the number of cells") if (cell_labels is None) and not hasattr(self.gene_dataset, "cell_types"): raise ValueError("If gene_dataset is not annotated with labels and cell types," " then must provide cell_labels") # Input cell_labels take precedence over cell type label annotation in dataset elif cell_labels is not None: cluster_id = np.unique(cell_labels[cell_labels >= 0]) # Can make cell_labels < 0 to filter out cells when computing DE else: cluster_id = self.gene_dataset.cell_types cell_labels = self.gene_dataset.labels.ravel() de_res = [] de_cluster = [] states = np.asarray([1 if x else 0 for x in states]) nstates = np.asarray([0 if x else 1 for x in states]) for i, x in enumerate(cluster_id): if subset is None: idx1 = (cell_labels == i) * states idx2 = (cell_labels == i) * nstates else: idx1 = (cell_labels == i) * subset * states idx2 = (cell_labels == i) * subset * nstates if np.sum(idx1) > min_cells and np.sum(idx2) > min_cells: de_cluster.append(x) res = self.differential_expression_score(idx1=idx1, idx2=idx2, batchid1=batch1, batchid2=batch2, M_permutation=M_permutation, n_samples=n_samples, sample_pairs=sample_pairs) res["clusters"] = np.repeat(x, len(res.index)) de_res.append(res) if output_file: # store as an excel spreadsheet writer = pd.ExcelWriter(save_dir + "differential_expression.%s.xlsx" % filename, engine="xlsxwriter") for i, x in enumerate(de_cluster): de_res[i].to_excel(writer, sheet_name=str(x)) writer.close() return de_res, de_cluster @torch.no_grad() def imputation(self, n_samples=1): imputed_list = [] for tensors in self: sample_batch, _, _, batch_index, labels = tensors px_rate = self.model.get_sample_rate(sample_batch, batch_index=batch_index, y=labels, n_samples=n_samples) imputed_list += [np.array(px_rate.cpu())] imputed_list = np.concatenate(imputed_list) return imputed_list.squeeze() @torch.no_grad() def generate( self, n_samples: int = 100, genes: Union[list, np.ndarray] = None, batch_size: int = 128 ) -> Tuple[torch.Tensor, torch.Tensor]: """ Create observation samples from the Posterior Predictive distribution :param n_samples: Number of required samples for each cell :param genes: Indices of genes of interest :param batch_size: Desired Batch size to generate data :return: Tuple (x_new, x_old) Where x_old has shape (n_cells, n_genes) Where x_new has shape (n_cells, n_genes, n_samples) """ assert self.model.reconstruction_loss in ['zinb', 'nb'] zero_inflated = self.model.reconstruction_loss == 'zinb' x_old = [] x_new = [] for tensors in self.update({"batch_size": batch_size}): sample_batch, _, _, batch_index, labels = tensors outputs = self.model.inference( sample_batch, batch_index=batch_index, y=labels, n_samples=n_samples ) px_dispersion = outputs['px_r'] px_rate = outputs['px_rate'] px_dropout = outputs['px_dropout'] p = px_rate / (px_rate + px_dispersion) r = px_dispersion # Important remark: Gamma is parametrized by the rate = 1/scale! l_train = distributions.Gamma(concentration=r, rate=(1 - p) / p).sample() # Clamping as distributions objects can have buggy behaviors when # their parameters are too high l_train = torch.clamp(l_train, max=1e8) gene_expressions = distributions.Poisson(l_train).sample() # Shape : (n_samples, n_cells_batch, n_genes) if zero_inflated: p_zero = (1.0 + torch.exp(-px_dropout)).pow(-1) random_prob = torch.rand_like(p_zero) gene_expressions[random_prob <= p_zero] = 0 gene_expressions = gene_expressions.permute([1, 2, 0]) # Shape : (n_cells_batch, n_genes, n_samples) x_old.append(sample_batch) x_new.append(gene_expressions) x_old = torch.cat(x_old) # Shape (n_cells, n_genes) x_new = torch.cat(x_new) # Shape (n_cells, n_genes, n_samples) if genes is not None: gene_ids = self.gene_dataset.genes_to_index(genes) x_new = x_new[:, gene_ids, :] x_old = x_old[:, gene_ids] return x_new.cpu().numpy(), x_old.cpu().numpy() @torch.no_grad() def generate_parameters(self): dropout_list = [] mean_list = [] dispersion_list = [] for tensors in self.sequential(1000): sample_batch, _, _, batch_index, labels = tensors outputs = self.model.inference( sample_batch, batch_index=batch_index, y=labels, n_samples=1 ) px_dispersion = outputs['px_r'] px_rate = outputs['px_rate'] px_dropout = outputs['px_dropout'] dispersion_list += [np.repeat(np.array(px_dispersion.cpu())[np.newaxis, :], px_rate.size(0), axis=0)] mean_list += [np.array(px_rate.cpu())] dropout_list += [np.array(px_dropout.cpu())] return np.concatenate(dropout_list), np.concatenate(mean_list), np.concatenate(dispersion_list) @torch.no_grad() def get_stats(self): libraries = [] for tensors in self.sequential(batch_size=128): x, local_l_mean, local_l_var, batch_index, y = tensors library = self.model.inference(x, batch_index, y)['library'] libraries += [np.array(library.cpu())] libraries = np.concatenate(libraries) return libraries.ravel() @torch.no_grad() def get_harmonized_scale(self, fixed_batch): px_scales = [] fixed_batch = float(fixed_batch) for tensors in self: sample_batch, local_l_mean, local_l_var, batch_index, label = tensors px_scales += [self.model.scale_from_z(sample_batch, fixed_batch).cpu()] return np.concatenate(px_scales) @torch.no_grad() def get_sample_scale(self): px_scales = [] for tensors in self: sample_batch, _, _, batch_index, labels = tensors px_scales += [ np.array( ( self.model.get_sample_scale( sample_batch, batch_index=batch_index, y=labels, n_samples=1 ) ).cpu() ) ] return np.concatenate(px_scales) @torch.no_grad() def imputation_list(self, n_samples=1): original_list = [] imputed_list = [] batch_size = 10000 # self.data_loader_kwargs["batch_size"] // n_samples for tensors, corrupted_tensors in zip(self.uncorrupted().sequential(batch_size=batch_size), self.corrupted().sequential(batch_size=batch_size)): batch = tensors[0] actual_batch_size = batch.size(0) dropout_batch, _, _, batch_index, labels = corrupted_tensors px_rate = self.model.get_sample_rate(dropout_batch, batch_index=batch_index, y=labels, n_samples=n_samples) indices_dropout = torch.nonzero(batch - dropout_batch) if indices_dropout.size() != torch.Size([0]): i = indices_dropout[:, 0] j = indices_dropout[:, 1] batch = batch.unsqueeze(0).expand((n_samples, batch.size(0), batch.size(1))) original = np.array(batch[:, i, j].view(-1).cpu()) imputed = np.array(px_rate[..., i, j].view(-1).cpu()) cells_index = np.tile(np.array(i.cpu()), n_samples) original_list += [original[cells_index == i] for i in range(actual_batch_size)] imputed_list += [imputed[cells_index == i] for i in range(actual_batch_size)] else: original_list = np.array([]) imputed_list = np.array([]) return original_list, imputed_list @torch.no_grad() def imputation_score(self, original_list=None, imputed_list=None, n_samples=1): if original_list is None or imputed_list is None: original_list, imputed_list = self.imputation_list(n_samples=n_samples) original_list_concat = np.concatenate(original_list) imputed_list_concat = np.concatenate(imputed_list) are_lists_empty = (len(original_list_concat) == 0) and (len(imputed_list_concat) == 0) if are_lists_empty: logger.info("No difference between corrupted dataset and uncorrupted dataset") return 0.0 else: return np.median(np.abs(original_list_concat - imputed_list_concat)) @torch.no_grad() def imputation_benchmark(self, n_samples=8, show_plot=True, title_plot="imputation", save_path=""): original_list, imputed_list = self.imputation_list(n_samples=n_samples) # Median of medians for all distances median_score = self.imputation_score(original_list=original_list, imputed_list=imputed_list) # Mean of medians for each cell imputation_cells = [] for original, imputed in zip(original_list, imputed_list): has_imputation = len(original) and len(imputed) imputation_cells += [np.median(np.abs(original - imputed)) if has_imputation else 0] mean_score = np.mean(imputation_cells) logger.debug("\nMedian of Median: %.4f\nMean of Median for each cell: %.4f" % (median_score, mean_score)) plot_imputation(np.concatenate(original_list), np.concatenate(imputed_list), show_plot=show_plot, title=os.path.join(save_path, title_plot)) return original_list, imputed_list @torch.no_grad() def knn_purity(self): latent, _, labels = self.get_latent() score = knn_purity(latent, labels) logger.debug("KNN purity score :", score) return score knn_purity.mode = "max" @torch.no_grad() def clustering_scores(self, prediction_algorithm="knn"): if self.gene_dataset.n_labels > 1: latent, _, labels = self.get_latent() if prediction_algorithm == "knn": labels_pred = KMeans(self.gene_dataset.n_labels, n_init=200).fit_predict(latent) # n_jobs>1 ? elif prediction_algorithm == "gmm": gmm = GMM(self.gene_dataset.n_labels) gmm.fit(latent) labels_pred = gmm.predict(latent) asw_score = silhouette_score(latent, labels) nmi_score = NMI(labels, labels_pred) ari_score = ARI(labels, labels_pred) uca_score = unsupervised_clustering_accuracy(labels, labels_pred)[0] logger.debug("Clustering Scores:\nSilhouette: %.4f\nNMI: %.4f\nARI: %.4f\nUCA: %.4f" % (asw_score, nmi_score, ari_score, uca_score)) return asw_score, nmi_score, ari_score, uca_score @torch.no_grad() def nn_overlap_score(self, **kwargs): """ Quantify how much the similarity between cells in the mRNA latent space resembles their similarity at the protein level. Compute the overlap fold enrichment between the protein and mRNA-based cell 100-nearest neighbor graph and the Spearman correlation of the adjacency matrices. """ if hasattr(self.gene_dataset, "protein_expression_clr"): latent, _, _ = self.sequential().get_latent() protein_data = self.gene_dataset.protein_expression_clr[self.indices] spearman_correlation, fold_enrichment = nn_overlap(latent, protein_data, **kwargs) logger.debug("Overlap Scores:\nSpearman Correlation: %.4f\nFold Enrichment: %.4f" % (spearman_correlation, fold_enrichment)) return spearman_correlation, fold_enrichment @torch.no_grad() def show_t_sne(self, n_samples=1000, color_by="", save_name="", latent=None, batch_indices=None, labels=None, n_batch=None): # If no latent representation is given if latent is None: latent, batch_indices, labels = self.get_latent(sample=True) latent, idx_t_sne = self.apply_t_sne(latent, n_samples) batch_indices = batch_indices[idx_t_sne].ravel() labels = labels[idx_t_sne].ravel() if not color_by: plt.figure(figsize=(10, 10)) plt.scatter(latent[:, 0], latent[:, 1]) if color_by == "scalar": plt.figure(figsize=(10, 10)) plt.scatter(latent[:, 0], latent[:, 1], c=labels.ravel()) else: if n_batch is None: n_batch = self.gene_dataset.n_batches if color_by == "batches" or color_by == "labels": indices = batch_indices.ravel() if color_by == "batches" else labels.ravel() n = n_batch if color_by == "batches" else self.gene_dataset.n_labels if self.gene_dataset.cell_types is not None and color_by == "labels": plt_labels = self.gene_dataset.cell_types else: plt_labels = [str(i) for i in range(len(np.unique(indices)))] plt.figure(figsize=(10, 10)) for i, label in zip(range(n), plt_labels): plt.scatter(latent[indices == i, 0], latent[indices == i, 1], label=label) plt.legend() elif color_by == "batches and labels": fig, axes = plt.subplots(1, 2, figsize=(14, 7)) batch_indices = batch_indices.ravel() for i in range(n_batch): axes[0].scatter(latent[batch_indices == i, 0], latent[batch_indices == i, 1], label=str(i)) axes[0].set_title("batch coloring") axes[0].axis("off") axes[0].legend() indices = labels.ravel() if hasattr(self.gene_dataset, "cell_types"): plt_labels = self.gene_dataset.cell_types else: plt_labels = [str(i) for i in range(len(np.unique(indices)))] for i, cell_type in zip(range(self.gene_dataset.n_labels), plt_labels): axes[1].scatter(latent[indices == i, 0], latent[indices == i, 1], label=cell_type) axes[1].set_title("label coloring") axes[1].axis("off") axes[1].legend() plt.axis("off") plt.tight_layout() if save_name: plt.savefig(save_name) @staticmethod def apply_t_sne(latent, n_samples=1000): idx_t_sne = np.random.permutation(len(latent))[:n_samples] if n_samples else np.arange(len(latent)) if latent.shape[1] != 2: latent = TSNE().fit_transform(latent[idx_t_sne]) return latent, idx_t_sne def raw_data(self): """ Returns raw data for classification """ return self.gene_dataset.X[self.indices], self.gene_dataset.labels[self.indices].ravel() def entropy_from_indices(indices): return entropy(np.array(np.unique(indices, return_counts=True)[1].astype(np.int32))) def entropy_batch_mixing(latent_space, batches, n_neighbors=50, n_pools=50, n_samples_per_pool=100): def entropy(hist_data): n_batches = len(np.unique(hist_data)) if n_batches > 2: raise ValueError("Should be only two clusters for this metric") frequency = np.mean(hist_data == 1) if frequency == 0 or frequency == 1: return 0 return -frequency * np.log(frequency) - (1 - frequency) * np.log(1 - frequency) n_neighbors = min(n_neighbors, len(latent_space) - 1) nne = NearestNeighbors(n_neighbors=1 + n_neighbors, n_jobs=8) nne.fit(latent_space) kmatrix = nne.kneighbors_graph(latent_space) - scipy.sparse.identity(latent_space.shape[0]) score = 0 for t in range(n_pools): indices = np.random.choice(np.arange(latent_space.shape[0]), size=n_samples_per_pool) score += np.mean([entropy(batches[kmatrix[indices].nonzero()[1][kmatrix[indices].nonzero()[0] == i]]) for i in range(n_samples_per_pool)]) return score / float(n_pools) def softmax(x, axis=None): """ Compute the softmax of each element along an axis of X. Parameters ---------- x: ND-Array. Probably should be floats. theta (optional): float parameter, used as a multiplier prior to exponentiation. Default = 1.0 axis (optional): axis to compute values along. Default is the first non-singleton axis. Returns an array the same size as X. The result will sum to 1 along the specified axis. """ y = np.atleast_2d(x) if axis is None: axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1) y = y - np.expand_dims(np.max(y, axis=axis), axis) y = np.exp(y) ax_sum = np.expand_dims(np.sum(y, axis=axis), axis) p = y / ax_sum if len(x.shape) == 1: p = p.flatten() return p def get_sampling_pair_idx(list_1, list_2, do_sample=True, permutation=False, M_permutation=10000, probas_a=None, probas_b=None): """ Returns the indices of the sampled quantities of populations 1 and 2 that will be compared. This function has several modes based on the values of do_sample and permutation as described below :param list_1: Indices corresponding to population 1 :param list_2: Indices corresponding to population 2 :param do_sample: Are pairs sampled? If not, we compare the posterior quantities TERMISE :param permutation: has only effect when do_sample is True. - if permutation=False, NORMAL BEHAVIOR : elements used for pop 2 come from list_1 and vice-versa for 2 - if permutation=True, SPECIFIC BEHAVIOR: All elements are sampled. Should only be used as a sanity check. :param M_permutation: :param probas_a: used for Importance Sampling, set to None by default :param probas_b: used for Importance Sampling, set to None by default :return: """ if do_sample: if not permutation: # case1: no permutation, sample from A and then from B u, v = np.random.choice(list_1, size=M_permutation, p=probas_a), \ np.random.choice(list_2, size=M_permutation, p=probas_b) else: # case2: permutation, sample from A+B twice u, v = (np.random.choice(list_1 + list_2, size=M_permutation), np.random.choice(list_1 + list_2, size=M_permutation)) else: # TODO: Assert good behavior u, v = list_1, list_2 assert len(u) == len(v), 'Inconsistent number of indices used for pairs' return u, v def get_bayes_factors( px_scale: Union[List[float], np.ndarray], all_labels: Union[List, np.ndarray], cell_idx: Union[int, str], other_cell_idx: Optional[Union[int, str]] = None, genes_idx: Union[List[int], np.ndarray] = None, log_ratios: Union[List[int], np.ndarray] = None, importance_sampling : bool = False, M_permutation: int = 10000, permutation: bool = False, sample_pairs: bool = True, ): """ Returns an array of bayes factor for all genes :param px_scale: The gene frequency array for all cells (might contain multiple samples per cells) :param all_labels: The labels array for the corresponding cell types :param cell_idx: The first cell type population to consider. Either a string or an idx :param other_cell_idx: (optional) The second cell type population to consider. Either a string or an idx :param genes_idx: Indices of genes for which DE Analysis applies :param sample_pairs: Activates subsampling. Simply formulated, pairs obtained from posterior sampling (when calling `sample_scale_from_batch`) will be randomly permuted so that the number of pairs used to compute Bayes Factors becomes M_permutation. :param log_ratios: un-normalized weights for importance sampling :param importance_sampling: whether to use IS :param M_permutation: Number of times we will "mix" posterior samples in step 2. Only makes sense when sample_pairs=True :param permutation: Whether or not to permute. Normal behavior is False. Setting permutation=True basically shuffles cell_idx and other_cell_idx so that we estimate Bayes Factors of random populations of the union of cell_idx and other_cell_idx. :return: """ idx = (all_labels == cell_idx) idx_other = (all_labels == other_cell_idx) if other_cell_idx is not None else ( all_labels != cell_idx) if genes_idx is not None: px_scale = px_scale[:, genes_idx] # first extract the data # Assert that at this point we no longer have batch dimensions assert len(px_scale.shape) == 2 sample_rate_a = px_scale[idx, :] sample_rate_b = px_scale[idx_other, :] # sample_rate_a = px_scale[:, idx, :] # sample_rate_b = px_scale[:, idx_other, :] sample_rate_a = sample_rate_a.reshape((-1, px_scale.shape[-1])) sample_rate_b = sample_rate_b.reshape((-1, px_scale.shape[-1])) samples = np.concatenate((sample_rate_a, sample_rate_b), axis=0) # prepare the pairs for sampling list_1 = list(np.arange(sample_rate_a.shape[0])) list_2 = list(sample_rate_a.shape[0] + np.arange(sample_rate_b.shape[0])) if importance_sampling: print('Importance Sampling') # weight_a = log_ratios[:, idx] # weight_b = log_ratios[:, idx_other] print(log_ratios.shape) weight_a = log_ratios[idx] weight_b = log_ratios[idx_other] # second let's normalize the weights weight_a = softmax(weight_a) weight_b = softmax(weight_b) # reshape and aggregate dataset weight_a = weight_a.flatten() weight_b = weight_b.flatten() weights = np.concatenate((weight_a, weight_b)) # probas_a = weight_a / np.sum(idx) # probas_b = weight_b / np.sum(idx_other) probas_a = weight_a probas_b = weight_b print('IS A MAX', probas_a.max(), 'IS B MAX', probas_b.max()) u, v = get_sampling_pair_idx(list_1, list_2, do_sample=sample_pairs, permutation=permutation, M_permutation=M_permutation, probas_a=probas_a, probas_b=probas_b) # then constitutes the pairs first_samples = samples[u] second_samples = samples[v] first_weights = weights[u] second_weights = weights[v] # print('u v shapes', u.shape, v.shape) to_sum = first_weights[:, np.newaxis] * second_weights[:, np.newaxis] * ( first_samples >= second_samples) incomplete_weights = first_weights * second_weights res = np.sum(to_sum, axis=0) / np.sum(incomplete_weights, axis=0) else: probas_a = None probas_b = None u, v = get_sampling_pair_idx(list_1, list_2, do_sample=sample_pairs, permutation=permutation, M_permutation=M_permutation, probas_a=probas_a, probas_b=probas_b) # then constitutes the pairs first_samples = samples[u] second_samples = samples[v] res = np.mean(first_samples >= second_samples, axis=0) res = np.log(res + 1e-8) - np.log(1 - res + 1e-8) return res def _p_wa_higher_wb(k1, k2, theta1, theta2): """ :param k1: Shape of wa :param k2: Shape of wb :param theta1: Scale of wa :param theta2: Scale of wb :return: """ a = k2 b = k1 x = theta1 / (theta1 + theta2) return betainc(a, b, x) def get_bayes_gamma(data, all_labels, cell_idx, other_cell_idx=None, genes_idx=None, M_permutation=10000, permutation=False, sample_pairs=True): """ Returns a list of bayes factor for all genes :param px_scale: The gene frequency array for all cells (might contain multiple samples per cells) :param all_labels: The labels array for the corresponding cell types :param cell_idx: The first cell type population to consider. Either a string or an idx :param other_cell_idx: (optional) The second cell type population to consider. Either a string or an idx :param M_permutation: The number of permuted samples. :param permutation: Whether or not to permute. :return: """ res = [] idx = (all_labels == cell_idx) idx_other = (all_labels == other_cell_idx) if other_cell_idx is not None else (all_labels != cell_idx) shapes, scales = data if genes_idx is not None: shapes = shapes[:, genes_idx] scales = scales[:, genes_idx] sample_shape_a = shapes[idx].squeeze() sample_scales_a = scales[idx_other].squeeze() sample_shape_b = shapes[idx].squeeze() sample_scales_b = scales[idx_other].squeeze() assert sample_shape_a.shape == sample_scales_a.shape assert sample_shape_b.shape == sample_scales_b.shape # agregate dataset samples_shape = np.vstack((sample_shape_a, sample_shape_b)) samples_scales = np.vstack((sample_scales_a, sample_scales_b)) # prepare the pairs for sampling list_1 = list(np.arange(sample_shape_a.shape[0])) list_2 = list(sample_shape_a.shape[0] + np.arange(sample_shape_b.shape[0])) u, v = get_sampling_pair_idx(list_1, list_2, permutation=permutation, M_permutation=M_permutation, probas_a=None, probas_b=None, do_sample=sample_pairs) # then constitutes the pairs first_set = (samples_shape[u], samples_scales[u]) second_set = (samples_shape[v], samples_scales[v]) shapes_a, scales_a = first_set shapes_b, scales_b = second_set for shape_a, scale_a, shape_b, scale_b in zip(shapes_a, scales_a, shapes_b, scales_b): res.append(_p_wa_higher_wb(shape_a, shape_b, scale_a, scale_b)) res = np.array(res) res = np.mean(res, axis=0) assert len(res) == shapes_a.shape[1] res = np.log(res + 1e-8) - np.log(1 - res + 1e-8) return res def plot_imputation(original, imputed, show_plot=True, title="Imputation"): y = imputed x = original ymax = 10 mask = x < ymax x = x[mask] y = y[mask] mask = y < ymax x = x[mask] y = y[mask] l_minimum = np.minimum(x.shape[0], y.shape[0]) x = x[:l_minimum] y = y[:l_minimum] data = np.vstack([x, y]) plt.figure(figsize=(5, 5)) axes = plt.gca() axes.set_xlim([0, ymax]) axes.set_ylim([0, ymax]) nbins = 50 # Evaluate a gaussian kde on a regular grid of nbins x nbins over data extents k = kde.gaussian_kde(data) xi, yi = np.mgrid[0:ymax:nbins * 1j, 0:ymax:nbins * 1j] zi = k(np.vstack([xi.flatten(), yi.flatten()])) plt.title(title, fontsize=12) plt.ylabel("Imputed counts") plt.xlabel("Original counts") plt.pcolormesh(yi, xi, zi.reshape(xi.shape), cmap="Reds") a, _, _, _ = np.linalg.lstsq(y[:, np.newaxis], x, rcond=-1) linspace = np.linspace(0, ymax) plt.plot(linspace, a * linspace, color="black") plt.plot(linspace, linspace, color="black", linestyle=":") if show_plot: plt.show() plt.savefig(title + ".png") def nn_overlap(X1, X2, k=100): """ Compute the overlap between the k-nearest neighbor graph of X1 and X2 using Spearman correlation of the adjacency matrices. """ assert len(X1) == len(X2) n_samples = len(X1) k = min(k, n_samples - 1) nne = NearestNeighbors(n_neighbors=k + 1) # "n_jobs=8 nne.fit(X1) kmatrix_1 = nne.kneighbors_graph(X1) - scipy.sparse.identity(n_samples) nne.fit(X2) kmatrix_2 = nne.kneighbors_graph(X2) - scipy.sparse.identity(n_samples) # 1 - spearman correlation from knn graphs spearman_correlation = scipy.stats.spearmanr(kmatrix_1.A.flatten(), kmatrix_2.A.flatten())[0] # 2 - fold enrichment set_1 = set(np.where(kmatrix_1.A.flatten() == 1)[0]) set_2 = set(np.where(kmatrix_2.A.flatten() == 1)[0]) fold_enrichment = len(set_1.intersection(set_2)) * n_samples ** 2 / (float(len(set_1)) * len(set_2)) return spearman_correlation, fold_enrichment def unsupervised_clustering_accuracy(y, y_pred): """ Unsupervised Clustering Accuracy """ assert len(y_pred) == len(y) u = np.unique(np.concatenate((y, y_pred))) n_clusters = len(u) mapping = dict(zip(u, range(n_clusters))) reward_matrix = np.zeros((n_clusters, n_clusters), dtype=np.int64) for y_pred_, y_ in zip(y_pred, y): if y_ in mapping: reward_matrix[mapping[y_pred_], mapping[y_]] += 1 cost_matrix = reward_matrix.max() - reward_matrix ind = linear_assignment(cost_matrix) return sum([reward_matrix[i, j] for i, j in ind]) * 1.0 / y_pred.size, ind def knn_purity(latent, label, n_neighbors=30): nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(latent) indices = nbrs.kneighbors(latent, return_distance=False)[:, 1:] neighbors_labels = np.vectorize(lambda i: label[i])(indices) # pre cell purity scores scores = ((neighbors_labels - label.reshape(-1, 1)) == 0).mean(axis=1) res = [np.mean(scores[label == i]) for i in np.unique(label)] # per cell-type purity return np.mean(res) def proximity_imputation(real_latent1, normed_gene_exp_1, real_latent2, k=4): knn = KNeighborsRegressor(k, weights="distance") y = knn.fit(real_latent1, normed_gene_exp_1).predict(real_latent2) return y ``` #### File: scvi/utils/utils.py ```python import os import pandas as pd import numpy as np from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score import matplotlib.pyplot as plt import arviz as az def make_dir_if_necessary(directory): if not os.path.exists(directory): os.makedirs(directory) class IterativeDict: """ Structure useful to save metrics for different models over different trainings Saved in a nested dictionnary Structure: model_name ==> metric_name ==> table [n_trainings, ...] """ def __init__(self, model_names): self.values = {key: {} for key in model_names} def set_values(self, model_name, metric_name, values): if metric_name not in self.values[model_name]: self.values[model_name][metric_name] = [values] else: self.values[model_name][metric_name].append(values) def to_df(self): return pd.DataFrame(self.values) def plot_traj(history, x=None, **plot_params): """ :param history: (n_sim, n_x_values) array :param x: associated x values used for plotting :param plot_params: Plot parameters fed to plt.plot :return: """ plot_params = {} if plot_params is None else plot_params history_np = np.array(history) theta_mean = np.mean(history_np, axis=0) theta_std = np.std(history_np, axis=0) n_iter = len(theta_mean) x = np.arange(n_iter) if x is None else x plt.plot(x, theta_mean, **plot_params) plt.fill_between( x=x, y1=theta_mean - theta_std, y2=theta_mean + theta_std, alpha=0.25 ) def plot_identity(): xmin, xmax = plt.xlim() vals = np.linspace(xmin, xmax, 50) plt.plot(vals, vals, "--", label="identity") def plot_precision_recall(y_test, y_score, label=""): average_precision = average_precision_score(y_test, y_score) precision, recall, _ = precision_recall_curve(y_test, y_score) # In matplotlib < 1.5, plt.fill_between does not have a 'step' argument step_kwargs = {"step": "post"} legend = "{0} PR curve: AP={1:0.2f}".format(label, average_precision) plt.step(recall, precision, color="b", alpha=0.2, where="post", label=legend) plt.fill_between(recall, precision, alpha=0.2, **step_kwargs) plt.xlabel("Recall") plt.ylabel("Precision") plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) def compute_hdi(arr, credible_interval=0.64): """ Given array of (simulations, dimensions) computes Highest Density Intervals Sample dimension should be first dimension :param arr: Array of shape (n_samples, n_genes) :param credible_interval: :return: """ return az.hpd(arr, credible_interval=credible_interval) def demultiply(arr1, arr2, factor=2): """ Suppose you have at disposal arr1 ~ p(h|x_a) arr2 ~ p(h|x_b) Then artificially increase the sizes on respective arrays so that you can sample from p(f(h1, h2) | x_a, x_b) under the right assumptions :param arr1: :param arr2: :param factor: :return: """ assert arr1.shape == arr2.shape n_original = len(arr1) idx_1 = np.random.choice(n_original, size=n_original * factor, replace=True) idx_2 = np.random.choice(n_original, size=n_original * factor, replace=True) return arr1[idx_1], arr2[idx_2] def predict_de_genes(posterior_probas: np.ndarray, desired_fdr: float): """ :param posterior_probas: Shape (n_samples, n_genes) :param desired_fdr: :return: """ assert posterior_probas.ndim == 1 sorted_genes = np.argsort(-posterior_probas) sorted_pgs = posterior_probas[sorted_genes] cumulative_fdr = (1.0 - sorted_pgs).cumsum() / (1.0 + np.arange(len(sorted_pgs))) d = (cumulative_fdr <= desired_fdr).sum() - 1 pred_de_genes = sorted_genes[:d] is_pred_de = np.zeros_like(cumulative_fdr).astype(bool) is_pred_de[pred_de_genes] = True return is_pred_de ```
{ "source": "jimmcgaw/gleaner", "score": 2 }
#### File: gleaner/blogit/models.py ```python from __future__ import unicode_literals from django.template.defaultfilters import slugify from django.db import models from django.db.models import permalink class PublishedPostManager(models.Manager): def get_queryset(self): return super(PublishedPostManager, self).get_queryset().filter(is_published=True) # Create your models here. class Post(models.Model): title = models.CharField(max_length=255, unique=True) slug = models.SlugField(max_length=255, unique=True) author = models.ForeignKey('auth.User', null=True, blank=True) content = models.TextField() is_published = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) objects = models.Manager() published = PublishedPostManager() def __unicode__(self): return "%s" % self.title @permalink def get_absolute_url(self): return ('view_blog_post', None, { 'slug': self.slug }) def save(self, *args, **kwargs): if not self.id: # Newly created object, so set slug self.slug = slugify(self.title) super(Post, self).save(*args, **kwargs) ``` #### File: gleaner/gleans/forms.py ```python from django import forms from .models import Crop class CropForm(forms.ModelForm): def __init__(self, *args, **kwargs): """ basically make all fieldnames bootstrappy """ super(CropForm, self).__init__(*args, **kwargs) for field_name, value in self.fields.iteritems(): self.fields[field_name].widget.attrs['class'] = 'form-control' class Meta: model = Crop fields = ['first_name', 'last_name', 'phone_number', 'contact_address1', 'contact_address2', 'contact_city', 'contact_state', 'contact_zip', 'crop_address1', 'crop_address2', 'crop_city', 'crop_state', 'crop_zip', 'crop_type', 'receipt_preference', 'crop_description'] ``` #### File: gleaner/gleans/views.py ```python from django.shortcuts import render from django.contrib.auth.decorators import login_required from .models import Crop from .forms import CropForm from blogit.models import Post def login(request): return render(request, 'login.html') def index(request): posts = Post.published.all().order_by('-created_at')[:5] return render(request, 'index.html', locals()) @login_required def user_home(request): """ homepage for a user after they've logged in """ # crop = Crop.objects.get(user=request.user) return render(request, 'user_home.html', locals()) @login_required def crop_form(request): crop, created = Crop.objects.get_or_create(user=request.user) if request.method == 'POST': crop_data = request.POST.copy() crop_data['user'] = request.user form = CropForm(crop_data) else: form = CropForm(instance=crop) return render(request, 'crop_form.html', locals()) @login_required def glean_list(request): return render(request, 'glean_list.html') ```
{ "source": "jimmcslim/example-django", "score": 2 }
#### File: greet/migrations/0002_data.py ```python from __future__ import annotations from datetime import time from django.db import migrations def create_greetings(apps, schema_editor): Greeting = apps.get_model("greet", "Greeting") def create( slug: str, salutation: str, start_time: str | None, end_time: str | None ) -> None: Greeting( slug=slug, salutation=salutation, start_time=time.fromisoformat(start_time) if start_time else None, end_time=time.fromisoformat(end_time) if end_time else None, ).save() create("hello", "Hello", None, None) create("howareyou", "How are you", None, None) create("goodmorning", "Good morning", "05:00:00", "11:59:59") create("goodevening", "Good evening", "17:00:00", "20:59:59") create("goodnight", "Good night", "21:00:00", "23:59:59") class Migration(migrations.Migration): dependencies = [ ("greet", "0001_initial"), ] operations = [ migrations.RunPython(create_greetings), ] ``` #### File: helloworld/person/models.py ```python from django.db import models # Note: This is distinct from the standard auth app's User model, for clarity. class Person(models.Model): slug = models.CharField(max_length=20, unique=True) full_name = models.CharField(max_length=50) def __str__(self): return self.slug ``` #### File: example-django/helloworld/settings_base.py ```python from __future__ import annotations import os from typing import Any from helloworld.util.per_app_db_router import PerAppDBRouter HELLOWORLD_MODE = os.environ.get("HELLOWORLD_MODE", "DEV") SECRET_KEY = "DEV_SECURITY_KEY" DEBUG = True ALLOWED_HOSTS: list[str] = [] DEFAULT_AUTO_FIELD = "django.db.models.AutoField" # Application definition MIDDLEWARE = [ "django.middleware.common.CommonMiddleware", ] TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "django.template.context_processors.debug", "django.template.context_processors.request", ], }, }, ] DATABASES: dict[str, Any] = { # Django chokes if 'default' isn't present at all. But it can be set to an empty dict, which # will be treated as a dummy db. "default": {} } def set_up_database(db_name: str): """Set a service up to connect to a named db.""" # TODO: Consult HELLOWORLD_MODE to distinguish dev/staging/prod dbs. DATABASES[db_name] = { "ENGINE": "django.db.backends.sqlite3", "NAME": f"{db_name}.sqlite3", } DATABASE_ROUTERS = [ PerAppDBRouter( { "contenttypes": "users", "sessions": "users", "auth": "users", "admin": "users", "person": "users", "greet": "greetings", "translate": "greetings", } ) ] LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True WSGI_APPLICATION = "helloworld.wsgi.application" ``` #### File: helloworld/translate/models_test.py ```python import pytest from helloworld.greet.models import Greeting from helloworld.translate.models import ( # noqa: F401 (so fk related name works). Translation, ) @pytest.mark.django_db def test_database_is_seeded(): hello = Greeting.objects.get(slug="hello") translations = {tr.lang: tr.translation for tr in hello.translation_set.all()} assert { "en": "Hello", "es": "Hola", "fr": "Allo", "de": "Hallo", } == translations ``` #### File: helloworld/translate/views.py ```python from django.http import Http404, HttpResponse from helloworld.translate.models import Translation def index(request, slug: str, lang: str) -> HttpResponse: try: translation = Translation.objects.get(greeting__slug=slug, lang=lang) return HttpResponse(translation.translation) except Translation.DoesNotExist: raise Http404(f"No translation in {lang} for {slug}") ```
{ "source": "jimme0421/NLPer-Arsenal", "score": 3 }
#### File: nlper/utils/datasets.py ```python r""" 封装处理NLP各个任务的数据 """ import torch from torch.utils.data import Dataset class DatasetCLF(Dataset): def __init__(self, data, tokenizer, max_len=512, load_label=True, **kwargs): """封装文本分类数据集,现在仅支持二分类和多分类,暂不支持多标签分类 :param data: 标准数据格式为List[List[str, int]],例如[[’今天天气很好‘, 1], ['我心情不好', 0]] :param tokenizer: transformers.xxxTokenizer :param max_len: 分词后的文本长度上限,default=512 :param load_label: 是否加载标签,default=True :param model_type: """ self.tokenizer = tokenizer self.max_len = max_len self.data = data self.load_label = load_label def __len__(self): return len(self.data) def __getitem__(self, index): text = self.data[index][0] encode_inputs = self.tokenizer(text, truncation=True, max_length=self.max_len, return_tensors='pt') example = {} for key, value in encode_inputs.items(): example[key] = value[0] if self.load_label: label = self.data[index][1] example['labels'] = torch.tensor(label, dtype=torch.long) return example return example ``` #### File: codes/tricks/text_clf_handler.py ```python r""" 文本分类任务控制器,通过text_clf_xxx.yaml快速配置,包含fit、test、eval_test等功能 """ import importlib import sys import os sys.path.append('..') from typing import Union import torch from transformers import AutoTokenizer from codes.nlper.utils import Dict2Obj, format_convert, download_dataset from codes.nlper.modules.metrics import Metrics from codes.nlper import mini_pytorch_lightning as mpl # 根据数据集名称,查找数据转换函数,按标准数据格式读取数据 convert_dataset = { 'text_clf/smp2020-ewect-usual': format_convert.smp2020_ewect_convert, 'text_clf/smp2020-ewect-virus': format_convert.smp2020_ewect_convert } class TextCLFHandler(): def __init__(self, configs: Union[dict, Dict2Obj], specialModels=None): self.configs = configs if isinstance(configs, Dict2Obj) else Dict2Obj(configs) self.specialModels = specialModels self._build_data() self._build_metrics() self._build_model() self._build_trainer() def _build_data(self): # 如果三者同时不存在 if not ( os.path.isfile(self.configs.train_file) or os.path.isfile(self.configs.val_file) or os.path.isfile(self.configs.test_file) ): # 自动下载数据集 is_over = download_dataset(self.configs.dataset_name, self.configs.dataset_cache_dir) if not is_over: print(f'please download dataset manually, and mask sure data file path is correct') exit() def _build_optimizer(self): pass def _build_metrics(self): metrics_dict = {} for metric_name in self.configs.metrics: if metric_name.lower() == 'p': from codes.nlper.modules.metrics import PMetric metrics_dict['P'] = PMetric(average='macro') elif metric_name.lower() == 'r': from codes.nlper.modules.metrics import RMetric metrics_dict['R'] = RMetric(average='macro') elif metric_name.lower() == 'f1': from codes.nlper.modules.metrics import F1Metric metrics_dict['F1'] = F1Metric(average='macro') self.metrics = Metrics(metrics_dict, target_metric=self.configs.target_metric) def _build_model(self): self.tokenizer = AutoTokenizer.from_pretrained(self.configs.pretrained_model) # 根据模型名自动加载在nlper.models.text_clf下的同名模型 module = importlib.import_module('codes.nlper.models') model_name = self.configs.whole_model if hasattr(module, model_name): self.model = getattr(module, model_name)(self.configs) else: raise ValueError( f'{model_name} not found in codes.nlper.models.text_clf' ) # 对于非标准数据集,必须通过convert_fn转换 if self.configs.use_convert: if self.configs.dataset_name in convert_dataset: convert_fn = convert_dataset[self.configs.dataset_name] else: raise RuntimeError( 'use_convert is True, but convert function has not been found' ) else: convert_fn = None if self.specialModels: self.lightningCLF = self.specialModels.CLFModel( self.model, self.tokenizer, self.configs, metrics=self.metrics, convert_fn=convert_fn) else: from codes.nlper.models import LightningCLF self.lightningCLF = LightningCLF(self.model, self.tokenizer, self.configs, metrics=self.metrics, convert_fn=convert_fn) def _build_trainer(self): self._trainer = mpl.StandardTrainer(self.lightningCLF, self.configs.trainer_args.gpus) def fit(self, train_loader=None, val_loader=None): self._trainer.fit(train_loader, val_loader, **self.configs.trainer_args.toDict()) def test(self, test_loader=None, load_best=True): self._trainer.test(test_loader, load_best=load_best) def eval_test(self, test_loader=None, checkpoint_path=''): torch.cuda.empty_cache() if test_loader: self._trainer.eval(test_loader, checkpoint_path) else: self._trainer.eval(self._trainer.test_loader, checkpoint_path) ```
{ "source": "jimmeak/graveyard", "score": 2 }
#### File: graveyard/ddcz/context_processors.py ```python from django.conf import settings from django.contrib.staticfiles.storage import staticfiles_storage from .forms.authentication import LoginForm def common_variables(request): skin = request.session.get("skin", "light") skin_directory = skin if skin not in ["light", "dark"] else "light-dark" deploy_info_html = settings.DEPLOY_VERSION if settings.DEPLOY_HASH: deploy_info_html = f'{deploy_info_html} (<a href="https://github.com/dracidoupe/graveyard/commit/{settings.DEPLOY_HASH}">{settings.DEPLOY_HASH}</a>)' if settings.DEPLOY_DATE: deploy_info_html = f"{deploy_info_html} ze dne {settings.DEPLOY_DATE}" return { "user": request.user, "ddcz_profile": request.ddcz_profile, "skin": skin, "skin_for_include": skin_directory, "current_page_url": request.get_full_path(), "skin_css_url": staticfiles_storage.url( "skins/%(skin)s/css/main.css" % {"skin": skin} ), "skin_favico_url": staticfiles_storage.url( "skins/%(skin)s/img/drak.ico" % {"skin": skin} ), "skin_logo_url": staticfiles_storage.url("skins/%s/img/logo.svg" % skin), "login_form": LoginForm(), "discord_invite_link": settings.DISCORD_INVITE_LINK, "bugfix_tavern_table_id": settings.BUGFIX_TAVERN_TABLE_ID, "deploy_info_html": deploy_info_html, } ``` #### File: management/commands/notify.py ```python from django.core.management.base import BaseCommand from ddcz.notifications import notify_scheduled, send_email_batch class Command(BaseCommand): help = "Send all scheduled notifications" def handle(self, *args, **options): notify_scheduled() send_email_batch() ``` #### File: graveyard/ddcz/middleware.py ```python def attach_profile(get_response): def middleware(request): if request.user.is_authenticated: request.ddcz_profile = request.user.userprofile else: request.ddcz_profile = None response = get_response(request) return response return middleware ``` #### File: ddcz/migrations/0112_emaillist_autofill.py ```python from django.db import migrations def fill_ids(apps, schema_editor): CreationEmailSubscription = apps.get_model("ddcz", "CreationEmailSubscription") i = 1 for relation in CreationEmailSubscription.objects.all(): # can't do instance.save since that would check for integrity of PK CreationEmailSubscription.objects.filter( user_profile_id=relation.user_profile_id, creative_page_slug=relation.creative_page_slug, ).update(django_id=i) i += 1 class Migration(migrations.Migration): dependencies = [ ("ddcz", "0111_creationemailsubscription_django_id"), ] operations = [ migrations.RunPython(fill_ids), ] ``` #### File: ddcz/templatetags/dating.py ```python from django import template register = template.Library() DATING_GROUP_MAP = {"hledam_pj": "Hledám PJe", "hledam_hrace": "Hledám hráče"} @register.filter def dating_group_map(key): try: return DATING_GROUP_MAP[key] except KeyError: return "Hledám" ``` #### File: ddcz/templatetags/tavern.py ```python import logging from django import template from django.urls import reverse_lazy from django.utils.html import format_html from django.utils.safestring import mark_safe from ..html import encode_valid_html logger = logging.getLogger(__name__) register = template.Library() @register.simple_tag def tavern_table_name(listing_table, user_profile): show_link = listing_table.show_listing_link(user_profile) return format_html( '{}<span class="tavern-table-name{}" data-table-id="{}">{}</span>{}&nbsp;[{}{}]', mark_safe( f'<a href="{reverse_lazy("ddcz:tavern-posts", kwargs={"tavern_table_id": listing_table.pk})}">' ) if show_link else "", " tavern_table_name__unread" if listing_table.new_comments_no is not None and listing_table.new_comments_no > 0 else "", listing_table.pk, mark_safe(encode_valid_html(listing_table.name)), mark_safe("</a>") if show_link else "", f"{listing_table.new_comments_no}/" if listing_table.new_comments_no is not None else "", listing_table.posts_no, ) ``` #### File: tests/test_ui/cases.py ```python from enum import Enum import socket from django.conf import settings from django.contrib.staticfiles.testing import StaticLiveServerTestCase from django.utils.decorators import classproperty from selenium import webdriver class MainPage(Enum): BODY = "//body" MAIN_TITLE = "//h1[contains(@class, 'page-heading')]" LOGIN_USERNAME_INPUT = '//*[@id="id_nick"]' LOGIN_PASSWORD_INPUT = '//*[@id="<PASSWORD>"]' LOGIN_SUBMIT = '//*[@id="login_submit"]' LOGOUT_SUBMIT = '//*[@id="logout_submit"]' CONTROL_NICK = '//*[@id="ddcz_nick"]' NAVIGATION_TAVERN = '//*[@id="ddcz_nav_tavern"]' NAVIGATION_PHORUM = '//*[@id="ddcz_nav_phorum"]' class SeleniumTestCase(StaticLiveServerTestCase): # We are always connect to all interfaces # to simplify the local and CI setup host = "0.0.0.0" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.main_page_nav = MainPage @classproperty def live_server_url(cls): return "http://%s:%s" % ( getattr(settings, "TEST_LIVE_SERVER_HOST", None) or socket.gethostname(), cls.server_thread.port, ) @classmethod def setUpClass(cls): super().setUpClass() if not settings.SELENIUM_HUB_HOST: cls.selenium = webdriver.Chrome() else: cls.selenium = webdriver.Remote( desired_capabilities=webdriver.DesiredCapabilities.CHROME, command_executor="http://%s:4444/wd/hub" % settings.SELENIUM_HUB_HOST, ) cls.selenium.implicitly_wait(settings.SELENIUM_IMPLICIT_WAIT) @classmethod def tearDownClass(cls): cls.selenium.quit() super().tearDownClass() ### # Helper methods for navigating the specific DDCZ webpage ### def navigate_as_authenticated_user( self, user_profile, *, navigation_element, expected_title ): already_correct = False if self.is_logged_in(): nick = self.el(MainPage.CONTROL_NICK).text if nick == user_profile.nick: already_correct = True else: self.el(MainPage.LOGOUT_SUBMIT).submit() if not already_correct: self.el(MainPage.LOGIN_USERNAME_INPUT).send_keys(user_profile.user.username) self.el(MainPage.LOGIN_PASSWORD_INPUT).send_keys(user_profile.user.email) self.el(MainPage.LOGIN_SUBMIT).submit() self.assertEquals( user_profile.nick, self.el(MainPage.CONTROL_NICK).text, ) self.el(navigation_element).click() self.assertEquals( expected_title, self.el(MainPage.MAIN_TITLE).text, ) ### # Helper methods to retrieve information from the current page ### def el(self, enum): return self.selenium.find_element_by_xpath(enum.value) def els(self, enum): return self.selenium.find_elements_by_xpath(enum.value) def is_logged_in(self): return self.el(MainPage.BODY).get_attribute("data-logged-in") == "1" ``` #### File: ddcz/views/news.py ```python from datetime import timedelta import logging from django.core.cache import cache from django.core.paginator import Paginator from django.shortcuts import render from django.utils import timezone from django.views.decorators.http import require_http_methods from django.views.decorators.vary import vary_on_cookie from ..creations import ApprovalChoices from ..models import News, CreativePage, CreationComment logger = logging.getLogger(__name__) DEFAULT_LIST_SIZE = 10 NEWSFEED_OLDEST_ARTICLE_INTERVAL = timedelta(weeks=26) NEWSFEED_MAX_CREATIONS = 20 NEWSFEED_MAX_COMMENTS = 10 NEWSFEED_CACHE_INTERVAL = 10 * 60 # 10 minutes NEWSFEED_CACHE_KEY = "newsfeed:list" @require_http_methods(["HEAD", "GET"]) @vary_on_cookie def list(request): page = request.GET.get("z_s", 1) cache_key = "info:news:list" news = None if page == 1: news = cache.get(cache_key) if not news: news_list = News.objects.order_by("-date") paginator = Paginator(news_list, DEFAULT_LIST_SIZE) news = paginator.get_page(page) if page == 1: cache.set(cache_key, news) return render(request, "news/list.html", {"news": news}) @require_http_methods(["HEAD", "GET"]) @vary_on_cookie def newsfeed(request): cached = cache.get(NEWSFEED_CACHE_KEY) if cached: articles = cached["articles"] comments = cached["comments"] else: min_date = timezone.now() - NEWSFEED_OLDEST_ARTICLE_INTERVAL pages = CreativePage.get_all_models() # This could have been a simple list comprehension. But for a reason unknown to me, # list(queryset) returns 'QuerySet' object has no attribute 'method', whereas iterating # over it works fine, as well as [a for a in queryset] list comprehension # Maybe try out again once we upgrade to newest Django articles = [] for page in pages: model = page["model"] query = model.objects.filter( is_published=ApprovalChoices.APPROVED.value, published__gte=min_date ).order_by("-published") if model.__name__ == "CommonArticle": query = query.filter(creative_page_slug=page["page"].slug) query = query[0:NEWSFEED_MAX_CREATIONS] for creation in query: creation.creative_page = page["page"] articles.append(creation) articles.sort(key=lambda article: article.published, reverse=True) comments = CreationComment.objects.all().order_by("-date")[ 0:NEWSFEED_MAX_COMMENTS ] # FIXME: This should be resolvable via GenericRelation once we migrate to it page_slug_map = {page["page"].slug: page for page in pages} for comment in comments: comment_model = page_slug_map[comment.foreign_table]["model"] try: comment.creation = comment_model.objects.get(pk=comment.foreign_id) comment.creation.creative_page = page_slug_map[comment.foreign_table][ "page" ] except comment_model.DoesNotExist: logger.exception( f"Can't look up creation for comment {comment.pk} for model {comment_model}" ) cache.set( NEWSFEED_CACHE_KEY, {"articles": articles, "comments": comments}, timeout=NEWSFEED_CACHE_INTERVAL, ) return render( request, "news/newsfeed.html", {"articles": articles, "comments": comments} ) ```
{ "source": "JimmeeX/ur5_t2_4230", "score": 3 }
#### File: ur5_t2_4230/src/vision.py ```python from geometry_msgs.msg import Point from sensor_msgs.msg import ( CompressedImage, Image ) from ur5_t2_4230.srv import ( ObjectDetect, ObjectDetectRequest, ObjectDetectResponse ) import rospy import cv2 import time import os from cv_bridge import CvBridge, CvBridgeError from utils.detect_object import detectObject SLEEP_RATE = 3 # Hz DIR_NAME = "images" class Vision(): def __init__(self, *args, **kwargs): rospy.loginfo("[Vision] Initialising Node") self._rate = rospy.Rate(SLEEP_RATE) self._bridge = CvBridge() self._im = None # Latest Image # Initialise Subscribers self._subscribers = {} self._subscribers['camera_color_image_raw'] = rospy.Subscriber('/camera/color/image_raw', Image, self.handleImageCallback, queue_size=1) # Initialise Publishers self._publishers = {} self._publishers['vision_sent_image'] = rospy.Publisher('/vision/sent_image', CompressedImage, queue_size=1) # Initialise Servers self._servers = {} self._servers['vision_detect_object'] = rospy.Service("/vision/detect_object", ObjectDetect, self.handleDetectObject) """ #################### SERVER-SIDE HANDLERS #################### """ def handleDetectObject(self, request): # Short Delay to ensure that image is "up to date" (without this the y-coordinate will not be correct) time.sleep(0.1) # result, im_debug = detectObject(self._im) color, shape, x, y, z = result self.pubSentImage(im_debug) response = ObjectDetectResponse( success=True, message='{} {} detected at [x={}, y={} z={}]'.format(color, shape, x, y, z), color=color, shape=shape, location=Point( x=x, y=y, z=z ) ) return response """ ########################## CLASS SUBSCRIBER CALLBACKS ########################## """ def handleImageCallback(self, msg): try: self._im = self._bridge.imgmsg_to_cv2(msg) except CvBridgeError as e: rospy.logerr(e) """ ################ HELPER FUNCTIONS ################ """ def pubSentImage(self, im): msg = self._bridge.cv2_to_compressed_imgmsg(im) publisher = self._publishers['vision_sent_image'] publisher.publish(msg) def saveImage(self): fileName = str(int(time.time() * 1000)) + '.jpg' filePath = os.path.join(DIR_NAME, fileName) rospy.loginfo("[Vision] Saving: " + filePath) im_bgr = cv2.cvtColor(self._im, cv2.COLOR_RGB2BGR) cv2.imwrite(filePath, im_bgr) if __name__ == '__main__': rospy.init_node('vision') Vision() rospy.spin() ```
{ "source": "jimmellor/flask-volcasample-helper", "score": 2 }
#### File: flask-volcasample-helper/volcasamplehelper/app.py ```python from flask import Flask, request, redirect, url_for, render_template, jsonify import os import shutil import json import glob from flask_bootstrap import Bootstrap from af import afplay, syroconvert, syroplay app = Flask(__name__) Bootstrap(app) APP_ROOT = os.path.dirname(os.path.abspath(__file__)) UPLOAD_ROOT = "static/uploads" def get_file(root): """ Return the first file in root """ if not os.path.isdir(root): raise Exception("%s directory not found" % root) files = [] for file in glob.glob("%s/*.*" % root): fname = file.split(os.sep)[-1] files.append(fname) return os.path.join(root,files[0]) @app.route("/") def index(): return render_template("index.html") @app.route('/upload/<slot_id>', methods=["POST"]) def upload(slot_id): """ Upload a file """ form = request.form # Is the upload using Ajax, or a direct POST by the form? is_ajax = False if form.get("__ajax", None) == "true": is_ajax = True # Target folder for these uploads. target = os.path.join(APP_ROOT, UPLOAD_ROOT, slot_id) if os.path.isdir(target): shutil.rmtree(target) os.mkdir(target) for upload in request.files.getlist("file"): filename = upload.filename.rsplit("/")[0] destination = "/".join([target, filename]) upload.save(destination) # convert the file to syro format syroconvert(os.path.join(APP_ROOT, destination), slot_id) return ajax_response(True, slot_id) @app.route("/play/<slot_id>") def play(slot_id): """ Returns the path of the sound file for the browser to play """ # Get the files. web_root = os.path.join(UPLOAD_ROOT, slot_id) root = os.path.join(APP_ROOT, web_root) files = [] for file in glob.glob("%s/*.*" % root): fname = file.split(os.sep)[-1] files.append(fname) filename = os.path.join(web_root,files[0]) return ajax_response(True, filename) @app.route("/syroupload/<slot_id>") def syroupload(slot_id): """ Play the syro-encoded file via the server audio jack """ # Get the files. filename = get_file(os.path.join(APP_ROOT, UPLOAD_ROOT, slot_id)) syroplay(filename) return ajax_response(True, filename) @app.route("/status/<slot_id>") def status(slot_id): """ Check if there's a file in the slot """ try: filename = get_file(os.path.join(APP_ROOT, UPLOAD_ROOT, slot_id)) return ajax_response(True, filename) except Exception, e: return ajax_response(False, slot_id) @app.context_processor def utility_processor(): def get_status(slot_id): try: get_file(os.path.join(APP_ROOT, UPLOAD_ROOT, str(slot_id))) return "ready" except Exception, e: return "empty" return dict(get_status=get_status) def ajax_response(status, msg): status_code = 200 if status else 404 message = { 'status': status_code, 'msg': msg, } resp = jsonify(message) resp.status_code = status_code return resp ```
{ "source": "jimmelville/nornir", "score": 2 }
#### File: nornir/nornir/init_nornir.py ```python from typing import Any, Callable, Dict from nornir.core import Nornir from nornir.core.connections import Connections from nornir.core.deserializer.configuration import Config from nornir.core.state import GlobalState from nornir.plugins.connections.napalm import Napalm from nornir.plugins.connections.netmiko import Netmiko from nornir.plugins.connections.paramiko import Paramiko def register_default_connection_plugins() -> None: Connections.register("napalm", Napalm) Connections.register("netmiko", Netmiko) Connections.register("paramiko", Paramiko) def cls_to_string(cls: Callable[..., Any]) -> str: return f"{cls.__module__}.{cls.__name__}" def InitNornir( config_file: str = "", dry_run: bool = False, configure_logging: bool = True, **kwargs: Dict[str, Any], ) -> Nornir: """ Arguments: config_file(str): Path to the configuration file (optional) dry_run(bool): Whether to simulate changes or not **kwargs: Extra information to pass to the :obj:`nornir.core.configuration.Config` object Returns: :obj:`nornir.core.Nornir`: fully instantiated and configured """ register_default_connection_plugins() if callable(kwargs.get("inventory", {}).get("plugin", "")): kwargs["inventory"]["plugin"] = cls_to_string(kwargs["inventory"]["plugin"]) if callable(kwargs.get("inventory", {}).get("transform_function", "")): kwargs["inventory"]["transform_function"] = cls_to_string( kwargs["inventory"]["transform_function"] ) conf = Config.load_from_file(config_file, **kwargs) data = GlobalState(dry_run=dry_run) if configure_logging: conf.logging.configure() inv = conf.inventory.plugin.deserialize( transform_function=conf.inventory.transform_function, transform_function_options=conf.inventory.transform_function_options, config=conf, **conf.inventory.options, ) return Nornir(inventory=inv, config=conf, data=data) ```
{ "source": "Jimmers2001/QR-Bar_Workshop", "score": 4 }
#### File: Jimmers2001/QR-Bar_Workshop/Barcode_creation.py ```python from barcode import EAN13 # a type of format from barcode.writer import ImageWriter #to save the barcode as a png file def barcode_create(file_name, digits): with open(file_name, 'wb') as f: #write in binary mode #numbers written in barcode where the last one is automatically generated EAN13(digits, writer=ImageWriter()).write(f) if __name__ == "__main__": #Command to run: python3 barcode_creation.py file_name = "workshop_barcode.png" digits = "346297563925697" barcode_create(file_name, digits) ```
{ "source": "jimmerson17/podcast-downloader", "score": 3 }
#### File: jimmerson17/podcast-downloader/multixmldownloader.py ```python import sys, os import zipfile import requests from multiprocessing import Pool, cpu_count from functools import partial from io import BytesIO import xml.etree.ElementTree as ET class PodcastListing(object): def __init__(self, name, url): self._name = name self._url = url @property def name(self): return self._name @name.setter def name(self, n): self._name = n @property def url(self): return self._url @url.setter def url(self, u): self._url = u def download_zip(url, filePath): try: print("starting to get {}".format(url.name)) file_name = '{}.xml'.format(url.name) response = requests.get(url.url) with open(file_name, 'wb') as foutput: foutput.write(response.content) print("done getting {}".format(url.name)) except Exception as e: print(e) if __name__ == "__main__": filePath = os.path.dirname(os.path.abspath(__file__)) print(filePath) if (len(sys.argv) > 1): rootXml = ET.parse('{}/{}'.format(filePath, sys.argv[1])) else: rootXml = ET.parse('{}/input.xml'.format(filePath)) root = rootXml.getroot() podcastList = [] for outline in root.iter('outline'): podcastList.append(PodcastListing(outline.attrib['text'], outline.attrib['xmlUrl'])) print("filePath is %s " % filePath) # sys.path.append(filePath) # why do you need this? print("There are {} CPUs on this machine ".format(cpu_count())) pool = Pool(cpu_count()) download_func = partial(download_zip, filePath = filePath) results = pool.map(download_func, podcastList) pool.close() pool.join() print("k done") ```
{ "source": "jimmeycool/ASCII_Webcam", "score": 4 }
#### File: jimmeycool/ASCII_Webcam/ascii_webcam.py ```python import os import argparse from .webcam import Webcam, run parser = argparse.ArgumentParser(description=''' ASCII Console Webcam Converts the terminal into a webcam display using only ASCII charaters. You can specify the dimensions, which camera to use, and how to clear the window. ''') parser.add_argument('-w', '--width', type=int, default=80, help="The width in charaters of the screen") parser.add_argument('-H', '--height', type=int, default=30, help="The height in lines of the screen") parser.add_argument('-c', '--clear', type=str, default=None, help="Override the clear console command to specified") parser.add_argument( '-d', '--deviceid', type=str, default=0, help="Camera id to use, 0 is system default, rest are other cameras") args = parser.parse_args() def _get_clear() -> str: """ Gets the clear command for the printer Returns: str: clear command """ return args.clear or 'cls' if os.name == 'nt' else 'clear' def main(): """ Process the args and run the webcam """ with Webcam(args.deviceid).start() as cam: run(cam, args.width, args.height, _get_clear()) if __name__ == '__main__': main() ``` #### File: ASCII_Webcam/webcam/ascii_driver.py ```python import os import sys from typing import Iterable import cv2 import numpy as np from webcam.webcam import Webcam ASCII_MAP = " .'`^\",:;Il!i><~+_-?][}{1)(|\\/tfjrxnuvczXYUJCLQ0OZmwqpdbkhao*#MW&8%B@$" """ A list of the range of ascii brightness values, starting from 0 brightness to full brightness """ def _create_ascii(numbers: Iterable[Iterable[int]]) -> str: """ Converts the list of numbers into a string of ascii chars. Args: numbers (Iterable[Iterable[int]]): 2D array of numbers to convert Returns: str: String of ascii chars """ return os.linesep.join( [''.join([ASCII_MAP[num] for num in row]) for row in numbers]) def print_ascii(numbers: Iterable[Iterable[int]], clear: str) -> None: """ Converts the 2D arrray of Args: numbers (Iterable[Iterable[int]]): 2D array of numbers to convert clear (str): The clear command for clearing the screen """ os.system(clear) sys.stdout.flush() sys.stdout.write(_create_ascii(numbers)) def run(cam: Webcam, width: int, height: int, clear: str): """ Runs the ASCII webcam Args: cam ([type]): Connection to webcam width (int): Width of screen height (int): Height of screen clear (str): The clear command for clearing the screen """ while True: grayscale = cam.grey_frame(width, height) # init ASCII array with normalized grey img normalized = cv2.normalize(grayscale, np.zeros((width, height)), 0, len(ASCII_MAP) - 1, cv2.NORM_MINMAX) print_ascii(normalized, clear) sys.stdout.write( f'{os.linesep}{os.linesep}Ctrl+C to stop...{os.linesep}') if cv2.waitKey(1) & 0xFF == ord('q'): break ```
{ "source": "jim-meyer/tensorflow-onnx", "score": 3 }
#### File: tensorflow-onnx/tf2onnx/convert.py ```python from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import tensorflow as tf from tf2onnx.graph import GraphUtil from tf2onnx.tfonnx import process_tf_graph, tf_optimize from . import constants, loader, logging, utils # pylint: disable=unused-argument def get_args(): """Parse commandline.""" parser = argparse.ArgumentParser() parser.add_argument("--input", help="input from graphdef") parser.add_argument("--graphdef", help="input from graphdef") parser.add_argument("--saved-model", help="input from saved model") parser.add_argument("--checkpoint", help="input from checkpoint") parser.add_argument("--output", help="output model file") parser.add_argument("--inputs", help="model input_names") parser.add_argument("--outputs", help="model output_names") parser.add_argument("--opset", type=int, default=None, help="opset version to use for onnx domain") parser.add_argument("--custom-ops", help="list of custom ops") parser.add_argument("--extra_opset", default=None, help="extra opset with format like domain:version, e.g. com.microsoft:1") parser.add_argument("--target", default=",".join(constants.DEFAULT_TARGET), choices=constants.POSSIBLE_TARGETS, help="target platform") parser.add_argument("--continue_on_error", help="continue_on_error", action="store_true") parser.add_argument("--verbose", "-v", help="verbose output, option is additive", action="count") parser.add_argument("--debug", help="debug mode", action="store_true") parser.add_argument("--fold_const", help="enable tf constant_folding transformation before conversion", action="store_true") # experimental parser.add_argument("--inputs-as-nchw", help="transpose inputs as from nhwc to nchw") # depreciated, going to be removed some time in the future parser.add_argument("--unknown-dim", type=int, default=-1, help="default for unknown dimensions") args = parser.parse_args() args.shape_override = None if args.input: # for backward compativility args.graphdef = args.input if args.graphdef or args.checkpoint: if not args.input and not args.outputs: raise ValueError("graphdef and checkpoint models need to provide inputs and outputs") if not any([args.graphdef, args.checkpoint, args.saved_model]): raise ValueError("need input as graphdef, checkpoint or saved_model") if args.inputs: args.inputs, args.shape_override = utils.split_nodename_and_shape(args.inputs) if args.outputs: args.outputs = args.outputs.split(",") if args.inputs_as_nchw: args.inputs_as_nchw = args.inputs_as_nchw.split(",") if args.target: args.target = args.target.split(",") if args.extra_opset: tokens = args.extra_opset.split(':') if len(tokens) != 2: raise ValueError("invalid extra_opset argument") args.extra_opset = [utils.make_opsetid(tokens[0], int(tokens[1]))] return args def default_custom_op_handler(ctx, node, name, args): node.domain = constants.TENSORFLOW_OPSET.domain return node def main(): args = get_args() logging.basicConfig(level=logging.get_verbosity_level(args.verbose)) if args.debug: utils.set_debug_mode(True) # override unknown dimensions from -1 to 1 (aka batchsize 1) since not every runtime does # support unknown dimensions. utils.ONNX_UNKNOWN_DIMENSION = args.unknown_dim extra_opset = args.extra_opset or [] custom_ops = {} if args.custom_ops: # default custom ops for tensorflow-onnx are in the "tf" namespace custom_ops = {op: (default_custom_op_handler, []) for op in args.custom_ops.split(",")} extra_opset.append(constants.TENSORFLOW_OPSET) # get the frozen tensorflow model from graphdef, checkpoint or saved_model. if args.graphdef: graph_def, inputs, outputs = loader.from_graphdef(args.graphdef, args.inputs, args.outputs) model_path = args.graphdef if args.checkpoint: graph_def, inputs, outputs = loader.from_checkpoint(args.checkpoint, args.inputs, args.outputs) model_path = args.checkpoint if args.saved_model: graph_def, inputs, outputs = loader.from_saved_model(args.saved_model, args.inputs, args.outputs) model_path = args.saved_model # todo: consider to enable const folding by default? graph_def = tf_optimize(inputs, outputs, graph_def, args.fold_const) with tf.Graph().as_default() as tf_graph: tf.import_graph_def(graph_def, name='') with tf.Session(graph=tf_graph): g = process_tf_graph(tf_graph, continue_on_error=args.continue_on_error, target=args.target, opset=args.opset, custom_op_handlers=custom_ops, extra_opset=extra_opset, shape_override=args.shape_override, input_names=inputs, output_names=outputs, inputs_as_nchw=args.inputs_as_nchw) model_proto = g.make_model("converted from {}".format(model_path)) new_model_proto = GraphUtil.optimize_model_proto(model_proto) if new_model_proto: model_proto = new_model_proto else: print("NON-CRITICAL, optimizers are not applied successfully") # write onnx graph if args.output: utils.save_protobuf(args.output, model_proto) print("\nComplete successfully, the onnx model is generated at " + args.output) if __name__ == "__main__": main() ``` #### File: tf2onnx/optimizer/__init__.py ```python from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import traceback from collections import OrderedDict from tf2onnx.optimizer.const_fold_optimizer import ConstFoldOptimizer from tf2onnx.optimizer.identity_optimizer import IdentityOptimizer from tf2onnx.optimizer.merge_duplicated_nodes_optimizer import MergeDuplicatedNodesOptimizer from tf2onnx.optimizer.transpose_optimizer import TransposeOptimizer # pylint: disable=missing-docstring, broad-except # optimizer sequence need to be considered carefully _optimizers = OrderedDict([ ("transpose_opt", TransposeOptimizer), ("fold_const", ConstFoldOptimizer), # merge_duplicated_nodes should be used after transpose_opt # for transpose_opt may have some trans nodes that can be merge ("merge_duplicated_nodes", MergeDuplicatedNodesOptimizer), ("identity_opt", IdentityOptimizer), ]) def optimize_graph(graph): try: opts = _get_optimizers() for opt in opts.values(): graph = opt().optimize(graph) graph.update_proto() return graph except Exception: # degradation to non-optimized model proto type_, value_, traceback_ = sys.exc_info() ex_ext = traceback.format_exception(type_, value_, traceback_) print("NON-CRITICAL error in optimizer: ", ex_ext) return None def _get_optimizers(): return _optimizers ``` #### File: tensorflow-onnx/tf2onnx/schemas.py ```python from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict, OrderedDict from onnx import defs from . import constants class OnnxOpSchema(object): """Wrapper for Onnx schema.""" def __init__(self, name, domain, since_version, attributes): """Create a Onnx schema Args: name (str): op name attributes (List[str]): valid attributes domain (str): default value "" means it's Onnx domain since_version (int): opset version, default is 1 """ self._name = name self._domain = domain self._attributes = attributes self._since_version = since_version @property def attributes(self): return self._attributes @property def domain(self): return self._domain @property def name(self): return self._name @property def since_version(self): return self._since_version @staticmethod def from_onnx_schema(onnx_schema): name = onnx_schema.name domain = onnx_schema.domain since_version = int(onnx_schema.since_version) attributes = onnx_schema.attributes return OnnxOpSchema(name, domain, since_version, attributes) def has_attribute(self, attr): return attr in self.attributes def _register_all_schemas_with_history(): """Register all schemas with history""" onnx_schemas = defs.get_all_schemas_with_history() name_domain_version_schema_map = defaultdict(lambda: defaultdict(dict)) for s in onnx_schemas: schema = OnnxOpSchema.from_onnx_schema(s) name_domain_version_schema_map[schema.name][schema.domain][schema.since_version] = schema ordered_map = defaultdict(lambda: defaultdict(OrderedDict)) for name, domain_version_schema_map in name_domain_version_schema_map.items(): for domain, version_schema_map in domain_version_schema_map.items(): ordered_map[name][domain] = OrderedDict( sorted(version_schema_map.items(), key=lambda x: -x[0]) ) return ordered_map def _parse_domain_opset_versions(schemas): """ Get max opset version among all schemas within each domain. """ domain_opset_versions = dict() for domain_version_schema_map in schemas.values(): for domain, version_schema_map in domain_version_schema_map.items(): # version_schema_map is sorted by since_version in descend order max_version = next(iter(version_schema_map)) if domain not in domain_opset_versions: domain_opset_versions[domain] = int(max_version) else: domain_opset_versions[domain] = max(domain_opset_versions[domain], int(max_version)) return domain_opset_versions # format is <OpName, <Domain, <SinceVersion, OpSchema>>> # SinceVersion is sorted from high to low _schemas = _register_all_schemas_with_history() _domain_opset_versions = _parse_domain_opset_versions(_schemas) def get_schema(name, max_inclusive_opset_version, domain=None): """Get schema by name within specific version.""" domain = domain or constants.ONNX_DOMAIN domain_version_schema_map = _schemas[name] version_schema_map = domain_version_schema_map[domain] for version, schema in version_schema_map.items(): if version <= max_inclusive_opset_version: return schema return None def get_max_supported_opset_version(domain=None): """Get max supported opset version by current onnx package given a domain.""" domain = domain or constants.ONNX_DOMAIN return _domain_opset_versions.get(domain, None) ```
{ "source": "jim-meyer/tensorflow", "score": 2 }
#### File: python/framework/convert_to_constants_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.python import keras from tensorflow.python.client import session as session_lib from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import convert_to_constants from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.saved_model import simple_save from tensorflow.python.saved_model.load import load from tensorflow.python.saved_model.save import save from tensorflow.python.training.tracking import tracking from tensorflow.python.util import nest class VariablesToConstantsTest(test.TestCase): def _hasStatefulPartitionedCallOp(self, graph_def): """Determines if a StatefulPartitionedCall op exists in the graph.""" for node in graph_def.node: if node.op == "StatefulPartitionedCall": return True return False def _getNumVariables(self, graph_def): """Returns the number of ReadVariableOp in the graph.""" return sum(node.op == "ReadVariableOp" for node in graph_def.node) def _testConvertedFunction(self, obj, func, converted_concrete_func, input_data): # Check that the converted ConcreteFunction produces the same result as the # original Function. expected_value = nest.flatten(func(**input_data)) actual_value = nest.flatten(converted_concrete_func(**input_data)) for expected, actual in zip(expected_value, actual_value): np.testing.assert_almost_equal(expected.numpy(), actual.numpy()) # Ensure the shape is retained. for tensor in converted_concrete_func.inputs: actual_shape = input_data[tensor.name.split(":")[0]].shape self.assertEqual(tensor.shape, actual_shape) # Save the converted ConcreteFunction as a signature. save_dir = os.path.join(self.get_temp_dir(), "frozen_saved_model") root = tracking.AutoTrackable() root.f = converted_concrete_func save(root, save_dir, {"mykey": converted_concrete_func}) # Load it back and make sure it works. loaded_obj = load(save_dir) actual_value = nest.flatten(loaded_obj.signatures["mykey"](**input_data)) for expected, actual in zip(expected_value, actual_value): np.testing.assert_almost_equal(expected.numpy(), actual.numpy()) @test_util.run_v2_only def testConstSavedModel(self): """Test a basic model with functions to make sure functions are inlined.""" input_data = {"x": constant_op.constant(1., shape=[1])} root = tracking.AutoTrackable() root.f = def_function.function(lambda x: 2. * x) to_save = root.f.get_concrete_function(input_data["x"]) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save(root, save_dir, to_save) saved_model = load(save_dir) input_func = saved_model.signatures["serving_default"] variable_graph_def = input_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(variable_graph_def)) self.assertTrue(variable_graph_def.library.function) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(constant_graph_def.library.function) self._testConvertedFunction(root, root.f, output_func, input_data) @test_util.run_v2_only def testVariableModel(self): """Test a basic model with Variables.""" input_data = {"x": constant_op.constant(1., shape=[1])} root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) input_func = root.f.get_concrete_function(input_data["x"]) variable_graph_def = input_func.graph.as_graph_def() self.assertEqual(2, self._getNumVariables(variable_graph_def)) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) self._testConvertedFunction(root, root.f, output_func, input_data) @test_util.run_v2_only def testScalarModel(self): """Test a basic model with Variables.""" input_data = {"x": constant_op.constant(1., shape=[])} root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) input_func = root.f.get_concrete_function(input_data["x"]) variable_graph_def = input_func.graph.as_graph_def() self.assertEqual(2, self._getNumVariables(variable_graph_def)) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) self._testConvertedFunction(root, root.f, output_func, input_data) @test_util.run_v2_only def testVariableSavedModel(self): """Test a basic model with Variables with saving/loading the SavedModel.""" input_data = {"x": constant_op.constant(1., shape=[1])} root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) to_save = root.f.get_concrete_function(input_data["x"]) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save(root, save_dir, to_save) saved_model = load(save_dir) input_func = saved_model.signatures["serving_default"] variable_graph_def = input_func.graph.as_graph_def() self.assertTrue(self._hasStatefulPartitionedCallOp(variable_graph_def)) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) self._testConvertedFunction(root, root.f, output_func, input_data) @test_util.run_v2_only def testMultiFunctionModel(self): """Test a basic model with Variables.""" class BasicModel(tracking.AutoTrackable): def __init__(self): self.y = None self.z = None @def_function.function def add(self, x): if self.y is None: self.y = variables.Variable(2.) return x + self.y @def_function.function def sub(self, x): if self.z is None: self.z = variables.Variable(3.) return x - self.z input_data = {"x": constant_op.constant(1., shape=[1])} root = BasicModel() input_func = root.add.get_concrete_function(input_data["x"]) variable_graph_def = input_func.graph.as_graph_def() self.assertEqual(1, self._getNumVariables(variable_graph_def)) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) self._testConvertedFunction(root, root.add, output_func, input_data) @test_util.run_v2_only def testKerasModel(self): input_data = constant_op.constant(1., shape=[1, 1]) # Create a simple Keras model. x = [-1, 0, 1, 2, 3, 4] y = [-3, -1, 1, 3, 5, 7] model = keras.models.Sequential( [keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer="sgd", loss="mean_squared_error") model.fit(x, y, epochs=1) # Get the concrete function from the Keras model. @def_function.function def to_save(x): return model(x) input_func = to_save.get_concrete_function(input_data) variable_graph_def = input_func.graph.as_graph_def() self.assertEqual(2, self._getNumVariables(variable_graph_def)) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) # Check value. expected_value = to_save(input_data) actual_value = nest.flatten(output_func(input_data)) self.assertEqual(expected_value.numpy(), actual_value) def _singleMetaGraphSavedModel(self): export_graph = ops.Graph() with export_graph.as_default(): start = array_ops.placeholder( shape=[1, 1], dtype=dtypes.float32, name="start") distractor = variables.RefVariable(-1., name="distractor") v = variables.RefVariable(3., name="v") local_variable = variables.VariableV1( 1., collections=[ops.GraphKeys.LOCAL_VARIABLES], trainable=False, use_resource=True) output = array_ops.identity(start * v * local_variable, name="output") with session_lib.Session() as session: session.run([v.initializer, distractor.initializer, local_variable.initializer]) path = os.path.join(self.get_temp_dir(), "saved_model", str(ops.uid())) simple_save.simple_save( session, path, inputs={"start": start}, outputs={"output": output}, legacy_init_op=local_variable.initializer) return path @test_util.run_v2_only def testRefVariableImport(self): saved = self._singleMetaGraphSavedModel() imported = load(saved) fn = imported.signatures["serving_default"] output_func = convert_to_constants.convert_variables_to_constants_v2(fn) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) input_data = {"start": constant_op.constant(1., shape=[1, 1])} root = tracking.AutoTrackable() self._testConvertedFunction(root, fn, output_func, input_data) @test_util.run_v2_only def testControlFlow(self): input_data = { "x": constant_op.constant([1., 2.], shape=[1, 2]), "b": constant_op.constant(True) } weights = variables.Variable([[0.1, 0.2], [0.3, 0.4]], dtype=dtypes.float32) def true_fn(x): return math_ops.matmul(x, weights) def false_fn(x): return math_ops.add(x, weights) @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=[1, 2], dtype=dtypes.float32), tensor_spec.TensorSpec(shape=(), dtype=dtypes.bool) ]) def model(x, b): return control_flow_ops.cond( b, true_fn=lambda: true_fn(x), false_fn=lambda: false_fn(x)) root = tracking.AutoTrackable() root.f = model input_func = root.f.get_concrete_function() input_func(**input_data) output_func = convert_to_constants.convert_variables_to_constants_v2( input_func, lower_control_flow=False) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) self._testConvertedFunction(root, root.f, output_func, input_data) @test_util.run_v2_only def testStaticRnn(self): input_data = { "x": constant_op.constant( np.array(np.random.random_sample((3, 10)), dtype=np.float32)) } cell = rnn_cell_impl.LSTMCell(10) @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=[3, 10], dtype=dtypes.float32) ]) def model(x): seq = array_ops.split(x, 3, 0) return rnn.static_rnn( cell, seq, dtype=dtypes.float32, sequence_length=[1]) root = tracking.AutoTrackable() root.f = model input_func = root.f.get_concrete_function() output_func = convert_to_constants.convert_variables_to_constants_v2( input_func, lower_control_flow=False) constant_graph_def = output_func.graph.as_graph_def() self.assertEqual(0, self._getNumVariables(constant_graph_def)) self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) self._testConvertedFunction(root, root.f, output_func, input_data) if __name__ == "__main__": test.main() ```
{ "source": "jimmg35/Sensor_Crawling", "score": 3 }
#### File: jimmg35/Sensor_Crawling/minuteData.py ```python import requests import sys import json from typing import List, Dict import pandas as pd # import main functionality from src.dbcontext import Dbcontext, Storer from src.utils import UrlBundler, Key from src.requester import Requester from src.parser import Parser # projects = ['528','671','672','673','674','675', # '677','678','680','709','756','1024','1025', # '1027','1029','1032','1034','1035','1036', # '1048','1058','1071','1072','1075','1079', # '1084','1085','1102','1120','1145','1147', # '1162','1167','1184','1189','1192','1207'] projects = ['1024'] item = ['voc', 'pm2_5', 'humidity', 'temperature'] class TimeStamper(): def build(self, chunk): return chunk[0] + "-" + chunk[1] + "-" + chunk[2] + " " + chunk[3] + ":" + chunk[4] + ":" + chunk[5] def build_minute(self, chunk): return chunk[0] + "-" + chunk[1] + "-" + chunk[2] + " " + chunk[3] + ":" + chunk[4] def parse(self, stamp): date = stamp.split(' ')[0] time = stamp.split(' ')[1] year = date.split('-')[0] month = date.split('-')[1] day = date.split('-')[2] hour = time.split(":")[0] minute = time.split(":")[1] second = time.split(":")[2] return [year,month,day,hour,minute,second] def parse_minute(self, stamp): date = stamp.split(' ')[0] time = stamp.split(' ')[1] year = date.split('-')[0] month = date.split('-')[1] day = date.split('-')[2] hour = time.split(":")[0] minute = time.split(":")[1] return [year,month,day,hour,minute] start_month = 1 if __name__ == "__main__": # initializer timer ts = TimeStamper() # initialize basic object. myKey = Key() myBundler = UrlBundler() myReq = Requester(myBundler, myKey) # initialize dbcontext myDBcontext = Dbcontext({"user":str(sys.argv[1]), "password":str(<PASSWORD>[2]), "host":str(sys.argv[3]), "port":str(sys.argv[4])}, "sensordata") myStorage = Storer(myDBcontext) for project in projects[0:1]: data = myDBcontext.queryMinuteMetadata(project) for device in data: #[0:1] # build the time stamp start = ts.build(["2021", "01", "01", "00", "00", "00.000"]) end = ts.build(["2021", "01", "31", "23", "59", "00.000"]) compare = ts.build_minute(["2021", "01", "31", "23", "59"]) # request for data of a device in a time interval data = myReq.getMinuteDataOfProject_interval_device(device[0], device[1], start, end, compare, ts) if data == None: # if request failed continue else: # if request seccess data_s, date, time, deviceid = Parser.parseMinuteData(data, ts) myDBcontext.ImportMinuteData(deviceid, data_s, date, time, project, start_month) print("-- {} import complete".format(device)) print("--- {} project complete".format(project)) print("=======================================") ``` #### File: Sensor_Crawling/src/dbcontext.py ```python import datetime import schedule import psycopg2 from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT class Storer(): """ Storing processed data from Parser. """ data_list = [] storage = {} def __init__(self, dbcontext): self.dbcontext = dbcontext def insert(self, data, name: str): self.storage[name] = data self.data_list.append(name) def import2Database(self, item: str, y=None, sm=None, em=None): if item == "ProjectData" and self.importGate(item): self.dbcontext.ImportProjectMeta(self.storage[item]) if item == "DeviceMeta" and self.importGate(item): self.dbcontext.ImportDeviceMeta(self.storage[item]) if item == "SensorMeta" and self.importGate(item): self.dbcontext.ImportSensorMeta(self.storage[item]) if item == "FixedData" and self.importGate(item): self.dbcontext.ImportFixedSensorData(self.storage[item], y, sm, em) def importGate(self, item): if self.data_list.index(item) != -1: return True else: print("Data is not accessible!") return False class Dbcontext(): """ Importing data into database. """ def __init__(self, PGSQL_user_data, database): # PostgreSQL server variable. self.PGSQL_user_data = PGSQL_user_data # Connect to local Postgresql server. self.cursor = self.ConnectToDatabase(database) def ConnectToDatabase(self, database): """ Connect to PostgreSQL database. """ conn = psycopg2.connect(database=database, user=self.PGSQL_user_data["user"], password=self.PGSQL_user_data["password"], host=self.PGSQL_user_data["host"], port=self.PGSQL_user_data["port"]) conn.autocommit = True conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) print(f'Successfully connected to local PostgreSQL server| User: @{self.PGSQL_user_data["user"]}') print(f' Currently connected to database: @{database}') cursor = conn.cursor() return cursor def ImportProjectMeta(self, projectMeta): """ Import porject metadata into database. """ for projID in list(projectMeta.keys()): keys_arr: str = "'{" for index, i in enumerate(projectMeta[projID]["keys"]): if index == (len(projectMeta[projID]["keys"])-1): keys_arr += '"' + str(i) + '"' + "}'" break keys_arr += '"' + str(i) + '"' + ',' query = '''INSERT INTO projectmeta (projectid, projectname, projectkeys) VALUES({}, \'{}\', {});'''.format(str(projID), projectMeta[projID]["name"], keys_arr) self.cursor.execute(query) print("Project Metadata has been stored into database!") def ImportDeviceMeta(self, deviceMeta): """ Import device meta into database. """ column_str = "(" query = "select column_name from information_schema.columns where table_name = 'devicemeta';" self.cursor.execute(query) column = [i[0] for i in self.cursor.fetchall()] for index, i in enumerate(column): if index == (len(column)-1): column_str += i + ")" break column_str += i + "," for index, i in enumerate(deviceMeta): values = self.bulidDeviceMetaQuery(i, index) query = "INSERT INTO devicemeta " + column_str + values self.cursor.execute(query) print("Device Metadata has been stored into database!") def ImportSensorMeta(self, SensorMeta): """ Import metadata of sensor of each device into database. """ ids = 1 for device in SensorMeta: sensor_id = "'{" for index, i in enumerate(device[2]): if index == (len(device[2])-1): sensor_id += '"' + str(i) + '"' + "}'" break sensor_id += '"' + str(i) + '"' + ',' query = '''INSERT INTO sensormeta (id, deviceid, projectkey, sensor_id) VALUES({}, \'{}\', \'{}\', {});'''.format(ids, device[0], device[1], sensor_id) self.cursor.execute(query) ids += 1 print("Sensor Metadata has been stored into database!") def bulidDeviceMetaQuery(self, device, count): """ Helper function of ImportDeviceMeta(), for handling exception. """ output = " VALUES(" + str(count) + "," + device["id"] + "," for index, i in enumerate(list(device.keys())): if index == (len(list(device.keys())) - 1): output += "'" + str(device[i]) + "')" break if i == "id": continue if str(device[i]) == "旗山區公所前'": output += "'" + "旗山區公所前" + "'," continue output += "'" + str(device[i]) + "'," return output def queryDeviceSensorMeta_fixed(self): """ query specific metadata from database. """ query = '''SELECT projectid, projectkey, deviceid, sensor_id FROM sensormeta INNER JOIN projectmeta ON sensormeta.projectkey = ANY(projectmeta.projectkeys) WHERE projectid IN ('528','671','672','673','674', '675','677','678','680','709','756','1024','1025','1027','1029','1032','1034','1035','1036','1048', '1058','1071','1072','1075','1079','1084','1085','1102','1120','1145','1147','1162','1167','1184','1189','1192','1207');''' self.cursor.execute(query) return self.cursor.fetchall() def ImportFixedSensorData(self, FixedSensorData, year, start_m, end_m): print("=================== Import into database ===================") table_dict = {"1": "minute", "60": "hour"} for interval in list(FixedSensorData.keys()): for projectid in list(FixedSensorData[interval].keys()): # get biggest id in that table table_name = table_dict[interval] + "_" + projectid + "_" + str(year) + "_" + str(int(start_m)) + "to" + str(int(end_m)+1) print(table_name) if self.getBiggestId(table_name) == None: id_for_proj = 1 else: id_for_proj = self.getBiggestId(table_name) + 1 # insert data into table for a_row in FixedSensorData[interval][projectid]: try: query = '''INSERT INTO {} (id, deviceid, voc_avg, voc_max, voc_min, voc_median, pm2_5_avg, pm2_5_max, pm2_5_min, pm2_5_median, humidity_avg, humidity_max, humidity_min, humidity_median, temperature_avg, temperature_max, temperature_min, temperature_median, year, month, day, hour, minute, second, time) VALUES({},\'{}\',{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},\'{}\'); '''.format(table_name, id_for_proj, a_row[0], a_row[1], a_row[2], a_row[3], a_row[4],a_row[5], a_row[6], a_row[7], a_row[8], a_row[9], a_row[10], a_row[11], a_row[12],a_row[13], a_row[14], a_row[15], a_row[16], a_row[17], a_row[18], a_row[19], a_row[20],a_row[21], a_row[22], a_row[23]) self.cursor.execute(query) id_for_proj += 1 except: print("insert exception at -> interval:{} projectid:{} ".format(interval, projectid)) print("insert complete -> {}".format(table_name)) def getBiggestId(self, table_name): query = '''SELECT max(id) FROM {};'''.format(table_name) self.cursor.execute(query) return self.cursor.fetchall()[0][0] def queryDeviceSensorMeta_spacial(self): query = '''SELECT projectid, projectkey, deviceid FROM devicemeta WHERE projectid IN ('1156', '565', '624', '891');''' self.cursor.execute(query) return self.cursor.fetchall() def queryMinuteMetadata(self, project): query = '''SELECT deviceid, projectkey FROM sensormeta INNER JOIN projectmeta ON sensormeta.projectkey = ANY(projectmeta.projectkeys) WHERE projectid = '{}';'''.format(project) self.cursor.execute(query) data = self.cursor.fetchall() return [[i[0], i[1]]for i in data] def ImportMinuteData(self, deviceid, data, date, time, project, start_month): """ 將時間區段內的一台感測器資料輸入至資料庫 """ table_name = "minute_{}_{}to{}".format(project, start_month, start_month+1) if self.getBiggestId(table_name) == None: ids = 1 else: ids = self.getBiggestId(table_name) + 1 for i in range(0, len(deviceid)): query = '''INSERT INTO {} (id, deviceid, voc, pm2_5, humidity, temperature, date, hour, minute, second) VALUES({}, \'{}\', \'{}\', \'{}\', \'{}\', \'{}\', \'{}\', \'{}\', \'{}\', \'{}\'); '''.format(table_name, ids, deviceid[i], data[i]["voc"], data[i]["pm2_5"], data[i]["humidity"], data[i]["temperature"], date[i], time[i][0], time[i][1], time[i][2]) self.cursor.execute(query) ids += 1 def launchPatch(self): queries = ['''DELETE FROM devicemeta WHERE projectid NOT IN ('528','671','672','673','674', '675','677','678','680','709', '756','1024','1025','1027','1029', '1032','1034','1035','1036','1048', '1058','1071','1072','1075','1079', '1084','1085','1102','1120','1145', '1147','1162','1167','1184','1189', '1192','1207','1156','565','624','891');'''] for index, i in enumerate(queries): print("Patch {} has been applied to database!".format(index)) self.cursor.execute(i) ```
{ "source": "jimmg35/Sensor_Crawling_v2", "score": 3 }
#### File: dbcontext/Module/construct.py ```python import time import hmac import base64 import datetime import schedule import psycopg2 from time import mktime from hashlib import sha1 from pprint import pprint from requests import request from datetime import datetime from wsgiref.handlers import format_date_time from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT class Constructor(): def __init__(self, DB_list, DB_detail, PGSQLDetail): # Databases need to be constructed self.DB_list = DB_list # Information of Databases and Tables self.DB_detail = DB_detail # PostgreSQL server variable self.user = PGSQLDetail['user'] self.password = PGSQLDetail['password'] self.host = PGSQLDetail['host'] self.port = PGSQLDetail['port'] # Connect to PostgreSQL self.cursor = self.ConnectToPGSQL(self.user, self.password, self.host, self.port) # Kill query self.Kill = '''SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE pid <> pg_backend_pid() AND datname = 'template1';''' def ConnectToPGSQL(self, user, password, host, port): '''Connect to PostgreSQL''' conn = psycopg2.connect(user=user,password=password,host=host,port=port) conn.autocommit = True conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) print(f'Successfully connected | User:{user}') cursor = conn.cursor() return cursor def ConnectToDatabase(self, database, user, password, host, port): '''Connect to Database''' conn = psycopg2.connect(database = database, user=user,password=password,host=host,port=port) conn.autocommit = True conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) print(f'Successfully connected | User:{user}') cursor = conn.cursor() return cursor def constructDatabases(self): '''Create Databases''' print("Initializing Databases...") self.cursor.execute(self.Kill) for DB in self.DB_list: self.cursor.execute("SELECT 1 FROM pg_catalog.pg_database WHERE datname = \'{}\'".format(DB)) exists = self.cursor.fetchone() if exists == None: # Create Database self.cursor.execute("CREATE DATABASE {}".format(DB)) print("Database {} has been created!".format(DB)) else: print("Database {} is already existed!".format(DB)) def constructTables(self): '''Iterate through each database and create tables''' for DB in self.DB_detail.keys(): temp_cursor = self.ConnectToDatabase(DB,self.user,self.password,self.host,self.port) for table in self.DB_detail[DB].keys(): query = self.TableBuilder(DB, table) temp_cursor.execute(query) print("Table {} has been created in {}".format(table, DB)) def TableBuilder(self, DB, table): '''Helper function of constructTable function''' query_head = '''CREATE TABLE {} '''.format(table) query_head += self.DB_detail[DB][table] #print(query_head) return query_head ```
{ "source": "jimmi2051/Lab_Erp", "score": 2 }
#### File: Lab_Erp/website/cart.py ```python from django.http import HttpResponse from cart.cart import Cart from website.models import * import json def add(request, id_product): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) product = Product.objects.get(id=id_product) if product.type_product == False: id_origin_product = Link_Type.objects.get(product_id_id=id_product).parent_product else: return HttpResponse('Vui lòng lựa chọn phiên bản!') post = Post_Product.objects.filter(product_id_id=id_origin_product, is_lock=False, is_activity=True) if post.exists(): availability = post[0].quantity - post[0].bought price = (product.price * (100 - product.discount_percent))/100 if product not in cart: if product.account_created_id == request.session.get('user')['id']: return HttpResponse('Bạn không được phép mua sản phẩm này') cart.add(product, price=int(round(price, 0))) return HttpResponse(1) for x in cart.items: if x.product.id == product.id: if x.quantity + 1 > availability: return HttpResponse('Sản phẩm không đủ số lượng!') else: cart.add(product, price=int(round(price, 0))) return HttpResponse(1) else: return HttpResponse('Sản phẩm không hợp lễ!') def sub(request, id_product): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) product = Product.objects.get(id=id_product) if product.type_product == False: id_origin_product = Link_Type.objects.get(product_id_id=id_product).parent_product else: return HttpResponse('Vui lòng lựa chọn phiên bản!') post = Post_Product.objects.filter(product_id_id=id_origin_product, is_lock=False, is_activity=True) if post.exists(): if product not in cart: return HttpResponse("Sản phẩm không tồn tại trong giỏ hàng!") for x in cart.items: if x.product.id == product.id: qty = x.quantity - 1 if qty <= 0: cart.remove(product) return HttpResponse(1) else: cart.set_quantity(product, quantity=qty) return HttpResponse(1) else: return HttpResponse('Sản phẩm không hợp lệ!') def add_qty(request, id_product, qty): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse(-4) cart = Cart(request.session) product = Product.objects.get(id=id_product) if product.type_product == False: id_origin_product = Link_Type.objects.get(product_id_id=id_product).parent_product else: return HttpResponse(-2) post = Post_Product.objects.filter(product_id_id=id_origin_product, is_lock=False, is_activity=True) if post.exists(): availability = post[0].quantity - post[0].bought price = (product.price * (100 - product.discount_percent))/100 if qty <= 0 or qty > availability: return HttpResponse(-1) if product not in cart: if product.account_created_id == request.session.get('user')['id']: return HttpResponse(-3) cart.add(product, quantity=qty, price=int(round(price, 0))) return HttpResponse("Thêm thành công") for x in cart.items: if x.product.id == product.id: if x.quantity + qty > availability: return HttpResponse(-1) else: cart.set_quantity(product, quantity=(x.quantity + qty)) return HttpResponse("Thêm thành công") else: return HttpResponse('Sản phẩm không hợp lễ!') def set_qty(request, id_product, qty): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) product = Product.objects.get(id=id_product) if product.type_product == False: id_origin_product = Link_Type.objects.get(product_id_id=id_product).parent_product else: id_origin_product = id_product post = Post_Product.objects.filter(product_id_id=id_origin_product, is_lock=False, is_activity=True) if post.exists(): availability = post[0].quantity - post[0].bought if product not in cart: return HttpResponse("Sản phẩm không tồn tại trong giỏ hàng!") if qty <= 0 or qty > availability: return HttpResponse('Số lượng không hợp lệ!') cart.set_quantity(product, quantity=qty) return HttpResponse(1) else: return HttpResponse('Sản phẩm không hợp lệ') def remove(request, id_product): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) product = Product.objects.get(pk=id_product) cart.remove(product) return HttpResponse("Đã xóa!") def show(request): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) for item in cart.items: print(item.quantity) return HttpResponse(cart.items) def count(request): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) return HttpResponse(cart.count) def clear(request): # can kiem tra dang nhap #......................... if 'user' not in request.session: return HttpResponse('Vui lòng đăng nhập để thêm sản phẩm') cart = Cart(request.session) cart.clear() #messages.success(request, message='Danh sách sản phẩm đã được xóa!', extra_tags='alert') return HttpResponse("Da xoa") ``` #### File: Lab_Erp/website/models.py ```python from django.db import models # Create your models here. class Account(models.Model): username = models.CharField(max_length=200, unique=True) email = models.EmailField(unique=True) password = models.CharField(max_length=200) name = models.CharField(max_length=100) birthday = models.DateField(null=True) sex = models.BooleanField(default=False) phone = models.CharField(max_length=12, null=True) id_card = models.CharField(max_length=15, null=True) address = models.CharField(max_length=200, null=True) name_shop = models.CharField(max_length=200, null=True) activity_account = models.BooleanField(default=False) activity_merchant = models.BooleanField(default=False) activity_advertiser = models.BooleanField(default=False) q_post = models.IntegerField(default=0) q_vip = models.IntegerField(default=0) code_act_account = models.CharField(max_length=60) code_act_merchant = models.CharField(max_length=60) code_act_ads = models.CharField(max_length=60) token_ghtk = models.CharField(max_length=100, null=True) is_admin = models.BooleanField(default=False) created = models.DateTimeField(auto_now=True) is_lock = models.BooleanField(default=False) def __str__(self): return self.email class Account_Service(models.Model): account = models.ForeignKey('Account', on_delete=models.CASCADE) service = models.ForeignKey('Service', on_delete=models.CASCADE) remain = models.IntegerField(default=0) class Product (models.Model): name = models.CharField(max_length=200) detail = models.TextField(max_length=2000, null=True) origin = models.CharField(max_length=200) type_product = models.BooleanField() price = models.IntegerField() discount_percent = models.IntegerField(default=0) code = models.CharField(max_length=200) is_activity = models.BooleanField(default=True) archive = models.BooleanField(default=False) account_created = models.ForeignKey('Account', on_delete=models.CASCADE) archive_at = models.DateTimeField(null=True) def __str__(self): return self.name class Category (models.Model): name_category = models.CharField(max_length=200) quantity = models.IntegerField(default=0) is_active = models.BooleanField(default=True) def __str__(self): return self.name_category class Product_Category(models.Model): product_id = models.ForeignKey('Product', on_delete=models.CASCADE) category_id = models.ForeignKey('Category', on_delete=models.CASCADE) archive = models.BooleanField(default=False) archive_at = models.DateTimeField(null=True) lock = models.BooleanField(default=False) class Attribute (models.Model): label = models.CharField(max_length=200) is_active = models.BooleanField(default=True) def __str__(self): return self.label class Product_Attribute (models.Model): product_id = models.ForeignKey('Product', on_delete=models.CASCADE) attribute_id = models.ForeignKey('Attribute', on_delete=models.CASCADE) value = models.CharField(max_length=200) archive = models.BooleanField(default=False) archive_at = models.DateTimeField(null=True) lock = models.BooleanField(default=False) class Product_Image(models.Model): product_id = models.ForeignKey('Product', on_delete=models.CASCADE) image_id = models.ForeignKey('Image', on_delete=models.CASCADE) archive = models.BooleanField(default=False) archive_at = models.DateTimeField(null=True) class Image (models.Model): image_link = models.ImageField(upload_to='merchant/product/') is_default = models.BooleanField(default=False) user_id = models.ForeignKey('Account', on_delete=models.CASCADE) class Link_Type(models.Model): product_id = models.ForeignKey('Product', on_delete=models.CASCADE) parent_product = models.IntegerField() class Tag(models.Model): tag_key = models.CharField(max_length=200) tag_value = models.CharField(max_length=200) tag_type = models.IntegerField() see = models.IntegerField(default=0) archive = models.BooleanField(default=False) archive_at = models.DateTimeField(null=True) class Post_Product (models.Model): product_id = models.ForeignKey('Product', on_delete=models.CASCADE) post_type = models.ForeignKey('Service', on_delete=models.CASCADE) creator_id = models.ForeignKey('Account', on_delete=models.CASCADE) quantity = models.IntegerField() expire = models.DateTimeField() visable_vip = models.BooleanField() created = models.DateTimeField(auto_now=True) is_activity = models.BooleanField(default=True) views = models.IntegerField(default=0) is_lock = models.BooleanField(default=False) bought = models.IntegerField(default=0) # archive = models.BooleanField(default=False) class Rating (models.Model): customer = models.ForeignKey('Account', on_delete=models.CASCADE, related_name='Customer') merchant = models.ForeignKey('Account', on_delete=models.CASCADE, related_name='Merchant') num_of_star = models.IntegerField() comment = models.CharField(max_length=2000, null=True) confirm_bought = models.BooleanField() is_activity = models.BooleanField(default=True) def __str__(self): return self.customer.name class Rating_Customer (models.Model): customer = models.ForeignKey('Account', on_delete=models.CASCADE, related_name='cus') merchant = models.ForeignKey('Account', on_delete=models.CASCADE, related_name='mer') num_of_star = models.IntegerField() confirm_bought = models.BooleanField() is_activity = models.BooleanField(default=True) def __str__(self): return self.customer.name class Order (models.Model): customer = models.ForeignKey('Account', on_delete=models.CASCADE) amount = models.IntegerField() name = models.CharField(max_length=200) email = models.CharField(max_length=200) address = models.CharField(max_length=200) phone = models.CharField(max_length=12) note = models.CharField(max_length=200, null=True) CHOICES_STATE = (('1', 'Thành công'), ('0', 'Hủy bỏ'), ('2', 'Đặt hàng')) state = models.CharField(max_length=1, choices=CHOICES_STATE) manner = models.BooleanField(default=True) # payment by COD or paypal is_paid = models.BooleanField() is_activity = models.BooleanField() created = models.DateTimeField(auto_now=True) archive = models.BooleanField() canceler_id = models.IntegerField(null=True) class Order_Detail (models.Model): order = models.ForeignKey('Order', on_delete=models.CASCADE) product = models.ForeignKey('Product', on_delete=models.CASCADE) post = models.ForeignKey('Post_Product', on_delete=models.CASCADE) merchant = models.ForeignKey('Account', on_delete=models.CASCADE) quantity = models.IntegerField() price = models.IntegerField() discount = models.IntegerField() CHOICES_STATE = (('1', 'Thành công'), ('0', 'Hủy bỏ'), ('2', 'Đặt hàng'), ('3', 'Đang gói hàng'), ('4', 'Đang vận chuyển')) state = models.CharField(max_length=1, choices=CHOICES_STATE) confirm_of_merchant = models.BooleanField() canceler_id = models.IntegerField(null=True) is_seen =models.BooleanField(default=False) # class Email_Template(models.Model): # name_template = models.CharField(max_length=100) # type_template = models.IntegerField() # content = models.TextField() # state = models.BooleanField(default=True) class Service(models.Model): service_name = models.CharField(max_length=200) amount = models.IntegerField() value = models.IntegerField() quantity_product = models.IntegerField() created = models.DateTimeField(auto_now=True) day_limit = models.IntegerField() visable_vip = models.BooleanField() is_active = models.BooleanField(default=True) archive = models.BooleanField(default=False) creator_id = models.IntegerField() canceler_id = models.IntegerField(null=True) def __str__(self): return self.service_name class Purchase_Service(models.Model): purchase_name = models.CharField(max_length=200) merchant_id = models.ForeignKey('Account', on_delete=models.CASCADE) service_id = models.ForeignKey('Service', on_delete=models.CASCADE) amount = models.FloatField(null=True, blank=True, default=None) state = models.IntegerField() success_at = models.DateTimeField(auto_now=True) is_active = models.BooleanField(default=True) archive = models.BooleanField(default=False) class Service_Ads(models.Model): service_name = models.CharField(max_length=200) position = models.CharField(max_length=200) amount = models.IntegerField() created = models.DateTimeField(auto_now=True) day_limit = models.IntegerField() is_active = models.BooleanField(default=True) archive = models.BooleanField(default=False) creator_id = models.IntegerField() canceler_id = models.IntegerField(null=True) class Service_Ads_Post(models.Model): service_name = models.CharField(max_length=200) purchase_service_id = models.ForeignKey('Purchase_Service_Ads', on_delete=models.CASCADE) customer_id = models.ForeignKey('Account',on_delete=models.CASCADE) image_1 = models.CharField(max_length=200) image_1_url = models.CharField(max_length=200) image_1_content = models.CharField(max_length=200) image_2 = models.CharField(max_length=200,blank=True,null=True) image_2_url = models.CharField(max_length=200,blank=True,null=True) image_2_content = models.CharField(max_length=200,blank=True,null=True) image_3 = models.CharField(max_length=200,blank=True,null=True) image_3_url = models.CharField(max_length=200,blank=True,null=True) image_3_content = models.CharField(max_length=200,blank=True,null=True) CHOICES_STATE = (('1','IsPosting'),('2','IsConfirm'),('0','Cancel')) state = models.CharField(max_length=1, choices=CHOICES_STATE) class Purchase_Service_Ads(models.Model): purchase_name = models.CharField(max_length=200) merchant_id = models.ForeignKey('Account', on_delete=models.CASCADE) service_ads_id = models.ForeignKey('Service_Ads',on_delete=models.CASCADE) amount = models.IntegerField() CHOICES_STATE = (('1', 'Success'), ('0', 'Cancel'), ('2','IsPosted'), ('3','IsConfirmed'),('4', 'IsActiving'),('5','Expired')) state = models.CharField(max_length=1, choices=CHOICES_STATE) date_start = models.DateTimeField(blank=True,null=True) success_at = models.DateTimeField(auto_now=True) is_active = models.BooleanField(default=True) archive = models.BooleanField(default=False) #Hau mai khach hang class Account_Gift(models.Model): account = models.ForeignKey('Account', on_delete=models.CASCADE) is_10 = models.BooleanField(default=False) is_50 = models.BooleanField(default=False) is_100 = models.BooleanField(default=False) is_daily_7 = models.BooleanField(default=False) is_daily_15 = models.BooleanField(default=False) ``` #### File: Lab_Erp/website/views.py ```python import random from django.shortcuts import render, redirect from .models import * import random from random import randint from django.db.models import Sum # Create your views here. from django.http import HttpResponse from passlib.hash import pbkdf2_sha256 from sender import Mail, Message from django.core.exceptions import ObjectDoesNotExist from django.contrib import messages from cart.cart import Cart def check_session(request): if 'user' in request.session: return 1 return 0 def role_user_session(account): # account = Account.objects.get(email=email) role = [] if account.is_admin: role.append(0) if account.activity_account: role.append(1) if account.activity_merchant: role.append(2) if account.activity_advertiser: role.append(3) return role def index (request): return render(request, 'website/index.html') def login (request): if check_session(request): messages.warning(request, message='Lỗi! Bạn đã đăng nhập hệ thống!', extra_tags='alert') return redirect('/') if request.method == 'POST': email = request.POST.get('inputEmail') password = request.POST.get('inputPassword') try: account = Account.objects.get(email=email) if pbkdf2_sha256.verify(password, account.password): if account.activity_account == True: if account.activity_merchant == True or account.activity_advertiser == True or account.is_admin == True: messages.warning(request, message='Tài khoản không tồn tại!', extra_tags='alert') return redirect('/login') request.session['user'] = { 'id': account.id, 'email': account.email, 'role': role_user_session(account), } messages.success(request, message='Đăng nhập thành công!', extra_tags='alert') return redirect('/customer/profile') else: messages.warning(request, message='Vui lòng xác nhận email!', extra_tags='alert') return redirect('/login') messages.warning(request, message='Mật khẩu không đúng!', extra_tags='alert') return redirect('/login') except ObjectDoesNotExist: messages.warning(request, message='Email không tồn tại!', extra_tags='alert') return redirect('/login') return return render(request, 'website/login.html') def logout (request): if check_session(request): del request.session['user'] messages.success(request, message='Đăng xuất thành công!', extra_tags='alert') return redirect('/') else: messages.warning(request, message='Lỗi! Bạn chưa đăng nhập', extra_tags='alert') return redirect('/') def register (request): if check_session(request): messages.warning(request, message='Lỗi! Bạn đã đăng nhập vào hệ thống', extra_tags='alert') return redirect('/') return render(request, 'website/register.html') def activity_account(request, email, code): try: account = Account.objects.get(email=email) if account.activity_account == 1: messages.warning(request, message='Lỗi! Tài khoản của bạn đã kích hoạt', extra_tags='alert') return redirect('/') else: if account.code_act_account == code: account.activity_account = True account.save() request.session['user'] = { 'id': account.id, 'email': account.email, 'role': role_user_session(account), } messages.success(request, message='Tài khoản của bạn đã kích hoạt!', extra_tags='alert') return redirect('/') else: messages.warning(request, message='Lỗi! Mã code không hợp lệ!!', extra_tags='alert') return redirect('/') except ObjectDoesNotExist: messages.warning(request, message='Lỗi! Tài khoản kích hoạt không tồn tại!', extra_tags='alert') return redirect('/') return def activity_merchant(request, email, code): try: account = Account.objects.get(email=email) if account.activity_merchant == 1: messages.warning(request, message='Lỗi! Tài khoản của bạn đã kích hoạt bán hàng!', extra_tags='alert') return redirect('/') else: if account.code_act_merchant == code: account.activity_merchant = True account.activity_account = True account.save() print(role_user_session(account)) request.session['user'] = { 'id': account.id, 'email': account.email, 'role': role_user_session(account), } service_all = Service.objects.all() for item in service_all: Account_Service.objects.create( account=account, service=item, remain=0, ) admin = Account.objects.filter(is_admin=True).first() Rating.objects.create(customer=admin, merchant=account, num_of_star=3, confirm_bought=False, is_activity=True) messages.success(request, message='Tài khoản của bạn đã kích hoạt!', extra_tags='alert') return redirect('/') else: messages.warning(request, message='Lỗi! Mã code không hợp lệ!!', extra_tags='alert') return redirect('/') except ObjectDoesNotExist: messages.warning(request, message='Lỗi! Tài khoản kích hoạt không tồn tại!', extra_tags='alert') return redirect('/') return def activity_ad(request, email, code): try: account = Account.objects.get(email=email) if account.activity_advertiser == 1: messages.warning(request, message='Lỗi! Tài khoản của bạn đã kích hoạt quảng cáo!', extra_tags='alert') return redirect('/') else: if account.code_act_ads == code: account.activity_advertiser = True account.activity_account = True account.save() print(role_user_session(account)) request.session['user'] = { 'id': account.id, 'email': account.email, 'role': role_user_session(account), } messages.success(request, message='Tài khoản của bạn đã kích hoạt!', extra_tags='alert') return redirect('/') else: messages.warning(request, message='Lỗi! Mã code không hợp lệ!!', extra_tags='alert') return redirect('/') except ObjectDoesNotExist: messages.warning(request, message='Lỗi! Tài khoản kích hoạt không tồn tại!', extra_tags='alert') return redirect('/') return def request_new_password(request, email, code): if Account.objects.filter(email=email).exists() == False: messages.warning(request, message='Lỗi! Tài khoản không hợp lệ!', extra_tags='alert') return redirect('/') account = Account.objects.get(email=email) if account.code_act_account == code: account.activity_account = True account.save() request.session['user'] = { 'id': account.id, 'email': account.email, 'role': role_user_session(account), } return redirect('/customer/profile') else: messages.warning(request, message='Lỗi! Mã code không hợp lệ!!', extra_tags='alert') return redirect('/') # def request_merchant(request): # if check_session(request) == 0: # return redirect('/login') # print(request.session.get('user')) # if 2 in request.session.get('user')['role']: # messages.warning(request, message='You were a merchant!', extra_tags='alert') # return redirect('/') # if request.method == 'POST': # account = Account.objects.get(email=request.session.get('user')['email']) # code = random_code_activity(40) # email = account.email # account.code_act_merchant = code # account.save() # send_mail_register('activity_merchant', email, code) # messages.success(request, message='Request Success! Please check email!', extra_tags='alert') # return redirect('/') # return render(request, 'website/request_merchant.html') #Product - collection - detail def detail_post(request, id_post): if Post_Product.objects.filter(pk=id_post, is_lock=False, is_activity=True).exists() == False: messages.warning(request, message='Tin dang khong ton tai', extra_tags='alert') return redirect('/') post = Post_Product.objects.filter(pk=id_post, is_lock=False, is_activity=True).first() view_old = post.views post.views = view_old + 1 post.save() rating = dict() count_star = Rating.objects.filter(merchant_id=post.creator_id.id).aggregate(Sum('num_of_star'))['num_of_star__sum'] star_5 = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True, num_of_star=5).count() star_4 = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True, num_of_star=4).count() star_3 = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True, num_of_star=3).count() star_2 = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True, num_of_star=2).count() star_1 = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True, num_of_star=1).count() if count_star == None: count_star = 0 count_person = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True).count() if count_person == 0: rating['agv_rating'] = 0 else: rating['agv_rating'] = float(count_star/count_person) if count_person != 0: rating['star_5'] = [star_5, (star_5/count_person) *100] rating['star_4'] = [star_4, (star_4/count_person) *100] rating['star_3'] = [star_3, (star_3/count_person) *100] rating['star_2'] = [star_2, (star_2/count_person) *100] rating['star_1'] = [star_1, (star_1/count_person) *100] list_color = [] for i in range(0, int(count_star/count_person)): list_color.append(1) for j in range(0, 5 - int(count_star/count_person)): list_color.append(0) rating['list_color'] = list_color # rating['star_g'] = 5 - int(count_star/count_person) list_rating = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True).order_by('-pk') for item in list_rating: if item.num_of_star == 1: item.list_color = [1,0,0,0,0] if item.num_of_star == 2: item.list_color = [1,1,0,0,0] if item.num_of_star == 3: item.list_color = [1,1,1,0,0] if item.num_of_star == 4: item.list_color = [1,1,1,1,0] if item.num_of_star == 5: item.list_color = [1,1,1,1,1] rating['list_rating'] = list_rating product_category = Product_Category.objects.filter(product_id=post.product_id.id, archive=False).first() category = product_category.category_id list_poduct_avaliable = Product_Category.objects.filter(archive=False, category_id_id=category.id).values_list('product_id_id') list_post = Post_Product.objects.filter(is_lock=False, is_activity=True, product_id_id__in=list_poduct_avaliable).order_by('-bought')[0:40] list_random = [] count = list_post.count() while len(list_random) < 4: x = randint(0, count - 1) if x not in list_random: list_random.append(x) if len(list_random) == count: break if list_post.count() < 5: posts = list_post else: posts = [list_post[list_random[0]], list_post[list_random[1]], list_post[list_random[2]], list_post[list_random[3]]] # print(posts) array_post = [] for post in posts: dict_post = post.__dict__ count_star = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True).aggregate(Sum('num_of_star'))['num_of_star__sum'] if count_star == None: count_star = 0 count_person = Rating.objects.filter(merchant_id=post.creator_id.id, is_activity=True).count() if count_person == 0: dict_post['rating'] = float(0) else: dict_post['rating'] = float(round(count_star/count_person, 1)) del dict_post['_state'] # if Product.objects.filter(pk=post.id).exists() == True: dict_product = Product.objects.get(pk=post.product_id_id).__dict__ list_price = Link_Type.objects.filter(parent_product=dict_product['id'], product_id__archive=False).values_list('product_id__price') dict_product['range_price'] = [max(list_price)[0], min(list_price)[0]] del dict_product['_state'] image = Product_Image.objects.filter(product_id_id=dict_product['id']).order_by('image_id_id').first() dict_product['image'] = 'http://localhost:8000/product' + image.image_id.image_link.url dict_post['product'] = dict_product array_post.append(dict_post) return render(request,'website/product.html', {'rating': rating, 'array_post': array_post}) def collections(request, id_category): if Category.objects.filter(pk=id_category).exists() == False: messages.warning(request, message='Category khong ton tai', extra_tags='alert') return redirect('/') return render(request,'website/collection.html') def search(request): if 'r' not in request.GET: messages.warning(request, message='Vui lòng nhập từ khóa!', extra_tags='alert') return redirect('/') return render(request, 'website/search.html') def shop(request, id_shop): if Account.objects.filter(pk=id_shop, activity_merchant=True, is_lock=False).exists() == False: messages.warning(request, message='Cửa hàng không tồn tại!', extra_tags='alert') return redirect('/') account = Account.objects.filter(pk=id_shop, activity_merchant=True, is_lock=False).first() rating = dict() count_star = Rating.objects.filter(merchant_id=account.id).aggregate(Sum('num_of_star'))['num_of_star__sum'] star_5 = Rating.objects.filter(merchant_id=account.id, is_activity=True, num_of_star=5).count() star_4 = Rating.objects.filter(merchant_id=account.id, is_activity=True, num_of_star=4).count() star_3 = Rating.objects.filter(merchant_id=account.id, is_activity=True, num_of_star=3).count() star_2 = Rating.objects.filter(merchant_id=account.id, is_activity=True, num_of_star=2).count() star_1 = Rating.objects.filter(merchant_id=account.id, is_activity=True, num_of_star=1).count() if count_star == None: count_star = 0 count_person = Rating.objects.filter(merchant_id=account.id, is_activity=True).count() if count_person == 0: rating['agv_rating'] = 0 else: rating['agv_rating'] = float(count_star/count_person) if count_person != 0: rating['star_5'] = [star_5, (star_5/count_person) *100] rating['star_4'] = [star_4, (star_4/count_person) *100] rating['star_3'] = [star_3, (star_3/count_person) *100] rating['star_2'] = [star_2, (star_2/count_person) *100] rating['star_1'] = [star_1, (star_1/count_person) *100] list_color = [] for i in range(0, int(count_star/count_person)): list_color.append(1) for j in range(0, 5 - int(count_star/count_person)): list_color.append(0) rating['list_color'] = list_color # rating['star_g'] = 5 - int(count_star/count_person) list_rating = Rating.objects.filter(merchant_id=account.id, is_activity=True).order_by('-pk') for item in list_rating: if item.num_of_star == 1: item.list_color = [1,0,0,0,0] if item.num_of_star == 2: item.list_color = [1,1,0,0,0] if item.num_of_star == 3: item.list_color = [1,1,1,0,0] if item.num_of_star == 4: item.list_color = [1,1,1,1,0] if item.num_of_star == 5: item.list_color = [1,1,1,1,1] rating['list_rating'] = list_rating return render(request, 'website/shop.html', {'rating': rating}) def checkout(request): if 'user' in request.session: cart = Cart(request.session) if cart.count == 0: messages.warning(request, message='Bạn chưa có sản phẩm nào trong giỏ hàng', extra_tags='alert') return redirect('/') account = Account.objects.get(pk=request.session.get('user')['id']) return render(request,'website/checkout.html', { 'account': account, }) else: messages.warning(request, message='Vui lòng đăng nhập để thanh toán', extra_tags='alert') return redirect('/') # def profile(request): # return render(request,'website/checkout') def cart(request): if 'user' in request.session: return render(request,'website/cart.html') else: messages.warning(request, message='Vui lòng đăng nhập để mua hàng', extra_tags='alert') return redirect('/') def product(request): return render(request,'website/product.html') ```
{ "source": "JimmiBram/DevitoSync", "score": 3 }
#### File: JimmiBram/DevitoSync/dsFile.py ```python from __future__ import annotations #<-- Makes sure the fromlist method can return a dsFile object. Redundant in Python 4 import os, hashlib class dsFile: def __init__(self, path, new_base_path = ""): self.path = path self.md5 = "" self.basepath = new_base_path def __hash__(self) -> str: return self.md5 def get_relative_path(self) -> str: return self.path.replace(self.basepath, '') def to_list(self) -> list: return [self.path, self.basepath, self.md5] @staticmethod def from_list(data: list) -> dsFile: return_object = dsFile(data[0], data[1]) return_object.md = data[3] return return_object ``` #### File: DevitoSync/utils/io.py ```python import hashlib import json import os import platform from typing import Any, List, Optional from datetime import datetime def read_json(filepath: str) -> List: with open(filepath) as data_file: data = json.load(data_file) return data def write_json(filepath: str, data: Any) -> Any: kwargs = {'indent':4, 'sort_keys':True, 'separators': (",",": "), 'ensure_ascii': False} with open(filepath, "w", encoding="utf8") as outfile: str_ = json.dumps(data, **kwargs) outfile.write(str_) return data def get_creation_datetime(filepath: str) -> Optional[datetime]: """ Get the date that a file was created. Parameters ---------- filepath : str Returns ------- creation_datetime : Optional[datetime] """ if platform.system() == "Windows": return datetime.fromtimestamp(os.path.getctime(filepath)) else: stat = os.stat(filepath) try: return datetime.fromtimestamp(stat.st_birthtime) except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. return None def get_modification_datetime(filepath: str) -> datetime: """ Get the datetime that a file was last modified. Parameters ---------- filepath : str Returns ------- modification_datetime : datetime """ import tzlocal timezone = tzlocal.get_localzone() mtime = datetime.fromtimestamp(os.path.getmtime(filepath)) return mtime.replace(tzinfo=timezone) def md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() ```
{ "source": "Jimmie00x0000/DailyTools", "score": 3 }
#### File: DailyTools/python/ply_normalization.py ```python from plyfile import PlyData, PlyElement import math import numpy as np def _bounding_box(data): x_min, y_min, z_min = math.inf, math.inf, math.inf x_max, y_max, z_max = - math.inf, - math.inf, - math.inf xs = data['x'] ys = data['y'] zs = data['z'] for x in xs: x_min = min((x_min, x)) x_max = max((x_max, x)) for y in ys: y_min = min((y_min, y)) y_max = max((y_max, y)) for z in zs: z_min = min((z_min, z)) z_max = max((z_max, z)) return x_min, x_max, y_min, y_max, z_min, z_max def _normalize_impl(bbox, vertex_data): largest_length = max((bbox[1] - bbox[0], bbox[3] - bbox[2], bbox[5] - bbox[4])) ratio = largest_length / 1.0 vertex_data = vertex_data.tolist() for i in range(len(vertex_data)): xyz = vertex_data[i] new_xyz = (xyz[0] / ratio, xyz[1] / ratio, xyz[2] / ratio) vertex_data[i] = new_xyz pass return np.array(vertex_data, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')]) def normalize(file_name): ply_data = PlyData.read(file_name) for element in ply_data.elements: if element.name == 'vertex' or element.name == 'vertices': vertex_data = element.data bbox = _bounding_box(vertex_data) new_vertex_data = _normalize_impl(bbox, vertex_data) _write_ply(file_name[:-4] + '.n.ply', new_vertex_data) pass pass pass def _write_ply(file_name, vertex_data): vertex_ele = PlyElement.describe(vertex_data, 'vertex') PlyData([vertex_ele], text=True).write(file_name) pass if __name__ == '__main__': # normalize('simple.ply') pass ```
{ "source": "jimmiebtlr/stable-baselines", "score": 3 }
#### File: stable_baselines/acktr/utils.py ```python import tensorflow as tf def dense(input_tensor, size, name, weight_init=None, bias_init=0, weight_loss_dict=None, reuse=None): """ A dense Layer :param input_tensor: ([TensorFlow Tensor]) input :param size: (int) number of hidden neurons :param name: (str) layer name :param weight_init: (function or int or float) initialize the weight :param bias_init: (function or int or float) initialize the weight :param weight_loss_dict: (dict) store the weight loss if not None :param reuse: (bool) if can be reused :return: ([TensorFlow Tensor]) the output of the dense Layer """ with tf.variable_scope(name, reuse=reuse): assert len(tf.get_variable_scope().name.split('/')) == 2 weight = tf.get_variable("w", [input_tensor.get_shape()[1], size], initializer=weight_init) bias = tf.get_variable("b", [size], initializer=tf.constant_initializer(bias_init)) weight_decay_fc = 3e-4 if weight_loss_dict is not None: weight_decay = tf.multiply(tf.nn.l2_loss(weight), weight_decay_fc, name='weight_decay_loss') weight_loss_dict[weight] = weight_decay_fc weight_loss_dict[bias] = 0.0 tf.add_to_collection(tf.get_variable_scope().name.split('/')[0] + '_' + 'losses', weight_decay) return tf.nn.bias_add(tf.matmul(input_tensor, weight), bias) def kl_div(action_dist1, action_dist2, action_size): """ Kullback-Leibler divergence :param action_dist1: ([TensorFlow Tensor]) action distribution 1 :param action_dist2: ([TensorFlow Tensor]) action distribution 2 :param action_size: (int) the shape of an action :return: (float) Kullback-Leibler divergence """ mean1, std1 = action_dist1[:, :action_size], action_dist1[:, action_size:] mean2, std2 = action_dist2[:, :action_size], action_dist2[:, action_size:] numerator = tf.square(mean1 - mean2) + tf.square(std1) - tf.square(std2) denominator = 2 * tf.square(std2) + 1e-8 return tf.reduce_sum( numerator / denominator + tf.log(std2) - tf.log(std1), reduction_indices=-1) ``` #### File: stable-baselines/tests/test_identity.py ```python import pytest import numpy as np from stable_baselines import A2C, ACER, ACKTR, DQN, DDPG, SAC, PPO1, PPO2, TD3, TRPO from stable_baselines.ddpg import NormalActionNoise from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.common import set_global_seeds # Hyperparameters for learning identity for each RL model LEARN_FUNC_DICT = { 'a2c': lambda e: A2C(policy="MlpPolicy", learning_rate=1e-3, n_steps=1, gamma=0.7, env=e).learn(total_timesteps=10000, seed=0), 'acer': lambda e: ACER(policy="MlpPolicy", env=e, n_steps=1, replay_ratio=1).learn(total_timesteps=15000, seed=0), 'acktr': lambda e: ACKTR(policy="MlpPolicy", env=e, learning_rate=5e-4, n_steps=1).learn(total_timesteps=20000, seed=0), 'dqn': lambda e: DQN(policy="MlpPolicy", batch_size=16, gamma=0.1, exploration_fraction=0.001, env=e).learn(total_timesteps=40000, seed=0), 'ppo1': lambda e: PPO1(policy="MlpPolicy", env=e, lam=0.5, optim_batchsize=16, optim_stepsize=1e-3).learn(total_timesteps=15000, seed=0), 'ppo2': lambda e: PPO2(policy="MlpPolicy", env=e, learning_rate=1.5e-3, lam=0.8).learn(total_timesteps=20000, seed=0), 'trpo': lambda e: TRPO(policy="MlpPolicy", env=e, max_kl=0.05, lam=0.7).learn(total_timesteps=10000, seed=0), } @pytest.mark.slow @pytest.mark.parametrize("model_name", ['a2c', 'acer', 'acktr', 'dqn', 'ppo1', 'ppo2', 'trpo']) def test_identity(model_name): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) :param model_name: (str) Name of the RL model """ env = DummyVecEnv([lambda: IdentityEnv(10)]) model = LEARN_FUNC_DICT[model_name](env) n_trials = 1000 reward_sum = 0 set_global_seeds(0) obs = env.reset() for _ in range(n_trials): action, _ = model.predict(obs) obs, reward, _, _ = env.step(action) reward_sum += reward assert model.action_probability(obs).shape == (1, 10), "Error: action_probability not returning correct shape" action = env.action_space.sample() action_prob = model.action_probability(obs, actions=action) assert np.prod(action_prob.shape) == 1, "Error: not scalar probability" action_logprob = model.action_probability(obs, actions=action, logp=True) assert np.allclose(action_prob, np.exp(action_logprob)), (action_prob, action_logprob) assert reward_sum > 0.9 * n_trials # Free memory del model, env @pytest.mark.slow @pytest.mark.parametrize("model_class", [DDPG, TD3, SAC]) def test_identity_continuous(model_class): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) """ env = DummyVecEnv([lambda: IdentityEnvBox(eps=0.5)]) if model_class in [DDPG, TD3]: n_actions = 1 action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions)) else: action_noise = None model = model_class("MlpPolicy", env, gamma=0.1, action_noise=action_noise, buffer_size=int(1e6)) model.learn(total_timesteps=20000, seed=0) n_trials = 1000 reward_sum = 0 set_global_seeds(0) obs = env.reset() for _ in range(n_trials): action, _ = model.predict(obs) obs, reward, _, _ = env.step(action) reward_sum += reward assert reward_sum > 0.9 * n_trials # Free memory del model, env ```
{ "source": "jimmiemunyi/Sign-Language-App", "score": 3 }
#### File: jimmiemunyi/Sign-Language-App/webcam_inference.py ```python from collections import deque, Counter import cv2 from fastai.vision.all import * print('Loading our Inference model...') # load our inference model inf_model = load_learner('model/sign_language.pkl') print('Model Loaded') # define a deque to get rolling average of predictions # I go with the last 10 predictions rolling_predictions = deque([], maxlen=10) # get the most common item in the deque def most_common(D): data = Counter(D) return data.most_common(1)[0][0] def hand_area(img): # specify where hand should go hand = img[50:324, 50:324] # the images in the model were trainind on 200x200 pixels hand = cv2.resize(hand, (200,200)) return hand # capture video on the webcam cap = cv2.VideoCapture(0) # get the dimensions on the frame frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) # define codec and create our VideoWriter to save the video # fourcc = cv2.VideoWriter_fourcc(*'mp4v') # out = cv2.VideoWriter('output/sign-language.mp4', fourcc, 12, (frame_width, frame_height)) # read video while True: # capture each frame of the video _, frame = cap.read() # flip frame to feel more 'natural' to webcam frame = cv2.flip(frame, flipCode = 1) # draw a blue rectangle where to place hand cv2.rectangle(frame, (50, 50), (324, 324), (255, 0, 0), 2) # get the image inference_image = hand_area(frame) # get the current prediction on the hand pred = inf_model.predict(inference_image) # append the current prediction to our rolling predictions rolling_predictions.append(pred[0]) # our prediction is going to be the most common letter # in our rolling predictions prediction_output = f'The predicted letter is {most_common(rolling_predictions)}' # show predicted text cv2.putText(frame, prediction_output, (10, 350), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) # show the frame cv2.imshow('frame', frame) # save the frames to out file # out.write(frame) # press `q` to exit if cv2.waitKey(1) & 0xFF == ord('q'): break # release VideoCapture() cap.release() # release out file # out.release() # close all frames and video windows cv2.destroyAllWindows() ```
{ "source": "jimmingcheng/google_nest_client", "score": 3 }
#### File: google_nest_client/google_nest_client/client.py ```python from google_nest_client.api_client import GoogleNestAPIClient from google_nest_client.camera import Camera from google_nest_client.thermostat import Thermostat class GoogleNestClient(GoogleNestAPIClient): def get_cameras(self): return [ Camera(self, device) for device in self.get_devices_by_type('sdm.devices.types.CAMERA') ] def get_thermostats(self): return [ Thermostat(self, device) for device in self.get_devices_by_type('sdm.devices.types.THERMOSTAT') ] def get_camera(self, device_id): return Camera(self, self.get_device(device_id)) def get_thermostat(self, device_id=None): if device_id: return Thermostat(self, self.get_device(device_id)) else: device_dicts = self.get_devices_by_type('sdm.devices.types.THERMOSTAT') return Thermostat(self, device_dicts[0]) def get_camera_by_label(self, label): matched_devices = self.get_devices_by_type_and_label( 'sdm.devices.types.CAMERA', label, ) if matched_devices: return Camera(self, matched_devices[0]) else: return None def get_thermostat_by_label(self, label='Thermostat'): matched_devices = self.get_devices_by_type_and_label( 'sdm.devices.types.THERMOSTAT', label, ) if matched_devices: return Thermostat(self, matched_devices[0]) else: return None ``` #### File: google_nest_client/google_nest_client/thermostat.py ```python from google_nest_client.device import Device class Thermostat(Device): def get_hvac_status(self): return self.get_trait('ThermostatHvac')['status'] def get_mode(self): return self.get_trait('ThermostatMode')['mode'] def get_ambient_temperature(self): deg_c = self.get_trait('Temperature')['ambientTemperatureCelsius'] return celsius_to_farenheit(deg_c) def get_heating_temperature(self): deg_c = self.get_trait('ThermostatTemperatureSetpoint')['heatCelsius'] return celsius_to_farenheit(deg_c) def get_ambient_humidity(self): return self.get_trait('Humidity')['ambientHumidityPercent'] def set_heat(self, deg_f): self.api_client.execute_command( self.device_id, 'sdm.devices.commands.ThermostatTemperatureSetpoint.SetHeat', {'heatCelsius': farenheit_to_celsius(deg_f)}, ) def farenheit_to_celsius(f): return (f - 32) * 5 / 9 def celsius_to_farenheit(c): return c * 9 / 5 + 32 ```
{ "source": "jim-minter/rp", "score": 2 }
#### File: aro/azext_aro/_aad.py ```python import datetime import uuid from azure.cli.core._profile import Profile from azure.cli.core.commands.client_factory import configure_common_settings from azure.graphrbac import GraphRbacManagementClient from azure.graphrbac.models import ApplicationCreateParameters from azure.graphrbac.models import PasswordCredential from azure.graphrbac.models import ServicePrincipalCreateParameters class AADManager(object): MANAGED_APP_PREFIX = "https://az.aro.azure.com/" def __init__(self, cli_ctx): profile = Profile(cli_ctx=cli_ctx) credentials, _, tenant_id = profile.get_login_credentials( resource=cli_ctx.cloud.endpoints.active_directory_graph_resource_id) self.client = GraphRbacManagementClient( credentials, tenant_id, base_url=cli_ctx.cloud.endpoints.active_directory_graph_resource_id) configure_common_settings(cli_ctx, self.client) def createManagedApplication(self, display_name): password = <PASSWORD>() try: end_date = datetime.datetime(2299, 12, 31, tzinfo=datetime.timezone.utc) except AttributeError: end_date = datetime.datetime(2299, 12, 31) app = self.client.applications.create(ApplicationCreateParameters( display_name=display_name, identifier_uris=[ self.MANAGED_APP_PREFIX + str(uuid.uuid4()), ], password_credentials=[ PasswordCredential( end_date=end_date, value=password, ), ], )) return app, password def getApplication(self, app_id): apps = list(self.client.applications.list( filter="appId eq '%s'" % app_id)) if apps: return apps[0] return None def deleteManagedApplication(self, app_id): app = self.getApplication(app_id) if app and app.identifier_uris and app.identifier_uris[0].startswith(self.MANAGED_APP_PREFIX): self.client.applications.delete(app.object_id) def getServicePrincipal(self, app_id): sps = list(self.client.service_principals.list( filter="appId eq '%s'" % app_id)) if sps: return sps[0] return None def createServicePrincipal(self, app_id): return self.client.service_principals.create(ServicePrincipalCreateParameters( app_id=app_id, )) ```
{ "source": "jimmo/cpld-cpu", "score": 2 }
#### File: pysim/cpu_a_14/asm.py ```python import collections from lark import Lark, UnexpectedInput l = Lark(open("cpu_a_14/asm.g").read(), parser="earley", lexer="auto") class AssemblerTransformer: def __init__(self, assembler): self.assembler = assembler def transform(self, ast): for statement in ast.children: if statement.data == "statement": statement = statement.children[0] if statement.data == "cmd": self.cmd(statement.children) elif statement.data == "op": self.op(statement.children) else: raise ValueError("Unknown statment", statement) def parse_number(self, token): if token.type != "NUMBER": raise ValueError(f'Invalid number token type {token.type} "{token}"') if token.startswith("0x"): return int(token, 16) if token.startswith("0o"): return int(token, 8) return int(token, 10) def cmd(self, m): print(" ".join(x.value for x in m)) if m[0].type == "CMD_ORG": self.assembler.org(self.parse_number(m[1])) else: raise ValueError(f"Unknown command: {m}") def op(self, m): if m[0].type == "LABEL": print(m[0] + ":") self.assembler.label(self.assembler.create_label(m[0])) m = m[1:] print(" ".join(x.value for x in m)) if m[0].type == "OP_DCB": self.assembler.dcb(self.parse_number(m[1])) return label = None if len(m) == 2: if m[1].type == "NUMBER": label = self.assembler.const(self.parse_number(m[1])) else: label = self.assembler.create_label(m[1]) if m[0].type == "OP_NOR": self.assembler.nor(label) elif m[0].type == "OP_ADD": self.assembler.add(label) elif m[0].type == "OP_STA": self.assembler.sta(label) elif m[0].type == "OP_CLR": self.assembler.nor(self.assembler.create_label("allone")) elif m[0].type == "OP_LDA": self.assembler.lda(label) elif m[0].type == "OP_NOT": self.assembler.nor(self.assembler.create_label("zero")) elif m[0].type == "OP_SUB": self.assembler.nor(self.assembler.create_label("zero")) self.assembler.add(label) self.assembler.nor(self.assembler.create_label("zero")) elif m[0].type == "OP_JCC": self.assembler.jcc(label) elif m[0].type == "OP_JMP": self.assembler.jcc(label) self.assembler.jcc(label) elif m[0].type == "OP_JCS": self.assembler.jcs(label) elif m[0].type == "OP_HLT": self.assembler.hlt() elif m[0].type == "OP_OUT": self.assembler.sta(self.assembler.create_label("display")) self.assembler.lda(self.assembler.create_label("trigger")) self.assembler.nor(self.assembler.create_label("one")) self.assembler.sta(self.assembler.create_label("trigger")) self.assembler.lda(self.assembler.create_label("display")) else: raise ValueError(f"Unknown op: {m}") class Assembler: PREFIX_NOR = 0b00000000_00000000 PREFIX_ADD = 0b01000000_00000000 PREFIX_STA = 0b10000000_00000000 PREFIX_JCC = 0b11000000_00000000 def __init__(self, data, addr): print(len(data)) self._data = data self._offset = 0 self._labels = collections.defaultdict(Assembler.Label) self._indent = 0 self._consts = {} self._nreserved = 0 def log(self, s): print(" 0x{:04x}: {}{}".format(self._offset, " " * self._indent, s)) def create_label(self, name): l = self._labels[name] l._name = name return l class Label: def __init__(self): self._offset = None self._name = None self._fixups = [] self._register = False def addr(self): return self._offset def write_instr(self, instr): self._data[self._offset] = instr >> 8 self._data[self._offset + 1] = instr & 0xFF self._offset += 2 def write_byte(self, b): self._data[self._offset] = b & 0xFF self._offset += 1 def __enter__(self): self.reserve("one", 1, register=True) self.reserve("allone", 0xFF, register=True) self.reserve("zero", 0, register=True) self.reserve("trigger", 0, register=True) self.reserve("display", 0, register=True) self.reserve("page1", 0, register=True) self.reserve("page0", 0, register=True) self.reserve("_tmp1", 0, register=True) self.reserve("_tmp2", 0, register=True) self.reserve("_sp", 0, register=True) self.reserve("_stack", [0] * 32, register=True) return self def __exit__(self, a, b, c): for l in self._labels.values(): if l._offset is None: raise ValueError(f'Undefined label "{l._name}"') for offset in l._fixups: addr = l.addr() self._data[offset] |= (addr >> 8) & 0x3F self._data[offset + 1] |= addr & 0xFF def org(self, addr): self._offset = addr def const(self, value): if value in self._consts: return self._consts[value] name = "_const_{}".format(value) l = self.create_label(name) self.reserve(name, value) self._consts[value] = l return l def reserve(self, name, value, register=False): if isinstance(value, int): value = [value] prev_offset = self._offset self._offset = 2 ** 14 - len(value) - self._nreserved self._nreserved += len(value) self.label(self.create_label(name), register) offset = self._offset for x in value: self.dcb(x) self._offset = prev_offset return offset def label(self, l, register=False): self.log(' label "{}" at 0x{:04x}'.format(l._name, self._offset)) if l._offset is not None: raise ValueError(f"Label redefinition: {l._name}") l._offset = self._offset l._register = register l1 = self.create_label(l._name + "_") l1._offset = self._offset + 1 def placeholder(self, label): label._fixups.append(self._offset) def nor(self, label): self.log(" nor {}".format(label._name)) self.placeholder(label) self.write_instr(Assembler.PREFIX_NOR) def add(self, label): self.log(" add {}".format(label._name)) self.placeholder(label) self.write_instr(Assembler.PREFIX_ADD) def sta(self, label): self.log(" sta {}".format(label._name)) self.placeholder(label) self.write_instr(Assembler.PREFIX_STA) def lda(self, label): self.log(" lda {}".format(label._name)) self._indent += 1 self.nor(self.create_label("allone")) self.add(label) self._indent -= 1 def jcc(self, label): self.log(" jcc {}".format(label._name)) self.placeholder(label) self.write_instr(Assembler.PREFIX_JCC) def jcs(self, label): self.log(" jcs {}".format(label._name)) self.write_instr(Assembler.PREFIX_JCC | (self._offset + 4)) self._indent += 1 self.jcc(label) self._indent -= 1 def hlt(self): self.log(" hlt") self.write_instr(Assembler.PREFIX_JCC | self._offset) self.write_instr(Assembler.PREFIX_JCC | self._offset) def dcb(self, v): self.log(" dcb 0x{:02x}".format(v)) self.write_byte(v) def parse(self, path): with open(path) as f: contents = f.read() try: ast = l.parse(contents) except UnexpectedInput as e: self.log(f"{path}:{e.line}:{e.column}: unexpected input.") self.log(" " + contents.split("\n")[e.line - 1]) self.log(" " + " " * e.column + "^") return False AssemblerTransformer(self).transform(ast) return True ``` #### File: pysim/cpu_ah_16/zz.py ```python import collections import sys from lark import Lark, Transformer, Tree, UnexpectedInput from asm import Assembler l = Lark(open("cpu_ah_16/zz.g").read()) class Variable: def __init__(self, name, addr, typename): self.name = name self.addr = addr self.signed = typename[0] == "i" self.size = 1 if typename[1:] == "8" else 2 def desc(self): return ( ("" if self.signed else "u") + "int" + str(self.size * 8) + " " + self.name ) class CompilerTransformer(Transformer): def __init__(self): self.vars = {} self.next_var = 0 self.call_n = 0 # Init call stack pointer. print(f" load c:d, 0xffef") print(f" load a, 0") print(f" wmem c:d, a") def var(self, n): if n not in self.vars: raise ValueError(f'Unknown variable "{n}".') return self.vars[n] def format_expr(self, expr): if isinstance(expr, Tree): if expr.data == "bin_op": return ( "(" + self.format_expr(expr.children[0]) + expr.children[1] + self.format_expr(expr.children[2]) + ")" ) raise ValueError(f"unknown expr type {expr.data}") else: if expr.type == "NUMBER": return expr elif expr.type == "ID": v = self.var(expr) return v.name else: raise ValueError(f"unknown token type {expr.type}") ALU_OPS = { "+": "add", "-": "sub", "&": "and", "|": "or", "^": "xor", } def number(self, token): if token.type != "NUMBER": raise ValueError(f'Invalid number token type {token.type} "{token}"') if token.startswith("0x"): return int(token, 16) if token.startswith("0o"): return int(token, 8) return int(token, 10) def eval(self, expr, n=0): if isinstance(expr, Tree): if expr.data == "bin_op": self.eval(expr.children[2]) print(f" # save {self.format_expr(expr.children[2])}") print(f" load c:d, 0x{0xffff-n:04x}") print(f" wmem c:d, a") self.eval(expr.children[0], n + 1) print(f" # restore {self.format_expr(expr.children[2])}") print(f" load c:d, 0x{0xffff-n:04x}") print(f" rmem b, c:d") op = CompilerTransformer.ALU_OPS[expr.children[1]] print(f" # {expr.children[1]}") print(f" {op} a") else: raise ValueError(f"unknown expr type {expr.data}") else: if expr.type == "NUMBER": print(f" # {expr}") v = self.number(expr) print(f" load a, 0x{v:x}") elif expr.type == "ID": v = self.var(expr) if v.size != 1: raise ValueError("Must be 8-bit variable") print(f" # {v.name}") print(f" load c:d, 0x{v.addr:04x}") print(f" rmem a, c:d") else: raise ValueError(f"unknown token type {expr.type}") def eval16(self, expr, n=0): if isinstance(expr, Tree): if expr.data == "bin_op": self.eval16(expr.children[2]) # TODO print(f" mov a, b") print(f" # save {self.format_expr(expr.children[2])}") print(f" load c:d, 0x{0xffff-n:04x}") print(f" wmem c:d, a") self.eval16(expr.children[0], n + 1) # TODO print(f" mov a, b") print(f" # restore {self.format_expr(expr.children[2])}") print(f" load c:d, 0x{0xffff-n:04x}") print(f" rmem b, c:d") op = CompilerTransformer.ALU_OPS[expr.children[1]] print(f" # {expr.children[1]}") print(f" {op} a") # TODO print(f" mov b, a") print(f" load a, 0") else: raise ValueError(f"unknown expr type {expr.data}") else: if expr.type == "NUMBER": print(f" # {expr} (16-bit)") v = self.number(expr) print(f" load a:b, 0x{v:x}") elif expr.type == "ID": v = self.var(expr) if v.size != 2: raise ValueError("Must be 16-bit variable") print(f" # {v.name} (16-bit)") print(f" load c:d, 0x{v.addr:04x}") print(f" rmem a, c:d") print(f" mov b, a") print(f" mov a, d") print(f" inc a") print(f" mov d, a") print(f" rmem b, c:d") else: raise ValueError(f"unknown token type {expr.type}") def new_assign(self, m): if m[1] in self.vars: raise ValueError(f"Redefinition of {m[1]}") v = Variable(m[1], self.next_var, m[0]) self.vars[m[1]] = v self.next_var += v.size self.assign(m[1:]) def assign(self, m): v = self.var(m[0]) print(f" # {v.name} = {self.format_expr(m[1])}") if v.size == 1: self.eval(m[1]) print(f" load c:d, 0x{v.addr:04x}") print(f" wmem c:d, a") elif v.size == 2: self.eval16(m[1]) print(f" load c:d, 0x{v.addr:04x}") print(f" wmem c:d, a") print(f" mov a, d") print(f" inc a") print(f" mov d, a") print(f" wmem c:d, b") else: raise ValueError("Only 8- and 16- bit values supported.") print() def deref_assign(self, m): v = self.var(m[0][1:-1]) if v.size != 2 or v.signed: raise ValueError(f"Can only dereference u16 type variables ({v.desc()}).") print(f" # [{v.name}] = {self.format_expr(m[1])}") print(f" load c:d, 0x{v.addr:04x}") print(" rmem e, c:d") print(" mov a, d") print(" inc a") print(" mov d, a") print(" rmem f, c:d") print(" mov g:h, e:f") self.eval(m[1]) print(" wmem g:h, a") print() def hlt(self, m): print(" hlt") print() JUMP_TYPES = { "==": "je", "!=": "jne", ">": "jxx", "<": "jn", ">=": "jp", "<=": "jxx", } def goto(self, m): if len(m) == 1: print(f" # goto {m[0]}") print(f" load c:d, {m[0]}") print(f" jmp c:d") else: print(f" # if {m[0]} {m[1]} {m[2]} goto {m[3]}") self.eval(m[2]) print(" mov g, a") self.eval(m[0]) print(" mov b, g") print(" cmp") print(f" load c:d, {m[3]}") jmp = CompilerTransformer.JUMP_TYPES[m[1]] print(f" {jmp} c:d") print() def label(self, m): print(m[0] + ":") def call(self, m): n = f"_call_{self.call_n}" self.call_n += 1 print(f" # call {m[0]}") # Point c:d at the next location print(f" load c:d, 0xffef") print(f" rmem b, c:d") print(f" load a, 0xed") print(f" sub a") print(f" mov d, a") # Stash this label in c:d print(f" load a:b, {n}") print(f" wmem c:d, a") print(f" mov a, d") print(f" inc a") print(f" mov d, a") print(f" wmem c:d, b") # Update stack pointer print(f" load c:d, 0xffef") print(f" rmem a, c:d") print(f" load b, 2") print(f" add a") print(f" wmem c:d, a") # Jump to call target print(f" load c:d, {m[0]}") print(f" jmp c:d") print(f"{n}:") print() def ret(self, m): print(f" # ret") # Point c:d at the current location print(f" load c:d, 0xffef") print(f" rmem b, c:d") print(f" load a, 0xef") print(f" sub a") print(f" mov d, a") # Get return target print(f" rmem b, c:d") print(f" mov a, d") print(f" inc a") print(f" mov d, a") print(f" mov a, b") print(f" rmem b, c:d") print(f" mov g:h, a:b") # Update stack pointer print(f" load c:d, 0xffef") print(f" rmem a, c:d") print(f" load b, 2") print(f" sub a") print(f" wmem c:d, a") # Jump to target print(f" jmp g:h") print() class Compiler: def parse(self, path): with open(path) as f: contents = f.read() try: ast = l.parse(contents) except UnexpectedInput as e: print(f"{path}:{e.line}:{e.column}: unexpected input.") print(" " + contents.split("\n")[e.line - 1]) print(" " + " " * e.column + "^") return False CompilerTransformer().transform(ast) return True Compiler().parse(sys.argv[1]) ``` #### File: pysim/cpu_ax_13/cpu-combined.py ```python import sys from sim import ( Component, Signal, NotifySignal, Net, Register, SplitRegister, BusConnect, Clock, Ram, Rom, Power, MemDisplay, PagedRamController, ) from .asm import Assembler class Decoder(Component): MASK_OP = 0b011 MASK_REG = 0b100 OP_NOR = 0b000 OP_ADD = 0b001 OP_ST = 0b010 OP_J = 0b011 REG_A = 0b000 REG_X = 0b100 def __init__(self): super().__init__("decoder") self.clk = NotifySignal(self, "clk", 1) self.addr = Signal(self, "addr", 13) self.data = Signal(self, "data", 8) self.we = Signal(self, "we", 1) self.oe = Signal(self, "oe", 1) self.acc = 0 self.x = 0 self.adreg = 0 self.hi5 = 0 self.pc = 0 self.state = 0 self.op = 0 def reset(self): self.addr <<= 0 self.data <<= None self.oe <<= 1 self.we <<= 0 def update(self, signal): if self.clk.had_edge(0, 1): # print('clock {}'.format(self.state)) if self.state == 0: self.pc = self.adreg + 2 self.adreg = self.adreg + 1 self.op = (self.data.value() >> 5) & 0b111 self.hi5 = self.data.value() & 0x1F elif self.state == 1: self.adreg = (self.hi5 << 8) | self.data.value() elif self.state == 2: self.adreg = self.pc # ALU / Data Path if self.op == Decoder.REG_A | Decoder.OP_ADD: # print(' add a {} + {}'.format(self.acc, self.data.value())) self.acc = ((self.acc & 0xFF) + self.data.value()) & 0x1FF # print(' = {}'.format(self.acc)) elif self.op == Decoder.REG_A | Decoder.OP_NOR: # print(' nor a {} + {}'.format(self.acc, self.data.value())) carry = self.acc & 0b100000000 value = self.acc & 0xFF nor = (~(value | self.data.value())) & 0xFF self.acc = carry | nor # print(' = {}'.format(self.acc)) elif self.op == Decoder.REG_X | Decoder.OP_ADD: # print(' add x {} + {}'.format(self.x, self.data.value())) self.x = ((self.x & 0xFF) + self.data.value()) & 0x1FF elif self.op == Decoder.REG_X | Decoder.OP_NOR: # print(' nor x {} + {}'.format(self.x, self.data.value())) carry = self.x & 0b100000000 value = self.x & 0xFF nor = (~(value | self.data.value())) & 0xFF self.x = carry | nor elif (self.op & Decoder.MASK_OP) == Decoder.OP_J: # Clear carry on all non-taken jumps. # print(' j not taken') self.acc = self.acc & 0xFF elif (self.op & Decoder.MASK_OP) == Decoder.OP_ST: # print(' sta / stx') pass else: print(" unknown op") else: print("unknown state") # State machine if self.state == 0: # print('get next byte') self.state = 1 elif self.state == 2: self.state = 0 elif self.state == 1: if (self.op & Decoder.MASK_OP) == Decoder.OP_J: # print(' maybe jump {} {}'.format(self.acc >> 8, self.acc)) if self.op & Decoder.MASK_REG == Decoder.REG_A and ( self.acc & 0b100000000 ): # print(' jcc not taken') self.state = 2 elif ( self.op & Decoder.MASK_REG == Decoder.REG_X and (self.acc & 0xFF) == 0 ): # print(' jnz not taken') self.state = 2 else: # print(' branch taken') self.state = 0 else: self.state = 2 # print(' going to state={} op={:03b}'.format(self.state, self.op)) if self.op & Decoder.MASK_REG == 0: # print('offset by x', self.x) self.adreg += self.x else: print("unknown state") clk = self.clk.value() # print('addr: {:04x}'.format(self.adreg & 0x1fff)) self.addr <<= self.adreg & 0x1FFF if self.state == 2 and self.op == Decoder.REG_A | Decoder.OP_ST: self.data <<= self.acc & 0xFF elif self.state == 2 and self.op == Decoder.REG_X | Decoder.OP_ST: self.data <<= self.x & 0xFF else: self.data <<= None if clk == 1: self.oe <<= 0 self.we <<= 0 else: if self.state == 2 and (self.op & Decoder.MASK_OP) == Decoder.OP_ST: self.oe <<= 0 else: self.oe <<= 1 if self.state == 2 and (self.op & Decoder.MASK_OP) == Decoder.OP_ST: self.we <<= 1 else: self.we <<= 0 def main(): dec = Decoder() ram = Ram(addr_width=20) paged_ram = PagedRamController( addr_width=13, num_pages=2, reg_base_addr=2 ** 12 - 7 ) out = MemDisplay(addr_width=12, data_addr=2 ** 12 - 5, trigger_addr=2 ** 12 - 4) clk = Clock(1) dec.clk += clk.clk paged_ram.in_addr[0:12] += ram.addr[0:12] + dec.addr[0:12] + out.addr paged_ram.in_addr[12] += dec.addr[12] ram.addr[12:20] += paged_ram.out_addr ram.data += dec.data + out.data + paged_ram.data ram.oe += dec.oe ram.we += dec.we + out.we + paged_ram.we print("Loading RAM...") n = 0 with Assembler(ram.ram, 0) as asm: if not asm.parse(sys.argv[1]): return ram.stdout() for c in (dec, ram, paged_ram, clk): c.info() c.reset() last_pc = None cycles = 0 hlt = 0 try: while True: clk.tick() cycles += 1 if dec.pc == last_pc: hlt += 1 else: hlt = 0 last_pc = dec.pc if hlt > 10: # or cycles > 60: break except KeyboardInterrupt: pass print(f"Ran for {cycles} cycles and {Net.net_updates} net updates.") ram.stdout() if __name__ == "__main__": main() ``` #### File: pysim/cpu_ax_5/asm.py ```python import collections from lark import Lark, UnexpectedInput l = Lark(open("cpu_ax_5/asm.g").read(), parser="earley", lexer="auto") class AssemblerTransformer: def __init__(self, assembler): self.assembler = assembler def transform(self, ast): for op in ast.children: self.op(op.children) def parse_number(self, token): if token.type != "NUMBER": raise ValueError(f'Invalid number token type {token.type} "{token}"') if token.startswith("0x"): return int(token, 16) if token.startswith("0o"): return int(token, 8) return int(token, 10) def op(self, m): if m[0].type == "LABEL": self.assembler.label(self.assembler.create_label(m[0])) m = m[1:] if m[0].type == "OP_DCB": self.assembler.dcb(self.parse_number(m[1])) elif m[0].type == "OP_NOR": self.assembler.nor(self.assembler.create_label(m[1])) elif m[0].type == "OP_ADD": self.assembler.add(self.assembler.create_label(m[1])) elif m[0].type == "OP_STA": self.assembler.sta(self.assembler.create_label(m[1])) elif m[0].type == "OP_CLR": self.assembler.nor(self.assembler.create_label("allone")) elif m[0].type == "OP_LDA": self.assembler.lda(self.assembler.create_label(m[1])) elif m[0].type == "OP_NOT": self.assembler.nor(self.assembler.create_label("zero")) elif m[0].type == "OP_SUB": self.assembler.nor(self.assembler.create_label("zero")) self.assembler.add(self.assembler.create_label(m[1])) self.assembler.nor(self.assembler.create_label("zero")) elif m[0].type == "OP_NORX": self.assembler.norx(self.assembler.create_label(m[1])) elif m[0].type == "OP_ADDX": self.assembler.addx(self.assembler.create_label(m[1])) elif m[0].type == "OP_STX": self.assembler.stx(self.assembler.create_label(m[1])) elif m[0].type == "OP_CLRX": self.assembler.norx(self.assembler.create_label("allone")) elif m[0].type == "OP_LDX": self.assembler.ldx(self.assembler.create_label(m[1])) elif m[0].type == "OP_NOTX": self.assembler.norx(self.assembler.create_label("zero")) elif m[0].type == "OP_SUBX": self.assembler.norx(self.assembler.create_label("zero")) self.assembler.addx(self.assembler.create_label(m[1])) self.assembler.norx(self.assembler.create_label("zero")) elif m[0].type == "OP_JCC": self.assembler.jcc(self.assembler.create_label(m[1])) elif m[0].type == "OP_JNZ": self.assembler.jnz(self.assembler.create_label(m[1])) elif m[0].type == "OP_JMP": self.assembler.jcc(self.assembler.create_label(m[1])) self.assembler.jcc(self.assembler.create_label(m[1])) elif m[0].type == "OP_JCS": self.assembler.jcs(self.assembler.create_label(m[1])) elif m[0].type == "OP_JZ": self.assembler.jz(self.assembler.create_label(m[1])) elif m[0].type == "OP_HLT": self.assembler.hlt() elif m[0].type == "OP_OUT": self.assembler.sta(self.assembler.create_label("display")) self.assembler.lda(self.assembler.create_label("trigger")) self.assembler.nor(self.assembler.create_label("one")) self.assembler.sta(self.assembler.create_label("trigger")) self.assembler.lda(self.assembler.create_label("display")) else: raise ValueError(f"Unknown op: {m}") class Assembler: PREFIX_NOR = 0b00000000 PREFIX_ADD = 0b00100000 PREFIX_STA = 0b01000000 PREFIX_JCC = 0b01100000 PREFIX_NORX = 0b10000000 PREFIX_ADDX = 0b10100000 PREFIX_STX = 0b11000000 PREFIX_JNZ = 0b11100000 def __init__(self, data, addr): print(len(data)) self.data = data self.addr = addr self.labels = set() self.labels_by_name = collections.defaultdict(Assembler.Label) def create_label(self, name): l = self.labels_by_name[name] l.name = name self.labels.add(l) return l class Label: def __init__(self): self.addr = None self.name = None self.fixups = [] def write(self, instr): self.data[self.addr] = instr self.addr += 1 def __enter__(self): return self def __exit__(self, a, b, c): self.addr = 2 ** 5 - 5 self.label(self.create_label("display")) self.dcb(0) self.label(self.create_label("trigger")) self.dcb(0) self.label(self.create_label("zero")) self.dcb(0) self.label(self.create_label("allone")) self.dcb(0xFF) self.label(self.create_label("one")) self.dcb(1) for l in self.labels: if l.addr is None: raise ValueError(f'Undefined label "{l.name}"') for f in l.fixups: self.data[f] |= l.addr def label(self, l): if l.addr is not None: raise ValueError("Label redefinition") l.addr = self.addr def placeholder(self, label): self.labels.add(label) label.fixups.append(self.addr) def nor(self, label): print("nor {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_NOR) def add(self, label): print("add {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_ADD) def sta(self, label): print("sta {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_STA) def lda(self, label): print(" lda {}".format(label.name)) self.nor(self.create_label("allone")) self.add(label) def norx(self, label): print("norx {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_NORX) def addx(self, label): print("addx {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_ADDX) def stx(self, label): print("stx {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_STX) def ldx(self, label): print(" ldx {}".format(label.name)) self.norx(self.create_label("allone")) self.addx(label) def jcc(self, label): print("jcc {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_JCC) def jcs(self, label): print(" jcs {}".format(label.name)) self.write(Assembler.PREFIX_JCC | (self.addr + 2)) self.jcc(label) def jnz(self, label): print("jnz {}".format(label.name)) self.placeholder(label) self.write(Assembler.PREFIX_JNZ) def jz(self, label): print(" jz {}".format(label.name)) self.write(Assembler.PREFIX_JNZ | (self.addr + 2)) self.jnz(label) def hlt(self): print(" hlt") self.write(Assembler.PREFIX_JCC | self.addr) self.write(Assembler.PREFIX_JCC | self.addr) def dcb(self, v): print("dcb 0x{:02x} (at 0x{:02x})".format(v, self.addr)) self.write(v) def parse(self, path): with open(path) as f: contents = f.read() try: ast = l.parse(contents) except UnexpectedInput as e: print(f"{path}:{e.line}:{e.column}: unexpected input.") print(" " + contents.split("\n")[e.line - 1]) print(" " + " " * e.column + "^") return False AssemblerTransformer(self).transform(ast) return True ```
{ "source": "jimmo/stair-lights", "score": 2 }
#### File: stair-lights/esp8266/boot.py ```python import gc def connect_sta(): import network import config ap_if = network.WLAN(network.AP_IF) ap_if.active(False) sta_if = network.WLAN(network.STA_IF) sta_if.active(True) sta_if.config(dhcp_hostname='stairs') print('Connecting to network...') sta_if.connect(config.WIFI_SSID, config.WIFI_PASSWORD) while not sta_if.isconnected(): pass print('Network config:', sta_if.ifconfig()) connect_sta() import webrepl webrepl.start() gc.collect() ```
{ "source": "jimms/anime-downloader", "score": 3 }
#### File: anime_downloader/sites/erairaws.py ```python from anime_downloader.sites.anime import Anime, AnimeEpisode, SearchResult from anime_downloader.sites import helpers from difflib import get_close_matches import re class EraiRaws(Anime, sitename='erai-raws'): sitename = 'erai-raws' QUALITIES = ['720p', '1080p'] # Bypass DDosGuard def bypass(self): host = "https://erai-raws.info" resp = helpers.get("https://check.ddos-guard.net/check.js").text ddosBypassPath = re.search("'(.*?)'", resp).groups()[0] helpers.get(host + ddosBypassPath) def parse(self, rows, url): episodes = [] if self.quality == self.QUALITIES[0] and len(rows) > 1: rows = rows[::2] elif len(rows) > 1: rows = rows[1::2] for row in rows: if row.parent.get("href")[-3:] != "mkv": if url[-1] != '/': url = url + '/' folder = helpers.get(url + "index.php" + row.parent.get("href")) folder = helpers.soupify(folder) # Append all episodes in folder - folders are also seperated by quality # So everything in a folder can be taken in one go [episodes.append(url + x.parent.get("href")) for x in folder.find("ul", {"id": "directory-listing"}).find_all("div", {"class": "row"})] else: episodes.append(url + row.parent.get("href")) episodes = episodes[1:] if len(rows) == 1: if rows[0].parent.get("href")[-3:] != "mkv": url = f"{url}index.php" if url[:-1] == "/" else f"{url}/index.php" folder = helpers.soupify(helpers.get(url + rows[0].parent.get("href"))) episodes = [url + x.parent.get("href") for x in folder.find("ul", {"id": "directory-listing"}).find_all("div", {"class": "row"})] else: episodes = [url + rows[0].parent["href"]] return episodes @classmethod def search(cls, query): cls.bypass(cls) soup = helpers.soupify(helpers.get("https://erai-raws.info/anime-list/")) result_data = soup.find("div", {"class": "shows-wrapper"}).find_all("a") titles = [x.text.strip() for x in result_data] # Erai-raws doesnt have a search that I could find - so I've opted to implement it myself titles = get_close_matches(query, titles, cutoff=0.2) result_data = [x for x in result_data if x.text.strip() in titles] search_results = [ SearchResult( title=result.text.strip(), url="https://erai-raws.info/anime-list/" + result.get("href") ) for result in result_data ] return search_results def _scrape_episodes(self): self.bypass() soup = helpers.soupify(helpers.get(self.url)) files = soup.find("div", {"class": "ddmega"}).find("a").get("href") if files[-1] != '/': files = files + '/' index = files + "index.php" html = helpers.get(index, headers={"Referer": files}) soup = helpers.soupify(html) rows = soup.find("ul", {"id": "directory-listing"}).find_all("div", {"class": "row"}) episodes = self.parse(rows, files) return episodes def _scrape_metadata(self): soup = helpers.soupify(helpers.get(self.url)) self.title = soup.find("h1").find("span").text class EraiRawsEpisode(AnimeEpisode, sitename='erai-raws'): def _get_sources(self): return [("no_extractor", self.url)] ```
{ "source": "jimm-with-a-j/dt-api", "score": 2 }
#### File: dynatrace/environment_v1/event.py ```python from datetime import datetime from typing import Optional, List from requests import Response from dynatrace.dynatrace_object import DynatraceObject from dynatrace.http_client import HttpClient EVENT_TYPE_AVAILABILITY_EVENT = "AVAILABILITY_EVENT" EVENT_TYPE_CUSTOM_ALERT = "CUSTOM_ALERT" EVENT_TYPE_CUSTOM_ANNOTATION = "CUSTOM_ANNOTATION" EVENT_TYPE_CUSTOM_CONFIGURATION = "CUSTOM_CONFIGURATION" EVENT_TYPE_CUSTOM_DEPLOYMENT = "CUSTOM_DEPLOYMENT" EVENT_TYPE_CUSTOM_INFO = "CUSTOM_INFO" EVENT_TYPE_ERROR_EVENT = "ERROR_EVENT" EVENT_TYPE_MARKED_FOR_TERMINATION = "MARKED_FOR_TERMINATION" EVENT_TYPE_PERFORMANCE_EVENT = "PERFORMANCE_EVENT" EVENT_TYPE_RESOURCE_CONTENTION = "RESOURCE_CONTENTION" class EventService: def __init__(self, http_client: HttpClient): self.__http_client = http_client def create_event( self, event_type: str, entity_id: str, source: str, start: Optional[datetime] = None, end: Optional[datetime] = None, timeout_minutes: Optional[int] = None, annotation_type: Optional[str] = None, annotation_description: Optional[str] = None, description: Optional[str] = None, title: Optional[str] = None, custom_properties: Optional[str] = None, allow_davis_merge: Optional[bool] = None, ) -> Response: attach_rules = PushEventAttachRules(entity_ids=[entity_id], tag_rule=None) return EventCreation( self.__http_client, event_type=event_type, attach_rules=attach_rules, source=source, start=start, end=end, timeout_minutes=timeout_minutes, annotation_type=annotation_type, annotation_description=annotation_description, description=description, title=title, custom_properties=custom_properties, allow_davis_merge=allow_davis_merge, ).post() class EventCreation(DynatraceObject): def __init__( self, http_client, event_type: str, attach_rules: "PushEventAttachRules", source: str, start: Optional[datetime] = None, end: Optional[datetime] = None, timeout_minutes: Optional[int] = None, annotation_type: Optional[str] = None, annotation_description: Optional[str] = None, description: Optional[str] = None, title: Optional[str] = None, custom_properties: Optional[str] = None, allow_davis_merge: Optional[bool] = None, ): raw_element = { "eventType": event_type, "start": int(start.timestamp()) * 1000 if start else None, "end": int(end.timestamp()) * 1000 if start else None, "timeoutMinutes": timeout_minutes, "source": source, "annotationType": annotation_type, "annotationDescription": annotation_description, "attachRules": attach_rules._raw_element, "description": description, "title": title, "customProperties": custom_properties, "allowDavisMerge": allow_davis_merge, } super().__init__(http_client, None, raw_element) def post(self): return self._http_client.make_request(f"/api/v1/events", params=self._raw_element, method="POST") class PushEventAttachRules: def __init__(self, entity_ids: Optional[List[str]], tag_rule: Optional[List["TagMatchRule"]]): self._raw_element = { "entityIds": entity_ids, "tagRule": [t._raw_element for t in tag_rule] if tag_rule else None, } class TagMatchRule: def __init__(self, me_types: List[str], tags: List[str]): self._raw_element = { "meTypes": me_types, "tags": tags, } """ type EventStoreResult struct { StoredEventIds []int `json:"storedEventIds,omitempty"` StoredIds []string `json:"storedIds,omitempty"` StoredCorrelationIds []string `json:"storedCorrelationIds,omitempty"` } """ ``` #### File: dynatrace/environment_v1/synthetic_third_party.py ```python from collections import defaultdict from datetime import datetime from typing import List, Optional, Dict from dynatrace.dynatrace_object import DynatraceObject from dynatrace.http_client import HttpClient SYNTHETIC_EVENT_TYPE_OUTAGE = "testOutage" SYNTHETIC_EVENT_TYPE_SLOWDOWN = "testSlowdown" class ThirdPartySyntheticTestsService: def __init__(self, http_client: HttpClient): self.__http_client = http_client def report_simple_thirdparty_synthetic_test( self, engine_name: str, timestamp: datetime, location_id: str, location_name: str, test_id: str, test_title: str, schedule_interval: int, success: bool, response_time: int, icon_url: str = None, edit_link: str = None, step_title: Optional[str] = None, detailed_steps: Optional[List["SyntheticTestStep"]] = None, detailed_step_results: Optional[List["SyntheticMonitorStepResult"]] = None, ): location = ThirdPartySyntheticLocation(self.__http_client, location_id, location_name) synthetic_location = SyntheticTestLocation(self.__http_client, location_id) if detailed_steps is None: detailed_steps = [SyntheticTestStep(self.__http_client, 1, step_title)] monitor = ThirdPartySyntheticMonitor( self.__http_client, test_id, test_title, [synthetic_location], schedule_interval, steps=detailed_steps, edit_link=edit_link, ) if detailed_step_results is None: detailed_step_results = [SyntheticMonitorStepResult(self.__http_client, 1, timestamp, response_time_millis=response_time)] location_result = ThirdPartySyntheticLocationTestResult(self.__http_client, location_id, timestamp, success, step_results=detailed_step_results) test_result = ThirdPartySyntheticResult(self.__http_client, test_id, len(detailed_steps), [location_result]) tests = ThirdPartySyntheticTests(self.__http_client, engine_name, timestamp, [location], [monitor], [test_result], synthetic_engine_icon_url=icon_url) return tests.post() def create_synthetic_test_step_result(self, step_id: int, timestamp: datetime, response_time: int) -> "SyntheticMonitorStepResult": return SyntheticMonitorStepResult(self.__http_client, step_id, timestamp, response_time_millis=response_time) def create_synthetic_test_step(self, step_id: int, step_title: str) -> "SyntheticTestStep": return SyntheticTestStep(self.__http_client, step_id, step_title) def report_simple_thirdparty_synthetic_test_event( self, test_id: str, name: str, location_id: str, timestamp: datetime, state: str, event_type: str, reason: str, engine_name: str, ): opened_events: List[ThirdPartyEventOpenNotification] = [] resolved_events = [] event_id = f"{test_id}_event" if state == "open": opened_events.append(ThirdPartyEventOpenNotification(self.__http_client, test_id, event_id, name, event_type, reason, timestamp, [location_id])) else: resolved_events.append(ThirdPartyEventResolvedNotification(self.__http_client, test_id, event_id, timestamp)) if opened_events or resolved_events: events = ThirdPartySyntheticEvents(self.__http_client, engine_name, opened_events, resolved_events) return events.post() class ThirdPartySyntheticTests(DynatraceObject): def __init__( self, http_client, synthetic_engine_name: str, message_timestamp: datetime, locations: List["ThirdPartySyntheticLocation"], tests: List["ThirdPartySyntheticMonitor"], test_results: Optional[List["ThirdPartySyntheticResult"]] = None, synthetic_engine_icon_url: Optional[str] = None, ): raw_element = { "syntheticEngineName": synthetic_engine_name, "syntheticEngineIconUrl": synthetic_engine_icon_url, "messageTimestamp": int(message_timestamp.timestamp() * 1000), "locations": [location._raw_element for location in locations], "tests": [test._raw_element for test in tests], "testResults": [test_result._raw_element for test_result in test_results] if test_results else None, } super().__init__(http_client, None, raw_element) def post(self): return self._http_client.make_request(f"/api/v1/synthetic/ext/tests", params=self._raw_element, method="POST") class ThirdPartySyntheticLocation(DynatraceObject): def __init__(self, http_client, location_id: str, name: str, ip: Optional[str] = None): raw_element = {"id": location_id, "name": name, "ip": ip} super().__init__(http_client, None, raw_element) class ThirdPartySyntheticMonitor(DynatraceObject): def __init__( self, http_client, test_id: str, title: str, locations: List["SyntheticTestLocation"], schedule_interval_in_seconds: int, description: Optional[str] = None, test_setup: Optional[str] = None, expiration_timestamp: Optional[int] = None, drilldown_link: Optional[str] = None, edit_link: Optional[str] = None, deleted: Optional[bool] = None, steps: Optional[List["SyntheticTestStep"]] = None, no_data_timeout: Optional[int] = None, ): raw_element = { "id": test_id, "title": title, "description": description, "testSetup": test_setup, "expirationTimestamp": expiration_timestamp, "drilldownLink": drilldown_link, "editLink": edit_link, "deleted": deleted, "locations": [location._raw_element for location in locations], "steps": [step._raw_element for step in steps] if steps else None, "scheduleIntervalInSeconds": schedule_interval_in_seconds, "noDataTimeout": no_data_timeout, } super().__init__(http_client, None, raw_element) class SyntheticTestLocation(DynatraceObject): def __init__(self, http_client, location_id: str, enabled: Optional[bool] = None): raw_element = {"id": location_id, "enabled": enabled} super().__init__(http_client, None, raw_element) class SyntheticTestStep(DynatraceObject): def __init__(self, http_client, step_id: int, title: str): self.step_id = step_id self.title = title raw_element = {"id": step_id, "title": title} super().__init__(http_client, None, raw_element) class ThirdPartySyntheticResult(DynatraceObject): def __init__( self, http_client, test_id: str, total_step_count: int, location_results: List["ThirdPartySyntheticLocationTestResult"], schedule_interval_in_seconds: Optional[int] = None, ): raw_element = { "id": test_id, "scheduleIntervalInSeconds": schedule_interval_in_seconds, "totalStepCount": total_step_count, "locationResults": [location_result._raw_element for location_result in location_results], } super().__init__(http_client, None, raw_element) class ThirdPartySyntheticLocationTestResult(DynatraceObject): def __init__( self, http_client, location_id: str, start_timestamp: datetime, success: bool, success_rate: Optional[float] = None, response_time_millis: Optional[int] = None, step_results: Optional[List["SyntheticMonitorStepResult"]] = None, ): raw_element = { "id": location_id, "startTimestamp": int(start_timestamp.timestamp() * 1000), "successRate": success_rate, "success": success, "responseTimeMillis": response_time_millis, "stepResults": [step_result._raw_element for step_result in step_results] if step_results else None, } super().__init__(http_client, None, raw_element) class SyntheticMonitorStepResult(DynatraceObject): def __init__( self, http_client, step_id: int, start_timestamp: datetime, response_time_millis: Optional[int] = None, error: Optional["SyntheticMonitorError"] = None, ): raw_element = { "id": step_id, "startTimestamp": int(start_timestamp.timestamp() * 1000), "responseTimeMillis": response_time_millis, "error": error._raw_element if error else None, } super().__init__(http_client, None, raw_element) class SyntheticMonitorError(DynatraceObject): def __init__(self, http_client, code: int, message: str): raw_element = {"code": code, "message": message} super().__init__(http_client, None, raw_element) class ThirdPartySyntheticEvents(DynatraceObject): def __init__( self, http_client, synthetic_engine_name: str, open_events: Optional[List["ThirdPartyEventOpenNotification"]], resolved_events: Optional[List["ThirdPartyEventResolvedNotification"]], ): raw_element = { "syntheticEngineName": synthetic_engine_name, "open": [open_event._raw_element for open_event in open_events] if open_events else None, "resolved": [resolved_event._raw_element for resolved_event in resolved_events] if resolved_events else None, } super().__init__(http_client, None, raw_element) def post(self): return self._http_client.make_request(f"/api/v1/synthetic/ext/events", params=self._raw_element, method="POST") class ThirdPartyEventOpenNotification(DynatraceObject): def __init__( self, http_client, test_id: str, event_id: str, name: str, event_type: str, reason: str, start_timestamp: datetime, location_ids: List[str], ): raw_element = { "testId": test_id, "eventId": event_id, "name": name, "eventType": event_type, "reason": reason, "startTimestamp": int(start_timestamp.timestamp() * 1000), "locationIds": location_ids, } super().__init__(http_client, None, raw_element) class ThirdPartyEventResolvedNotification(DynatraceObject): def __init__(self, http_client, test_id: str, event_id: str, end_timestamp: datetime): raw_element = {"testId": test_id, "eventId": event_id, "endTimestamp": int(end_timestamp.timestamp() * 1000)} super().__init__(http_client, None, raw_element) ``` #### File: dynatrace/environment_v2/metrics.py ```python from datetime import datetime from enum import Enum from typing import List, Optional, Union, Dict, Any from requests import Response from dynatrace.dynatrace_object import DynatraceObject from dynatrace.http_client import HttpClient from dynatrace.pagination import PaginatedList from dynatrace.utils import timestamp_to_string, int64_to_datetime class MetricService: def __init__(self, http_client: HttpClient): self.__http_client = http_client def query( self, metric_selector: str, resolution: str = None, time_from: Optional[Union[datetime, str]] = None, time_to: Optional[Union[datetime, str]] = None, entity_selector: Optional[str] = None, ) -> PaginatedList["MetricSeriesCollection"]: params = { "metricSelector": metric_selector, "resolution": resolution, "from": timestamp_to_string(time_from), "to": timestamp_to_string(time_to), "entitySelector": entity_selector, } return PaginatedList(MetricSeriesCollection, self.__http_client, "/api/v2/metrics/query", params, list_item="result") def list( self, metric_selector: Optional[str] = None, text: Optional[str] = None, fields: Optional[str] = None, written_since: Optional[Union[str, datetime]] = None, metadata_selector: Optional[str] = None, page_size=100, ) -> PaginatedList["MetricDescriptor"]: params = { "pageSize": page_size, "metricSelector": metric_selector, "text": text, "fields": fields, "writtenSince": timestamp_to_string(written_since), "metadataSelector": metadata_selector, } return PaginatedList(MetricDescriptor, self.__http_client, "/api/v2/metrics", params, list_item="metrics") def get(self, metric_id: str) -> "MetricDescriptor": response = self.__http_client.make_request(f"/api/v2/metrics/{metric_id}").json() return MetricDescriptor(http_client=self.__http_client, raw_element=response) def delete(self, metric_id) -> Response: return self.__http_client.make_request(f"/api/v2/metrics/{metric_id}", method="DELETE") def ingest(self, lines: List[str]): lines = "\n".join(lines) return self.__http_client.make_request( f"/api/v2/metrics/ingest", method="POST", data=lines, headers={"Content-Type": "text/plain; charset=utf-8"} ).json() class MetricSeries(DynatraceObject): def _create_from_raw_data(self, raw_element): self.timestamps: List[datetime] = [int64_to_datetime(timestamp) for timestamp in raw_element.get("timestamps", [])] self.dimensions: List[str] = raw_element.get("dimensions", []) self.values: List[float] = raw_element.get("values", []) self.dimension_map: Optional[Dict[str, Any]] = raw_element.get("dimensionMap", []) class MetricSeriesCollection(DynatraceObject): def _create_from_raw_data(self, raw_element: dict): self.metric_id: str = raw_element.get("metricId") self.data: List[MetricSeries] = [MetricSeries(self._http_client, self._headers, metric_serie) for metric_serie in raw_element.get("data", [])] self.warnings: Optional[List[str]] = raw_element.get("warnings") class MetricDefaultAggregation(DynatraceObject): def _create_from_raw_data(self, raw_element): self.parameter: float = raw_element.get("parameter") self.type: str = raw_element.get("type") class MetricDimensionDefinition(DynatraceObject): def _create_from_raw_data(self, raw_element): self.index: int = raw_element.get("index") self.name: str = raw_element.get("name") self.key: str = raw_element.get("key") self.type: str = raw_element.get("type") class AggregationType(Enum): AUTO = "auto" AVG = "avg" COUNT = "count" MAX = "max" MEDIAN = "median" MIN = "min" PERCENTILE = "percentile" SUM = "sum" VALUE = "value" class Transformation(Enum): DEFAULT = "default" FILTER = "filter" FOLD = "fold" LAST = "last" LIMIT = "limit" MERGE = "merge" NAMES = "names" PARENTS = "parents" RATE = "rate" SORT = "sort" SPLITBY = "splitBy" TIMESHIFT = "timeshift" class Unit(Enum): BIT = "Bit" BITPERHOUR = "BitPerHour" BITPERMINUTE = "BitPerMinute" BITPERSECOND = "BitPerSecond" BYTE = "Byte" BYTEPERHOUR = "BytePerHour" BYTEPERMINUTE = "BytePerMinute" BYTEPERSECOND = "BytePerSecond" CORES = "Cores" COUNT = "Count" DAY = "Day" DECIBELMILLIWATT = "DecibelMilliWatt" GIBIBYTE = "GibiByte" GIGA = "Giga" GIGABYTE = "GigaByte" HOUR = "Hour" KIBIBYTE = "KibiByte" KIBIBYTEPERHOUR = "KibiBytePerHour" KIBIBYTEPERMINUTE = "KibiBytePerMinute" KIBIBYTEPERSECOND = "KibiBytePerSecond" KILO = "Kilo" KILOBYTE = "KiloByte" KILOBYTEPERHOUR = "KiloBytePerHour" KILOBYTEPERMINUTE = "KiloBytePerMinute" KILOBYTEPERSECOND = "KiloBytePerSecond" MSU = "MSU" MEBIBYTE = "MebiByte" MEBIBYTEPERHOUR = "MebiBytePerHour" MEBIBYTEPERMINUTE = "MebiBytePerMinute" MEBIBYTEPERSECOND = "MebiBytePerSecond" MEGA = "Mega" MEGABYTE = "MegaByte" MEGABYTEPERHOUR = "MegaBytePerHour" MEGABYTEPERMINUTE = "MegaBytePerMinute" MEGABYTEPERSECOND = "MegaBytePerSecond" MICROSECOND = "MicroSecond" MILLICORES = "MilliCores" MILLISECOND = "MilliSecond" MILLISECONDPERMINUTE = "MilliSecondPerMinute" MINUTE = "Minute" MONTH = "Month" NANOSECOND = "NanoSecond" NANOSECONDPERMINUTE = "NanoSecondPerMinute" NOTAPPLICABLE = "NotApplicable" PERHOUR = "PerHour" PERMINUTE = "PerMinute" PERSECOND = "PerSecond" PERCENT = "Percent" PIXEL = "Pixel" PROMILLE = "Promille" RATIO = "Ratio" SECOND = "Second" STATE = "State" UNSPECIFIED = "Unspecified" WEEK = "Week" YEAR = "Year" class MetricDescriptor(DynatraceObject): def _create_from_raw_data(self, raw_element): # required self.metric_id: str = raw_element.get("metricId") # optional self.aggregation_types: Optional[List[AggregationType]] = [AggregationType(element) for element in raw_element.get("aggregationTypes", [])] self.created: Optional[datetime] = int64_to_datetime(raw_element.get("created")) self.ddu_billable: Optional[bool] = raw_element.get("dduBillable") self.default_aggregation: Optional[MetricDefaultAggregation] = MetricDefaultAggregation(raw_element=raw_element.get("defaultAggregation")) self.description: Optional[str] = raw_element.get("description") self.dimension_definitions: Optional[List[MetricDimensionDefinition]] = [ MetricDimensionDefinition(raw_element=element) for element in raw_element.get("dimensionDefinitions", []) ] self.display_name: Optional[str] = raw_element.get("displayName") self.entity_type: Optional[List[str]] = raw_element.get("entityType", []) self.impact_relevant: Optional[bool] = raw_element.get("impactRelevant") self.last_written: Optional[datetime] = int64_to_datetime(raw_element.get("lastWritten")) self.maximum_value: Optional[float] = raw_element.get("maximumValue") self.metric_value_type: Optional["MetricValueType"] = ( MetricValueType(raw_element=raw_element.get("metricValueType")) if raw_element.get("metricValueType") else None ) self.minimum_value: Optional[float] = raw_element.get("minimumValue") self.root_cause_relevant: Optional[bool] = raw_element.get("rootCauseRelevant") self.tags: Optional[List[str]] = raw_element.get("tags") self.transformations: Optional[List[Transformation]] = [Transformation(element) for element in raw_element.get("transformations", [])] self.unit: Optional[Unit] = Unit(raw_element.get("unit")) self.warnings: Optional[List[str]] = raw_element.get("warnings") class ValueType(Enum): ERROR = "error" SCORE = "score" UNKNOWN = "unknown" class MetricValueType(DynatraceObject): def _create_from_raw_data(self, raw_element: Dict[str, Any]): self.type = ValueType(raw_element.get("type")) ``` #### File: test/environment_v1/test_smartscape_hosts.py ```python from dynatrace import Dynatrace from dynatrace.environment_v1.smartscape_hosts import Host, MonitoringMode, OSArchitecture from dynatrace.pagination import HeaderPaginatedList from dynatrace.environment_v1.smartscape_hosts import Host def test_list(dt: Dynatrace): hosts = dt.smartscape_hosts.list(page_size=20) assert isinstance(hosts, HeaderPaginatedList) for host in hosts: assert isinstance(host, Host) assert host.entity_id == "HOST-7EC661999923A6B9" assert host.discovered_name == "TAG009444368559.clients.example.com" assert host.last_seen_timestamp == 1621519976487 for tag in host.tags: assert tag.context == "CONTEXTLESS" assert tag.key == "APP1234567" break assert host.os_version == "Windows 10 Enterprise 20H2 2009, ver. 10.0.19042" assert host.monitoring_mode == MonitoringMode.FULL_STACK assert host.consumed_host_units == 2.0 assert host.os_architecture == OSArchitecture.X_EIGHTY_SIX assert host.cpu_cores == 8 break ```
{ "source": "JimmXinu/brotlidecpy", "score": 2 }
#### File: brotlidecpy/test/test_decompress.py ```python import unittest import os import timeit import _test_utils from brotlidecpy import decompress from brotli import decompress as brotlidecompress class TestDecompress(_test_utils.TestCase): def _test_decompress(self, test_data): """This performs the same decompression tests as in the Python bindings of brotli reference implementation""" temp_uncompressed = _test_utils.get_temp_uncompressed_name(test_data) original = _test_utils.get_uncompressed_name(test_data) with open(temp_uncompressed, 'wb') as out_file: with open(test_data, 'rb') as in_file: out_file.write(decompress(in_file.read())) self.assertFilesMatch(temp_uncompressed, original) def _test_brotli_decompress_buffer(self, test_data): """This tests that in memory buffer to buffer decompression of test data gets expected results""" with open(test_data, 'rb') as f: compressed_buffer = f.read() with open(_test_utils.get_uncompressed_name(test_data), 'rb') as f: uncompressed_buffer = f.read() result_buffer = decompress(compressed_buffer) self.assertSequenceEqual(uncompressed_buffer, result_buffer, "Failed decompress of %s" % os.path.basename(test_data)) def _test_against_pylib_brotli(self, test_data): """This confirms that this package decompresses same as the C reference implementation that is in PyPI. It also prints execution times to serve as a performance test, though unit tests are not usually for that""" with open(_test_utils.get_uncompressed_name(test_data), 'rb') as f: original_uncompressed_buffer = f.read() with open(test_data, 'rb') as f: compressed_buffer = f.read() ref_time = timeit.default_timer() ref_uncompressed_buffer = brotlidecompress(compressed_buffer) # using fast brotli library ref_time = timeit.default_timer() - ref_time test_time = timeit.default_timer() test_uncompressed_buffer = decompress(compressed_buffer) # testing this package, should be intermediate time test_time = timeit.default_timer() - test_time self.assertSequenceEqual(ref_uncompressed_buffer, original_uncompressed_buffer, msg="Something wrong with test:" " Reference decompress does not match uncompressed test data file") self.assertSequenceEqual(original_uncompressed_buffer, test_uncompressed_buffer, msg="Test failure in decompress of %s" % os.path.basename(test_data)) print("File '%s' Times msec C ref: %.3f, this test: %.3f" % (os.path.basename(test_data), ref_time * 1000, test_time * 1000)) _test_utils.generate_test_methods(TestDecompress) # when running this from cli set PYTHONPATH to parent directory of brotlidecpy so import will work # e.g., PYTHONPATH=. python test/decompress_test.py if __name__ == '__main__': unittest.main() ```
{ "source": "jimmy0087/faceai-master", "score": 2 }
#### File: DAN/models/dan_models.py ```python import numpy as np import tensorflow as tf from ..utils.layers import AffineTransformLayer, TransformParamsLayer, LandmarkImageLayer, LandmarkTransformLayer from ..utils.utils import bestFit,bestFitRect from scipy import ndimage IMGSIZE = 112 N_LANDMARK = 68 def NormRmse(GroudTruth, Prediction): Gt = tf.reshape(GroudTruth, [-1, N_LANDMARK, 2]) Pt = tf.reshape(Prediction, [-1, N_LANDMARK, 2]) loss = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.squared_difference(Gt, Pt), 2)), 1) # norm = tf.sqrt(tf.reduce_sum(((tf.reduce_mean(Gt[:, 36:42, :],1) - \ # tf.reduce_mean(Gt[:, 42:48, :],1))**2), 1)) norm = tf.norm(tf.reduce_mean(Gt[:, 36:42, :],1) - tf.reduce_mean(Gt[:, 42:48, :],1), axis=1) # cost = tf.reduce_mean(loss / norm) return loss/norm def DAN(MeanShapeNumpy): MeanShape = tf.constant(MeanShapeNumpy, dtype=tf.float32) InputImage = tf.placeholder(tf.float32,[None, IMGSIZE,IMGSIZE,1]) GroundTruth = tf.placeholder(tf.float32,[None, N_LANDMARK * 2]) S1_isTrain = tf.placeholder(tf.bool) S2_isTrain = tf.placeholder(tf.bool) Ret_dict = {} Ret_dict['InputImage'] = InputImage Ret_dict['GroundTruth'] = GroundTruth Ret_dict['S1_isTrain'] = S1_isTrain Ret_dict['S2_isTrain'] = S2_isTrain with tf.variable_scope('Stage1'): S1_Conv1a = tf.layers.batch_normalization(tf.layers.conv2d(InputImage,64,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Conv1b = tf.layers.batch_normalization(tf.layers.conv2d(S1_Conv1a,64,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Pool1 = tf.layers.max_pooling2d(S1_Conv1b,2,2,padding='same') S1_Conv2a = tf.layers.batch_normalization(tf.layers.conv2d(S1_Pool1,128,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Conv2b = tf.layers.batch_normalization(tf.layers.conv2d(S1_Conv2a,128,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Pool2 = tf.layers.max_pooling2d(S1_Conv2b,2,2,padding='same') S1_Conv3a = tf.layers.batch_normalization(tf.layers.conv2d(S1_Pool2,256,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Conv3b = tf.layers.batch_normalization(tf.layers.conv2d(S1_Conv3a,256,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Pool3 = tf.layers.max_pooling2d(S1_Conv3b,2,2,padding='same') S1_Conv4a = tf.layers.batch_normalization(tf.layers.conv2d(S1_Pool3,512,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Conv4b = tf.layers.batch_normalization(tf.layers.conv2d(S1_Conv4a,512,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain) S1_Pool4 = tf.layers.max_pooling2d(S1_Conv4b,2,2,padding='same') S1_Pool4_Flat = tf.contrib.layers.flatten(S1_Pool4) S1_DropOut = tf.layers.dropout(S1_Pool4_Flat,0.5,training=S1_isTrain) S1_Fc1 = tf.layers.batch_normalization(tf.layers.dense(S1_DropOut,256,activation=tf.nn.relu,\ kernel_initializer=tf.glorot_uniform_initializer()),training=S1_isTrain,name = 'S1_Fc1') S1_Fc2 = tf.layers.dense(S1_Fc1,N_LANDMARK * 2) S1_Ret = S1_Fc2 + MeanShape S1_Cost = tf.reduce_mean(NormRmse(GroundTruth, S1_Ret)) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS,'Stage1')): S1_Optimizer = tf.train.AdamOptimizer(0.001).minimize(S1_Cost,\ var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,"Stage1")) Ret_dict['S1_Ret'] = S1_Ret Ret_dict['S1_Cost'] = S1_Cost Ret_dict['S1_Optimizer'] = S1_Optimizer with tf.variable_scope('Stage2'): S2_AffineParam = TransformParamsLayer(S1_Ret, MeanShape) S2_InputImage = AffineTransformLayer(InputImage, S2_AffineParam) S2_InputLandmark = LandmarkTransformLayer(S1_Ret, S2_AffineParam) S2_InputHeatmap = LandmarkImageLayer(S2_InputLandmark) S2_Feature = tf.reshape(tf.layers.dense(S1_Fc1,int((IMGSIZE / 2) * (IMGSIZE / 2)),\ activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),(-1,int(IMGSIZE / 2),int(IMGSIZE / 2),1)) S2_FeatureUpScale = tf.image.resize_images(S2_Feature,(IMGSIZE,IMGSIZE),1) S2_ConcatInput = tf.layers.batch_normalization(tf.concat([S2_InputImage,S2_InputHeatmap,S2_FeatureUpScale],3),\ training=S2_isTrain) S2_Conv1a = tf.layers.batch_normalization(tf.layers.conv2d(S2_ConcatInput,64,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Conv1b = tf.layers.batch_normalization(tf.layers.conv2d(S2_Conv1a,64,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Pool1 = tf.layers.max_pooling2d(S2_Conv1b,2,2,padding='same') S2_Conv2a = tf.layers.batch_normalization(tf.layers.conv2d(S2_Pool1,128,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Conv2b = tf.layers.batch_normalization(tf.layers.conv2d(S2_Conv2a,128,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Pool2 = tf.layers.max_pooling2d(S2_Conv2b,2,2,padding='same') S2_Conv3a = tf.layers.batch_normalization(tf.layers.conv2d(S2_Pool2,256,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Conv3b = tf.layers.batch_normalization(tf.layers.conv2d(S2_Conv3a,256,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Pool3 = tf.layers.max_pooling2d(S2_Conv3b,2,2,padding='same') S2_Conv4a = tf.layers.batch_normalization(tf.layers.conv2d(S2_Pool3,512,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Conv4b = tf.layers.batch_normalization(tf.layers.conv2d(S2_Conv4a,512,3,1,\ padding='same',activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Pool4 = tf.layers.max_pooling2d(S2_Conv4b,2,2,padding='same') S2_Pool4_Flat = tf.contrib.layers.flatten(S2_Pool4) S2_DropOut = tf.layers.dropout(S2_Pool4_Flat,0.5,training=S2_isTrain) S2_Fc1 = tf.layers.batch_normalization(tf.layers.dense(S2_DropOut,256,\ activation=tf.nn.relu,kernel_initializer=tf.glorot_uniform_initializer()),training=S2_isTrain) S2_Fc2 = tf.layers.dense(S2_Fc1,N_LANDMARK * 2) S2_Ret = LandmarkTransformLayer(S2_Fc2 + S2_InputLandmark,S2_AffineParam, Inverse=True) S2_Cost = tf.reduce_mean(NormRmse(GroundTruth,S2_Ret)) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS,'Stage2')): S2_Optimizer = tf.train.AdamOptimizer(0.0001).minimize(S2_Cost,\ var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,"Stage2")) Ret_dict['S2_Ret'] = S2_Ret Ret_dict['S2_Cost'] = S2_Cost Ret_dict['S2_Optimizer'] = S2_Optimizer Ret_dict['S2_InputImage'] = S2_InputImage Ret_dict['S2_InputLandmark'] = S2_InputLandmark Ret_dict['S2_InputHeatmap'] = S2_InputHeatmap Ret_dict['S2_FeatureUpScale'] = S2_FeatureUpScale return Ret_dict class DANDetector(object): def __init__(self,init_inf,model_path): self.initLandmarks = init_inf["initLandmarks"].reshape((-1,2)) self.meanImg = init_inf["meanImg"] self.stdDevImg = init_inf["stdDevImg"] self.nChannels = 1 self.imageHeight = IMGSIZE self.imageWidth = IMGSIZE self.dan = DAN(init_inf["initLandmarks"]) self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) saver = tf.train.Saver() #model_dict = '/'.join(model_path.split('/')[:-1]) ckpt = tf.train.get_checkpoint_state(model_path) print(model_path) readstate = ckpt and ckpt.model_checkpoint_path assert readstate, "the params dictionary is not valid" print("restore models' param") saver.restore(self.sess, model_path+'/model') def predict(self, databatch): s2_landmarks = self.sess.run(self.dan['S2_Ret'], feed_dict={self.dan['InputImage']:databatch, self.dan['S1_isTrain']:False,self.dan['S2_isTrain']:False}) return s2_landmarks def processImg(self,input,recs): gray_img = np.mean(input, axis=2).astype(np.uint8) initLandmarks_fitrec = bestFitRect(None, self.initLandmarks, recs) inputImg, transform = self.CropResizeRotate(gray_img[np.newaxis], initLandmarks_fitrec) inputImg = inputImg[:,:,:,np.newaxis] inputImg = inputImg - self.meanImg[np.newaxis] inputImg = inputImg / self.stdDevImg[np.newaxis] output = self.predict(inputImg) landmarks = output.reshape((-1, 2)) return np.dot(landmarks - transform[1], np.linalg.inv(transform[0])) def CropResizeRotate(self, img, inputShape): A, t = bestFit(self.initLandmarks, inputShape, True) A2 = np.linalg.inv(A) t2 = np.dot(-t, A2) outImg = np.zeros((self.nChannels, self.imageHeight, self.imageWidth), dtype=np.float32) for i in range(img.shape[0]): outImg[i] = ndimage.interpolation.affine_transform(img[i], A2, t2[[1, 0]], output_shape=(self.imageHeight, self.imageWidth)) return outImg, [A, t] ``` #### File: DAN/models/DAN.py ```python from faceai.Detection import * from .dan_models import * def dan(modelpath =None, **kwargs): """ 'dan()' function attempt to build DAN model with some initialization parameter. :param modelpath: the path of the model's weights :return: DAN model """ execution_path = os.path.dirname(__file__) initInf = np.load(os.path.join(modelpath,'initInf.npz')) danDetactor = DANDetector(initInf, modelpath) return danDetactor ```
{ "source": "Jimmy01240397/balsn-2021-writeup", "score": 3 }
#### File: Crypto/Fast Cipher/cipher.py ```python from secrets import randbelow M = 2**1024 def f(x): # this is a *fast* function return ( 4 * x**4 + 8 * x**8 + 7 * x**7 + 6 * x**6 + 3 * x**3 + 0x48763 ) % M def encrypt(pt, key): ct = [] for c in pt: ct.append(c ^ (key & 0xFF)) key = f(key) return bytes(ct) if __name__ == "__main__": key = randbelow(M) ct = encrypt(open("flag.txt", "rb").read().strip(), key) print(ct.hex()) ``` #### File: pekobot/chall/server.py ```python from elliptic_curve import Curve, Point from Crypto.Util.number import bytes_to_long import os from random import choice from secrets import randbelow flag = os.environb[b"FLAG"] assert flag.startswith(b"AIS3{") assert flag.endswith(b"}") flag += os.urandom(64 - len(flag)) # NIST P-256 a = -3 b = 41058363725152142129326129780047268409114441015993725554835256314039467401291 p = 2**256 - 2**224 + 2**192 + 2**96 - 1 E = Curve(p, a, b) n = 115792089210356248762697446949407573529996955224135760342422259061068512044369 Gx = 48439561293906451759052585252797914202762949526041747995844080717082404635286 Gy = 36134250956749795798585127919587881956611106672985015071877198253568414405109 G = Point(E, Gx, Gy) d = randbelow(n) P = G * d def point_to_bytes(P): return P.x.to_bytes(32, "big") + P.y.to_bytes(32, "big") def encrypt(P, m): key = point_to_bytes(P) return bytes([x ^ y for x, y in zip(m.ljust(64, b"\0"), key)]) quotes = [ "Konpeko, konpeko, konpeko! Hololive san-kisei no Usada Pekora-peko! domo, domo!", "Bun bun cha! Bun bun cha!", "kitira!", "usopeko deshou", "HA↑HA↑HA↓HA↓HA↓", "HA↑HA↑HA↑HA↑", "it's me pekora!", "ok peko", ] print("Konpeko!") print("watashi no public key: %s" % P) while True: try: print("nani wo shitai desuka?") print("1. Start a Diffie-Hellman key exchange") print("2. Get an encrypted flag") print("3. Exit") option = int(input("> ")) if option == 1: print("Public key wo kudasai!") x = int(input("x: ")) y = int(input("y: ")) S = Point(E, x, y) * d print(encrypt(S, choice(quotes).encode()).hex()) elif option == 2: r = randbelow(n) C1 = r * G C2 = encrypt(r * P, flag) print(point_to_bytes(C1).hex()) print(C2.hex()) elif option == 3: print("otsupeko!") break print() except Exception as ex: print("kusa peko") print(ex) break ``` #### File: B64DLE/chall/b64dle.py ```python from abc import ABC, abstractmethod from enum import Enum from base64 import b64encode, b64decode from typing import List class RoundResult(Enum): error = 0 fail = 1 win = 2 class Wordle(ABC): def __init__(self, target: str, rounds: int): self.target = target self.rounds = rounds self.cur_round = 1 def play(self): while self.cur_round <= self.rounds: result = self.play_round(self.cur_round) if result == RoundResult.error: print("Invalid input") continue elif result == RoundResult.win: return True self.cur_round += 1 return False def play_round(self, round) -> RoundResult: inp = input(f"Round {round} > ") if not self.check_input(inp): return RoundResult.error diff = self.compare(inp, self.target) if self.is_win(diff): return RoundResult.win else: print(diff) return RoundResult.fail @abstractmethod def check_input(self, s: str) -> bool: pass @abstractmethod def compare(self, s: str, target: str) -> str: pass @abstractmethod def is_win(self, s: str) -> bool: pass class B64dle(Wordle): def __init__(self, words: List[str], target: str, rounds: int): super().__init__(b64encode(target.encode()).decode(), rounds) self.words = words self.exact = "O" self.contains = "-" self.wrong = "X" def check_input(self, s: str) -> bool: try: word = b64decode(s.encode()).decode() if word not in self.words: return False return len(s) == len(self.target) except: return False def compare(self, s: str, target: str) -> str: assert len(s) == len(target) ret = "" for i, c in enumerate(s): if c == target[i]: ret += self.exact elif c in target: ret += self.contains else: ret += self.wrong return ret def is_win(self, s: str) -> bool: return all([x == self.exact for x in s]) with open("five_letter_words.txt") as f: # https://raw.githubusercontent.com/charlesreid1/five-letter-words/b45fda30524a981c73ec709618271cecfb51c361/sgb-words.txt words = list(map(str.strip, f)) ``` #### File: chall/problems/astmath.py ```python from problem import Problem from typing import Any, Tuple from random import randint import ast import json def gen_num(): return str(randint(1, 9)) def gen_op(): return "+-*/"[randint(0, 3)] def gen_expr(depth): if randint(0, depth) == 0: l = gen_expr(depth + 1) r = gen_expr(depth + 1) op = gen_op() return f"({l}{op}{r})" return f"({gen_num()})" class ASTMath(Problem): @property def name(self) -> str: return "AST Math" @property def desciption(self) -> str: return """ Input: An AST of Python's arithmetic expression (only +,-,*,/) Output: Result number Examples: Input: {"body": {"left": {"value": 1, "kind": null, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 1}, "op": "<_ast.Add object at 0x7f0387ccde20>", "right": {"value": 2, "kind": null, "lineno": 1, "col_offset": 2, "end_lineno": 1, "end_col_offset": 3}, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 3}} Output: 3 Input: {"body": {"left": {"left": {"value": 8, "kind": null, "lineno": 1, "col_offset": 1, "end_lineno": 1, "end_col_offset": 2}, "op": "<_ast.Mult object at 0x7f20eb76aee0>", "right": {"value": 7, "kind": null, "lineno": 1, "col_offset": 3, "end_lineno": 1, "end_col_offset": 4}, "lineno": 1, "col_offset": 1, "end_lineno": 1, "end_col_offset": 4}, "op": "<_ast.Sub object at 0x7f20eb76ae80>", "right": {"left": {"value": 6, "kind": null, "lineno": 1, "col_offset": 7, "end_lineno": 1, "end_col_offset": 8}, "op": "<_ast.Mult object at 0x7f20eb76aee0>", "right": {"value": 3, "kind": null, "lineno": 1, "col_offset": 9, "end_lineno": 1, "end_col_offset": 10}, "lineno": 1, "col_offset": 7, "end_lineno": 1, "end_col_offset": 10}, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 11}} Output: 38 """ @property def rounds(self) -> int: return 10 def dumps(self, x): return json.dumps( x, default=lambda x: x.__dict__ if len(x.__dict__) else str(x) ) def generate_testcase(self) -> Tuple[bool, Any]: l = gen_expr(1) r = gen_expr(1) op = gen_op() expr = f"{l}{op}{r}" try: result = eval(expr) except ZeroDivisionError: return self.generate_testcase() return ast.parse(expr, mode="eval"), result ``` #### File: chall/problems/invert_binary_tree.py ```python from __future__ import annotations from problem import Problem from typing import Any, Tuple, Union from dataclasses import dataclass from dataclasses_json import dataclass_json from random import randint @dataclass_json @dataclass class Node: left: Union[Node, int] right: Union[Node, int] Tree = Union[Node, int] def gen_tree(depth) -> Tree: if randint(0, depth) == 0: return Node(gen_tree(depth + 1), gen_tree(depth + 1)) return randint(1, 9) def invert(t: Tree) -> Tree: if isinstance(t, int): return t else: return Node(invert(t.right), invert(t.left)) class InvertBinaryTree(Problem): @property def name(self) -> str: return "Invert Binary Tree" @property def desciption(self) -> str: return """ Input: A binary tree, where each leaf is an interger and node are objects with `left` and `right` property Output: The inverted tree with `left` and `right` swapped, recursively Examples: Input: {"left": 1, "right": 3} Output: {"left": 3, "right": 1} Input: {"left": 1, "right": {"left": 1, "right": 3}} Output: {"left": {"left": 3, "right": 1}, "right": 1} """ @property def rounds(self) -> int: return 10 def dumps(self, x): return x.to_json() def generate_testcase(self) -> Tuple[bool, Any]: t = Node(gen_tree(1), gen_tree(1)) return t, invert(t) ``` #### File: release/app/main.py ```python from flask import Flask, render_template, request, redirect, url_for, g, session, send_file import sqlite3 import secrets import os import uuid import mimetypes import pathlib from rq import Queue from redis import Redis app = Flask(__name__) app.queue = Queue(connection=Redis('xss-bot')) app.config.update({ 'SECRET_KEY': secrets.token_bytes(16), 'UPLOAD_FOLDER': '/data/uploads', 'MAX_CONTENT_LENGTH': 32 * 1024 * 1024, # 32MB }) IMAGE_EXTENSIONS = [ext for ext, type in mimetypes.types_map.items() if type.startswith('image/')] ADMIN_PASSWORD = os.getenv('ADMIN_PASSWORD', '<PASSWORD>') FLAG_UUID = os.getenv('FLAG_UUID', str(uuid.uuid4())) def db(): db = getattr(g, '_database', None) if db is None: db = g._database = sqlite3.connect('/tmp/db.sqlite3') db.row_factory = sqlite3.Row return db @app.before_first_request def create_tables(): cursor = db().cursor() cursor.executescript(""" CREATE TABLE IF NOT EXISTS users ( id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, password TEXT ); CREATE TABLE IF NOT EXISTS images ( id INTEGER PRIMARY KEY AUTOINCREMENT, uuid TEXT, title TEXT, filename TEXT, user_id INTEGER, FOREIGN KEY(user_id) REFERENCES users(id) ); """) cursor.execute("SELECT * FROM users WHERE username='admin'") if cursor.fetchone() == None: cursor.execute("INSERT INTO users (username, password) VALUES (?, ?)", ('admin', ADMIN_PASSWORD)) admin_id = cursor.lastrowid cursor.execute("INSERT INTO images (user_id, uuid, filename, title) VALUES (?, ?, ?, ?)", (admin_id, FLAG_UUID, FLAG_UUID+".png", "FLAG")) db().commit() @app.teardown_appcontext def close_connection(exception): db = getattr(g, '_database', None) if db is not None: db.close() @app.after_request def add_csp(response): response.headers['Content-Security-Policy'] = ';'.join([ "default-src 'self'", "font-src 'self' https://fonts.googleapis.com https://fonts.gstatic.com" ]) return response @app.route('/') def index(): if 'user_id' not in session: return redirect(url_for('login')) cursor = db().cursor() cursor.execute("SELECT * FROM images WHERE user_id=?", (session['user_id'],)) images = cursor.fetchall() return render_template('index.html', images=images) @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'GET': return render_template('login.html') else: username = request.form['username'] password = request.form['password'] if len(username) < 5 or len(password) < 5: return render_template('login.html', error="Username and password must be at least 5 characters long.") cursor = db().cursor() cursor.execute("SELECT * FROM users WHERE username=?", (username,)) user = cursor.fetchone() if user is None: user_id = cursor.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, password)).lastrowid session['user_id'] = user_id db().commit() return redirect(url_for('index')) elif user['password'] == password: session['user_id'] = user['id'] return redirect(url_for('index')) else: return render_template('login.html', error="Invalid username or password") @app.route('/image/<uuid>') def view(uuid): cursor = db().cursor() cursor.execute("SELECT * FROM images WHERE uuid=?", (uuid,)) image = cursor.fetchone() if image: if image['user_id'] != session['user_id'] and session['user_id'] != 1: return "You don't have permission to view this image.", 403 return send_file(os.path.join(app.config['UPLOAD_FOLDER'], image['filename'])) else: return "Image not found.", 404 @app.route('/image/<uuid>/download') def download(uuid): cursor = db().cursor() cursor.execute("SELECT * FROM images WHERE uuid=?", (uuid,)) image = cursor.fetchone() if image: if image['user_id'] != session['user_id'] and session['user_id'] != 1: return "You don't have permission to download this image.", 403 return send_file(os.path.join(app.config['UPLOAD_FOLDER'], image['filename']), as_attachment=True, mimetype='application/octet-stream') else: return "Image not found.", 404 @app.route('/upload', methods=['GET', 'POST']) def upload(): if 'user_id' not in session: return redirect(url_for('login')) if request.method == 'GET': return render_template('upload.html') else: title = request.form['title'] or '(No title)' file = request.files['file'] if file.filename == '': return render_template('upload.html', error="No file selected") extension = pathlib.Path(file.filename).suffix if extension not in IMAGE_EXTENSIONS: return render_template('upload.html', error="File must be an image") image_uuid = str(uuid.uuid4()) filename = image_uuid + extension cursor = db().cursor() cursor.execute("INSERT INTO images (user_id, uuid, title, filename) VALUES (?, ?, ?, ?)", (session['user_id'], image_uuid, title, filename)) db().commit() file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) return redirect(url_for('index')) @app.route('/report', methods=['GET', 'POST']) def report(): if 'user_id' not in session: return redirect(url_for('login')) if request.method == 'GET': return f''' <h1>Report to admin</h1> <p>注意:admin 會用 <code>http://web/</code> (而非 {request.url_root} 作為 base URL 來訪問你提交的網站。</p> <form action="/report" method="POST"> <input type="text" name="url" placeholder="URL ({request.url_root}...)"> <input type="submit" value="Submit"> </form> ''' else: url = request.form['url'] if url.startswith(request.url_root): url_path = url[len(request.url_root):] app.queue.enqueue('xssbot.browse', url_path) return 'Reported.' else: return f"[ERROR] Admin 只看 {request.url_root} 網址" ``` #### File: misc/darkknight/challenge.py ```python import os import shutil base_dir = f"C:\\Users\\balsnctf\\Documents\\Dark Knight\\tmp-{os.urandom(16).hex()}" def init(): os.mkdir(base_dir) os.chdir(base_dir) with open("39671", "w") as f: f.write("alice\nalice1025") with open("683077", "w") as f: f.write("bob\nbob0105a") def password_manager(): print("use a short pin code to achieve fast login!!") while True: pin = input("enter a pin code > ") if len(pin) > 100: print("too long...") continue if "\\" in pin or "/" in pin or ".." in pin or "*" in pin: print("what do you want to do?(¬_¬)") continue flag = True for c in pin.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break while True: username = input("enter username > ") if len(username) > 100: print("too long...") continue for c in username.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break while True: password = input("enter password > ") if len(password) > 100: print("too long...") continue for c in password.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break try: with open(pin, "w") as f: f.write(username + "\n" + password) print("saved!!") except OSError: print("pin is invalid!!") def safety_guard(): print("safety guard activated. will delete all unsafe credentials hahaha...") delete_file = [] for pin in os.listdir("."): safe = True with open(pin, "r") as f: data = f.read().split("\n") if len(data) != 2: safe = False elif len(data[0]) == 0 or len(data[1]) == 0: safe = False elif data[0].isalnum() == False or data[1].isalnum() == False: safe = False elif data[0] == "admin": safe = False if safe == False: os.remove(pin) delete_file.append(pin) print(f"finished. delete {len(delete_file)} unsafe credentials: {delete_file}") def fast_login(): while True: pin = input("enter a pin code > ") if len(pin) > 100: print("too long...") continue if "\\" in pin or "/" in pin or ".." in pin: print("what do you want to do?(¬_¬)") continue flag = True for c in pin.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break try: with open(pin, "r") as f: data = f.read().split("\n") if len(data) != 2: print("unknown error happened??") return None, None return data[0], data[1] except FileNotFoundError: print("this pin code is not registered.") return None, None def normal_login(): while True: username = input("enter username > ") if len(username) > 100: print("too long...") elif username.isalnum() == False: print("strange username, huh?") elif username == "admin": print("no you are definitely not (╬ Ò ‸ Ó)") else: break while True: password = input("enter password > ") if len(password) > 100: print("too long...") continue elif password.isalnum() == False: print("strange password, huh?") else: break return username, password def login(): safety_guard() while True: print("1. fast login") print("2. normal login") print("3. exit") x = input("enter login type > ") if x == "1": username, password = fast_login() elif x == "2": username, password = normal_login() elif x == "3": print("bye-bye~") return else: print("invalid input.") continue if username != None and password != None: print(f"hello, {username}.") if username == "admin": while True: x = input("do you want the flag? (y/n): ") if x == "n": print("OK, bye~") return elif x == "y": break else: print("invalid input.") while True: x = input("beg me: ") if x == "plz": print("ok, here is your flag: BALSN{flag is here ...}") break return def main(): init() try: while True: print("1. passord manager") print("2. login") print("3. exit") x = input("what do you want to do? > ") if x == "1": password_manager() elif x == "2": login() elif x == "3": print("bye-bye~") break else: print(f"invalid input: {x}") except KeyboardInterrupt: print("bye-bye~") except: print("unexpected error occured.") os.chdir("../") shutil.rmtree(base_dir) if __name__ == "__main__": main() ```
{ "source": "Jimmy-0/BTC-Clients", "score": 3 }
#### File: Jimmy-0/BTC-Clients/check_midterm5.py ```python import sys import json def read_json(filename): f = open(filename) chain = json.load(f) return chain if len(sys.argv)<2: print("Running Instructions:\npython check.py <num_chains>") sys.exit(0) else: numChains = int(sys.argv[1]) print("number of chains = {}".format(str(numChains))) chains = [] min_length = -1 min_trx_throughput = -1 min_trx_per_block = -1 min_frac_unique_trx = 2 for i in range(numChains): chain = read_json("expt/"+str(i)+".trx") trx_count = read_json("expt/"+str(i)+".trx_count") trx_count = int(trx_count) chains.append(chain) min_length = len(chain) if min_length==-1 else min(min_length, len(chain)) min_trx_throughput = trx_count if min_trx_throughput==-1 else min(min_trx_throughput, trx_count) trx_per_block = 0 if len(chain)==1 else trx_count / (len(chain) - 1) min_trx_per_block = trx_per_block if min_trx_per_block==-1 else min(min_trx_per_block, trx_per_block) # count trx and unique trx count = 0 s = set() for c in chain: count += len(c) for t in c: s.add(t) assert trx_count == count, "trx_count not in accordance with chain length" frac_unique_trx = len(s) / trx_count assert frac_unique_trx >= 0.9, "frac_unique_trx < 0.9" min_frac_unique_trx = min(min_frac_unique_trx, frac_unique_trx) common_prefix = True for chain_id in range(1, len(chains)): common_prefix = common_prefix and chains[0][1][0]==chains[chain_id][1][0] if not common_prefix: break time_in_min=5 print("min trx throughput = {} \n\ min trx per block = {} \n\ fraction of unique trx = {} \n\ common prefix = {} \n\ test = {}".format(min_trx_throughput, min_trx_per_block, min_frac_unique_trx, common_prefix, "PASS" if min_trx_throughput>=100*time_in_min and min_trx_per_block>=10 and min_trx_per_block<=100*time_in_min and min_frac_unique_trx>=0.9 and common_prefix else "FAIL" )) ```
{ "source": "jimmy15923/Common_tools", "score": 3 }
#### File: jimmy15923/Common_tools/keras_callbacks.py ```python from keras.callbacks import Callback from sklearn.metrics import roc_auc_score, f1_score, confusion_matrix class logAUC(Callback): """ Use this function only in binary classification """ def __init__(self): return def on_train_begin(self, epoch, logs = {}): logs = logs or {} record_items = ["val_auc", "val_f1sc", "val_fp", "val_fn", "val_tp", "val_tn"] for i in record_items: if i not in self.params['metrics']: self.params['metrics'].append(i) def on_epoch_end(self, epoch, logs = {}): logs = logs or {} y_true = self.validation_data[1].argmax(axis = 1) y_pred = self.model.predict(self.validation_data[0]) logs["val_auc"] = roc_auc_score(y_true, y_pred[:,1]) thres = 0.5 # prepare it, for further we can change our judgement threshold y_pred = (y_pred[:, 1] >= thres) * 1 con_martrix = confusion_matrix(y_true= y_true, y_pred= y_pred) tp = con_martrix[1][1] tn = con_martrix[0][0] fp = con_martrix[0][1] fn = con_martrix[1][0] logs["val_f1sc"] = f1_score(y_true = y_true, y_pred = y_pred) logs["val_tp"],logs["val_tn"],logs["val_fp"],logs["val_fn"] = tp, tn, fp, fn ``` #### File: jimmy15923/Common_tools/result_summary.py ```python from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_auc_score, accuracy_score import pandas_ml as pdml import pandas as pd import numpy as np import csv def create_report_binary(y_true, y_pred): """ Create quick summary, Args - Input y_true: ground-truth (n_batch x n_classes), one-hot format y_pred: prediction (n_batch x n_classes), one-hot format - Return res: pandas table of prediction/ground-truth/status (fp/fn) conf: pdml confusion matrix table auc: auc score EXAMPLE of Usage final_result, eval_metric_table, auc = create_report(y_val, val_pred) eval_metric_table.stats() """ res = pd.DataFrame({'y_true':y_true.argmax(axis = 1), 'y_pred':y_pred.argmax(axis = 1)}) res['status'] = res['y_pred'] - res['y_true'] # 1: fp, -1: fn auc = roc_auc_score(y_true=res.y_true, y_score=res.y_pred) conf = pdml.ConfusionMatrix(y_true=res.y_true, y_pred=res.y_pred) return res, conf, auc def write_result_to_csv(pdml_table, file_name): with open(file_name, 'w') as f: for i in pdml_table.stats().keys(): this_line = i + "," + str(pdml_table.stats()[i]) + '\n' f.writelines(this_line) print("Successfully write result to %s" % file_name) return True ```
{ "source": "jimmy201602/Wooey", "score": 2 }
#### File: wooey/tests/test_models.py ```python import os from django.test import Client, TestCase, TransactionTestCase from six.moves.urllib_parse import quote from wooey import models, version from . import factories, config, mixins, utils as test_utils class ScriptTestCase(mixins.ScriptFactoryMixin, TestCase): def test_multiple_choices(self): multiple_choice_param = 'two_choices' single_choice_param = 'one_choice' optional_choice_param = 'all_choices' # test that we are a multiple choice entry param = models.ScriptParameter.objects.get(slug=multiple_choice_param) self.assertTrue(param.multiple_choice) # test our limit self.assertEqual(param.max_choices, 2) # test with a singular case param = models.ScriptParameter.objects.get(slug=single_choice_param) self.assertFalse(param.multiple_choice) self.assertEqual(param.max_choices, 1) # test cases that have variable requirements param = models.ScriptParameter.objects.get(slug=optional_choice_param) self.assertTrue(param.multiple_choice) self.assertEqual(param.max_choices, -1) def test_deletes_related_objects(self): self.assertTrue(models.ScriptVersion.objects.filter(pk=self.choice_script.pk).exists()) script = models.Script.objects.get(pk=self.choice_script.script.pk) script.delete() self.assertFalse(models.ScriptVersion.objects.filter(pk=self.choice_script.pk).exists()) class ScriptGroupTestCase(TestCase): def test_script_group_creation(self): group = factories.ScriptGroupFactory() class TestScriptParsers(mixins.ScriptFactoryMixin, TestCase): def test_renders_if_script_version_deleted(self): parser = self.choice_script.scriptparser_set.first() self.choice_script.delete() self.assertIn(parser.name, str(parser)) class ScriptParameterTestCase(TestCase): def test_script_parameter_default(self): script_parameter = factories.ScriptParameterFactory() pk = script_parameter.pk for test_value in [123, 'abc', {'abc': 5}]: script_parameter.default = test_value script_parameter.save() self.assertEqual(models.ScriptParameter.objects.get(pk=pk).default, test_value) class TestScriptVersion(mixins.ScriptFactoryMixin, TestCase): def test_script_version_url_with_spaces(self): # Handles https://github.com/wooey/Wooey/issues/290 script_version = self.choice_script spaced_version = 'v 1 0 0' script_version.script_version = spaced_version script_version.save() url = script_version.get_version_url() self.assertIn(quote(spaced_version), url) class TestJob(mixins.ScriptFactoryMixin, mixins.FileCleanupMixin, mixins.FileMixin, TransactionTestCase): def get_local_url(self, fileinfo): from ..backend import utils local_storage = utils.get_storage(local=True) return local_storage.url(fileinfo['object'].filepath.name) def test_jobs(self): script = self.translate_script from ..backend import utils sequence_slug = test_utils.get_subparser_form_slug(script, 'sequence') out_slug = test_utils.get_subparser_form_slug(script, 'out') fasta_slug = test_utils.get_subparser_form_slug(script, 'fasta') job = utils.create_wooey_job( script_version_pk=script.pk, data={ 'job_name': 'abc', sequence_slug: 'aaa', out_slug: 'abc' } ) job = job.submit_to_celery() old_pk = job.pk new_job = job.submit_to_celery(resubmit=True) self.assertNotEqual(old_pk, new_job.pk) # test rerunning, our output should be removed from ..models import UserFile old_output = sorted([i.pk for i in UserFile.objects.filter(job=new_job)]) # the pk will not change here since we are using rerun=True new_job.submit_to_celery(rerun=True) # check that we overwrite our output new_output = sorted([i.pk for i in UserFile.objects.filter(job=new_job)]) self.assertNotEqual(old_output, new_output) self.assertEqual(len(old_output), len(new_output)) # check the old entries are gone self.assertEqual([], list(UserFile.objects.filter(pk__in=old_output))) file_previews = utils.get_file_previews(job) for group, files in file_previews.items(): for fileinfo in files: # for testing, we use the local url response = Client().get(self.get_local_url(fileinfo)) self.assertEqual(response.status_code, 200) # check our download links are ok # upload the file first to our storage engine so this works in tests local_storage = utils.get_storage(local=True) fasta_path = local_storage.save('fasta.fasta', open(os.path.join(config.WOOEY_TEST_DATA, 'fasta.fasta'))) fasta_file = local_storage.open(fasta_path) job = utils.create_wooey_job( script_version_pk=script.pk, data={ fasta_slug: fasta_file, out_slug: 'abc', 'job_name': 'abc' } ) # check our upload link is ok file_previews = utils.get_file_previews(job) for group, files in file_previews.items(): for fileinfo in files: response = Client().get(self.get_local_url(fileinfo)) self.assertEqual(response.status_code, 200) def test_file_sharing(self): # this tests whether a file uploaded by one job will be referenced by a second job instead of being duplicated # on the file system new_file = self.storage.open(self.get_any_file()) script = self.choice_script script_slug = test_utils.get_subparser_form_slug(script, 'multiple_file_choices') from ..backend import utils job = utils.create_wooey_job(script_version_pk=script.pk, data={'job_name': 'job1', script_slug: new_file}) job = job.submit_to_celery() job2 = utils.create_wooey_job(script_version_pk=script.pk, data={'job_name': 'job2', script_slug: new_file}) job2 = job2.submit_to_celery() job1_files = [i for i in models.UserFile.objects.filter(job=job, parameter__isnull=False) if i.parameter.parameter.form_slug == script_slug] job1_file = job1_files[0] job2_files = [i for i in models.UserFile.objects.filter(job=job2, parameter__isnull=False) if i.parameter.parameter.form_slug == script_slug] job2_file = job2_files[0] self.assertNotEqual(job1_file.pk, job2_file.pk) self.assertEqual(job1_file.system_file, job2_file.system_file) def test_multiplechoices(self): script = self.choice_script choices = [2, 1, 3] choice_slug = test_utils.get_subparser_form_slug(script, 'two_choices') from ..backend import utils job = utils.create_wooey_job( script_version_pk=script.pk, data={ 'job_name': 'abc', choice_slug: choices } ) # make sure we have our choices in the parameters choice_params = [i.value for i in job.get_parameters() if i.parameter.form_slug == choice_slug] self.assertEqual(choices, choice_params) job = job.submit_to_celery() class TestCustomWidgets(TestCase): def test_widget_attributes(self): widget = factories.WooeyWidgetFactory( input_properties='custom-property', input_attributes='attr1="custom1" attr2="custom2"', input_class='custom-class', ) self.assertEquals( widget.widget_attributes, { 'custom-property': True, 'attr1': 'custom1', 'attr2': 'custom2', 'class': 'custom-class', } ) ```
{ "source": "Jimmy2027/MMVAE_mnist_svhn_text", "score": 2 }
#### File: celeba/networks/FeatureCompressor.py ```python import numpy as np import torch.nn as nn from mmvae_hub.celeba.networks.ResidualBlocks import ResidualBlock1dConv def make_res_block_encoder_feature_compressor(channels_in, channels_out, a_val=2, b_val=0.3): downsample = None if channels_in != channels_out: downsample = nn.Sequential(nn.Conv1d(channels_in, channels_out, kernel_size=1, stride=1, padding=0, dilation=1), nn.BatchNorm1d(channels_out)) layers = [] layers.append(ResidualBlock1dConv(channels_in, channels_out, kernelsize=1, stride=1, padding=0, dilation=1, downsample=downsample, a=a_val, b=b_val)) return nn.Sequential(*layers) def make_layers_resnet_encoder_feature_compressor(start_channels, end_channels, a=2, b=0.3, l=1): layers = [] num_compr_layers = int((1 / float(l)) * np.floor(np.log(start_channels / float(end_channels)))) for k in range(0, num_compr_layers): in_channels = np.round(start_channels / float(2 ** (l * k))).astype(int) out_channels = np.round(start_channels / float(2 ** (l * (k + 1)))).astype(int) resblock = make_res_block_encoder_feature_compressor(in_channels, out_channels, a_val=a, b_val=b) layers.append(resblock) out_channels = np.round(start_channels / float(2 ** (l * num_compr_layers))).astype(int) if out_channels > end_channels: resblock = make_res_block_encoder_feature_compressor(out_channels, end_channels, a_val=a, b_val=b) layers.append(resblock) return nn.Sequential(*layers) class ResidualFeatureCompressor(nn.Module): def __init__(self, in_channels, out_channels_style, out_channels_content, a, b, compression_power): super(ResidualFeatureCompressor, self).__init__() self.a = a self.b = b self.compression_power = compression_power self.style_mu = make_res_block_encoder_feature_compressor(in_channels, out_channels_style, a_val=self.a, b_val=self.b) self.style_logvar = make_res_block_encoder_feature_compressor(in_channels, out_channels_style, a_val=self.a, b_val=self.b) self.content_mu = make_res_block_encoder_feature_compressor(in_channels, out_channels_content, a_val=self.a, b_val=self.b) self.content_logvar = make_res_block_encoder_feature_compressor(in_channels, out_channels_content, a_val=self.a, b_val=self.b) def forward(self, feats): mu_style, logvar_style = self.style_mu(feats), self.style_logvar(feats) mu_content, logvar_content = self.content_mu(feats), self.content_logvar(feats) return mu_style, logvar_style, mu_content, logvar_content ``` #### File: MMVAE_mnist_svhn_text/mmvae_hub/clean_experiment_checkpoints.py ```python import glob import json import os import shutil from pathlib import Path from mmvae_hub.utils.MongoDB import MongoDatabase from mmvae_hub.utils.setup.flags_utils import get_config_path MIN_EPOCH = 50 def clean_database(): """Delete all experiment logs in database from experiments with less than MIN_EPOCH epochs.""" db = MongoDatabase(training=False) experiments = db.connect() for experiment in experiments.find({}): if experiment['flags']['end_epoch'] < MIN_EPOCH or len(experiment['epoch_results']) < MIN_EPOCH: print(f'Deleting experiment {experiment["_id"]} from database.') experiments.delete_one({'_id': experiment['_id']}) def clean_database_model_checkpoints(): db = MongoDatabase(training=False) experiments = db.connect() experiment_ids = [exp['_id'] for exp in experiments.find({})] fs = db.connect_with_gridfs() for checkpoint in fs.find({}): checkpoint_exp_id = checkpoint._id.__str__().split('__')[0] if checkpoint_exp_id not in experiment_ids: print(f'Removing checkpoint {checkpoint._id}.') fs.delete(checkpoint._id) def clean_exp_dirs(config: dict): """ Removes all experiment dirs that don't have a log dir or where the log dir is empty. Theses experiment dir are rests from an unsuccessful "rm -r" command. """ db = MongoDatabase(training=False) experiments = db.connect() experiment_ids = [exp['_id'] for exp in experiments.find({})] checkpoint_path = Path(config['dir_experiment']).expanduser() for experiment_dir in checkpoint_path.iterdir(): if experiment_dir.name != 'fid' and experiment_dir.is_dir(): remove = False d = experiments.find_one({'_id': experiment_dir.name}) if ( not os.path.exists(os.path.join(experiment_dir, 'logs')) or len(os.listdir(os.path.join(experiment_dir, 'logs'))) == 0 ): remove = True elif experiment_dir.name not in experiment_ids: remove = True elif d['flags']['end_epoch'] < MIN_EPOCH: remove = True if remove: print(f'removing dir {experiment_dir}') shutil.rmtree(experiment_dir) # elif not (experiment_dir / 'checkpoints').exists() or len( # (experiment_dir / 'checkpoints').iterdir()) == 0: # print(f'removing dir {experiment_dir}') # shutil.rmtree(experiment_dir) # # elif (max(int(d.name) for d in (experiment_dir / 'checkpoints').iterdir() if d.name.startswith('0')) < 10): # print(f'removing dir {experiment_dir}') # shutil.rmtree(experiment_dir) def clean_early_checkpoints(parent_folder: Path): for experiment_dir in parent_folder.iterdir(): checkpoints_dir = parent_folder / experiment_dir / 'checkpoints/0*' checkpoints = glob.glob(checkpoints_dir.__str__()) checkpoint_epochs = sorted([Path(checkpoint).stem for checkpoint in checkpoints]) for checkpoint in checkpoints: if Path(checkpoint).stem != checkpoint_epochs[-1]: shutil.rmtree(checkpoint) if __name__ == '__main__': clean_database() clean_database_model_checkpoints() config_path_polymnist = get_config_path(dataset='polymnist') config_path_mimic = get_config_path(dataset='mimic') for config_path in [config_path_polymnist, config_path_polymnist]: with open(config_path, 'rt') as json_file: config = json.load(json_file) clean_exp_dirs(config) ``` #### File: evaluation/eval_metrics/sample_quality.py ```python import glob import os import numpy as np from mmvae_hub.evaluation.fid.fid_score import calculate_frechet_distance from mmvae_hub.evaluation.fid.fid_score import get_activations from mmvae_hub.evaluation.fid.inception import InceptionV3 from mmvae_hub.evaluation.prd_score import prd_score as prd def calc_inception_features(exp, dims=2048, batch_size=128): block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] model = InceptionV3([block_idx], path_state_dict=exp.flags.inception_state_dict) model = model.to(exp.flags.device) paths = exp.paths_fid for m, m_key in enumerate(exp.modalities.keys()): mod = exp.modalities[m_key] if mod.gen_quality_eval: for k, key in enumerate(paths.keys()): if key != '': dir_gen = paths[key] if not os.path.exists(dir_gen): raise RuntimeError('Invalid path: %s' % dir_gen) files_gen = glob.glob(os.path.join(dir_gen, mod.name, '*' + mod.file_suffix)) fn = os.path.join(exp.flags.dir_gen_eval_fid, key + '_' + mod.name + '_activations.npy') act_gen = get_activations(files_gen, exp.flags, model, batch_size, dims, True, verbose=False) np.save(fn, act_gen) def load_inception_activations(exp): paths = exp.paths_fid acts = dict() for m, m_key in enumerate(exp.modalities.keys()): mod = exp.modalities[m_key] if mod.gen_quality_eval: acts[mod.name] = {} for k, key in enumerate(paths.keys()): if key != '': fn = os.path.join(exp.flags.dir_gen_eval_fid, key + '_' + mod.name + '_activations.npy') feats = np.load(fn) acts[mod.name][key] = feats return acts def calculate_inception_features_for_gen_evaluation(flags, paths, modality=None, dims=2048, batch_size=128): block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] model = InceptionV3([block_idx], path_state_dict=flags.inception_state_dict) model = model.to(flags.device) if 'random' in list(paths.keys()): dir_rand_gen = paths['random'] if not os.path.exists(dir_rand_gen): raise RuntimeError('Invalid path: %s' % dir_rand_gen) if modality is not None: files_rand_gen = glob.glob(os.path.join(dir_rand_gen, modality, '*' + '.png')) filename_random = os.path.join(flags.dir_gen_eval_fid_random, 'random_sampling_' + modality + '_activations.npy') else: files_rand_gen = glob.glob(os.path.join(dir_rand_gen, '*.png')) filename_random = os.path.join(flags.dir_gen_eval_fid_random, 'random_img_activations.npy') act_rand_gen = get_activations(files_rand_gen, model, batch_size, dims, True, verbose=False) np.save(filename_random, act_rand_gen) if 'dynamic_prior' in list(paths.keys()): dirs_dyn_prior = paths['dynamic_prior'] for k, key in enumerate(dirs_dyn_prior.keys()): if not os.path.exists(dirs_dyn_prior[key]): raise RuntimeError('Invalid path: %s' % dirs_dyn_prior[key]) files_dyn_gen = glob.glob(os.path.join(dirs_dyn_prior[key], modality, '*' + '.png')) filename_dyn = os.path.join(dirs_dyn_prior[key], key + '_' + modality + '_activations.npy') act_cond_gen = get_activations(files_dyn_gen, model, batch_size, dims, True, verbose=False) np.save(filename_dyn, act_cond_gen) if 'conditional' in list(paths.keys()): dir_cond_gen = paths['conditional'] if not os.path.exists(dir_cond_gen): raise RuntimeError('Invalid path: %s' % dir_cond_gen) if modality is not None: files_cond_gen = glob.glob(os.path.join(dir_cond_gen, modality, '*' + '.png')) filename_conditional = os.path.join(dir_cond_gen, 'cond_gen_' + modality + '_activations.npy') else: files_cond_gen = glob.glob(os.path.join(dir_cond_gen, '*.png')) filename_conditional = os.path.join(flags.dir_gen_eval_fid_cond_gen, 'conditional_img_activations.npy') act_cond_gen = get_activations(files_cond_gen, model, batch_size, dims, True, verbose=False) np.save(filename_conditional, act_cond_gen) if 'conditional_2a1m' in list(paths.keys()): dirs_cond_gen = paths['conditional_2a1m'] for k, key in enumerate(dirs_cond_gen.keys()): if not os.path.exists(dirs_cond_gen[key]): raise RuntimeError('Invalid path: %s' % dirs_cond_gen[key]) files_cond_gen = glob.glob(os.path.join(dirs_cond_gen[key], modality, '*' + '.png')) filename_conditional = os.path.join(dirs_cond_gen[key], key + '_' + modality + '_activations.npy') act_cond_gen = get_activations(files_cond_gen, model, batch_size, dims, True, verbose=False) np.save(filename_conditional, act_cond_gen) if 'conditional_1a2m' in list(paths.keys()): dirs_cond_gen = paths['conditional_1a2m'] for k, key in enumerate(dirs_cond_gen.keys()): if not os.path.exists(dirs_cond_gen[key]): raise RuntimeError('Invalid path: %s' % dirs_cond_gen[key]) files_cond_gen = glob.glob(os.path.join(dirs_cond_gen[key], modality, '*' + '.png')) filename_conditional = os.path.join(dirs_cond_gen[key], key + '_' + modality + '_activations.npy') act_cond_gen = get_activations(files_cond_gen, model, batch_size, dims, True, verbose=False) np.save(filename_conditional, act_cond_gen) if 'real' in list(paths.keys()): dir_real = paths['real'] if not os.path.exists(dir_real): raise RuntimeError('Invalid path: %s' % dir_real) if modality is not None: files_real = glob.glob(os.path.join(dir_real, modality, '*' + '.png')) filename_real = os.path.join(flags.dir_gen_eval_fid_real, 'real_' + modality + '_activations.npy') else: files_real = glob.glob(os.path.join(dir_real, '*.png')) filename_real = os.path.join(flags.dir_gen_eval_fid_real, 'real_img_activations.npy') act_real = get_activations(files_real, model, batch_size, dims, True, verbose=False) np.save(filename_real, act_real) def calculate_fid(feats_real, feats_gen): mu_real = np.mean(feats_real, axis=0) sigma_real = np.cov(feats_real, rowvar=False) mu_gen = np.mean(feats_gen, axis=0) sigma_gen = np.cov(feats_gen, rowvar=False) return calculate_frechet_distance(mu_real, sigma_real, mu_gen, sigma_gen) def calculate_fid_dict(feats_real, dict_feats_gen): dict_fid = {} for k, key in enumerate(dict_feats_gen.keys()): feats_gen = dict_feats_gen[key] dict_fid[key] = calculate_fid(feats_real, feats_gen) return dict_fid def calculate_prd(feats_real, feats_gen): prd_val = prd.compute_prd_from_embedding(feats_real, feats_gen) return np.mean(prd_val) def calculate_prd_dict(feats_real, dict_feats_gen): dict_fid = {} for k, key in enumerate(dict_feats_gen.keys()): feats_gen = dict_feats_gen[key] dict_fid[key] = calculate_prd(feats_real, feats_gen) return dict_fid def get_clf_activations(flags, data, model): model.eval() act = model.get_activations(data) act = act.cpu().data.numpy().reshape(flags.batch_size, -1) return act def calc_prd_score(exp): calc_inception_features(exp) acts = load_inception_activations(exp) ap_prds = {} for m, m_key in enumerate(exp.modalities.keys()): mod = exp.modalities[m_key] if mod.gen_quality_eval: for k, key in enumerate(exp.subsets): if key == '': continue ap_prd = calculate_prd(acts[mod.name]['real'], acts[mod.name][key]) ap_prds[key + '_' + mod.name] = ap_prd for m, m_key in enumerate(exp.modalities.keys()): mod = exp.modalities[m_key] if mod.gen_quality_eval: ap_prd = calculate_prd(acts[mod.name]['real'], acts[mod.name]['random']) ap_prds['random_' + mod.name] = ap_prd return ap_prds ``` #### File: mmvae_hub/leomed_utils/launch_jobs.py ```python import os import time from pathlib import Path import numpy as np import mmvae_hub def launch_leomed_jobs(which_dataset: str, params: dict) -> None: mmvae_hub_dir = Path(mmvae_hub.__file__).parent n_cores = 8 flags = ''.join( f'--{k} {v} ' for k, v in params.items() if k not in ['n_gpus', 'gpu_mem', 'factorized_representation', 'use_clf'] ) if 'gpu_mem' not in params: params['gpu_mem'] = 5000 if 'n_gpus' not in params: params['n_gpus'] = 1 # 100 epochs take about 5G of space scratch_space = int((params['end_epoch'] // 100) * 5) // n_cores or 1 if which_dataset == 'polymnist': python_file = mmvae_hub_dir / 'polymnist/main_polymnist.py' mem = 700 * params['num_mods'] if params['method'] == 'mogfm' or params['method'].startswith('iw'): num_hours = int(np.round((params['end_epoch'] * 10) / 60 * 0.5 * params['num_mods'])) or 1 else: # 1 epochs needs approx. 2 minutes num_hours = int(np.round((params['end_epoch'] * 2) / 60 * params['num_mods'])) or 1 # 100 epochs take about 5G of space scratch_space = int(np.ceil(((params['end_epoch'] / 100) * 5) / n_cores)) elif which_dataset == 'mimic': python_file = mmvae_hub_dir / 'mimic/main_mimic.py' # 1 epochs needs approx. 20 minutes num_hours = int(np.round((params['end_epoch'] * 20) / 60)) or 1 mem = 2500 # 100 epochs take about 10G of space scratch_space = int(np.ceil(((params['end_epoch'] / 100) * 10) / n_cores)) elif which_dataset == 'celeba': python_file = mmvae_hub_dir / 'celeba/main_celeba.py' # 1 epochs needs approx. 15 minutes num_hours = int(np.round((params['end_epoch'] * 15) / 60)) or 1 mem = 2500 # 100 epochs take about 10G of space scratch_space = int(np.ceil(((params['end_epoch'] / 100) * 10) / n_cores)) elif which_dataset == 'mnistsvhntext': python_file = mmvae_hub_dir / 'mnistsvhntext/main_svhnmnist.py' mem = 2500 if params['method'] == 'mogfm' or params['method'].startswith('iw'): num_hours = int(np.round((params['end_epoch'] * 10) / 60)) or 1 else: # 1 epochs needs approx. 50 minutes num_hours = int(np.round((params['end_epoch'] * 50) / 60)) or 1 # 100 epochs take about 5G of space scratch_space = int(np.ceil(((params['end_epoch'] / 100) * 5) / n_cores)) command = f'bsub -n {n_cores} -W {num_hours}:00 -R "rusage[mem={mem},ngpus_excl_p={params["n_gpus"]},scratch={scratch_space}]" ' \ f'-R "select[gpu_mtotal0>={params["gpu_mem"] * params["n_gpus"]}]" ' \ f'python {python_file} {flags}' # add boolean flags if 'factorized_representation' in params and params['factorized_representation']: command += ' --factorized_representation' if 'use_clf' in params and params['use_clf']: command += ' --use_clf' print(command) os.system(command) time.sleep(1) ``` #### File: mmvae_hub/leomed_utils/upload_experimentzip.py ```python import glob import shutil import tempfile import zipfile from pathlib import Path import ppb import torch import typer from norby import send_msg from mmvae_hub import log from mmvae_hub.experiment_vis.utils import run_notebook_convert from mmvae_hub.utils.MongoDB import MongoDatabase from mmvae_hub.utils.utils import json2dict app = typer.Typer() def upload_one(exp_path: Path): """ Upload one experiment result to database together with the model checkpoints, the logfile and tensorboardlogs, then delete zipped experiment dir. """ is_zip = exp_path.suffix == '.zip' with tempfile.TemporaryDirectory() as tmpdirname: tmpdir = Path(tmpdirname) / exp_path.stem tmpdir.mkdir() if is_zip: # unpack zip into tmpdir log.info(f'Unpacking {exp_path} to {tmpdir}.') with zipfile.ZipFile(exp_path) as z: z.extractall(tmpdir) exp_dir = Path(tmpdir) else: exp_dir = exp_path flags = torch.load(exp_dir / 'flags.rar') db = MongoDatabase(training=True, flags=flags) results = {'epoch_results': {}} epochs = sorted(int(str(epoch.stem)) for epoch in (exp_dir / 'epoch_results').iterdir()) for epoch in epochs: epoch_str = str(epoch) epoch_results = (exp_dir / 'epoch_results' / epoch_str).with_suffix('.json') results['epoch_results'][epoch_str] = json2dict(epoch_results) db.insert_dict(results) modalities = [mod_str for mod_str in results['epoch_results'][str(epoch)]['train_results']['log_probs'] if len(mod_str.split('_')) == 1] dir_checkpoints = exp_dir / 'checkpoints' db.save_networks_to_db( dir_checkpoints=dir_checkpoints, epoch=max(int(str(d.name)) for d in dir_checkpoints.iterdir()), modalities=modalities, ) db.upload_tensorbardlogs(exp_dir / 'logs') pdf_path = run_notebook_convert(exp_dir) expvis_url = ppb.upload(pdf_path, plain=True) db.insert_dict({'expvis_url': expvis_url}) log_file = glob.glob(str(exp_dir) + '/*.log') if len(log_file): db.upload_logfile(Path(log_file[0])) send_msg(f'Uploading of experiment {flags.experiment_uid} has finished. The experiment visualisation can be ' f'found here: {expvis_url}' ) # delete exp_path if is_zip: exp_path.unlink() else: shutil.rmtree(exp_path) @app.command() def upload_all(src_dir: str): """ Upload all experiment results to database together with the model checkpoints, the logfile and tensorboardlogs, then delete zipped experiment dir. """ src_dir = Path(src_dir).expanduser() for experiment_zip in src_dir.iterdir(): try: upload_one(experiment_zip) except Exception as e: print(e) if __name__ == '__main__': # app() from norby.utils import norby with norby('beginning upload experimentzip', 'finished beginning upload experimentmentzip'): # upload_all('/mnt/data/hendrik/mmvae_hub/experiments') # upload_all('/mnt/data/hendrik/leomed_results') upload_all('/Users/Hendrik/Documents/master_4/leomed_experiments') # upload_one(Path('/Users/Hendrik/Documents/master_4/leomed_experiments/polymnist_iwmogfm2__2021_10_14_23_37_27_515040.zip')) ``` #### File: mmvae_hub/mimic/find_dataset_stats.py ```python import json import os import pandas as pd from torch.utils.data import DataLoader from mimic import log from mimic.dataio.utils import get_str_labels from mimic.utils.filehandling import get_config_path from mimic.utils.flags import parser from mimic.utils.flags import update_flags_with_config def write_results_to_json(results: dict, path: str = 'dataset_stats.json'): log.info(f'Writing to dict: {results} to {path}') if os.path.exists(path): with open(path, 'r') as jsonfile: data = json.load(jsonfile) results = {**results, **data} with open(path, 'w') as outfile: json.dump(results, outfile) def get_mean_std(out_path, args): # taken from https://discuss.pytorch.org/t/computing-the-mean-and-std-of-dataset/34949/2 # set normalization to False to initialise the dataset args.normalization = False from mimic.dataio.MimicDataset import Mimic trainset = Mimic(args, get_str_labels(FLAGS.binary_labels), split='train', clf_training=False) d_loader = DataLoader(trainset, batch_size=50, shuffle=False, num_workers=0) args.normalization = True for mod in ['PA', 'Lateral']: mean = 0. std = 0. for images, _ in d_loader: images = images[mod] batch_samples = images.size(0) # batch size (the last batch can have smaller size!) images = images.view(batch_samples, images.size(1), -1) mean += images.mean(2).sum(0) std += images.std(2).sum(0) mean /= len(d_loader.dataset) std /= len(d_loader.dataset) stats = {f'{mod}_mean': mean.item(), f'{mod}_std': std.item()} log.info(stats) write_results_to_json(results=stats, path=out_path) def get_label_counts(args): dir_dataset = os.path.join(args.dir_data, 'files_small_128') train_labels_path = os.path.join(dir_dataset, 'train_labels.csv') train_labels_df = pd.read_csv(train_labels_path)[get_str_labels(args.binary_labels)].fillna(0) indices = [] indices += train_labels_df.index[(train_labels_df['Lung Opacity'] == -1)].tolist() indices += train_labels_df.index[(train_labels_df['Pleural Effusion'] == -1)].tolist() indices += train_labels_df.index[(train_labels_df['Support Devices'] == -1)].tolist() indices = list(set(indices)) train_labels_df = train_labels_df.drop(indices) counts = train_labels_df[train_labels_df == 1].count() write_results_to_json(results={'counts': counts.to_dict()}) if __name__ == '__main__': FLAGS = parser.parse_args([]) config_path = get_config_path(FLAGS) FLAGS = update_flags_with_config(config_path) FLAGS.modality = 'PA' get_label_counts(FLAGS) get_mean_std(FLAGS) ``` #### File: mimic/modalities/MimicIMG.py ```python import typing from pathlib import Path import torch import torchvision.transforms as transforms from matplotlib import pyplot as plt from torch import Tensor from mmvae_hub.mimic.classifiers.train_img_clfs import LM from mmvae_hub.modalities.ModalityIMG import ModalityIMG from mmvae_hub.networks.images.ConvNetworksImgMimic import EncoderImg, DecoderImg from modun.download_utils import download_zip_from_url class LM_(LM): def __init__(self, str_labels: list, transforms): super().__init__(str_labels) self.transforms = transforms def forward(self, x): x_ = torch.cat([self.transforms(torch.cat([s for _ in range(3)])).unsqueeze(0) for s in x], dim=0).to(x.device) return self.model(x_) class MimicImg(ModalityIMG): def __init__(self, data_size, flags, name, labels, rec_weight, plot_img_size): super().__init__(data_size, flags, name) self.labels = labels self.labels = labels self.gen_quality_eval = True self.file_suffix = '.png' self.encoder = EncoderImg(self.flags).to(flags.device) self.decoder = DecoderImg(self.flags).to(flags.device) self.rec_weight = rec_weight self.plot_img_size = plot_img_size self.clf_transforms = transforms.Compose([ transforms.ToPILImage(), transforms.RandomHorizontalFlip(), transforms.RandomRotation(15), transforms.Resize(256), transforms.CenterCrop(256), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.clf = self.get_clf() def get_clf(self): if self.flags.use_clf: clf_name_mapping = {'PA': 'pa', 'Lateral': 'lat'} # finding the directory of the classifier img_clf_path = Path( __file__).parent.parent / f'classifiers/state_dicts/{clf_name_mapping[self.name]}_clf_{self.flags.img_size}.pth' if not img_clf_path.exists(): download_zip_from_url( url='http://jimmy123.hopto.org:2095/nextcloud/index.php/s/GTc8pYiDKrq35ky/download', dest_folder=img_clf_path.parent.parent, verbose=True) lightning_module = LM_(str_labels=self.labels, transforms=self.clf_transforms) lightning_module.model.load_state_dict( torch.load(img_clf_path, map_location=self.flags.device)) return lightning_module.to(self.flags.device) def plot_data_single_img(self, d: Tensor): return plt.imshow(self.plot_data(d.squeeze(dim=0)).cpu().detach().squeeze(), cmap='gray') class MimicPA(MimicImg): def __init__(self, flags, labels: typing.Iterable[str], rec_weight, plot_img_size): data_size = torch.Size((1, flags.img_size, flags.img_size)) super().__init__(data_size=data_size, flags=flags, name='PA', labels=labels, rec_weight=rec_weight, plot_img_size=plot_img_size) class MimicLateral(MimicImg): def __init__(self, flags, labels: typing.Iterable[str], rec_weight, plot_img_size): data_size = torch.Size((1, flags.img_size, flags.img_size)) super().__init__(data_size=data_size, flags=flags, name='Lateral', labels=labels, rec_weight=rec_weight, plot_img_size=plot_img_size) if __name__ == '__main__': img_clf_path = Path( __file__).parent.parent / f'classifiers/state_dicts/pa_clf_128.pth' if not img_clf_path.exists(): download_zip_from_url( url='http://jimmy123.hopto.org:2095/nextcloud/index.php/s/GTc8pYiDKrq35ky/download', dest_folder=img_clf_path.parent.parent, verbose=True) ``` #### File: mmvae_hub/mnistsvhntext/experiment.py ```python import json import random from pathlib import Path import PIL.Image as Image import numpy as np import torch from sklearn.metrics import accuracy_score from torchvision import transforms from mmvae_hub.base.BaseExperiment import BaseExperiment from mmvae_hub.mnistsvhntext.MNISTmod import MNIST from mmvae_hub.mnistsvhntext.SVHNMNISTDataset import SVHNMNIST from mmvae_hub.mnistsvhntext.SVHNmod import SVHN # from utils.BaseExperiment import BaseExperiment from mmvae_hub.mnistsvhntext.metrics import mnistsvhntextMetrics from mmvae_hub.mnistsvhntext.textmod import Text class MNISTSVHNText(BaseExperiment): def __init__(self, flags): super().__init__(flags) self.flags = flags self.labels = ['digit'] alphabet_path = Path(__file__).parent.parent / ('modalities/text/alphabet.json') with open(alphabet_path) as alphabet_file: self.alphabet = str(''.join(json.load(alphabet_file))) # self.flags.vocab_size = len(self.alphabet) self.dataset_train, self.dataset_test = self.set_dataset() self.plot_img_size = torch.Size((3, 28, 28)) if not hasattr(flags, 'num_features'): self.flags.num_features = len(self.alphabet) self.modalities = self.set_modalities() self.num_modalities = len(self.modalities.keys()) self.subsets = self.set_subsets() self.mm_vae = self.set_model() self.optimizer = None self.style_weights = self.set_style_weights() self.test_samples = self.get_test_samples() self.eval_metric = accuracy_score self.metrics = mnistsvhntextMetrics self.paths_fid = self.set_paths_fid() def set_modalities(self): mod1 = MNIST(self.flags, 'mnist') mod2 = SVHN(self.flags, 'svhn') mod3 = Text(self.flags, self.alphabet) return {mod1.name: mod1, mod2.name: mod2, mod3.name: mod3} def get_transform_mnist(self): transform_mnist = transforms.Compose([transforms.ToTensor(), transforms.ToPILImage(), transforms.Resize(size=(28, 28), interpolation=Image.BICUBIC), transforms.ToTensor()]) return transform_mnist def get_transform_svhn(self): transform_svhn = transforms.Compose([transforms.ToTensor()]) return transform_svhn def set_dataset(self): transform_mnist = self.get_transform_mnist() transform_svhn = self.get_transform_svhn() transforms = [transform_mnist, transform_svhn] train = SVHNMNIST(self.flags, self.alphabet, train=True, transform=transforms) test = SVHNMNIST(self.flags, self.alphabet, train=False, transform=transforms) return train, test def set_rec_weights(self): rec_weights = dict() ref_mod_d_size = self.modalities['svhn'].data_size.numel() for k, m_key in enumerate(self.modalities.keys()): mod = self.modalities[m_key] numel_mod = mod.data_size.numel() rec_weights[mod.name] = float(ref_mod_d_size / numel_mod) return rec_weights def set_style_weights(self): weights = dict() weights['mnist'] = self.flags.beta_m1_style weights['svhn'] = self.flags.beta_m2_style weights['text'] = self.flags.beta_m3_style return weights def get_test_samples(self, num_images=10): n_test = self.dataset_test.__len__() samples = [] for i in range(num_images): while True: sample, target = self.dataset_test.__getitem__(random.randint(0, n_test)) if target == i: for k, key in enumerate(sample): sample[key] = sample[key].to(self.flags.device) samples.append(sample) break return samples def mean_eval_metric(self, values): return np.mean(np.array(values)) def get_prediction_from_attr(self, attr, index=None): pred = np.argmax(attr, axis=1).astype(int) return pred def eval_label(self, values, labels, index): pred = self.get_prediction_from_attr(values) return self.eval_metric(labels, pred) ``` #### File: mmvae_hub/mnistsvhntext/MNISTmod.py ```python import os from pathlib import Path import torch from modun.download_utils import download_zip_from_url from modun.file_io import json2dict from mmvae_hub.mnistsvhntext.networks.ConvNetworkImgClfMNIST import ClfImg from mmvae_hub.mnistsvhntext.networks.ConvNetworksImgMNIST import DecoderImg, EncoderImg from mmvae_hub.polymnist.PolymnistMod import PolymnistMod from mmvae_hub.utils.setup.flags_utils import get_config_path class MNIST(PolymnistMod): def __init__(self, flags, name): super().__init__(flags=flags, name=name) self.rec_weight = 1. self.encoder = EncoderImg(flags).to(flags.device) self.decoder = DecoderImg(flags).to(flags.device) self.data_size = torch.Size((1, 28, 28)) self.gen_quality_eval = True self.file_suffix = '.png' def plot_data(self, d): return d.repeat(1, 3, 1, 1) def get_clf(self): if self.flags.use_clf: dir_clf = self.flags.dir_clf if not dir_clf.exists(): download_zip_from_url( url='https://www.dropbox.com/sh/lx8669lyok9ois6/AADM7Cs_QReijyo2kF8xzWqua/trained_classifiers/trained_clfs_mst?dl=1', dest_folder=dir_clf) model_clf = ClfImg() model_clf.load_state_dict( torch.load(os.path.join(self.flags.dir_clf, f"clf_m1"), map_location=self.flags.device)) return model_clf.to(self.flags.device) if __name__ == '__main__': config = json2dict(Path(get_config_path(dataset='mnistsvhntext'))) download_zip_from_url( url='https://www.dropbox.com/sh/lx8669lyok9ois6/AADM7Cs_QReijyo2kF8xzWqua/trained_classifiers/trained_clfs_mst?dl=1', dest_folder=Path(config['dir_clf']).expanduser()) ``` #### File: mnistsvhntext/networks/ConvNetworksImgSVHN.py ```python import torch import torch.nn as nn class EncoderSVHN(nn.Module): def __init__(self, flags): super(EncoderSVHN, self).__init__() self.flags = flags; self.conv1 = nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1, dilation=1); self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1, dilation=1); self.conv3 = nn.Conv2d(64, 64, kernel_size=4, stride=2, padding=1, dilation=1); self.conv4 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=0, dilation=1); self.relu = nn.ReLU(); self.hidden_mu = nn.Linear(in_features=128, out_features=flags.class_dim, bias=True) self.hidden_logvar = nn.Linear(in_features=128, out_features=flags.class_dim, bias=True) def forward(self, x): h = self.conv1(x); h = self.relu(h); h = self.conv2(h); h = self.relu(h); h = self.conv3(h); h = self.relu(h); h = self.conv4(h); h = self.relu(h); h = h.view(h.size(0), -1); latent_space_mu = self.hidden_mu(h); latent_space_logvar = self.hidden_logvar(h); latent_space_mu = latent_space_mu.view(latent_space_mu.size(0), -1); latent_space_logvar = latent_space_logvar.view(latent_space_logvar.size(0), -1); return None, None, latent_space_mu, latent_space_logvar; class DecoderSVHN(nn.Module): def __init__(self, flags): super(DecoderSVHN, self).__init__(); self.flags = flags; self.linear = nn.Linear(flags.class_dim, 128); self.conv1 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=1, padding=0, dilation=1); self.conv2 = nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1, dilation=1); self.conv3 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1, dilation=1); self.conv4 = nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1, dilation=1); self.relu = nn.ReLU(); def forward(self, class_latent_space): z = self.linear(class_latent_space) z = z.view(z.size(0), z.size(1), 1, 1); x_hat = self.relu(z); x_hat = self.conv1(x_hat); x_hat = self.relu(x_hat); x_hat = self.conv2(x_hat); x_hat = self.relu(x_hat); x_hat = self.conv3(x_hat); x_hat = self.relu(x_hat); x_hat = self.conv4(x_hat); return x_hat, torch.tensor(0.75).to(z.device); ``` #### File: networks/flows/AffineFlows.py ```python import FrEIA.framework as Ff import FrEIA.modules as Fm import torch from torch import nn from mmvae_hub.utils.Dataclasses.Dataclasses import PlanarFlowParams class AffineFlow(nn.Module): """Affine coupling Flow""" def __init__(self, class_dim, num_flows, coupling_dim, nbr_coupling_block_layers:int): super().__init__() self.nbr_coupling_block_layers = nbr_coupling_block_layers self.num_flows = num_flows self.coupling_dim = coupling_dim if num_flows > 0: # a simple chain of operations is collected by ReversibleSequential # see here for more details: https://vll-hd.github.io/FrEIA/_build/html/FrEIA.modules.html#coupling-blocks self.flow = Ff.SequenceINN(class_dim) for _ in range(num_flows): self.flow.append(Fm.AllInOneBlock, subnet_constructor=self.subnet_fc, permute_soft=True) def forward(self, z0, flow_params=None): if self.num_flows == 0: return z0, torch.zeros_like(z0) zk, log_det_jacobian = self.flow(z0) return zk, log_det_jacobian def rev(self, zk): return self.flow(zk, rev=True) def get_flow_params(self, h=None): # for compat with amortized flows return PlanarFlowParams(**{k: None for k in ['u', 'w', 'b']}) def subnet_fc(self, dims_in, dims_out): block = [nn.Linear(dims_in, self.coupling_dim), nn.ReLU()] for _ in range(self.nbr_coupling_block_layers): block.extend([nn.Linear(self.coupling_dim, self.coupling_dim), nn.ReLU()]) block.append(nn.Linear(self.coupling_dim, dims_out)) return nn.Sequential(*block) ``` #### File: mmvae_hub/networks/GfMVaes.py ```python import typing import torch import torch.distributions as distr import torch.nn.functional as F from torch.distributions import MultivariateNormal from mmvae_hub.evaluation.divergence_measures.kl_div import log_normal_diag, log_normal_standard from mmvae_hub.evaluation.divergence_measures.mm_div import GfMMMDiv, GfMoPDiv, PGfMMMDiv, BaseMMDiv, MoFoGfMMMDiv, \ BMoGfMMMDiv from mmvae_hub.networks.BaseMMVae import BaseMMVAE from mmvae_hub.networks.MixtureVaes import MoPoEMMVae from mmvae_hub.networks.flows.AffineFlows import AffineFlow from mmvae_hub.networks.iwVaes import log_mean_exp, iwMMVAE from mmvae_hub.networks.utils.utils import get_distr from mmvae_hub.utils.Dataclasses.gfmDataclasses import SubsetMoFoGfM, JointLatentsMoGfM, \ JointLatentsGfMoP, JointLatentsMoFoGfM from mmvae_hub.utils.Dataclasses.iwdataclasses import * from mmvae_hub.utils.fusion_functions import subsets_from_batchmods, mixture_component_selection_embedding from torch.distributions.normal import Normal class GfMVAE(BaseMMVAE): def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) self.mm_div = GfMMMDiv() self.flow = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsGfM: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) subset_embeddings = {} # pass all experts through the flow enc_mod_zks = {mod_key: self.flow(distr.latents_class.reparameterize())[0] for mod_key, distr in enc_mods.items()} # concatenate mus and logvars for every modality in each subset for s_key in batch_subsets: subset_zks = torch.Tensor().to(self.flags.device) for mod in self.subsets[s_key]: subset_zks = torch.cat((subset_zks, enc_mod_zks[mod.name].unsqueeze(dim=0)), dim=0) # mean of zks z_mean = torch.mean(subset_zks, dim=0) # calculate inverse flow z_subset, _ = self.flow.rev(z_mean) subset_embeddings[s_key] = z_subset if len(self.subsets[s_key]) == len(batch_mods): joint_embedding = JointEmbeddingFoEM(embedding=z_subset, mod_strs=s_key.split('_')) return JointLatentsGfM(joint_embedding=joint_embedding, subsets=subset_embeddings) class iwMoGfMVAE_old(iwMMVAE, BaseMMVAE): """Importance Weighted Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.mm_div = GfMMMDiv(flags=flags, K=self.K) self.flow = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim, nbr_coupling_block_layers=flags.nbr_coupling_block_layers) def reparam_with_eps(self, distr: Distr, eps: Tensor): """Apply the reparameterization trick on distr with given epsilon""" std = distr.logvar.mul(0.5).exp_() # print(std.max()) return eps.mul(std).add_(distr.mu) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsGfM: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) subset_samples = {} # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.mu.shape[0] # sample K*bs samples from prior epss = MultivariateNormal(torch.zeros(self.flags.class_dim, device=self.flags.device), torch.eye(self.flags.class_dim, device=self.flags.device)). \ sample((self.K * batch_size,)).reshape((self.K, batch_size, self.flags.class_dim)) transformed_enc_mods = { mod_key: self.flow( torch.cat(tuple(self.reparam_with_eps(distr.latents_class, epss[k_idx]).unsqueeze(dim=0) for k_idx in range(self.K)), dim=0).reshape((self.K * batch_size, self.flags.class_dim)))[ 0] for mod_key, distr in enc_mods.items()} for s_key in batch_subsets: subset_zks = torch.Tensor().to(self.flags.device) for mod in self.subsets[s_key]: subset_zks = torch.cat((subset_zks, transformed_enc_mods[mod.name].unsqueeze(dim=0)), dim=0) # mean of zks z_mean = torch.mean(subset_zks, dim=0) # calculate inverse flow samples = self.flow.rev(z_mean)[0] samples = samples subset_samples[s_key] = samples subset_samples = {k: samples.reshape((self.K, batch_size, self.flags.class_dim)) for k, samples in subset_samples.items()} z_joint = torch.cat([v.squeeze() for _, v in subset_samples.items()], dim=0) joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfM(joint_embedding=joint_embedding, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, epss=epss) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[ float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets epss = forward_results.joint_latents.epss losses = [] klds = {} log_probs = {} for mod_str, subset_samples in subsets.items(): epss = torch.where(epss.abs() <= 0.001, torch.tensor(0.01, device=self.flags.device), epss) kl_div = (subset_samples * torch.log((subset_samples / epss).abs() + 1e-4)).mean(-1) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[mod_str].items()] lpx_z = torch.stack(lpx_z).sum(0) loss = lpx_z + self.flags.beta * kl_div losses.append(loss) log_probs[mod_str] = lpx_z.mean() klds[mod_str] = self.flags.beta * log_mean_exp(kl_div).sum() total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds def conditioned_generation(self, input_samples: dict, subset_key: str, style=None): """ Generate samples conditioned with input samples for a given subset. subset_key str: The key indicating which subset is used for the generation. """ # infer latents from batch enc_mods, joint_latents = self.inference(input_samples) subset_embedding = joint_latents.subsets[subset_key].mean(dim=0) cond_mod_in = ReparamLatent(content=subset_embedding, style=style) return self.generate_from_latents(cond_mod_in) class BaseiwMoGfMVAE(iwMMVAE, BaseMMVAE): """Base class for the Importance Weighted Mixture of Generalized f-Means VAE methods""" def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.mm_div = GfMMMDiv(flags=flags, K=self.K) self.flow = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim, nbr_coupling_block_layers=flags.nbr_coupling_block_layers) self.prior = Normal(torch.zeros((self.flags.batch_size, self.flags.class_dim), device=self.flags.device), torch.ones((self.flags.batch_size, self.flags.class_dim), device=self.flags.device)) self.qz_x = get_distr(flags.qz_x) # posterior def decode(self, enc_mods: Mapping[str, BaseEncMod], joint_latents: iwJointLatents) -> dict: """Decoder outputs each reconstructed modality as a dict.""" rec_mods = {} for subset_str, subset in joint_latents.subsets.items(): subset_samples = subset[0].reshape((self.K * self.flags.batch_size, self.flags.class_dim)) rec_mods[subset_str] = { out_mod_str: dec_mod.calc_likelihood(class_embeddings=subset_samples, unflatten=(self.K, self.flags.batch_size) ) for out_mod_str, dec_mod in self.modalities.items() } return rec_mods def encode(self, input_batch: Mapping[str, Tensor]) -> Mapping[str, BaseEncMod]: enc_mods = {} for mod_str, mod in self.modalities.items(): if mod_str in input_batch: enc_mods[mod_str] = {} _, _, class_mu, class_logvar = mod.encoder(input_batch[mod_str]) latents_class = Normal(class_mu, F.softmax(class_logvar, dim=-1) * class_logvar.size(-1) + 1e-6) enc_mods[mod_str] = BaseEncMod(latents_class=latents_class) return enc_mods def conditioned_generation(self, input_samples: dict, subset_key: str, style=None): """ Generate samples conditioned with input samples for a given subset. subset_key str: The key indicating which subset is used for the generation. """ # infer latents from batch enc_mods, joint_latents = self.inference(input_samples) subset_embedding = joint_latents.subsets[subset_key][0].mean(dim=0) cond_mod_in = ReparamLatent(content=subset_embedding, style=style) return self.generate_from_latents(cond_mod_in) def generate_sufficient_statistics_from_latents(self, latents: ReparamLatent) -> Mapping[str, Distribution]: cond_gen = {} for mod_str, mod in self.modalities.items(): content = latents.content cond_gen_m = mod.px_z(*mod.decoder(content)) cond_gen[mod_str] = cond_gen_m return cond_gen class iwMoGfMVAE(BaseiwMoGfMVAE): """Importance Weighted Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfM2: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.loc.shape[0] # M*k samples from the unimodal posteriors zmss = {mod_key: enc_mod.latents_class.rsample((self.K,)) for mod_key, enc_mod in enc_mods.items()} # transformed enc mods transformed_enc_mods = {mod_key: self.flow(zms.reshape(self.K * batch_size, self.flags.class_dim)) for mod_key, zms in zmss.items()} subset_samples = {} # approximations of the distributions of the sum of random variables (srv) srv_proxies = {} z_Gfs = {} z_joint = torch.Tensor().to(self.flags.device) for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: # subset samples are tuples: (samples, log_det_J) subset_samples[s_key] = (zmss[s_key], 0) srv_proxies[s_key] = enc_mods[s_key].latents_class z_Gf = zmss[s_key] z_joint = torch.cat([z_joint, zmss[s_key]]) else: # sum of random variables subset_tf_enc_mods = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[s_key]]) z_Gf = subset_tf_enc_mods.mean(dim=0) # calculate inverse flow zss, log_det_J = self.flow.rev(z_Gf) # approximate the sum of random variables with a gaussian z_Gf = z_Gf.reshape(self.K, -1, self.flags.class_dim) subset_tf_enc_mods = subset_tf_enc_mods.reshape(subset_tf_enc_mods.shape[0], self.K, -1, self.flags.class_dim) # take the average mean over the K samples and average std srv_proxies[s_key] = Normal(z_Gf.mean(0), subset_tf_enc_mods.std(0).mean(0)) subset_samples[s_key] = (zss.reshape((self.K, batch_size, self.flags.class_dim)), log_det_J.reshape((self.K, batch_size))) z_joint = torch.cat([z_joint, subset_samples[s_key][0]]) z_Gfs[s_key] = z_Gf joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfM2(joint_embedding=joint_embedding, z_Gfs=z_Gfs, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, srv_proxies=srv_proxies) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets enc_mods = forward_results.enc_mods losses = [] klds = {} log_probs = {} for sub_str, subset_samples in subsets.items(): # distribution of sum of random variables inside f-mean Gf = forward_results.joint_latents.srv_proxies[sub_str] z_Gf = forward_results.joint_latents.z_Gfs[sub_str] # print('z_Gf: ', z_Gf.mean()) lqz_x = Gf.log_prob(z_Gf).sum(-1) + subset_samples[1] # print('lqz_x: ', lqz_x.mean()) lpz = self.prior.log_prob(subset_samples[0]).sum(-1) d_kl = lqz_x - lpz lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) # loss = -(lpx_z - (lqz_x - lpz)) if self.flags.beta == 0: loss = lpx_z else: loss = lpx_z - self.flags.beta * d_kl # print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = d_kl.mean() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then sum over number of subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoGfMVAE2_(BaseiwMoGfMVAE): """Importance Weighted Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfM2: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.loc.shape[0] # M*k samples from the unimodal posteriors zmss = {mod_key: enc_mod.latents_class.rsample((self.K,)) for mod_key, enc_mod in enc_mods.items()} # transformed enc mods transformed_enc_mods = {mod_key: self.flow(zms.reshape(self.K * batch_size, self.flags.class_dim)) for mod_key, zms in zmss.items()} subset_samples = {} # approximations of the distributions of the sum of random variables (srv) srv_proxies = {} z_Gfs = {} z_joint = torch.Tensor().to(self.flags.device) for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: # subset samples are tuples: (samples, log_det_J) subset_samples[s_key] = (zmss[s_key], 0) srv_proxies[s_key] = enc_mods[s_key].latents_class z_Gf = zmss[s_key] z_joint = torch.cat([z_joint, zmss[s_key]]) else: # sum of random variables z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[s_key]]).mean(dim=0) # calculate inverse flow zss, log_det_J = self.flow.rev(z_Gf) z_Gf = z_Gf.reshape(self.K, -1, self.flags.class_dim) # approximate the subset posterior with a gaussian srv_proxies[s_key] = Normal(z_Gf.mean(0), z_Gf.std(0) + 1e-6) subset_samples[s_key] = (zss.reshape((self.K, batch_size, self.flags.class_dim)), log_det_J.reshape((self.K, batch_size))) z_joint = torch.cat([z_joint, subset_samples[s_key][0]]) z_Gfs[s_key] = z_Gf joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfM2(joint_embedding=joint_embedding, z_Gfs=z_Gfs, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, srv_proxies=srv_proxies) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets enc_mods = forward_results.enc_mods losses = [] klds = {} log_probs = {} for sub_str, subset_samples in subsets.items(): # distribution of sum of random variables inside f-mean Gf = forward_results.joint_latents.srv_proxies[sub_str] z_Gf = forward_results.joint_latents.z_Gfs[sub_str] # print('z_Gf: ', z_Gf.mean()) lqz_x = Gf.log_prob(z_Gf).sum(-1) + subset_samples[1] # print('lqz_x: ', lqz_x.mean()) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) lpz = self.prior.log_prob(subset_samples[0]).sum(-1) d_kl = lqz_x - lpz # loss = -(lpx_z - (lqz_x - lpz)) loss = lpx_z - self.flags.beta * d_kl # print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = d_kl.mean() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then sum over number of subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoGfMVAE4(BaseiwMoGfMVAE): """Importance Weighted Mixture of Generalized f-Means VAE where the joint distribution is assumed to be gaussian with inferred mean ind std.""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfM2: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.loc.shape[0] # M*k samples from the unimodal posteriors zmss = {mod_key: enc_mod.latents_class.rsample((self.K,)) for mod_key, enc_mod in enc_mods.items()} # transformed enc mods transformed_enc_mods = {mod_key: self.flow(zms.reshape(self.K * batch_size, self.flags.class_dim)) for mod_key, zms in zmss.items()} subset_samples = {} # approximations of the distributions of the sum of random variables (srv) srv_proxies = {} z_Gfs = {} z_joint = torch.Tensor().to(self.flags.device) for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: # subset samples are tuples: (samples, log_det_J) subset_samples[s_key] = (zmss[s_key], 0) srv_proxies[s_key] = enc_mods[s_key].latents_class z_Gf = zmss[s_key] z_joint = torch.cat([z_joint, zmss[s_key]]) else: # sum of random variables z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[s_key]]).mean(dim=0) # calculate inverse flow zss, log_det_J = self.flow.rev(z_Gf) # approximate the sum of random variables with a gaussian z_Gf = z_Gf.reshape(self.K, -1, self.flags.class_dim) srv_proxies[s_key] = None subset_samples[s_key] = (zss.reshape((self.K, batch_size, self.flags.class_dim)), log_det_J.reshape((self.K, batch_size))) z_joint = torch.cat([z_joint, subset_samples[s_key][0]]) z_Gfs[s_key] = z_Gf joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfM2(joint_embedding=joint_embedding, z_Gfs=z_Gfs, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, srv_proxies=srv_proxies) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets enc_mods = forward_results.enc_mods losses = [] klds = {} log_probs = {} for sub_str, subset_samples in subsets.items(): subset_posterior = Normal(loc=subset_samples[0].mean(0), scale=subset_samples[0].std(0) + 1e-6) lqz_x = subset_posterior.log_prob(subset_samples[0]).sum(-1) + subset_samples[1] # print('lqz_x: ', lqz_x.mean()) lpz = self.prior.log_prob(subset_samples[0]).sum(-1) d_kl = lqz_x - lpz lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) # loss = -(lpx_z - (lqz_x - lpz)) if self.flags.beta == 0: loss = lpx_z else: loss = lpx_z - self.flags.beta * d_kl # print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = d_kl.mean() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then sum over number of subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoGfMVAE_amortized(BaseiwMoGfMVAE): """Importance Weighted Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfMVAE_amortized: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.loc.shape[0] # M*k samples from the unimodal posteriors zmss = {mod_key: enc_mod.latents_class.rsample((self.K,)) for mod_key, enc_mod in enc_mods.items()} # transformed enc mods transformed_enc_mods = {mod_key: self.flow(zms.reshape(self.K * batch_size, self.flags.class_dim)) for mod_key, zms in zmss.items()} priors_tf_enc_mods = { mod_key: Normal(self.flow(enc_mod.latents_class.loc)[0], torch.ones(self.flags.class_dim, device=self.flags.device)) for mod_key, enc_mod in enc_mods.items() } subset_samples = {} z_joint = torch.Tensor().to(self.flags.device) for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: # subset samples are tuples: (samples, log_det_J) subset_samples[s_key] = (zmss[s_key], 0) z_joint = torch.cat([z_joint, zmss[s_key]]) else: # sum of random variables z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[s_key]]).mean(dim=0) # calculate inverse flow zss, log_det_J = self.flow.rev(z_Gf) subset_samples[s_key] = (zss.reshape((self.K, batch_size, self.flags.class_dim)), log_det_J.reshape((self.K, batch_size))) # reshape the transformed_enc_mods transformed_enc_mods = { k: ( samples[0].reshape((self.K, batch_size, self.flags.class_dim)), samples[1].reshape((self.K, batch_size))) for k, samples in transformed_enc_mods.items()} joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfMVAE_amortized(joint_embedding=joint_embedding, transformed_enc_mods=transformed_enc_mods, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, zmss=zmss, priors_tf_enc_mods=priors_tf_enc_mods) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets enc_mods = forward_results.enc_mods transformed_enc_mods = forward_results.joint_latents.transformed_enc_mods zmss = forward_results.joint_latents.zmss losses = [] klds = {} log_probs = {} # amortized_priors = torch.stack([Normal(transformed_enc_mod, # torch.ones(self.flags.batch_size, self.flags.class_dim, device=self.flags.device)) for transformed_enc_mod in ]) # minimize divergence between f(zm) and amortized prior interm_loss = torch.stack([( enc_mods[key].latents_class.log_prob(zmss[key]).sum(-1) - forward_results.joint_latents.priors_tf_enc_mods[key].log_prob(transformed_enc_mods[key][0]).sum(-1) - transformed_enc_mods[key][1] ) for key in enc_mods]).sum(0) for sub_str, subset_samples in subsets.items(): # subset size is the number of modalities included in the subset subset_size = len(self.subsets[sub_str]) if subset_size == 1: Gf = enc_mods[sub_str].latents_class z_Gf = zmss[sub_str] else: # distribution of sum of random variables inside f-mean Gf = Normal( torch.stack( [transformed_enc_mod[0].mean(0) for _, transformed_enc_mod in transformed_enc_mods.items()] ).mean(0), torch.tensor(1 / subset_size).sqrt() * torch.ones(self.flags.batch_size, self.flags.class_dim, device=self.flags.device) ) z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[sub_str]]).mean(dim=0) # print('z_Gf: ', z_Gf.mean()) lqz_x = Gf.log_prob(z_Gf).sum(-1) + subset_samples[1] # print('lqz_x: ', lqz_x.mean()) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) lpz = self.prior.log_prob(subset_samples[0]).sum(-1) d_kl = lqz_x - lpz # loss = -(lpx_z - (lqz_x - lpz)) if self.flags.beta == 0: loss = lpx_z else: loss = lpx_z - self.flags.beta * d_kl # print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = d_kl.mean() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then sum over number of subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() + 2.0 * interm_loss.sum() # print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class MoGfMVAE_amortized(iwMoGfMVAE_amortized): """Amortized Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): iwMoGfMVAE_amortized.__init__(self, exp, flags, modalities, subsets) self.K = 1 class iwMoGfMVAE_multiloss(BaseiwMoGfMVAE): """Importance Weighted Mixture of Generalized f-Means VAE with an additional loss function that pushes the transformed enc mods to be a std normal distr""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfMVAE_amortized: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.loc.shape[0] # M*k samples from the unimodal posteriors zmss = {mod_key: enc_mod.latents_class.rsample((self.K,)) for mod_key, enc_mod in enc_mods.items()} # transformed enc mods transformed_enc_mods = {mod_key: self.flow(zms.reshape(self.K * batch_size, self.flags.class_dim)) for mod_key, zms in zmss.items()} subset_samples = {} z_joint = torch.Tensor().to(self.flags.device) for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: # subset samples are tuples: (samples, log_det_J) subset_samples[s_key] = (zmss[s_key], 0) z_joint = torch.cat([z_joint, zmss[s_key]]) else: # sum of random variables z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[s_key]]).mean(dim=0) # calculate inverse flow zss, log_det_J = self.flow.rev(z_Gf) subset_samples[s_key] = (zss.reshape((self.K, batch_size, self.flags.class_dim)), log_det_J.reshape((self.K, batch_size))) # reshape the transformed_enc_mods transformed_enc_mods = { k: ( samples[0].reshape((self.K, batch_size, self.flags.class_dim)), samples[1].reshape((self.K, batch_size))) for k, samples in transformed_enc_mods.items()} joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfMVAE_amortized(joint_embedding=joint_embedding, transformed_enc_mods=transformed_enc_mods, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, zmss=zmss, priors_tf_enc_mods=None) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets enc_mods = forward_results.enc_mods transformed_enc_mods = forward_results.joint_latents.transformed_enc_mods zmss = forward_results.joint_latents.zmss losses = [] klds = {} log_probs = {} # minimize divergence between f(zm) and amortized prior interm_loss = torch.stack([( enc_mods[key].latents_class.log_prob(zmss[key]).sum(-1) - self.prior.log_prob(transformed_enc_mods[key][0]).sum(-1) - transformed_enc_mods[key][1] ) for key in enc_mods]).sum(0) for sub_str, subset_samples in subsets.items(): # subset size is the number of modalities included in the subset subset_size = len(self.subsets[sub_str]) if subset_size == 1: Gf = enc_mods[sub_str].latents_class z_Gf = zmss[sub_str] else: # distribution of sum of random variables inside f-mean Gf = Normal(torch.zeros(self.flags.batch_size, self.flags.class_dim, device=self.flags.device), torch.tensor(1 / subset_size).sqrt() * torch.ones(self.flags.batch_size, self.flags.class_dim, device=self.flags.device) ) z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[sub_str]]).mean(dim=0) # print('z_Gf: ', z_Gf.mean()) lqz_x = Gf.log_prob(z_Gf).sum(-1) + subset_samples[1] # print('lqz_x: ', lqz_x.mean()) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) lpz = self.prior.log_prob(subset_samples[0]).sum(-1) d_kl = lqz_x - lpz # loss = -(lpx_z - (lqz_x - lpz)) if self.flags.beta == 0: loss = lpx_z else: loss = lpx_z - self.flags.beta * d_kl # print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = d_kl.mean() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then sum over number of subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() + 2.0 * interm_loss.sum() # print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoGfMVAE_multiloss_(BaseiwMoGfMVAE): """Importance Weighted Mixture of Generalized f-Means VAE with an additional loss function that pushes the transformed enc mods to be a std normal distr""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfMVAE_amortized: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.loc.shape[0] # M*k samples from the unimodal posteriors zmss = {mod_key: enc_mod.latents_class.rsample((self.K,)) for mod_key, enc_mod in enc_mods.items()} # transformed enc mods transformed_enc_mods = {mod_key: self.flow(zms.reshape(self.K * batch_size, self.flags.class_dim)) for mod_key, zms in zmss.items()} subset_samples = {} z_joint = torch.Tensor().to(self.flags.device) for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: # subset samples are tuples: (samples, log_det_J) subset_samples[s_key] = (zmss[s_key], 0) z_joint = torch.cat([z_joint, zmss[s_key]]) else: # sum of random variables z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[s_key]]).mean(dim=0) # calculate inverse flow zss, log_det_J = self.flow.rev(z_Gf) subset_samples[s_key] = (zss.reshape((self.K, batch_size, self.flags.class_dim)), log_det_J.reshape((self.K, batch_size))) # reshape the transformed_enc_mods transformed_enc_mods = { k: ( samples[0].reshape((self.K, batch_size, self.flags.class_dim)), samples[1].reshape((self.K, batch_size))) for k, samples in transformed_enc_mods.items()} joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfMVAE_amortized(joint_embedding=joint_embedding, transformed_enc_mods=transformed_enc_mods, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods, zmss=zmss, priors_tf_enc_mods=None) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets enc_mods = forward_results.enc_mods transformed_enc_mods = forward_results.joint_latents.transformed_enc_mods zmss = forward_results.joint_latents.zmss losses = [] klds = {} log_probs = {} # minimize divergence between f(zm) and amortized prior interm_loss = torch.stack([( enc_mods[key].latents_class.log_prob(zmss[key]).sum(-1) - self.prior.log_prob(transformed_enc_mods[key][0]).sum(-1) - transformed_enc_mods[key][1] ) for key in enc_mods]).sum(0) for sub_str, subset_samples in subsets.items(): # subset size is the number of modalities included in the subset subset_size = len(self.subsets[sub_str]) if subset_size == 1: Gf = enc_mods[sub_str].latents_class z_Gf = zmss[sub_str] else: # distribution of sum of random variables inside f-mean Gf = Normal(torch.zeros(self.flags.batch_size, self.flags.class_dim, device=self.flags.device), torch.tensor(1 / subset_size).sqrt() * torch.ones(self.flags.batch_size, self.flags.class_dim, device=self.flags.device) ) z_Gf = torch.stack([transformed_enc_mods[mod.name][0] for mod in self.subsets[sub_str]]).mean(dim=0) # print('z_Gf: ', z_Gf.mean()) lqz_x = Gf.log_prob(z_Gf).sum(-1) + subset_samples[1] # print('lqz_x: ', lqz_x.mean()) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) lpz = self.prior.log_prob(subset_samples[0]).sum(-1) d_kl = lpz - lqz_x # loss = -(lpx_z - (lqz_x - lpz)) if self.flags.beta == 0: loss = lpx_z else: loss = lpx_z - self.flags.beta * d_kl # print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = d_kl.mean() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then sum over number of subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() + 2.0 * interm_loss.sum() # print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoGfMVAE3(iwMMVAE, BaseMMVAE): """Importance Weighted Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.mm_div = GfMMMDiv(flags=flags, K=self.K) self.flow = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim, nbr_coupling_block_layers=flags.nbr_coupling_block_layers) self.prior = Normal(torch.zeros(self.flags.class_dim, device=self.flags.device), torch.ones(self.flags.class_dim, device=self.flags.device)) def reparam_with_eps(self, distr: Distr, eps: Tensor): """Apply the reparameterization trick on distr with given epsilon""" std = distr.logvar.mul(0.5).exp_() # print(std.max()) return eps.mul(std).add_(distr.mu) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsiwMoGfM2: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) # batch_size is not always equal to flags.batch_size batch_size = enc_mods[[mod_str for mod_str in enc_mods][0]].latents_class.mu.shape[0] transformed_enc_mods = { mod_key: self.flow( torch.cat(tuple(distr.latents_class.reparameterize().unsqueeze(dim=0) for _ in range(self.K)), dim=0).reshape((self.K * batch_size, self.flags.class_dim))) for mod_key, distr in enc_mods.items()} subset_samples = {} for s_key in batch_subsets: subset_zks = torch.Tensor().to(self.flags.device) for mod in self.subsets[s_key]: subset_zks = torch.cat((subset_zks, transformed_enc_mods[mod.name][0].unsqueeze(dim=0)), dim=0) # mean of zks z_mean = torch.mean(subset_zks, dim=0) # calculate inverse flow samples = self.flow.rev(z_mean) subset_samples[s_key] = samples subset_samples = {k: ( samples[0].reshape((self.K, batch_size, self.flags.class_dim)), samples[1].reshape((self.K, batch_size))) for k, samples in subset_samples.items()} # z_joint has nbr_subsets*K samples z_joint = torch.cat([v[0] for _, v in subset_samples.items()], dim=0) joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsiwMoGfM2(joint_embedding=joint_embedding, transformed_enc_mods=transformed_enc_mods, subsets=subset_samples, subset_samples=subset_samples, enc_mods=enc_mods) def calculate_loss(self, forward_results, batch_d: dict) -> tuple[float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets transformed_enc_mods = forward_results.joint_latents.transformed_enc_mods enc_mods = forward_results.enc_mods losses = [] klds = {} log_probs = {} logprobs_tf_encmods = { mod_k: Normal(enc_mods[mod_k].latents_class.mu, enc_mods[mod_k].latents_class.logvar.exp()).log_prob( transformed_enc_mod[0].reshape(self.K, self.flags.batch_size, self.flags.class_dim)).sum(-1) - transformed_enc_mod[1].reshape(self.K, self.flags.batch_size) for mod_k, transformed_enc_mod in transformed_enc_mods.items()} for sub_str, subset_samples in subsets.items(): lMz_x = torch.stack( [logprobs_tf_encmods[mod_k] for mod_k in sub_str.split('_')]).mean(0) lqz_x = lMz_x + subset_samples[1] lpz = self.prior.log_prob(subset_samples[0]).sum(-1) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[sub_str].items()] # sum over #mods in subset lpx_z = torch.stack(lpx_z).sum(0) d_kl = lqz_x - lpz # loss = -(lpx_z - (lqz_x - lpz)) loss = lpx_z - self.flags.beta * d_kl print('dkl: ', d_kl.mean()) print('lMz_x: ', lMz_x) print('lpx_z: ', lpx_z) print('lqz_x: ', lqz_x) print('lpz: ', lpz) print('loss: ', loss.mean()) losses.append(loss) log_probs[sub_str] = lpx_z.mean() klds[sub_str] = lpx_z.sum() # concat over k samples (get k*number of subsets) as last dim # take log_mean_exp over batch size # log_mean_exp over k, then mean over subsets total_loss = -log_mean_exp(torch.cat(losses, 1)).mean() print('total loss: ', total_loss) joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds def conditioned_generation(self, input_samples: dict, subset_key: str, style=None): """ Generate samples conditioned with input samples for a given subset. subset_key str: The key indicating which subset is used for the generation. """ # infer latents from batch enc_mods, joint_latents = self.inference(input_samples) subset_embedding = joint_latents.subsets[subset_key][0].mean(dim=0) cond_mod_in = ReparamLatent(content=subset_embedding, style=style) return self.generate_from_latents(cond_mod_in) def generate_sufficient_statistics_from_latents(self, latents: ReparamLatent) -> Mapping[str, Distribution]: cond_gen = {} for mod_str, mod in self.modalities.items(): style_m = latents.style[mod_str] content = latents.content cond_gen_m = mod.likelihood(*mod.decoder(style_m, content)) cond_gen[mod_str] = cond_gen_m return cond_gen class MoGfMVAE(iwMoGfMVAE): """Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): iwMoGfMVAE.__init__(self, exp, flags, modalities, subsets) self.K = 1 class MoFoGfMVAE(BaseMMVAE): """Mixture of Flow of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) self.mm_div = MoFoGfMMMDiv() self.gfm_flow = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim) self.flow = AffineFlow(flags.class_dim, flags.num_flows, coupling_dim=flags.coupling_dim) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsMoFoGfM: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) subset_embeddings = {} # pass all experts through the flow enc_mod_zks = {mod_key: self.gfm_flow(distr.latents_class.reparameterize())[0] for mod_key, distr in enc_mods.items()} for s_key in batch_subsets: subset_zks = torch.Tensor().to(self.flags.device) for mod in self.subsets[s_key]: subset_zks = torch.cat((subset_zks, enc_mod_zks[mod.name].unsqueeze(dim=0)), dim=0) # mean of zks z_mean = torch.mean(subset_zks, dim=0) # calculate inverse flow z0_subset, _ = self.gfm_flow.rev(z_mean) # pass subset through flow zk_subset, log_det_j = self.flow.forward(z0_subset) subset_embeddings[s_key] = SubsetMoFoGfM(z0=z0_subset, zk=zk_subset, log_det_j=log_det_j) # select expert for z_joint subsets = {k: v.zk for k, v in subset_embeddings.items()} z_joint = mixture_component_selection_embedding(subset_embeds=subsets, s_key='all', flags=self.flags) joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs=[k for k in batch_subsets]) return JointLatentsMoFoGfM(joint_embedding=joint_embedding, subsets=subset_embeddings) class BMoGfMVAE(MoGfMVAE): """ Bounded Mixture of Generalized f-Means VAE""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) self.mm_div = BMoGfMMMDiv() class GfMoPVAE(MoPoEMMVae): """GfM of Product of experts VAE""" def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) self.mm_div = GfMoPDiv() self.flow = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim, nbr_coupling_block_layers=flags.nbr_coupling_block_layers) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatentsGfM: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) distr_subsets = {} for s_key in batch_subsets: distr_subset = self.fuse_subset(enc_mods, s_key) distr_subsets[s_key] = distr_subset z_joint = self.gfm(distr_subsets) joint_embedding = JointEmbeddingFoEM(embedding=z_joint, mod_strs='joint') return JointLatentsGfMoP(joint_embedding=joint_embedding, subsets=distr_subsets) def gfm(self, distr_subsets: Mapping[str, Distr]) -> Tensor: """Merge subsets with a generalized f mean.""" # pass all subset experts through the flow enc_subset_zks = {s_key: self.encode_expert(distr_subset) for s_key, distr_subset in distr_subsets.items()} # get the mixture of each encoded subset z_mixture = mixture_component_selection_embedding(enc_mods=enc_subset_zks, s_key='all', flags=self.flags) # question: should I normalize by the number of modalities here? # pass the mixture backwards through the flow. z_joint, _ = self.flow.rev(z_mixture) return z_joint def encode_expert(self, expert_distr: Distr) -> EncModGfM: zk, _ = self.flow(expert_distr.reparameterize()) return EncModGfM(zk=zk) class PGfMVAE(BaseMMVAE): """ Params Generalized f-Means VAE: class of methods where the means and logvars of all experts are fused with a generalized f-mean. """ def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) self.mm_div = PGfMMMDiv() self.flow_mus = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim, nbr_coupling_block_layers=flags.nbr_coupling_block_layers) self.flow_logvars = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim, nbr_coupling_block_layers=flags.nbr_coupling_block_layers) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatents: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) distr_subsets = {} # pass all experts through the flow enc_mod_transformed = {mod_key: self.encode_expert(enc_mod.latents_class) for mod_key, enc_mod in enc_mods.items()} # concatenate mus and logvars for every modality in each subset for s_key in batch_subsets: if len(self.subsets[s_key]) == 1: q_subset = enc_mods[s_key].latents_class else: q_subset = self.gfm(distrs=[enc_mod_transformed[mod.name] for mod in self.subsets[s_key]]) distr_subsets[s_key] = q_subset if len(self.subsets[s_key]) == len(batch_mods): joint_distr = q_subset fusion_subsets_keys = s_key.split('_') joint_distr.mod_strs = fusion_subsets_keys return JointLatents(fusion_subsets_keys, joint_distr=joint_distr, subsets=distr_subsets) def gfm(self, distrs: typing.List[Distr]) -> Distr: mus = torch.Tensor().to(self.flags.device) logvars = torch.Tensor().to(self.flags.device) for distr in distrs: mus = torch.cat((mus, distr.mu.unsqueeze(dim=0)), dim=0) logvars = torch.cat((logvars, distr.logvar.unsqueeze(dim=0)), dim=0) mu_average = torch.mean(mus, dim=0) logvar_average = torch.mean(logvars, dim=0) mu_gfm, _ = self.flow_mus.rev(mu_average) logvar_gfm, _ = self.flow_logvars.rev(logvar_average) return Distr(mu=mu_gfm, logvar=logvar_gfm) def encode_expert(self, expert_distr: Distr) -> Distr: mu_k, _ = self.flow_mus(expert_distr.mu) logvar_k, _ = self.flow_logvars(expert_distr.logvar) return Distr(mu=mu_k, logvar=logvar_k) class PGfMoPVAE(BaseMMVAE): """ Params Generalized f-Means of Product of Experts VAE: class of methods where the means and logvars of all experts are fused with a generalized f-mean. """ def __init__(self, exp, flags, modalities, subsets): BaseMMVAE.__init__(self, exp, flags, modalities, subsets) self.mm_div = PGfMMMDiv() self.flow_mus = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim) self.flow_logvars = AffineFlow(flags.class_dim, flags.num_gfm_flows, coupling_dim=flags.coupling_dim) def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatents: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) distr_subsets = {} fusion_subsets_keys = [] for s_key in batch_subsets: distr_subset = self.fuse_subset(enc_mods, s_key) distr_subsets[s_key] = distr_subset fusion_subsets_keys.append(s_key) joint_distr = self.gfm(distr_subsets) return JointLatents(fusion_subsets_keys, joint_distr=joint_distr, subsets=distr_subsets) def gfm(self, distrs: Mapping[str, Distr]) -> Distr: mus = torch.Tensor().to(self.flags.device) logvars = torch.Tensor().to(self.flags.device) # pass all mus and sigmas of subsets through flows and concatenate them for _, distr in distrs.items(): mu_k, _ = self.flow_mus(distr.mu) logvar_k, _ = self.flow_logvars(distr.logvar) mus = torch.cat((mus, mu_k.unsqueeze(dim=0)), dim=0) logvars = torch.cat((logvars, logvar_k.unsqueeze(dim=0)), dim=0) mu_average = torch.mean(mus, dim=0) logvar_average = torch.mean(logvars, dim=0) mu_gfm, _ = self.flow_mus.rev(mu_average) logvar_gfm, _ = self.flow_logvars.rev(logvar_average) return Distr(mu=mu_gfm, logvar=logvar_gfm) class iwmopgfm(iwMMVAE, PGfMVAE): def __init__(self, exp, flags, modalities, subsets): PGfMVAE.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.mm_div = BaseMMDiv() self.prior = get_distr(flags.prior)(loc=torch.zeros(1, self.flags.class_dim, device=self.flags.device), scale=torch.ones(1, self.flags.class_dim, device=self.flags.device)) self.qz_x = get_distr(flags.qz_x) # posterior self.K = flags.K def encode(self, input_batch: Mapping[str, Tensor]) -> Mapping[str, BaseEncMod]: enc_mods = {} for mod_str, mod in self.modalities.items(): if mod_str in input_batch: enc_mods[mod_str] = {} _, _, class_mu, class_logvar = mod.encoder(input_batch[mod_str]) latents_class = self.qz_x(class_mu, F.softmax(class_logvar, dim=-1) * class_logvar.size(-1) + 1e-6) enc_mods[mod_str] = BaseEncMod(latents_class=latents_class) return enc_mods def forward(self, input_batch: dict) -> iwForwardResults: enc_mods, joint_latents = self.inference(input_batch) # reconstruct modalities rec_mods = self.decode(enc_mods, joint_latents) return iwForwardResults(enc_mods=enc_mods, joint_latents=joint_latents, rec_mods=rec_mods) def inference(self, input_batch) -> tuple[Mapping[str, BaseEncMod], iwJointLatents]: enc_mods, joint_latents = super().inference(input_batch) zss = {} subsets = { subset_str: iwSubset( qz_x_tilde=subset, zs=subset.rsample(torch.Size([self.K])) ) for subset_str, subset in joint_latents.subsets.items() } # find the subset will all modalities to get the joint distr max_subset_size = max(len(subset_str.split('_')) for subset_str in joint_latents.fusion_subsets_keys) joint_distr = subsets[[subset_str for subset_str in joint_latents.fusion_subsets_keys if len(subset_str.split('_')) == max_subset_size][0]] joint_latents = iwJointLatents(fusion_subsets_keys=joint_latents.fusion_subsets_keys, subsets=subsets, zss=zss, joint_distr=joint_distr) return enc_mods, joint_latents def fuse_modalities(self, enc_mods: Mapping[str, BaseEncMod], batch_mods: typing.Iterable[str]) -> JointLatents: """ Create a subspace for all the combinations of the encoded modalities by combining them. """ batch_subsets = subsets_from_batchmods(batch_mods) distr_subsets = {} # pass all experts through the flow enc_mod_transformed = {mod_key: self.encode_expert(enc_mod.latents_class) for mod_key, enc_mod in enc_mods.items()} # concatenate mus and logvars for every modality in each subset for s_key in batch_subsets: # for the unimodal subset, the subset distr is equal to the uni modal distr if len(self.subsets[s_key]) == 1: q_subset = enc_mods[s_key].latents_class else: q_subset = self.gfm(distrs=[enc_mod_transformed[mod.name] for mod in self.subsets[s_key]]) distr_subsets[s_key] = q_subset if len(self.subsets[s_key]) == len(batch_mods): joint_distr = q_subset fusion_subsets_keys = s_key.split('_') joint_distr.mod_strs = fusion_subsets_keys return JointLatents(fusion_subsets_keys, joint_distr=joint_distr, subsets=distr_subsets) def calculate_loss(self, forward_results: iwForwardResults, batch_d: dict) -> tuple[ float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets losses = [] klds = {} log_probs = {} for mod_str, subset in subsets.items(): lpz = self.prior.log_prob(subset.zs).sum(-1) lqz_x = log_mean_exp( torch.stack( [subset_.qz_x_tilde.log_prob(subset_.zs).sum(-1) for _, subset_ in subsets.items()] ) ) # # lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) # for out_mod_str, px_z in forward_results.rec_mods[mod_str].items()] lpx_z = [self.modalities[out_mod_str].log_likelihood(px_z, batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[mod_str].items()] lpx_z = torch.stack(lpx_z).sum(0) kl_div = lpz - lqz_x loss = lpx_z + kl_div losses.append(loss) log_probs[mod_str] = lpx_z.mean() klds[mod_str] = log_mean_exp(kl_div).sum() total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # joint_div average of all subset divs joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds def gfm(self, distrs: typing.List[Distr]) -> Distr: mus = torch.Tensor().to(self.flags.device) logvars = torch.Tensor().to(self.flags.device) for distr in distrs: mus = torch.cat((mus, distr.mu.unsqueeze(dim=0)), dim=0) logvars = torch.cat((logvars, distr.logvar.unsqueeze(dim=0)), dim=0) mu_average = torch.mean(mus, dim=0) logvar_average = torch.mean(logvars, dim=0) scale = self.flow_logvars.rev(logvar_average)[0] ok = Normal.arg_constraints["scale"].check(scale) bad_elements = scale[~ok] return self.qz_x(loc=self.flow_mus.rev(mu_average)[0], scale=F.softmax(scale, dim=-1) * scale.size(-1) + 1e-6) def encode_expert(self, expert_distr: Distr) -> Distr: mu_k, _ = self.flow_mus(expert_distr.loc) logvar_k, _ = self.flow_logvars(expert_distr.scale) return Distr(mu=mu_k, logvar=logvar_k) class MopGfM(iwmopgfm): """Mixture of parameter GfM method.""" def __init__(self, exp, flags, modalities, subsets): super().__init__(exp, flags, modalities, subsets) self.K = 1 # mopfgm = iwmopgfm with K = 1 ``` #### File: mmvae_hub/networks/iwVaes.py ```python import math import torch.distributions as distr import torch.nn.functional as F from mmvae_hub.networks.FlowVaes import MoFoPoE # from mmvae_hub.networks.GfMVaes import MopGfM # from mmvae_hub.networks.MixtureVaes import MOEMMVae, MoPoEMMVae from mmvae_hub.networks.PoEMMVAE import POEMMVae from mmvae_hub.networks.utils.utils import get_distr from mmvae_hub.utils.Dataclasses.iwdataclasses import * from mmvae_hub.utils.metrics.likelihood import log_mean_exp def log_mean_exp(value, dim=0, keepdim=False): return torch.logsumexp(value, dim, keepdim=keepdim) - math.log(value.size(dim)) class iwMMVAE(): def __init__(self, flags): self.K = flags.K def conditioned_generation(self, input_samples: dict, subset_key: str, style=None): """ Generate samples conditioned with input samples for a given subset. subset_key str: The key indicating which subset is used for the generation. """ # infer latents from batch enc_mods, joint_latents = self.inference(input_samples) subset_embedding = joint_latents.subsets[subset_key].qz_x_tilde.mean cond_mod_in = ReparamLatent(content=subset_embedding, style=style) return self.generate_from_latents(cond_mod_in) def decode(self, enc_mods: Mapping[str, BaseEncMod], joint_latents: iwJointLatents) -> dict: """Decoder outputs each reconstructed modality as a dict.""" rec_mods = {} for subset_str, subset in joint_latents.subsets.items(): subset_samples = subset.zs.reshape((self.K * self.flags.batch_size, self.flags.class_dim)) rec_mods[subset_str] = { out_mod_str: dec_mod.calc_likelihood(class_embeddings=subset_samples, unflatten=(self.K, self.flags.batch_size) ) for out_mod_str, dec_mod in self.modalities.items() } return rec_mods class iwPoE(iwMMVAE, POEMMVae): def __init__(self, exp, flags, modalities, subsets): POEMMVae.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.prior = get_distr(flags.prior)(loc=torch.zeros(1, self.flags.class_dim, device=self.flags.device), scale=torch.ones(1, self.flags.class_dim, device=self.flags.device)) def forward(self, input_batch: dict) -> iwForwardResults: enc_mods, joint_latents = self.inference(input_batch) # reconstruct modalities rec_mods = self.decode(enc_mods, joint_latents) return iwForwardResults(enc_mods=enc_mods, joint_latents=joint_latents, rec_mods=rec_mods) def inference(self, input_batch) -> tuple[Mapping[str, BaseEncMod], iwJointLatents]: enc_mods, joint_latents = super().inference(input_batch) subsets = {} zss = {} for subset_str, subset in joint_latents.subsets.items(): qz_x_tilde = distr.Normal(loc=subset.mu, scale=subset.logvar) subsets[subset_str] = iwSubset(qz_x_tilde=qz_x_tilde, zs=qz_x_tilde.rsample(torch.Size([self.K]))) # find the subset will all modalities to get the joint distr max_subset_size = max(len(subset_str.split('_')) for subset_str in joint_latents.fusion_subsets_keys) joint_distr = subsets[[subset_str for subset_str in joint_latents.fusion_subsets_keys if len(subset_str.split('_')) == max_subset_size][0]] joint_latents = iwJointLatents(fusion_subsets_keys=joint_latents.fusion_subsets_keys, subsets=subsets, zss=zss, joint_distr=joint_distr) return enc_mods, joint_latents def encode(self, input_batch: Mapping[str, Tensor]) -> Mapping[str, BaseEncMod]: enc_mods = {} for mod_str, mod in self.modalities.items(): if mod_str in input_batch: enc_mods[mod_str] = {} _, _, class_mu, class_logvar = mod.encoder(input_batch[mod_str]) latents_class = Distr(mu=class_mu, logvar=F.softmax(class_logvar, dim=-1) * class_logvar.size(-1) + 1e-6) enc_mods[mod_str] = BaseEncMod(latents_class=latents_class) return enc_mods def calculate_loss(self, forward_results: iwForwardResults, batch_d: dict) -> tuple[ float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets losses = [] klds = {} log_probs = {} for mod_str, enc_mod in forward_results.enc_mods.items(): subset = subsets[mod_str] # sum(-1) is the sum over the class dim lpz = self.prior.log_prob( subset.zs).sum(-1) # take the log mean exp over the modalities lqz_x = log_mean_exp( torch.stack( [subsets[mod].qz_x_tilde.log_prob(subset.zs).sum(-1) for mod in forward_results.enc_mods])) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[mod_str].items()] # sum over modalities lpx_z = torch.stack(lpx_z).sum(0) kl_div = lpz - lqz_x loss = lpx_z + kl_div losses.append(loss) log_probs[mod_str] = lpx_z.mean() klds[mod_str] = log_mean_exp(kl_div).sum() total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # joint_div average of all subset divs joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoE(iwMMVAE, MOEMMVae): def __init__(self, exp, flags, modalities, subsets): MOEMMVae.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.prior = get_distr(flags.prior)(loc=torch.zeros(1, self.flags.class_dim, device=self.flags.device), scale=torch.ones(1, self.flags.class_dim, device=self.flags.device)) def forward(self, input_batch: dict) -> iwForwardResults: enc_mods, joint_latents = self.inference(input_batch) # reconstruct modalities rec_mods = self.decode(enc_mods, joint_latents) return iwForwardResults(enc_mods=enc_mods, joint_latents=joint_latents, rec_mods=rec_mods) def inference(self, input_batch) -> tuple[Mapping[str, BaseEncMod], iwJointLatents]: enc_mods, joint_latents = super().inference(input_batch) subsets = {} zss = {} for subset_str, subset in joint_latents.subsets.items(): qz_x_tilde = distr.Normal(loc=subset.mu, scale=subset.logvar) subsets[subset_str] = iwSubset(qz_x_tilde=qz_x_tilde, zs=qz_x_tilde.rsample(torch.Size([self.K]))) # find the subset will all modalities to get the joint distr max_subset_size = max(len(subset_str.split('_')) for subset_str in joint_latents.fusion_subsets_keys) joint_distr = subsets[[subset_str for subset_str in joint_latents.fusion_subsets_keys if len(subset_str.split('_')) == max_subset_size][0]] joint_latents = iwJointLatents(fusion_subsets_keys=joint_latents.fusion_subsets_keys, subsets=subsets, zss=zss, joint_distr=joint_distr) return enc_mods, joint_latents def encode(self, input_batch: Mapping[str, Tensor]) -> Mapping[str, BaseEncMod]: enc_mods = {} for mod_str, mod in self.modalities.items(): if mod_str in input_batch: enc_mods[mod_str] = {} _, _, class_mu, class_logvar = mod.encoder(input_batch[mod_str]) latents_class = Distr(mu=class_mu, logvar=F.softmax(class_logvar, dim=-1) * class_logvar.size(-1) + 1e-6) enc_mods[mod_str] = BaseEncMod(latents_class=latents_class) return enc_mods def calculate_loss(self, forward_results: iwForwardResults, batch_d: dict) -> tuple[ float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets losses = [] klds = {} log_probs = {} for mod_str, enc_mod in forward_results.enc_mods.items(): subset = subsets[mod_str] # sum(-1) is the sum over the class dim lpz = self.prior.log_prob( subset.zs).sum(-1) # take the log mean exp over the modalities lqz_x = log_mean_exp( torch.stack( [subsets[mod].qz_x_tilde.log_prob(subset.zs).sum(-1) for mod in forward_results.enc_mods])) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[mod_str].items()] # sum over modalities lpx_z = torch.stack(lpx_z).sum(0) kl_div = lpz - lqz_x loss = lpx_z + kl_div losses.append(loss) log_probs[mod_str] = lpx_z.mean() klds[mod_str] = log_mean_exp(kl_div).sum() total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # joint_div average of all subset divs joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds class iwMoPoE(iwMMVAE, MoPoEMMVae): def __init__(self, exp, flags, modalities, subsets): MoPoEMMVae.__init__(self, exp, flags, modalities, subsets) iwMMVAE.__init__(self, flags) self.prior = get_distr(flags.prior)(loc=torch.zeros(1, self.flags.class_dim, device=self.flags.device), scale=torch.ones(1, self.flags.class_dim, device=self.flags.device)) self.K = flags.K def forward(self, input_batch: dict) -> iwForwardResults: enc_mods, joint_latents = self.inference(input_batch) # reconstruct modalities rec_mods = self.decode(enc_mods, joint_latents) return iwForwardResults(enc_mods=enc_mods, joint_latents=joint_latents, rec_mods=rec_mods) def inference(self, input_batch) -> tuple[Mapping[str, BaseEncMod], iwJointLatents]: enc_mods, joint_latents = super().inference(input_batch) subsets = {} zss = {} for subset_str, subset in joint_latents.subsets.items(): qz_x_tilde = distr.Normal(loc=subset.mu, scale=subset.logvar.exp()) subsets[subset_str] = iwSubset(qz_x_tilde=qz_x_tilde, zs=qz_x_tilde.rsample(torch.Size([self.K]))) # find the subset will all modalities to get the joint distr max_subset_size = max(len(subset_str.split('_')) for subset_str in joint_latents.fusion_subsets_keys) joint_distr = subsets[[subset_str for subset_str in joint_latents.fusion_subsets_keys if len(subset_str.split('_')) == max_subset_size][0]] joint_latents = iwJointLatents(fusion_subsets_keys=joint_latents.fusion_subsets_keys, subsets=subsets, zss=zss, joint_distr=joint_distr) return enc_mods, joint_latents def encode(self, input_batch: Mapping[str, Tensor]) -> Mapping[str, BaseEncMod]: enc_mods = {} for mod_str, mod in self.modalities.items(): if mod_str in input_batch: enc_mods[mod_str] = {} _, _, class_mu, class_logvar = mod.encoder(input_batch[mod_str]) latents_class = Distr(mu=class_mu, logvar=F.softmax(class_logvar, dim=-1) * class_logvar.size(-1) + 1e-6) enc_mods[mod_str] = BaseEncMod(latents_class=latents_class) return enc_mods def calculate_loss(self, forward_results: iwForwardResults, batch_d: dict) -> tuple[ float, float, dict, Mapping[str, float]]: subsets = forward_results.joint_latents.subsets losses = [] klds = {} log_probs = {} for mod_str, subset in subsets.items(): # sum over last dim lpz = self.prior.log_prob(subset.zs).sum(-1) # lqz_x = log_mean_exp( # torch.stack( # [subset_.qz_x_tilde.log_prob(subset_.zs).sum(-1) for _, subset_ in subsets.items()])) lqz_x = subset.qz_x_tilde.log_prob(subset.zs).sum(-1) lpx_z = [px_z.log_prob(batch_d[out_mod_str]).view(*px_z.batch_shape[:2], -1).sum(-1) for out_mod_str, px_z in forward_results.rec_mods[mod_str].items()] lpx_z = torch.stack(lpx_z).sum(0) kl_div = lpz - lqz_x loss = lpx_z + kl_div losses.append(loss) log_probs[mod_str] = lpx_z.mean() klds[mod_str] = log_mean_exp(kl_div).sum() total_loss = -log_mean_exp(torch.cat(losses, 1)).sum() # joint_div average of all subset divs joint_div = torch.cat(tuple(div.unsqueeze(dim=0) for _, div in klds.items())) # normalize with the number of samples joint_div = joint_div.mean() return total_loss, joint_div, log_probs, klds ``` #### File: networks/text/ConvNetworkTextClf.py ```python import torch.nn as nn from mmvae_hub.networks.text.mmvae_text_enc import make_res_block_enc_feat_ext class ClfText(nn.Module): def __init__(self, flags, labels): super(ClfText, self).__init__() self.args = flags self.labels = labels if flags.text_encoding == 'char': self.conv1 = nn.Conv1d(self.args.num_features, self.args.DIM_text, kernel_size=4, stride=2, padding=1, dilation=1) elif flags.text_encoding == 'word': self.embedding = nn.Embedding(num_embeddings=self.args.vocab_size, embedding_dim=self.args.DIM_text, padding_idx=0) self.conv1 = nn.Conv1d(self.args.DIM_text, self.args.DIM_text, kernel_size=4, stride=2, padding=1, dilation=1) self.resblock_1 = make_res_block_enc_feat_ext(self.args.DIM_text, 2 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_2 = make_res_block_enc_feat_ext(2 * self.args.DIM_text, 3 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_3 = make_res_block_enc_feat_ext(3 * self.args.DIM_text, 4 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_4 = make_res_block_enc_feat_ext(4 * self.args.DIM_text, 4 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_5 = make_res_block_enc_feat_ext(4 * self.args.DIM_text, 4 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_6 = make_res_block_enc_feat_ext(4 * self.args.DIM_text, 5 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_7 = make_res_block_enc_feat_ext(5 * self.args.DIM_text, 5 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_8 = make_res_block_enc_feat_ext(5 * self.args.DIM_text, 5 * self.args.DIM_text, kernelsize=4, stride=2, padding=0, dilation=1) self.dropout = nn.Dropout(p=0.5, inplace=False) self.linear = nn.Linear(in_features=5 * flags.DIM_text, out_features=len(self.labels), bias=True) self.sigmoid = nn.Sigmoid() def forward(self, x_text): """ input_shape: [batch_size, len_sentence, vocab_size] Example: torch.Size([10, 1024, 71]) torch.Size([10, 71, 1024]) torch.Size([10, 128, 512]) torch.Size([10, 256, 256]) torch.Size([10, 384, 128]) torch.Size([10, 512, 64]) torch.Size([10, 512, 32]) torch.Size([10, 512, 16]) torch.Size([10, 640, 8]) torch.Size([10, 640, 4]) torch.Size([10, 640, 1]) torch.Size([10, 640, 1]) torch.Size([10, 640, 1]) torch.Size([10, 3]) torch.Size([10, 3]) """ if self.args.text_encoding == 'word': out = self.embedding(x_text.long()) out = out.transpose(-2, -1) out = self.conv1(out) elif self.args.text_encoding == 'char': x_text = x_text.transpose(-2, -1) out = self.conv1(x_text) out = self.resblock_1(out) out = self.resblock_2(out) out = self.resblock_3(out) out = self.resblock_4(out) out = self.resblock_5(out) out = self.resblock_6(out) if self.args.len_sequence > 500: out = self.resblock_7(out) out = self.resblock_8(out) h = self.dropout(out) h = h.view(h.size(0), -1) h = self.linear(h) out = self.sigmoid(h) return out; ``` #### File: networks/text/mmvae_text_enc.py ```python import torch.nn as nn from mmvae_hub.networks.utils.ResidualBlocks import ResidualBlock1dConv def make_res_block_enc_feat_ext(in_channels, out_channels, kernelsize, stride, padding, dilation, a_val=2.0, b_val=0.3): downsample = None if (stride != 1) or (in_channels != out_channels) or dilation != 1: downsample = nn.Sequential(nn.Conv1d(in_channels, out_channels, kernel_size=kernelsize, stride=stride, padding=padding, dilation=dilation), nn.BatchNorm1d(out_channels)) layers = [] layers.append( ResidualBlock1dConv(in_channels, out_channels, kernelsize, stride, padding, dilation, downsample, a=a_val, b=b_val)) return nn.Sequential(*layers) class FeatureExtractorText(nn.Module): def __init__(self, args, a=2.0, b=0.3): super(FeatureExtractorText, self).__init__() self.args = args # self.embedding = nn.Embedding(self.args.DIM_text, self.args.DIM_text, padding_idx=0) self.embedding = nn.Embedding(num_embeddings=self.args.vocab_size, embedding_dim=self.args.DIM_text, padding_idx=0) self.conv1 = nn.Conv1d(self.args.DIM_text, self.args.DIM_text, kernel_size=4, stride=2, padding=1, dilation=1) self.resblock_1 = make_res_block_enc_feat_ext(self.args.DIM_text, 2 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_2 = make_res_block_enc_feat_ext(2 * self.args.DIM_text, 3 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_3 = make_res_block_enc_feat_ext(3 * self.args.DIM_text, 4 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_4 = make_res_block_enc_feat_ext(4 * self.args.DIM_text, 4 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_5 = make_res_block_enc_feat_ext(4 * self.args.DIM_text, 4 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_6 = make_res_block_enc_feat_ext(4 * self.args.DIM_text, 5 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) if self.args.len_sequence > 500: self.resblock_7 = make_res_block_enc_feat_ext(5 * self.args.DIM_text, 5 * self.args.DIM_text, kernelsize=4, stride=2, padding=1, dilation=1) self.resblock_8 = make_res_block_enc_feat_ext(5 * self.args.DIM_text, 5 * self.args.DIM_text, kernelsize=4, stride=2, padding=0, dilation=1) def forward(self, x): """ Example for x.shape=torch.Size([200, 1024]): torch.Size([200, 1024, 128]) transpose: torch.Size([200, 128, 1024]) torch.Size([200, 128, 512]) torch.Size([200, 256, 256]) torch.Size([200, 384, 128]) torch.Size([200, 512, 64]) torch.Size([200, 512, 32]) torch.Size([200, 512, 16]) torch.Size([200, 640, 8]) torch.Size([200, 640, 4]) torch.Size([200, 640, 1]) """ x = self.embedding(x.long()) x = x.transpose(-2, -1) out = self.conv1(x) out = self.resblock_1(out) out = self.resblock_2(out) out = self.resblock_3(out) out = self.resblock_4(out) out = self.resblock_5(out) out = self.resblock_6(out) if self.args.len_sequence > 500: out = self.resblock_7(out) out = self.resblock_8(out) return out ``` #### File: mmvae_hub/polymnist/experiment.py ```python import random from pathlib import Path from typing import Mapping, Iterable import numpy as np import torch from sklearn.metrics import accuracy_score from torch import Tensor from torchvision import transforms from mmvae_hub.base.BaseExperiment import BaseExperiment from mmvae_hub.modalities import BaseModality from mmvae_hub.polymnist.PolymnistDataset import PolymnistDataset, ToyPolymnistDataset from mmvae_hub.polymnist.PolymnistMod import PolymnistMod from mmvae_hub.polymnist.metrics import PolymnistMetrics from mmvae_hub.utils.utils import dict_to_device class PolymnistExperiment(BaseExperiment): def __init__(self, flags): super(PolymnistExperiment, self).__init__(flags) self.labels = ['digit'] self.dataset_name = 'polymnist' self.num_modalities = flags.num_mods self.modalities = self.set_modalities() self.subsets = self.set_subsets() self.dataset_train, self.dataset_test = self.set_dataset() self.mm_vae = self.set_model() print(self.mm_vae) self.optimizer = None self.rec_weights = self.set_rec_weights() self.style_weights = self.set_style_weights() self.test_samples = self.get_test_samples() self.eval_metric = accuracy_score self.metrics = PolymnistMetrics self.paths_fid = self.set_paths_fid() def set_modalities(self) -> Mapping[str, BaseModality]: mods = [PolymnistMod(self.flags, name="m%d" % m) for m in range(self.num_modalities)] mods = {m.name: m for m in mods} return mods def set_dataset(self): transform = transforms.Compose([transforms.ToTensor()]) if self.flags.dataset == 'toy': train = ToyPolymnistDataset(num_modalities=self.num_modalities, seed=self.flags.seed) test = ToyPolymnistDataset(num_modalities=self.num_modalities, seed=self.flags.seed) else: train = PolymnistDataset(Path(self.flags.dir_data) / 'train', transform=transform, num_modalities=self.num_modalities) test = PolymnistDataset(Path(self.flags.dir_data) / 'train', transform=transform, num_modalities=self.num_modalities) return train, test def set_rec_weights(self): rec_weights = {} for k, m_key in enumerate(self.modalities.keys()): mod = self.modalities[m_key] numel_mod = mod.data_size.numel() rec_weights[mod.name] = 1.0 return rec_weights def set_style_weights(self): return {"m%d" % m: self.flags.beta_style for m in range(self.num_modalities)} def get_transform_polymnist(self): return transforms.Compose([transforms.ToTensor()]) def get_test_samples(self, num_images=10) -> Iterable[Mapping[str, Tensor]]: """ Gets random samples for the cond. generation. """ random.seed(42) n_test = len(self.dataset_test) samples = [] for i in range(num_images): while True: # loop until sample with label i is found ix = random.randint(0, n_test - 1) sample, target = self.dataset_test[ix] if target == i: samples.append(dict_to_device(sample, self.flags.device)) break return samples def mean_eval_metric(self, values): return np.mean(np.array(values)) def get_prediction_from_attr(self, attr, index=None): return np.argmax(attr, axis=1).astype(int); def eval_label(self, values, labels, index): pred = self.get_prediction_from_attr(values); return self.eval_metric(labels, pred); ``` #### File: mmvae_hub/polymnist/flags.py ```python from pathlib import Path from mmvae_hub.base.BaseFlags import parser as parser from mmvae_hub.utils.setup.flags_utils import BaseFlagsSetup parser.add_argument('--name', type=str, default='polymnist', help="name of the dataset") parser.add_argument('--exp_str_prefix', type=str, default='polymnist', help="prefix of the experiment directory.") # training parser.add_argument('--num_mods', type=int, default=3, help="dimension of varying factor latent space") parser.add_argument('--style_dim', type=int, default=0, help="style dimensionality") # TODO: use modality-specific style dimensions? # parser.add_argument('--style_m1_dim', type=int, default=0, help="dimension of varying factor latent space") # parser.add_argument('--style_m2_dim', type=int, default=0, help="dimension of varying factor latent space") # parser.add_argument('--style_m3_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--num_classes', type=int, default=10, help="number of classes on which the data set trained") parser.add_argument('--img_size_m1', type=int, default=28, help="img dimension (width/height)") parser.add_argument('--num_channels_m1', type=int, default=1, help="number of channels in images") parser.add_argument('--img_size_m2', type=int, default=32, help="img dimension (width/height)") parser.add_argument('--num_channels_m2', type=int, default=3, help="number of channels in images") parser.add_argument('--dim', type=int, default=64, help="number of classes on which the data set trained") parser.add_argument('--num_hidden_layers', type=int, default=1, help="number of channels in images") # multimodal parser.add_argument('--subsampled_reconstruction', default=True, help="subsample reconstruction path") parser.add_argument('--include_prior_expert', action='store_true', default=False, help="factorized_representation") # weighting of loss terms parser.add_argument('--beta_m1_style', type=float, default=1.0, help="default weight divergence term style modality 1") parser.add_argument('--beta_m2_style', type=float, default=1.0, help="default weight divergence term style modality 2") parser.add_argument('--beta_m3_style', type=float, default=1.0, help="default weight divergence term style modality 2") parser.add_argument('--div_weight', type=float, default=None, help="default weight divergence per modality, if None use 1/(num_mods+1).") parser.add_argument('--div_weight_uniform_content', type=float, default=None, help="default weight divergence term prior, if None use (1/num_mods+1)") class FlagsSetup(BaseFlagsSetup): def __init__(self, config_path: Path): super().__init__(config_path) self.parser = parser def flags_set_alpha_modalities(self, flags): flags.alpha_modalities = [flags.div_weight_uniform_content] if flags.div_weight is None: flags.div_weight = 1 / (flags.num_mods + 1) flags.alpha_modalities.extend([flags.div_weight for _ in range(flags.num_mods)]) return flags ``` #### File: mmvae_hub/polymnist/PolymnistMod.py ```python import os import torch from matplotlib import pyplot as plt from torch import Tensor from mmvae_hub.modalities.ModalityIMG import ModalityIMG from mmvae_hub.polymnist.networks.ConvNetworkImgClfPolymnist import ClfImg from mmvae_hub.polymnist.networks.ConvNetworksImgPolymnist import EncoderImg, DecoderImg from mmvae_hub.polymnist.utils import download_polymnist_clfs from mmvae_hub.utils.plotting.save_samples import write_samples_img_to_file class PolymnistMod(ModalityIMG): def __init__(self, flags, name: str): super(PolymnistMod, self).__init__(data_size=torch.Size((3, 28, 28)), flags=flags, name=name) self.plot_img_size = torch.Size((3, 28, 28)) self.gen_quality_eval = True self.file_suffix = '.png' self.encoder = EncoderImg(flags).to(flags.device) self.decoder = DecoderImg(flags).to(flags.device) self.rec_weight = 1.0 # self.transform = transforms.Compose([transforms.ToTensor()]) self.clf = self.get_clf() def save_data(self, d, fn, args): img_per_row = args['img_per_row'] write_samples_img_to_file(d, fn, img_per_row) def plot_data(self, d): # out = self.transform(d.squeeze(0).cpu()).cuda().unsqueeze(0) # return out return d def get_clf(self): if self.flags.use_clf: dir_clf = self.flags.dir_clf if not dir_clf.exists(): download_polymnist_clfs(dir_clf) model_clf = ClfImg() model_clf.load_state_dict( torch.load(os.path.join(self.flags.dir_clf, f"pretrained_img_to_digit_clf_{self.name}"), map_location=self.flags.device)) return model_clf.to(self.flags.device) def plot_data_single_img(self, d: Tensor): return plt.imshow(d.detach().cpu().squeeze().moveaxis(0, -1)) ``` #### File: sylvester_flows/utils/distributions.py ```python from __future__ import print_function import math import torch import torch.utils.data from torch.autograd import Variable MIN_EPSILON = 1e-5 MAX_EPSILON = 1. - 1e-5 # PI = Variable(torch.FloatTensor([math.pi])) # PI.requires_grad = False # if torch.cuda.is_available(): # PI = PI.to() # N(x | mu, var) = 1/sqrt{2pi var} exp[-1/(2 var) (x-mean)(x-mean)] # log N(x| mu, var) = -log sqrt(2pi) -0.5 log var - 0.5 (x-mean)(x-mean)/var def log_normal_diag(x, mean, log_var, average=False, reduce=True, dim=None): log_norm = -0.5 * (log_var + (x - mean) * (x - mean) * log_var.exp().reciprocal()) if reduce: if average: return torch.mean(log_norm, dim) else: return torch.sum(log_norm, dim) else: return log_norm def log_normal_normalized(x, mean, log_var, average=False, reduce=True, dim=None): log_norm = -(x - mean) * (x - mean) log_norm *= torch.reciprocal(2. * log_var.exp()) log_norm += -0.5 * log_var log_norm += -0.5 * torch.log(2. * PI) if reduce: if average: return torch.mean(log_norm, dim) else: return torch.sum(log_norm, dim) else: return log_norm def log_normal_standard(x, average=False, reduce=True, dim=None): log_norm = -0.5 * x * x if reduce: if average: return torch.mean(log_norm, dim) else: return torch.sum(log_norm, dim) else: return log_norm def log_bernoulli(x, mean, average=False, reduce=True, dim=None): probs = torch.clamp(mean, min=MIN_EPSILON, max=MAX_EPSILON) log_bern = x * torch.log(probs) + (1. - x) * torch.log(1. - probs) if reduce: if average: return torch.mean(log_bern, dim) else: return torch.sum(log_bern, dim) else: return log_bern ``` #### File: utils/Dataclasses/iwdataclasses.py ```python from typing import Tuple from torch.distributions import Distribution from mmvae_hub.utils.Dataclasses.Dataclasses import * from dataclasses import dataclass from torch import Tensor from mmvae_hub.utils.Dataclasses.gfmDataclasses import JointLatentsGfM @dataclass class JointLatentsiwMoGfM2: """Joint Latens for generalized f-means methods.""" joint_embedding: JointEmbeddingFoEM z_Gfs: Mapping[str, Tensor] subset_samples: Mapping[str, Tuple] subsets: Mapping[str, Tensor] enc_mods: Mapping[str, BaseEncMod] srv_proxies: Mapping[str,Distribution] def get_joint_embeddings(self): return self.joint_embedding.embedding.mean(dim=0) def get_subset_embedding(self, s_key: str): return self.subsets[s_key][0].mean(dim=0) def get_q0(self, subset_key: str): """Get the mean of the unimodal latents and the embeddings of the multimodal latents.""" if subset_key == 'joint': return self.joint_embedding.embedding.mean(dim=0) return self.subsets[subset_key][0].mean(dim=0) def get_lreval_data(self): lr_data = {'q0': {}} for key in self.subsets: lr_data['q0'][key] = self.subsets[key][0].mean(dim=0).cpu() lr_data['q0']['joint'] = self.joint_embedding.embedding.mean(dim=0).cpu() return lr_data def get_latent_samples(self, subset_key: str, n_imp_samples, model, mod_names=None, style=None): """Sample n_imp_samples from the latents.""" # modalities that span the subset enc_mod_selection = subset_key.split('_') batch_size, class_dim = self.enc_mods[[mod_str for mod_str in self.enc_mods][0]].latents_class.mu.shape transformed_enc_mods = { mod_key: model.flow( torch.cat([distr.latents_class.reparameterize().unsqueeze(dim=0) for _ in range(n_imp_samples)], dim=0).reshape((n_imp_samples * batch_size, class_dim)))[ 0] for mod_key, distr in self.enc_mods.items() if mod_key in enc_mod_selection} subset_zks = torch.Tensor().to(self.enc_mods[[mod_str for mod_str in self.enc_mods][0]].latents_class.mu.device) for mod_k in enc_mod_selection: subset_zks = torch.cat((subset_zks, transformed_enc_mods[mod_k].unsqueeze(dim=0)), dim=0) # mean of zks z_mean = torch.mean(subset_zks, dim=0) # calculate inverse flow samples = model.flow.rev(z_mean)[0].reshape((n_imp_samples, batch_size, class_dim)) c = {'mu': None, 'logvar': None, 'z': samples} return {'content': c, 'style': None} @dataclass class JointLatentsiwMoGfMVAE_amortized: """Joint Latens for generalized f-means methods.""" joint_embedding: JointEmbeddingFoEM transformed_enc_mods: Mapping[str, Tuple] subset_samples: Mapping[str, Tuple] subsets: Mapping[str, Tensor] enc_mods: Mapping[str, BaseEncMod] zmss: Mapping[str, Tensor] priors_tf_enc_mods: Mapping[str, Distribution] def get_joint_embeddings(self): return self.joint_embedding.embedding.mean(dim=0) def get_subset_embedding(self, s_key: str): return self.subsets[s_key][0].mean(dim=0) def get_q0(self, subset_key: str): """Get the mean of the unimodal latents and the embeddings of the multimodal latents.""" if subset_key == 'joint': return self.joint_embedding.embedding.mean(dim=0) return self.subsets[subset_key][0].mean(dim=0) def get_lreval_data(self): lr_data = {'q0': {}} for key in self.subsets: lr_data['q0'][key] = self.subsets[key][0].mean(dim=0).cpu() lr_data['q0']['joint'] = self.joint_embedding.embedding.mean(dim=0).cpu() return lr_data def get_latent_samples(self, subset_key: str, n_imp_samples, model, mod_names=None, style=None): """Sample n_imp_samples from the latents.""" # modalities that span the subset enc_mod_selection = subset_key.split('_') batch_size, class_dim = self.enc_mods[[mod_str for mod_str in self.enc_mods][0]].latents_class.mu.shape transformed_enc_mods = { mod_key: model.flow( torch.cat([distr.latents_class.reparameterize().unsqueeze(dim=0) for _ in range(n_imp_samples)], dim=0).reshape((n_imp_samples * batch_size, class_dim)))[ 0] for mod_key, distr in self.enc_mods.items() if mod_key in enc_mod_selection} subset_zks = torch.Tensor().to(self.enc_mods[[mod_str for mod_str in self.enc_mods][0]].latents_class.mu.device) for mod_k in enc_mod_selection: subset_zks = torch.cat((subset_zks, transformed_enc_mods[mod_k].unsqueeze(dim=0)), dim=0) # mean of zks z_mean = torch.mean(subset_zks, dim=0) # calculate inverse flow samples = model.flow.rev(z_mean)[0].reshape((n_imp_samples, batch_size, class_dim)) c = {'mu': None, 'logvar': None, 'z': samples} return {'content': c, 'style': None} @dataclass class JointLatentsiwMoGfM(JointLatentsGfM): """Joint Latents for mixture of generalized f-means methods.""" epss: Tensor def get_lreval_data(self): lr_data = {'q0': {}} for key in self.subsets: lr_data['q0'][key] = self.subsets[key].mean(dim=0).cpu() lr_data['q0']['joint'] = self.joint_embedding.embedding.mean(dim=0).cpu() return lr_data def get_subset_embedding(self, s_key: str): return self.subsets[s_key].mean(dim=0) def get_joint_embeddings(self): return self.joint_embedding.embedding.mean(dim=0) @dataclass class iwSubset: zs: Tensor qz_x_tilde: Distribution @dataclass class iwJointLatents: fusion_subsets_keys: Iterable[str] joint_distr: iwSubset subsets: Mapping[str, iwSubset] zss: Mapping[str, Distribution] def get_joint_embeddings(self): return self.joint_distr.qz_x_tilde.rsample() def get_subset_embedding(self, s_key: str): return self.subsets[s_key].qz_x_tilde.rsample() def get_q0(self, subset_key: str): """Return the mean of the subset.""" if subset_key == 'joint': return self.get_joint_q0() return self.subsets[subset_key].qz_x_tilde.mean def get_joint_q0(self): return self.joint_distr.qz_x_tilde.mean def get_lreval_data(self) -> dict: """Get lr_data for the lr evaluation.""" lr_data = {'q0': {}} for key in self.subsets: lr_data['q0'][key] = self.get_q0(key).cpu() lr_data['q0']['joint'] = self.get_joint_q0().cpu() return lr_data def get_lreval_data_(self, data_train: dict): """Add lr values to data_train.""" for key in self.subsets: data_train['q0'][key] = torch.cat((data_train['q0'][key], self.get_q0(key).cpu()), 0) joint_q0 = self.get_joint_q0().cpu() data_train['q0']['joint'] = torch.cat((data_train['q0']['joint'], joint_q0), 0) return data_train def get_latent_samples(self, subset_key: str, n_imp_samples, mod_names=None, style=None, model=None): """Sample n_imp_samples from the latents.""" c_embed = self.subsets[subset_key].qz_x_tilde.rsample((n_imp_samples,)) c = {'mu': self.subsets[subset_key].qz_x_tilde.loc.unsqueeze(0).repeat(n_imp_samples, 1, 1), 'logvar': self.subsets[subset_key].qz_x_tilde.scale.unsqueeze(0).repeat(n_imp_samples, 1, 1), 'z': c_embed} styles = {key: None for k, key in enumerate(mod_names)} return {'content': c, 'style': styles} # def get_latent_samples(self, subset_key: str, n_imp_samples, mod_names=None, style=None, model=None): # """Sample n_imp_samples from the latents.""" # c_embed = self.subsets[subset_key].qz_x_tilde.rsample(n_imp_samples) # l_s = style # l_c_m_rep = l_c.mu.unsqueeze(0).repeat(n_imp_samples, 1, 1) # l_c_lv_rep = l_c.logvar.unsqueeze(0).repeat(n_imp_samples, 1, 1) # c_emb = Distr(l_c_m_rep, l_c_lv_rep).reparameterize() # # styles = {} # c = {'mu': l_c_m_rep, 'logvar': l_c_lv_rep, 'z': c_emb} # # if style is not None: # for k, key in enumerate(l_s.keys()): # l_s_mod = l_s[key] # l_s_m_rep = l_s_mod[0].unsqueeze(0).repeat(n_imp_samples, 1, 1) # l_s_lv_rep = l_s_mod[1].unsqueeze(0).repeat(n_imp_samples, 1, 1) # s_emb = Distr(l_s_m_rep, l_s_lv_rep).reparameterize() # s = {'mu': l_s_m_rep, 'logvar': l_s_lv_rep, 'z': s_emb} # styles[key] = s # else: # for k, key in enumerate(mod_names): # styles[key] = None # # return {'content': c, 'style': styles} @dataclass class iwForwardResults: enc_mods: Mapping[str, BaseEncMod] joint_latents: iwJointLatents rec_mods: dict ``` #### File: utils/metrics/BaseMetrics.py ```python import typing from abc import abstractmethod from typing import List import torch class BaseMetrics(object): """ Defines a set of metrics that are used to evaluate the performance of a model """ def __init__(self, prediction: torch.Tensor, groundtruth: torch.Tensor, str_labels: List[str]): """ params: prediction: Tensor which is given as output of the network groundtruth: Tensor which resembles the goundtruth >>> import torch >>> metrics = Metrics(torch.ones((10,1)), torch.ones((10,1)), str_labels=['my_labels']) """ self.str_labels = str_labels self.prediction = prediction self.groundtruth = groundtruth self.prediction_bin: torch.Tensor = (prediction > 0.5) * 1 self.groundtruth_bin: torch.Tensor = (groundtruth > 0.5) * 1 # classwise binarized predictions self.class_pred_bin: dict = {str_labels[i]: self.prediction_bin[:, i] for i in range(len(str_labels))} self.class_gt_bin: dict = {str_labels[i]: self.groundtruth_bin[:, i] for i in range(len(str_labels))} @abstractmethod def evaluate(self) -> typing.Dict[str, list]: """ Computes the different metrics. """ pass def get_counts(self) -> dict: predicted_counts = {f'pred_count_{label}': [self.class_pred_bin[label].sum().item()] for label in self.str_labels} gt_counts = {f'gt_count_{label}': [self.class_gt_bin[label].sum().item()] for label in self.str_labels} return {**predicted_counts, **gt_counts} def extract_values(self, results: dict): """ Extract first values from list for each metric result. >>> import torch >>> metrics = Metrics(torch.ones((10,1)), torch.ones((10,1)), str_labels=['my_labels']) >>> metrics.extract_values(results={'accuracy':[0.9], 'f1': [0.8], 'recall':[0.6]}) {'accuracy': 0.9, 'f1': 0.8, 'recall': 0.6} """ return {k: v[0] for k, v in results.items()} ``` #### File: mmvae_hub/utils/MongoDB.py ```python import glob import io import pathlib import shutil import tempfile from pathlib import Path import gridfs import torch from pymongo import MongoClient from mmvae_hub import log from mmvae_hub.networks import BaseMMVae from mmvae_hub.utils.utils import json2dict, unpack_zipfile class MongoDatabase: def __init__(self, flags=None, training: bool = True, _id: str = None): """ training: if true, experiment_uid and flags will be sent to db. """ self.mongodb_URI = self.get_mongodb_uri() if flags is not None: self.experiment_uid = flags.experiment_uid elif _id is not None: self.experiment_uid = _id experiments = self.connect() # create document in db for current experiment if training and self.experiment_uid not in [str(id) for id in experiments.find().distinct('_id')]: experiments.insert_one({'_id': self.experiment_uid, 'flags': self.encode_flags(flags), 'epoch_results': {}, 'version': flags.version}) def connect(self): client = MongoClient(self.mongodb_URI) db = client.mmvae return db.experiments @staticmethod def get_mongodb_uri(): dbconfig = json2dict(Path('~/.config/mmvaedb.json').expanduser()) return dbconfig['mongodb_URI'] def insert_dict(self, d: dict): log.info('Inserting dict to database.') experiments = self.connect() experiments.find_one_and_update({'_id': self.experiment_uid}, {"$set": d}) @staticmethod def encode_flags(flags): flags_dict = vars(flags).copy() for k, elem in flags_dict.items(): if type(elem) in [pathlib.PosixPath, torch.device]: flags_dict[k] = str(elem) return flags_dict def get_experiment_dict(self): experiments = self.connect() return experiments.find_one({'_id': self.experiment_uid}) def delete_many(self, selection: dict, delete_all: bool = False): """ Delete all elements from database that correspond to selection. delete_all bool: If True, remove all documents in database. """ experiment = self.connect() if delete_all: experiment.delete_many({}) else: experiment.delete_many(selection) def delete_one(self, _id: str): """ Removes one document from db """ log.info(f'Deleting document with _id: {_id}.') experiment = self.connect() experiment.delete_one({'_id': _id}) def save_networks_to_db(self, dir_checkpoints: Path, epoch: int, modalities): """ Inspired from https://medium.com/naukri-engineering/way-to-store-large-deep-learning-models-in-production-ready-environments-d8a4c66cc04c There is probably a better way to store Tensors in MongoDB. """ fs = self.connect_with_gridfs() checkpoint_dir = dir_checkpoints / str(epoch).zfill(4) fs_ids = [elem._id for elem in fs.find({})] for mod_str in modalities: for prefix in ['en', 'de']: filename = checkpoint_dir / f"{prefix}coderM{mod_str}" _id = self.experiment_uid + f"__{prefix}coderM{mod_str}" if _id not in fs_ids: with io.FileIO(str(filename), 'r') as fileObject: log.info(f'Saving checkpoint to db: {filename}') fs.put(fileObject, filename=str(filename), _id=_id) def upload_logfile(self, logfile_path: Path) -> None: fs = self.connect_with_gridfs() fs_ids = [elem._id for elem in fs.find({})] logfile_id = self.experiment_uid + f"__logfile" if logfile_id not in fs_ids: with io.FileIO(str(logfile_path), 'r') as fileObject: fs.put(fileObject, filename=str(logfile_path.name), _id=logfile_id) def upload_tensorbardlogs(self, tensorboard_logdir: Path) -> None: """zip tensorboard logs and save them to db.""" fs = self.connect_with_gridfs() fs_ids = [elem._id for elem in fs.find({})] file_id = self.experiment_uid + f"__tensorboard_logs" if file_id not in fs_ids: with tempfile.TemporaryDirectory() as tmpdirname: log.info(f'Zipping {file_id} to {tmpdirname}.') zipfile = Path(tmpdirname) / tensorboard_logdir.name shutil.make_archive(zipfile, 'zip', tensorboard_logdir, verbose=True) log.info(f'Uploading tensorboard logs to db.') with io.FileIO(str(zipfile.with_suffix('.zip')), 'r') as fileObject: fs.put(fileObject, filename=str(tensorboard_logdir.name), _id=file_id) def connect_with_gridfs(self): client = MongoClient(self.mongodb_URI) db = client.mmvae return gridfs.GridFS(db) def load_networks_from_db(self, mmvae: BaseMMVae): log.info(f'Loading networks from database for model {mmvae}.') fs = self.connect_with_gridfs() fs_ids = [elem._id for elem in fs.find({})] with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = Path(tmpdirname) for mod_str in mmvae.modalities: for prefix in ['en', 'de']: filename = tmpdirname / f"{prefix}coderM{mod_str}" model_id = self.experiment_uid + f"__{prefix}coderM{mod_str}" with open(filename, 'wb') as fileobject: fileobject.write(fs.get(model_id).read()) mmvae.load_networks(tmpdirname) return mmvae def load_experiment_results_to_db(self, experiments_dir: Path): """Iterate through the experiment_dir and load results to the db if they are not already there.""" experiments = self.connect() exp_ids_db = [elem['_id'] for elem in experiments.find({})] fs = self.connect_with_gridfs() fs_ids = {elem._id.split('__')[0] for elem in fs.find({})} for exp_dir in experiments_dir.iterdir(): print(exp_dir) # get epoch results if exp_dir.name not in exp_ids_db: if (exp_dir / 'epoch_results').exists(): for epoch_result_dir in (exp_dir / 'epoch_results').iterdir(): # todo load epoch results to db pass # get models if exp_dir.name not in fs_ids: if (exp_dir / 'checkpoints').exists(): self.experiment_uid = exp_dir.name latest_checkpoint = max( int(d.name) for d in (exp_dir / 'checkpoints').iterdir() if d.name.isdigit()) dir_checkpoints = (exp_dir / 'checkpoints' / str(latest_checkpoint).zfill(4)) modalities = {Path(e).name.replace('decoderM', '') for e in glob.glob(str(dir_checkpoints / 'decoderM*'))} self.save_networks_to_db( dir_checkpoints=(exp_dir / 'checkpoints'), epoch=latest_checkpoint, modalities=modalities) else: print('checkpoint dir does not exist') def get_tensorboardlogs(self, dest_dir: Path) -> None: """Get the tensorboard logs from the db as a zipfolder, unzip them and save them to dest_dir.""" fs = self.connect_with_gridfs() log_id = self.experiment_uid + f"__tensorboard_logs" with tempfile.TemporaryDirectory() as tmpdirname: zip_file = Path(tmpdirname) / 'my_zip.zip' with open(zip_file, 'wb') as fileobject: fileobject.write(fs.get(log_id).read()) unpack_zipfile(zip_file, dest_dir) if __name__ == '__main__': id = 'polymnist_iwmogfm2__2021_09_28_11_26_27_056960' # db = MongoDatabase(_id=id) # db.get_tensorboardlogs(Path('/Users/Hendrik/Desktop/temp')) out_dir = Path('/Users/Hendrik/Desktop/tensorboard_logs') / id out_dir.mkdir(parents=True, exist_ok=True) db = MongoDatabase(_id=id) db.get_tensorboardlogs(dest_dir=out_dir) ``` #### File: utils/plotting/plot.py ```python from pathlib import Path import torch from torchvision.utils import make_grid from torchvision.utils import save_image def create_fig(fn, img_data, num_img_row, save_figure=False): if save_figure: save_image(img_data.data.cpu(), fn, nrow=num_img_row) grid = make_grid(img_data, nrow=num_img_row) return ( grid.mul(255) .add_(0.5) .clamp_(0, 255) .permute(1, 2, 0) .to('cpu', torch.uint8) .numpy() ) def text_sample_to_file(log_tag: str, text_sample: str, epoch: int, exp_path: Path): """Write the generated text sample to a file with name log_tag.""" base_path = exp_path / 'text_gen' if not base_path.exists(): base_path.mkdir() file_path = base_path / log_tag with open(file_path, 'a') as textfile: textfile.write(f'\n{"*" * 20}\n Epoch: {epoch}\n{text_sample}\n{"*" * 20}') ``` #### File: MMVAE_mnist_svhn_text/tests/test_static.py ```python import tempfile from pathlib import Path import numpy as np import pytest from mmvae_hub.polymnist.PolymnistTrainer import PolymnistTrainer from mmvae_hub.utils.utils import json2dict, write_to_jsonfile from tests.utils import set_me_up # @pytest.mark.tox @pytest.mark.parametrize("method", ['moe', 'joint_elbo', 'poe', 'planar_mixture', 'pfom']) def test_static_results_1mod(method: str, update_static_results=False): """ Test if the results are constant. If the assertion fails, it means that the model or the evaluation has changed, perhaps involuntarily. """ jsonfile = Path(__file__).parent / 'static_results.json' static_results = json2dict(jsonfile)['static_results_1mod'] if method not in static_results: write_to_jsonfile(jsonfile, [(f'static_results_1mod.{method}', {})]) static_results[method] = {} static_results = static_results[method] with tempfile.TemporaryDirectory() as tmpdirname: mst = set_me_up(tmpdirname,dataset='polymnist', method=method, attributes={'num_flows': 0, 'num_mods': 1, 'deterministic': True, 'device': 'cpu', 'steps_per_training_epoch': 1, 'factorized_representation': False, 'calc_nll':False}) trainer = PolymnistTrainer(mst) test_results = trainer.run_epochs() if update_static_results: static_results['joint_div'] = test_results.joint_div static_results['klds'] = test_results.klds['m0'] # static_results['lhoods'] = test_results.lhoods['m0']['m0'] static_results['log_probs'] = test_results.log_probs['m0'] static_results['total_loss'] = test_results.total_loss # static_results['lr_eval'] = test_results.lr_eval['m0']['accuracy'] static_results['latents_class'] = { 'mu': test_results.latents['m0']['latents_class']['mu'] } write_to_jsonfile(jsonfile, [(f'static_results_1mod.{method}', static_results)]) are_they_equal = { 'joint_div': np.round(test_results.joint_div, 5) == np.round(static_results['joint_div'], 5), 'klds': np.round(test_results.klds['m0'], 5) == np.round(static_results['klds'], 5), # 'lhoods': np.round(test_results.lhoods['m0']['m0'], 3) == np.round(static_results['lhoods'], 3), 'log_probs': test_results.log_probs['m0'] == static_results['log_probs'], 'total_loss': test_results.total_loss == static_results['total_loss'], # 'lr_eval': test_results.lr_eval['m0']['accuracy'] == static_results['lr_eval'], 'latents_class_mu': np.round(test_results.latents['m0']['latents_class']['mu'], 8) == np.round( static_results['latents_class']['mu'], 8) } assert all(v for _, v in are_they_equal.items()), f'Some results changed: {are_they_equal}' # @pytest.mark.tox @pytest.mark.parametrize("method", ['moe', 'joint_elbo']) def test_static_results_2mods(method: str): """ Test if the results are constant. If the assertion fails, it means that the model or the evaluation has changed, perhaps involuntarily. """ static_results = json2dict(Path('static_results.json'))['static_results_2mod'] with tempfile.TemporaryDirectory() as tmpdirname: mst = set_me_up(tmpdirname, method=method, attributes={'num_flows': 0, 'num_mods': 2, 'deterministic': True, 'device': 'cpu', 'steps_per_training_epoch': 1, 'factorized_representation': False}) trainer = PolymnistTrainer(mst) test_results = trainer.run_epochs() assert np.round(test_results.joint_div, 1) == np.round(static_results[method]['joint_div'], 1) assert np.round(test_results.klds['m0'], 1) == np.round(static_results[method]['klds'], 1) assert np.round(test_results.lhoods['m0']['m0'], 1) == np.round(static_results[method]['lhoods'], 1) assert np.round(test_results.log_probs['m0'], 0) == np.round(static_results[method]['log_probs'], 0) assert np.round(test_results.total_loss, 0) == np.round(static_results[method]['total_loss'], 0) assert np.round(test_results.lr_eval['m0']['accuracy'], 2) == np.round(static_results[method]['lr_eval'], 2) assert np.round(test_results.latents['m0']['latents_class']['mu'], 2) == np.round( static_results[method]['latents_class']['mu'], 2) if __name__ == '__main__': test_static_results_1mod('moe', update_static_results=False) test_static_results_1mod('joint_elbo', update_static_results=False) test_static_results_1mod('poe', update_static_results=False) test_static_results_1mod('pfom', update_static_results=False) test_static_results_1mod('planar_mixture', update_static_results=False) ``` #### File: MMVAE_mnist_svhn_text/tests/test_training.py ```python import tempfile from pathlib import Path import pytest from norby.utils import get_readable_elapsed_time from mmvae_hub.celeba.CelebaTrainer import CelebaTrainer from mmvae_hub.evaluation.eval_metrics.coherence import test_generation from mmvae_hub.mimic.MimicTrainer import MimicTrainer from mmvae_hub.mnistsvhntext.mnistsvhntextTrainer import mnistsvhnTrainer from mmvae_hub.polymnist.PolymnistTrainer import PolymnistTrainer from mmvae_hub.utils.plotting.plotting import generate_plots from tests.utils import set_me_up @pytest.mark.tox @pytest.mark.parametrize("method", ['mopoe', 'moe', 'poe', 'mopgfm', 'iwmogfm', 'iwmogfm_amortized']) # @pytest.mark.parametrize("method", ['joint_elbo']) def test_run_epochs_polymnist(method: str): """ Test if the main training loop runs. Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has changed, perhaps involuntarily. """ with tempfile.TemporaryDirectory() as tmpdirname: # todo implement calc likelihood for flow based methods calc_nll = False if method in ['mofop', 'planar_mixture', 'pfom', 'pope', 'fomfop', 'fomop', 'poe', 'gfm', 'planar_vae', 'sylvester_vae_noflow', 'iwmogfm', 'iwmogfm2', 'iwmogfm3', 'iwmogfm_amortized', 'iwmogfm_old'] else True # calc_nll = False mst = set_me_up(tmpdirname, dataset='polymnist', method=method, attributes={'calc_nll': calc_nll, "K": 5, "dir_clf": Path( "/tmp/trained_clfs_polyMNIST") # 'num_mods': 1 # 'num_flows': 1 }) trainer = PolymnistTrainer(mst) test_results = trainer.run_epochs() # @pytest.mark.tox # @pytest.mark.parametrize("method", ['mopoe']) def test_run_epochs_mimic(method: str): """ Test if the main training loop runs. Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has changed, perhaps involuntarily. """ with tempfile.TemporaryDirectory() as tmpdirname: # todo implement calc likelihood for flow based methods calc_nll = method not in ['planar_mixture', 'pfom', 'pope'] mst = set_me_up(tmpdirname, dataset='mimic', method=method, attributes={'calc_nll': True, 'use_clf': True, 'batch_size': 2, # 'calc_prd': True }) trainer = MimicTrainer(mst) test_results = trainer.run_epochs() def test_run_epochs_celeba(method: str): """ Test if the main training loop runs. Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has changed, perhaps involuntarily. """ with tempfile.TemporaryDirectory() as tmpdirname: # todo implement calc likelihood for flow based methods calc_nll = method not in ['planar_mixture', 'pfom', 'pope'] mst = set_me_up(tmpdirname, dataset='celeba', method=method, attributes={'calc_nll': True, 'use_clf': True, 'batch_size': 2, # 'calc_prd': True }) trainer = CelebaTrainer(mst) test_results = trainer.run_epochs() def test_run_epochs_mnistsvhntext(method: str): """ Test if the main training loop runs. Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has changed, perhaps involuntarily. """ with tempfile.TemporaryDirectory() as tmpdirname: # todo implement calc likelihood for flow based methods calc_nll = method not in ['planar_mixture', 'pfom', 'pope'] mst = set_me_up(tmpdirname, dataset='mnistsvhntext', method=method, attributes={'calc_nll': True, "dir_clf": Path( "/tmp/trained_clfs_mst") }) trainer = mnistsvhnTrainer(mst) test_results = trainer.run_epochs() # @pytest.mark.tox def test_run_planar_mixture_no_flow(): """ Test if the main training loop runs. """ with tempfile.TemporaryDirectory() as tmpdirname: method = 'planar_mixture' additional_attrs = {'num_flows': 0, 'num_mods': 1} mst = set_me_up(tmpdirname, method, attributes=additional_attrs) trainer = PolymnistTrainer(mst) test_results = trainer.run_epochs() def test_generate_plots(): with tempfile.TemporaryDirectory() as tmpdirname: mst = set_me_up(tmpdirname) generate_plots(mst, epoch=1) def test_test_generation(): with tempfile.TemporaryDirectory() as tmpdirname: mst = set_me_up(tmpdirname) test_generation(mst) if __name__ == '__main__': # pass from time import time start_time = time() # test_run_epochs_celeba(method='mopgfm') test_run_epochs_polymnist(method='iwmogfm_amortized') # test_run_epochs_polymnist(method='mopoe') # test_run_epochs_polymnist(method='iwmogfm2') # test_run_epochs_polymnist(method='iwmogfm') # test_run_epochs_mnistsvhntext(method='mopoe') # test_run_epochs_polymnist(method='iwmogfm_amortized') # test_run_epochs_polymnist(method='iwmogfm2') # test_run_epochs_mimic(method='iwmogfm') # test_run_epochs_mnistsvhntext(method='mopoe') # test_run_epochs_polymnist(method='iwmopgfm') # test_run_epochs_polymnist(method='mopgfm') # test_run_epochs_polymnist(method='mofop') # test_run_epochs_polymnist(method='iwmopoe') # test_run_epochs_polymnist(method='iwmoe') # test_run_epochs_polymnist(method='mogfm') elapsed_time = time() - start_time print(get_readable_elapsed_time(elapsed_time)) # test_run_epochs_polymnist(method='mofogfm') # test_run_epochs_polymnist(method='pope') # test_run_planar_mixture_no_flow() # test_generate_plots() # test_test_generation() ``` #### File: MMVAE_mnist_svhn_text/tests/utils.py ```python from pathlib import Path from typing import Optional from mmvae_hub.mnistsvhntext.experiment import MNISTSVHNText import mmvae_hub from mmvae_hub.mimic.experiment import MimicExperiment from mmvae_hub.polymnist.experiment import PolymnistExperiment def set_me_up(tmpdirname, dataset: str, method: str, attributes: Optional = None): config_path = Path(mmvae_hub.__file__).parent.parent / f'configs/toy_config.json' if dataset == 'polymnist': from mmvae_hub.polymnist.flags import FlagsSetup, parser as polymnist_parser flags = polymnist_parser.parse_args([]) flags_setup = FlagsSetup(config_path) exp = PolymnistExperiment elif dataset == 'mimic': from mmvae_hub.mimic.flags import parser as mimic_parser, MimicFlagsSetup flags = mimic_parser.parse_args([]) flags_setup = MimicFlagsSetup(config_path) exp = MimicExperiment elif dataset == 'mnistsvhntext': from mmvae_hub.mnistsvhntext.flags import parser as mnistshvntext_parser, mnistsvhntextFlagsSetup flags = mnistshvntext_parser.parse_args([]) flags_setup = mnistsvhntextFlagsSetup(config_path) exp = MNISTSVHNText elif dataset == 'celeba': from mmvae_hub.celeba.flags import parser as mnistshvntext_parser, CelebaFlagsSetup from mmvae_hub.celeba.experiment import CelebaExperiment flags = mnistshvntext_parser.parse_args([]) flags_setup = CelebaFlagsSetup(config_path) exp = CelebaExperiment else: raise NotImplementedError(f'not implemented for dataset {dataset}.') flags = flags_setup.setup_test(flags, tmpdirname) flags.method = method if attributes: for k, v in attributes.items(): setattr(flags, k, v) mst = exp(flags) mst.set_optimizer() return mst ```
{ "source": "Jimmy2027/MoPoE-MIMIC", "score": 2 }
#### File: MoPoE-MIMIC/mimic/main_mimic.py ```python import gc import os from argparse import Namespace from timeit import default_timer as timer from typing import Union import numpy as np import pandas as pd import torch import torch.distributed as dist import torch.multiprocessing as mp from termcolor import colored from mimic import log from mimic.run_epochs import run_epochs from mimic.utils.exceptions import NaNInLatent, CudaOutOfMemory from mimic.utils.experiment import MimicExperiment from mimic.utils.filehandling import create_dir_structure, create_dir_structure_testing, get_config_path, \ get_method from mimic.utils.flags import parser from mimic.utils.flags import setup_flags from mimic.utils.utils import get_gpu_memory class Main: def __init__(self, flags: Namespace, testing=False): """ config_path: (optional) path to the json config file """ flags = setup_flags(flags, testing) flags = get_method(flags) print(colored(f"running on {flags.device} with text {flags.text_encoding} encoding " f'with method {flags.method}, batch size: {flags.batch_size} and img size {flags.img_size}, ' f'fixed_image_extractor: {flags.fixed_image_extractor}', 'blue')) self.flags = create_dir_structure(flags) # because of bad initialisation, the vae might return nan values. If this is the case it is best to restart the # experiment. self.max_tries = 10 # maximum restarts of the experiment due to nan values self.current_tries = 0 self.start_time = 0 self.exp = None def setup_distributed(self): self.flags.world_size = torch.cuda.device_count() log.info(f'setting up distributed computing with world size {self.flags.world_size}') self.flags.distributed = self.flags.world_size > 1 self.flags.batch_size = int(self.flags.batch_size / self.flags.world_size) def run_epochs(self) -> Union[bool, str]: """ Wrapper of mimic.run_epochs.run_epochs that checks if the workflow was completed and starts it over otherwise. returns bool: true if run_epochs finishes, False if an error occurs string: "cuda_out_of_memory" if GPU runs out of memory """ print(colored(f'current free GPU memory: {get_gpu_memory()}', 'red')) self.start_time = timer() # need to reinitialize MimicExperiment after each retry self.exp = MimicExperiment(self.flags) create_dir_structure_testing(self.exp) self.expnumber_restarts = self.current_tries try: if self.flags.distributed: self.setup_distributed() mp.spawn(run_epochs, nprocs=self.flags.world_size, args=(self.exp,), join=True) else: run_epochs(self.flags.device, self.exp) except NaNInLatent as e: print(e) return False except CudaOutOfMemory as e: print(e) return 'cuda_out_of_memory' self.exp.update_experiments_dataframe({'experiment_duration': (timer() - self.start_time) // 60}) return True def restart(self) -> None: """ Clears old dir_structure and creates new one, deletes corresponding row in the experiment dataframe. """ exp_df = pd.read_csv('experiments_dataframe.csv') exp_df.drop(exp_df.index[exp_df['str_experiment'] == self.flags.str_experiment]) exp_df.to_csv('experiments_dataframe.csv', index=False) if self.exp.tb_logger: self.exp.tb_logger.writer.close() if self.flags.distributed: dist.destroy_process_group() torch.cuda.empty_cache() gc.collect() command = f'rm -r {self.flags.dir_experiment_run}' print(command) os.system(command) self.flags = create_dir_structure(self.flags) def main(self): """ Runs "run_epochs" until it returns True. If "run_epochs" fails because of full GPU memory, the batch size is reduced and the workflow is started again. If during the training, the model returns NaNs, bad initialization is assumed and the workflow is started again. """ success = False while not success and self.current_tries < self.max_tries: success = self.run_epochs() if not success: self.current_tries += 1 log.info(f'******** RESTARTING EXPERIMENT FOR THE {self.current_tries} TIME ********') if success == 'cuda_out_of_memory': old_bs = self.flags.batch_size self.flags.batch_size = int(np.floor(self.flags.batch_size * 0.8)) log.info(f'******** GPU ran out of memory with batch size {old_bs}, ' f'trying again with batch size: {self.flags.batch_size} ********') success = False if not success: self.restart() if __name__ == '__main__': FLAGS: Namespace = parser.parse_args() FLAGS.config_path = get_config_path(FLAGS) main = Main(FLAGS) try: main.main() except KeyboardInterrupt: import logging log.info("Aborted. Bye-bye.") logging.shutdown() ``` #### File: mimic/modalities/MimicLateral.py ```python import torch import mimic.modalities.utils from mimic.modalities.Modality import ModalityIMG class MimicLateral(ModalityIMG): def __init__(self, enc, dec, args): self.name = 'Lateral' self.likelihood_name = 'laplace' self.data_size = torch.Size((1, args.img_size, args.img_size)) super().__init__(data_size=self.data_size) self.gen_quality_eval = True self.file_suffix = '.png' self.encoder = enc self.decoder = dec self.likelihood = mimic.modalities.utils.get_likelihood(self.likelihood_name) ``` #### File: mimic/networks/CheXNet.py ```python import torch.nn as nn import torchvision import torch.nn.functional as F import torch from mimic.dataio.utils import get_densenet_transforms class CheXNet(nn.Module): """Taken from https://github.com/arnoweng/CheXNet/blob/master/model.py The architecture of this model is the same as standard DenseNet121 except the classifier layer which has an additional sigmoid function. """ def __init__(self, out_size, fixed_extractor=True): super(CheXNet, self).__init__() self.densenet121 = torchvision.models.densenet121(pretrained=True) if fixed_extractor: for param in self.densenet121.parameters(): param.requires_grad = False num_ftrs = self.densenet121.classifier.in_features self.densenet121.classifier = nn.Sequential( nn.Linear(num_ftrs, out_size), nn.Sigmoid() ) def forward(self, x): return self.densenet121(x) class PretrainedDenseNet(nn.Module): def __init__(self, args): super(PretrainedDenseNet, self).__init__() original_model = torchvision.models.densenet121(pretrained=True) self.features = nn.Sequential(*list(original_model.children())[:-1]) self.n_crops = args.n_crops if args.fixed_image_extractor: for param in self.parameters(): param.requires_grad = False def forward(self, x): if self.n_crops in [5, 10]: bs, n_crops, c, h, w = x.size() else: bs, c, h, w = x.size() imgs = torch.autograd.Variable(x.view(-1, c, h, w).cuda()) x = self.features(imgs) # x.shape = [bs*n_crop, 1024, 8, 8] x = F.relu(x, inplace=True) x = F.avg_pool2d(x, kernel_size=7).view(x.size(0), -1) return x class DenseLayers(nn.Module): def __init__(self, args, nb_out=320): self.n_crops = args.n_crops self.batch_size = args.batch_size super().__init__() if args.n_crops: self.dens1 = nn.Linear(in_features=1024 * args.n_crops, out_features=1024) self.dens2 = nn.Linear(in_features=1024, out_features=512) else: self.dens1 = nn.Linear(in_features=1024, out_features=768) self.dens2 = nn.Linear(in_features=768, out_features=512) self.dens3 = nn.Linear(in_features=512, out_features=nb_out) def forward(self, x): if self.n_crops in [5, 10]: x = x.view(self.batch_size, 1024 * self.n_crops) x = self.dens1(x) x = nn.functional.selu(x) x = F.dropout(x, p=0.25, training=self.training) x = self.dens2(x) x = nn.functional.selu(x) x = F.dropout(x, p=0.25, training=self.training) x = self.dens3(x) return x class DenseNetFeatureExtractor(nn.Module): def __init__(self, args): super().__init__() self.args = args self.pretrained_dense = PretrainedDenseNet(args) self.dense_layers = DenseLayers(args) self.transforms = get_densenet_transforms(args) def forward(self, x): x_tf = self.transform_batch(x) out = self.pretrained_dense(x_tf) out = self.dense_layers(out) out = out.unsqueeze(-1) return out def transform_batch(self, x): x_tf = torch.Tensor(x.shape[0], 3, *x.shape[2:]) for idx, elem in enumerate(x): new = self.transforms(elem.cpu()) x_tf[idx] = new x_tf.to(self.args.device) return x_tf if __name__ == '__main__': model = CheXNet(3) for param in model.parameters(): print(param) # param.requires_grad = False ``` #### File: networks/classifiers/utils.py ```python import os import typing from pathlib import Path from timeit import default_timer as timer from typing import Optional from typing import Protocol import numpy as np import pandas as pd import torch from matplotlib import pyplot as plt from sklearn.metrics import average_precision_score from torch.autograd import Variable from torch.optim.lr_scheduler import ReduceLROnPlateau from mimic import log from mimic.networks.CheXNet import CheXNet from mimic.networks.ConvNetworkImgClf import ClfImg from mimic.networks.ConvNetworkTextClf import ClfText from mimic.utils.filehandling import create_dir from mimic.utils.filehandling import expand_paths from mimic.utils.filehandling import get_str_experiments def save_flags(flags, modality, epoch): if modality == 'text': save_name = f'flags_clf_{modality}_vocabsize_{flags.vocab_size}' \ f'{"_bin_label" if flags.binary_labels else ""}_{epoch}.rar' else: save_name = f'flags_clf_{modality}_{epoch}.rar' torch.save(flags, Path(flags.dir_clf) / save_name) def get_labels(binary_labels: bool = False): if binary_labels: return ['Finding'] else: return ['Lung Opacity', 'Pleural Effusion', 'Support Devices'] class ExperimentDfProto(Protocol): dataset: str experiment_uid: str class ExperimentDf: """ clf experiment results dataframe which contains test results of previous experiments together with their parameters """ def __init__(self, flags: ExperimentDfProto): self.testing = flags.dataset == 'testing' experiment_uid = flags.experiment_uid if os.path.exists('clf_experiments_dataframe.csv'): experiments_dataframe = pd.read_csv('clf_experiments_dataframe.csv') flags_dict = vars(flags) flags_dict['experiment_uid'] = experiment_uid flags_dict['total_epochs'] = 0 flags_dict['experiment_duration'] = -1 else: experiments_dataframe = pd.DataFrame() flags_dict = vars(flags) flags_dict['clf_experiment_uid'] = experiment_uid self.experiments_dataframe = experiments_dataframe.append(flags_dict, ignore_index=True) self.experiments_dataframe.to_csv('clf_experiments_dataframe.csv', index=False) self.experiment_uid = experiment_uid self.start_time = timer() def update_experiments_dataframe(self, values_dict: dict): """ Updates the values in experiments dataframe with the new values from the values_dict and saves it if the experiment is not a test run """ log.info(f"writing to experiment df: {values_dict}") experiments_dataframe = pd.read_csv('clf_experiments_dataframe.csv') for key, value_ in values_dict.items(): if isinstance(values_dict[key], list) and len(value_) == 1: value = values_dict[key][0] else: value = values_dict[key] experiments_dataframe.loc[ experiments_dataframe['experiment_uid'] == self.experiment_uid, key] = value if not self.testing: experiments_dataframe.to_csv('clf_experiments_dataframe.csv', index=False) def write_experiment_time(self): self.update_experiments_dataframe({'experiment_duration': (timer() - self.start_time) // 60}) class CallbacksProto(Protocol): clf_save_m1: Optional[str] clf_save_m2: Optional[str] clf_save_m3: Optional[str] dir_clf: str dir_logs_clf: str binary_labels: bool vocab_size: int class Callbacks: def __init__(self, flags: CallbacksProto, start_early_stopping_epoch: int, max_early_stopping_index, modality: str, experiment_df: ExperimentDf, logger: any, optimizer: torch.optim): self.modality = modality self.logger = logger self.flags = flags self.experiment_df = experiment_df self.start_early_stopping_epoch = start_early_stopping_epoch self.max_early_stopping_index = max_early_stopping_index self.patience_idx = 1 self.scheduler = ReduceLROnPlateau(optimizer, 'min', patience=5, verbose=True) self.elapsed_times = [] # metrics is a dict that will contain a list for each metric, containing a value for each epoch self.metrics: typing.Mapping[str, list] = {} # self.early_stopping_crit = 'mean_AP_total' self.early_stopping_crit = 'dice' # maximize metric or minimize self.early_stopping_mode = 'maximize' def plot_metrics(self): for k, v in self.metrics.items(): plt.plot(v) plt.title(k) plt.savefig(os.path.join(self.flags.dir_logs_clf, f'{k}.png')) plt.close() def update_epoch(self, epoch: int, loss, val_results: typing.Dict[str, torch.Tensor], model, elapsed_time): # calculate metrics metrics = Metrics(val_results['predictions'], val_results['ground_truths'], str_labels=get_labels(self.flags.binary_labels)) metrics_dict = metrics.evaluate() metrics_dict['eval_loss'] = [loss] early_stop_crit_val = metrics_dict[self.early_stopping_crit][0] self._update_metrics(metrics_dict) stop_early = False self.elapsed_times.append(elapsed_time) self.scheduler.step(loss) # update logger for k, v in metrics_dict.items(): k = k.replace(' ', '_') self.logger.add_scalars(f'eval_clf_{self.modality}/{k}', {self.modality: v}, epoch) self.logger.add_scalars(f'eval_clf_{self.modality}/mean_loss', {self.modality: loss}, epoch) # evaluate progress max_eval_metric = max(self.metrics[self.early_stopping_crit]) epoch_max_eval_metric = np.argmax(self.metrics[self.early_stopping_crit]) print(f'current eval loss: {loss}, metrics: {metrics_dict}') if epoch >= self.start_early_stopping_epoch and early_stop_crit_val >= max_eval_metric: print( f'current {self.early_stopping_crit} {early_stop_crit_val} improved from {max_eval_metric}' f' at epoch {epoch_max_eval_metric}') self.experiment_df.update_experiments_dataframe( {'mean_eval_loss': loss, 'total_epochs': epoch, **metrics_dict}) self._save_and_overwrite_model(model.state_dict(), epoch) self.patience_idx = 1 elif self.patience_idx > self.max_early_stopping_index: print( f'stopping early at epoch {epoch} because current {self.early_stopping_crit} {early_stop_crit_val} ' f'did not improve from {max_eval_metric} at epoch {epoch_max_eval_metric}') stop_early = True else: if epoch > self.start_early_stopping_epoch: print( f'current {self.early_stopping_crit} {early_stop_crit_val} did not improve from {max_eval_metric} ' f'at epoch {epoch_max_eval_metric}') print(f'-- idx_early_stopping = {self.patience_idx} / {self.max_early_stopping_index}') self.patience_idx += 1 return stop_early def _update_metrics(self, metrics_dict: typing.Dict[str, list]): if not self.metrics: self.metrics = metrics_dict else: for k, v in metrics_dict.items(): self.metrics[k].extend(v) def _save_and_overwrite_model(self, state_dict, epoch: int): """ saves the model to flags.dir_clf/flags.clf_save_m[1,2,3] and deletes old one """ if self.modality == 'PA': filename = self.flags.clf_save_m1 elif self.modality == 'Lateral': filename = self.flags.clf_save_m2 else: filename = self.flags.clf_save_m3 + \ f'vocabsize_{self.flags.vocab_size}{"_bin_label" if self.flags.binary_labels else ""}' for file in os.listdir(self.flags.dir_clf): if file.startswith(filename): print(f'deleting old checkpoint: {os.path.join(self.flags.dir_clf, file)}') os.remove(os.path.join(self.flags.dir_clf, file)) log.info('saving model to {}'.format(os.path.join(self.flags.dir_clf, filename + f'_{epoch}'))) torch.save(state_dict, os.path.join(self.flags.dir_clf, filename + f'_{epoch}')) class GetModelsProto(Protocol): device: any img_clf_type: str distributed: bool fixed_extractor: bool binary_labels: bool def get_models(flags: GetModelsProto, modality: str): """ Get the wanted classifier for specific modality """ # argument feature_extractor_img is only used for mimic_main. # Need to make sure it is unset when training classifiers flags.feature_extractor_img = '' assert modality in ['PA', 'Lateral', 'text'] assert flags.img_clf_type in ['densenet', 'resnet', ''] if modality in ['PA', 'Lateral']: if flags.img_clf_type == 'densenet': model = CheXNet(len(get_labels(flags.binary_labels)), flags.fixed_extractor).cuda() elif flags.img_clf_type == 'resnet': model = ClfImg(flags, get_labels(flags.binary_labels)).to(flags.device) else: raise NotImplementedError(f'{flags.img_clf_type} is not implemented, chose between "densenet" and "resnet"') elif modality == 'text': model = ClfText(flags, get_labels(flags.binary_labels)).to(flags.device) if flags.distributed and torch.cuda.device_count() > 1: print(f'Training with {torch.cuda.device_count()} GPUs') model = torch.nn.DataParallel(model) return model def set_clf_paths(flags): """ Used for the trianing of the classifiers. dir_clf: path to the directory where the classifier checkpoints will be saved clf_save_m{1,2,3}: filename of the classifier checkpoint dir_logs_clf: path to the directory where the training logs will be saved """ flags.exp_str_prefix = f'clf_{flags.modality}' + f'{flags.exp_str_prefix}' * bool(flags.exp_str_prefix) flags.experiment_uid = get_str_experiments(flags) # flags.dir_logs_clf = os.path.join(os.path.expanduser(flags.dir_clf), 'logs', flags.experiment_uid) flags.dir_logs_clf = Path(flags.dir_clf).expanduser() / f'logs/{flags.experiment_uid}' create_dir(flags.dir_logs_clf) # change dir_clf if flags.modality in ['PA', 'Lateral']: flags.dir_clf = os.path.expanduser( os.path.join(flags.dir_clf, f'Mimic{flags.img_size}_{flags.img_clf_type}{"_bin_label" if flags.binary_labels else ""}')) else: flags.dir_clf = Path(flags.dir_clf).expanduser() if not os.path.exists(flags.dir_clf): os.makedirs(flags.dir_clf) flags = expand_paths(flags) return flags def get_imgs_from_crops(input: torch.Tensor, device): """ Reshapes the input such that the number of crops and the batch size are multiplied in the first dimension. """ bs, n_crops, c, h, w = input.size() imgs = Variable(input.view(-1, c, h, w)).to(device) return imgs, bs, n_crops def get_input(args: any, input: torch.Tensor, modality): if args.img_clf_type == 'densenet' and modality != 'text' and args.n_crops in [5, 10]: imgs, bs, n_crops = get_imgs_from_crops(input, args.device) else: imgs = input.to(args.device) bs = None n_crops = 1 return imgs, bs, n_crops class Metrics(object): """ Defines a set of metrics that are used to evaluate the performance of a model Modified version of https://github.com/ParGG/MasterThesisOld/blob/44f7b93214fa16494ebaeef7763ff81943b5ffc3/losses.py#L142 """ def __init__(self, prediction: torch.Tensor, groundtruth: torch.Tensor, str_labels): """ params: prediction: Tensor which is given as output of the network groundtruth: Tensor which resembles the goundtruth >>> import torch >>> metrics = Metrics(torch.ones((10,1)), torch.ones((10,1)), str_labels=['my_labels']) """ self.str_labels = str_labels self.prediction = prediction self.groundtruth = groundtruth self.prediction_bin: torch.Tensor = (prediction > 0.5) * 1 self.groundtruth_bin: torch.Tensor = (groundtruth > 0.5) * 1 # classwise binarized predictions self.class_pred_bin: dict = {str_labels[i]: self.prediction_bin[:, i] for i in range(len(str_labels))} self.class_gt_bin: dict = {str_labels[i]: self.groundtruth_bin[:, i] for i in range(len(str_labels))} def evaluate(self) -> typing.Dict[str, list]: """ Computes the different metrics (accuracy, recall, specificity, precision, f1 score, jaccard score, dice score). NOTE: f1 and dice are the same """ return {**{ 'accuracy': [Metrics.accuracy(self)], 'recall': [Metrics.recall(self)], 'specificity': [Metrics.specificity(self)], 'precision': [Metrics.precision(self)], 'f1': [Metrics.f1(self)], 'jaccard': [Metrics.jaccard(self)], 'dice': [Metrics.dice(self)], }, **self.mean_AP(), **self.counts() } def extract_values(self, results: dict): """ Extract first values from list for each metric result. >>> import torch >>> metrics = Metrics(torch.ones((10,1)), torch.ones((10,1)), str_labels=['my_labels']) >>> metrics.extract_values(results={'accuracy':[0.9], 'f1': [0.8], 'recall':[0.6]}) {'accuracy': 0.9, 'f1': 0.8, 'recall': 0.6} """ return {k: v[0] for k, v in results.items()} def accuracy(self) -> float: """ Computes the accuracy """ self.INTER = torch.mul(self.prediction_bin, self.groundtruth_bin).sum() self.INTER_NEG = torch.mul(1 - self.prediction_bin, 1 - self.groundtruth_bin).sum() self.TOTAL = self.prediction_bin.nelement() return float(self.INTER + self.INTER_NEG) / float(self.TOTAL) def recall(self) -> float: """ Computes the recall """ self.TP = torch.mul(self.prediction_bin, self.groundtruth_bin).sum() self.FN = torch.mul(1 - self.prediction_bin, self.groundtruth_bin).sum() self.RC = float(self.TP) / (float(self.TP + self.FN) + 1e-6) return self.RC def specificity(self): self.TN = torch.mul(1 - self.prediction_bin, 1 - self.groundtruth_bin).sum() self.FP = torch.mul(self.prediction_bin, 1 - self.groundtruth_bin).sum() self.SP = float(self.TN) / (float(self.TN + self.FP) + 1e-6) return self.SP def precision(self) -> float: """ Computes the precision """ self.PC = float(self.TP) / (float(self.TP + self.FP) + 1e-6) return self.PC def f1(self) -> float: """ Computes the f1 score (same as dice) """ return 2 * (self.RC * self.PC) / (self.RC + self.PC + 1e-6) def jaccard(self) -> float: """ Computes the jaccard score """ return float(self.INTER) / (float(self.INTER + self.FP + self.FN) + 1e-6) def dice(self): """ Computes the dice score (same as f1) """ return 2 * float(self.INTER) / (float(2 * self.INTER + self.FP + self.FN) + 1e-6) def mean_AP(self) -> dict: """ Compute the mean average precision. >>> import torch >>> metrics = Metrics(torch.tensor([0, 0, 1, 1]).unsqueeze(-1), torch.tensor([0.1, 0.4, 0.35, 0.8]).unsqueeze(-1), str_labels=['my_labels']) >>> metrics.mean_AP() {'mean_AP_my_labels': [0.8333333333333333], 'mean_AP_total': [0.8333333333333333]} """ ap_values = { f'mean_AP_{self.str_labels[i]}': [ average_precision_score(self.prediction[:, i].numpy().ravel(), self.groundtruth[:, i].numpy().ravel())] for i in range(len(self.str_labels))} ap_values['mean_AP_total'] = [average_precision_score(self.prediction.cpu().data.numpy().ravel(), self.groundtruth.cpu().data.numpy().ravel())] return ap_values def counts(self) -> dict: predicted_counts = {f'pred_count_{label}': [self.class_pred_bin[label].sum().item()] for label in self.str_labels} gt_counts = {f'gt_count_{label}': [self.class_gt_bin[label].sum().item()] for label in self.str_labels} return {**predicted_counts, **gt_counts} ``` #### File: mimic/networks/ConvNetworksTextMimic.py ```python import torch import torch.nn as nn from mimic.networks.FeatureCompressor import LinearFeatureCompressor from mimic.networks.char_encoding import DataGeneratorText as DataGeneratorText_CharEnc from mimic.networks.char_encoding import FeatureExtractorText as FeatureExtractorText_CharEnc from mimic.networks.word_encoding import DataGeneratorText as DataGeneratorText_WordEnc from mimic.networks.word_encoding.mmvae_text_enc import FeatureExtractorText as FeatureExtractorText_WordEnc class EncoderText(nn.Module): def __init__(self, flags, style_dim): super(EncoderText, self).__init__() self.args = flags if flags.text_encoding == 'char': self.feature_extractor = FeatureExtractorText_CharEnc(flags) elif flags.text_encoding == 'word': self.feature_extractor = FeatureExtractorText_WordEnc(flags) self.feature_compressor = LinearFeatureCompressor(5 * flags.DIM_text, style_dim, flags.class_dim) def forward(self, x_text): # d_model must be divisible by nhead # text_in = nn.functional.one_hot(x_text.to(torch.int64), num_classes=self.args.vocab_size) # encoder_layer = nn.TransformerEncoderLayer(d_model=x_text.shape[-1], nhead=8) # transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=8) # h_text = transformer_encoder(text_in) # todo is this better? h_text = self.feature_extractor(x_text) if self.feature_compressor.style_mu and self.feature_compressor.style_logvar: mu_style, logvar_style, mu_content, logvar_content = self.feature_compressor(h_text) return mu_content, logvar_content, mu_style, logvar_style else: mu_content, logvar_content = self.feature_compressor(h_text) return mu_content, logvar_content class DecoderText(nn.Module): def __init__(self, flags, style_dim): super(DecoderText, self).__init__() self.flags = flags self.feature_generator = nn.Linear(style_dim + flags.class_dim, 5 * flags.DIM_text, bias=True) if flags.text_encoding == 'char': self.text_generator = DataGeneratorText_CharEnc(flags) elif flags.text_encoding == 'word': self.text_generator = DataGeneratorText_WordEnc(flags) # self.text_generator = Dec(flags) def forward(self, z_style, z_content): if self.flags.factorized_representation: z = torch.cat((z_style, z_content), dim=1).squeeze(-1) # z.shape = [100, 64] else: z = z_content text_feat_hat = self.feature_generator(z) text_feat_hat = text_feat_hat.unsqueeze(-1) # predict in batches to spare GPU memory if text_feat_hat.shape[0] > self.flags.batch_size: dl = torch.utils.data.DataLoader(text_feat_hat, batch_size=self.flags.batch_size) text_hat = torch.Tensor().to(self.flags.device) for batch in dl: text_hat = torch.cat(tensors=(text_hat, self.text_generator(batch))) else: text_hat = self.text_generator(text_feat_hat) text_hat = text_hat.transpose(-2, -1) return [text_hat] ``` #### File: mimic/networks/VAEtrimodalMimic.py ```python import os import torch import torch.nn as nn from mimic.utils import utils from mimic.utils.BaseMMVae import BaseMMVae from torch.distributions.distribution import Distribution import typing class VAEtrimodalMimic(BaseMMVae, nn.Module): def __init__(self, flags, modalities, subsets): super(VAEtrimodalMimic, self).__init__(flags, modalities, subsets) self.encoder_pa = modalities['PA'].encoder self.encoder_lat = modalities['Lateral'].encoder self.encoder_text = modalities['text'].encoder self.decoder_pa = modalities['PA'].decoder self.decoder_lat = modalities['Lateral'].decoder self.decoder_text = modalities['text'].decoder self.encoder_pa = self.encoder_pa.to(flags.device) self.encoder_lat = self.encoder_lat.to(flags.device) self.encoder_text = self.encoder_text.to(flags.device) self.decoder_pa = self.decoder_pa.to(flags.device) self.decoder_lat = self.decoder_lat.to(flags.device) self.decoder_text = self.decoder_text.to(flags.device) self.lhood_pa = modalities['PA'].likelihood self.lhood_lat = modalities['Lateral'].likelihood self.lhood_text = modalities['text'].likelihood def forward(self, input_batch) -> typing.Mapping[str, any]: latents = self.inference(input_batch) results = {'latents': latents} div = self.calc_joint_divergence(latents['mus'], latents['logvars'], latents['weights']) results['group_distr'] = latents['joint'] class_embeddings = utils.reparameterize(latents['joint'][0], latents['joint'][1]) for key in div: results[key] = div[key] results_rec: typing.Mapping[str, Distribution] = {} for m_key in self.modalities: input_mod = input_batch[m_key] if input_mod is not None: mod = self.modalities[m_key] if self.flags.factorized_representation: s_mu, s_logvar = latents['modalities'][m_key + '_style'] s_emb = utils.reparameterize(mu=s_mu, logvar=s_logvar) else: s_emb = None if m_key == 'Lateral': rec = self.lhood_lat(*self.decoder_lat(s_emb, class_embeddings)) elif m_key == 'PA': rec = self.lhood_pa(*self.decoder_pa(s_emb, class_embeddings)) elif m_key == 'text': rec = self.lhood_text(logits=self.decoder_text(s_emb, class_embeddings)[0]) results_rec[m_key] = rec results['rec'] = results_rec return results def encode(self, input_batch): latents = {} if 'PA' in input_batch.keys(): i_m1 = input_batch['PA'] latents['PA'] = self.encoder_pa(i_m1) if self.encoder_pa.feature_compressor.style_mu and self.encoder_pa.feature_compressor.style_logvar: latents['PA_style'] = latents['PA'][2:] latents['PA'] = latents['PA'][:2] else: latents['PA_style'] = [None, None] latents['PA'] = [None, None] if 'Lateral' in input_batch.keys(): i_m2 = input_batch['Lateral'] latents['Lateral'] = self.encoder_lat(i_m2) if self.encoder_lat.feature_compressor.style_mu and self.encoder_lat.feature_compressor.style_logvar: latents['Lateral_style'] = latents['Lateral'][2:] latents['Lateral'] = latents['Lateral'][:2] else: latents['Lateral_style'] = [None, None] latents['Lateral'] = [None, None] if 'text' in input_batch.keys(): i_m3 = input_batch['text'] latents['text'] = self.encoder_text(i_m3) if self.encoder_text.feature_compressor.style_mu and self.encoder_text.feature_compressor.style_logvar: latents['text_style'] = latents['text'][2:] latents['text'] = latents['text'][:2] else: latents['text_style'] = [None, None] latents['text'] = [None, None] return latents def get_random_styles(self, num_samples): if self.flags.factorized_representation: z_style_1 = torch.randn(num_samples, self.flags.style_pa_dim) z_style_2 = torch.randn(num_samples, self.flags.style_lat_dim) z_style_3 = torch.randn(num_samples, self.flags.style_text_dim) z_style_1 = z_style_1.to(self.flags.device) z_style_2 = z_style_2.to(self.flags.device) z_style_3 = z_style_3.to(self.flags.device) else: z_style_1 = None z_style_2 = None z_style_3 = None return {'PA': z_style_1, 'Lateral': z_style_2, 'text': z_style_3} def get_random_style_dists(self, num_samples): s1_mu = torch.zeros(num_samples, self.flags.style_pa_dim).to(self.flags.device) s1_logvar = torch.zeros(num_samples, self.flags.style_pa_dim).to(self.flags.device) s2_mu = torch.zeros(num_samples, self.flags.style_lat_dim).to(self.flags.device) s2_logvar = torch.zeros(num_samples, self.flags.style_lat_dim).to(self.flags.device) s3_mu = torch.zeros(num_samples, self.flags.style_text_dim).to(self.flags.device) s3_logvar = torch.zeros(num_samples, self.flags.style_text_dim).to(self.flags.device) m1_dist = [s1_mu, s1_logvar] m2_dist = [s2_mu, s2_logvar] m3_dist = [s3_mu, s3_logvar] return {'PA': m1_dist, 'Lateral': m2_dist, 'text': m3_dist} def generate(self, num_samples: int = None) -> dict: if num_samples is None: num_samples = self.flags.batch_size z_class = torch.randn(num_samples, self.flags.class_dim) z_class = z_class.to(self.flags.device) style_latents = self.get_random_styles(num_samples) random_latents = {'content': z_class, 'style': style_latents} return self.generate_from_latents(random_latents) def generate_from_latents(self, latents: dict) -> dict: suff_stats = self.generate_sufficient_statistics_from_latents(latents) cond_gen_pa = suff_stats['PA'].mean cond_gen_lat = suff_stats['Lateral'].mean cond_gen_text = suff_stats['text'].mean return {'PA': cond_gen_pa, 'Lateral': cond_gen_lat, 'text': cond_gen_text} def generate_sufficient_statistics_from_latents(self, latents: dict) -> dict: style_pa = latents['style']['PA'] style_lat = latents['style']['Lateral'] style_text = latents['style']['text'] content: dict = latents['content'] cond_gen_m1 = self.lhood_pa(*self.decoder_pa(style_pa, content)) cond_gen_m2 = self.lhood_lat(*self.decoder_lat(style_lat, content)) cond_gen_m3 = self.lhood_text(logits=self.decoder_text(style_text, content)[0]) return {'PA': cond_gen_m1, 'Lateral': cond_gen_m2, 'text': cond_gen_m3} def save_networks(self): torch.save(self.encoder_pa.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.encoder_save_m1)) torch.save(self.decoder_pa.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.decoder_save_m1)) torch.save(self.encoder_lat.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.encoder_save_m2)) torch.save(self.decoder_lat.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.decoder_save_m2)) torch.save(self.encoder_text.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.encoder_save_m3)) torch.save(self.decoder_text.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.decoder_save_m3)) class VAETextMimic(BaseMMVae, nn.Module): def __init__(self, flags, modalities, subsets): super(VAETextMimic, self).__init__(flags, modalities, subsets) self.encoder_text = modalities['text'].encoder self.decoder_text = modalities['text'].decoder self.encoder_text = self.encoder_text.to(flags.device) self.decoder_text = self.decoder_text.to(flags.device) self.lhood_text = modalities['text'].likelihood def forward(self, input_batch): latents = self.inference(input_batch) results = {'latents': latents} div = self.calc_joint_divergence(latents['mus'], latents['logvars'], latents['weights']) results['group_distr'] = latents['joint'] class_embeddings = utils.reparameterize(latents['joint'][0], latents['joint'][1]) for k, key in enumerate(div.keys()): results[key] = div[key] results_rec = {} for k, m_key in enumerate(self.modalities.keys()): input_mod = input_batch[m_key] if input_mod is not None: mod = self.modalities[m_key] if self.flags.factorized_representation: s_mu, s_logvar = latents[m_key + '_style'] s_emb = utils.reparameterize(mu=s_mu, logvar=s_logvar) else: s_emb = None if m_key == 'text': rec = self.lhood_text(*self.decoder_text(s_emb, class_embeddings)) results_rec[m_key] = rec results['rec'] = results_rec return results def encode(self, input_batch): latents = {} if 'text' in input_batch.keys(): i_m3 = input_batch['text'] latents['text'] = self.encoder_text(i_m3) if self.encoder_text.feature_compressor.style_mu and self.encoder_text.feature_compressor.style_logvar: latents['text_style'] = latents['text'][2:] latents['text'] = latents['text'][:2] else: latents['text_style'] = [None, None] latents['text'] = [None, None] return latents def get_random_styles(self, num_samples): if self.flags.factorized_representation: z_style_3 = torch.randn(num_samples, self.flags.style_text_dim) z_style_3 = z_style_3.to(self.flags.device) else: z_style_3 = None return {'text': z_style_3} def get_random_style_dists(self, num_samples): s3_mu = torch.zeros(num_samples, self.flags.style_text_dim).to(self.flags.device) s3_logvar = torch.zeros(num_samples, self.flags.style_text_dim).to(self.flags.device) m3_dist = [s3_mu, s3_logvar] return {'text': m3_dist} def generate(self, num_samples=None) -> dict: if num_samples is None: num_samples = self.flags.batch_size z_class = torch.randn(num_samples, self.flags.class_dim) z_class = z_class.to(self.flags.device) style_latents = self.get_random_styles(num_samples) random_latents = {'content': z_class, 'style': style_latents} return self.generate_from_latents(random_latents) def generate_from_latents(self, latents: dict) -> dict: suff_stats = self.generate_sufficient_statistics_from_latents(latents) cond_gen_text = suff_stats['text'].mean return {'text': cond_gen_text} def generate_sufficient_statistics_from_latents(self, latents: dict) -> dict: style_text = latents['style']['text'] content = latents['content'] cond_gen_m3 = self.lhood_text(*self.decoder_text(style_text, content)) return {'text': cond_gen_m3} def save_networks(self): torch.save(self.encoder_text.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.encoder_save_m3)) torch.save(self.decoder_text.state_dict(), os.path.join(self.flags.dir_checkpoints, self.flags.decoder_save_m3)) ``` #### File: mimic/notebooks/temp.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim torch.manual_seed(1) CONTEXT_SIZE = 2 EMBEDDING_DIM = 10 # We will use Shakespeare Sonnet 2 test_sentence = """When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a totter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine! This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold.""".split() # we should tokenize the input, but we will ignore that for now # build a list of tuples. Each tuple is ([ word_i-2, word_i-1 ], target word) trigrams = [([test_sentence[i], test_sentence[i + 1]], test_sentence[i + 2]) for i in range(len(test_sentence) - 2)] # print the first 3, just so you can see what they look like print(trigrams[:3]) vocab = set(test_sentence) word_to_ix = {word: i for i, word in enumerate(vocab)} class NGramLanguageModeler(nn.Module): def __init__(self, vocab_size, embedding_dim, context_size): super(NGramLanguageModeler, self).__init__() self.embeddings = nn.Embedding(vocab_size, embedding_dim) self.linear1 = nn.Linear(context_size * embedding_dim, 128) self.linear2 = nn.Linear(128, vocab_size) def forward(self, inputs): embeds = self.embeddings(inputs).view((1, -1)) out = F.relu(self.linear1(embeds)) out = self.linear2(out) log_probs = F.log_softmax(out, dim=1) return log_probs losses = [] loss_function = nn.NLLLoss() model = NGramLanguageModeler(len(vocab), EMBEDDING_DIM, CONTEXT_SIZE) optimizer = optim.SGD(model.parameters(), lr=0.001) for epoch in range(10): total_loss = 0 for context, target in trigrams: # Step 1. Prepare the inputs to be passed to the model (i.e, turn the words # into integer indices and wrap them in tensors) context_idxs = torch.tensor([word_to_ix[w] for w in context], dtype=torch.long) # Step 2. Recall that torch *accumulates* gradients. Before passing in a # new instance, you need to zero out the gradients from the old # instance model.zero_grad() # Step 3. Run the forward pass, getting log probabilities over next # words log_probs = model(context_idxs) # Step 4. Compute your loss function. (Again, Torch wants the target # word wrapped in a tensor) loss = loss_function(log_probs, torch.tensor([word_to_ix[target]], dtype=torch.long)) # Step 5. Do the backward pass and update the gradient loss.backward() optimizer.step() # Get the Python number from a 1-element Tensor by calling tensor.item() total_loss += loss.item() losses.append(total_loss) print(losses) # The loss decreased every iteration over the training data! ``` #### File: MoPoE-MIMIC/mimic/run_epochs.py ```python import random import time import typing from contextlib import contextmanager import numpy as np import torch import torch.distributed as dist from termcolor import colored from torch.autograd import Variable from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data import DataLoader from tqdm import tqdm from mimic import log from mimic.dataio.utils import get_data_loaders, samplers_set_epoch from mimic.evaluation.eval_metrics.coherence import test_generation, flatten_cond_gen_values from mimic.evaluation.eval_metrics.likelihood import estimate_likelihoods from mimic.evaluation.eval_metrics.representation import test_clf_lr_all_subsets, train_clf_lr_all_subsets from mimic.evaluation.eval_metrics.sample_quality import calc_prd_score from mimic.evaluation.losses import calc_log_probs, calc_klds, calc_klds_style, calc_poe_loss, calc_joint_elbo_loss from mimic.utils import utils from mimic.utils.average_meters import AverageMeter, AverageMeterDict, AverageMeterLatents from mimic.utils.exceptions import CudaOutOfMemory from mimic.utils.experiment import Callbacks, MimicExperiment from mimic.utils.plotting import generate_plots from mimic.utils.utils import check_latents, at_most_n, get_items_from_dict # set the seed for reproducibility def set_random_seed(seed: int): np.random.seed(seed) torch.manual_seed(seed) random.seed(seed) @contextmanager def catching_cuda_out_of_memory(batch_size): """ Context that throws CudaOutOfMemory error if GPU is out of memory. """ try: yield # if the GPU runs out of memory, start the experiment again with a smaller batch size except RuntimeError as e: if str(e).startswith('CUDA out of memory.') and batch_size > 10: raise CudaOutOfMemory(e) else: raise e def basic_routine_epoch(exp, batch) -> typing.Mapping[str, any]: # set up weights beta_style = exp.flags.beta_style beta_content = exp.flags.beta_content beta = exp.flags.beta mm_vae = exp.mm_vae batch_d = batch[0] mods = exp.modalities for k, m_key in enumerate(batch_d.keys()): batch_d[m_key] = Variable(batch_d[m_key]).to(exp.flags.device) with catching_cuda_out_of_memory(batch_size=exp.flags.batch_size): results = mm_vae(batch_d) for key in results['latents']['modalities']: results['latents']['modalities'][key][1].mean().item() # checking if the latents contain NaNs. If they do raise NaNInLatent error and the experiment is started again check_latents(exp.flags, results['latents']['modalities'][key]) # getting the log probabilities with catching_cuda_out_of_memory(batch_size=exp.flags.batch_size): log_probs, weighted_log_prob = calc_log_probs(exp, results, batch) group_divergence = results['joint_divergence'] klds = calc_klds(exp, results) if exp.flags.factorized_representation: klds_style = calc_klds_style(exp, results) else: klds_style = None # Calculation of the loss if (exp.flags.modality_jsd or exp.flags.modality_moe or exp.flags.joint_elbo): total_loss = calc_joint_elbo_loss(exp, klds_style, group_divergence, beta_style, beta_content, weighted_log_prob, beta) elif exp.flags.modality_poe: total_loss = calc_poe_loss(exp, mods, group_divergence, klds, klds_style, batch_d, mm_vae, log_probs) return { 'results': results, 'log_probs': log_probs, 'total_loss': total_loss, 'klds': klds, } def train(exp: MimicExperiment, train_loader: DataLoader) -> None: tb_logger = exp.tb_logger mm_vae = exp.mm_vae mm_vae.train() exp.mm_vae = mm_vae average_meters = { 'total_loss': AverageMeter('total_test_loss'), 'klds': AverageMeterDict('klds'), 'log_probs': AverageMeterDict('log_probs'), 'joint_divergence': AverageMeter('joint_divergence'), 'latents': AverageMeterLatents('latents'), } if 0 < exp.flags.steps_per_training_epoch < len(train_loader): training_steps = exp.flags.steps_per_training_epoch else: training_steps = None for iteration, batch in tqdm(enumerate(at_most_n(train_loader, training_steps or None)), total=training_steps or len(train_loader), postfix='train'): # log text input once evey epoch: if iteration == 0: tb_logger.write_tensor_to_text(batch[0]['text'][0], exp, log_tag='train_input') basic_routine = basic_routine_epoch(exp, batch) results = basic_routine['results'] total_loss = basic_routine['total_loss'] # backprop exp.optimizer.zero_grad() with catching_cuda_out_of_memory(exp.flags.batch_size): total_loss.backward() exp.optimizer.step() batch_results = { 'total_loss': total_loss.item(), 'klds': get_items_from_dict(basic_routine['klds']), 'log_probs': get_items_from_dict(basic_routine['log_probs']), 'joint_divergence': results['joint_divergence'].item(), 'latents': results['latents']['modalities'], } for key, value in batch_results.items(): average_meters[key].update(value) epoch_averages = {k: v.get_average() for k, v in average_meters.items()} tb_logger.write_training_logs(**epoch_averages) def test(epoch, exp, test_loader: DataLoader): with torch.no_grad(): mm_vae = exp.mm_vae mm_vae.eval() exp.mm_vae = mm_vae average_meters = { 'total_loss': AverageMeter('total_test_loss'), 'klds': AverageMeterDict('klds'), 'log_probs': AverageMeterDict('log_probs'), 'joint_divergence': AverageMeter('joint_divergence'), 'latents': AverageMeterLatents('latents'), } tb_logger = exp.tb_logger for iteration, batch in tqdm(enumerate(test_loader), total=len(test_loader), postfix='test'): basic_routine = basic_routine_epoch(exp, batch) results = basic_routine['results'] batch_results = { 'total_loss': basic_routine['total_loss'].item(), 'klds': get_items_from_dict(basic_routine['klds']), 'log_probs': get_items_from_dict(basic_routine['log_probs']), 'joint_divergence': results['joint_divergence'].item(), 'latents': results['latents']['modalities'], } for key in batch_results: average_meters[key].update(batch_results[key]) klds: typing.Mapping[str, float] log_probs: typing.Mapping[str, float] joint_divergence: float latents: typing.Mapping[str, tuple] test_results = {k: v.get_average() for k, v in average_meters.items()} tb_logger.write_testing_logs(**test_results) # set a lower batch_size for testing to spare GPU memory log.info(f'setting batch size to {exp.flags.batch_size}') training_batch_size = exp.flags.batch_size exp.flags.batch_size = 30 if (epoch + 1) % exp.flags.eval_freq == 0 or (epoch + 1) == exp.flags.end_epoch: log.info('generating plots') plots = generate_plots(exp, epoch) tb_logger.write_plots(plots, epoch) if exp.flags.eval_lr: log.info('evaluation of latent representation') clf_lr = train_clf_lr_all_subsets(exp) lr_eval = test_clf_lr_all_subsets(clf_lr, exp) tb_logger.write_lr_eval(lr_eval) test_results['lr_eval'] = lr_eval if exp.flags.use_clf: log.info('test generation') gen_eval, text_gen_eval_results = test_generation(exp) tb_logger.write_coherence_logs(gen_eval) test_results['gen_eval'] = flatten_cond_gen_values(gen_eval) test_results['text_gen_eval'] = text_gen_eval_results if exp.flags.calc_nll: log.info('estimating likelihoods') lhoods = estimate_likelihoods(exp) tb_logger.write_lhood_logs(lhoods) test_results['lhoods'] = lhoods if exp.flags.calc_prd and ((epoch + 1) % exp.flags.eval_freq_fid == 0): log.info('calculating prediction score') prd_scores = calc_prd_score(exp) tb_logger.write_prd_scores(prd_scores) test_results['prd_scores'] = prd_scores test_results['latents'] = {mod: {'mu': test_results['latents'][mod][0], 'logvar': test_results['latents'][mod][1]} for mod in test_results['latents']} exp.update_experiments_dataframe({'total_epochs': epoch, **utils.flatten(test_results)}) # setting batch size back to training batch size exp.flags.batch_size = training_batch_size return {k: v for k, v in test_results.items() if k in ['total_loss', 'lr_eval', 'text_gen_eval']} def run_epochs(rank: any, exp: MimicExperiment) -> None: """ rank: is int if multiprocessing and torch.device otherwise """ log.info('running epochs') set_random_seed(exp.flags.seed) exp.set_optimizer() exp.mm_vae = exp.mm_vae.to(rank) args = exp.flags args.device = rank exp.tb_logger = exp.init_summary_writer() if args.distributed: utils.set_up_process_group(args.world_size, rank) exp.mm_vae = DDP(exp.mm_vae, device_ids=[exp.flags.device]) train_sampler, train_loader = get_data_loaders(args, exp.dataset_train, which_set='train', weighted_sampler=args.weighted_sampler) test_sampler, test_loader = get_data_loaders(args, exp.dataset_test, which_set='eval') callbacks = Callbacks(exp) end = time.time() for epoch in tqdm(range(exp.flags.start_epoch, exp.flags.end_epoch), postfix='epochs'): print(colored(f'\nEpoch {epoch} {"-" * 140}\n', 'green')) end = time.time() samplers_set_epoch(args, train_sampler, test_sampler, epoch) exp.tb_logger.set_epoch(epoch) # one epoch of training and testing train(exp, train_loader) # mean_eval_loss, results_lr = test(epoch, exp, test_loader) test_results = test(epoch, exp, test_loader) if callbacks.update_epoch(epoch, test_results, time.time() - end): break if exp.tb_logger: exp.tb_logger.writer.close() if args.distributed: dist.destroy_process_group() ``` #### File: mimic/tests/test_callbacks.py ```python import os import tempfile from dataclasses import dataclass from unittest import TestCase import torch import torch.optim as optim from tensorboardX import SummaryWriter from mimic.networks.classifiers.utils import ExperimentDf, get_models, Callbacks, CallbacksProto @dataclass class Args(CallbacksProto): img_clf_type = 'resnet' img_size = 128 image_channels = 10 clf_save_m1: str = 'temp' dataset: str = 'testing' experiment_uid: str = 'temp' use_cuda = torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') distributed: bool = False def __init__(self, tmpdirname: str): self.tempdirname = tmpdirname self.dir_clf = tmpdirname self.dir_logs_clf = tmpdirname class TestCallbacks(TestCase): def test_callbacks_increasing_loss_decreasingAP(self): with tempfile.TemporaryDirectory() as tmpdirname: args = Args(tmpdirname) modality = 'PA' experiment_df = ExperimentDf(args) model = get_models(args, modality) optimizer = optim.Adam(list(model.parameters())) logger = SummaryWriter(args.dir_logs_clf) callbacks = Callbacks(args, 0, 5, modality, experiment_df, logger, optimizer) loss = 10 for epoch in range(100): if epoch == 0: val_results = {'predictions': torch.ones((10, 3)), 'ground_truths': torch.ones((10, 3))} else: val_results = {'predictions': torch.zeros((10, 3)), 'ground_truths': torch.ones((10, 3))} loss += 1 if callbacks.update_epoch(epoch, loss, val_results, model, elapsed_time=1): break self.assertEqual(epoch, 6) def test_callbacks_decreasing_loss_increasingAP(self): with tempfile.TemporaryDirectory() as tmpdirname: args = Args(tmpdirname) modality = 'PA' experiment_df = ExperimentDf(args) model = get_models(args, modality) optimizer = optim.Adam(list(model.parameters())) logger = SummaryWriter(args.dir_logs_clf) callbacks = Callbacks(args, 0, 5, modality, experiment_df, logger, optimizer) loss = 1000 for epoch in range(10): loss -= 1 if epoch == 0: val_results = {'predictions': torch.cat((torch.ones((1, 3)), torch.zeros((9, 3)))), 'ground_truths': torch.ones((10, 3))} else: val_results = {'predictions': torch.cat((torch.ones((epoch, 3)), torch.zeros((10 - epoch, 3)))), 'ground_truths': torch.ones((10, 3))} if callbacks.update_epoch(epoch, loss, val_results, model, elapsed_time=1): break self.assertEqual(epoch, 9) self.assertTrue(os.path.exists(f'{tmpdirname}/temp_9')) ``` #### File: mimic/utils/average_meters.py ```python import typing import numpy as np class AverageMeter(object): """ Computes and stores the average and current value Taken from https://github.com/pytorch/examples/blob/a3f28a26851867b314f4471ec6ca1c2c048217f1/imagenet/main.py#L363 """ def __init__(self, name: str, fmt: str = ':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self) -> str: fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) def get_average(self): return self.val class AverageMeterNestedDict: """ Computes and stores the average and current value Inspired by https://github.com/pytorch/examples/blob/a3f28a26851867b314f4471ec6ca1c2c048217f1/imagenet/main.py#L363 """ def __init__(self, name: str, structure: typing.Mapping[str, typing.Mapping[str, typing.Iterable[None]]]): self.name = name self.structure = structure self.vals: typing.Mapping[str, typing.Mapping[str, typing.Iterable[typing.Optional[float]]]] = structure def update(self, val: typing.Mapping[str, typing.Mapping[str, typing.Iterable[float]]]) -> None: for k1 in self.structure: for k2 in self.structure: self.vals[k1][k2].append(val[k1][k2]) def get_average(self) -> typing.Mapping[str, typing.Mapping[str, float]]: d = {} for k1 in self.structure: for k2 in self.structure: d[k1][k2] = np.mean(self.vals[k1][k2]) return d class AverageMeterDict: """ Computes and stores the average and current value Inspired by https://github.com/pytorch/examples/blob/a3f28a26851867b314f4471ec6ca1c2c048217f1/imagenet/main.py#L363 """ def __init__(self, name: str): self.name = name self.vals: typing.Optional[typing.Mapping[str, typing.Iterable[float]]] = None def update(self, val: typing.Mapping[str, typing.Iterable[float]]) -> None: if not self.vals: self.vals = {k: [] for k in val} for key in val: self.vals[key].append(val[key]) def get_average(self) -> typing.Mapping[str, typing.Mapping[str, float]]: return {key: np.mean(self.vals[key]) for key in self.vals} class AverageMeterLatents(AverageMeterDict): def __init__(self, name: str): super().__init__(name=name) def update(self, val: typing.Mapping[str, typing.Tuple[typing.Iterable[float], typing.Iterable[float]]]): if not self.vals: self.vals = {k: ([], []) for k in val} for key in val: self.vals[key][0].append(val[key][0].mean().item()) self.vals[key][1].append(val[key][1].mean().item()) def get_average(self) -> typing.Mapping[str, typing.Mapping[str, typing.Tuple[float, float]]]: return {key: (np.mean(self.vals[key][0]), np.mean(self.vals[key][1])) for key in self.vals} ``` #### File: mimic/utils/BaseMMVae.py ```python from abc import ABC, abstractmethod import torch import torch.nn as nn from mimic.evaluation.divergence_measures.mm_div import calc_alphaJSD_modalities from mimic.evaluation.divergence_measures.mm_div import calc_group_divergence_moe from mimic.evaluation.divergence_measures.mm_div import poe from mimic.utils import utils import typing from torch import Tensor class BaseMMVae(ABC, nn.Module): def __init__(self, flags, modalities, subsets): super(BaseMMVae, self).__init__() self.num_modalities = len(modalities.keys()) self.flags = flags self.modalities = modalities self.subsets = subsets self.set_fusion_functions() # assign encoders, decoders and likelihoods here # # # # ############################################### @abstractmethod def forward(self, input_batch): pass @abstractmethod def encode(self, input_batch): pass @abstractmethod def get_random_styles(self, num_samples): pass @abstractmethod def get_random_style_dists(self, num_samples): pass @abstractmethod def generate_sufficient_statistics_from_latents(self, latents): pass @abstractmethod def save_networks(self): pass def set_fusion_functions(self): weights = utils.reweight_weights(torch.Tensor(self.flags.alpha_modalities)) self.weights = weights.to(self.flags.device) if self.flags.modality_moe: self.modality_fusion = self.moe_fusion self.fusion_condition = self.fusion_condition_moe self.calc_joint_divergence = self.divergence_static_prior elif self.flags.modality_jsd: self.modality_fusion = self.moe_fusion self.fusion_condition = self.fusion_condition_moe self.calc_joint_divergence = self.divergence_dynamic_prior elif self.flags.modality_poe: self.modality_fusion = self.poe_fusion self.fusion_condition = self.fusion_condition_poe self.calc_joint_divergence = self.divergence_static_prior elif self.flags.joint_elbo: self.modality_fusion = self.poe_fusion self.fusion_condition = self.fusion_condition_joint self.calc_joint_divergence = self.divergence_static_prior def divergence_static_prior(self, mus, logvars, weights=None): if weights is None: weights = self.weights weights = weights.clone() weights = utils.reweight_weights(weights) div_measures = calc_group_divergence_moe(self.flags, mus, logvars, weights, normalization=self.flags.batch_size) return { 'joint_divergence': div_measures[0], 'individual_divs': div_measures[1], 'dyn_prior': None, } def divergence_dynamic_prior(self, mus, logvars, weights=None): if weights is None: weights = self.weights div_measures = calc_alphaJSD_modalities(self.flags, mus, logvars, weights, normalization=self.flags.batch_size) return { 'joint_divergence': div_measures[0], 'individual_divs': div_measures[1], 'dyn_prior': div_measures[2], } def moe_fusion(self, mus, logvars, weights=None): if weights is None: weights = self.weights weights = utils.reweight_weights(weights) # mus = torch.cat(mus, dim=0) # logvars = torch.cat(logvars, dim=0) mu_moe, logvar_moe = utils.mixture_component_selection(self.flags, mus, logvars, weights) return [mu_moe, logvar_moe] def poe_fusion(self, mus, logvars, weights=None): """ Fuses all modalities in subset with product of experts method. """ if self.flags.modality_poe: num_samples = mus[0].shape[0] mus = torch.cat((mus, torch.zeros(1, num_samples, self.flags.class_dim).to(self.flags.device)), dim=0) logvars = torch.cat((logvars, torch.zeros(1, num_samples, self.flags.class_dim).to(self.flags.device)), dim=0) # mus = torch.cat(mus, dim=0) # logvars = torch.cat(logvars, dim=0) mu_poe, logvar_poe = poe(mus, logvars) return [mu_poe, logvar_poe] def fusion_condition_moe(self, subset, input_batch=None): return len(subset) == 1 def fusion_condition_poe(self, subset, input_batch=None): return len(subset) == len(input_batch.keys()) def fusion_condition_joint(self, subset, input_batch=None): return True def inference(self, input_batch, num_samples=None): num_samples = num_samples or self.flags.batch_size latents = {} enc_mods = self.encode(input_batch) latents['modalities'] = enc_mods mus = torch.Tensor().to(self.flags.device) logvars = torch.Tensor().to(self.flags.device) distr_subsets = {} # concatenate mus and logvars for every modality in each subset for s_key in self.subsets: if s_key != '': mods = self.subsets[s_key] mus_subset = torch.Tensor().to(self.flags.device) logvars_subset = torch.Tensor().to(self.flags.device) mods_avail = True for mod in mods: if mod.name in input_batch: mus_subset = torch.cat((mus_subset, enc_mods[mod.name][0].unsqueeze(0)), dim=0) logvars_subset = torch.cat((logvars_subset, enc_mods[mod.name][1].unsqueeze(0)), dim=0) else: mods_avail = False if mods_avail: # normalize latents by number of modalities in subset weights_subset = ((1 / float(len(mus_subset))) * torch.ones(len(mus_subset)).to(self.flags.device)) s_mu, s_logvar = self.modality_fusion(mus_subset, logvars_subset, weights_subset) distr_subsets[s_key] = [s_mu, s_logvar] # fusion_condition always true # store all s_mus and s_logvars in variables mus and logvars if self.fusion_condition(mods, input_batch): mus = torch.cat((mus, s_mu.unsqueeze(0)), dim=0) logvars = torch.cat((logvars, s_logvar.unsqueeze(0)), dim=0) if self.flags.modality_jsd: mus = torch.cat((mus, torch.zeros(1, num_samples, self.flags.class_dim).to(self.flags.device)), dim=0) logvars = torch.cat((logvars, torch.zeros(1, num_samples, self.flags.class_dim).to(self.flags.device)), dim=0) # weights = (1/float(len(mus)))*torch.ones(len(mus)).to(self.flags.device) # normalize with number of subsets weights = (1 / float(mus.shape[0])) * torch.ones(mus.shape[0]).to(self.flags.device) joint_mu, joint_logvar = self.moe_fusion(mus, logvars, weights) # mus = torch.cat(mus, dim=0) # logvars = torch.cat(logvars, dim=0) latents['mus'] = mus latents['logvars'] = logvars latents['weights'] = weights latents['joint'] = [joint_mu, joint_logvar] latents['subsets'] = distr_subsets return latents def generate(self, num_samples=None): if num_samples is None: num_samples = self.flags.batch_size mu = torch.zeros(num_samples, self.flags.class_dim).to(self.flags.device) logvar = torch.zeros(num_samples, self.flags.class_dim).to(self.flags.device) z_class = utils.reparameterize(mu, logvar) z_styles = self.get_random_styles(num_samples) random_latents = {'content': z_class, 'style': z_styles} return self.generate_from_latents(random_latents) def generate_from_latents(self, latents) -> typing.Mapping[str, Tensor]: suff_stats = self.generate_sufficient_statistics_from_latents(latents) cond_gen = {} for m, m_key in enumerate(latents['style'].keys()): cond_gen_m = suff_stats[m_key].mean cond_gen[m_key] = cond_gen_m return cond_gen def cond_generation(self, latent_distributions, num_samples=None) \ -> typing.Mapping[str, typing.Mapping[str, Tensor]]: if num_samples is None: num_samples = self.flags.batch_size style_latents = self.get_random_styles(num_samples) cond_gen_samples = {} for key in latent_distributions.keys(): [mu, logvar] = latent_distributions[key] content_rep = utils.reparameterize(mu=mu, logvar=logvar) latents = {'content': content_rep, 'style': style_latents} cond_gen_samples[key] = self.generate_from_latents(latents) return cond_gen_samples ``` #### File: mimic/utils/experiment.py ```python import os import random import typing from argparse import Namespace from pathlib import Path import numpy as np import pandas as pd import torch import torch.optim as optim from PIL import ImageFont from matplotlib import pyplot as plt from sklearn.metrics import average_precision_score from torch import Tensor from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.tensorboard import SummaryWriter from mimic import log from mimic.dataio.MimicDataset import Mimic, Mimic_testing from mimic.dataio.MimicDataset import MimicText as MimicTextDataset from mimic.dataio.utils import get_transform_img, get_str_labels from mimic.modalities.MimicLateral import MimicLateral from mimic.modalities.MimicPA import MimicPA from mimic.modalities.MimicText import MimicText from mimic.modalities.Modality import Modality from mimic.networks.CheXNet import CheXNet from mimic.networks.ConvNetworkImgClf import ClfImg as ClfImg from mimic.networks.ConvNetworkTextClf import ClfText as ClfText from mimic.networks.ConvNetworksImgMimic import EncoderImg, DecoderImg from mimic.networks.ConvNetworksTextMimic import EncoderText, DecoderText from mimic.networks.VAEtrimodalMimic import VAEtrimodalMimic, VAETextMimic from mimic.utils import utils from mimic.utils.BaseExperiment import BaseExperiment from mimic.utils.TBLogger import TBLogger from mimic.utils.text import tensor_to_text from mimic.utils.utils import get_clf_path, get_alphabet from mimic.utils.utils import init_twolevel_nested_dict class MimicExperiment(BaseExperiment): def __init__(self, flags): super().__init__(flags) self.labels = get_str_labels(flags.binary_labels) self.flags = flags self.experiment_uid = flags.str_experiment self.dataset = flags.dataset self.plot_img_size = torch.Size((1, 128, 128)) if self.flags.text_encoding == 'char': self.alphabet = get_alphabet() self.flags.num_features = len(self.alphabet) self.dataset_train, self.dataset_test, self.font = self.set_dataset() self.modalities: typing.Mapping[str, Modality] = self.set_modalities() self.num_modalities = len(self.modalities.keys()) self.subsets = self.set_subsets() self.mm_vae = self.set_model() self.clfs = self.set_clfs() self.clf_transforms: dict = self.set_clf_transforms() self.optimizer = None self.rec_weights = self.set_rec_weights() self.style_weights = self.set_style_weights() self.test_samples = self.get_test_samples() self.eval_metric = average_precision_score self.paths_fid = self.set_paths_fid() self.experiments_dataframe = self.get_experiments_dataframe() self.restart_experiment = False # if true and the model returns nans, the workflow gets started again self.number_restarts = 0 self.tb_logger = None def set_model(self): if self.flags.only_text_modality: return VAETextMimic(self.flags, self.modalities, self.subsets) else: return VAEtrimodalMimic(self.flags, self.modalities, self.subsets) def set_modalities(self) -> typing.Mapping[str, Modality]: log.info('setting modalities') mod1 = MimicPA(EncoderImg(self.flags, self.flags.style_pa_dim), DecoderImg(self.flags, self.flags.style_pa_dim), self.flags) mod2 = MimicLateral(EncoderImg(self.flags, self.flags.style_lat_dim), DecoderImg(self.flags, self.flags.style_lat_dim), self.flags) mod3 = MimicText(EncoderText(self.flags, self.flags.style_text_dim), DecoderText(self.flags, self.flags.style_text_dim), self.flags.len_sequence, self.plot_img_size, self.font, self.flags) if self.flags.only_text_modality: return {mod3.name: mod3} else: return {mod1.name: mod1, mod2.name: mod2, mod3.name: mod3} def set_dataset(self): font = ImageFont.truetype(str(Path(__file__).parent.parent / 'data/FreeSerif.ttf'), 20) if not self.flags.distributed else None log.info('setting dataset') # used for faster unittests i.e. a dummy dataset if self.dataset == 'testing': log.info('using testing dataset') self.flags.vocab_size = 3517 d_train = Mimic_testing(self.flags) d_eval = Mimic_testing(self.flags) else: if self.flags.only_text_modality: d_train = MimicTextDataset(args=self.flags, str_labels=self.labels, split='train') d_eval = MimicTextDataset(self.flags, self.labels, split='eval') else: d_train = Mimic(self.flags, self.labels, split='train') d_eval = Mimic(self.flags, self.labels, split='eval') return d_train, d_eval, font def set_clf_transforms(self) -> dict: if self.flags.text_clf_type == 'word': def text_transform(x): # converts one hot encoding to indices vector return torch.argmax(x, dim=-1) else: def text_transform(x): return x # create temporary args to set the number of crops to 1 temp_args = Namespace(**vars(self.flags)) temp_args.n_crops = 1 return { 'PA': get_transform_img(temp_args, self.flags.img_clf_type), 'Lateral': get_transform_img(temp_args, self.flags.img_clf_type), 'text': text_transform } def set_clfs(self) -> typing.Mapping[str, torch.nn.Module]: log.info('setting clfs') # mapping clf type to clf_save_m* clf_save_names: typing.Mapping[str, str] = { 'PA': self.flags.clf_save_m1, 'Lateral': self.flags.clf_save_m2, 'text': self.flags.clf_save_m3 } clfs = {f'{mod}': None for mod in self.modalities} if self.flags.use_clf: for mod in self.modalities: if mod in ['PA', 'Lateral']: # finding the directory of the classifier dir_img_clf = os.path.join(self.flags.dir_clf, f'Mimic{self.flags.img_size}_{self.flags.img_clf_type}' f'{"_bin_label" if self.flags.binary_labels else ""}') dir_img_clf = os.path.expanduser(dir_img_clf) # finding and loading state dict clf = ClfImg(self.flags, self.labels) if self.flags.img_clf_type == 'resnet' else CheXNet( len(self.labels)) clf_path = get_clf_path(dir_img_clf, clf_save_names[mod]) clf.load_state_dict(torch.load(clf_path, map_location=self.flags.device)) clfs[mod] = clf.to(self.flags.device) elif mod == 'text': # create temporary args to set the word encoding of the classifier to text_clf_type. # This allows to have a different text encoding setting for the VAE than for the classifier. temp_args = Namespace(**vars(self.flags)) temp_args.text_encoding = self.flags.text_clf_type clf = ClfText(temp_args, self.labels) clf_path = get_clf_path(self.flags.dir_clf, clf_save_names[ mod] + f'vocabsize_{self.flags.vocab_size}{"_bin_label" if self.flags.binary_labels else ""}') clf.load_state_dict(torch.load(clf_path, map_location=self.flags.device)) clfs[mod] = clf.to(self.flags.device) else: raise NotImplementedError return clfs def set_optimizer(self): log.info('setting optimizer') # optimizer definition optimizer = optim.Adam( list(self.mm_vae.parameters()), lr=self.flags.initial_learning_rate, betas=(self.flags.beta_1, self.flags.beta_2)) self.optimizer = optimizer def set_rec_weights(self): """ Sets the weights of the log probs for each modality. """ log.info('setting rec_weights') return { 'PA': self.flags.rec_weight_m1, 'Lateral': self.flags.rec_weight_m2, 'text': self.flags.rec_weight_m3 } def set_style_weights(self): return { 'PA': self.flags.beta_m1_style, 'Lateral': self.flags.beta_m2_style, 'text': self.flags.beta_m3_style, } def get_prediction_from_attr(self, values): return values.ravel() def get_test_samples(self, num_images=10) -> typing.Iterable[typing.Mapping[str, Tensor]]: """ Gets random samples from the test dataset """ n_test = self.dataset_test.__len__() samples = [] for _ in range(num_images): sample, _ = self.dataset_test.__getitem__(random.randint(0, n_test - 1)) sample = utils.dict_to_device(sample, self.flags.device) samples.append(sample) return samples def mean_eval_metric(self, values): return np.mean(np.array(values)) def eval_label(self, values: Tensor, labels: Tensor, index: int = None): """ index: index of the labels """ pred = values[:, index] gt = labels[:, index] return self.eval_metric(gt, pred) def get_experiments_dataframe(self) -> pd.DataFrame: """ Gets the experiment results dataframe which contains test results of previous experiments together with their parameters """ if os.path.exists('experiments_dataframe.csv'): experiments_dataframe = pd.read_csv('experiments_dataframe.csv') flags_dict = vars(self.flags) flags_dict['experiment_uid'] = self.experiment_uid flags_dict['total_epochs'] = 0 flags_dict['experiment_duration'] = -1 else: experiments_dataframe = pd.DataFrame() flags_dict = vars(self.flags) flags_dict['experiment_uid'] = self.experiment_uid experiments_dataframe = experiments_dataframe.append(flags_dict, ignore_index=True) experiments_dataframe.to_csv('experiments_dataframe.csv', index=False) return experiments_dataframe def update_experiments_dataframe(self, values_dict: dict): """ Updates the values in experiments dataframe with the new values from the values_dict and saves it if the experiment is not a test run """ log.info(f"writing to experiment df with uid {self.experiment_uid}: {values_dict}") # load dataframe every time in order not to overwrite other writers if os.path.exists('experiments_dataframe.csv'): self.experiments_dataframe = pd.read_csv('experiments_dataframe.csv') for key, value in values_dict.items(): self.experiments_dataframe.loc[ self.experiments_dataframe['experiment_uid'] == self.experiment_uid, key] = value if self.flags.dataset != 'testing': self.experiments_dataframe.to_csv('experiments_dataframe.csv', index=False) def init_summary_writer(self): log.info(f'setting up summary writer for device {self.flags.device}') # initialize summary writer writer = SummaryWriter(self.flags.dir_logs) tb_logger = TBLogger(self.flags.str_experiment, writer) str_flags = utils.save_and_log_flags(self.flags) tb_logger.writer.add_text('FLAGS', str_flags, 0) # todo find a way to store model graph # tb_logger.write_model_graph(exp.mm_vae) self.log_text_test_samples(tb_logger) return tb_logger def log_text_test_samples(self, tb_logger): """ Logs the text test samples to the tb_logger to verify if the text encoding does what it is supposed to do. """ samples = self.test_samples one_hot = self.flags.text_encoding != 'word' text_test_samples = tensor_to_text(self, torch.cat(([samples[i]['text'].unsqueeze(0) for i in range(5)]), 0), one_hot=one_hot) tb_logger.write_texts_from_list('test_samples', text_test_samples, text_encoding=self.flags.text_encoding) class Callbacks: def __init__(self, exp: MimicExperiment): self.args = exp.flags self.exp = exp self.logger: TBLogger = exp.tb_logger optimizer = exp.optimizer self.experiment_df = exp.experiments_dataframe self.start_early_stopping_epoch = self.args.start_early_stopping_epoch self.max_early_stopping_index = self.args.max_early_stopping_index # initialize with infinite loss self.losses = [float('inf')] self.patience_idx = 1 self.scheduler = ReduceLROnPlateau(optimizer, 'min', patience=5, verbose=True) self.elapsed_times = [] self.results_lr = None self.results = {} def update_epoch(self, epoch, test_results, elapsed_time): """Evaluate the progress (i.e. if the performance is increasing) using the test results and save them to the experiment dataframe. Return True if the metrics did not improve for more epochs than the patience_idx.""" loss = test_results['total_loss'] self._update_results_lr(test_results) stop_early = False self.elapsed_times.append(elapsed_time) self.scheduler.step(loss) self.logger.writer.add_scalars(f'test/mean_loss', {'mean_loss': loss}, epoch) log.info(f'current test loss: {loss}') self.save_checkpoint(epoch) # evaluate progress if epoch > self.start_early_stopping_epoch and loss < min(self.losses): log.info(f'current test loss {loss} improved from {min(self.losses)}' f' at epoch {np.argmin(self.losses)}') self.exp.update_experiments_dataframe( {'total_test_loss': loss, 'total_epochs': epoch, 'mean_epoch_time': np.mean(self.elapsed_times)}) self.patience_idx = 1 elif self.patience_idx > self.max_early_stopping_index: log.info( f'stopping early at epoch {epoch} because current test loss {loss} ' f'did not improve from {min(self.losses)} ' f'at epoch {np.argmin(self.losses)}') stop_early = True else: if epoch > self.start_early_stopping_epoch: log.info(f'current test loss {loss} did not improve from {min(self.losses)} ' f'at epoch {np.argmin(self.losses)}') log.info(f'-- idx_early_stopping = {self.patience_idx} / {self.max_early_stopping_index}') self.patience_idx += 1 self.losses.append(loss) if (epoch + 1) % self.args.eval_freq == 0 or (epoch + 1) == self.args.end_epoch: # plot evolution of metrics every Nth epochs self.plot_results() return stop_early def plot_results(self): """Plot the results. The self.results dict needs to be in the form of {eval_method:{subset:{metrics:value}}}""" if not self.exp.flags.dir_experiment_run.is_dir(): os.mkdir(self.exp.flags.dir_experiment_run) for _, results in self.results.items(): for subset, sub_results in results.items(): for metric, value in sub_results.items(): plt.plot(value, label=subset) plt.title(f'{metric}, eval freq: {self.args.eval_freq} epochs') plt.legend() out_path = self.exp.flags.dir_experiment_run / f"{metric.replace(' ', '_')}.png" if out_path.is_file(): out_path.unlink() plt.savefig(out_path) log.info(f"Saving plot to {out_path}") plt.close() def _update_results_lr_(self, results_lr): """Save the lr eval results such that they can be plotted.""" # update values only if results_lr is not None, (the eval metrics are only evaluated every Nth epoch) if results_lr: if not self.results_lr: self.results_lr = init_twolevel_nested_dict(results_lr.keys(), results_lr[list(results_lr.keys())[0]].keys(), init_val=[], copy_init_val=True) for subset, results_sub in results_lr.items(): for metric in results_sub: self.results_lr[subset][metric].append(results_sub[metric]) def _update_results_lr(self, test_results): """Save the lr eval results such that they can be plotted.""" # update values only if results_lr is not None, (the eval metrics are only evaluated every Nth epoch) for eval_method, results in test_results.items(): if eval_method != 'total_loss': if eval_method not in self.results: self.results[eval_method] = init_twolevel_nested_dict(results.keys(), results[list(results.keys())[0]].keys(), init_val=[], copy_init_val=True) for subset, results_sub in results.items(): for metric in results_sub: self.results[eval_method][subset][metric].append(results_sub[metric]) def save_checkpoint(self, epoch): # save checkpoints every 5 epochs # when using DDP, the model is the same over all devices, only need to save it for one process if ((epoch + 1) % 50 == 0 or ( epoch + 1) == self.exp.flags.end_epoch) and ( not self.args.distributed or self.exp.flags.device % self.exp.flags.world_size == 0): dir_network_epoch = os.path.join(self.exp.flags.dir_checkpoints, str(epoch).zfill(4)) if not os.path.exists(dir_network_epoch): os.makedirs(dir_network_epoch) if self.args.distributed: self.exp.mm_vae.module.save_networks() else: self.exp.mm_vae.save_networks() torch.save(self.exp.mm_vae.state_dict(), os.path.join(dir_network_epoch, self.exp.flags.mm_vae_save)) ``` #### File: mimic/utils/flags.py ```python import argparse import json from mimic import log from mimic.utils.BaseFlags import parser as parser from mimic.utils.filehandling import expand_paths import os import numpy as np from typing import Union def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser.add_argument('--exp_str_prefix', type=str, default='Mimic', help="prefix of the experiment directory.") parser.add_argument('--dataset', type=str, default='Mimic', help="name of the dataset") parser.add_argument('--config_path', type=str, default=None, help="path to the json config") parser.add_argument('--verbose', type=int, default=0, help="global verbosity level") parser.add_argument('--load_flags', type=str, default=None, help="overwrite all values with parameters from an old " "experiment. Give the path to the flags.rar " "file as input.") # Image dependent parser.add_argument('--fixed_image_extractor', type=str2bool, default=True, help="If the feature extraction layers of the " "pretrained densenet are frozen. " "Only works when img_clf_type classifier " "is densenet.") # DATA DEPENDENT parser.add_argument('--only_text_modality', type=str2bool, default=False, help="flag to indicate if only the text modality is to be used") parser.add_argument('--undersample_dataset', type=str2bool, default=False, help="flag to indicate if the dataset should be undersampled such that there are " "the same number of datapoints that have no label than datapoints that have a label") parser.add_argument('--weighted_sampler', type=str2bool, default=False, help="If a weighted sampler should be used for the dataloader.") parser.add_argument('--binary_labels', type=str2bool, default=False, help="If True, label 'Finding' with classes 0 and 1 will be used for the classification evaluation.") # Text Dependent parser.add_argument('--text_encoding', type=str, default='char', help="encoding of the text, either character or wordwise") parser.add_argument('--len_sequence', type=int, default=1024, help="length of sequence") parser.add_argument('--word_min_occ', type=int, default=3, help="min occurence of a word in the dataset such that it is added to the vocabulary.") parser.add_argument('--text_gen_lastlayer', type=str, default='softmax', help="Last layer of the text generator. Chose between none, softmax and sigmoid.") parser.add_argument('--style_pa_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--style_lat_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--style_text_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--image_channels', type=int, default=1, help="number of classes on which the data set trained") parser.add_argument('--img_size', type=int, default=128, help="size of the images on which the model is trained") parser.add_argument('--DIM_img', type=int, default=128, help="number of classes on which the data set trained") parser.add_argument('--DIM_text', type=int, default=128, help="number of classes on which the data set trained") parser.add_argument('--likelihood_m1', type=str, default='laplace', help="output distribution") parser.add_argument('--likelihood_m2', type=str, default='laplace', help="output distribution") parser.add_argument('--likelihood_m3', type=str, default='categorical', help="output distribution") parser.add_argument('--dataloader_workers', type=int, default=8, help="number of workers used for the Dataloader") parser.add_argument('--use_toy_dataset', type=bool, default=False, help="if true uses small toy dataset") # paths to save models parser.add_argument('--encoder_save_m1', type=str, default='encoderM1', help="model save for encoder") parser.add_argument('--encoder_save_m2', type=str, default='encoderM2', help="model save for encoder") parser.add_argument('--encoder_save_m3', type=str, default='encoderM3', help="model save for decoder") parser.add_argument('--decoder_save_m1', type=str, default='decoderM1', help="model save for decoder") parser.add_argument('--decoder_save_m2', type=str, default='decoderM2', help="model save for decoder") parser.add_argument('--decoder_save_m3', type=str, default='decoderM3', help="model save for decoder") # classifiers parser.add_argument('--text_clf_type', type=str, default='word', help="text classifier type, implemented are 'word' and 'char'") parser.add_argument('--img_clf_type', type=str, default='resnet', help="image classifier type, implemented are 'resnet' and 'densenet'") parser.add_argument('--clf_save_m1', type=str, default='clf_m1', help="model save for clf") parser.add_argument('--clf_save_m2', type=str, default='clf_m2', help="model save for clf") parser.add_argument('--clf_save_m3', type=str, default='clf_m3', help="model save for clf") parser.add_argument('--clf_loss', type=str, default='binary_crossentropy', choices=['binary_crossentropy', 'crossentropy', 'bce_with_logits'], help="model save for clf") # Callbacks parser.add_argument('--reduce_lr_on_plateau', type=bool, default=False, help="boolean indicating if callback 'reduce lr on plateau' is used") parser.add_argument('--max_early_stopping_index', type=int, default=5, help="patience of the early stopper. If the target metric did not improve " "for that amount of epochs, training is stopepd") parser.add_argument('--start_early_stopping_epoch', type=int, default=0, help="epoch on which to start the early stopping callback") # LOSS TERM WEIGHTS parser.add_argument('--beta_m1_style', type=float, default=1.0, help="default weight divergence term style modality 1") parser.add_argument('--beta_m2_style', type=float, default=1.0, help="default weight divergence term style modality 2") parser.add_argument('--beta_m3_style', type=float, default=1.0, help="default weight divergence term style modality 2") parser.add_argument('--div_weight_m1_content', type=float, default=0.25, help="default weight divergence term content modality 1") parser.add_argument('--div_weight_m2_content', type=float, default=0.25, help="default weight divergence term content modality 2") parser.add_argument('--div_weight_m3_content', type=float, default=0.25, help="default weight divergence term content modality 3") parser.add_argument('--div_weight_uniform_content', type=float, default=0.25, help="default weight divergence term prior") parser.add_argument('--rec_weight_m1', default=0.33, type=float, help="weight of the m1 modality for the log probs. Type should be either float or string.") parser.add_argument('--rec_weight_m2', default=0.33, type=float, help="weight of the m2 modality for the log probs. Type should be either float or string.") parser.add_argument('--rec_weight_m3', default=0.33, type=float, help="weight of the m3 modality for the log probs. Type should be either float or string.") def update_flags_with_config(config_path: str, additional_args={}, testing=False): """ If testing is true, no cli arguments will be read. """ with open(config_path, 'rt') as json_file: t_args = argparse.Namespace() json_config = json.load(json_file) t_args.__dict__.update({**json_config, **additional_args}) if testing: return parser.parse_args([], namespace=t_args) else: return parser.parse_args(namespace=t_args) def get_freer_gpu(): """ Returns the index of the gpu with the most free memory. Taken from https://discuss.pytorch.org/t/it-there-anyway-to-let-program-select-free-gpu-automatically/17560/6 """ os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp') memory_available = [int(x.split()[2]) for x in open('tmp', 'r').readlines()] return np.argmax(memory_available) def setup_flags(flags, testing=False): """ If testing is true, no cli arguments will be read. """ import torch from pathlib import Path import numpy as np if flags.config_path: flags = update_flags_with_config(config_path=flags.config_path, testing=testing) flags = expand_paths(flags) use_cuda = torch.cuda.is_available() flags.device = torch.device('cuda' if use_cuda else 'cpu') if str(flags.device) == 'cuda': torch.cuda.set_device(get_freer_gpu()) flags = flags_set_alpha_modalities(flags) flags.log_file = log.manager.root.handlers[1].baseFilename flags.len_sequence = 128 if flags.text_encoding == 'word' else 1024 if flags.load_flags: old_flags = torch.load(Path(flags.load_flags).expanduser()) # create param dict from all the params of old_flags that are not paths params = {k: v for k, v in old_flags.item() if ('dir' not in v) and ('path' not in v)} flags.__dict__.update(params) if not flags.seed: # set a random seed flags.seed = np.random.randint(0, 10000) return flags def flags_set_alpha_modalities(flags): flags.alpha_modalities = [flags.div_weight_uniform_content, flags.div_weight_m1_content, flags.div_weight_m2_content, flags.div_weight_m3_content] return flags ``` #### File: mimic/utils/TBLogger.py ```python from typing import Iterable import torch from mimic.utils.text import tensor_to_text class TBLogger(): def __init__(self, name, writer): self.name = name self.writer = writer self.training_prefix = 'train' self.testing_prefix = 'test' self.step = 0 def write_log_probs(self, name, log_probs): self.writer.add_scalars('%s/LogProb' % name, log_probs, self.step) def write_klds(self, name, klds): self.writer.add_scalars('%s/KLD' % name, klds, self.step) def write_group_div(self, name, group_div): self.writer.add_scalars('%s/group_divergence' % name, {'group_div': group_div}, self.step) def write_latent_distr(self, name, latents): for k, key in enumerate(latents.keys()): self.writer.add_scalars('%s/mu' % name, {key: latents[key][0]}, self.step) self.writer.add_scalars('%s/logvar' % name, {key: latents[key][1]}, self.step) def write_lr_eval(self, lr_eval): for l_key in sorted(lr_eval.keys()): mean_AP_keys = [k for k in lr_eval[l_key] if k.startswith('mean_AP')] results = {k: v for k, v in lr_eval[l_key].items() if k in ['dice', 'accuracy', *mean_AP_keys]} self.writer.add_scalars(f'Latent Representation/{l_key}', results, self.step) def write_coherence_logs(self, gen_eval): for j, l_key in enumerate(sorted(gen_eval['cond'].keys())): for k, s_key in enumerate(gen_eval['cond'][l_key].keys()): self.writer.add_scalars('Generation/%s/%s' % (l_key, s_key), gen_eval['cond'][l_key][s_key], self.step) self.writer.add_scalars('Generation/Random', gen_eval['random'], self.step) def write_lhood_logs(self, lhoods): for k, key in enumerate(sorted(lhoods.keys())): self.writer.add_scalars('Likelihoods/%s' % (key), lhoods[key], self.step) def write_prd_scores(self, prd_scores): self.writer.add_scalars('PRD', prd_scores, self.step) def write_plots(self, plots, epoch): for p_key in plots: ps = plots[p_key] for name in ps: fig = ps[name] self.writer.add_image(p_key + '_' + name, fig, epoch, dataformats="HWC") def add_basic_logs(self, name, joint_divergence, latents, loss, log_probs, klds): self.writer.add_scalars('%s/Loss' % name, {'loss': loss}, self.step) self.write_log_probs(name, log_probs) self.write_klds(name, klds) self.write_group_div(name, joint_divergence) self.write_latent_distr(name, latents=latents) def write_training_logs(self, joint_divergence, latents, total_loss, log_probs, klds): self.add_basic_logs(self.training_prefix, joint_divergence, latents, total_loss, log_probs, klds) def write_testing_logs(self, joint_divergence, latents, total_loss, log_probs, klds): self.add_basic_logs(self.testing_prefix, joint_divergence, latents, total_loss, log_probs, klds) def write_model_graph(self, model): """ writes the model graph to tensorboard """ self.writer.add_graph(model) def write_text(self, log_tag: str, text: str): self.writer.add_text(log_tag, text, global_step=self.step) def write_texts_from_list(self, log_tag: str, texts: Iterable[str], text_encoding: str): for i, text in enumerate(texts): sep = ' ' if text_encoding == 'word' else '' self.writer.add_text(log_tag, sep.join(text), global_step=i) def set_epoch(self, epoch: int): """ Sets the epoch for all values that will be logged during that epoch. """ self.step = epoch def write_tensor_to_text(self, text_tensor, exp, log_tag: str): sep = ' ' if exp.flags.text_encoding == 'word' else '' one_hot = exp.flags.text_encoding == 'char' self.writer.add_text(log_tag, sep.join(tensor_to_text(exp, text_tensor, one_hot=one_hot)), global_step=self.step) ```
{ "source": "Jimmy2027/torchio", "score": 2 }
#### File: tests/transforms/test_transforms.py ```python import numpy as np import torchio from ..utils import TorchioTestCase class TestTransforms(TorchioTestCase): """Tests for all transforms.""" def test_transforms(self): landmarks_dict = dict( t1=np.linspace(0, 100, 13), t2=np.linspace(0, 100, 13), ) elastic = torchio.RandomElasticDeformation(max_displacement=1) transforms = ( torchio.CropOrPad((9, 21, 30)), torchio.ToCanonical(), torchio.Resample((1, 1.1, 1.25)), torchio.RandomFlip(axes=(0, 1, 2), flip_probability=1), torchio.RandomMotion(), torchio.RandomGhosting(axes=(0, 1, 2)), torchio.RandomSpike(), torchio.RandomNoise(), torchio.RandomBlur(), torchio.RandomSwap(patch_size=2, num_iterations=5), torchio.Lambda(lambda x: 2 * x, types_to_apply=torchio.INTENSITY), torchio.RandomBiasField(), torchio.RescaleIntensity((0, 1)), torchio.ZNormalization(masking_method='label'), torchio.HistogramStandardization(landmarks_dict=landmarks_dict), elastic, torchio.RandomAffine(), torchio.OneOf({torchio.RandomAffine(): 3, elastic: 1}), torchio.Pad((1, 2, 3, 0, 5, 6), padding_mode='constant', fill=3), torchio.Crop((3, 2, 8, 0, 1, 4)), ) transform = torchio.Compose(transforms) transform(self.sample) ```
{ "source": "jimmy29304825/mydcard-spider", "score": 2 }
#### File: mydcard-spider/dcard/utils.py ```python import logging import itertools from multiprocessing.dummy import Pool from six.moves import http_client as httplib import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry from requests.exceptions import RetryError from . import prequests logger = logging.getLogger(__name__) class Client: max_retries = 5 def __init__(self, workers=8): retries = Retry( total=self.max_retries, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]) session = requests.Session() session.mount('https://', HTTPAdapter(max_retries=retries)) session.headers['User-Agent'] = prequests.ua.random self.session = session self.pool = Pool(workers) def get_json(self, url, **kwargs): response = None try: response = self.session.get(url, **kwargs) data = response.json() if type(data) is dict and data.get('error'): raise ServerResponsedError return data except ValueError as e: retries = kwargs.get('retries', 0) logger.error('when get <%d> %s, error %s (retry#%d)', response.status_code, url, e, retries) return {} if retries <= self.max_retries else \ self.get_json(url, retries=retries + 1) except ServerResponsedError: logger.error('when get <%d> %s, response: %s', response.status_code, url, data) return {} except httplib.IncompleteRead as e: logger.error('when get %s, error %s; partial: %s', url, e, e.partial) return {} # or shall we return `e.partial` ? except RetryError as e: logger.error('when get %s, retry error occurs. %s', url, e) return {} except Exception as e: logger.error('error %s', e) return {} def get_stream(self, url, **kwargs): request = self.session.get(url, stream=True, **kwargs) return request def get(self, url, **kwargs): return prequests.get(url, session=self.session, **kwargs) def imap(self, reqs): return prequests.imap(reqs, stream=False, pool=self.pool) def flatten_lists(meta_lists): return list(itertools.chain.from_iterable(meta_lists)) class ServerResponsedError(Exception): pass ```
{ "source": "Jimmy-312/TiMe", "score": 3 }
#### File: Jimmy-312/TiMe/main.py ```python from task import * import wx import wx.adv import wx.lib.buttons as buttons class MyFrame(wx.Frame): def __init__(self, parent, id): print('Hello,TiMe!') self.con=[] self.producecon() wx.Frame.__init__(self,parent,id,title = "time312",pos=(300,300),size = (306,306),style=0) self.head= wx.Panel(self,size=(306,33)) self.main=wx.Panel(self,size=(306,150),pos=(0,33)) self.det=wx.Panel(self,size=(306,123),pos=(0,183)) iadd = wx.Image('mess/1.png').ConvertToBitmap() label = wx.StaticText(self.head, label = "TiMe", pos = (3,1.5)) font=wx.Font(18,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') self.head.SetBackgroundColour("white") self.main.SetBackgroundColour((65,105,225)) self.det.SetBackgroundColour((30,144,255)) label.SetFont(font) self.show() self.editf=False badd = buttons.GenBitmapButton(self.head, -1,iadd, pos=(273, 1.5),size=(30,30),style=0) badd.SetBackgroundColour("white") self.Bind(wx.EVT_BUTTON, lambda evt,f=1:self.edit(evt,f),badd) self.onPlay(self) def show(self): self.producecon() m1=self.info[0] mtitle=m1['title'] tmtime=transtime(m1['time']) tminfo=m1['info'] dtitle=transdet(self.info) mtext=wx.StaticText(self.main,label='' , pos=(3,0),style=wx.ST_NO_AUTORESIZE,size=(300,80)) font=wx.Font(39,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') mtext.SetLabel(mtitle) mtext.SetBackgroundColour((65,105,225)) mtext.SetForegroundColour("White") mtext.SetFont(font) mtime=wx.StaticText(self.main,label='' , pos=(3,63)) font=wx.Font(13,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') mtime.SetLabel(tmtime) mtime.SetForegroundColour("White") mtime.SetFont(font) minfo=wx.StaticText(self.main,label='' , pos=(3,85),size=(297,60),style=wx.ST_NO_AUTORESIZE) font=wx.Font(8,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') minfo.SetLabel(tminfo) minfo.SetForegroundColour("White") minfo.SetFont(font) dtext=wx.StaticText(self.det,label=dtitle , pos=(1.5,3),size=(260,110),style=wx.ST_NO_AUTORESIZE) font=wx.Font(10,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') dtext.SetForegroundColour((240,255,255)) dtext.SetFont(font) def edit(self,event,f=0): if self.editf: self.dedit.Close() self.editf=False else: try: self.dadd.Close() self.addf=False except: pass self.dedit = wx.Frame(self,-1,title = "edit",pos=(610,300),size = (306,306),style=0) head= wx.Panel(self.dedit,size=(306,33)) main= wx.Panel(self.dedit,size=(306,273),pos=(0,33)) label = wx.StaticText(head, label = "Edit", pos = (3,1.5)) font=wx.Font(18,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') main.SetBackgroundColour((0,191,255)) label.SetFont(font) bfinish = wx.Button(main, -1, "Okay", pos=(218, 240),style=0,size=(80,27)) bfinish.SetBackgroundColour("white") self.Bind(wx.EVT_BUTTON,self.efinish,bfinish) self.bdelete = wx.Button(main, -1, "Delete", pos=(128, 240),style=0,size=(80,27)) self.bdelete.SetBackgroundColour("white") self.Bind(wx.EVT_BUTTON,lambda evt,op=1:self.efinish(evt,op),self.bdelete) self.bdelete.Disable() font=wx.Font(10,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') tname=wx.StaticText(main,label='Title:' , pos=(5,8)) tname.SetForegroundColour("White") tname.SetFont(font) tdate=wx.StaticText(main,label='Date:' , pos=(5,35)) tdate.SetForegroundColour("White") tdate.SetFont(font) tmark=wx.StaticText(main,label='Mark:' , pos=(5,62)) tmark.SetForegroundColour("White") tmark.SetFont(font) tring=wx.StaticText(main,label='Sound:' , pos=(5,86)) tring.SetForegroundColour("White") tring.SetFont(font) tdet=wx.StaticText(main,label='Detail:' , pos=(5,110)) tdet.SetForegroundColour("White") tdet.SetFont(font) font=wx.Font(8,wx.DECORATIVE,wx.NORMAL,wx.BOLD,faceName='Microsoft YaHei UI') imark = wx.RadioButton(main, -1, 'Lv.S', pos=(50, 64)) #imark.SetForegroundColour((100,100,100)) mark.SetFont(font) imark1 = wx.RadioButton(main, -1, 'Lv.A', pos=(100, 64)) imark1.SetFont(font) imark2 = wx.RadioButton(main, -1, 'Lv.B', pos=(150, 64)) imark2.SetFont(font) imark3 = wx.RadioButton(main, -1, 'Lv.C', pos=(200, 64)) imark3.SetFont(font) self.ename1 = wx.Choice(main,-1,choices=self.infoname,pos=(45,6),size=(80, 20)) self.ename = wx.TextCtrl(main,-1,'', size=(80, 24),pos=(130,6)) self.idatey = wx.Choice(main, -1, choices=self.con[0], pos=(45, 35),size=(55,20)) self.idatem = wx.Choice(main, -1, choices=self.con[1], pos=(105, 35),size=(40,20)) self.idated = wx.Choice(main, -1, choices=[''], pos=(150, 35),size=(40,20)) self.ename1.SetFont(font) self.ename.SetFont(font) self.ename1.SetSelection(0) self.Bind(wx.EVT_CHOICE, lambda evt,inn=self.infoname:self.getinfo(inn), self.ename1) self.Bind(wx.EVT_CHOICE, self.choosem, self.idatey) self.Bind(wx.EVT_CHOICE, self.choosem, self.idatem) self.idet = wx.TextCtrl(main,-1,"", size=(280, 100),pos=(10,135),style=wx.TE_MULTILINE|wx.TE_RICH2) font=wx.Font(8,wx.DECORATIVE,wx.NORMAL,wx.NORMAL,faceName='Microsoft YaHei UI') self.idet.SetFont(font) self.dedit.Show() self.editf=True def onPlay(self, evt): self.sound = wx.adv.Sound('mess/robot.wav') if self.sound.IsOk(): self.sound.Play() def getinfo(self,inn): name=inn[self.ename1.GetSelection()] if name=='New': self.createt(self) return self.ename.SetValue(name) self.bdelete.Enable() for i in self.info: if i['title']==name: info=i break y=info['time'][2] m=info['time'][0] d=info['time'][1] self.idatey.SetSelection(y-2000) self.idatem.SetSelection(m-1) self.choosem(self) self.idated.SetSelection(d-1) self.idet.SetValue(info['info']) def choosem(self, event): t =int(self.con[0][self.idatey.GetSelection()]) a=int(self.con[1][self.idatem.GetSelection()]) if a==2: if (t==2000 or (t%4==0 and t%100!=0)): self.idated.SetItems(self.con[5]) else: self.idated.SetItems(self.con[4]) elif a in [1,3,5,7,8,10,12]: self.idated.SetItems(self.con[2]) elif a in [4,6,9,11]: self.idated.SetItems(self.con[3]) def createt(self,event): if self.ename.GetValue()=='': return 0 try: data=[self.ename.GetValue(),[self.con[1][self.idatem.GetSelection()],self.idated.Items[self.idated.GetSelection()],\ self.con[0][self.idatey.GetSelection()]],self.idet.GetValue()] handledata(data) self.show() self.show()#strange problem self.add(self) except: return 0 def efinish(self,event,op=0): try: name=self.infoname[self.ename1.GetSelection()] dname=self.ename.GetValue() if name=='New': self.createt(self) if op==0: if self.ename.GetValue()=='': return 0 a={'title':dname,'time':[int(self.con[1][self.idatem.GetSelection()]),int(self.idated.Items[self.idated.GetSelection()]),\ int(self.con[0][self.idatey.GetSelection()])],'info':self.idet.GetValue()} for i in range(len(self.info)): if self.info[i]['title']==name: self.info.pop(i) self.info.append(a) break else: for i in range(len(self.info)): if self.info[i]['title']==name: self.info.pop(i) break save(self.info) self.show() self.show()#strange problem self.edit(self) except: return 0 def producecon(self): self.info=orderinfo() self.infoname=['New'] for i in self.info: self.infoname.append(i['title']) t=[] for i in range(2000,2101): t.append(str(i)) self.con.append(t) t=[] for i in range(1,13): t.append(str(i)) self.con.append(t) t=[] for i in range(1,32): t.append(str(i)) self.con.append(t) t=[] for i in range(1,31): t.append(str(i)) self.con.append(t) t=[] for i in range(1,29): t.append(str(i)) self.con.append(t) t=[] for i in range(1,30): t.append(str(i)) self.con.append(t) def main(): app = wx.App() app.locale = wx.Locale(wx.LANGUAGE_CHINESE_SIMPLIFIED) win = MyFrame(None,-1) win.Show() app.MainLoop() if __name__=='__main__': main() ``` #### File: Jimmy-312/TiMe/task.py ```python import datetime cal={1:'Jan.',2:'Feb.',3:'Mar.',4:'Apr.',5:'May.',6:'June.',7:'July.',8:'Aug.',9:'Sept.',10:'Oct.',11:'Nov.',12:'Dec.'} week_dict = { 0 : 'Mon.', 1 : 'Tue.', 2 : 'Wed.', 3 : 'Thu.', 4 : 'Fri.', 5 : 'Sat.', 6 : 'Sun.', } def getinfo(): infolist=[] with open('info.tm','rb') as f: a=f.readlines() for i in a: infolist.append(eval(i)) return infolist def orderinfo(): info=getinfo() while True: count=0 for i in range(len(info)-1): #print(info) t=info[i]['time'] a=info[i+1]['time'] if t[2]<a[2]: c=info[i] info[i]=info[i+1] info[i+1]=c count+=1 if t[2]==a[2]: if t[0]<a[0]: c=info[i] info[i]=info[i+1] info[i+1]=c count+=1 if t[0]==a[0]: if t[1]<a[1]: c=info[i] info[i]=info[i+1] info[i+1]=c count+=1 if count==0: break return info def transtime(time): a=datetime.datetime(time[2],time[0],time[1]).strftime("%w"); t=cal[time[0]]+f'{time[1]},{time[2]}'+' '+week_dict[int(a)] return t def transdet(info): dt='' for i in info[1:]: a=i['title']+'-'+f"{i['time'][2]}.{i['time'][0]}.{i['time'][1]}" dt=dt+a+'\n' return dt def handledata(data): t={} for i in range(len(data[1])): data[1][i]=int(data[1][i]) t['title']=data[0] t['info']=data[2] t['time']=data[1] with open('info.tm','a',encoding="utf-8") as f: f.write(str(t)+'\n') return t def save(info): with open('info.tm','w',encoding="utf-8") as f: for i in info: f.write(str(i)+'\n') #ordermain(getinfo()) ```
{ "source": "jimmy516/openptv-python", "score": 3 }
#### File: openptv-python/pyptv_gui/ext_sequence_denis.py ```python import numpy as np from scipy.misc import imread import random class Sequence(): """ Sequence class defines external tracking addon for pyptv User needs to implement the following functions: do_sequence(self) Connection to C ptv module is given via self.ptv and provided by pyptv software Connection to active parameters is given via self.exp1 and provided by pyptv software. User responsibility is to read necessary files, make the calculations and write the files back. """ def __init__(self,ptv=None,exp1=None, camera_list=None): self.ptv=ptv self.exp1=exp1 self.camera_list=camera_list # Do your initialization here def do_sequence(self): """ this function is callback for "tracking without display" """ print "inside denis_ext_sequence" n_camera=self.exp1.active_params.m_params.Num_Cam print ("Starting sequence action") seq_first=self.exp1.active_params.m_params.Seq_First seq_last=self.exp1.active_params.m_params.Seq_Last print seq_first,seq_last base_name=[] for i in range (n_camera): exec("base_name.append(self.exp1.active_params.m_params.Basename_%d_Seq)" %(i+1)) print base_name[i] self.ptv.py_sequence_init(0) #init C sequence function stepshake=self.ptv.py_get_from_sequence_init() #get parameters and pass to main loop if not stepshake: stepshake=1 print stepshake temp_img=np.array([],dtype=np.ubyte) # main loop - format image name, read it and call v.py_sequence_loop(..) for current step for i in range(seq_first,seq_last+1,stepshake): if i<10: seq_ch="%01d" % i elif i<100: seq_ch="%02d" % i else: seq_ch="%03d" % i for j in range (n_camera): img_name=base_name[j]+seq_ch print ("Setting image: ",img_name) try: temp_img=imread(img_name).astype(np.ubyte) except: print "Error reading file" self.ptv.py_set_img(temp_img,j) self.ptv.py_sequence_loop(0,i) self.camera_list[0].drawquiver([int(300*random.random())],[int(300*random.random())],[int(300*random.random())],[int(300*random.random())],"green",linewidth=3.0) self.camera_list[0]._plot.request_redraw() ``` #### File: openptv-python/pyptv_gui/pyptv_batch.py ```python from scipy.misc import imread import os import sys import numpy as np # project specific inputs import parameters as par import general # directory from which we run the software cwd = os.getcwd() # import pdb; pdb.set_trace() if len(sys.argv) < 4: print("Wrong number of inputs, usage: python pyptv_batch.py experiments/exp1 seq_first seq_last") software_path = os.path.split(os.path.abspath(sys.argv[0]))[0] print 'software_path=', software_path try: os.chdir(software_path) except: print("Error in instalation or software path") src_path = os.path.join(os.path.split(os.path.abspath(os.getcwd()))[0],'src_c') sys.path.append(src_path) import ptv1 as ptv exp_path = os.path.abspath(sys.argv[1]) print 'exp_path=', exp_path try: os.chdir(exp_path) print(os.getcwd()) except: print('Wrong experimental directory %s' % exp_path) def sequence_tracking(n_img): # get following variables from the parameters: # n_camera, seq_first, seq_last, base_name sequenceParams = par.SequenceParams(n_img, path = par.temp_path) sequenceParams.read() (base_name, seq_first, seq_last) = (sequenceParams.base_name, sequenceParams.first, sequenceParams.last) print ("Starting sequence action") ptv.py_sequence_init(0) stepshake=ptv.py_get_from_sequence_init() if not stepshake: stepshake=1 print stepshake temp_img=np.array([],dtype=np.ubyte) for i in range(seq_first,seq_last+1,stepshake): if i<10: seq_ch="%01d" % i elif i<100: seq_ch="%02d" % i else: seq_ch="%03d" % i for j in range (n_img): img_name=base_name[j]+seq_ch print ("Setting image: ",img_name) try: temp_img=imread(img_name).astype(np.ubyte) except: print "Error reading file" ptv.py_set_img(temp_img,j) ptv.py_sequence_loop(0,i) # forward tracking run_info = ptv.py_trackcorr_init() print run_info.get_sequence_range() for step in range(*run_info.get_sequence_range()): print step ptv.py_trackcorr_loop(run_info, step, display=0) ptv.py_trackcorr_finish(run_info, step + 1) print "tracking without display finished" ptv.py_trackback_c() print "tracking backwards is finished" def sequence(n_img): # get following variables from the parameters: # n_camera, seq_first, seq_last, base_name sequenceParams = par.SequenceParams(n_img, path = par.temp_path) sequenceParams.read() (base_name, seq_first, seq_last) = (sequenceParams.base_name, sequenceParams.first, sequenceParams.last) print ("Starting sequence action") ptv.py_sequence_init(0) stepshake=ptv.py_get_from_sequence_init() if not stepshake: stepshake=1 print stepshake temp_img=np.array([],dtype=np.ubyte) for i in range(seq_first,seq_last+1,stepshake): if i<10: seq_ch="%01d" % i elif i<100: seq_ch="%02d" % i else: seq_ch="%03d" % i for j in range (n_img): img_name=base_name[j]+seq_ch print ("Setting image: ",img_name) try: temp_img=imread(img_name).astype(np.ubyte) except: print "Error reading file" ptv.py_set_img(temp_img,j) ptv.py_sequence_loop(0,i) def run_batch(new_seq_first,new_seq_last): # import pdb; pdb.set_trace() ptv.py_init_proc_c() ptv.py_start_proc_c() # or ptv.py_init_proc_c()? ptvParams = par.PtvParams(path = par.temp_path) ptvParams.read() (n_img, img_name, img_cal, hp_flag, allCam_flag, tiff_flag, imx, imy, pix_x, pix_y, chfield, mmp_n1, mmp_n2, mmp_n3, mmp_d) = \ (ptvParams.n_img, ptvParams.img_name, ptvParams.img_cal, ptvParams.hp_flag, ptvParams.allCam_flag, ptvParams.tiff_flag, \ ptvParams.imx, ptvParams.imy, ptvParams.pix_x, ptvParams.pix_y, ptvParams.chfield, ptvParams.mmp_n1, ptvParams.mmp_n2, ptvParams.mmp_n3, ptvParams.mmp_d) # read the sequence parameters sequenceParams = par.SequenceParams(n_img, path = par.temp_path) sequenceParams.read() (base_name, seq_first, seq_last) = (sequenceParams.base_name, sequenceParams.first, sequenceParams.last) # write the new sequence parameters par.SequenceParams(n_img, base_name,\ new_seq_first, new_seq_last, path = par.temp_path).write() # if you need sequence and tracking: sequence_tracking(n_img) # if you need sequence only: # sequence(n_img) if __name__ == '__main__': import time start = time.time() repetitions = 1 # 10 or 100 for heavy load for i in range(repetitions): try: seq_first = sys.argv[2] seq_last = sys.argv[3] run_batch(eval(seq_first),eval(seq_last)) except: print("something wrong with the software or folder") general.printException() end = time.time() print 'time lapsed %f sec' % (end - start) ``` #### File: openptv-python/pyptv_gui/pyptv_gui.py ```python from traits.api \ import HasTraits, Str, Int, List, Bool, Enum, Instance, Any from traitsui.api \ import TreeEditor, TreeNode, View, Item, \ Handler, Group from enable.component_editor import ComponentEditor from chaco.api import Plot, ArrayPlotData, gray from traitsui.menu import MenuBar, Menu, Action from chaco.tools.api import ZoomTool,PanTool from scipy.misc import imread from threading import Thread from pyface.api import GUI import os import sys import numpy as np # Parse inputs: # Get the path to the software if len(sys.argv) > 0: software_path = os.path.split(os.path.abspath(sys.argv[0]))[0] else: software_path = os.path.abspath(os.getcwd()) if not os.path.isdir(software_path): print ("Wrong experimental directory %s " % software_path) # Path to the experiment if len(sys.argv) > 1: exp_path = os.path.abspath(sys.argv[1]) if not os.path.isdir(exp_path): print ("Wrong experimental directory %s " % exp_path) # change directory to the software path try: os.chdir(software_path) except: print("Wrong software path %s " % software_path) src_path = os.path.join(os.path.split(software_path)[0],'src_c') print 'src_path=', src_path if not os.path.isdir(src_path): print("Wrong src_c path %s" % src_path) sys.path.append(src_path) import ptv1 as ptv from tracking_framebuf import read_targets # pyPTV specific imports import general import parameters as par from parameter_gui import * from calibration_gui import * from directory_editor import DirectoryEditorDialog from quiverplot import QuiverPlot from demo import * if len(sys.argv) < 2: directory_dialog = DirectoryEditorDialog() directory_dialog.configure_traits() exp_path = directory_dialog.dir_name # default_path+os.sep+'exp1' cwd = os.getcwd() try: os.chdir(exp_path) except: print('Wrong experimental directory %s' % exp_path) # class Clicker(ImageInspectorTool): """ Clicker class handles right mouse click actions from the tree and menubar actions """ left_changed = Int(1) right_changed = Int(1) x = 0 y = 0 def normal_left_down(self, event): """ Handles the left mouse button being clicked. Fires the **new_value** event with the data (if any) from the event's position. """ plot = self.component if plot is not None: ndx = plot.map_index((event.x, event.y)) x_index, y_index = ndx image_data=plot.value self.x=(x_index) self.y=(y_index) self.data_value=image_data.data[y_index, x_index] self.left_changed = 1 - self.left_changed self.last_mouse_position = (event.x, event.y) return def normal_right_down(self, event): """ Handles the right mouse button being clicked. Fires the **new_value** event with the data (if any) from the event position. """ plot = self.component if plot is not None: ndx = plot.map_index((event.x, event.y)) x_index, y_index = ndx # image_data=plot.value self.x=(x_index) self.y=(y_index) self.right_changed = 1-self.right_changed print "self.right_changed: ", self.right_changed print self.x print self.y self.last_mouse_position = (event.x, event.y) return def normal_mouse_move(self, event): pass def __init__(self, *args, **kwargs): super(Clicker, self).__init__(*args, **kwargs) # -------------------------------------------------------------- class CameraWindow (HasTraits): """ CameraWindow class contains the relevant information and functions for a single camera window: image, zoom, pan important members: _plot_data - contains image data to display (used by update_image) _plot - instance of Plot class to use with _plot_data _click_tool - instance of Clicker tool for the single camera window, to handle mouse processing """ _plot_data=Instance(ArrayPlotData) _plot=Instance(Plot) _click_tool=Instance(Clicker) rclicked=Int(0) cam_color = '' name=Str view = View( Item(name='_plot',editor=ComponentEditor(), show_label=False) ) # view = View( Item(name='_plot',show_label=False) ) def __init__(self, color): """ Initialization of plot system """ padd=25 self._plot_data=ArrayPlotData() self._plot=Plot(self._plot_data, default_origin="top left") self._plot.padding_left=padd self._plot.padding_right=padd self._plot.padding_top=padd self._plot.padding_bottom=padd self.right_p_x0,self.right_p_y0,self.right_p_x1,self.right_p_y1,self._quiverplots=[],[],[],[],[] self.cam_color = color def attach_tools(self): """ attach_tools(self) contains the relevant tools: clicker, pan, zoom """ self._click_tool=Clicker(self._img_plot) self._click_tool.on_trait_change(self.left_clicked_event, 'left_changed') #set processing events for Clicker self._click_tool.on_trait_change(self.right_clicked_event, 'right_changed') self._img_plot.tools.append(self._click_tool) pan = PanTool(self._plot, drag_button = 'middle') zoom_tool= ZoomTool(self._plot, tool_mode="box", always_on=False) # zoom_tool = BetterZoom(component=self._plot, tool_mode="box", always_on=False) zoom_tool.max_zoom_out_factor=1.0 # Disable "bird view" zoom out self._img_plot.overlays.append(zoom_tool) self._img_plot.tools.append(pan) def left_clicked_event(self): #TODO: why do we need the clicker_tool if we can handle mouse clicks here? """ left_clicked_event - processes left click mouse avents and displays coordinate and grey value information on the screen """ print "x = %d, y= %d, grey= %d " % (self._click_tool.x,self._click_tool.y,self._click_tool.data_value) #need to priny gray value def right_clicked_event(self): self.rclicked=1 #flag that is tracked by main_gui, for right_click_process function of main_gui #self._click_tool.y,self.name]) #self.drawcross("coord_x","coord_y",self._click_tool.x,self._click_tool.y,"red",5) #print ("right clicked, "+self.name) #need to print cross and manage other camera's crosses def update_image(self,image,is_float): """ update_image - displays/updates image in the curren camera window parameters: image - image data is_float - if true, displays an image as float array, else displays as byte array (B&W or gray) example usage: update_image(image,is_float=False) """ if is_float: self._plot_data.set_data('imagedata',image.astype(np.float)) else: self._plot_data.set_data('imagedata',image.astype(np.byte)) if not hasattr(self,'_img_plot'): #make a new plot if there is nothing to update self._img_plot=Instance(ImagePlot) self._img_plot=self._plot.img_plot('imagedata',colormap=gray)[0] self.attach_tools() # self._plot.request_redraw() def drawcross(self, str_x,str_y,x,y,color1,mrk_size,marker1="plus"): """ drawcross draws crosses at a given location (x,y) using color and marker in the current camera window parameters: str_x - label for x coordinates str_y - label for y coordinates x - array of x coordinates y - array of y coordinates mrk_size - marker size makrer1 - type of marker, e.g "plus","circle" example usage: drawcross("coord_x","coord_y",[100,200,300],[100,200,300],2) draws plus markers of size 2 at points (100,100),(200,200),(200,300) """ self._plot_data.set_data(str_x,x) self._plot_data.set_data(str_y,y) self._plot.plot((str_x,str_y),type="scatter",color=color1,marker=marker1,marker_size=mrk_size) #self._plot.request_redraw() def drawquiver(self,x1c,y1c,x2c,y2c,color,linewidth=1.0): """ drawquiver draws multiple lines at once on the screen x1,y1->x2,y2 in the current camera window parameters: x1c - array of x1 coordinates y1c - array of y1 coordinates x2c - array of x2 coordinates y2c - array of y2 coordinates color - color of the line linewidth - linewidth of the line example usage: drawquiver ([100,200],[100,100],[400,400],[300,200],'red',linewidth=2.0) draws 2 red lines with thickness = 2 : 100,100->400,300 and 200,100->400,200 """ x1,y1,x2,y2=self.remove_short_lines(x1c,y1c,x2c,y2c) if len(x1)>0: xs=ArrayDataSource(x1) ys=ArrayDataSource(y1) quiverplot=QuiverPlot(index=xs,value=ys,\ index_mapper=LinearMapper(range=self._plot.index_mapper.range),\ value_mapper=LinearMapper(range=self._plot.value_mapper.range),\ origin = self._plot.origin,arrow_size=0,\ line_color=color,line_width=linewidth,ep_index=np.array(x2),ep_value=np.array(y2) ) self._plot.add(quiverplot) self._quiverplots.append(quiverplot) #we need this to track how many quiverplots are in the current plot # import pdb; pdb.set_trace() def remove_short_lines(self,x1,y1,x2,y2): """ removes short lines from the array of lines parameters: x1,y1,x2,y2 - start and end coordinates of the lines returns: x1f,y1f,x2f,y2f - start and end coordinates of the lines, with short lines removed example usage: x1,y1,x2,y2=remove_short_lines([100,200,300],[100,200,300],[100,200,300],[102,210,320]) 3 input lines, 1 short line will be removed (100,100->100,102) returned coordinates: x1=[200,300]; y1=[200,300]; x2=[200,300]; y2=[210,320] """ dx,dy=2,2 #minimum allowable dx,dy x1f,y1f,x2f,y2f=[],[],[],[] for i in range(len(x1)): if abs(x1[i]-x2[i])>dx or abs(y1[i]-y2[i])>dy: x1f.append(x1[i]) y1f.append(y1[i]) x2f.append(x2[i]) y2f.append(y2[i]) return x1f,y1f,x2f,y2f def drawline(self,str_x,str_y,x1,y1,x2,y2,color1): """ drawline draws 1 line on the screen by using lineplot x1,y1->x2,y2 parameters: str_x - label of x coordinate str_y - label of y coordinate x1,y1,x2,y2 - start and end coordinates of the line color1 - color of the line example usage: drawline("x_coord","y_coord",100,100,200,200,red) draws a red line 100,100->200,200 """ self._plot_data.set_data(str_x,[x1,x2]) self._plot_data.set_data(str_y,[y1,y2]) self._plot.plot((str_x,str_y),type="line",color=color1) #self._plot.request_redraw() class TrackThread(Thread): """ TrackThread is used by tracking with display function - runs separate thread that updates the gui """ def run(self): print "tracking with display thread started" run_info = ptv.py_trackcorr_init() #init the relevant C function for step in range(*run_info.get_sequence_range()): #Loop over each step in sequence self.track_step=step #Call C function to process current step and store results for plotting self.intx0, self.intx1, self.intx2, self.inty0, self.inty1, \ self.inty2, self.pnr1, self.pnr2, self.pnr3, self.m_tr = \ ptv.py_trackcorr_loop(run_info, step, display=1) self.can_continue=False GUI.invoke_later(setattr, main_gui, 'update_thread_plot', True) #invoke plotting when system is ready to process it while not self.can_continue: # wait while plotting of the current step is finished, then continue for the next step pass del self.intx0,self.intx1 ptv.py_trackcorr_finish(run_info, step + 1) # call finishing C function (after all the steps in the loop are processed) for i in range(len(main_gui.camera_list)): # refresh cameras main_gui.camera_list[i]._plot.request_redraw() print "tracking with display thread finished" class TreeMenuHandler (Handler): """ TreeMenuHanlder contains all the callback actions of menu bar, processing of tree editor, and reactions of the GUI to the user clicks possible function declarations: 1) to process menubar actions: def function(self, info): parameters: self - needed for member function declaration, info - contains pointer to calling parent class (e.g main_gui) To access parent class objects use info.object, for example info.object.exp1 gives access to exp1 member of main_gui class 2) to process tree editor actions: def function(self,editor,object) - see examples below """ def configure_main_par(self, editor, object): experiment = editor.get_parent(object) paramset = object print 'Total paramsets:', len(experiment.paramsets) if paramset.m_params==None: #TODO: is it possible that control reaches here? If not, probably the if should be removed. paramset.m_params=Main_Params() else: paramset.m_params._reload() paramset.m_params.edit_traits(kind='modal') def configure_cal_par(self, editor, object): experiment = editor.get_parent(object) paramset = object print len(experiment.paramsets) if paramset.c_params==None: #TODO: is it possible that control reaches here? If not, probably the if should be removed. paramset.c_params=Calib_Params() else: paramset.c_params._reload() paramset.c_params.edit_traits(kind='modal') def configure_track_par(self, editor, object): experiment = editor.get_parent(object) paramset = object print len(experiment.paramsets) if paramset.t_params==None: #TODO: is it possible that control reaches here? If not, probably the if should be removed. paramset.t_params=Tracking_Params() paramset.t_params.edit_traits(kind='modal') def set_active(self, editor, object): experiment = editor.get_parent(object) paramset = object # experiment.active_params = paramset experiment.setActive(paramset) experiment.changed_active_params = True # editor.object.__init__() def copy_set_params(self, editor, object): experiment = editor.get_parent(object) paramset = object i = 1 new_name = None new_dir_path = None flag = False while not flag: new_name = "%s (%d)" % (paramset.name, i) new_dir_path = "%s%s" % (general.par_dir_prefix, new_name) if not os.path.isdir(new_dir_path): flag = True else: i=i+1 os.mkdir(new_dir_path) par.copy_params_dir(paramset.par_path, new_dir_path) experiment.addParamset(new_name, new_dir_path) def rename_set_params(self,editor,object): """ rename_set_params renames the node name on the tree and also the folder of parameters """ experiment = editor.get_parent(object) paramset = object # rename editor._menu_rename_node() new_name = object.name new_dir_path = general.par_dir_prefix + new_name os.mkdir(new_dir_path) par.copy_params_dir(paramset.par_path, new_dir_path) [os.remove(os.path.join(paramset.par_path,f)) for f in os.listdir(paramset.par_path)] os.rmdir(paramset.par_path) experiment.removeParamset(paramset) experiment.addParamset(new_name, new_dir_path) def delete_set_params(self, editor, object): """ delete_set_params deletes the node and the folder of parameters """ # experiment = editor.get_parent(object) paramset = object # delete node editor._menu_delete_node() # delete all the parameter files [os.remove(os.path.join(paramset.par_path,f)) for f in os.listdir(paramset.par_path)] # remove folder os.rmdir(paramset.par_path) #------------------------------------------ # Menubar actions #------------------------------------------ def new_action(self,info): print("Not implemented") def open_action(self,info): directory_dialog = DirectoryEditorDialog() directory_dialog.edit_traits() exp_path = directory_dialog.dir_name print "Changing experimental path to %s" % exp_path os.chdir(exp_path) info.object.exp1.populate_runs(exp_path) def exit_action(self,info): print ("not implemented yet") def saveas_action(self,info): print ("not implemented yet") def showimg_action(self,info): print "not implemented" info.object.update_plots(info.object.orig_image) def highpass_action(self,info): """ highpass_action - calls ptv.py_pre_processing_c() binding which does highpass on working images (object.orig_image) that were set with init action """ print ("highpass started") ptv.py_pre_processing_c() # call the binding info.object.update_plots(info.object.orig_image) print ("highpass finished") def img_coord_action(self,info): """ img_coord_action - runs detection function by using ptv.py_detection_proc_c() binding. results are extracted with help of ptv.py_get_pix(x,y) binding and plotted on the screen """ print ("detection proc started") ptv.py_detection_proc_c() print ("detection proc finished") x=[] y=[] ptv.py_get_pix(x,y) # extract detected points from C with help of py_get_pix binding info.object.drawcross("x","y",x,y,"blue",3) def corresp_action(self,info): """ corresp_action - calls ptv.py_correspondences_proc_c(quadriplets,triplets,pairs, unused) binding. Result of correspondence action is filled to uadriplets,triplets,pairs, unused arrays """ print ("correspondence proc started") quadriplets=[] triplets=[] pairs=[] unused=[] ptv.py_correspondences_proc_c(quadriplets,triplets,pairs, unused) info.object.clear_plots(remove_background=False) #info.object.update_plots(info.object.orig_image) info.object.drawcross("quad_x","quad_y",quadriplets[0],quadriplets[1],"red",3) #draw quadriplets, triplets, etc... info.object.drawcross("tripl_x","tripl_y",triplets[0],triplets[1],"green",3) info.object.drawcross("pair_x","pair_y",pairs[0],pairs[1],"yellow",3) info.object.drawcross("unused_x","unused_y",unused[0],unused[1],"blue",3) def init_action(self,info): """ init_action - clears existing plots from the camera windows, initializes C image arrays with mainGui.orig_image and calls appropriate start_proc_c by using ptv.py_start_proc_c() """ mainGui = info.object mainGui.exp1.syncActiveDir() #synchronize the active run params dir with the temp params dir for i in range (0,len(mainGui.camera_list)): exec("mainGui.orig_image[%d]=imread(mainGui.exp1.active_params.m_params.Name_%d_Image).astype(np.ubyte)" %(i,i+1)) if hasattr(mainGui.camera_list[i],'_img_plot'): del mainGui.camera_list[i]._img_plot mainGui.clear_plots() print("\nInit action\n") mainGui.update_plots(mainGui.orig_image,is_float=1) mainGui.set_images(mainGui.orig_image) ptv.py_start_proc_c() mainGui.pass_init=True print ("done") def calib_action(self,info): """ calib_action - initializes calib class with appropriate number of plot windows, passes to calib class pointer to ptv module and to exp1 class, invokes the calibration GUI """ print ("Starting calibration dialog") mainGui = info.object mainGui.pass_init=False num_cams=len(mainGui.camera_list) #TODO: calibration_params should work with the actual parameters of the current run (not par.temp_path) # Right. I replace par_path with info.object.exp1.active_params.par_path, Alex, 20.01. 10:43 mainGui.calib = calibration_gui(info.object.exp1.active_params.par_path) for i in range (0,num_cams): mainGui.calib.camera.append(plot_window()) mainGui.calib.camera[i].name="Camera"+str(i+1) mainGui.calib.camera[i].cameraN=i mainGui.calib.camera[i].py_rclick_delete=ptv.py_rclick_delete mainGui.calib.camera[i].py_get_pix_N=ptv.py_get_pix_N mainGui.calib.ptv=ptv mainGui.calib.exp1=mainGui.exp1 #pass all the parameters to calib class mainGui.calib.configure_traits() def sequence_action(self,info): """sequence action - implements binding to C sequence function. Original function was split into 2 parts: 1) initialization - binded by ptv.py_sequence_init(..) function 2) main loop processing - binded by ptv.py_sequence_loop(..) function """ extern_sequence=info.object.plugins.sequence_alg if extern_sequence!='default': try: current_path=os.path.abspath(os.getcwd()) # save working path os.chdir(software_path) #change to software path, to load tracking module seq=__import__(extern_sequence) #import choosen tracker from software dir except: print "Error loading "+extern_sequence+". Falling back to default sequence algorithm" extern_sequence='default' os.chdir(current_path) # change back to working path if extern_sequence=='default': n_camera=len(info.object.camera_list) print ("Starting sequence action (default algorithm)") seq_first=info.object.exp1.active_params.m_params.Seq_First seq_last=info.object.exp1.active_params.m_params.Seq_Last print seq_first,seq_last base_name=[] for i in range (n_camera): exec("base_name.append(info.object.exp1.active_params.m_params.Basename_%d_Seq)" %(i+1)) print base_name[i] ptv.py_sequence_init(0) #init C sequence function stepshake=ptv.py_get_from_sequence_init() #get parameters and pass to main loop if not stepshake: stepshake=1 print stepshake temp_img=np.array([],dtype=np.ubyte) # main loop - format image name, read it and call v.py_sequence_loop(..) for current step for i in range(seq_first,seq_last+1,stepshake): seq_ch="%04d" % i for j in range (n_camera): img_name = base_name[j] + seq_ch print ("Setting image: ",img_name) try: temp_img=imread(img_name).astype(np.ubyte) except: print "Error reading file" ptv.py_set_img(temp_img,j) ptv.py_sequence_loop(0,i) else: print "Sequence by using "+ extern_sequence sequence=seq.Sequence(ptv=ptv, exp1=info.object.exp1,camera_list=info.object.camera_list) sequence.do_sequence() #print "Sequence by using "+extern_sequence+" has failed." def track_no_disp_action(self, info): """ track_no_disp_action uses ptv.py_trackcorr_loop(..) binding to call tracking without display """ extern_tracker=info.object.plugins.track_alg if extern_tracker!='default': try: current_path=os.path.abspath(os.getcwd()) # save working path os.chdir(software_path) #change to software path, to load tracking module track=__import__(extern_tracker) #import choosen tracker from software dir except: print "Error loading "+extern_tracker+". Falling back to default tracker" extern_tracker='default' os.chdir(current_path) # change back to working path if extern_tracker=='default': print "Using default tracker" run_info = ptv.py_trackcorr_init() print run_info.get_sequence_range() for step in range(*run_info.get_sequence_range()): print step ptv.py_trackcorr_loop(run_info, step, display=0) #finalize tracking ptv.py_trackcorr_finish(run_info, step + 1) else: print "Tracking by using "+extern_tracker tracker=track.Tracking(ptv=ptv, exp1=info.object.exp1) tracker.do_tracking() print "tracking without display finished" def track_disp_action(self,info): """ tracking with display is handled by TrackThread which does processing step by step and waits for GUI to update before procceeding to the next step """ info.object.clear_plots(remove_background=False) info.object.tr_thread=TrackThread() info.object.tr_thread.start() def track_back_action(self,info): """ tracking back action is handled by ptv.py_trackback_c() binding """ print ("Starting back tracking") ptv.py_trackback_c() def threed_positions(self,info): ptv.py_determination_proc_c(0) def multigrid_demo(self,info): demo_window=DemoGUI(ptv=ptv, exp1=info.object.exp1) demo_window.configure_traits() def detect_part_track(self, info): """ track detected particles is handled by 2 bindings: 1) tracking_framebuf.read_targets(..) 2) ptv.py_get_mark_track_c(..) """ info.object.clear_plots(remove_background=False) #clear everything info.object.update_plots(info.object.orig_image,is_float=1) prm = info.object.exp1.active_params.m_params seq_first = prm.Seq_First #get sequence parameters seq_last = prm.Seq_Last base_names = [prm.Basename_1_Seq, prm.Basename_2_Seq, prm.Basename_3_Seq, prm.Basename_4_Seq] info.object.load_set_seq_image(seq_first) #load first seq image and set appropriate C array n_images=len(info.object.camera_list) print "Starting detect_part_track" x1_a,x2_a,y1_a,y2_a=[],[],[],[] for i in range (n_images): #initialize result arrays x1_a.append([]) x2_a.append([]) y1_a.append([]) y2_a.append([]) for i_seq in range(seq_first, seq_last+1): #loop over sequences for i_img in range(n_images): intx_green,inty_green,intx_blue,inty_blue=[],[],[],[] imx, imy, zoomx, zoomy, zoomf = ptv.py_get_mark_track_c(i_img) targets = read_targets(base_names[i_img], i_seq) for h in range(len(targets)): #get data from C tx, ty = targets[h].pos() if (targets[h].tnr() > -1): intx_green.append(int(imx/2 + zoomf*(tx - zoomx))) inty_green.append(int(imy/2 + zoomf*(ty - zoomy))) else: intx_blue.append(int(imx/2 + zoomf*(tx - zoomx))) inty_blue.append(int(imy/2 + zoomf*(ty - zoomy))) x1_a[i_img]=x1_a[i_img]+intx_green # add current step to result array x2_a[i_img]=x2_a[i_img]+intx_blue y1_a[i_img]=y1_a[i_img]+inty_green y2_a[i_img]=y2_a[i_img]+inty_blue # info.object.camera_list[i_img].drawcross(str(i_seq)+"x_tr_gr",str(i_seq)+"y_tr_gr",intx_green,inty_green,"green",3) # info.object.camera_list[i_img].drawcross(str(i_seq)+"x_tr_bl",str(i_seq)+"y_tr_bl",intx_blue,inty_blue,"blue",2) #plot result arrays for i_img in range(n_images): info.object.camera_list[i_img].drawcross("x_tr_gr","y_tr_gr",x1_a[i_img],y1_a[i_img],"green",3) info.object.camera_list[i_img].drawcross("x_tr_bl","y_tr_bl",x2_a[i_img],y2_a[i_img],"blue",2) info.object.camera_list[i_img]._plot.request_redraw() print "Finished detect_part_track" def traject_action(self,info): """ show trajectories is handled by ptv.py_traject_loop(..) which returns data to be plotted. traject_action collects data to be plotted from all the steps and plots it at once. """ print "Starting show trajectories" info.object.clear_plots(remove_background=False) seq_first=info.object.exp1.active_params.m_params.Seq_First seq_last=info.object.exp1.active_params.m_params.Seq_Last info.object.load_set_seq_image(seq_first,display_only=True) n_camera=len(info.object.camera_list) x1_a,x2_a,y1_a,y2_a=[],[],[],[] for i in range (n_camera): #initialize result arrays x1_a.append([]) x2_a.append([]) y1_a.append([]) y2_a.append([]) for i_seq in range(seq_first, seq_last): x1,y1,x2,y2,m1_tr=ptv.py_traject_loop(i_seq) for i in range(n_camera): x1_a[i]=x1_a[i]+x1[i] x2_a[i]=x2_a[i]+x2[i] y1_a[i]=y1_a[i]+y1[i] y2_a[i]=y2_a[i]+y2[i] print "Show trajectories finished" for i in range(n_camera): info.object.camera_list[i].drawcross("trajx1","trajy1",x1_a[i],y1_a[i],"blue",2) info.object.camera_list[i].drawcross("trajx2","trajy2",x2_a[i],y2_a[i],"red",2) info.object.camera_list[i].drawquiver(x1_a[i],y1_a[i],x2_a[i],y2_a[i],"green",linewidth=3.0) info.object.camera_list[i]._plot.request_redraw() def plugin_action(self,info): """ Configure plugins by using GUI """ info.object.plugins.read() info.object.plugins.configure_traits() #---------------------------------------------------------------- # Actions associated with right mouse button clicks (treeeditor) # --------------------------------------------------------------- ConfigMainParams = Action(name="Main parameters",action='handler.configure_main_par(editor,object)') ConfigCalibParams = Action(name="Calibration parameters",action='handler.configure_cal_par(editor,object)') ConfigTrackParams = Action(name="Tracking parameters",action='handler.configure_track_par(editor,object)') SetAsDefault = Action(name="Set as active",action='handler.set_active(editor,object)') CopySetParams = Action(name="Copy set of parameters",action='handler.copy_set_params(editor,object)') RenameSetParams = Action(name="Rename run",action='handler.rename_set_params(editor,object)') DeleteSetParams = Action(name="Delete run",action='handler.delete_set_params(editor,object)') # ----------------------------------------- # Defines the menubar #------------------------------------------ menu_bar = MenuBar( Menu( Action(name='New',action='new_action'), Action(name='Open',action='open_action'), Action(name='Save As',action='saveas_action'), Action(name='Exit',action='exit_action'), name='File' ), Menu( Action(name='Init / Restart',action='init_action'), name='Start' ), Menu( #Action(name='Show original image',action='showimg_action',enabled_when='pass_init'), Action(name='High pass filter',action='highpass_action',enabled_when='pass_init'), Action(name='Image coord',action='img_coord_action',enabled_when='pass_init'), Action(name='Correspondences',action='corresp_action',enabled_when='pass_init'), name='Preprocess' ), Menu( Action(name='3D positions',action='threed_positions'), name='3D Positions' ), Menu( Action(name='Create calibration',action='calib_action'), #,enabled_when='pass_init'), name='Calibration' ), Menu( Action(name='Sequence without display',action='sequence_action',enabled_when='pass_init'), name='Sequence' ), Menu( Action(name='Detected Particles',action='detect_part_track',enabled_when='pass_init'), Action(name='Tracking without display',action='track_no_disp_action',enabled_when='pass_init'), Action(name='Tracking with display',action='track_disp_action',enabled_when='pass_init'), Action(name='Tracking backwards',action='track_back_action',enabled_when='pass_init'), Action(name='Show trajectories',action='traject_action',enabled_when='pass_init'), name='Tracking' ), Menu( Action(name='Configure tracking/sequence',action='plugin_action'), name='Plugins' ), Menu( Action(name='Run multigrid demo',action='multigrid_demo'), name='Demo' ), ) #---------------------------------------- # tree editor for the Experiment() class # tree_editor_exp=TreeEditor( nodes=[ TreeNode( node_for=[Experiment], auto_open=True, children = '', label = '=Experiment', ), TreeNode( node_for=[Experiment], auto_open=True, children='paramsets', label= '=Parameters', add=[Paramset], menu = Menu( CopySetParams ) ), TreeNode( node_for=[Paramset], auto_open=True, children='', label= 'name', menu=Menu( NewAction, CopySetParams, RenameSetParams, DeleteSetParams, Separator(), ConfigMainParams, ConfigCalibParams, ConfigTrackParams, Separator(), SetAsDefault ) ) ], editable = False, ) # ------------------------------------------------------------------------- class Plugins (HasTraits): track_list=List seq_list=List track_alg=Enum(values='track_list') sequence_alg=Enum(values='seq_list') view = View( Group( Item(name='track_alg', label="Choose tracking algorithm:"), Item(name='sequence_alg', label="Choose sequence algorithm:") ), buttons = [ 'OK'], title = 'External plugins configuration' ) def __init__(self): self.read() def read(self): # reading external tracking try: f=open(os.path.join(software_path, "external_tracker_list.txt"), 'r') trackers=f.read().split('\n') trackers.insert(0,'default') self.track_list=trackers f.close() except: self.track_list=['default'] # reading external sequence try: f=open(os.path.join(software_path, "external_sequence_list.txt"), 'r') seq=f.read().split('\n') seq.insert(0,'default') self.seq_list=seq f.close() except: self.seq_list=['default'] # ---------------------------------------------- class MainGUI (HasTraits): """ MainGUI is the main class under which the Model-View-Control (MVC) model is defined """ camera_list=List imgplt_flag=0 pass_init=Bool(False) update_thread_plot=Bool(False) tr_thread=Instance(TrackThread) selected = Any # Defines GUI view -------------------------- view = View( Group( Group(Item(name = 'exp1', editor = tree_editor_exp, show_label=False, width=-400, resizable=False), Item('camera_list',style = 'custom',editor = ListEditor( use_notebook = True,deletable = False, dock_style = 'tab', page_name = '.name', selected='selected'), show_label = False), orientation='horizontal', show_left=False), orientation='vertical'), title = 'pyPTV', id='main_view', width = 1., height = 1., resizable = True, handler=TreeMenuHandler(), # <== Handler class is attached menubar=menu_bar) def _selected_changed(self): self.current_camera=int(self.selected.name.split(' ')[1])-1 #--------------------------------------------------- # Constructor and Chaco windows initialization #--------------------------------------------------- def __init__(self): super(MainGUI, self).__init__() colors = ['yellow','green','red','blue'] self.exp1=Experiment() self.exp1.populate_runs(exp_path) self.plugins=Plugins() self.n_camera=self.exp1.active_params.m_params.Num_Cam print self.n_camera self.orig_image=[] self.hp_image=[] self.current_camera=0 self.camera_list = [] for i in range(self.n_camera): self.camera_list.append(CameraWindow(colors[i])) self.camera_list[i].name="Camera "+str(i+1) self.camera_list[i].on_trait_change(self.right_click_process, 'rclicked') self.orig_image.append(np.array([],dtype=np.ubyte)) self.hp_image.append(np.array([])) ptv.py_init_proc_c() #intialization of globals in ptv C module #------------------------------------------------------ def right_click_process(self): x_clicked, y_clicked, n_camera = 0,0,0 h_img = self.exp1.active_params.m_params.imx v_img = self.exp1.active_params.m_params.imy for i in range(len(self.camera_list)): n_camera = i x_clicked,y_clicked=self.camera_list[i]._click_tool.x,self.camera_list[i]._click_tool.y x1,y1,x2,y2,x1_points,y1_points,intx1,inty1=ptv.py_right_click(\ x_clicked,y_clicked,n_camera) if (x1!=-1 and y1!=-1): self.camera_list[n_camera].right_p_x0.append(intx1) self.camera_list[n_camera].right_p_y0.append(inty1) self.camera_list[n_camera].drawcross("right_p_x0","right_p_y0",\ self.camera_list[n_camera].right_p_x0,\ self.camera_list[n_camera].right_p_y0, "cyan", 3, marker1 = "circle") self.camera_list[n_camera]._plot.request_redraw() print "right click process" print "(x1,y1),(x2,y2),(x1_points,y1_points)" print zip(x1,y1),zip(x2,y2),zip(x1_points,y1_points) color_camera=['yellow','red','blue','green'] #print [x1[i]],[y1[i]],[x2[i]],[y2[i]] for j in range(len(self.camera_list)): if j is not n_camera: count=self.camera_list[i]._plot.plots.keys() self.camera_list[j].drawline("right_cl_x"+str(len(count)),"right_cl_y"+str(len(count)),x1[j],y1[j],x2[j],y2[j],color_camera[n_camera]) self.camera_list[j]._plot.index_mapper.range.set_bounds(0,h_img) self.camera_list[j]._plot.value_mapper.range.set_bounds(0,v_img) self.camera_list[j].drawcross("right_p_x1","right_p_y1",\ x1_points[j],y1_points[j],color_camera[n_camera],2) self.camera_list[j]._plot.request_redraw() else: print ("No nearby points for epipolar lines") self.camera_list[n_camera].rclicked=0 def update_plots(self,images,is_float=0): for i in range(len(images)): self.camera_list[i].update_image(images[i],is_float) self.camera_list[i]._plot.request_redraw() # set_images sets ptv's C module img[] array def set_images(self,images): for i in range(len(images)): ptv.py_set_img(images[i],i) def get_images(self,plot_index,images): for i in plot_index: ptv.py_get_img(images[i],i) def drawcross(self,str_x,str_y,x,y,color1,size1): for i in range(len(self.camera_list)): self.camera_list[i].drawcross(str_x,str_y,x[i],y[i],color1,size1) self.camera_list[i]._plot.request_redraw() def clear_plots(self,remove_background=True): # this function deletes all plotes except basic image plot if not remove_background: index='plot0' else: index=None for i in range(len(self.camera_list)): plot_list=self.camera_list[i]._plot.plots.keys() #if not remove_background: # index=None try: plot_list.remove(index) except: pass self.camera_list[i]._plot.delplot(*plot_list[0:]) self.camera_list[i]._plot.tools=[] self.camera_list[i]._plot.request_redraw() for j in range(len(self.camera_list[i]._quiverplots)): self.camera_list[i]._plot.remove(self.camera_list[i]._quiverplots[j]) self.camera_list[i]._quiverplots=[] self.camera_list[i].right_p_x0=[] self.camera_list[i].right_p_y0=[] self.camera_list[i].right_p_x1=[] self.camera_list[i].right_p_y1=[] def _update_thread_plot_changed(self): n_camera=len(self.camera_list) if self.update_thread_plot and self.tr_thread: print "updating plots..\n" step=self.tr_thread.track_step x0,x1,x2,y0,y1,y2,pnr1,pnr2,pnr3,m_tr=\ self.tr_thread.intx0,self.tr_thread.intx1,self.tr_thread.intx2,\ self.tr_thread.inty0,self.tr_thread.inty1,self.tr_thread.inty2,self.tr_thread.pnr1,\ self.tr_thread.pnr2,self.tr_thread.pnr3,self.tr_thread.m_tr for i in range (n_camera): self.camera_list[i].drawcross(str(step)+"x0",str(step)+"y0",x0[i],y0[i],"green",2) self.camera_list[i].drawcross(str(step)+"x1",str(step)+"y1",x1[i],y1[i],"yellow",2) self.camera_list[i].drawcross(str(step)+"x2",str(step)+"y2",x2[i],y2[i],"white",2) self.camera_list[i].drawquiver(x0[i],y0[i],x1[i],y1[i],"orange") self.camera_list[i].drawquiver(x1[i],y1[i],x2[i],y2[i],"white") ## for j in range (m_tr): ## str_plt=str(step)+"_"+str(j) ## ## self.camera_list[i].drawline\ ## (str_plt+"vec_x0",str_plt+"vec_y0",x0[i][j],y0[i][j],x1[i][j],y1[i][j],"orange") ## self.camera_list[i].drawline\ ## (str_plt+"vec_x1",str_plt+"vec_y1",x1[i][j],y1[i][j],x2[i][j],y2[i][j],"white") self.load_set_seq_image(step,update_all=False,display_only=True) self.camera_list[self.current_camera]._plot.request_redraw() self.tr_thread.can_continue=True self.update_thread_plot=False def load_set_seq_image(self,seq, update_all=True,display_only=False): n_camera=len(self.camera_list) if not hasattr(self,'base_name'): self.base_name=[] for i in range (n_camera): exec("self.base_name.append(self.exp1.active_params.m_params.Basename_%d_Seq)" %(i+1)) print self.base_name[i] i=seq seq_ch = "%04d" % i if not update_all: j=self.current_camera img_name=self.base_name[j]+seq_ch self.load_disp_image(img_name,j,display_only) else: for j in range (n_camera): img_name=self.base_name[j]+seq_ch self.load_disp_image(img_name,j,display_only) def load_disp_image(self, img_name,j,display_only=False): print ("Setting image: "+str(img_name)) temp_img=np.array([],dtype=np.ubyte) try: temp_img=imread(img_name).astype(np.ubyte) if not display_only: ptv.py_set_img(temp_img,j) if len(temp_img)>0: self.camera_list[j].update_image(temp_img,is_float=1) except: print "Error reading file" # ------------------------------------------------------------- if __name__ == '__main__': try: main_gui = MainGUI() #gui1.exp1.populate_runs(exp_path) main_gui.configure_traits() except: print("something wrong with the software or folder") general.printException() os.chdir(cwd) #get back to the original workdir ``` #### File: pyptv_gui/test/test_processing.py ```python import unittest import os, shutil, glob, re from scipy.misc import imread from ptv1 import py_start_proc_c, py_init_proc_c from ptv1 import py_sequence_init, py_sequence_loop, py_set_img from ptv1 import py_trackcorr_init, py_trackcorr_loop, py_trackcorr_finish from ptv1 import py_trackback_c def compare_directories(dir1, dir2, mask=None): """ For all files in dir1, check that the file exists in dir2 and that the files are equal line by line. Arguments: dir1, dir2 - path to the directories for comparison. mask - a compiled regular wxpression. Only file names matching it will be compared, others will be skipped. If None (default), all files are compared. Returns: True if equal, False otherwise. """ for fname in os.listdir(dir1): if (mask is not None) and (mask.search(fname) is None): continue fout = open(dir1 + fname, "r") fcmp = open(dir2 + fname, "r") while True: lout = fout.readline() lcmp = fcmp.readline() if lout != lcmp: return False if len(lout) == 0: break fout.close() fcmp.close() return True class TestProcessing(unittest.TestCase): def setUp(self): os.chdir("testing_fodder/") if os.path.exists("res/"): shutil.rmtree("res/") if os.path.exists("scene83_event1/"): shutil.rmtree("scene83_event1/") shutil.copytree("clean_scene/", "scene83_event1/") def tearDown(self): shutil.rmtree("res/") shutil.rmtree("scene83_event1/") os.chdir("../") def test_sequencing(self): """Sequencing reproduces sample results""" os.mkdir("res/") py_init_proc_c() py_start_proc_c() py_sequence_init(0) for frame in xrange(497, 598): for cam in xrange(4): img = imread( "scene83_event1/cam%d_Scene83_%04d" % (cam + 1, frame)) py_set_img(img, cam) py_sequence_loop(0, frame) self.failUnless(compare_directories("res/", "after_sequencing/")) self.failUnless(compare_directories( "scene83_event1/", "after_sequencing_targets/", mask=re.compile("_targets$"))) def test_tracking_run_object(self): """The TrackingRun object has access to needed attributes""" shutil.copytree("after_sequencing/", "res/") for fname in glob.iglob("after_sequencing_targets/*"): shutil.copy(fname, "scene83_event1/") run_info = py_trackcorr_init() first, last = run_info.get_sequence_range() self.failUnlessEqual(first, 497) self.failUnlessEqual(last, 597) def test_tracking(self): """Tracking reproduces sample results""" shutil.copytree("after_sequencing/", "res/") for fname in glob.iglob("after_sequencing_targets/*"): shutil.copy(fname, "scene83_event1/") py_init_proc_c() py_start_proc_c() run_info = py_trackcorr_init() for frame in range(497, 597): py_trackcorr_loop(run_info, frame, display=0) py_trackcorr_finish(run_info, 597) self.failUnless(compare_directories("res/", "after_tracking/")) self.failUnless(compare_directories( "scene83_event1/", "after_tracking_targets/", mask=re.compile("_targets$"))) def test_backtracking(self): """Tracking back reproduces sample results""" shutil.copytree("after_tracking/", "res/") for fname in glob.iglob("after_tracking_targets/*"): shutil.copy(fname, "scene83_event1/") py_init_proc_c() py_start_proc_c() py_trackback_c() self.failUnless(compare_directories("res/", "after_backtracking/")) self.failUnless(compare_directories( "scene83_event1/", "after_backtracking_targets/", mask=re.compile("_targets$"))) if __name__ == '__main__': unittest.main() ```
{ "source": "Jimmy5467/track-down", "score": 3 }
#### File: track-down/ML/compare_faces.py ```python import subprocess import sys import face_recognition import cv2 import os import numpy as np def read_img(path): img = cv2.imread(path) (h, w) = img.shape[:2] width = 500 ratio = width / float(w) height = int(h * ratio) return cv2.resize(img, (width, height)) Known_encodings = [] known_names = [] known_dir = '..//images//db//Known' for file in os.listdir(known_dir): if file.endswith(('.png', '.jpg', '.jpeg', 'tiff')): img = read_img(known_dir + '/' + file) img_enc = face_recognition.face_encodings(img)[0] Known_encodings.append(img_enc) known_names.append(file.split('.')[0]) flag = False Unknown_dir = '..//images//db//Known//Unknown' for file in os.listdir(Unknown_dir): img = read_img(Unknown_dir + '/' + file) img_enc = face_recognition.face_encodings(img)[0] results = face_recognition.compare_faces(Known_encodings, img_enc, tolerance=0.47) for i in range(len(results)): if results[i]: print(known_names[i]) flag = True if not flag: print('No found in data.') ``` #### File: pf_django/website/models.py ```python from django.db import models from django.utils import timezone import os, glob from uuid import uuid4 count = 0 def path_and_rename(instance, filename): name1 = str(len(glob.glob('../images/db/Known/*'))) print(name1) return os.path.join(name1 + ".jpg") def rename(instance, filename): os.remove('../images/db/Known/Unknown/0.jpg') name1 = str(0) return os.path.join('./Unknown/' + name1 + ".jpg") class Uploader(models.Model): fname_u = models.CharField(max_length=200) lname_u = models.CharField(max_length=200) email_u = models.EmailField() mobile_u = models.IntegerField() image_l = models.ImageField(upload_to=path_and_rename, null=True, blank=True) # image of uploader def __str__(self): return self.fname_u + ' ' + self.lname_u class Find(models.Model): image = models.ImageField(upload_to=rename, null=True, blank=True) # class Finder(models.Model): # input image for finder ```
{ "source": "jimmy60504/seisnn", "score": 2 }
#### File: seisnn/scripts/compare_dataset.py ```python import seisnn from datetime import datetime from obspy import UTCDateTime import numpy as np def get_from_time_to_time(pick, delta=0.1): from_time = UTCDateTime(pick.time) - delta from_time = datetime.strptime(str(from_time), '%Y-%m-%dT%H:%M:%S.%fZ') to_time = UTCDateTime(pick.time) + delta to_time = datetime.strptime(str(to_time), '%Y-%m-%dT%H:%M:%S.%fZ') return from_time, to_time def compare(station, database, delta=0.2): tp = [0, 0] db = seisnn.sql.Client(database=database) P_picks = db.get_picks(tag='manual', phase='P', station=station.station) S_picks = db.get_picks(tag='manual', phase='S', station=station.station) for i, picks in enumerate([P_picks, S_picks]): for pick in picks: from_time, to_time = get_from_time_to_time(pick, delta) correspond_pick = db.get_picks(from_time=from_time, to_time=to_time, tag='predict', phase=pick.phase, station=pick.station) if correspond_pick: tp[i] = tp[i] + 1 print(station) print(f'total in station: {len(picks)} true positive {tp[i]}') return tp def main(): stations = seisnn.sql.Client(database="Hualien.db").get_inventories() tp = seisnn.utils.parallel(stations, func=compare, database="Hualien.db", delta=0.1, batch_size=1) tp = np.array(tp).reshape(-1,2) tp = tp.sum(axis = 0) print(tp) if __name__ == '__main__': main() ``` #### File: seisnn/seisnn/core.py ```python import os import numpy as np import scipy.signal import obspy import seisnn.example_proto import seisnn.io import seisnn.plot import seisnn.sql class Metadata: """ Main class for metadata. """ id = None station = None starttime = None endtime = None npts = None delta = None def __init__(self, input_data=None): if isinstance(input_data, obspy.Trace): self.from_trace(input_data) elif isinstance(input_data, seisnn.example_proto.Feature): self.from_feature(input_data) def from_trace(self, trace): self.id = trace.id self.station = trace.stats.station self.starttime = trace.stats.starttime self.endtime = trace.stats.endtime self.npts = trace.stats.npts self.delta = trace.stats.delta return self def from_feature(self, feature): self.id = feature.id self.station = feature.station self.starttime = obspy.UTCDateTime(feature.starttime) self.endtime = obspy.UTCDateTime(feature.endtime) self.npts = feature.npts self.delta = feature.delta return self class Trace: """ Main class for trace data. """ metadata = None channel = None data = None def __init__(self, input_data): if isinstance(input_data, obspy.Stream): self.from_stream(input_data) elif isinstance(input_data, seisnn.example_proto.Feature): self.from_feature(input_data) def from_stream(self, stream): """ Gets waveform from Obspy stream. :param stream: Obspy stream object. :return: Waveform object. """ channel = [] data = np.zeros([3008, 3]) for i, comp in enumerate(['Z', 'N', 'E']): try: st = stream.select(component=comp) data[:, i] = st.traces[0].data channel.append(st.traces[0].stats.channel) except IndexError: pass except Exception as error: print(f'{type(error).__name__}: {error}') self.data = data self.channel = channel self.metadata = Metadata(stream.traces[0]) return self def from_feature(self, feature): self.metadata = Metadata(feature) self.data = feature.trace self.channel = feature.channel return self def get_snr(self, pick, second=1): vector = np.linalg.norm(self.data, axis=2)[0] point = int((pick.time - self.metadata.starttime) * 100) if point >= second * 100: signal = vector[point:point + second * 100] noise = vector[point - len(signal):point] else: noise = vector[0:point] signal = vector[point:point + len(noise)] snr = seisnn.qc.signal_to_noise_ratio(signal=signal, noise=noise) pick.snr = np.around(snr, 4) class Label: """ Main class for label data. """ picks = None def __init__(self, metadata, phase, tag=None): self.metadata = metadata self.phase = phase self.tag = tag self.data = np.zeros([metadata.npts, len(phase)]) def generate_label(self, database, tag, shape, half_width=20): """ Add generated label to stream. :param str database: SQL database. :param str tag: Pick tag in SQL database. :param str shape: Label shape, see scipy.signal.windows.get_window(). :param int half_width: Label half width in data point. :rtype: np.array :return: Label. """ db = seisnn.sql.Client(database) ph_index = {} for i, phase in enumerate(self.phase): ph_index[phase] = i picks = db.get_picks(from_time=self.metadata.starttime.datetime, to_time=self.metadata.endtime.datetime, station=self.metadata.station, phase=phase, tag=tag) for pick in picks: pick_time = obspy.UTCDateTime( pick.time) - self.metadata.starttime pick_time_index = int(pick_time / self.metadata.delta) self.data[pick_time_index, i] = 1 if 'EQ' in self.phase: # Make EQ window start by P and end by S. self.data[:, ph_index['EQ']] = \ self.data[:, ph_index['P']] - self.data[:, ph_index['S']] self.data[:, ph_index['EQ']] = \ np.cumsum(self.data[:, ph_index['EQ']]) if np.any(self.data[:, ph_index['EQ']] < 0): self.data[:, ph_index['EQ']] += 1 for i, phase in enumerate(self.phase): if not phase == 'EQ': wavelet = scipy.signal.windows.get_window( shape, 2 * half_width) self.data[:, i] = scipy.signal.convolve( self.data[:, i], wavelet[1:], mode='same') if 'N' in self.phase: # Make Noise window by 1 - P - S self.data[:, ph_index['N']] = 1 self.data[:, ph_index['N']] -= self.data[:, ph_index['P']] self.data[:, ph_index['N']] -= self.data[:, ph_index['S']] return self def get_picks(self, height=0.5, distance=100): """ Extract pick from label and write into the database. :param float height: Height threshold, from 0 to 1, default is 0.5. :param int distance: Distance threshold in data point. """ picks = [] for i, phase in enumerate(self.phase[0:2]): peaks, _ = scipy.signal.find_peaks( self.data[-1, :, i], height=height, distance=distance) for peak in peaks: if peak: pick_time = obspy.UTCDateTime(self.metadata.starttime) \ + peak * self.metadata.delta picks.append(Pick(time=pick_time, station=self.metadata.station, phase=self.phase[i]) ) self.picks = picks def write_picks_to_database(self, tag, database): """ Write picks into the database. :param str tag: Output pick tag name. :param database: SQL database name. """ db = seisnn.sql.Client(database) for pick in self.picks: db.add_pick(time=pick.time.datetime, station=pick.station, phase=pick.phase, tag=tag, snr=pick.snr) class Pick: """ Main class for phase pick. """ def __init__(self, time=None, station=None, phase=None, tag=None, snr=None): self.time = time self.station = station self.phase = phase self.tag = tag self.snr = snr class Instance: """ Main class for data transfer. """ metadata = None trace = None label = None predict = None def __init__(self, input_data=None): if input_data is None: pass try: if isinstance(input_data, obspy.Stream): self.from_stream(input_data) elif isinstance(input_data, seisnn.sql.Waveform): dataset = seisnn.io.read_dataset(input_data.tfrecord) for item in dataset.skip(input_data.data_index).take(1): input_data = item self.from_example(input_data) else: self.from_example(input_data) except TypeError: pass except Exception as error: print(f'{type(error).__name__}: {error}') def __repr__(self): return f"Instance(" \ f"ID={self.metadata.id}, " \ f"Start Time={self.metadata.starttime}, " \ f"Phase={self.label.phase})" def from_stream(self, stream): """ Initialized from stream. :param stream: :return: """ self.trace = Trace(stream) self.metadata = self.trace.metadata return self def from_feature(self, feature): """ Initialized from feature dict. :param Feature feature: Feature dict. """ self.trace = Trace(feature) self.metadata = self.trace.metadata self.label = Label(self.metadata, feature.phase, tag='label') self.label.data = feature.label self.predict = Label(self.metadata, feature.phase, tag='predict') self.predict.data = feature.predict return self def to_feature(self): """ Returns Feature object. :rtype: Feature :return: Feature object. """ feature = seisnn.example_proto.Feature() feature.id = self.metadata.id feature.station = self.metadata.station feature.starttime = self.metadata.starttime.isoformat() feature.endtime = self.metadata.endtime.isoformat() feature.npts = self.metadata.npts feature.delta = self.metadata.delta feature.trace = self.trace.data feature.channel = self.trace.channel feature.phase = self.label.phase feature.label = self.label.data feature.predict = self.predict.data return feature def from_example(self, example): """ Initialized from example protocol. :param example: Example protocol. """ feature = seisnn.example_proto.eval_eager_tensor(example) self.from_feature(feature) return self def to_example(self): """ Returns example protocol. :return: Example protocol. """ feature = self.to_feature() example = seisnn.example_proto.feature_to_example(feature) return example def to_tfrecord(self, file_path): """ Write TFRecord to file path. :param str file_path: Output path. """ feature = self.to_feature() example = seisnn.example_proto.feature_to_example(feature) seisnn.io.write_tfrecord([example], file_path) def plot(self, **kwargs): """ Plot dataset. :param kwargs: Keywords pass into plot. """ seisnn.plot.plot_dataset(self, **kwargs) def get_tfrecord_name(self): year = str(self.metadata.starttime.year) julday = str(self.metadata.starttime.julday) return f'{self.metadata.id[:-1]}.{year}.{julday}.tfrecord' def get_tfrecord_dir(self, sub_dir): """ :param sub_dir: Sub TFRecord directory: 'train', 'test', 'eval' :return: TFRecord directory """ config = seisnn.utils.Config() name = self.get_tfrecord_name() net, sta, loc, chan, year, julday, suffix = name.split('.') sub_dir = getattr(config, sub_dir) tfr_dir = os.path.join(sub_dir, year, net, sta) return tfr_dir if __name__ == "__main__": pass ```
{ "source": "jimmy605/practices-of-the-python-pro", "score": 4 }
#### File: My_Code/ch02/playground.py ```python import time import datetime now = time.time() midnight = datetime.time() def join_names(names): name_string = '' for i, name in enumerate(names): if i > 0: name_string += ', ' if i == len(names) - 1: name_string += 'and ' name_string += name return name_string def introduce(title, names): print(f'{title}: {join_names(names)}') introduce('The Three Stooges', ['Moe', 'Larry', 'Shemp']) introduce('The Three Stooges', ['Larry', 'Curly', 'Moe']) introduce('Teenage Mutant Ninja Turtles',['Donatello', 'Raphael','Michelangelo', 'Leonardo']) ``` #### File: My_Code/ch02/sales_tax.py ```python def add_sales_tax(total, tax_rate): return total * tax_rate ``` #### File: My_Code/ch04/playground.py ```python def has_duplicates(seq): for index1, item1 in enumerate(seq): for index2, item2, in enumerate(seq): if item1 == item2 and index1 != index2: return True return False color_counts = {} with open('all-favourite-colors.txt') as favourite_colors_file: for color in favourite_colors_file: color = color.strip() if color in color_counts: color_counts[color] += 1 else: color_counts[color] = 1 all_colors = set() with open('all-favourite-colors.txt') as favourite_colors_file: for line in favourite_colors_file: all_colors.add(line.strip()) def range(*args): if len(args) == 1: start = 0 stop = args[0] else: start = args[0] stop = args[1] current = start while current < stop: yield current current += 1 def squares(lyst): for num in lyst: yield num ** 2 new_list = [1,2,3,4] check = squares(new_list) for num in check: print(num) ```
{ "source": "jimmy646/violin", "score": 2 }
#### File: violin/model/ViolinBase.py ```python import torch from torch import nn from .rnn import RNNEncoder from .bidaf import BidafAttn import pickle class ViolinBase(nn.Module): def __init__(self, opt): super(ViolinBase, self).__init__() hsize1 = opt.hsize1 hsize2 = opt.hsize2 embed_size = opt.embed_size self.input_streams = opt.input_streams self.lstm_raw = RNNEncoder(opt.embed_size, hsize1, bidirectional=True, dropout_p=0, n_layers=1, rnn_type='lstm') self.lstm_mature_vid = RNNEncoder(hsize1 * 2 * 5, hsize2, bidirectional=True, dropout_p=0, n_layers=1, rnn_type="lstm") self.bert_fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(opt.embed_size, hsize1*2), nn.Tanh() ) if 'vid' in self.input_streams: self.video_fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(opt.vid_feat_size, embed_size), nn.Tanh() ) self.vid_ctx_rnn = RNNEncoder(hsize1 * 2 * 3, hsize2, bidirectional=True, dropout_p=0, n_layers=1, rnn_type="lstm") if 'sub' in self.input_streams: self.sub_ctx_rnn = RNNEncoder(hsize1 * 2 * 3, hsize2, bidirectional=True, dropout_p=0, n_layers=1, rnn_type="lstm") if len(self.input_streams) > 0: self.bidaf = BidafAttn(hsize1 * 2, method="dot") self.final_fc = nn.Sequential( nn.Linear(hsize2*2, hsize2), nn.ReLU(), nn.Dropout(0.5), nn.Linear(hsize2, 1), nn.Sigmoid() ) else: self.final_fc = nn.Sequential( nn.Linear(hsize1*2, hsize2), nn.ReLU(), nn.Dropout(0.5), nn.Linear(hsize2, 1), nn.Sigmoid() ) def max_along_time(self, outputs, lengths): max_outputs = [outputs[i, :int(lengths[i]), :].max(dim=0)[0] for i in range(len(lengths))] ret = torch.stack(max_outputs, dim=0) assert ret.size() == torch.Size([outputs.size()[0], outputs.size()[2]]) return ret def forward(self, vid_input, sub_input, state_input): final_vectors = [] state_hidden, state_lens = state_input state_encoded = self.bert_fc(state_hidden) #print(type(state_lens)) if 'vid' in self.input_streams: vid_feat, vid_lens = vid_input vid_projected = self.video_fc(vid_feat) vid_encoded, _ = self.lstm_raw(vid_projected, vid_lens) u_va, _ = self.bidaf(state_encoded, state_lens, vid_encoded, vid_lens) concat_vid = torch.cat([state_encoded, u_va, state_encoded*u_va], dim=-1) vec_vid = self.vid_ctx_rnn(concat_vid, state_lens)[1] final_vectors.append(vec_vid) if 'sub' in self.input_streams: sub_hidden, sub_lens = sub_input sub_encoded = self.bert_fc(sub_hidden) u_sa, _ = self.bidaf(state_encoded, state_lens, sub_encoded, sub_lens) concat_sub = torch.cat([state_encoded, u_sa, state_encoded*u_sa], dim=-1) vec_sub = self.sub_ctx_rnn(concat_sub, state_lens)[1] final_vectors.append(vec_sub) if len(self.input_streams) == 0: maxout_state = self.max_along_time(state_encoded, state_lens) final_vectors.append(maxout_state) if len(self.input_streams) < 2: return self.final_fc(torch.cat(final_vectors, dim=1)) else: concat_all = torch.cat([state_encoded, u_va, u_sa, state_encoded*u_va, state_encoded*u_sa], dim=-1) vec_all = self.lstm_mature_vid(concat_all, state_lens)[1] return self.final_fc(vec_all) ```
{ "source": "jimmy646/XML-CNN", "score": 3 }
#### File: XML-CNN/code/train.py ```python import os import argparse import numpy as np import timeit import data_helpers from cnn_model import CNN_model def load_data(args): X_trn, Y_trn, X_tst, Y_tst, vocabulary, vocabulary_inv = data_helpers.load_data(args.data_path, max_length=args.sequence_length, vocab_size=args.vocab_size) X_trn = X_trn.astype(np.int32) X_tst = X_tst.astype(np.int32) Y_trn = Y_trn.astype(np.int32) Y_tst = Y_tst.astype(np.int32) return X_trn, Y_trn, X_tst, Y_tst, vocabulary, vocabulary_inv def gen_model_file(args): data_name = args.data_path.split('/')[-2] fs_string = '-'.join([str(fs) for fs in args.filter_sizes]) file_name = 'data-%s_sl-%d_ed-%d_fs-%s_nf-%d_pu-%d_pt-%s_hd-%d_bs-%d_model-%s_pretrain-%s' % \ (data_name, args.sequence_length, args.embedding_dim, fs_string, args.num_filters, args.pooling_units, args.pooling_type, args.hidden_dims, args.batch_size, args.model_variation, args.pretrain_type) return file_name def main(args): print('-'*50) print('Loading data...'); start_time = timeit.default_timer(); X_trn, Y_trn, X_tst, Y_tst, vocabulary, vocabulary_inv = load_data(args) print('Process time %.3f (secs)\n' % (timeit.default_timer() - start_time)) # Building model # ================================================== print('-'*50) print("Building model..."); start_time = timeit.default_timer(); model = CNN_model(args) model.model_file = os.path.join('./CNN_runtime_models', gen_model_file(args)) if not os.path.isdir(model.model_file): os.makedirs(model.model_file) else: print('Warning: model file already exist!\n %s' % (model.model_file)) model.add_data(X_trn, Y_trn) model.add_pretrain(vocabulary, vocabulary_inv) model.build_train() print('Process time %.3f (secs)\n' % (timeit.default_timer() - start_time)) # Training model # ================================================== print('-'*50) print("Training model..."); start_time = timeit.default_timer(); store_params_time = 0.0; for epoch_idx in xrange(args.num_epochs + 1): loss = model.train() print 'Iter:', epoch_idx, 'Trn loss ', loss if epoch_idx % 5 == 0: print 'saving model...'; tmp_time = timeit.default_timer(); model.store_params(epoch_idx) store_params_time += timeit.default_timer() - tmp_time total_time = timeit.default_timer() - start_time print('Total time %.4f (secs), training time %.4f (secs), IO time %.4f (secs)' \ % (total_time, total_time - store_params_time, store_params_time)) if __name__ == '__main__': # Parameters # ================================================== # Model Variations. See Kim Yoon's Convolutional Neural Networks for # Sentence Classification, Section 3 for detail. parser = argparse.ArgumentParser() parser.add_argument('--data_path', help='raw data path in CPickle format', type=str, default='../sample_data/rcv1_raw_small.p') parser.add_argument('--sequence_length', help='max sequence length of a document', type=int, default=500) parser.add_argument('--embedding_dim', help='dimension of word embedding representation', type=int, default=300) parser.add_argument('--filter_sizes', help='number of filter sizes (could be a list of integer)', type=int, default=[2, 4, 8], nargs='+') parser.add_argument('--num_filters', help='number of filters (i.e. kernels) in CNN model', type=int, default=32) parser.add_argument('--pooling_units', help='number of pooling units in 1D pooling layer', type=int, default=32) parser.add_argument('--pooling_type', help='max or average', type=str, default='max') parser.add_argument('--hidden_dims', help='number of hidden units', type=int, default=512) parser.add_argument('--model_variation', help='model variation: CNN-rand or CNN-pretrain', type=str, default='pretrain') parser.add_argument('--pretrain_type', help='pretrain model: GoogleNews or glove', type=str, default='glove') parser.add_argument('--batch_size', help='number of batch size', type=int, default=256) parser.add_argument('--num_epochs', help='number of epcohs for training', type=int, default=50) parser.add_argument('--vocab_size', help='size of vocabulary keeping the most frequent words', type=int, default=30000) args = parser.parse_args() main(args) ```
{ "source": "Jimmy880/Sound-of-Pixels-dev", "score": 2 }
#### File: Sound-of-Pixels-dev/dataset/__init__.py ```python from .music import * from .music import RAWDataset, STFTDataset def warpgrid(bs, HO, WO, warp=True): import numpy as np # meshgrid x = np.linspace(-1, 1, WO) y = np.linspace(-1, 1, HO) xv, yv = np.meshgrid(x, y) grid = np.zeros((bs, HO, WO, 2)) grid_x = xv if warp: grid_y = (np.power(21, (yv+1)/2) - 11) / 10 else: grid_y = np.log(yv * 10 + 11) / np.log(21) * 2 - 1 grid[:, :, :, 0] = grid_x grid[:, :, :, 1] = grid_y grid = grid.astype(np.float32) return grid def compute_mask(mags, mag_mix, is_binary_mask=False): gt_masks = [] for n in range(len(mags)): if is_binary_mask: # for simplicity, mag_N > 0.5 * mag_mix gt_masks.append((mags[n] > 0.5 * mag_mix).float()) else: gt_mask = mags[n] / mag_mix # clamp to avoid large numbers in ratio masks gt_masks.append(gt_mask.clamp(0., 5.)) return gt_masks def process_mag(mags=None, mag_mix=None, device='cpu'): import torch import torch.nn.functional as F if mag_mix is not None: B = mag_mix.size(0) T = mag_mix.size(3) elif mags is not None: B = mags[0].size(0) T = mags[0].size(3) else: return grid_warp = torch.from_numpy( warpgrid(B, 256, T, warp=True)).to(device) if mags is not None: for n in range(len(mags)): mags[n] = F.grid_sample(mags[n], grid_warp) if mag_mix is not None: mag_mix = F.grid_sample(mag_mix, grid_warp) return mags, mag_mix def compute_weight(mag_mix, weighted_loss=False): import torch # 0.1 calculate loss weighting coefficient: magnitude of input mixture if weighted_loss: weight = torch.log1p(mag_mix) weight = torch.clamp(weight, 1e-3, 10) else: weight = torch.ones_like(mag_mix) return weight ``` #### File: Jimmy880/Sound-of-Pixels-dev/main.py ```python import os # Numerical libs import torch # Our libs from arguments import ArgParser from dataset import STFTDataset, RAWDataset from models import ModelBuilder, activate from utils import makedirs # Network wrapper, defines forward pass class NetWrapper(torch.nn.Module): def __init__(self, nets, crit, ckpt=None): super(NetWrapper, self).__init__() self.net_sound, self.net_frame = nets self.crit = crit if ckpt is not None: self.net_sound.load_state_dict(ckpt['sound']) self.net_frame.load_state_dict(ckpt['frame']) def forward(self, batch_data, args): audio_mix = batch_data['audio_mix'] # B, audio_len audios = batch_data['audios'] # num_mix, B, audio_len frames = batch_data['frames'] # num_mix, B, xxx N = args.num_mix B = audio_mix.size(0) # 2. forward net_frame -> Bx1xC feat_frames = [None for n in range(N)] for n in range(N): feat_frames[n] = self.net_frame.forward_multiframe(frames[n]) feat_frames[n] = activate(feat_frames[n], args.img_activation) # 3. sound synthesizer pred_audios = [None for n in range(N)] for n in range(N): # pred_masks[n] = self.net_synthesizer(feat_frames[n], feat_sound) # pred_masks[n] = activate(pred_masks[n], args.output_activation) pred_audios[n] = self.net_sound(audio_mix, feat_frames[n]) activate(pred_audios[n], args.sound_activation) # 4. loss err = self.crit(pred_audios, audios).reshape(1) # print("\"", self.crit([audio_mix, audio_mix], audios).item(), self.crit(audios, audios).item(), err.item(),"\"") return err, pred_audios # or masks def create_optimizer(nets, args, checkpoint): (net_sound, net_frame) = nets param_groups = [{'params': net_sound.parameters(), 'lr': args.lr_sound}, {'params': net_frame.features.parameters(), 'lr': args.lr_frame}, {'params': net_frame.fc.parameters(), 'lr': args.lr_sound}] # optimizer = torch.optim.SGD(param_groups, momentum=args.beta1, weight_decay=args.weight_decay) optimizer = torch.optim.Adam(param_groups, weight_decay=args.weight_decay) if checkpoint is not None and args.resume_optim: optimizer.load_state_dict(checkpoint['optimizer']) return optimizer def adjust_learning_rate(optimizer, args): args.lr_sound *= 0.1 args.lr_frame *= 0.1 args.lr_synthesizer *= 0.1 for param_group in optimizer.param_groups: param_group['lr'] *= 0.1 def main(args): # Network Builders builder = ModelBuilder() net_sound = builder.build_sound( arch=args.arch_sound, fc_dim=args.num_channels,) net_frame = builder.build_frame( arch=args.arch_frame, fc_dim=args.num_channels, pool_type=args.img_pool,) nets = (net_sound, net_frame) crit = builder.build_criterion(arch=args.loss) # Dataset and Loader dataset_train = RAWDataset( args.list_train, args, split='train') dataset_val = STFTDataset( args.list_val, args, max_sample=args.num_val, split='val') loader_train = torch.utils.data.DataLoader( dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=int(args.workers), drop_last=True) loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=args.batch_size, shuffle=False, num_workers=2, drop_last=False) args.epoch_iters = len(loader_train) args.disp_iter = len(loader_train) // args.disp_iter print('1 Epoch = {} iters'.format(args.epoch_iters)) # Wrap networks netWrapper = NetWrapper(nets, crit, checkpoint) netWrapper = torch.nn.DataParallel(netWrapper, device_ids=range(args.num_gpus)) netWrapper.to(args.device) # Set up optimizer optimizer = create_optimizer(nets, args, checkpoint) # History of peroformance history = { 'train': {'epoch': [], 'err': []}, 'val': {'epoch': [], 'err': [], 'sdr': [], 'sir': [], 'sar': []} } if checkpoint is None else checkpoint['history'] from epoch import train, evaluate # Eval mode # evaluate(netWrapper, loader_val, history, 0, args) # if args.mode == 'eval': # print('Evaluation Done!') # return # Training loop init_epoch = 1 if checkpoint is None else checkpoint['epoch'] print('Training start at ', init_epoch) for epoch in range(1, args.num_epoch + 1): train(netWrapper, loader_train, optimizer, history, epoch, args) # Evaluation and visualization if epoch % args.eval_epoch == 0: evaluate(netWrapper, loader_val, history, epoch, args) # checkpointing from utils import save_checkpoint save_checkpoint(nets, history, optimizer, epoch, args) # drop learning rate if epoch in args.lr_steps: adjust_learning_rate(optimizer, args) print('Training Done!') if __name__ == '__main__': # arguments parser = ArgParser() args = parser.parse_train_arguments() args.batch_size = args.num_gpus * args.batch_size_per_gpu args.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu') # experiment name if args.mode == 'train': args.id += '-{}mix'.format(args.num_mix) if args.log_freq: args.id += '-LogFreq' args.id += '-{}-{}-{}'.format( args.arch_frame, args.arch_sound, args.arch_synthesizer) args.id += '-frames{}stride{}'.format(args.num_frames, args.stride_frames) args.id += '-{}'.format(args.img_pool) args.id += '-' + args.loss if args.weighted_loss: args.id += '-weightedLoss' args.id += '-channels{}'.format(args.num_channels) args.id += '-epoch{}'.format(args.num_epoch) # args.id += '-step' + '_'.join([str(x) for x in args.lr_steps]) print('Model ID: {}'.format(args.id)) # paths to save/load output args.ckpt = os.path.join(args.ckpt, args.id) args.vis = os.path.join(args.ckpt, 'visualization/') if args.mode == 'eval' or args.resume: try: checkpoint = torch.load(os.path.join(args.ckpt, 'best.pth'), map_location='cpu') # checkpoint = os.path.join(args.ckpt, 'lastest.pth') print('Loaded', args.ckpt) except: print('Load model failed') checkpoint = None elif args.mode == 'train': makedirs(args.ckpt, remove=True) checkpoint = None else: raise ValueError # initialize best error with a big number args.best_err = float("inf") from utils import set_seed set_seed(args.seed) main(args, ) ```
{ "source": "jimmy-academia/Deeper-Learnings", "score": 2 }
#### File: hw3/src/run.py ```python from thrift.transport import TSocket,TTransport from thrift.protocol import TBinaryProtocol from hbase import Hbase from hbase.ttypes import ColumnDescriptor from hbase.ttypes import Mutation import csv import os import time import logging from tqdm import tqdm # table: station, column: attr, row: date def main(): socket = TSocket.TSocket('1192.168.3.11',9090) socket.setTimeout(5000) transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = Hbase.Client(protocol) socket.open() table_list = client.getTableNames() start = time.time() logging.basicConfig(format='%(asctime)s | %(levelname)s | %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') logging.info('Initiating task: Taiwan Air Quality!') Attributes = ['AMB_TEMP','CO','NO','NO2','NOx','O3','PM10','PM2.5','RAINFALL','RAIN_COND','UVB', 'RH','SO2','WD_HR','WIND_DIREC','WIND_SPEED','WS_HR','CH4','NMHC','THC','PH_RAIN'] csvfiles = [filename for filename in os.listdir(os.getcwd()) if filename.endswith('.csv')] logging.info(str(csvfiles)) InsertCounts = 0 for file in csvfiles: with open(file, newline='') as f: frames = csv.reader(f) table_Name = '' logging.info("Start reading {0}".format(file)) Column_Descriptors = [] ctr = 0 # length = sum(1 for row in frames) # # for frame in tqdm(frames, total=length): for frame in tqdm(frames): if ctr == 0: ctr += 1 continue elif ctr == 1: ctr += 1 table_Name = str(str.encode(frame[1],'utf-8')).replace('\\',"") table_Name = table_Name.replace("b","") table_Name = table_Name.replace("'","") if table_Name not in table_list: for type in Attributes: Column_Descriptors.append(ColumnDescriptor(name=type)) client.createTable(table_Name,Column_Descriptors) logging.info('Build Table : {0}'.format(table_Name)) else: logging.info('Table {0} already exist, no need to create'.format(table_Name)) # ['2018/01/02', 'iilan', 'NOx', '5.1', '4.4', '3.5', '2.1', '2.5', '3.2', '4.6', '15', # '13', '11', '7', '6.8', '7.1', '13', '13', '12', '13', '16', '24', '23', '20', '24', '18', '13'] for i in range(3,26): qualifier = i-2 value = frame[i] row = frame[0] # date column = frame[2] # attr mutate = Mutation(column=column+':'+str(qualifier),value=value) client.mutateRow(table_Name, frame[0], [mutate]) InsertCounts += 1 end = time.time() logging.info("================Insert Done================\n") logging.info("totalInsertCount: {0}, totalTimeSpend: {1}\n".format(InsertCounts,end-start)) logging.info(client.getTableNames()) if __name__ == '__main__': main() ``` #### File: NaturalLanguage/datapreprocess/embedding.py ```python import re import torch class Embedding: """ Args: embedding_path (str): Path where embedding are loaded from (text file). words (None or list): If not None, only load embedding of the words in the list. oov_as_unk (bool): If argument `words` are provided, whether or not treat words in `words` but not in embedding file as `<unk>`. If true, OOV will be mapped to the index of `<unk>`. Otherwise, embedding of those OOV will be randomly initialize and their indices will be after non-OOV. lower (bool): Whether or not lower the words. rand_seed (int): Random seed for embedding initialization. """ def __init__(self, embedding_path, words=None, oov_as_unk=True, lower=True, rand_seed=524): self.word_dict = {} self.vectors = None self.lower = lower self.extend(embedding_path, words, oov_as_unk) torch.manual_seed(rand_seed) if '</s>' not in self.word_dict: self.add( '</s>', torch.zeros(self.get_dim()) ) if '<unk>' not in self.word_dict: self.add('<unk>') def to_index(self, word): """ word (str) Return: index of the word. If the word is not in `words` and not in the embedding file, then index of `<unk>` will be returned. """ if self.lower: word = word.lower() if word not in self.word_dict: return self.word_dict['<unk>'] else: return self.word_dict[word] def get_dim(self): return self.vectors.shape[1] def get_vocabulary_size(self): return self.vectors.shape[0] def add(self, word, vector=None): if self.lower: word = word.lower() if vector is not None: vector = vector.view(1, -1) else: vector = torch.empty(1, self.get_dim()) torch.nn.init.uniform_(vector) self.vectors = torch.cat([self.vectors, vector], 0) self.word_dict[word] = len(self.word_dict) def extend(self, embedding_path, words, oov_as_unk=True): self._load_embedding(embedding_path, words) if words is not None and not oov_as_unk: # initialize word vector for OOV for word in words: if self.lower: word = word.lower() if word not in self.word_dict: self.word_dict[word] = len(self.word_dict) oov_vectors = torch.nn.init.uniform_( torch.empty(len(self.word_dict) - self.vectors.shape[0], self.vectors.shape[1])) self.vectors = torch.cat([self.vectors, oov_vectors], 0) def _load_embedding(self, embedding_path, words): if words is not None: words = set(words) vectors = [] with open(embedding_path) as fp: row1 = fp.readline() # if the first row is not header if not re.match('^[0-9]+ [0-9]+$', row1): # seek to 0 fp.seek(0) # otherwise ignore the header for i, line in enumerate(fp): cols = line.rstrip().split(' ') word = cols[0] # skip word not in words if words are provided if words is not None and word not in words: continue elif word not in self.word_dict: self.word_dict[word] = len(self.word_dict) vectors.append([float(v) for v in cols[1:]]) vectors = torch.tensor(vectors) if self.vectors is not None: self.vectors = torch.cat([self.vectors, vectors], dim=0) else: self.vectors = vectors ``` #### File: NaturalLanguage/datapreprocess/preprocessor.py ```python import nltk import json import logging from multiprocessing import Pool from dataset import DialogDataset from tqdm import tqdm class Preprocessor: """ Args: embedding_path (str): Path to the embedding to use. """ def __init__(self, embedding): self.embedding = embedding self.logging = logging.getLogger(name=__name__) def tokenize(self, sentence): """ Tokenize a sentence. Args: sentence (str): One string. Return: indices (list of str): List of tokens in a sentence. """ # TODO \(\) or other tokenize consideration return nltk.word_tokenize(sentence) # return sentence.split() def sentence_to_indices(self, sentence): """ Convert sentence to its word indices. Args: sentence (str): One string. Return: indices (list of int): List of word indices. """ # TODO # Hint: You can use `self.embedding` # sentence = sentence.split() sentence = nltk.word_tokenize(sentence) return [self.embedding.to_index(i) for i in sentence] def collect_words(self, data_path, n_workers=1): with open(data_path) as f: data = json.load(f) utterances = [] for sample in data: utterances += ( [message['utterance'] for message in sample['messages-so-far']] + [option['utterance'] for option in sample['options-for-next']] ) utterances = list(set(utterances)) chunks = [ ' '.join(utterances[i:i + len(utterances) // n_workers]) for i in range(0, len(utterances), len(utterances) // n_workers) ] with Pool(n_workers) as pool: chunks = pool.map_async(self.tokenize, chunks) words = set(sum(chunks.get(), [])) return words def get_dataset(self, data_path, n_workers=4, dataset_args={}): """ Load data and return Dataset objects for training and validating. Args: data_path (str): Path to the data. valid_ratio (float): Ratio of the data to used as valid data. """ self.logging.info('loading dataset...') with open(data_path) as f: dataset = json.load(f) self.logging.info('preprocessing data...') results = [None] * n_workers with Pool(processes=n_workers) as pool: for i in range(n_workers): batch_start = (len(dataset) // n_workers) * i if i == n_workers - 1: batch_end = len(dataset) else: batch_end = (len(dataset) // n_workers) * (i + 1) batch = dataset[batch_start: batch_end] results[i] = pool.apply_async(self.preprocess_samples, [batch]) # When debugging, you'd better not use multi-thread. # results[i] = self.preprocess_dataset(batch, preprocess_args) pool.close() pool.join() processed = [] for result in results: processed += result.get() padding = self.embedding.to_index('</s>') return DialogDataset(processed, padding=padding, **dataset_args) def preprocess_samples(self, dataset): """ Worker function. Args: dataset (list of dict) Returns: list of processed dict. """ processed = [] for sample in tqdm(dataset): processed.append(self.preprocess_sample(sample)) return processed def preprocess_sample(self, data): """ Args: data (dict) Returns: dict """ processed = {} processed['id'] = data['example-id'] # process messages-so-far processed['context'] = [] processed['speaker'] = [] for message in data['messages-so-far']: sentence = self.sentence_to_indices(message['utterance'].lower()) processed['context'].append(sentence) processed['speaker'].append(int(message['speaker'][-1])) # process options processed['options'] = [] processed['option_ids'] = [] # process correct options if 'options-for-correct-answers' in data: processed['n_corrects'] = len(data['options-for-correct-answers']) for option in data['options-for-correct-answers']: processed['options'].append( self.sentence_to_indices(option['utterance'].lower()) ) processed['option_ids'].append(option['candidate-id']) else: processed['n_corrects'] = 0 # process the other options for option in data['options-for-next']: if option['candidate-id'] in processed['option_ids']: continue processed['options'].append( self.sentence_to_indices(option['utterance'].lower()) ) processed['option_ids'].append(option['candidate-id']) return processed ``` #### File: NaturalLanguage/module/bestmodel.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class BestNet(torch.nn.Module): def __init__(self, embedding_dim): super(BestNet, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = 256 self.embedding_dropout=0.6 self.desc_rnn_size = 100 self.rnn = nn.GRU( input_size=self.embedding_dim, hidden_size=self.hidden_dim, num_layers=1, batch_first=True, bidirectional=True ) self.rnn_desc = nn.GRU( input_size=self.embedding_dim, hidden_size=self.desc_rnn_size, num_layers=1, batch_first=True, bidirectional=True ) self.emb_drop = nn.Dropout(self.embedding_dropout) self.M = nn.Parameter(torch.FloatTensor(2*self.hidden_dim, 2*self.hidden_dim)) self.b = nn.Parameter(torch.FloatTensor([0])) self.Wc = nn.Parameter(torch.FloatTensor(2*self.hidden_dim, self.embedding_dim)) self.We = nn.Parameter(torch.FloatTensor(self.embedding_dim, self.embedding_dim)) self.attn = nn.Linear(2*self.hidden_dim, 2*self.hidden_dim) self.init_params_() self.tech_w = 0.0 def init_params_(self): #Initializing parameters nn.init.xavier_normal_(self.M) # Set forget gate bias to 2 size = self.rnn.bias_hh_l0.size(0) self.rnn.bias_hh_l0.data[size//4:size//2] = 2 size = self.rnn.bias_ih_l0.size(0) self.rnn.bias_ih_l0.data[size//4:size//2] = 2 size = self.rnn_desc.bias_hh_l0.size(0) self.rnn_desc.bias_hh_l0.data[size//4:size//2] = 2 size = self.rnn_desc.bias_ih_l0.size(0) self.rnn_desc.bias_ih_l0.data[size//4:size//2] = 2 # def forward(self, context, options): # logits = [] # for i, option in enumerate(options.transpose(1, 0)): # gits = [] # for context in context.transpose(1,0): # git = self.forward_one_option(context, option) # gits.append(logit) # logit = torch.stack(gits).mean(0) # logits = torch.stack(logits, 1) # return logits.squeeze() # def forward(self, context, options): # logits = [] # for i, option in enumerate(options.transpose(1, 0)): # logit = self.forward_one_option(context, option) # logits.append(logit) # logits = torch.stack(logits, 1) # return logits.squeeze() def forward(self, context, options): logits = [] for i, option in enumerate(options.transpose(1, 0)): logit_ = [] for utter in context.transpose(1,0): logit = self.forward_one_option(utter, option) # 10,1,1 logit_.append(logit) logits.append(torch.stack(logit_,1).mean(1)) logits = torch.stack(logits, 1) return logits.squeeze() def forward_one_option(self, context, option): context, c_h, option, o_h = self.forward_crosspath(context, option) context_attn = self.forward_attn(context, o_h) option_attn = self.forward_attn(option, c_h) final = self.forward_fc(context_attn, option_attn) return final def forward_crosspath(self, context, option): context, c_h = self.rnn(self.emb_drop(context)) c_h = torch.cat([i for i in c_h], dim=-1) option, o_h = self.rnn(self.emb_drop(option)) o_h = torch.cat([i for i in o_h], dim=-1) return context, c_h.squeeze(), option, o_h.squeeze() def forward_attn(self, output, hidden): max_len = output.size(1) b_size = output.size(0) hidden = hidden.squeeze(0).unsqueeze(2) attn = self.attn(output.contiguous().view(b_size*max_len, -1)) attn = attn.view(b_size, max_len, -1) attn_energies = (attn.bmm(hidden).transpose(1,2)) alpha = F.softmax(attn_energies.squeeze(1), dim=-1) alpha = alpha.unsqueeze(1) weighted_attn = alpha.bmm(output) return weighted_attn.squeeze() def forward_fc(self, context, option): out = torch.mm(context, self.M).unsqueeze(1) out = torch.bmm(out, option.unsqueeze(2)) out = out + self.b return out def save(self, filepath): torch.save(self.state_dict(), filepath) ``` #### File: NaturalLanguage/module/metrics.py ```python import torch class Metrics: def __init__(self): self.name = 'Metric Name' def reset(self): pass def update(self, predicts, batch): pass def get_score(self): pass class Recall(Metrics): """ Args: ats (int): @ to eval. rank_na (bool): whether to consider no answer. """ def __init__(self, at=10): self.at = at self.n = 0 self.n_correct = 0 self.name = 'Recall@{}'.format(at) def reset(self): self.n = 0 self.n_corrects = 0 def update(self, predicts, batch): """ Args: predicts (FloatTensor): with size (batch, n_samples). batch (dict): batch. """ predicts = predicts.cpu() self.n += len(predicts) predicts = torch.argmax(predicts, dim=1) targets = torch.argmax(batch['labels'], dim=1) self.n_corrects += (predicts==targets).sum().item() # print(predicts) # print(targets) # print(self.n_corrects, self.n) # TODO # This method will be called for each batch. # You need to # - increase self.n, which implies the total number of samples. # - increase self.n_corrects based on the prediction and labels # of the batch. def get_score(self): return self.n_corrects / self.n def print_score(self): score = self.get_score() return '{:.2f}'.format(score) ``` #### File: NaturalLanguage/module/model.py ```python import torch from torch.autograd import Variable class LinearNet(torch.nn.Module): def __init__(self, dim_embeddings): super(LinearNet, self).__init__() self.mlp = torch.nn.Sequential( torch.nn.Linear(dim_embeddings, 256), torch.nn.ReLU(), torch.nn.Linear(256, 256) ) def forward(self, context, options): context = self.mlp(context).max(1)[0] logits = [] for i, option in enumerate(options.transpose(1, 0)): option = self.mlp(option).max(1)[0] logit = ((context - option) ** 2).sum(-1) logits.append(logit) logits = torch.stack(logits, 1) return logits def save(self, filepath): torch.save(self.state_dict(), filepath) class GruNet(torch.nn.Module): def __init__(self, dim_embeddings): super(GruNet, self).__init__() self.C_process = torch.nn.GRU(256, 256, 1, batch_first=True) self.context_word = torch.nn.GRU(300, 256, 1, batch_first=True) self.P_process = torch.nn.GRU(300, 256, 1, batch_first=True) self.W = torch.nn.Parameter(data=torch.rand(256, 256), requires_grad=True) def forward(self, context, options): ## context 10, 14, 30, 300 context_vec = [] for utterance in context.transpose(1,0): # 10, 30, 300 utter_vec, __ = self.context_word(utterance) # 10, 30, 256 utter_vec = utter_vec.max(1)[0] # 10, 256 context_vec.append(utter_vec) context_vec = torch.stack(context_vec, 1) # 10, 14, 256 context, __ = self.C_process(context_vec) # 10, 14, 256 ## context 10, 30, 300; options 10, 100, 50, 300 # context, __ = self.C_process(context) ## 10,30,256 context = context.max(1)[0] # 10,256 logits = [] for i, option in enumerate(options.transpose(1, 0)): # 100, 10, 50, 300 option, __ = self.P_process(option) #10,50,300 -> 10,50, 256 option = option.max(1)[0] #10, 256 logit = context.matmul(self.W).matmul(option.transpose(1,0)).sum(-1) logits.append(logit) logits = torch.stack(logits, 1) return logits def save(self, filepath): torch.save(self.state_dict(), filepath) class LastNet(torch.nn.Module): def __init__(self, dim_embeddings): super(LastNet, self).__init__() self.C_process = torch.nn.LSTM(300, 256, 1, batch_first=True) # self.context_word = torch.nn.LSTM(300, 256, 1, batch_first=True) self.P_process = torch.nn.LSTM(300, 256, 1, batch_first=True) self.W = torch.nn.Parameter(data=torch.rand(256, 256), requires_grad=True) def forward(self, context, options): ## context 10, 30, 300; options 10, 100, 50, 300 context, __ = self.C_process(context) ## 10,30,256 context = context.max(1)[0] # 10,256 logits = [] for i, option in enumerate(options.transpose(1, 0)): # 100, 10, 50, 300 option, __ = self.P_process(option) #10,50,300 -> 10,50, 256 option = option.max(1)[0] #10, 256 logit = context.matmul(self.W).matmul(option.transpose(1,0)).sum(-1) logits.append(logit) logits = torch.stack(logits, 1) return logits def save(self, filepath): torch.save(self.state_dict(), filepath) class RnnNet(torch.nn.Module): def __init__(self, dim_embeddings): super(RnnNet, self).__init__() self.C_process = torch.nn.LSTM(256, 256, 1, batch_first=True) self.context_word = torch.nn.LSTM(300, 256, 1, batch_first=True) self.P_process = torch.nn.LSTM(300, 256, 1, batch_first=True) self.W = torch.nn.Parameter(data=torch.rand(256, 256), requires_grad=True) def forward(self, context, options): ## context 10, 14, 30, 300 context_vec = [] for utterance in context.transpose(1,0): # 10, 30, 300 utter_vec, __ = self.context_word(utterance) # 10, 30, 256 utter_vec = utter_vec.max(1)[0] # 10, 256 context_vec.append(utter_vec) context_vec = torch.stack(context_vec, 1) # 10, 14, 256 context, __ = self.C_process(context_vec) # 10, 14, 256 ## context 10, 30, 300; options 10, 100, 50, 300 # context, __ = self.C_process(context) ## 10,30,256 context = context.max(1)[0] # 10,256 logits = [] for i, option in enumerate(options.transpose(1, 0)): # 100, 10, 50, 300 option, __ = self.P_process(option) #10,50,300 -> 10,50, 256 option = option.max(1)[0] #10, 256 logit = context.matmul(self.W).matmul(option.transpose(1,0)).sum(-1) logits.append(logit) logits = torch.stack(logits, 1) return logits def save(self, filepath): torch.save(self.state_dict(), filepath) class DecAttn(torch.nn.Module): """docstring for DecAttn""" def __init__(self): super(DecAttn, self).__init__() self.lstm = torch.nn.LSTM(300, 256, 1, batch_first=True) self.softmax = torch.nn.Softmax(dim=1) self.attn = torch.nn.Linear(256, 256) self.final = torch.nn.LSTM(256+256, 256, 1, batch_first=True) def forward(self, context, option): """ context: 10,30, 256 option: 10, 50, 256 attn_weight: 10, 50, 30 attn_context_sum: 10, 50, 256 """ option, __ = self.lstm(option) attn_context = self.attn(context) attn_weight = self.softmax(option.bmm(attn_context.transpose(1,2))) attn_context_sum = attn_weight.bmm(context) complete = torch.cat([option, attn_context_sum], 2) final, __ = self.final(complete) return final # class RnnAttentionNet(torch.nn.Module): # def __init__(self, dim_embeddings): # super(RnnAttentionNet, self).__init__() # self.C_process = torch.nn.LSTM(300, 256, 2, batch_first=True) # self.P_process = DecAttn() # self.W = torch.nn.Parameter(torch.rand(256, 256), requires_grad=True) # def forward(self, context, options): # ## context 10, 30, 300; options 10, 100, 50, 300 # context_raw, hidden = self.C_process(context) ## 10,30,256 # context = context_raw.max(1)[0] # 10,256 # logits = [] # for i, option in enumerate(options.transpose(1, 0)): # 100, 10, 50, 300 # option = self.P_process(context_raw, option) #10,50,300 -> 10,50, 256 # option = option.max(1)[0] #10, 256 # logit = context.matmul(self.W).matmul(option.transpose(1,0)).sum(-1) # logits.append(logit) # logits = torch.stack(logits, 1) # return logits # def save(self, filepath): # torch.save(self.state_dict(), filepath) class RnnAttentionNet(torch.nn.Module): def __init__(self, dim_embeddings): super(RnnAttentionNet, self).__init__() self.C_process = torch.nn.LSTM(256, 256, 1, batch_first=True) self.context_word = torch.nn.LSTM(300, 256, 1, batch_first=True) self.P_process = DecAttn() self.W = torch.nn.Parameter(data=torch.rand(256, 256), requires_grad=True) def forward(self, context, options): ## context 10, 14, 30, 300 context_vec = [] for utterance in context.transpose(1,0): # 10, 30, 300 utter_vec, __ = self.context_word(utterance) # 10, 30, 256 utter_vec = utter_vec.max(1)[0] # 10, 256 context_vec.append(utter_vec) context_vec = torch.stack(context_vec, 1) # 10, 14, 256 context_raw, __ = self.C_process(context_vec) # 10, 14, 256 ## context 10, 30, 300; options 10, 100, 50, 300 # context, __ = self.C_process(context) ## 10,30,256 context = context_raw.max(1)[0] # 10,256 logits = [] for i, option in enumerate(options.transpose(1, 0)): # 100, 10, 50, 300 option = self.P_process(context_raw, option) #10,50,300 -> 10,50, 256 option = option.max(1)[0] #10, 256 logit = context.matmul(self.W).matmul(option.transpose(1,0)).sum(-1) logits.append(logit) logits = torch.stack(logits, 1) return logits def save(self, filepath): torch.save(self.state_dict(), filepath) ``` #### File: topics/custom_dataset/datafunc.py ```python import os import torch import torchvision from PIL import Image from tqdm import tqdm # example # 378.0 318.0 401.0 318.0 401.0 386.0 378.0 386.0 large-vehicle 0 # 401.0 289.0 429.0 289.0 429.0 386.0 401.0 386.0 large-vehicle 0 # 435.0 336.0 458.0 336.0 458.0 393.0 435.0 393.0 large-vehicle 0 # 509.0 363.0 512.0 363.0 512.0 401.0 509.0 401.0 small-vehicle 2 # data_dir_root should be hw2_train_val # train directory: hw2_train_val/train15000 # 00000 to 14999 # val directory: hw2_train_val/val1500 # 0000 to 1499 # sub dir: images labelTxt_hbb classnames = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter', 'container-crane'] def YoloDataset(torch.utils.data.Dataset): def __init__(self, data_dir_root, train=True, transform=None, target_transform=None, create_file=False): self.data_dir_root = data_dir_root self.transform = transform self.train = train self.train_file = os.path.join(data_dir_root, 'train.pt') self.valid_file = os.path.join(data_dir_root, 'valid.pt') if create_file: self.create_data_file() if not self._check_exist(): raise RuntimeError('Dataset not created.' + ' You can use create_file=True to create it') if self.train: self.train_data, self.train_labels = torch.load(self.train_file) else: self.valid_data, self.valid_labels = torch.load(self.valid_file) def __len__(self): if self.train: return 15000 else: return 1500 def __getitem__(self, index): if self.train: img, target = self.train_data[index], self.train_labels[index] else: img, target = self.valid_data[index], self.valid_labels[index] img = Image.fromarray(img.numpy(), mode='L') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def _check_exist(self): return os.path.exists(self.train_file) and os.path.exists(self.valid_file) def create_data_file(self): ## load data, save as torch tensor train_dir = os.path.join(self.data_dir_root, 'train15000') valid_dir = os.path.join(self.data_dir_root, 'valid1500') for root_dir, save_path in zip([train_dir, valid_dir],[self.train_file, self.valid_file]): print('Loading data from', root_dir) image_dir = os.path.join(root_dir, 'images') label_dir = os.path.join(root_dir, 'labelTxt_hbb') total = len(os.listdir(image_dir)) trans = torchvision.trainsforms.Compose([ torchvision.transforms.Resize(512), torchvision.transforms.ToTensor(), ]) img_set = [] target_set = [] for i in tqdm(range(total)): k = len(str(total)) def str_(i): return '0'*(k-len(str(i)))+str(i) img_path = os.path.join(image_dir, str_(i)+'.jpg') img = Image.open(img_path) img = trans(img) img_set.append(img) h, w, __ = img.shape label_path = os.path.join(label_dir, str_(i)+'.txt') target = reader(label_path, h, w) target_set.append(target) img_set = torch.cat(img_set) target_set = torch.cat(target_set) torch.save((img_set, target_set), save_path) print('saved to', save_path) @staticmethod def reader(label_path, h, w): # read file and output target boxes = [] labels = [] with open(label_path, 'r') as f: lines = f.readlines() for line in lines: obj_ = line.strip().split() xmin = float(obj_[0]) ymin = float(obj_[1]) xmax = float(obj_[4]) ymax = float(obj_[5]) obj_class = classnames.index(obj_[8]) + 1 boxes.append([xmin, ymin, xmax, ymax]) labels.append(obj_class) ### +1??? boxes = torch.Tensor(boxes) boxes /= torch.Tensor([w, h, w, h]).expand_as(boxes) labels = torch.LongTensor(labels) return encoder(boxes, labels) @staticmethod def encoder(boxes, labels) target = torch.zeros((7,7,26)) cell_size = 1./7 width_height = boxes[:,2:] - boxes[:,:2] center_x_ys = (boxes[:,2:]+ boxes[:,:2])/2 for it, center_x_y in enumerate(center_x_ys): cell_i_j = (center_x_y/cell_size).ceil() - 1 i = int(cell_i_j[1]) j = int(cell_i_j[0]) target[i, j, 4] = 1 target[i, j, 9] = 1 target[i, j, int(labels[it]+9)] = 1 tl_x_y = cell_i_j * cell_size delta_x_y = (center_x_y - tl_x_y) / cell_size target[i, j, 2:4] = width_height[it] target[i, j, :2] = delta_x_y target[i, j, 7:9] = width_height[it] target[i, j, 5:7] = delta_x_y ## probably no overlapse ## (center delta x,y; width, heigth, probability) x2, 16 class ... for 1 cell return target ## can implement random crop etc later ## (x y x y x y x y class level) -> (7x7x26) written above ## (x y x y x y x y class level) <- (7x7x26) to be implemented in (predict) def make_dataloader(data_dir_root, img_size=448, batch_size=128): trans = torchvision.transforms.Compose([ torchvision.transforms.Resize(img_size), torchvision.transforms.ToTensor(), ]) trainset = YoloDataset(data_dir_root, train=True, transform=trans, create_file=True) validset = YoloDataset(data_dir_root, train=False, transform=trans, create_file=True) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True) validloader = torch.utils.data.DataLoader(validset, batch_size=batch_size, shuffle=False) return trainloader, validloader ``` #### File: simple-pytorch/goodwork/models.py ```python import torch class GoodModel(object): """docstring for GoodModel""" def __init__(self, arg): super(GoodModel, self).__init__() self.arg = arg self.linear = torch.nn.Sequential( torch.nn.Conv2d(), torch.nn.ReLU() ) def forward(self, x): return self.linear(x) ```
{ "source": "jimmy-academia/GAN_studies", "score": 3 }
#### File: DCGAN/experiments/02basic_lsun.py ```python import sys sys.path.append('..') sys.path.append('.') from module.trainer import Trainer from module.config import configurations from module.utils import check_directories def main(): config, args, opt = configurations('BASIC_LSUN', 'lsun') check_directories(opt.dir_list) trainer = Trainer(config, args, opt) trainer.train() if __name__ == '__main__': main() ``` #### File: InfoGAN/module/trainer.py ```python from module.model import GAN from module.datafunc import make_dataset, make_dataloader import torch from torch import optim import torch.nn as nn from torch.autograd import Variable from tqdm import tqdm from random import randint from torchvision.utils import save_image from matplotlib import pyplot as plt plt.switch_backend('agg') import numpy as np import os def to_variable(x): if torch.cuda.is_available(): x = x.cuda() return Variable(x) ##### Helper Function for Math def denorm(x): out = (x + 1) / 2 return out.clamp(0, 1) # InfoGAN Function (Gaussian) def gen_cc(n_size, dim): return torch.Tensor(np.random.randn(n_size, dim) * 0.5 + 0.0) # InfoGAN Function (Multi-Nomial) def gen_dc(n_size, dim): codes=[] code = np.zeros((n_size, dim)) random_cate = np.random.randint(0, dim, n_size) code[range(n_size), random_cate] = 1 codes.append(code) codes = np.concatenate(codes,1) return torch.Tensor(codes) class Trainer(): def __init__(self, config, args, opt): self.model = GAN(args) self.G_optimizer = optim.Adam(self.model.G.parameters(), lr=args.lrG, betas=args.betas) self.D_optimizer = optim.Adam(self.model.D.parameters(), lr=args.lrD, betas=args.betas) self.criterion = nn.BCELoss() self.config = config self.args = args self.opt = opt self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.records = [] def train(self): print('training for task:', self.config.taskname) dataset = make_dataset(self.config.data_dir_root, self.config.datatype, self.args.img_size) dataloader = make_dataloader(dataset, batch_size=self.args.batch_size) if self.device =='cuda': self.model.cuda() print('train #', self.opt.epochs, 'D: %d, G:%d, save at %s'% (self.opt.k, self.opt.g, self.opt.task_dir)) # fixed_z = torch.randn(25, self.args.z_dim, 1, 1, device=self.device) for i in range(self.opt.epochs): epoch_records = self.train_one_epoch(dataloader) self.records.append(epoch_records) # self.save_img_sample(str(i)) # self.save_fixed_grid_sample(fixed_z,'Epoch_'+str(i)) self.save_loss_plot('Epoch_'+str(i)) if self.opt.save_model: self.model.save(self.opt.model_filepath) def train_one_epoch(self, dataloader): pbar = tqdm(dataloader) epoch_records = [] ## different for calebA (no label) for images, __ in pbar: batch_size = images.shape[0] label_real = Variable(torch.ones(batch_size).cuda()) label_fake = Variable(torch.zeros(batch_size).cuda()) images = to_variable(images) # Discriminator for __ in range(1): z = to_variable(torch.randn(batch_size, self.args.z_dim)) cc = to_variable(gen_cc(batch_size, self.args.cc_dim)) dc = to_variable(gen_cc(batch_size, self.args.dc_dim)) noice = torch.cat((z, cc, dc), 1) noice = noice.view(noice.size(0), noice.size(1),1,1) fake_images = self.model.G(noice) d_out_real = self.model.D(images)#.view(-1) d_out_fake = self.model.D(fake_images)#.view(-1) # err_Dis_real = self.criterion(d_out_real, label_real) # err_Dis_fake = self.criterion(d_out_fake, label_fake) # d_loss_a = err_Dis_real + err_Dis_fake d_loss_a = -torch.mean(torch.log(d_out_real[:,0]) + torch.log(1 - d_out_fake[:,0])) output_cc = d_out_fake[:, 1:1+self.args.cc_dim] output_dc = d_out_fake[:, 1+self.args.cc_dim:] d_loss_cc = torch.mean((((output_cc - 0.0) / 0.5) ** 2)) d_loss_dc = -(torch.mean(torch.sum(dc * output_dc, 1)) + torch.mean(torch.sum(dc * dc, 1))) d_loss = d_loss_a + self.args.continuous_weight * d_loss_cc + 1.0 * d_loss_dc self.model.D.zero_grad() d_loss.backward(retain_graph=True) self.D_optimizer.step() Dis_out = d_out_real.view(-1).mean().item() Dis_gen_out = d_out_fake.view(-1).mean().item() # Generator maximize log(D(G(z))) for __ in range(1): g_loss_a = -torch.mean(torch.log(d_out_fake[:,0])) g_loss = g_loss_a + self.args.continuous_weight * d_loss_cc + 1.0 * d_loss_dc self.model.D.zero_grad() #??? self.model.G.zero_grad() g_loss.backward() self.G_optimizer.step() batch_record = (d_loss.item(), g_loss.item(), Dis_out, Dis_gen_out) epoch_records.append(list(batch_record)) message = 'errD:%.4f,errG:%.4f,D(x):%.4f,D(G(z)):%.4f'%batch_record pbar.set_description(message) epoch_records = np.mean(np.array(epoch_records),0) return epoch_records.tolist() # def save_img_sample(self, img_name='generated'): # with torch.no_grad(): # z = torch.randn(1, 100, 1, 1, device=self.device) # generated_img = self.model.G(z) # save_image(generated_img.cpu(), self.opt.img_dir+'/'+img_name+'.png') # def save_fixed_grid_sample(self, fixed_z, img_name='generated'): # with torch.no_grad(): # fixed_z = Variable(fixed_z) # generated_ = self.model.G(fixed_z) # def denorm(x): # # is this needed??? # out = (x + 1) / 2 # return out.clamp(0, 1) # genrated_ = denorm(generated_) # n_rows = np.sqrt(fixed_z.size()[0]).astype(np.int32) # n_cols = np.sqrt(fixed_z.size()[0]).astype(np.int32) # fig, axes = plt.subplots(n_rows, n_cols, figsize=(5,5)) # for ax, img in zip(axes.flatten(), generated_): # ax.axis('off') # ax.imshow(img.cpu().data.view(self.args.img_size, self.args.img_size).numpy(), cmap='gray', aspect='equal') # plt.subplots_adjust(wspace=0, hspace=0) # # title = 'Epoch {0}'.format(num_epoch+1) # fig.text(0.5, 0.04, img_name, ha='center') # filepath = self.opt.task_dir+'/generated_imgs' # if not os.path.exists(filepath): # os.mkdir(filepath) # plt.savefig(filepath+'/'+img_name+'.png') # plt.close() def save_loss_plot(self, img_name='loss'): four_records = np.array(self.records).T fig, ax = plt.subplots() ax.set_xlim(0, self.opt.epochs) ax.set_xlabel(img_name) ax.set_ylim(0, np.max(four_records[:2])*1.1) ax.set_ylabel('Loss values') ax.plot(four_records[0], label='D loss', color='#CC0000') ax.plot(four_records[1], label='G loss', color='#FF8000') ax.tick_params('y', colors = '#CC0000') ax.legend(loc='upper left') ax2 = ax.twinx() ax2.set_ylim(0, np.max(four_records[2:])*1.1) ax2.set_ylabel('D() values') ax2.plot(four_records[2], label='D(x)', color='#0080FF', linestyle=':') ax2.plot(four_records[3], label='D(G(z))', color='#808080', linestyle=':') ax2.tick_params('y', colors='k') ax2.legend(loc='upper right') filepath = self.opt.task_dir+'/loss_plots' if not os.path.exists(filepath): os.mkdir(filepath) plt.savefig(filepath+'/'+img_name+'.png') plt.close() ```
{ "source": "Jimmy-A-Caroli/protwis", "score": 2 }
#### File: protwis/signprot/views.py ```python from django.contrib.postgres.aggregates import ArrayAgg from django.core.cache import cache from django.db.models import F, Q, Count from django.http import HttpResponse, JsonResponse from django.shortcuts import render, redirect from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from django.views.decorators.csrf import csrf_exempt from django.views.generic import TemplateView from common import definitions from common.diagrams_gpcr import DrawSnakePlot from common.diagrams_gprotein import DrawGproteinPlot from common.phylogenetic_tree import PhylogeneticTreeGenerator from common.tools import fetch_from_web_api from common.views import AbsTargetSelection from contactnetwork.models import InteractingResiduePair from mutation.models import MutationExperiment from protein.models import (Gene, Protein, ProteinAlias, ProteinConformation, ProteinFamily, ProteinGProtein, ProteinGProteinPair, ProteinArrestinPair, ProteinSegment) from residue.models import (Residue, ResidueGenericNumberEquivalent, ResiduePositionSet) from seqsign.sequence_signature import (SequenceSignature, SignatureMatch) from signprot.interactions import (get_entry_names, get_generic_numbers, get_ignore_info, get_protein_segments, get_signature_features, group_signature_features, prepare_signature_match) from signprot.models import (SignprotBarcode, SignprotComplex, SignprotStructure) from structure.models import Structure import json import re import time from collections import Counter, OrderedDict from decimal import Decimal from pprint import pprint from copy import deepcopy from statistics import mean class BrowseSelection(AbsTargetSelection): step = 1 number_of_steps = 1 psets = False filters = True filter_gprotein = True type_of_selection = 'browse_gprot' description = 'Select a G protein or family by searching or browsing in the right column.' description = 'Select a G protein (family) by searching or browsing in the middle. The selection is viewed to' \ + ' the right.' docs = 'receptors.html' target_input = False selection_boxes = OrderedDict([ ('reference', False), ('targets', True), ('segments', False), ]) try: ppf_g = ProteinFamily.objects.get(slug="100_001") # ppf_a = ProteinFamily.objects.get(slug="200_000") # pfs = ProteinFamily.objects.filter(parent__in=[ppf_g.id,ppf_a.id]) pfs = ProteinFamily.objects.filter(parent__in=[ppf_g.id]) ps = Protein.objects.filter(family__in=[ppf_g]) # ,ppf_a tree_indent_level = [] # action = 'expand' # remove the parent family (for all other families than the root of the tree, the parent should be shown) # del ppf_g # del ppf_a except Exception as e: pass class ArrestinSelection(AbsTargetSelection): step = 1 number_of_steps = 1 psets = False filters = True filter_gprotein = True type_of_selection = 'browse_gprot' description = 'Select an Arrestin (family) by searching or browsing in the middle. The selection is viewed to' \ + ' the right.' docs = 'signalproteins.html' target_input = False selection_boxes = OrderedDict([ ('reference', False), ('targets', True), ('segments', False), ]) try: if ProteinFamily.objects.filter(slug="200_000").exists(): ppf = ProteinFamily.objects.get(slug="200_000") pfs = ProteinFamily.objects.filter(parent=ppf.id) ps = Protein.objects.filter(family=ppf) tree_indent_level = [] action = 'expand' # remove the parent family (for all other families than the root of the tree, the parent should be shown) del ppf except Exception as e: pass class ArrestinCoupling(TemplateView): """ Class based generic view which serves coupling data between Receptors and Arrestins. Data coming from <NAME> only at the moment. :param dataset: ProteinArrestinPair (see build/management/commands/build_arrestins.py) :return: context """ template_name = "signprot/arrestin_coupling.html" @method_decorator(csrf_exempt) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # fields, header = self.fields() protvals, couplvals = self.fields() context['fields'] = protvals context['signal'] = couplvals return context @staticmethod def fields(): """ This function returns the required fields for the Arrestin subtypes table. :return: key.value pairs from dictotemplate dictionary keys = id values in ProteinArrestinPair table. values = source, class, family, uniprotid, iupharid, logmaxec50_deg, pec50_deg, emax_deg """ arrestins = ProteinArrestinPair.objects.filter(protein__species__common_name='Human', protein__sequence_type__slug='wt', protein__family__slug__startswith='00').prefetch_related( "protein__family", # REMEMBER. Whatever you call in template prefetch to reduce SQL queries. "protein__family__parent__parent__parent", "arrestin_subtype", "arrestin_subtype__source" ) signaling_data = {} for pairing in arrestins.values_list( "protein__entry_name", "arrestin_subtype__entry_name", "emax_deg", "pec50_deg", "logmaxec50_deg" ): if pairing[0] not in signaling_data: signaling_data[pairing[0]] = {} signaling_data[pairing[0]][pairing[1]] = {} if 'emax' not in signaling_data[pairing[0]][pairing[1]]: signaling_data[pairing[0]][pairing[1]]['emax'] = {} signaling_data[pairing[0]][pairing[1]]['emax'] = pairing[2] if 'pec50' not in signaling_data[pairing[0]][pairing[1]]: signaling_data[pairing[0]][pairing[1]]['pec50'] = {} signaling_data[pairing[0]][pairing[1]]['pec50'] = pairing[3] if 'logmaxec50' not in signaling_data[pairing[0]][pairing[1]]: signaling_data[pairing[0]][pairing[1]]['logmaxec50'] = {} signaling_data[pairing[0]][pairing[1]]['logmaxec50'] = pairing[4] protein_data = {} for prot in arrestins.distinct("protein_id"): protein_data[prot.id] = {} protein_data[prot.id]['class'] = prot.protein.family.parent.parent.parent.shorter() protein_data[prot.id]['family'] = prot.protein.family.parent.short() protein_data[prot.id]['uniprot'] = prot.protein.entry_short() protein_data[prot.id]['iuphar'] = prot.protein.family.name.replace('receptor', '').strip() protein_data[prot.id]['accession'] = prot.protein.accession protein_data[prot.id]['entryname'] = prot.protein.entry_name protein_data[prot.id]['source'] = prot.source protein_data[prot.id]['subtype'] = prot.arrestin_subtype # MAKES 2396 SQL QUERIES, have to find out how to make it faster. # uniprot_links = prot.web_links.filter(web_resource__slug='uniprot') # if uniprot_links.count() > 0: # protein_data[prot.id]['uniprot_link'] = uniprot_links[0] # MAKES 970 SQL QUERIES. Even with prefetch_related of web_links__web_resource gtop_links = prot.protein.web_links.filter(web_resource__slug='gtop') if len(gtop_links) > 0: protein_data[prot.id]['gtp_link'] = gtop_links[0] arrestin_subtypes = ["arrb1_human", "arrb2_human"] for arrestin in arrestin_subtypes: if prot.protein.entry_name in signaling_data and arrestin in signaling_data[prot.protein.entry_name]: protein_data[prot.id][arrestin] = signaling_data[prot.protein.entry_name][arrestin] else: protein_data[prot.id][arrestin] = "-" return protein_data, signaling_data class TargetSelection(AbsTargetSelection): step = 1 number_of_steps = 1 filters = False psets = False target_input = False redirect_on_select = True type_of_selection = 'ginterface' title = 'SELECT TARGET for Gs INTERFACE' description = 'Select a reference target by searching or browsing.' \ + '\n\nThe Gs interface from adrb2 (PDB: 3SN6) will be superposed onto the selected target.' \ + '\n\nAn interaction browser for the adrb2 Gs interface will be given for comparison"' # template_name = 'common/targetselection.html' selection_boxes = OrderedDict([ ('reference', False), ('targets', True), ('segments', False), ]) buttons = { 'continue': { 'label': 'Continue to next step', 'url': '#', 'color': 'success', }, } class CouplingBrowser(TemplateView): """ Class based generic view which serves coupling data between Receptors and G-proteins. Data coming from Guide to Pharmacology, Asuka Inuoue and Michel Bouvier at the moment. More data might come later from Roth and Strachan TRUPATH biosensor and Neville Lambert. :param dataset: ProteinGProteinPair (see build/management/commands/build_g_proteins.py) :return: context """ template_name = "signprot/coupling_browser.html" @method_decorator(csrf_exempt) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) tab_fields, header = self.tab_fields() context['tabfields'] = tab_fields context['header'] = header flat_list = [item for sublist in header.values() for item in sublist] context['subunitheader'] = flat_list return context @staticmethod def tab_fields(): """ This function returns the required fields for the G-protein families table and the G-protein subtypes table which are to be rendered in separate tabs in the same page. :return: key.value pairs from dictotemplate dictionary keys =id values in ProteinGProteinPair table. values = source, class, family, uniprotid, iupharid, logmaxec50_deg, pec50_deg, emax_deg """ proteins = Protein.objects.filter(sequence_type__slug='wt', family__slug__startswith='00', species__common_name='Human').prefetch_related( 'family', 'family__parent__parent__parent', 'web_links' ) couplings = ProteinGProteinPair.objects.filter(source="GuideToPharma").values_list('protein__entry_name', 'g_protein__name', 'transduction') signaling_data = {} for pairing in couplings: if pairing[0] not in signaling_data: signaling_data[pairing[0]] = {} signaling_data[pairing[0]][pairing[1]] = pairing[2] protein_data = {} for prot in proteins: protein_data[prot.id] = {} protein_data[prot.id]['class'] = prot.family.parent.parent.parent.shorter() protein_data[prot.id]['family'] = prot.family.parent.short() protein_data[prot.id]['uniprot'] = prot.entry_short() protein_data[prot.id]['iuphar'] = prot.family.name.replace('receptor', '').strip() protein_data[prot.id]['accession'] = prot.accession protein_data[prot.id]['entryname'] = prot.entry_name # MAKES 2396 SQL QUERIES, have to find out how to make it faster. # uniprot_links = prot.web_links.filter(web_resource__slug='uniprot') # if uniprot_links.count() > 0: # protein_data[prot.id]['uniprot_link'] = uniprot_links[0] # MAKES 970 SQL QUERIES. Even with prefetch_related of web_links__web_resource gtop_links = prot.web_links.filter(web_resource__slug='gtop') if len(gtop_links) > 0: protein_data[prot.id]['gtp_link'] = gtop_links[0] gprotein_families = ["Gs family", "Gi/Go family", "Gq/G11 family", "G12/G13 family"] for gprotein in gprotein_families: if prot.entry_name in signaling_data and gprotein in signaling_data[prot.entry_name]: if signaling_data[prot.entry_name][gprotein] == "primary": protein_data[prot.id][gprotein] = "1'" elif signaling_data[prot.entry_name][gprotein] == "secondary": protein_data[prot.id][gprotein] = "2'" else: protein_data[prot.id][gprotein] = "-" else: protein_data[prot.id][gprotein] = "-" protein_data[prot.id]['gs'] = protein_data[prot.id][gprotein_families[0]] protein_data[prot.id]['gio'] = protein_data[prot.id][gprotein_families[1]] protein_data[prot.id]['gq11'] = protein_data[prot.id][gprotein_families[2]] protein_data[prot.id]['g1213'] = protein_data[prot.id][gprotein_families[3]] couplings2 = ProteinGProteinPair.objects.filter(source__in=["Inoue", "Bouvier"]) \ .filter(g_protein_subunit__family__slug__startswith="100_001").order_by("g_protein_subunit__family__slug", "source") \ .prefetch_related('g_protein_subunit__family', 'g_protein') coupling_headers = ProteinGProteinPair.objects.filter(source__in=["Inoue", "Bouvier"]) \ .filter(g_protein_subunit__family__slug__startswith="100_001") \ .order_by("g_protein_subunit__family__slug", "source").distinct("g_protein_subunit__family__slug") \ .values_list("g_protein_subunit__family__name", "g_protein_subunit__family__parent__name") coupling_header_names = {} coupling_reverse_header_names = {} coupling_placeholder = {} coupling_placeholder2 = {} coupling_placeholder3 = {} for name in coupling_headers: if name[1] not in coupling_header_names: coupling_header_names[name[1]] = [] coupling_placeholder3[name[1]] = [] coupling_reverse_header_names[name[0]] = name[1] coupling_header_names[name[1]].append(name[0]) coupling_placeholder[name[0]] = "--" coupling_placeholder2[name[0]] = [] dictotemplate = {} sourcenames = set() for pair in couplings2: if pair.protein_id not in dictotemplate: dictotemplate[pair.protein_id] = {} dictotemplate[pair.protein_id]['protein'] = protein_data[pair.protein_id] dictotemplate[pair.protein_id]['coupling'] = {} dictotemplate[pair.protein_id]['couplingmax'] = {} dictotemplate[pair.protein_id]['coupling']['1'] = {} dictotemplate[pair.protein_id]['coupling']['1']['logemaxec50'] = deepcopy(coupling_placeholder2) dictotemplate[pair.protein_id]['coupling']['1']['pec50'] = deepcopy(coupling_placeholder2) dictotemplate[pair.protein_id]['coupling']['1']['emax'] = deepcopy(coupling_placeholder2) dictotemplate[pair.protein_id]['couplingmax']['1'] = {} dictotemplate[pair.protein_id]['couplingmax']['1']['logemaxec50'] = deepcopy(coupling_placeholder3) dictotemplate[pair.protein_id]['couplingmax']['1']['pec50'] = deepcopy(coupling_placeholder3) dictotemplate[pair.protein_id]['couplingmax']['1']['emax'] = deepcopy(coupling_placeholder3) if pair.source not in dictotemplate[pair.protein_id]['coupling']: sourcenames.add(pair.source) dictotemplate[pair.protein_id]['coupling'][pair.source] = {} dictotemplate[pair.protein_id]['couplingmax'][pair.source] = {} dictotemplate[pair.protein_id]['coupling'][pair.source]['logemaxec50'] = coupling_placeholder.copy() dictotemplate[pair.protein_id]['coupling'][pair.source]['pec50'] = coupling_placeholder.copy() dictotemplate[pair.protein_id]['coupling'][pair.source]['emax'] = coupling_placeholder.copy() dictotemplate[pair.protein_id]['couplingmax'][pair.source]['logemaxec50'] = deepcopy(coupling_placeholder3) dictotemplate[pair.protein_id]['couplingmax'][pair.source]['pec50'] = deepcopy(coupling_placeholder3) dictotemplate[pair.protein_id]['couplingmax'][pair.source]['emax'] = deepcopy(coupling_placeholder3) subunit = pair.g_protein_subunit.family.name dictotemplate[pair.protein_id]['coupling'][pair.source]['logemaxec50'][subunit] = round(pair.logmaxec50_deg, 1) dictotemplate[pair.protein_id]['coupling'][pair.source]['pec50'][subunit] = round(pair.pec50_deg, 1) dictotemplate[pair.protein_id]['coupling'][pair.source]['emax'][subunit] = round(pair.emax_deg) dictotemplate[pair.protein_id]['coupling']['1']['logemaxec50'][subunit].append(round(pair.logmaxec50_deg, 1)) dictotemplate[pair.protein_id]['coupling']['1']['pec50'][subunit].append(round(pair.pec50_deg, 1)) dictotemplate[pair.protein_id]['coupling']['1']['emax'][subunit].append(round(pair.emax_deg)) family = coupling_reverse_header_names[subunit] dictotemplate[pair.protein_id]['couplingmax'][pair.source]['logemaxec50'][family].append(round(pair.logmaxec50_deg, 1)) dictotemplate[pair.protein_id]['couplingmax'][pair.source]['pec50'][family].append(round(pair.pec50_deg, 1)) dictotemplate[pair.protein_id]['couplingmax'][pair.source]['emax'][family].append(round(pair.emax_deg)) dictotemplate[pair.protein_id]['couplingmax']['1']['logemaxec50'][family].append(round(pair.logmaxec50_deg, 1)) dictotemplate[pair.protein_id]['couplingmax']['1']['pec50'][family].append(round(pair.pec50_deg, 1)) dictotemplate[pair.protein_id]['couplingmax']['1']['emax'][family].append(round(pair.emax_deg)) for prot in dictotemplate: for propval in dictotemplate[prot]['coupling']['1']: for sub in dictotemplate[prot]['coupling']['1'][propval]: valuelist = dictotemplate[prot]['coupling']['1'][propval][sub] if len(valuelist) == 0: dictotemplate[prot]['coupling']['1'][propval][sub] = "--" elif len(valuelist) > 0 and propval == "logemaxec50": if all(i > 0 for i in valuelist): dictotemplate[prot]['coupling']['1'][propval][sub] = round(mean(valuelist), 1) else: dictotemplate[prot]['coupling']['1'][propval][sub] = round(max(valuelist), 1) elif len(valuelist) > 0 and propval == "pec50": if all(i > 0 for i in valuelist): dictotemplate[prot]['coupling']['1'][propval][sub] = round(mean(valuelist), 1) else: dictotemplate[prot]['coupling']['1'][propval][sub] = round(max(valuelist), 1) elif len(valuelist) > 0 and propval == "emax": if all(i > 0 for i in valuelist): dictotemplate[prot]['coupling']['1'][propval][sub] = round(mean(valuelist)) else: dictotemplate[prot]['coupling']['1'][propval][sub] = round(max(valuelist)) else: dictotemplate[prot]['coupling']['1'][propval][sub] = round(mean(valuelist)) #dict_name = 'confidence' dict_name = 'coupling' for prot in dictotemplate: if dict_name not in dictotemplate[prot]: dictotemplate[prot][dict_name] = {} for i in range(2, len(sourcenames)+2): dictotemplate[prot][dict_name][i] = {} for propval in dictotemplate[prot]['coupling']['1']: for i in range(2, len(sourcenames)+2): dictotemplate[prot][dict_name][i][propval] = {} for sub in dictotemplate[prot]['coupling']['1'][propval]: # use family here instead of sub for families "loop" family = coupling_reverse_header_names[sub].replace("/", "/G") gtp = protein_data[prot][family+" family"] baseconfidence = dictotemplate[prot]['coupling']['1'][propval][sub] confidence = 0 if gtp != "-": confidence += 1 if baseconfidence == "-": baseconfidence == gtp for source in sourcenames: if source in dictotemplate[prot]['coupling'] and dictotemplate[prot]['coupling'][source][propval][sub] != "--": if dictotemplate[prot]['coupling'][source][propval][sub] > 0: confidence += 1 for i in range(2, len(sourcenames)+2): if confidence >= i: dictotemplate[prot][dict_name][i][propval][sub] = baseconfidence else: dictotemplate[prot][dict_name][i][propval][sub] = gtp for prot in dictotemplate: for source in dictotemplate[prot]['couplingmax']: for propval in dictotemplate[prot]['couplingmax'][source]: for fam in dictotemplate[prot]['couplingmax'][source][propval]: valuelist = dictotemplate[prot]['couplingmax'][source][propval][fam] if len(valuelist) == 0: dictotemplate[prot]['couplingmax'][source][propval][fam] = "--" # elif len(valuelist) == 1: # dictotemplate[prot]['coupling'][source][propval][fam] = valuelist[0] elif propval == "logemaxec50": dictotemplate[prot]['couplingmax'][source][propval][fam] = round(max(valuelist), 1) elif propval == "pec50": dictotemplate[prot]['couplingmax'][source][propval][fam] = round(max(valuelist), 1) elif propval == "emax": dictotemplate[prot]['couplingmax'][source][propval][fam] = round(max(valuelist)) else: dictotemplate[prot]['couplingmax'][source][propval][fam] = max(valuelist) dict_name = 'couplingmax' for prot in dictotemplate: if dict_name not in dictotemplate[prot]: dictotemplate[prot][dict_name] = {} for i in range(2, len(sourcenames)+2): dictotemplate[prot][dict_name][i] = {} for propval in dictotemplate[prot]['couplingmax']['1']: for i in range(2, len(sourcenames)+2): dictotemplate[prot][dict_name][i][propval] = {} for family in dictotemplate[prot]['couplingmax']['1'][propval]: gtp = protein_data[prot][family.replace("/", "/G") + " family"] baseconfidence = dictotemplate[prot]['couplingmax']['1'][propval][family] confidence = 0 if gtp != "-": confidence += 1 if baseconfidence == "-": baseconfidence == gtp for source in sourcenames: if source in dictotemplate[prot]['couplingmax'] and dictotemplate[prot]['couplingmax'][source][propval][family] != "--": if dictotemplate[prot]['couplingmax'][source][propval][family] > 0: confidence += 1 for i in range(2, len(sourcenames)+2): if confidence >= i: dictotemplate[prot][dict_name][i][propval][family] = baseconfidence else: dictotemplate[prot][dict_name][i][propval][family] = gtp # pprint(dictotemplate[348]) # only Bouvier # pprint(dictotemplate[1]) # Inoue and Bouvier return dictotemplate, coupling_header_names def GProtein(request, dataset="GuideToPharma", render_part="both"): name_of_cache = 'gprotein_statistics_{}'.format(dataset) context = cache.get(name_of_cache) if context == None: context = OrderedDict() i = 0 gproteins = ProteinGProtein.objects.all().prefetch_related('proteingproteinpair_set') slug_translate = {'001': "ClassA", '002': "ClassB1", '004': "ClassC", '006': "ClassF"} selectivitydata = {} for slug in slug_translate.keys(): jsondata = {} for gp in gproteins: # ps = gp.proteingproteinpair_set.all() ps = gp.proteingproteinpair_set.filter(protein__family__slug__startswith=slug, source=dataset).prefetch_related('protein') # print(ps,len(ps)) if ps: jsondata[str(gp)] = [] for p in ps: if dataset == "Aska" and p.log_rai_mean < -1: continue if str(p.protein.entry_name).split('_')[0].upper() not in selectivitydata: selectivitydata[str(p.protein.entry_name).split('_')[0].upper()] = [] selectivitydata[str(p.protein.entry_name).split('_')[0].upper()].append(str(gp)) # print(p.protein.family.parent.parent.parent) jsondata[str(gp)].append(str(p.protein.entry_name) + '\n') jsondata[str(gp)] = ''.join(jsondata[str(gp)]) context[slug_translate[slug]] = jsondata context["selectivitydata"] = selectivitydata cache.set(name_of_cache, context, 60 * 60 * 24 * 7) # seven days timeout on cache context["render_part"] = render_part return render(request, 'signprot/gprotein.html', context ) def CouplingProfiles(request, render_part="both", signalling_data="empty"): name_of_cache = 'coupling_profiles_' + signalling_data context = cache.get(name_of_cache) # NOTE cache disabled for development only! # context = None if context == None: context = OrderedDict() i = 0 # adding info for tree from StructureStatistics View tree = PhylogeneticTreeGenerator() class_a_data = tree.get_tree_data(ProteinFamily.objects.get(name='Class A (Rhodopsin)')) context['tree_class_a_options'] = deepcopy(tree.d3_options) context['tree_class_a_options']['anchor'] = 'tree_class_a' context['tree_class_a_options']['leaf_offset'] = 50 context['tree_class_a_options']['label_free'] = [] whole_class_a = class_a_data.get_nodes_dict(None) # section to remove Orphan from Class A tree and apply to a different tree for item in whole_class_a['children']: if item['name'] == 'Orphan': orphan_data = OrderedDict([('name', ''), ('value', 3000), ('color', ''), ('children',[item])]) whole_class_a['children'].remove(item) break context['tree_class_a'] = json.dumps(whole_class_a) class_b1_data = tree.get_tree_data(ProteinFamily.objects.get(name__startswith='Class B1 (Secretin)')) context['tree_class_b1_options'] = deepcopy(tree.d3_options) context['tree_class_b1_options']['anchor'] = 'tree_class_b1' context['tree_class_b1_options']['branch_trunc'] = 60 context['tree_class_b1_options']['label_free'] = [1,] context['tree_class_b1'] = json.dumps(class_b1_data.get_nodes_dict(None)) class_b2_data = tree.get_tree_data(ProteinFamily.objects.get(name__startswith='Class B2 (Adhesion)')) context['tree_class_b2_options'] = deepcopy(tree.d3_options) context['tree_class_b2_options']['anchor'] = 'tree_class_b2' context['tree_class_b2_options']['label_free'] = [1,] context['tree_class_b2'] = json.dumps(class_b2_data.get_nodes_dict(None)) class_c_data = tree.get_tree_data(ProteinFamily.objects.get(name__startswith='Class C (Glutamate)')) context['tree_class_c_options'] = deepcopy(tree.d3_options) context['tree_class_c_options']['anchor'] = 'tree_class_c' context['tree_class_c_options']['branch_trunc'] = 50 context['tree_class_c_options']['label_free'] = [1,] context['tree_class_c'] = json.dumps(class_c_data.get_nodes_dict(None)) class_f_data = tree.get_tree_data(ProteinFamily.objects.get(name__startswith='Class F (Frizzled)')) context['tree_class_f_options'] = deepcopy(tree.d3_options) context['tree_class_f_options']['anchor'] = 'tree_class_f' context['tree_class_f_options']['label_free'] = [1,] context['tree_class_f'] = json.dumps(class_f_data.get_nodes_dict(None)) class_t2_data = tree.get_tree_data(ProteinFamily.objects.get(name='Class T (Taste 2)')) context['tree_class_t2_options'] = deepcopy(tree.d3_options) context['tree_class_t2_options']['anchor'] = 'tree_class_t2' context['tree_class_t2_options']['label_free'] = [1,] context['tree_class_t2'] = json.dumps(class_t2_data.get_nodes_dict(None)) # definition of the class a orphan tree context['tree_orphan_options'] = deepcopy(tree.d3_options) context['tree_orphan_options']['anchor'] = 'tree_orphan' context['tree_orphan_options']['label_free'] = [1,] context['tree_orphan_a'] = json.dumps(orphan_data) # end copied section from StructureStatistics View # gprot_id = ProteinGProteinPair.objects.all().values_list('g_protein_id', flat=True).order_by('g_protein_id').distinct() gproteins = ProteinGProtein.objects.filter(pk__lte = 4) #here GPa1 is fetched arrestins = ProteinArrestinPair.objects.all().values_list('arrestin_subtype_id', flat=True).order_by('arrestin_subtype_id').distinct() arrestin_prots = list(Protein.objects.filter(family__slug__startswith="200", species__id=1, sequence_type__slug='wt').values_list("pk","name")) arrestin_translate = {} for arr in arrestin_prots: arrestin_translate[arr[0]] = arr[1] slug_translate = {'001': "ClassA", '002': "ClassB1", '003': "ClassB2", '004': "ClassC", '006': "ClassF", '007': "ClassT"} key_translate ={'Gs':"G<sub>s</sub>", 'Gi/Go':"G<sub>i/o</sub>", 'Gq/G11':"G<sub>q/11</sub>", 'G12/G13':"G<sub>12/13</sub>", 'Beta-arrestin-1':"&beta;-Arrestin<sub>1</sub>", 'Beta-arrestin-2':"&beta;-Arrestin<sub>2</sub>"} selectivitydata_gtp_plus = {} receptor_dictionary = [] if signalling_data == "gprot": table = {'Class':[], 'Gs': [], 'GiGo': [], 'GqG11': [], 'G12G13': [], 'Total': []} else: #here there may be the need of a elif if more signalling proteins will be added table = {'Class':[], 'Betaarrestin1': [], 'Betaarrestin2': [], 'Total': []} for slug in slug_translate.keys(): tot = 0 txttot = '' fam = str(ProteinFamily.objects.get(slug=(slug))) table['Class'].append(fam.replace('Class','')) jsondata_gtp_plus = {} if signalling_data == "gprot": for gp in gproteins: # Collect GTP gtp_couplings = list(ProteinGProteinPair.objects.filter(protein__family__slug__startswith=slug, source="GuideToPharma", g_protein=gp)\ .order_by("protein__entry_name")\ .values_list("protein__entry_name", flat=True)\ .distinct()) # Other coupling data with logmaxec50 greater than 0 other_couplings = list(ProteinGProteinPair.objects.filter(protein__family__slug__startswith=slug)\ .exclude(source="GuideToPharma") .filter(g_protein=gp, logmaxec50_deg__gt=0)\ .order_by("protein__entry_name")\ .values_list("protein__entry_name").distinct()\ .annotate(num_sources=Count("source", distinct=True))) # Initialize selectivity array processed_receptors = [] key = str(gp).split(' ')[0] jsondata_gtp_plus[key] = [] for coupling in other_couplings: receptor_name = coupling[0] receptor_dictionary.append(receptor_name) receptor_only = receptor_name.split('_')[0].upper() count = coupling[1] + (1 if receptor_name in gtp_couplings else 0) # Data from at least two sources: if count >= 2: # Add to selectivity data (for tree) if receptor_only not in selectivitydata_gtp_plus: selectivitydata_gtp_plus[receptor_only] = [] if key not in selectivitydata_gtp_plus[receptor_only]: selectivitydata_gtp_plus[receptor_only].append(key) # Add to json data for Venn diagram jsondata_gtp_plus[key].append(str(receptor_name) + '\n') processed_receptors.append(receptor_name) unique_gtp_plus = set(gtp_couplings) - set(processed_receptors) for receptor_name in unique_gtp_plus: receptor_dictionary.append(receptor_name) receptor_only = receptor_name.split('_')[0].upper() if receptor_only not in selectivitydata_gtp_plus: selectivitydata_gtp_plus[receptor_only] = [] if key not in selectivitydata_gtp_plus[receptor_only]: selectivitydata_gtp_plus[receptor_only].append(key) jsondata_gtp_plus[key].append(str(receptor_name) + '\n') tot += len(jsondata_gtp_plus[key]) txttot = ' '.join([txttot,' '.join(jsondata_gtp_plus[key]).replace('\n','')]) if len(jsondata_gtp_plus[key]) == 0: jsondata_gtp_plus.pop(key, None) table[key.replace('/','')].append((0,'')) else: table[key.replace('/','')].append((len(jsondata_gtp_plus[key]), ' '.join(jsondata_gtp_plus[key]).replace('\n',''))) jsondata_gtp_plus[key] = ''.join(jsondata_gtp_plus[key]) tot = len(list(set(txttot.split(' ')))) -1 table['Total'].append((tot,txttot)) else: #here may need and elif if other signalling proteins will be added for arr in arrestins: # arrestins? arrestin_couplings = list(ProteinArrestinPair.objects.filter(protein__family__slug__startswith=slug, arrestin_subtype=arr)\ .filter(logmaxec50_deg__gt=0)\ .order_by("protein__entry_name")\ .values_list("protein__entry_name", flat=True)\ .distinct()) key = arrestin_translate[arr] jsondata_gtp_plus[key] = [] for coupling in arrestin_couplings: receptor_name = coupling receptor_dictionary.append(receptor_name) receptor_only = receptor_name.split('_')[0].upper() if receptor_only not in selectivitydata_gtp_plus: selectivitydata_gtp_plus[receptor_only] = [] if key not in selectivitydata_gtp_plus[receptor_only]: selectivitydata_gtp_plus[receptor_only].append(key) # Add to json data for Venn diagram jsondata_gtp_plus[key].append(str(receptor_name) + '\n') tot += len(jsondata_gtp_plus[key]) txttot = ' '.join([txttot,' '.join(jsondata_gtp_plus[key]).replace('\n','')]) if len(jsondata_gtp_plus[key]) == 0: jsondata_gtp_plus.pop(key, None) table[key.replace('-','')].append((0,'')) else: table[key.replace('-','')].append((len(jsondata_gtp_plus[key]), ' '.join(jsondata_gtp_plus[key]).replace('\n',''))) jsondata_gtp_plus[key] = ''.join(jsondata_gtp_plus[key]) tot = len(list(set(txttot.split(' ')))) -1 table['Total'].append((tot,txttot)) for item in key_translate: try: jsondata_gtp_plus[key_translate[item]] = jsondata_gtp_plus.pop(item) except KeyError: continue context[slug_translate[slug]+"_gtp_plus"] = jsondata_gtp_plus context[slug_translate[slug]+"_gtp_plus_keys"] = list(jsondata_gtp_plus.keys()) for key in list(table.keys())[1:]: table[key].append((sum([pair[0] for pair in table[key]]),' '.join([pair[1] for pair in table[key]])+' ')) # context["selectivitydata"] = selectivitydata context["selectivitydata_gtp_plus"] = selectivitydata_gtp_plus context["table"] = table # Collect receptor information receptor_panel = Protein.objects.filter(entry_name__in=receptor_dictionary)\ .prefetch_related("family", "family__parent__parent__parent") receptor_dictionary = {} for p in receptor_panel: # Collect receptor data rec_class = p.family.parent.parent.parent.short().split(' ')[0] rec_ligandtype = p.family.parent.parent.short() rec_family = p.family.parent.short() rec_uniprot = p.entry_short() rec_iuphar = p.family.name.replace("receptor", '').replace("<i>","").replace("</i>","").strip() receptor_dictionary[rec_uniprot] = [rec_class, rec_ligandtype, rec_family, rec_uniprot, rec_iuphar] whole_receptors = Protein.objects.prefetch_related("family", "family__parent__parent__parent").filter(sequence_type__slug="wt", family__slug__startswith="00") whole_rec_dict = {} for rec in whole_receptors: rec_uniprot = rec.entry_short() rec_iuphar = rec.family.name.replace("receptor", '').replace("<i>","").replace("</i>","").strip() whole_rec_dict[rec_uniprot] = [rec_iuphar] context["whole_receptors"] = json.dumps(whole_rec_dict) context["receptor_dictionary"] = json.dumps(receptor_dictionary) cache.set(name_of_cache, context, 60 * 60 * 24 * 7) # seven days timeout on cache context["render_part"] = render_part context["signalling_data"] = signalling_data return render(request, 'signprot/coupling_profiles.html', context ) def GProteinTree(request): return CouplingProfiles(request, "tree", "gprot") def GProteinVenn(request): return CouplingProfiles(request, "venn", "gprot") def ArrestinTree(request): return CouplingProfiles(request, "tree", "arrestin") def ArrestinVenn(request): return CouplingProfiles(request, "venn", "arrestin") #@cache_page(60*60*24*7) def familyDetail(request, slug): # get family pf = ProteinFamily.objects.get(slug=slug) # get family list ppf = pf families = [ppf.name] while ppf.parent.parent: families.append(ppf.parent.name) ppf = ppf.parent families.reverse() # number of proteins proteins = Protein.objects.filter(family__slug__startswith=pf.slug, sequence_type__slug='wt') no_of_proteins = proteins.count() no_of_human_proteins = Protein.objects.filter(family__slug__startswith=pf.slug, species__id=1, sequence_type__slug='wt').count() list_proteins = list(proteins.values_list('pk', flat=True)) # get structures of this family structures = SignprotStructure.objects.filter(protein__family__slug__startswith=slug) complex_structures = SignprotComplex.objects.filter(protein__family__slug__startswith=slug) mutations = MutationExperiment.objects.filter(protein__in=proteins).prefetch_related('residue__generic_number', 'exp_qual', 'ligand') mutations_list = {} for mutation in mutations: if not mutation.residue.generic_number: continue # cant map those without display numbers if mutation.residue.generic_number.label not in mutations_list: mutations_list[ mutation.residue.generic_number.label] = [] if mutation.ligand: ligand = mutation.ligand.name else: ligand = '' if mutation.exp_qual: qual = mutation.exp_qual.qual else: qual = '' mutations_list[mutation.residue.generic_number.label].append( [mutation.foldchange, ligand.replace("'", "\\'"), qual]) interaction_list = {} ###FIXME - always empty try: pc = ProteinConformation.objects.get(protein__family__slug=slug, protein__sequence_type__slug='consensus') except ProteinConformation.DoesNotExist: try: pc = ProteinConformation.objects.get(protein__family__slug=slug, protein__species_id=1, protein__sequence_type__slug='wt') except: pc = None p = None p = pc.protein residues = Residue.objects.filter(protein_conformation=pc).order_by('sequence_number').prefetch_related( 'protein_segment', 'generic_number', 'display_generic_number') jsondata = {} jsondata_interaction = {} for r in residues: if r.generic_number: if r.generic_number.label in mutations_list: jsondata[r.sequence_number] = [mutations_list[r.generic_number.label]] if r.generic_number.label in interaction_list: jsondata_interaction[r.sequence_number] = interaction_list[r.generic_number.label] # process residues and return them in chunks of 10 # this is done for easier scaling on smaller screens chunk_size = 10 r_chunks = [] r_buffer = [] last_segment = False border = False title_cell_skip = 0 for i, r in enumerate(residues): # title of segment to be written out for the first residue in each segment segment_title = False # keep track of last residues segment (for marking borders) if r.protein_segment.slug != last_segment: last_segment = r.protein_segment.slug border = True # if on a border, is there room to write out the title? If not, write title in next chunk if i == 0 or (border and len(last_segment) <= (chunk_size - i % chunk_size)): segment_title = True border = False title_cell_skip += len(last_segment) # skip cells following title (which has colspan > 1) if i and i % chunk_size == 0: r_chunks.append(r_buffer) r_buffer = [] r_buffer.append((r, segment_title, title_cell_skip)) # update cell skip counter if title_cell_skip > 0: title_cell_skip -= 1 if r_buffer: r_chunks.append(r_buffer) context = {'pf': pf, 'families': families, 'structures': structures, 'no_of_proteins': no_of_proteins, 'no_of_human_proteins': no_of_human_proteins, 'mutations': mutations, 'r_chunks': r_chunks, 'chunk_size': chunk_size, 'p': p, 'complex_structures': complex_structures} return render(request, 'signprot/family_details.html', context ) @cache_page(60 * 60 * 24 * 7) def Ginterface(request, protein=None): residuelist = Residue.objects.filter(protein_conformation__protein__entry_name=protein).prefetch_related( 'protein_segment', 'display_generic_number', 'generic_number') SnakePlot = DrawSnakePlot( residuelist, "Class A (Rhodopsin)", protein, nobuttons=1) # TEST gprotein_residues = Residue.objects.filter(protein_conformation__protein__entry_name='gnaz_human').prefetch_related( 'protein_segment', 'display_generic_number', 'generic_number') gproteinplot = DrawGproteinPlot( gprotein_residues, "Gprotein", protein) crystal = Structure.objects.get(pdb_code__index="3SN6") aa_names = definitions.AMINO_ACID_GROUP_NAMES_OLD names_aa = dict(zip(aa_names.values(), aa_names.keys())) names_aa['Polar (S/T)'] = 'pol_short' names_aa['Polar (N/Q/H)'] = 'pol_long' residues_browser = [ {'pos': 135, 'aa': 'I', 'gprotseg': "H5", 'segment': 'TM3', 'ligand': 'Gs', 'type': aa_names['hp'], 'gpcrdb': '3.54x54', 'gpnum': 'G.H5.16', 'gpaa': 'Q384', 'availability': 'interacting'}, {'pos': 136, 'aa': 'T', 'gprotseg': "H5", 'segment': 'TM3', 'ligand': 'Gs', 'type': 'Polar (S/T)', 'gpcrdb': '3.55x55', 'gpnum': 'G.H5.12', 'gpaa': 'R380', 'availability': 'interacting'}, {'pos': 139, 'aa': 'F', 'gprotseg': "H5", 'segment': 'ICL2', 'ligand': 'Gs', 'type': 'Aromatic', 'gpcrdb': '34.51x51', 'gpnum': 'G.H5.8', 'gpaa': 'F376', 'availability': 'interacting'}, {'pos': 139, 'aa': 'F', 'gprotseg': "S1", 'segment': 'ICL2', 'ligand': 'Gs', 'type': 'Aromatic', 'gpcrdb': '34.51x51', 'gpnum': 'G.S1.2', 'gpaa': 'H41', 'availability': 'interacting'}, {'pos': 141, 'aa': 'Y', 'gprotseg': "H5", 'segment': 'ICL2', 'ligand': 'Gs', 'type': 'Aromatic', 'gpcrdb': '34.53x53', 'gpnum': 'G.H5.19', 'gpaa': 'H387', 'availability': 'interacting'}, {'pos': 225, 'aa': 'E', 'gprotseg': "H5", 'segment': 'TM5', 'ligand': 'Gs', 'type': 'Negative charge', 'gpcrdb': '5.64x64', 'gpnum': 'G.H5.12', 'gpaa': 'R380', 'availability': 'interacting'}, {'pos': 225, 'aa': 'E', 'gprotseg': "H5", 'segment': 'TM5', 'ligand': 'Gs', 'type': 'Negative charge', 'gpcrdb': '5.64x64', 'gpnum': 'G.H5.16', 'gpaa': 'Q384', 'availability': 'interacting'}, {'pos': 229, 'aa': 'Q', 'gprotseg': "H5", 'segment': 'TM5', 'ligand': 'Gs', 'type': 'Polar (N/Q/H)', 'gpcrdb': '5.68x68', 'gpnum': 'G.H5.13', 'gpaa': 'D381', 'availability': 'interacting'}, {'pos': 229, 'aa': 'Q', 'gprotseg': "H5", 'segment': 'TM5', 'ligand': 'Gs', 'type': 'Polar (N/Q/H)', 'gpcrdb': '5.68x68', 'gpnum': 'G.H5.16', 'gpaa': 'Q384', 'availability': 'interacting'}, {'pos': 229, 'aa': 'Q', 'gprotseg': "H5", 'segment': 'TM5', 'ligand': 'Gs', 'type': 'Polar (N/Q/H)', 'gpcrdb': '5.68x68', 'gpnum': 'G.H5.17', 'gpaa': 'R385', 'availability': 'interacting'}, {'pos': 274, 'aa': 'T', 'gprotseg': "H5", 'segment': 'TM6', 'ligand': 'Gs', 'type': 'Polar (S/T)', 'gpcrdb': '6.36x36', 'gpnum': 'G.H5.24', 'gpaa': 'E392', 'availability': 'interacting'}, {'pos': 328, 'aa': 'R', 'gprotseg': "H5", 'segment': 'TM7', 'ligand': 'Gs', 'type': 'Positive charge', 'gpcrdb': '7.55x55', 'gpnum': 'G.H5.24', 'gpaa': 'E392', 'availability': 'interacting'}, {'pos': 232, 'aa': 'K', 'segment': 'TM5', 'ligand': 'Gs', 'type': 'Positive charge', 'gpcrdb': '5.71x71', 'gprotseg': "H5", 'gpnum': 'G.H5.13', 'gpaa': 'D381', 'availability': 'interacting'}] # accessible_gn = ['3.50x50', '3.53x53', '3.54x54', '3.55x55', '34.50x50', '34.51x51', '34.53x53', '34.54x54', '5.61x61', '5.64x64', '5.65x65', '5.67x67', '5.68x68', '5.71x71', '5.72x72', '5.74x74', '5.75x75', '6.29x29', '6.32x32', '6.33x33', '6.36x36', '6.37x37', '7.55x55', '8.48x48', '8.49x49'] accessible_gn = ['3.50x50', '3.53x53', '3.54x54', '3.55x55', '3.56x56', '34.50x50', '34.51x51', '34.52x52', '34.53x53', '34.54x54', '34.55x55', '34.56x56', '34.57x57', '5.61x61', '5.64x64', '5.65x65', '5.66x66', '5.67x67', '5.68x68', '5.69x69', '5.71x71', '5.72x72', '5.74x74', '5.75x75', '6.25x25', '6.26x26', '6.28x28', '6.29x29', '6.32x32', '6.33x33', '6.36x36', '6.37x37', '6.40x40', '7.55x55', '7.56x56', '8.47x47', '8.48x48', '8.49x49', '8.51x51'] exchange_table = OrderedDict([('hp', ('V', 'I', 'L', 'M')), ('ar', ('F', 'H', 'W', 'Y')), ('pol_short', ('S', 'T')), # Short/hydroxy ('pol_long', ('N', 'Q', 'H')), # Amino-like (both donor and acceptor ('neg', ('D', 'E')), ('pos', ('K', 'R'))]) interacting_gn = [] accessible_pos = list( residuelist.filter(display_generic_number__label__in=accessible_gn).values_list('sequence_number', flat=True)) # Which of the Gs interacting_pos are conserved? GS_none_equivalent_interacting_pos = [] GS_none_equivalent_interacting_gn = [] for interaction in residues_browser: interacting_gn.append(interaction['gpcrdb']) gs_b2_interaction_type_long = ( next((item['type'] for item in residues_browser if item['gpcrdb'] == interaction['gpcrdb']), None)) interacting_aa = residuelist.filter(display_generic_number__label__in=[interaction['gpcrdb']]).values_list( 'amino_acid', flat=True) if interacting_aa: interaction['aa'] = interacting_aa[0] pos = \ residuelist.filter(display_generic_number__label__in=[interaction['gpcrdb']]).values_list( 'sequence_number', flat=True)[0] interaction['pos'] = pos feature = names_aa[gs_b2_interaction_type_long] if interacting_aa[0] not in exchange_table[feature]: GS_none_equivalent_interacting_pos.append(pos) GS_none_equivalent_interacting_gn.append(interaction['gpcrdb']) GS_equivalent_interacting_pos = list( residuelist.filter(display_generic_number__label__in=interacting_gn).values_list('sequence_number', flat=True)) gProteinData = ProteinGProteinPair.objects.filter(protein__entry_name=protein) primary = [] secondary = [] for entry in gProteinData: if entry.transduction == 'primary': primary.append((entry.g_protein.name.replace("Gs", "G<sub>s</sub>").replace("Gi", "G<sub>i</sub>").replace( "Go", "G<sub>o</sub>").replace("G11", "G<sub>11</sub>").replace("G12", "G<sub>12</sub>").replace("G13", "G<sub>13</sub>").replace( "Gq", "G<sub>q</sub>").replace("G", "G&alpha;"), entry.g_protein.slug)) elif entry.transduction == 'secondary': secondary.append(( entry.g_protein.name.replace("Gs", "G<sub>s</sub>").replace("Gi", "G<sub>i</sub>").replace( "Go", "G<sub>o</sub>").replace("G11", "G<sub>11</sub>").replace("G12", "G<sub>12</sub>").replace( "G13", "G<sub>13</sub>").replace("Gq", "G<sub>q</sub>").replace("G", "G&alpha;"), entry.g_protein.slug)) return render(request, 'signprot/ginterface.html', {'pdbname': '3SN6', 'snakeplot': SnakePlot, 'gproteinplot': gproteinplot, 'crystal': crystal, 'interacting_equivalent': GS_equivalent_interacting_pos, 'interacting_none_equivalent': GS_none_equivalent_interacting_pos, 'accessible': accessible_pos, 'residues': residues_browser, 'mapped_protein': protein, 'interacting_gn': GS_none_equivalent_interacting_gn, 'primary_Gprotein': set(primary), 'secondary_Gprotein': set(secondary)} ) def ajaxInterface(request, slug, **response_kwargs): name_of_cache = 'ajaxInterface_' + slug jsondata = cache.get(name_of_cache) if jsondata == None: p = Protein.objects.filter(entry_name=slug).get() if p.family.slug.startswith('200'): rsets = ResiduePositionSet.objects.get(name="Arrestin interface") else: rsets = ResiduePositionSet.objects.get(name="Gprotein Barcode") jsondata = {} for x, residue in enumerate(rsets.residue_position.all()): try: pos = str(list(Residue.objects.filter(protein_conformation__protein__entry_name=slug, display_generic_number__label=residue.label))[0]) except: print("Protein has no residue position at", residue.label) a = pos[1:] jsondata[a] = [5, 'Receptor interface position', residue.label] jsondata = json.dumps(jsondata) cache.set(name_of_cache, jsondata, 60 * 60 * 24 * 2) # two days timeout on cache response_kwargs['content_type'] = 'application/json' return HttpResponse(jsondata, **response_kwargs) def ajaxBarcode(request, slug, cutoff, **response_kwargs): name_of_cache = 'ajaxBarcode_' + slug + cutoff jsondata = cache.get(name_of_cache) if jsondata == None: jsondata = {} selectivity_pos = list( SignprotBarcode.objects.filter(protein__entry_name=slug, seq_identity__gte=cutoff).values_list( 'residue__display_generic_number__label', flat=True)) conserved = list(SignprotBarcode.objects.filter(protein__entry_name=slug, paralog_score__gte=cutoff, seq_identity__gte=cutoff).prefetch_related( 'residue__display_generic_number').values_list('residue__display_generic_number__label', flat=True)) na_data = list( SignprotBarcode.objects.filter(protein__entry_name=slug, seq_identity=0, paralog_score=0).values_list( 'residue__display_generic_number__label', flat=True)) all_positions = Residue.objects.filter(protein_conformation__protein__entry_name=slug).prefetch_related( 'display_generic_number') for res in all_positions: cgn = str(res.generic_number) res = str(res.sequence_number) if cgn in conserved: jsondata[res] = [0, 'Conserved', cgn] elif cgn in selectivity_pos and cgn not in conserved: jsondata[res] = [1, 'Selectivity determining', cgn] elif cgn in na_data: jsondata[res] = [3, 'NA', cgn] else: jsondata[res] = [2, 'Evolutionary neutral', cgn] jsondata = json.dumps(jsondata) response_kwargs['content_type'] = 'application/json' cache.set(name_of_cache, jsondata, 60 * 60 * 24 * 2) # two days timeout on cache return HttpResponse(jsondata, **response_kwargs) @cache_page(60 * 60 * 24 * 7) def StructureInfo(request, pdbname): """ Show structure details """ #protein = Protein.objects.get(signprotstructure__pdb_code__index=pdbname) protein = Protein.objects.filter(signprotstructure__pdb_code__index=pdbname).first() #crystal = SignprotStructure.objects.get(pdb_code__index=pdbname) crystal = SignprotStructure.objects.filter(pdb_code__index=pdbname).first() return render(request, 'signprot/structure_info.html', {'pdbname': pdbname, 'protein': protein, 'crystal': crystal} ) # @cache_page(60*60*24*2) def signprotdetail(request, slug): # get protein slug = slug.lower() p = Protein.objects.prefetch_related('web_links__web_resource').get(entry_name=slug, sequence_type__slug='wt') # Redirect to protein page if p.family.slug.startswith("00"): return redirect("/protein/"+slug) # get family list pf = p.family families = [pf.name] while pf.parent.parent: families.append(pf.parent.name) pf = pf.parent families.reverse() # get protein aliases aliases = ProteinAlias.objects.filter(protein=p).values_list('name', flat=True) # get genes genes = Gene.objects.filter(proteins=p).values_list('name', flat=True) gene = "" alt_genes = "" if len(gene) > 0: gene = genes[0] alt_genes = genes[1:] # get structures of this signal protein structures = SignprotStructure.objects.filter(protein=p) complex_structures = SignprotComplex.objects.filter(protein=p) # mutations mutations = MutationExperiment.objects.filter(protein=p) # get residues pc = ProteinConformation.objects.get(protein=p) residues = Residue.objects.filter(protein_conformation=pc).order_by('sequence_number').prefetch_related( 'protein_segment', 'generic_number', 'display_generic_number') # process residues and return them in chunks of 10 # this is done for easier scaling on smaller screens chunk_size = 10 r_chunks = [] r_buffer = [] last_segment = False border = False title_cell_skip = 0 for i, r in enumerate(residues): # title of segment to be written out for the first residue in each segment segment_title = False # keep track of last residues segment (for marking borders) if r.protein_segment.slug != last_segment: last_segment = r.protein_segment.slug border = True # if on a border, is there room to write out the title? If not, write title in next chunk if i == 0 or (border and len(last_segment) <= (chunk_size - i % chunk_size)): segment_title = True border = False title_cell_skip += len(last_segment) # skip cells following title (which has colspan > 1) if i and i % chunk_size == 0: r_chunks.append(r_buffer) r_buffer = [] r_buffer.append((r, segment_title, title_cell_skip)) # update cell skip counter if title_cell_skip > 0: title_cell_skip -= 1 if r_buffer: r_chunks.append(r_buffer) context = {'p': p, 'families': families, 'r_chunks': r_chunks, 'chunk_size': chunk_size, 'aliases': aliases, 'gene': gene, 'alt_genes': alt_genes, 'structures': structures, 'complex_structures': complex_structures, 'mutations': mutations} return render(request, 'signprot/signprot_details.html', context ) def sort_a_by_b(a, b, remove_invalid=False): '''Sort one list based on the order of elements from another list''' # https://stackoverflow.com/q/12814667 # a = ['alpha_mock', 'van-der-waals', 'ionic'] # b = ['ionic', 'aromatic', 'hydrophobic', 'polar', 'van-der-waals', 'alpha_mock'] # sort_a_by_b(a,b) -> ['ionic', 'van-der-waals', 'alpha_mock'] if remove_invalid: a = [a_elem for a_elem in a if a_elem in b] return sorted(a, key=lambda x: b.index(x)) def interface_dataset(): # correct receptor entry names - the ones with '_a' appended complex_objs = SignprotComplex.objects.prefetch_related('structure__protein_conformation__protein') # TOFIX: Current workaround is forcing _a to pdb for indicating alpha-subunit # complex_names = [complex_obj.structure.protein_conformation.protein.entry_name + '_' + complex_obj.alpha.lower() for # complex_obj in complex_objs] complex_names = [complex_obj.structure.protein_conformation.protein.entry_name + '_a' for complex_obj in complex_objs] complex_struc_ids = [co.structure_id for co in complex_objs] # protein conformations for those prot_conf = ProteinConformation.objects.filter(protein__entry_name__in=complex_names).values_list('id', flat=True) interaction_sort_order = [ "ionic", "aromatic", "polar", "hydrophobic", "van-der-waals", ] # getting all the signal protein residues for those protein conformations prot_residues = Residue.objects.filter( protein_conformation__in=prot_conf ).values_list('id', flat=True) interactions = InteractingResiduePair.objects.filter( Q(res1__in=prot_residues) | Q(res2__in=prot_residues), referenced_structure__in=complex_struc_ids ).exclude( Q(res1__in=prot_residues) & Q(res2__in=prot_residues) ).prefetch_related( 'interaction__interaction_type', 'referenced_structure__pdb_code__index', 'referenced_structure__signprot_complex__protein__entry_name', 'referenced_structure__protein_conformation__protein__parent__entry_name', 'res1__amino_acid', 'res1__sequence_number', 'res1__generic_number__label', 'res2__amino_acid', 'res2__sequence_number', 'res2__generic_number__label', ).order_by( 'res1__generic_number__label', 'res2__generic_number__label' ).values( int_id=F('id'), int_ty=ArrayAgg( 'interaction__interaction_type', distinct=True, # ordering=interaction_sort_order ), pdb_id=F('referenced_structure__pdb_code__index'), conf_id=F('referenced_structure__protein_conformation_id'), gprot=F('referenced_structure__signprot_complex__protein__entry_name'), entry_name=F('referenced_structure__protein_conformation__protein__parent__entry_name'), rec_aa=F('res1__amino_acid'), rec_pos=F('res1__sequence_number'), rec_gn=F('res1__generic_number__label'), sig_aa=F('res2__amino_acid'), sig_pos=F('res2__sequence_number'), sig_gn=F('res2__generic_number__label') ) conf_ids = set() for i in interactions: i['int_ty'] = sort_a_by_b(i['int_ty'], interaction_sort_order) conf_ids.update([i['conf_id']]) return list(conf_ids), list(interactions) @cache_page(60 * 60 * 24 * 7) def InteractionMatrix(request): prot_conf_ids, dataset = interface_dataset() gprotein_order = ProteinSegment.objects.filter(proteinfamily='Alpha').values('id', 'slug') receptor_order = ['N', '1', '12', '2', '23', '3', '34', '4', '45', '5', '56', '6', '67', '7', '78', '8', 'C'] struc = SignprotComplex.objects.prefetch_related( 'structure__pdb_code', 'structure__stabilizing_agents', 'structure__protein_conformation__protein__species', 'structure__protein_conformation__protein__parent__parent__parent', 'structure__protein_conformation__protein__family__parent__parent__parent__parent', 'structure__stabilizing_agents', 'structure__signprot_complex__protein__family__parent__parent__parent__parent', ) complex_info = [] for s in struc: r = {} s = s.structure r['pdb_id'] = s.pdb_code.index r['name'] = s.protein_conformation.protein.parent.short() r['entry_name'] = s.protein_conformation.protein.parent.entry_name r['class'] = s.protein_conformation.protein.get_protein_class() r['family'] = s.protein_conformation.protein.get_protein_family() r['conf_id'] = s.protein_conformation.id r['organism'] = s.protein_conformation.protein.species.common_name try: r['gprot'] = s.get_stab_agents_gproteins() except Exception: r['gprot'] = '' try: r['gprot_class'] = s.get_signprot_gprot_family() except Exception: r['gprot_class'] = '' complex_info.append(r) remaining_residues = Residue.objects.filter( protein_conformation_id__in=prot_conf_ids, ).prefetch_related( "protein_conformation", "protein_conformation__protein", "protein_conformation__structure" ).values( rec_id=F('protein_conformation__protein__id'), name=F('protein_conformation__protein__parent__name'), entry_name=F('protein_conformation__protein__parent__entry_name'), pdb_id=F('protein_conformation__structure__pdb_code__index'), rec_aa=F('amino_acid'), rec_gn=F('generic_number__label'), ).exclude( Q(rec_gn=None) ) context = { 'interactions': json.dumps(dataset), 'interactions_metadata': json.dumps(complex_info), 'non_interactions': json.dumps(list(remaining_residues)), 'gprot': json.dumps(list(gprotein_order)), 'receptor': json.dumps(receptor_order), } request.session['signature'] = None request.session.modified = True return render(request, 'signprot/matrix.html', context ) @method_decorator(csrf_exempt) def IMSequenceSignature(request): """Accept set of proteins + generic numbers and calculate the signature for those""" t1 = time.time() pos_set_in = get_entry_names(request) ignore_in_alignment = get_ignore_info(request) segments = get_protein_segments(request) if len(segments) == 0: segments = list(ResidueGenericNumberEquivalent.objects.filter(scheme__slug__in=['gpcrdba'])) # get pos objects pos_set = Protein.objects.filter(entry_name__in=pos_set_in).select_related('residue_numbering_scheme', 'species') # Calculate Sequence Signature signature = SequenceSignature() # WHY IS THIS IGNORE USED -> it ignores counting of proteins for residue positions instead of ignoring residue positions ignore_in_alignment = {} signature.setup_alignments_signprot(segments, pos_set, ignore_in_alignment=ignore_in_alignment) signature.calculate_signature_onesided() # preprocess data for return signature_data = signature.prepare_display_data_onesided() # FEATURES AND REGIONS feats = [feature for feature in signature_data['a_pos'].features_combo] # GET GENERIC NUMBERS generic_numbers = get_generic_numbers(signature_data) # FEATURE FREQUENCIES signature_features = get_signature_features(signature_data, generic_numbers, feats) grouped_features = group_signature_features(signature_features) # # FEATURE CONSENSUS # generic_numbers_flat = list(chain.from_iterable(generic_numbers)) # sigcons = get_signature_consensus(signature_data, generic_numbers_flat) # rec_class = pos_set[0].get_protein_class() # dump = { # 'rec_class': rec_class, # 'signature': signature, # 'consensus': signature_data, # } # with open('signprot/notebooks/interface_pickles/{}.p'.format(rec_class), 'wb+') as out_file: # pickle.dump(dump, out_file) # pass back to front res = { # 'cons': sigcons, 'feat_ungrouped': signature_features, 'feat': grouped_features, } request.session['signature'] = signature.prepare_session_data() request.session.modified = True t2 = time.time() print('Runtime: {}'.format((t2 - t1) * 1000.0)) return JsonResponse(res, safe=False) @method_decorator(csrf_exempt) def IMSignatureMatch(request): '''Take the signature stored in the session and query the db''' signature_data = request.session.get('signature') ss_pos = get_entry_names(request) cutoff = request.POST.get('cutoff') request.session['ss_pos'] = ss_pos request.session['cutoff'] = cutoff pos_set = Protein.objects.filter(entry_name__in=ss_pos).select_related('residue_numbering_scheme', 'species') pos_set = [protein for protein in pos_set] pfam = [protein.family.slug[:3] for protein in pos_set] signature_match = SignatureMatch( signature_data['common_positions'], signature_data['numbering_schemes'], signature_data['common_segments'], signature_data['diff_matrix'], pos_set, # pos_set, cutoff=0, signprot=True ) maj_pfam = Counter(pfam).most_common()[0][0] signature_match.score_protein_class(maj_pfam, signprot=True) # request.session['signature_match'] = signature_match signature_match = { 'scores': signature_match.protein_report, 'scores_pos': signature_match.scores_pos, # 'scores_neg': signature_match.scores_neg, 'protein_signatures': signature_match.protein_signatures, 'signatures_pos': signature_match.signatures_pos, # 'signatures_neg': signature_match.signatures_neg, 'signature_filtered': signature_match.signature_consensus, 'relevant_gn': signature_match.relevant_gn, 'relevant_segments': signature_match.relevant_segments, 'numbering_schemes': signature_match.schemes, } signature_match = prepare_signature_match(signature_match) return JsonResponse(signature_match, safe=False) @method_decorator(csrf_exempt) def render_IMSigMat(request): # signature_match = request.session.get('signature_match') signature_data = request.session.get('signature') ss_pos = request.session.get('ss_pos') cutoff = request.session.get('cutoff') pos_set = Protein.objects.filter(entry_name__in=ss_pos).select_related('residue_numbering_scheme', 'species') pos_set = [protein for protein in pos_set] pfam = [protein.family.slug[:3] for protein in pos_set] signature_match = SignatureMatch( signature_data['common_positions'], signature_data['numbering_schemes'], signature_data['common_segments'], signature_data['diff_matrix'], pos_set, # pos_set, cutoff=0, signprot=True ) maj_pfam = Counter(pfam).most_common()[0][0] signature_match.score_protein_class(maj_pfam, signprot=True) response = render( request, 'signprot/signature_match.html', {'scores': signature_match} ) return response ``` #### File: management/commands/build_bias_data.py ```python from decimal import Decimal import logging import math from build.management.commands.base_build import Command as BaseBuild from protein.models import ProteinGProteinPair from ligand.models import Ligand, BiasedExperiment, AnalyzedExperiment,AnalyzedAssay MISSING_PROTEINS = {} SKIPPED = 0 class Command(BaseBuild): mylog = logging.getLogger(__name__) mylog.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') file_handler = logging.FileHandler('biasDataTest.log') file_handler.setLevel(logging.ERROR) file_handler.setFormatter(formatter) mylog.addHandler(file_handler) help = 'Reads bias data and imports it' publication_cache = {} ligand_cache = {} data_all = [] def add_arguments(self, parser): parser.add_argument('-p', '--proc', type=int, action='store', dest='proc', default=1, help='Number of processes to run') parser.add_argument('-f', '--filename', action='append', dest='filename', help='Filename to import. Can be used multiple times') parser.add_argument('-u', '--purge', action='store_true', dest='purge', default=False, help='Purge existing bias records') parser.add_argument('--test_run', action='store_true', help='Skip this during a test run', default=False) def handle(self, *args, **options): if options['test_run']: print('Skipping in test run') return # delete any existing structure data if options['purge']: try: print('Started purging bias data') self.purge_bias_data() print('Ended purging bias data') except Exception as msg: print(msg) # import the structure data print('CREATING BIAS DATA') print(options['filename']) self.build_bias_data() self.build_bias_data_subtypes() self.logger.info('COMPLETED CREATING BIAS DATA') # pylint: disable=R0201 def purge_bias_data(self): delete_bias_experiment = AnalyzedExperiment.objects.all() delete_bias_experiment.delete() self.logger.info('Data is purged') def get_from_model(self): try: content = BiasedExperiment.objects.all().prefetch_related( 'experiment_data', 'ligand', 'receptor', 'publication' , 'publication__web_link' , 'experiment_data__emax_ligand_reference', ).order_by('publication', 'receptor', 'ligand') except BiasedExperiment.DoesNotExist: self.logger.info('Data is not returned') content = None return content def process_data(self, content): rd = [] counter = 0 for instance in enumerate(content): temp_obj = [] fin_obj = {} fin_obj['main'] = (instance[1]) vendor_counter = 0 vendors_quantity = None for i in instance[1].experiment_data_vendors.all(): vendor_counter = vendor_counter + 1 if not vendor_counter: vendors_quantity = i self.logger.info(vendors_quantity) for entry in instance[1].experiment_data.all(): author_list = list() for author in entry.experiment_data_authors.all(): author_list.append(author.author) temp_obj.append(entry) counter += 1 fin_obj['authors'] = author_list fin_obj['children'] = temp_obj fin_obj['vendor_counter'] = vendor_counter rd.append(fin_obj) self.logger.info('Return dict is returned') return rd def queryset_to_dict(self, results): ''' Merge bias experminet data with assay data ''' send = list() for j in results: temp_dict = dict() temp = dict() doubles = [] temp['ligand_source_id'] = None temp['publication'] = j['main'].publication temp['species'] = j['main'].receptor.species.common_name # temp['ligand'] = j['main'].ligand temp['endogenous_ligand'] = j['main'].endogenous_ligand temp['receptor'] = j['main'].receptor temp['assay'] = dict() temp['vendor_counter'] = j['vendor_counter'] temp['reference'] = list() temp['authors'] = j['authors'] temp['ref_ligand_experiment'] = dict() temp['article_quantity'] = 0 temp['labs_quantity'] = 0 temp['ligand_source_id'] = j['main'].ligand_source_id temp['ligand_source_type'] = j['main'].ligand_source_type temp['reference_ligand'] = None if not j['children']: continue temp_dict['potency'] = '' temp_dict['t_factor'] = '' temp_dict['log_bias_factor'] = '' temp_dict['order_no'] = 0 temp_dict['reference_ligand'] = None temp_dict['signalling_protein'] = j['children'][0].signalling_protein.lower() temp_dict['cell_line'] = j['children'][0].cell_line temp_dict['family'] = j['children'][0].family temp_dict['assay_type'] = j['children'][0].assay_type temp_dict['assay_measure_method'] = j['children'][0].assay_measure temp_dict['assay_time_resolved'] = j['children'][0].assay_time_resolved if j['children'][0].quantitive_activity: temp_dict['quantitive_activity'] = j['children'][0].quantitive_activity temp_dict['quantitive_activity_initial'] = j['children'][0].quantitive_activity else: temp_dict['quantitive_activity'] = None temp_dict['quantitive_activity_initial'] = None temp_dict['qualitative_activity'] = j['children'][0].qualitative_activity temp_dict['quantitive_unit'] = j['children'][0].quantitive_unit temp_dict['quantitive_efficacy'] = j['children'][0].quantitive_efficacy temp_dict['efficacy_unit'] = j['children'][0].efficacy_unit temp_dict['quantitive_measure_type'] = j['children'][0].quantitive_measure_type temp_dict['efficacy_measure_type'] = j['children'][0].efficacy_measure_type temp_dict['t_coefficient'] = j['children'][0].bias_value temp_dict['t_coefficient_initial'] = j['children'][0].bias_value_initial temp_dict['bias_reference'] = j['children'][0].bias_reference temp_dict['emax_reference_ligand'] = j['children'][0].emax_ligand_reference temp_dict['ligand_function'] = j['children'][0].ligand_function temp_dict['ligand'] = j['main'].ligand if (temp_dict['quantitive_activity_initial'] and temp_dict['quantitive_measure_type'] != "Effect at single point measurement"): temp_dict['quantitive_activity_initial'] = (-1) * math.log10( temp_dict['quantitive_activity_initial']) temp_dict['quantitive_activity_initial'] = "{:.2F}".format( Decimal(temp_dict['quantitive_activity_initial'])) temp['ref_ligand_experiment'] = j['children'][0].emax_ligand_reference doubles.append(temp_dict) temp['assay'] = doubles send.append(temp) self.logger.info('Queryset processed') return send def combine_unique(self, data): ''' combining tested assays and reference assays ''' context = dict() for j in data: name = str(j['publication'].id) + \ '/' + '/' + str(j['receptor'].id) temp_obj = list() if name in context: temp_obj = context[name]['assay'] for i in j['assay']: temp_obj.append(i) context[name] = j context[name]['assay'] = temp_obj self.logger.info('Combined experiments by publication and receptor') return context def process_referenced_assays(self, data): ''' separate tested assays and reference assays ''' for j in data.items(): assays, reference = self.return_refenced_assays(j[1]['assay']) j[1]['assay_list'] = assays j[1]['reference_assays_list'] = reference return data def return_refenced_assays(self, assays): # pylint: disable=no-member main, reference = list(), list() for assay in assays: if assay['bias_reference'] != '': reference.append(assay) else: main.append(assay) sorted_main = sorted(main, key=lambda k: k['quantitive_activity'] if k['quantitive_activity'] else 999999, reverse=True) sorted_reference = reference if len(sorted_reference) == 0: self.get_reference_from_emax(assays) # if len(sorted_reference) == 0: # print('implementation required') return sorted_main, sorted_reference def filter_reference_assay(self, reference_return, reference_ligand): reference_return[:] = [d for d in reference_return if d.get('ligand') == reference_ligand] self.logger.info('Trying to get reference from assays') return reference_return def filter_assay_reference(self, assay_return, reference_ligand): assay_return[:] = [d for d in assay_return if d.get('ligand') != reference_ligand] self.logger.info('Trying to get filtering references from assays') return assay_return def chose_reference_from_assays(self, assays): references = list() final_assay = list() reference_ligand = Ligand() for i in reversed(assays): if (i['quantitive_activity'] and i['quantitive_activity'] is not None and i['quantitive_efficacy'] and i['quantitive_efficacy'] is not None and i['ligand'] is not None): reference_ligand=i['ligand'] reference_return = assays.copy() assay_return = assays.copy() references=self.filter_reference_assay(reference_return,reference_ligand) final_assay=self.filter_assay_reference(assay_return,reference_ligand) self.logger.info('return reference assay') return references, final_assay def get_reference_from_emax(self, assays): reference_ligand = list() for i in assays: if i['emax_reference_ligand'] == i['ligand']: reference_ligand.append(i) self.logger.info('return reference emax') return reference_ligand def separate_ligands(self, context): content = dict() for i in context.items(): for assay in i[1]['assay_list']: name = str(i[1]['publication'].id) + \ '/'+ str(assay['ligand'].id) + '/' + str(i[1]['receptor'].id) if name in content: content[name]['assay_list'].append(assay) else: content[name] = dict() content[name]['publication'] = i[1]['publication'] content[name]['ligand'] = assay['ligand'] content[name]['endogenous_ligand'] = i[1]['endogenous_ligand'] content[name]['receptor'] = i[1]['receptor'] content[name]['vendor_counter'] = i[1]['vendor_counter'] content[name]['authors'] = i[1]['authors'] content[name]['ref_ligand_experiment'] = i[1]['ref_ligand_experiment'] content[name]['article_quantity'] = i[1]['article_quantity'] content[name]['labs_quantity'] = i[1]['labs_quantity'] content[name]['assay_list'] = list() content[name]['ligand_source_type'] = i[1]['ligand_source_type'] content[name]['ligand_source_id'] = i[1]['ligand_source_id'] content[name]['assay_list'].append(assay) content[name]['reference_assays_list'] = i[1]['reference_assays_list'] content[name]['assay'] = i[1]['assay'] return content def limit_family_set(self, assay_list): # pylint: disable=no-member families = list() proteins = set() for assay in assay_list: if assay['family'] not in proteins: proteins.add(assay['family']) families.append(assay) else: compare_val = next(item for item in families if item["family"] == assay['family']) try: if assay['quantitive_activity'] < compare_val['quantitive_activity']: families[:] = [d for d in families if d.get('family') != compare_val['family']] families.append(assay) except TypeError: self.logger.info('skipping families if existing copy') continue return families def limit_family_set_subs(self, assay_list): families = list() proteins = set() for assay in assay_list: if assay['signalling_protein'] not in proteins: proteins.add(assay['signalling_protein']) families.append(assay) else: compare_val = next(item for item in families if item["signalling_protein"] == assay['signalling_protein']) try: if assay['quantitive_activity'] < compare_val['quantitive_activity']: families[:] = [d for d in families if d.get('signalling_protein') != compare_val['signalling_protein']] families.append(assay) except: families.append(assay) self.logger.info('limit_family_set_subs error') return families def process_calculation(self, context): for i in context.items(): test = dict() temp_obj = list() for j in i[1]['assay_list']: if j not in temp_obj: temp_obj.append(j) else: pass i[1]['assay_list'] = temp_obj test = sorted(i[1]['assay_list'], key=lambda k: k['quantitive_activity'] if k['quantitive_activity'] else 999999, reverse=False) for item in enumerate(test): item[1]['order_no'] = item[0] i[1]['biasdata'] = test i[1]['reference_lists'] = list() i[1].pop('assay_list') # calculate log bias i[1]['reference_lists'] = self.calc_bias_factor(i[1]['biasdata'], i[1]['reference_assays_list'], i[1]['assay']) # recalculates lbf if it is negative i[1]['biasdata'] = self.validate_lbf(i) self.calc_potency_and_transduction(i[1]['biasdata']) return context # pylint: disable=C0301 def calc_bias_factor(self, biasdata, reference, assay): reference_lists = list() most_reference = dict() most_potent = dict() for i in biasdata: if i['order_no'] == 0: most_potent = i most_reference = self.get_reference_assay(reference, most_potent) reference_lists.append(most_reference) i['log_bias_factor'] = None for i in biasdata: if i['order_no'] != 0: temp_reference = self.get_reference_assay(reference, i) reference_lists.append(temp_reference) try: if (i['quantitive_measure_type'].lower() == 'ec50' and temp_reference['quantitive_measure_type'].lower() == 'ec50' and most_potent['quantitive_measure_type'].lower() == 'ec50' and most_reference['quantitive_measure_type'].lower() == 'ec50'): a = 0 b = 0 c = 0 d = 0 a = math.log10( most_potent['quantitive_efficacy'] / most_potent['quantitive_activity']) b = math.log10( most_reference['quantitive_efficacy'] / most_reference['quantitive_activity']) c = math.log10( i['quantitive_efficacy'] / i['quantitive_activity']) d = math.log10( temp_reference['quantitive_efficacy'] / temp_reference['quantitive_activity']) temp_calculation = self.caclulate_bias_factor_variables( a, b, c, d) i['log_bias_factor'] = round(temp_calculation, 1) elif (i['quantitive_measure_type'].lower() == 'ic50' and temp_reference['quantitive_measure_type'].lower() == 'ic50'): i['log_bias_factor'] = 'Only agonist in main pathway' except: try: if i['qualitative_activity'] == 'No activity': i['log_bias_factor'] = "Full Bias" elif i['qualitative_activity'] == 'Low activity': i['log_bias_factor'] = "High Bias" elif i['qualitative_activity'] == 'High activity': i['log_bias_factor'] = "Low Bias" except: i['log_bias_factor'] = None return reference_lists def get_reference_assay(self, reference, assay): return_assay = dict() try: for i in reference: if i['signalling_protein'] == assay['signalling_protein']: if i['assay_type'] == assay['assay_type']: return_assay = i except: self.logger.info('get_reference_assay error') return return_assay return return_assay def caclulate_bias_factor_variables(self, a, b, c, d): ''' calculations for log bias factor inputs ''' lgb = 0 try: lgb = (a - b) - (c - d) except: lgb = 0 self.logger.info('caclulate_bias_factor_variables error') return lgb def calc_potency_and_transduction(self, biasdata): count = 0 most_potent = dict() for i in biasdata: count += 1 if i['order_no'] == 0: most_potent = i # T_factor -- bias factor for i in biasdata: if i['order_no'] > 0: try: if i['quantitive_measure_type'].lower() == 'ec50' or i['quantitive_measure_type'].lower() == 'ic50': if i['quantitive_activity'] is not None and i['quantitive_activity'] != 0 and most_potent['quantitive_activity'] is not None: i['potency'] = round( i['quantitive_activity'] / most_potent['quantitive_activity'], 1) elif i['quantitive_measure_type'].lower() == 'pec50' or i['quantitive_measure_type'].lower() == 'pic50': i['potency'] = round( most_potent['quantitive_activity'] - i['quantitive_activity'], 1) except: i['potency'] = None if i['t_coefficient'] is not None and most_potent['t_coefficient'] is not None: i['t_factor'] = round( most_potent['t_coefficient'] - i['t_coefficient'], 1) else: i['t_factor'] = None self.logger.info('t_factor error') def validate_lbf(self, i): for x in i[1]['biasdata']: if isinstance(x['log_bias_factor'], float): if x['log_bias_factor'] < 0.0: j = next((item for item in i[1]['biasdata'] if item["order_no"] == 0), None) x['order_no'], j['order_no'] = j['order_no'], x['order_no'] self.calc_bias_factor(i[1]['biasdata'], i[1]['reference_assays_list'], i[1]['assay']) self.validate_lbf(i) else: self.logger.info('validate_lbf error') return i[1]['biasdata'] return i[1]['biasdata'] def save_data_to_model(self, context, source): for i in context['data'].items(): if self.fetch_experiment(i[1]['publication'], i[1]['ligand'], i[1]['receptor'], source) == False: primary, secondary = self.fetch_receptor_trunsducers( i[1]['receptor']) if len(i[1]['biasdata']) > 1: experiment_entry = AnalyzedExperiment(publication=i[1]['publication'], ligand=i[1]['ligand'], receptor=i[1]['receptor'], source=source, endogenous_ligand=i[1]['endogenous_ligand'], vendor_quantity=i[1]['vendor_counter'], reference_ligand=i[1]['ref_ligand_experiment'], primary=primary, secondary=secondary, article_quantity=i[1]['article_quantity'], labs_quantity=i[1]['labs'], ligand_source_id = i[1]['ligand_source_id'], ligand_source_type = i[1]['ligand_source_type'] ) experiment_entry.save() for ex in i[1]['biasdata']: emax_ligand = ex['emax_reference_ligand'] experiment_assay = AnalyzedAssay(experiment=experiment_entry, family=ex['family'], order_no=ex['order_no'], signalling_protein=ex['signalling_protein'], cell_line=ex['cell_line'], assay_type=ex['assay_type'], assay_measure=ex['assay_measure_method'], assay_time_resolved=ex['assay_time_resolved'], ligand_function=ex['ligand_function'], quantitive_measure_type=ex['quantitive_measure_type'], quantitive_activity=ex['quantitive_activity'], quantitive_activity_initial=ex['quantitive_activity_initial'], quantitive_unit=ex['quantitive_unit'], qualitative_activity=ex['qualitative_activity'], quantitive_efficacy=ex['quantitive_efficacy'], efficacy_measure_type=ex['efficacy_measure_type'], efficacy_unit=ex['efficacy_unit'], potency=ex['potency'], t_coefficient=ex['t_coefficient'], t_value=ex['t_coefficient_initial'], t_factor=ex['t_factor'], log_bias_factor=ex['log_bias_factor'], emax_ligand_reference=emax_ligand ) experiment_assay.save() for ex in i[1]['reference_lists']: try: emax_ligand = ex['emax_reference_ligand'] experiment_assay = AnalyzedAssay(experiment=experiment_entry, assay_description='reference_assay', family=ex['family'], order_no=ex['order_no'], signalling_protein=ex['signalling_protein'], cell_line=ex['cell_line'], assay_type=ex['assay_type'], assay_measure=ex['assay_measure_method'], assay_time_resolved=ex['assay_time_resolved'], ligand_function=ex['ligand_function'], quantitive_measure_type=ex['quantitive_measure_type'], quantitive_activity=ex['quantitive_activity'], quantitive_activity_initial=ex['quantitive_activity_initial'], quantitive_unit=ex['quantitive_unit'], qualitative_activity=ex['qualitative_activity'], quantitive_efficacy=ex['quantitive_efficacy'], efficacy_measure_type=ex['efficacy_measure_type'], efficacy_unit=ex['efficacy_unit'], potency=ex['potency'], t_coefficient=ex['t_coefficient'], t_value=ex['t_coefficient_initial'], t_factor=ex['t_factor'], log_bias_factor=ex['log_bias_factor'], emax_ligand_reference=emax_ligand ) experiment_assay.save() except: pass else: pass else: self.logger.info('saving error') def fetch_experiment(self, publication, ligand, receptor, source): ''' fetch receptor with Protein model requires: protein id, source ''' try: experiment = AnalyzedExperiment.objects.filter( publication=publication, ligand=ligand, receptor=receptor, source=source) experiment = experiment.get() return True except Exception: self.logger.info('fetch_experiment error') experiment = None return False def fetch_receptor_trunsducers(self, receptor): primary = set() temp = str() temp1 = str() secondary = set() try: gprotein = ProteinGProteinPair.objects.filter(protein=receptor) for x in gprotein: if x.transduction and x.transduction == 'primary': primary.add(x.g_protein.name) elif x.transduction and x.transduction == 'secondary': secondary.add(x.g_protein.name) for i in primary: temp += str(i) + str(', ') for i in secondary: temp1 += str(i) + str(', ') return temp, temp1 except: self.logger.info('receptor not found error') return None, None def process_signalling_proteins(self, context): for i in context.items(): i[1]['assay_list'] = self.limit_family_set(i[1]['assay_list']) self.logger.info('process_signalling_proteins') return context def process_signalling_proteins_subs(self, context): for i in context.items(): i[1]['assay_list'] = self.limit_family_set_subs(i[1]['assay_list']) self.logger.info('process_signalling_proteins_subs') return context def build_bias_data(self): print('Build bias data gproteins') context = dict() content = self.get_from_model() print('stage # 1: Getting data finished, data points: ', len(content)) content_with_children = self.process_data(content) print('stage # 2: Processing children in queryset finished', len(content_with_children)) changed_data = self.queryset_to_dict(content_with_children) print('stage # 3: Converting queryset into dict finished', len(changed_data)) send = self.combine_unique(changed_data) referenced_assay = self.process_referenced_assays(send) print('stage # 4: Separating reference assays is finished', len(referenced_assay)) ligand_data = self.separate_ligands(referenced_assay) limit_family = self.process_signalling_proteins(ligand_data) print('stage # 5: Separate ligands', len(limit_family)) calculated_assay = self.process_calculation(limit_family) print('stage # 6: Calucating finished') self.count_publications(calculated_assay) print('stage # 7: labs and publications counted') context.update({'data': calculated_assay}) print('stage # 8: combining data into common dict is finished') # save dataset to model self.save_data_to_model(context, 'different_family') print('stage # 9: saving data to model is finished') def build_bias_data_subtypes(self): print('Build bias data gproteins') context = dict() content = self.get_from_model() print('stage # 1 : Getting data finished, data points: ', len(content)) content_with_children = self.process_data(content) print('stage # 2: Processing children in queryset finished', len(content_with_children)) changed_data = self.queryset_to_dict(content_with_children) print('stage # 3: Converting queryset into dict finished', len(changed_data)) send = self.combine_unique(changed_data) referenced_assay = self.process_referenced_assays(send) print('stage # 4: Separating reference assays is finished', len(referenced_assay)) ligand_data = self.separate_ligands(referenced_assay) limit_family = self.process_signalling_proteins_subs(ligand_data) print('stage # 5: Separate ligands') calculated_assay = self.process_calculation(limit_family) print('stage # 6: Merging assays with same ligand/receptor/publication is finished') self.count_publications(calculated_assay) print('stage # 7: labs and publications counted') context.update({'data': calculated_assay}) print('stage # 8: combining data into common dict is finished') # save dataset to model self.save_data_to_model(context, 'same_family') print('stage # 9: saving data to model is finished') def count_publications(self, context): temp = dict() for i in context.items(): labs = list() i[1]['labs'] = 0 labs.append(i[1]['publication']) lab_counter = 1 for j in context.items(): if j[1]['publication'] not in labs: if set(i[1]['authors']) & set(j[1]['authors']): lab_counter += 1 labs.append(j[1]['publication']) i[1]['labs'] = lab_counter temp_obj = 1 name = str(i[1]['ref_ligand_experiment']) + \ '/' + str(i[1]['ligand']) + '/' + str(i[1]['receptor']) if name in temp: for assays in i[1]['biasdata']: if assays['order_no'] > 0: if assays['log_bias_factor'] != None and assays['log_bias_factor'] != '' or assays['t_factor'] != None and assays['t_factor'] != '': temp_obj = temp[name] + 1 temp[name] = temp_obj for i in context.items(): temp_obj = 0 name = str(i[1]['ref_ligand_experiment']) + \ '/' + str(i[1]['ligand']) + '/' + str(i[1]['receptor']) if name in temp: i[1]['article_quantity'] = temp[name] self.logger.info('count_publications') ```
{ "source": "jimmyai/chess-alpha-zero", "score": 3 }
#### File: src/chess_zero/config.py ```python import os import numpy as np class PlayWithHumanConfig: """ Config for allowing human to play against an agent using uci """ def __init__(self): self.simulation_num_per_move = 1200 self.threads_multiplier = 2 self.c_puct = 1 # lower = prefer mean action value self.noise_eps = 0 self.tau_decay_rate = 0 # start deterministic mode self.resign_threshold = None def update_play_config(self, pc): """ :param PlayConfig pc: :return: """ pc.simulation_num_per_move = self.simulation_num_per_move pc.search_threads *= self.threads_multiplier pc.c_puct = self.c_puct pc.noise_eps = self.noise_eps pc.tau_decay_rate = self.tau_decay_rate pc.resign_threshold = self.resign_threshold pc.max_game_length = 999999 class Options: new = False class ResourceConfig: """ Config describing all of the directories and resources needed during running this project """ def __init__(self): self.project_dir = os.environ.get("PROJECT_DIR", _project_dir()) self.data_dir = os.environ.get("DATA_DIR", _data_dir()) self.model_dir = os.environ.get("MODEL_DIR", os.path.join(self.data_dir, "model")) self.model_best_config_path = os.path.join(self.model_dir, "model_best_config.json") self.model_best_weight_path = os.path.join(self.model_dir, "model_best_weight.h5") self.model_best_distributed_ftp_server = "alpha-chess-zero.mygamesonline.org" self.model_best_distributed_ftp_user = "2537576_chess" self.model_best_distributed_ftp_password = "<PASSWORD>-2" self.model_best_distributed_ftp_remote_path = "/alpha-chess-zero.mygamesonline.org/" self.next_generation_model_dir = os.path.join(self.model_dir, "next_generation") self.next_generation_model_dirname_tmpl = "model_%s" self.next_generation_model_config_filename = "model_config.json" self.next_generation_model_weight_filename = "model_weight.h5" self.play_data_dir = os.path.join(self.data_dir, "play_data") self.play_data_filename_tmpl = "play_%s.json" self.log_dir = os.path.join(self.project_dir, "logs") self.main_log_path = os.path.join(self.log_dir, "main.log") def create_directories(self): dirs = [self.project_dir, self.data_dir, self.model_dir, self.play_data_dir, self.log_dir, self.next_generation_model_dir] for d in dirs: if not os.path.exists(d): os.makedirs(d) def flipped_uci_labels(): """ Seems to somehow transform the labels used for describing the universal chess interface format, putting them into a returned list. :return: """ def repl(x): return "".join([(str(9 - int(a)) if a.isdigit() else a) for a in x]) return [repl(x) for x in create_uci_labels()] def create_uci_labels(): """ Creates the labels for the universal chess interface into an array and returns them :return: """ labels_array = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] numbers = ['1', '2', '3', '4', '5', '6', '7', '8'] promoted_to = ['q', 'r', 'b', 'n'] for l1 in range(8): for n1 in range(8): destinations = [(t, n1) for t in range(8)] + \ [(l1, t) for t in range(8)] + \ [(l1 + t, n1 + t) for t in range(-7, 8)] + \ [(l1 + t, n1 - t) for t in range(-7, 8)] + \ [(l1 + a, n1 + b) for (a, b) in [(-2, -1), (-1, -2), (-2, 1), (1, -2), (2, -1), (-1, 2), (2, 1), (1, 2)]] for (l2, n2) in destinations: if (l1, n1) != (l2, n2) and l2 in range(8) and n2 in range(8): move = letters[l1] + numbers[n1] + letters[l2] + numbers[n2] labels_array.append(move) for l1 in range(8): l = letters[l1] for p in promoted_to: labels_array.append(l + '2' + l + '1' + p) labels_array.append(l + '7' + l + '8' + p) if l1 > 0: l_l = letters[l1 - 1] labels_array.append(l + '2' + l_l + '1' + p) labels_array.append(l + '7' + l_l + '8' + p) if l1 < 7: l_r = letters[l1 + 1] labels_array.append(l + '2' + l_r + '1' + p) labels_array.append(l + '7' + l_r + '8' + p) return labels_array class Config: """ Config describing how to run the application Attributes (best guess so far): :ivar list(str) labels: labels to use for representing the game using UCI :ivar int n_lables: number of labels :ivar list(str) flipped_labels: some transformation of the labels :ivar int unflipped_index: idk :ivar Options opts: options to use to configure this config :ivar ResourceConfig resources: resources used by this config. :ivar ModelConfig mode: config for the model to use :ivar PlayConfig play: configuration for the playing of the game :ivar PlayDataConfig play_date: configuration for the saved data from playing :ivar TrainerConfig trainer: config for how training should go :ivar EvaluateConfig eval: config for how evaluation should be done """ labels = create_uci_labels() n_labels = int(len(labels)) flipped_labels = flipped_uci_labels() unflipped_index = None def __init__(self, config_type="mini"): """ :param str config_type: one of "mini", "normal", or "distributed", representing the set of configs to use for all of the config attributes. Mini is a small version, normal is the larger version, and distributed is a version which runs across multiple GPUs it seems """ self.opts = Options() self.resource = ResourceConfig() if config_type == "mini": import chess_zero.configs.mini as c elif config_type == "normal": import chess_zero.configs.normal as c elif config_type == "distributed": import chess_zero.configs.distributed as c else: raise RuntimeError(f"unknown config_type: {config_type}") self.model = c.ModelConfig() self.play = c.PlayConfig() self.play_data = c.PlayDataConfig() self.trainer = c.TrainerConfig() self.eval = c.EvaluateConfig() self.labels = Config.labels self.n_labels = Config.n_labels self.flipped_labels = Config.flipped_labels @staticmethod def flip_policy(pol): """ :param pol policy to flip: :return: the policy, flipped (for switching between black and white it seems) """ return np.asarray([pol[ind] for ind in Config.unflipped_index]) Config.unflipped_index = [Config.labels.index(x) for x in Config.flipped_labels] # print(Config.labels) # print(Config.flipped_labels) def _project_dir(): d = os.path.dirname return d(d(d(os.path.abspath(__file__)))) def _data_dir(): return os.path.join(_project_dir(), "data") ``` #### File: chess_zero/lib/data_helper.py ```python import os import json from datetime import datetime from glob import glob from logging import getLogger import chess import pyperclip from chess_zero.config import ResourceConfig logger = getLogger(__name__) def pretty_print(env, colors): new_pgn = open("test3.pgn", "at") game = chess.pgn.Game.from_board(env.board) game.headers["Result"] = env.result game.headers["White"], game.headers["Black"] = colors game.headers["Date"] = datetime.now().strftime("%Y.%m.%d") new_pgn.write(str(game) + "\n\n") new_pgn.close() pyperclip.copy(env.board.fen()) def find_pgn_files(directory, pattern='*.pgn'): dir_pattern = os.path.join(directory, pattern) files = list(sorted(glob(dir_pattern))) return files def get_game_data_filenames(rc: ResourceConfig): pattern = os.path.join(rc.play_data_dir, rc.play_data_filename_tmpl % "*") files = list(sorted(glob(pattern))) return files def get_next_generation_model_dirs(rc: ResourceConfig): dir_pattern = os.path.join(rc.next_generation_model_dir, rc.next_generation_model_dirname_tmpl % "*") dirs = list(sorted(glob(dir_pattern))) return dirs def write_game_data_to_file(path, data): try: with open(path, "wt") as f: json.dump(data, f) except Exception as e: print(e) def read_game_data_from_file(path): try: with open(path, "rt") as f: return json.load(f) except Exception as e: print(e) ```
{ "source": "JimmyAstle/CbD-LR-Scripts", "score": 2 }
#### File: CbD-LR-Scripts/psrecon/run-recon.py ```python from cbapi.defense import * import os import time import argparse import sys cb_url = "" cb_token = "" cb_ssl = "True" recon_path = "C:\\recon" def execute_recon(cb, host=None): #Select the device you want to gather recon data from query_hostname = "hostNameExact:%s" % host print ("[DEBUG] Executing remote forensics on Hostname: " + host) #Create a new device object to launch LR on device = cb.select(Device).where(query_hostname).first() #Execute our LR session with device.lr_session() as lr_session: print ("[DEBUG] Create remote recon directory on: " + host) lr_session.create_directory(recon_path) print ("[DEBUG] Putting PsRecon on the remote host") lr_session.put_file(open("psrecon.ps1", "rb"), recon_path + "\\psrecon.ps1") print ("[DEBUG] Setting PowerShell execution policy to unrestricted") lr_session.create_process("powershell.exe SET-EXECUTIONPOLICY UNRESTRICTED") print ("[DEBUG] Executing PsRecon on host: " + host) lr_session.create_process("powershell.exe -nologo -file %s\\psrecon.ps1" % recon_path) p = recon_path p = os.path.normpath(p) try: path = lr_session.walk(p, False) # False because bottom->up walk, not top->down for items in path: # For each subdirectory in the path directory = os.path.normpath((str(items[0]))) # The subdirectory in OS path syntax subpathslist = items[1] # List of all subpaths in the subdirectory fileslist = items[2] # List of files in the subdirectory if str(fileslist) != "[]": # If the subdirectory is not empty for afile in fileslist: # For each file in the subdirectory if not(afile.endswith(".ps1")): fpath = os.path.normpath(directory + "\\" + afile) # The path + filename in OS path syntax print ("[DEBUG] Reading File: " + fpath) dmp = lr_session.get_file(fpath) time.sleep(2.5) # Ensures script and server are synced save_path1 = "{0}".format(directory) save_path1 = (save_path1.replace(p, "")) if save_path1.startswith('\\'): save_path1 = save_path1[1:] save_path1 = save_path1.replace("\\", "/") save_path1 = os.path.normpath(save_path1) if not os.path.exists(save_path1): os.makedirs(save_path1) os.chmod(save_path1, 0o777) # read and write by everyone save_path1 = save_path1 + "/" + afile print ("[DEBUG] Writing file to path " + save_path1) open(save_path1, "wb").write(dmp) print ("[DEBUG] Reading Path: " + directory) except Exception as err: # Could occur if main path did not exist, session issue, or unusual permission issue print("[ERROR] Encountered: " + str(err) + "\n[FAILURE] Fatal error caused abort!") # Report error, and continue print ("[DEBUG] Setting PowerShell execution policy back to restricted") lr_session.create_process("powershell.exe SET-EXECUTIONPOLICY RESTRICTED") #Lets clean up the recon scripts on the endpoint now that we collected all the data path = lr_session.walk(p,False) for items in path: # For each subdirectory in the path directory = os.path.normpath((str(items[0]))) # The subdirectory in OS path syntax fileslist = items[2] # List of files in the subdirectory if str(fileslist) != "[]": # If the subdirectory is not empty for afile in fileslist: # For each file in the subdirectory fpath = os.path.normpath(directory + "\\" + afile) # The path + filename in OS path syntax print ("[DEBUG] Deleting File: " + fpath) lr_session.delete_file(fpath) # Delete the file print ("[DEBUG] Deleting Path: " + directory) lr_session.delete_file(directory) # Delete the empty directory def main(): parser = argparse.ArgumentParser() parser.add_argument("-m", "--machinename", help="machinename to run host forensics recon on") args = parser.parse_args() #Create the CbD LR API object cb = CbDefenseAPI(url=cb_url, token=cb_token, ssl_verify=cb_ssl) if args.machinename: execute_recon(cb, host=args.machinename) else: print ("[ERROR] You must specify a machinename with a --machinename parameter. IE ./run_recon.py --machinename cheese") if __name__ == '__main__': sys.exit(main()) ```
{ "source": "JimmyAustin/Dota2TeamBuilder", "score": 2 }
#### File: Dota2TeamBuilder/modelling/ready_data.py ```python import json from os.path import join from toolbox.notebook.fs import * from utils import * file_count = 100 input_directory = './scraper/scrape_results' output_directory = './scraper/cleaned_data/' def file_ref(i): return open(join(output_directory, str(i).zfill(5) + ".json"), 'wb') files = [file_ref(i) for i in range(0, file_count)] for line in get_json_lines_in_folder(input_directory): if proper_match(line) is True: index = bucket_string(json.dumps(line), bucket_count=file_count) files[index].write(json.dumps(line).encode('utf-8')) files[index].write('\n'.encode('utf-8')) ``` #### File: Dota2TeamBuilder/scraper/scraper.py ```python import dota2api from ratelimit import limits, sleep_and_retry import os import json from time import sleep import random directory = 'scrape_results' all_files = [os.path.join(directory, x) for x in os.listdir(directory)] seen_players = set() unseen_player_list = [] seen_match_ids = set() duplicate_matches_count = 0 for filepath in all_files: print(filepath) with open(filepath, 'rb') as file_ref: for line in file_ref: try: result = json.loads(line.decode('utf8')) if 'type' in result and result['type'] == 'STARTED_ON_NEW_PLAYER': seen_players.add(result['player_id']) else: if result['match_id'] in seen_match_ids: duplicate_matches_count = duplicate_matches_count + 1 seen_match_ids.add(result['match_id']) for player in result['players']: if 'account_id' in player: unseen_player_list.append(player['account_id']) except Exception: pass unseen_player_list = [x for x in unseen_player_list if x not in seen_players] if len(unseen_player_list) == 0: unseen_player_list = [31632658] # That's Zin print('Inited, {0} duplicate matches'.format(duplicate_matches_count)) import dota2api from ratelimit import limits, sleep_and_retry api = dota2api.Initialise() match_count = len(seen_match_ids) def get_next_filename(): count = 1 while True: path = './scrape_results/all_matches_{0}.json'.format(count) if os.path.exists(path) is False: return path count = count + 1 matches_file = open(get_next_filename(), 'wb') def print_status_update(): players_seen = len(seen_players) - len(unseen_player_list) print("Matches saved: {0}, Players Seen: {1}, Players To Go: {2}".format(match_count, players_seen, len(unseen_player_list))) @sleep_and_retry @limits(calls=1, period=1.10) def api_call(endpoint, *args, **kwargs): try: return getattr(api, endpoint)(*args, **kwargs) except dota2api.src.exceptions.APITimeoutError: sleep(10) except Exception as e: print(e) print("Sleeping it off.") sleep(10) def get_player(player_id): print('Getting player: {0}'.format(player_id)) try: history = api_call('get_match_history', account_id=player_id) except Exception as e: print(e) print("Sleeping it off.") sleep(10) matches_file.write(json.dumps({'type': 'STARTED_ON_NEW_PLAYER', 'player_id': player_id}).encode('utf8')) matches_file.write('\n'.encode('utf8')) for match in random.sample(history['matches'], 5): get_match(match['match_id']) def get_match(match_id): global match_count if match_id in seen_match_ids: return print('get_match_details: {0}'.format(match_id)) print_status_update() details = api_call('get_match_details', match_id) matches_file.write(json.dumps(details).encode('utf8')) matches_file.write('\n'.encode('utf8')) match_count = match_count + 1 for player in details['players']: if player.get('account_id') and player['account_id'] not in seen_players: unseen_player_list.append(player['account_id']) seen_players.add(player['account_id']) while len(unseen_player_list) > 0: try: get_player(unseen_player_list.pop()) except Exception as e: pass ```
{ "source": "jimmybergman/openstack-dashboard", "score": 2 }
#### File: src/django_openstack/api.py ```python from django.conf import settings import logging import glance.client import httplib import json import openstack.compute import openstackx.admin import openstackx.extras import openstackx.auth from urlparse import urlparse import json def url_for(request, service_name, admin=False): catalog = request.session['serviceCatalog'] if admin: rv = catalog[service_name][0]['adminURL'] else: rv = catalog[service_name][0]['internalURL'] return rv def compute_api(request): compute = openstack.compute.Compute(auth_token=request.session['token'], management_url=url_for(request, 'nova')) # this below hack is necessary to make the jacobian compute client work compute.client.auth_token = request.session['token'] compute.client.management_url = url_for(request, 'nova') return compute def account_api(request): return openstackx.extras.Account(auth_token=request.session['token'], management_url=url_for(request, 'keystone', True)) def glance_api(request): o = urlparse(url_for(request, 'glance')) return glance.client.Client(o.hostname, o.port) def admin_api(request): return openstackx.admin.Admin(auth_token=request.session['token'], management_url=url_for(request, 'nova', True)) def extras_api(request): return openstackx.extras.Extras(auth_token=request.session['token'], management_url=url_for(request, 'nova')) def auth_api(): return openstackx.auth.Auth(management_url=\ settings.OPENSTACK_KEYSTONE_URL) def get_tenant(request, tenant_id): tenants = auth_api().tenants.for_token(request.session['token']) for t in tenants: if str(t.id) == str(tenant_id): return t def token_info(token): hdrs = {"Content-type": "application/json", "X_AUTH_TOKEN": settings.OPENSTACK_ADMIN_TOKEN, "Accept": "text/json"} o = urlparse(token.serviceCatalog['keystone'][0]['adminURL']) conn = httplib.HTTPConnection(o.hostname, o.port) conn.request("GET", "/v2.0/tokens/%s" % token.id, headers=hdrs) response = conn.getresponse() data = json.loads(response.read()) admin = False for role in data['auth']['user']['roleRefs']: if role['roleId'] == 'Admin': admin = True return {'tenant': data['auth']['user']['tenantId'], 'user': data['auth']['user']['username'], 'admin': admin} def get_image_cache(request): images = glance_api(request).get_images_detailed() image_dict = {} for image in images: image_dict[image['id']] = image return image_dict ``` #### File: syspanel/views/flavors.py ```python from operator import itemgetter from django import template from django import http from django.conf import settings from django.contrib import messages from django.contrib.auth.decorators import login_required from django.shortcuts import redirect from django.shortcuts import render_to_response from openstackx.api import exceptions as api_exceptions from django_openstack import api from django_openstack import forms class CreateFlavor(forms.SelfHandlingForm): flavorid = forms.CharField(max_length="10", label="Flavor ID") name = forms.CharField(max_length="5", label="Name") vcpus = forms.CharField(max_length="5", label="VCPUs") memory_mb = forms.CharField(max_length="5", label="Memory MB") disk_gb = forms.CharField(max_length="5", label="Disk GB") def handle(self, request, data): api.admin_api(request).flavors.create(data['name'], int(data['memory_mb']), int(data['vcpus']), int(data['disk_gb']), int(data['flavorid'])) messages.success(request, '%s was successfully added to flavors.' % data['name']) return redirect('syspanel_flavors') class DeleteFlavor(forms.SelfHandlingForm): flavorid = forms.CharField(required=True) def handle(self, request, data): flavor_id = data['flavorid'] api.admin_api(request).flavors.delete(flavor_id, True) return redirect(request.build_absolute_uri()) @login_required def index(request): for f in (DeleteFlavor,): _, handled = f.maybe_handle(request) if handled: return handled # We don't have any way of showing errors for these, so don't bother # trying to reuse the forms from above delete_form = DeleteFlavor() flavors = [] try: flavors = api.admin_api(request).flavors.list() except api_exceptions.ApiException, e: messages.error(request, 'Unable to get usage info: %s' % e.message) flavors.sort(key=lambda x: x.id, reverse=True) return render_to_response('syspanel_flavors.html',{ 'delete_form': delete_form, 'flavors': flavors, }, context_instance = template.RequestContext(request)) @login_required def create(request): form, handled = CreateFlavor.maybe_handle(request) if handled: return handled return render_to_response('syspanel_create_flavor.html',{ 'form': form, }, context_instance = template.RequestContext(request)) ```
{ "source": "JimmyBlunt/RPi-Jukebox-RFID", "score": 3 }
#### File: components/twist_Volume/twist_volume.py ```python from __future__ import print_function import qwiic_twist import time import sys import mpd import serial import subprocess from math import floor from subprocess import call global muted global volume global orig_volume def runExample(): def toggle_mute(): global muted global orig_volume global volume if muted == False: orig_volume=volume client.volume(-volume) muted=True elif muted: client.volume(orig_volume) muted = False mute=0 global muted global orig_volume global volume muted = False reboot=False shutdown=False client = mpd.MPDClient() client.connect("localhost", 6600) myTwist = qwiic_twist.QwiicTwist() #print ( dir(myTwist) ) #print ( dir(client)) if myTwist.connected == False: print("The Qwiic twist device isn't connected to the system. Please check your connection", \ file=sys.stderr) return myTwist.begin() myTwist.set_color(112, 70, 0) #Set Red and Blue LED brightnesses to half of max. myTwist.connect_red = 5 # Red LED will go down 10 in brightness with each encoder tick myTwist.connect_green = -5 #Blue LED will go up 10 in brightness with each encoder tick myTwist.connect_blue = 2 #Blue LED will go up 10 in brightness with each encoder tick while True: mpdstatus = client.status() # Fetch volume volume = int(mpdstatus["volume"]) if myTwist.moved: diff = myTwist.get_diff() if diff > 1000 : diff = (-65536 + diff) #print("Diff :" + str(diff)) client.volume(2*diff) myTwist.clear_interrupts() myTwist.get_diff(clear_value=True) if myTwist.clicked: toggle_mute() myTwist.clear_interrupts() if myTwist.pressed: start_time = time.time() while myTwist.pressed: buttonTime = time.time() - start_time #print("Button pressed : " + str(buttonTime) + " sec" ) if .01 <= buttonTime < 2: # short push mute mute=1 elif 3 <= buttonTime < 5: print('long Press! REBOOT!') #longer push reboot reboot=True elif buttonTime >= 5: print('Looong Press! Shutdown') # really long push shutdwon reboot=False #shutdown=True myTwist.clear_interrupts() if mute == 1: toggle_mute() mute = 0 if shutdown: call(["sudo", "shutdown","-h", "now"]) if reboot: call(["sudo", "reboot"]) #time.sleep(0.5) if __name__ == '__main__': try: runExample() except (KeyboardInterrupt, SystemExit) as exErr: print("\nEnding Example 3") sys.exit(0) ```
{ "source": "jimmybot/cedict2db", "score": 3 }
#### File: jimmybot/cedict2db/pinyin.py ```python import re PINYIN_TONE_MARK = { 0: 'aoeiuvü', 1: 'āōēīūǖǖ', 2: 'áóéíúǘǘ', 3: 'ǎǒěǐǔǚǚ', 4: 'àòèìùǜǜ' } PUNCTUATION = { ' ', '-', # hyphen '–', # endash '—', # emdash '\t', '\n', '.', ',', '?', '!', ':', ';', '。', ',', '?', '!', ':', ';', } def decode_pinyin(pinyin_numerical): r = "" t = "" for c in pinyin_numerical: # convenience for ü if c == 'v': t += 'ü' # another convenience for ü elif c == ':' and len(t) >= 1 and t[-1] == 'u': t = t[:-1] + "\u00fc" elif c >= '0' and c <= '5' or c in PUNCTUATION: if c >= '0' and c <= '5': tone = int(c) % 5 if tone != 0: m = re.search("[aoeiuv\u00fc]+", t) if m is None: t += c elif len(m.group(0)) == 1: t = t[:m.start(0)] + PINYIN_TONE_MARK[tone][PINYIN_TONE_MARK[0].index(m.group(0))] + t[m.end(0):] # more than one match so we need to figure out which vowel to mark else: before = t if 'a' in t: t = t.replace("a", PINYIN_TONE_MARK[tone][0]) elif 'o' in t: t = t.replace("o", PINYIN_TONE_MARK[tone][1]) elif 'e' in t: t = t.replace("e", PINYIN_TONE_MARK[tone][2]) elif t.endswith("ui"): t = t.replace("i", PINYIN_TONE_MARK[tone][3]) elif t.endswith("iu"): t = t.replace("u", PINYIN_TONE_MARK[tone][4]) else: t += c r += t t = "" else: t += c r += t #print("%s | %s" % (pinyin_numerical, r)) return r ```
{ "source": "jimmybot/slowspacer", "score": 3 }
#### File: jimmybot/slowspacer/slowspacer.py ```python __author__ = "<NAME>" __license__ = "CC0 Public Domain" __email__ = "<EMAIL>" import fcntl import os import select import time def _no_block_read(infile): try: line = infile.readline().rstrip() # Reading will not block with the nonblocking attribute set # If there is nothing to read, instead of blocking, IOError is raised except IOError: line = None return line def watch(logfile, timeout=3, spacer='='): is_spaced = False spacer_line = spacer * 80 # default is that reading stdin will block if no data is ready to be read # we use fcntl to set reading to non-blocking fcntl.fcntl(logfile.fileno(), fcntl.F_SETFL, os.O_NONBLOCK) while True: # either data is available to be read or we may need to add a spacer rfiles, wfiles, xfiles = select.select([logfile], [], [], timeout) # select says we're ready to read if rfiles: # normally we should not block here but # it can happen if a partial line was written # in this case, the partial line will be output # when a full line is ready line = _no_block_read(rfiles[0]) if line and len(line): # we have real content again, reset is_spaced to False is_spaced = False while line and len(line): print(line) line = _no_block_read(rfiles[0]) # select timed-out with nothing available to read, let's print a spacer else: # check if a spacer was already printed before printing # (no need to print consecutive spacers) if not is_spaced: is_spaced = True print("\n" + spacer_line + "\n") if __name__ == '__main__': import argparse import sys parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-s', '--seconds', metavar='S', default='3', type=int, help='number of seconds to wait before adding a spacer (default is 3)') parser.add_argument('-c', '--character', metavar='C', default='=', type=str, help='character used as a spacer (default is \'=\')') args = parser.parse_args() watch(sys.stdin, args.seconds, args.character) ```
{ "source": "jimmybot/typedtsv", "score": 2 }
#### File: typedtsv/tests/test_typedtsv.py ```python from collections import OrderedDict from datetime import datetime, timezone, timedelta import io import toml from typedtsv import __version__ from typedtsv.typedtsv import * def test_version_in_sync(): assert toml.load('pyproject.toml')['tool']['poetry']['version'] == __version__ def test_load_header(): assert OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), )) == load_header('title:str\turl:str\tn_loads:int') def test_load_line(): header_info = load_header('one:float\ttwo:int\tthree:json\tfour:str\tfive:str') line = '1\t1\t{"dragonfruit": "huolongguo"}\t大驚小怪\t5' assert [ 1.0, 1, {"dragonfruit": "huolongguo"}, "大驚小怪", "5", ] == load_line(header_info, line) def test_parse_datetime(): datetimes_from_strs = ( (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=0))), '2000-01-01 00:00:00Z'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=0))), '2000-01-01T00:00:00Z'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=1))), '2000-01-01 00:00:00+01'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=-3, minutes=-30))), '2000-01-01 00:00:00-0330'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=-3, minutes=-30))), '2000-01-01 00:00:00-03:30'), (datetime(2000, 1, 1, 0, 0, 0, 123000, timezone(timedelta(hours=-3, minutes=-30))), '2000-01-01 00:00:00.123-03:30'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=-3, minutes=-30))), '2000-01-01 00:00:00 -03:30'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=-3, minutes=-30))), '2000-01-01 -03:30'), (datetime(2000, 1, 1, 0, 0, 0, 0, timezone(timedelta(hours=0))), '2000-01-01Z'), ) for expected, raw_string in datetimes_from_strs: assert expected == parse_datetime(raw_string) def test_dump_datetime(): strs_from_datetime = ( ('2000-01-01 00:00', datetime(2000, 1, 1)), ('2000-01-01 00:00', datetime(2000, 1, 1, 0, 0, 0)), ('2000-01-01 00:00', datetime(2000, 1, 1, 0, 0, 0, tzinfo=timezone.utc)), ('2000-01-01 00:00:59', datetime(2000, 1, 1, 0, 0, 59, tzinfo=timezone.utc)), ('2000-01-01 00:00:35.123', datetime(2000, 1, 1, 0, 0, 35, 123000, tzinfo=timezone.utc)), ('2000-01-01 08:00:09-0600', datetime(2000, 1, 1, 8, 0, 9, tzinfo=timezone(timedelta(hours=-6)))), ('2000-01-01 08:00-0600', datetime(2000, 1, 1, 8, 0, 0, tzinfo=timezone(timedelta(hours=-6)))), ) for expected, dt in strs_from_datetime: assert expected == dump_datetime(dt) def test_dump_header(): header_info = OrderedDict(( ('one', 'int'), ('two', 'str') )) assert 'one:int\ttwo:str' == dump_header(header_info) def test_dump_line(): header_info = OrderedDict(( ('one', 'int'), ('two', 'str') )) assert '99\tgreen\\t+\\tblue\\n=grue' == dump_line(header_info, ( 99, 'green\t+\tblue\n=grue' )) def test_header_roundtrip(): raw_header = 'title:str\turl:str\tn_loads:int' header_info = load_header(raw_header) raw_header_roundtrip = dump_header(header_info) assert raw_header == raw_header_roundtrip def test_line_roundtrip(): header_info = OrderedDict(( ('one', 'int'), ('two', 'str') )) parsed_data = [ 99, 'green\t+\tblue\n=grue\\t\\n\\ \\\\' ] assert parsed_data == load_line(header_info, dump_line(header_info, parsed_data)) def test_loads(): raw_data = io.StringIO() raw_data.write('# 1 comment line should be ignored\n') raw_data.write('title:str\turl:str\tn_loads:int\n') raw_data.write('# 2 comment line should be ignored\n') raw_data.write('0\thttps://biglittlebear.cc\t55\n') raw_data.write('# 3 comment line should be ignored\n') raw_data.write('\\#\t\\\\#\t99\n') raw_data.seek(0) header_info, rows = loads(raw_data) assert OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), )) == header_info assert [ ['0', 'https://biglittlebear.cc', 55], ['#', '\\#', 99], ] == rows def test_load_list(): raw_data = io.StringIO() raw_data.write('# 1 comment line should be ignored\n') raw_data.write('title:str\n') raw_data.write('# 2 comment line should be ignored\n') raw_data.write('https://biglittlebear.cc\n') raw_data.write('https://jimmybot.com\n') raw_data.write('# 3 comment line should be ignored\n') raw_data.write('\\#\n') raw_data.seek(0) header_info, rows = load_list(raw_data) assert OrderedDict(( ('title', 'str'), )) == header_info assert [ 'https://biglittlebear.cc', 'https://jimmybot.com', '#', ] == rows def test_load_bool_true(): raw_data = io.StringIO() raw_data.write('title:str\tfetched:bool\n') raw_data.write('0\ttrue\n') raw_data.write('1\tt\n') raw_data.write('2\tyes\n') raw_data.write('3\ty\n') raw_data.write('4\ton\n') raw_data.write('5\t1\n') raw_data.seek(0) header_info, rows = loads(raw_data) for row in rows: assert True == row[1] def test_load_bool_false(): raw_data = io.StringIO() raw_data.write('title:str\tfetched:bool\n') raw_data.write('0\tfalse\n') raw_data.write('1\tf\n') raw_data.write('2\tno\n') raw_data.write('3\tn\n') raw_data.write('4\toff\n') raw_data.write('5\t0\n') raw_data.seek(0) header_info, rows = loads(raw_data) for row in rows: assert False == row[1] def test_dumps(): header_info = OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), )) data = [ ['0', 'https://biglittlebear.cc', 55], ] outfile = io.StringIO() dumps(header_info, data, outfile) outfile.seek(0) raw_data_dumped = outfile.read() raw_data_expected = ( 'title:str\turl:str\tn_loads:int\n' '0\thttps://biglittlebear.cc\t55\n' ) assert raw_data_expected == raw_data_dumped def test_dump_list(): data = [ 'https://biglittlebear.cc', 'https://jimmybot.com', ] outfile = io.StringIO() dump_list(('title', 'str'), data, outfile) outfile.seek(0) raw_data_dumped = outfile.read() raw_data_expected = ( 'title:str\n' 'https://biglittlebear.cc\n' 'https://jimmybot.com\n' ) assert raw_data_expected == raw_data_dumped def test_dump_roundtrip(): header_info = OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), ('in_cache', 'bool'), )) data = [ ['0', 'https://biglittlebear.cc', 55, True], ['1', 'https://archive.org', 99, False], ] outfile = io.StringIO() dumps(header_info, data, outfile) outfile.seek(0) parsed_header_info, parsed_data = loads(outfile) assert header_info == parsed_header_info assert data == parsed_data def test_dump_roundtrip_slashn(): header_info = OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), )) data = [ ['chit \n neng \t sah \\n', 'https://biglittlebear.cc', 55], ] outfile = io.StringIO() dumps(header_info, data, outfile) outfile.seek(0) parsed_header_info, parsed_data = loads(outfile) assert header_info == parsed_header_info assert data == parsed_data def test_dump_roundtrip_windowsnewline(): header_info = OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), )) data = [ ['chit \r\n \n neng \t sah \\n', 'https://biglittlebear.cc', 55], ] # regular files need to be opened with newline='\n' # io.StringIO has a good default to only recognize '\n' outfile = io.StringIO(newline='\n') dumps(header_info, data, outfile) outfile.seek(0) parsed_header_info, parsed_data = loads(outfile) assert header_info == parsed_header_info assert data == parsed_data def test_dump_roundtrip_null(): header_info = OrderedDict(( ('title', 'str'), ('url', 'str'), ('n_loads', 'int'), )) data = [ ['chit \r\n \n neng \t sah \\n', 'null', 55], ['chit \r\n \n neng \t sah \\n', '', 55], ['chit \r\n \n neng \t sah \\n', None, 55], ['chit \r\n \n neng \t sah \\n', 'https://archive.org', None], ] # regular files need to be opened with newline='\n' # io.StringIO has a good default to only recognize '\n' outfile = io.StringIO(newline='\n') dumps(header_info, data, outfile) outfile.seek(0) parsed_header_info, parsed_data = loads(outfile) assert header_info == parsed_header_info assert data == parsed_data def test_dump_roundtrip_datetime(): col_names = ['updated'] data = [ [datetime(1999, 9, 9, tzinfo=timezone.utc)], [datetime(1999, 9, 9, 0, 0, 0, tzinfo=timezone.utc)], [datetime(1999, 9, 9, 8, 3, 7, tzinfo=timezone.utc)], [datetime(1999, 9, 9, 8, 3, 7, tzinfo=timezone(timedelta(hours=-6)))], [datetime(1999, 9, 9, 8, 3, 7, 323000, tzinfo=timezone(timedelta(hours=-6)))], ] # regular files need to be opened with newline='\n' # io.StringIO has a good default to only recognize '\n' outfile = io.StringIO(newline='\n') dumps(col_names, data, outfile) outfile.seek(0) parsed_header_info, parsed_data = loads(outfile) assert OrderedDict(( ('updated', 'datetime'), )) == parsed_header_info assert data == parsed_data ```
{ "source": "jimmybow/myDL", "score": 2 }
#### File: myDL/ts/GRU_attention_cv.py ```python import torch import torch.utils.data as Data from torch import nn import torch.nn.functional as F import random import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV, KFold, TimeSeriesSplit from mydf import * from datetime import datetime, timedelta import math import copy import pkg_resources import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from pandas.plotting import register_matplotlib_converters import io import imageio ############################################################################################################### ### define class ############################################################################################################### class torch_Dataset(Data.Dataset): # 需要继承 data.Dataset def __init__(self, x, y): self.x = x self.y = y def __getitem__(self, index): data = (self.x[index], self.y[index]) return data def __len__(self): return len(self.y) class AttnDecoderRNN(nn.Module): def __init__(self, hidden_size, max_length): super(AttnDecoderRNN, self).__init__() self.hidden_size = hidden_size self.max_length = max_length self.attn = nn.Linear(2*self.hidden_size, self.max_length) # 512 => 10 self.attn_combine = nn.Linear(2*self.hidden_size, self.hidden_size) # 512 => 256 self.gru = nn.GRU(self.hidden_size, self.hidden_size, batch_first=True) def forward(self, input, hidden, encoder_last_layer_outputs): attn = self.attn(torch.cat((input[0], hidden[0]), 1)) # (1, 2*hidden_size) => (1, max_length) attn_weights = F.softmax(attn, dim=1) # (1, max_length) # (1, 1, max_length) X (1, max_length, hidden_size) = (1, 1, hidden_size) encoder_last_layer_outputs 的線性組合 attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_last_layer_outputs.unsqueeze(0)) # (1, 1, hidden_size) output = torch.cat((input[0], attn_applied[0]), 1) # (1, 2*hidden_size) output = self.attn_combine(output).unsqueeze(0) # (1, 1, hidden_size) output = F.relu(output) # (1, 1, hidden_size) output, hidden = self.gru(output, hidden) return output, hidden # (1, 1, hidden_size), (1, 1, hidden_size) class GRU_seq2seq(nn.Module): def __init__(self, input_size=5, hidden_size=10, output_size=3, prediction_length=12, time_step=24): super(GRU_seq2seq, self).__init__() self.prediction_length = prediction_length self.GRU_encoder = nn.GRU(input_size, hidden_size, batch_first=True) self.GRU_decoder = AttnDecoderRNN(hidden_size, max_length=time_step) self.reg = nn.Linear(hidden_size, output_size) def forward(self, x): x, encoder_hidden = self.GRU_encoder(x) encoder_last_layer_outputs = x[0] decoder_hidden = encoder_hidden[[-1]] decoder_input = decoder_hidden # (1, 1, hidden_size) decoder_output_list = [] for di in range(self.prediction_length): decoder_output, decoder_hidden = self.GRU_decoder(decoder_input, decoder_hidden, encoder_last_layer_outputs) decoder_output_list.append(decoder_output) decoder_input = decoder_output output = torch.cat(decoder_output_list, 1) # (1, prediction_length, hidden_size) output = self.reg(output) # (1, prediction_length, 3) return output class QuantileLoss(nn.Module): def __init__(self, quantiles): super().__init__() self.quantiles = quantiles def forward(self, preds, target): assert not target.requires_grad assert preds.size(0) == target.size(0) losses = [] for i, q in enumerate(self.quantiles): errors = target - preds[:, :, i] losses.append( torch.max( (q-1) * errors, q * errors ).unsqueeze(2) ) result = torch.sum(torch.cat(losses, dim=2), dim=2) w = torch.unsqueeze(torch.arange(result.shape[1],0,-1), 1).float()/np.arange(result.shape[1],0,-1).sum() loss = torch.mean(torch.mm(result, w)) return loss ############################################################################################################### ### define function ############################################################################################################### def RMSE(x, y, model, std_target, scaler): predict_value = [model(x[[i]])[0, :, 0].data.numpy() for i in range(len(x))] actual_value = y.data.numpy() return np.sqrt(mean_squared_error(predict_value, actual_value))*std_target*scaler def fit(data_source, target_column, output_filename = None, model_source = None, freq = '1M', data_use_length = None, prediction_length = 12, time_step = 24, prediction_quantile = [0.05, 0.95], test_size = 0, cv_mode = 'kfold', n_splits = 5, hidden_size = 50, learning_rate = 1e-2, weight_decay = 0, early_stopping_patience = 500, epochs = 5000): ############################################################################################################### ### preprocessing data ############################################################################################################### Quantile = [0.5] + prediction_quantile mini_batch_size = 1 if isinstance(data_source, str): df = pd.read_csv(open(data_source)) else: df = data_source if 'time' in df.columns.tolist(): df.index = df.time.astype('datetime64[ns]') df >>= drop('time') df = df.astype(float).resample(freq).mean() if data_use_length is not None: df = df.iloc[-data_use_length:] features = df.columns.tolist() target_column_index = features.index(target_column) time_index = df.index if df.isnull().values.sum() > 0: print("The data source has missing value after aggregated by freq = '{}'".format(freq)) print("Filling missing value use method = 'pad'") df = df.fillna(method = 'pad').dropna() elif len(df) <= time_step + prediction_length - 1: raise Exception("The sample size is too low after aggregated, it's not enough to training") scaler = 10 scaler_std = preprocessing.StandardScaler() data_norm = scaler_std.fit_transform(df)/scaler # 只會有 len(data_norm) - time_step + 1 個樣本 = len(sample_ranges_x) sample_ranges_x = [range(i, i + time_step) for i in range(len(data_norm)) if i + time_step <= len(data_norm)] data_x = torch.tensor([data_norm[sample_range] for sample_range in sample_ranges_x]).float() # 只會有 len(data_norm) - prediction_length + 1 個樣本 = len(sample_ranges_y) sample_ranges_y = [range(i, i + prediction_length) for i in range(len(data_norm)) if i + prediction_length <= len(data_norm)] data_y = torch.tensor([data_norm[sample_range, target_column_index] for sample_range in sample_ranges_y]).float() # 最終只會有 len(sample_ranges_x) - prediction_length = len(sample_ranges_y) - time_step 個學習樣本 data_x = data_x[:-prediction_length] data_y = data_y[time_step:] final_ranges_x = sample_ranges_x[:-prediction_length] final_ranges_y = sample_ranges_y[time_step:] ############################################################################################################### ### apply window-move size = prediction_length/3 ############################################################################################################### #window_move = math.ceil(prediction_length/5) #data_x = data_x[::window_move] #data_y = data_y[::window_move] ############################################################################################################### ### k-fold split ############################################################################################################### if test_size > 0: test_x = data_x[-test_size:] test_y = data_y[-test_size:] data_x = data_x[:-test_size] data_y = data_y[:-test_size] if cv_mode == 'kfold': splits = list(KFold(n_splits=n_splits, shuffle=True, random_state=2019).split(data_x, data_y)) else: splits = list(TimeSeriesSplit(n_splits=n_splits).split(data_x, data_y)) train_size = len(splits[0][0]) validate_size = len(splits[0][1]) ############################################################################################################### ### model train ############################################################################################################### loss_func = QuantileLoss(Quantile) if model_source is not None: if isinstance(model_source, str): model_list = torch.load(model_source)['model_list'] else: model_list = model_source['model_list'] else: model_list = [] for model_index, (train_idx, validate_idx) in enumerate(splits): print("Beginning fold {}".format(model_index)) train_dataset = torch_Dataset(data_x[train_idx], data_y[train_idx]) train_loader = Data.DataLoader(dataset = train_dataset, batch_size = mini_batch_size, shuffle = True) validate_x = data_x[validate_idx] validate_y = data_y[validate_idx] net = GRU_seq2seq(input_size = len(features), output_size = len(Quantile), hidden_size = hidden_size, time_step = time_step, prediction_length = prediction_length) if model_source is not None: net.load_state_dict(model_list[model_index]['state_dict']) optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay) std_target = np.sqrt(scaler_std.var_)[target_column_index] if std_target == 0: std_target = 1 train_loss_list = [] validate_loss_list = [] for epoch in range(epochs): # training mode net.train() for step, (x, y) in enumerate(train_loader, 1): # 前向传播 out = net(x) # (mini_batch, 12, 3) loss = loss_func(out, y) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() # evaluation mode net.eval() with torch.no_grad(): #validate_loss = loss_func(net(validate_x), validate_y).item() validate_loss = RMSE(validate_x, validate_y, net, std_target, scaler) validate_loss_list.append(validate_loss) train_loss_list.append(loss.item()) if epoch == 0 or validate_loss < best_validate_loss: best_validate_loss = validate_loss best_state_dict = copy.deepcopy(net.state_dict()) best_epoch = epoch print('Best Epoch:', epoch, 'Train_loss:', '%.10f' % loss.item(), 'Validate_loss:', '%.10f' % validate_loss) elif epoch - best_epoch > early_stopping_patience: print("Validate_RMSE don't imporved for {} epoch, training stop !".format(early_stopping_patience)) break else: print('---- Epoch:', epoch, 'Train_loss:', '%.10f' % loss.item(), 'Validate_loss:', '%.10f' % validate_loss) if model_source is None: model_list.append({ 'state_dict': best_state_dict, 'best_epoch': best_epoch, 'best_validate_loss': best_validate_loss, 'train_loss_list': train_loss_list, 'validate_loss_list': validate_loss_list }) ###################################################################################################### ### final model evaluation ###################################################################################################### RMSE_list = [] for model_index in range(len(model_list)): best_validate_loss = model_list[model_index]['best_validate_loss'] print('model {}:'.format(model_index)) print('-- Best validate loss = {}'.format(best_validate_loss)) RMSE_list.append(best_validate_loss) mean_CV_RMSE = np.mean(RMSE_list) print('mean CV RMSE =', mean_CV_RMSE) if test_size > 0: pred_result_total = [] for i in range(test_size): pred_result_list = [] for inner_model in model_list: net.load_state_dict(inner_model['state_dict']) net.eval() with torch.no_grad(): pred_result_list.append( net(test_x[[i]])[0, :, 0].data.numpy() ) pred_result = np.mean(pred_result_list, axis=0) pred_result_total.append(pred_result) test_RMSE = np.sqrt(mean_squared_error(pred_result_total, test_y.data.numpy()))*std_target*scaler else: test_RMSE = -1 ############################################################################################################### ### Output ############################################################################################################### output_model = { 'model_list': model_list, 'mean_CV_RMSE' : mean_CV_RMSE, 'scaler_std':scaler_std, 'features': features, 'target_column':target_column, 'freq': freq, 'hidden_size': hidden_size, 'Quantile': Quantile, 'mini_batch_size': mini_batch_size, 'learning_rate': learning_rate, 'early_stopping_patience': early_stopping_patience, 'epochs': epochs, 'time_step': time_step, 'prediction_length': prediction_length, 'train_size':train_size, 'validate_size':validate_size, 'test_size':test_size, 'n_splits':n_splits, 'cv_mode':cv_mode, 'weight_decay':weight_decay, 'test_RMSE': test_RMSE } if output_filename is not None: torch.save(output_model, output_filename) return output_model ############################################################################################################### ### End ############################################################################################################### def predict(data_source, model_source, predict_start_time): if isinstance(model_source, str): model = torch.load(model_source) else: model = model_source if isinstance(data_source, str): df = pd.read_csv(open(data_source)) else: df = data_source model_list = model['model_list'] features = model['features'] target_column = model['target_column'] freq = model['freq'] time_step = model['time_step'] prediction_length = model['prediction_length'] hidden_size = model['hidden_size'] Quantile = model['Quantile'] scaler_std = model['scaler_std'] scaler = 10 if 'time' in df.columns.tolist(): df.index = df.time.astype('datetime64[ns]') df >>= drop('time') df = df[features].astype(float).resample(freq).mean() time_index = pd.date_range(df.index[0], periods= len(df) + prediction_length , freq = freq) target_column_index = features.index(target_column) if df.isnull().values.sum() > 0: print("The data source has missing value after aggregated by freq = '{}'".format(freq)) print("Filling missing value use method = 'pad'") df = df.fillna(method = 'pad').dropna() predict_range = where(time_index >= predict_start_time)[:prediction_length] if len(predict_range) < prediction_length: predict_range = np.arange(len(time_index))[-prediction_length:] input_data_range = np.arange(predict_range[0] - time_step, predict_range[0]) if sum(input_data_range < 0) > 0 : input_data_range = np.arange(time_step) predict_range = np.arange(time_step, time_step + prediction_length) net = GRU_seq2seq(input_size = len(features), output_size = len(Quantile), hidden_size = hidden_size, time_step = time_step, prediction_length = prediction_length) std_target = np.sqrt(scaler_std.var_)[target_column_index] if std_target == 0: std_target = 1 mean_target = scaler_std.mean_[target_column_index] pred_result_list = [] inpu_data = torch.tensor(scaler_std.transform(df.iloc[input_data_range])).float().unsqueeze(0)/scaler for inner_model in model_list: net.load_state_dict(inner_model['state_dict']) net.eval() with torch.no_grad(): pred_result_list.append( net(inpu_data).data.numpy()[0]*std_target*scaler + mean_target ) pred_result = np.mean(pred_result_list, axis=0) pred_result_dict = {str(q):pred_result[:, i].tolist() for i, q in enumerate(Quantile)} return {'predict_target': target_column, 'predict_result': pred_result_dict, 'time': time_index[predict_range].strftime('%Y-%m-%d %H:%M:%S').tolist()} def predict_to_gif(data_source, model_source, predict_start_time, filename, ticks_step = 15, size = [15, 7]): if isinstance(model_source, str): model = torch.load(model_source) else: model = model_source if isinstance(data_source, str): df = pd.read_csv(open(data_source)) else: df = data_source features = model['features'] target_column = model['target_column'] freq = model['freq'] time_step = model['time_step'] prediction_length = model['prediction_length'] Quantile = model['Quantile'] n_splits = model['n_splits'] mean_CV_RMSE = model['mean_CV_RMSE'] test_RMSE = model['test_RMSE'] cv_mode = model['cv_mode'] if 'time' in df.columns.tolist(): df.index = df.time.astype('datetime64[ns]') df >>= drop('time') df = df[features].astype(float).resample(freq).mean() time_index = pd.date_range(df.index[0], periods= len(df) + prediction_length , freq = freq) target_column_index = features.index(target_column) if df.isnull().values.sum() > 0: print("The data source has missing value after aggregated by freq = '{}'".format(freq)) print("Filling missing value use method = 'pad'") df = df.fillna(method = 'pad').dropna() fname = pkg_resources.resource_filename(__name__, '../Fonts/kaiu.ttf') image_list = [] register_matplotlib_converters() fig, ax = plt.subplots() for i in predict_start_time: pred_result = predict(data_source, model_source, i) time_index = pd.date_range(df.index[0], periods = len(df) + len(pred_result['time']), freq = freq) time_index_pred = pd.date_range(pred_result['time'][0], periods = len(pred_result['time']), freq = freq) diff = (time_index[1] - time_index[0]).total_seconds() if diff >= 360*86400: time_index_label = time_index.astype(str).str.slice(0, 4) title = '{} 未來走勢預測 (預測開始於 {})'.format(target_column, pred_result['time'][0][:4]) elif diff >= 20*86400: time_index_label = time_index.astype(str).str.slice(0, 7) title = '{} 未來走勢預測 (預測開始於 {})'.format(target_column, pred_result['time'][0][:7]) elif diff >= 86400: time_index_label = time_index.astype(str).str.slice(0, 10) title = '{} 未來走勢預測 (預測開始於 {})'.format(target_column, pred_result['time'][0][:10]) elif diff >= 3600: time_index_label = time_index.astype(str).str.slice(0, 13) title = '{} 未來走勢預測 (預測開始於 {})'.format(target_column, pred_result['time'][0][:13]) elif diff >= 60: time_index_label = time_index.astype(str).str.slice(0, 16) title = '{} 未來走勢預測 (預測開始於 {})'.format(target_column, pred_result['time'][0][:16]) else: time_index_label = time_index.astype(str) title = '{} 未來走勢預測 (預測開始於 {})'.format(target_column, pred_result['time'][0]) font = FontProperties(fname = fname, size = 15) fig.set_size_inches(*size) p1 = ax.plot(df[target_column], 'b')[0] p2 = ax.plot(time_index_pred, pred_result['predict_result'][str(Quantile[0])], 'r')[0] p3 = ax.fill_between(time_index_pred, pred_result['predict_result'][str(Quantile[1])], pred_result['predict_result'][str(Quantile[2])], color = 'c') p4 = ax.plot([], [], ' ')[0] if cv_mode == 'kfold': label_cv_mode = 'fold' else: label_cv_mode = 'ts' ax.legend([p1, p2, p3, p4, p4], ('實際值', '預測值', '{:.0%} 預測區間'.format(Quantile[2]-Quantile[1]), '{}-{} CV mean RMSE = {:.4f}'.format(n_splits, label_cv_mode, mean_CV_RMSE), 'test RMSE = {:.4f}'.format(test_RMSE) ) , loc='best', prop=font) ax.set_xticks(time_index[::ticks_step]) ax.set_xticklabels(time_index_label[::ticks_step]) ax.set_ylabel(target_column, fontproperties=font, fontsize = 20) ax.set_xlabel('時間', fontproperties=font, fontsize = 20) ax.set_title(title, fontproperties=font, fontsize = 30, y = 1.03) buf = io.BytesIO() fig.savefig(buf) plt.cla() buf.seek(0) image_list.append(imageio.imread(buf)) imageio.mimsave(filename, image_list, duration=1.5) ```
{ "source": "JimmyBoyle/FeatureToggles", "score": 2 }
#### File: FeatureToggles/src/core.py ```python import json import logging import ast import boto3 import botocore from jsonschema import ValidationError import config LOGGER = logging.getLogger(__name__) client = boto3.client('ssm') paginator = client.get_paginator('get_parameters_by_path') PREFIX = '/' + config.PREFIX + '/' def load(): """Load feature toggles. Load all feature toggle values from SSM """ response_iterator = paginator.paginate( Path=PREFIX, Recursive=True ) response = {} for iters in response_iterator: for param in iters['Parameters']: toggle, dimension = param['Name'].split('/')[-2:] if toggle not in response: response[toggle] = {} response[toggle][dimension] = ast.literal_eval(param['Value']) return response def update(updates): """Update feature toggles. Apply the given updates to the stored feature toggles. """ cur_params = load() params_to_clear = [] params_to_update = [] for update in updates: action = update['action'] if action != 'CLEAR_ALL': if 'dimension' not in update: raise ValidationError('update must specify a "dimension" key') if action == 'SET': if 'value' not in update: raise ValidationError('SET update must specify a "value" key') params_to_update.append(update) elif action == 'CLEAR': if update['toggle_name'] in cur_params: if update['dimension'] in cur_params[update['toggle_name']]: params_to_clear.append( PREFIX + update['toggle_name'] + '/' + update['dimension']) else: raise ValidationError('{} toggle does not exist'.format(update['toggle_name'])) elif action == 'CLEAR_ALL': if update['toggle_name'] in cur_params: for dimension in cur_params[update['toggle_name']]: param_name = PREFIX + \ update['toggle_name'] + '/' + dimension params_to_clear.append(param_name) else: raise ValidationError('{} toggle does not exist'.format(update['toggle_name'])) else: raise Exception('Unsupported action: {}'.format(action)) _update_params(params_to_update) _clear_params(params_to_clear) def _update_params(params): for param in params: client.put_parameter( Name=PREFIX + param['toggle_name'] + '/' + param['dimension'], Value=str(param['value']), Type='String', Overwrite=True ) def _clear_params(param_names): # max size of items to delete for ssm api call is 10 so we split into size 10 chunks n = 10 for param_chunk in [param_names[i:i + n] for i in range(0, len(param_names), n)]: response = client.delete_parameters( Names=param_chunk ) ```
{ "source": "JimmyButler25/receipe-api", "score": 3 }
#### File: app/core/models.py ```python from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin class UserManager(BaseUserManager): def create_user(self, email, password=<PASSWORD>, **extra_fields): """create and save new user""" # checking email is placed if not email: raise ValueError('Please enter your email address') # normalize the email below user = self.model(email = self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using = self._db) return user def create_superuser(self, email, password): """Creating the Superuser and saving""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user # run the test # creating model class class User(AbstractBaseUser, PermissionsMixin): """custom user model that supports using email instead of username""" email = models.EmailField(max_length=255, unique = True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) """assign UserManager to User""" objects = UserManager() USERNAME_FIELD = 'email' """USERNAME_FIELD A string describing the name of the field on the user model that is used as the unique identifier. This will usually be a username of some kind, but it can also be an email address, or any other unique identifier. The field must be unique (i.e., have unique=True set in its definition), unless you use a custom authentication backend that can support non-unique usernames.""" """ is_active A boolean attribute that indicates whether the user is considered “active”. This attribute is provided as an attribute on AbstractBaseUser defaulting to True. """ ``` #### File: core/tests/test_admin.py ```python from django.test import TestCase, Client from django.contrib.auth import get_user_model # helper function called reverse to generate url for our page from django.urls import reverse class AdminSiteTests(TestCase): """Create a setup function""" def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email = '<EMAIL>', password = '<PASSWORD>' ) # this uses the client helper function to log a user into django with django auth which makes our tests easier to write self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email = '<EMAIL>', password = '<PASSWORD>', name = 'Test user full name' ) def test_users_listed(self): """Test for users listed on User page""" url = reverse('admin:core_user_changelist') response = self.client.get(url) self.assertContains(response, self.user.name) self.assertContains(response, self.user.email) # run the test def test_user_change_page(self): """Check that the user edit page works""" url = reverse('admin:core_user_change', args=[self.user.id]) # similar to /admin/core/user/1 response = self.client.get(url) # test that the page renders okay self.assertEqual(response.status_code, 200) # test fails when we run it def test_create_user_page(self): """Test to check that the user page works""" url = reverse('admin:core_user_add') response = self.client.get(url) self.assertEqual(response.status_code, 200) # run the test bse we have not yet specified user name ```
{ "source": "jimmybutton/django-vaccine-dashboard", "score": 4 }
#### File: management/commands/_utils.py ```python def convert(arg_in): """convert to float or int if possible, return string otherwise""" if not arg_in: return None try: arg_float = float(arg_in) arg_int = int(arg_float) if arg_int == arg_float: return arg_int else: return arg_float except: return arg_in if __name__ == "__main__": assert convert('') == None assert convert('1') == 1 assert convert('1.0') == 1 assert convert('1.2') == 1.2 assert convert('asdf') == 'asdf' ``` #### File: django-vaccine-dashboard/dashboard/views.py ```python import datetime from django.shortcuts import render from django.http import JsonResponse from .models import Entry def home(request): return render(request, template_name='home.html') def linechart(request): countries=["United Kingdom", "Germany", "France", "Israel", "United States", "India", "Brazil", "Turkey", "Chile", "Russia"] cutoff_date = datetime.datetime.today() - datetime.timedelta(days=60) datasets = [] for country in countries: qs = Entry.objects.filter(country=country, date__gte=cutoff_date) data = [{'x': entry.date, 'y': entry.people_vaccinated_per_hundred} for entry in qs] datasets.append({'label': country, 'data': data}) return JsonResponse(data={'datasets': datasets}) ```
{ "source": "jimmybutton/matml-viewer", "score": 3 }
#### File: matml-viewer/tests/test_utils.py ```python import pytest from matml import utils import xml.etree.ElementTree as et import pprint pp = pprint.PrettyPrinter(indent=4, compact=True) def test_parse_text(): assert utils.parse_text('123') == 123 assert utils.parse_text('1.234') == 1.234 assert utils.parse_text(' \n\r My text \n\r ') == "My text" def test_node_with_text(): source = "<textnode>Some text...</textnode>" target = {'textnode': "Some text..."} node = et.fromstring(source) temp = utils.matml_to_dict(node) assert temp == target def test_node_with_attrib(): source = """<?xml version="1.0"?> <country name="Liechtenstein"> Some text... </country> """ target = { 'country': { '@name': "Liechtenstein", '#text': "Some text..." } } node = et.fromstring(source) temp = utils.matml_to_dict(node) assert temp == target def test_node_with_children(): source = """<?xml version="1.0"?> <country name="Liechtenstein"> <rank>1</rank> <year>2008</year> <gdppc>141100</gdppc> </country> """ target = { 'country': { '@name': "Liechtenstein", 'rank': 1, 'year': 2008, 'gdppc': 141100, } } node = et.fromstring(source) temp = utils.matml_to_dict(node) assert temp == target def test_node_with_multiple_children_of_same_name(): source = """<?xml version="1.0"?> <country name="Liechtenstein"> <rank>1</rank> <year>2008</year> <gdppc>141100</gdppc> <neighbor name="Austria" direction="E"/> <neighbor name="Switzerland" direction="W"/> </country> """ target = { 'country': { '@name': "Liechtenstein", 'rank': 1, 'year': 2008, 'gdppc': 141100, 'neighbor': [ { '@name': 'Austria', '@direction': 'E' }, { '@name': 'Switzerland', '@direction': 'W' } ] } } node = et.fromstring(source) temp = utils.matml_to_dict(node) assert temp == target def test_countries_complete(): source = """<?xml version="1.0"?> <data> <country name="Liechtenstein"> <rank>1</rank> <year>2008</year> <gdppc>141100</gdppc> <neighbor name="Austria" direction="E"/> <neighbor name="Switzerland" direction="W"/> </country> <country name="Singapore"> <rank>4</rank> <year>2011</year> <gdppc>59900</gdppc> <neighbor name="Malaysia" direction="N"/> </country> <country name="Panama"> <rank>68</rank> <year>2011</year> <gdppc>13600</gdppc> <neighbor name="Costa Rica" direction="W"/> <neighbor name="Colombia" direction="E"/> </country> </data> """ target = { 'data': { 'country': [ { '@name': "Liechtenstein", 'rank': 1, 'year': 2008, 'gdppc': 141100, 'neighbor': [{ '@name': 'Austria', '@direction': 'E' }, { '@name': 'Switzerland', '@direction': 'W' } ] }, { '@name': "Singapore", 'rank': 4, 'year': 2011, 'gdppc': 59900, 'neighbor': { '@name': 'Malaysia', '@direction': 'N' } }, { '@name': "Panama", 'rank': 68, 'year': 2011, 'gdppc': 13600, 'neighbor': [{ '@name': '<NAME>', '@direction': 'W' }, { '@name': 'Colombia', '@direction': 'E' } ] } ] } } node = et.fromstring(source) temp = utils.matml_to_dict(node) pp.pprint(temp) assert temp == target def test_parse_data(): assert utils.parse_data(None) is None assert utils.parse_data(1) == 1 assert utils.parse_data(1.23) == 1.23 assert utils.parse_data('') is None assert utils.parse_data('1.23, 2.34') == [1.23, 2.34] assert utils.parse_data('972,561') == [972, 561] assert utils.parse_data('.0011,.0018,.0023,.0027,.0029') == [.0011,.0018,.0023,.0027,.0029] assert utils.parse_data('4,-,-') == [4, '-', '-'] assert utils.parse_data('1109,,') == [1109, None, None] assert utils.parse_data("1.0E5,1.0E6,1.0E7,1.0E8,5.0E8") == [1.0E5,1.0E6,1.0E7,1.0E8,5.0E8] def test_data_to_list(): source = """<Data format="integer">972,561</Data>""" node = et.fromstring(source) assert utils.matml_to_dict(node) == {'Data': [972,561]} source = "<Data>23,1370</Data>" node = et.fromstring(source) assert utils.matml_to_dict(node) == {'Data': [23,1370]} source = """<Data format="float">+11.5,+8.5,+7,+6.5,+6.5</Data>""" node = et.fromstring(source) assert utils.matml_to_dict(node) == {'Data': [11.5,8.5,7,6.5,6.5]} ```
{ "source": "jimmybutton/microblog", "score": 3 }
#### File: microblog/app/translate.py ```python import json import requests import uuid from flask import current_app def translate(text, source_language, dest_language): if 'MS_TRANSLATOR_KEY' not in current_app.config or not current_app.config['MS_TRANSLATOR_KEY']: return 'Error: the translation service is not configured.' base_url = 'https://api.cognitive.microsofttranslator.com' path = '/translate?api-version=3.0' params = '&from={}&to={}'.format(source_language, dest_language) constructed_url = base_url + path + params headers = { 'Ocp-Apim-Subscription-Key': current_app.config['MS_TRANSLATOR_KEY'], 'Content-type': 'application/json', 'X-ClientTraceId': str(uuid.uuid4()) } body = [ {"Text": text} ] response = requests.post(constructed_url, headers=headers, json=body) if response.status_code != 200: return 'Error {}: the translation service failed. URL {} Body {}'.format(response.status_code, constructed_url, body) content = response.json() return content[0].get('translations')[0].get('text') ```
{ "source": "jimmybutton/moviedb", "score": 2 }
#### File: moviedb/app/__init__.py ```python from flask import Flask from config import Config from sqlalchemy import MetaData from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_login import LoginManager from flask_moment import Moment from flask_misaka import Misaka from flask_bootstrap import Bootstrap import os import logging from logging.handlers import RotatingFileHandler from elasticsearch import Elasticsearch convention = { "ix": 'ix_%(column_0_label)s', "uq": "uq_%(table_name)s_%(column_0_name)s", "ck": "ck_%(table_name)s_%(constraint_name)s", "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s", "pk": "pk_%(table_name)s" } metadata = MetaData(naming_convention=convention) db = SQLAlchemy(metadata=metadata) migrate = Migrate() login = LoginManager() login.login_view = "auth.login" moment = Moment() md = Misaka() bootstrap = Bootstrap() def create_app(config_class=Config): app = Flask(__name__) app.config.from_object(Config) db.init_app(app) with app.app_context(): if db.engine.url.drivername == 'sqlite': migrate.init_app(app, db, render_as_batch=True) else: migrate.init_app(app, db) # migrate.init_app(app, db) login.init_app(app) moment.init_app(app) md.init_app(app) bootstrap.init_app(app) from app.errors import bp as errors_bp app.register_blueprint(errors_bp) from app.auth import bp as auth_bp app.register_blueprint(auth_bp, url_prefix='/auth') from app.main import bp as main_bp app.register_blueprint(main_bp) from app.cli import bp as cli_bp app.register_blueprint(cli_bp) app.elasticsearch = Elasticsearch([app.config['ELASTICSEARCH_URL']]) \ if app.config['ELASTICSEARCH_URL'] else None from app import models if not app.debug and not app.testing: if not os.path.exists("logs"): os.mkdir("logs") file_handler = RotatingFileHandler( "logs/moviedb.log", maxBytes=10240, backupCount=10 ) file_handler.setFormatter( logging.Formatter( "%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]" ) ) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) app.logger.info("Moviedb startup") return app ``` #### File: app/main/people.py ```python from flask import render_template, flash, url_for, redirect, request, current_app, Markup from app import db from app.main import bp from app.main.forms import SearchForm, EditPersonForm from flask_login import current_user, login_required from app.models import User, People, Character from math import floor from app.main.core import get_list @bp.route("/people", methods=['GET']) @login_required def people(): search_form = SearchForm() if not search_form.validate(): return redirect("main.people") people = get_list(cls=People, request_args=request.args, search_form=search_form, search_fields=["name"], order=People.score.desc()) return render_template("people.html", title="People", people=people, search_form=search_form,) @bp.route("/person/<id>") @login_required def person(id): person = People.query.get(id) if not person: flash("Person with id={} not found.".format(id)) return redirect(url_for("main.people")) return render_template("person.html", person=person, title=person.name) @bp.route("/person/<id>/roles") @login_required def person_roles(id): person = People.query.get(id) if not person: flash("Person with id={} not found.".format(id)) return redirect(url_for("main.people")) sort = request.args.get("sort", "order", type=str) # field to sort by order = request.args.get("order", "asc", type=str) # desc or asc offset = request.args.get("offset", 0, type=int) # start item per_page = request.args.get("limit", 10, type=int) # per page page = floor(offset / per_page) + 1 # estimage page from offset if sort in Character._get_keys(): sort_field = getattr(Character, sort) order_method = sort_field.desc() if order == "desc" else sort_field.asc() roles = person.roles.order_by(order_method) elif sort == "movie_title": sort_field = People.name order_method = sort_field.desc() if order == "desc" else sort_field.asc() roles = Character.query.filter(Character.actor_id == id).join(People, Character.movie).order_by(order_method) else: roles = person.roles.order_by(Character.order.asc()) roles = roles.paginate(page, per_page, False) return {"total": roles.total, "rows": [c.to_dict() for c in roles.items]} @bp.route("/create_person", methods=["GET", "POST"]) def create_person(): form = EditPersonForm() if form.validate_on_submit(): person = People() form_keys = [k for k in form.data.keys() if k not in ["submit", "csrf_token", "submit_and_new"]] for key in form_keys: setattr(person, key, getattr(form, key).data) person.created_by = current_user db.session.add(person) db.session.commit() flash(Markup(f"""person <a href="{url_for('main.person', id=id)}">{person.name}</a> created.""".format())) if form.submit._value() == "Save and New": return redirect(url_for("main.create_person")) else: return redirect(url_for("main.person", id=person.id)) return render_template("person_create.html", title="Create Person", form=form) @bp.route("/person/<id>/edit", methods=["GET", "POST"]) @login_required def edit_person(id): form = EditPersonForm() person = People.query.get(id) if not person: flash("Person with id={} not found.".format(id)) return redirect(url_for("main.people")) form_keys = [k for k in form.data.keys() if k not in ["submit", "csrf_token", "submit_and_new"]] if form.validate_on_submit(): for key in form_keys: setattr(person, key, getattr(form, key).data) person.modified_by = current_user db.session.add(person) db.session.commit() flash(Markup(f"""Person <a href="{url_for("main.person", id=id)}">{person.name}</a> updated.""")) return redirect(url_for("main.person", id=person.id)) elif request.method == "GET": for key in form_keys: getattr(form, key).data = getattr(person, key) return render_template("person_create.html", title="Edit person", form=form, person=person) ``` #### File: moviedb/app/models.py ```python from app import db, login import datetime from werkzeug.security import generate_password_hash, check_password_hash from flask_login import UserMixin import sqlalchemy as sa from hashlib import md5 from sqlalchemy.ext.hybrid import hybrid_property import progressbar class BaseModel(object): @classmethod def _get_keys(cls): return sa.orm.class_mapper(cls).c.keys() def to_dict(self): d = {} for k in self._get_keys(): value = getattr(self, k) if isinstance(value, datetime.datetime): d[k] = value.isoformat() else: d[k] = value return d class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) password_hash = db.Column(db.String(128)) about_me = db.Column(db.String(140)) last_seen = db.Column(db.DateTime, default=datetime.datetime.utcnow) def __repr__(self): return "<User {}>".format(self.username) def set_password(self, password): self.password_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password_hash, password) def avatar(self, size): digest = md5(self.email.lower().encode('utf-8')).hexdigest() return f'https://www.gravatar.com/avatar/{digest}?d=identicon&s={size}' class Movie(db.Model, BaseModel): id = db.Column(db.Integer, primary_key=True) created_timestamp = db.Column( db.DateTime, index=True, default=datetime.datetime.utcnow ) created_id = db.Column(db.Integer, db.ForeignKey("user.id")) created_by = db.relationship("User", foreign_keys=[created_id]) modified_timestamp = db.Column( db.DateTime, index=True, default=datetime.datetime.utcnow, onupdate=datetime.datetime.utcnow, ) modified_id = db.Column(db.Integer, db.ForeignKey("user.id")) modified_by = db.relationship("User", foreign_keys=[modified_id]) title = db.Column(db.String(128), index=True) year = db.Column(db.Integer) director_name = db.Column(db.String(64)) director_id = db.Column(db.Integer, db.ForeignKey("people.id")) category = db.Column(db.String(64)) certificate = db.Column(db.String(16)) release_date = db.Column(db.Date) release_country = db.Column(db.String(5)) plot_summary = db.Column(db.Text()) rating_value = db.Column(db.Float) rating_count = db.Column(db.Integer) poster_url = db.Column(db.String(256)) runtime = db.Column(db.Integer) url = db.Column(db.String(64)) cast = db.relationship( "Character", foreign_keys="Character.movie_id", backref="movie", lazy="dynamic" ) def __repr__(self): return "<Movie {}>".format(self.title) @property def displayname(self): return f"{self.title} ({self.year})" @property def default_image_url(self): if self.poster_url: return self.poster_url else: return "https://m.media-amazon.com/images/G/01/imdb/images/nopicture/small/film-293970583._CB469775754_.png" class People(db.Model, BaseModel): id = db.Column(db.Integer, primary_key=True) created_timestamp = db.Column( db.DateTime, index=True, default=datetime.datetime.utcnow ) created_id = db.Column(db.Integer, db.ForeignKey("user.id")) created_by = db.relationship("User", foreign_keys=[created_id]) modified_timestamp = db.Column( db.DateTime, index=True, default=datetime.datetime.utcnow, onupdate=datetime.datetime.utcnow, ) modified_id = db.Column(db.Integer, db.ForeignKey("user.id")) modified_by = db.relationship("User", foreign_keys=[modified_id]) name = db.Column(db.String(64), index=True) url = db.Column(db.String(64)) image_url = db.Column(db.String(256)) dob = db.Column(db.Date()) birthname = db.Column(db.String(128)) height = db.Column(db.String(64)) bio = db.Column(db.Text()) score = db.Column(db.Float) roles = db.relationship( "Character", foreign_keys="Character.actor_id", backref="actor", lazy="dynamic" ) directed_movies = db.relationship("Movie", foreign_keys="Movie.director_id", backref='director', lazy='dynamic') def __repr__(self): return "<Person {}>".format(self.name) @property def default_image_url(self): if self.image_url: return self.image_url else: return "https://m.media-amazon.com/images/G/01/imdb/images/nopicture/32x44/name-2138558783._CB468460248_.png" def _get_score(self): score = 0 for role in self.roles: try: score += role.movie.rating_value * (-0.9/50 * role.order + 1 if role.order < 50 else 0.1) except Exception as e: print(self, e) return score def _update_score(self): self.score = self._get_score() db.session.add(self) db.session.commit() @classmethod def update_score(cls): for obj in progressbar.progressbar(cls.query, max_value=cls.query.count()): obj.score = obj._get_score() db.session.add(obj) db.session.commit() class Character(db.Model, BaseModel): id = db.Column(db.Integer, primary_key=True) created_timestamp = db.Column( db.DateTime, index=True, default=datetime.datetime.utcnow ) created_id = db.Column(db.Integer, db.ForeignKey("user.id")) created_by = db.relationship("User", foreign_keys=[created_id]) modified_timestamp = db.Column( db.DateTime, index=True, default=datetime.datetime.utcnow, onupdate=datetime.datetime.utcnow, ) modified_id = db.Column(db.Integer, db.ForeignKey("user.id")) modified_by = db.relationship("User", foreign_keys=[modified_id]) movie_id = db.Column(db.Integer, db.ForeignKey("movie.id")) actor_id = db.Column(db.Integer, db.ForeignKey("people.id")) character_name = db.Column(db.String(128)) character_url = db.Column(db.String(128)) order = db.Column(db.Integer) # order in which to show character per movie @property def actor_name(self): return self.actor.name def __repr__(self): return "<Character {}, Actor {}, Movie {}, Order {}>".format( self.character_name, self.actor.name, self.movie.title, self.order ) def to_dict(self): d = super().to_dict() d.update({ "movie_title": self.movie.title, "movie_image": self.movie.default_image_url, "movie_year": self.movie.year, "actor_name": self.actor.name, "actor_image": self.actor.default_image_url, }) return d @login.user_loader def load_user(id): return User.query.get(int(id)) ``` #### File: moviedb/app/search.py ```python from flask import current_app from elasticsearch import NotFoundError from datetime import datetime def add_to_index(index, model): if not current_app.elasticsearch: return payload = {} for field in model.__searchable__.keys(): value = getattr(model, field) if isinstance(value, datetime): payload[field] = value.isoformat() else: payload[field] = value current_app.elasticsearch.index(index=index, id=model.id, body=payload) def remove_from_index(index, model): if not current_app.elasticsearch: return try: current_app.elasticsearch.delete(index=index, id=model.id) except NotFoundError as e: print(e) def query_index_full_text(index, query, page, per_page): if not current_app.elasticsearch: return [], 0 search = current_app.elasticsearch.search( index=index, body={ "query": {"multi_match": {"query": query, "fields": ["*"]}}, "from": (page - 1) * per_page, "size": per_page, }, ) ids = [int(hit["_id"]) for hit in search["hits"]["hits"]] return ids, search["hits"]["total"]["value"] def query_index(index, query, page, per_page, sort_by=None, order="asc"): if not current_app.elasticsearch: return [], 0 search = current_app.elasticsearch.search( index=index, body={ "query": query, "from": (page - 1) * per_page, "size": per_page, "sort": [{sort_by: order}] if sort_by else ["_score"], }, ) ids = [int(hit["_id"]) for hit in search["hits"]["hits"]] return ids, search["hits"]["total"]["value"] def clear_index(index, mappings): current_app.elasticsearch.indices.delete(index=index, ignore=[400, 404]) current_app.elasticsearch.indices.create( index=index, body={ "settings": { "analysis": { "normalizer": { "my_normalizer": { "type": "custom", "char_filter": [], "filter": ["lowercase", "asciifolding"], } } } }, "mappings": {"properties": mappings}, }, ) ``` #### File: migrations/versions/2f2f0229ae34_update_character_model.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2f2f0229ae34' down_revision = '29905aa2e122' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### # op.drop_column('character', 'movie_year') # op.drop_column('character', 'movie_title') # op.drop_column('character', 'actor_name') # ### end Alembic commands ### with op.batch_alter_table('character') as batch_op: batch_op.drop_column('movie_year') batch_op.drop_column('movie_title') batch_op.drop_column('actor_name') def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('character', sa.Column('actor_name', sa.VARCHAR(length=128), nullable=True)) op.add_column('character', sa.Column('movie_title', sa.VARCHAR(length=128), nullable=True)) op.add_column('character', sa.Column('movie_year', sa.INTEGER(), nullable=True)) # ### end Alembic commands ### ``` #### File: migrations/versions/3b1663812883_director_relationship.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3b1663812883' down_revision = '52521046886e' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### # op.add_column('movie', sa.Column('director_id', sa.Integer(), nullable=True)) # op.create_foreign_key(None, 'movie', 'people', ['director_id'], ['id']) # ### end Alembic commands ### # with op.batch_alter_table('post') as batch_op: # batch_op.create_foreign_key(None, 'post', 'event', ['event_id'], ['id']) # batch_op.drop_column('post', 'event') with op.batch_alter_table('movie') as batch_op: batch_op.create_foreign_key(None, 'movie', 'people', ['director_id'], ['id']) batch_op.drop_column('movie', 'people') def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'movie', type_='foreignkey') op.drop_column('movie', 'director_id') # ### end Alembic commands ### ```
{ "source": "jimmybutton/newsblog", "score": 3 }
#### File: newsblog/app/models.py ```python from app import db from datetime import datetime class Article(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(128)) content = db.Column(db.String(2048)) category_id = db.Column(db.Integer, db.ForeignKey('category.id')) image = db.Column(db.String(128)) # filename of feature image created = db.Column(db.DateTime, index=True, default=datetime.utcnow) updated = db.Column(db.DateTime, index=True, default=datetime.utcnow) def __repr__(self): return '<Article {}>'.format(self.title) class Category(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64), index=True, unique=True) articles = db.relationship('Article', backref='category', lazy='dynamic') def __repr__(self): return '<Category {}>'.format(self.name) ```
{ "source": "JimmyCai91/tensorboardX", "score": 2 }
#### File: tensorboardX/beholder/beholder.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..src.summary_pb2 import Summary from ..src.summary_pb2 import SummaryMetadata from ..src.tensor_pb2 import TensorProto from ..src.tensor_shape_pb2 import TensorShapeProto import os import time import numpy as np # import tensorflow as tf # from tensorboard.plugins.beholder import im_util # from . import im_util from .file_system_tools import read_pickle,\ write_pickle, write_file from .shared_config import PLUGIN_NAME, TAG_NAME,\ SUMMARY_FILENAME, DEFAULT_CONFIG, CONFIG_FILENAME, SUMMARY_COLLECTION_KEY_NAME, SECTION_INFO_FILENAME from . import video_writing # from .visualizer import Visualizer class Beholder(object): def __init__(self, logdir): self.PLUGIN_LOGDIR = logdir + '/plugins/' + PLUGIN_NAME self.is_recording = False self.video_writer = video_writing.VideoWriter( self.PLUGIN_LOGDIR, outputs=[video_writing.FFmpegVideoOutput, video_writing.PNGVideoOutput]) self.last_image_shape = [] self.last_update_time = time.time() self.config_last_modified_time = -1 self.previous_config = dict(DEFAULT_CONFIG) if not os.path.exists(self.PLUGIN_LOGDIR + '/config.pkl'): os.makedirs(self.PLUGIN_LOGDIR) write_pickle(DEFAULT_CONFIG, '{}/{}'.format(self.PLUGIN_LOGDIR, CONFIG_FILENAME)) # self.visualizer = Visualizer(self.PLUGIN_LOGDIR) def _get_config(self): '''Reads the config file from disk or creates a new one.''' filename = '{}/{}'.format(self.PLUGIN_LOGDIR, CONFIG_FILENAME) modified_time = os.path.getmtime(filename) if modified_time != self.config_last_modified_time: config = read_pickle(filename, default=self.previous_config) self.previous_config = config else: config = self.previous_config self.config_last_modified_time = modified_time return config def _write_summary(self, frame): '''Writes the frame to disk as a tensor summary.''' path = '{}/{}'.format(self.PLUGIN_LOGDIR, SUMMARY_FILENAME) smd = SummaryMetadata() tensor = TensorProto( dtype='DT_FLOAT', float_val=frame.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[TensorShapeProto.Dim(size=frame.shape[0]), TensorShapeProto.Dim(size=frame.shape[1]), TensorShapeProto.Dim(size=frame.shape[2])] ) ) summary = Summary(value=[Summary.Value(tag=TAG_NAME, metadata=smd, tensor=tensor)]).SerializeToString() write_file(summary, path) @staticmethod def stats(tensor_and_name): imgstats = [] for (img, name) in tensor_and_name: immax = img.max() immin = img.min() imgstats.append( { 'height': img.shape[0], 'max': str(immax), 'mean': str(img.mean()), 'min': str(immin), 'name': name, 'range': str(immax - immin), 'shape': str((img.shape[1], img.shape[2])) }) return imgstats def _get_final_image(self, config, trainable=None, arrays=None, frame=None): if config['values'] == 'frames': # print('===frames===') final_image = frame elif config['values'] == 'arrays': # print('===arrays===') final_image = np.concatenate([arr for arr, _ in arrays]) stat = self.stats(arrays) write_pickle(stat, '{}/{}'.format(self.PLUGIN_LOGDIR, SECTION_INFO_FILENAME)) elif config['values'] == 'trainable_variables': # print('===trainable===') final_image = np.concatenate([arr for arr, _ in trainable]) stat = self.stats(trainable) write_pickle(stat, '{}/{}'.format(self.PLUGIN_LOGDIR, SECTION_INFO_FILENAME)) if len(final_image.shape) == 2: # Map grayscale images to 3D tensors. final_image = np.expand_dims(final_image, -1) return final_image def _enough_time_has_passed(self, FPS): '''For limiting how often frames are computed.''' if FPS == 0: return False else: earliest_time = self.last_update_time + (1.0 / FPS) return time.time() >= earliest_time def _update_frame(self, trainable, arrays, frame, config): final_image = self._get_final_image(config, trainable, arrays, frame) self._write_summary(final_image) self.last_image_shape = final_image.shape return final_image def _update_recording(self, frame, config): '''Adds a frame to the current video output.''' # pylint: disable=redefined-variable-type should_record = config['is_recording'] if should_record: if not self.is_recording: self.is_recording = True print('Starting recording using %s', self.video_writer.current_output().name()) self.video_writer.write_frame(frame) elif self.is_recording: self.is_recording = False self.video_writer.finish() print('Finished recording') # TODO: blanket try and except for production? I don't someone's script to die # after weeks of running because of a visualization. def update(self, trainable=None, arrays=None, frame=None): '''Creates a frame and writes it to disk. Args: trainable: a list of namedtuple (tensors, name). arrays: a list of namedtuple (tensors, name). frame: lalala ''' new_config = self._get_config() if True or self._enough_time_has_passed(self.previous_config['FPS']): # self.visualizer.update(new_config) self.last_update_time = time.time() final_image = self._update_frame(trainable, arrays, frame, new_config) self._update_recording(final_image, new_config) ############################################################################## # @staticmethod # def gradient_helper(optimizer, loss, var_list=None): # '''A helper to get the gradients out at each step. # Args: # optimizer: the optimizer op. # loss: the op that computes your loss value. # Returns: the gradient tensors and the train_step op. # ''' # if var_list is None: # var_list = tf.trainable_variables() # grads_and_vars = optimizer.compute_gradients(loss, var_list=var_list) # grads = [pair[0] for pair in grads_and_vars] # return grads, optimizer.apply_gradients(grads_and_vars) # implements pytorch backward later class BeholderHook(): pass # """SessionRunHook implementation that runs Beholder every step. # Convenient when using tf.train.MonitoredSession: # ```python # beholder_hook = BeholderHook(LOG_DIRECTORY) # with MonitoredSession(..., hooks=[beholder_hook]) as sess: # sess.run(train_op) # ``` # """ # def __init__(self, logdir): # """Creates new Hook instance # Args: # logdir: Directory where Beholder should write data. # """ # self._logdir = logdir # self.beholder = None # def begin(self): # self.beholder = Beholder(self._logdir) # def after_run(self, run_context, unused_run_values): # self.beholder.update(run_context.session) ```
{ "source": "jimmycallin/master-thesis", "score": 3 }
#### File: architectures/conll16st-hd-sdp/DiscourseSenseClassification_FeatureExtraction_v1.py ```python import codecs import json import random import sys from datetime import datetime import logging #word2vec logging from sklearn import preprocessing import validator from Common_Utilities import CommonUtilities import gensim from gensim import corpora, models, similarities # used for word2vec from gensim.models.word2vec import Word2Vec # used for word2vec from gensim.models.doc2vec import Doc2Vec#used for doc2vec import time # used for performance measuring import math from scipy import spatial # used for similarity calculation from gensim.models.doc2vec import LabeledSentence from gensim.models import Phrases from gensim import corpora # for dictionary from gensim.models import LdaModel # from sklearn.svm import libsvm from sklearn.svm import SVC sys.path.append('~/semanticz') from Word2Vec_AverageVectorsUtilities import AverageVectorsUtilities import pickle import const # Constants const.FIELD_ARG1 = 'Arg1' const.FIELD_ARG2 = 'Arg2' const.FIELD_CONNECTIVE = 'Connective' const.FIELD_LABEL_LEVEL1 = 'Lbl_Lvl1' const.FIELD_LABEL_LEVEL2 = 'Lbl_Lvl2' const.FIELD_REL_TYPE = 'Type' class DiscourseSenseClassification_FeatureExtraction(object): """Discourse relation sense classifier feature extration """ CONNECTIVES_FREELY_OMISSIBLE= [ 'accordingly', 'as a result', 'because', 'by comparison', 'by contrast', 'consequently', 'for example', 'for instance', 'furthermore', 'in fact', 'in other words', 'in particular', 'in short', 'indeed', 'previously', 'rather', 'so', 'specifically', 'therefore' ] CONNECTIVES = ['if', 'rather', 'in contrast', 'conversely', 'neither nor', 'meantime', 'therefore', 'while', 'in other words', 'so', 'as well', 'after', 'afterward', 'once', 'upon', 'so that', 'nonetheless', 'by contrast', 'particularly', 'likewise', 'now that', 'indeed', 'further', 'before', 'previously', 'in addition', 'also', 'separately', 'besides', 'until', 'thereafter', 'thereby', 'hence', 'in fact', 'much as', 'when', 'for', 'since', 'or', 'consequently', 'similarly', 'in the end', 'thus', 'in particular', 'simultaneously', 'nevertheless', 'on the other hand', 'whereas', 'lest', 'furthermore', 'if and when', 'in sum', 'although', 'regardless', 'moreover', 'on the contrary', 'overall', 'alternatively', 'as long as', 'then', 'plus', 'before and after', 'meanwhile', 'by comparison', 'when and if', 'yet', 'in the mean time', 'as soon as', 'accordingly', 'on the one hand on the other hand', 'by then', 'earlier', 'however', 'as if', 'except', 'though', 'later', 'next', 'in turn', 'still', 'either or', 'unless', 'else', 'as', 'as a result', 'insofar as', 'otherwise', 'instead', 'because', 'for instance', 'finally', 'till', 'in short', 'but', 'if then', 'nor', 'ultimately', 'specifically', 'as though', 'as an alternative', 'and', 'for example', 'additionally'] @staticmethod def get_connectives_emeddings(connectives, model, vocab_set, num_feats, split_words=True): if split_words: connectives_split = [c.split(' ') for c in connectives] else: connectives_split = [c for c in connectives] connectives_embedd = [] for conn_words in connectives_split: conn_embedding = AverageVectorsUtilities.makeFeatureVec(conn_words, model, num_feats, vocab_set) connectives_embedd.append(conn_embedding) return connectives_embedd @staticmethod def calc_sim_singleembedd_to_embeddlist(single_embedding, embedding_list): sim_list = [] for i in range(0, len(embedding_list)): sim = spatial.distance.cosine(single_embedding, embedding_list[i]) sim_list.append(sim) return sim_list @staticmethod def get_connectives_emeddings(connectives, model, vocab_set, num_feats): connectives_split = [c.split(' ') for c in connectives] connectives_embedd = [] for conn_words in connectives_split: conn_embedding = AverageVectorsUtilities.makeFeatureVec(conn_words, model, num_feats, vocab_set) connectives_embedd.append(conn_embedding) return connectives_embedd @staticmethod def get_word_token(parse_obj, doc_id, sent_id, word_id): return parse_obj[doc_id]['sentences'][sent_id]['words'][word_id] @staticmethod def calculate_postagged_similarity_from_taggeddata_and_tokens(text1_tokens_in_vocab, text2_tokens_in_vocab, model, tag_type_start_1, tag_type_start_2): res_sim = 0.00 text1_words_in_model = [x[0] for x in text1_tokens_in_vocab if x[1]['PartOfSpeech'].startswith(tag_type_start_1)] text2_words_in_model = [x[0] for x in text2_tokens_in_vocab if x[1]['PartOfSpeech'].startswith(tag_type_start_2)] if len(text1_words_in_model) > 0 and len(text2_words_in_model) > 0: res_sim = model.n_similarity(text1_words_in_model, text2_words_in_model) return res_sim @staticmethod def get_postagged_sim_fetures(tokens_data_text1, tokens_data_text2, postagged_data_dict, model, word2vec_num_features, word2vec_index2word_set ): input_data_wordvectors = [] input_data_sparse_features = {} tokens_in_vocab_1 = [x for x in tokens_data_text1 if x[0] in word2vec_index2word_set] tokens_in_vocab_2 = [x for x in tokens_data_text2 if x[0] in word2vec_index2word_set] # similarity for tag type tag_type_start_1 = 'NN' tag_type_start_2 = 'NN' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'J' tag_type_start_2 = 'J' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'VB' tag_type_start_2 = 'VB' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'RB' tag_type_start_2 = 'RB' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'DT' tag_type_start_2 = 'DT' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'PR' tag_type_start_2 = 'PR' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'NN' tag_type_start_2 = 'J' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'J' tag_type_start_2 = 'NN' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'RB' tag_type_start_2 = 'VB' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'VB' tag_type_start_2 = 'RB' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'PR' tag_type_start_2 = 'NN' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'NN' tag_type_start_2 = 'PR' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # Additional features include_modal = True if include_modal: # similarity for tag type tag_type_start_1 = 'MD' tag_type_start_2 = 'VB' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'VB' tag_type_start_2 = 'MD' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = '' tag_type_start_2 = 'MD' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim # similarity for tag type tag_type_start_1 = 'MD' tag_type_start_2 = '' postagged_sim = DiscourseSenseClassification_FeatureExtraction.calculate_postagged_similarity_from_taggeddata_and_tokens( text1_tokens_in_vocab=tokens_in_vocab_1, text2_tokens_in_vocab=tokens_in_vocab_2, model=model, tag_type_start_1=tag_type_start_1, tag_type_start_2=tag_type_start_2) input_data_wordvectors.append(postagged_sim) input_data_sparse_features[ 'sim_pos_arg1_%s_arg2_%s' % (tag_type_start_1, 'ALL' if tag_type_start_2 == '' else tag_type_start_2)] = \ postagged_sim return input_data_wordvectors, input_data_sparse_features @staticmethod def extract_features_as_vector_from_single_record_v1(relation_dict, parse, word2vec_model, word2vec_index2word_set, deps_model, deps_vocabulary): features = [] sparse_feats_dict = {} deps_num_feats = deps_model.shape[1] w2v_num_feats = len(word2vec_model.syn0[0]) # FEATURE EXTRACTION HERE doc_id = relation_dict['DocID'] # print doc_id connective_tokenlist = [x[2] for x in relation_dict['Connective']['TokenList']] has_connective = 1 if len(connective_tokenlist) > 0 else 0 features.append(has_connective) feat_key = "has_connective" if has_connective == 1: CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, has_connective) # print 'relation_dict:' # print relation_dict['Arg1']['TokenList'] # ARG 1 arg1_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg1']['TokenList']] arg1_words = [x[0] for x in arg1_tokens] # print 'arg1: %s' % arg1_words arg1_embedding = AverageVectorsUtilities.makeFeatureVec(arg1_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(arg1_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg1_embedding, 'W2V_A1_') # arg1 deps embeddings arg1_embedding_deps = AverageVectorsUtilities.makeFeatureVec(arg1_words, deps_model, deps_num_feats, deps_vocabulary) features.extend(arg1_embedding_deps) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg1_embedding_deps, 'DEPS_A1_') # connective embedding connective_words = [parse[doc_id]['sentences'][x[3]]['words'][x[4]][0] for x in relation_dict['Connective']['TokenList']] connective_embedding = AverageVectorsUtilities.makeFeatureVec(connective_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(connective_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, connective_embedding, 'W2V_CON_') # Connective DEPS embveddings connective_embedding_deps = AverageVectorsUtilities.makeFeatureVec(connective_words, deps_model, deps_num_feats, deps_vocabulary) features.extend(connective_embedding_deps) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, connective_embedding_deps, 'DEPS_CON_') # ARG 2 arg2_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg2']['TokenList']] arg2_words = [x[0] for x in arg2_tokens] # print 'arg2: %s' % arg2_words arg2_embedding = AverageVectorsUtilities.makeFeatureVec(arg2_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(arg2_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg2_embedding, 'W2V_A2_') # arg2 deps embeddings arg2_embedding_deps = AverageVectorsUtilities.makeFeatureVec(arg2_words, deps_model, deps_num_feats, deps_vocabulary) features.extend(arg2_embedding_deps) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg2_embedding_deps, 'DEPS_A2_') # Arg1 to Arg 2 cosine similarity arg1arg2_similarity = 0.00 if len(arg1_words) > 0 and len(arg2_words) > 0: arg1arg2_similarity = spatial.distance.cosine(arg1_embedding, arg2_embedding) features.append(arg1arg2_similarity) # Calculate maximized similarities words1 = [x for x in arg1_words if x in word2vec_index2word_set] words2 = [x for x in arg1_words if x in word2vec_index2word_set] sim_avg_max = AverageVectorsUtilities.get_feature_vec_avg_aligned_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.append(sim_avg_max) feat_key = "max_sim_aligned" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_max) sim_avg_top1 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 1) features.append(sim_avg_top1) feat_key = "max_sim_avg_top1" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top1) sim_avg_top2 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 2) features.append(sim_avg_top2) feat_key = "max_sim_avg_top2" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top2) sim_avg_top3 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 3) features.append(sim_avg_top3) feat_key = "max_sim_avg_top3" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top3) sim_avg_top5 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 5) features.append(sim_avg_top5) feat_key = "max_sim_avg_top5" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top5) # POS tags similarities postag_feats_vec, postag_feats_sparse = DiscourseSenseClassification_FeatureExtraction.get_postagged_sim_fetures( tokens_data_text1=arg1_tokens, tokens_data_text2=arg2_tokens, postagged_data_dict=parse, model=word2vec_model, word2vec_num_features=w2v_num_feats, word2vec_index2word_set=word2vec_index2word_set) # print postag_feats_vec features.extend(postag_feats_vec) sparse_feats_dict.update(postag_feats_sparse) for i in range(0, len(features)): if math.isnan(features[i]): features[i] = 0.00 return features # , sparse_feats_dict @staticmethod def extract_features_as_vector_from_single_record_v2_optimized(relation_dict, parse, word2vec_model, word2vec_index2word_set, deps_model, deps_vocabulary, use_connective_sim=True, return_sparse_feats = False): features = [] sparse_feats_dict = {} deps_num_feats = deps_model.shape[1] w2v_num_feats = len(word2vec_model.syn0[0]) # FEATURE EXTRACTION HERE doc_id = relation_dict['DocID'] # print doc_id connective_tokenlist = [x[2] for x in relation_dict['Connective']['TokenList']] has_connective = 1 if len(connective_tokenlist) > 0 else 0 features.append(has_connective) feat_key = "has_connective" if has_connective == 1: CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, has_connective) # print 'relation_dict:' # print relation_dict['Arg1']['TokenList'] # ARG 1 arg1_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg1']['TokenList']] arg1_words = [x[0] for x in arg1_tokens] # print 'arg1: %s' % arg1_words arg1_embedding = AverageVectorsUtilities.makeFeatureVec(arg1_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(arg1_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg1_embedding, 'W2V_A1_') # arg1 deps embeddings arg1_embedding_deps = AverageVectorsUtilities.makeFeatureVec(arg1_words, deps_model, deps_num_feats, deps_vocabulary) features.extend(arg1_embedding_deps) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg1_embedding_deps, 'DEPS_A1_') # connective embedding connective_words = [parse[doc_id]['sentences'][x[3]]['words'][x[4]][0] for x in relation_dict['Connective']['TokenList']] connective_embedding = AverageVectorsUtilities.makeFeatureVec(connective_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(connective_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, connective_embedding, 'W2V_CON_') # Connective DEPS embveddings connective_embedding_deps = AverageVectorsUtilities.makeFeatureVec(connective_words, deps_model, deps_num_feats, deps_vocabulary) features.extend(connective_embedding_deps) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, connective_embedding_deps, 'DEPS_CON_') # ARG 2 arg2_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg2']['TokenList']] arg2_words = [x[0] for x in arg2_tokens] # print 'arg2: %s' % arg2_words arg2_embedding = AverageVectorsUtilities.makeFeatureVec(arg2_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(arg2_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg2_embedding, 'W2V_A2_') # arg2 deps embeddings arg2_embedding_deps = AverageVectorsUtilities.makeFeatureVec(arg2_words, deps_model, deps_num_feats, deps_vocabulary) features.extend(arg2_embedding_deps) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg2_embedding_deps, 'DEPS_A2_') # Arg1 to Arg 2 cosine similarity arg1arg2_similarity = 0.00 if len(arg1_words) > 0 and len(arg2_words) > 0: arg1arg2_similarity = spatial.distance.cosine(arg1_embedding, arg2_embedding) features.append(arg1arg2_similarity) # Calculate maximized similarities words1 = [x for x in arg1_words if x in word2vec_index2word_set] words2 = [x for x in arg1_words if x in word2vec_index2word_set] sim_avg_max = AverageVectorsUtilities.get_feature_vec_avg_aligned_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.append(sim_avg_max) feat_key = "max_sim_aligned" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_max) sim_avg_top1 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 1) features.append(sim_avg_top1) feat_key = "max_sim_avg_top1" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top1) sim_avg_top2 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 2) features.append(sim_avg_top2) feat_key = "max_sim_avg_top2" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top2) sim_avg_top3 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 3) features.append(sim_avg_top3) feat_key = "max_sim_avg_top3" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top3) sim_avg_top5 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 5) features.append(sim_avg_top5) feat_key = "max_sim_avg_top5" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top5) # POS tags similarities postag_feats_vec, postag_feats_sparse = DiscourseSenseClassification_FeatureExtraction.get_postagged_sim_fetures( tokens_data_text1=arg1_tokens, tokens_data_text2=arg2_tokens, postagged_data_dict=parse, model=word2vec_model, word2vec_num_features=w2v_num_feats, word2vec_index2word_set=word2vec_index2word_set) features.extend(postag_feats_vec) sparse_feats_dict.update(postag_feats_sparse) for i in range(0, len(features)): if math.isnan(features[i]): features[i] = 0.00 if return_sparse_feats: return features, sparse_feats_dict else: return features @staticmethod def extract_features_as_vector_from_single_record(relation_dict, parse, word2vec_model, word2vec_index2word_set, connective_embedd_list=None, include_connective_features=True, return_sparse_feats=False): features = [] sparse_feats_dict = {} w2v_num_feats = len(word2vec_model.syn0[0]) # FEATURE EXTRACTION HERE doc_id = relation_dict['DocID'] # print doc_id connective_tokenlist = [x[2] for x in relation_dict['Connective']['TokenList']] has_connective = 1 if len(connective_tokenlist) > 0 else 0 features.append(has_connective) feat_key = "has_connective" #if has_connective == 1: CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, has_connective) # print 'relation_dict:' # print relation_dict['Arg1']['TokenList'] # ARG 1 arg1_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg1']['TokenList']] arg1_words = [x[0] for x in arg1_tokens] # print 'arg1: %s' % arg1_words arg1_embedding = AverageVectorsUtilities.makeFeatureVec(arg1_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(arg1_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg1_embedding, 'W2V_A1_') sparse_feats_dict.update(vec_feats) # Connective embedding if include_connective_features: connective_words = [parse[doc_id]['sentences'][x[3]]['words'][x[4]][0] for x in relation_dict['Connective']['TokenList']] connective_embedding = AverageVectorsUtilities.makeFeatureVec(connective_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(connective_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, connective_embedding, 'W2V_CON_') sparse_feats_dict.update(vec_feats) # ARG 2 arg2_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg2']['TokenList']] arg2_words = [x[0] for x in arg2_tokens] # print 'arg2: %s' % arg2_words arg2_embedding = AverageVectorsUtilities.makeFeatureVec(arg2_words, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.extend(arg2_embedding) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, arg2_embedding, 'W2V_A2_') sparse_feats_dict.update(vec_feats) # Arg1 to Arg 2 cosine similarity arg1arg2_similarity = 0.00 if len(arg1_words) > 0 and len(arg2_words) > 0: arg1arg2_similarity = spatial.distance.cosine(arg1_embedding, arg2_embedding) features.append(arg1arg2_similarity) feat_key = "sim_arg1arg2" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, arg1arg2_similarity) # Calculate maximized similarities words1 = [x for x in arg1_words if x in word2vec_index2word_set] words2 = [x for x in arg1_words if x in word2vec_index2word_set] sim_avg_max = AverageVectorsUtilities.get_feature_vec_avg_aligned_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set) features.append(sim_avg_max) feat_key = "max_sim_aligned" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_max) sim_avg_top1 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 1) features.append(sim_avg_top1) feat_key = "max_sim_avg_top1" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top1) sim_avg_top2 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 2) features.append(sim_avg_top2) feat_key = "max_sim_avg_top2" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top2) sim_avg_top3 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 3) features.append(sim_avg_top3) feat_key = "max_sim_avg_top3" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top3) sim_avg_top5 = AverageVectorsUtilities.get_question_vec_to_top_words_avg_sim(words1, words2, word2vec_model, w2v_num_feats, word2vec_index2word_set, 5) features.append(sim_avg_top5) feat_key = "max_sim_avg_top5" CommonUtilities.increment_feat_val(sparse_feats_dict, feat_key, sim_avg_top5) # POS tags similarities postag_feats_vec, postag_feats_sparse = DiscourseSenseClassification_FeatureExtraction.get_postagged_sim_fetures( tokens_data_text1=arg1_tokens, tokens_data_text2=arg2_tokens, postagged_data_dict=parse, model=word2vec_model, word2vec_num_features=w2v_num_feats, word2vec_index2word_set=word2vec_index2word_set) # print postag_feats_sparse features.extend(postag_feats_vec) sparse_feats_dict.update(postag_feats_sparse) # calculate connectives similarity if connective_embedd_list is not None: arg1arg2_avg = (arg1_embedding+arg2_embedding)/2 connective_sims = DiscourseSenseClassification_FeatureExtraction.\ calc_sim_singleembedd_to_embeddlist(arg1arg2_avg, connective_embedd_list) # print connective_sims features.extend(connective_sims) vec_feats = {} CommonUtilities.append_features_with_vectors(vec_feats, connective_sims, 'A1A2_CONNSIMS_') sparse_feats_dict.update(vec_feats) #else: # # Extend with zeros for explicit # features.extend([0 for x in DiscourseSenseClassification_FeatureExtraction.CONNECTIVES]) # Set None to zero for i in range(0, len(features)): if math.isnan(features[i]): features[i] = 0.00 # Set None to zero for k in sparse_feats_dict.iterkeys(): if math.isnan(sparse_feats_dict[k]): sparse_feats_dict[k] = 0.00 if return_sparse_feats: return features, sparse_feats_dict else: return features @staticmethod def extract_features_as_rawtokens_from_single_record(relation_dict, parse): features = {} # FEATURE EXTRACTION HERE doc_id = relation_dict['DocID'] # print doc_id connective_tokenlist = [x[2] for x in relation_dict['Connective']['TokenList']] has_connective = 1 if len(connective_tokenlist) > 0 else 0 # features.append(has_connective) feat_key = "has_connective" features['HasConnective'] = has_connective # print 'relation_dict:' # print relation_dict['Arg1']['TokenList'] # ARG 1 arg1_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg1']['TokenList']] arg1_words = [x[0] for x in arg1_tokens] features[const.FIELD_ARG1] = arg1_words # Connective embedding connective_words = [parse[doc_id]['sentences'][x[3]]['words'][x[4]][0] for x in relation_dict['Connective']['TokenList']] features[const.FIELD_CONNECTIVE] = connective_words # ARG 2 arg2_tokens = [parse[doc_id]['sentences'][x[3]]['words'][x[4]] for x in relation_dict['Arg2']['TokenList']] arg2_words = [x[0] for x in arg2_tokens] # print 'arg2: %s' % arg2_words features[const.FIELD_ARG2] = arg2_words return features ``` #### File: architectures/conll16st-hd-sdp/experiment_cross_conv_v1_np.py ```python import numpy as np import tensorflow as tf from scipy.signal import convolve2d import multiprocessing import ctypes import numpy as np def convolve_cross(s1, s2, filter_size): batch_size = s1.shape[0] sent_len = s1.shape[1] embedding_size = s1.shape[2] conv_iter = sent_len - filter_size + 1 batches_conv_res = np.zeros((batch_size, conv_iter, conv_iter)) for bi in range(0, batch_size): batch_s1 = s1[bi] # tf.gather(s1, bi) batch_s2 = s2[bi] # tf.gather(s1, bi) for i in range(0, conv_iter): filter_s1 = batch_s1[i:i+filter_size] for j in range(0, conv_iter): filter_s2 = batch_s2[j:j+filter_size] curr_val = 0 for k in range(0, filter_size): for l in range(0, embedding_size): curr_val += filter_s1[k][l] * filter_s2[k][l] batches_conv_res[bi][i][j] print "batch %s of %s"%(bi, batch_size) return np.array(batches_conv_res) def convolve_cross_filter(batch_s1, batch_s2, filter_size): sent_len, embedding_size = batch_s1.shape conv_iter = sent_len - filter_size + 1 batch_res = np.zeros((conv_iter, conv_iter)) for i in range(0, conv_iter): filter_s1 = batch_s1[i:i + filter_size] for j in range(0, conv_iter): filter_s2 = batch_s2[j:j + filter_size] curr_val = 0 for k in range(0, filter_size): for l in range(0, embedding_size): curr_val += filter_s1[k][l] * filter_s2[k][l] batch_res[i][j] = curr_val return batch_res def convolve_cross_filter_batch(s1, s2, filter_size): batch_size, sent_len, embedding_size = s1.shape conv_iter = sent_len - filter_size + 1 batches_conv_res = np.zeros((batch_size, conv_iter, conv_iter)) for bi in range(0, batch_size): batches_conv_res[bi] = convolve_cross_filter(s1[bi], s2[bi], filter_size) print "batch %s of %s"%(bi, batch_size) return batches_conv_res from multiprocessing import Pool def single_func(s1s2): print 'Zipped item :' #print s1s2 s1, s2 = zip(*s1s2) print s1 print s2 return convolve_cross_filter(s1, s2, filter_size) # print "batch %s of %s"%(i, batch_size) def single_func1(s1s2): #print 'Zipped item :' #print s1s2 s1u = s1s2['s1'] s2u = s1s2['s2'] fs = s1s2['fs'] return convolve_cross_filter(s1u, s2u, fs) def convolve_cross_filter_batch_multicore(s1, s2, filter_size, processes_cnt): batch_size, sent_len, embedding_size = s1.shape conv_iter = sent_len - filter_size + 1 # batches_conv_res = np.zeros((batch_size, conv_iter, conv_iter)) # shared_array = shared_array.reshape(batch_size, conv_iter, conv_iter) # shared_array = shared_array.reshape(10, 10) # s1s2_zipped = list(zip(s1, s2)) s1s2_zipped = [] for i in range(0, batch_size): s1s2_zipped.append({'s1': s1[i], 's2': s2[i], 'fs':filter_size}) print 'Zipped:' #print s1s2_zipped pool = Pool(processes=processes_cnt) shared_array = pool.map(single_func1, s1s2_zipped) #pool.join() return np.array(shared_array) import sys if __name__ == '__main__': import logging # word2vec logging # Set logging info logFormatter = logging.Formatter('%(asctime)s [%(threadName)-12.12s]: %(levelname)s : %(message)s') logger = logging.getLogger() logger.setLevel(logging.DEBUG) # Enable file logging # logFileName = '%s/%s-%s.log' % ('logs', 'sup_parser_v1', '{:%Y-%m-%d-%H-%M-%S}'.format(datetime.now())) # fileHandler = logging.FileHandler(logFileName, 'wb') # fileHandler.setFormatter(logFormatter) # logger.addHandler(fileHandler) # Enable console logging consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(logFormatter) logger.addHandler(consoleHandler) import time as ti batch_size = 20 sent_len = 100 embedding_size = 300 threads = 20 s1 = np.random.rand(batch_size, sent_len, embedding_size) s2 = np.random.rand(batch_size, sent_len, embedding_size) filter_size = 3 # multiprocessing pool_size = 20 logging.info('Parallel claculation with %s pools...' % pool_size) start = ti.time() batches_conv_res = convolve_cross_filter_batch_multicore(s1, s2, 3, pool_size) end = ti.time() logging.info('calculated in %s '%(end-start)) print(batches_conv_res.shape) print(batches_conv_res) ``` #### File: architectures/conll16st-hd-sdp/text_cnn_eval.py ```python import tensorflow as tf import numpy as np import os import time import datetime import data_helpers from text_cnn import TextCNNModel def text_cnn_load_model_and_eval(x_test, checkpoint_file, allow_soft_placement, log_device_placement, embeddings): graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=allow_soft_placement, log_device_placement=log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x = graph.get_operation_by_name("input_x").outputs[0] # input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we want to evaluate predictions = graph.get_operation_by_name("output/predictions").outputs[0] # Generate batches for one epoch batch_size = 50 batches = data_helpers.batch_iter(x_test, batch_size, 1, shuffle=False) # Collect the predictions here all_predictions = [] # Load embeddings placeholder embedding_size = embeddings.shape[1] embeddings_number = embeddings.shape[0] print 'embedding_size:%s, embeddings_number:%s' % (embedding_size, embeddings_number) # with tf.name_scope("embedding"): # embeddings_placeholder = tf.placeholder(tf.float32, shape=[embeddings_number, embedding_size]) embeddings_placeholder = graph.get_operation_by_name("embedding/Placeholder").outputs[0] for x_test_batch in batches: batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0, embeddings_placeholder: embeddings}) all_predictions = np.concatenate([all_predictions, batch_predictions]) return all_predictions def text_cnn_load_model_and_eval_v2(x_test_s1, x_test_s2, checkpoint_file, allow_soft_placement, log_device_placement, embeddings): graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=allow_soft_placement, log_device_placement=log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x_s1 = graph.get_operation_by_name("input_x_s1").outputs[0] input_x_s2 = graph.get_operation_by_name("input_x_s2").outputs[0] # input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we want to evaluate predictions = graph.get_operation_by_name("output/predictions").outputs[0] # Generate batches for one epoch batch_size = 50 batches = data_helpers.batch_iter(list(zip(x_test_s1, x_test_s2)), batch_size, 1, shuffle=False) # Collect the predictions here all_predictions = [] # Load embeddings placeholder embedding_size = embeddings.shape[1] embeddings_number = embeddings.shape[0] print 'embedding_size:%s, embeddings_number:%s' % (embedding_size, embeddings_number) # with tf.name_scope("embedding"): # embeddings_placeholder = tf.placeholder(tf.float32, shape=[embeddings_number, embedding_size]) embeddings_placeholder = graph.get_operation_by_name("embedding/Placeholder").outputs[0] for batch in batches: x_test_batch_s1, x_test_batch_s2 = zip(*batch) batch_predictions = sess.run(predictions, {input_x_s1: x_test_batch_s1, input_x_s2: x_test_batch_s2, dropout_keep_prob: 1.0, embeddings_placeholder: embeddings}) all_predictions = np.concatenate([all_predictions, batch_predictions]) return all_predictions def text_cnn_load_model_and_eval_v4(#x_test_s1, # x_test_s2, loaded_cross_batch_iter, checkpoint_file, allow_soft_placement, log_device_placement, embeddings): graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=allow_soft_placement, log_device_placement=log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name #input_x_s1 = graph.get_operation_by_name("input_x_s1").outputs[0] #input_x_s2 = graph.get_operation_by_name("input_x_s2").outputs[0] input_x_s1s2_cross = graph.get_operation_by_name("input_x_s1s2_cross").outputs[0] #cnn.input_y: y_batch, # input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we want to evaluate predictions = graph.get_operation_by_name("output/predictions").outputs[0] all_predictions = [] for loaded_cross_batch, batch_i, items_per_batch in loaded_cross_batch_iter: # Generate batches for one epoch batch_size = 50 #batches = data_helpers.batch_iter(list(zip(x_test_s1, x_test_s2)), batch_size, 1, shuffle=False) batches = data_helpers.batch_iter(loaded_cross_batch, batch_size, 1, shuffle=False) # Collect the predictions here # Load embeddings placeholder embedding_size = embeddings.shape[1] embeddings_number = embeddings.shape[0] print 'embedding_size:%s, embeddings_number:%s' % (embedding_size, embeddings_number) # with tf.name_scope("embedding"): # embeddings_placeholder = tf.placeholder(tf.float32, shape=[embeddings_number, embedding_size]) embeddings_placeholder = graph.get_operation_by_name("embedding/Placeholder").outputs[0] for batch in batches: #x_test_batch_s1, x_test_batch_s2 = zip(*batch) x_s1s2_cross = batch batch_predictions = sess.run(predictions, {#input_x_s1: x_test_batch_s1, #input_x_s2: x_test_batch_s2, input_x_s1s2_cross: x_s1s2_cross, dropout_keep_prob: 1.0, embeddings_placeholder: embeddings}) all_predictions = np.concatenate([all_predictions, batch_predictions]) return all_predictions if __name__ == '__main__': # Parameters # ================================================== # Eval Parameters tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") tf.flags.DEFINE_string("checkpoint_dir", "", "Checkpoint directory from training run") # Misc Parameters tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") # Load data. Load your own data here print("Loading data...") x_test, y_test, vocabulary, vocabulary_inv = data_helpers.load_data() y_test = np.argmax(y_test, axis=1) print("Vocabulary size: {:d}".format(len(vocabulary))) print("Test set size {:d}".format(len(y_test))) print("\nEvaluating...\n") # Evaluation # ================================================== checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) predictions_y = text_cnn_load_model_and_eval(x_test=x_test, checkpoint_file=checkpoint_file, allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) # Print accuracy correct_predictions = float(sum(predictions_y == y_test)) print("Total number of test examples: {}".format(len(y_test))) print("Accuracy: {:g}".format(correct_predictions / float(len(y_test)))) ``` #### File: conll16st-v34-focused-rnns/conll16st_data/relations.py ```python __author__ = "GW [http://gw.tnode.com/] <<EMAIL>>" __license__ = "GPLv3+" from files import load_parses, load_raws, load_relations_gold from words import get_word_metas def rtsip_to_tag(rel_type, rel_sense, rel_id, rel_part): """Convert relation type, sense, id, and part to tag.""" rel_tag = ":".join([rel_type, rel_sense, str(rel_id), rel_part]) return rel_tag def tag_to_rtsip(tag): """Convert tag to relation type, sense, id, and part.""" rel_type, rel_sense, rel_id, rel_part = tag.split(":") return rel_type, rel_sense, int(rel_id), rel_part def filter_tags(tags, prefixes=None): """Filter list of relation tags matching specified prefixes.""" if prefixes is not None: # filter by specified relation tag prefixes tags = tuple( t for t in tags if any(( t.startswith(p) for p in prefixes )) ) return tags def strip_sense_level(rel_sense, level=None): """Strip relation sense to top level.""" if level is not None: rel_sense = ".".join(rel_sense.split(".")[:level]) return rel_sense def get_rel_parts(relations_gold): """Extract only discourse relation parts/spans of token ids by relation id from CoNLL16st corpus. rel_parts[14905] = { 'Arg1': (879, 880, 881, 882, 883, 884, 885, 886), 'Arg1Len': 46, 'Arg2': (877, 889, 890, 891, 892, 893, 894), 'Arg2Len': 36, 'Connective': (878, 888), 'ConnectiveLen': 6, 'Punctuation': (), 'PunctuationLen': 0, 'PunctuationType': '', 'DocID': 'wsj_1000', 'ID': 14905, 'TokenMin': 877, 'TokenMax': 894, 'TokenCount': 17, } """ rel_parts = {} for rel_id, gold in relations_gold.iteritems(): doc_id = gold['DocID'] punct_type = gold['Punctuation']['PunctuationType'] # short token lists from detailed/gold format to only token id arg1_list = tuple( t[2] for t in gold['Arg1']['TokenList'] ) arg2_list = tuple( t[2] for t in gold['Arg2']['TokenList'] ) conn_list = tuple( t[2] for t in gold['Connective']['TokenList'] ) punct_list = tuple( t[2] for t in gold['Punctuation']['TokenList'] ) all_list = sum([list(arg1_list), list(arg2_list), list(conn_list), list(punct_list)], []) # character lengths of parts arg1_len = sum(( (e - b) for b, e in gold['Arg1']['CharacterSpanList'] )) arg2_len = sum(( (e - b) for b, e in gold['Arg2']['CharacterSpanList'] )) conn_len = sum(( (e - b) for b, e in gold['Connective']['CharacterSpanList'] )) punct_len = sum(( (e - b) for b, e in gold['Punctuation']['CharacterSpanList'] )) # save relation parts rel = { 'Arg1': arg1_list, 'Arg1Len': arg1_len, 'Arg2': arg2_list, 'Arg2Len': arg2_len, 'Connective': conn_list, 'ConnectiveLen': conn_len, 'Punctuation': punct_list, 'PunctuationLen': punct_len, 'PunctuationType': punct_type, 'DocID': doc_id, 'ID': rel_id, 'TokenMin': min(all_list), 'TokenMax': max(all_list), 'TokenCount': len(all_list), } rel_parts[rel_id] = rel return rel_parts def get_rel_types(relations_gold, filter_types=None): """Extract discourse relation types by relation id from CoNLL16st corpus. rel_types[14905] = "Explicit" """ rel_types = {} for rel_id, gold in relations_gold.iteritems(): rel_type = gold['Type'] if filter_types and rel_type not in filter_types: continue rel_types[rel_id] = rel_type return rel_types def get_rel_senses(relations_gold, level=None, filter_senses=None): """Extract first discourse relation senses by relation id from CoNLL16st corpus. rel_senses[14905] = "Contingency.Condition" """ rel_senses = {} for rel_id, gold in relations_gold.iteritems(): sfirst = gold['Sense'][0] # only first sense if filter_senses and sfirst not in filter_senses: continue sfirst = strip_sense_level(sfirst, level) # strip to top level senses rel_senses[rel_id] = sfirst return rel_senses def get_rel_senses_all(relations_gold, level=None, filter_senses=None): """Extract all discourse relation senses by relation id from CoNLL16st corpus. rel_senses_all[14905] = ("Contingency.Condition") """ if filter_senses is None: filter_senses = () rel_senses_all = {} for rel_id, gold in relations_gold.iteritems(): slist = gold['Sense'] slist = [ s for s in slist if s not in filter_senses ] slist = [ strip_sense_level(s, level) for s in slist ] # strip to top level senses rel_senses_all[rel_id] = tuple(slist) return rel_senses_all def add_relation_tags(word_metas, rel_types, rel_senses): """Add discourse relation tags to metadata of words/tokens. word_metas['wsj_1000'][0] = { ... 'RelationTags': ("Explicit:Expansion.Conjunction:14890:Arg1",), } """ for doc_id in word_metas: for meta in word_metas[doc_id]: tags = [] for rel_id, rel_part in zip(meta['RelationIDs'], meta['RelationParts']): if rel_id not in rel_types or rel_id not in rel_senses: continue # skip missing relations rel_type = rel_types[rel_id] rel_sense_all = rel_senses[rel_id] if isinstance(rel_sense_all, str): # only first sense rel_sense_all = (rel_sense_all,) for rel_sense in rel_senses[rel_id]: tags.append(rtsip_to_tag(rel_type, rel_sense, rel_id, rel_part)) # save to metadata meta['RelationTags'] = tuple(tags) ### Tests def test_rel_parts(): dataset_dir = "./conll16st-en-trial" t_rel0 = { 'Arg1': (879, 880, 881, 882, 883, 884, 885, 886), 'Arg1Len': 46, 'Arg2': (877, 889, 890, 891, 892, 893, 894), 'Arg2Len': 36, 'Connective': (878, 888), 'ConnectiveLen': 6, 'Punctuation': (), 'PunctuationLen': 0, 'PunctuationType': '', 'DocID': 'wsj_1000', 'ID': 14905, 'TokenMin': 877, 'TokenMax': 894, 'TokenCount': 17, } relations_gold = load_relations_gold(dataset_dir) rel_parts = get_rel_parts(relations_gold) rel0 = rel_parts[t_rel0['ID']] assert rel0 == t_rel0 def test_rel_types(): dataset_dir = "./conll16st-en-trial" t_rel0_id = 14905 t_rel0 = 'Explicit' relations_gold = load_relations_gold(dataset_dir) rel_types = get_rel_types(relations_gold) rel0 = rel_types[t_rel0_id] assert rel0 == t_rel0 def test_rel_senses(): dataset_dir = "./conll16st-en-trial" t_rel0_id = 14905 t_rel0 = 'Contingency.Condition' t_rel1_id = 14905 t_rel1 = 'Contingency' relations_gold = load_relations_gold(dataset_dir) rel_senses = get_rel_senses(relations_gold) rel0 = rel_senses[t_rel0_id] assert rel0 == t_rel0 relations_gold = load_relations_gold(dataset_dir) rel_senses = get_rel_senses(relations_gold, level=1) rel1 = rel_senses[t_rel1_id] assert rel1 == t_rel1 def test_rel_senses_all(): dataset_dir = "./conll16st-en-trial" t_rel0_id = 14905 t_rel0 = ('Contingency.Condition',) t_rel1_id = 14905 t_rel1 = ('Contingency',) relations_gold = load_relations_gold(dataset_dir) rel_senses = get_rel_senses_all(relations_gold) rel0 = rel_senses[t_rel0_id] assert rel0 == t_rel0 relations_gold = load_relations_gold(dataset_dir) rel_senses = get_rel_senses_all(relations_gold, level=1) rel1 = rel_senses[t_rel1_id] assert rel1 == t_rel1 def test_relation_tags(): dataset_dir = "./conll16st-en-trial" doc_id = "wsj_1000" t_meta0_id = 0 t_meta0_tags = ('Explicit:Expansion.Conjunction:14890:Arg1',) t_meta1_id = 894 t_meta1_tags = ('Explicit:Comparison.Concession:14904:Arg2', 'Explicit:Contingency.Condition:14905:Arg2') t_meta2_id = 895 t_meta2_tags = () parses = load_parses(dataset_dir) raws = load_raws(dataset_dir, [doc_id]) word_metas = get_word_metas(parses, raws) relations_gold = load_relations_gold(dataset_dir) rel_types = get_rel_types(relations_gold) rel_senses = get_rel_senses(relations_gold) add_relation_tags(word_metas, rel_types, rel_senses) assert word_metas[doc_id][t_meta0_id]['RelationTags'] == t_meta0_tags assert word_metas[doc_id][t_meta1_id]['RelationTags'] == t_meta1_tags assert word_metas[doc_id][t_meta2_id]['RelationTags'] == t_meta2_tags if __name__ == '__main__': import pytest pytest.main(['-s', __file__]) ``` #### File: conll16st-v34-focused-rnns/v34/optimize.py ```python __author__ = "GW [http://gw.tnode.com/] <<EMAIL>>" __license__ = "GPLv3+" import argparse import logging import os from hyperopt import hp, fmin, tpe, space_eval from hyperopt.mongoexp import MongoTrials, main_worker_helper, spec_from_misc import optimize_exec def list_best(mongo, exp_key=None, space=None): mongo_trials = MongoTrials(mongo, exp_key=exp_key) jobs = mongo_trials.trials jobs_ok = [ (d['result']['loss'], d) for d in jobs if d['state'] == 2 and d['result']['status'] == 'ok'] jobs_ok.sort() for loss, job in reversed(jobs_ok): print(loss, job['owner'], job['result']) spec = spec_from_misc(job['misc']) print("spec: {}".format(spec)) if space is not None: print("space: {}".format(space_eval(space, spec))) print("total: {}/{}".format(len(jobs_ok), len(jobs))) return mongo_trials.argmin # logging log = logging.getLogger("hyperopt") if log: import sys log.addHandler(logging.StreamHandler(stream=sys.stdout)) log.setLevel(logging.DEBUG) # parse arguments argp = argparse.ArgumentParser(description=__doc__.strip().split("\n", 1)[0]) argp.add_argument('action', choices=['worker', 'optimizer', 'list_best'], help="action to perform") argp.add_argument('--mongo', default="mongo://conll16st-mongo:27017/conll16st/jobs", help="mongo connection string") argp.add_argument('--exp-key', default=None, help="identifier for optimization experiments") argp.add_argument('--evals', type=int, default=10, help="maximal number of evaluations (for optimizer)") argp.add_argument('--cmd', default="/srv/v34/train.py /srv/ex/{exp_key}-{exp_hash} /srv/data/conll16st-zh-train /srv/data/conll16st-zh-dev --clean --config='{config_str}'", help="command for each experiment (for optimizer)") argp.add_argument('--worker-helper', default="/usr/local/bin/hyperopt-mongo-worker", help="command for worker helper (for worker)") args = argp.parse_args() # define configuration search space space = { '_cmd': args.cmd, '_exp_key': args.exp_key, 'filter_fn_name': "conn_gt_0", #!!!: "conn_eq_0", "conn_gt_0" 'epochs': 200, 'epochs_len': -1, 'epochs_patience': 10, #'batch_size': 64, #'snapshot_size': 2048, 'random_per_sample': hp.quniform('random_per_sample', 8, 64, 8.), 'words_dim': hp.quniform('words_dim', 10, 100, 10.), 'focus_dim': hp.quniform('focus_dim', 2, 8, 1.), 'rnn_dim': hp.quniform('rnn_dim', 10, 100, 10.), 'final_dim': hp.quniform('final_dim', 10, 100, 10.), 'arg1_len': 500, #= 100 (en), 500 (zh) 'arg2_len': 500, #= 100 (en), 500 (zh) #'conn_len': 10, #'punc_len': 2, 'words_dropout': hp.quniform('words_dropout', 0.0, 1.0, 0.25), 'focus_dropout_W': hp.quniform('focus_dropout_W', 0.0, 1.0, 0.25), 'focus_dropout_U': hp.quniform('focus_dropout_U', 0.0, 1.0, 0.25), 'rnn_dropout_W': hp.quniform('rnn_dropout_W', 0.0, 1.0, 0.25), 'rnn_dropout_U': hp.quniform('rnn_dropout_U', 0.0, 1.0, 0.25), 'final_dropout': hp.quniform('final_dropout', 0.0, 1.0, 0.25), 'words2vec_bin': None, 'words2vec_txt': None, #'rsenses_imp_loss': "categorical_crossentropy", } if args.action == 'worker': # run distributed worker class Options(object): mongo = args.mongo exp_key = args.exp_key last_job_timeout = None max_consecutive_failures = 2 max_jobs = args.evals #= inf poll_interval = 300 #= 5 min reserve_timeout = 3600 #= 1 hour workdir = None sys.argv[0] = args.worker_helper sys.exit(main_worker_helper(Options(), None)) elif args.action == 'optimizer': # run distributed optimizer trials = MongoTrials(args.mongo, exp_key=args.exp_key) best = fmin(optimize_exec.objective, space, trials=trials, algo=tpe.suggest, max_evals=args.evals) # summary print print "evals: {}".format(args.evals) print "best: {}".format(best) print "space: {}".format(space_eval(space, best)) elif args.action == 'list_best': # list distributed evaluation results best = list_best(args.mongo, exp_key=args.exp_key, space=space) # summary print print "evals: {}".format(args.evals) print "best: {}".format(best) print "space: {}".format(space_eval(space, best)) else: raise Exception("Invalid action '{}'".format(args.action)) ``` #### File: architectures/nb_baseline/misc_utils.py ```python import logging import logging.config import yaml from time import time import spacy def get_config(path): """ Returns YAML configuration from path. """ with open(path) as file_: return yaml.load(file_) def get_logger(module_name, config=None): """ Returns global logger. Params: - module_name: The name of the logger, preferably module name. - config: A dict of logger configuration. """ if config is not None: logging.config.dictConfig(config) return logging.getLogger(module_name) EN_MODEL = None def get_en_model(): """ This takes a while to load, so we make it a singleton. """ global EN_MODEL # pylint: disable=W0603 logger = get_logger(__name__) if EN_MODEL is None: logger.debug("Loading spacy English model...") EN_MODEL = spacy.load('en', tagger=False, parser=False, entity=False, matcher=False, add_vectors=False) return EN_MODEL def tokenize(sentence): """ Returns tokenized string. """ en_model = get_en_model() return [w.lower_ for w in en_model(sentence)] class timer(): def __init__(self): self.elapsed_time = 0 self.start_time = None def __enter__(self): self.start_time = time() return self def __exit__(self, type_, value, traceback): self.elapsed_time = time() - self.start_time return ``` #### File: architectures/nb_baseline/resources.py ```python from misc_utils import get_config, get_logger, tokenize from discourse_relation import DiscourseRelation from collections import Counter, defaultdict import json import abc import numpy as np from os.path import join import os logger = get_logger(__name__) class Resource(metaclass=abc.ABCMeta): def __init__(self, path, classes): self.path = path self.classes = sorted(classes) self.y_indices = {x: y for y, x in enumerate(self.classes)} self.instances = list(self._load_instances(path)) @abc.abstractmethod def _load_instances(self, path): raise NotImplementedError("This class must be subclassed.") class PDTBRelations(Resource): def __init__(self, path, classes, separate_dual_classes, filter_type=None, skip_missing_classes=True): self.skip_missing_classes = skip_missing_classes self.separate_dual_classes = separate_dual_classes self.filter_type = [] if filter_type is None else filter_type super().__init__(path, classes) def _load_instances(self, path): with open(join(path, 'relations.json')) as file_: for line in file_: rel = DiscourseRelation(json.loads(line.strip())) if (self.filter_type != [] or self.filter_type is not None) and rel.relation_type() not in self.filter_type: continue if self.separate_dual_classes: for splitted in rel.split_up_senses(): if len(splitted.senses()) > 1: raise ValueError("n_senses > 1") if len(splitted.senses()) == 1 and splitted.senses()[0] not in self.y_indices: if self.skip_missing_classes: logger.debug("Sense class {} not in class list, skipping {}".format(splitted.senses()[0], splitted.relation_id())) continue yield splitted else: a_class_exist = any(r in self.y_indices for r in rel.senses()) if not a_class_exist: if self.skip_missing_classes: logger.debug("Sense {} classes not in class list, skipping {}".format(rel.senses(), rel.relation_id())) continue yield rel def get_feature_tensor(self, extractors): rels_feats = [] n_instances = 0 last_features_for_instance = None for rel in self.instances: n_instances += 1 feats = [] total_features_per_instance = 0 for extractor in extractors: # These return matrices of shape (1, n_features) # We concatenate them on axis 1 arg_rawtext = getattr(rel, extractor.argument)() arg_tokenized = tokenize(arg_rawtext) arg_feats = extractor.extract_features(arg_tokenized) feats.append(arg_feats) total_features_per_instance += extractor.n_features if last_features_for_instance is not None: # Making sure we have equal number of features per instance assert total_features_per_instance == last_features_for_instance rels_feats.append(np.concatenate(feats, axis=1)) feature_tensor = np.array(rels_feats) assert_shape = (n_instances, 1, total_features_per_instance) assert feature_tensor.shape == assert_shape, \ "Tensor shape mismatch. Is {}, should be {}".format(feature_tensor.shape, assert_shape) return feature_tensor def get_correct(self, indices=True): """ Returns answer indices. """ for rel in self.instances: senses = rel.senses() if self.separate_dual_classes: if indices: yield self.y_indices[senses[0]] else: yield senses[0] else: ys = [self.y_indices[sense] for sense in senses] if indices: yield ys else: yield senses def store_results(self, results, store_path): """ Don't forget to use the official scoring script here. """ text_results = [self.classes[res] for res in results] # Load test file # Output json object with results # Deal with multiple instances somehow predicted_rels = [] for text_result, rel in zip(text_results, self.instances): if rel.is_explicit(): rel_type = 'Explicit' else: rel_type = 'Implicit' predicted_rels.append(rel.to_output_format(text_result, rel_type)) # turn string representation into list instance first # Store test file if not os.path.exists(store_path): os.makedirs(store_path) with open(join(store_path, 'output.json'), 'w') as w: for rel in predicted_rels: w.write(json.dumps(rel) + '\n') logger.info("Stored predicted output at {}".format(store_path)) ``` #### File: nn_discourse_parser/nets/lstm.py ```python import numpy as np import theano from theano import config import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import tree_util class LSTM(object): def square_weight(self, ndim): return self.rng.uniform( low=-np.sqrt(6. / (4 * ndim)), high=np.sqrt(6. / (4 * ndim)), size=(ndim, ndim) ).astype(config.floatX) def _init_params(self, rng, dim_proj, W=None, U=None, b=None, num_slices=4): self.params = []#a list of paramter variables self.input = [] #a list of input variables self.output = []#a list of output variables self.predict = [] # a list of prediction functions self.hinge_loss = None # a function self.crossentropy = None # a function self.dim_proj = dim_proj self.rng = rng #LSTM parameters if W is None: W_values = np.concatenate( [self.square_weight(self.dim_proj) for x in range(num_slices)], axis=1) self.W = theano.shared(W_values, borrow=True) else: self.W = W if U is None: U_values = np.concatenate( [self.square_weight(self.dim_proj) for x in range(num_slices)], axis=1) self.U = theano.shared(U_values, borrow=True) else: self.U = U if b is None: b_values = np.zeros((num_slices * self.dim_proj,)).\ astype(config.floatX) self.b = theano.shared(b_values, borrow=True) else: self.b = b self.params = [self.W, self.U, self.b] def _reset(self, rng, num_slices): W_values = np.concatenate( [self.square_weight(self.dim_proj) for x in range(num_slices)], axis=1) U_values = np.concatenate( [self.square_weight(self.dim_proj) for x in range(num_slices)], axis=1) num_elems = num_slices * self.dim_proj b_values = np.zeros((num_elems,)).astype(config.floatX) self.W.set_value(W_values) self.U.set_value(U_values) self.b.set_value(b_values) class BinaryTreeLSTM(LSTM): """Tree LSTM This version is slow and a bit expensive on memory as the theano.scan loop passes on all of the time slices with on one time slice changed. I am not sure if theano is doing something smart with it or not. tlstm.py is unuseable because it takes too long to compose a computation graph in theano. It takes around 12s per discourse relation, which is far too slow. """ def __init__(self, rng, dim_proj, W=None, U=None, b=None): self._init_params(rng, dim_proj, W, U, b, 5) word_matrix = T.tensor3('Word matrix', dtype=config.floatX) c_mask = T.matrix('Child mask', dtype=config.floatX) node_mask = T.matrix('Node mask', dtype=config.floatX) children = T.tensor3('Children', dtype='int64') self.X = word_matrix self.mask = node_mask self.c_mask = c_mask self.input = [word_matrix, children, c_mask, node_mask] n_samples = word_matrix.shape[1] self.h, self.c_memory = self.project(word_matrix, children, c_mask) all_samples = T.arange(n_samples) self.max_pooled_h = (self.h * node_mask[:, :, None]).max(axis=0) self.sum_pooled_h = (self.h * node_mask[:, :, None]).sum(axis=0) self.mean_pooled_h = self.sum_pooled_h /\ T.maximum(c_mask.sum(axis=0)[:, None], 1) num_inner_nodes = c_mask.sum(axis=0).astype('int64') num_nodes = num_inner_nodes * 2 + 1 self.top_h = self.h[num_nodes - 1, all_samples, :] def reset(self, rng): self._reset(rng, 5) def project(self, word_embedding, children, c_mask): """ word_embedding - TxNxd serrated tensor prefilled with word embeddings children - TxNx3 serrated matrix for children list c_mask - TxN mask for varying children list """ nsteps = children.shape[0] if word_embedding.ndim == 3: n_samples = word_embedding.shape[1] else: n_samples = 1 def _step(c, c_m, hidden, c_matrix): node_idx = c[:, 0] l_child_idx = c[:, 1] r_child_idx = c[:, 2] all_samples = T.arange(n_samples) recursive = \ T.dot(hidden[l_child_idx, all_samples, :], self.W) +\ T.dot(hidden[r_child_idx, all_samples, :], self.U) +\ self.b i = T.nnet.sigmoid(_slice(recursive, 0, self.dim_proj)) f1 = T.nnet.sigmoid(_slice(recursive, 1, self.dim_proj)) f2 = T.nnet.sigmoid(_slice(recursive, 2, self.dim_proj)) o = T.nnet.sigmoid(_slice(recursive, 3, self.dim_proj)) c_prime = T.tanh(_slice(recursive, 4, self.dim_proj)) new_c = i * c_prime + \ f1 * c_matrix[l_child_idx, all_samples,: ] +\ f2 * c_matrix[r_child_idx, all_samples,: ] new_c_masked = c_m[:,None] * new_c + \ (1. - c_m[:, None]) * c_matrix[node_idx, all_samples, :] new_h = o * T.tanh(new_c_masked) new_h_masked = c_m[:, None] * new_h + \ (1. - c_m[:, None]) * hidden[node_idx, all_samples, :] return T.set_subtensor(hidden[node_idx, all_samples], new_h_masked), \ T.set_subtensor(c_matrix[node_idx, all_samples], new_c_masked) rval, updates = theano.scan(_step, sequences=[children, c_mask], outputs_info=[word_embedding, T.zeros(word_embedding.shape),], n_steps=nsteps) return rval[0][-1], rval[1][-1] @staticmethod def make_givens(givens, input_vec, T_training_data, output_vec, T_training_data_label, start_idx, end_idx): """ embedding_series: 2T x N x d serrated matrix word embedding for the leaves children : T x N x 3 children serrated matrix c_mask : T x N masking matrix for children matrix node_mask : 2T x N masking matrix for the internal nodes (for embedding_series) nice for computing mean h or sum h """ givens[input_vec[0]] = T_training_data[0][:,start_idx:end_idx, :] givens[input_vec[1]] = T_training_data[1][:,start_idx:end_idx, :] givens[input_vec[2]] = T_training_data[2][:,start_idx:end_idx] givens[input_vec[3]] = T_training_data[3][:,start_idx:end_idx] givens[input_vec[0+4]] = \ T_training_data[0+4][:,start_idx:end_idx, :] givens[input_vec[1+4]] = \ T_training_data[1+4][:,start_idx:end_idx, :] givens[input_vec[2+4]] = T_training_data[2+4][:,start_idx:end_idx] givens[input_vec[3+4]] = T_training_data[3+4][:,start_idx:end_idx] # Sense label only if len(output_vec) == 1: givens[output_vec[0]] = \ T_training_data_label[0][start_idx:end_idx] else: givens[output_vec[0]] = \ T_training_data_label[0][:, start_idx:end_idx, :] givens[output_vec[1]] = \ T_training_data_label[1][:, start_idx:end_idx, :] givens[output_vec[2]] = \ T_training_data_label[2][start_idx:end_idx] def build_stacked_lstm(num_layers, num_units, pooling, dropout_p): lstm_layers = [] top_layer = None rng = np.random.RandomState(100) for i in range(num_layers): last_layer = i == (num_layers - 1) lstm_layer = SerialLSTM(rng, num_units, pooling=pooling if last_layer else None, parent_layer=top_layer, dropout_p=dropout_p) top_layer = lstm_layer lstm_layers.append(lstm_layer) return lstm_layers class SerialLSTM(LSTM): def __init__(self, rng, dim_proj, pooling, parent_layer=None, W=None, U=None, b=None, dropout_p=1.0): self._init_params(rng, dim_proj, W, U, b, 4) self.dropout_p = dropout_p self.n_out = dim_proj self.srng = RandomStreams() if parent_layer is None: self.X = T.tensor3('x', dtype=config.floatX) self.mask = T.matrix('mask', dtype=config.floatX) self.c_mask = None self.h_train = self.project( self.X, self.mask, self.dropout_p, True) self.h_test = self.project( self.X, self.mask, self.dropout_p, False) else: self.X = parent_layer.X self.mask = parent_layer.mask self.c_mask = None self.h_train = self.project( parent_layer.h_train, self.mask, self.dropout_p, True) self.h_test = self.project( parent_layer.h_test, self.mask, self.dropout_p, False) self.input = [self.X, self.mask] n_samples = self.X.shape[1] if pooling == 'max_pool': self.activation_train = \ (self.h_train * self.mask[:, :, None]).max(axis=0) self.activation_test = \ (self.h_test * self.mask[:, :, None]).max(axis=0) elif pooling == 'sum_pool': self.activation_train = \ (self.h_train * self.mask[:, :, None]).sum(axis=0) self.activation_test = \ (self.h_test * self.mask[:, :, None]).sum(axis=0) elif pooling == 'mean_pool': sum_pooled = \ (self.h_train * self.mask[:, :, None]).sum(axis=0) self.activation_train = \ sum_pooled / self.mask.sum(axis=0)[:, None] sum_pooled = (self.h_test * self.mask[:, :, None]).sum(axis=0) self.activation_test = \ sum_pooled / self.mask.sum(axis=0)[:, None] elif pooling == 'top': last_indices = self.mask.sum(axis=0).astype('int64') - 1 self.activation_train = \ self.h_train[last_indices, T.arange(n_samples), :] self.activation_test = \ self.h_test[last_indices, T.arange(n_samples), :] else: self.activation_train = self.h_train self.activation_test = self.h_test def reset(self, rng): self._reset(rng, 4) def project(self, embedding_series, mask, dropout_p, training): nsteps = embedding_series.shape[0] if embedding_series.ndim == 3: n_samples = embedding_series.shape[1] else: n_samples = 1 dropout_mask = self.srng.binomial( size=[embedding_series.shape[-1]], p=dropout_p, dtype=config.floatX) def _step(m_, x_, h_, c_): # x_ is actually x * W so we don't multiply again preact = T.dot(h_, self.U) + x_ i = T.nnet.sigmoid(_slice(preact, 0, self.dim_proj)) f = T.nnet.sigmoid(_slice(preact, 1, self.dim_proj)) o = T.nnet.sigmoid(_slice(preact, 2, self.dim_proj)) c = T.tanh(_slice(preact, 3, self.dim_proj)) c = f * c_ + i * c # if the sequence is shorter than the max length, then pad # it with the old stuff for c and h c = m_[:, None] * c + (1. - m_)[:, None] * c_ h = o * T.tanh(c) h = m_[:, None] * h + (1. - m_)[:, None] * h_ return h, c if training: w_dot_x = T.dot(embedding_series * dropout_mask, self.W) + self.b else: w_dot_x = T.dot(embedding_series, self.W * dropout_p) + self.b rval, updates = theano.scan(_step, sequences=[mask, w_dot_x], outputs_info=[ T.alloc(np_floatX(0.), n_samples, self.dim_proj), T.alloc(np_floatX(0.), n_samples, self.dim_proj)], n_steps=nsteps) return rval[0] @staticmethod def make_givens(givens, input_vec, T_training_data, output_vec, T_training_data_label, start_idx, end_idx): # first arg embedding and mask givens[input_vec[0]] = T_training_data[0][:,start_idx:end_idx, :] givens[input_vec[1]] = T_training_data[1][:,start_idx:end_idx] # second arg embedding and mask givens[input_vec[2]] = T_training_data[2][:,start_idx:end_idx, :] givens[input_vec[3]] = T_training_data[3][:,start_idx:end_idx] # the rest if there is more e.g. input for MOE for i, input_var in enumerate(input_vec[4:]): givens[input_var] = T_training_data[i][start_idx:end_idx] for i, output_var in enumerate(output_vec): givens[output_var] = T_training_data_label[i][start_idx:end_idx] def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n * dim:(n + 1) * dim] return _x[:, n * dim:(n + 1) * dim] def prep_srm_arg(relation_list, arg_pos, wbm, max_length, ignore_OOV=True): assert arg_pos == 1 or arg_pos == 2 n_samples = len(relation_list) x = np.zeros((max_length, n_samples)).astype('int64') x_mask = np.zeros((max_length, n_samples)).astype(config.floatX) for i, relation in enumerate(relation_list): indices = wbm.index_tokens(relation.arg_tokens(arg_pos), ignore_OOV) sequence_length = min(max_length, len(indices)) x[:sequence_length, i] = indices[:sequence_length] x_mask[:sequence_length, i] = 1. embedding_series = \ wbm.wm[x.flatten()].\ reshape([max_length, n_samples, wbm.num_units]).\ astype(config.floatX) return embedding_series, x_mask def prep_tree_srm_arg(relation_list, arg_pos, wbm, max_length, all_left_branching=False, node_label_alphabet={}): """Make the matrices from the data required for the tree model T = number of time steps N = number of samples d = dimensionality of the embedding k = dimensionality of the embedding_series: 2T x N x d serrated matrix word embedding for the leaves children : T x N x 3 children serrated matrix c_mask : T x N masking matrix for children matrix node_mask : 2T x N masking matrix for the internal nodes (for embedding_series) nice for computing mean h or sum h node_label_tensor : 2T x N x k. This masks embedding_series matrix """ assert arg_pos == 1 or arg_pos == 2 n_samples = len(relation_list) w_indices = np.zeros((2 * max_length, n_samples)).astype('int64') c_mask = np.zeros((max_length, n_samples), dtype=config.floatX) node_mask = np.zeros((2 * max_length, n_samples), dtype=config.floatX) children = np.zeros((n_samples, max_length, 3), dtype='int64') node_label_tensor = np.zeros((2 * max_length, n_samples, len(node_label_alphabet)), dtype=config.floatX) for i, relation in enumerate(relation_list): if all_left_branching: parse_tree = tree_util.left_branching_tree(relation, arg_pos) else: parse_tree = tree_util.find_parse_tree(relation, arg_pos) if len(parse_tree.leaves()) == 0: parse_tree = tree_util.left_branching_tree(relation, arg_pos) indices = wbm.index_tokens(parse_tree.leaves(), ignore_OOV=False) sequence_length = min(max_length, len(indices)) w_indices[:sequence_length, i] = indices[:sequence_length] ordering_matrix, node_label_list, num_leaves = \ tree_util.reverse_toposort(parse_tree) num_nodes = min(2 * max_length, ordering_matrix.shape[0]) if num_nodes > num_leaves: num_inner_nodes = num_nodes - num_leaves children[i, :num_inner_nodes, :] = ordering_matrix[num_leaves:num_nodes, :] c_mask[:num_inner_nodes, i] = 1. node_mask[num_leaves:num_nodes, i] = 1. if len(node_label_alphabet) > 0: for t, node_label in enumerate(node_label_list): if node_label is not None and t < (2 * max_length): if node_label in node_label_alphabet: label_index = node_label_alphabet[node_label] else: label_index = node_label_alphabet['OTHERS'] node_label_tensor[t, i, label_index] = 1. children = np.swapaxes(children, 0, 1) embedding_series = \ wbm.wm[w_indices.flatten()].\ reshape([max_length * 2, n_samples, wbm.num_units]).\ astype(config.floatX) return embedding_series, children, c_mask, node_mask, node_label_tensor def prep_serrated_matrix_relations(relation_list, wbm, max_length): arg1_srm, arg1_mask = prep_srm_arg(relation_list, 1, wbm, max_length) arg2_srm, arg2_mask = prep_srm_arg(relation_list, 2, wbm, max_length) return (arg1_srm, arg1_mask, arg2_srm, arg2_mask) def _check_masks(word_mask, c_mask): """Make sure that the two mask matrices are well-formed word_mask and c_mask are T x N We have to check that 0<= w_x + c_m <= 1. They can't both be 1. """ check_sum = word_mask + c_mask assert(np.all(0 <= check_sum) and np.all(check_sum <= 1)) def prep_tree_lstm_serrated_matrix_relations(relation_list, wbm, max_length): arg1_srm, arg1_children, arg1_c_mask, arg1_node_mask, _ = \ prep_tree_srm_arg(relation_list, 1, wbm, max_length) arg2_srm, arg2_children, arg2_c_mask, arg2_node_mask, _ = \ prep_tree_srm_arg(relation_list, 2, wbm, max_length) return (arg1_srm, arg1_children, arg1_c_mask, arg1_node_mask, \ arg2_srm, arg2_children, arg2_c_mask, arg2_node_mask) def prep_stlstm_serrated_matrix_relations(relation_list, wbm, max_length, label_alphabet): arg1_srm, arg1_children, arg1_c_mask, arg1_node_mask, arg1_node_label = \ prep_tree_srm_arg(relation_list, 1, wbm, max_length, False, label_alphabet) arg2_srm, arg2_children, arg2_c_mask, arg2_node_mask, arg2_node_label = \ prep_tree_srm_arg(relation_list, 2, wbm, max_length, False, label_alphabet) return ( [arg1_srm, arg1_children, arg1_c_mask, arg1_node_mask, arg2_srm, arg2_children, arg2_c_mask, arg2_node_mask], [arg1_node_label, arg2_node_label] ) def np_floatX(data): return np.asarray(data, dtype=config.floatX) ``` #### File: architectures/nn_discourse_parser/neural_discourse_parser.py ```python import codecs import sys import json from nets.bilinear_layer import NeuralNet from nets.data_reader import DRelation import nets.dense_feature_functions as df from os import path import theano class DiscourseParser(object): def __init__(self, model_file, dict_file): self.net = NeuralNet.load(model_file) self.word2vec_ff = get_word2vec_ff(dict_file, 'sum_pool') self.index_to_label = {} for label, label_index in self.net.label_alphabet.items(): self.index_to_label[label_index] = label def classify_sense(self, data_dir, output_dir): relation_file = '%s/relations-no-senses.json' % data_dir parse_file = '%s/parses.json' % data_dir parse = json.load(codecs.open(parse_file, encoding='utf8')) relation_dicts = [json.loads(x) for x in open(relation_file)] relation_list = [DRelation(x, parse) for x in relation_dicts ] data_matrices = self.word2vec_ff(relation_list) classify = theano.function(self.net.input, self.net.predict[0]) predicted_labels = classify(*data_matrices) output = codecs.open('%s/output.json' % output_dir, 'wb', encoding ='utf8') for i, relation_dict in enumerate(relation_dicts): relation_dict['Sense'] = [self.index_to_label[predicted_labels[i]]] relation_dict['Arg1']['TokenList'] = [x[2] for x in relation_dict['Arg1']['TokenList']] relation_dict['Arg2']['TokenList'] = [x[2] for x in relation_dict['Arg2']['TokenList']] relation_dict['Connective']['TokenList'] = \ [x[2] for x in relation_dict['Connective']['TokenList']] if len(relation_dict['Connective']['TokenList']) > 0: relation_dict['Type'] = 'Explicit' else: relation_dict['Type'] = 'Implicit' output.write(json.dumps(relation_dict) + '\n') def get_word2vec_ff(dic_tfile, projection): word2vec = df.EmbeddingFeaturizer(dict_file) if projection == 'mean_pool': return word2vec.mean_args elif projection == 'sum_pool': return word2vec.additive_args elif projection == 'max_pool': return word2vec.max_args elif projection == 'top': return word2vec.top_args else: raise ValueError('projection must be one of {mean_pool, sum_pool, max_pool, top}. Got %s '\ % projection) if __name__ == '__main__': name = sys.argv[1] model_file = path.join(sys.argv[2], "implicit_conll_ff_train_test.pkl") input_dataset = sys.argv[3] output_dir = sys.argv[4] dict_file = sys.argv[5] parser = DiscourseParser(model_file, dict_file) parser.classify_sense(input_dataset, output_dir) ``` #### File: architectures/nn_discourse_parser/train_models.py ```python import codecs import json import sys import timeit import random import numpy as np import theano import nets.base_label_functions as l import nets.util as util from nets.data_reader import DRelation from nets.learning import DataTriplet from nets.templates import build_ff_network def extract_non_explicit_relations(data_folder, label_function=None): parse_file = '%s/parses.json' % data_folder parse = json.load(codecs.open(parse_file, encoding='utf8')) relation_file = '%s/relations.json' % data_folder relation_dicts = [json.loads(x) for x in open(relation_file)] relations = [DRelation(x, parse) for x in relation_dicts if x['Type'] != 'Explicit'] if label_function is not None: relations = [x for x in relations if label_function.label(x) is not None] return relations def load_data(dir_list, relation_to_matrices_fn, sense_lf=None): if sense_lf is None: sense_lf = l.OriginalLabel() relation_list_list = [extract_non_explicit_relations(dir, sense_lf) for dir in dir_list] data_list = [relation_to_matrices_fn(relation_list) for relation_list in relation_list_list] label_vectors, label_alphabet = util.label_vectorize(relation_list_list, sense_lf) data_triplet = DataTriplet(data_list, [[x] for x in label_vectors], [label_alphabet]) return data_triplet def implicit_second_level_ff_train(args): dir_list = ['/data/conll16st-en-zh-dev-train-test_LDC2016E50/conll16st-en-03-29-16-train', '/data/conll16st-en-zh-dev-train-test_LDC2016E50/conll16st-en-03-29-16-dev', '/data/conll16st-en-zh-dev-train-test_LDC2016E50/conll16st-en-03-29-16-test'] num_units = 300 projection = 'sum_pool' word2vec_ff = util._get_word2vec_ff(num_units, projection) data_triplet = load_data(dir_list, word2vec_ff, l.SecondLevelLabel()) train(num_hidden_layers=1, num_hidden_units=400, model_name='second_level_ff', data_triplet=data_triplet, minibatch_size=53) def implicit_conll_zh_ff_train(args): dir_list = ['/data/conll16st-en-zh-dev-train-test_LDC2016E50/conll16st-zh-03-29-16-train', '/data/conll16st-en-zh-dev-train-test_LDC2016E50/conll16st-zh-03-29-16-dev', '/data/conll16st-en-zh-dev-train-test_LDC2016E50/conll16st-zh-03-29-16-test'] num_units = 250 projection = 'sum_pool' vec_type = 'skipgram' num_hidden_layers = 2 num_hidden_units = 250 word2vec_ff = util._get_zh_word2vec_ff(num_units, vec_type, projection, cdtb=True) data_triplet = load_data(dir_list, word2vec_ff) model_name ='conll_zh_ff' net, best_dev_model, best_test_model = \ train(num_hidden_layers=num_hidden_layers, num_hidden_units=num_hidden_units, model_name=model_name, data_triplet=data_triplet, minibatch_size=None) net.label_alphabet = data_triplet.label_alphabet_list[0] eval_model(net, data_triplet.dev_data, data_triplet.dev_data_label[0], best_dev_model) net.save('/model/%s_dev.pkl' % model_name, best_dev_model) eval_model(net, data_triplet.test_data, data_triplet.test_data_label[0], best_test_model) net.save('/model/%s_test.pkl' % model_name, best_test_model) def implicit_conll_ff_train(experiment_name, data_base_path, embedding_path, model_store_path, train_input_layer=True): dir_list = [data_base_path + '-train', data_base_path + '-dev', data_base_path + '-test'] num_units = 300 projection = 'sum_pool' num_hidden_layers = 2 num_hidden_units = 300 word2vec_ff = util._get_word2vec_ff(embedding_path, projection) data_triplet = load_data(dir_list, word2vec_ff) model_name ='conll_ff' net, best_dev_model, best_test_model = \ train(num_hidden_layers=num_hidden_layers, num_hidden_units=num_hidden_units, model_name=model_name, data_triplet=data_triplet, minibatch_size=None, train_input_layer=train_input_layer) net.label_alphabet = data_triplet.label_alphabet_list[0] eval_model(net, data_triplet.dev_data, data_triplet.dev_data_label[0], best_dev_model) net.save('{}/{}_dev.pkl'.format(model_store_path, experiment_name), best_dev_model) eval_model(net, data_triplet.test_data, data_triplet.test_data_label[0], best_test_model) net.save('{}/{}_test.pkl'.format(model_store_path, experiment_name), best_test_model) def eval_model(net, data, label, params=None): if params is not None: for param, best_param in zip(net.params, params): param.set_value(best_param) classify = theano.function(net.input, net.predict[0]) predicted_labels = classify(*data) accuracy = float(np.sum(predicted_labels == label)) / len(label) print accuracy def train(num_hidden_layers, num_hidden_units, model_name, data_triplet, minibatch_size=None, dry=False, train_input_layer=True): if dry: num_reps = 2 n_epochs = 2 model_name = '_model_trainer_dry_run' else: num_reps = 50 n_epochs = 5 json_file = util.set_logger(model_name, dry) baseline_dev_acc = util.compute_baseline_acc(data_triplet.dev_data_label[0]) baseline_test_acc = util.compute_baseline_acc(data_triplet.test_data_label[0]) best_dev_so_far = 0.0 best_test_so_far = 0.0 best_dev_model = None best_test_model = None random_batch_size = minibatch_size == None net, trainer = build_ff_network(data_triplet, num_hidden_layers, num_hidden_units, train_input_layer=train_input_layer) for rep in xrange(num_reps): random_seed = rep + 10 rng = np.random.RandomState(random_seed) net.reset(rng) trainer.reset() if random_batch_size: minibatch_size = np.random.randint(20, 60) start_time = timeit.default_timer() best_iter, best_dev_acc, best_test_acc, best_parameters = \ trainer.train_minibatch_triplet(minibatch_size, n_epochs) best_dev_acc = round(best_dev_acc, 4) best_test_acc = round(best_test_acc, 4) end_time = timeit.default_timer() rep_elapsed = end_time - start_time print '== Rep %s : Training process takes %s seconds' % (rep, rep_elapsed) print '== The training process will require %s hour %s minutes %s seconds more.' % \ util.convert_seconds_to_hours(rep_elapsed * (num_reps - rep - 1)) print '== Best iteration is %s; ' % best_iter + \ 'Test accuracy = %s; ' % best_test_acc + \ 'Baseline test accuracy = %s; ' % baseline_test_acc + \ 'Best dev accuracy = %s; ' % best_dev_acc + \ 'Baseline dev accuracy = %s' % baseline_dev_acc if best_test_acc > best_test_so_far: best_test_model = best_parameters best_test_so_far = best_test_acc if best_dev_acc > best_dev_so_far: best_dev_model = best_parameters best_dev_so_far = best_dev_acc result_dict = { 'test accuracy': best_test_acc, 'baseline test accuracy': baseline_test_acc, 'best dev accuracy': best_dev_acc, 'baseline dev accuracy': baseline_dev_acc, 'best iter': best_iter, 'random seed': random_seed, 'num rep': rep, 'minibatch size': minibatch_size, 'learning rate': trainer.learning_rate, 'lr smoother': trainer.lr_smoother, 'experiment name': model_name, 'num hidden units': num_hidden_units, 'num hidden layers': num_hidden_layers, 'cost function': 'crossentropy', 'dropout' : False } json_file.write('%s\n' % json.dumps(result_dict, sort_keys=True)) return net, best_dev_model, best_test_model if __name__ == '__main__': experiment_name = sys.argv[1] embedding_path = sys.argv[2] data_base_path = sys.argv[3] model_store_path = sys.argv[4] if sys.argv[5] == "train_input_layer": train_input_layer = True elif sys.argv[5] == 'static_input_layer': train_input_layer = False else: raise ValueError("Must set input layer either to train or static.") globals()[experiment_name](experiment_name, data_base_path, embedding_path, model_store_path, train_input_layer) ``` #### File: architectures/svm_baseline/main.py ```python from misc_utils import get_config, get_logger, timer from resources import PDTBRelations from extractors import CBOW from model import SVM import argparse import numpy as np np.random.seed(0) # pylint: disable=E1101 EXTRACTOR_HANDLERS = { 'cbow': CBOW, } MODEL_HANDLERS = { 'svm': SVM } def load_resource(resource_config): logger.debug("Loading data from %s", resource_config['path']) resource_config = {x:y for x,y in resource_config.items() if x != 'name'} resource = PDTBRelations(**resource_config) return resource def get_answers(instances): return list(instances.get_correct()) def extract_features(extract_config, instances): """ Data should be of type PDTBRelations for now. I should generalize this. Returns with dimensionality: sentences x words x n_features """ extractors = [] # Sorting just makes sure they always end up in the same order, # Python's random hashing could mess this up for params in sorted(extract_config, key=lambda v: v['name']): extractor_params = {x: y for x,y in params.items() if x != 'name'} extractor = EXTRACTOR_HANDLERS[params['name']](**extractor_params) extractors.append(extractor) return instances.get_feature_tensor(extractors) def get_model(model_name): model = MODEL_HANDLERS[model_name] return model def run_experiment(config): logger.info("Setting up...") # Load resources train_time = timer() if config['train']: training_data = load_resource(config['resources']['training_data']) logger.debug("Training data classes: {}".format(training_data.y_indices)) correct = get_answers(training_data) extracted_features = extract_features(config['extractors'], training_data) model_class = get_model(config['model']['name']) with train_time: model_config = {x:y for x,y in config['model'].items() if x != 'name'} model = model_class(n_features=extracted_features.shape[2], n_classes=len(training_data.y_indices), **model_config) model.train(extracted_features, correct) logger.info("Finished training!") test_time = timer() if config['test']: test_data = load_resource(config['resources']['test_data']) extracted_features = extract_features(config['extractors'], test_data) model_class = get_model(config['model']['name']) with test_time: model_config = {x:y for x,y in config['model'].items() if x != 'name'} model = model_class(n_features=extracted_features.shape[2], n_classes=len(test_data.y_indices), **model_config) predicted = model.test(extracted_features) test_data.store_results(predicted, config['test_output_path']) logger.info("Finished testing!") if __name__ == '__main__': config = get_config('config.yaml') parser = argparse.ArgumentParser(description='Run experiment.') parser.add_argument('--train', action='store_true', default=False) parser.add_argument('--test', action='store_true', default=False) parser.add_argument('--train-path', type=str, required=False) parser.add_argument('--dev-path', type=str, required=False) parser.add_argument('--test-path', type=str, required=False) parser.add_argument('--embedding-path', type=str, required=False) parser.add_argument('--model-store-path', type=str, required=False) parser.add_argument('--test-output-path', type=str, required=False) parser.add_argument('--svm-kernel', type=str, required=False) parser.add_argument('-c', type=float, required=False) args = parser.parse_args() config['train'] = args.train config['test'] = args.test if args.train_path: config['resources']['training_data']['path'] = args.train_path if args.dev_path: config['resources']['dev_data']['path'] = args.dev_path if args.test_path: config['resources']['test_data']['path'] = args.test_path if args.model_store_path: config['model']['store_path'] = args.model_store_path if args.test_output_path: config['test_output_path'] = args.test_output_path if args.svm_kernel: config['model']['kernel'] = args.svm_kernel if args.c: config['model']['c'] = args.c if args.embedding_path: for extractor in config['extractors']: extractor['path'] = args.embedding_path logger = get_logger(__name__, config=config['logging']) logger.info("Config: {}".format(config)) run_experiment(config) ```
{ "source": "jimmycallin/pydsm", "score": 3 }
#### File: pydsm/pydsm/composition.py ```python from pydsm.indexmatrix import IndexMatrix def linear_additive(v1, v2, alpha=0.5, beta=0.5): """ Weighted elementwise addition. """ compword = str(v1.row2word[0]) + " " + str(v2.row2word[0]) comp = (alpha * v1) + (beta * v2) comp.row2word = [compword] return comp def multiplicative(v1, v2, alpha=1, beta=1): """ Weighted elementwise multiplication. """ compword = str(v1.row2word[0]) + " " + str(v2.row2word[0]) comp = (alpha * v1) * (beta * v2) comp.row2word = [compword] return comp __dsm__ = ['compose'] ``` #### File: pydsm/pydsm/evaluation.py ```python import pydsm import pydsm.similarity from scipy.stats import spearmanr from pkg_resources import resource_stream import pickle import os def synonym_test(matrix, synonym_test, sim_func=pydsm.similarity.cos): """ Evaluate DSM using a synonym test. :param matrix: A DSM matrix. :param synonym_test: A dictionary where the key is the word in focus, and the value is a list of possible word choices. The first word in the dict is the correct choice. :param sim_func: The similarity function to use for evaluation. :return: Accuracy of synonym test. """ correct = [] incorrect = [] unknown_focus_words = [] unknown_synonyms = [] for focus_word, candidates in synonym_test.items(): if focus_word not in matrix.word2row: unknown_focus_words.append(focus_word) continue known_words = [w for w in candidates if w in matrix.word2row] unknown_words = [w for w in candidates if w not in matrix.word2row] if candidates[0] in unknown_words: unknown_synonyms.append(focus_word) continue word_sims = sim_func(matrix[focus_word], matrix[known_words], assure_consistency=False).transpose().sort(ascending=False) if word_sims.row2word[0] == candidates[0]: correct.append(focus_word) else: incorrect.append(focus_word) accuracy = len(correct) / len(synonym_test) print("Evaluation report") print("Accuracy: {}".format(accuracy)) print("Number of words: {}".format(len(synonym_test))) print("Correct words: {}".format(correct)) print("Incorrect words: {}".format(incorrect)) print("Unknown words: {}".format(unknown_focus_words)) print("Unknown correct synonym: {}".format(unknown_synonyms)) return accuracy def simlex(matrix, sim_func=pydsm.similarity.cos): """ Evaluate DSM using simlex-999 evaluation test [1]. :param matrix: A DSM matrix. :param sim_func: The similarity function to use for evaluation. :return: Spearman correlation coefficient. [1] SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. 2014. <NAME>, <NAME> and <NAME>. Preprint pubslished on arXiv. arXiv:1408.3456 """ wordpair_sims = pickle.load(resource_stream(__name__, os.path.join('resources', 'simlex.pickle'))) simlex_vals = [] sim_vals = [] skipped = [] for (w1, w2), value in wordpair_sims.items(): if w1 not in matrix.word2row or w2 not in matrix.word2row: skipped.append((w1, w2)) continue sim_vals.append(sim_func(matrix[w1], matrix[w2])[0,0]) simlex_vals.append(value) spearman = spearmanr(simlex_vals, sim_vals) print("Evaluation report") print("Spearman correlation: {}".format(spearman[0])) print("P-value: {}".format(spearman[1])) print("Skipped the following word pairs: {}".format(skipped )) return spearman[0] def toefl(matrix, sim_func=pydsm.similarity.cos): """ Evaluate DSM using TOEFL synonym test [1]. :param matrix: A DSM matrix. :param sim_func: The similarity function to use for evaluation. :return: Accuracy of TOEFL test. [1] http://aclweb.org/aclwiki/index.php?title=TOEFL_Synonym_Questions_%28State_of_the_art%29 """ synonym_dict = pickle.load(resource_stream(__name__, os.path.join('resources', 'toefl.pickle'))) return synonym_test(matrix, synonym_dict, sim_func=sim_func) ``` #### File: pydsm/tests/test_weighting.py ```python from unittest import TestCase import scipy.sparse as sp from pydsm import IndexMatrix import pydsm.weighting as weighting __author__ = 'jimmy' class TestWeighting(TestCase): def create_mat(self, list_, row2word=None, col2word=None): if row2word is None: row2word = self.row2word if col2word is None: col2word = self.col2word return IndexMatrix(sp.coo_matrix(list_), row2word, col2word) def setUp(self): self.spmat = sp.coo_matrix([[2, 5, 3], [0, 1, 9]]) self.row2word = ['a', 'b'] self.col2word = ['furiously', 'makes', 'sense'] self.mat = IndexMatrix(self.spmat, self.row2word, self.col2word) def test_epmi(self): res = self.create_mat([[2.0, 1.6666666666666667, 0.5], [0.0, 0.33333333333333337, 1.5]]) self.assertAlmostEqual(weighting.epmi(self.mat), res) def test_pmi(self): res = self.create_mat([[0.6931471805599453, 0.5108256237659907, -0.6931471805599453], [0.0, -1.0986122886681096, 0.4054651081081644]]) self.assertAlmostEqual(res, weighting.pmi(self.mat)) def test_ppmi(self): res = self.create_mat([[0.6931471805599453, 0.5108256237659907, 0.0], [0.0, 0.0, 0.4054651081081644]]) self.assertAlmostEqual(weighting.ppmi(self.mat), res) def test_npmi(self): res = self.create_mat([[0.3010299956639812, 0.3684827970831031, -0.3653681296292078], [0.0, -0.3667257913420846, 0.507778585013894]]) self.assertAlmostEqual(weighting.npmi(self.mat), res) def test_pnpmi(self): res = self.create_mat([[0.3010299956639812, 0.3684827970831031, 0.0], [0.0, 0.0, 0.507778585013894]]) self.assertAlmostEqual(weighting.pnpmi(self.mat), res) ``` #### File: pydsm/pydsm/weighting.py ```python from math import log def epmi(matrix): """ Exponential pointwise mutual information """ row_sum = matrix.sum(axis=1) col_sum = matrix.sum(axis=0) total = row_sum.sum(axis=0)[0, 0] inv_col_sum = 1 / col_sum # shape (1,n) inv_row_sum = 1 / row_sum # shape (n,1) inv_col_sum = inv_col_sum * total mat = matrix * inv_row_sum mat = mat * inv_col_sum return mat def smoothed_epmi(matrix, alpha=0.75): """ Performs smoothed epmi. See smoothed_ppmi for more info. Derived from this: #(w,c) / #(TOT) -------------- (#(w) / #(TOT)) * (#(c)^a / #(TOT)^a) ==> #(w,c) / #(TOT) -------------- (#(w) * #(c)^a) / #(TOT)^(a+1)) ==> #(w,c) ---------- (#(w) * #(c)^a) / #(TOT)^a ==> #(w,c) * #(TOT)^a ---------- #(w) * #(c)^a """ row_sum = matrix.sum(axis=1) col_sum = matrix.sum(axis=0).power(alpha) total = row_sum.sum(axis=0).power(alpha)[0, 0] inv_col_sum = 1 / col_sum # shape (1,n) inv_row_sum = 1 / row_sum # shape (n,1) inv_col_sum = inv_col_sum * total mat = matrix * inv_row_sum mat = mat * inv_col_sum return mat def pmi(matrix): """ Pointwise mutual information """ mat = epmi(matrix).log() return mat def shifted_pmi(matrix, k): """ Shifted pointwise mutual information """ mat = pmi(matrix) - log(k) return mat def smoothed_pmi(matrix, alpha=0.75): """ Smoothed pointwise mutual information See smoothed_ppmi for more information. """ mat = smoothed_epmi(matrix, alpha).log() return mat def ppmi(matrix): """ Positive pointwise mutual information """ mat = pmi(matrix) return mat[mat > 0] def shifted_ppmi(matrix, k): """ Shifted positive pointwise mutual information """ mat = shifted_pmi(matrix, k) return mat[mat > 0] def smoothed_ppmi(matrix, alpha=0.75): """ Smoothed positive pointwise mutual information Performs PPMI with context distribution smoothing, as described by [1]. [1] <NAME> (2015). Improving Distributional Similarity with Lessons Learned from Word Embeddings """ mat = smoothed_pmi(matrix, alpha) return mat[mat > 0] def npmi(matrix): """ Normalized pointwise mutual information """ total = matrix.sum(axis=0).sum(axis=1)[0, 0] log_probs = -matrix.divide(total).log() return pmi(matrix).divide(log_probs) def pnpmi(matrix): """ Positive normalized pointwise mutual information """ mat = npmi(matrix) return mat[mat > 0] def lmi(matrix): """ Local mutual information (not tested). """ ppmi_mat = ppmi(matrix) return ppmi_mat.multiply(matrix.log()) __dsm__ = ['apply_weighting'] ```
{ "source": "jimmycao/libga_mpi", "score": 2 }
#### File: py/libga_gat/optimizationprocess.py ```python import zmq import subprocess import multiprocessing import imp import os import numpy as np import time import logging import pickle import threading import sys URI_process_to_host = "tcp://127.0.0.1:5533" URI_host_to_process = "tcp://127.0.0.1:5534" # each message is sent via send_multipart( type, content ). if # there is no content, we send an empty string. class MessageType: # logging record from process to UI logging_record = "0" # data update (genome, ospace, fitnesses) from process to UI data_update = "1" # signals to UI that the optimization process is done exit_notification = "2" # send a quit request from UI to optimization process abort_process = "3" # load a module. this is used for modules in a parent path # (e.g. sga.py) to avoid any __init__.py and relative import # trickery. def _load_module(path): mod_name = os.path.split(path)[1] base = os.path.splitext(mod_name)[0] return imp.load_source(base, path) # the UI owns a single optimization server once an optimization # is started. it will listen in a separate thread. class OptimizationServer(threading.Thread): def __init__(self, on_logging_record, on_data_update): threading.Thread.__init__(self) # save parameters self.on_logging_record = on_logging_record self.on_data_update = on_data_update self.process_is_running = True def run(self): # init context self.ctx = zmq.Context() # init in and out sockets self.out_socket = self.ctx.socket(zmq.PUB) self.out_socket.bind(URI_host_to_process) self.in_socket = self.ctx.socket(zmq.SUB) self.in_socket.setsockopt(zmq.SUBSCRIBE, "") self.in_socket.bind(URI_process_to_host) while True: [t, contents] = self.in_socket.recv_multipart() if t == MessageType.exit_notification: # stop receiving messages, end thread. no more # abor requests can be sent. self.process_is_running = False # clean up zmq self.out_socket.close() self.in_socket.close() self.ctx.term() # exit thread return if t == MessageType.logging_record: # forward logging record to UI self.on_logging_record(contents) continue if t == MessageType.data_update: # forward genome data, ospace and fitnesses to UI self.on_data_update(contents) def abort_process(self): if self.process_is_running: # this will "non-violently" end the optimization process # in its next generation self.out_socket.send_multipart([MessageType.abort_process, ""]) # send log entries via URI_logger_to_host class ZMQLogger(logging.Handler): def __init__(self, socket): self.out_socket = socket logging.Handler.__init__(self) def emit(self, record): self.out_socket.send_multipart([MessageType.logging_record , pickle.dumps(record)]) def _crossover_func(gacommon, name): if "SBX" in name: return gacommon.sbx_crossover if "BLX" in name: return gacommon.blxa_crossover def _selection_func(sga, name): if "Binary" in name: return sga.BinaryTournamentSelector if "Rank" in name: return sga.RankSelector if "Roulette" in name: return sga.RouletteWheelSelector if "SUS" in name: return sga.SusSelector # running the optimization algorithm in its own process for safety class OptimizationClient(multiprocessing.Process): def __init__(self, mod_name, mod_path, func_name , objectives, variables, constraints, population , generations, elite, archive, mutation , crossover, selection): multiprocessing.Process.__init__(self) # save parameters self.mod_name = mod_name self.mod_path = mod_path self.func_name = func_name self.objectives = objectives self.variables = variables self.constraints = constraints self.population = population self.generations = generations self.elite = elite self.archive = archive self.mutation = mutation self.crossover = crossover self.selection = selection # no error handling here, since the module has been "test loaded" # in the UI thread before spawning this process. def load_module(self): self.logger.info("Loading custom module with objective function(s)") base = os.path.splitext(self.mod_name)[0] self.module = imp.load_source(base, self.mod_path) self.function = getattr(self.module, self.func_name) def run(self): # initialize outbound zmq socket self.ctx = zmq.Context() self.out_socket = self.ctx.socket(zmq.PUB) self.out_socket.connect(URI_process_to_host) np.random.seed(int(time.time())) # generate inbound zmq socket self.in_socket = self.ctx.socket(zmq.SUB) self.in_socket.setsockopt(zmq.SUBSCRIBE, "") self.in_socket.connect(URI_host_to_process) # set up a file logger self.logger = logging.getLogger("optimizationclient") self.logger.addHandler(ZMQLogger(self.out_socket)) self.logger.setLevel(logging.INFO) # load the user-supplied objective functions from a python module self.load_module() # create initial genome genome = [self.constraints[:,0] \ + (self.constraints[:,1] - self.constraints[:,0]) \ * np.random.random(self.variables) for i in range(self.population)] # bind to common module self.logger.info("Binding to gacommon.py module") gacommon = _load_module("../gacommon.py") # create the right algorithm instance. by design all parameters that # differ between SGA and SPEA2 are passed to the constructor. # the alg.start() methods of SGA and SPEA2 have identical signatures. if self.objectives > 1: self.logger.info("Binding to spea2.py module") spea2 = _load_module("../spea2.py") self.alg = spea2.Spea2(genome \ , archive_percentage = self.archive / float(self.population)) else: self.logger.info("Binding to sga.py module") sga = _load_module("../sga.py") self.alg = sga.SGA(genome \ , elite_percentage = self.elite / float(self.population) \ , selector_type = _selection_func(sga, self.selection)) # finally run the thing self.alg.start( lambda g : self.function(np.asarray(g)) , self.on_progress , _crossover_func(gacommon, self.crossover) , lambda s: gacommon.is_within_constraints(s, self.constraints) , lambda s: gacommon.mutate_uniform(s \ , self.constraints, prob = self.mutation / 100.0) ) # notify host that we are done self.logger.info("Algorithm done.<hr />") self.out_socket.send_multipart([MessageType.exit_notification, ""]) # clean up zmq self.out_socket.close() self.in_socket.close() self.ctx.term() def on_progress(self): # communicate genome to the host # send genome information (dependent on whether we are working # with spea2 or with sga). genome_info = {"genome":self.alg.genome, "ospace":self.alg.ospace \ , "fitnesses":self.alg.fitnesses} \ if self.objectives > 1 else \ {"genome":self.alg.genome, "ospace":self.alg.ospace} # send info "over the wire" self.out_socket.send_multipart([MessageType.data_update \ , pickle.dumps(genome_info)]) # see if there is a request to abort from the UI poller = zmq.Poller() poller.register(self.in_socket, zmq.POLLIN) if len(poller.poll(0)) > 0: # yes, there is a message coming in [t, content] = self.in_socket.recv_multipart() if t == MessageType.abort_process: self.logger.info("Received request to abort") return False # run until the maximum number of generations have been reached return self.alg.generation < self.generations # start up the server/host, the optimization process and return the # server to the UI thread. def start_subprocess(on_logging_record, on_data_update , mod_name, mod_path, func_name, objectives , variables, constraints, population, generations , elite, archive, mutation, crossover, selection): server = OptimizationServer(on_logging_record, on_data_update) client = OptimizationClient(mod_name, mod_path, func_name , objectives, variables, constraints, population, generations , elite, archive, mutation, crossover, selection) server.start() client.start() return server ``` #### File: libga_mpi/py/paretoplot.py ```python import sys import numpy as np import matplotlib import matplotlib.pyplot as plt class Paretoplot2D: def __init__(self, genome_info): self._genome = genome_info['genome'] self._ospace = genome_info['ospace'] self._fitnesses = genome_info['fitnesses'] if self._ospace.shape[1] < 2: raise Exception('This plot is not suitable for 1D problems') if self._ospace.shape[1] > 2: print("Warning: This optimization problem has more than two " + "objectives. Only the first two are displayed for now. " + "Change the paretoplo.py show() function.") self._fig = plt.figure(1) rect = self._fig.patch rect.set_facecolor('white') self._ax = self._fig.add_subplot(1, 1, 1) self._ax.set_title('Pareto Optimal Front') self._ax.set_xlabel('Objective #0') self._ax.set_ylabel('Objective #1') self._fig.canvas.mpl_connect('pick_event', self.on_pick) def on_pick(self, event): if event.ind != None and len(event.ind) >= 1: print '''\r Variables:\r {0}\r Objectives:\r {1}\r Fitness:\r {2}'''.format(self._genome[event.ind[0]], self._ospace[event.ind[0]], self._fitnesses[event.ind[0]]) def show(self): sc = plt.scatter( self._ospace[:, 0], self._ospace[:, 1], c=self._fitnesses, cmap=matplotlib.cm.get_cmap('gray'), s=40, picker=5, ) plt.colorbar(sc) plt.grid(True) plt.show() if __name__ == '__main__': if not len(sys.argv) == 2: print 'usage: paretoplot.py <npz file>' else: plot = Paretoplot2D(np.load(sys.argv[1])) plot.show() ```
{ "source": "jimmycdunn/transition-risk-tool", "score": 3 }
#### File: ffequity/processors/analyst.py ```python import numpy as np import pandas as pd from fuzzywuzzy import fuzz class AnalystException(Exception): pass class Analyst: """Analyst performs risk computations on the data within data structures""" def __init__(self, dfs): self.dfs = dfs def analyze_equity(self, dataframefile): # analyze will match the available data and then compute summary statistics # first, get the years that the user has requested years = sorted(set([key[:4] for key in self.dfs])) matchedData = self.match_data(years) # write the matched files to /assessment/ for year in matchedData: dataframefile.data = matchedData[year] dataframefile.write(year+'assessment', path="./data/assessment/") companyNames = pd.DataFrame(dataframefile.data.loc[:, "Company(Company)"]) companyNames = companyNames[companyNames.loc[:, "Company(Company)"].notnull()] companyNames["MarketCap(B)"] = None dataframefile.data = companyNames dataframefile.write(year+'MarketCaps', path="./data/financial_data/") def analyze_carbon(self, dataframefile): # get the years years = sorted(set([key[:4] for key in self.dfs])) # check if the user has financial data for this year completeData = {} for year in years: completeData[year] = self.dfs[year + "assessment"] try: financial = self.dfs[year+"financial_data"] except KeyError: print(f"No financial data for {year}, will not compute fair-share allocation") continue # if the user has financial data, update the matched data to include it completeData[year] = self.match_finance(year, completeData[year], financial) # compute carbon held if there was financial data provided analyzedData = self.analyze_data(completeData) # write fossil fuel assessment to CSV files in /benchmarks for year in analyzedData: dataframefile.data = analyzedData[year] dataframefile.write(year+'benchmarks', path="./data/benchmarks/") def match_data(self, years): matchedData = {} for year in years: # check if the user has equity data for this year try: equity = self.dfs[year+"equity_data"] except KeyError: print(f"No equity data for {year}, will not match") continue # check if the user has carbon data for this year try: carbon = self.dfs[year+"carbon_data"] except KeyError: print(f"No carbon data for {year}, will not match") continue # if the user has both equity and carbon data, match them matchedData[year] = self.match_equity(year, equity, carbon) return matchedData def match_equity(self, year, equity, carbon): # will return a dataframe with the matched data # first, instantiate the matched dataframe from the equity index # and the columns from both data files allColumns = [x for x in equity.columns] + [y for y in carbon.columns] # remove duplicate values from allColumns, order doesn't matter allColumns = set(allColumns) # create matchedDf with columns of all three data sets matchedDf = pd.DataFrame(index=range(len(equity.index)), columns=allColumns) # populate Stocks column for pd.merge(left, right, on='Stocks') matchedDf.Stocks = equity.Stocks # get a list of carbon comapnies and equity stock names for matching carbonCompanies = [x for x in carbon.loc[:, 'Company(Company)']] equityCompanies = [x for x in equity.loc[:, 'Stocks']] # iterate through all of the carbon companies first, because the user # is trying to see if a stock is on the carbon list for carbonCompany in carbonCompanies: bestStocks = [] # create a place to store best matches # for now, using edit distance w/90% match threshhold # in the future, would recommend cosine similarity to catch abbreviations for equityCompany in equityCompanies: matchRatio = fuzz.partial_token_set_ratio(equityCompany, carbonCompany) thresh = 90 if matchRatio < thresh: continue else: bestStocks.append(equityCompany) # if there are no matches to the carbon company, then move on if len(bestStocks) == 0: continue else: # grab the data row from carbonCompanies for current carbonCompany carbonRow = carbon['Company(Company)'] == carbonCompany carbonValues = carbon[carbonRow] # iterate if there are multiple stock options in one company for equityCompany in bestStocks: # pull the index matching the stock in matchedDf for updating and align indices carbonValues.index = matchedDf[matchedDf['Stocks'] == equityCompany].index # ValueError # the above error occurs when a company has a duplicate row in both the Coal AND Oil and Gas # update matchedDf with both carbon data matchedDf.update(carbonValues) matchedDf.update(equity) # index is already aligned to equity print(f"{year} complete...") return matchedDf def match_finance(self, year, matchedDf, financial): # create a new column in matchedDf to include MktCap matchedDf["MarketCap(B)"] = None # iterate through the carbon company names in matchedDf carbonCompanies = matchedDf.loc[matchedDf.loc[:, "Company(Company)"].notnull()].loc[:, "Company(Company)"] for carbonCompany in carbonCompanies: # check if carbon company is in financial list if carbonCompany in financial.loc[:, "Company(Company)"].values: # get financial data linked to the company financialRow = financial.loc[:, 'Company(Company)'] == carbonCompany financialData = financial[financialRow].loc[:, "MarketCap(B)"].values[0] matchedRow = matchedDf.loc[:, "Company(Company)"] == carbonCompany matchedDf.loc[matchedRow, "MarketCap(B)"] = financialData return matchedDf def analyze_data(self, completeData): analyzedData = {} for year in completeData: df = completeData[year] fuels = self.get_fuels(df) # get fuels by year # modify the fuel names reserves = {k: k+v for k, v in fuels.items()} for key in reserves: # populate dataframe with intensities # fuels[key] is the units of the name of the fuel, market cap is in B try: df[key + 'Intensity' + fuels[key] + '/$B'] = df[reserves[key]] / df['MarketCap(B)'] df[key + '(tCO2)'] = df[key + 'Intensity' + fuels[key] + '/$B'] * df['EndingMarketValue'] except KeyError: continue # remove infinities created by EMV = 0 df = df.replace(np.inf, np.nan) # save rows that have a carbon company affiliated df = df[df.loc[:, "Company(Company)"].notnull()] # address companies with multiple stock options df = self.combine_multiple_stocks(df) for key in reserves: df[key + 'Pctile'] = df[reserves[key]].rank(pct=True) df[key + '(tCO2)Pctile'] = df[key + '(tCO2)'].rank(pct=True) analyzedData[year] = df return analyzedData def get_fuels(self, df): # returns a dictionary with keys as names of fuels and values of units of fuels fuels = {} for col in df.columns: if '(' in col and 'Company' not in col and 'MarketCap' not in col: # split the column into name and (unit) at the ( splitCol = col.split('(') name = splitCol[0] unit = '(' + splitCol[1] # add leading parenthesis back in fuels[name] = unit return fuels def combine_multiple_stocks(self, df): # returns an analysis dataframe with multiple stock rows combined # into one company row to aggregate holdings across multiple # options in a company multipleStockCompanies = set(df[df.duplicated(subset="Company(Company)")].loc[:, "Company(Company)"]) for duplicate in multipleStockCompanies: combinedStocksCompany = pd.DataFrame() allCompanyStocks = df[df.loc[:, "Company(Company)"] == duplicate] keepSame = ["Company(Company)", "MarketCap(B)", "Stocks", "CoalIntensity(GtCO2)/$B", "OilIntensity(GtCO2)/$B", "GasIntensity(GtCO2)/$B"] sumColumns = ["EndingMarketValue", "Coal(tCO2)", "Oil(tCO2)", "Gas(tCO2)"] for col in keepSame: combinedStocksCompany.loc[0,col] = allCompanyStocks.loc[:, col].values[0] for col in sumColumns: combinedStocksCompany.loc[0,col] = allCompanyStocks.loc[:, col].sum() df.drop(allCompanyStocks.index, inplace=True) df = df.append(combinedStocksCompany, ignore_index=True) return df ``` #### File: ffequity/processors/validator.py ```python import os import re class ValidatorException(Exception): pass class Validator: """This guys job is to find the data, validate it, and put it into data structures""" def __init__(self, folderNames): self.folderNames = folderNames def validate(self, dataframefile): self.validate_folders() self.validate_files() dfs = self.validate_data(dataframefile) return dfs # to an Analyst instance def validate_folders(self): with os.scandir(path='./data') as it: # try ./data # store name attribute of each os.DirEntry in iterator provided by scandir() currentFolders = [x.name for x in it] for folder in self.folderNames: if folder not in currentFolders: raise ValidatorException(f"Required folder not present: {folder}") it.close() # Explicitly close the iterator to free memory print("Folders Validated") def validate_files(self): for folder in self.folderNames: with os.scandir(path='./data/'+folder) as it: currentFiles = [x.name for x in it if x.name != ".gitignore"] # store name attributes of all files in a folder for fileName in currentFiles: if not fileName.endswith(".csv"): # validate filetype is a csv raise ValidatorException(f"File Type is not csv: {fileName}") if not re.match(r"\d{4}", fileName[:4]): # validate that first four digits of file name is a year raise ValidatorException(f"File name must start with YYYY: {fileName}") it.close() # Explicity close the iterator to free memory print(f"All files validated within {folder}") print("Files validated") def validate_data(self, dataframefile): # dfs is a dictionary of dataframes dfs = {} for folder in self.folderNames: with os.scandir(path='./data/'+folder) as it: currentFiles = [x.name for x in it if x.name != ".gitignore"] # store name attributes of all files in a folders for fileName in currentFiles: df = dataframefile.read(os.path.join('./data/', folder, fileName)) # check the column titles for col in df.columns: if type(col) is not str: # ensure column names are string types raise ValidatorException(f"File {fileName} needs to be formatted correctly: {col}") # if column names are valid, then we can safely store the dataframe to our master dictionary dfs[fileName[:4] + folder] = df # i.e. dfs['2016carbon_data'] it.close() print(f"All data validated within {folder}") print("Data validated") return dfs ```
{ "source": "jimmycheng603/katrain", "score": 2 }
#### File: gui/widgets/graph.py ```python import math import threading from kivy.lang import Builder from kivy.metrics import dp from kivy.properties import BooleanProperty, Clock, ListProperty, NumericProperty, StringProperty from kivy.uix.widget import Widget from kivymd.app import MDApp from katrain.gui.theme import Theme class Graph(Widget): marker_font_size = NumericProperty(0) background_image = StringProperty(Theme.GRAPH_TEXTURE) background_color = ListProperty([1, 1, 1, 1]) highlighted_index = NumericProperty(0) nodes = ListProperty([]) hidden = BooleanProperty(False) def __init__(self, **kwargs): super().__init__(**kwargs) self._lock = threading.Lock() self.bind(pos=self.update_graph, size=self.update_graph) self.redraw_trigger = Clock.create_trigger(self.update_graph, 0.1) def initialize_from_game(self, root): self.nodes = [root] node = root while node.children: node = node.ordered_children[0] self.nodes.append(node) self.highlighted_index = 0 self.redraw_trigger() def update_graph(self, *args): pass def update_value(self, node): with self._lock: self.highlighted_index = index = node.depth self.nodes.extend([None] * max(0, index - (len(self.nodes) - 1))) self.nodes[index] = node if index > 1 and node.parent: # sometimes there are gaps backfill, bfnode = index - 1, node.parent while bfnode is not None and self.nodes[backfill] != bfnode: self.nodes[backfill] = bfnode backfill -= 1 bfnode = bfnode.parent if index + 1 < len(self.nodes) and ( node is None or not node.children or self.nodes[index + 1] != node.ordered_children[0] ): self.nodes = self.nodes[: index + 1] # on branch switching, don't show history from other branch if index == len(self.nodes) - 1: # possibly just switched branch or the line above triggered while node.children: # add children back node = node.ordered_children[0] self.nodes.append(node) self.redraw_trigger() class ScoreGraph(Graph): show_score = BooleanProperty(True) show_winrate = BooleanProperty(True) score_points = ListProperty([]) winrate_points = ListProperty([]) score_dot_pos = ListProperty([0, 0]) winrate_dot_pos = ListProperty([0, 0]) highlight_size = NumericProperty(dp(6)) score_scale = NumericProperty(5) winrate_scale = NumericProperty(5) navigate_move = ListProperty([None, 0, 0, 0]) def on_touch_down(self, touch): if self.collide_point(*touch.pos) and "scroll" not in getattr(touch, "button", ""): ix, _ = min(enumerate(self.score_points[::2]), key=lambda ix_v: abs(ix_v[1] - touch.x)) self.navigate_move = [ self.nodes[ix], self.score_points[2 * ix], self.score_points[2 * ix + 1], self.winrate_points[2 * ix + 1], ] else: self.navigate_move = [None, 0, 0, 0] def on_touch_move(self, touch): return self.on_touch_down(touch) def on_touch_up(self, touch): if self.collide_point(*touch.pos) and self.navigate_move[0] and "scroll" not in getattr(touch, "button", ""): katrain = MDApp.get_running_app().gui if katrain and katrain.game: katrain.game.set_current_node(self.navigate_move[0]) katrain.update_state() self.navigate_move = [None, 0, 0, 0] def show_graphs(self, keys): self.show_score = keys["score"] self.show_winrate = keys["winrate"] def update_graph(self, *args): nodes = self.nodes if nodes: score_values = [n.score if n and n.score else math.nan for n in nodes] # score_values=[] # for n in nodes: # if n and n.score: # score_values.append(n.score) # else: # score_values.append(math.nan) score_nn_values = [n.score for n in nodes if n and n.score] score_values_range = min(score_nn_values or [0]), max(score_nn_values or [0]) winrate_values = [(n.winrate - 0.5) * 100 if n and n.winrate else math.nan for n in nodes] winrate_nn_values = [(n.winrate - 0.5) * 100 for n in nodes if n and n.winrate] winrate_values_range = min(winrate_nn_values or [0]), max(winrate_nn_values or [0]) score_granularity = 5 winrate_granularity = 10 self.score_scale = ( max(math.ceil(max(-score_values_range[0], score_values_range[1]) / score_granularity), 1) * score_granularity ) self.winrate_scale = ( max(math.ceil(max(-winrate_values_range[0], winrate_values_range[1]) / winrate_granularity), 1) * winrate_granularity ) xscale = self.width / max(len(score_values) - 1, 15) available_height = self.height score_line_points = [ [self.x + i * xscale, self.y + self.height / 2 + available_height / 2 * (val / self.score_scale)] for i, val in enumerate(score_values) ] winrate_line_points = [ [self.x + i * xscale, self.y + self.height / 2 + available_height / 2 * (val / self.winrate_scale)] for i, val in enumerate(winrate_values) ] self.score_points = sum(score_line_points, []) self.winrate_points = sum(winrate_line_points, []) if self.highlighted_index is not None: self.highlighted_index = min(self.highlighted_index, len(score_values) - 1) score_dot_point = score_line_points[self.highlighted_index] winrate_dot_point = winrate_line_points[self.highlighted_index] if math.isnan(score_dot_point[1]): score_dot_point[1] = ( self.y + self.height / 2 + available_height / 2 * ((score_nn_values or [0])[-1] / self.score_scale) ) self.score_dot_pos = score_dot_point if math.isnan(winrate_dot_point[1]): winrate_dot_point[1] = ( self.y + self.height / 2 + available_height / 2 * ((winrate_nn_values or [0])[-1] / self.winrate_scale) ) self.winrate_dot_pos = winrate_dot_point Builder.load_string( """ #:import Theme katrain.gui.theme.Theme <Graph>: background_color: Theme.BOX_BACKGROUND_COLOR marker_font_size: 0.1 * self.height canvas.before: Color: rgba: root.background_color Rectangle: size: self.size pos: self.pos Color: rgba: [1,1,1,1] Rectangle: pos: self.pos size: self.size source: root.background_image <ScoreGraph>: canvas: Color: rgba: Theme.SCORE_COLOR Line: points: root.score_points if root.show_score else [] width: dp(1.1) Color: rgba: Theme.WINRATE_COLOR Line: points: root.winrate_points if root.show_winrate else [] width: dp(1.1) Color: rgba: [0.5,0.5,0.5,1] if root.navigate_move[0] else [0,0,0,0] Line: points: root.navigate_move[1], root.y, root.navigate_move[1], root.y+root.height width: 1 Color: rgba: Theme.GRAPH_DOT_COLOR Ellipse: id: score_dot pos: [c - self.highlight_size / 2 for c in (self.score_dot_pos if not self.navigate_move[0] else [self.navigate_move[1],self.navigate_move[2]] ) ] size: (self.highlight_size,self.highlight_size) if root.show_score else (0.0001,0.0001) Color: rgba: Theme.GRAPH_DOT_COLOR Ellipse: id: winrate_dot pos: [c - self.highlight_size / 2 for c in (self.winrate_dot_pos if not self.navigate_move[0] else [self.navigate_move[1],self.navigate_move[3]] ) ] size: (self.highlight_size,self.highlight_size) if root.show_winrate else (0.0001,0.0001) # score ticks GraphMarkerLabel: font_size: root.marker_font_size color: Theme.SCORE_MARKER_COLOR pos: root.x + root.width - self.width-1, root.pos[1]+root.height - self.font_size - 1 text: 'B+{}'.format(root.score_scale) opacity: int(root.show_score) GraphMarkerLabel: font_size: root.marker_font_size color: Theme.SCORE_MARKER_COLOR pos: root.x + root.width - self.width-1, root.y + root.height*0.5 - self.height/2 + 2 text: i18n._('Jigo') opacity: int(root.show_score) GraphMarkerLabel: font_size: root.marker_font_size color: Theme.SCORE_MARKER_COLOR pos: root.x + root.width - self.width-1, root.pos[1] text: 'W+' + str(int(root.score_scale)) opacity: int(root.show_score) # wr ticks GraphMarkerLabel: font_size: root.marker_font_size color: Theme.WINRATE_MARKER_COLOR pos: root.pos[0]+1, root.pos[1] + root.height - self.font_size - 1 text: "{}%".format(50 + root.winrate_scale) opacity: int(root.show_winrate) GraphMarkerLabel: font_size: root.marker_font_size color: Theme.WINRATE_MARKER_COLOR pos:root.pos[0]+1, root.pos[1] text: "{}%".format(50 - root.winrate_scale) opacity: int(root.show_winrate) """ ) ```
{ "source": "Jimmycheong/flask-celery-demo", "score": 2 }
#### File: Jimmycheong/flask-celery-demo/main.py ```python import time from flask import ( Flask, request, url_for, redirect, make_response, render_template, jsonify ) from tasks import my_background_task from celery import Celery app = Flask(__name__) app.config['CELERY_BROKER_URL'] = 'redis://localhost:6379/0' app.config['CELERY_RESULT_BACKEND'] = 'redis://localhost:6379/0' celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL']) celery.conf.update(app.config) @app.route("/", methods=['GET']) def index(): resp = make_response(render_template('index.html'), 200) return resp @app.errorhandler(404) def not_found(error): return render_template('error.html'), 404 @app.route("/task", methods=['POST']) def add_task(): task = my_background_task.delay("Puppies") print("Added: %s to the queue" % task.id) return task.id @app.route("/status/<task_id>", methods=['GET']) def task_status(task_id): task = my_background_task.AsyncResult(task_id) if task.state == "PENDING": response = "PENDING" elif task.state == "FAILURE": response = "FAILURE" elif task.state == "SUCCESS": response = "SUCCESS" else: response = "Something went wrong..." return jsonify(response) ```
{ "source": "Jimmycheong/React-Router-boilerplate", "score": 3 }
#### File: Jimmycheong/React-Router-boilerplate/main.py ```python import time from flask import ( Flask, request, url_for, redirect, make_response, render_template, jsonify, redirect ) app = Flask(__name__) @app.route("/", methods=['GET']) def index(): resp = make_response(render_template('index.html'), 200) return resp @app.errorhandler(404) def not_found(error): return redirect('/') # return render_template('error.html'), 404 ```
{ "source": "JimmyCHEVALLIER/socialgraphs2018", "score": 3 }
#### File: socialgraphs2018/ParseData/SocialbladeData.py ```python import requests from bs4 import BeautifulSoup # Get and parse specific list in socialblade # return an iterator (zip) def getSocialBladeList(link): res = {} f = requests.get(link) soup = BeautifulSoup(str(f.text), 'html.parser') parsedTable = list(filter(lambda x: x != '\n',[ line for line in soup.find("div", {"class": "content-module-wide"})])) parsedTable = [line.text for line in parsedTable] for celebrity in zip(*[iter(parsedTable)]*6): res[celebrity[2]] = {"rank" : celebrity[0], "tweetsCount": celebrity[3], "followersCount": celebrity[4], "friendCount": celebrity[5]} return res #link = "https://socialblade.com/twitter/top/500/followers" #res = getSocialBladeList(link) #print(res) ```
{ "source": "jimmycode/colabcode", "score": 2 }
#### File: colabcode/colabcode/code.py ```python import os import subprocess from pyngrok import ngrok try: from google.colab import drive colab_env = True except ImportError: colab_env = False EXTENSIONS = ["ms-python.python", "ms-toolsai.jupyter"] class ColabCode: def __init__(self, workspace, port=10000, password=<PASSWORD>, authtoken=None, mount_drive=False, user_data_dir=None, extensions_dir=None): self.workspace = workspace self.port = port self.password = password self.authtoken = authtoken self.user_data_dir = user_data_dir self.extensions_dir = extensions_dir self._mount = mount_drive self._install_code() self._install_extensions() self._start_server() self._run_code() def _install_code(self): subprocess.run( ["wget", "https://code-server.dev/install.sh"], stdout=subprocess.PIPE ) subprocess.run(["sh", "install.sh"], stdout=subprocess.PIPE) def _install_extensions(self): for ext in EXTENSIONS: subprocess.run(["code-server", "--install-extension", f"{ext}"]) def _start_server(self): if self.authtoken: ngrok.set_auth_token(self.authtoken) active_tunnels = ngrok.get_tunnels() for tunnel in active_tunnels: public_url = tunnel.public_url ngrok.disconnect(public_url) url = ngrok.connect(addr=self.port, options={"bind_tls": True}) print(f"Code Server can be accessed on: {url}") def _run_code(self): os.system(f"fuser -n tcp -k {self.port}") if self._mount and colab_env: drive.mount("/content/drive") prefix, options = [], [f"--port {self.port}", "--disable-telemetry"] if self.password: prefix.append(f"PASSWORD={self.password}") else: options.append("--auth none") if self.user_data_dir: options.append(f"--user-data-dir {self.user_data_dir}") if self.extensions_dir: options.append(f"--extensions-dir {self.extensions_dir}") prefix_str = " ".join(prefix) options_str = " ".join(options) code_cmd = f"{prefix_str} code-server {options_str} {self.workspace}" print(code_cmd) with subprocess.Popen( [code_cmd], shell=True, stdout=subprocess.PIPE, bufsize=1, universal_newlines=True, ) as proc: for line in proc.stdout: print(line, end="") ```