metadata
dict
text
stringlengths
60
3.49M
{ "source": "jishnub/HelioseismicKernels.jl", "score": 3 }
#### File: HelioseismicKernels.jl/src/click_and_generate_filter.py ```python import numpy as np import matplotlib import matplotlib.pyplot as plt import os,sys from astropy.io import fits import warnings class Point(): def __init__(self,Line2D): self.x = Line2D.get_xdata()[0] self.y = Line2D.get_ydata()[0] self.artist = Line2D def remove(self): self.artist.remove() self.artist=None ''' Shift + click to create points, press c to finalize the curve, press d to delete the curve ''' class Poly(): def __init__(self): self.points=[] self.fitted_curve=None def fit(self,order=4): #~ If the number of points are not sufficient, remove fitted polynomial if it exists if len(self.points)<order+1: if self.fitted_curve is not None: self.fitted_curve.remove() self.fitted_curve=None return (None,None) #~ If there are sifficient points, fit the points with a polynomial function xcoords = [pt.x for pt in self.points] ycoords = [pt.y for pt in self.points] pfit = np.polyfit(xcoords,ycoords,order) #~ Generate points on a fine grid along the fitted polynomial #~ This is to plot a continuous line fit_t = np.polyval(pfit,phi) #~ Update fitted curve if self.fitted_curve is not None: self.fitted_curve.remove() self.fitted_curve,=plt.plot(phi,fit_t,'g') plt.ylim(0,t_max) #~ String to format fitted polynomial like p_2*k**2 + p_1*k + p_0 fmtstr=" + ".join(["{}*phi^"+str(i) if i>1 else "{}*phi" if i==1 else "{}" for i in range(len(pfit))[::-1]]) polystr=fmtstr.format(*pfit).replace("+ -","- ") fitstr=[] for index,p_i in enumerate(pfit[::-1]): fitstr.append("index("+str(index)+") = "+str(p_i)) fitstr="\n".join(fitstr) return polystr,fitstr def remove_match(self,artist): ''' Find and remove the point that was clicked on ''' for point in self.points: if point.artist == artist: point.remove() self.points.remove(point) break def clear(self): ''' Refresh the working slate by deleting plots and lines. Points and lines already finalized are untouched. ''' for point in self.points: point.remove() if self.fitted_curve is not None: self.fitted_curve.remove() self.fitted_curve=None self.points=[] class Track_interactions(): def __init__(self,figure): self.button_press_event=figure.canvas.mpl_connect('button_press_event', self.onclick) self.key_press_event=figure.canvas.mpl_connect('key_press_event', self.onpress) self.key_release_event=figure.canvas.mpl_connect('key_release_event', self.onrelease) self.pick_event=figure.canvas.mpl_connect('pick_event', self.onpick) self.shift_pressed=False self.poly=Poly() def onpick(self,event): ''' Remove a point when it is clicked on ''' self.poly.remove_match(event.artist) self.poly.fit() plt.draw() def onclick(self,event): ''' Add a point at the (x,y) coordinates of click ''' if event.button == 1 and self.shift_pressed: pt_artist,=plt.plot([event.xdata],[event.ydata],marker='o',color='b',linestyle='none',picker=5) self.poly.points.append(Point(pt_artist)) self.poly.fit() plt.draw() def onpress(self,event): if event.key == 'c': polystr,fitstr = self.poly.fit() if polystr is None: return print(polystr,"\n",fitstr,"\n") self.poly.fitted_curve.set_color("black") plt.draw() self.poly=Poly() elif event.key=="d": self.poly.clear() elif event.key=="shift": self.shift_pressed = True plt.draw() def onrelease(self,event): if event.key=='shift': self.shift_pressed = False filename="/home/jishnu/kernels_scratch/kernels/C_phi_t.fits" data=np.squeeze(fits.open(filename)[0].data) nt,nphi=data.shape dnu = 2e-6; T=1/dnu; dt=T/nt; phi=np.linspace(0,2*np.pi,nphi) t=np.arange(nt)*dt t_max = 2*3600 t = t[t<=t_max] phi_max = np.pi phi = phi[phi<=phi_max] data = data[np.ix_(t<=t_max,phi<=phi_max)] ######################################################################################### figure=plt.figure() plt.pcolormesh(phi,t,data/abs(data).max(),cmap='Greys',vmax=0.1, vmin=-0.1) _=Track_interactions(figure) plt.show() ```
{ "source": "jishnuchander/ibmr", "score": 2 }
#### File: ibmr/spot_auth/views.py ```python from django.shortcuts import render, redirect, render_to_response from django.http import HttpResponse import sys import json import spotipy import spotipy.util as util import requests import pusher import time from .tasks import pusher_task, lyrics, song_suggestions import random import string from SentimentAnalysis import Sentiment_Analysis as sa from azlyrics.azlyrics import lyrics # Create your views here. client_id = "client_id" client_secret = "client_secret" lyrics_api_key = "lyrics_api_key" pusher_client = pusher.Pusher( app_id='app_id', key='key', secret='secret', cluster='cluster', ssl=True ) def index(request): return render(request, 'spot-auth/main.html') def mob_view(request): return render(request, 'spot-auth/mob_home.html') def upload(request): return render(request, 'spot-auth/upload.html') def web_view(request): return render(request, 'spot-auth/auth.html', {'image': False}) def show_tracks(tracks): for i, item in enumerate(tracks['items']): track = item['track'] print(" %d %32.32s %s" % (i, track['artists'][0]['name'], track['name'])) def callback(request): code = request.GET.get("code") url = "https://accounts.spotify.com/api/token" grant_type = "authorization_code" redirect_uri = "http://127.0.0.1:8000/callback/" client = {'client_id': client_id, 'client_secret': client_secret, 'grant_type': grant_type, 'redirect_uri': redirect_uri, 'code': code} res = requests.post(url, data=client) r_json = res.json() access_token = r_json['access_token'] token_type = r_json['token_type'] scope = r_json['scope'] expires_in = r_json['expires_in'] refresh_token = r_json['refresh_token'] if access_token: sp = spotipy.Spotify(auth=access_token) user = sp.current_user() user_name = user['display_name'] user_profile = user['external_urls']['spotify'] user_id = user['id'] img_uri = user['images'][0]['url'] playlist = sp.playlist('2YRe7HRKNRvXdJBp9nXFza', fields="tracks,next") tracks = playlist['tracks'] lyrics.delay(user_name, user_id, img_uri, tracks, lyrics_api_key) context = {'image': True, 'uri': img_uri, 'user_id': user_id} return render(request, 'spot-auth/callback.html', context) def auth(request): # scope = "user-top-read" scope = "user-library-read playlist-read-private user-read-currently-playing user-read-recently-played user-follow-read user-top-read user-read-email" url = "https://accounts.spotify.com/authorize" redirect_uri = "http://127.0.0.1:8000/callback/" params = {'client_id': client_id, 'scope': scope, 'redirect_uri': redirect_uri} return redirect(f"https://accounts.spotify.com/authorize?client_id={client_id}&redirect_uri={redirect_uri}&scope={scope}&response_type=code&state=1234abc&show_dialog=false") def guest(request): context = {'image': True, 'uri': 'guest', 'user_id': 'guest'} return render(request, 'spot-auth/callback.html', context) def vision_api(request): pusher_channel = randomword(15) pusher_event = randomword(15) pusher_key = '<KEY>' context = {'pusher_channel': pusher_channel, 'pusher_event': pusher_event, 'pusher_key': pusher_key} import io import chardet import base64 from PIL import Image, ImageDraw file_name = request.FILES['myfile'].file user_id = request.POST.get('userid') login = request.POST.get('login') count = request.POST.get('upload_count') try: file = base64.b64encode(file_name.getvalue()).decode() except: file_name.seek(0) data = file_name.read() file_raw = io.BytesIO(data) image = Image.open(file_raw) a, b = image.size print(a, b, "this is original size") r = int(((1000000*b)/a)**(0.5)) c = int(1000000/r) print(c, r, "this is converted") image = image.resize((c, r), Image.ANTIALIAS) output = io.BytesIO() image.save('resized_image.jpg', quality=95) with open("resized_image.jpg", "rb") as image_file: file = base64.b64encode(image_file.read()).decode() print(image.size) song_suggestions.delay(file, pusher_channel, pusher_event, user_id, login, count) return render(request, 'spot-auth/results.html', context) def results(request): return render(request, 'spot-auth/results.html') def task(uid): pusher_client.trigger(uid, 'my-event', {'message': 'hello world 0'}) time.sleep(2) pusher_client.trigger(uid, 'my-event', {'message': 'hello world 2'}) time.sleep(2) pusher_client.trigger(uid, 'my-event', {'message': 'hello world 4'}) time.sleep(2) pusher_client.trigger(uid, 'my-event', {'message': 'hello world 6'}) print('6') return def randomword(length): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(length)) def pi(request): pusher_channel = randomword(15) pusher_event = randomword(15) pusher_key = '<KEY>' pusher_task.delay(pusher_channel, pusher_event) context = {'pusher_channel': pusher_channel, 'pusher_event': pusher_event, 'pusher_key': pusher_key} return render(request, 'spot-auth/pusher.html', context) def test(request): return render(request, 'spot-auth/main.html') ```
{ "source": "jishnuchander/NMT-Chatbot", "score": 3 }
#### File: jishnuchander/NMT-Chatbot/data_format.py ```python import sqlite3 import json from datetime import datetime timeframe = '2011-08' sql_transaction = [] connection = sqlite3.connect('{}.db'.format(timeframe)) c = connection.cursor() def create_table(): c.execute("""CREATE TABLE IF NOT EXISTS parent_reply (parent_id TEXT PRIMARY KEY, comment_id TEXT UNIQUE, parent TEXT, comment TEXT, subreddit TEXT, unix TEXT, score INT)""") def format_data(data): data = data.replace("\n"," newlinechar ").replace("\r"," newlinechar ").replace('"',"'") return data def transaction_bldr(sql): global sql_transaction sql_transaction.append(sql) if len(sql_transaction) > 1000: c.execute('BEGIN TRANSACTION') for s in sql_transaction: try: c.execute(s) except: pass connection.commit() sql_transaction = [] def find_parent(pid): sql = "SELECT comment FROM parent_reply WHERE comment_id = '{}' LIMIT 1".format(pid) c.execute(sql) result = c.fetchone() if result !=None: return result[0] else: return False #except Exception as e: # return False def find_existing_score(pid): sql = "SELECT score FROM parent_reply WHERE parent_id = '{}' LIMIT 1".format(pid) c.execute(sql) result = c.fetchone() if result !=None: return result[0] else: return False def acceptable(data): if len(data.split(' ')) > 50 or len(data) < 1: return False elif len(data) > 1000: return False elif data == '[deleted]': return False elif data == '[removed]': return False else: return True def sql_insert_replace_comment(commentid,parentid,parent,comment,subreddit,time,score): try: sql = """UPDATE parent_reply SET parent_id = ?, comment_id = ?, parent = ?, comment = ?, subreddit = ?, unix = ?, score = ? WHERE parent_id =?;""".format(parentid, commentid, parent, comment, subreddit, int(time), score, parentid) transaction_bldr(sql) except Exception as e: print('s0 insertion',str(e)) def sql_insert_has_parent(commentid,parentid,parent,comment,subreddit,time,score): try: sql = """INSERT INTO parent_reply (parent_id, comment_id, parent, comment, subreddit, unix, score) VALUES ("{}","{}","{}","{}","{}",{},{});""".format(parentid, commentid, parent, comment, subreddit, int(time), score) transaction_bldr(sql) except Exception as e: print('s0 insertion',str(e)) def sql_insert_no_parent(commentid,parentid,comment,subreddit,time,score): try: sql = """INSERT INTO parent_reply (parent_id, comment_id, comment, subreddit, unix, score) VALUES ("{}","{}","{}","{}",{},{});""".format(parentid, commentid, comment, subreddit, int(time), score) transaction_bldr(sql) except Exception as e: print('s0 insertion',str(e)) if __name__=="__main__": create_table() row_counter = 0 paired_rows = 0 with open("C:/Users/Jishnu/.spyder-py3/RC_2011-08".format(timeframe.split('-')[0],timeframe),buffering=1000) as f: for row in f: #print(row) row_counter+=1 row = json.loads(row) parent_id = row['parent_id'] body = format_data(row['body']) created_utc = row['created_utc'] score = row['score'] comment_id = row['name'] subreddit = row['subreddit'] parent_data = find_parent(parent_id) if score >=3: if acceptable(body): existing_comment_score = find_existing_score(parent_id) if existing_comment_score: if score > existing_comment_score: sql_insert_replace_comment(comment_id,parent_id,parent_data,body,subreddit,created_utc, score) else: if acceptable(body): if parent_data: sql_insert_has_parent(comment_id,parent_id,parent_data,body,subreddit,created_utc,score) paired_rows += 1 else: sql_insert_no_parent(comment_id,parent_id,body,subreddit,created_utc,score) if row_counter % 100000 == 0: print('Total Rows Read: {}, Paired Rows: {}, Time: {}'.format(row_counter, paired_rows, str(datetime.now()))) ```
{ "source": "jishnujayakumar/meta-dataset", "score": 2 }
#### File: meta_dataset/data/dump_episodes.py ```python r"""Dumps Meta-Dataset episodes to disk as tfrecords files. Episodes are stored as a pair of `{episode_number}-train.tfrecords` and `{episode_number}-test.tfrecords` files, each of which contains serialized TFExample strings for the support and query set, respectively. python -m meta_dataset.data.dump_episodes \ --gin_config=meta_dataset/learn/gin/setups/\ data_config_string.gin --gin_config=meta_dataset/learn/gin/\ setups/variable_way_and_shot.gin \ --gin_bindings="DataConfig.num_prefetch=<num_prefetch>" """ import json import os from absl import app from absl import flags from absl import logging import gin from meta_dataset.data import config from meta_dataset.data import dataset_spec as dataset_spec_lib from meta_dataset.data import learning_spec from meta_dataset.data import pipeline from meta_dataset.data import utils import tensorflow.compat.v1 as tf tf.enable_eager_execution() flags.DEFINE_multi_string('gin_config', None, 'List of paths to the config files.') flags.DEFINE_multi_string('gin_bindings', None, 'List of Gin parameter bindings.') flags.DEFINE_string('output_dir', '/tmp/cached_episodes/', 'Root directory for saving episodes.') flags.DEFINE_integer('num_episodes', 600, 'Number of episodes to sample.') flags.DEFINE_string('dataset_name', 'omniglot', 'Dataset name to create ' 'episodes from.') flags.DEFINE_enum_class('split', learning_spec.Split.TEST, learning_spec.Split, 'See learning_spec.Split for ' 'allowed values.') flags.DEFINE_boolean( 'ignore_dag_ontology', False, 'If True the dag ontology' ' for Imagenet dataset is not used.') flags.DEFINE_boolean( 'ignore_bilevel_ontology', False, 'If True the bilevel' ' sampling for Omniglot dataset is not used.') tf.flags.DEFINE_string('records_root_dir', '', 'Root directory containing a subdirectory per dataset.') FLAGS = flags.FLAGS def main(unused_argv): logging.info(FLAGS.output_dir) tf.io.gfile.makedirs(FLAGS.output_dir) gin.parse_config_files_and_bindings( FLAGS.gin_config, FLAGS.gin_bindings, finalize_config=True) dataset_spec = dataset_spec_lib.load_dataset_spec( os.path.join(FLAGS.records_root_dir, FLAGS.dataset_name)) data_config = config.DataConfig() episode_descr_config = config.EpisodeDescriptionConfig() use_dag_ontology = ( FLAGS.dataset_name in ('ilsvrc_2012', 'ilsvrc_2012_v2') and not FLAGS.ignore_dag_ontology) use_bilevel_ontology = ( FLAGS.dataset_name == 'omniglot' and not FLAGS.ignore_bilevel_ontology) data_pipeline = pipeline.make_one_source_episode_pipeline( dataset_spec, use_dag_ontology=use_dag_ontology, use_bilevel_ontology=use_bilevel_ontology, split=FLAGS.split, episode_descr_config=episode_descr_config, # TODO(evcu) Maybe set the following to 0 to prevent shuffling and check # reproducibility of dumping. shuffle_buffer_size=data_config.shuffle_buffer_size, read_buffer_size_bytes=data_config.read_buffer_size_bytes, num_prefetch=data_config.num_prefetch) dataset = data_pipeline.take(FLAGS.num_episodes) images_per_class_dict = {} # Ignoring dataset number since we are loading one dataset. for episode_number, (episode, _) in enumerate(dataset): logging.info('Dumping episode %d', episode_number) train_imgs, train_labels, _, test_imgs, test_labels, _ = episode path_train = utils.get_file_path(FLAGS.output_dir, episode_number, 'train') path_test = utils.get_file_path(FLAGS.output_dir, episode_number, 'test') utils.dump_as_tfrecord(path_train, train_imgs, train_labels) utils.dump_as_tfrecord(path_test, test_imgs, test_labels) images_per_class_dict[os.path.basename(path_train)] = ( utils.get_label_counts(train_labels)) images_per_class_dict[os.path.basename(path_test)] = ( utils.get_label_counts(test_labels)) info_path = utils.get_info_path(FLAGS.output_dir) with tf.io.gfile.GFile(info_path, 'w') as f: f.write(json.dumps(images_per_class_dict, indent=2)) if __name__ == '__main__': app.run(main) ```
{ "source": "jishnujayakumar/MLRC2020-EmbedKGQA", "score": 2 }
#### File: KGQA/RoBERTa/dataloader.py ```python import torch import random from torch.utils.data import Dataset, DataLoader from collections import defaultdict import os import unicodedata import re import time from collections import defaultdict from tqdm import tqdm import numpy as np from transformers import * from helpers import * class DatasetWebQSP(Dataset): def __init__(self, data, entities, entity2idx, transformer_name, kg_model): self.data = data self.entities = entities self.entity2idx = entity2idx self.pos_dict = defaultdict(list) self.neg_dict = defaultdict(list) self.index_array = list(self.entities.keys()) self.transformer_name = transformer_name self.pre_trained_model_name = get_pretrained_model_name(transformer_name) self.tokenizer = None self.set_tokenizer() self.max_length = 64 self.kg_model = kg_model def set_tokenizer(self): if self.transformer_name == 'RoBERTa': self.tokenizer = RobertaTokenizer.from_pretrained(self.pre_trained_model_name) elif self.transformer_name == 'XLNet': self.tokenizer = XLNetTokenizer.from_pretrained(self.pre_trained_model_name) elif self.transformer_name == 'ALBERT': self.tokenizer = AlbertTokenizer.from_pretrained(self.pre_trained_model_name) elif self.transformer_name == 'SentenceTransformer': self.tokenizer = AutoTokenizer.from_pretrained(self.pre_trained_model_name) elif self.transformer_name == 'Longformer': self.tokenizer = LongformerTokenizer.from_pretrained(self.pre_trained_model_name) else: print('Incorrect transformer specified:', self.transformer_name) exit(0) def __len__(self): return len(self.data) def pad_sequence(self, arr, max_len=128): num_to_add = max_len - len(arr) for _ in range(num_to_add): arr.append('<pad>') return arr def toOneHot(self, indices): indices = torch.LongTensor(indices) batch_size = len(indices) vec_len = len(self.entity2idx) one_hot = torch.FloatTensor(vec_len) one_hot.zero_() # one_hot = -torch.ones(vec_len, dtype=torch.float32) one_hot.scatter_(0, indices, 1) return one_hot def __getitem__(self, index): data_point = self.data[index] question_text = data_point[1] question_tokenized, attention_mask = self.tokenize_question(question_text) head_id = self.entity2idx[data_point[0].strip()] tail_ids = [] for tail_name in data_point[2]: tail_name = tail_name.strip() #TODO: dunno if this is right way of doing things if tail_name in self.entity2idx: tail_ids.append(self.entity2idx[tail_name]) tail_onehot = self.toOneHot(tail_ids) return question_tokenized, attention_mask, head_id, tail_onehot def tokenize_question(self, question): if self.transformer_name != "SentenceTransformer": question = f"<s>{question}</s>" question_tokenized = self.tokenizer.tokenize(question) question_tokenized = self.pad_sequence(question_tokenized, self.max_length) question_tokenized = torch.tensor(self.tokenizer.encode( question_tokenized, # Question to encode add_special_tokens = False # Add '[CLS]' and '[SEP]', as per original paper )) attention_mask = [] for q in question_tokenized: # 1 means padding token if q == 1: attention_mask.append(0) else: attention_mask.append(1) return question_tokenized, torch.tensor(attention_mask, dtype=torch.long) else: encoded_que = self.tokenizer.encode_plus(question, padding='max_length', max_length=self.max_length, return_tensors='pt') return encoded_que['input_ids'][0], encoded_que['attention_mask'][0] # def _collate_fn(batch): # print(len(batch)) # exit(0) # question_tokenized = batch[0] # attention_mask = batch[1] # head_id = batch[2] # tail_onehot = batch[3] # question_tokenized = torch.stack(question_tokenized, dim=0) # attention_mask = torch.stack(attention_mask, dim=0) # return question_tokenized, attention_mask, head_id, tail_onehot class DataLoaderWebQSP(DataLoader): def __init__(self, *args, **kwargs): super(DataLoaderWebQSP, self).__init__(*args, **kwargs) # self.collate_fn = _collate_fn ```
{ "source": "jishnujayakumar/specter", "score": 2 }
#### File: specter/smash-bert/shb_train.py ```python """## Imports""" from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F import spacy from collections import defaultdict import sys from torch.optim import AdamW import torch.nn.utils.rnn as U nlp = spacy.load("en_core_web_sm") import json from transformers import DistilBertTokenizer, DistilBertModel import os bert_variant = os.environ['SHB_BERT_VARIANT'] bert_tokenizer = DistilBertTokenizer.from_pretrained(bert_variant) NUMPATH = f"{os.environ['ELECTER_HULK_DIR']}/{os.environ['LEGAL_DATA_DIR']}/SHB/{os.environ['SHB_BERT_VARIANT']}" os.system(f"mkdir -p {NUMPATH}") filen = f"{NUMPATH}/pre-processed-data.json" SAVEPATH = f"{NUMPATH}/output/" """## Model Hyperparameters""" EMBEDDING_DIM = 768 BATCH_SIZE = 1 LR = 1e-5 L2REG = 0.00001 DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' NUM_EPOCHS = 30 DEV_SPLIT = 0.2 """# Setup for experiments ### Load numericalized data """ ct = 0 with open(filen) as fr: traindev_num = json.load(fr) #traindev_num = traindev_num[:10] #with open(NUMPATH + "test.json") as fr: # test_num = json.load(fr) """## Model""" class BiLSTMAttn(nn.Module): def __init__(self, embedding_dim, dropout = 0.1): super().__init__() self.embedding_dim = embedding_dim self.rnn = nn.GRU(embedding_dim, embedding_dim // 2, bidirectional = True, batch_first = True) self.fc = nn.Linear(embedding_dim, embedding_dim) self.context = nn.Parameter(torch.rand(embedding_dim, )) self.dropout = nn.Dropout(dropout) def forward(self, flat_input, input_lens): # flat_input: [S',E'], input_lens: [B'] batch_size = input_lens.shape[0] assert flat_input.shape[0] == torch.sum(input_lens), "Mismatch of sequences" # pack sequence packed_input = U.pack_sequence(torch.split(flat_input, input_lens.tolist()), enforce_sorted = False) # pass sequence through RNN packed_output, _ = self.rnn(packed_input) # [S',E'] --> [S',E'] output = U.pad_packed_sequence(packed_output, batch_first = True)[0] # [S',E'] --> [B',s',E'] activated_output = self.dropout(torch.tanh(self.fc(output))) # [B',s',E'] --> [B',s',E'] # calculate attention probabilities logits = torch.bmm(activated_output, self.context.expand(batch_size, self.embedding_dim).unsqueeze(2)) # [B',s',E'], [B',E',1] --> [B',s',1] # [B',s'] input_mask = (torch.arange(input_lens.max(), device=input_lens.device).expand(batch_size, input_lens.max()) < input_lens.unsqueeze(1)).float() logits[input_mask == 0] = -9999 probs = F.softmax(logits, dim = 1) #print(probs.shape, output.shape) # calculate final representation weighted_output = torch.sum(probs * output, dim = 1).squeeze(1) # [B',s',1], [B',s',E'] --> [B',E'] return weighted_output class DummyLayer(nn.Module): def __init__(self): super().__init__() self.dummy = nn.Parameter(torch.ones(1, dtype = torch.float)) def forward(self,x): return x + self.dummy - self.dummy class MashRNN(nn.Module): def __init__(self, E, device = DEVICE): super().__init__() self.embedding_dim = E self.device = device # word-level encoder #self.word_encoder = BiLSTMAttn(self.embedding_dim) # sentence-level encoder self.sent_encoder = BiLSTMAttn(self.embedding_dim) # paragraph-level encoder self.para_encoder = BiLSTMAttn(self.embedding_dim) def _seg_to_mask(self, segments): return (torch.arange(segments.max(), device=segments.device).expand(segments.shape[0], segments.max()) < segments.unsqueeze(1)).float() # text: [B,w,E], segments: dict(seg_type, [S']) def forward(self, embedded_text, segments): batch_size = embedded_text.shape[0] # convert to packed tensor # [B,w] sents_per_doc_mask = self._seg_to_mask(segments['sents_per_doc']) # [B,w,E] --> [W,E] #print(embedded_text.shape, segments['sents_per_doc'] ) sentembs = embedded_text.view(-1, self.embedding_dim)[sents_per_doc_mask.view(-1) > 0] # word-level encoder # wl_docembs = self.word_encoder(wordembs, segments['words_per_doc']) # [W,E] --> [B,E] # sentence-level encoder # sl_sentembs = self.word_encoder(wordembs, segments['words_per_sent']) # [W,E] --> [S,E] # sl_docembs = self.sent_encoder(sl_sentembs, segments['sents_per_doc']) # [S,E] --> [B,E] # smash rnn paragraph-level encoder #pl_sentembs = self.word_encoder(wordembs, segments['words_per_sent']) # [W,E] --> [S,E] pl_paraembs = self.sent_encoder(sentembs, segments['sents_per_para']) # [S,E] --> [P,E] pl_docembs = self.para_encoder(pl_paraembs, segments['paras_per_doc']) # [P,E] --> [B,E] document_embeddings = torch.cat([pl_docembs], dim = 1) # 2 * [B,E] --> [B,2E] return document_embeddings class SmashRNN(nn.Module): def __init__(self, E, device = DEVICE, dropout = 0.1): super().__init__() #self.vocab_size = V self.embedding_dim = E self.device = device #Smash RNN #self.embedder = nn.Embedding(self.vocab_size, self.embedding_dim, padding_idx = pad_idx) #Smash BERT self.embedder = DistilBertModel.from_pretrained(bert_variant) # freeze the bottom 3 layers, only top 2 layers will be finetuned for name, param in self.embedder.named_parameters(): if "transformer" in name: layernum = int(name.split('.')[2]) param.requires_grad = False if layernum < 5 else True self.dummy_layer = DummyLayer() self.src_encoder = MashRNN(self.embedding_dim, device) self.trg_encoder = MashRNN(self.embedding_dim, device) self.fc = nn.Linear(2 * self.embedding_dim, self.embedding_dim) self.classifier = nn.Linear(self.embedding_dim, 1) self.dropout = nn.Dropout(dropout) def forward(self, src_text, src_segs, trg_text, trg_segs): #Smash RNN #src_wordemb = self.embedder(src_text) # [B,ws] --> [B,ws,E] #trg_wordemb = self.embedder(trg_text) # [B,wt] --> [B,wt,E] #src_wordemb = self.embedder(src_text)[0][:, 0, :] #trg_wordemb = self.embedder(trg_text)[0][:, 0, :] src_sents = src_text # [S,SL] trg_sents = trg_text mask_src = (src_sents > 0).float().cuda() mask_trg = (trg_sents > 0).float().cuda() #print(src_sents.shape, mask_src) src_sentemb = self.embedder(src_sents, self.dummy_layer(mask_src))[0][:, 0, :] # [S,E] #print(src_sentemb.shape) trg_sentemb = self.embedder(trg_sents, self.dummy_layer(mask_trg))[0][:, 0, :] # [S,E] #docs = U.pad_sequence(torch.split(sents, batch['doc_lens'].tolist()), batch_first=True) # [D,DL,E] src_docemb = self.src_encoder(src_sentemb, src_segs) # [B,ws,E] --> [B,3E] trg_docemb = self.trg_encoder(trg_sentemb, trg_segs) # [B,ws,E] --> [B,3E] common_embedding = torch.cat([src_docemb, trg_docemb], dim = 1) # 2 * [B,3E] --> [B,6E] activations = self.dropout(F.relu(self.fc(common_embedding))) # [B,6E] --> [B,E] logits = self.dropout(self.classifier(activations)).squeeze(1) # [B,E] --> [B,1] --> [B] predictions = (torch.sigmoid(logits) > 0.5).int() return logits, predictions TRAINDEV_LEN = len(traindev_num) DEV_LEN = int(DEV_SPLIT * TRAINDEV_LEN) TRAIN_LEN = TRAINDEV_LEN - DEV_LEN train_num = traindev_num[:TRAIN_LEN] dev_num = traindev_num[TRAIN_LEN:] """### Dataset Statistics""" print("\tDataset Statistics") print("Train Dataset size:", TRAIN_LEN) print("Dev Dataset size:", DEV_LEN) """## Batching Shuffle data randomly, convert numericalized batches into padded tensors and split into batches """ import random def batchify(dataset, batch_size = BATCH_SIZE, device = DEVICE): #shuffled_dataset = random.sample(dataset, len(dataset)) index = 0 while index < len(dataset): sliced = dataset[index : min(index + batch_size, len(dataset))] batch = {'src_text': [], 'trg_text': [], 'src_segs': defaultdict(list), 'trg_segs': defaultdict(list), 'labels': []} for instance in sliced: for i in range(instance['src_segs']['sents_per_doc'][0]): batch['src_text'].append(torch.tensor(instance['src_text'][i], dtype = torch.long)) for j in range(instance['trg_segs']['sents_per_doc'][0]): batch['trg_text'].append(torch.tensor(instance['trg_text'][j], dtype = torch.long)) for segname, segbound in instance['src_segs'].items(): batch['src_segs'][segname].extend(segbound) for segname, segbound in instance['trg_segs'].items(): batch['trg_segs'][segname].extend(segbound) batch['labels'].append(instance['label']) batch['src_text'] = U.pad_sequence(batch['src_text'], batch_first = True).to(device) batch['trg_text'] = U.pad_sequence(batch['trg_text'], batch_first = True).to(device) for segname, segbound in batch['src_segs'].items(): batch['src_segs'][segname] = torch.tensor(segbound, dtype = torch.int).to(device) for segname, segbound in batch['trg_segs'].items(): batch['trg_segs'][segname] = torch.tensor(segbound, dtype = torch.int).to(device) batch['labels'] = torch.tensor(batch['labels'], dtype = torch.float).to(device) # print(batch['labels']) yield batch index += len(batch['labels']) """## Define model and optimizer""" model = SmashRNN(EMBEDDING_DIM, device = DEVICE).to(DEVICE) optimizer = AdamW(model.parameters(), lr = LR, weight_decay = L2REG) """## Evaluate metrics Calculate Precision, Recall and F1-Score """ from sklearn.metrics import precision_score, recall_score, f1_score def eval_metrics(pred, gold): metrics = {} metrics['precision'] = precision_score(gold, pred) metrics['recall'] = recall_score(gold, pred) metrics['f1'] = f1_score(gold, pred) return metrics """## Training Loop Run one complete epoch in either train or eval mode. Perform forward (and backward) passes, collect losses and predictions, and evaluate metrics. """ import math def traindev_loop(dataset, batch_size = BATCH_SIZE, train = False): num_batches = math.ceil(len(dataset) / batch_size) if train: model.train() else: model.eval() all_pred, all_gold = [], [] total_loss = 0 skipped = 0 # print(num_batches) with tqdm(total = num_batches, file = sys.stdout) as pbar: if train: pbar.set_description("Train:") else: pbar.set_description("Dev:") for i, batch in enumerate(batchify(dataset, batch_size=batch_size)): # print("%5d"%i, end='\r') if DEVICE == 'cuda': torch.cuda.empty_cache() try: logits, pred = model(batch['src_text'], batch['src_segs'], batch['trg_text'], batch['trg_segs']) gold = batch['labels'] # print(logits.dtype, gold.dtype) loss = F.binary_cross_entropy_with_logits(logits, gold) if train: optimizer.zero_grad() loss.backward() optimizer.step() all_pred.extend(pred.tolist()) all_gold.extend(gold.tolist()) total_loss += loss.item() except RuntimeError: skipped += 1 continue finally: pass pbar.update(1) metrics = eval_metrics(all_pred, all_gold) mean_loss = total_loss / num_batches return mean_loss, metrics, skipped """## Training and Development Phase ### Load saved model """ #try: #model.load_state_dict(torch.load(SAVEPATH + "checkpoint.pt", map_location = DEVICE)) #except FileNotFoundError: # pass """### Load best metrics""" #try: # with open(SAVEPATH + "dev_metrics.json") as fr: # bestmetrics = json.load(fr) #except FileNotFoundError: # bestmetrics = {'precision': 0, 'recall': 0, 'f1': 0} #for metric, value in bestmetrics.items(): # print(metric, ':', value) """### Run epochs""" bestmetrics = {'f1':0, 'precision' : 0, 'recall' : 0} for epoch in range(NUM_EPOCHS): trainloss, trainmetrics, trainskipped = traindev_loop(train_num, batch_size = BATCH_SIZE, train = True) devloss, devmetrics, devskipped = traindev_loop(dev_num, batch_size = BATCH_SIZE, train = False) print("Epoch: %4d Tr-Loss: %8.3f Tr-F1: %5.4f Tr-Sk: %5d D-Loss: %8.3f D-F1: %5.4f D-Sk: %5d" % (epoch + 1, trainloss, trainmetrics['f1'], trainskipped, devloss, devmetrics['f1'], devskipped)) if devmetrics['f1'] > bestmetrics['f1']: bestmetrics = devmetrics torch.save(model.state_dict(), SAVEPATH + "best_model.pt") with open(SAVEPATH + "dev_metrics.json", 'w') as fw: json.dump(bestmetrics, fw) torch.save(model.state_dict(), SAVEPATH + "checkpoint.pt") ``` #### File: OtherAlgos/DSDR/dsdr.py ```python import numpy as np class DSDR: """<NAME>, et al. Document Summarization based onData Reconstruction (2012) http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPaper/4991 """ @staticmethod def lin(V, m, lamb): '''DSDR with linear reconstruction Parameters ========== - V : 2d array_like, the candidate data set - m : int, the number of sentences to be selected - lamb : float, the trade off parameter Returns ======= - L : list, the set of m summary sentences indices ''' L = [] B = np.dot(V, V.T) / lamb n = len(V) for t in range(m): scores = [] for i in range(n): score = np.sum(B[:,i] ** 2) / (1. + B[i,i]) scores += [(score, i)] max_score, max_i = max(scores) L += [max_i] B = B - np.outer(B[:,max_i], B[:,max_i]) / (1. + B[max_i,max_i]) return L @staticmethod def non(V, gamma, eps=1.e-8): '''DSDR with nonnegative linear reconstruction Parameters ========== - V : 2d array_like, the candidate sentence set - gamma : float, > 0, the trade off parameter - eps : float, for converge Returns ======= - beta : 1d array, the auxiliary variable to control candidate sentences selection ''' V = np.array(V) n = len(V) A = np.ones((n,n)) beta = np.zeros(n) VVT = np.dot(V, V.T) # V * V.T np.seterr(all='ignore') while True: _beta = np.copy(beta) beta = (np.sum(A ** 2, axis=0) / gamma) ** .5 while True: _A = np.copy(A) A *= VVT / np.dot(A, VVT + np.diag(beta)) A = np.nan_to_num(A) # nan (zero divide by zero) to zero if np.sum(A - _A) < eps: break if np.sum(beta - _beta) < eps: break return beta if __name__ == '__main__': pass ```
{ "source": "JishnuJP/random_request", "score": 3 }
#### File: JishnuJP/random_request/randomRequest.py ```python import requests import json from random import choice class randomAgent: def __init__(self,**kwargs): with open('useragents.txt') as f: self.agents = [line.rstrip() for line in f] for key, value in kwargs.items(): if key == 'Browser': [self.agents.remove(agent) for agent in self.agents if value not in agent] ## possibility of an exception when the value of 'Browser' is not matching def getRandomAgent(self): return choice(self.agents) class randomProxy: def __init__(self,**kwargs): self.url = 'https://www.proxy-list.download/api/v1/get' self.types = ['http','https','socks4','socks5'] self.anons = ['transparent','anonymous','elite'] for key, value in kwargs.items(): if key == 'Type': if value in self.types: self.url = self.url + f'?type={value}' else: raise TypeError(f'''{Type} is Invalid protocol, Valid protocols are {self.types}''') elif key =='Anon': if value in self.anons: self.url = self.url+ f'&anon={Anon}' else: pass elif key == 'Country': validity,self.code = self.getCodes(value) if validity: self.url = self.url +f'&country={self.code}' else: pass response = requests.get(self.url) if response.status_code != 200: raise Exception(f'Request Failed url is : {self.url}') self.proxies = response.content.decode('utf-8') self.proxies = self.proxies.split('\r\n') self.proxies.remove('') def getCodes(self, Country): with open('country_codes.json') as f: country_codes = json.load(f) if Country == None: return False, None for i in country_codes: if Country.upper() in i.upper(): return True,country_codes[i] def getRandomProxy(self): return choice(self.proxies) class randomRequest(randomAgent, randomProxy): def __init__(self,**kwargs): # expected arguments = > header, proxy, User-Agent #super().__init__(**kwargs) randomAgent.__init__(self,**kwargs) randomProxy.__init__(self,**kwargs) self.head = {} for key, value in kwargs.items(): if key =='header' : self.head = value elif key == 'proxy': if type(value)==list: self.proxies = value elif type(value) == str: self.proxies = [value] else: raise TypeError(f'{type(value)} is not acceptable, give list or string') def verifty(self, headers, proxies): try: resp = requests.get('https://httpbin.org/get',headers = headers, proxies = proxies) except: return False if resp.status_code == 200: return True else: return False if __name__ == '__main__': randReq = randomRequest(Type = 'https') agent = randReq.getRandomAgent() proxy = randReq.getRandomProxy() print(f'Agent : \n {agent} \n Proxy: \n {proxy}') if randReq.verifty(headers = {'User-Agent':agent},proxies = {'https':proxy}): print('Request is Valid') else: print('Request is Invalid') ```
{ "source": "jishnup11/-Fast-CNN-Fast-Optimisation-of-CNN-Architecture-Using-Genetic-Algorithm", "score": 4 }
#### File: jishnup11/-Fast-CNN-Fast-Optimisation-of-CNN-Architecture-Using-Genetic-Algorithm/network.py ```python import random import logging from train import train_and_score class Network(): def __init__(self, nn_param_choices=None): self.accuracy = 0. self.nn_param_choices = nn_param_choices self.network = {} # (dic): represents CNN network parameters def create_random(self): """Create a random network.""" for key in self.nn_param_choices: self.network[key] = random.choice(self.nn_param_choices[key]) def create_set(self, network): self.network = network def train(self, dataset): if self.accuracy == 0.: self.accuracy = train_and_score(self.network, dataset) def print_network(self): """Print out a network.""" logging.info(self.network) logging.info("Network accuracy: %.2f%%" % (self.accuracy * 100)) ``` #### File: jishnup11/-Fast-CNN-Fast-Optimisation-of-CNN-Architecture-Using-Genetic-Algorithm/train.py ```python from keras.datasets import mnist, cifar10 from keras.models import Sequential import numpy as np from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping from keras.optimizers import SGD from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten # Helper: Early stopping. early_stopper = EarlyStopping(patience=3) def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. batch_size = 64 # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() classes = np.unique(y_train) nb_classes = len(classes) nRows,nCols,nDims = x_train.shape[1:] x_train = x_train.reshape(x_train.shape[0], nRows, nCols, nDims) x_test = x_test.reshape(x_test.shape[0], nRows, nCols, nDims) input_shape = (nRows, nCols, nDims) #print(input_shape) # Change to float datatype x_train = x_train.astype('float32') x_test = x_test.astype('float32') # Scale the data to lie between 0 to 1 x_train /= 255 x_test /= 255 # Change the labels from integer to categorical data y_train = to_categorical(y_train) y_test = to_categorical(y_test) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def compile_model(network, nb_classes, input_shape): # Get our network parameters. nb_layers = network['nb_layers'] activation = network['activation'] learning_rate = network['learning_rate'] weight_decay = network['weight_decay'] momentum = network['momentum'] model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: model.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape=input_shape)) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) else: model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # hard-coded dropout # Output layer. model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(nb_classes, activation='softmax')) sgd = SGD(lr=learning_rate, momentum=momentum, decay= weight_decay) model.compile(loss='categorical_crossentropy', optimizer= 'rmsprop', metrics=['accuracy']) return model def train_and_score(network, dataset): if dataset == 'cifar10': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_cifar10() model = compile_model(network, nb_classes, input_shape) model.fit(x_train, y_train, batch_size=batch_size, epochs=30, # using early stopping, so no real limit verbose=0, validation_data=(x_test, y_test), callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) return score[1] # 1 is accuracy. 0 is loss. ```
{ "source": "jishnupdas/Photometry-tools", "score": 2 }
#### File: jishnupdas/Photometry-tools/filter.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from astropy import time, coordinates as coord, units as u from astropy.io import fits from astropy.time import Time import glob import os #%% # ============================================================================= # This script runs through files containing detected sources from Sextractor and Psfex # source files have the following columns, refer back to photometry script # and sextractor to add/remove other columns # Index(['X_IMAGE', 'Y_IMAGE', 'ALPHAWIN_J2000', 'DELTAWIN_J2000', 'SNR_WIN', # 'MAG_POINTSOURCE', 'MAGERR_POINTSOURCE'], # dtype='object') # # The output is a dataframe and Lightcurve csv written to disk # ============================================================================= #%% ''' The coordinates for variable and check stars ''' V_x,V_y = 1230,1750 C1x,C2x = 1670,288 C2x,C2y = 960,2054 #%% #root_folder = '../../' #os.chdir(root_folder) os.chdir('/home/jishnu/JCBT/TYC3315/14Nov2/reduced/sources') os.chdir('..') ffiles = glob.glob('*proc.fits') ffiles.sort() #%% def read(filename): #read a csv file and returns a dataframe df = pd.read_csv(filename,sep='\t') df = df.drop([df.columns[0]],axis=1) return df #%% def search(x,y,df,t): ''' #here x,y are pixel coords of target star, t is the size of the box used for search ''' flt = df[ #setting condtion so to consider sources inside a box around(x,y) (df['X_IMAGE'] < (x+t)) & (df['X_IMAGE'] > (x-t)) & (df['Y_IMAGE'] < (x+t)) & (df['Y_IMAGE'] > (x-t)) ] print(flt) return flt['MAG_POINTSOURCE'],flt['MAGERR_POINTSOURCE'] #returns pandas series object #%% def cone_search(x,y,df,dist): ''' #another implematation of previous function takes in (x,y) coordinates, a dataframe and search radius returns the magnitude and error if any source is found around the given coordinates ''' #uses distance formula to check how close the point is, to given threshold fdf = df[ (np.sqrt((df['X_IMAGE']-x)**2 +(df['Y_IMAGE']-y)**2) < dist) ] print(fdf) return fdf['MAG_POINTSOURCE'],fdf['MAGERR_POINTSOURCE'] #%% def coord_search(ra,dec,df,dist): ''' Uses RA,DEC instead of pixel coordinates to search Use this function only if there is accurate WCS information and the fits file has been platesolved ''' fdf = df[ #uses distance formula to check how close the point is, to given threshold (np.sqrt((df['ALPHAWIN_J2000']-ra)**2 + (df['DELTAWIN_J2000']-dec)**2) < dist) ] print(fdf) if len(fdf['MAG_POINTSOURCE'])==0: return 0,0 #returns 0 if no sources found else: return fdf['MAG_POINTSOURCE'],fdf['MAGERR_POINTSOURCE'] #%% def sorting(x,y,files,t): ''' Takes (x,y), files and distance threshold and returns the magnitude and error of the source located at (x,y) ''' mag,err = [],[] for f in files: #honestly this could have been done in one function.. print(f+'\n'*2) mags = cone_search(x,y,read(f),t) #pick your poison here mag.append(mags[0]) err.append(mags[1]) print('\n'*2+'-'*50) return mag,err #returns the magnitude and error columns, as pandas series #%% def filter(lst,err): #serves same purpose as the above function, now you might ask why there are two tools for the same job, to which i have no answer. They are nice, first one i came up with, in my head; and second one, well Internet people! https://stackoverflow.com/questions/12141150/from-list-of-integers-get-number-closest-to-a-given-value ''' Input is pandas series of mag and error, if there are more than one elements go into the function, else just return the value from series Takes the magnitude and associated error columns, and removes duplicates (sometimes there are more than 1 source in the given (x,y) and d search region) The function tries to find the correct source by taking mean of the list and looking to reject other sources based on that Should not be used if the sources are clumped up and has the same mag Needs better filtering, until then; stuck with this dirty way ''' opt,Err = [0],[] for i in range(len(lst)): try: if len(lst[i])==1: opt.append(lst[i].iloc[0]) Err.append(err[i].iloc[0]) else: #fancy pants way to do the earlier function opt.append(min([lst[i].iloc[n] for n in range(len(lst[i]))], key=lambda x:abs(x-np.mean(opt)))) Err.append(min([err[i].iloc[n] for n in range(len(err[i]))], key=lambda x:abs(x-np.mean(opt)))) except: opt.append(0) Err.append(0) return opt[1:],Err #returns 2 lists, mag and err. Do what you want with them #%% def Filter(lst,err): opt = [0] # creating list with one element to avoid np raising error # while taking mean Err = [] for i in range(len(lst)): if len(lst[i])==1: opt.append(lst[i].iloc[0]) Err.append(err[i].iloc[0]) else: if (abs(np.mean(opt)-lst[i].iloc[0])) > (abs(np.mean(opt)-lst[i].iloc[1])): opt.append(lst[i].iloc[1]) Err.append(err[i].iloc[1]) else: opt.append(lst[i].iloc[0]) Err.append(err[i].iloc[0]) return opt[1:],Err #%% def get_info(imageName): loc = coord.EarthLocation.of_site('vbo') hdul = fits.open(imageName) ut=(hdul[0].header['UT']) ra=(hdul[0].header['RA']) dec=(hdul[0].header['DEC']) am=(hdul[0].header['AIRMASS']) t = Time(hdul[0].header['DATE-OBS'], scale='utc') jd=(t.jd) #we only use JD. obs_target = coord.SkyCoord(hdul[0].header['RA'],hdul[0].header['DEC'], unit = (u.hourangle,u.deg),frame = 'icrs' ) times = time.Time(t.jd, format='mjd',scale='utc', location=loc ) ltt_bary = times.light_travel_time(obs_target) time_barycentre = times.tdb + ltt_bary bjd=(time_barycentre.value) hdul.close() return ut,ra,dec,am,jd,bjd #USAGE #ut,ra,dec,am,jd,bjd = get_info(imagename) #%% df = pd.DataFrame() ut,ra,dec,am,jd,bjd = [],[],[],[],[],[] #%% def main(): for f in range(len(ffiles)): UT,RA,DEC,AM,JD,BJD = get_info(ffiles[f]) ut.append(UT) ra.append(RA) dec.append(DEC) am.append(AM) jd.append(JD) bjd.append(BJD) folder = 'sources/' os.chdir(folder) Files = [i+'_source_cat.csv' for i in ffiles] #can just read the files off disk but where's the fun in that. m,e = sorting(V_x,V_y,Files,100) #loopy logic of this function! yay me Vmag,Verr = filter(m,e) m,e = sorting(C1x,C2x,Files,100) C1mag,C1err = filter(m,e) m,e = sorting(C2x,C2y,Files,100) C2mag,C2err = filter(m,e) # m,e = sorting(50.381181,47.433372,Files,0.01) #loopy logic of this function! yay me # Vmag,Verr = filter(m,e) df = pd.DataFrame() df = df.assign( **{'UT':ut,'RA':ra,'DEC':dec,'airmass':am, 'JD':jd,'BJD':bjd,'Vmag':Vmag,'v_err':Verr, 'C1':C1mag,'C1_err':C1err,'C2':C2mag,'C2_err':C2err }) df['Vmag_d'] = df['Vmag']-df['C2'] df.to_csv('LC.csv') return df #%% plt.figure(figsize=(8,6)) plt.plot(bjd,df.Vmag,'o',label='v') plt.plot(bjd,df.C1,'o',label='C1') plt.plot(bjd,df.C2,'o',label='C2') plt.legend() #%% plt.plot(bjd,df.Vmag-df.C1,'o',label='v-c1') plt.plot(bjd,df.Vmag-df.C2,'o',label='v-c2') plt.plot(bjd,df.C1-df.C2,'o',label='c1-c2') plt.legend() ```
{ "source": "jishnupdas/SOM-Classifier-for-lightcurves", "score": 3 }
#### File: jishnupdas/SOM-Classifier-for-lightcurves/Classifier_step1.py ```python import os import Lctools import pandas as pd import matplotlib.pyplot as plt #%% fpath = '/media/jishnu/ExternalHDD/TESSDATA/lc_sector1/clean/' df = pd.read_csv('low_period.csv') filenames = list(df.filename) files = [fpath+f for f in filenames] #make a list with fullpath to file svpath = '/home/jishnu/Documents/TESS/tess_data/1D_lc/' impath = '/home/jishnu/Documents/TESS/tess_data/1D_lc_plots/' #%% def main(file): ''' parameters: ----------- file : a text file with 3 columns; MJD,mag & mag_error function: --------- performs lombscargle on the timeseries data, computes the period after removing any noise frequencies checks if the period is double the actual one shifts the phase so the primary minima falls at 0 phase perform a phase binning with 64 bins (mean) writes the 1d array to a file which will be fed into the classifier NN Returns: ------- 1D phase binned array writes phased lc image to disk ''' fname = file.split('/')[-1] tgt = Lctools.Lctools() tgt.set_lc(file) tgt.set_noise_frequencies('noise_freq') period = tgt.lomb_scargle() df = tgt.build_df() ph = tgt.phase_correction() status = tgt.check_double_period() # status = tgt.check_period_spline() if status is not False: df = tgt.build_df() ph = tgt.phase_correction() else: pass binned = tgt.normalise(tgt.phase_bin()) # print('normalized binned lc of %s'%fname) with open('logs_LS','a+') as log: log.write(fname+','+str(tgt.period)+','+str(status)+'\n') # print('writing 1D phase binned lc to file') with open(svpath+'1D_'+fname,'w+') as LCarray: for mag in binned: LCarray.write(str(mag)+'\n') # plot_phased_lc(df.phase,df.mag,tgt.period,impath+fname) # del period,df,ph #%% def plot_phased_lc(phases,mag,period,name): plt.style.use('seaborn') plt.figure(figsize = (4,3)) plt.title('Period : %.6f'%period) plt.xlabel('Phase') plt.ylabel('Flux') plt.gca().invert_yaxis() plt.plot(phases,mag,'.k',alpha=0.8) plt.savefig(name+'_s.png',dpi=100) # plt.show() plt.close() #%% for file in files: try: fname = file.split('/')[-1] if os.path.exists(svpath+'1D_'+fname) == False: main(file) except: with open('errorlog','a+') as errlog: errlog.write(file+'\n') print('encountered an error with file %s'%file.split('/')[-1]) print('Done!') ``` #### File: jishnupdas/SOM-Classifier-for-lightcurves/SOM.py ```python import glob import pickle import numpy as np import seaborn as sns from minisom import MiniSom import matplotlib.pyplot as plt #%% class SOM: ''' Class to easily train, use, save and load the SOM clustering/classifier packages used; Pickle #to save and load files Minisom #minimal implementation of Self Organizing maps ''' def __init__(self,files=None,data=None,som=None,network_h=None, network_w=None,coords=None,x=None,y=None,fnames=None): '''initializing all the necessary values Parameters: ----------- files : list of files, which contain the 1D phase binned data data : An array of arrays,each element is a 1D phase binned LC som : self organising map NN with hxw neurons network_h : height of the network network_w : width of the network coords : An array which contains som.winner for all LCs in data x,y : x,y coords from coords ''' self.files = files self.fnames = fnames self.data = data self.som = som self.network_h = 50 self.network_w = 50 self.coords = coords self.x = x self.y = y def set_files(self,path): ''' takes path to the files as arg; returns list of files in the path ''' self.files = glob.glob(path+'*') def get_arr(self,file): ''' Get data from a file as an np array: reject files which has nan values in them nan can break the SOM classifier ''' data = np.loadtxt(file) if np.isnan(data).any() == True: return np.nan else: return data def set_data(self): ''' opens each file in the folder and reads the data into an array, and appends that to the data array if it doesnt contain any nan values ''' self.fnames,self.data,err_f = [],[],[] for f in self.files: arr = self.get_arr(f) if arr is not np.nan: self.fnames.append(f) self.data.append(arr) else: err_f.append(f) def set_som(self,sigma,learning_rate): ''' initializes the network: by default 50x50 with 0.1 sigma and 1.5 lr is initialized ''' self.som = MiniSom(x = self.network_h,y = self.network_w, input_len = 32, sigma = sigma, learning_rate = learning_rate) self.som.random_weights_init(self.data) #initialize random weights to the network def train_som(self,number): ''' tains the network with 'number' iterations by randomly taking 'number' of elements from the data array ''' self.som.train_random(self.data, number) def save_model(self,outfile): ''' Save the trained model ''' with open(outfile+'.p', 'wb') as outfile: pickle.dump(self.som, outfile) def load_model(self,som_file): ''' Load the saved model ''' with open(som_file, 'rb') as infile: self.som = pickle.load(infile) def get_coords(self): ''' Runs each of the elements of the dataset through the SOM and gets the winner and appends it to the coords array ''' self.coords = [] err = [] self.x = [] self.y = [] for d in self.data: try: coord = np.array(self.som.winner(d)) self.coords.append(coord) self.x.append(coord[0]) self.y.append(coord[1]) except: #print("err with ",str(d)) err.append(d) #getting x,y points # self.x = [i[0] for i in self.coords] # self.y = [i[1] for i in self.coords] return self.x,self.y def plot_winners(self): x,y = self.x,self.y plt.style.use('seaborn') plt.figure(figsize=(9,9)) plt.plot(x,y,'.',alpha=0.15) sns.kdeplot(x,y,cmap='Blues',shade=True,bw=1.5,shade_lowest=False, alpha=0.8) plt.show() plt.close() ```
{ "source": "jishnusen/pykarel", "score": 3 }
#### File: jishnusen/pykarel/Karel.py ```python import os import sys import time NORTH = 0 WEST = 1 SOUTH = 2 EAST = 3 class World: symbols = { "wall": "#", "beeper": "o", "path": " " } def __init__(self, filename, robots=[]): self.grid = [] self.height = 0 self.width = 0 self.step_delay = 0.5 self.robots = [] self.breakpoint = False self.step = False with open(filename, 'r') as f: self.grid = [list(line[:-1]) for line in f.readlines()] self.height = len(self.grid) self.width = len(self.grid[0]) for robot in robots: self.add_robot(robot) self.print_world(fast=True) def add_robot(self, robot): '''Add robot to world''' robot.world = self if robot.x < 0: robot.x = self.width + robot.x if robot.y < 0: robot.y = self.height + robot.y if 0 > robot.x >= self.width: raise ValueError("X value outside world boundaries!") if 0 > robot.y >= self.height: raise ValueError("Y value outside world boundaries!") if self.grid[robot.y][robot.x] == World.symbols["wall"]: raise ValueError("Robot placed on a wall!") if self.grid[robot.y][robot.x] in Robot.dirs: raise ValueError("Robot placed on another robot!") self.robots.append(robot) self.print_world(fast=True) def set_speed(self, speed): '''Sets world simulation speed to a range [1, 4]''' speeds = [0.5, 0.15, 0.03, 0] try: self.step_delay = speeds[speed-1] except IndexError: pass def print_world(self, fast=False): output = "\n"*100 lines = [] for y in range(self.height): lines.append(self.grid[y][:]) for robot in self.robots: lines[robot.y][robot.x] = Robot.dirs[robot.dir] for line in lines: output += ''.join(line) + '\n' if self.breakpoint or self.step: output += "Press ENTER to continue." print(output, end="") input() self.breakpoint = False else: if not fast: time.sleep(self.step_delay) print(output, end="") def add_breakpoint(self): '''Adds single breakpoint, press ENTER to continue''' self.breakpoint = True def begin_step(self): '''Adds breakpoints between all commands until end_step()''' self.step = True def end_step(self): '''Resume running commands normally''' self.step = False class Robot: dirs = { NORTH: '▲', WEST: '◄', SOUTH: '▼', EAST: '►' } #~ dirs = ['^', '<', 'v', '>'] moves = { NORTH: {'x': 0, 'y':-1}, WEST: {'x':-1, 'y': 0}, SOUTH: {'x': 0, 'y': 1}, EAST: {'x': 1, 'y': 0} } class PutBeeperError(BaseException): pass class PickBeeperError(BaseException): pass class OutOfBeepersError(BaseException): pass class MovementError(BaseException): pass def __init__(self, x, y, dir, beepers=0): self.dir = dir # 0 = N, 1 = W, 2 = S, 3 = E self.x = x-1 self.y = y-1 self.beepercount = beepers def front_is_clear(self): '''Return True if space in front of robot can be moved into''' newx = self.x + Robot.moves[self.dir]['x'] newy = self.y + Robot.moves[self.dir]['y'] if 0 <= newx < self.world.width and 0 <= newy < self.world.height: if self.world.grid[newy][newx] != World.symbols["wall"]: for robot in self.world.robots: if robot.x == newx and robot.y == newy: return False return True return False def move(self): '''Move robot forward one step''' if not Robot.front_is_clear(self): raise Robot.MovementError("Movement blocked!") self.x += Robot.moves[self.dir]['x'] self.y += Robot.moves[self.dir]['y'] self.world.print_world() def turnleft(self): '''Rotate robot 90 degrees left''' self.dir = (self.dir + 1) % 4 self.world.print_world() def turnright(self): '''Rotate robot 90 degrees left''' self.dir = (self.dir - 1) % 4 self.world.print_world() def check_beeper(self): '''Return True if space in front contains a beeper''' newx = self.x + Robot.moves[self.dir]['x'] newy = self.y + Robot.moves[self.dir]['y'] if 0 <= newx < self.world.width and 0 <= newy < self.world.height: if self.world.grid[newy][newx] == World.symbols["beeper"]: for robot in self.world.robots: if robot.x == newx and robot.y == newy: return False return True return False def beeper_count(self): return self.beepercount def pick_beeper(self): '''Pick up beeper in front of robot and add it to the beeper storage''' if not self.check_beeper(): raise Robot.PickBeeperError("No beeper at location!") newx = self.x + Robot.moves[self.dir]['x'] newy = self.y + Robot.moves[self.dir]['y'] self.world.grid[newy][newx] = World.symbols["path"] self.beepercount += 1 self.world.print_world() def put_beeper(self): '''Place beeper from robot's beeper storage in front of the robot''' if not self.front_is_clear(): raise Robot.PutBeeperError("No space to place beeper!") if self.check_beeper(): raise Robot.PutBeeperError("Space already contains beeper!") if self.beepercount < 1: raise Robot.OutOfBeepersError("Not carrying any beepers!") newx = self.x + Robot.moves[self.dir]['x'] newy = self.y + Robot.moves[self.dir]['y'] self.world.grid[newy][newx] = World.symbols["beeper"] self.beepercount -= 1 self.world.print_world() ```
{ "source": "jishubasak/eCRESEARCH", "score": 2 }
#### File: Web App/demo/app.py ```python import dash_core_components as dcc import dash_html_components as html import pandas as pd from django_plotly_dash import DjangoDash import dash_bootstrap_components as dbc import plotly.express as px import dash import os import numpy as np import logging from PIL import Image import base64 import io import plotly.graph_objs as go import pickle import cv2 from dash.dependencies import Input, Output, State from IPython.display import display, IFrame, HTML from dash.exceptions import PreventUpdate import json import os import time import uuid from copy import deepcopy import csv import sys import pathlib import importlib from flask_caching import Cache import dash_reusable_components as drc import utils as utils import keras from keras.models import load_model external_stylesheets = ['https://codepen.io/amyoshino/pen/jzXypZ.css'] # external_stylesheets = ['https://stackpath.bootstrapcdn.com/bootswatch/4.4.1/cerulean/bootstrap.min.css'] APP_PATH = str(pathlib.Path(__file__).parent.resolve()) DEBUG = True LOCAL = True app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server product_df = pd.read_csv('data/products.csv') labels = product_df['Products'].unique() labels_values = product_df['Links'].unique() options = [{'label': x, 'value': y} for x,y in zip(labels,labels_values)] #Scaling within range 1-10 def scaling(x,a,b,minimum,maximum): return float(((b-a)*(x-minimum)/(maximum-minimum))+a) # resets the callbacks app.callback_map = {} # sets the title app.title = 'Ecfullfill Capstone' # html content app.layout = html.Div([ #Card Groups html.Div([ html.Div([ html.Div(id='output-container-button-5', children='Enter Price'), html.Div(dcc.Input(id='input-box-5', type='text',required=True, style={'position':'relative'})), html.Button('Submit', id='button-5', style={'position':'relative'}), ],className='two columns'), ],className='row'), html.Br(), html.Br(), #Select Products html.Div([ html.Div([ html.Div(id='output-container-button-6', children='Select Product'), dcc.Dropdown( id='product-dropdown', options=options,value='shampoo'), ],className='six columns'), html.Div([ html.Div(id='output-container-button-7', children='Select Tags'), dcc.Dropdown( id='multi-dropdown', multi=True), html.Div(id='display-selected-values'), ],className='six columns') ],className='row'), html.Br(), html.Br(), html.Div([ dcc.Tabs([ # Tab 1 dcc.Tab([ html.Div([ dcc.Upload( id='upload-image', children=html.Div([ 'Drag and Drop or ', html.A('Select Image') ]), style={ 'width': '90%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px' }, accept="image/*", # Dont Allow multiple files to be uploaded multiple=True ), html.Div([ #Product Length Button html.Div([ html.Div(dcc.Input(id='product-length', type='text',required=True, placeholder = 'Product Length (in)', style={'position':'relative'})), ],className = 'two columns'), #Product Width Button html.Div([ html.Div(dcc.Input(id='product-width', type='text',required=True, placeholder = 'Product Width (in)', style={'position':'relative'})), ],className = 'two columns'), #Product Height Button html.Div([ html.Div(dcc.Input(id='product-height', type='text',required=True, placeholder = 'Product Height (in)', style={'position':'relative'})), ],className = 'two columns'), #Product Weight Button html.Div([ html.Div(dcc.Input(id='product-weight', type='text',required=True, placeholder = 'Product Weight (oz)', style={'position':'relative'})), ],className = 'two columns'), html.Div([ html.Button(id='run-operation', n_clicks=0, children='Run Operation'), html.Div(id='run-model'), ],className = 'two columns'), ], className = 'row'), ],className='row'), html.Br(), html.Br(), html.Div([ #Upload COmponent html.Div([ #Image Upload Graph html.Div([ dcc.Graph(id='image_graph') ]) ],className='six columns'), #World Map html.Div([ html.Div([ dcc.Graph(id='the_graph') ]), html.Div([ html.Div(id='output_state'), ]), ],className='six columns') ],className = 'row'), ], className="container-fluid", label="Product Perfomance Insight"), # Tab 2 dcc.Tab([ dcc.Textarea( placeholder='Enter a value...', value='This is a TextArea component', style={'width': '100%'} ) ], className="container-fluid", label="Product Highlight Generator") ], className="tabs-section") ], className="main-content"), ], className="main") #Dropdown Callbacks @app.callback( Output('multi-dropdown', 'options'), [Input('product-dropdown', 'value')]) def set_tags_options(selected_product): if DEBUG: print(selected_product) with open('data/{}.pkl'.format(str(selected_product)), 'rb') as handle: loaded_pkl = pickle.load(handle) tagged_df = loaded_pkl['tags_datasets']['USA'].columns[4:20] return [{'label': i, 'value': i} for i in tagged_df] @app.callback( Output('multi-dropdown', 'value'), [Input('multi-dropdown', 'options')]) def set_tags_value(available_options): return available_options[0]['value'] #Meta Data Input # @app.callback(Output('output-state', 'children'), # [Input('submit-button-state', 'n_clicks')], # [State('input-1-state', 'value'), # State('input-2-state', 'value')]) # def update_output(n_clicks, input1, input2): # return u''' # The Button has been pressed {} times, # Input 1 is "{}", # and Input 2 is "{}" # '''.format(n_clicks, input1, input2) @app.callback( [Output('output_state', 'children'), Output(component_id='the_graph', component_property='figure')], [Input('run-operation', 'n_clicks'), Input('upload-image', 'contents'), Input('product-dropdown', 'value')], [State('product-length', 'value'), State('product-width', 'value'), State('product-height', 'value'), State('product-weight', 'value')] ) def update_output(num_clicks,image_contents,selected_product,product_length,product_width,product_height,product_weight): if product_length is None: raise PreventUpdate elif product_width is None: raise PreventUpdate elif product_height is None: raise PreventUpdate elif product_weight is None: raise PreventUpdate else: temp_meta = np.array([float(product_length),float(product_height),float(product_width),float(product_weight)]) meta_input = temp_meta.reshape(1,4,1,1) if image_contents is not None: print('Image contents found') image_b64 = image_contents[0].split(",")[1] base64_decoded = base64.b64decode(image_b64) image = Image.open(io.BytesIO(base64_decoded)) image_np = np.array(image) target_size = (128,128) image_input = cv2.resize(image_np, target_size) print(image_input.shape) image_input = image_input.reshape(1,128,128,3) predictions_temp = {} with open('data/{}.pkl'.format(str(selected_product)), 'rb') as handle: loaded_pkl = pickle.load(handle) models = loaded_pkl['models'] for country in models: predictions_temp.update({country:models[country].predict({'main_input': image_input, 'meta_input': meta_input})[0][0]}) iso_changer = {'UK':'GBR','India':'IND','Australia':'AUS','USA':'USA'} df_temp = pd.DataFrame(data=predictions_temp.items(),columns = ['Country','Success Index']) df_temp['iso_alpha'] = df_temp['Country'].map(iso_changer) min_tar = min(df_temp['Success Index']) max_tar = max(df_temp['Success Index']) df_temp['Success Index'] = df_temp['Success Index'].apply(lambda x: scaling(x,1,10,min_tar,max_tar)) df = df_temp.copy() print(df) fig = px.choropleth(df, locations="iso_alpha", color="Success Index", hover_name="Country", projection='natural earth', title='Performing Index of the Product by Country', color_continuous_scale=px.colors.sequential.Plasma) fig.update_layout(title=dict(font=dict(size=28),x=0.5,xanchor='center'), margin=dict(l=60, r=60, t=50, b=50)) return ('High Index reflects that the product is likely to be successfull \ if sold in that country',fig) # @app.callback(Output('country-gdp-graph', 'figure'), # [Input('world-map', 'clickData')]) # def update_graph(clickData): # '''Update the carbon ppbv trend graph in Tab 1. # A callback function that is triggered when a country in the map in Tab 1 is # clicked. The country is retrieved from the clickData and is then used to # generate a line graph showing the trends in carbon ppbv of a country # across all years. # Parameters # ---------- # clickData : dict # The dictionary containing the details of the clicked point on the map. # Returns # ------- # dict # Return the updated carbon ppbv trend graph figure # ''' # title = '' # data = [] # if clickData: # country = clickData['points'][0]['location'] # else: # country = 'USA' # data = [{'x': df.iloc[:, 1:].columns.tolist(), # 'y': df.loc[country].iloc[1:].values.tolist(), # 'type': 'line'}] # title = df.loc[country, 'country'] # layout = dict(title='{} Carbon ppbv'.format(title), # xaxis={'title': 'year'}, # yaxis={'title': 'Carbon ppbv'} # ) # fig = dict(data=data, layout=layout) # return fig # # image_source = "https://raw.githubusercontent.com/michaelbabyn/plot_data/master/bridge.jpg" @app.callback(Output('image_graph','figure'), [Input('upload-image', 'contents')]) def update_output(list_of_contents): if list_of_contents is not None: # if DEBUG: # print(list_of_contents) image_b64 = list_of_contents[0].split(",")[1] base64_decoded = base64.b64decode(image_b64) image = Image.open(io.BytesIO(base64_decoded)) image_np = np.array(image) fig = px.imshow(image_np) fig.update_layout(title=dict(font=dict(size=28),x=0.5,xanchor='center'), margin=dict(l=60, r=60, t=50, b=50)) else: image = Image.open(r'C:\Users\Dell-pc\Desktop\dash\images\ecfullfill.png') image_np = np.array(image) fig = px.imshow(image_np) fig.update_layout(title=dict(font=dict(size=28),x=0.5,xanchor='center'), margin=dict(l=60, r=60, t=50, b=50)) return fig # Running the server if __name__ == "__main__": app.run_server(debug=True) ```
{ "source": "jishubasak/Game-of-Zones", "score": 3 }
#### File: jishubasak/Game-of-Zones/kypy.py ```python from scipy.spatial.distance import cityblock from scipy.spatial.distance import euclidean from sklearn.metrics import calinski_harabaz_score, silhouette_score, adjusted_mutual_info_score, adjusted_rand_score import pandas as pd import numpy as np import matplotlib.pyplot as plt def intra_to_inter(X, y, dist, r): """Compute intracluster to intercluster distance ratio Parameters ---------- X : array Design matrix with each row corresponding to a point y : array Class label of each point dist : callable Distance between two points. It should accept two arrays, each corresponding to the coordinates of each point r : integer Number of pairs to sample Returns ------- ratio : float Intracluster to intercluster distance ratio """ random_choices = [] numerators = [] denominators = [] np.random.seed(11) for i in range(r): random_choices.append(np.random.randint(0, len(X), 2)) for i in range(len(random_choices)): if random_choices[i][0] == random_choices[i][1]: continue elif y[random_choices[i][0]] == y[random_choices[i][1]]: numerators.append(dist(X[random_choices[i][0]], X[random_choices[i][1]])) else: denominators.append(dist(X[random_choices[i][0]], X[random_choices[i][1]])) return (np.asarray(numerators).mean()) / (np.asarray(denominators).mean()) def cluster_range(X, clusterer, k_start, k_stop, actual=None): chs = [] iidrs = [] inertias = [] scs = [] ys = [] amis = [] ars = [] ps = [] for i in range(k_start, k_stop+1): clusterer2 = clusterer clusterer2.n_clusters = i ys.append(clusterer2.fit_predict(X)) iidrs.append(intra_to_inter(X, ys[-1], euclidean, 50)) chs.append(calinski_harabaz_score(X, ys[-1])) inertias.append(clusterer2.inertia_) scs.append(silhouette_score(X, ys[-1])) keys = ['ys', 'iidrs', 'chs', 'inertias', 'scs'] values = [ys, iidrs, chs, inertias, scs] if actual is not None: for i in ys: ps.append(purity(actual, i)) ars.append(adjusted_rand_score(actual, i)) amis.append(adjusted_mutual_info_score(actual, i)) keys.extend(['ps', 'ars', 'amis']) values.append(ps) values.append(ars) values.append(amis) return dict(zip(keys, values)) else: return dict(zip(keys, values)) def plot_internal(inertias, chs, iidrs, scs): """Plot internal validation values""" fig, ax = plt.subplots(nrows=2, ncols=2, dpi=200) ks = np.arange(2, len(inertias)+2) ax[0,0].plot(ks, inertias, '-o', label='SSE') ax[0,1].plot(ks, chs, '-ro', label='CH') ax[0,0].set_xlabel('$k$') ax[0,0].set_ylabel('SSE') ax[0,1].set_ylabel('CH') # lines, labels = ax.get_legend_handles_labels() # ax2 = ax.twinx() ax[1,0].plot(ks, iidrs, '-go', label='Inter-intra') ax[1,1].plot(ks, scs, '-ko', label='Silhouette coefficient') ax[1,0].set_ylabel('Inter-Intra') # lines2, labels2 = ax2.get_legend_handles_labels() # ax2.legend(lines+lines2, labels+labels2) ax[1,1].set_ylabel('Silhouette Score') fig.tight_layout() return fig def plot_clusters(X, ys): """Plot clusters given the design matrix and cluster labels""" k_max = len(ys) + 1 k_mid = k_max//2 + 2 fig, ax = plt.subplots(2, k_max//2, dpi=150, sharex=True, sharey=True, figsize=(7,4), subplot_kw=dict(aspect='equal'), gridspec_kw=dict(wspace=0.01)) for k,y in zip(range(2, k_max+1), ys): if k < k_mid: ax[0][k%k_mid-2].scatter(*zip(*X), c=y, s=1, alpha=0.8) ax[0][k%k_mid-2].set_title('$k=%d$'%k) else: ax[1][k%k_mid].scatter(*zip(*X), c=y, s=1, alpha=0.8) ax[1][k%k_mid].set_title('$k=%d$'%k) return ax ```
{ "source": "Jishu-Epic/RShell", "score": 2 }
#### File: Jishu-Epic/RShell/rban.py ```python __author__ = "3P1C" __version__ = 1.0 __copyright__ = "Copyright © 2019" import random banner = ''' d8888b. .d8888. db db d88888b db db 88 `8D 88' YP 88 88 88' 88 88 88oobY' `8bo. 88ooo88 88ooooo 88 88 88`8b `Y8b. 88~~~88 88~~~~~ 88 88 88 `88. db 8D 88 88 88. 88booo. 88booo. 88 YD `8888Y' YP YP Y88888P Y88888P Y88888P ''' banner2 = ''' ___ ___ _ _ _ | _`\ ( _`\ ( ) (_ ) (_ ) | (_) )| (_(_)| |__ __ | | | | | , / `\__ \ | _ `\ /'__`\ | | | | | |\ \ ( )_) || | | |( ___/ | | | | (_) (_)`\____)(_) (_)`\____)(___)(___) ''' banner3 = r''' ____ ____ __ ___ ___ /\ _`\ /\ _`\ /\ \ /\_ \ /\_ \ \ \ \L\ \ \ \,\L\_\ \ \ \___ __ \//\ \ \//\ \ \ \ , / \/_\__ \ \ \ _ `\ /'__`\ \ \ \ \ \ \ \ \ \\ \ /\ \L\ \ \ \ \ \ \ /\ __/ \_\ \_ \_\ \_ \ \_\ \_\ \ `\____\ \ \_\ \_\\ \____\ /\____\ /\____\ \/_/\/ / \/_____/ \/_/\/_/ \/____/ \/____/ \/____/ ''' #print(banner3) def ban(): a = banner,banner2,banner3 c = random.randint(1,3) if c == 1: return a[0] elif c == 2: return a[1] elif c == 3: return a[2] ```
{ "source": "jishuguang/language", "score": 3 }
#### File: qa/model/bert.py ```python import os import torch from torch import nn from torch.nn import functional as F from language.lm.model.bert import BertEncoder from language.utils.log import get_logger logger = get_logger() class Bert(nn.Module): def __init__(self, **kwargs): super().__init__() self.bert_encoder = BertEncoder(**kwargs) # QA embedding_dim = kwargs['embedding_dim'] self.linear = nn.Linear(embedding_dim, 2) def forward(self, data): """ :param data: dict, {key: Tensor}. :return: (Tensor, Tensor), shape(n, s), start_prediction, end_prediction. """ embedding = self.bert_encoder(data) # (n, s, e) prediction = self.linear(embedding) # (n, s, 2) segment = data['segments'].unsqueeze(-1) # (n, s, 1) pad_mask = data['pad_mask'].unsqueeze(-1) # (n, s, 1) valid_mask = segment - pad_mask valid_mask[:, 0, :] = 1 # <cls> is valid offset = torch.zeros_like(valid_mask, device=valid_mask.device) offset[valid_mask == 0] = -1E6 prediction = prediction * valid_mask + offset start_pred = prediction[:, :, 0] # (n, s) end_pred = prediction[:, :, 1] # (n, s) return start_pred, end_pred def forward_train(self, data): """ :param data: dict, {key: Tensor}. :return: Tensor, Shape(1), loss. """ start_pred, end_pred = self(data) # (n, s) start = data['start'][:, 0] # (n) end = data['end'][:, 0] # (n) loss = F.cross_entropy(start_pred, start) + F.cross_entropy(end_pred, end) return loss def forward_infer(self, data): """ :param data: dict, {key: Tensor}. :return: Tensor, Shape(n, 2), prediction. """ start_pred, end_pred = self(data) # (n, s) no_answer_score = start_pred[:, 0] + end_pred[:, 0] # <cls> start_pred = start_pred[:, 1:] end_pred = end_pred[:, 1:] start_max_values, start_max_indies = torch.cummax(start_pred, dim=1) answer_score = start_max_values + end_pred max_answer_score, end_index = torch.max(answer_score, dim=1) # (n) start_index = start_max_indies[torch.arange(end_index.shape[0], device=end_index.device), end_index] return no_answer_score > max_answer_score, start_index + 1, end_index + 1 def load_bert_model(self, model_path): """ :param model_path: path to bert pretrain model. :return: None. """ logger.info(f'Loading bert model: {model_path}.') if not os.path.exists(model_path): raise FileExistsError(f'{model_path} does not exist.') self.bert_encoder = torch.load(model_path) ``` #### File: qa/utils/trainer.py ```python import os import torch from torch import optim from torch.optim.lr_scheduler import MultiStepLR from torch.utils import data from language.utils.log import get_logger from language.utils.serialization import save_model logger = get_logger() class Trainer: def __init__(self, train_cfg, evaluator, model, train_data, save_dir): self._cfg = train_cfg self._evaluator = evaluator self._model = model.to(train_cfg.device.name) self._setup_data(train_data) self._setup_scheduler() self._save_dir = save_dir self._key_metric = train_cfg.key_metric def _setup_data(self, train_data): batch_size = self._cfg.device.batch_size num_worker = self._cfg.device.num_worker logger.info(f'batch_size: {batch_size}') logger.info(f'num_workers: {num_worker}') self._total_steps = len(train_data) // batch_size self._train_iter = data.DataLoader(train_data, shuffle=True, batch_size=batch_size, num_workers=num_worker, drop_last=True) def _setup_scheduler(self): learn_paras = { 'lr': self._cfg.learn.lr, 'weight_decay': self._cfg.learn.weight_decay } self._optimizer = getattr(optim, self._cfg.learn.method)(self._model.parameters(), **learn_paras) self._scheduler = MultiStepLR(self._optimizer, self._cfg.learn.milestones, gamma=self._cfg.learn.gamma) def train(self): best_key_metric = 0 for epoch in range(self._cfg.learn.epochs): self._train_one_epoch(epoch) metric_dict = self._evaluator.evaluate(self._model) msg = f'Epoch {epoch}: {" | ".join([f"{key}: {value:.4f}" for key, value in metric_dict.items()])}.' key_metric = metric_dict[self._key_metric] logger.info(msg) if key_metric >= best_key_metric: best_key_metric = key_metric # save model save_model(self._model, os.path.join(self._save_dir, 'model', 'model_best.pth')) # save evaluation result with open(os.path.join(self._save_dir, 'model', 'evaluation.txt'), 'a') as f: f.write(msg + os.linesep) save_model(self._model, os.path.join(self._save_dir, 'model', 'model_last.pth')) self._scheduler.step() def _train_one_epoch(self, epoch): step = 0 self._model.train() for train_batch in self._train_iter: self._optimizer.zero_grad() self._to_device(train_batch) loss = self._model.forward_train(train_batch) logger.info(f'[Epoch {epoch}][Step {step}/{self._total_steps}] ' f'lr: {self._scheduler.get_last_lr()[0]:.5f}' f' | loss {loss:.4f}') loss.backward() self._optimizer.step() step += 1 def _to_device(self, train_batch): """Move a batch to specified device.""" device = self._cfg.device.name for key, value in train_batch.items(): if isinstance(value, torch.Tensor): train_batch[key] = value.to(device) ``` #### File: tagging/dataset/__init__.py ```python from .sequence import build_sequence_dataset from language.utils.log import get_logger logger = get_logger() DATASET_TYPES = { 'sequence': build_sequence_dataset } def build_dataset(cfg, **kwargs): dataset_type = cfg.type logger.info(f'Dataset type is set to {dataset_type}.') if dataset_type in DATASET_TYPES: logger.info(f'Building dataset {cfg.name}...') return DATASET_TYPES[dataset_type](**cfg, **kwargs) else: raise ValueError(f'Invalid dataset type: {dataset_type}.') ``` #### File: language/utils/random.py ```python import numpy as np class RandomChoices: """Fast random choices with cache.""" def __init__(self, population, weights, k): self._population = np.array(population) weights = np.array(weights) self._p = weights / weights.sum() self._k = k self._reset() def _reset(self): self._candidates = np.random.choice(self._population, size=self._k, replace=True, p=self._p) self._index = 0 def __call__(self): if self._index == self._k: self._reset() self._index += 1 return self._candidates[self._index - 1] ``` #### File: language/tools/train_tagging.py ```python import argparse import os import time from logging import FileHandler from language.tagging.dataset import build_dataset from language.tagging.model import build_model from language.tagging.utils.trainer import Trainer from language.tagging.utils.evaluator import Evaluator from language.utils.log import get_logger from language.utils.config import get_cfg_defaults from language.utils.serialization import load_model logger = get_logger() def load_pretrain_model(model, pretrain_cfg): if pretrain_cfg is None: return model if 'resume' in pretrain_cfg: load_model(model, pretrain_cfg.resume, resume=True) elif 'load' in pretrain_cfg: load_model(model, pretrain_cfg.load) elif 'bert' in pretrain_cfg: model.load_bert_model(pretrain_cfg.bert) return model def train(cfg): train_dataset = build_dataset(cfg.data, purpose='train') val_dataset = build_dataset(cfg.data, purpose='val') model = build_model(cfg.model, vocab=train_dataset.get_vocab(), tag_vocab=train_dataset.get_tag_vocab()) load_pretrain_model(model, cfg.pretrain) evaluator = Evaluator(cfg.evaluator, val_dataset) Trainer(cfg.trainer, evaluator, model, train_dataset, cfg.save.dir).train() def main(): parser = argparse.ArgumentParser(description='Train sequence tagging model.') parser.add_argument('--config', required=True, type=str, help='Path to config.') args = parser.parse_args() cfg = get_cfg_defaults() cfg.merge_from_file(args.config) cfg.save.dir = os.path.join(cfg.save.dir, time.strftime("%Y%m%d%H%M%S")) os.makedirs(cfg.save.dir, exist_ok=True) cfg.freeze() logger.addHandler(FileHandler(os.path.join(cfg.save.dir, f'train.log'))) logger.info(f'Loading config {args.config}.') logger.info(f'Config:\n {cfg}') train(cfg) if __name__ == '__main__': main() ```
{ "source": "jishuguang/recommender", "score": 3 }
#### File: recommender/dataset/point_dataset.py ```python import random from .base_dataset import BaseDataset, SupervisedBaseDataset from utils.log import get_logger logger = get_logger() class PointTrainDataset(SupervisedBaseDataset): def _setup(self): super()._setup() total_amount = len(self) # if any action is true, we treat it as positive. self._positive_indexes = list(self._df.index[self._df[self._cfg.input.action].agg('sum', axis=1) > 0]) self._negative_indexes = list(set(range(total_amount)) - set(self._positive_indexes)) self._positive_amount = len(self._positive_indexes) # adjust data_size = positive + negative_sample self._len = int(min(self._positive_amount * (1 + self._cfg.negative_sample), total_amount)) logger.info(f'Positive sample size: {self._positive_amount}; ' f'Negative sample size: {total_amount - self._positive_amount}') logger.info(f'Adjust dataset size to {len(self)}') def __getitem__(self, index): if index < self._positive_amount: real_index = self._positive_indexes[index] else: real_index = random.choice(self._negative_indexes) return super().__getitem__(real_index) DATASETS = { 'train': PointTrainDataset, 'val': SupervisedBaseDataset, 'test': BaseDataset } def build_point_dataset(data_cfg, purpose='train'): if purpose in DATASETS: return DATASETS[purpose](data_cfg, purpose) else: raise ValueError(f'Unsupported purpose {purpose}.') ``` #### File: recommender/model/__init__.py ```python from model.module.interaction import BinaryClassInteraction from model.fm import build_fm from model.deepfm import build_deepfm from model.xdeepfm import build_xdeepfm from utils.log import get_logger logger = get_logger() # TODO: Design a arch which consists of linear, deep and interaction part, and fm/deepfm/xdeepfm are all its instance. MODELS = { 'fm': build_fm, 'deepfm': build_deepfm, 'xdeepfm': build_xdeepfm } def build_model(model_cfg): logger.info(f'Building model...') if model_cfg.name in MODELS.keys(): model = MODELS[model_cfg.name](model_cfg) if getattr(model_cfg, 'binary_class_interaction', False): model = BinaryClassInteraction(model_cfg.output_dim, model) logger.info(f'Model \"{type(model).__name__}\" is built:\n' f'{model}') return model else: raise ValueError(f'model: {model_cfg.name} is not found.') ``` #### File: model/module/linear.py ```python import torch from torch import nn class OneHotLinear(nn.Module): """Linear layer for one hot features.""" def __init__(self, one_hot_dims, output_dim): """ :param one_hot_dims: List[int], dimensions of one-hot categorical features. :param output_dim: int, output dimension. """ super().__init__() # offsets of the features, note that the offset for the first feature is 0 self._offsets = torch.tensor([0] + one_hot_dims, dtype=torch.int).cumsum(0)[:-1] input_dim = sum(one_hot_dims) # embed is used as weight self.one_hot_embed = nn.Embedding(input_dim, output_dim) self._input_dim = input_dim def forward(self, x): """ :param x: Tensor, (n, len(one_hot_dims)). :return: Tensor, (n, output_dim). """ x = x + self._offsets.to(x.device) x = self.one_hot_embed(x).sum(dim=1) return x ``` #### File: recommender/test/test_dataset.py ```python from unittest import TestCase from torch.utils.data import DataLoader from utils.config import get_cfg_defaults from dataset import build_dataset from utils.log import get_logger logger = get_logger() class TestDataset(TestCase): @classmethod def setUpClass(cls): cfg = get_cfg_defaults() cfg_file = r'C:\Users\gg\Documents\MySpace\git\recommender\experiments\2021_WeChat_Challenge\fm_offline.yml' cfg.merge_from_file(cfg_file) cfg.freeze() cls._data_cfg = cfg.data logger.info(f'Data config:\n{cls._data_cfg}') def test_data_loader(self): val_dataset = build_dataset(self._data_cfg, 'test') val_iter = DataLoader(val_dataset, shuffle=True, batch_size=2, num_workers=1, drop_last=False) for data in val_iter: print(data) break ``` #### File: recommender/tools/infer.py ```python import argparse import os import time import pandas as pd import torch from torch.utils import data from tqdm import tqdm import numpy as np from model import build_model from utils.serialization import load_model from utils.config import get_cfg_defaults from dataset import build_dataset from utils.log import get_logger logger = get_logger() class Infer: def __init__(self, model_path, config_path): self._cfg = get_cfg_defaults() self._cfg.merge_from_file(config_path) self._cfg.freeze() self._save_dir = os.path.dirname(model_path) self._setup_model(model_path) self._setup_data() def _setup_model(self, model_path): self._model = build_model(self._cfg.model).to(self._cfg.evaluator.device.name) load_model(self._model, model_path) def _setup_data(self): test_data = build_dataset(self._cfg.data, 'test') self._data_name = os.path.basename(self._cfg.data.action.test).split('.')[0] batch_size = self._cfg.evaluator.device.batch_size num_worker = self._cfg.evaluator.device.num_worker self._test_iter = data.DataLoader(test_data, shuffle=False, batch_size=batch_size, num_workers=num_worker, drop_last=False) def infer(self): self._model.eval() users = list() items = list() preds = list() logger.info(f'Infering...') for batch in tqdm(self._test_iter): device = self._cfg.evaluator.device.name for key, value in batch.items(): if isinstance(value, torch.Tensor): batch[key] = value.to(device) user = batch['userid'] item = batch['itemid'] with torch.no_grad(): pred = self._model.infer(batch) preds.append(pred.cpu()) users.append(user.cpu()) items.append(item.cpu()) users = torch.cat(users) items = torch.cat(items) preds = torch.cat(preds) self._dump_result(users, items, preds) def _dump_result(self, users, items, preds): result = torch.cat([users.unsqueeze(1), items.unsqueeze(1), preds], dim=1) result_df = pd.DataFrame(result.numpy()) result_df.columns = ['userid', 'feedid'] + self._cfg.evaluator.action_name result_df['userid'] = result_df['userid'].astype(np.long) result_df['feedid'] = result_df['feedid'].astype(np.long) path = os.path.join(self._save_dir, f'{self._data_name}_{time.strftime("%Y%m%d%H%M%S")}.csv') logger.info(f'Dumping inferred result to {path}.') result_df.to_csv(path, float_format='%.6f', index=False) def main(): parser = argparse.ArgumentParser(description='Evaluate a model.') parser.add_argument('--model', required=True, type=str, help='The path to model.') parser.add_argument('--config', required=True, type=str, help='The path to config.') args = parser.parse_args() Infer(args.model, args.config).infer() if __name__ == '__main__': main() ``` #### File: recommender/tools/modify_id.py ```python import argparse import os import pandas as pd from dataset.vocabulary import build_vocabulary from utils.log import get_logger logger = get_logger() class IdModifier: def __init__(self, vocab_type, vocab_name, path): voc = build_vocabulary(vocab_type, vocab_name) voc.setup_by_csv(path) self._voc = voc def modify(self, csv_path, column, output_dir): logger.info(f'Reading csv {csv_path}...') df = pd.read_csv(csv_path) logger.info(f'Modifying id...') df[column] = self._voc.get_id(df[column]) if not os.path.exists(output_dir): os.mkdir(output_dir) output_name = os.path.basename(csv_path).replace('.csv', '_id_modified.csv') output_file = os.path.join(output_dir, output_name) logger.info(f'Saving to {output_file}...') df.to_csv(output_file, index=False) def main(): parser = argparse.ArgumentParser(description='Modify id using vocabulary.') parser.add_argument('--vocab', required=True, type=str, help='Path to vocabulary.') parser.add_argument('--vocab_type', required=True, choices=['cat', 'num'], help='Type of the vocabulary.') parser.add_argument('--csv', required=True, type=str, help='Path to csv file to modify.') parser.add_argument('--column', required=True, type=str, help='Column to modify.') parser.add_argument('--output', required=False, type=str, help='Output directory, default to input directory.') args = parser.parse_args() IdModifier(args.vocab_type, 'dummy_name', args.vocab).modify(args.csv, args.column, args.output) if __name__ == '__main__': main() ```
{ "source": "jiskattema/kernel_tuner", "score": 3 }
#### File: examples/fortran/test_vector_add.py ```python import json import numpy as np from kernel_tuner import run_kernel def test(): with open('vector_add.F90', 'r') as f: kernel_string = f.read() size = 10000000 a = np.random.randn(size).astype(np.float32) b = np.random.randn(size).astype(np.float32) c = np.zeros_like(b) n = np.int32(size) args = [c, a, b, n] tune_params = dict() tune_params["N"] = size tune_params["NTHREADS"] = 4 answer = run_kernel("vector_add", kernel_string, size, args, tune_params, lang="fortran", compiler="gfortran") assert np.allclose(answer[0], a+b, atol=1e-8) if __name__ == "__main__": test() ``` #### File: kernel_tuner/strategies/minimize.py ```python from __future__ import print_function from collections import OrderedDict import logging import numpy import scipy.optimize from kernel_tuner import util supported_methods = ["Nelder-Mead", "Powell", "CG", "BFGS", "L-BFGS-B", "TNC", "COBYLA", "SLSQP"] def tune(runner, kernel_options, device_options, tuning_options): """ Find the best performing kernel configuration in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict() """ results = [] method = tuning_options.strategy_options.get("method", "L-BFGS-B") # scale variables in x to make 'eps' relevant for multiple variables tuning_options["scaling"] = True bounds, x0, _ = get_bounds_x0_eps(tuning_options) kwargs = setup_method_arguments(method, bounds) options = setup_method_options(method, tuning_options) args = (kernel_options, tuning_options, runner, results) opt_result = scipy.optimize.minimize(_cost_func, x0, args=args, method=method, options=options, **kwargs) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment() def _cost_func(x, kernel_options, tuning_options, runner, results): """ Cost function used by minimize """ error_time = 1e20 logging.debug('_cost_func called') logging.debug('x: ' + str(x)) # snap values in x to nearest actual value for each parameter unscale x if needed if tuning_options.scaling: params = unscale_and_snap_to_nearest(x, tuning_options.tune_params, tuning_options.eps) else: params = snap_to_nearest_config(x, tuning_options.tune_params) logging.debug('params ' + str(params)) # we cache snapped values, since those correspond to results for an actual instance of the kernel x_int = ",".join([str(i) for i in params]) if x_int in tuning_options.cache: results.append(tuning_options.cache[x_int]) return tuning_options.cache[x_int]["time"] # check if this is a legal (non-restricted) parameter instance if tuning_options.restrictions: legal = util.check_restrictions(tuning_options.restrictions, params, tuning_options.tune_params.keys(), tuning_options.verbose) if not legal: error_result = OrderedDict(zip(tuning_options.tune_params.keys(), params)) error_result["time"] = error_time tuning_options.cache[x_int] = error_result return error_time # compile and benchmark this instance res, _ = runner.run([params], kernel_options, tuning_options) # append to tuning results if res: results.append(res[0]) return res[0]['time'] return error_time def get_bounds_x0_eps(tuning_options): """compute bounds, x0 (the initial guess), and eps""" values = list(tuning_options.tune_params.values()) if "x0" in tuning_options.strategy_options: x0 = tuning_options.strategy_options.x0 else: x0 = None if tuning_options.scaling: eps = numpy.amin([1.0 / len(v) for v in values]) # reducing interval from [0, 1] to [0, eps*len(v)] bounds = [(0, eps * len(v)) for v in values] if x0: # x0 has been supplied by the user, map x0 into [0, eps*len(v)] for i, e in enumerate(values): x0[i] = eps * values[i].index(x0[i]) else: x0 = [0.5 * eps * len(v) for v in values] else: bounds = get_bounds(tuning_options.tune_params) if not x0: x0 = [(min_v + max_v) / 2.0 for (min_v, max_v) in bounds] eps = 1e9 for v_list in values: vals = numpy.sort(v_list) eps = min(eps, numpy.amin(numpy.gradient(vals))) tuning_options["eps"] = eps logging.debug('get_bounds_x0_eps called') logging.debug('bounds ' + str(bounds)) logging.debug('x0 ' + str(x0)) logging.debug('eps ' + str(eps)) return bounds, x0, eps def get_bounds(tune_params): """ create a bounds array from the tunable parameters """ bounds = [] for values in tune_params.values(): sorted_values = numpy.sort(values) bounds.append((sorted_values[0], sorted_values[-1])) return bounds def setup_method_arguments(method, bounds): """ prepare method specific arguments """ kwargs = {} # pass bounds to methods that support it if method in ["L-BFGS-B", "TNC", "SLSQP"]: kwargs['bounds'] = bounds return kwargs def setup_method_options(method, tuning_options): """ prepare method specific options """ kwargs = {} # Note that not all methods iterpret maxiter in the same manner if "maxiter" in tuning_options.strategy_options: maxiter = tuning_options.strategy_options.maxiter else: maxiter = 100 kwargs['maxiter'] = maxiter if method in ["Nelder-Mead", "Powell"]: kwargs['maxfev'] = maxiter elif method == "L-BFGS-B": kwargs['maxfun'] = maxiter # pass eps to methods that support it if method in ["CG", "BFGS", "L-BFGS-B", "TNC", "SLSQP"]: kwargs['eps'] = tuning_options.eps elif method == "COBYLA": kwargs['rhobeg'] = tuning_options.eps # not all methods support 'disp' option if not method in ['TNC']: kwargs['disp'] = tuning_options.verbose return kwargs def snap_to_nearest_config(x, tune_params): """helper func that for each param selects the closest actual value""" params = [] for i, k in enumerate(tune_params.keys()): values = numpy.array(tune_params[k]) idx = numpy.abs(values - x[i]).argmin() params.append(int(values[idx])) return params def unscale_and_snap_to_nearest(x, tune_params, eps): """helper func that snaps a scaled variable to the nearest config""" x_u = [i for i in x] for i, v in enumerate(tune_params.values()): # create an evenly spaced linear space to map [0,1]-interval # to actual values, giving each value an equal chance # pad = 0.5/len(v) #use when interval is [0,1] pad = 0.5 * eps # use when interval is [0, eps*len(v)] linspace = numpy.linspace(pad, (eps * len(v)) - pad, len(v)) # snap value to nearest point in space, store index idx = numpy.abs(linspace - x[i]).argmin() # safeguard that should not be needed idx = min(max(idx, 0), len(v) - 1) # use index into array of actual values x_u[i] = v[idx] return x_u ```
{ "source": "jiskra/openmv", "score": 3 }
#### File: Portenta-H7/19-Low-Power/himax_wakeup_on_motion_detection.py ```python import sensor, image, time, pyb, machine from pyb import Pin, ExtInt sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.set_framerate(15) sensor.ioctl(sensor.IOCTL_HIMAX_MD_THRESHOLD, 10) sensor.ioctl(sensor.IOCTL_HIMAX_MD_WINDOW, (0, 0, 320, 240)) sensor.ioctl(sensor.IOCTL_HIMAX_MD_CLEAR) sensor.ioctl(sensor.IOCTL_HIMAX_MD_ENABLE, True) def on_motion(line): pass led = pyb.LED(3) ext = ExtInt(Pin("PC15"), ExtInt.IRQ_RISING, Pin.PULL_DOWN, on_motion) while(True): led.off() sensor.ioctl(sensor.IOCTL_HIMAX_OSC_ENABLE, True) # Switch to internal OSC sensor.ioctl(sensor.IOCTL_HIMAX_MD_CLEAR) # Clear MD flag machine.sleep() # Enter low-power mode, will wake up on MD interrupt. sensor.ioctl(sensor.IOCTL_HIMAX_OSC_ENABLE, False) # Switch back to MCLK led.on() for i in range(0, 60): # Capture a few frames img = sensor.snapshot() ``` #### File: Portenta-H7/34-Remote-Control/image_transfer_raw_as_the_remote_device.py ```python import image, network, rpc, sensor, struct sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) # The RPC library above is installed on your OpenMV Cam and provides mutliple classes for # allowing your OpenMV Cam to be controlled over CAN, I2C, SPI, UART, or WIFI. ################################################################ # Choose the interface you wish to control your OpenMV Cam over. ################################################################ # Uncomment the below line to setup your OpenMV Cam for control over CAN. # # * message_id - CAN message to use for data transport on the can bus (11-bit). # * bit_rate - CAN bit rate. # * sampling_point - Tseg1/Tseg2 ratio. Typically 75%. (50.0, 62.5, 75.0, 87.5, etc.) # # NOTE: Master and slave message ids and can bit rates must match. Connect master can high to slave # can high and master can low to slave can lo. The can bus must be terminated with 120 ohms. # # interface = rpc.rpc_can_slave(message_id=0x7FF, bit_rate=1000000, sampling_point=75.0) # Uncomment the below line to setup your OpenMV Cam for control over I2C. # # * slave_addr - I2C address. # # NOTE: Master and slave addresses must match. Connect master scl to slave scl and master sda # to slave sda. You must use external pull ups. Finally, both devices must share a ground. # # interface = rpc.rpc_i2c_slave(slave_addr=0x12) # Uncomment the below line to setup your OpenMV Cam for control over SPI. # # * cs_pin - Slave Select Pin. # * clk_polarity - Idle clock level (0 or 1). # * clk_phase - Sample data on the first (0) or second edge (1) of the clock. # # NOTE: Master and slave settings much match. Connect CS, SCLK, MOSI, MISO to CS, SCLK, MOSI, MISO. # Finally, both devices must share a common ground. # interface = rpc.rpc_spi_slave(cs_pin="P3", clk_polarity=1, clk_phase=0) # Uncomment the below line to setup your OpenMV Cam for control over UART. # # * baudrate - Serial Baudrate. # # NOTE: Master and slave baud rates must match. Connect master tx to slave rx and master rx to # slave tx. Finally, both devices must share a common ground. # # interface = rpc.rpc_uart_slave(baudrate=7500000) ################################################################ # Call Backs ################################################################ # When called sets the pixformat and framesize, takes a snapshot # and then returns the frame buffer shape to store the image in. # # data is a 4 byte pixformat and 4 byte framesize. def raw_image_snapshot(data): pixformat, framesize = struct.unpack("<II", data) sensor.set_pixformat(pixformat) sensor.set_framesize(framesize) img = sensor.snapshot() return struct.pack("<IIII", sensor.width(), sensor.height(), sensor.get_pixformat(), img.size()) def raw_image_read_cb(): interface.put_bytes(sensor.get_fb().bytearray(), 5000) # timeout # Read data from the frame buffer given a offset and size. # If data is empty then a transfer is scheduled after the RPC call finishes. # # data is a 4 byte size and 4 byte offset. def raw_image_read(data): if not len(data): interface.schedule_callback(raw_image_read_cb) return bytes() else: offset, size = struct.unpack("<II", data) return memoryview(sensor.get_fb().bytearray())[offset:offset+size] # Register call backs. interface.register_callback(raw_image_snapshot) interface.register_callback(raw_image_read) # Once all call backs have been registered we can start # processing remote events. interface.loop() does not return. interface.loop() ``` #### File: Portenta-H7/99-Tests/unittests.py ```python import os, sensor, gc TEST_DIR = "unittest" TEMP_DIR = "unittest/temp" DATA_DIR = "unittest/data" SCRIPT_DIR = "unittest/script" if not (TEST_DIR in os.listdir("")): raise Exception('Unittest dir not found!') print("") test_failed = False def print_result(test, passed): s = "Unittest (%s)"%(test) padding = "."*(60-len(s)) print(s + padding + ("PASSED" if passed == True else "FAILED")) for test in sorted(os.listdir(SCRIPT_DIR)): if test.endswith(".py"): test_passed = True test_path = "/".join((SCRIPT_DIR, test)) try: exec(open(test_path).read()) gc.collect() if unittest(DATA_DIR, TEMP_DIR) == False: raise Exception() except Exception as e: test_failed = True test_passed = False print_result(test, test_passed) if test_failed: print("\nSome tests have FAILED!!!\n\n") else: print("\nAll tests PASSED.\n\n") ``` #### File: OpenMV/16-Codes/find_barcodes.py ```python import sensor, image, time, math sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.VGA) # High Res! sensor.set_windowing((640, 80)) # V Res of 80 == less work (40 for 2X the speed). sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must turn this off to prevent image washout... sensor.set_auto_whitebal(False) # must turn this off to prevent image washout... clock = time.clock() # Barcode detection can run at the full 640x480 resolution of your OpenMV Cam's # OV7725 camera module. Barcode detection will also work in RGB565 mode but at # a lower resolution. That said, barcode detection requires a higher resolution # to work well so it should always be run at 640x480 in grayscale... def barcode_name(code): if(code.type() == image.EAN2): return "EAN2" if(code.type() == image.EAN5): return "EAN5" if(code.type() == image.EAN8): return "EAN8" if(code.type() == image.UPCE): return "UPCE" if(code.type() == image.ISBN10): return "ISBN10" if(code.type() == image.UPCA): return "UPCA" if(code.type() == image.EAN13): return "EAN13" if(code.type() == image.ISBN13): return "ISBN13" if(code.type() == image.I25): return "I25" if(code.type() == image.DATABAR): return "DATABAR" if(code.type() == image.DATABAR_EXP): return "DATABAR_EXP" if(code.type() == image.CODABAR): return "CODABAR" if(code.type() == image.CODE39): return "CODE39" if(code.type() == image.PDF417): return "PDF417" if(code.type() == image.CODE93): return "CODE93" if(code.type() == image.CODE128): return "CODE128" while(True): clock.tick() img = sensor.snapshot() codes = img.find_barcodes() for code in codes: img.draw_rectangle(code.rect()) print_args = (barcode_name(code), code.payload(), (180 * code.rotation()) / math.pi, code.quality(), clock.fps()) print("Barcode %s, Payload \"%s\", rotation %f (degrees), quality %d, FPS %f" % print_args) if not codes: print("FPS %f" % clock.fps()) ``` #### File: OpenMV/18-MAVLink/mavlink_apriltags_landing_target.py ```python import image, math, pyb, sensor, struct, time # Parameters ################################################################# uart_baudrate = 115200 MAV_system_id = 1 MAV_component_id = 0x54 MAX_DISTANCE_SENSOR_enable = True lens_mm = 2.8 # Standard Lens. lens_to_camera_mm = 22 # Standard Lens. sensor_w_mm = 3.984 # For OV7725 sensor - see datasheet. sensor_h_mm = 2.952 # For OV7725 sensor - see datasheet. # Only tags with a tag ID in the dictionary below will be accepted by this # code. You may add as many tag IDs to the below dictionary as you want... # For each tag ID you need to provide then length of the black tag border # in mm. Any side of the tag black border square will work. valid_tag_ids = { 0 : 165, # 8.5" x 11" tag black border size in mm 1 : 165, # 8.5" x 11" tag black border size in mm 2 : 165, # 8.5" x 11" tag black border size in mm } ############################################################################## # Camera Setup sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QQVGA) sensor.skip_frames(time = 2000) x_res = 160 # QQVGA y_res = 120 # QQVGA f_x = (lens_mm / sensor_w_mm) * x_res f_y = (lens_mm / sensor_h_mm) * y_res c_x = x_res / 2 c_y = y_res / 2 h_fov = 2 * math.atan((sensor_w_mm / 2) / lens_mm) v_fov = 2 * math.atan((sensor_h_mm / 2) / lens_mm) def z_to_mm(z_translation, tag_size): # z_translation is in decimeters... return (((z_translation * 100) * tag_size) / 165) - lens_to_camera_mm # Link Setup uart = pyb.UART(3, uart_baudrate, timeout_char = 1000) # Helper Stuff packet_sequence = 0 def checksum(data, extra): # https://github.com/mavlink/c_library_v1/blob/master/checksum.h output = 0xFFFF for i in range(len(data)): tmp = data[i] ^ (output & 0xFF) tmp = (tmp ^ (tmp << 4)) & 0xFF output = ((output >> 8) ^ (tmp << 8) ^ (tmp << 3) ^ (tmp >> 4)) & 0xFFFF tmp = extra ^ (output & 0xFF) tmp = (tmp ^ (tmp << 4)) & 0xFF output = ((output >> 8) ^ (tmp << 8) ^ (tmp << 3) ^ (tmp >> 4)) & 0xFFFF return output MAV_DISTANCE_SENSOR_message_id = 132 MAV_DISTANCE_SENSOR_min_distance = 1 # in cm MAV_DISTANCE_SENSOR_max_distance = 10000 # in cm MAV_DISTANCE_SENSOR_type = 0 # MAV_DISTANCE_SENSOR_LASER MAV_DISTANCE_SENSOR_id = 0 # unused MAV_DISTANCE_SENSOR_orientation = 25 # MAV_SENSOR_ROTATION_PITCH_270 MAV_DISTANCE_SENSOR_covariance = 0 # unused MAV_DISTANCE_SENSOR_extra_crc = 85 # http://mavlink.org/messages/common#DISTANCE_SENSOR # https://github.com/mavlink/c_library_v1/blob/master/common/mavlink_msg_distance_sensor.h def send_distance_sensor_packet(tag, tag_size): global packet_sequence temp = struct.pack("<lhhhbbbb", 0, MAV_DISTANCE_SENSOR_min_distance, MAV_DISTANCE_SENSOR_max_distance, min(max(int(z_to_mm(tag.z_translation(), tag_size) / 10), MAV_DISTANCE_SENSOR_min_distance), MAV_DISTANCE_SENSOR_max_distance), MAV_DISTANCE_SENSOR_type, MAV_DISTANCE_SENSOR_id, MAV_DISTANCE_SENSOR_orientation, MAV_DISTANCE_SENSOR_covariance) temp = struct.pack("<bbbbb14s", 14, packet_sequence & 0xFF, MAV_system_id, MAV_component_id, MAV_DISTANCE_SENSOR_message_id, temp) temp = struct.pack("<b19sh", 0xFE, temp, checksum(temp, MAV_DISTANCE_SENSOR_extra_crc)) packet_sequence += 1 uart.write(temp) MAV_LANDING_TARGET_message_id = 149 MAV_LANDING_TARGET_min_distance = 1/100 # in meters MAV_LANDING_TARGET_max_distance = 10000/100 # in meters MAV_LANDING_TARGET_frame = 8 # MAV_FRAME_BODY_NED MAV_LANDING_TARGET_extra_crc = 200 # http://mavlink.org/messages/common#LANDING_TARGET # https://github.com/mavlink/c_library_v1/blob/master/common/mavlink_msg_landing_target.h def send_landing_target_packet(tag, w, h, tag_size): global packet_sequence temp = struct.pack("<qfffffbb", 0, ((tag.cx() / w) - 0.5) * h_fov, ((tag.cy() / h) - 0.5) * v_fov, min(max(z_to_mm(tag.z_translation(), tag_size) / 1000, MAV_LANDING_TARGET_min_distance), MAV_LANDING_TARGET_max_distance), 0.0, 0.0, 0, MAV_LANDING_TARGET_frame) temp = struct.pack("<bbbbb30s", 30, packet_sequence & 0xFF, MAV_system_id, MAV_component_id, MAV_LANDING_TARGET_message_id, temp) temp = struct.pack("<b35sh", 0xFE, temp, checksum(temp, MAV_LANDING_TARGET_extra_crc)) packet_sequence += 1 uart.write(temp) # Main Loop clock = time.clock() while(True): clock.tick() img = sensor.snapshot() tags = sorted(img.find_apriltags(fx=f_x, fy=f_y, cx=c_x, cy=c_y), key = lambda x: x.w() * x.h(), reverse = True) if tags and (tags[0].id() in valid_tag_ids): if MAX_DISTANCE_SENSOR_enable: send_distance_sensor_packet(tags[0], valid_tag_ids[tags[0].id()]) send_landing_target_packet(tags[0], img.width(), img.height(), valid_tag_ids[tags[0].id()]) img.draw_rectangle(tags[0].rect()) img.draw_cross(tags[0].cx(), tags[0].cy()) print("Distance %f mm - FPS %f" % (z_to_mm(tags[0].z_translation(), valid_tag_ids[tags[0].id()]), clock.fps())) else: print("FPS %f" % clock.fps()) ``` #### File: OpenMV/34-Remote-Control/image_transfer_raw_as_the_controller_device.py ```python import image, network, omv, rpc, sensor, struct, time # The RPC library above is installed on your OpenMV Cam and provides mutliple classes for # allowing your OpenMV Cam to control over CAN, I2C, SPI, UART, or WIFI. ############################################################## # Choose the interface you wish to control an OpenMV Cam over. ############################################################## # Uncomment the below line to setup your OpenMV Cam for controlling over CAN. # # * message_id - CAN message to use for data transport on the can bus (11-bit). # * bit_rate - CAN bit rate. # * sampling_point - Tseg1/Tseg2 ratio. Typically 75%. (50.0, 62.5, 75.0, 87.5, etc.) # # NOTE: Master and slave message ids and can bit rates must match. Connect master can high to slave # can high and master can low to slave can lo. The can bus must be terminated with 120 ohms. # # interface = rpc.rpc_can_master(message_id=0x7FF, bit_rate=1000000, sampling_point=75.0) # Uncomment the below line to setup your OpenMV Cam for controlling over I2C. # # * slave_addr - I2C address. # * rate - I2C Bus Clock Frequency. # # NOTE: Master and slave addresses must match. Connect master scl to slave scl and master sda # to slave sda. You must use external pull ups. Finally, both devices must share a ground. # # interface = rpc.rpc_i2c_master(slave_addr=0x12, rate=1000000) # Uncomment the below line to setup your OpenMV Cam for controlling over SPI. # # * cs_pin - Slave Select Pin. # * freq - SPI Bus Clock Frequency # * clk_polarity - Idle clock level (0 or 1). # * clk_phase - Sample data on the first (0) or second edge (1) of the clock. # # NOTE: Master and slave settings much match. Connect CS, SCLK, MOSI, MISO to CS, SCLK, MOSI, MISO. # Finally, both devices must share a common ground. # interface = rpc.rpc_spi_master(cs_pin="P3", freq=20000000, clk_polarity=1, clk_phase=0) # Uncomment the below line to setup your OpenMV Cam for controlling over UART. # # * baudrate - Serial Baudrate. # # NOTE: Master and slave baud rates must match. Connect master tx to slave rx and master rx to # slave tx. Finally, both devices must share a common ground. # # interface = rpc.rpc_uart_master(baudrate=7500000) ############################################################## # Call Back Handlers ############################################################## def get_frame_buffer_call_back(pixformat, framesize, cutthrough, silent): if not silent: print("Getting Remote Frame...") result = interface.call("raw_image_snapshot", struct.pack("<II", pixformat, framesize)) if result is not None: w, h, pixformat, size = struct.unpack("<IIII", result) img = image.Image(w, h, pixformat, copy_to_fb=True) # Alloc cleared frame buffer. if cutthrough: # Fast cutthrough data transfer with no error checking. # Before starting the cut through data transfer we need to sync both the master and the # slave device. On return both devices are in sync. result = interface.call("raw_image_read") if result is not None: # GET BYTES NEEDS TO EXECUTE NEXT IMMEDIATELY WITH LITTLE DELAY NEXT. # Read all the image data in one very large transfer. interface.get_bytes(img.bytearray(), 5000) # timeout else: # Slower data transfer with error checking. # Transfer 32/8 KB chunks. chunk_size = (1 << 15) if omv.board_type() == "H7" else (1 << 13) if not silent: print("Reading %d bytes..." % size) for i in range(0, size, chunk_size): ok = False for j in range(3): # Try up to 3 times. result = interface.call("raw_image_read", struct.pack("<II", i, chunk_size)) if result is not None: img.bytearray()[i:i+chunk_size] = result # Write the image data. if not silent: print("%.2f%%" % ((i * 100) / size)) ok = True break if not silent: print("Retrying... %d/2" % (j + 1)) if not ok: if not silent: print("Error!") return None return img else: if not silent: print("Failed to get Remote Frame!") return None clock = time.clock() while(True): clock.tick() # You may change the pixformat and the framesize of the image transfered from the remote device # by modifying the below arguments. # # When cutthrough is False the image will be transferred through the RPC library with CRC and # retry protection on all data moved. For faster data transfer set cutthrough to True so that # get_bytes() and put_bytes() are called after an RPC call completes to transfer data # more quicly from one image buffer to another. Note: This works because once an RPC call # completes successfully both the master and slave devices are synchronized completely. # img = get_frame_buffer_call_back(sensor.RGB565, sensor.QQVGA, cutthrough=True, silent=True) if img is not None: pass # You can process the image here. print(clock.fps()) ``` #### File: scripts/libraries/modbus.py ```python import struct class ModbusRTU(): def __init__(self, uart, slave_id=0x01, register_num=30): self.SLAVE_ID = slave_id self.uart = uart self.register_num = register_num self.REGISTER = [0]*self.register_num self.CRC16_TABLE = [ 0x0000,0xC0C1,0xC181,0x0140,0xC301,0x03C0,0x0280,0xC241,0xC601, 0x06C0,0x0780,0xC741,0x0500,0xC5C1,0xC481,0x0440,0xCC01,0x0CC0, 0x0D80,0xCD41,0x0F00,0xCFC1,0xCE81,0x0E40,0x0A00,0xCAC1,0xCB81, 0x0B40,0xC901,0x09C0,0x0880,0xC841,0xD801,0x18C0,0x1980,0xD941, 0x1B00,0xDBC1,0xDA81,0x1A40,0x1E00,0xDEC1,0xDF81,0x1F40,0xDD01, 0x1DC0,0x1C80,0xDC41,0x1400,0xD4C1,0xD581,0x1540,0xD701,0x17C0, 0x1680,0xD641,0xD201,0x12C0,0x1380,0xD341,0x1100,0xD1C1,0xD081, 0x1040,0xF001,0x30C0,0x3180,0xF141,0x3300,0xF3C1,0xF281,0x3240, 0x3600,0xF6C1,0xF781,0x3740,0xF501,0x35C0,0x3480,0xF441,0x3C00, 0xFCC1,0xFD81,0x3D40,0xFF01,0x3FC0,0x3E80,0xFE41,0xFA01,0x3AC0, 0x3B80,0xFB41,0x3900,0xF9C1,0xF881,0x3840,0x2800,0xE8C1,0xE981, 0x2940,0xEB01,0x2BC0,0x2A80,0xEA41,0xEE01,0x2EC0,0x2F80,0xEF41, 0x2D00,0xEDC1,0xEC81,0x2C40,0xE401,0x24C0,0x2580,0xE541,0x2700, 0xE7C1,0xE681,0x2640,0x2200,0xE2C1,0xE381,0x2340,0xE101,0x21C0, 0x2080,0xE041,0xA001,0x60C0,0x6180,0xA141,0x6300,0xA3C1,0xA281, 0x6240,0x6600,0xA6C1,0xA781,0x6740,0xA501,0x65C0,0x6480,0xA441, 0x6C00,0xACC1,0xAD81,0x6D40,0xAF01,0x6FC0,0x6E80,0xAE41,0xAA01, 0x6AC0,0x6B80,0xAB41,0x6900,0xA9C1,0xA881,0x6840,0x7800,0xB8C1, 0xB981,0x7940,0xBB01,0x7BC0,0x7A80,0xBA41,0xBE01,0x7EC0,0x7F80, 0xBF41,0x7D00,0xBDC1,0xBC81,0x7C40,0xB401,0x74C0,0x7580,0xB541, 0x7700,0xB7C1,0xB681,0x7640,0x7200,0xB2C1,0xB381,0x7340,0xB101, 0x71C0,0x7080,0xB041,0x5000,0x90C1,0x9181,0x5140,0x9301,0x53C0, 0x5280,0x9241,0x9601,0x56C0,0x5780,0x9741,0x5500,0x95C1,0x9481, 0x5440,0x9C01,0x5CC0,0x5D80,0x9D41,0x5F00,0x9FC1,0x9E81,0x5E40, 0x5A00,0x9AC1,0x9B81,0x5B40,0x9901,0x59C0,0x5880,0x9841,0x8801, 0x48C0,0x4980,0x8941,0x4B00,0x8BC1,0x8A81,0x4A40,0x4E00,0x8EC1, 0x8F81,0x4F40,0x8D01,0x4DC0,0x4C80,0x8C41,0x4400,0x84C1,0x8581, 0x4540,0x8701,0x47C0,0x4680,0x8641,0x8201,0x42C0,0x4380,0x8341, 0x4100,0x81C1,0x8081,0x4040] def any(self): return self.uart.any() def clear(self): self.REGISTER = [0]*self.register_num def crc16(self, data): crc = 0xFFFF for char in data: crc = (crc >> 8) ^ self.CRC16_TABLE[((crc) ^ char) & 0xFF] return struct.pack('<H',crc) def handle(self, debug = False): REQUEST = self.uart.read() if debug: print("GOT REQUEST: ", REQUEST) additional_address = REQUEST[0] error_check = REQUEST[-2:] function_code = REQUEST[1] data = REQUEST[2:] RESPONSE = struct.pack('b', self.SLAVE_ID) if self.crc16(REQUEST[:-2]) != error_check: if debug: print("crc not match") return 0 # do nothing if self.SLAVE_ID != additional_address: if debug: print("OpenMV slave id: ", self.SLAVE_ID) print("got cmd id: ", additional_address) return 0 # do nothing if function_code == 0x03: starting_address = struct.unpack('>h', data[:2])[0] quantity_of_registers = struct.unpack('>h', data[2:4])[0] response_registers = [] try: for i in range(starting_address, starting_address+quantity_of_registers): response_registers.append(self.REGISTER[i]) except IndexError as err: RESPONSE += struct.pack('b', function_code|0x80) RESPONSE += struct.pack('b', 0x02) # Illegal Data Address if debug: print("Illegal Data Address: ") print(err) else: RESPONSE += struct.pack('b', function_code) RESPONSE += struct.pack('b', 2*quantity_of_registers) for b in response_registers: RESPONSE += struct.pack('>h', b) elif function_code == 0x06: register_address = struct.unpack('>h', data[:2])[0] register_value = struct.unpack('>h', data[2:4])[0] try: self.REGISTER[register_address] = register_value except IndexError as err: RESPONSE += struct.pack('b', function_code|0x80) RESPONSE += struct.pack('b', 0x02) # Illegal Data Address if debug: print("Illegal Data Address: ") print(err) else: RESPONSE += struct.pack('b', function_code) RESPONSE += struct.pack('>h', register_address) RESPONSE += struct.pack('>h', self.REGISTER[register_address]) elif function_code == 0x10: starting_address = struct.unpack('>h', data[:2])[0] quantity_of_registers = struct.unpack('>h', data[2:4])[0] byte_of_registers = struct.unpack('b', data[4:5])[0] try: if byte_of_registers != 2*quantity_of_registers: raise struct.error values = struct.unpack('>%dh'%quantity_of_registers, data[5:]) except struct.error as err: RESPONSE += struct.pack('b', function_code|0x80) RESPONSE += struct.pack('b', 0x03) # Illegal Data Value if debug: print("Illegal Data Value, data length error") else: try: for i in range(quantity_of_registers): self.REGISTER[starting_address+i] = values[i] except IndexError as err: RESPONSE += struct.pack('b', function_code|0x80) RESPONSE += struct.pack('b', 0x02) # Illegal Data Address if debug: print("Illegal Data Address: ") print(err) else: RESPONSE += struct.pack('b', function_code) RESPONSE += struct.pack('>h', starting_address) RESPONSE += struct.pack('>h', quantity_of_registers) else: RESPONSE += struct.pack('b', function_code|0x80) RESPONSE += struct.pack('b', 0x01) # Illegal Function RESPONSE += self.crc16(RESPONSE) if debug: print("FUNCTION CODE: ", function_code) print("RESPONSE: ", RESPONSE) self.uart.write(RESPONSE) ``` #### File: unittest/script/02-rgb_to_grayscale.py ```python def unittest(data_path, temp_path): import image gs = image.rgb_to_grayscale((120, 200, 120)) return (gs == 169) ``` #### File: unittest/script/05-save_decriptor.py ```python def unittest(data_path, temp_path): import image, os # Load image and find keypoints img = image.Image(data_path+"/graffiti.pgm", copy_to_fb=True) kpts1 = img.find_keypoints(max_keypoints=150, threshold=20, normalized=False) # Save descriptor image.save_descriptor(kpts1, temp_path+"/graffiti2.orb") # Load descriptor kpts2 = image.load_descriptor(temp_path+"/graffiti2.orb") # Match keypoints match = image.match_descriptor(kpts1, kpts2, threshold=85) return (match.cx() == 138 and match.cy() == 117 and \ match.x() == 36 and match.y() == 34 and \ match.w() == 251 and match.h() == 167 and \ match.count() == 150 and match.theta() == 0) ``` #### File: unittest/script/16-find_datamatrices.py ```python def unittest(data_path, temp_path): import image img = image.Image("unittest/data/datamatrix.pgm", copy_to_fb=True) matrices = img.find_datamatrices() return len(matrices) == 1 and matrices[0][0:] == (34, 15, 90, 89, 'https://openmv.io/', 0.0, 18, 18, 18, 0) ```
{ "source": "jisngprk/dsGPT2", "score": 3 }
#### File: dsGPT2/libs/mongo_wrapper.py ```python from torch.utils.data import Dataset import pymongo import json from collections import OrderedDict import logging logger = logging.getLogger(__name__) class MongoWrapper: """ Load single turn Q,A data """ def __init__(self, config_path, filter_func=None): """ 1. MongoDB collection들을 통합된 인덱스로 접근할 수 있음 2. 개별 collection의 idx는 개수, 순서, 유니크를 보장해야함 :param config_path: db config 경로 """ with open(config_path) as fp: db_config = json.load(fp) self.db_config = db_config self.filter_func = filter_func conn_str = db_config['MONGO_CONNECTION_STRING'] con_db = db_config['MONGO_CONNECTION_DB'] collection_list = db_config['COLLECTIONS'] self.connection = pymongo.MongoClient(conn_str) self.db = self.connection.get_database(con_db) self.collections = self._load_collections(collection_list) self.meta_info = self._load_metainfo(collection_list) self.ndoc = None logging.info("[Mongo]: Loaded %s" % self.meta_info) def __len__(self): if not self.ndoc: ndoc = 0 for value in self.meta_info.values(): ndoc += value['num_docs'] self.ndoc = ndoc return self.ndoc def __getitem__(self, idx): docs = [] if isinstance(idx, slice): for nidx in range(idx.start, idx.stop): collection_name, idx = self._convert_idx(nidx) data = self.collections[collection_name].find({'idx': idx})[0] if self.filter_func: data = self.filter_func(data) doc = {'data': data, 'collection_name': collection_name} docs.append(doc) return docs else: collection_name, idx = self._convert_idx(idx) data = self.collections[collection_name].find({'idx': idx})[0] if self.filter_func: data = self.filter_func(data) doc = {'data': data, 'collection_name': collection_name} docs.append(doc) return docs def _load_collections(self, collection_list): if not isinstance(collection_list, list): collection_list = [collection_list] collections = dict() for col in collection_list: collections[col] = self.db[col] logger.info("[Mongo]: %s is loaded" % col) return collections def _load_metainfo(self, collection_list): meta_info_conn = self.db['meta_info'] meta_info = OrderedDict() for item in list(meta_info_conn.find({})): if item['collection_name'] not in collection_list: continue collection_name = item['collection_name'] sub_dict = {'num_docs': item['num_docs']} meta_info.update({collection_name: sub_dict}) prev = 0 for name, info in meta_info.items(): sub_info = {'sidx': prev, 'eidx': prev + info['num_docs']} prev = prev + info['num_docs'] info.update(sub_info) return meta_info def _convert_idx(self, idx): """ collection 따라서 idx 를 변환하기 :param idx: :return: """ collection_name = None for name, info in self.meta_info.items(): if idx >= info['sidx'] and idx < info['eidx']: idx = idx - info['sidx'] collection_name = name break return collection_name, idx def _get_update_op(self, doc, fields): if not isinstance(fields, list): fields = [fields] set_dict = dict() for f in fields: set_dict[f] = doc[f] return pymongo.UpdateOne({'_id': doc['_id']}, {"$set": set_dict}, upsert=True) def _get_insert_op(self, doc): return pymongo.InsertOne(doc) def update_docs(self, docs, fields): if not isinstance(docs, list): docs = [docs] ops = [] for doc in docs: op = self._get_update_op(doc, fields) ops.append(op) return ops def insert_docs(self, docs, collection_name): if collection_name not in self.collections: raise KeyError if not isinstance(docs, list): docs = [docs] ops = [] for doc in docs: op = self._get_insert_op(doc) ops.append(op) # logging.info(ops[:10]) self.collections[collection_name].bulk_write(ops, ordered=False) def update_meta_info(self, collection_name): is_update = False if collection_name in self.meta_info: is_update = True total_docs = self.collections[collection_name].count_documents({}) logging.info("[Update]: collection - %s " % collection_name) logging.info("[Update]: total docs - %s " % total_docs) logging.info("[Update]: meta info - %s " % is_update) if is_update: self.db['meta_info'].update_one({'collection_name': collection_name}, {'$set':{'num_docs': total_docs}}) else: self.db['meta_info'].insert_one({'collection_name': collection_name, 'num_docs': total_docs}) collection_list = self.db_config['COLLECTIONS'] self.meta_info = self._load_metainfo(collection_list) def export_to_file(self, fpath, collection_name): logging.info("[Export]: %s" % fpath) info = self.meta_info[collection_name] info = dict(info) num_docs = int(info['num_docs']) with open(fpath, 'w') as fp: text_lines = [] for idx in range(num_docs): doc = self.__getitem__(idx)[0] text = doc['data']['filt_text'] text += '\n' text_lines.append(text) if idx % 10000 == 0: fp.writelines(text_lines) text_lines = [] logging.info("[Write]: %d" % idx) def create_single_index(self, collection_name, index_name, order=1): self.collections[collection_name].create_index([(index_name, order)]) ``` #### File: jisngprk/dsGPT2/vocab_downloader.py ```python import os import logging import sys import multiprocessing import random from libs.mongo_wrapper import MongoWrapper from arguments import get_preprocessing_args logging.basicConfig(format='[%(asctime)s] %(levelname)s: %(message)s', stream=sys.stdout, level=logging.DEBUG) # NUM_PROCESS = 33 # DIR_PATH = './data_files/vocab_web' # TRAIN_FILE_NAME = 'vocab_train' class Downloader(multiprocessing.Process): def __init__(self, _id, idx_list, fpath, config_path): super().__init__() self._id = str(_id) self._idx_list = idx_list self.fpath = fpath self.config_path = config_path self.dataset = None def run(self): self.dataset = MongoWrapper(self.config_path) with open(self.fpath, 'w') as fp: text_lines = [] for count, idx in enumerate(self._idx_list): doc = self.dataset[idx][0] text = doc['data']['filt_text'] text += '\n' text_lines.append(text) if count % 1000 == 0: fp.writelines(text_lines) text_lines = [] logging.info("[Write (pid: %s)]: %d" % (self._id, count)) if text_lines: fp.writelines(text_lines) if __name__ == '__main__': args = get_preprocessing_args() logging.info(args) if not os.path.exists(args.vocab_train_dir): logging.info("[Make dir]: %s" % args.vocab_train_dir) os.makedirs(args.vocab_train_dir) md = MongoWrapper(args.config_src) ndata = len(md) idx_list = list(range(ndata)) idx_list = random.sample(idx_list, args.nsample) nstep = args.nsample//args.num_process logging.info("[Download]: %d samples" % args.nsample) fname_list = [] mplist = [] for i in range(args.num_process+1): file_length = len(idx_list[nstep*i:nstep*(i+1)]) logging.info("[File length]: %d" % file_length) if file_length == 0: continue fpath = os.path.join(args.vocab_train_dir, args.vocab_train_fname + str(i) + '.txt') cleaner = Downloader(_id=i, idx_list=idx_list[nstep*i:nstep*(i+1)], fpath=fpath, config_path=args.config_src) cleaner.daemon = True mplist.append(cleaner) fname_list.append(fpath) for mp in mplist: mp.start() for mp in mplist: mp.join() ```
{ "source": "JISock/models", "score": 2 }
#### File: synthetic_data_training_depth_cups/testing/object_detection_tutorial.py ```python import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from scipy.misc import imread, imsave import pickle import ruamel.yaml as yaml from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image sys.path.append("../../..") from utils import label_map_util from utils import visualization_utils as vis_util # # Model preparation # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = '../training/faster_rcnn_inception_resnet_v2_atrous_synthetic/frozen_inference_graph.pb' # PATH_TO_CKPT = '/home/juil/workspace/tensorflow_object_detection/object_detection/models/model/train/inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = '../../../data/synthetic_label_map_cup.pbtxt' print(PATH_TO_LABELS) NUM_CLASSES = 1 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # ## Loading label map # Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # ## Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # # Detection # PATH_TO_TEST_IMAGES_DIR = '/home/juil/Downloads/training_scene_generator_20170901/sixd_toolkit-master/output/render' # PATH_TO_TEST_IMAGES_DIR = '/home/juil/workspace/6DOF-datasets/doumanoglou/test/01' # # img_path = PATH_TO_TEST_IMAGES_DIR+'/coffee_{:03d}/depth/{:04d}.png' # img_path = PATH_TO_TEST_IMAGES_DIR+'/depth/{:04d}.png' # gt_path = PATH_TO_TEST_IMAGES_DIR+'/gt.yml' # # Detection_results_and_GT = list() # idx = 0 # with detection_graph.as_default(): # with tf.Session(graph=detection_graph) as sess: # with open(gt_path, 'r') as f: # gt = yaml.load(f, Loader=yaml.CLoader) # for img_idx in range(1, 50): # print(idx) # # image = Image.open(img_path.format(img_idx)) # img = imread(img_path.format(img_idx)) # height = img.shape[0] # width = img.shape[1] # output_im = np.zeros((height, width, 3)) # output_im[:, :, 0] = img # output_im[:, :, 1] = img # output_im[:, :, 2] = img # imsave('temp.png', output_im) # image = Image.open('temp.png') # image_np = load_image_into_numpy_array(image) # rgb_image_np = load_image_into_numpy_array(Image.open('/home/juil/workspace/6DOF-datasets/doumanoglou/test/01/rgb/{:04d}.png' # .format(img_idx))) # rgb_image_np2 = load_image_into_numpy_array( # Image.open('/home/juil/workspace/6DOF-datasets/doumanoglou/test/01/rgb/{:04d}.png' # .format(img_idx))) # # Expand dimensions since the model expects images to have shape: [1, None, None, 3] # image_np_expanded = np.expand_dims(image_np, axis=0) # image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # # Each box represents a part of the image where a particular object was detected. # boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # # Each score represent how level of confidence for each of the objects. # # Score is shown on the result image, together with the class label. # scores = detection_graph.get_tensor_by_name('detection_scores:0') # classes = detection_graph.get_tensor_by_name('detection_classes:0') # num_detections = detection_graph.get_tensor_by_name('num_detections:0') # # Actual detection. # (boxes, scores, classes, num_detections) = sess.run( # [boxes, scores, classes, num_detections], # feed_dict={image_tensor: image_np_expanded}) # vis_util.visualize_boxes_and_labels_on_image_array( # image_np, # np.squeeze(boxes), # np.squeeze(classes).astype(np.int32), # np.squeeze(scores), # category_index, # use_normalized_coordinates=True, # line_thickness=4, # max_boxes_to_draw=100, # min_score_thresh=.1 # ) # im_width, im_height = image_np.shape[0:2] # Scaled_boxes = np.zeros([int(num_detections[0]), 4]) # Scaled_boxes[:, 0] = boxes[0, 0:int(num_detections[0]), 0] * im_width # Scaled_boxes[:, 1] = boxes[0, 0:int(num_detections[0]), 1] * im_height # Scaled_boxes[:, 2] = boxes[0, 0:int(num_detections[0]), 2] * im_width # Scaled_boxes[:, 3] = boxes[0, 0:int(num_detections[0]), 3] * im_height # # # for i in range(0, 2): # # Scaled_boxes[:, i] = boxes[0, 0:int(num_detections[0]), i] * im_width # # for i in range(2, 4): # # Scaled_boxes[:, i] = boxes[0, 0:int(num_detections[0]), i] * im_height # Scaled_scores = np.zeros([int(num_detections[0]), ]) # Scaled_scores[:] = scores[0][0:int(num_detections[0])] # # ---------------------------------------------------------------------------groundtruth # GroundTruth = np.zeros([len(gt[img_idx]), 4]) # for c, obj in enumerate(gt[img_idx], 0): # GroundTruth[c, 0] = float(obj['obj_bb'][1]) # GroundTruth[c, 1] = float(obj['obj_bb'][0]) # GroundTruth[c, 2] = float(obj['obj_bb'][1] + obj['obj_bb'][3]) # GroundTruth[c, 3] = float(obj['obj_bb'][0] + obj['obj_bb'][2]) # # image_np2 = load_image_into_numpy_array(image) # boxes2 = boxes # boxes2.fill(0) # scores2 = scores # scores2.fill(0) # classes2 = classes # for c, obj in enumerate(gt[img_idx], 0): # # boxes[0, c, 0:2] = np.divide(map(float,obj['obj_bb'][0:2]),im_width) # # boxes[0, c, 2:4] = np.divide(map(float,obj['obj_bb'][0:2])+map(float,obj['obj_bb'][4:-3:-1]),im_height) # # ymin # boxes2[0, c, 0] = np.divide(float(obj['obj_bb'][1]), im_width) # # xmin # boxes2[0, c, 1] = np.divide(float(obj['obj_bb'][0]), im_height) # # ymax # boxes2[0, c, 2] = np.divide(float(obj['obj_bb'][1] + obj['obj_bb'][3]), im_width) # # xmax # boxes2[0, c, 3] = np.divide(float(obj['obj_bb'][0] + obj['obj_bb'][2]), im_height) # scores2[0][c] = 1.0 # vis_util.visualize_boxes_and_labels_on_image_array( # image_np2, # np.squeeze(boxes2), # np.squeeze(classes2).astype(np.int32), # np.squeeze(scores2), # category_index, # use_normalized_coordinates=True, # line_thickness=4, # max_boxes_to_draw=100, # min_score_thresh=.4 # ) # # Detection_results_and_GT.append({'Number_of_detection': num_detections, 'detected_boxes': Scaled_boxes, # 'detected_scores': Scaled_scores, 'GroundTruth': GroundTruth}) # # plt.imsave(fname='/home/juil/Downloads/synthetic_data_analysis/analysis/detection_result/real/rgb_detection_real_{}.png'.format(idx),arr=rgb_image_np) # plt.imsave(fname='/home/juil/Downloads/synthetic_data_analysis/analysis/detection_result/synthetic/rgb_gt_real_{}.png'.format(idx), arr=rgb_image_np2) # idx += 1 # # # with open('Detection_results_and_GT_real_data_46983.pkl', 'wb') as handle: # pickle.dump(Detection_results_and_GT, handle) # # # # PATH_TO_TEST_IMAGES_DIR = '/home/juil/Downloads/training_scene_generator_20170901/sixd_toolkit-master/output/render' # # PATH_TO_TEST_IMAGES_DIR = '/home/juil/workspace/6DOF-datasets/doumanoglou/test/01' # img_path = PATH_TO_TEST_IMAGES_DIR+'/coffee_{:03d}/depth/{:04d}.png' # # img_path = PATH_TO_TEST_IMAGES_DIR + '/depth/{:04d}.png' # gt_path = PATH_TO_TEST_IMAGES_DIR + '/coffee_{:03d}/gt.yml' # idx=0 # Detection_results_and_GT = list() # with detection_graph.as_default(): # with tf.Session(graph=detection_graph) as sess: # for scene in range(4000,4003): # with open(gt_path.format(scene), 'r') as f: # gt = yaml.load(f, Loader=yaml.CLoader) # for img_idx in range(1,72): # print(idx) # img = imread(img_path.format(scene,img_idx)) # height = img.shape[0] # width = img.shape[1] # output_im = np.zeros((height, width, 3)) # output_im[:, :, 0] = img # output_im[:, :, 1] = img # output_im[:, :, 2] = img # imsave('temp.png', output_im) # image = Image.open('temp.png') # image_np = load_image_into_numpy_array(image) # rgb_image_np = load_image_into_numpy_array(Image.open(PATH_TO_TEST_IMAGES_DIR+'/coffee_{:03d}/rgb/{:04d}.png'.format(scene,img_idx))) # rgb_image_np2 = load_image_into_numpy_array(Image.open(PATH_TO_TEST_IMAGES_DIR+'/coffee_{:03d}/rgb/{:04d}.png'.format(scene,img_idx))) # # Expand dimensions since the model expects images to have shape: [1, None, None, 3] # image_np_expanded = np.expand_dims(image_np, axis=0) # image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # # Each box represents a part of the image where a particular object was detected. # boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # # Each score represent how level of confidence for each of the objects. # # Score is shown on the result image, together with the class label. # scores = detection_graph.get_tensor_by_name('detection_scores:0') # classes = detection_graph.get_tensor_by_name('detection_classes:0') # num_detections = detection_graph.get_tensor_by_name('num_detections:0') # # Actual detection. # (boxes, scores, classes, num_detections) = sess.run( # [boxes, scores, classes, num_detections], # feed_dict={image_tensor: image_np_expanded}) # vis_util.visualize_boxes_and_labels_on_image_array( # image_np, # np.squeeze(boxes), # np.squeeze(classes).astype(np.int32), # np.squeeze(scores), # category_index, # use_normalized_coordinates=True, # line_thickness=4, # max_boxes_to_draw = 100, # min_score_thresh=.1 # ) # im_width, im_height = image_np.shape[0:2] # Scaled_boxes = np.zeros([int(num_detections[0]), 4]) # Scaled_boxes[:, 0] = boxes[0, 0:int(num_detections[0]), 0] * im_width # Scaled_boxes[:, 1] = boxes[0, 0:int(num_detections[0]), 1] * im_height # Scaled_boxes[:, 2] = boxes[0, 0:int(num_detections[0]), 2] * im_width # Scaled_boxes[:, 3] = boxes[0, 0:int(num_detections[0]), 3] * im_height # # for i in range(0,2): # # Scaled_boxes[:,i] = boxes[0,0:int(num_detections[0]),i]*im_width # # for i in range(2,4): # # Scaled_boxes[:,i] = boxes[0,0:int(num_detections[0]),i]*im_height # Scaled_scores = np.zeros([int(num_detections[0]),]) # Scaled_scores[:] = scores[0][0:int(num_detections[0])] # # ---------------------------------------------------------------------------groundtruth # GroundTruth = np.zeros([len(gt[img_idx]), 4]) # for c, obj in enumerate(gt[img_idx], 0): # GroundTruth[c, 0] = float(obj['obj_bb'][0]) # GroundTruth[c, 1] = float(obj['obj_bb'][1]) # GroundTruth[c, 2] = float(obj['obj_bb'][0] + obj['obj_bb'][2]) # GroundTruth[c, 3] = float(obj['obj_bb'][1] + obj['obj_bb'][3]) # # image_np2 = load_image_into_numpy_array(image) # boxes2 = boxes # boxes2.fill(0) # scores2 = scores # scores2.fill(0) # classes2 = classes # for c,obj in enumerate(gt[img_idx],0): # # boxes[0, c, 0:2] = np.divide(map(float,obj['obj_bb'][0:2]),im_width) # # boxes[0, c, 2:4] = np.divide(map(float,obj['obj_bb'][0:2])+map(float,obj['obj_bb'][4:-3:-1]),im_height) # # ymin # boxes2[0, c, 0] = np.divide(float(obj['obj_bb'][0]), im_height) # # xmin # boxes2[0, c, 1] = np.divide(float(obj['obj_bb'][1]),im_width) # # ymax # boxes2[0, c, 2] = np.divide(float(obj['obj_bb'][0] + obj['obj_bb'][2]), im_height) # # xmax # boxes2[0, c, 3] = np.divide(float(obj['obj_bb'][1] + obj['obj_bb'][3]), im_width) # scores2[0][c] = 1.0 # vis_util.visualize_boxes_and_labels_on_image_array( # image_np2, # np.squeeze(boxes2), # np.squeeze(classes2).astype(np.int32), # np.squeeze(scores2), # category_index, # use_normalized_coordinates=True, # line_thickness=4, # max_boxes_to_draw=100, # min_score_thresh=.1 # ) # # plt.imsave(fname='/home/juil/Downloads/synthetic_data_analysis/analysis/detection_result/synthetic_detection/detection_synthetic_{}.png'.format(idx), arr=image_np) # # plt.imsave(fname='/home/juil/Downloads/synthetic_data_analysis/analysis/detection_result/synthetic_gt/gt_synthetic_{}.png'.format(idx), arr=image_np2) # Detection_results_and_GT.append({'Number_of_detection':num_detections,'detected_boxes': Scaled_boxes,'detected_scores': Scaled_scores,'GroundTruth': GroundTruth}) # idx+=1 # # with open('results_synthetic_dataset.pkl', 'wb') as handle: # pickle.dump(Detection_results_and_GT, handle) # # Detection # PATH_TO_TEST_IMAGES_DIR = '/home/juil/Downloads/training_scene_generator_20170901/sixd_toolkit-master/output/render' PATH_TO_TEST_IMAGES_DIR = '/home/juil/Downloads/synthetic_data_analysis/generation' # img_path = PATH_TO_TEST_IMAGES_DIR+'/coffee_{:03d}/depth/{:04d}.png' img_path = PATH_TO_TEST_IMAGES_DIR+'/depth/{:04d}.png' gt_path = PATH_TO_TEST_IMAGES_DIR+'/gt.yml' Detection_results_and_GT = list() idx = 0 with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: with open(gt_path, 'r') as f: gt = yaml.load(f, Loader=yaml.CLoader) for img_idx in range(1, 50): print(idx) # image = Image.open(img_path.format(img_idx)) img = imread(img_path.format(img_idx)) height = img.shape[0] width = img.shape[1] output_im = np.zeros((height, width, 3)) output_im[:, :, 0] = img output_im[:, :, 1] = img output_im[:, :, 2] = img imsave('temp.png', output_im) image = Image.open('temp.png') image_np = load_image_into_numpy_array(image) rgb_image_np = load_image_into_numpy_array(Image.open('/home/juil/workspace/6DOF-datasets/doumanoglou/test/01/rgb/{:04d}.png' .format(img_idx))) rgb_image_np2 = load_image_into_numpy_array( Image.open('/home/juil/workspace/6DOF-datasets/doumanoglou/test/01/rgb/{:04d}.png' .format(img_idx))) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=4, max_boxes_to_draw=100, min_score_thresh=.1 ) im_width, im_height = image_np.shape[0:2] Scaled_boxes = np.zeros([int(num_detections[0]), 4]) Scaled_boxes[:, 0] = boxes[0, 0:int(num_detections[0]), 0] * im_width Scaled_boxes[:, 1] = boxes[0, 0:int(num_detections[0]), 1] * im_height Scaled_boxes[:, 2] = boxes[0, 0:int(num_detections[0]), 2] * im_width Scaled_boxes[:, 3] = boxes[0, 0:int(num_detections[0]), 3] * im_height # for i in range(0, 2): # Scaled_boxes[:, i] = boxes[0, 0:int(num_detections[0]), i] * im_width # for i in range(2, 4): # Scaled_boxes[:, i] = boxes[0, 0:int(num_detections[0]), i] * im_height Scaled_scores = np.zeros([int(num_detections[0]), ]) Scaled_scores[:] = scores[0][0:int(num_detections[0])] # ---------------------------------------------------------------------------groundtruth GroundTruth = np.zeros([len(gt[img_idx]), 4]) for c, obj in enumerate(gt[img_idx], 0): GroundTruth[c, 0] = float(obj['obj_bb'][1]) GroundTruth[c, 1] = float(obj['obj_bb'][0]) GroundTruth[c, 2] = float(obj['obj_bb'][1] + obj['obj_bb'][3]) GroundTruth[c, 3] = float(obj['obj_bb'][0] + obj['obj_bb'][2]) image_np2 = load_image_into_numpy_array(image) boxes2 = boxes boxes2.fill(0) scores2 = scores scores2.fill(0) classes2 = classes for c, obj in enumerate(gt[img_idx], 0): # boxes[0, c, 0:2] = np.divide(map(float,obj['obj_bb'][0:2]),im_width) # boxes[0, c, 2:4] = np.divide(map(float,obj['obj_bb'][0:2])+map(float,obj['obj_bb'][4:-3:-1]),im_height) # ymin boxes2[0, c, 0] = np.divide(float(obj['obj_bb'][1]), im_width) # xmin boxes2[0, c, 1] = np.divide(float(obj['obj_bb'][0]), im_height) # ymax boxes2[0, c, 2] = np.divide(float(obj['obj_bb'][1] + obj['obj_bb'][3]), im_width) # xmax boxes2[0, c, 3] = np.divide(float(obj['obj_bb'][0] + obj['obj_bb'][2]), im_height) scores2[0][c] = 1.0 vis_util.visualize_boxes_and_labels_on_image_array( image_np2, np.squeeze(boxes2), np.squeeze(classes2).astype(np.int32), np.squeeze(scores2), category_index, use_normalized_coordinates=True, line_thickness=4, max_boxes_to_draw=100, min_score_thresh=.4 ) Detection_results_and_GT.append({'Number_of_detection': num_detections, 'detected_boxes': Scaled_boxes, 'detected_scores': Scaled_scores, 'GroundTruth': GroundTruth}) # plt.imsave(fname='/home/juil/Downloads/synthetic_data_analysis/analysis/detection_result/real/rgb_detection_real_{}.png'.format(idx),arr=rgb_image_np) # plt.imsave(fname='/home/juil/Downloads/synthetic_data_analysis/analysis/detection_result/synthetic/rgb_gt_real_{}.png'.format(idx), arr=rgb_image_np2) idx += 1 with open('Detection_results_and_GT_real_generated_data_46983.pkl', 'wb') as handle: pickle.dump(Detection_results_and_GT, handle) ```
{ "source": "JiSoft/python_test_api", "score": 3 }
#### File: python_test_api/youtrack/test_create_issue.py ```python import unittest from my_test_api import TestAPI class TestCreateIssue(TestAPI): def test_create_issue(self): params = { 'project': 'API', 'summary': 'test issue by robots', 'description': 'You are mine ! ', } response = self.put('/issue/', params) issue_id = response.headers['Location'].split('/')[-1] print('Created item ID is ', issue_id) self.assertEquals(response.status_code, 201) response = self.get('/issue/' + issue_id) self.assertEquals(response.status_code, 200) if __name__ == '__main__': unittest.main() ```
{ "source": "JisoonPark/writeup", "score": 3 }
#### File: resource/Flag_collision/crc.py ```python from zlib import crc32 import string, random # ---- Utilities ---- POLYNOMIAL = 0x104C11DB7 # Generator polynomial. Do not modify, because there are many dependencies MASK = (1 << 32) - 1 def get_crc32(data): crc = crc32(data, 0) return reverse32(crc & MASK) def reverse32(x): y = 0 for i in range(32): y = (y << 1) | (x & 1) x >>= 1 return y # ---- Polynomial arithmetic ---- # Returns polynomial x multiplied by polynomial y modulo the generator polynomial. def multiply_mod(x, y): # Russian peasant multiplication algorithm z = 0 while y != 0: z ^= x * (y & 1) y >>= 1 x <<= 1 if (x >> 32) & 1 != 0: x ^= POLYNOMIAL return z # Returns polynomial x to the power of natural number y modulo the generator polynomial. def pow_mod(x, y): # Exponentiation by squaring z = 1 while y != 0: if y & 1 != 0: z = multiply_mod(z, x) x = multiply_mod(x, x) y >>= 1 return z # Computes polynomial x divided by polynomial y, returning the quotient and remainder. def divide_and_remainder(x, y): if y == 0: raise ValueError("Division by zero") if x == 0: return (0, 0) ydeg = get_degree(y) z = 0 for i in range(get_degree(x) - ydeg, -1, -1): if (x >> (i + ydeg)) & 1 != 0: x ^= y << i z |= 1 << i return (z, x) # Returns the reciprocal of polynomial x with respect to the modulus polynomial m. def reciprocal_mod(x): # Based on a simplification of the extended Euclidean algorithm y = x x = POLYNOMIAL a = 0 b = 1 while y != 0: q, r = divide_and_remainder(x, y) c = a ^ multiply_mod(q, b) x = y y = r a = b b = c if x == 1: return a else: raise ValueError("Reciprocal does not exist") def get_degree(x): return x.bit_length() - 1 def modify_crc32(data, offset, newcrc, printstatus=False): length = len(data) if offset + 4 > length: raise ValueError("Byte offset plus 4 exceeds file length") # Read entire file and calculate original CRC-32 value crc = get_crc32(data) if printstatus: print("Original CRC-32: {:08X}".format(reverse32(crc))) # Compute the change to make delta = crc ^ newcrc delta = multiply_mod(reciprocal_mod(pow_mod(2, (length - offset) * 8)), delta) # Patch 4 bytes in the file bytes4 = bytearray(data[offset:offset + 4]) if len(bytes4) != 4: raise IOError("Cannot read 4 bytes at offset") for i in range(4): bytes4[i] ^= (reverse32(delta) >> (i * 8)) & 0xFF data = data[:offset] + str(bytes4) + data[offset + 4:] if printstatus: print("Computed and wrote patch") # Recheck entire file if get_crc32(data) != newcrc: return None elif printstatus: print("New CRC-32 successfully verified") return data s = string.letters + string.digits def is_printable(msg): for c in msg: if ord(c) < 32 or ord(c) > 126 or c in "\n\t\r^\",": return False return True def get_crc_pair(l): l -= 6 while True: r1 = "ASIS{" + "".join([random.choice(s) for _ in range(l)]) + "}" crc = get_crc32(r1) if crc < 0: continue r2 = "ASIS{" + "".join([random.choice(s) for _ in range(l)]) + "}" for i in range(5, l + 2): r2 = modify_crc32(r2, i, crc, False) if r1 != None and crc32(r1) == crc32(r2) and is_printable(r2): print "\"%d\":\"%s,%s\""%(l + 6, r1, r2) return "%s,%s"%(r1, r2) ``` #### File: resource/pyc_decompile/ex.py ```python import time from sys import exit from hashlib import sha512 import requests def make_flag(): now = time.localtime(time.time()) seed = time.strftime('%m/%d/HJEJSH', time.localtime()) hs = sha512(seed).hexdigest() start = now.tm_hour % 3 + 1 end = start * ((now.tm_min + 2) % 30 + 10) ok = hs[start:end] return ok URL = 'http://wargame.kr:8080/pyc_decompile' data = {'flag' : make_flag()} response = requests.get(URL, params = data) #print "server time : " + response.headers['Date'] #print "local time : " + time.strftime("%a, %d %b %Y %H:%M:%S GMT", time.gmtime()) print response.text ```
{ "source": "jisson/django-simple-domain", "score": 2 }
#### File: django-simple-domain/django_simple_domain/middleware_1_10.py ```python from django.contrib.sites.models import Site from django.utils.deprecation import MiddlewareMixin from django_simple_domain import django_simple_domain_settings """ According to Django 1.10 release notes, Middleware have been updated: ''' Changed in Django 1.10: A new style of middleware was introduced for use with the new MIDDLEWARE setting. If you’re using the old MIDDLEWARE_CLASSES setting, you’ll need to adapt old, custom middleware before using the new setting. This document describes new-style middleware. Refer to this page in older versions of the documentation for a description of how old-style middleware works. @see: https://docs.djangoproject.com/en/1.10/topics/http/middleware/#upgrading-middleware ''' That python module provide middleware compatible with django 1.10 """ __author__ = 'Jisson | <EMAIL>' # TODO: Reformat middleware classes to handle compatibility issues class SetDynamicSitesMiddleware(MiddlewareMixin): """ That middleware change SITE_ID dynamically in a thread safe way. """ @staticmethod def process_request(request): """ Assign the correct value to the SITE_ID property, ensuring thread safe access to that value. """ domain_name = django_simple_domain_settings.DOMAIN_NAME try: current_site = Site.objects.get(domain=domain_name) django_simple_domain_settings.settings.SITE_ID._set(int(current_site.id)) except Site.DoesNotExist: # TODO: It should not happen django_simple_domain_settings.settings.SITE_ID._set(1) return None ``` #### File: django-simple-domain/django_simple_domain/services.py ```python import logging from django.contrib.sites.models import Site from django.utils.translation import ugettext_lazy as _ from django.apps import apps from django.core.exceptions import ImproperlyConfigured, FieldError, ValidationError from django_simple_domain.site_id_local import SiteID __author__ = 'Jisson | <EMAIL>' std_logger = logging.getLogger(__name__) def get_or_create_sites(domain_name): """ Retrieve or create a Site entity based on given domain_name. :param domain_name: The domain name to look for. That property should come from user settings :type domain_name: str :return: A Site entity if found :raise ImproperlyConfigured """ try: site = Site.objects.get(domain=domain_name) except Site.DoesNotExist: site = Site(domain=domain_name, name=_("Created with django_simple_domain")) site.save() except Site.MultipleObjectsReturned: raise ImproperlyConfigured("Multiple site object returned for defined SIMPLE_SITES_DOMAIN_NAME. " "Please verify sites models in your database.") except (FieldError, ValidationError) as e: std_logger.error(e) raise ImproperlyConfigured("Can't create Site model with given SIMPLE_SITES_DOMAIN_NAME. " "Please ensure that the provided domain name is correctly formatted.") return site def check_installed_apps_setting(): """ Check if INSTALLED_APPS contains 'django.contrib.sites' which is required to run 'django_simple_domain'. :raise ImproperlyConfigured: if 'django.contrib.sites' not in INSTALLED_APPS """ if not apps.is_installed('django.contrib.sites'): error_message = _("django.contrib.sites must be added to INSTALLED_APPS to use django_simple_domain") raise ImproperlyConfigured(error_message) def check_site_id_setting(site_id): """ Check if SITE_ID was correctly defined by verifying if it is an instance of 'django_simple_domain.site_id_local.SiteId'. :param site_id: Define the setting to use for the django site framework :type site_id: django_simple_domain.site_id_local.SiteId :raise ImproperlyConfigured: if SITE_ID was not correctly defined in global settings """ if site_id is None or not isinstance(site_id, SiteID): error_message = _("SITE_ID is invalid. Please verify that SITE_ID is an instance of type " "'django_simple_domain.site_id_local.SiteId'") raise ImproperlyConfigured(error_message) ```
{ "source": "jiss-software/jiss-rendering-service", "score": 2 }
#### File: jiss-rendering-service/handler/Pdf.py ```python import core import tornado import os import uuid # 'grayscale %s' % '-g' # -O, --orientation <orientation> Set orientation to Landscape or Portrait # -s, --page-size <Size> Set paper size to: A4, Letter, etc. # -page-height <unitreal> Page height # -s, --page-size <Size> Set paper size to: A4, Letter, etc. # --page-width <unitreal> Page width # --background Do print background (default) # --no-background Do not print background # --disable-external-links Do not make links to remote web pages # --enable-external-links # --images Do load or print images (default) # --no-images Do not load or print images # --disable-javascript Do not allow web pages to run javascript # --enable-javascript # --javascript-delay <msec> Wait some milliseconds for javascript # finish (default 200) # --print-media-type Use print media-type instead of screen # --no-print-media-type Do not use print media-type instead of screen (default) # --disable-smart-shrinking Disable the intelligent shrinking strategy # used by WebKit that makes the pixel/dpi # ratio none constant # --enable-smart-shrinking Enable the intelligent shrinking strategy # used by WebKit that makes the pixel/dpi # ratio none constant (default) # --zoom <float> Use this zoom factor (default 1) class PdfHandler(core.BaseHandler): @tornado.web.asynchronous @tornado.gen.coroutine def get(self): self.logger.info('Request to generate PDF from url') name = '/tmp/pdf-%s.pdf' % str(uuid.uuid4()) os.system('wkhtmltopdf %s %s' % (self.get_query_argument('url'), name)) self.response_file(name) def _get_args(self): # Read arguments args = { 'angle': int(self.request.headers.get('X-Jiss-Angle', default=45)), 'blur': int(self.request.headers.get('X-Jiss-Blur', default=0)), 'color': self.request.headers.get('X-Jiss-Color', default=None), 'position': self.request.headers.get('X-Jiss-Position', default='center_middle'), 'proportion': float(self.request.headers.get('X-Jiss-Proportion', default=0.9)), 'opacity': float(self.request.headers.get('X-Jiss-Opacity', default=0.3)), 'text': self.request.headers.get('X-Jiss-Text', default='Demo'), 'resize': self.request.headers.get('X-Jiss-Resize', default=None), 'repeat': self.request.headers.get('X-Jiss-Repeat', default=None) # -B, --margin-bottom <unitreal> Set the page bottom margin # -L, --margin-left <unitreal> Set the page left margin (default 10mm) # -R, --margin-right <unitreal> Set the page right margin (default 10mm) # -T, --margin-top <unitreal> Set the page top margin } # Parse if needed args['color'] = [int(x) for x in args['color'].split(',')] if args['color'] else WHITE args['resize'] = [int(x) for x in args['resize'].split('x')] if args['resize'] else None args['repeat'] = args['repeat'] and args['repeat'] in ['True', 'true'] self.logger.info('Args: %s' % self._dumps(args)) return args ``` #### File: jiss-rendering-service/handler/Resize.py ```python import core import tornado import uuid import time from utils import open_remote_image, resize, open_image class ResizeHandler(core.BaseHandler): @tornado.web.asynchronous @tornado.gen.coroutine def get(self): self.logger.info('Request to resize IMG from url') name = '/tmp/rs-%s.png' % str(uuid.uuid4()) args = self._get_args() resize(open_remote_image(self.get_query_argument('url')), name, args) self.response_file(name) @tornado.web.asynchronous @tornado.gen.coroutine def post(self): self.logger.info('Request to resize IMG for request file') args = self._get_args() for item in self.request.files.values(): for file_info in item: name = '/tmp/rs-%s-%s.png' % (time.time(), file_info['filename']) resize(open_image(file_info['body']), name, args) self.response_file(name) return def _get_args(self): # Read arguments args = { 'resize': self.request.headers.get('X-Jiss-Resize', default=None) } # Parse if needed args['resize'] = [int(x) for x in args['resize'].split('x')] if args['resize'] else None self.logger.info('Args: %s' % self._dumps(args)) return args ``` #### File: jiss-rendering-service/handler/Watermark.py ```python import core import tornado import uuid import time from utils import open_remote_image, add_watermark, open_image, WHITE class WatermarkHandler(core.BaseHandler): @tornado.web.asynchronous @tornado.gen.coroutine def get(self): self.logger.info('Request watermark generation for remote file') name = '/tmp/wm-%s.png' % str(uuid.uuid4()) args = self._get_args() add_watermark(open_remote_image(self.get_query_argument('url')), name, args) self.response_file(name) @tornado.web.asynchronous @tornado.gen.coroutine def post(self): self.logger.info('Request watermark generation for request file') args = self._get_args() for item in self.request.files.values(): for file_info in item: name = '/tmp/wm-%s-%s.png' % (time.time(), file_info['filename']) add_watermark(open_image(file_info['body']), name, args) self.response_file(name) return def _get_args(self): # Read arguments args = { 'angle': int(self.request.headers.get('X-Jiss-Angle', default=45)), 'blur': int(self.request.headers.get('X-Jiss-Blur', default=0)), 'color': self.request.headers.get('X-Jiss-Color', default=None), 'position': self.request.headers.get('X-Jiss-Position', default='center_middle'), 'proportion': float(self.request.headers.get('X-Jiss-Proportion', default=0.9)), 'opacity': float(self.request.headers.get('X-Jiss-Opacity', default=0.3)), 'text': self.request.headers.get('X-Jiss-Text', default='Demo'), 'resize': self.request.headers.get('X-Jiss-Resize', default=None), 'repeat': self.request.headers.get('X-Jiss-Repeat', default=None) } # Parse if needed args['color'] = [int(x) for x in args['color'].split(',')] if args['color'] else WHITE args['resize'] = [int(x) for x in args['resize'].split('x')] if args['resize'] else None args['repeat'] = args['repeat'] and args['repeat'] in ['True', 'true'] self.logger.info('Args: %s' % self._dumps(args)) return args ```
{ "source": "Jistrokz/STNScripts", "score": 2 }
#### File: Jistrokz/STNScripts/TheScrapper - Linux.py ```python __author__ = "<NAME>" __version__ = "1.0" __date__ = "2021-12-15" import sys import argparse from collections import defaultdict from datetime import datetime, timedelta import os import copy import gzip import subprocess try: from urllib.parse import unquote except ImportError: from urllib import unquote import traceback def EvaluateLogPaths(): paths = [] print("[.] Automatically evaluating the folders to which apps write logs ...") command = "lsof 2>/dev/null | grep '\\.log' | sed 's/.* \\//\\//g' | sort | uniq" PatchEval = subprocess.Popen(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.STDOUT) output = PatchEval.communicate()[0].splitlines() for o in output: path = os.path.dirname(o) if isinstance(path, bytes): path = path.decode("utf-8") if path in paths: continue paths.append(path) if args.debug: print("[D] Adding PATH: %s" % path) return paths class TheScrapper(object): DetectStrings = ['${jndi:ldap:', '${jndi:rmi:/', '${jndi:ldaps:/', '${jndi:dns:/', '${jndi:nis:/', '${jndi:nds:/', '${jndi:corba:/', '${jndi:iiop:/'] PlainStrings = { "https://gist.github.com/Neo23x0/e4c8b03ff8cdf1fa63b7d15db6e3860b#gistcomment-3991502": [ " header with value of BadAttributeValueException: " ], "https://gist.github.com/Neo23x0/e4c8b03ff8cdf1fa63b7d15db6e3860b#gistcomment-3991700": [ "at java.naming/com.sun.jndi.url.ldap.ldapURLContext.lookup(", ".log4j.core.lookup.JndiLookup.lookup(JndiLookup" ], "https://github.com/Neo23x0/log4shell-detector/issues/5#issuecomment-991963675": [ '${base64:JHtqbmRp' ], "https://github.com/tangxiaofeng7/CVE-2021-44228-Apache-Log4j-Rce/issues/1": [ 'Reference Class Name: foo' ] } def __init__(self, MaxDistance, debug, quick, summary): self.PrepareDetections(MaxDistance) self.debug = debug self.quick = quick self.summary = summary def DecodeLine(self, line): while "%" in line: LineBefore = line line = unquote(line) if line == LineBefore: break return line def CheckLine(self, line): DecodedLine = self.DecodeLine(line) for ref, strings in self.PlainStrings.items(): for s in strings: if s in line or s in DecodedLine: return s DecodedLine = DecodedLine.lower() linechars = list(DecodedLine) dp = copy.deepcopy(self.DetectionPad) for c in linechars: for DetectionString in dp: if c == dp[DetectionString]["chars"][dp[DetectionString]["level"]]: if dp[DetectionString]["level"] == 1 and not dp[DetectionString]["CurrentDistance"] == 1: dp[DetectionString]["CurrentDistance"] = 0 dp[DetectionString]["level"] = 0 dp[DetectionString]["level"] += 1 dp[DetectionString]["CurrentDistance"] = 0 if dp[DetectionString]["level"] > 0: dp[DetectionString]["CurrentDistance"] += 1 if dp[DetectionString]["CurrentDistance"] > dp[DetectionString]["MaxDistance"]: dp[DetectionString]["CurrentDistance"] = 0 dp[DetectionString]["level"] = 0 if len(dp[DetectionString]["chars"]) == dp[DetectionString]["level"]: return DetectionString def ScanFile(self, FilePath): MatchesInFile = [] try: if "log." in FilePath and FilePath.endswith(".gz"): with gzip.open(FilePath, 'rt') as gzlog: c = 0 for line in gzlog: c += 1 if self.quick and not "2021" in line and not "2022" in line: continue result = self.CheckLine(line) if result: MatchesDict = { "LineNumber": c, "MatchString": result, "line": line.rstrip() } MatchesInFile.append(MatchesDict) else: with open(FilePath, 'r') as logfile: c = 0 for line in logfile: c += 1 if self.quick and not "2021" in line and not "2022" in line: continue # Analyze the line result = self.CheckLine(line) if result: MatchesDict = { "LineNumber": c, "MatchString": result, "line": line.rstrip() } MatchesInFile.append(MatchesDict) except UnicodeDecodeError as e: if self.debug: print("[E] Can't process FILE: %s REASON: most likely not an ASCII based log file" % FilePath) except PermissionError as e: print("[E] Can't access %s due to a permission problem." % FilePath) except Exception as e: print("[E] Can't process FILE: %s REASON: %s" % (FilePath, traceback.print_exc())) return MatchesInFile def ScanPath(self, path): matches = defaultdict(lambda: defaultdict()) for root, directories, files in os.walk(path, followlinks=False): for filename in files: FilePath = os.path.join(root, filename) if self.debug: print("[.] Processing %s ..." % FilePath) MatchesFound = self.ScanFile(FilePath) if len(MatchesFound) > 0: for m in MatchesFound: matches[FilePath][m['LineNumber']] = [m['line'], m['MatchString']] if not self.summary: for match in matches: for LineNumber in matches[match]: print('[!] FILE: %s LineNumber: %s DeobfuscatedString: %s LINE: %s' % (match, LineNumber, matches[match][LineNumber][1], matches[match][LineNumber][0])) # Result NumberofDetections = 0 NumberOfFilesWithDetections = len(matches.keys()) for FilePath in matches: NumberofDetections += len(matches[FilePath].keys()) if NumberofDetections > 0: print("[!] %d files with exploitation attempts detected in PATH: %s" % (NumberOfFilesWithDetections, path)) if self.summary: for match in matches: for LineNumber in matches[match]: print('[!] FILE: %s LineNumber: %d STRING: %s' % (match, LineNumber, matches[match][LineNumber][1])) else: print("[+] No files with exploitation attempts detected in path PATH: %s" % path) return NumberofDetections def PrepareDetections(self, MaxDistance): self.DetectionPad = {} for ds in self.DetectStrings: self.DetectionPad[ds] = {} self.DetectionPad[ds] = { "chars": list(ds), "MaxDistance": MaxDistance, "CurrentDistance": 0, "level": 0 } if __name__ == '__main__': parser = argparse.ArgumentParser(description='TheScrapper Exploitation Detectors') group = parser.add_mutually_exclusive_group() group.add_argument('-p', nargs='+', help='Path to scan', metavar='path', default='') group.add_argument('-f', nargs='+', help='File to scan', metavar='path', default='') group.add_argument('--auto', action='store_true', help='Automatically evaluate locations to which logs get written and scan these folders recursively (new default if no path is given)') parser.add_argument('-d', type=int, help='Maximum distance between each character', metavar='distance', default=40) parser.add_argument('--quick', action='store_true', help="Skip log lines that don't contain a 2021 or 2022 time stamp") parser.add_argument('--debug', action='store_true', help='Debug output') parser.add_argument('--summary', action='store_true', help='Show summary only') args = parser.parse_args() print("____ ___ _ _ _ _ _ ____ ___ _ _ ____ ____ ____ ____ ____ ___ ___ ____ ____ ") print("[__ | |\ | | |\ | | __ | |__| |___ [__ | |__/ |__| |__] |__] |___ |__/ ") print("___] | | \| | | \| |___ | | | |___ ___] |___ | \ | | | | |___ | \ ") print(" ") print(" Version %s, %s" % (__version__, __author__)) print("") DateScanStart = datetime.now() print("[.] Starting scan DATE: %s" % DateScanStart) l4sd = TheScrapper(MaxDistance=args.d, debug=args.debug, quick=args.quick, summary=args.summary) AllDetections = 0 if args.f: files = args.f for f in files: if not os.path.isfile(f): print("[E] File %s doesn't exist" % f) continue print("[.] Scanning FILE: %s ..." % f) matches = defaultdict(lambda: defaultdict()) MatchesFound = l4sd.ScanFile(f) if len(MatchesFound) > 0: for m in MatchesFound: matches[f][m['LineNumber']] = [m['line'], m['MatchString']] for match in matches: for LineNumber in matches[match]: print('[!] FILE: %s LineNumber: %s DeobfuscatedString: %s LINE: %s' % (match, LineNumber, matches[match][LineNumber][1], matches[match][LineNumber][0]) ) AllDetections = len(matches[f].keys()) else: paths = args.p AutoEvalPaths = False if args.auto: AutoEvalPaths = True if len(paths) == 0 and not AutoEvalPaths: print("[W] Warning: Please Select a path (-p path) otherwise, TheScrapper will activate the automatic path evaluation (--auto) for your convenience.") AutoEvalPaths = True if AutoEvalPaths: LogPaths = EvaluateLogPaths() paths = LogPaths for path in paths: if not os.path.isdir(path): print("[E] Error: Path %s doesn't exist" % path) continue print("[.] Scanning FOLDER: %s ..." % path) detections = l4sd.ScanPath(path) AllDetections += detections if AllDetections > 0: print("[!!!] %d exploitation attempts detected in the complete scan" % AllDetections) else: print("[.] No exploitation attempts detected in the scan") DateScanEnd = datetime.now() print("[.] Finished scan DATE: %s" % DateScanEnd) duration = DateScanEnd - DateScanStart mins, secs = divmod(duration.total_seconds(), 60) hours, mins = divmod(mins, 60) print("[.] Scan took the following time to complete DURATION: %d hours %d minutes %d seconds" % (hours, mins, secs)) ```
{ "source": "jistr/rejviz", "score": 2 }
#### File: rejviz/rejviz/libvirt_nets.py ```python import logging from xml.etree import ElementTree import libvirt LOG = logging.getLogger(__file__) def get_libvirt_networks(): conn = libvirt.openReadOnly() if not conn: raise RuntimeError('Could not connect to libvirt.') networks = [_fetch_network_data(n) for n in conn.listAllNetworks()] conn.close() return networks def _fetch_network_data(network): network_data = {'name': network.name()} root = ElementTree.fromstring(network.XMLDesc()) network_data['dhcp'] = root.find('./ip/dhcp') is not None network_data['netmask'] = root.find('./ip').attrib['netmask'] network_data['network'] = _gateway_ipaddr_to_network( root.find('./ip').attrib['address']) return network_data def _gateway_ipaddr_to_network(ipaddr): octets = ipaddr.split('.') # smarty pants octets[3] = str(int(octets[3]) - 1) return '.'.join(octets) ``` #### File: rejviz/tests/test_libvirt_nets.py ```python import mock from rejviz import libvirt_nets import rejviz.tests.utils as tutils NETWORK_XMLDESC = """ <network> <name>default</name> <uuid>d2f553ca-f9fe-49cb-996d-934a69fc02da</uuid> <forward mode='nat'> <nat> <port start='1024' end='65535'/> </nat> </forward> <bridge name='virbr0' stp='on' delay='0'/> <mac address='52:54:00:f7:fc:83'/> <ip address='192.168.122.1' netmask='255.255.255.0'> <dhcp> <range start='192.168.122.2' end='192.168.122.254'/> </dhcp> </ip> </network> """ class LibvirtNetsTest(tutils.TestCase): @mock.patch('libvirt.openReadOnly') @mock.patch('rejviz.libvirt_nets._fetch_network_data') def test_get_libvirt_networks(self, _fetch_network_data, openReadOnly): conn = openReadOnly.return_value conn.listAllNetworks.return_value = ['net1', 'net2'] networks = libvirt_nets.get_libvirt_networks() self.assertEqual([_fetch_network_data.return_value, _fetch_network_data.return_value], networks) openReadOnly.assertCalledWith() conn.listAllNetworks.assertCalledWith() _fetch_network_data.assertCalledWith('net1') _fetch_network_data.assertCalledWith('net2') conn.close.assertCalledWith() def test_fetch_network_data(self): network_object = mock.MagicMock() network_object.name.return_value = 'default' network_object.XMLDesc.return_value = NETWORK_XMLDESC network = libvirt_nets._fetch_network_data(network_object) self.assertEqual('default', network['name']) self.assertEqual(True, network['dhcp']) self.assertEqual('192.168.122.0', network['network']) self.assertEqual('255.255.255.0', network['netmask']) def test_gateway_ipaddr_to_network(self): # for 192.168.122.0/24 self.assertEqual( '192.168.122.0', libvirt_nets._gateway_ipaddr_to_network('192.168.122.1')) # for 192.168.123.192/26 self.assertEqual( '192.168.123.192', libvirt_nets._gateway_ipaddr_to_network('192.168.123.193')) ``` #### File: rejviz/tests/test_tmp.py ```python import mock from testtools import matchers import rejviz.tests.utils as tutils from rejviz import tmp class TmpTest(tutils.TestCase): @mock.patch('rejviz.tmp.path.exists', return_value=False) @mock.patch('rejviz.tmp.os.mkdir') def test_create_dir(self, mkdir, exists): tmp_dir = tmp.create_dir() mkdir.assert_called_with(tmp_dir, 0o700) self.assertThat(tmp_dir, matchers.MatchesRegex('^/tmp/rejviz-builder-\\d+$')) @mock.patch('rejviz.tmp.shutil.rmtree') def test_remove_dir_ok(self, rmtree): tmp.remove_dir('/tmp/rejviz-builder-123') rmtree.assert_called_with('/tmp/rejviz-builder-123') @mock.patch('rejviz.tmp.shutil.rmtree') def test_remove_dir_bad_prefix(self, rmtree): self.assertRaises(ValueError, tmp.remove_dir, '/tmp/rejviz-123') self.assertEqual([], rmtree.mock_calls) ```
{ "source": "Jisu5/MsMovie", "score": 2 }
#### File: backend/accounts/views.py ```python from django.shortcuts import get_object_or_404 from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from django.contrib.auth import get_user_model User = get_user_model() from .serializers import UserSerializer # Create your views here. from rest_framework.viewsets import GenericViewSet from rest_framework.mixins import CreateModelMixin from django.contrib.auth import get_user_model from .serializers import UserSerializer from .models import UserProfile class CreateUserView(CreateModelMixin, GenericViewSet): queryset = get_user_model().objects.all() serializer_class = UserSerializer class UserAPI(APIView): def get(self, request): user = request.user serializer = UserSerializer(user) return Response(serializer.data) def post(self, request, format=None): user = request.user try: UserProfile.objects.get(user = user) return Response(status=status.HTTP_409_CONFLICT) except UserProfile.DoesNotExist: profile = UserProfile.objects.create( user = user, favorite = request.data.get('favorite') ) return Response(status=status.HTTP_201_CREATED) class OtherUserAPI(APIView): def get(self, request, user_pk): user = get_object_or_404(User, pk=user_pk) serializer = UserSerializer(user) return Response(serializer.data) # class AuthInfoUpdateView(generics.UpdateAPIView): # def put(self, request, user_pk): # user = get_object_or_404(User, pk=user_pk) ```
{ "source": "jisuhan3201/beginvagan-app", "score": 2 }
#### File: beginvegan_app/products/models.py ```python from django.db import models from beginvegan_app.materials import models as material_models from django.utils.html import format_html # Create your models here. class TimeStampedModel(models.Model): created_at = models.DateTimeField(auto_now_add=True, null=True) updated_at = models.DateTimeField(auto_now=True, null=True) class Meta: abstract = True class ProductCategory(TimeStampedModel): name = models.CharField(max_length=100, null=True, blank=True) sub_category = models.ForeignKey('self', on_delete=models.SET_NULL, null=True) def __str__(self): return "{}".format(self.name) class Meta: db_table = 'product_categories' # class ProductSubCategory(models.Model): # name = models.CharField(max_length=100, null=True, blank=True) # parent_category = models.ForeignKey(ProductCategory, on_delete=models.SET_NULL, null=True, related_name="parent_category") # updated_at = models.DateTimeField(auto_now=True, null=True) # def __str__(self): # return "{}".format(self.name) # class Meta: # db_table = 'product_subcategories' class Company(TimeStampedModel): name = models.CharField(max_length=100, null=True, blank=True) def __str__(self): return "{}".format(self.name) class Meta: db_table = 'companies' class Product(TimeStampedModel): name = models.CharField(max_length=255, null=True, blank=True) category = models.ForeignKey(ProductCategory, on_delete=models.SET_NULL, null=True, blank=True, related_name="category") materials = models.ManyToManyField(material_models.Material, through="ProductMaterial", related_name="materials") company = models.ForeignKey(Company, on_delete=models.SET_NULL, null=True, blank=True, related_name="company") remove_materials = models.ManyToManyField(material_models.Material, through="RemoveMaterial", related_name="remove_materials") def __str__(self): return "{}".format(self.name) class Meta: db_table = 'products' class ProductMaterial(TimeStampedModel): product = models.ForeignKey(Product, on_delete=models.CASCADE, related_name="pm_product") material = models.ForeignKey(material_models.Material, on_delete=models.CASCADE, related_name="pm_material") def __str__(self): return "{} - {}".format(self.product, self.material) class Meta: db_table = 'product_material' class RemoveMaterial(TimeStampedModel): product = models.ForeignKey(Product, on_delete=models.CASCADE, related_name="rm_product") material = models.ForeignKey(material_models.Material, on_delete=models.CASCADE, related_name="rm_material") def __str__(self): return "{} - {}".format(self.product, self.material) class Meta: db_table = 'remove_material' class ProductImage(TimeStampedModel): title = models.CharField(max_length=255, null=True, blank=True) image = models.ImageField(upload_to='img/raw_images', null=True, blank=True) product = models.ForeignKey(Product, on_delete=models.SET_NULL, null=True, blank=True) class Meta: db_table = 'product_images' ```
{ "source": "jisuhan3201/osc-bge", "score": 2 }
#### File: osc_bge/agent/models.py ```python from django.db import models from osc_bge.users import models as user_models # Create your models here. class TimeStampedModel(models.Model): created_at = models.DateTimeField(auto_now_add=True, null=True) updated_at = models.DateTimeField(auto_now=True, null=True) class Meta: abstract = True #Agent Head Table class AgencyHead(TimeStampedModel): PROGRAM_CHOICES = ( ('secondary', 'Secondary'), ('college', 'College'), ('camp', 'Camp'), ) name = models.CharField(max_length=80, null=True, blank=True) location = models.CharField(max_length=140, null=True, blank=True) number_branches = models.CharField(max_length=80, null=True, blank=True) capacity_students = models.CharField(max_length=255, null=True, blank=True) commission = models.CharField(max_length=140, null=True, blank=True) promotion = models.CharField(max_length=255, null=True, blank=True) others = models.CharField(max_length=255, null=True, blank=True) comment = models.TextField(null=True, blank=True) def __str__(self): return "{}".format(self.name) class AgencyProgram(TimeStampedModel): head = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True) program = models.CharField(max_length=80, null=True, blank=True) #Agent Branch Table class Agency(TimeStampedModel): head = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True, related_name='agent_branch') name = models.CharField(max_length=140, null=True, blank=True) location = models.CharField(max_length=140, null=True, blank=True) capacity_students = models.CharField(max_length=255, null=True, blank=True) commission = models.CharField(max_length=140, null=True, blank=True) promotion = models.CharField(max_length=255, null=True, blank=True) others = models.CharField(max_length=255, null=True, blank=True) comment = models.TextField(null=True, blank=True) def __str__(self): return "{}".format(self.name) class AgencyBranchProgram(TimeStampedModel): branch = models.ForeignKey(Agency, on_delete=models.CASCADE, null=True) program = models.CharField(max_length=80, null=True, blank=True) def set_filename_format(now, instance, filename): return "{schoolname}-{microsecond}".format( agentname=instance.agency, microsecond=now.microsecond, ) def agent_directory_path(instance, filename): now = datetime.datetime.now() path = "agents/{agentname}/{filename}".format( agentname=instance.agency, filename=set_filename_format(now, instance, filename), ) return path class AgencyHeadContactInfo(TimeStampedModel): LEVEL_CHOICES = ( ('s', 'S'), ('a', 'A'), ('b', 'B'), ('c', 'C'), ('d', 'D'), ) agent = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True) name = models.CharField(max_length=80, null=True, blank=True) contracted_date = models.DateTimeField(auto_now=True, null=True) phone = models.CharField(max_length=80, null=True, blank=True) email = models.CharField(max_length=140, null=True, blank=True) skype = models.CharField(max_length=80, null=True, blank=True) wechat = models.CharField(max_length=80, null=True, blank=True) location = models.CharField(max_length=140, null=True, blank=True) level = models.CharField(max_length=80, null=True, blank=True) image = models.ImageField(upload_to=agent_directory_path, null=True, blank=True) def __str__(self): return "{}".format(self.name) class AgentRelationshipHistory(TimeStampedModel): head = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True) writer = models.CharField(max_length=80, null=True, blank=True) name = models.CharField(max_length=80, null=True, blank=True) date = models.DateField(null=True, blank=True) location = models.CharField(max_length=140, null=True, blank=True) category = models.CharField(max_length=80, null=True, blank=True) priority = models.IntegerField(null=True, blank=True) comment = models.TextField(null=True, blank=True) class SecodnaryProgram(TimeStampedModel): agent = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True) preriod = models.CharField(max_length=80, null=True, blank=True) target = models.IntegerField(null=True, blank=True) new_students_fall = models.IntegerField(null=True, blank=True) new_students_spring = models.IntegerField(null=True, blank=True) total_new_students_bge = models.IntegerField(null=True, blank=True) total_students_bge = models.IntegerField(null=True, blank=True) terminating_students = models.IntegerField(null=True, blank=True) comments = models.TextField(null=True, blank=True) class Camp(TimeStampedModel): agent = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True) preriod = models.CharField(max_length=80, null=True, blank=True) target = models.IntegerField(null=True, blank=True) summer_camp = models.IntegerField(null=True, blank=True) winter_camp = models.IntegerField(null=True, blank=True) comments = models.TextField(null=True, blank=True) class CollegeApplication(TimeStampedModel): agent = models.ForeignKey(AgencyHead, on_delete=models.CASCADE, null=True) preriod = models.CharField(max_length=80, null=True, blank=True) college_application = models.IntegerField(null=True, blank=True) other_program = models.IntegerField(null=True, blank=True) comments = models.TextField(null=True, blank=True) ``` #### File: osc_bge/agent/views.py ```python from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.shortcuts import render, redirect from django.http import HttpResponse, JsonResponse, HttpResponseRedirect from django.views import View from django.db.models import Q from django.core import serializers from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.decorators import login_required from . import models, forms from osc_bge.users import models as user_models from osc_bge.form import models as form_models from osc_bge.form import forms as form_forms from osc_bge.student import models as student_models from osc_bge.student import forms as student_forms from osc_bge.school import models as school_models from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta import json from decimal import Decimal from datetime import datetime, date class StatisticsView(LoginRequiredMixin, View): login_url = '/accounts/login/' def get(self, request): user = request.user agency = None agency_head = None if user.type == "counselor": return HttpResponse(status=401) elif user.type == 'agency_branch_admin': try: agency_branch_admin = user_models.AgencyAdminUser.objects.get(user=user) agency = agency_branch_admin.agency except user_models.AgencyAdminUser.DoesNotExist: return HttpResponse(status=401) elif user.type == 'agency_admin': try: agency_admin = user_models.AgencyHeadAdminUser.objects.get(user=user) agency_head = agency_admin.agency_head except user_models.AgencyHeadAdminUser.DoesNotExist: return HttpResponse(status=401) # 1st section statistics total_counsel = 0 total_registered = 0 total_secondary = 0 total_college = 0 total_camp = 0 total_us_count = 0 total_ca_count = 0 total_uk_count = 0 total_au_count = 0 total_nz_count = 0 # 2nd Section statistics monthly_data = {} past_date_range = [] past_date_first = [] if self.request.GET.get('past_months'): today = date.today() past_months = int(self.request.GET.get('past_months')) for number in range(0, past_months+1): sd = today - relativedelta(months=number) ed = today - relativedelta(months=number-1) past_start_date = date(sd.year, sd.month, 1) past_end_date = date(ed.year, ed.month, 1) - relativedelta(days=1) past_date_range.append([past_start_date, past_end_date]) past_date_first.append(past_start_date) if agency: counselors = user_models.Counselor.objects.filter(agency=agency) elif agency_head: counselors = user_models.Counselor.objects.filter(agency__head=agency_head) else: counselors = user_models.Counselor.objects.all() for counselor in counselors: # For 1st Section statistics query_start_date = self.request.GET.get('start_date', None) query_end_date = self.request.GET.get('end_date', None) if query_start_date or query_end_date: found_counsels = form_models.Counsel.objects.filter(counselor=counselor).filter( created_at__range=(query_start_date, query_end_date)) found_formalities = form_models.Formality.objects.filter(counsel__counselor=counselor).filter( counsel__created_at__range=(query_start_date, query_end_date)) else: found_counsels = form_models.Counsel.objects.filter(counselor=counselor) found_formalities = form_models.Formality.objects.filter(counsel__counselor=counselor) # For 2nd Section statistics if past_date_range: data_list = [] for date_range in past_date_range: data_dict = {} date_first = date_range[0] monthly_counsels = form_models.Counsel.objects.filter(counselor=counselor).filter( created_at__range=(date_range[0], date_range[1])) monthly_formality_count = form_models.Formality.objects.filter(counsel__counselor=counselor).filter( counsel__created_at__range=(date_range[0], date_range[1])).count() if request.GET.get('school_type'): monthly_counsels = monthly_counsels.filter(program_interested=request.GET.get('school_type')) monthly_formality_count = form_models.Formality.objects.filter(counsel__counselor=counselor).filter( counsel__created_at__range=(date_range[0], date_range[1])).filter( counsel__program_interested=request.GET.get('school_type')).count() monthly_counsels_count = monthly_counsels.count() try: monthly_success_rate = int(monthly_formality_count * 100 / monthly_counsels_count) except ZeroDivisionError: monthly_success_rate = 0 data_dict.update({ 'date_first':date_first, 'monthly_counsels_count':monthly_counsels_count, 'monthly_formality_count':monthly_formality_count, 'monthly_success_rate':monthly_success_rate, }) data_list.append(data_dict) counselor_fullname = counselor.agency.name + " / " + counselor.user.first_name + " " + counselor.user.last_name monthly_data.update({counselor_fullname:data_list}) counsel_count = found_counsels.count() total_counsel += counsel_count formality_count = found_formalities.count() total_registered += formality_count try: apply_percentage = formality_count * 100 / counsel_count apply_percentage = int(apply_percentage) except ZeroDivisionError: apply_percentage = 0 secondary_count = 0 college_count = 0 camp_count = 0 us_count = 0 ca_count = 0 uk_count = 0 au_count = 0 nz_count = 0 for counsel in found_counsels: if counsel.program_interested == 'k12': secondary_count += 1 elif counsel.program_interested == 'college': college_count += 1 elif counsel.program_interested == 'camp': camp_count += 1 else: continue if counsel.desire_country == 'us': us_count += 1 elif counsel.desire_country == 'ca': ca_count += 1 elif counsel.desire_country == 'uk': uk_count += 1 elif counsel.desire_country == 'au': au_count += 1 elif counsel.desire_country == 'nz': nz_count += 1 else: continue counselor.counsel_count = counsel_count counselor.formality_count = formality_count counselor.apply_percentage = apply_percentage counselor.secondary = secondary_count counselor.college = college_count counselor.camp = camp_count counselor.us_count = us_count counselor.ca_count = ca_count counselor.uk_count = uk_count counselor.au_count = au_count counselor.nz_count = nz_count counselor.save() total_secondary += secondary_count total_college += college_count total_camp += camp_count total_us_count += us_count total_ca_count += ca_count total_uk_count += uk_count total_au_count += au_count total_nz_count += nz_count try: total_success_rate = int(total_registered * 100 / total_counsel) except ZeroDivisionError: total_success_rate = 0 # Make range of months for templates template_date_range = [] today = date.today() for number in range(0, 13): sd = today - relativedelta(months=number) ed = today - relativedelta(months=number-1) past_start_date = date(sd.year, sd.month, 1) past_end_date = date(ed.year, ed.month, 1) - relativedelta(days=1) template_date_range.append([past_start_date, past_end_date]) return render(request, 'agent/statistics.html', { "counselors":counselors, 'total_counsel':total_counsel, 'total_registered':total_registered, 'total_success_rate':total_success_rate, 'total_secondary':total_secondary, 'total_college':total_college, 'total_camp':total_camp, 'total_us_count':total_us_count, 'total_ca_count':total_ca_count, 'total_uk_count':total_uk_count, 'total_au_count':total_au_count, 'total_nz_count':total_nz_count, 'monthly_data':monthly_data, 'past_date_first':past_date_first, 'template_date_range':template_date_range, }) class CounselView(LoginRequiredMixin, View): login_url = '/accounts/login/' def search(self): if self.request.GET.get('form_type') == 'secondary_form': queryset = school_models.Secondary.objects.all().order_by('school__partnership', 'school__name') school_type = self.request.GET.getlist('school_type', None) if school_type: queryset = queryset.filter(school__school_type__type__in=school_type) student_body = self.request.GET.getlist('student_body', None) if student_body: queryset = queryset.filter(student_body__in=student_body) grade = self.request.GET.getlist('grade', None) if grade: if len(grade) != 1: queryset = queryset.filter(Q(grade_start__lte=grade[0]) | Q(grade_end__gte=grade[-1])) to_schools = school_models.School.objects.filter(tb_of_og__grade__in=grade, tb_of_og__quantity__gt=0).distinct() queryset = queryset.filter(school__in=to_schools) else: queryset = queryset.filter(grade_start__lte=grade[0], grade_end__gte=grade[0]) to_schools = school_models.School.objects.filter(tb_of_og__grade=grade[0], tb_of_og__quantity__gt=0).distinct() queryset = queryset.filter(school__in=to_schools) term = self.request.GET.getlist('term', None) if term: queryset = queryset.filter(school__term__in=term).distinct() to_schools = school_models.School.objects.filter(tb_of_og__term__in=term, tb_of_og__quantity__gt=0).distinct() queryset = queryset.filter(school__in=to_schools) toefl_requirement = self.request.GET.get('toefl_requirement', None) if toefl_requirement: if toefl_requirement == '100': queryset = queryset.filter(toefl_requirement__gte=int(toefl_requirement), toefl_requirement__isnull=False) elif toefl_requirement == '0': queryset = queryset.filter(toefl_requirement__isnull=True) else: queryset =queryset.filter(toefl_requirement__lte=int(toefl_requirement), toefl_requirement__isnull=False) state = self.request.GET.getlist('state', None) if state: queryset = queryset.filter(state__in=state) transfer = self.request.GET.get('transfer', None) if transfer: queryset = queryset.filter(school__transfer=True) number_students = self.request.GET.getlist('number_students', None) if number_students: if not 's' in number_students: queryset = queryset.exclude(school__number_students__lte=299).exclude(school__number_students__isnull=True) if not 'm' in number_students: queryset = queryset.exclude(school__number_students__gte=300, school__number_students__lte=699).exclude(school__number_students__isnull=True) if not 'l' in number_students: queryset = queryset.exclude(school__number_students__gte=700).exclude(school__number_students__isnull=True) program_fee = self.request.GET.get('program_fee', None) if program_fee: if program_fee == 'xs': queryset = queryset.filter(program_fee__lte=35000) elif program_fee == 's': queryset = queryset.filter(program_fee__lte=45000) elif program_fee == 'm': queryset = queryset.filter(program_fee__lte=60000) elif program_fee == 'l': queryset = queryset.filter(program_fee__gt=60000) else: pass elif self.request.GET.get('form_type') == 'college_form': queryset = school_models.College.objects.all().order_by('ranking') school_type = self.request.GET.getlist('school_type', None) if school_type: queryset = queryset.filter(school__school_type__type__in=school_type) toefl_requirement = self.request.GET.get('toefl_requirement', None) if toefl_requirement: if toefl_requirement == '100': queryset = queryset.filter(toefl_requirement__gte=int(toefl_requirement), toefl_requirement__isnull=False) else: queryset =queryset.filter(toefl_requirement__lte=int(toefl_requirement), toefl_requirement__isnull=False) state = self.request.GET.getlist('state', None) if state: queryset = queryset.filter(state__in=state) partition = self.request.GET.getlist('partition', None) if partition: queryset = queryset.filter(college_type__in=partition) elif self.request.GET.get('form_type') == 'name_form': queryset = school_models.Secondary.objects.all().order_by('school__partnership', 'school__name') school_name = self.request.GET.get('school_name') if school_name: queryset = queryset.filter(school__name__icontains=school_name) school_id = self.request.GET.get('school_id') if school_id: queryset = school_models.Secondary.objects.filter(id=int(school_id)) elif self.request.GET.get('form_type') == 'college_name_form': queryset = school_models.College.objects.all() school_name = self.request.GET.get('school_name') if school_name: queryset = queryset.filter(school__name__icontains=school_name) school_id = self.request.GET.get('school_id') if school_id: queryset = school_models.College.objects.filter(id=int(school_id)) else: queryset = None return queryset def get(self, request): secondaries = school_models.Secondary.objects.all().order_by('school__partnership', 'school__name') colleges = school_models.College.objects.all().order_by('ranking') search_schools = self.search() return render(request, 'agent/counsel.html', { "secondaries":secondaries, "colleges":colleges, 'search_schools':search_schools, } ) class CustomerRegisterView(LoginRequiredMixin, View): login_url = '/accounts/login/' def get_counselor(self): user = self.request.user try: found_counselor = user_models.Counselor.objects.get(user=user) except user_models.Counselor.DoesNotExist: return HttpResponse(status=401) return found_counselor def get(self, request, counsel_num=None): if counsel_num: try: found_counsel = form_models.Counsel.objects.get(pk=counsel_num) except form_models.Counsel.DoesNotExist: return HttpResponse(status=404) if request.user.type == 'counselor': found_counselor = self.get_counselor() if not found_counsel.counselor == found_counselor: return HttpResponse(status=401) try: student_history = student_models.StudentHistory.objects.get(student=found_counsel.student) except: student_history = None return render(request, 'agent/register.html', {"counsel":found_counsel, "student_history": student_history}) return render(request, 'agent/register.html', {}) def post(self, request, counsel_num=None): data = request.POST if request.user.type == 'counselor': found_counselor = self.get_counselor() if counsel_num: try: found_counsel = form_models.Counsel.objects.get(pk=counsel_num) except form_models.Counsel.DoesNotExist: return HttpResponse(status=404) if request.user.type == 'counselor': if not found_counselor == found_counsel.counselor: return HttpResponse(status=401) parent_info = None if (data.get('parentname') or data.get('parentcell') or data.get('parentemail') or data.get('parentwechat')): try: parent_info = found_counsel.student.parent_info parent_info.name = data.get('parentname') parent_info.phone = data.get('parentcell') parent_info.email = data.get('parentemail') parent_info.wechat = data.get('parentwechat') parent_info.save() except: parent_info = student_models.ParentInfo( name=data.get('parentname'), phone=data.get('parentcell'), email=data.get('parentemail'), wechat=data.get('parentwechat'), ) parent_info.save() student = found_counsel.student if request.user.type == 'counselor': student.counselor=found_counselor student.parent_info = parent_info student.name = data.get('name') student.gender = data.get('gender') student.birthday = data.get('birth') student.email = data.get('email') student.skype = data.get("skype") student.nationality = data.get("nationality") student.wechat = data.get('wechat') student.phone = data.get('phone') student.save() image_form = student_forms.StudentImageForm(request.POST,request.FILES) if image_form.is_valid(): student.image = image_form.cleaned_data['image'] student.save() counsel = found_counsel counsel.student = student counsel.program_interested = data.get('program') counsel.expected_departure = data.get('departure') counsel.possibility = data.get('possibility') counsel.client_class = data.get('class') counsel.contact_first = data.get('contact1th') counsel.contact_second = data.get('contact2th') counsel.contact_third = data.get('contact3th') counsel.detail = data.get('detail') counsel.save() try: student_history = student_models.StudentHistory.objects.get(student=student) student_history.student = student student_history.current_grade = data.get('currentgrade') student_history.current_school=data.get('currentschool') student_history.apply_grade=data.get('gradeapply') student_history.eng_level=data.get('englevel') student_history.toefl=data.get('toefl') student_history.toefljr=data.get('toefljr') student_history.gpa=data.get('gpa') student_history.sat=data.get('sat') student_history.address=data.get('address') student_history.save() except student_models.StudentHistory.DoesNotExist: student_history = student_models.StudentHistory( student=student, current_grade=data.get('currentgrade'), current_school=data.get('currentschool'), apply_grade=data.get('gradeapply'), eng_level=data.get('englevel'), toefl=data.get('toefl'), toefljr=data.get('toefljr'), gpa=data.get('gpa'), sat=data.get('sat'), address=data.get('address'), ) student_history.save() else: parent_info = False if (data.get('parentname') or data.get('parentcell') or data.get('parentemail') or data.get('parentwechat')): parent_info = student_models.ParentInfo( name=data.get('parentname'), phone=data.get('parentcell'), email=data.get('parentemail'), wechat=data.get('parentwechat'), ) parent_info.save() student = student_models.Student( counselor=found_counselor, parent_info=parent_info if parent_info else None, name=data.get('name'), gender=data.get('gender'), birthday=data.get('birth'), email=data.get('email'), skype=data.get('skype'), nationality=data.get('nationality'), wechat=data.get('wechat'), phone=data.get('phone'), ) student.save() image_form = student_forms.StudentImageForm(request.POST,request.FILES) if image_form.is_valid(): student.image = image_form.cleaned_data['image'] student.save() counsel = form_models.Counsel( counselor=found_counselor, student=student, counseling_date=data.get('date'), desire_country=data.get('country'), program_interested=data.get('program'), expected_departure=data.get('departure'), possibility=data.get('possibility'), client_class=data.get('class'), contact_first=data.get('contact1th'), contact_second=data.get('contact2th'), contact_third=data.get('contact3th'), detail=data.get('detail'), ) counsel.save() if ( data.get('toefl') or data.get('toefljr') or data.get('gpa') or data.get('sat') or data.get('englevel') or data.get('currentschool') or data.get('currentgrade') or data.get('gradeapply') or data.get('address')): student_history = student_models.StudentHistory( student=student, current_grade=data.get('currentgrade'), current_school=data.get('currentschool'), apply_grade=data.get('gradeapply'), eng_level=data.get('englevel'), toefl=data.get('toefl'), toefljr=data.get('toefljr'), gpa=data.get('gpa'), sat=data.get('sat'), address=data.get('address'), ) student_history.save() return HttpResponseRedirect(request.path_info) class ProspectiveView(LoginRequiredMixin, View): login_url = '/accounts/login/' def get_counselor(self): user = self.request.user try: found_counselor = user_models.Counselor.objects.get(user=user) except user_models.Counselor.DoesNotExist: return HttpResponse(status=401) return found_counselor def search(self): if self.request.user.type == 'counselor': found_counselor = self.get_counselor() queryset = form_models.Counsel.objects.filter( counselor=found_counselor, student__school__isnull=True) elif self.request.user.type == 'agency_branch_admin': found_agent_branch_admin = user_models.AgencyAdminUser.objects.get(user=self.request.user) found_counselors = user_models.Counselor.objects.filter(agency=found_agent_branch_admin.agency) queryset = form_models.Counsel.objects.filter( counselor__in=found_counselors, student__school__isnull=True) elif self.request.user.type == 'agency_admin': found_agent_admin = user_models.AgencyHeadAdminUser.objects.get(user=self.request.user) found_counselors = user_models.Counselor.objects.filter(agency__head=found_agent_admin.agency_head) queryset = form_models.Counsel.objects.filter( counselor__in=found_counselors, student__school__isnull=True) else: queryset = form_models.Counsel.objects.filter(student__school__isnull=True) query = self.request.GET.get('q', None) if query: queryset = queryset.filter(Q(student__name__icontains=query) | Q(student__email__icontains=query) | Q(student__phone__icontains=query) ) registered = self.request.GET.get('registered', None) if registered: queryset = queryset.filter(Q(student__status=registered)) possibility = self.request.GET.get('possibility', None) if possibility: queryset = queryset.filter(Q(possibility=possibility)) departure = self.request.GET.get('departure', None) if departure: if departure == '3m': queryset = queryset.filter(expected_departure__range=(datetime.now(), datetime.now()+relativedelta(months=3))) elif departure == '6m': queryset = queryset.filter(expected_departure__range=(datetime.now(), datetime.now()+relativedelta(months=6))) elif departure == '12m': queryset = queryset.filter(expected_departure__range=(datetime.now(), datetime.now()+relativedelta(months=12))) else: queryset = queryset.filter(Q(expected_departure__gt=datetime.now()+relativedelta(years=1))) country = self.request.GET.get('country', None) if country: queryset = queryset.filter(Q(desire_country=country)) program = self.request.GET.get('type', None) if program: queryset = queryset.filter(Q(program_interested=program)) return queryset def get(self, request): found_counselor = self.get_counselor() all_counsel = self.search() paginator = Paginator(all_counsel, 10) page = request.GET.get('page') try: counsels = paginator.get_page(page) except PageNotAnInteger: counsels = paginator.page(1) except EmptyPage: counsels = paginator.page(paginator.num_pages) return render(request, 'agent/prospective.html', {"data":counsels}) class ApplicationRegisterView(LoginRequiredMixin, View): login_url = '/accounts/login/' def get_counselor(self): user = self.request.user try: found_counselor = user_models.Counselor.objects.get(user=user) except user_models.Counselor.DoesNotExist: return HttpResponse(status=401) return found_counselor def get(self, request, counsel_num=None): if counsel_num: try: found_counsel = form_models.Counsel.objects.get(pk=counsel_num) except form_models.Counsel.DoesNotExist: return HttpResponse(status=404) if request.user.type == 'counselor': found_counselor = self.get_counselor() if not found_counsel.counselor == found_counselor: return HttpResponse(status=401) try: student_history = student_models.StudentHistory.objects.get(student=found_counsel.student) except: student_history = None countries = school_models.School.objects.values('country').order_by('country').distinct() try: found_formality = form_models.Formality.objects.get(counsel=found_counsel) school_formalities = form_models.SchoolFormality.objects.filter(formality=found_formality).order_by('school_priority') except: school_formalities = None if school_formalities: formality_range = range(0, len(school_formalities)) empty_range = range(len(school_formalities)+1, 11) else: formality_range = None empty_range = range(2, 11) return render( request, 'agent/register.html', { "counsel":found_counsel, "student_history": student_history, "countries": countries, "formality_range": formality_range, "empty_range": empty_range, "school_formalities": school_formalities, }) else: return HttpResponse(status=400) def post(self, request, counsel_num=None): data = request.POST if request.user.type == 'counselor': found_counselor = self.get_counselor() if counsel_num: try: found_counsel = form_models.Counsel.objects.get(pk=counsel_num) except form_models.Counsel.DoesNotExist: return HttpResponse(status=404) if request.user.type == 'counselor': if not found_counselor == found_counsel.counselor: return HttpResponse(status=401) parent_info = None if (data.get('parentname') or data.get('parentcell') or data.get('parentemail') or data.get('parentwechat')): try: parent_info = found_counsel.student.parent_info parent_info.name = data.get('parentname') parent_info.phone = data.get('parentcell') parent_info.email = data.get('parentemail') parent_info.wechat = data.get('parentwechat') parent_info.save() except: parent_info = student_models.ParentInfo( name=data.get('parentname'), phone=data.get('parentcell'), email=data.get('parentemail'), wechat=data.get('parentwechat'), ) parent_info.save() student = found_counsel.student if request.user.type == 'counselor': student.counselor=found_counselor student.parent_info = parent_info student.name = data.get('name') student.gender = data.get('gender') student.birthday = data.get('birth') student.email = data.get('email') student.skype = data.get('skype') student.nationality = data.get('nationality') student.wechat = data.get('wechat') student.phone = data.get('phone') student.save() image_form = student_forms.StudentImageForm(request.POST,request.FILES) if image_form.is_valid(): student.image = image_form.cleaned_data['image'] student.save() counsel = found_counsel counsel.student = student counsel.program_interested = data.get('program') counsel.expected_departure = data.get('departure') counsel.possibility = data.get('possibility') counsel.client_class = data.get('class') counsel.contact_first = data.get('contact1th') counsel.contact_second = data.get('contact2th') counsel.contact_third = data.get('contact3th') counsel.detail = data.get('detail') counsel.save() try: student_history = student_models.StudentHistory.objects.get(student=student) student_history.student = student student_history.current_grade = data.get('currentgrade') student_history.current_school=data.get('currentschool') student_history.apply_grade=data.get('gradeapply') student_history.eng_level=data.get('englevel') student_history.toefl=data.get('toefl') student_history.toefljr=data.get('toefljr') student_history.gpa=data.get('gpa') student_history.sat=data.get('sat') student_history.address=data.get('address') student_history.save() except student_models.StudentHistory.DoesNotExist: student_history = student_models.StudentHistory( student=student, current_grade=data.get('currentgrade'), current_school=data.get('currentschool'), apply_grade=data.get('gradeapply'), eng_level=data.get('englevel'), toefl=data.get('toefl'), toefljr=data.get('toefljr'), gpa=data.get('gpa'), sat=data.get('sat'), address=data.get('address'), ) student_history.save() school_ids = [] class_start_days = [] courses = [] for i in range(1,11): if data.get('app_school'+str(i)): school_ids.append(data.get('app_school'+str(i))) class_start_days.append(data.get('app_start'+str(i))) courses.append(data.get('app_course'+str(i))) else: continue if school_ids[0]: # Update SchoolFormality by exsisting Formality try: formality = form_models.Formality.objects.get(counsel=counsel) school_formalities = form_models.SchoolFormality.objects.filter(formality=formality) school_formalities.delete() #Create Formality and SchoolFormality except form_models.Formality.DoesNotExist: student.status = 'registered' student.save() formality = form_models.Formality( counsel=counsel, payment_complete=False, ) formality.save() for index, (school, class_start_day, course) in enumerate(zip(school_ids, class_start_days, courses)): try: found_school = school_models.School.objects.get(pk=int(school)) except school_models.School.DoesNotExist: return HttpResponse(status=404) school_formality = form_models.SchoolFormality( formality=formality, school=found_school, school_priority=int(index+1), class_start_at=class_start_day if class_start_day else None, course=course if course else None, ) school_formality.save() else: return HttpResponse(status=400) else: return HttpResponse(status=400) return HttpResponseRedirect(request.path_info) class ProcessView(LoginRequiredMixin, View): login_url = '/accounts/login/' def get_counselor(self): user = self.request.user try: found_counselor = user_models.Counselor.objects.get(user=user) except user_models.Counselor.DoesNotExist: return HttpResponse(status=401) return found_counselor def get(self, request): if request.user.type == 'counselor': found_counselor = self.get_counselor() found_formalities = form_models.Formality.objects.filter( counsel__counselor=found_counselor) elif request.user.type == 'agency_branch_admin': found_agent_branch_admin = user_models.AgencyAdminUser.objects.get(user=request.user) found_formalities = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) elif request.user.type == 'agency_admin': found_agent_admin = user_models.AgencyHeadAdminUser.objects.get(user=request.user) found_formalities = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) else: found_formalities = form_models.Formality.objects.all() found_formalities = found_formalities.filter( departure_confirmed=None, canceled_at=None ) try: application_not_completed = found_formalities.filter( Q(school_formality__enrolment_apply_done__isnull=True)| Q(school_formality__enrolment_apply_done=False)).order_by('created_at').distinct() except: application_not_completed =None try: upcoming_school_interview = form_models.SchoolFormality.objects.filter( Q(school_interview_done__isnull=True)| Q(school_interview_done=False)).filter(formality__in=found_formalities).exclude( school_interview_date__isnull=True).order_by('school_interview_date').distinct() except: upcoming_school_interview = None try: pending_admission_decision = found_formalities.filter( school_formality__acceptance_date__isnull=True).order_by("created_at").distinct() except: pending_admission_decision=None try: pending_issue_i20 = found_formalities.filter( Q(school_formality__i20_completed__isnull=True)| Q(school_formality__i20_completed=False)).order_by("created_at").distinct() except: pending_issue_i20=None try: upcoming_visa_interview = found_formalities.filter( visa_reserve_date__isnull=False, visa_granted_date__isnull=True, visa_rejected_date__isnull=True).order_by('visa_reserve_date').distinct() except: upcoming_visa_interview = None try: departure_schedule = found_formalities.exclude( air_departure_date__isnull=True).order_by('air_departure_date').distinct() except: departure_schedule = None if request.user.type == 'counselor': found_counselor = self.get_counselor() in_progress = form_models.Formality.objects.filter( counsel__counselor=found_counselor) process_completed = form_models.Formality.objects.filter( counsel__counselor=found_counselor) process_canceled = form_models.Formality.objects.filter( counsel__counselor=found_counselor) elif request.user.type == 'agency_branch_admin': found_agent_branch_admin = user_models.AgencyAdminUser.objects.get(user=request.user) in_progress = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) process_completed = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) process_canceled = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) elif request.user.type == 'agency_admin': found_agent_admin = user_models.AgencyHeadAdminUser.objects.get(user=request.user) in_progress = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) process_completed = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) process_canceled = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) else: in_progress = form_models.Formality.objects.all() process_completed = form_models.Formality.objects.all() process_canceled = form_models.Formality.objects.all() in_progress = in_progress.filter( departure_confirmed=None).filter(canceled_at=None).order_by("-created_at") process_completed = process_completed.filter(canceled_at=None).exclude( departure_confirmed=None).order_by("-departure_confirmed") process_canceled = process_canceled.exclude( canceled_at=None).order_by("-canceled_at") return render( request, 'agent/process.html', { "application_not_completed": application_not_completed, "upcoming_school_interview": upcoming_school_interview, "pending_admission_decision": pending_admission_decision, "pending_issue_i20": pending_issue_i20, "upcoming_visa_interview": upcoming_visa_interview, "departure_schedule": departure_schedule, "in_progress":in_progress, "process_completed":process_completed, "process_canceled":process_canceled, } ) class ProcessApplyView(LoginRequiredMixin, View): login_url = '/accounts/login/' def get_counselor(self): user = self.request.user try: found_counselor = user_models.Counselor.objects.get(user=user) except user_models.Counselor.DoesNotExist: return HttpResponse(status=401) return found_counselor def get(self, request, formality_id): try: found_formality = form_models.Formality.objects.get(pk=formality_id) except form_models.Formality.DoesNotExist: return HttpResponse(status=400) if request.user.type == 'counselor': found_counselor = self.get_counselor() if not found_formality.counsel.counselor == found_counselor: return HttpResponse(status=401) if request.user.type == 'counselor': found_counselor = self.get_counselor() in_progress = form_models.Formality.objects.filter( counsel__counselor=found_counselor) process_completed = form_models.Formality.objects.filter( counsel__counselor=found_counselor) process_canceled = form_models.Formality.objects.filter( counsel__counselor=found_counselor) elif request.user.type == 'agency_branch_admin': found_agent_branch_admin = user_models.AgencyAdminUser.objects.get(user=request.user) in_progress = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) process_completed = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) process_canceled = form_models.Formality.objects.filter( counsel__counselor__agency=found_agent_branch_admin.agency) elif request.user.type == 'agency_admin': found_agent_admin = user_models.AgencyHeadAdminUser.objects.get(user=request.user) in_progress = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) process_completed = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) process_canceled = form_models.Formality.objects.filter( counsel__counselor__agency__head=found_agent_admin.agency_head) else: in_progress = form_models.Formality.objects.all() process_completed = form_models.Formality.objects.all() process_canceled = form_models.Formality.objects.all() in_progress = in_progress.filter( departure_confirmed=None).filter(canceled_at=None).order_by("-created_at") process_completed = process_completed.filter(canceled_at=None).exclude( departure_confirmed=None).order_by("-departure_confirmed") process_canceled = process_canceled.exclude( canceled_at=None).order_by("-canceled_at") student_info = found_formality.counsel.student student_history = student_info.student_history school_formalities = form_models.SchoolFormality.objects.filter(formality=found_formality).order_by('school_priority') formality_form = forms.FormalityForm formset_init = form_models.FormalityFile.objects.filter(formality=found_formality).order_by('-created_at') file_formset = forms.FileFormset() datetime_form = forms.DateTimeForm cancel_enrolment_form = forms.CancelEnrolmentForm visa_interview_scheduling_form = forms.VisaReserveSchedulingForm(instance=found_formality) visa_granted_form = forms.VisaGrantedForm(instance=found_formality) visa_rejected_form = forms.VisaRejectedForm(instance=found_formality) flight_departure_form = forms.FlightDepartureForm(instance=found_formality) flight_arrive_form = forms.FlightArriveForm(instance=found_formality) return render( request, 'agent/formality.html', { "found_formality":found_formality, "in_progress":in_progress, "process_completed":process_completed, "process_canceled":process_canceled, "student_info":student_info, "student_history":student_history, "school_formalities":school_formalities, "formality_form":formality_form, "formset_init":formset_init, "file_formset":file_formset, "datetime_form":datetime_form, 'cancel_enrolment_form':cancel_enrolment_form, "visa_interview_scheduling_form":visa_interview_scheduling_form, "visa_granted_form": visa_granted_form, "visa_rejected_form": visa_rejected_form, "flight_departure_form": flight_departure_form, "flight_arrive_form": flight_arrive_form, } ) def post(self, request, formality_id): try: found_formality = form_models.Formality.objects.get(pk=formality_id) except form_models.Formality.DoesNotExist: return HttpResponse(status=400) try: found_accommodation = form_models.AccommodationFormality.objects.get(formality=found_formality) except form_models.AccommodationFormality.DoesNotExist: found_accommodation = None if request.user.type == 'counselor': found_counselor = self.get_counselor() if not found_formality.counsel.counselor == found_counselor: return HttpResponse(status=401) data = request.POST or request.FILES if data: if data.get('type') == 'registration': print(data) school_ids = data.getlist('school_id') for school_id in school_ids: try: found_school_formality = form_models.SchoolFormality.objects.get( formality=found_formality, school__id=int(school_id)) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=404) if data.get('processing_fee_'+str(school_id)): processing_fee = Decimal(data.get('processing_fee_'+str(school_id))) else: processing_fee = None if data.get('processing_fee_done_'+str(school_id)) == 'on': processing_fee_done = True else: processing_fee_done = False found_school_formality.processing_fee = processing_fee found_school_formality.processing_fee_done = processing_fee_done found_school_formality.save() school_formalities = form_models.SchoolFormality.objects.filter(formality=found_formality) processing_fee_done_list = [] for school_formality in school_formalities: processing_fee_done_list.append(school_formality.processing_fee_done) if all(processing_fee_done_list): found_formality.payment_complete=True found_formality.apply_at=datetime.now() else: found_formality.payment_complete=False found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'cancel_registration': found_formality.canceled_at = data.get('Date') if data.get('Date') else None found_formality.cancel_reason=data.get('cancel_reason') if data.get('cancel_reason') else None found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == "file_upload": formset = forms.FileFormset(request.POST, request.FILES) if formset.is_valid(): for form in formset: name = formset.cleaned_data.get('name') file_source = formset.cleaned_data.get('file_source') formality_file = form_models.FormalityFile( formality=found_formality, name=name, file_source=file_source, ) formality_file.save() return HttpResponse(status=201) else: print(formset.errors) return HttpResponse(status=400) elif data.get('type') == "enrolment_application": try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.prepared_passport = True if data.get('passport') else False found_school_formality.prepared_transcript = True if data.get('transcript') else False found_school_formality.prepared_eng_exams = True if data.get('eng_exams') else False found_school_formality.prepared_recommendation = True if data.get('recommendation') else False found_school_formality.prepared_essay = True if data.get('essay') else False found_school_formality.enrolment_apply_done = True if data.get('enrolment_apply_done') else False found_school_formality.enrolment_apply_fee = Decimal(data.get('enrolment_apply_fee')) if data.get('enrolment_apply_fee') else None found_school_formality.enrolment_apply_done_date = datetime.now() if data.get('enrolment_apply_done') else False found_school_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == "school_interview": if request.user.type == 'counselor' or request.user.type == 'agency_admin' or request.user.type == 'agency_branch_admin': return HttpResponse("You don't have permissions", status=401) try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.school_interview_date = data.get('school_interview_date') if data.get('school_interview_date') else None found_school_formality.school_interview_time = data.get('school_interview_time') if data.get('school_interview_time') else None found_school_formality.mock_interview = True if data.get('mock_interview') else False found_school_formality.school_interview_done = True if data.get('interview_done') else False found_school_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == "accepted": if request.user.type == 'counselor' or request.user.type == 'agency_admin' or request.user.type == 'agency_branch_admin': return HttpResponse("You don't have permissions", status=401) try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.acceptance_date = data.get('Date') if data.get('Date') else None found_school_formality.acceptance_letter = True if data.get('acceptance_letter') else None found_school_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'cancel_enrolment': if request.user.type == 'counselor' or request.user.type == 'agency_admin' or request.user.type == 'agency_branch_admin': return HttpResponse("You don't have permissions", status=401) try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.cancel_enrolment_date = data.get('cancel_enrolment_date') if data.get('cancel_enrolment_date') else None found_school_formality.cancel_enrolment_time = data.get('cancel_enrolment_time') if data.get('cancel_enrolment_time') else None found_school_formality.save() try: found_student = student_models.Student.objects.get(counsel__formality__school_formality=found_school_formality) except student_models.Student.DoesNotExist: return HttpResponse("Student school formality error", status=400) found_student.school=None found_student.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'i20_request': try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.i20_completed = True if data.get('i20_completed') else False found_school_formality.i20_fee = Decimal(data.get('i20_fee')) if data.get('i20_fee') else None found_school_formality.i20_receipt = True if data.get('i20_receipt') else False found_school_formality.save() if found_school_formality.i20_completed: try: found_student = student_models.Student.objects.get(counsel__formality__school_formality=found_school_formality) except student_models.Student.DoesNotExist: return HttpResponse("Student school formality error", status=400) found_student.school=found_school_formality.school found_student.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'i20_received': try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.i20_received_date = data.get('Date') if data.get('Date') else None found_school_formality.i20_copy = True if data.get('i20_copy') else False found_school_formality.i20_tracking = data.get('i20_tracking') if data.get('i20_tracking') else None found_school_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'program_fee_payment': try: found_school_formality = form_models.SchoolFormality.objects.get(pk=int(data.get('school_formality_id'))) except form_models.SchoolFormality.DoesNotExist: return HttpResponse(status=400) found_school_formality.provider_application = True if data.get('provider_application') else False found_school_formality.bge_program_application = True if data.get('bge_program_application') else False found_school_formality.immunization = True if data.get('immunization') else False found_school_formality.financial_support = True if data.get('financial_support') else False found_school_formality.program_fee_completed = True if data.get('program_fee_completed') else False found_school_formality.program_fee = Decimal(data.get('program_fee')) if data.get('program_fee') else None found_school_formality.program_fee_receipt = True if data.get('program_fee_receipt') else False found_school_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'visa_interview_scheduling': found_formality.visa_reserve_date = data.get('visa_reserve_date') if data.get('visa_reserve_date') else None found_formality.visa_reserve_time = data.get('visa_reserve_time') if data.get('visa_reserve_time') else None found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'visa_granted': found_formality.visa_granted_date = data.get('visa_granted_date') if data.get('visa_granted_date') else None found_formality.visa_granted_time = data.get('visa_granted_time') if data.get('visa_granted_time') else None found_formality.visa_copy_recieved = True if data.get('visa_copy_recieved') else False found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'visa_rejected': found_formality.visa_rejected_date = data.get('visa_rejected_date') if data.get('visa_rejected_date') else None found_formality.visa_rejected_time = data.get('visa_rejected_time') if data.get('visa_rejected_time') else None found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'flight_ticketing': found_formality.eticket_attached = True if data.get('eticket_attached') else False found_formality.air_departure_date = data.get('air_departure_date') if data.get('air_departure_date') else None found_formality.air_departure_time = data.get('air_departure_time') if data.get('air_departure_time') else None found_formality.air_departure_port = data.get('air_departure_port') if data.get('air_departure_port') else None found_formality.air_arrive_date = data.get('air_arrive_date') if data.get('air_arrive_date') else None found_formality.air_arrive_time = data.get('air_arrive_time') if data.get('air_arrive_time') else None found_formality.air_arrive_port = data.get('air_arrive_port') if data.get('air_arrive_port') else None found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'airport_pickup': found_formality.pickup_num = data.get('pickup_num') if data.get('pickup_num') else None found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'accommodation_application': if found_accommodation: found_accommodation.with_animal = True if data.get('with_animal') else False found_accommodation.with_child = True if data.get('with_child') else False found_accommodation.with_other_student = True if data.get('with_other_student') else False found_accommodation.other_preference = data.get('other_preference') if data.get('other_preference') else None found_accommodation.application_at = datetime.now() found_accommodation.save() else: accommodation = form_models.AccommodationFormality( formality = found_formality, with_animal = True if data.get('with_animal') else False, with_child = True if data.get('with_child') else False, with_other_student = True if data.get('with_other_student') else False, other_preference = data.get('other_preference') if data.get('other_preference') else None, application_at = datetime.now() ) accommodation.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'homestay_recommendation': if found_accommodation: found_accommodation.recommendation_a = request.FILES.get('recommendation_a') if request.FILES.get('recommendation_a') else None found_accommodation.recommendation_b = request.FILES.get('recommendation_b') if request.FILES.get('recommendation_b') else None found_accommodation.recommendation_c = request.FILES.get('recommendation_c') if request.FILES.get('recommendation_c') else None found_accommodation.recommendation_a_comment = data.get('recommendation_a_comment') if data.get('recommendation_a_comment') else None found_accommodation.recommendation_b_comment = data.get('recommendation_b_comment') if data.get('recommendation_b_comment') else None found_accommodation.recommendation_c_comment = data.get('recommendation_c_comment') if data.get('recommendation_c_comment') else None found_accommodation.homestay_recommendation_at = datetime.now() found_accommodation.save() else: accommodation = form_models.AccommodationFormality( formality = found_formality, recommendation_a = request.FILES.get('recommendation_a') if request.FILES.get('recommendation_a') else None, recommendation_b = request.FILES.get('recommendation_b') if request.FILES.get('recommendation_b') else None , recommendation_c = request.FILES.get('recommendation_c') if request.FILES.get('recommendation_c') else None , recommendation_a_comment = data.get('recommendation_a_comment') if data.get('recommendation_a_comment') else None, recommendation_b_comment = data.get('recommendation_b_comment') if data.get('recommendation_b_comment') else None, recommendation_c_comment = data.get('recommendation_c_comment') if data.get('recommendation_c_comment') else None, homestay_recommendation_at = datetime.now() ) accommodation.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'host_selection': if found_accommodation: found_accommodation.host_selection = data.get('host_selection') if data.get('host_selection') else None found_accommodation.host_selection_at = datetime.now() found_accommodation.save() else: accommodation = form_models.AccommodationFormality( formality = found_formality, host_selection = data.get('host_selection') if data.get('host_selection') else None, host_selection_at = datetime.now() ) accommodation.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'parents_accommodation': if found_accommodation: found_accommodation.parent_accommodation_guest_num = data.get('parent_accommodation_guest_num') if data.get('parent_accommodation_guest_num') else None found_accommodation.parent_length_of_stay = data.get('parent_length_of_stay') if data.get('parent_length_of_stay') else None found_accommodation.parent_other_preference = data.get('parent_other_preference') if data.get('parent_other_preference') else None found_accommodation.parent_accommodation_at = datetime.now() found_accommodation.save() else: accommodation = form_models.AccommodationFormality( formality = found_formality, parent_accommodation_guest_num = data.get('parent_accommodation_guest_num') if data.get('parent_accommodation_guest_num') else None, parent_length_of_stay = data.get('parent_length_of_stay') if data.get('parent_length_of_stay') else None, parent_other_preference = data.get('parent_other_preference') if data.get('parent_other_preference') else None, parent_accommodation_at = datetime.now() ) accommodation.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'departure_ot': found_formality.departure_ot = data.get('Date') if data.get('Date') else None found_formality.save() return HttpResponseRedirect(request.path_info) elif data.get('type') == 'departure_confirmed': found_formality.departure_confirmed = data.get('Date') if data.get('Date') else None found_formality.save() return HttpResponseRedirect(request.path_info) else: return HttpResponse(status=400) else: return HttpResponse(status=400) # Have to solve @login_required(login_url='/accounts/login/') def upload_files(request, formality_id): data = request.POST try: found_formality = form_models.Formality.objects.get(id=formality_id) except form_models.Formality.DoesNotExist: return HttpResponse(status=400) if data.getlist('delete_file'): for file_id in data.getlist('delete_file'): found_file = form_models.FormalityFile.objects.get(id=int(file_id)) found_file.delete() return HttpResponseRedirect("/agent/process/"+str(formality_id)) if request.FILES.get('file_source1') or request.FILES.get('file_source2') or request.FILES.get('file_source3') or request.FILES.get('file_source4') or request.FILES.get('file_source5'): file_form = form_forms.FileboxForm(request.POST,request.FILES) if file_form.is_valid(): for num in range(1, 6): file_source = request.FILES.get('file_source'+str(num)) if file_source: formality_file = form_models.FormalityFile() formality_file.formality = found_formality formality_file.name = request.POST.get('filebox'+str(num)) formality_file.file_source = file_source formality_file.save() else: return HttpResponse(status=400) return HttpResponseRedirect("/agent/process/"+str(formality_id)) @login_required(login_url='/accounts/login/') def load_states(request): country = request.GET.get('country') states = school_models.Secondary.objects.filter(school__country=country).values('state').order_by('state').distinct() state_list = [] for state in states: state_list.append(state) states = school_models.College.objects.filter(school__country=country).values('state').order_by('state').distinct() for state in states: state_list.append(state) result = json.dumps({"data":state_list}) return HttpResponse(result, content_type="application/json") @login_required(login_url='/accounts/login/') def load_schools(request): state = request.GET.get('state') if school_models.Secondary.objects.filter(state__iexact=state): schools = school_models.School.objects.filter(secondary__state__iexact=state).order_by('name') elif school_models.College.objects.filter(state__iexact=state): schools = school_models.School.objects.filter(college__state__iexact=state).order_by('name') else: return HttpResponse(status=400) data = serializers.serialize("json", schools) return HttpResponse(data, content_type="application/json") ``` #### File: osc_bge/users/models.py ```python import datetime import os from django.contrib.auth.models import AbstractUser from django.db import models from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from django.core.files.storage import FileSystemStorage from django.conf import settings from osc_bge.agent import models as agent_models from osc_bge.bge import models as bge_models def set_filename_format(now, instance, filename): """ file format setting e.g) {username}-{date}-{microsecond}{extension} username-2016-07-12-158859.png """ return "{username}-{date}-{microsecond}{extension}".format( username=instance.username, date=str(now.date()), microsecond=now.microsecond, extension=os.path.splitext(filename)[1], ) def user_directory_path(instance, filename): """ image upload directory setting e.g) images/{year}/{month}/{day}/{username}/{filename} images/2016/7/12/username/username-2016-07-12-158859.png """ now = datetime.datetime.now() path = "images/{year}/{month}/{day}/{username}/{filename}".format( year=now.year, month=now.month, day=now.day, username=instance.username, filename=set_filename_format(now, instance, filename), ) return path class User(AbstractUser): # First Name and Last Name do not cover name patterns # around the globe. USER_TYPE = ( ('bge_admin', "BGE_Admin"), ('bge_team', 'BGE_Team'), ('bge_branch_admin', "BGE_Branch_Admin"), ('bge_accountant', 'BGE_Accountant'), ('agency_admin', 'Agency_Admin'), ('agency_branch_admin', 'Agency_Branch_Admin'), ('counselor', 'Counselor'), ) address = models.CharField(max_length=255, null=True) updated_at = models.DateTimeField(auto_now=True, null=True) type = models.CharField(max_length=140, null=True, choices=USER_TYPE, blank=True) image = models.ImageField(upload_to=user_directory_path, null=True, blank=True) def __str__(self): return "{}".format(self.username) def get_absolute_url(self): return reverse("users:detail", kwargs={"username": self.username}) # Bge admission team class BgeAdminUser(models.Model): PARTITION_CHOICES = ( ('entrance', 'ENTRANCE'), ('accounting', 'ACCOUNTING'), ('admin', 'ADMIN'), ) user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True) group = models.ForeignKey(bge_models.BgeBranch, on_delete=models.SET_NULL, null=True) partition = models.CharField(max_length=255, choices=PARTITION_CHOICES, null=True) def __str__(self): return "{}".format(self.user) # Bge branch manager class BgeBranchAdminUser(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True, related_name='branch_admin') branch = models.ForeignKey(bge_models.BgeBranch, on_delete=models.SET_NULL, null=True, related_name='branch_admin') def __str__(self): return "{}".format(self.user) # Bge branch coordi class BgeBranchCoordinator(models.Model): POSITION_CHOICES = ( ('school_coordi', 'School coordinator'), ('student_coordi', 'Student coordinator'), ('host_coordi', 'Host coordinator'), ) user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True, related_name='coordinator') branch = models.ForeignKey(bge_models.BgeBranch, on_delete=models.SET_NULL, null=True, related_name='branch_coordi') position = models.CharField(max_length=255, choices=POSITION_CHOICES, null=True) def __str__(self): return "{} - {}".format(self.user, self.branch) class AgencyHeadAdminUser(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True, related_name="agency_head_admin") agency_head = models.ForeignKey(agent_models.AgencyHead, on_delete=models.SET_NULL, null=True) def __str__(self): return "{} - {}".format(self.agency_head, self.user) class AgencyAdminUser(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True, related_name="agency_admin") agency = models.ForeignKey(agent_models.Agency, on_delete=models.SET_NULL, null=True) def __str__(self): return "{} - {}".format(self.agency, self.user) class Counselor(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, primary_key=True, related_name="counselor") agency = models.ForeignKey(agent_models.Agency, on_delete=models.SET_NULL, null=True, blank=True) def __str__(self): return "{}".format(self.user) ```
{ "source": "JisuHann/Autonomous-Driving-Cart-MEME", "score": 3 }
#### File: BetaBot/script/cam_test.py ```python import cv2 import numpy as np # cap = cv2.VideoCapture(0) #카몌라 불러오기 # if cap.isOpened() == False: #카메라 열림 확인 # exit() # while True : # ret, img = cap.read() #카메라 읽기 # cv2.imshow('preview', img) #읽은 이미지 보여주기 # if cv2.waitKey(10) >= 0 : #10ms간 대기, 입력이 있으면 종료 # break # # 연결 끊기 # cap.release() # cv2.destroyAllWindows() import time from Motor import * from Ultrasonic import * PWM=Motor() ultrasonic=Ultrasonic() def forward(): PWM.setMotorModel(1000, 1000, 1000, 1000) # Forward print("The car is moving forward") time.sleep(1) def backward(): PWM.setMotorModel(-1000, -1000, -1000, -1000) # Back print("The car is going backwards") time.sleep(1) def left(): PWM.setMotorModel(-1500, -1500, 2000, 2000) # Left print("The car is turning left") time.sleep(1) def right(): PWM.setMotorModel(2000, 2000, -1500, -1500) # Right print("The car is turning right") time.sleep(1) def stop(): PWM.setMotorModel(0, 0, 0, 0) # Stop def alphabot_nav(x, y): d = ultrasonic.get_distance() print("distance: %s"%d) if d >30: if x>65: print("move right") right() time.sleep(0.1) stop() elif x<35: print("move left") left() time.sleep(0.1) stop() else: print("move forward") forward() time.sleep(0.1) stop() else: print("stop") stop() def read_rgb_image(image_name, show): rgb_image = cv2.imread(image_name) if show: cv2.imshow("RGB Image",rgb_image) return rgb_image def filter_color(rgb_image, lower_bound_color, upper_bound_color): #convert the image into the HSV color space hsv_image = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2HSV) cv2.imshow("hsv image",hsv_image) #define a mask using the lower and upper bounds of the yellow color mask = cv2.inRange(hsv_image, lower_bound_color, upper_bound_color) return mask def getContours(binary_image): #_, contours, hierarchy = cv2.findContours(binary_image, # cv2.RETR_TREE, # cv2.CHAIN_APPROX_SIMPLE) _, contours, hierarchy = cv2.findContours(binary_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours def draw_ball_contour(binary_image, rgb_image, contours): global gx, gy black_image = np.zeros([binary_image.shape[0], binary_image.shape[1],3],'uint8') for c in contours: area = cv2.contourArea(c) perimeter= cv2.arcLength(c, True) ((x, y), radius) = cv2.minEnclosingCircle(c) if (area>3000): cv2.drawContours(rgb_image, [c], -1, (150,250,150), 1) cv2.drawContours(black_image, [c], -1, (150,250,150), 1) cx, cy = get_contour_center(c) # print(cx, cy) gx = cx gy = cy cv2.circle(rgb_image, (cx,cy),(int)(radius),(0,0,255),1) cv2.circle(black_image, (cx,cy),(int)(radius),(0,0,255),1) cv2.circle(black_image, (cx,cy),5,(150,150,255),-1) #print ("Area: {}, Perimeter: {}".format(area, perimeter)) else: gx = -100 gy = -100 #print ("number of contours: {}".format(len(contours))) cv2.imshow("RGB Image Contours",rgb_image) cv2.imshow("Black Image Contours",black_image) def get_contour_center(contour): M = cv2.moments(contour) cx=-1 cy=-1 if (M['m00']!=0): cx= int(M['m10']/M['m00']) cy= int(M['m01']/M['m00']) return cx, cy def detect_ball_in_a_frame(image_frame): yellowLower =(30, 100, 50) yellowUpper = (60, 255, 255) rgb_image = image_frame binary_image_mask = filter_color(rgb_image, yellowLower, yellowUpper) contours = getContours(binary_image_mask) draw_ball_contour(binary_image_mask, rgb_image,contours) def main(): video_capture = cv2.VideoCapture(0) # video_capture = cv2.VideoCapture('video/tennis-ball-video.mp4') width = video_capture.get(3) # float `width` height = video_capture.get(4) while(True): ret, frame = video_capture.read() detect_ball_in_a_frame(frame) time.sleep(0.033) if gx>0: print((gx/width) * 100 , (gy/height) * 100) alphabot_nav((gx/width) * 100, 0) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': main() cv2.waitKey(0) cv2.destroyAllWindows() ``` #### File: BetaBot/script/move_cv.py ```python from picamera.array import PiRGBArray from picamera import PiCamera import numpy as np import cv2 import time x_pos = 0 y_pos = 0 def read_rgb_image(image_name, show): rgb_image = cv2.imread(image_name) if show: cv2.imshow("RGB Image",rgb_image) return rgb_image def filter_color(rgb_image, lower_bound_color, upper_bound_color): #convert the image into the HSV color space hsv_image = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2HSV) cv2.imshow("hsv image",hsv_image) #define a mask using the lower and upper bounds of the yellow color mask = cv2.inRange(hsv_image, lower_bound_color, upper_bound_color) return mask def getContours(binary_image): #_, contours, hierarchy = cv2.findContours(binary_image, # cv2.RETR_TREE, # cv2.CHAIN_APPROX_SIMPLE) _, contours, hierarchy = cv2.findContours(binary_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours def draw_ball_contour(binary_image, rgb_image, contours): global x_pos, y_pos black_image = np.zeros([binary_image.shape[0], binary_image.shape[1],3],'uint8') for c in contours: area = cv2.contourArea(c) print("area : ", str(area)) perimeter= cv2.arcLength(c, True) ((x, y), radius) = cv2.minEnclosingCircle(c) if (area>3000): cv2.drawContours(rgb_image, [c], -1, (150,250,150), 1) cv2.drawContours(black_image, [c], -1, (150,250,150), 1) cx, cy = get_contour_center(c) print("cx : ", str(cx/640), "cy : ", str(cy/480) ) x_pos = cx/640*100 y_pos = cy/480*100 cv2.circle(rgb_image, (cx,cy),(int)(radius),(0,0,255),1) cv2.circle(black_image, (cx,cy),(int)(radius),(0,0,255),1) cv2.circle(black_image, (cx,cy),5,(150,150,255),-1) #print ("Area: {}, Perimeter: {}".format(area, perimeter)) else: x_pos = -1 y_pos = -1 #print ("number of contours: {}".format(len(contours))) cv2.imshow("RGB Image Contours",rgb_image) cv2.imshow("Black Image Contours",black_image) def get_contour_center(contour): M = cv2.moments(contour) cx=-1 cy=-1 if (M['m00']!=0): cx= int(M['m10']/M['m00']) cy= int(M['m01']/M['m00']) return cx, cy def detect_ball_in_a_frame(image_frame): yellowLower =(0,178,103) yellowUpper = (190,255,246) rgb_image = image_frame binary_image_mask = filter_color(rgb_image, yellowLower, yellowUpper) contours = getContours(binary_image_mask) draw_ball_contour(binary_image_mask, rgb_image,contours) import time from Motor import * from Ultrasonic import * import time from Led import * led=Led() def set_led(pos, color): p = [0x20, 0x10,0x08, 0x04, 0x01, 0x02, 0x40, 0x80] if pos =="all": for i in p: led.ledIndex(i,color[0], color[1], color[2]) elif pos == "left": for i in range(4): led.ledIndex(p[i],color[0], color[1], color[2]) for i in range(4): led.ledIndex(p[i+4],0, 0, 0) elif pos == "right": for i in range(4): led.ledIndex(p[i],0, 0, 0) for i in range(4): led.ledIndex(p[i+4],color[0], color[1], color[2]) # time.sleep(sleep_time) PWM=Motor() ultrasonic=Ultrasonic() sleep_time=1/32 disatance_tolerance = 15 motor_speed = 0 def forward(): PWM.setMotorModel(500, 500, 500, 500) # Forward set_led("all", [0,20,0]) print("The car is moving forward") time.sleep(sleep_time) def backward(): PWM.setMotorModel(-500, -500, -500, -500) # Back print("The car is going backwards") time.sleep(sleep_time) def left(): PWM.setMotorModel(-750, -750, 1000, 1000) # Left print("The car is turning left") set_led("left", [0,10,0]) time.sleep(sleep_time) def right(): PWM.setMotorModel(1000, 1000, -750, -750) # Right set_led("right", [0,10,0]) print("The car is turning right") time.sleep(sleep_time) def stop_distance(): PWM.setMotorModel(0, 0, 0, 0) # Stop set_led("all", [10,0,0]) print("stop due to distance") def stop_noone(): PWM.setMotorModel(0, 0, 0, 0) # Stop set_led("all", [10,10,0]) print("stop du to no one detected") def alphabot_nav(x, y): d = ultrasonic.get_distance() print("distance: %s"%d) if d< disatance_tolerance: stop_distance() elif d >disatance_tolerance and x>=0 and y>=0: if x>65: print("move right") right() # stop() elif x<35: print("move left") left() # stop() else: print("move forward") forward() # stop() else: stop_noone() def main(): # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (640, 480) camera.framerate = 32 rawCapture = PiRGBArray(camera, size=(640, 480)) # allow the camera to warmup time.sleep(0.1) for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text detect_ball_in_a_frame(frame.array) time.sleep(sleep_time) alphabot_nav(x_pos, y_pos) # image = frame.array # # show the frame # cv2.imshow("Frame", image) key = cv2.waitKey(1) & 0xFF # clear the stream in preparation for the next frame rawCapture.truncate(0) # if the `q` key was pressed, break from the loop if key == ord("q"): break cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': main() cv2.waitKey(0) cv2.destroyAllWindows() ``` #### File: Autonomous-Driving-Cart-MEME/keyword_spotting/real_time.py ```python from queue import Queue import sys import matplotlib.mlab as mlab import matplotlib.pyplot as plt import time import pyaudio import numpy as np data_c = None # Use 1101 for 2sec input audio Tx = 5511 # The number of time steps input to the model from the spectrogram n_freq = 101 # Number of frequencies input to the model at each time step of the spectrogram # Use 272 for 2sec input audio Ty = 1375# The number of time steps in the output of our model """## Build the model""" from keras.models import load_model model = load_model('./keyword_spotting/tr_model_t.h5') #model = load_model('./tr_model_t.h5') def detect_triggerword_spectrum(x): x = x.swapaxes(0,1) x = np.expand_dims(x, axis=0) predictions = model.predict(x) return predictions.reshape(-1) def has_new_triggerword(predictions, chunk_duration, feed_duration, threshold=0.5): predictions = predictions > threshold chunk_predictions_samples = int(len(predictions) * chunk_duration / feed_duration) chunk_predictions = predictions[-chunk_predictions_samples:] level = chunk_predictions[0] for pred in chunk_predictions: if pred > level: return True else: level = pred return False """# Record audio stream from mic""" chunk_duration = 0.5 # Each read length in seconds from mic. fs = 44100 # sampling rate for mic chunk_samples = int(fs * chunk_duration) # Each read length in number of samples. # Each model input data duration in seconds, need to be an integer numbers of chunk_duration feed_duration = 10 feed_samples = int(fs * feed_duration) assert feed_duration/chunk_duration == int(feed_duration/chunk_duration) def get_spectrogram(data): nfft = 200 # Length of each window segment fs = 8000 # Sampling frequencies noverlap = 120 # Overlap between windows nchannels = data.ndim if nchannels == 1: pxx, _, _ = mlab.specgram(data, nfft, fs, noverlap = noverlap) elif nchannels == 2: pxx, _, _ = mlab.specgram(data[:,0], nfft, fs, noverlap = noverlap) return pxx def plt_spectrogram(data): nfft = 200 # Length of each window segment fs = 8000 # Sampling frequencies noverlap = 120 # Overlap between windows nchannels = data.ndim if nchannels == 1: pxx, _, _, _ = plt.specgram(data, nfft, fs, noverlap = noverlap) elif nchannels == 2: pxx, _, _, _ = plt.specgram(data[:,0], nfft, fs, noverlap = noverlap) return pxx """### Audio stream""" def get_audio_input_stream(callback): stream = pyaudio.PyAudio().open( format=pyaudio.paInt16, channels=1, rate=fs, input=True, frames_per_buffer=chunk_samples, input_device_index=0, stream_callback=callback) return stream # Queue to communiate between the audio callback and main thread q = Queue() run = True silence_threshold = 100 timeout = 0.5*60 # 0.5 minutes from now # Data buffer for the input wavform data = np.zeros(feed_samples, dtype='int16') def callback(in_data, frame_count, time_info, status): global run, timeout, data, silence_threshold if time.time() > timeout: run = False data0 = np.frombuffer(in_data, dtype='int16') if np.abs(data0).mean() < silence_threshold: sys.stdout.write('------------dddd-----') return (in_data, pyaudio.paContinue) else: sys.stdout.write('.............dddd....') data = np.append(data,data0) if len(data) > feed_samples: data = data[-feed_samples:] # Process data async by sending a queue. q.put(data) return (in_data, pyaudio.paContinue) def check_where(): stream = get_audio_input_stream(callback) stream.start_stream() count=0 global run, timeout try: while count<timeout: data = q.get() spectrum = get_spectrogram(data) preds = detect_triggerword_spectrum(spectrum) new_trigger = has_new_triggerword(preds, chunk_duration, feed_duration) if new_trigger: print('I CAN HEAR TRIGGER##################') else: print('I CAN HEAR NOTHING$$$$$$$$$$$$$$$$$$') #time.sleep(1) count = count+1 except (KeyboardInterrupt, SystemExit): stream.stop_stream() stream.close() timeout = time.time() run = False stream.stop_stream() stream.close() ``` #### File: Autonomous-Driving-Cart-MEME/ros_integration/deepsort_ros.py ```python import tf import rospy from geometry_msgs.msg import Twist, PoseWithCovarianceStamped from nav_msgs.msg import Odometry import time, math status_code = 0 front_ultra = 0 def callback(msg): # follows the conventional x, y, poses global status_code, front_ultra status_code = msg.pose.pose.position.x front_ultra = msg.pose.pose.position.y print('status code:',str(status_code), 'front ultrasonic distance:', front_ultra) def publish_cmd_vel(x, y): goal = 0.6 speed = 0.01 publisher = rospy.Publisher('result_cmd_vel', Twist, queue_size=1) cmd = Twist() cmd.linear.x = x cmd.linear.y = y cmd.linear.z = 0 rospy.sleep(1) seconds = time.time() if front_ultra < 10: print('Too close to object in front') else: while time.time() - seconds < goal / speed: publisher.publish(cmd) def deepsort_result_to_ros(x, y): rospy.init_node('deepsort_status') odom_sub = rospy.Subscriber('/betabot_status', Odometry, callback) # if __name__ == "__main__": # rospy.init_node('deepsort_result') # odom_sub = rospy.Subscriber('/betabot_status', Odometry, callback) # publish_cmd_vel(x, y) ```
{ "source": "JisuHann/Pytorch-Model-implementation", "score": 2 }
#### File: Pytorch-Model-implementation/mask-rcnn/plain_test.py ```python from detectron2.detectron2.config import get_cfg from detectron2.detectron2.data import MetadataCatalog from detectron2.detectron2.engine import DefaultPredictor from detectron2.detectron2.utils.visualizer import Visualizer from utils.utils import * cfg = get_cfg() def test_setup(): cfg.merge_from_file("./detectron/detectron2_repo/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") cfg.DATASETS.TRAIN = ("book",) cfg.DATASETS.TEST = () # no metrics implemented for this dataset cfg.DATALOADER.NUM_WORKERS = 2 cfg.MODEL.WEIGHTS = "detectron://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl" # initialize from model zoo cfg.SOLVER.IMS_PER_BATCH = 2 cfg.SOLVER.BASE_LR = 0.001 cfg.SOLVER.MAX_ITER = 100 # 300 iterations seems good enough, but you can certainly train longer cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # faster, and good enough for this toy dataset cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # 1 classes (person) cfg.MODEL.DEVICE = 'cpu' os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) cfg.MODEL.WEIGHTS = "./detectron/output/model_final.pth" cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set the testing threshold for this model cfg.DATASETS.TEST = ("book",) global predictor predictor = DefaultPredictor(cfg) # model predict image def segmentation_predict(path): image = cv2.imread(path) outputs = predictor(image) # noqa v = Visualizer(image[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) # noqa v = v.draw_instance_predictions(outputs["instances"].to("cpu")) img = Image.fromarray(v.get_image()[:, :, ::-1]) img.show() # show prediction result mask_array = outputs['instances'][outputs['instances'].pred_classes == 0].pred_masks.numpy() num_instances = mask_array.shape[0] mask_array = np.moveaxis(mask_array, 0, -1) mask_array_instance = [] output = np.zeros_like(image) for i in range(num_instances): mask_array_instance.append(mask_array[:, :, i:(i + 1)]) output = np.where(mask_array_instance[i] == True, i+1, output) im = Image.fromarray(output).convert('L') return test_setup() ``` #### File: Pytorch-Model-implementation/U-Net/models.py ```python from utils import * # 1x1 convolution def conv1x1(in_channels, out_channels, stride, padding): model = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=padding), nn.BatchNorm2d(out_channels) ) return model # 3x3 convolution def conv3x3(in_channels, out_channels, stride, padding): model = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=padding), nn.BatchNorm2d(out_channels) ) return model class ResidualBlock(nn.Module): def __init__(self, in_channels, middle_channels, out_channels, downsample=False): super(ResidualBlock, self).__init__() self.downsample = downsample if self.downsample: self.layer = nn.Sequential( conv1x1(in_channels, middle_channels, 2, 0), conv3x3(middle_channels, middle_channels, 1, 1), conv1x1(middle_channels, out_channels,1, 0) ) self.downsize = conv1x1(in_channels, out_channels, 2, 0) else: self.layer = nn.Sequential( conv1x1(in_channels, middle_channels, 1, 0), conv3x3(middle_channels, middle_channels, 1, 1), conv1x1(middle_channels, out_channels, 1, 0) ) self.make_equal_channel = conv1x1(in_channels, out_channels, 1, 0) self.activation = nn.ReLU(inplace=True) def forward(self, x): if self.downsample: out = self.layer(x) x = self.downsize(x) return self.activation(out + x) else: out = self.layer(x) if x.size() is not out.size(): x = self.make_equal_channel(x) return self.activation(out + x) def conv(in_channels, out_channels): return nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=1), # 3: kernel size nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) class UNetWithResnet50Encoder(nn.Module): def __init__(self, n_classes=50): super().__init__() self.n_classes = n_classes self.layer1 = nn.Sequential( nn.Conv2d(9, 64, 7, 2, 3), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.pool = nn.MaxPool2d(3, 2, 1, return_indices=True) self.layer2 = nn.Sequential( ResidualBlock(64, 64, 128, False), ResidualBlock(128, 64, 128, False), ResidualBlock(128, 64, 128, True) ) self.bridge = conv(128, 128) self.UnetConv1 = conv(256, 64) self.UpConv1 = nn.Conv2d(128, 128, 3, padding=1) self.upconv2_1 = nn.ConvTranspose2d(256, 64, 3, 2, 1) self.upconv2_2 = nn.Conv2d(64, 64, 3, padding=1) self.unpool = nn.MaxUnpool2d(3, 2, 1) self.UnetConv2_1 = nn.ConvTranspose2d(64, 64, 3, 2, 1) self.UnetConv2_2 = nn.ConvTranspose2d(128, 128, 3, 2, 1) self.UnetConv2_3 = nn.Conv2d(128, 64, 3, padding=1) #self.UnetConv3 = nn.Conv2d(64, self.n_classes, kernel_size=1, stride=1) self.UnetConv3 = nn.Conv2d(64, n_classes, kernel_size=1, stride=1) def forward(self, x, with_output_feature_map=False): #x: torch.Size([32, 9, 512, 512]) out1 = self.layer1(x) out1, indices = self.pool(out1) out2 = self.layer2(out1)#torch.Size([32, 128, 64, 64]) x = self.bridge(out2) #torch.Size([32, 512, 64, 64]) x = self.UpConv1(x) x = torch.cat((x, out2), dim=1) #torch.Size([32, 256, 64, 64]) x = self.upconv2_1(x, output_size=torch.Size([x.size(0),64,64,64])) x = self.upconv2_2(x) x = torch.cat((x, out1), dim=1) x = self.UnetConv2_2(x, output_size=torch.Size([x.size(0), 128, 128, 128])) x = self.UnetConv2_2(x, output_size=torch.Size([x.size(0), 128, 256, 256])) x = self.UnetConv2_3(x) x = self.UnetConv3(x) return x ``` #### File: Pytorch-Model-implementation/U-Net/utils.py ```python import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches import torch from torch import nn from torch import optim import torch.optim as optim import torch.nn.functional as F from torchvision import transforms, models from sklearn.model_selection import train_test_split from torch.autograd import Variable import torch.utils.data as data import pandas as pd import os from PIL import Image from torch.utils.data import DataLoader, TensorDataset import math import random import cv2 import numpy as np from cv2.cv2 import imread from torch.utils.data import Dataset import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms import PIL.Image as PIL from torch.utils.data import DataLoader from torch.optim.lr_scheduler import StepLR def createFolder(dir): try: if not os.path.exists(dir): os.makedirs(dir) except OSError as err: print("OS error: {0}".format(err)) ```
{ "source": "jisujeong/studio", "score": 2 }
#### File: function/statistics/ttest.py ```python from brightics.common.report import ReportBuilder, strip_margin, plt2MD, \ pandasDF2MD, keyValues2MD from brightics.function.utils import _model_dict from brightics.common.utils import check_required_parameters import numpy as np import pandas as pd import math from math import sqrt import seaborn as sns import matplotlib.pyplot as plt import scipy.stats from scipy.stats import t from scipy import mean from statsmodels.stats.weightstats import ttest_ind def one_sample_ttest(table, input_cols, alternatives, hypothesized_mean=0, conf_level=0.95): n = len(table) degree = n - 1 alpha = 1.0 - conf_level out_table = pd.DataFrame() # statistics statistics = "t statistic, t distribution with %d degrees of freedom under the null hypothesis." % degree # Print model rb = ReportBuilder() rb.addMD(strip_margin(""" ## One Sameple T Test Result | - Statistics = {s} | - Hypothesized mean = {h} | - Confidence level = {cl} """.format(s=statistics, h=hypothesized_mean, cl=conf_level))) for input_col in input_cols: # model alter_list = [] p_list = [] CI_list = [] # data data = input_col # estimates result = stats.ttest_1samp(table[input_col], hypothesized_mean) estimates = result[0] cols = ['data', 'alternative_hypothesis', 'statistics', 'estimates', 'p_value', 'confidence_level', 'lower_confidence_interval', 'upper_confidence_interval'] for i in alternatives: if (i == 'Greater'): # alternative hypothesis alternative_hypothesis = "true mean >" + str(hypothesized_mean) # p-values p_value = 1.0 - t.cdf(estimates, degree) # confidence interval - greater critical_val = t.ppf(1.0 - alpha, degree) width = critical_val * np.std(table[input_col]) / math.sqrt(n - 1) lower_conf_interval = np.mean(table[input_col]) - width upper_conf_interval = math.inf # model alter = 'true mean > {hypothesized_mean}'.format(hypothesized_mean=hypothesized_mean) alter_list.append(alter) p_list.append(p_value) conf_interval = '({lower_conf_interval}, {upper_conf_interval})'.format(lower_conf_interval=lower_conf_interval, upper_conf_interval=upper_conf_interval) CI_list.append(conf_interval) # out_table list = [] list.append([data, alternative_hypothesis, statistics, estimates, p_value, conf_level, lower_conf_interval, upper_conf_interval]) out_table = out_table.append(pd.DataFrame(list, columns=cols)) if (i == 'Less'): # alternative hypothesis alternative_hypothesis = "true mean <" + str(hypothesized_mean) p_value = t.cdf(estimates, degree) # confidence interval - less critical_val = t.ppf(1.0 - alpha, degree) width = critical_val * np.std(table[input_col]) / math.sqrt(n - 1) lower_conf_interval = -math.inf upper_conf_interval = np.mean(table[input_col]) + width # model alter = 'true mean < {hypothesized_mean}'.format(hypothesized_mean=hypothesized_mean) alter_list.append(alter) p_list.append(p_value) conf_interval = '({lower_conf_interval}, {upper_conf_interval})'.format(lower_conf_interval=lower_conf_interval, upper_conf_interval=upper_conf_interval) CI_list.append(conf_interval) # out_table list = [] list.append([data, alternative_hypothesis, statistics, estimates, p_value, conf_level, lower_conf_interval, upper_conf_interval]) out_table = out_table.append(pd.DataFrame(list, columns=cols)) if (i == 'Two Sided'): # alternative hypothesis alternative_hypothesis = "true mean !=" + str(hypothesized_mean) # p_value = (1.0 - t.cdf(abs(estimates), degree)) * 2.0 if (estimates >= 0): p_value = 2.0 * t.cdf(-estimates, degree) else: p_value = 2.0 * t.cdf(estimates, degree) # confidence interval - two-sided critical_val = t.ppf(1.0 - alpha / 2, degree) width = critical_val * np.std(table[input_col]) / math.sqrt(n - 1) lower_conf_interval = np.mean(table[input_col]) - width upper_conf_interval = np.mean(table[input_col]) + width # model alter = 'true mean != {hypothesized_mean}'.format(hypothesized_mean=hypothesized_mean) alter_list.append(alter) p_list.append(p_value) conf_interval = '({lower_conf_interval}, {upper_conf_interval})'.format(lower_conf_interval=lower_conf_interval, upper_conf_interval=upper_conf_interval) CI_list.append(conf_interval) # out_table list = [] list.append([data, alternative_hypothesis, statistics, estimates, p_value, conf_level, lower_conf_interval, upper_conf_interval]) out_table = out_table.append(pd.DataFrame(list, columns=cols)) # Print model conf_level_percent = conf_level * 100 result_table = pd.DataFrame.from_items([ ['alternative hypothesis', alter_list], ['p-value', p_list], ['%g%% confidence Interval' % conf_level_percent, CI_list] ]) result = dict() result['result_table'] = result_table rb.addMD(strip_margin(""" ### Data = {input_col} | - Estimates = {estimates} | | {result_table} """.format(input_col=input_col, estimates=estimates, result_table=pandasDF2MD(result_table)))) # print model result['report'] = rb.get() return {'out_table':out_table, 'model':result} def two_sample_ttest_for_stacked_data(table, response_cols, factor_col, alternatives, first, second, hypo_diff=0, equal_vari='pooled', confi_level=0.95): if(type(table[factor_col][0]) == str): table_first = table[table[factor_col] == first] table_second = table[table[factor_col] == second] else: table_first = table[table[factor_col] == float(first)] table_second = table[table[factor_col] == float(second)] tmp_table = [] rb = ReportBuilder() rb.addMD(strip_margin(""" ## Two Sample T Test for Stacked Data Result | - Hypothesized mean = {hypo_diff} | - Confidence level = {confi_level} """.format(hypo_diff=hypo_diff, confi_level=confi_level))) for response_col in response_cols: tmp_model = [] number1 = len(table_first[response_col]) number2 = len(table_second[response_col]) mean1 = (table_first[response_col]).mean() mean2 = (table_second[response_col]).mean() std1 = (table_first[response_col]).std() std2 = (table_second[response_col]).std() start_auto = 0 if(equal_vari == 'auto'): start_auto = 1 f_value = (std1 ** 2) / (std2 ** 2) f_test_p_value_tmp = scipy.stats.f.cdf(1 / f_value, number1 - 1, number2 - 1) if(f_test_p_value_tmp > 0.5): f_test_p_value = (1 - f_test_p_value_tmp) * 2 else: f_test_p_value = f_test_p_value_tmp * 2 if(f_test_p_value < 0.05): equal_vari = 'unequal' else: equal_vari = 'pooled' ttestresult = ttest_ind(table_first[response_col], table_second[response_col], 'larger', usevar=equal_vari, value=hypo_diff) if 'larger' in alternatives: ttestresult = ttest_ind(table_first[response_col], table_second[response_col], 'larger', usevar=equal_vari, value=hypo_diff) df = ttestresult[2] if(equal_vari == 'pooled'): std_number1number2 = sqrt(((number1 - 1) * (std1) ** 2 + (number2 - 1) * (std2) ** 2) / (number1 + number2 - 2)) margin = t.ppf((confi_level) , df) * std_number1number2 * sqrt(1 / number1 + 1 / number2) if(equal_vari == 'unequal'): margin = t.ppf((confi_level) , df) * sqrt(std1 ** 2 / (number1) + std2 ** 2 / (number2)) tmp_model += [['true difference in means > 0.0'] + [ttestresult[1]] + [(mean1 - mean2 - margin, math.inf)]] tmp_table += [['%s by %s(%s,%s)' % (response_col, factor_col, first, second)] + ['true difference in means > 0.0'] + ['t statistic, t distribution with %f degrees of freedom under the null hypothesis' % ttestresult[2]] + [ttestresult[0]] + [ttestresult[1]] + [confi_level] + [mean1 - mean2 - margin] + [math.inf]] if 'smaller' in alternatives: ttestresult = ttest_ind(table_first[response_col], table_second[response_col], 'smaller', usevar=equal_vari, value=hypo_diff) df = ttestresult[2] if(equal_vari == 'pooled'): std_number1number2 = sqrt(((number1 - 1) * (std1) ** 2 + (number2 - 1) * (std2) ** 2) / (number1 + number2 - 2)) margin = t.ppf((confi_level) , df) * std_number1number2 * sqrt(1 / number1 + 1 / number2) if(equal_vari == 'unequal'): margin = t.ppf((confi_level) , df) * sqrt(std1 ** 2 / (number1) + std2 ** 2 / (number2)) tmp_model += [['true difference in means < 0.0'] + [ttestresult[1]] + [(-math.inf, mean1 - mean2 + margin)]] tmp_table += [['%s by %s(%s,%s)' % (response_col, factor_col, first, second)] + ['true difference in means < 0.0'] + ['t statistic, t distribution with %f degrees of freedom under the null hypothesis' % ttestresult[2]] + [ttestresult[0]] + [ttestresult[1]] + [confi_level] + [-math.inf] + [mean1 - mean2 + margin]] if 'two-sided' in alternatives: ttestresult = ttest_ind(table_first[response_col], table_second[response_col], 'two-sided', usevar=equal_vari, value=hypo_diff) df = ttestresult[2] if(equal_vari == 'pooled'): std_number1number2 = sqrt(((number1 - 1) * (std1) ** 2 + (number2 - 1) * (std2) ** 2) / (number1 + number2 - 2)) margin = t.ppf((confi_level) , df) * std_number1number2 * sqrt(1 / number1 + 1 / number2) if(equal_vari == 'unequal'): margin = t.ppf((confi_level) , df) * sqrt(std1 ** 2 / (number1) + std2 ** 2 / (number2)) tmp_model += [['true difference in means != 0.0'] + [ttestresult[1]] + [(mean1 - mean2 - margin, mean1 - mean2 + margin)]] tmp_table += [['%s by %s(%s,%s)' % (response_col, factor_col, first, second)] + ['true difference in means != 0.0'] + ['t statistic, t distribution with %f degrees of freedom under the null hypothesis' % ttestresult[2]] + [ttestresult[0]] + [ttestresult[1]] + [confi_level] + [mean1 - mean2 - margin] + [mean1 - mean2 + margin]] result_model = pd.DataFrame.from_records(tmp_model) result_model.columns = ['alternatives', 'p values', '%g%% confidence interval' % (confi_level * 100)] rb.addMD(strip_margin(""" | #### Data = {response_col} | - Statistics = t statistic, t distribution with {ttestresult2} degrees of freedom under the null hypothesis | | {result_model} | """.format(ttestresult2=ttestresult[2], response_col=response_col, ttestresult0=ttestresult[0], result_model=pandasDF2MD(result_model)))) if(start_auto == 1): equal_vari = 'auto' result = pd.DataFrame.from_records(tmp_table) result.columns = ['data', 'alternative_hypothesis', 'statistics', 'estimates', 'p_value', 'confidence_level', 'lower_confidence_interval', 'upper_confidence_interval'] model = dict() model['report'] = rb.get() return {'out_table' : result, 'model' : model} def paired_ttest(table, first_column, second_column, alternative, hypothesized_difference=0, confidence_level=0.95): df = len(table) - 1 diff_mean = abs(table[first_column] - table[second_column]).mean() std_dev = np.sqrt(((diff_mean - abs(table[first_column] - table[second_column])) * (diff_mean - abs(table[first_column] - table[second_column]))).mean()) ans = stats.ttest_rel(table[first_column], table[second_column] + hypothesized_difference) t_value = ans[0] p_value_ul = ans[1] p_value_u = stats.t.sf(t_value, 149) p_value_l = stats.t.cdf(t_value, 149) left_u = diff_mean - std_dev * stats.t.isf((1 - confidence_level), df) / np.sqrt(df) right_u = np.Infinity left_l = -np.Infinity right_l = diff_mean + std_dev * stats.t.isf((1 - confidence_level), df) / np.sqrt(df) left_ul = diff_mean - std_dev * stats.t.isf((1 - confidence_level) / 2, df) / np.sqrt(df) right_ul = diff_mean + std_dev * stats.t.isf((1 - confidence_level) / 2, df) / np.sqrt(df) result_value_u = [{'data' : first_column + " , " + second_column, 'alternative_hypothesis' : "true difference in means > " + str(hypothesized_difference), 'statistics' : "t statistics, t distribution with " + str(df) + " degrees of freedom under the null hypothesis", 'estimates' : t_value, 'p_value' : p_value_u, 'confidence_level' : confidence_level, 'low_confidence_interval' : left_u, 'upper_confidence_interval' : right_u}] result_value_l = [{'data' : first_column + " , " + second_column, 'alternative_hypothesis' : "true difference in means < " + str(hypothesized_difference), 'statistics' : "t statistics, t distribution with " + str(df) + " degrees of freedom under the null hypothesis", 'estimates' : t_value, 'p_value' : p_value_l, 'confidence_level' : confidence_level, 'low_confidence_interval' : left_l, 'upper_confidence_interval' : right_l}] result_value_ul = [{'data' : first_column + " , " + second_column, 'alternative_hypothesis' : "true difference in means != " + str(hypothesized_difference), 'statistics' : "t statistics, t distribution with " + str(df) + " degrees of freedom under the null hypothesis", 'estimates' : t_value, 'p_value' : p_value_ul, 'confidence_level' : confidence_level, 'low_confidence_interval' : left_ul, 'upper_confidence_interval' : right_ul}] df_result = pd.DataFrame() df_u = pd.DataFrame(result_value_u, columns=['data', 'alternative_hypothesis', 'statistics', 'estimates', 'p_value', 'confidence_level', 'low_confidence_interval', 'upper_confidence_interval']) df_l = pd.DataFrame(result_value_l, columns=['data', 'alternative_hypothesis', 'statistics', 'estimates', 'p_value', 'confidence_level', 'low_confidence_interval', 'upper_confidence_interval']) df_ul = pd.DataFrame(result_value_ul, columns=['data', 'alternative_hypothesis', 'statistics', 'estimates', 'p_value', 'confidence_level', 'low_confidence_interval', 'upper_confidence_interval']) if 'greater' in alternative: df_result = df_result.append(df_u, ignore_index=True) if 'less' in alternative: df_result = df_result.append(df_l, ignore_index=True) if 'twosided' in alternative: df_result = df_result.append(df_ul, ignore_index=True) params = {'Input columns' : first_column + ", " + second_column, 'Hypothesized difference' : str(hypothesized_difference), 'Confidence level' : str(confidence_level)} rb = ReportBuilder() rb.addMD(strip_margin(""" | ## Paired T Test Result | |df|mean_difference|standard_deviation|t_value |--|--|--|-- |{deg_f}|{dm}|{sd}|{tv} """.format(deg_f=df, dm=diff_mean, sd=std_dev, tv=t_value, params=dict2MD(params)))) if 'greater' in alternative: rb.addMD(strip_margin(""" | - H0 : true diffrence in means is less than or equal to {hd}. | - H1 : true diffrence in means is larger than {hd}. | |p_value|confidence_level|confidence_interval |--|--|-- |{pvu}|{con_lv}|({l_u}, {r_u}) | """.format(pvu=p_value_u, hd=str(hypothesized_difference), con_lv=str(confidence_level), l_u=left_u, r_u=right_u))) if 'less' in alternative: rb.addMD(strip_margin(""" | - H0 : true diffrence in means is larger than or equal to {hd}. | - H1 : true diffrence in means is less than {hd}. | |p_value|confidence_level|confidence_interval |--|--|-- |{pvl}|{con_lv}|({l_l}, {r_l}) | """.format(pvl=p_value_l, hd=str(hypothesized_difference), con_lv=str(confidence_level), l_l=left_l, r_l=right_l))) if 'twosided' in alternative: rb.addMD(strip_margin(""" | - H0 : true diffrence in means is equal to {hd}. | - H1 : true diffrence in means is not equal to {hd}. | |p_value|confidence_level|confidence_interval |--|--|-- |{pvul}|{con_lv}|({l_ul}, {r_ul}) | """.format(pvul=p_value_ul, hd=str(hypothesized_difference), con_lv=str(confidence_level), l_ul=left_ul, r_ul=right_ul))) model = dict() model['report'] = rb.get() return{'out_table':df_result, 'model':model} ```
{ "source": "jisuk500/ML_learning", "score": 4 }
#### File: AlphaZero_book/chap2/2-2.py ```python print("Hello World!") # 2-3-2 변수와 연산자 a=1 b=2 c = a + b print(a,b,c) #%% # 2-3-2 연산자 a = 5 s = 'a가 10 이상' if a>= 10 else 'a는 10 미만' print(s) #%% # 2-3-3 문자열 # 여러 행의 문자열 text = '''텍스트1번째, 텍스트2번째''' print(text) # 문자열 추출 text = "Hello World" print(text[1:3]) print(text[:5]) print(text[6:]) # 문자열에 변수 대입 a = 'test' b = 100 c = 3.14159 print('문자열 = {}'.format(a)) print('부동소수점수(소수점둘째자리까지 = {:.2f}'.format(c)) print("여러변수 = {},{},{}".format(a,b,c)) #%% # 2-3-4 리스트 my_list = [1,2,3,4] print(my_list) print(my_list[0]) print(my_list[1:3]) # 리스트 엘리먼트 변경 my_list[1:4] = [20,30] print(my_list) # range()를 활용한 리스트 생성 print(list(range(10))) print(list(range(1,7))) print(list(range(1,10,2))) #%% # 2-3-5 딕셔너리 # 딕셔너리 생성과 엘리먼트 취득 my_dic = {'apple':300, 'cherry':200, 'strawberry':3000} print(my_dic) # 딕셔너리 엘리먼트 추가 및 삭제 my_dic['apple'] = 400 print(my_dic) #%% # 2-3-6 튜플 my_tuple = (1,2,3,4) print(my_tuple[0]) #%% # 2-3-7 제어 구문 # 이프문 print('이프문') num = 5 if num >= 10: print("10이상") else: print("10이하") # 여러 이프문 print('여러이프문') num = 10 if num <5 : print("5") elif num >=5: print("55") else: print("none") # for 반복문 print("for 반복문") for n in [1,2,3]: print(n) print(n*10) for n in range(5): print(n) # while 반복문 print("while 반복문") i = 0 while i<20: i+=1 if i % 2 == 0: continue if i % 3 == 0: print(i) # enumerate 열거형 print("enumerate 열거형") for num, fruit in enumerate(['a','b','c']): print("{}:{}".format(num,fruit)) # 리스트 컴프리헨션 print("리스트 컴프리헨션") my_list = [] for x in range(10): my_list.append(x*2) print(my_list) my_list2 = [x*2for x in range(10)] print(my_list2) #%% # 2-3-8 함수와 람다식 # 함수 print("함수") def radian(x): return x / 180 * 3.14159 for x in range(0,360,90): print("각도 : {} / 라디안 : {}".format(x,radian(x))) # 람다식 print("람다식") lambda_radian = (lambda x:x/180*3.14159) for x in range(0,360,90): print("각도 : {} / 라디안 : {}".format(x,lambda_radian(x))) #%% # 클래스 print("클래스") class HelloClass: def __init__(self,msg): self.msg = msg def output(self): print(self.msg) hello = HelloClass('Hello World') hello.output() #%% # 2-3-10 패키지 임포트와 컴포넌트 직접 호출 #패키지 임포트 print("패키지 임포트") import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) print(a) #컴포넌트 직접 호출 print("컴포넌트 직접 호출") from numpy import array a = array([[1,2,3],[4,5,6],[7,8,9]]) print(a) ``` #### File: AlphaZero_book/chap6/dual_network.py ```python from tensorflow.keras.layers import Activation, Add, BatchNormalization, Conv2D, Dense, GlobalAveragePooling2D, Input from tensorflow.keras.models import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras import backend as K import os #%% 파라미터 준비 DN_FILTERS = 128 # 컨볼루셔널 레이어 커널 수(오리지널 256) DN_RESIDUAL_NUM = 16 # 레지듀얼 블록 수 (오리지널 19) DN_INPUT_SHAPE = (3,3,2) # 입력 형태 DN_OUTPUT_SIZE = 9 # 행동 수(배치수*(3x3)) #%% 컨볼루셔널 레이어 생성 def conv(filters): return Conv2D(filters,3,padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(0.0005)) #%% 레지듀얼 블록 생성 def residual_block(): def f(x): sc = x x = conv(DN_FILTERS)(x) x = BatchNormalization()(x) x = conv(DN_FILTERS)(x) x = BatchNormalization()(x) x = Add()([x,sc]) x = Activation('relu')(x) return x return f #%% 듀얼 네트워크 생성 def dual_network(model_path="./model/best.h5"): # 모델 생성이 완료된 경우, 처리하지 않음 if os.path.exists(model_path): return # 입력 레이어 input = Input(shape=DN_INPUT_SHAPE) # 컨볼루셔널 레이어 x = conv(DN_FILTERS)(input) x = BatchNormalization()(x) x = Activation('relu')(x) # 레지듀얼 블록 16개 for i in range(DN_RESIDUAL_NUM): x = residual_block()(x) # 풀링 레이어 x = GlobalAveragePooling2D()(x) # 정책 출력 p = Dense(DN_OUTPUT_SIZE, kernel_regularizer=l2(0.0005), activation='softmax', name='pi')(x) # 가치 출력 v = Dense(1, kernel_regularizer=l2(0.0005))(x) v = Activation('tanh',name='v')(v) # 모델 생성 model = Model(inputs=input, outputs=[p,v]) # 모델 저장 model.save(model_path) # 베스트 플레이어 모델 return model # # 모델 삭제 # K.clear_session() # del model #%% 동작 확인 if __name__ == "__main__": m = dual_network() ``` #### File: AlphaZero_book/chap6/evaluate_best_player.py ```python from game import State, random_action, alpha_beta_action, mcts_action from pv_mcts import pv_mcts_action from tensorflow.keras.models import load_model from tensorflow.keras import backend as K from pathlib import Path import numpy as np #%% 파라미터 준비 EP_GAME_COUNT = 10 # 평가 1회당 게임 수 #%% 선 수를 둔 플레이어 포인트 def first_player_point(ended_state): # 1: 선 수 플레이어 승리, 0: 선 수 플레이어 패배, 0.5: 무승부 if ended_state.is_lose(): return 0 if ended_state.is_first_player() else 1 return 0.5 #%% 게임 1회 실행 def play(next_actions): # 상태 생성 state = State() # 게임 종료 시까지 반복 while True: # 게임 종료 시 if state.is_done(): break # 행동 얻기 next_action = next_actions[0] if state.is_first_player() else next_actions[1] action = next_action(state) # 다음 상태 얻기 state = state.next(action) # 선 수 플레이어 포인트 반환 return first_player_point(state) #%% 임의의 알고리즘 평가 def evaluate_algorithm_of(label, next_actions): # 여러 차례 대전을 반복 total_point = 0 for i in range(EP_GAME_COUNT): # 1 게임 실행 if i % 2 == 0: total_point += play(next_actions) else: total_point += 1 - play(list(reversed(next_actions))) # 출력 print("\rEvaluate {}/{}".format(i + 1, EP_GAME_COUNT), end='') print('') # 평균 포인트 계산 average_point = total_point / EP_GAME_COUNT print(label,average_point) #%% 베스트 플레이어 평가 def evaluate_best_player(): # 베스트 플레이어 모델 로드 model = load_model("./model/best.h5") # PV_ MCTS로 행동 선택을 수행하는 함수 생성 next_pv_mcts_action = pv_mcts_action(model,0.0) # vs 랜덤 next_actions = (next_pv_mcts_action, random_action) evaluate_algorithm_of('VS Random', next_actions) # vs 알파베타법 next_actions = (next_pv_mcts_action, alpha_beta_action) evaluate_algorithm_of("VS Alpha Beta",next_actions) # vs 몬테카를로 트리 탐색 next_actions = (next_pv_mcts_action, mcts_action) evaluate_algorithm_of("VS MCTS",next_actions) # 모델 삭제 K.clear_session() del model #%% 동작 확인 if __name__ == "__main__": evaluate_best_player() ``` #### File: AlphaZero_book/chap6/train_network.py ```python from dual_network import DN_INPUT_SHAPE from tensorflow.keras.callbacks import LearningRateScheduler, LambdaCallback from tensorflow.keras.models import load_model from tensorflow.keras import backend as K from pathlib import Path import numpy as np import pickle #%% 파라미터 준비 RN_EPOCHS = 100 # 학습 횟수 #%% 학습 데이터 로드 def load_data(): history_path = sorted(Path('./data').glob('*.history'))[-1] with history_path.open(mode='rb') as f: return pickle.load(f) #%% 듀얼 네트워크 학습 def train_network(): # 학습 데이터 로드 history = load_data() xs, y_policies, y_values = zip(*history) # 학습을 위한 입력 데이터 형태로 변환 a,b,c = DN_INPUT_SHAPE xs = np.array(xs) xs = xs.reshape(len(xs), c,a,b).transpose(0,2,3,1) y_policies = np.array(y_policies) y_values = np.array(y_values) # 베스트 플레이어 모델 로드 model = load_model('./model/best.h5') # 모델 컴파일 model.compile(loss = ['categorical_crossentropy','mse'], optimizer='adam') # 학습률 def step_decay(epoch): x = 0.001 if epoch >= 50: x = 0.0005 if epoch >= 80: x = 0.00025 return x lr_decay = LearningRateScheduler(step_decay) # 출력 print_callback = LambdaCallback( on_epoch_begin=lambda epoch, logs: print("\rTrain {}/{}".format(epoch+1, RN_EPOCHS), end='')) # 학습 실행 model.fit(xs, [y_policies, y_values], batch_size=128, epochs=RN_EPOCHS, verbose=0, callbacks=[lr_decay, print_callback]) print("") # 최신 플레이어 모델 저장 model.save('./model/latest.h5') # 모델 삭제 K.clear_session() del model #%% 테스트 if __name__ == "__main__": train_network() ``` #### File: Object Detection/YOLOv1/Resnet50_subclass.py ```python import tensorflow as tf class conv_block(tf.keras.Model): def __init__(self, filters, strides=(2, 2)): super(conv_block, self).__init__() self.filters1, self.filters2, self.filters3 = filters self.strides = strides self.conv1 = tf.keras.layers.Conv2D(self.filters1, (1, 1), strides=strides) self.bn1 = tf.keras.layers.BatchNormalization() self.relu1 = tf.keras.layers.ReLU() self.conv2 = tf.keras.layers.Conv2D(self.filters2, (3, 3), strides=(1, 1), padding='same') self.bn2 = tf.keras.layers.BatchNormalization() self.relu2 = tf.keras.layers.ReLU() self.conv3 = tf.keras.layers.Conv2D(self.filters3, (1, 1), strides=(1, 1)) self.bn3 = tf.keras.layers.BatchNormalization() self.shortcut_conv = tf.keras.layers.Conv2D(self.filters3, (1, 1), strides=strides) self.shortcut_bn = tf.keras.layers.BatchNormalization() self.add = tf.keras.layers.Add() self.add_relu = tf.keras.layers.ReLU() def call(self, input_tensor, training=False): x = self.conv1(input_tensor) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) shortcut = self.shortcut_conv(input_tensor) shortcut = self.shortcut_bn(shortcut) x = self.add([x, shortcut]) x = self.add_relu(x) return x class identity_block(tf.keras.Model): def __init__(self, filters): super(identity_block, self).__init__() self.filters1, self.filters2, self.filters3 = filters self.conv1 = tf.keras.layers.Conv2D(self.filters1, (1, 1), strides=(1, 1)) self.bn1 = tf.keras.layers.BatchNormalization() self.relu1 = tf.keras.layers.ReLU() self.conv2 = tf.keras.layers.Conv2D(self.filters2, (3, 3), strides=(1, 1), padding='same') self.bn2 = tf.keras.layers.BatchNormalization() self.relu2 = tf.keras.layers.ReLU() self.conv3 = tf.keras.layers.Conv2D(self.filters3, (1, 1), strides=(1, 1)) self.bn3 = tf.keras.layers.BatchNormalization() self.add = tf.keras.layers.Add() self.add_relu = tf.keras.layers.ReLU() def call(self, input_tensor, training=False): x = self.conv1(input_tensor) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = self.add([x, input_tensor]) x = self.add_relu(x) return x class ResNet50(tf.keras.Model): def __init__(self, nb_classes): super(ResNet50, self).__init__() self.nb_classes = nb_classes # Stage 1 (Conv1 Layer) self.zero_padd_1_1 = tf.keras.layers.ZeroPadding2D(padding=(3, 3)) self.conv_1 = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2)) self.bn_1 = tf.keras.layers.BatchNormalization() self.relu_1 = tf.keras.layers.ReLU() self.zero_padd_1_2 = tf.keras.layers.ZeroPadding2D(padding=(1, 1)) self.max_pool = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2)) # Stage 2 self.stage2 = tf.keras.Sequential() self.stage2.add(conv_block([64, 64, 256], strides=(1, 1))) self.stage2.add(identity_block([64, 64, 256])) self.stage2.add(identity_block([64, 64, 256])) # Stage 3 self.stage3 = tf.keras.Sequential() self.stage3.add(conv_block([128, 128, 512])) self.stage3.add(identity_block([128, 128, 512])) self.stage3.add(identity_block([128, 128, 512])) self.stage3.add(identity_block([128, 128, 512])) # Stage 4 self.stage4 = tf.keras.Sequential() self.stage4.add(conv_block([256, 256, 1024])) self.stage4.add(identity_block([256, 256, 1024])) self.stage4.add(identity_block([256, 256, 1024])) self.stage4.add(identity_block([256, 256, 1024])) self.stage4.add(identity_block([256, 256, 1024])) self.stage4.add(identity_block([256, 256, 1024])) # Stage 5 self.stage5 = tf.keras.Sequential() self.stage5.add(conv_block([512, 512, 2048])) self.stage5.add(identity_block([512, 512, 2048])) self.stage5.add(identity_block([512, 512, 2048])) #self.gap = tf.keras.layers.GlobalAveragePooling2D() #self.dense = tf.keras.layers.Dense(self.nb_classes, activation='softmax') def call(self, input_tensor, training=False): x = self.zero_padd_1_1(input_tensor) x = self.conv_1(x) x = self.bn_1(x) x = self.relu_1(x) x = self.zero_padd_1_2(x) x = self.max_pool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.stage5(x) #x = self.gap(x) #x = self.dense(x) return x model = ResNet50(1000) model.build((1, 448, 448, 3)) model.summary() ``` #### File: ML_learning/open ai gym/cart v0.py ```python import tensorflow as tf import numpy as np from tensorflow.keras import optimizers from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, MaxPooling2D, Flatten, Conv2D, BatchNormalization, Activation import random from collections import deque import gym # %% initialize modules env = gym.make("Breakout-v0") # %% neural net constants history_size = 4 input_size = env.observation_space.shape input_size = (input_size[0], input_size[1],history_size) output_size = env.action_space.n lr = 0.001 k1 = 16 k2 = 32 k3 = 32 fc1 = 256 # %% gym game constants dis = 0.99 REPLAY_MEMORY = 20000 # %% define network class def NeuralNet(): model = Sequential() model.add(Conv2D(k1, (3, 3), activation=None, padding='same', input_shape=input_size, name='InputLayer')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.3)) model.add(MaxPooling2D((2,2))) model.add(Conv2D(k2, (3, 3), activation=None, padding='same', name='HiddenLayer1')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.3)) model.add(MaxPooling2D((2, 2))) # model.add(Conv2D(k3, (3, 3), activation=None, # padding='same', name='HiddenLayer2')) # model.add(BatchNormalization()) # model.add(Activation('relu')) # model.add(Dropout(0.3)) # model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(fc1, activation='relu', name='FcLayer')) model.add(Dense(output_size, activation=None, name='OutputLayer')) opt = optimizers.Adam(learning_rate=lr) model.compile(loss='mean_squared_error', optimizer=opt, metrics=['accuracy']) return model mainDQN = NeuralNet() mainDQN.summary() targetDQN = NeuralNet() targetDQN.set_weights(mainDQN.get_weights()) # %% DQN methods def replay_train(mainDQN_, targetDQN_, train_batch): x_stack = np.zeros(0).reshape([0] + list(input_size)) y_stack = np.zeros(0).reshape(0,output_size) # get stored info from the buffer for history_state, action, reward, next_history_state, done in train_batch: history_state2d = history_state.reshape([1] + list(input_size)) history_state2d = history_state2d * 1.0/255.0 history_state2d = history_state2d.astype(np.float32) next_history_state2d = next_history_state.reshape([1] + list(input_size)) next_history_state2d = next_history_state2d * 1.0/255.0 next_history_state2d = next_history_state2d.astype(np.float32) Q = mainDQN(history_state2d).numpy() # terminal? if done: Q[0,action] = reward else: Q[0,action] = reward + dis * np.max(targetDQN_(next_history_state2d).numpy()) x_stack = np.vstack([x_stack, history_state2d]) y_stack = np.vstack([y_stack, Q]) # train out network using target and predicted Q values on each episode x_stack = x_stack.astype(np.float32) y_stack = y_stack.astype(np.float32) return mainDQN_.fit(x_stack,y_stack) def one_hot(x): return np.identity(6)[x:x+1] # %% function for atari game def rgb2gray(rgb): r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b gray = gray.astype(np.uint8) gray = gray.reshape(list(gray.shape)+[-1]) return gray def initialize_state_history(initState): grayimg = rgb2gray(initState) hist = np.zeros(0).reshape(210,160,0) for i in range(4): hist = np.concatenate((hist,grayimg),axis=2) return hist def update_state_history(histState, newState): histState = np.delete(histState,0,2) grayimg = rgb2gray(newState) histState = np.concatenate((histState,grayimg),axis=2) return histState # %% def main(): max_episodes = 100000 #store the previous observations in replay memory replay_buffer = deque() best_loss = 99999999 global targetDQN global mainDQN for episode in range(max_episodes): e = 1.0/((episode / 100) + 1) done = False step_count = 0 last_reward = 0 state = env.reset() env.render() history_state = initialize_state_history(state) while not done: if np.random.rand(1) < e: action = env.action_space.sample() else: # choose an action by greedily from the Q-network history_state2d = history_state.reshape([1] + list(input_size)) history_state2d = history_state2d * 1.0/255.0 history_state2d = history_state2d.astype(np.float32) action = np.argmax(mainDQN(history_state2d).numpy()) # get net state and reward from environment next_state, reward, done, _ = env.step(action) next_history_state = update_state_history(history_state, next_state) env.render() # save the experience to our buffer replay_buffer.append((history_state, action, reward, next_history_state, done)) if len(replay_buffer) > REPLAY_MEMORY: replay_buffer.popleft() state = next_state history_state = next_history_state step_count += 1 last_reward += reward print("Episode: {}, steps: {}, score: {}".format(episode, step_count, last_reward)) if episode % 100 == 1: # train every 100 episodes # get a random batch of experiences for _ in range(10): # minibatch works betters minibatch = random.sample(replay_buffer, 100) hist = replay_train(mainDQN, targetDQN, minibatch) loss = hist.history['loss'] acc = hist.history['accuracy'] targetDQN.set_weights(mainDQN.get_weights()) print("loss: {}".format(loss[0])) if best_loss > loss[0]: best_loss = loss[0] tf.keras.models.save_model(targetDQN,"targetDQN.h5") print("saved new!") return mainDQN # %% run main main() # %% ``` #### File: tensorflow examples/2 basic models/Logistic regression.py ```python from __future__ import absolute_import, division, print_function import matplotlib.pyplot as plt from tensorflow.keras.datasets import mnist import tensorflow as tf import numpy as np # %% MNIST dataset parameters num_classes = 10 # 0~9 digits num_features = 784 # 28 * 28 # training parameters learning_rate = 0.01 training_steps = 1000 batch_size = 256 display_step = 50 # %% prepare MNIST data (x_train, y_train), (x_test, y_test) = mnist.load_data() # convert to float32 x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float16) # Flatten image to 1-D vector of 784 features (28*28) x_train, x_test = x_train.reshape( [-1, num_features]), x_test.reshape([-1, num_features]) # normalize images vaue from [0,255] to [0 1] x_train, x_test = x_train/255., x_test / 255. # %%Use tf.data API to shuffle and batch data train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) # %%weight of shape [784,10] the 28 * 28 image features and total number of classes W = tf.Variable(tf.ones([num_features, num_classes]), name='weight') # Bias of shape [10] , the tota number of classes b = tf.Variable(tf.zeros([num_classes]), name='bias') # logistic regression (Wx + b) def logistic_regression(x): # apply softmax to normalize the logits to a probability distribution return tf.nn.softmax(tf.matmul(x, W)+b) # cross-Entropy loss function def cross_entropy(y_pred, y_true): # encode label to a one-hot vector y_true = tf.one_hot(y_true, depth=num_classes) # clip prediction values to aviod log(0) error y_pred = tf.clip_by_value(y_pred, 1e-9, 1.) # compute cross-entropy return tf.reduce_mean(-tf.reduce_sum(y_true*tf.math.log(y_pred), 1)) # accuracy metric def accuracy(y_pred, y_true): # predicted class is the index of highest score in prediction vector(i.e. argmax) correct_prediction = tf.equal( tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) return tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # stochastic gradient descent optimizer optimizer = tf.optimizers.SGD(learning_rate) # %% Optimization process def run_optimization(x, y): # wrap conputation inside a gradientTape for automatic differetiation with tf.GradientTape() as g: pred = logistic_regression(x) loss = cross_entropy(pred, y) # compute gradients gradients = g.gradient(loss, [W, b]) # update W and b following gradients optimizer.apply_gradients(zip(gradients, [W, b])) # %% Run training for the given number of steps for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): # run the oprimization to update W and b values run_optimization(batch_x, batch_y) if step % display_step == 0: pred = logistic_regression(batch_x) loss = cross_entropy(pred, batch_y) acc = accuracy(pred, batch_y) print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) # %% test model on validation set x_test_tensor = tf.constant(x_test, dtype=tf.float32) pred = logistic_regression(x_test_tensor) print("Test Accuracy: %f" % accuracy(pred, y_test)) # %% visualize predictions import matplotlib.pyplot as plt # %%predict 5 images from validation set prediction_count = 20 n_images = np.random.randint(0,x_test.shape[0],(prediction_count)) test_images = x_test[n_images] test_y_answer = y_test[n_images] test_images_tensor = tf.constant(test_images, dtype=tf.float32) predictions = logistic_regression(test_images_tensor) # display image and model prediction for i in range(prediction_count): showimg = np.reshape(test_images[i], [28, 28]) showimg = np.uint8(showimg * 255) plt.imshow(np.reshape(showimg, [28, 28]), cmap='gray') plt.show() print("Model prediction: %i, Answer: %i" % (np.argmax(predictions.numpy()[i]),test_y_answer[i])) ```
{ "source": "jisung0920/EyeCon-Server", "score": 2 }
#### File: jisung0920/EyeCon-Server/econ.py ```python import socket import numpy as np import cv2 from scipy.spatial import distance as dist from imutils import face_utils import torchvision.transforms as transforms import imutils import dlib import random import os import torch import math def recvAll(sock, count): buf = b'' while count: # count만큼의 byte를 읽어온다. socket이 이미지 파일의 bytes를 한번에 다 못 읽어오므로 newbuf = sock.recv(count) if not newbuf: return None buf += newbuf count -= len(newbuf) return buf def modeList(L): return max(set(L), key=L.count) def loadStateDict(state_direction_num,state_Q_num): state_memory = dict() state_memory['GazeRatioLR'] = np.array([1.0 for i in range(state_direction_num)]) state_memory['GazeRatioTB'] = np.array([1.0 for i in range(state_direction_num)]) state_memory['FacePointX'] = np.array([200 for i in range(state_direction_num)]) state_memory['FacePointY'] = np.array([300 for i in range(state_direction_num)]) state_memory['Click'] = [0 for i in range(state_Q_num)] state_memory['Scroll'] = [0 for i in range(state_Q_num)] state_memory['FER'] = [0 for i in range(state_Q_num)] return state_memory def rateToDistance(r_x,r_y,width,height, weight = 1.5) : d_x = (width*r_x) * weight d_y = (height*r_y) * weight return int(d_x),int(d_y) def loadClassifier(util_path) : face_haar_path = util_path + 'haarcascade_frontalface_default.xml' faceClassifier = cv2.CascadeClassifier(face_haar_path) return faceClassifier def getEAR(eye): A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) C = dist.euclidean(eye[0], eye[3]) return (A + B) / (2.0 * C) def isBlink(eyeLandmark,blink_th,start_idx,end_idx) : eye = eyeLandmark[start_idx:end_idx] EAR = getEAR(eye) if EAR > blink_th: return False else : return True def getFaceXY(faceImage) : face = faceImage[0] x = face[0] + face[2]/2 y = face[1] + face[3]/2 return x,y def getGazePoint(model,image,W,H): result = model(image[None, ...])[0] x_rate = 0 y_rate = 0 for i in [0,1,4,5,8,9,12,13] : x_rate += result[i] for i in [0,1,2,3,4,5,6,7] : y_rate += result[i] x = (W/4) + (1 - x_rate ) * W/2 y = (H/4) + (1 - y_rate ) * H/2 return x,y def getExpression(faceFrame,gray,FERmodel) : for (x, y, w, h) in faceFrame: roi_gray = gray[y:y + h, x:x + w] cropped_img = np.expand_dims(cv2.resize(roi_gray, (224, 224)), -1) cv2.normalize(cropped_img, cropped_img, alpha=0, beta=1, norm_type=cv2.NORM_L2, dtype=cv2.CV_32F) # cropped_img = transforms.ToTensor() cropped_img = torch.from_numpy(cropped_img) cropped_img = cropped_img.float() output = FERmodel(cropped_img) _, prediction = torch.max(output, 1) prediction = prediction.data[0] prediction = prediction.data[0] return int(prediction.data[0]) ,( x, y) return 0,(0,0) def getGazeRatio(gray,faceLandmark,eye_points): eye_region = np.array([(faceLandmark.part(eye_points[0]).x, faceLandmark.part(eye_points[0]).y), (faceLandmark.part(eye_points[1]).x, faceLandmark.part(eye_points[1]).y), (faceLandmark.part(eye_points[2]).x, faceLandmark.part(eye_points[2]).y), (faceLandmark.part(eye_points[3]).x, faceLandmark.part(eye_points[3]).y), (faceLandmark.part(eye_points[4]).x, faceLandmark.part(eye_points[4]).y), (faceLandmark.part(eye_points[5]).x, faceLandmark.part(eye_points[5]).y)], np.int32) height, width = gray.shape mask = np.zeros((height, width), np.uint8) # cv2.polylines(image, [eye_region], True, 255, 2) # cv2.fillPoly(mask, [eye_region], 255) eye = cv2.bitwise_and(gray, gray, mask=mask) min_x = np.min(eye_region[:, 0]) max_x = np.max(eye_region[:, 0]) min_y = np.min(eye_region[:, 1]) max_y = np.max(eye_region[:, 1]) gray_eye = eye[min_y: max_y, min_x: max_x] _, threshold_eye = cv2.threshold(gray_eye, 70, 255, cv2.THRESH_BINARY_INV) height, width = threshold_eye.shape left_side_threshold = threshold_eye[0: height, 0: int(width / 2)] left_side_white = cv2.countNonZero(left_side_threshold) right_side_threshold = threshold_eye[0: height, int(width / 2): width] right_side_white = cv2.countNonZero(right_side_threshold) upper_side_threshold = threshold_eye[0: int(height / 2), 0: width] upper_side_white = cv2.countNonZero(upper_side_threshold) down_side_threshold = threshold_eye[int(height / 2): height, 0: width] down_side_white = cv2.countNonZero(down_side_threshold) if left_side_white == 0: horizontal_gaze_ratio = 1 elif right_side_white == 0: horizontal_gaze_ratio = 5 else: horizontal_gaze_ratio = left_side_white / right_side_white if upper_side_white == 0: vertical_gaze_ratio = 1 elif down_side_white == 0: vertical_gaze_ratio = 5 else: vertical_gaze_ratio = upper_side_white / down_side_white return horizontal_gaze_ratio, vertical_gaze_ratio # Model # def getGazeXY(image,face,eyes) : # x = 500 + random.randint(-50, 50) # y = 800 + random.randint(-50, 50) # return x,y ```
{ "source": "jisungyoon/clusim", "score": 3 }
#### File: clusim/clusim/clusteringerror.py ```python class ClusteringError(Exception): """ Base Class for clustering errors. """ class EmptyClusteringError(ClusteringError): """ Raised when the clustering does not contain elements. """ def __str__(self): return 'Clustering must have one or more elements in one or more clusters.' class InvalidElementError(ClusteringError): """ Raised when an element is None or np.nan. """ def __str__(self): return 'Elements cannot be None or NaN.' class InvalidClusterError(ClusteringError): """ Raised when an element is None or np.nan. """ def __str__(self): return 'Clusters cannot be None or NaN.' class EmptyClusterError(ClusteringError): """ Raised when a clustering has empty clusters. """ def __init__(self, n_emptys = None, empty_list = None): self.n_emptys = n_emptys self.empty_list = empty_list def __str__(self): if self.empty_list: return 'The following clusters contain 0 elements:\n{}'.format(self.empty_list) elif self.n_emptys: return 'There are {} clusters with 0 elements.'.format(self.n_emptys) else: return 'EmptyClusterError' class UnassignedElementError(ClusteringError): """ Raised when elements are not assigned to clusters. """ def __init__(self, n_unassigned = None, unassigned_list = None): self.n_unassigned = n_unassigned self.unassigned_list = unassigned_list def __str__(self): if self.unassigned_list: return 'The following elements were not assigned a cluster:\n{}'.format(self.unassigned_list) elif self.n_unassigned: return 'There are {} elements unassigned to a cluster.'.format(self.n_unassigned) else: return 'UnassignedElementError' class ClusteringSimilarityError(Exception): """ Base Class for clustering similarity errors. """ def __str__(self): return 'The element sets must be the same for both clusterings.' ``` #### File: clusim/clusim/dag.py ```python import collections import copy import itertools import networkx as nx import numpy as np class DAG(nx.DiGraph): def roots(self): return [node for node in self.nodes() if self.in_degree(node) == 0] def leaves(self): return [node for node in self.nodes() if self.out_degree(node) == 0] def maxdist_from_roots(self, graph=None): if graph is None: graph = self dist = {} # stores [node, distance] pair for node in nx.topological_sort(graph): # pairs of dist,node for all incoming edges pairs = [(dist[v][0]+1, v) for v in graph.pred[node]] if pairs: dist[node] = max(pairs) else: dist[node] = (0, node) return dist def mindist_from_roots(self, graph=None): if graph is None: graph = self dist = {} # stores [node, distance] pair for node in nx.topological_sort(graph): # pairs of dist,node for all incoming edges pairs = [(dist[v][0]+1, v) for v in graph.pred[node]] if pairs: dist[node] = min(pairs) else: dist[node] = (0, node) return dist def height(self): dfr = self.maxdist_from_roots() max_dist = max([disttuple[0] for disttuple in dfr.itervalues()]) + 1 return max_dist def cut_at_depth(self, depth=None, cuttype='shortestpath', rescale_path_type='max'): if cuttype == 'shortestpath': dfr = self.mindist_from_roots() node_dist = {node: dfr[node][0] for node in self.nodes()} elif cuttype == 'rescaled': node_dist = self.rescale(rescale_path_type) cluster_list = [node for node in self.nodes() if node_dist[node] == depth] return cluster_list def norm_linkage(self): mlink = max(self.linkage_dist.values()) self.linkage_dist = {l: d/mlink for l, d in self.linkage_dist.items()} def rescale(self, rescale_path_type='max'): if rescale_path_type == 'max': dfr = self.maxdist_from_roots(self) dtl = self.maxdist_from_roots(self.reverse(copy=True)) elif rescale_path_type == 'min': dfr = self.mindist_from_roots(self) dtl = self.mindist_from_roots(self.reverse(copy=True)) elif rescale_path_type == 'linkage': try: return self.linkage_dist print("using linkage") except: return collections.defaultdict(int) rescaled_level = {} for node in self.nodes(): path_to_node = dfr[node][0] path_from_node = dtl[node][0] total_path_len = path_to_node + path_from_node if total_path_len == 0.0: rescaled_level[node] = 0.0 else: rescaled_level[node] = float(path_to_node) / total_path_len return rescaled_level def draw(self, rescaled_level=None, rescale_path_type='max', ax=None, **kwargs): import matplotlib.pylab as plt if ax is None: fig, ax = plt.subplots(1, 1) treepos = nx.drawing.nx_agraph.graphviz_layout(self, prog='dot') treeys = [pt[1] for pt in treepos.values()] mintreey = min(treeys) maxtreey = max(treeys) if rescaled_level is True: rescaled_level = self.rescale(rescale_path_type=rescale_path_type) treepos = {node: ( pt[0], mintreey + (1.0 - rescaled_level[node]) * (maxtreey - mintreey)) for node, pt in treepos.items()} elif type(rescaled_level) is dict: treepos = {node: ( pt[0], mintreey + (1.0 - rescaled_level[node]) * (maxtreey - mintreey)) for node, pt in treepos.items()} nx.draw(self, pos=treepos, arrows=False, ax=ax, **kwargs) return ax def _tree_edges(self, n, r): # From http://stackoverflow.com/questions/26896370/faster-way-to-build-a-tree-graph-using-networkx-python # helper function for trees # yields edges in rooted tree at 0 with n nodes and branching ratio r nodes = iter(range(n)) parents = [next(nodes)] # stack of max length r while parents: source = parents.pop(0) for i in range(r): try: target = next(nodes) parents.append(target) yield source, target except StopIteration: break def make_regular_tree(self, N=1, r=2): self.add_edges_from(list(self._tree_edges(N, r))) self.linkage_dist = {n: d for n, (d, _) in self.maxdist_from_roots().items()} def make_complete_rary_tree(self, h=2, r=2): self.add_edges_from(nx.balanced_tree(h=h, r=r, create_using=nx.DiGraph()).edges) self.linkage_dist = {n: d for n, (d, _) in self.maxdist_from_roots().items()} def swap_nodes(self, n1, n2, swap_parents=True, swap_children=False): if swap_parents: n1parents = list(self.predecessors(n1)) n2parents = list(self.predecessors(n2)) self.add_edges_from([(p, n1) for p in n2parents]) self.remove_edges_from([(p, n1) for p in n1parents]) self.add_edges_from([(p, n2) for p in n1parents]) self.remove_edges_from([(p, n2) for p in n2parents]) class Dendrogram(DAG): def from_linkage(self, linkage_matrix, dist_rescaled=False): N = linkage_matrix.shape[0] + 1 if dist_rescaled: maxdist = max(linkage_matrix[:, 2]) distances = 1.0 - linkage_matrix[:, 2]/maxdist linkage_dist = {ipt: 1.0 for ipt in range(N)} else: distances = linkage_matrix[:, 2] linkage_dist = {ipt: 0.0 for ipt in range(N)} for iclus in range(N - 1): clus_id = N + iclus linkage_dist[clus_id] = distances[iclus] self.add_edges_from([(clus_id, int(linkage_matrix[iclus, 0])), (clus_id, int(linkage_matrix[iclus, 1]))]) self.linkage_dist = linkage_dist return self def to_dendropy_tree(self, taxon_namespace=None, weighted=False): import dendropy tree = dendropy.Tree(taxon_namespace=taxon_namespace) seed_node = self.roots()[0] if weighted: def edge_length(par, child): return np.abs(self.linkage_dist[par] - self.linkage_dist[child]) else: def edge_length(par, child): return 1.0 tree_dict = {seed_node: tree.seed_node} for clus in nx.topological_sort(self): for child in self.successors(clus): tree_dict[child] = tree_dict[clus].new_child( edge_length=edge_length(clus, child)) for clus in self.leaves(): tree_dict[clus].taxon = taxon_namespace.get_taxon(str(clus)) return tree def from_dendropy_tree(self, tree, keep_taxon=True): import dendropy linkage_dist = {} for i, node in enumerate(tree.levelorder_node_iter()): if keep_taxon and node.taxon is not None: node_name = node.taxon.label else: node_name = i node.label = node_name if node.parent_node is not None: self.add_edge(node.parent_node.label, node.label, weight=node.edge_length) linkage_dist[node.label] =\ linkage_dist[node.parent_node.label] + node.edge_length else: linkage_dist[node.label] = 0.0 self.linkage_dist = linkage_dist return self def from_newick(self, s, taxon_namespace=None, keep_taxon=True): import dendropy if taxon_namespace is None: taxon_namespace = self.infer_namespace(s) tree = dendropy.Tree(taxon_namespace=taxon_namespace) tree = tree.get(data=s, schema="newick") return self.from_dendropy_tree(tree, keep_taxon=keep_taxon) def make_random_dendrogram(self, N=10): return self.make_biased_dendrogram(N=N, p=0.0) def infer_namespace(self, s): import dendropy edits = s.replace('(', "").replace(')', '').replace(';', '') units = [t.split(':') for t in edits.split(',')] names = [] for unitlist in units: for s in unitlist: try: float(s) except ValueError: names.append(s) taxon_namespace = dendropy.TaxonNamespace(names) return taxon_namespace def make_biased_dendrogram(self, N=10, p=1.0): # make a random dendrogram with a bias towards each node appearing in # its own cluster self.add_node(0) leaves = self.leaves() i = 1 while len(leaves) < N: if np.random.random() > p: parent = leaves.pop(np.random.randint(0, len(leaves))) else: parent = leaves.pop(-1) self.add_edges_from([(parent, i), (parent, i + 1)]) leaves.extend([i, i + 1]) i += 2 return self def make_random_dendrogram_aglomerative(self, N=10, leaves=None): # make a random dendrogram with a bias towards each node appearing in # its own cluster if leaves is None: node_list = list(range(N)) else: node_list = copy.copy(leaves) self.add_nodes_from(node_list) i = max(node_list) + 1 while len(node_list) > 1: left = node_list.pop(np.random.randint(0, len(node_list))) right = node_list.pop(np.random.randint(0, len(node_list))) self.add_edges_from([(i, left), (i, right)]) node_list.append(i) i += 1 return self def random_prune_regraft(self): roots = self.roots() subtree_root = np.random.choice(self.nodes(), 1)[0] while subtree_root in roots and (len(roots) == 1): subtree_root = np.random.choice(self.nodes(), 1)[0] subtree_vertices = self.subgraph( nx.dfs_preorder_nodes(self, subtree_root)).nodes() prune_vertex = list(self.predecessors(subtree_root))[0] graft_vertex = np.random.choice(self.nodes(), 1)[0] while (graft_vertex in subtree_vertices) or\ (graft_vertex in roots) or\ (graft_vertex == prune_vertex): graft_vertex = np.random.choice(self.nodes(), 1)[0] # now we have to do the graph edits # merge connections through the pruned vertex for source in self.predecessors(prune_vertex): for sink in self.successors(prune_vertex): if sink != subtree_root: self.add_edge(source, sink) # prune the vertex self.remove_node(prune_vertex) # reattach the pruned vertex for source in list(self.predecessors(graft_vertex)): self.add_edge(source, prune_vertex) self.remove_edge(source, graft_vertex) # reattach the subtree self.add_edge(prune_vertex, subtree_root) self.add_edge(prune_vertex, graft_vertex) def random_tree_replace(self, cut_depth=0.0): vertex_distance = self.rescale() fixed_vertices = [v for v in self.nodes() if vertex_distance[v] >= cut_depth] fixed_subtree = self.subgraph(fixed_vertices) fixed_roots = [node for node in fixed_subtree if fixed_subtree.in_degree(node) == 0] new_dendro = Dendrogram() new_dendro.make_random_dendrogram_aglomerative(leaves=fixed_roots) new_dendro.add_edges_from(fixed_subtree.edges()) return new_dendro def random_node_deletion(self, percent=1.0): nodes2avoid = self.roots() + self.leaves() clusters2delete = np.random.choice( [n for n in self.nodes() if n not in nodes2avoid], int(percent * (self.number_of_nodes() - len(nodes2avoid))), replace=False) for c in clusters2delete: self.add_edges_from(list(itertools.product(self.predecessors(c), self.successors(c)))) self.remove_node(c) return self ```
{ "source": "jisungyoon/pyscisci", "score": 3 }
#### File: pyscisci/pyscisci/database.py ```python import os import json import gzip from collections import defaultdict import pandas as pd import numpy as np from nameparser import HumanName from pyscisci.utils import isin_sorted, zip2dict, load_int, load_float, groupby_count from pyscisci.metrics import * from pyscisci.datasource.readwrite import load_preprocessed_data, append_to_preprocessed_df class BibDataBase(object): """ Base class for all bibliometric database interfaces. The BibDataBase provides a parasomonious structure for each of the specific data sources (MAG, WOS, etc.). There are four primary types of functions: 1. *Parseing* Functions (data source specific) that parse the raw data files 2. *Loading* Functions that load DataFrames 3. *Processing* Functions that calculate advanced data types from the raw files 4. *Analysis* Functions that calculate Science of Science metrics. Parameters ------- :param path2database: str The path to the database files :param keep_in_memory: bool, default False Flag to keep database files in memory once loaded """ def __init__(self, path2database = '', keep_in_memory = False, show_progress=True): self.path2database = path2database self.keep_in_memory = keep_in_memory self.show_progress = show_progress self._affiliation_df = None self._pub_df = None self._journal_df = None self._author_df = None self._pub2year = None self._pub2ref_df = None self._author2pub_df = None self._paa_df = None self._pub2refnoself_df = None self._pub2field_df=None self._fieldinfo_df = None @property def affiliation_df(self): """ The DataFrame keeping affiliation information. Columns may depend on the specific datasource. Columns ------- 'AffiliationId', 'NumberPublications', 'NumberCitations', 'FullName', 'GridId', 'OfficialPage', 'WikiPage', 'Latitude', 'Longitude' """ if self._affiliation_df is None: if self.keep_in_memory: self._affiliation_df = self.load_affiliations(show_progress=self.show_progress) else: return self.load_affiliations(show_progress=self.show_progress) return self._affiliation_df @property def author_df(self): """ The DataFrame keeping author information. Columns may depend on the specific datasource. Columns ------- 'AuthorId', 'LastKnownAffiliationId', 'NumberPublications', 'NumberCitations', 'FullName', 'LastName', 'FirstName', 'MiddleName' """ if self._author_df is None: if self.keep_in_memory: self._author_df = self.load_authors(show_progress=self.show_progress) else: return self.load_authors(show_progress=self.show_progress) return self._author_df @property def pub_df(self): """ The DataFrame keeping publication information. Columns may depend on the specific datasource. Columns ------- 'PublicationId', 'Year', 'JournalId', 'FamilyId', 'Doi', 'Title', 'Date', 'Volume', 'Issue', 'DocType' """ if self._pub_df is None: if self.keep_in_memory: self._pub_df = self.load_publications(show_progress=self.show_progress) else: return self.load_publications(show_progress=self.show_progress) return self._pub_df @property def pub2year(self): """ A dictionary mapping PublicationId to Year. Columns ------- 'Journal': 'j', 'Book':'b', '':'', 'BookChapter':'bc', 'Conference':'c', 'Dataset':'d', 'Patent':'p', 'Repository':'r' """ if self._pub2year is None: if self.keep_in_memory: self._pub2year = self.load_pub2year() else: return self.load_pub2year() return self._pub2year @property def journal_df(self): """ The DataFrame keeping journal information. Columns may depend on the specific datasource. Columns ------- 'JournalId', 'FullName', 'Issn', 'Publisher', 'Webpage' """ if self._journal_df is None: if self.keep_in_memory: self._journal_df = self.load_journals(show_progress=self.show_progress) else: return self.load_journals(show_progress=self.show_progress) return self._journal_df @property def pub2ref_df(self): """ The DataFrame keeping citing and cited PublicationId. Columns ------- CitingPublicationId, CitedPublicationId """ if self._pub2ref_df is None: if self.keep_in_memory: self._pub2ref_df = self.load_references(show_progress=self.show_progress) else: return self.load_references(show_progress=self.show_progress) return self._pub2ref_df @property def pub2refnoself_df(self): """ The DataFrame keeping citing and cited PublicationId after filtering out the self-citations. Columns ------- CitingPublicationId, CitedPublicationId """ if self._pub2refnoself_df is None: if self.keep_in_memory: self._pub2refnoself_df = self.load_references(noselfcite=True, show_progress=self.show_progress) else: return self.load_references(noselfcite=True, show_progress=self.show_progress) return self._pub2refnoself_df @property def paa_df(self): """ The DataFrame keeping all publication, author, affiliation relationships. Columns may depend on the specific datasource. Columns ------- 'PublicationId', 'AuthorId', 'AffiliationId', 'AuthorSequence', 'OrigAuthorName', 'OrigAffiliationName' """ if self._paa_df is None: if self.keep_in_memory: self._paa_df = self.load_publicationauthoraffiliation(show_progress=self.show_progress) else: return self.load_publicationauthoraffiliation(show_progress=self.show_progress) return self._paa_df @property def author2pub_df(self): """ The DataFrame keeping all publication, author relationships. Columns may depend on the specific datasource. Columns ------- 'PublicationId', 'AuthorId' """ if self._paa_df is None: if self.keep_in_memory: self._paa_df = self.load_publicationauthoraffiliation(columns = ['AuthorId', 'PublicationId'], duplicate_subset = ['AuthorId', 'PublicationId'], dropna = ['AuthorId', 'PublicationId'], show_progress=self.show_progress) else: return self.load_publicationauthoraffiliation(columns = ['AuthorId', 'PublicationId'], duplicate_subset = ['AuthorId', 'PublicationId'], dropna = ['AuthorId', 'PublicationId'], show_progress=self.show_progress) return self._paa_df @property def pub2field_df(self): """ The DataFrame keeping all publication field relationships. Columns may depend on the specific datasource. Columns ------- 'PublicationId', 'FieldId' """ if self._pub2field_df is None: if self.keep_in_memory: self._pub2field_df = self.load_pub2field(show_progress=self.show_progress) else: return self.load_pub2field(show_progress=self.show_progress) return self._pub2field_df @property def fieldinfo_df(self): """ The DataFrame keeping all publication field relationships. Columns may depend on the specific datasource. Columns ------- 'FieldId', 'FieldLevel', 'NumberPublications', 'FieldName' """ if self._fieldinfo_df is None: if self.keep_in_memory: self._fieldinfo_df = self.load_fieldinfo(show_progress=self.show_progress) else: return self.load_fieldinfo(show_progress=self.show_progress) return self._fieldinfo_df ## Basic Functions for loading data from either preprocessed sources or the raw database files def load_affiliations(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the Affiliation DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. columns : list, default None, Optional Load only this subset of columns isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame Affililation DataFrame. """ if show_progress: show_progress='Loading Affiliations' if preprocess and os.path.exists(os.path.join(self.path2database, 'affiliation')): return load_preprocessed_data('affiliation', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_affiliations() def load_authors(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, process_name = True, show_progress=True): """ Load the Author DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. columns : list, default None, Optional Load only this subset of columns isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns process_name : bool, default True, Optional If True, then when processing the raw file, the package `NameParser <https://nameparser.readthedocs.io/en/latest/>`_ will be used to split author FullNames. Returns ------- DataFrame Author DataFrame. """ if show_progress: show_progress='Loading Authors' if preprocess and os.path.exists(os.path.join(self.path2database, 'author')): return load_preprocessed_data('author', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_authors(process_name=process_name) def load_publications(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the Publication DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- :param preprocess: bool, default True, Optional Attempt to load from the preprocessed directory. columns : list, default None, Optional Load only this subset of columns isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame Publication DataFrame. """ if show_progress: show_progress='Loading Publications' if preprocess and os.path.exists(os.path.join(self.path2database, 'publication')): return load_preprocessed_data(dataname='publication', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_publications() def load_pub2year(self): if os.path.exists(os.path.join(self.path2database, 'pub2year.json.gz')): with gzip.open(os.path.join(self.path2database, 'pub2year.json.gz'), 'r') as infile: pub2year = json.loads(infile.read().decode('utf8')) return {self.PublicationIdType(k):int(y) for k,y in pub2year.items() if not y is None} def load_journals(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the Journal DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. columns : list, default None, Optional Load only this subset of columns isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame Journal DataFrame. """ if show_progress: show_progress='Loading Journals' if preprocess and os.path.exists(os.path.join(self.path2database, 'journal')): return load_preprocessed_data('journal', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_publications() def load_references(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', noselfcite = False, dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the Pub2Ref DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. columns : list, default None, Optional Load only this subset of columns isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns noselfcite : bool, default False, Optional If True, then the preprocessed pub2ref files with self-citations removed will be used. Returns ------- DataFrame Pub2Ref DataFrame. """ if noselfcite: fileprefix = 'pub2refnoself' else: fileprefix = 'pub2ref' if show_progress: show_progress='Loading {}'.format(fileprefix) if preprocess and os.path.exists(os.path.join(self.path2database, fileprefix)): return load_preprocessed_data(fileprefix, path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_references() def load_publicationauthoraffiliation(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the PublicationAuthorAffilation DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. columns : list, default None, Optional Load only this subset of columns isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame PublicationAuthorAffilation DataFrame. """ if show_progress: show_progress='Loading Publication Author Affiliation' if preprocess and os.path.exists(os.path.join(self.path2database, 'publicationauthoraffiliation')): return load_preprocessed_data('publicationauthoraffiliation', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_publicationauthoraffiliation() def load_pub2field(self, preprocess = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the Pub2Field DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- :param preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. :param columns : list, default None, Optional Load only this subset of columns :param isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. :param duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns :param duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) :param dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame Pub2Field DataFrame. """ if show_progress: show_progress='Loading Fields' if preprocess and os.path.exists(os.path.join(self.path2database, 'pub2field')): return load_preprocessed_data('pub2field', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=prefunc2apply, postfunc2apply=postfunc2apply, show_progress=show_progress) else: return self.parse_fields() def load_fieldinfo(self, preprocess = True, columns = None, isindict = None, show_progress=False): """ Load the Field Information DataFrame from a preprocessed directory, or parse from the raw files. Parameters ---------- :param preprocess : bool, default True, Optional Attempt to load from the preprocessed directory. :param columns : list, default None, Optional Load only this subset of columns :param isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. :param duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns :param duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) :param dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame FieldInformation DataFrame. """ if show_progress: show_progress='Loading Field Info' if preprocess and os.path.exists(os.path.join(self.path2database, 'fieldinfo')): return pd.read_hdf(os.path.join(self.path2database, 'fieldinfo', 'fieldnames.hdf')) else: return self.parse_fields() def load_impact(self, preprocess = True, include_yearnormed = True, columns = None, isindict = None, duplicate_subset = None, duplicate_keep = 'last', dropna = None, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the precomputed impact DataFrame from a preprocessed directory. Parameters ---------- :param preprocess : bool, default True Attempt to load from the preprocessed directory. :param include_yearnormed: bool, default True Normalize all columns by yearly average. :param columns : list, default None Load only this subset of columns :param isindict : dict, default None, Optional Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. :param duplicate_subset : list, default None, Optional Drop any duplicate entries as specified by this subset of columns :param duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) :param dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns Returns ------- DataFrame FieldInformation DataFrame. """ if show_progress: show_progress='Loading Impact' if include_yearnormed: def normfunc(impactdf): impactcolumns = [c for c in list(impactdf) if not c in ['PublicationId', 'Year']] for c in impactcolumns: impactdf[c+'_norm'] = impactdf[c]/impactdf[c].mean() return impactdf else: def normfunc(impactdf): return impactdf if preprocess and os.path.exists(os.path.join(self.path2database, 'impact')): return load_preprocessed_data('impact', path2database=self.path2database, columns=columns, isindict=isindict, duplicate_subset=duplicate_subset, duplicate_keep=duplicate_keep, dropna=dropna, prefunc2apply=normfunc, show_progress=show_progress) else: raise self.compute_impact() """ To be rewritten for each specific data source (MAG, WOS, etc.) """ def download_from_source(self): raise NotImplementedError def parse_affiliations(self, preprocess = False): raise NotImplementedError def parse_authors(self, preprocess = False, process_name = True, num_file_lines = 5*10**6): raise NotImplementedError def parse_publications(self, preprocess = False, num_file_lines=10**7): raise NotImplementedError def parse_references(self, preprocess = False, num_file_lines=10**7): raise NotImplementedError def parse_publicationauthoraffiliation(self, preprocess = False, num_file_lines=10**7): raise NotImplementedError def parse_fields(self, preprocess = False, num_file_lines=10**7): raise NotImplementedError # Analysis def author_productivity(self, df=None, colgroupby = 'AuthorId', colcountby = 'PublicationId', show_progress=False): """ Calculate the total number of publications for each author. Parameters ---------- :param df : DataFrame, default None, Optional A DataFrame with the author2publication information. If None then the database 'author2pub_df' is used. :param colgroupby : str, default 'AuthorId', Optional The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. :param colcountby : str, default 'PublicationId', Optional The DataFrame column with Publication Ids. If None then the database 'PublicationId' is used. Returns ------- DataFrame Productivity DataFrame with 2 columns: 'AuthorId', 'Productivity' """ if df is None: df = self.author2pub_df # we can use show_progress to pass a label for the progress bar if show_progress: show_progress='Author Productivity' newname_dict = zip2dict([str(colcountby)+'Count', '0'], ['Productivity']*2) return groupby_count(df, colgroupby, colcountby, count_unique=True, show_progress=show_progress).rename(columns=newname_dict) def author_yearly_productivity(self, df=None, colgroupby = 'AuthorId', datecol = 'Year', colcountby = 'PublicationId', show_progress=False): """ Calculate the number of publications for each author in each year. Parameters ---------- :param df : DataFrame, default None, Optional A DataFrame with the author2publication information. If None then the database 'author2pub_df' is used. :param colgroupby : str, default 'AuthorId', Optional The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. :param datecol : str, default 'Year', Optional The DataFrame column with Year information. If None then the database 'Year' is used. :param colcountby : str, default 'PublicationId', Optional The DataFrame column with Publication Ids. If None then the database 'PublicationId' is used. Returns ------- DataFrame Productivity DataFrame with 3 columns: 'AuthorId', 'Year', 'YearlyProductivity' """ if df is None: df = self.author2pub_df # we can use show_progress to pass a label for the progress bar if show_progress: show_progress='Yearly Productivity' newname_dict = zip2dict([str(colcountby)+'Count', '0'], ['YearlyProductivity']*2) return groupby_count(df, [colgroupby, datecol], colcountby, count_unique=True, show_progress=show_progress).rename(columns=newname_dict) def author_career_length(self, df = None, colgroupby = 'AuthorId', colrange = 'Year', show_progress=False): """ Calculate the career length for each author. The career length is the length of time from the first publication to the last publication. Parameters ---------- :param df : DataFrame, default None, Optional A DataFrame with the author2publication information. If None then the database 'author2pub_df' is used. :param colgroupby : str, default 'AuthorId', Optional The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. :param colrange : str, default 'Year', Optional The DataFrame column with Date information. If None then the database 'Year' is used. Returns ------- DataFrame Productivity DataFrame with 2 columns: 'AuthorId', 'CareerLength' """ if df is None: df = self.author2pub_df # we can use show_progress to pass a label for the progress bar if show_progress: show_progress='Career Length' newname_dict = zip2dict([str(colrange)+'Range', '0'], ['CareerLength']*2) return groupby_range(df, colgroupby, colrange, show_progress=show_progress).rename(columns=newname_dict) def author_productivity_trajectory(self, df =None, colgroupby = 'AuthorId', datecol = 'Year', colcountby = 'PublicationId', show_progress=False): """ Calculate the author yearly productivity trajectory. See :cite:`way2017misleading` The algorithmic implementation can be found in :py:func:`citationanalysis.compute_yearly_productivity_traj`. Parameters ---------- :param df : DataFrame, default None A DataFrame with the author2publication information. If None then the database 'author2pub_df' is used. :param colgroupby : str, default 'AuthorId' The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. :param datecol : str, default 'Year' The DataFrame column with Date information. If None then the database 'Year' is used. :param colcountby : str, default 'PublicationId' The DataFrame column with Publication Ids. If None then the database 'PublicationId' is used. Returns ------- DataFrame Trajectory DataFrame with 5 columns: 'AuthorId', 't_break', 'b', 'm1', 'm2' """ if df is None: df = self.author2pub_df return compute_yearly_productivity_traj(df, colgroupby = colgroupby) def author_hindex(self, df = None, colgroupby = 'AuthorId', colcountby = 'Ctotal', show_progress=False): """ Calculate the author yearly productivity trajectory. See :cite:`hirsch2005index` for the derivation. The algorithmic implementation can be found in :py:func:`citationanalysis.compute_hindex`. Parameters ---------- :param df : DataFrame, default None, Optional A DataFrame with the author2publication information. If None then the database 'author2pub_df' is used. :param colgroupby : str, default 'AuthorId', Optional The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. :param colcountby : str, default 'Ctotal', Optional The DataFrame column with Citation counts for each publication. If None then the database 'Ctotal' is used. Returns ------- DataFrame Trajectory DataFrame with 2 columns: 'AuthorId', 'Hindex' """ if show_progress: print("Starting Author H-index. \nLoading Data.") if df is None: df = self.author2pub_df.merge(self.impact_df[['AuthorId', colcountby]], on='PublicationId', how='left') if show_progress: print("Computing H-index.") return compute_hindex(df, colgroupby = colgroupby, colcountby = colcountby, show_progress=show_progress) def remove_selfcitations(self, preprocess=True, show_progress=False): """ Prcoess the pub2ref DataFrame and remove all citation relationships that share an Author. Parameters ---------- :param preprocess : bool, default True, Optional If True then the new preprocessed DataFrames are saved in pub2refnoself Returns ------- DataFrame Pub2Ref DataFrame with 2 columns: 'CitingPublicationId', 'CitedPublicationId' """ if preprocess: if not os.path.exists(os.path.join(self.path2database, 'pub2refnoself')): os.mkdir(os.path.join(self.path2database, 'pub2refnoself')) pub2authors = defaultdict(set) for pid, aid in self.author2pub_df[['PublicationId', 'AuthorId']].values: pub2authors[pid].add(aid) fullrefdf = [] # loop through all pub2ref files Nreffiles = sum('pub2ref' in fname for fname in os.listdir(os.path.join(self.path2database, 'pub2ref'))) for ifile in tqdm(range(Nreffiles), desc='Removing Self-citations', disable= not show_progress): refdf = pd.read_hdf(os.path.join(self.path2database, 'pub2ref', 'pub2ref{}.hdf'.format(ifile))) # get citing cited pairs with no common authors noselfcite = np.array([len(pub2authors[citingpid] & pub2authors[citedpid]) == 0 for citingpid, citedpid in refdf.values]) # keep only citing-cited pairs without a common author refdf = refdf.loc[noselfcite] if preprocess: refdf.to_hdf(os.path.join(self.path2database, 'pub2refnoself', 'pub2refnoself{}.hdf'.format(ifile)), key = 'pub2ref') else: fullrefdf.append(refdf) if not preprocess: return pd.concat(fullrefdf) def compute_impact(self, preprocess=True, citation_horizons = [5,10], noselfcite = True): """ Calculate several of the common citation indices. * 'Ctotal' : The total number of citations. * 'Ck' : The total number of citations within the first k years of publcation, for each k value specified by `citation_horizons`. * 'Ctotal_noself' : The total number of citations with self-citations removed. * 'Ck' : The total number of citations within the first k years of publcation with self-citations removed, for each k value specified by `citation_horizons`. Parameters ---------- :param preprocess : bool, default True, Optional If True then the impact measures are saved in preprocessed files. :param citation_horizons : list, default [5,10], Optional The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. :param noselfcite : Bool, default 'True', Optional If True then the noselfcitation pub2ref files are also processed. Returns ------- DataFrame The impact DataFrame with at least two columns: 'PublicationId', 'Year', + citation columns """ # first load the publication year information pub2year = self.load_pub2year() # now get the reference list and merge with year info pub2ref = self.pub2ref_df # drop all citations that happend before the publication year pub2ref = pub2ref.loc[[pub2year.get(citingpid, 0) >= pub2year.get(citedpid, 0) for citingpid, citedpid in pub2ref[['CitingPublicationId', 'CitedPublicationId']].values]] # calcuate the total citations citation_df = groupby_count(pub2ref, colgroupby='CitedPublicationId', colcountby='CitingPublicationId', unique=True ) citation_df.rename(columns={'CitingPublicationIdCount':'Ctotal', 'CitedPublicationId':'PublicationId'}, inplace=True) # go from the larest k down for k in np.sort(citation_horizons)[::-1]: # drop all citations that happend after the k #pub2ref = pub2ref.loc[pub2ref['CitingPublicationYear'] <= pub2ref['CitedPublicationYear'] + k] pub2ref = pub2ref.loc[[pub2year.get(citingpid, 0) <= pub2year.get(citedpid, 0) + k for citingpid, citedpid in pub2ref[['CitingPublicationId', 'CitedPublicationId']].values]] # recalculate the impact k_citation_df = groupby_count(pub2ref, colgroupby='CitedPublicationId', colcountby='CitingPublicationId', unique=True ) k_citation_df.rename(columns={'CitingPublicationIdCount':'C{}'.format(k), 'CitedPublicationId':'PublicationId'}, inplace=True) citation_df = citation_df.merge(k_citation_df, how='left', on='PublicationId') # get the Cited Year citation_df['Year'] = [pub2year.get(pid, 0) for pid in citation_df['PublicationId'].values] if noselfcite: del pub2ref pub2ref = self.pub2refnoself_df # drop all citations that happend before the publication year pub2ref = pub2ref.loc[[pub2year.get(citingpid, 0) >= pub2year.get(citedpid, 0) for citingpid, citedpid in pub2ref[['CitingPublicationId', 'CitedPublicationId']].values]] # calcuate the total citations citation_noself_df = groupby_count(pub2ref, colgroupby='CitedPublicationId', colcountby='CitingPublicationId', unique=True ) citation_noself_df.rename(columns={'CitingPublicationIdCount':'Ctotal_noself', 'CitedPublicationId':'PublicationId'}, inplace=True) # go from the larest k down for k in np.sort(citation_horizons)[::-1]: # drop all citations that happend after the k #pub2ref = pub2ref.loc[pub2ref['CitingPublicationYear'] <= pub2ref['CitedPublicationYear'] + k] pub2ref = pub2ref.loc[[pub2year.get(citingpid, 0) <= pub2year.get(citedpid, 0) + k for citingpid, citedpid in pub2ref[['CitingPublicationId', 'CitedPublicationId']].values]] # recalculate the impact k_citation_df = groupby_count(pub2ref, colgroupby='CitedPublicationId', colcountby='CitingPublicationId', unique=True ) k_citation_df.rename(columns={'CitingPublicationIdCount':'C{}_noself'.format(k), 'CitedPublicationId':'PublicationId'}, inplace=True) citation_noself_df = citation_noself_df.merge(k_citation_df, how='left', on='PublicationId') citation_df = citation_df.merge(citation_noself_df, how='left', on='PublicationId') # set all nan to 0 citation_df.fillna(0, inplace=True) if preprocess: if not os.path.exists(os.path.join(self.path2database, 'impact')): os.mkdir(os.path.join(self.path2database, 'impact')) for y, cdf in citation_df.groupby('Year', sort=True): cdf.to_hdf(os.path.join(self.path2database, 'impact', 'impact{}.hdf'.format(y)), mode='w', key ='impact') else: return citation_df def compute_teamsize(self, save2pubdf = True, show_progress=False): """ Calculate the teamsize of publications, defined as the total number of Authors on the publication. Parameters ---------- :param save2pubdf : bool, default True, Optional If True the results are appended to the preprocessed publication DataFrames. :param show_progress: bool, default False If True, display a progress bar for the count. Returns ------- DataFrame TeamSize DataFrame with 2 columns: 'PublicationId', 'TeamSize' """ if show_progress: print("Starting TeamSize computation. \nLoading Data.") pub2authorseq_df = self.load_publicationauthoraffiliation(columns = ['PublicationId', 'AuthorId', 'AuthorSequence'], duplicate_subset = ['PublicationId', 'AuthorId'], dropna = ['PublicationId', 'AuthorId']) # register our pandas apply with tqdm for a progress bar tqdm.pandas(desc='TeamSize', disable= not show_progress) pub2teamsize = pub2authorseq_df.groupby('PublicationId', sort=False)['AuthorSequence'].progress_apply(lambda x: x.max()).astype(int).to_frame().reset_index().rename(columns={'AuthorSequence':'TeamSize'}) if save2pubdf: if show_progress: print("Saving Teamsize.") append_to_preprocessed_df(pub2teamsize, self.path2database, 'publication') return pub2teamsize def compute_yearly_citations(self, preprocess = True, show_progress=False): if show_progress: print("Starting Computation of Yearly Citations") # first load the publication year information pub2year = self.pub2year # now get the reference list and merge with year info pub2ref = self.pub2ref_df pub2ref['CitingYear'] = [pub2year.get(citingpid, 0) for citingpid in pub2ref['CitingPublicationId'].values] # drop all citations that happend before the publication year pub2ref = pub2ref.loc[[citingyear >= pub2year.get(citedpid, 0) for citingyear, citedpid in pub2ref[['CitingYear', 'CitedPublicationId']].values]] if show_progress: print("Yearly Citation Data Prepared") # calcuate the total citations citation_df = groupby_count(pub2ref, colgroupby=['CitedPublicationId', 'CitingYear'], colcountby='CitingPublicationId', unique=True ) citation_df.rename(columns={'CitingPublicationIdCount':'YearlyCitations', 'CitedPublicationId':'PublicationId'}, inplace=True) # get the Cited Year citation_df['CitedYear'] = [pub2year.get(pid, 0) for pid in citation_df['PublicationId'].values] citation_df.sort_values(by=['CitedYear', 'CitedPublicationId', 'CitingYear'], inplace=True) if show_progress: print("Yearly Citations Found") if preprocess: if not os.path.exists(os.path.join(self.path2database, 'temporalimpact')): os.mkdir(os.path.join(self.path2database, 'temporalimpact')) for y, cdf in citation_df.groupby('CitedYear', sort=True): cdf.to_hdf(os.path.join(self.path2database, 'temporalimpact', 'temporalimpact{}.hdf'.format(y)), mode='w', key ='temporalimpact') if show_progress: print("Yearly Citations Saved") else: return citation_df def filter_doctypes(self, doctypes = ['j', 'b', 'bc', 'c'], show_progress=False): """ Filter all of the publication files keeping only the publications of specified doctype. :param list doctypes: optional the list of doctypes :return None: """ doctypes = np.sort(doctypes) if show_progress: print("Starting DocType filter. \nFiltering Publications.") valid_pubids = [] pub2year = {} pub2doctype = {} Nfiles = sum('publication' in fname for fname in os.listdir(os.path.join(self.path2database, 'publication'))) for ifile in range(Nfiles): pubdf = pd.read_hdf(os.path.join(self.path2database, 'publication', 'publication{}.hdf'.format(ifile))) pubdf.loc[isin_sorted(pubdf['DocType'].values, doctypes)] pubdf.dropna(subset=['Year'], inplace=True) pubdf['Year'] = pubdf['Year'].astype(int) pubdf.to_hdf(os.path.join(self.path2database, 'publication', 'publication{}.hdf'.format(ifile)), key='pub', mode='w') valid_pubids.extend(pubdf['PublicationId'].values) for pid, y, dt in pubdf[['PublicationId', 'Year', 'DocType']].values: pub2year[pid] = y pub2doctype[pid] = dt with gzip.open(os.path.join(self.path2database, 'pub2year.json.gz'), 'w') as outfile: outfile.write(json.dumps(pub2year).encode('utf8')) with gzip.open(os.path.join(self.path2database, 'pub2doctype.json.gz'), 'w') as outfile: outfile.write(json.dumps(pub2doctype).encode('utf8')) del pubdf valid_pubids = np.sort(valid_pubids) if show_progress: print("Filtering References.") Nfiles = sum('pub2ref' in fname for fname in os.listdir(os.path.join(self.path2database, 'pub2ref'))) for ifile in range(Nfiles): pub2refdf = pd.read_hdf(os.path.join(self.path2database, 'pub2ref', 'pub2ref{}.hdf'.format(ifile))) pub2refdf = pub2refdf.loc[isin_sorted(pub2refdf['CitedPublicationId'].values, valid_pubids)] pub2refdf = pub2refdf.loc[isin_sorted(pub2refdf['CitingPublicationId'].values, valid_pubids)] pub2refdf.to_hdf(os.path.join(self.path2database, 'pub2ref', 'pub2ref{}.hdf'.format(ifile)), key='pub2ref', mode='w') if show_progress: print("Filtering Publication and Author.") Nfiles = sum('publicationauthoraffiliation' in fname for fname in os.listdir(os.path.join(self.path2database, 'publicationauthoraffiliation'))) for ifile in range(Nfiles): paa_df = pd.read_hdf(os.path.join(self.path2database, 'publicationauthoraffiliation', 'publicationauthoraffiliation{}.hdf'.format(ifile))) paa_df = paa_df.loc[isin_sorted(paa_df['PublicationId'].values, valid_pubids)] paa_df.to_hdf(os.path.join(self.path2database, 'publicationauthoraffiliation', 'publicationauthoraffiliation{}.hdf'.format(ifile)), key='paa', mode='w') if show_progress: print("Finished filtering DocType.") ```
{ "source": "jisunl23/wouldyouci", "score": 3 }
#### File: wouldyouci_database/crawling/movie_on_ci.py ```python from bs4 import BeautifulSoup import urllib.request from dotenv import load_dotenv import json import requests # import pyperclip import time import datetime import os import sys import io sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding='utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding='utf-8') from selenium import webdriver # Explicitly wait from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys # selenium chromedriver_dir=r'C:\Users\multicampus\Downloads\chromedriver\chromedriver.exe' load_dotenv(verbose=True) # CGV INFO def updateCGV(url_option, tdate, cinema_pk): global onscreen_pk global onscreen_movie CGV_ONSCREEN = [] tg_date = makeCGVDate(tdate) iframe_base = 'http://www.cgv.co.kr/common/showtimes/iframeTheater.aspx?' CGV_URL = 'http://www.cgv.co.kr' iframe_url = iframe_base + url_option + '&date=' + tg_date iframe_html = urllib.request.urlopen(iframe_url) soup = BeautifulSoup(iframe_html, 'lxml') movie_list = soup.find_all('div', {'class': 'col-times'}) for movie in movie_list: # 영화 정보(영화사 영화 자세히보기 페이지) movie_info = movie.find('div', {'class': 'info-movie'}) movie_atag = movie_info.find('a') movie_href = movie_atag.get('href') movie_code = getCGVMovieIdx(movie_href) movie_name = getCGVMovieName(movie_code) if onscreen_movie.get(movie_name): onscreen_movie[movie_name]['CGV'] = movie_code else: onscreen_movie[movie_name] = { 'CGV': movie_code } # 상영관 정보 hall_list = movie.find_all('div', {'class': 'type-hall'}) for hall in hall_list: hall_info = hall.find_all('li') movie_d = getCGVStr(hall_info[0].text) seat_total = getCGVStr(hall_info[2].text)[1:-1] time_table = hall.find('div', {'class': 'info-timetable'}) atag_list = time_table.find_all('a') for atag in atag_list: new_onscreen_info = { 'pk': onscreen_pk, 'model': 'movies.onscreen', } new_onscreen_info_field = {} atag_href = atag.get('href') if atag_href == '/': TICKET_URL = CGV_URL + '/ticket/?' + url_option + '&date=' + tg_date seat_left = '준비중' start_time = atag.find('em') start_time = start_time.text end_time = atag.find('span', {'class': 'end-time'}).text end_time = deleteWord(end_time, 3, len(end_time)) info_hall = hall.find('div', {'class': 'info-hall'}) hall_name = info_hall.find_all('li')[1] hall_name = getCGVStr(hall_name.text) else: TICKET_URL = CGV_URL + atag_href start_time = atag.get('data-playstarttime') start_time = makeStrtoTime(start_time) end_time = atag.get('data-playendtime') end_time = makeStrtoTime(end_time) seat_left = atag.get('data-seatremaincnt') hall_name = atag.get('data-screenkorname') new_onscreen_info_field['cinema'] = cinema_pk new_onscreen_info_field['movie'] = int(movie_code) new_onscreen_info_field['cm_code'] = int(movie_code) new_onscreen_info_field['date'] = tdate new_onscreen_info_field['info'] = movie_d + ' | ' + hall_name new_onscreen_info_field['start_time'] = start_time new_onscreen_info_field['end_time'] = end_time new_onscreen_info_field['total_seats'] = seat_total new_onscreen_info_field['seats'] = seat_left new_onscreen_info_field['url'] = TICKET_URL new_onscreen_info['fields'] = new_onscreen_info_field # print(new_onscreen_info) CGV_ONSCREEN.append(new_onscreen_info) onscreen_pk += 1 return CGV_ONSCREEN def getCGVMovieName(tg_code): CGV_MOVIE_DETAIL = 'http://www.cgv.co.kr/movies/detail-view/?midx=' detail_url = CGV_MOVIE_DETAIL + tg_code detail_html = urllib.request.urlopen(detail_url) detail_soup = BeautifulSoup(detail_html, 'lxml') movie_name = detail_soup.find('div', {'class': 'title'}) res = movie_name.find('strong').text return res def getCGVStr(tg_text): start_point = 0 tg_text_len = len(tg_text) res = '' for idx in range(tg_text_len): if tg_text[idx] == ' ': continue elif tg_text[idx] == '\r': continue elif tg_text[idx] == '\n': continue else: res += tg_text[idx] return res def getCGVMovieIdx(movie_url): equal_idx = movie_url.index('=') cgv_movie_code = movie_url[equal_idx+1:] return cgv_movie_code def makeStrtoTime(tg_str): res = '' tg_len = len(tg_str) minute = tg_str[tg_len-2:] hour = tg_str[:tg_len-2] res = hour + ':' + minute return res def deleteWord(tg_str, st_idx, end_idx): new_str = tg_str[st_idx:end_idx] return new_str # MEGABOX INFO def updateMEGABOX(tg_url, tg_date, cinema_pk): global onscreen_pk global onscreen_movie TICKET_BASE = 'https://www.megabox.co.kr/booking/seat?playSchdlNo=' driver.get(tg_url) time.sleep(2) # 내일 날짜로 조회 dotdate = getDotDate(tg_date) dayxPath = '//*[@date-data=\"' + dotdate + '\"]' tmr_btn = driver.find_element_by_xpath(dayxPath) tmr_btn.click() time.sleep(2) source = driver.page_source soup = BeautifulSoup(source, 'html.parser') movie_list = soup.find_all('div', {'class': 'theater-list'}) MEGABOX_ONSCREEN = [] for movie_col in movie_list: movie_info = movie_col.find('div', {'class': 'theater-tit'}) movie_name = checkMegaName(movie_info.find_all('p')[1].text) theater_type_list = movie_col.find_all('div', {'class': 'theater-type-box'}) for box in theater_type_list: theater_type = box.find('div', {'class': 'theater-type'}) hall_name = theater_type.find('p', {'class': 'theater-name'}).text total_seat = theater_type.find('p', {'class': 'chair'}).text[2:-1] theater_time = box.find('div', {'class': 'theater-time'}) movie_d = theater_time.find('div', {'class': 'theater-type-area'}).text movie_info = movie_d + ' | ' + hall_name movie_timetable = theater_time.find_all('td') for movie_time in movie_timetable: new_onscreen_info = { 'pk': onscreen_pk, 'model': 'movies.onscreen', } new_field = { 'cinema': cinema_pk, 'movie': '', 'date': tg_date, 'info': movie_info, 'start_time': '', 'end_time': '', 'total_seats': total_seat, 'seats': '', 'url': tg_url } if movie_time.get('play-de') != deleteSlash(tg_date): return [] if movie_time.get('class') == 'end-time': new_field['start_time'] = movie_time.find('p', {'class': 'time'}).text new_field['seats'] = '매진' else: book_code = movie_time.get('play-schdl-no') if book_code: TICKET_URL = TICKET_BASE + book_code else: TICKET_URL = tg_url movie_code = movie_time.get('rpst-movie-no') # 상영작 업로드 if movie_name and movie_code: if onscreen_movie.get(movie_name): onscreen_movie[movie_name]['MEGABOX'] = movie_code else: onscreen_movie[movie_name] = { 'MEGABOX': movie_code } play_info = movie_time.find('div', {'class': 'play-time'}) if play_info: play_time = play_info.find('p').text start_end = divideTime(play_time) seat_left = movie_time.find('p', {'class': 'chair'}).text[:-1] new_field['start_time'] = start_end[0] new_field['end_time'] = start_end[1] new_field['seats'] = seat_left if movie_code: new_field['movie'] = int(movie_code) new_field['cm_code'] = int(movie_code) else: continue new_field['url'] = TICKET_URL new_onscreen_info['fields'] = new_field MEGABOX_ONSCREEN.append(new_onscreen_info) onscreen_pk += 1 return MEGABOX_ONSCREEN def getDashDate(tg_date): res = tg_date[:4] + '-' + tg_date[4:6] + '-' + tg_date[6:] return res def divideTime(tg_time): divideIdx = tg_time.index('~') res1 = tg_time[:divideIdx] res2 = tg_time[divideIdx+1:] return res1, res2 def makeCGVDate(tg_date): res = '' for idx in range(len(tg_date)): if tg_date[idx] == '-': continue else: res += tg_date[idx] return res def checkMegaName(tg_str): if tg_str[0] == '[': endIdx = tg_str.index(']') return tg_str[endIdx+2:] elif tg_str[0] == '(': endIdx = tg_str.index(')') return tg_str[endIdx+2:] else: return tg_str def getDotDate(tdate): res = '' for idx in range(len(tdate)): if tdate[idx] == '-': res += '.' else: res += tdate[idx] return res def updateLOTTE(tg_url, tg_date, cinema_pk): global onscreen_pk global onscreen_movie driver.get(tg_url) time.sleep(2) ck_source = driver.page_source ck_soup = BeautifulSoup(ck_source, 'html.parser') ck_layer = ck_soup.find('div', {'id': 'layerGetPopup'}) if ck_layer.text: popupLayer = driver.find_element_by_id('layerGetPopup') ck_btn = popupLayer.find_element_by_class_name('btn_close.btnCloseLayer') ck_btn.click() time.sleep(1) day_list = driver.find_elements_by_class_name('date') ck_date = str(int(tg_date[-2:])) LOTTE_ONSCREEN = [] # 내일 날짜로 조회 for day in day_list: day_text = day.find_element_by_tag_name('strong').text if day_text == ck_date: tg_btn = day.find_element_by_tag_name('label') tg_btn.click() time.sleep(2) break source = driver.page_source soup = BeautifulSoup(source, 'html.parser') movie_list = soup.find_all('div', {'class': 'time_select_wrap ty2 timeSelect'}) for movie in movie_list: movie_tit = movie.find('div', {'class': 'list_tit'}) movie_name = movie_tit.find('p').text if movie_name == '테스트콘텐츠': continue movie_atag = movie_tit.find('a') movie_href = movie_atag.get('href') movie_code = findLotteCode(movie_href) if onscreen_movie.get(movie_name): onscreen_movie[movie_name]['LOTTE'] = movie_code else: onscreen_movie[movie_name] = { 'LOTTE': movie_code } movie_info_ul = movie.find('ul', {'class': 'list_hall mt20'}) movie_info_li = movie_info_ul.find_all('li') movie_info_list = [] for info_li in movie_info_li: movie_info_list.append(info_li.text) movie_info = ' | '.join(movie_info_list) timetable_ul = movie.find('ul', {'class': 'list_time'}) timetable_atag_list = timetable_ul.find_all('li') for timetable_info in timetable_atag_list: time_info = timetable_info.find('dd', {'class': 'time'}) start_time = time_info.find('strong').text end_time_info = time_info.find('div', {'class': 'tooltip'}).text end_time = strBeforeSpace(end_time_info) seat_info = timetable_info.find('dd', {'class': 'seat'}) seat_left = seat_info.find('strong').text seat_total = strBeforeSpace(seat_info.text) hall_info = timetable_info.find('dd', {'class': 'hall'}).text new_movie_info = movie_info + ' | ' + hall_info new_onscreen_info = { 'pk': onscreen_pk, 'model': 'movies.onscreen', 'fields': { 'cinema': cinema_pk, 'movie': int(movie_code), 'date': tg_date, 'info': new_movie_info, 'start_time': start_time, 'end_time': end_time, 'total_seats': seat_total, 'seats': seat_left, 'url': tg_url, 'cm_code': int(movie_code) } } onscreen_pk += 1 LOTTE_ONSCREEN.append(new_onscreen_info) return LOTTE_ONSCREEN def findLotteCode(tg_href): idx = 0 for i in range(len(tg_href)): if tg_href[i] == '=': idx = i break if idx: return tg_href[idx+1:] def strBeforeSpace(tg_str): idx = 0 for i in range(len(tg_str)-1, -1, -1): if tg_str[i] == ' ': idx = i+1 break return tg_str[idx:] def updateETC(tg_url, tg_date, cinema_pk): global onscreen_pk global onscreen_movie if cinema_pk == 75 or cinema_pk == 84: driver.get(tg_url) time.sleep(3) # 내일 찾기 tommorow_btn = driver.find_element_by_xpath('//*[@id="content"]/div[2]/div/div[1]/ul/li[3]/a') tommorow_btn.click() time.sleep(1) source = driver.page_source soup = BeautifulSoup(source, 'html.parser') time_box = soup.find('div', {'class': 'theater-movie'}) movie_list = time_box.find_all('div', {'class': 'each-movie-time'}) CINEQ_ONSCREEN = [] for movie_div in movie_list: movie_title = movie_div.find('div', {'class': 'title'}) movie_grade = movie_title.find('span').get('class') movie_name = getMovieName(movie_title.text, movie_grade[0]) hall_list = movie_div.find_all('div', {'class': 'screen'}) for hall in hall_list: hall_name = hall.find('div', {'class': 'screen-name'}) hall_info = hall_name.text time_div = hall.find('div', {'class': 'time-block'}) time_list = time_div.find_all('div', {'class': 'time'}) for time_info in time_list: movie_code = time_info.get('data-moviecode') if not movie_code: continue else: if onscreen_movie.get(movie_name): onscreen_movie[movie_name]['CINEQ'] = str(int(movie_code)) else: onscreen_movie[movie_name] = { 'CINEQ': str(int(movie_code)) } end_time = time_info.find('span', {'class': 'to'}).text[3:] seat_info = time_info.find('span', {'class': 'seats-status'}).text seat_left, seat_total = getSeatInfo(seat_info) start_text = time_info.find('a').text start_time = getCineqTime(start_text) new_onscreen_info = { 'pk': onscreen_pk, 'model': 'movies.onscreen', 'fields': { 'cinema': cinema_pk, 'movie': int(movie_code), 'date': tg_date, 'info': hall_info, 'start_time': start_time, 'end_time': end_time, 'total_seats': seat_total, 'seats': seat_left, 'url': tg_url, 'cm_code': int(movie_code) } } onscreen_pk += 1 CINEQ_ONSCREEN.append(new_onscreen_info) return CINEQ_ONSCREEN else: def getHallInfo(tg_str): res1 = '' res2 = '' for i in range(len(tg_str)): if tg_str[i] == '관' and res1 == '': res1 = tg_str[:i+1] elif tg_str[i] == ' ' and res2 == '': res2 = tg_str[i+1:] return res1, res2 def getEndTime(tg_str): res = '' for i in range(len(tg_str)): if tg_str[i] == '~': res = tg_str[i+2:] break return res def renameYesTitle(tg_str): res = tg_str if res[len(tg_str)-1] == ')': idx = res.index('(') res = res[:idx-1] if res[0] == '[': idx = res.index(']') res = res[idx+2:] return res TICKET_BASE = 'https://movie.yes24.com/Movie/Ticket?gId=&' YES_ONSCREEN = [] driver.get(tg_url) until_time = WebDriverWait(driver, 3).until(EC.presence_of_element_located((By.CLASS_NAME,"time_sel_cont"))) time.sleep(2) source = driver.page_source soup = BeautifulSoup(source, 'html.parser') if not soup.find('div', {'class': 'show_time_slide'}): return [] # 다음날 버튼 클릭 ck = True tg_day = str(int(tg_date[-2:])) day_list = driver.find_elements_by_class_name('show_time_slide') for day in day_list: span_text = day.find_element_by_tag_name('span').text if span_text == tg_day: ck = False day.click() time.sleep(1) source = driver.page_source soup = BeautifulSoup(source, 'html.parser') break if ck: return [] time_container = soup.find('div', {'class': 'time_sel_cont'}) title_list = time_container.find_all('div', {'class': 'tit'}) time_list = time_container.find_all('ul', {'class': 'time_sel_list'}) if len(title_list) == 0: return [] for idx in range(len(title_list)): title = title_list[idx] title_text = title.text hall_info, movie_title = getHallInfo(title_text) movie_name = renameYesTitle(movie_title) timetable = time_list[idx] li_list = timetable.find_all('li') for li in li_list: atag = li.find('a', {'class': 'time_info_box'}) pdate = atag.get('playdate') if pdate == tg_date: reserve_option = { "mId" : atag.get('mid'), "tId" : atag.get('tid'), "playDate": deleteSlash(tg_date), "pno": atag.get('ptid'), } movie_code = reserve_option['mId'][1:] if onscreen_movie.get(movie_name): onscreen_movie[movie_name]['YES'] = movie_code else: onscreen_movie[movie_name] = { 'YES': movie_code } book_option = urllib.parse.urlencode(reserve_option) movie_url = TICKET_BASE + book_option time_info = atag.find('div', {'class': 'time_info'}) start_time = time_info.find('div', {'class': 'time_start'}).text playing_time = time_info.find('div', {'class': 'running_time'}).text end_time = getEndTime(playing_time) new_onscreen_info = { 'pk': onscreen_pk, 'model': 'movies.onscreen', 'fields': { 'cinema': cinema_pk, 'movie': int(movie_code), 'date': tg_date, 'info': hall_info, 'start_time': start_time, 'end_time': end_time, 'total_seats': '', 'seats': '', 'url': movie_url, 'cm_code': int(movie_code) } } onscreen_pk += 1 YES_ONSCREEN.append(new_onscreen_info) return YES_ONSCREEN def getCineqTime(tg_str): res = '' ck = False for i in range(len(tg_str)): if tg_str[i] == ' ': continue elif tg_str[i] == '\n': continue elif tg_str[i] == ':': ck = True res += tg_str[i] else: if not ck: res += tg_str[i] else: res += tg_str[i: i+2] break if len(res) < 5: res = '0' + res return res def getSeatInfo(tg_str): for i in range(len(tg_str)): if tg_str[i] == '/': return tg_str[:i-1], tg_str[i+2:] return '', '' def getMovieName(tg_title, tg_grade): start_idx = 2 if tg_grade == 'rate-all': start_idx = 1 res = tg_title[start_idx:-1] if res[len(res)-1] == ')': end_idx = res.index('(') -1 res = res[:end_idx] return res def deleteSlash(tg_str): res = '' for i in range(len(tg_str)): if tg_str[i] == '-': continue else: res += tg_str[i] return res today = datetime.date.today() tr = today + datetime.timedelta(days=1) tommorow = tr.strftime('%Y-%m-%d') change_time = { "24": "00", "25": "01", "26": "02", "27": "03", "28": "04", "29": "05", "30": "06" } onscreen_pk = int(tr.strftime('%Y%m%d0001')[2:]) def getScreenInfo(): global cinemas global on_screen global onscreen_movie global driver with open('cinemas.json', 'r', encoding='UTF-8-sig') as fr: cinemas = json.load(fr) with open('07_on_screen_today.json', 'r', encoding='UTF-8') as fr: on_screen = json.load(fr) with open('07_movie_dict_today.json', 'r', encoding='UTF-8') as fr: onscreen_movie = json.load(fr) driver = webdriver.Chrome(chromedriver_dir) for cinema in cinemas: base_url = cinema['fields']['url'] company = cinema['fields']['type'] new_on_screen = [] if company == 'CGV': base_url_info = urllib.parse.urlsplit(base_url).query new_on_screen = updateCGV(base_url_info, tommorow, cinema['pk']) elif company == '메가박스': new_on_screen = updateMEGABOX(base_url, tommorow, cinema['pk']) elif company == '롯데시네마': new_on_screen = updateLOTTE(base_url, tommorow, cinema['pk']) else: new_on_screen = updateETC(base_url, tommorow, cinema['pk']) if new_on_screen: for screen_info in new_on_screen: for t in ['start_time', 'end_time']: movie_time = screen_info['fields'][t] if movie_time: movie_hour = movie_time[:2] if change_time.get(movie_hour): screen_info['fields'][t] = change_time[movie_hour] + movie_time[2:] # else: # screen_info['fields'][t] = '' on_screen.append(screen_info) driver.quit() with open('07_on_screen.json', 'w', encoding='UTF-8') as fp: json.dump(on_screen, fp, ensure_ascii=False, indent=4) with open('07_movie_dict.json', 'w', encoding='UTF-8') as fp: json.dump(onscreen_movie, fp, ensure_ascii=False, indent=4) ```
{ "source": "JisunParkRea/djangotube_tutorial", "score": 2 }
#### File: video/tests/test_views.py ```python from django.test import TestCase from django.urls import reverse from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from video.models import Video from video.views import my_video class VideoListViewTest(TestCase): @classmethod def setUpTestData(cls): # Set up non-modified objects used by all test methods test_user = User.objects.create_user(username='test_user', email='<EMAIL>', password='<PASSWORD>') Video.objects.create(author=test_user, title='코로나 국민예방수칙', category='info', video_key='G7rBBWeunHM') def test_view_url_exists_at_desired_location(self): response = self.client.get('/video/') self.assertEqual(response.status_code, 200) def test_view_url_accessible_by_name(self): response = self.client.get(reverse('video_list')) self.assertEqual(response.status_code, 200) def test_view_uses_correct_template(self): response = self.client.get(reverse('video_list')) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'video/video_list.html') class MyVideoListViewTest(TestCase): def setUp(self): # Create user test_user = User.objects.create_user(username='test_user', email='<EMAIL>', password='<PASSWORD>') test_user.save() # Create video Video.objects.create(author=test_user, title='코로나 국민예방수칙', category='info', video_key='G7rBBWeunHM') def test_redirect_if_not_logged_in(self): response = self.client.get(reverse('my_video')) self.assertRedirects(response, '/video/login/?next=/video/myVideo/') def test_logged_in_uses_correct_template(self): self.client.login(username='test_user', password='<PASSWORD>') response = self.client.get(reverse('my_video')) # Check our user is logged in self.assertEqual(str(response.context['user']), 'test_user') # Check that we got a response "success" self.assertEqual(response.status_code, 200) # Check we used correct template self.assertTemplateUsed(response, 'video/my_video.html') ```
{ "source": "JisunParkRea/naverSearchAPI_practice", "score": 2 }
#### File: naverSearchAPI_practice/book/searchAPI.py ```python import os, json import sys import urllib.request from django.core.exceptions import ImproperlyConfigured def search_local_cafe(where): # Get CLIENT_ID, CLIENT_SECRET from secrets.json BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) secret_file = os.path.join(BASE_DIR, 'secrets.json') # secrets.json 파일 위치를 명시 with open(secret_file) as f: secrets = json.loads(f.read()) def get_secret(setting, secrets=secrets): try: return secrets['naver'][setting] except KeyError: error_msg = "Set the {} environment variable".format(setting) raise ImproperlyConfigured(error_msg) client_id = get_secret("CLIENT_ID") client_secret = get_secret("CLIENT_SECRET") search_word = where # 검색 단어 search_word += "카페" encText = urllib.parse.quote(search_word) url = "https://openapi.naver.com/v1/search/local?query=" + encText + "&display=5&sort=comment" # json 결과 request = urllib.request.Request(url) request.add_header("X-Naver-Client-Id",client_id) request.add_header("X-Naver-Client-Secret",client_secret) response = urllib.request.urlopen(request) rescode = response.getcode() if(rescode==200): response_body = response.read() res = response_body.decode('utf-8') jres = json.loads(res) #print(jres['items']) return jres['items'] else: return rescode #print("Error Code:" + rescode) ```
{ "source": "jit9/simonsobs-sotodlib", "score": 2 }
#### File: sotodlib/pipeline_tools/hardware.py ```python import numpy as np from toast.pipeline_tools import Telescope, Focalplane, Site, Schedule, CES from toast.timing import function_timer, Timer from toast.utils import Logger from .. import hardware FOCALPLANE_RADII_DEG = {"LAT" : 3.6, "SAT0" : 17.8, "SAT1" : 17.8, "SAT2" : 17.8, "SAT3" : 17.2} class SOTelescope(Telescope): def __init__(self, name): site = Site("Atacama", lat="-22.958064", lon="-67.786222", alt=5200) super().__init__(name, site=site) self.id = { # Use the same telescope index for all SATs to re-use the # atmospheric simulation #'LAT' : 0, 'SAT0' : 1, 'SAT1' : 2, 'SAT2' : 3, 'SAT3' : 4 "LAT": 0, "SAT0": 4, "SAT1": 4, "SAT2": 4, "SAT3": 4, }[name] def add_hw_args(parser): parser.add_argument( "--hardware", required=False, default=None, help="Input hardware file" ) parser.add_argument( "--thinfp", required=False, type=np.int, help="Thin the focalplane by this factor", ) parser.add_argument( "--bands", required=True, help="Comma-separated list of bands: LF1 (27GHz), LF2 (39GHz), " "MFF1 (93GHz), MFF2 (145GHz), MFS1 (93GHz), MFS2 (145GHz), " "UHF1 (225GHz), UHF2 (280GHz). " "Length of list must equal --tubes", ) parser.add_argument( "--tubes", required=True, help="Comma-separated list of optics tubes: LT0 (UHF), LT1 (UHF), " " LT2 (MFF), LT3 (MFF), LT4 (MFS), LT5 (MFS), LT6 (LF). " "Length of list must equal --bands", ) return class BandParams: def __init__(self, band_name, band_data): self.name = band_name self.net = band_data["NET"] * 1e-6 # uK -> K self.fknee = band_data["fknee"] * 1e-3 # mHz -> Hz self.fmin = band_data["fmin"] * 1e-3 # mHz -> Hz # self.alpha = banddata[band]["alpha"] self.alpha = 1 # hardwire a sensible number. 3.5 is not realistic. self.A = band_data["A"] self.C = band_data["C"] self.lower = band_data["low"] # GHz self.center = band_data["center"] # GHz self.upper = band_data["high"] # GHz return class DetectorParams: def __init__(self, det_data, band, wafer, tube, telescope, index): """ Args: det_data (dict) : Dictionary of detector parameters from sotodlib.hardware band (BandParams) : band parameters act as defaults wafer (int) : wafer number tube (str) : tube name telescope (str) : telescope name index (int) : RNG index """ def get_par(key, default, scale=1): if key in det_data: return det_data[key] * scale else: return default self.band = band.name self.det_data = det_data self.net = get_par("NET", band.net, 1e-6) # uK -> K self.fknee = get_par("fknee", band.fknee, 1e-3) # mHz -> Hz self.fmin = get_par("fmin", band.fmin, 1e-3) # mHz -> Hz self.alpha = get_par("alpha", band.alpha) self.alpha = 1 # hardwire a sensible number. 3.5 is not realistic. self.A = get_par("A", band.A) self.C = get_par("C", band.C) self.lower = get_par("low", band.lower) # GHz self.center = get_par("center", band.center) # GHz self.upper = get_par("high", band.upper) # GHz self.center = 0.5 * (self.lower + self.upper) self.width = self.upper - self.lower self.wafer = wafer self.tube = tube self.telescope = telescope self.index = index return def get_dict(self): det_dict = { "NET": self.net, "fknee": self.fknee, "fmin": self.fmin, "alpha": self.alpha, "A": self.A, "C": self.C, "quat": self.det_data["quat"], "fwhm": self.det_data["fwhm"], "freq": self.center, "bandcenter_ghz": self.center, "bandwidth_ghz": self.width, "index": self.index, "telescope": self.telescope, "tube": self.tube, "wafer": self.wafer, "band": self.band, } return det_dict @function_timer def get_hardware(args, comm, verbose=False): """ Get the hardware configuration, either from file or by simulating. Then trim it down to the bands that were selected. """ log = Logger.get() telescope = get_telescope(args, comm, verbose=verbose) if comm.world_rank == 0: if args.hardware: log.info( "Loading hardware configuration from {}..." "".format(args.hardware) ) hw = hardware.Hardware(args.hardware) else: log.info("Simulating default hardware configuration") hw = hardware.get_example() hw.data["detectors"] = hardware.sim_telescope_detectors(hw, telescope.name) # Construct a running index for all detectors across all # telescopes for independent noise realizations det_index = {} for idet, det in enumerate(sorted(hw.data["detectors"])): det_index[det] = idet match = {"band": args.bands.replace(",", "|")} tubes = args.tubes.split(",") # If one provides both telescopes and tubes, the tubes matching *either* # will be concatenated #hw = hw.select(telescopes=[telescope.name], tubes=tubes, match=match) hw = hw.select(tubes=tubes, match=match) if args.thinfp: # Only accept a fraction of the detectors for # testing and development delete_detectors = [] for det_name in hw.data["detectors"].keys(): if (det_index[det_name] // 2) % args.thinfp != 0: delete_detectors.append(det_name) for det_name in delete_detectors: del hw.data["detectors"][det_name] ndetector = len(hw.data["detectors"]) if ndetector == 0: raise RuntimeError( "No detectors match query: telescope={}, " "tubes={}, match={}".format(telescope, tubes, match) ) log.info( "Telescope = {} tubes = {} bands = {}, thinfp = {} matches {} detectors" "".format(telescope.name, args.tubes, args.bands, args.thinfp, ndetector) ) else: hw = None det_index = None if comm.comm_world is not None: hw = comm.comm_world.bcast(hw) det_index = comm.comm_world.bcast(det_index) return hw, telescope, det_index @function_timer def get_telescope(args, comm, verbose=False): """ Determine which telescope matches the detector selections """ telescope = None if comm.world_rank == 0: hwexample = hardware.get_example() tubes = args.tubes.split(",") for tube in tubes: for telescope_name, telescope_data in hwexample.data[ "telescopes" ].items(): if tube in telescope_data["tubes"]: if telescope is None: telescope = SOTelescope(telescope_name) elif telescope.name != telescope_name: raise RuntimeError( "Tubes '{}' span more than one telescope".format(tubes) ) break if telescope is None: raise RuntimeError( "Failed to match tube = '{}' with a telescope".format(tube) ) if comm.comm_world is not None: telescope = comm.comm_world.bcast(telescope) return telescope def get_focalplane(args, comm, hw, det_index, verbose=False): """ Translate hardware configuration into a TOAST focalplane dictionary """ if comm.world_rank == 0: detector_data = {} band_params = {} for band_name, band_data in hw.data["bands"].items(): band_params[band_name] = BandParams(band_name, band_data) # User may force the effective focal plane radius to be larger # than the default. This will widen the size of the simulated # atmosphere but has not other effect for the time being. fpradius = None try: fpradius = args.focalplane_radius_deg except: pass if fpradius is None: fpradius = 0 for det_name, det_data in hw.data["detectors"].items(): # RNG index for this detector index = det_index[det_name] wafer = det_data["wafer"] # Determine which tube has this wafer for tube_name, tube_data in hw.data["tubes"].items(): if wafer in tube_data["wafers"]: break # Determine which telescope has this tube for telescope_name, telescope_data in hw.data["telescopes"].items(): if tube_name in telescope_data["tubes"]: break fpradius = max(fpradius, FOCALPLANE_RADII_DEG[telescope_name]) det_params = DetectorParams( det_data, band_params[det_data["band"]], wafer, tube_name, telescope_name, index, ) detector_data[det_name] = det_params.get_dict() # Create a focal plane in the telescope focalplane = Focalplane( detector_data=detector_data, sample_rate=args.sample_rate, radius_deg=fpradius, ) else: focalplane = None if comm.comm_world is not None: focalplane = comm.comm_world.bcast(focalplane) return focalplane @function_timer def load_focalplanes(args, comm, schedules, verbose=False): """ Attach a focalplane to each of the schedules. Args: schedules (list) : List of Schedule instances. Each schedule has two members, telescope and ceslist, a list of CES objects. Returns: detweights (dict) : Inverse variance noise weights for every detector across all focal planes. In [K_CMB^-2]. They can be used to bin the TOD. """ # log = Logger.get() timer = Timer() timer.start() # Load focalplane information timer1 = Timer() timer1.start() hw, telescope, det_index = get_hardware(args, comm, verbose=verbose) focalplane = get_focalplane(args, comm, hw, det_index, verbose=verbose) telescope.focalplane = focalplane if comm.world_rank == 0 and verbose: timer1.report_clear("Collect focaplane information") for schedule in schedules: # Replace the telescope created from reading the observing schedule but # keep the weather object weather = schedule.telescope.site.weather schedule.telescope = telescope schedule.telescope.site.weather = weather detweights = telescope.focalplane.detweights timer.stop() if (comm.comm_world is None or comm.world_rank == 0) and verbose: timer.report("Loading focalplane") return detweights ``` #### File: simonsobs-sotodlib/tests/test_hardware.py ```python import os from unittest import TestCase from collections import OrderedDict from ._helpers import create_outdir from sotodlib.hardware.config import Hardware, get_example from sotodlib.hardware.sim import (sim_wafer_detectors, sim_telescope_detectors) from sotodlib.hardware.vis import plot_detectors class HardwareTest(TestCase): def setUp(self): fixture_name = os.path.splitext(os.path.basename(__file__))[0] self.outdir = create_outdir(fixture_name) self.skip_plots = False if "SOTODLIB_TEST_DISABLE_PLOTS" in os.environ: self.skip_plots = os.environ["SOTODLIB_TEST_DISABLE_PLOTS"] def test_config_example(self): outpath = os.path.join(self.outdir, "hardware_example.toml.gz") hw = get_example() hw.dump(outpath, overwrite=True, compress=True) hwcheck = Hardware(outpath) checkpath = os.path.join(self.outdir, "hardware_example_check.toml.gz") hwcheck.dump(checkpath, overwrite=True, compress=True) return def test_sim_wafer(self): hw = get_example() # Simulate all wafers for tele, teleprops in hw.data["telescopes"].items(): platescale = teleprops["platescale"] fwhm = teleprops["fwhm"] for tube in teleprops["tubes"]: tubeprops = hw.data["tubes"][tube] for wafer in tubeprops["wafers"]: outpath = os.path.join( self.outdir, "wafer_{}.toml.gz".format(wafer)) dets = sim_wafer_detectors(hw, wafer, platescale, fwhm) # replace detectors with this set for dumping hw.data["detectors"] = dets hw.dump(outpath, overwrite=True, compress=True) if not self.skip_plots: outpath = os.path.join(self.outdir, "wafer_{}.pdf".format(wafer)) plot_detectors(dets, outpath, labels=True) return def test_sim_telescope(self): hw = get_example() for tele, teleprops in hw.data["telescopes"].items(): hw.data["detectors"] = sim_telescope_detectors(hw, tele) outpath = os.path.join(self.outdir, "telescope_{}.toml.gz".format(tele)) hw.dump(outpath, overwrite=True, compress=True) if not self.skip_plots: outpath = os.path.join(self.outdir, "telescope_{}.pdf".format(tele)) plot_detectors(hw.data["detectors"], outpath, labels=False) return def test_sim_full(self): hw = get_example() hw.data["detectors"] = OrderedDict() for tele, teleprops in hw.data["telescopes"].items(): dets = sim_telescope_detectors(hw, tele) hw.data["detectors"].update(dets) dbpath = os.path.join(self.outdir, "hardware.toml.gz") hw.dump(dbpath, overwrite=True, compress=True) check = Hardware(dbpath) # Test selection of 90GHz detectors on wafers 25 and 26 which have # "A" polarization configuration and are located in pixels 20-29. wbhw = hw.select( match={"wafer": ["25", "26"], "band": "MF.1", "pol": "A", "pixel": "02."}) dbpath = os.path.join(self.outdir, "w25-26_b1_p20-29_A.toml.gz") wbhw.dump(dbpath, overwrite=True, compress=True) check = Hardware(dbpath) self.assertTrue(len(check.data["detectors"]) == 20) chkpath = os.path.join(self.outdir, "w25-26_b1_p20-29_A.txt") with open(chkpath, "w") as f: for d in check.data["detectors"]: f.write("{}\n".format(d)) # Test selection of pixels on 27GHz wafer 44. lfhw = hw.select( match={"wafer": ["44"], "pixel": "00."}) dbpath = os.path.join(self.outdir, "w44_bLF1_p000-009.toml.gz") lfhw.dump(dbpath, overwrite=True, compress=True) check = Hardware(dbpath) self.assertTrue(len(check.data["detectors"]) == 40) chkpath = os.path.join(self.outdir, "w44_bLF1_p000-009.txt") with open(chkpath, "w") as f: for d in check.data["detectors"]: f.write("{}\n".format(d)) return ```
{ "source": "jitakirin/fabtools", "score": 2 }
#### File: fabtools/openvz/contextmanager.py ```python from contextlib import contextmanager import hashlib import os import posixpath import tempfile from fabric.api import ( env, hide, output, settings, sudo, ) from fabric.operations import ( _AttributeString, _execute, _prefix_commands, _prefix_env_vars, _shell_wrap, _sudo_prefix, ) from fabric.state import default_channel from fabric.utils import error import fabric.operations import fabric.sftp from fabric.context_managers import ( quiet as quiet_manager, warn_only as warn_only_manager, ) @contextmanager def guest(name_or_ctid): """ Context manager to run commands inside a guest container. Supported basic operations are: `run`_, `sudo`_ and `put`_. .. warning:: commands executed with ``run()`` will be run as **root** inside the container. Use ``sudo(command, user='foo')`` to run them as an unpriviledged user. Example:: from fabtools.openvz import guest with guest('foo'): run('hostname') sudo('whoami', user='alice') put('files/hello.txt') .. _run: http://docs.fabfile.org/en/1.4.3/api/core/operations.html#fabric.operations.run .. _sudo: http://docs.fabfile.org/en/1.4.3/api/core/operations.html#fabric.operations.sudo .. _put: http://docs.fabfile.org/en/1.4.3/api/core/operations.html#fabric.operations.put """ # Monkey patch fabric operations _orig_run_command = fabric.operations._run_command _orig_put = fabric.sftp.SFTP.put def run_guest_command(command, shell=True, pty=True, combine_stderr=True, sudo=False, user=None, quiet=False, warn_only=False, stdout=None, stderr=None, group=None, timeout=None): """ Run command inside a guest container """ # Use a non-login shell _orig_shell = env.shell env.shell = '/bin/bash -c' # Use double quotes for the sudo prompt _orig_sudo_prefix = env.sudo_prefix env.sudo_prefix = 'sudo -S -p "%(sudo_prompt)s" ' # Try to cd to the user's home directory for consistency, # as the default directory is "/" with "vzctl exec2" if not env.cwd: env.command_prefixes.insert(0, 'cd 2>/dev/null || true') # Build the guest command guest_command = _shell_wrap_inner( _prefix_commands(_prefix_env_vars(command), 'remote'), True, _sudo_prefix(user) if sudo and user else None ) host_command = "vzctl exec2 %s '%s'" % (name_or_ctid, guest_command) # Restore env env.shell = _orig_shell env.sudo_prefix = _orig_sudo_prefix if not env.cwd: env.command_prefixes.pop(0) # Run host command as root return _run_host_command(host_command, shell=shell, pty=pty, combine_stderr=combine_stderr) def put_guest(self, local_path, remote_path, use_sudo, mirror_local_mode, mode, local_is_path): """ Upload file to a guest container """ pre = self.ftp.getcwd() pre = pre if pre else '' if local_is_path and self.isdir(remote_path): basename = os.path.basename(local_path) remote_path = posixpath.join(remote_path, basename) if output.running: print("[%s] put: %s -> %s" % ( env.host_string, local_path if local_is_path else '<file obj>', posixpath.join(pre, remote_path) )) # Have to bounce off FS if doing file-like objects fd, real_local_path = None, local_path if not local_is_path: fd, real_local_path = tempfile.mkstemp() old_pointer = local_path.tell() local_path.seek(0) file_obj = os.fdopen(fd, 'wb') file_obj.write(local_path.read()) file_obj.close() local_path.seek(old_pointer) # Use temporary file with a unique name on the host machine guest_path = remote_path hasher = hashlib.sha1() hasher.update(env.host_string) hasher.update(name_or_ctid) hasher.update(guest_path) host_path = hasher.hexdigest() # Upload the file to host machine rattrs = self.ftp.put(real_local_path, host_path) # Copy file to the guest container with settings(hide('everything'), cwd=""): cmd = "cat \"%s\" | vzctl exec \"%s\" 'cat - > \"%s\"'" \ % (host_path, name_or_ctid, guest_path) _orig_run_command(cmd, sudo=True) # Revert to original remote_path for return value's sake remote_path = guest_path # Clean up if not local_is_path: os.remove(real_local_path) # Handle modes if necessary if (local_is_path and mirror_local_mode) or (mode is not None): lmode = os.stat(local_path).st_mode if mirror_local_mode else mode lmode = lmode & 07777 rmode = rattrs.st_mode & 07777 if lmode != rmode: with hide('everything'): sudo('chmod %o \"%s\"' % (lmode, remote_path)) return remote_path fabric.operations._run_command = run_guest_command fabric.sftp.SFTP.put = put_guest yield # Monkey unpatch fabric.operations._run_command = _orig_run_command fabric.sftp.SFTP.put = _orig_put @contextmanager def _noop(): yield def _run_host_command(command, shell=True, pty=True, combine_stderr=True, quiet=False, warn_only=False, stdout=None, stderr=None, timeout=None): """ Run host wrapper command as root (Modified from fabric.operations._run_command to ignore prefixes, path(), cd(), and always use sudo.) """ manager = _noop if warn_only: manager = warn_only_manager # Quiet's behavior is a superset of warn_only's, so it wins. if quiet: manager = quiet_manager with manager(): # Set up new var so original argument can be displayed verbatim later. given_command = command # Handle context manager modifications, and shell wrapping wrapped_command = _shell_wrap( command, # !! removed _prefix_commands() & _prefix_env_vars() shell, _sudo_prefix(None) # !! always use sudo ) # Execute info line which = 'sudo' # !! always use sudo if output.debug: print("[%s] %s: %s" % (env.host_string, which, wrapped_command)) elif output.running: print("[%s] %s: %s" % (env.host_string, which, given_command)) # Actual execution, stdin/stdout/stderr handling, and termination result_stdout, result_stderr, status = _execute( channel=default_channel(), command=wrapped_command, pty=pty, combine_stderr=combine_stderr, invoke_shell=False, stdout=stdout, stderr=stderr, timeout=timeout) # Assemble output string out = _AttributeString(result_stdout) err = _AttributeString(result_stderr) # Error handling out.failed = False out.command = given_command out.real_command = wrapped_command if status not in env.ok_ret_codes: out.failed = True msg = "%s() received nonzero return code %s while executing" % ( which, status ) if env.warn_only: msg += " '%s'!" % given_command else: msg += "!\n\nRequested: %s\nExecuted: %s" % ( given_command, wrapped_command ) error(message=msg, stdout=out, stderr=err) # Attach return code to output string so users who have set things to # warn only, can inspect the error code. out.return_code = status # Convenience mirror of .failed out.succeeded = not out.failed # Attach stderr for anyone interested in that. out.stderr = err return out def _shell_wrap_inner(command, shell=True, sudo_prefix=None): """ Conditionally wrap given command in env.shell (while honoring sudo.) (Modified from fabric.operations._shell_wrap to avoid double escaping, as the wrapping host command would also get shell escaped.) """ # Honor env.shell, while allowing the 'shell' kwarg to override it (at # least in terms of turning it off.) if shell and not env.use_shell: shell = False # Sudo plus space, or empty string if sudo_prefix is None: sudo_prefix = "" else: sudo_prefix += " " # If we're shell wrapping, prefix shell and space, escape the command and # then quote it. Otherwise, empty string. if shell: shell = env.shell + " " command = '"%s"' % command # !! removed _shell_escape() here else: shell = "" # Resulting string should now have correct formatting return sudo_prefix + shell + command ```
{ "source": "jitakirin/python-cli-parsers", "score": 3 }
#### File: pcpd/argh_demo/simple.py ```python import argh @argh.arg('msg', help='message to return') def hello(msg): """hello""" yield msg if __name__ == '__main__': argh.dispatch_command(hello) ``` #### File: pcpd/defopt_demo/simple.py ```python from defopt import run def hello(msg): """hello :param str msg: message to return """ print(msg) if __name__ == '__main__': run(hello) ```
{ "source": "jitakizushi/pyle", "score": 3 }
#### File: jitakizushi/pyle/pyle.py ```python __version__ = "0.2" import argparse import cStringIO as StringIO import re import sh import sys import traceback STANDARD_MODULES = { 're': re, 'sh': sh } def truncate_ellipsis(line, length=30): """Truncate a line to the specified length followed by ``...`` unless its shorter than length already.""" l = len(line) return line if l < length else line[:length - 3] + "..." def pyle_evaluate(command=None, modules=(), inplace=False, files=None, print_traceback=False): """The main method of pyle.""" eval_globals = {} eval_globals.update(STANDARD_MODULES) for module_arg in modules or (): for module in module_arg.strip().split(","): module = module.strip() if module: eval_globals[module] = __import__(module) if not command: # Default 'do nothing' program command = 'line' files = files or ['-'] eval_locals = {} for file in files: if file == '-': file = sys.stdin out_buf = sys.stdout if not inplace else StringIO.StringIO() with (open(file, 'rb') if not hasattr(file, 'read') else file) as in_file: for num, line in enumerate(in_file.readlines()): was_whole_line = False if line[-1] == '\n': was_whole_line = True line = line[:-1] words = [word.strip() for word in re.split(r'\s+', line) if word] eval_locals.update({'line': line, 'words': words, 'filename': in_file.name, 'num': num}) try: out_line = eval(command, eval_globals, eval_locals) except Exception as e: sys.stdout.flush() sys.stderr.write("At %s:%d ('%s'): %s\n" % (in_file.name, num, truncate_ellipsis(line), e)) if print_traceback: traceback.print_exc(None, sys.stderr) else: if out_line is None: continue # If the result is something list-like or iterable, output each item space separated. if not isinstance(out_line, str): try: out_line = u' '.join(unicode(part) for part in out_line) except: # Guess it wasn't a list after all. out_line = unicode(out_line) out_line = out_line or u'' out_buf.write(out_line) if was_whole_line: out_buf.write('\n') if inplace: with open(file, 'wb') as out_file: out_file.write(out_buf.getvalue()) out_buf.close() def pyle(argv=None): """Execute pyle with the specified arguments, or sys.argv if no arguments specified.""" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-m", "--modules", dest="modules", action='append', help="import MODULE before evaluation. May be specified more than once.") parser.add_argument("-i", "--inplace", dest="inplace", action='store_true', default=False, help="edit files in place. When used with file name arguments, the files will be replaced by the output of the evaluation") parser.add_argument("-e", "--expression", dest="expression", help="an expression to evaluate for each line") parser.add_argument('files', nargs='*', help="files to read as input. If used with --inplace, the files will be replaced with the output") parser.add_argument("--traceback", action="store_true", default=False, help="print a traceback on stderr when an expression fails for a line") args = parser.parse_args() if not argv else parser.parse_args(argv) pyle_evaluate(args.expression, args.modules, args.inplace, args.files, args.traceback) if __name__ == '__main__': pyle() ```
{ "source": "jitdee-ai/darts-models", "score": 2 }
#### File: darts-models/darmo/nsga.py ```python from timm.models.layers import drop_path from ofa.imagenet_codebase.modules.layers import * from ofa.layers import set_layer_from_config, MBInvertedConvLayer, ConvLayer, IdentityLayer, LinearLayer from ofa.imagenet_codebase.networks.proxyless_nets import MobileInvertedResidualBlock import torch import torch.nn as nn import torch from .registry import register_model import json import pkg_resources from .utils import _set_config, _load url_cfgs = { 'eeea_c1' : 'https://github.com/jitdee-ai/darmo/releases/download/0.0.1/eeea_c1.pt', 'eeea_c2' : 'https://github.com/jitdee-ai/darmo/releases/download/0.0.1/eeea-c2.pt', 'ofa595_1k' : 'https://github.com/jitdee-ai/darmo/releases/download/0.0.1/ofa595_1k_b1a18d5.pt', 'ofa595_21k' : 'https://github.com/jitdee-ai/darmo/releases/download/0.0.1/ofa595_21k_ec9428e.pt', } def _create_network(config): if config['name'].startswith("ofa595"): config_file = pkg_resources.resource_filename(__name__, "config/ofa595.config") else: config_file = pkg_resources.resource_filename(__name__, "config/"+config['name']+".config") config_subnet = json.load(open(config_file)) if config['name'] == "ofa595_21k": config_subnet['classifier']['out_features'] = config['num_classes'] base_net = NSGANetV2.build_from_config(config_subnet, depth=None) if config['name'] == "ofa595_21k": base_net.classifier = None _load(config, base_net, url_cfgs) #if config['name'] == "ofa595_21k": if config['name'].startswith("ofa595_"): NSGANetV2.reset_classifier(base_net, 1536, config['num_classes'], dropout_rate=0.0) base_net.num_features = 1536 return base_net @register_model def ofa595_1k(pretrained=True, num_classes=1000, auxiliary=True): config = _set_config(_config={}, name= 'ofa595_1k', first_channels=None, layers=None, auxiliary=auxiliary, genotype=None, last_bn=False, pretrained=pretrained, num_classes=num_classes) return _create_network(config) @register_model def ofa595_21k(pretrained=True, num_classes=11221, auxiliary=True): config = _set_config(_config={}, name= 'ofa595_21k', first_channels=None, layers=None, auxiliary=auxiliary, genotype=None, last_bn=False, pretrained=pretrained, num_classes=11221) return _create_network(config) @register_model def eeea_c1(pretrained=True, num_classes=1000, auxiliary=True): config = _set_config(_config={}, name= 'eeea_c1', first_channels=46, layers=14, auxiliary=auxiliary, genotype=None, last_bn=False, pretrained=pretrained, num_classes=num_classes) return _create_network(config) @register_model def eeea_c2(pretrained=True, num_classes=1000, auxiliary=True): config = _set_config(_config={}, name= 'eeea_c2', first_channels=46, layers=14, auxiliary=auxiliary, genotype=None, last_bn=False, pretrained=pretrained, num_classes=num_classes) return _create_network(config) class MobileInvertedResidualBlock(MyModule): """ Modified from https://github.com/mit-han-lab/once-for-all/blob/master/ofa/ imagenet_codebase/networks/proxyless_nets.py to include drop path in training """ def __init__(self, mobile_inverted_conv, shortcut, drop_connect_rate=0.0): super(MobileInvertedResidualBlock, self).__init__() self.mobile_inverted_conv = mobile_inverted_conv self.shortcut = shortcut self.drop_connect_rate = drop_connect_rate def forward(self, x): if self.mobile_inverted_conv is None or isinstance(self.mobile_inverted_conv, ZeroLayer): res = x elif self.shortcut is None or isinstance(self.shortcut, ZeroLayer): res = self.mobile_inverted_conv(x) else: # res = self.mobile_inverted_conv(x) + self.shortcut(x) res = self.mobile_inverted_conv(x) if self.drop_connect_rate > 0.: res = drop_path(res, drop_prob=self.drop_connect_rate, training=self.training) res += self.shortcut(x) return res @property def module_str(self): return '(%s, %s)' % ( self.mobile_inverted_conv.module_str if self.mobile_inverted_conv is not None else None, self.shortcut.module_str if self.shortcut is not None else None ) @property def config(self): return { 'name': MobileInvertedResidualBlock.__name__, 'mobile_inverted_conv': self.mobile_inverted_conv.config if self.mobile_inverted_conv is not None else None, 'shortcut': self.shortcut.config if self.shortcut is not None else None, } @staticmethod def build_from_config(config): mobile_inverted_conv = set_layer_from_config(config['mobile_inverted_conv']) shortcut = set_layer_from_config(config['shortcut']) return MobileInvertedResidualBlock( mobile_inverted_conv, shortcut, drop_connect_rate=config['drop_connect_rate']) class MyNetwork(MyModule): def forward(self, x): raise NotImplementedError @property def module_str(self): raise NotImplementedError @property def config(self): raise NotImplementedError @staticmethod def build_from_config(config): raise NotImplementedError def zero_last_gamma(self): raise NotImplementedError """ implemented methods """ def set_bn_param(self, momentum, eps): for m in self.modules(): if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): m.momentum = momentum m.eps = eps return class MobileNetV3(MyNetwork): def __init__(self, first_conv, blocks, final_expand_layer, feature_mix_layer, classifier, depth): super(MobileNetV3, self).__init__() self.first_conv = first_conv self.blocks = nn.ModuleList(blocks) self.final_expand_layer = final_expand_layer self.feature_mix_layer = feature_mix_layer self.classifier = classifier self.depth = depth self.channels = [] self.num_features = 1280 def forward(self, x): x = self.first_conv(x) for block in self.blocks: x = block(x) x = self.final_expand_layer(x) x = x.mean(3, keepdim=True).mean(2, keepdim=True) # global average pooling x = self.feature_mix_layer(x) x = torch.squeeze(x) x = self.classifier(x) return x def reset_classifier(self, num_classes, dropout=0.0): self.num_classes = num_classes self.drop_rate = dropout del self.classifier if self.num_classes: self.classifier = nn.Linear(self.num_features, self.num_classes) else: self.classifier = None class NSGANetV2(MobileNetV3): """ Modified from https://github.com/mit-han-lab/once-for-all/blob/master/ofa/ imagenet_codebase/networks/mobilenet_v3.py to include drop path in training and option to reset classification layer """ @staticmethod def build_from_config(config, drop_connect_rate=0.0, depth=None): first_conv = set_layer_from_config(config['first_conv']) final_expand_layer = set_layer_from_config(config['final_expand_layer']) feature_mix_layer = set_layer_from_config(config['feature_mix_layer']) classifier = set_layer_from_config(config['classifier']) blocks = [] for block_idx, block_config in enumerate(config['blocks']): block_config['drop_connect_rate'] = drop_connect_rate * block_idx / len(config['blocks']) blocks.append(MobileInvertedResidualBlock.build_from_config(block_config)) net = MobileNetV3(first_conv, blocks, final_expand_layer, feature_mix_layer, classifier, depth) if 'bn' in config: net.set_bn_param(**config['bn']) else: net.set_bn_param(momentum=0.1, eps=1e-3) return net def zero_last_gamma(self): for m in self.modules(): if isinstance(m, MobileInvertedResidualBlock): if isinstance(m.mobile_inverted_conv, MBInvertedConvLayer) and isinstance(m.shortcut, IdentityLayer): m.mobile_inverted_conv.point_linear.bn.weight.data.zero_() # @staticmethod # def build_net_via_cfg(cfg, input_channel, last_channel, n_classes, dropout_rate): # # first conv layer # first_conv = ConvLayer( # 3, input_channel, kernel_size=3, stride=2, use_bn=True, act_func='h_swish', ops_order='weight_bn_act' # ) # # build mobile blocks # feature_dim = input_channel # blocks = [] # for stage_id, block_config_list in cfg.items(): # for k, mid_channel, out_channel, use_se, act_func, stride, expand_ratio in block_config_list: # mb_conv = MBInvertedConvLayer( # feature_dim, out_channel, k, stride, expand_ratio, mid_channel, act_func, use_se # ) # if stride == 1 and out_channel == feature_dim: # shortcut = IdentityLayer(out_channel, out_channel) # else: # shortcut = None # blocks.append(MobileInvertedResidualBlock(mb_conv, shortcut)) # feature_dim = out_channel # # final expand layer # final_expand_layer = ConvLayer( # feature_dim, feature_dim * 6, kernel_size=1, use_bn=True, act_func='h_swish', ops_order='weight_bn_act', # ) # feature_dim = feature_dim * 6 # # feature mix layer # feature_mix_layer = ConvLayer( # feature_dim, last_channel, kernel_size=1, bias=False, use_bn=False, act_func='h_swish', # ) # # classifier # classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate) # return first_conv, blocks, final_expand_layer, feature_mix_layer, classifier @staticmethod def reset_classifier(model, last_channel, n_classes, dropout_rate=0.0): model.classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate) ```
{ "source": "jitendar-singh/jenkins-operator", "score": 2 }
#### File: features/steps/steps.py ```python import os import time import logging import urllib3 from behave import given, when, then from datetime import date from pyshould import should from kubernetes import config, client from smoke.features.steps.openshift import Openshift from smoke.features.steps.project import Project ''' If we need to install an operator manually using the cli - ensure your catalog source is installed - create an OperatorGroup - create the Subscription object ''' # Path to the yaml files scripts_dir = os.getenv('OUTPUT_DIR') # jenkins_crd = './manifests/jenkins-operator/0.7.0/' catalogsource = './smoke/samples/catalog-source.yaml' operatorgroup = os.path.join(scripts_dir,'operator-group.yaml') subscription = os.path.join(scripts_dir,'subscription.yaml') jenkins = os.path.join(scripts_dir,'jenkins.yaml') deploy_pod = "jenkins-1-deploy" samplebclst = ['sample-pipeline','nodejs-mongodb-example'] samplepipeline = "https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/samplepipeline.yaml" # variables needed to get the resource status current_project = '' config.load_kube_config() v1 = client.CoreV1Api() oc = Openshift() podStatus = {} # STEP @given(u'Project "{project_name}" is used') def given_project_is_used(context, project_name): project = Project(project_name) global current_project current_project = project_name context.current_project = current_project context.oc = oc if not project.is_present(): print("Project is not present, creating project: {}...".format(project_name)) project.create() | should.be_truthy.desc( "Project {} is created".format(project_name)) print("Project {} is created!!!".format(project_name)) context.project = project # STEP @given(u'Project [{project_env}] is used') def given_namespace_from_env_is_used(context, project_env): env = os.getenv(project_env) assert env is not None, f"{project_env} environment variable needs to be set" print(f"{project_env} = {env}") given_project_is_used(context, env) @given(u'we have a openshift cluster') def loginCluster(context): print("Using [{}]".format(current_project)) @when(u'we create the catalog source using catalog-source.yaml') def createCatalogsource(context): res = oc.oc_create_from_yaml(catalogsource) print(res) @then(u'we create operator group using operator-group.yaml') def createOperatorgroup(context): res = oc.oc_create_from_yaml(operatorgroup) print(res) @then(u'we create subscription using subscriptions.yaml') def createSubsObject(context): res = oc.oc_create_from_yaml(subscription) print(res) @then(u'we check for the csv and csv version') def verifycsv(context): print('---> Getting the resources') time.sleep(10) if not 'jenkins-operator.0.0.0' in oc.search_resource_in_namespace('csv','jenkins-operator.0.0.0',current_project): raise AssertionError else: res = oc.search_resource_in_namespace('csv','jenkins-operator.0.0.0',current_project) print(res) @then(u'we check for the operator group') def verifyoperatorgroup(context): if not 'jenkins-operator' in oc.search_resource_in_namespace('operatorgroup','jenkins-operator',current_project): raise AssertionError else: res = oc.search_resource_in_namespace('operatorgroup','jenkins-operator',current_project) print(res) @then(u'we check for the subscription') def verifysubs(context): if not 'jenkins-operator' in oc.search_resource_in_namespace('subs','jenkins-operator',current_project): raise AssertionError else: res = oc.search_resource_in_namespace('subs','jenkins-operator',current_project) print(res) @then(u'we check for the operator pod') def verifyoperatorpod(context): print('---> checking operator pod status') context.v1 = v1 pods = v1.list_namespaced_pod(current_project) for i in pods.items: print("Getting pod list") podStatus[i.metadata.name] = i.status.phase print('---> Validating...') if not i.metadata.name in oc.search_pod_in_namespace(i.metadata.name,current_project): raise AssertionError print('waiting to get pod status') time.sleep(10) for pod in podStatus.keys(): status = podStatus[pod] if 'Running' in status: print(pod) print(podStatus[pod]) else: raise AssertionError @given(u'Jenkins operator is installed') def verifyoperator(context): verifyoperatorpod(context) @when(u'we create the jenkins instance using jenkins.yaml') def createinstance(context): res = oc.oc_create_from_yaml(jenkins) print(res) @then(u'We check for the jenkins-example pod status') def checkjenkinspod(context): verifyoperatorpod(context) @then(u'We check for the route') def checkroute(context): operator_name = 'jenkins-simple' time.sleep(10) route = oc.get_route_host(operator_name,current_project) url = 'http://'+str(route) print('--->App url:') print(url) if len(url) <= 0: raise AssertionError @given(u'The jenkins pod is up and runnning') def checkJenkins(context): time.sleep(10) podStatus = {} status = "" pods = v1.list_namespaced_pod(current_project) for i in pods.items: print("Getting pod list") print(i.status.pod_ip) print(i.metadata.name) print(i.status.phase) podStatus[i.metadata.name] = i.status.phase for pod in podStatus.keys(): status = podStatus[pod] if 'Running' in status: print("still checking pod status") print(pod) print(podStatus[pod]) elif 'Succeeded' in status: print("checking pod status") print(pod) print(podStatus[pod]) else: raise AssertionError @when(u'The user enters new-app command with sample-pipeline') def createPipeline(context): # bclst = ['sample-pipeline','nodejs-mongodb-example'] res = oc.new_app_from_file(samplepipeline,current_project) for item, value in enumerate(samplebclst): if 'sample-pipeline' in oc.search_resource_in_namespace('bc',value, current_project): print('Buildconfig sample-pipeline created') elif 'nodejs-mongodb-example' in oc.search_resource_in_namespace('bc',value,current_project): print('Buildconfig nodejs-mongodb-example created') else: raise AssertionError print(res) @then(u'Trigger the build using oc start-build') def startbuild(context): for item,value in enumerate(samplebclst): res = oc.start_build(value,current_project) if not value in res: raise AssertionError else: print(res) @then(u'nodejs-mongodb-example pod must come up') def check_app_pod(context): time.sleep(120) podStatus = {} podSet = set() bcdcSet = set() pods = v1.list_namespaced_pod(current_project) for i in pods.items: podStatus[i.metadata.name] = i.status.phase podSet.add(i.metadata.name) for items in podSet: if 'build' in items: bcdcSet.add(items) elif 'deploy' in items: bcdcSet.add(items) app_pods = podSet.difference(bcdcSet) for items in app_pods: print('Getting pods') print(items) for items in app_pods: for pod in podStatus.keys(): status = podStatus[items] if not 'Running' in status: raise AssertionError print('---> App pods are ready') @then(u'route nodejs-mongodb-example must be created and be accessible') def connectApp(context): print('Getting application route/url') app_name = 'nodejs-mongodb-example' time.sleep(30) route = oc.get_route_host(app_name,current_project) url = 'http://'+str(route) print('--->App url:') print(url) http = urllib3.PoolManager() res = http.request('GET', url) connection_status = res.status if connection_status == 200: print('---> Application is accessible via the route') print(url) else: raise Exception ```
{ "source": "jitendar-singh/Jenkins-TQR", "score": 2 }
#### File: Jenkins-TQR/src/nodejsagents.py ```python import time from selenium.common.exceptions import NoSuchElementException, ElementNotVisibleException, TimeoutException from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from agents import * from selenium.webdriver.support.wait import WebDriverWait from drivers import * class NodejsAgent: @classmethod def pipelinejobsteps(cls): driver.find_element(By.XPATH, "//*[@id='main-panel']/div/div/div/form/table/tbody/tr[2]/td[3]/textarea").send_keys( "Sample pipeline build to test nodejs agent & maven agent") driver.find_element(By.XPATH, "//*[@id='main-panel']/div/div/div/form/table/tbody/tr[148]/td[3]/select").click() driver.find_element(By.XPATH, "//*[@id='main-panel']/div/div/div/form/table/tbody/tr[148]/td[3]/select/option[2]").click() driver.find_element(By.XPATH, "//*[@id='main-panel']/div/div/div/form/table/tbody/tr[149]/td[2]/table/tbody/tr[" "12]/td[3]/select").click() driver.find_element(By.XPATH, "//*[@id='main-panel']/div/div/div/form/table/tbody/tr[149]/td[2]/table/tbody/tr[" "12]/td[3]/select/option[2]").click() time.sleep(5) driver.find_element(By.XPATH, "//*[@id='main-panel']/div/div/div/form/table/tbody/tr[149]/td[2]/table/tbody/tr[" "13]/td[2]/table/tbody/tr[5]/td[3]/div/div[1]/table/tbody/tr[1]/td[" "3]/input").send_keys("https://github.com/akram/scrum-planner.git") driver.find_element(By.ID, "yui-gen5-button").click() time.sleep(5) driver.find_element(By.XPATH, "//*[@id='yui-gen13-button']").click() @classmethod def setnodejs12agentimages(cls): # time.sleep(5) print("Manage Jenkins") driver.find_element(By.XPATH, "//*[@id='tasks']/div[4]/a[2]").click() ''' Explicit wait for Configure Clouds option //*[@id="main-panel"]/div[13]/a/img ''' wait = WebDriverWait(driver, 10) element = wait.until(EC.element_to_be_clickable((By.XPATH, "//*[@id='main-panel']/div[13]/a/img"))) element.click() print("Clicked the cloud & Node configure button") ''' Explicitly waiting for the configure clouds link. //*[@id="tasks"]/div[4]/a[2] ''' waitconfigclouds = WebDriverWait(driver, 10) congifurecloud = waitconfigclouds.until(EC.element_to_be_clickable((By.XPATH, "//*[@id='tasks']/div[4]/a[2]"))) congifurecloud.click() print("Clicked the configure cloud link") ''' Explicitly waiting for the pod template button. //*[@id="yui-gen50-button"] ''' waitbutton = WebDriverWait(driver, 20) try: button = waitbutton.until(EC.element_to_be_clickable((By.XPATH, "//*[@id='yui-gen50-button']"))) button.click() print("Clicked the pod template button") except (NoSuchElementException, ElementNotVisibleException, TimeoutException): print("Exception: Pod Templates button not ready") try: waitnodejs = WebDriverWait(driver, 10) nodejstemplate = waitnodejs.until(EC.element_to_be_clickable((By.XPATH, "//*[@id='yui-gen53-button']"))) nodejstemplate.click() # driver.find_element(By.XPATH, ).click() print("Clicked pod button") podname = WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.XPATH, "//*[@id='yui-gen45" "']/table/tbody/tr[1]/td[" "3]/input"))) driver.find_element(By.XPATH, "//*[@id='yui-gen45']/table/tbody/tr[1]/td[3]/input").clear() driver.find_element(By.XPATH, "//*[@id='yui-gen45']/table/tbody/tr[1]/td[3]/input").send_keys("<KEY>") print("Changed the pod name: " + nodejs12) print(podname) except (NoSuchElementException, ElementNotVisibleException, TimeoutException): print("EXCEPTION: In pod name block") try: podlabel = WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.XPATH, "//*[@id='yui-gen45" "']/table/tbody/tr[" "6]/td[3]/input"))) driver.find_element(By.XPATH, "//*[@id='yui-gen45']/table/tbody/tr[6]/td[3]/input").clear() driver.find_element(By.XPATH, "//*[@id='yui-gen45']/table/tbody/tr[6]/td[3]/input").send_keys("<KEY>") print("Changed pod label: " + nodejs12) print(podlabel) print("Changing the docker image") driver.find_element(By.XPATH, "//*[@id='yui-gen27']/table/tbody/tr[5]/td[3]/input").clear() print("Changing the docker image") driver.find_element(By.XPATH, "//*[@id='yui-gen27']/table/tbody/tr[5]/td[3]/input").send_keys(nodejs12) print("Changed the docker image") except (NoSuchElementException, ElementNotVisibleException, TimeoutException): print("EXCEPTION: In pod label section ") driver.find_element(By.XPATH, "//*[@id='<PASSWORD>-gen55']").click() print("Click on Apply") waitsave = WebDriverWait(driver, 10) elementsave = waitsave.until(EC.element_to_be_clickable((By.XPATH, "//*[@id='yui-gen72-button']"))) elementsave.click() print("Click on Save") # def createpipelinejob(self): # super().createpipelinejob() ```
{ "source": "jitender0514/djnago-rename", "score": 3 }
#### File: management/commands/rename.py ```python from django.core.management.base import BaseCommand import os class Command(BaseCommand): help = 'Rename the Django Project' def add_arguments(self, parser): # new name of the project parser.add_argument('new_project_name', type=str, help="The new project name (String)") # current name of the project parser.add_argument('--current_name', default='boilerplate', type=str, help="The current project name (String)") def handle(self, *args, **options): new_name = options['new_project_name'] current_name = options['current_name'] # files that need to be update files = ['{}/settings/base_settings.py'.format(current_name), '{}/wsgi.py'.format(current_name), 'manage.py'] # folder that need to be update folder = current_name # update the files for file in files: with open(file, 'r') as f: file_data = f.read() file_data = file_data.replace(current_name, new_name) with open(file, 'w') as f: f.write(file_data) # change name of the folder os.rename(folder, new_name) self.stdout.write(self.style.SUCCESS('Successfully updated the project name ' 'from "{}" to "{}"'.format(current_name, new_name))) ```
{ "source": "Jitender46559/Eye-For-BlindPerson", "score": 3 }
#### File: Jitender46559/Eye-For-BlindPerson/Application.py ```python import cv2 import pyttsx3 import keyboard import ImageToSpeech as ITS import numpy as np from keras.models import load_model face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) textEngine = pyttsx3.init() stroke = 2 color = (255, 255, 255) model = load_model('model_CNN_V2.h5') font = cv2.FONT_HERSHEY_SIMPLEX Gender = {0: "Male", 1: "Female"} def normalizeImage(img): IMG_SIZ = 120 new_img = cv2.resize(img, (IMG_SIZ, IMG_SIZ)) image = new_img.reshape((120, 120, 1)) image = image.astype('float32') / 255 return image i=0 while(True): i+=1 ret, frame = cap.read() if keyboard.is_pressed('i'): cv2.imwrite('C:/Users/<NAME>/Desktop/Intel HackFury2/Image To String Data/{index}.jpg'.format(index=i), frame) ITS.convertImageToString('C:/Users/<NAME>/Desktop/Intel HackFury2/Image To String Data/{index}.jpg'.format(index=i)) frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(frame_gray, 1.2, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) roi_gray = frame_gray[y:y + h, x:x + w] # region of interest roi_color = frame[y:y + h, x:x + w] img = np.array(roi_gray) img = normalizeImage(img) prediction = model.predict([[img]]).argmax() gender = Gender.get(prediction) text = "Some {} is coming towards you.".format(gender) if keyboard.is_pressed('p'): textEngine.say(text) textEngine.runAndWait() textEngine.stop() cv2.putText(frame, gender, (x, y), font, 1, color, stroke, cv2.LINE_AA) cv2.imshow('Eye For Blindness', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` #### File: Jitender46559/Eye-For-BlindPerson/ImageToSpeech.py ```python import pytesseract import pyttsx3 from PIL import Image def convertImageToString(image): pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files (x86)\Tesseract-OCR\tesseract.exe" image = Image.open(image) text = pytesseract.image_to_string(image) print(text) textEngine = pyttsx3.init() textEngine.say(text) textEngine.runAndWait() textEngine.stop() ```
{ "source": "JitenDhandha/CFit", "score": 3 }
#### File: JitenDhandha/CFit/Main.py ```python import Fitting as fit import tkinter as tk from tkinter import filedialog import tkinter.ttk as ttk #################################################################################### # USER INTERFACE # #################################################################################### class GUI: def __init__(self,master=None): ############################################################################ # INTERFACE SETTINGS # ############################################################################ self.master = master master.title('CFit (Curve fitting Tool)') master.geometry('1000x700') #Size of the window master.resizable(0,0) #Making window un-resizeable master.configure(background='white') #Relative sizes of each row and column containing frames master.grid_rowconfigure(0, weight=5) master.grid_rowconfigure(1, weight=4) master.grid_rowconfigure(2, weight=6) master.grid_rowconfigure(3, weight=2) master.grid_columnconfigure(0, weight=1) master.grid_columnconfigure(1, weight=1) ############################################################################ # FRAMES # ############################################################################ self.frame1 = tk.LabelFrame(master, text=' Data Options ', background='white') self.frame1.grid(row=0, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=2,pady=2) self.frame2 = tk.LabelFrame(master, text=' File preview ', background='white') self.frame2.grid(row=0, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=2,pady=2) self.frame3 = tk.LabelFrame(master, text=' Plot Options ', background='white') self.frame3.grid(row=1, rowspan=1, column=0, columnspan=2, sticky='NEWS', padx=2,pady=2) self.frame4 = tk.LabelFrame(master, text=' Fit Options ', background='white') self.frame4.grid(row=2, rowspan=1, column=0, columnspan=2, sticky='NEWS', padx=2,pady=2) self.frame5 = tk.Frame(master, background='white') self.frame5.grid(row=3, rowspan=1, column=0, columnspan=2, sticky='NEWS', padx=2,pady=2) ############################################################################ # VARIABLES # ############################################################################ self.fileLocation = str #String holding location of file self.fileCheck = int #Integer denoting whether the file was successfully read self.fileStatus = tk.StringVar() #String holding status of the file #Types of fits functionsList = list(fit.functions.keys()) self.fitTypes = ['Polynomial'] + functionsList[0:6] + ['Other functions'] + functionsList[6:] self.fitType = tk.StringVar() #String holding the current type of fit chosen self.viewGrid = tk.IntVar() #Boolean holding whether the user wants to see gridlines in plot self.viewParameters = tk.IntVar() #Boolean holding whether the user wants to see fitting parameters in plot self.viewResiduals = tk.IntVar() #Boolean holding whether the user wants to see a residuals plot self.fitTypeStr = tk.StringVar() #String holding the the display of function form self.fitCheck = int #Integer denoting whether the fit was successful self.fitStatus = tk.StringVar() #String holding status of the fit ############################################################################ # FRAMES 1 # ############################################################################ #Fixing the size of the each row and column self.frame1.grid_propagate(False) #Relative sizes of each row and column for i in range(0,2): self.frame1.grid_columnconfigure(i, weight=1) for i in range(0,3): self.frame1.grid_rowconfigure(i, weight=1) self.fileLocationLabel = tk.Label(self.frame1, text ='File directory: ', background='white') self.fileLocationLabel.grid(row=0, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fileLocationEntry = tk.Entry(self.frame1, justify='center', foreground='blue') self.fileLocationEntry.insert(0, string='(no directory selected)') self.fileLocationEntry.configure(state='readonly') self.fileLocationEntry.grid(row=0, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=5) self.browseFileButton = tk.Button(self.frame1, text="Load data", command=self.browseFileFunc) self.browseFileButton.grid(row=1, rowspan=1, column=0, columnspan=2, sticky='NEWS', padx=5, pady=5) self.fileStatusLabel = tk.Label(self.frame1, justify='center', textvariable=self.fileStatus) self.fileStatusLabel.grid(row=2, rowspan=1, column=0, columnspan=2, sticky='NEWS', padx=5, pady=5) ############################################################################ # FRAMES 2 # ############################################################################ #Fixing the size of the each row and column self.frame2.grid_propagate(False) #Relative sizes of each row and column self.frame2.grid_columnconfigure(0, weight=1) self.frame2.grid_rowconfigure(0, weight=1) self.filePreviewListBox = tk.Listbox(self.frame2, borderwidth=0, height=5) self.filePreviewListBox.configure(state='disable') self.filePreviewListBox.grid(row=0, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=5, pady=5) ############################################################################ # FRAMES 3 # ############################################################################ #Fixing the size of the each row and column self.frame3.grid_propagate(False) #Relative sizes of each row and column for i in range(0,3): self.frame3.grid_columnconfigure(i, weight=1) for i in range(0,3): self.frame3.grid_rowconfigure(i, weight=1) self.plotTitleLabel = tk.Label(self.frame3, text = 'Plot title: ', background='white') self.plotTitleLabel.grid(row=0, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=5, pady=2) self.plotTitleEntry = tk.Entry(self.frame3, foreground='blue', bd='2', relief='ridge') self.plotTitleEntry.grid(row=0, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=2) self.xAxisTitleLabel = tk.Label(self.frame3, text = 'X axis label: ', background='white') self.xAxisTitleLabel.grid(row=1, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=5, pady=2) self.xAxisTitleEntry = tk.Entry(self.frame3, foreground='blue', bd='2', relief='ridge') self.xAxisTitleEntry.grid(row=1, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=2) self.yAxisTitleLabel = tk.Label(self.frame3, text = 'Y axis label: ', background='white') self.yAxisTitleLabel.grid(row=2, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=5, pady=2) self.yAxisTitleEntry = tk.Entry(self.frame3, foreground='blue', bd='2', relief='ridge') self.yAxisTitleEntry.grid(row=2, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=2) self.viewGridCheckButton = tk.Checkbutton(self.frame3, text="Grid lines", variable=self.viewGrid) self.viewGridCheckButton.grid(row=0, rowspan=1, column=2, columnspan=1, sticky='NEWS', padx=5, pady=2) self.viewParametersCheckButton = tk.Checkbutton(self.frame3, text="View parameters", variable=self.viewParameters) self.viewParametersCheckButton.grid(row=1, rowspan=1, column=2, columnspan=1, sticky='NEWS', padx=5, pady=2) self.viewResidualsCheckButton = tk.Checkbutton(self.frame3, text="View residuals", variable=self.viewResiduals) self.viewResidualsCheckButton.grid(row=2, rowspan=1, column=2, columnspan=1, sticky='NEWS', padx=5, pady=2) ############################################################################ # FRAMES 4 # ############################################################################ #Fixing the size of the each row and column self.frame4.grid_propagate(False) #Relative sizes of each row and column self.frame4.grid_columnconfigure(0, weight=1) self.frame4.grid_columnconfigure(1, weight=2) self.frame4.grid_columnconfigure(2, weight=4) for i in range(4): self.frame4.grid_rowconfigure(i, weight=1) self.fitTypeLabel = tk.Label(self.frame4, text = 'Fit type: ', background='white') self.fitTypeLabel.grid(row=0, rowspan=1, column=0, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fitTypeOptionMenu = ttk.OptionMenu(self.frame4, self.fitType, 'None', *self.fitTypes, command=self.fitTypeOptionMenuFunc) self.fitTypeOptionMenu.configure(width=25) self.fitTypeOptionMenu['menu'].entryconfigure(0, state = "disabled") self.fitTypeOptionMenu['menu'].entryconfigure(7, state = "disabled") self.fitTypeOptionMenu.grid(row=0, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fitTypeStrLabel = tk.Label(self.frame4,textvariable=self.fitTypeStr,width=25,foreground='blue') self.fitTypeStrLabel.grid(row=0, rowspan=1, column=2, columnspan=1, sticky='NEWS', padx=5, pady=5) self.plotRawDataButton = tk.Button(self.frame4, text="Plot raw data", command=self.plotRawDataButtonFunc) self.plotRawDataButton.grid(row=1, rowspan=2, column=0, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fitDataAutoButton = tk.Button(self.frame4, text="Fit data automatically", command=self.fitDataAutoButtonFunc) self.fitDataManButton = tk.Button(self.frame4, text="Fit data using my guess:", command=self.fitDataManButtonFunc) self.fitDataManEntry = tk.Entry(self.frame4, justify='center') self.fitStatusLabel = tk.Label(self.frame4, justify='center', textvariable=self.fitStatus) self.fitStatusLabel.grid(row=3, rowspan=1, column=0, columnspan=3, sticky='NEWS', padx=5, pady=5) ############################################################################ # FRAMES 5 # ############################################################################ #Fixing the size of the each row and column self.frame5.grid_propagate(False) #Relative sizes of each row and column self.frame5.grid_columnconfigure(0, weight=8) self.frame5.grid_columnconfigure(1, weight=1) self.frame5.grid_columnconfigure(2, weight=8) self.frame5.grid_rowconfigure(0, weight=1) self.clearButton = tk.Button(self.frame5, text="Clear", width=10, command=self.clear) self.clearButton.grid(row=0, rowspan=1, column=0, columnspan=1, sticky='NES', padx=5, pady=5) self.helpButton = tk.Button(self.frame5, text="Help", width=8, command=self.help) self.helpButton.grid(row=0, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=5) self.aboutButton = tk.Button(self.frame5, text="About", width=10, command=self.about) self.aboutButton.grid(row=0, rowspan=1, column=2, columnspan=1, sticky='NWS', padx=5, pady=5) ############################################################################ # FUNCTIONS # ############################################################################ ''' This function adds a preview of the file in the file preview box. ''' def setFilePreview(self): #Clearing the preview self.filePreviewListBox.configure(state='normal') self.filePreviewListBox.delete(0, 'end') #Opening the file and adding it to the preview box lineNum = 0 with open(self.fileLocation, 'r') as file: for line in file: line = ' '.join(line.split()) for delims in [(' ,',','),(', ',','),(' ',',')]: line = line.replace(*delims) self.filePreviewListBox.insert(lineNum, line) lineNum += 1 ''' This function lets the user browse the file, calls the readFile() function in Fitting.py, sets file preview sets file status for user to see. ''' def browseFileFunc(self): #Clearing everything in the GUI first self.clear() #Letting user browse the file and calling readFile() in Fitting.py self.fileLocation = filedialog.askopenfilename(title='Choose a file') self.fileCheck = fit.readFile(self.fileLocation) #Showing the directory of the file self.fileLocationEntry.configure(state='normal') self.fileLocationEntry.delete(0,'end') if(self.fileLocation==''): self.fileLocationEntry.insert(0, string='(no directory selected)') else: self.fileLocationEntry.insert(0, string=self.fileLocation) self.fileLocationEntry.configure(state='readonly') #Setting file status if(self.fileCheck==0): self.fileStatus.set("File opened successfully!") elif(self.fileCheck==1): self.fileStatus.set("") elif(self.fileCheck==2): self.fileStatus.set("Not a .txt or .csv file!") elif(self.fileCheck==3): self.fileStatus.set("Couldn't parse file properly.") elif(self.fileCheck==4): self.fileStatus.set("File must contain 2 or 3 columns!") elif(self.fileCheck==5): self.fileStatus.set("File contains NaNs or Infs.") elif(self.fileCheck==6): self.fileStatus.set("Y-errors need to be a positive number!") #Checking if file can be previewed or not if(self.fileCheck!=1 and self.fileCheck!=2): self.setFilePreview() ''' This function is called when the user selects a function from the drop down. It sets the preview of the form of the function and also some variables in the Fitting.py file. ''' def fitTypeOptionMenuFunc(self, event): #Setting the function and its preview fit.function = self.fitType.get() fit.numberOfParameters = fit.functions[fit.function].numberOfParameters self.fitTypeStr.set(fit.functions[fit.function].unicodeFuncStr) self.fitDataManEntry.delete(0,'end') string = '' for param in fit.functions[fit.function].unicodeParametersStr: string += param + '=1, ' string = string[:-2] self.fitDataManEntry.insert(0,string) #Placing the fitting buttons and setting fit status self.fitDataAutoButton.grid(row=1, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fitDataManButton.grid(row=2, rowspan=1, column=1, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fitDataManEntry.grid(row=2, rowspan=1, column=2, columnspan=1, sticky='NEWS', padx=5, pady=5) self.fitStatus.set("") ''' This function calls the relevant function in Fitting.py to plot the raw data. ''' def plotRawDataButtonFunc(self): if(self.fileCheck==0): fit.plotRawData(self.plotTitleEntry.get(),self.xAxisTitleEntry.get(),self.yAxisTitleEntry.get(),self.viewGrid.get()) ''' This function calls the relevant functions in Fitting.py to fit a polynomial or a custom function automatically. It also sets the fit status and plots the raw data with the best fit in case it is successful. ''' def fitDataAutoButtonFunc(self): #Checking if the data file was successfully opened if(self.fileCheck==0): #Calling the relevant function in Fitting.py to handle the rest self.fitCheck = fit.guessParameters() #Checking if the fit was successful and showing the plot. if(self.fitCheck==0): self.fitStatus.set("Fit attempt successful!") fit.plotFitData(self.plotTitleEntry.get(),self.xAxisTitleEntry.get(),self.yAxisTitleEntry.get(),self.viewGrid.get(),self.viewParameters.get(),self.viewResiduals.get()) elif(self.fitCheck==1): self.fitStatus.set("Max iterations performed but couldn't find a fit!") elif(self.fitCheck==2): self.fitStatus.set("Number of data points is less than number of fitting parameters!") ''' This function calls the relevant functions in Fitting.py to fit a function manually from the guess parameters input by the user. ''' def fitDataManButtonFunc(self): #Checking if the data file was successfully opened if(self.fileCheck==0): #Calling the relevant function in Fitting.py to handle the rest self.fitCheck = fit.manualParameters(self.fitDataManEntry.get()) #Checking if the fit was successful and showing the plot. if(self.fitCheck==0): self.fitStatus.set("Fit attempt successful!") fit.plotFitData(self.plotTitleEntry.get(),self.xAxisTitleEntry.get(),self.yAxisTitleEntry.get(),self.viewGrid.get(),self.viewParameters.get(),self.viewResiduals.get()) elif(self.fitCheck==1): self.fitStatus.set("Max iterations performed but couldn't find a fit!") elif(self.fitCheck==2): self.fitStatus.set("Number of data points is less than number of fitting parameters!") elif(self.fitCheck==3): self.fitStatus.set("Invalid parameters!") ''' This function resets everything in the GUI. ''' def clear(self): #RESETTING THINGS IN FITTING FILE #Data related variables fit.data = [] fit.x = [] fit.y = [] fit.y_err = [] fit.numberOfDataPoints = int fit.ERR = bool #Fit function related variables fit.function = '' fit.numberOfParameters = int #Fitting variables fit.fitStructure = [] fit.fitParameters = [] fit.fitErrors = [] fit.chiSquared = float fit.redChiSquared = float fit.redChiSquaredLimits = [] #RESETTING THINGS IN INTERFACE #Frame 1 self.fileLocation = str self.fileLocationEntry.configure(state='normal') self.fileLocationEntry.delete(0,'end') self.fileLocationEntry.insert(0, string='(no directory selected)') self.fileLocationEntry.configure(state='readonly') self.fileCheck = int self.fileStatus.set("") #Frame 2 self.filePreviewListBox.delete(0, 'end') self.filePreviewListBox.configure(state='disable') #Frame 3 self.plotTitleEntry.delete(0, 'end') self.xAxisTitleEntry.delete(0, 'end') self.yAxisTitleEntry.delete(0, 'end') self.viewGrid.set(0) self.viewParameters.set(0) self.viewResiduals.set(0) #Frame 4 self.fitType.set("None") self.fitTypeStr.set("") self.fitCheck = bool self.fitStatus.set("") self.fitDataAutoButton.grid_forget() self.fitDataManButton.grid_forget() self.fitDataManEntry.grid_forget() ''' This function opens up a 'help' message box. ''' def help(self): self.infoText = 'How to use it:'\ '\n\u2022 Browse a .txt or .csv file with your data set. The file must have 2 columns (no errors along y-axis) or 3 columns (with errors along y-axis), separated by commas or spaces.'\ '\n\u2022 You can then choose to plot the raw data or choose a function to fit the data to. The tool has the option for fitting polynomials of degree 0 upto 5 along with some other standard functions.'\ '\n\u2022 Click \'Fit data automatically\' if you want the tool to attempt a fit by itself. Or click \'Fit data using my guess\' after providing an initial guess for the fitting parameters if you want to attempt a fit manually.'\ '\n\u2022 You should see the best fit line if the routine runs successfully. You can add plot annotations, grid lines or view the fit parameters and residuals plot as you wish!'\ '\n\nNote on errors:'\ '\nIn case no errors are provided along the y-axis, the error on the parameters and the chi-squared value are calculated based on an error of 1.00 (arbitrary unit) on each data point. Due to this, the errors on the fitting parameters dont have much meaning; however the best fit can still be useful!'\ '\n\nHave fun plotting!' tk.messagebox.showinfo('Help', self.infoText) ''' This function opens up an 'about' message box showing author and copyright status. ''' def about(self): self.aboutText = 'CFit (Curve fitting Tool)\n\u24EA 2020 <NAME>\nSchool of Physics and Astronomy\nThe University of Manchester' tk.messagebox.showinfo('About', self.aboutText) #################################################################################### # MAIN FUNCTION # #################################################################################### def main(): root = tk.Tk() GUI(root) root.mainloop() if __name__ == '__main__': main() ```
{ "source": "jitendragangwar123/cp", "score": 4 }
#### File: array/python3/5_move_all_negative_elements.py ```python def sort(arr): # Start index 0. start = 0 # End index end = len(arr)-1 while start <= end: # Swap all positive value with last index end & decrease end by 1. if arr[start] >= 0: arr[start], arr[end] = arr[end], arr[start] end -= 1 else: # If arr[start] is not positive then increase start by 1. start += 1 if __name__ == "__main__": arr = [-1, 2, -3, 4, 5, 6, -7, 8, 9] sort(arr) print(arr) ``` #### File: array/python3/6_union_intersection.py ```python def compute_union(arr1, arr2): union = [] index1 = 0 index2 = 0 while (index1 < len(arr1)) and (index2 < len(arr2)): if arr1[index1] < arr2[index2]: union.append(arr1[index1]) index1 += 1 elif arr1[index1] > arr2[index2]: union.append(arr2[index2]) index2 += 1 else: union.append(arr2[index2]) index1 += 1 index2 += 1 while index1 < len(arr1): union.append(arr1[index1]) index1 += 1 while index2 < len(arr2): union.append(arr2[index2]) index2 += 1 return union # using modified merge function def compute_intersection(arr1, arr2): intersection = [] index1 = 0 index2 = 0 while (index1 < len(arr1)) and (index2 < len(arr2)): if arr1[index1] < arr2[index2]: index1 += 1 elif arr1[index1] > arr2[index2]: index2 += 1 else: intersection.append(arr2[index2]) index1 += 1 index2 += 1 return intersection if __name__ == "__main__": arr1 = [1, 3, 4, 5, 7] arr2 = [2, 3, 5, 6] # arr1=[2, 5, 6] # arr2=[4, 6, 8, 10] union = compute_union(arr1, arr2) print('union : ', union) intersection = compute_intersection(arr1, arr2) print('intersection : ', intersection) ``` #### File: array/python3/9_minimize_maximum_difference.py ```python def minimize_maximum_difference(arr, k): if len(arr) < 2: return -1 # sort the list. arr.sort() # If we add/subtract k to each every element difference will be same. difference = arr[-1]-arr[0] # one probable solution # add k to min element and substract k from max element. max = arr[-1]-k min = arr[0]+k # swap is max < min after add and substract. if max < min: max, min = min, max # for all the intermediate elements. for i in range(1, len(arr)-1): # greedy approach. # we can add k or substract k. temp_max = arr[i]+k temp_min = arr[i]-k # If any of those value comes in range of (min -> max) that does not change the difference. if (temp_max <= max) or (temp_min >= min): continue # Outside range (min -> max). # update with that value which one add less penalty. if abs(max-temp_min) < abs(temp_max-min): min = temp_min else: max = temp_max if difference < abs(max-min): return difference else: return abs(max-min) if __name__ == "__main__": arr1 = [1, 15, 10] # ANS 5 arr2 = [1, 5, 15, 10] # ANS 8 arr3 = [4, 6] # ANS 2 arr4 = [6, 10] # ANS 2 arr5 = [1, 10, 14, 14, 14, 15] # ANS 5 arr6 = [1, 2, 3] # ANS 2 k1 = 6 k2 = 3 k3 = 10 k4 = 3 k5 = 6 k6 = 2 print(minimize_maximum_difference(arr1, k1)) print(minimize_maximum_difference(arr2, k2)) print(minimize_maximum_difference(arr3, k3)) print(minimize_maximum_difference(arr4, k4)) print(minimize_maximum_difference(arr5, k5)) print(minimize_maximum_difference(arr6, k6)) ```
{ "source": "JITENDRAMINDA/liveline", "score": 2 }
#### File: JITENDRAMINDA/liveline/ad.py ```python from pyrogram import Client, Filters import time from pyrogram.errors import FloodWait app = Client ("ssss",bot_token="<KEY>",api_id=814511,api_hash="44462f0f278503255d5cc30941b617a9") @app.on_message(Filters.channel) def main(client, message): if message.text == "OVER": x = random.choice(1,5) if x == 1 : file = open("1.txt","r") s = file.readlines() file.close() client.send_message(message.chat.id,s) if x == 2 : file = open("2.txt","r") s = file.readlines() file.close() client.send_message(message.chat.id,s) if x == 3 : file = open("3.txt","r") s = file.readlines() file.close() client.send_message(message.chat.id,s) if x == 4 : file = open("4.txt","r") s = file.readlines() file.close() client.send_message(message.chat.id,s) @app.on_message(Filters.command('set')) def ran(client,message): x = message.from_user.id if x == 491634139 : with open("message.text.split(' ')[1].txt","w") as file: file.write(message.reply_to_message.text) file.close() message.reply("Done") app.run() @app.on_message(Filters.private & Filters.sticker) def forawrd(client, message): client.send_message(message.chat.id,message.sticker.file_id ) app.run() ``` #### File: JITENDRAMINDA/liveline/del.py ```python from pyrogram import Client, Filters import time app = Client ("ssss",bot_token="<KEY>",api_id=814511,api_hash="44462f0f278503255d5cc30941b617a9") @app.on_message(Filters.channel) def main(client, message): file = open("sure.txt" , "r") lines = file.readlines() file.close() for b in lines: if b == "atv": client.delete_messages(message.chat.id, message.message_id) @app.on_message(Filters.command("atv")) def main(client, message): with open("sure.txt" , "w") as files: files.write("atv") files.close() message.reply("okk, ab me message bhejane wali ki maa chodta tu soja") @app.on_message(Filters.command("dtv")) def main(client, message): with open("sure.txt" , "w") as files: files.write("dtv") files.close() message.reply("okk, ab tu message bhejane wali ki maa chod me rest krta") app.run() ``` #### File: JITENDRAMINDA/liveline/ptb.py ```python from telegram.ext import Updater updater = Updater(token='<KEY>', use_context=True) dispatcher = updater.dispatcher from telegram.ext import CommandHandler import logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) def start(update, context): context.bot.send_message(chat_id=update.effective_chat.id, text="I'm a bot, please talk to me!") def echo(update, context): context.bot.send_message(chat_id=update.effective_chat.id, text=update.message.text) from telegram.ext import MessageHandler, Filters echo_handler = MessageHandler(Filters.text, echo) dispatcher.add_handler(echo_handler) start_handler = CommandHandler('start', start) dispatcher.add_handler(start_handler) updater.start_polling() ```
{ "source": "JITENDRAMINDA/singh", "score": 2 }
#### File: JITENDRAMINDA/singh/bot.py ```python from pyrogram import Client, Filters,Emoji app = Client("session",bot_token="<KEY>",api_id=715451,api_hash="d2cba6f7bf5d1a45682da5bb9071a307") #("session",bot_token="<KEY>",api_id=605563,api_hash="7f2c2d12880400b88764b9b304e14e0b") @app.on_message(Filters.command("send")) def forawrd(client, message): x = client.get_chat_member(message.chat.id , message.from_user.id) if x.status == "administrator" or x.status == "creator": files = open("sure.txt","r") x = files.readlines() files.close() for y in x: z = y.split() for f in z: try: client.forward_messages(str(f),message.chat.id,message.reply_to_message.message_id ) except: message.reply("🔥 Sending Failed in " + f) continue message.reply("🔁 operation completed 🔁") @app.on_message(Filters.command("add")) def forawrd(client, message): o = False fil = open("sure.txt","r") t = fil.readlines() fil.close() for h in t: q = h.split() for d in q: if d.casefold() == message.text.split(" ")[1].casefold(): o = True if not o : x = client.get_chat_member(message.chat.id , message.from_user.id) if x.status == "administrator" or x.status == "creator": try: client.send_message(message.text.split(" ")[1], "Powered by king") y = client.get_chat(str(message.text.split(' ')[1])).title file = open("sure.txt","a") file.write(" " + message.text.split(" ")[1]) file.close() message.reply("📶 The chat - "+str(y)+" ✅" + " added. 😋😝😜😍") except: message.reply("♻️ Bot is not a admin in this channel 😡🤬🤬") if o: message.reply("already added 😏😏") @app.on_message(Filters.command('remove')) def forward(client, message): x = client.get_chat_member(message.chat.id , message.from_user.id) if x.status == "administrator" or x.status == "creator": try: file = open("sure.txt" , "r") u = file.readlines() file.close() for v in u: lines = v.split() del lines[lines.index(message.text.split(' ')[1])] y = " ".join(str(x) for x in lines) files = open("sure.txt" , "w") files.write(y) files.close() message.reply("💾 Done, The chat_id ```" + message.text.split(' ')[1] +"```🌐 has been removed to my database. ✅✅") except: message.reply("☢️ ID not found 🧐🙄😒") @app.on_message(Filters.command('list')) def forward(client, message): x = client.get_chat_member(message.chat.id , message.from_user.id) if x.status == "administrator" or x.status == "creator": file = open("sure.txt" , "r") u = file.readlines() file.close() for v in u : message.reply("🏘️ List of Chat_ids in my database are ```" + str(v) + "```.") @app.on_message(Filters.command('clear1') & Filters.user(491634139)) def forward(client, message): with open("sure.txt" , "w") as file: file.write("cfamovies") file.close() message.reply("☢️ Done, Success ✅✅") @app.on_message(Filters.private) def forward(client, message): if not message.from_user.id == 491634139: message.reply("""♻️ The bot is Promotion bot created by a wonderful person . Work only in groups. ✅✅ How to use: 👉 add a channel 1. ```/add @username``` 👉 remove a channel 2. ```/remove @username``` 👉 list of channels 3. ```/list``` 👉 send a list 4. reply a list of Channel to ```/send``` for send it to all Channels. only Admin exist that's command in supergroups. ✍️ Powered by king Promotion 👊. """) app.run() ``` #### File: JITENDRAMINDA/singh/math.py ```python import pynewtonmath as newton from pyrogram import Client, Filters from pyrogram.errors import FloodWait import time app = Client("mnnn",bot_token="8<PASSWORD>:<KEY>",api_id=768402,api_hash="f6420bf67303614279049d48d3e670f6") @app.on_message(Filters.command("derive")) def main(client, message): x = message.text.split(' ')[1] client.send_message(message.chat.id,newton.derive(x) + "thats okk") app.run() ```
{ "source": "JITENDRAMINDA/spin", "score": 2 }
#### File: JITENDRAMINDA/spin/tst.py ```python from pyrogram import Client, Filters, Emoji import random import time app = Client("session",bot_token="<KEY>",api_id=715451,api_hash="d2cba6f7bf5d1a45682da5bb9071a307") @app.on_message(Filters. private & Filters.command("start")) def ran( client, message) : message.reply( """♻️ This is antiusername created by a wonderful [person](https://t.me/Google_console) ✍️. Add me to your group i will delete username from non admins automatically.""") @app.on_message(Filters.group) def main(client, message): if not message.from_user: message.delete(message.message_id) b = client.get_chat_member(message.chat.id , message.from_user.id).status if not b == 'administrator' or not b == "creator": if "@" in message.text: client.delete_messages(message.chat.id, message.message_id) app.run() ```
{ "source": "JITENDRAMINDA/sssnnn", "score": 2 }
#### File: JITENDRAMINDA/sssnnn/formy.py ```python from pyrogram import Client, Filters TOKAN = "639957559:AAFbwAStH_GXBgUVFxC93CCsbBM5MSA-Piw" app = Client( TOKAN ,605563,"7f2c2d12880400b88764b9b304e14e0b") @app.on_message(Filters.command("delete")) def main(client, message): for message.message_id in range(int(message.text.split(' ')[1]), int(message.text.split(' ')[2])): try: client.delete_messages(message.chat.id,message.message_id) except: continue @app.on_message(Filters.channel & ~ Filters.edited) def main(client, message): file = open("bullets.txt" , "r") s = file.readlines() file.close() for d in s: if message.chat.id == int(d): file = open("bulleti.txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for x in p: try: mes = client.send_message( int(x), "**" + message.text + "**" ) fille = open(str(x)+".txt","r") n = fille.readlines() fille.close() for t in n: fie = open(str(x)+".txt","w") fie.write(t +" " + str(message.message_id) + " " + str(mes.message_id)) fie.close() except: continue fil = open("ferraris.txt" , "r") q = fil.readlines() fil.close() for e in q: if message.chat.id == int(e): file = open("ferrarii.txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for x in p: try: mes = client.send_message( int(x), "**" + message.text + "**" ) fille = open(str(x)+".txt","r") n = fille.readlines() fille.close() for t in n: fie = open(str(x)+".txt","w") fie.write(t +" " + str(message.message_id) + " " + str(mes.message_id)) fie.close() except: continue fl = open("sessionss.txt" , "r") h = fl.readlines() fl.close() for e in h: if message.chat.id == int(e): file = open("sessionsi.txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for x in p: try: mes = client.send_message( int(x), "**" + message.text + "**" ) fille = open(str(x)+".txt","r") n = fille.readlines() fille.close() for t in n: fie = open(str(x)+".txt","w") fie.write(t +" " + str(message.message_id) + " " + str(mes.message_id)) fie.close() except: continue @app.on_message(Filters.channel & Filters.edited) def main(client, message): file = open("ferraris.txt" , "r") s = file.readlines() file.close() for d in s: if message.chat.id == int(d): filer = open("update.txt" , "r") m = filer.readlines() filer.close() for l in m: if l == "on": file = open("ferrarii.txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for o in p: files = open(str(o)+".txt" , "r") d = files.readlines() files.close() for c in d: x = c.split() id = str(message.message_id) if id in x: try: client.edit_message_text(int(o),int(x[x.index(id)+1]), "**" + message.text + "**" ) except: continue fil = open("bullets.txt" , "r") f = fil.readlines() fil.close() for d in f: if message.chat.id == int(d): filer = open("update.txt" , "r") m = filer.readlines() filer.close() for l in m: if l == "on": file = open("bulleti.txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for o in p: files = open(str(o)+".txt" , "r") d = files.readlines() files.close() for c in d: x = c.split() id = str(message.message_id) if id in x: try: client.edit_message_text(int(o),int(x[x.index(id)+1]), "**" + message.text + "**" ) except: continue fl = open("sessionss.txt" , "r") f = fl.readlines() fl.close() for d in f: if message.chat.id == int(d): filer = open("update.txt" , "r") m = filer.readlines() filer.close() for l in m: if l == "on": file = open("sessionsi.txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for o in p: files = open(str(o)+".txt" , "r") d = files.readlines() files.close() for c in d: x = c.split() id = str(message.message_id) if id in x: try: client.edit_message_text(int(o),int(x[x.index(id)+1]), "**" + message.text + "**" ) except: continue @app.on_message(Filters.command('add') & Filters.user(491634139) ) def forward(client, message): if len(message.text.split(' ')) > 2: if len(message.text.split(' ')[1]) == 14: with open(message.text.split(" ")[2] + ".txt" , "r") as file: lines = file.readlines() file.close() for line in lines: files = open(message.text.split(" ")[2] + ".txt" , "w") files.write(line + " " + message.text.split(' ')[1]) files.close() with open(message.text.split(' ')[1]+".txt" , "w") as g: g.write("001 002") g.close() message.reply("💾 Done, The chat_id ```" + message.text.split(' ')[1] +"```🌐 has been added to my database. ✅✅") else: message.reply("💼 Please write a valid chat id. ✅✅ ") else: message.reply("💼 Please write a valid chat id. ✅✅ ") @app.on_message(Filters.command('remove') & Filters.user(491634139)) def forward(client, message): if len(message.text.split(' ')) > 2: if len(message.text.split(' ')[1]) == 14: file = open(message.text.split(" ")[2] + ".txt" , "r") u = file.readlines() file.close() for v in u: lines = v.split() del lines[lines.index(message.text.split(' ')[1])] y = " ".join(str(x) for x in lines) files = open(message.text.split(" ")[2] + ".txt" , "w") files.write(y) files.close() message.reply("💾 Done, The chat_id ```" + message.text.split(' ')[1] +"```🌐 has been removed to my database. ✅✅") else: message.reply("💼 Please write a valid chat id. ✅✅ ") else: message.reply("💼 Please write a valid chat id. ✅✅ ") @app.on_message(Filters.command('clear') & Filters.user(491634139)) def forward(client, message): file = open(message.text.split(" ")[1] + ".txt" , "r") lines = file.readlines() file.close() for line in lines: p = line.split() for x in p: fie = open(str(x)+".txt","w") fie.write("001 002") fie.close() message.reply("☢️ Done, Editing data cleared ✅✅") @app.on_message(Filters.command('list') & Filters.user(491634139)) def forward(client, message): file = open(message.text.split(" ")[1] + ".txt" , "r") u = file.readlines() file.close() for v in u : message.reply("🏘️ List of Chat_ids in my database are ```" + str(v) + "```. Its can be change. ✅✅") @app.on_message(Filters.command('sets') & Filters.user(491634139) ) def forward(client, message): if len(message.text.split(' ')) > 2: if len(message.text.split(' ')[1]) == 14: with open(message.text.split(' ')[2] + '.txt', 'w') as file: file.write(message.text.split(' ')[1]) file.close() message.reply("🌐 Done, Now my source chat is ```" + message.text.split(' ')[1] + "```. I will try to forward messages from this chat. ✅✅") else: message.reply("💼 Please write a valid chat id. ✅✅ ") else: message.reply("💼 Please write a valid chat id. ✅✅ ") @app.on_message(Filters.command('setupdate') & Filters.user(491634139) ) def forward(client, message): if len(message.text.split(' ')) > 1: with open('update.txt', 'w') as file: file.write(message.text.split(' ')[1]) file.close() message.reply("🌐 Done,Now my message update status is ```" + message.text.split(' ')[1] + "```.✅✅") else: message.reply("💼 Please write a valid chat id. ✅✅ ") @app.on_message(Filters.command('source') & Filters.user(491634139) ) def forward(client, message): with open(message.text.split(" ")[1] + '.txt', 'r') as file: x = file.readlines() file.close() for y in x: message.reply("🌐 My source chat is ```" + y + "```. I am trying to forward messages from this chat. ✅✅") @app.on_message(Filters.command('get') & Filters.user(491634139) ) def forward(client, message): if len(message.text.split(' ')) > 1: if len(message.text.split(' ')[1]) == 14: x = client.get_chat(int(message.text.split(' ')[1])).title message.reply("📶 This chat name is - "+str(x)+" ✅") else: message.reply("💼 Please write a valid chat id. ✅✅ ") else: message.reply("💼 Please write a valid chat id. ✅✅ ") @app.on_message(Filters.command('update') & Filters.user(491634139) ) def forward(client, message): with open('update.txt', 'r') as file: x = file.readlines() file.close() for y in x: message.reply("🌐 My current message update status is ```" + y + "```. ✅✅") @app.on_message(Filters.command("start")) def forward(client, message): if message.from_user.id == 491634139: message.reply("♻️ Welcome to your LineBot . ✅✅") else: message.reply("♻️ You need admins permission to use my functions. ✅✅") @app.on_message(Filters.private) def forward(client, message): if not message.from_user.id == 491634139: message.reply("♻️ You need admins permission to use my functions. ✅✅") app.run() ```
{ "source": "jitendrapitchuka/Recommendation_system", "score": 2 }
#### File: Recommendation_system/accounts/models.py ```python from django.db import models from django.contrib.auth.models import User #class User(auth.models.User,auth.models.PermissionsMixin): # def __str__(self): # return (self.username) class movie(models.Model): index=models.IntegerField(primary_key=True) movie_id=models.IntegerField() title=models.CharField(max_length=120) genres=models.CharField(max_length=130) imdb_id=models.IntegerField() tmdb_id=models.IntegerField() Image_url=models.URLField(max_length=200) text=models.TextField(max_length=400) def __str__(self): return self.title class fav(models.Model): user=models.ForeignKey(User, on_delete=models.CASCADE) movie=models.ForeignKey(movie, on_delete=models.CASCADE) ``` #### File: Recommendation_system/accounts/views.py ```python from django.shortcuts import render,get_object_or_404,HttpResponseRedirect,redirect from django.views.generic import TemplateView,CreateView,DetailView,View from django.urls import reverse_lazy,reverse from . import forms from django.contrib import messages from django.contrib.auth import views as auth_views from .models import movie,fav from django.contrib.auth.models import User from django.core.paginator import Paginator import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity import sqlite3 class SignUp(CreateView): form_class=forms.UserCreateForm success_url=reverse_lazy('accounts:login') template_name='signup.html' def add_movie(request,pk): # if fav.objects.filter(movie=pk,user=request.user.pk).exists(): # fav.objects.filter(movie=pk,user=request.user.pk).delete() # else: # print(request.user.id) # user=User.objects.filter(id=request.user.id) # print(user) # fav(movie=pk,user=user).save() # return HttpResponseRedirect('accounts/movie_detail.html') if fav.objects.filter(movie=pk,user=request.user.pk).exists(): fav.objects.filter(movie=pk,user=request.user.pk).delete() messages.success(request, 'Removed from list.') else: print(request.user.id) movie_obj = movie.objects.filter(index=pk).first() user=User.objects.filter(id=request.user.id).first() print(user) fav_obj = fav(movie=movie_obj,user=user) messages.success(request, 'Added to list.') fav_obj.save() return redirect('detail',pk) def search_results(request): if request.method=='POST': searched=request.POST['searched'] movies_obj=movie.objects.filter(title__contains=searched) return render(request, 'search.html',{'movies_obj':movies_obj}) else: return render(request, 'search.html',{}) def my_list(request): temp=fav.objects.filter(user__id=request.user.id) return render(request, 'my_list.html',{'temp':temp}) def Homepage(request): # movies_list=movie.objects.all() #return render(request, 'index.html',{'movies_list':movies_list}) posts = movie.objects.all() # fetching all post objects from database p = Paginator(posts, 18) # creating a paginator object # getting the desired page number from url page_number = request.GET.get('page') try: page_obj = p.get_page(page_number) # returns the desired page object except PageNotAnInteger: # if page_number is not an integer then assign the first page page_obj = p.page(1) except EmptyPage: # if page is empty then return last page page_obj = p.page(p.num_pages) context = {'page_obj': page_obj,'posts':posts} # sending the page object to index.html return render(request, 'index.html', context) class thankspage(TemplateView): template_name='logout.html' class image_detailview(View): movie = movie def get(self, request, pk): movies_detail = self.movie.objects.get(pk=pk) print(movies_detail) # Create your connection. cnx = sqlite3.connect('db.sqlite3') df = pd.read_sql_query("SELECT * FROM accounts_movie", cnx) #print(df.head()) features = ['genres', 'title','text'] for f in features: df[f] = df[f].fillna('') def combineFeatures(row): return row['genres'] + " " + row['title']+" "+row['text'] df['combineFeatures'] = df.apply(combineFeatures, axis = 1) print(df['combineFeatures']) cv = CountVectorizer() count_matrix = cv.fit_transform(df['combineFeatures']) cosine_sim = cosine_similarity(count_matrix) movie_obj = self.movie.objects.filter(index=pk).first() movie_user_likes=movie_obj.title print(movie_user_likes) def get_index_from_title(title): return df[df.title == title]["index"].values[0] movie_index = get_index_from_title(movie_user_likes) print(movie_index) similar_movies = list(enumerate(cosine_sim[movie_index])) sorted_similar_movies = sorted(similar_movies, key=lambda x:x[1], reverse=True) def get_title_from_index(index): return df[df.index == index]["index"].values[0] i=0 li=[] for x in sorted_similar_movies: get_index = get_title_from_index(x[0]) recommendation_list_obj=movie.objects.get(index=get_index) li.append(recommendation_list_obj) print(get_title_from_index(x[0])) i=i+1 if i>17: break print(li) return render(request,'accounts/movie_detail.html',{'li':li,'movie':movies_detail}) #class HomePage(TemplateView): # template_name='index.html' ```
{ "source": "jitendrapurbey/setopati-reader", "score": 3 }
#### File: setopati-reader/reader/feed.py ```python from typing import Dict, List # noqa # Third party imports import feedparser import html2text # Reader imports from reader import URL _CACHED_FEEDS = dict() # type: Dict[str, feedparser.FeedParserDict] def _feed(url=URL): # type: (str) -> feedparser.FeedParserDict """Cache contents of the feed, so it's only read once""" if url not in _CACHED_FEEDS: _CACHED_FEEDS[url] = feedparser.parse(url) return _CACHED_FEEDS[url] def get_site(url=URL): # type: (str) -> str """Get name and link to web site of the feed""" info = _feed(url).feed return u"{info.title} ({info.link})".format(info=info) def get_article(article_id, links=False, url=URL): # type: (str, bool, str) -> str """Get article from feed with the given ID""" articles = _feed(url).entries try: article = articles[int(article_id)] except (IndexError, ValueError): max_id = len(articles) - 1 msg = "Unknown article ID, use ID from 0 to {}".format(max_id) raise SystemExit("Error: {}".format(msg)) # Get article as HTML try: html = article.content[0].value except AttributeError: html = article.summary # Convert HTML to plain text to_text = html2text.HTML2Text() to_text.ignore_links = not links text = to_text.handle(html) return u"# {}\n\n{}".format(article.title, text) def get_titles(url=URL): # type: (str) -> List[str] """List titles in feed""" articles = _feed(url).entries return [a.title for a in articles] ```
{ "source": "jitendravarma/demoApp", "score": 2 }
#### File: api/v1/views.py ```python import json from collections import OrderedDict from core.models import Text from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from .serializers import TextSerializer, UserSerializer def create_response(response_data): """ method used to create response data in given format """ response = OrderedDict() response["header"] = {"status": "1"} response["body"] = response_data return response def create_serializer_error_response(errors): """ method is used to create error response for serializer errors """ error_list = [] for k, v in errors.items(): if isinstance(v, dict): _, v = v.popitem() d = {} d["field"] = k d["field_error"] = v[0] error_list.append(d) return OrderedDict({"header": {"status": "0"}, "errors": { "errorList": error_list}}) class UpdateProfileAPIView(APIView): """update user's profile using this view""" serializer_class = UserSerializer permission_classes = (IsAuthenticated,) def get(self, request): source = UserSerializer(self.request.user) return Response(create_response({"results": source.data})) def post(self, request, *args, **kwargs): user_serializer = UserSerializer(request.user, data=request.data) if user_serializer.is_valid(): user_serializer.save() return Response(create_response( {"msg": "Profile updated successfully"})) else: return Response( create_serializer_error_response(user_serializer.errors), status=403) def put(self, request): image_file = request.data["image_file"] user = request.user user.profile_pic = image_file user.save() return Response(create_response({"msg": "Profile pic updated successfully!"})) class UploadJson(APIView): permission_classes = [ AllowAny, ] """ this view is used to upload json file """ def post(self, request, *args, **kwargs): try: json_file = request.data.get('file') items = json.loads(json_file.read().decode("utf-8")) for item in items: text, _ = Text.objects.get_or_create(data_id=item['id']) text.user_id = item['userId'] if 'userId' in item else "" text.title = item['title'] if 'title' in item else "" text.body = item['body'] if 'body' in item else "" text.save() status = 200 res_data = create_response({"msg": "File uploaded successfully"}) except Exception as error: print(error) status = 500 res_data = create_serializer_error_response({"msg": "Something went wrong"}) return Response(res_data, status=status) class TextAPIView(APIView): """api view to render serailized text objects""" serializer_class = TextSerializer permission_classes = (IsAuthenticated,) def get(self, request): source = TextSerializer(Text.objects.all(), many=True) return Response(create_response({"results": source.data})) ``` #### File: management/commands/load_data.py ```python import os import json from forex_python.converter import CurrencyRates, CurrencyCodes from django.core.management.base import BaseCommand, CommandError from core.models import Currency def load_currency(): print("Adding currencies..") currencies = CurrencyRates() code = CurrencyCodes() for key in currencies.get_rates('USD').keys(): symbol = code.get_symbol(key) Currency.objects.get_or_create(name=key, symbol=symbol) print("Done..") class Command(BaseCommand): def handle(self, *args, **options): load_currency() ```
{ "source": "jitendravarma/inventory", "score": 2 }
#### File: inventory/core/views.py ```python from django.http import FileResponse from django.shortcuts import get_object_or_404 from django.views.generic import TemplateView, View from .models import PurchaseOrder from .utils import generate_invoice_pdf # Create your views here. class CompanyView(TemplateView): """ this view renders company detail page """ template_name = 'frontend/company.html' def get_context_data(self, **kwargs): context = super(CompanyView, self).get_context_data(**kwargs) context['company_page'] = "active" return context class PurchaseView(TemplateView): """ this view renders company detail page """ template_name = 'frontend/purchase.html' def get_context_data(self, **kwargs): context = super(PurchaseView, self).get_context_data(**kwargs) context['purchase_page'] = "active" return context class ProductView(TemplateView): """ this view renders company detail page """ template_name = 'frontend/product.html' def get_context_data(self, **kwargs): context = super(ProductView, self).get_context_data(**kwargs) context['product_page'] = "active" return context class DownloadInvoiceView(View): """ this view renders company detail page """ def get(self, request, pk): # po = get_object_or_404(PurchaseOrder, id=self.kwargs['pk']) po = PurchaseOrder.objects.first() data = {'name': po.product.name, 'company': po.company.name, 'no': po.order_number, 'quantity': po.quantity, 'price': po.product.price, 'rate': po.quantity * po.price} invoice_path = generate_invoice_pdf(data) pdf_file = open(invoice_path, 'rb') response = FileResponse(pdf_file, content_type="application/pdf") response["Content-Disposition"] = "attachment; filename=invoice.pdf" return response ```
{ "source": "jitendravarma/newscout_web", "score": 2 }
#### File: management/commands/get_initial_data.py ```python from django.core.management.base import BaseCommand from core.models import * from api.v1.serializers import ArticleSerializer from core.utils import create_index, ingest_to_elastic from django.core import serializers from collections import OrderedDict class Command(BaseCommand): help = 'This command is used to ingest data from database to elastic search' batch = [] def handle(self, *args, **options): app_list = OrderedDict() domain = Domain.objects.get(domain_id="newscout") categories = [] articles = [] sources = [] hash_tags = [] submenus = [] menus = Menu.objects.filter(domain=domain) print("getting menus") for m in menus: categories.append(m.name) for s in m.submenu.all(): categories.append(s.name) submenus.append(s) for h in s.hash_tags.all(): if h not in hash_tags: hash_tags.append(h) print("getting articles") for cat in categories: arts = Article.objects.filter(category=cat, domain=domain)[:200] for art in arts: articles.append(art) if art.source not in sources: sources.append(art.source) for hashtag in art.hash_tags.all(): if hashtag not in hash_tags: hash_tags.append(hashtag) users = UserProfile.objects.all() print("getting users") for user in users: for p in user.passion.all(): if p not in hash_tags: hash_tags.append(p) trendingarticles = [] print("getting trendingarticles") for tart in TrendingArticle.objects.filter(domain=domain): trendingarticles.append(tart) for art in tart.articles.all(): articles.append(art) if art.source not in sources: sources.append(art.source) for hashtag in art.hash_tags.all(): if hashtag not in hash_tags: hash_tags.append(hashtag) devices = Devices.objects.filter(user__in=users) dailydigest = [] print("getting dailydigest") for d in DailyDigest.objects.filter(device__in=devices): dailydigest.append(d) for art in d.articles.all(): if art.domain == domain: articles.append(art) if art.source not in sources: sources.append(art.source) for hashtag in art.hash_tags.all(): if hashtag not in hash_tags: hash_tags.append(hashtag) app_list['news_site.domain'] = [domain] app_list['news_site.category'] = categories app_list['news_site.categoryassociation'] = CategoryAssociation.objects.filter(parent_cat__in=categories, child_cat__in=categories) app_list['news_site.categorydefaultimage'] = CategoryDefaultImage.objects.filter(category__in=categories) app_list['news_site.source'] = sources app_list['news_site.hashtag'] = hash_tags app_list['news_site.userprofile'] = users app_list['news_site.article'] = articles app_list['news_site.articlemedia'] = ArticleMedia.objects.filter(article__in=articles) app_list['news_site.submenu'] = submenus app_list['news_site.menu'] = menus app_list['news_site.devices'] = Devices.objects.filter(user__in=users) app_list['news_site.trendingarticle'] = trendingarticles app_list['news_site.dailydigest'] = dailydigest for name, values in app_list.items(): data = serializers.serialize("json", values) file_name = name + '.json' f = open(file_name, 'w') f.write(data) f.close() ``` #### File: management/commands/ingest_data.py ```python import os import sys import zlib import pytz import time import redis import cPickle from random import randint from datetime import datetime from dateutil.parser import parse from django.core.management.base import BaseCommand, CommandError from core.models import * from api.v1.serializers import ArticleSerializer from core.utils import create_index, ingest_to_elastic from core.classify import RegexClassification from article_scoring import ArticleScore # prometheus stats from prometheus_client import start_http_server, Gauge, Enum class Command(BaseCommand): help = 'This command is used to ingest data from local disk cache' def __init__(self, *args, **kwargs): super(Command, self).__init__(*args, **kwargs) self.source_ingest = Gauge("total_ingest_count", "Total number of articles ingested", ['source', 'category']) self.task_state = Enum("article_ingestion_state", "Article ingestion states", states=["running", "waiting"]) self.now = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%Y-%m-%d") self.redis = redis.Redis() self.batch = [] self.sleep_time = 0 self.classify = RegexClassification() self.score = ArticleScore() def reset_stats(self): """ this method is used to reset stats to zero """ print("Resetting Stats") for metric in self.source_ingest._metrics.keys(): source, category = metric self.source_ingest(source=source, category=category).set(0) def add_arguments(self, parser): parser.add_argument('--source', '-s', type=str, help='redis source name [Ex: theverge]') parser.add_argument('--index', '-i', type=str, default='article', help='elastic search index name [default: article]') def get_data_from_redis(self, source): """ this method returns data from redis """ return self.redis.lpop(source) def parse_date(self, date_str): try: dt = parse(date_str) return dt.astimezone(tz=pytz.UTC) except Exception: try: ts = int(date_str) return datetime.utcfromtimestamp(ts) except Exception: return None def remove_char(self, tag, ch): """ this method removes given char from tag """ new_tag = [tag] if ch in tag: return tag.split(ch) return new_tag def remove_special_chars(self, tags): """ this method is used to remove special chars from tags """ new_tags = [] for tag in tags: new_tags = new_tags + self.remove_char(tag, ";") clean_tags = [] for tag in new_tags: clean_tags = clean_tags + self.remove_char(tag, " & ") final_tags = [] for tag in clean_tags: final_tags = final_tags + self.remove_char(tag, " and ") final_tags = [tag.replace("&", " ").replace(",", "").replace(":", "").replace("'", "").replace("#", "").replace("*", "").replace("(", "").replace(")", "").replace("@", "").replace("!", "").replace("-", " ").strip().lower() for tag in final_tags] return final_tags def get_tags(self, tags): """ this method will return tag name from tags objects """ tag_list = [] for tag in tags: tag_list.append(tag["name"]) return tag_list def create_model_obj(self, doc, index): """ this method is used to create django article model object """ title = doc["title"] category = doc["category"] source = doc["source"] source_url = doc["source_url"] cover_image = doc["cover_image"] blurb = doc["blurb"] full_text = doc.get("short_description") or doc.get("full_text", "") published_on = self.parse_date(doc["published_on"]) if not published_on: published_on = timezone.now() author = doc.get("author", "") author_twitter = doc.get("author_twitter", "") video_data = doc.get("video_data", "") images = doc["images"] tags = doc["tags"] if not cover_image: if video_data: cover_image = video_data[0].get("video_image", "") if title and full_text: if not Article.objects.filter(title=title).exists(): if category == "Uncategorised": # apply regex based category only if article is uncategorised # get category id from regex classfication category_id = self.classify.match(title) category = Category.objects.get(id=category_id) else: category = Category.objects.get(name=category) source, _ = Source.objects.get_or_create(name=source) article_obj = Article.objects.create( title=title, source=source, category=category, source_url=source_url, cover_image=cover_image, blurb=blurb, full_text=full_text, published_on=published_on, active=True ) if len(images) > 1: for img in images: _ = ArticleMedia.objects.create( article=article_obj, category="image", url=img ) if len(video_data) > 0: for video_dic in video_data: _ = ArticleMedia.objects.create( article=article_obj, category="video", url=video_dic.get("video_image", ""), video_url=video_dic.get("video_url", "") ) if len(tags) > 0: tag_objs = [] new_tags = self.remove_special_chars(tags) if new_tags: for tag in new_tags: tag_obj = HashTag.objects.filter(name=tag) if tag_obj: tag_objs.append(tag_obj.first()) else: tag_obj = HashTag.objects.create(name=tag) tag_objs.append(tag_obj) article_obj.hash_tags.add(*tag_objs) # calculate article score score = self.score.calculate_score(doc) serializer = ArticleSerializer(article_obj) json_data = serializer.data json_data["article_score"] = score if json_data["hash_tags"]: tag_list = self.get_tags(json_data["hash_tags"]) json_data["hash_tags"] = tag_list self.batch.append(json_data) if len(self.batch) == 99: ingest_to_elastic(self.batch, index, index, 'id') self.batch = [] print("Ingesting Batch To Elastic...!!!") def handle(self, *args, **options): if options['source'] == None: raise CommandError("Option `--source=...` must be specified.") # start prometheus http server for metrics start_http_server(8686) source = options['source'] index = options['index'] create_index(index) try: while True: file_path = self.get_data_from_redis(source) if file_path: date = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%Y-%m-%d") self.task_state.state("running") self.sleep_time = 0 if os.path.isfile(file_path): doc = cPickle.loads(zlib.decompress(open(file_path).read())) try: self.create_model_obj(doc, index) if date == self.now: self.source_ingest.labels(source=doc.get("source", "source"), category=doc.get("category", "category")).inc() else: self.now = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%Y-%m-%d") # self.reset_stats() self.source_ingest.labels(source=doc.get("source", "source"), category=doc.get("category", "category")).inc() except Exception as e: print("error in doc read") print(e) else: msg = "Data file not found: {0}".format(file_path) print(msg) else: self.task_state.state("waiting") print("Sleeping...!!!") time.sleep(10) self.sleep_time += 10 if self.sleep_time >= 60: if self.batch: ingest_to_elastic(self.batch, index, index, 'id') print("Ingesting Final Batch...!!!") self.batch = [] self.sleep_time = 0 except KeyboardInterrupt: sys.exit(0) ```
{ "source": "jitendravarma/user_management", "score": 2 }
#### File: user_management/core/models.py ```python from django.db import models from django.conf import settings from django.contrib.auth.models import AbstractUser # Create your models here. class BaseUserProfile(AbstractUser): """ Model class for base user. """ address = models.CharField(max_length=255, blank=True, null=True) phone_no = models.CharField(max_length=10, blank=True, null=True) middle_name = models.CharField(max_length=255, blank=True, null=True) email_verified = models.BooleanField(default=False) class Meta: verbose_name = "Base User Profile" verbose_name_plural = "Base User Profiles" @property def full_name(self): if self.last_name and self.first_name: return "%s %s" % (self.first_name, self.last_name) elif self.first_name: return "%s " % (self.first_name) else: return "%s " % (self.email) def __str__(self): return f"{self.email}, is_active {self.is_active}" class OTPVerification(models.Model): otp = models.CharField(max_length=5) created_on = models.DateTimeField(auto_now=True) user = models.ForeignKey(BaseUserProfile, on_delete=models.CASCADE) class Meta: verbose_name = "OTP Verification" verbose_name_plural = "OTP Verifications" def __str__(self): return f"{self.user.email}, is_active {self.otp}, id: {self.id}" class VerificationLink(models.Model): user = models.ForeignKey(BaseUserProfile, blank=False, null=False, on_delete=models.CASCADE) hash_key = models.TextField(blank=False, null=False) created_on = models.DateTimeField(auto_now=True) def __str__(self): return f"{self.user.email}" class ForgotPasswordLink(models.Model): user = models.ForeignKey(BaseUserProfile, blank=False, null=False, on_delete=models.CASCADE) hash_key = models.TextField(blank=False, null=False) created_on = models.DateTimeField(auto_now=True) def __str__(self): return f"{self.user.email}" ``` #### File: user_management/core/views.py ```python import json from django.urls import reverse from django.contrib import messages from django.utils.encoding import force_text from django.contrib.auth import login, logout from django.utils.http import urlsafe_base64_decode from django.shortcuts import render, get_object_or_404 from django.contrib.auth.mixins import LoginRequiredMixin from django.http import HttpResponseRedirect, HttpResponse from django.views.generic import RedirectView, FormView, TemplateView from .backends import EmailModelBackend from .forms import (LoginForm, SignUpForm, OTPForm, FPEmailForm, ChangePasswordForm) from .models import (BaseUserProfile, OTPVerification, VerificationLink, ForgotPasswordLink) from .tasks import create_forgot_password_link # Create your views here. class IndexView(LoginRequiredMixin, TemplateView): """ Home view for user after redirection """ template_name = 'frontend/dashboard.html' def get_context_data(self, **kwargs): context = super(IndexView, self).get_context_data(**kwargs) context['dashboard_page'] = "active" user = self.request.user context['email_verified'] = user.email_verified return context class LoginView(FormView): """ This view handles authentication of the user, when they first time logs in redirects them to login page if not authenticated. """ form_class = LoginForm template_name = 'frontend/login.html' def get_context_data(self, **kwargs): context = super(LoginView, self).get_context_data(**kwargs) return context def post(self, request): form = LoginForm(request.POST) email = form.data['email'] password = form.data['password'] if form.is_valid(): user_auth = EmailModelBackend() user = user_auth.validate_password(password=password, email=email) if user: otp_id = OTPVerification.objects.get(user=user).id return HttpResponseRedirect( reverse('phone-verification-view') + f"?otp_id={otp_id}") context = { 'form': form, "csrf_token": form.data['csrfmiddlewaretoken'], 'email': email } return render( request, context=context, template_name=self.template_name) class LogOutView(RedirectView): """ logout view """ def get_redirect_url(self): url = reverse("login-view") logout(self.request) return url class SignupView(FormView): """ This view signs up new user and validates the form on the server side """ form_class = SignUpForm template_name = 'frontend/sign-up.html' def post(self, request, *args, **kwargs): form = SignUpForm(request.POST) email = form.data['email'] password = form.data['password'] if form.is_valid(): user = form.save() otp_id = OTPVerification.objects.get(user=user).id return HttpResponseRedirect( reverse('phone-verification-view') + f"?otp_id={otp_id}") context = { 'form': form, "csrf_token": form.data['csrfmiddlewaretoken'], 'email': email } return render( request, context=context, template_name=self.template_name) class OTPView(FormView): """ This view handles otp verification """ form_class = OTPForm template_name = 'frontend/otp.html' def get_context_data(self, **kwargs): context = super(OTPView, self).get_context_data(**kwargs) otp_id = self.request.GET.get('otp_id') context["otp_id"] = otp_id get_object_or_404(OTPVerification, id=otp_id) return context def post(self, request, *args, **kwargs): form = OTPForm(request.POST) otp = form.data['otp'] otp_id = form.data['otp_id'] if not form.is_valid(): context = { 'form': form, "csrf_token": form.data['csrfmiddlewaretoken'], 'otp_id': otp_id} return render( request, context=context, template_name=self.template_name) else: otp_verified = get_object_or_404(OTPVerification, id=otp_id) user_auth = EmailModelBackend() user = user_auth.authenticate(_id=otp_id, otp=otp) if user: login(self.request, user) if "next" in self.request.GET: url = self.request.GET["next"] response = HttpResponseRedirect(url) return response else: response = HttpResponseRedirect('/home') return response else: messages.error(self.request, "Incorrect OTP entered") return HttpResponseRedirect( reverse('phone-verification-view') + f"?otp_id={otp_id}") class LinkExpireView(TemplateView): """ This view is to redirect user after confirming email """ template_name = 'frontend/link-expire.html' class VerifyLinkView(TemplateView): template_name = "frontend/verification.html" def dispatch(self, request, *args, **kwargs): if not VerificationLink.objects.filter(hash_key=self.kwargs["slug"]).exists(): return HttpResponseRedirect(reverse("link-expire-view")) return super(VerifyLinkView, self).dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super(VerifyLinkView, self).get_context_data(**kwargs) slug = self.kwargs["slug"] context["link"] = get_object_or_404(VerificationLink, hash_key=slug) email = force_text(urlsafe_base64_decode(slug)) BaseUserProfile.objects.filter(email=user_id).update( is_active=True, email_verified=True) VerificationLink.objects.filter(hash_key=slug).delete() return context class ForgotPasswordView(FormView): """ This view confirms email for forgot password """ form_class = FPEmailForm template_name = 'frontend/send-fp-mail.html' def post(self, request, *args, **kwargs): form = FPEmailForm(request.POST) if not form.is_valid(): context = { 'form': form, "csrf_token": form.data['csrfmiddlewaretoken'], } return render( request, context=context, template_name=self.template_name) email = form.data['email'] messages.error(self.request, "If your email exists in our database\ we will send your link to change your password") create_forgot_password_link.delay(email) return HttpResponseRedirect(reverse('forgot-password-view')) class ForgotPasswordLinkView(FormView): """ This view confirms email for forgot password """ form_class = ChangePasswordForm template_name = 'frontend/forgot-password.html' def dispatch(self, request, *args, **kwargs): if not ForgotPasswordLink.objects.filter(hash_key=self.kwargs["slug"]).exists(): return HttpResponseRedirect(reverse("link-expire-view")) return super(ForgotPasswordLinkView, self).dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super(ForgotPasswordLinkView, self).get_context_data(**kwargs) slug = self.kwargs["slug"] get_object_or_404(ForgotPasswordLink, hash_key=slug) return context def post(self, request, *args, **kwargs): form = ChangePasswordForm(request.POST) if not form.is_valid(): context = { 'form': form, "csrf_token": form.data['csrfmiddlewaretoken'], } return render( request, context=context, template_name=self.template_name) slug = self.kwargs["slug"] email = force_text(urlsafe_base64_decode(slug)) if BaseUserProfile.objects.filter(email=email).exists(): user = BaseUserProfile.objects.filter(email=email).first() user.set_password(form.data['password']) user.save() ForgotPasswordLink.objects.filter(hash_key=slug).delete() messages.error(self.request, "We have updated your password") return render( request, template_name=self.template_name) ``` #### File: user_management/user_management/celery.py ```python import os from celery import Celery from kombu import Exchange, Queue from django.conf import settings QUEUE_DEFAULT = 'default' CELERY_ENABLE_UTC = True CELERY_ACCEPT_CONTENT = ["pickle"] # set the default Django settings module for the 'celery' program. os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'user_management.settings.local') app = Celery('user_management') # Using a string here means the worker doesn't have to serialize # the configuration object to child processes. # - namespace='CELERY' means all celery-related configuration keys # should have a `CELERY_` prefix. app.config_from_object('django.conf:settings') # Load task modules from all registered Django app configs. app.autodiscover_tasks(lambda: settings.INSTALLED_APPS) app.conf.update( CELERY_QUEUES=( Queue(QUEUE_DEFAULT, Exchange('default'), routing_key='default'), ), CELERY_IGNORE_RESULT=True, CELERYD_PREFETCH_MULTIPLIER=1, CELERY_DEFAULT_QUEUE=QUEUE_DEFAULT, CELERY_DEFAULT_EXCHANGE_TYPE='direct', CELERY_DEFAULT_ROUTING_KEY='default', ) @app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request)) ```
{ "source": "JitengMu/A-SDF", "score": 2 }
#### File: A-SDF/asdf/asdf_reconstruct.py ```python import argparse import json import logging import os import random import time import torch from torch.nn import functional as F import numpy as np import re import asdf import asdf.workspace as ws def sample_uniform_points_in_unit_sphere(amount): unit_sphere_points = np.random.uniform(-1, 1, size=(amount * 2 + 20, 3)) unit_sphere_points = unit_sphere_points[np.linalg.norm(unit_sphere_points, axis=1) < 1] points_available = unit_sphere_points.shape[0] if points_available < amount: # This is a fallback for the rare case that too few points are inside the unit sphere result = np.zeros((amount, 3)) result[:points_available, :] = unit_sphere_points result[points_available:, :] = sample_uniform_points_in_unit_sphere(amount - points_available) return result else: return unit_sphere_points[:amount, :] def generation_atc_config(specs, reconstruction_codes_dir, reconstruction_models_dir=False, test_time_training=False, sampling_difficulty='easy', dataset_name='shape2motion'): ''' Modify atc_dic to the angles to test on. ''' if specs["NumAtcParts"]==1: if dataset_name=='rbo': lat_vec_dic = {} atc_vec_dic = {} if test_time_training==True: model_vec_dic = {} names = {'0001_000091_-021':[-38,-59],'0002_000091_-064':[-43,-16],'0003_000064_-021':[-21,-22],'0004_000114_-008':[-17,-56], '0005_000101_-054':[-44,-25],'0006_000091_-062':[-35,-18],'0007_000049_-019':[-36,-74],'0008_000094_-041':[-27,-31], '0009_000085_-038':[-52,-64],'0010_000119_-052':[-64,-34],'0011_000197_-014':[-34,-51],'0012_000040_-051':[-10,-48], '0013_000076_-021':[-10,-61],'0014_000100_-021':[-34,-47],'0016_000122_-030':[-56,-44], '0017_000115_-010':[-36,-67],'0018_000142_-049':[-83,-30],'0019_000092_-052':[-71,-36],'0020_000106_-051':[-71,-37]} for name in names.keys(): for trg in names[name]: trg += 20 # compensate for the angle difference between shape2motion and rbo dataset if test_time_training==True: model_vec_dic[(name[:4], trg)] = os.path.join(os.path.join(reconstruction_models_dir, dataset_name, name+'.pth')) lat_vec_dic[(name[:4], trg)] = torch.load(os.path.join(reconstruction_codes_dir, dataset_name, name+'.pth')) atc_vec_dic[(name[:4], trg)] = np.array([trg]) else: if specs["Class"]=='laptop': test_instances = [66,67,68,69,70,72,74,75,78,80,82] # angle range [-72,18] if sampling_difficulty=='easy': angles_mapping = {-72:[-63,-45,-27],-54:[-63,-45,9],-36:[-45,-27,9],-18:[-27,-9,-63],0:[-9,9,-27],18:[9,-9,-36]} # 6-angle dataset elif sampling_difficulty=='hard': angles_mapping = {-72:[-60,15,-48],-54:[-69,-39,3],-36:[-24,0,-57],-18:[-30,-42,-57],0:[15,-30,-42],18:[-12,-24,-30]} else: angles_mapping = {-36:np.arange(-72,19)} # 6-angle dataset animation if specs["Class"]=='stapler' or specs["Class"]=='washing_machine' or specs["Class"]=='door' or specs["Class"]=='oven': if specs["Class"]=='stapler': test_instances = [24,25,26,27,28,29,30,31,32,33] if specs["Class"]=='washing_machine': test_instances = [5,26,27,34,37,42,43,60] if specs["Class"]=='door': test_instances = [10,27,38,59,86] if specs["Class"]=='oven': test_instances = [2,7,10,16,18,28,30,33,34,41] # angle range [0,90] if sampling_difficulty=='easy': angles_mapping = {18:[9,27,81],36:[27,45,81],54:[45,63,9],72:[63,81,9],90:[81,63,9]} # 6-angle dataset elif sampling_difficulty=='hard': angles_mapping = {0:[39,60,24],18:[30,60,66],36:[69,84,21],54:[75,3,21],72:[33,12,66],90:[57,30,66]} else: angles_mapping = {54:np.arange(0,91)} # 6-angle dataset animation lat_vec_dic = {} atc_vec_dic = {} if test_time_training==True: model_vec_dic = {} for test_ins in test_instances: for start in angles_mapping.keys(): for trg in angles_mapping[start]: if test_time_training==True: model_vec_dic[(test_ins, start, trg)] = os.path.join(os.path.join(reconstruction_models_dir, dataset_name, '{:04d}art{:04d}.pth'.format(test_ins, start))) lat_vec_dic[(test_ins, start, trg)] = torch.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}.pth'.format(test_ins, start))) atc_vec_dic[(test_ins, start, trg)] = np.array([trg]) if specs["NumAtcParts"]==2: angles_mapping = {(0,0):[20,20],(0,20):[20,30],(0,40):[20,20], \ (20,0):[30,20],(20,20):[10,30],(20,40):[10,20], \ (40,0):[20,20],(40,20):[20,10],(40,40):[20,20]} if specs["Class"]=='eyeglasses': test_instances = [34,35,36,37,38,39,40,41,43] # eyeglasses angle range [0,50] if sampling_difficulty=='easy': # easy angles: aligned with interpolation angles_mapping = {(0,0):[[25,15]],(0,10):[[25,25]],(0,20):[[15,35]],(0,30):[[25,15]],(0,40):[[15,25]],(0,50):[[25,35]], \ (10,0):[[15,25]],(10,10):[[5,25]],(10,20):[[25,35]],(10,30):[[25,15]],(10,40):[[25,25]],(10,50):[[25,25]], \ (20,0):[[35,25]],(20,10):[[15,35]],(20,20):[[35,15]],(20,30):[[15,15]],(20,40):[[35,25]],(20,50):[[35,25]], \ (30,0):[[25,25]],(30,10):[[15,25]],(30,20):[[15,35]],(30,30):[[25,35]],(30,40):[[15,45]],(30,50):[[25,25]], \ (40,0):[[25,5]],(40,10):[[45,15]],(40,20):[[25,35]],(40,30):[[25,15]],(40,40):[[45,35]],(40,50):[[35,35]], \ (50,0):[[35,15]],(50,10):[[25,25]],(50,20):[[35,35]],(50,30):[[45,15]],(50,40):[[35,25]],(50,50):[[45,45]]} angles_mapping = angles_mapping else: angles_mapping = {} angles_mapping[(40,20)] = [] for i in range(0,55,5): for j in range(0,55,5): angles_mapping[(40,20)].append([i,j]) print(angles_mapping) if specs["Class"]=='refrigerator': # refrigerator angle range [40,90] test_instances = [6,17,27,46,61,65,78] #test_instances = [61] if sampling_difficulty=='easy': angles_mapping = {(90,90):[[65,75]],(90,80):[[65,65]],(90,70):[[75,55]],(90,60):[[65,75]],(90,50):[[75,65]],(90,40):[[65,55]], \ (80,90):[[75,65]],(80,80):[[85,65]],(80,70):[[65,55]],(80,60):[[65,75]],(80,50):[[65,65]],(80,40):[[65,65]], \ (70,90):[[55,65]],(70,80):[[75,55]],(70,70):[[55,75]],(70,60):[[75,75]],(70,50):[[55,65]],(70,40):[[55,65]], \ (60,90):[[65,65]],(60,80):[[75,65]],(60,70):[[75,55]],(60,60):[[65,55]],(60,50):[[75,45]],(60,40):[[65,65]], \ (50,90):[[65,85]],(50,80):[[45,75]],(50,70):[[65,55]],(50,60):[[65,75]],(50,50):[[45,65]],(50,40):[[55,55]], \ (40,90):[[55,75]],(40,80):[[65,65]],(40,70):[[55,55]],(40,60):[[55,75]],(40,50):[[55,65]],(40,40):[[45,45]]} else: angles_mapping = {} angles_mapping[(90,70)] = [] for i in range(90,35,-5): for j in range(90,35,-5): angles_mapping[(90,70)].append([i,j]) print(angles_mapping) lat_vec_dic = {} atc_vec_dic = {} if test_time_training==True: model_vec_dic = {} for test_ins in test_instances: for start in angles_mapping.keys(): for trg in angles_mapping[start]: if test_time_training==True: model_vec_dic[(test_ins, start[0], start[1], trg[0], trg[1])] = os.path.join(os.path.join(reconstruction_models_dir, dataset_name, '{:04d}art{:04d}{:04d}.pth'.format(test_ins, start[0], start[1]))) lat_vec_dic[(test_ins, start[0], start[1], trg[0], trg[1])] = torch.load( os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}{:04d}.pth'.format(test_ins, start[0], start[1])) ) atc_vec_dic[(test_ins, start[0], start[1], trg[0], trg[1])] = np.array([trg]) if test_time_training==True: return lat_vec_dic, atc_vec_dic, model_vec_dic else: return lat_vec_dic, atc_vec_dic def interpolation_atc_config(specs, reconstruction_codes_dir, dataset_name='shape2motion'): ''' Modify atc_dic to the angles to test on. ''' if specs["NumAtcParts"]==1: if specs["Class"]=='laptop': test_instances = [66,67,68,69,70,72,74,75,78,80,82] angles_mapping = {(-72,18):[13/30,17/30,23/30],(-54,0):[2/18,4/18,5/18],(-36,18):[5/18,7/18,11/18],(18,-54):[17/24,15/24,7/24]} # # extrapolation # angles_mapping = {(-54,-72):[1/6,2/6,3/6,4/6], (0,18):[1/6,2/6,3/6,4/6]} if specs["Class"]=='stapler' or specs["Class"]=='washing_machine' or specs["Class"]=='oven' or specs["Class"]=='door': if specs["Class"]=='stapler': test_instances = [24,25,26,27,28,29,30,31,32,33] if specs["Class"]=='washing_machine': test_instances = [5,26,27,34,37,42,43,60] if specs["Class"]=='door': test_instances = [10,27,38,59,86] if specs["Class"]=='oven': test_instances = [2,7,10,16,18,28,30,33,34,41] angles_mapping = {(90,0):[13/30,17/30,23/30],(54,0):[2/18,4/18,5/18],(36,90):[5/18,7/18,11/18],(18,90):[17/24,15/24,7/24]} lat_vec_dic = {} atc_vec_dic = {} for test_ins in test_instances: for (start, end) in angles_mapping.keys(): for factor in angles_mapping[(start,end)]: trg = int(factor * (end-start) + start) #trg = int(factor * (end-start) + end) # extra lat_start = torch.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}.pth'.format(test_ins, start))) lat_end = torch.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}.pth'.format(test_ins, end))) #lat_vec_dic[(test_ins, start, trg)] = factor * (lat_end - lat_start) + lat_start lat_vec_dic[(test_ins, start, trg)] = lat_start #code_dic[(test_ins, start, trg)] = factor * (lat_end - lat_start) + lat_end # extra if specs["Articulation"]==True: atc_start = np.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}.npy'.format(test_ins, start))) atc_end = np.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}.npy'.format(test_ins, end))) atc_vec_dic[(test_ins, start, trg)] = factor * (atc_end - atc_start) + atc_start #atc_dic[(test_ins, start, trg)] = factor * (atc_end - atc_start) + atc_end # extra if specs["NumAtcParts"]==2: angle_mapping = {(0,0):[40,40],(0,20):[40,40],(0,40):[40,0], \ (20,0):[40,40],(20,20):[0,40],(20,40):[0,0], \ (40,0):[0,40],(40,20):[0,0],(40,40):[0,0]} if specs["Class"]=='eyeglasses': # angles_aligned test_instances = [34,35,36,37,38,39,40,41,43] if specs["Class"]=='refrigerator': # angles_aligned test_instances = [6,17,27,46,61,65,78] angle_mapping_90 = {} for (i,j) in angle_mapping.keys(): angle_mapping_90[(90-i,90-j)] = [90-angle_mapping[(i,j)][0], 90-angle_mapping[(i,j)][1]] angle_mapping = angle_mapping_90 lat_vec_dic = {} atc_vec_dic = {} for test_ins in test_instances: for k in angle_mapping.keys(): start = list(k) end = angle_mapping[k] trg = (np.array(list(start)) + np.array(end))//2 lat_start = torch.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}{:04d}.pth'.format(test_ins, start[0], start[1]))) lat_end = torch.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}{:04d}.pth'.format(test_ins, end[0], end[1]))) #lat_vec_dic[(test_ins, start[0], start[1], trg[0], trg[1])] = (lat_end + lat_start)/2 lat_vec_dic[(test_ins, start[0], start[1], trg[0], trg[1])] = lat_start if specs["Articulation"]==True: atc_start = np.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}{:04d}.npy'.format(test_ins, start[0], start[1]))) atc_end = np.load(os.path.join(reconstruction_codes_dir, dataset_name, '{:04d}art{:04d}{:04d}.npy'.format(test_ins, end[0], end[1]))) atc_vec_dic[(test_ins, start[0], start[1], trg[0], trg[1])] = (atc_end + atc_start)/2 return lat_vec_dic, atc_vec_dic def reconstruct( decoder, num_iterations, latent_size, test_sdf, clamp_dist, num_samples=8000, lr=5e-3, l2reg=True, articulation=True, specs=None, infer_with_gt_atc=False, num_atc_parts=1, do_sup_with_part=False, ): def adjust_learning_rate( initial_lr, optimizer, num_iterations, decreased_by, adjust_lr_every ): #lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every)) if num_iterations<adjust_lr_every*2: lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every)) else: lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every - 2)) for param_group in optimizer.param_groups: param_group["lr"] = lr decreased_by = 10 adjust_lr_every = int(num_iterations / 2) # init latent code optimizer latent_rand = torch.ones(1, latent_size).normal_(mean=0, std=0.01).cuda() lat_vec = latent_rand.clone() lat_vec.requires_grad = True lat_optimizer = torch.optim.Adam([lat_vec], lr=lr) # init articulation code optimizer if infer_with_gt_atc==False: if num_atc_parts==1: if specs["Class"]=='laptop': atc_vec = torch.Tensor([-30]).view(1,1).cuda() elif specs["Class"]=='stapler' or specs["Class"]=='washing_machine' or specs["Class"]=='door' or specs["Class"]=='oven': atc_vec = torch.Tensor([45]).view(1,1).cuda() else: raise Exception("Undefined classes") if num_atc_parts==2: if specs["Class"]=='eyeglasses': atc_vec = torch.Tensor([25, 25]).view(1,2).cuda() elif specs["Class"]=='refrigerator': atc_vec = torch.Tensor([75, 75]).view(1,2).cuda() else: raise Exception("Undefined classes") atc_vec.requires_grad = True atc_optimizer = torch.optim.Adam([atc_vec], lr=lr*1000) loss_num = 0 loss_l1 = torch.nn.L1Loss() decoder.eval() # two-step optimization for e in range(num_iterations*2): # re-initialize lat_vec if e==num_iterations: lat_vec = latent_rand.clone() lat_vec.requires_grad = True lat_optimizer = torch.optim.Adam([lat_vec], lr=lr) sdf_data = asdf.data.unpack_sdf_samples_from_ram( test_sdf, num_samples, articulation, ) if articulation==True: xyz = sdf_data[0][:, 0:3].float().cuda() sdf_gt = sdf_data[0][:, 3].unsqueeze(1).cuda() part_gt = sdf_data[0][:, 4].unsqueeze(1).long().cuda() if infer_with_gt_atc: atc_vecs = sdf_data[1].view(1,num_atc_parts).expand(xyz.shape[0],num_atc_parts).cuda() else: atc_vecs = atc_vec.expand(xyz.shape[0],num_atc_parts).cuda() else: xyz = sdf_data[:, 0:3].float().cuda() sdf_gt = sdf_data[:, 3].unsqueeze(1).cuda() sdf_gt = torch.clamp(sdf_gt, -clamp_dist, clamp_dist) adjust_learning_rate(lr, lat_optimizer, e, decreased_by, adjust_lr_every) if infer_with_gt_atc==False: adjust_learning_rate(lr*1000, atc_optimizer, e, decreased_by, adjust_lr_every) lat_optimizer.zero_grad() if infer_with_gt_atc==False: atc_optimizer.zero_grad() lat_vecs = lat_vec.expand(num_samples, -1) if articulation==True: inputs = torch.cat([lat_vecs, xyz, atc_vecs], 1).cuda() else: inputs = torch.cat([lat_vecs, xyz], 1).cuda() if do_sup_with_part: pred_sdf, pred_part = decoder(inputs) else: pred_sdf = decoder(inputs) pred_sdf = torch.clamp(pred_sdf, -clamp_dist, clamp_dist) loss = loss_l1(pred_sdf, sdf_gt) if l2reg: loss += 1e-4 * torch.mean(lat_vec.pow(2)) if do_sup_with_part: loss += 1e-3 * F.cross_entropy(pred_part, part_gt.view(-1).cuda()) loss.backward() lat_optimizer.step() if infer_with_gt_atc==False and e<num_iterations: atc_optimizer.step() loss_num = loss.cpu().data.numpy() #pos_mask = (torch.sign(pred_sdf)!=torch.sign(sdf_gt)).data & (sdf_gt>0).data #neg_mask = (torch.sign(pred_sdf)!=torch.sign(sdf_gt)).data & (sdf_gt<0).data #print(torch.sum(pos_mask), torch.sum(neg_mask)) if articulation==True: if infer_with_gt_atc: return loss_num, None, lat_vec, sdf_data[1].view(1,-1) else: # computer angle pred acc atc_err = torch.mean(torch.abs(atc_vec.detach() - sdf_data[1].cuda())).cpu().data.numpy() print(atc_vec) return loss_num, atc_err, lat_vec, atc_vec else: return loss_num, lat_vec def reconstruct_ttt( decoder, num_iterations, latent_size, test_sdf, clamp_dist, num_samples=8000, lr=5e-3, l2reg=True, articulation=True, specs=None, infer_with_gt_atc=False, num_atc_parts=1, do_sup_with_part=False, ): def adjust_learning_rate( initial_lr, optimizer, num_iterations, decreased_by, adjust_lr_every ): if num_iterations<adjust_lr_every*2: lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every)) elif num_iterations<adjust_lr_every*4: lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every - 2)) else: lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every - 4)) for param_group in optimizer.param_groups: param_group["lr"] = lr decreased_by = 10 adjust_lr_every = int(num_iterations / 2) # init latent code optimizer latent_rand = torch.ones(1, latent_size).normal_(mean=0, std=0.01).cuda() lat_vec = latent_rand.clone() lat_vec.requires_grad = True lat_optimizer = torch.optim.Adam([lat_vec], lr=lr) opt_params = [] for idx, (name, param) in enumerate(decoder.named_parameters()): n = re.split('\.', name) if n[1] in ['lin0', 'lin1', 'lin2', 'lin3']: opt_params.append(param) decoder_optimizer = torch.optim.Adam([{'params': filter(lambda p: p.requires_grad, opt_params)}], lr=0.01*lr) # init articulation code optimizer if infer_with_gt_atc==False: if num_atc_parts==1: if specs["Class"]=='laptop': atc_vec = torch.Tensor([-30]).view(1,1).cuda() elif specs["Class"]=='stapler' or specs["Class"]=='washing_machine' or specs["Class"]=='door' or specs["Class"]=='oven': atc_vec = torch.Tensor([45]).view(1,1).cuda() else: raise Exception("Undefined classes") if num_atc_parts==2: if specs["Class"]=='eyeglasses': atc_vec = torch.Tensor([25, 25]).view(1,2).cuda() elif specs["Class"]=='refrigerator': atc_vec = torch.Tensor([75, 75]).view(1,2).cuda() else: raise Exception("Undefined classes") atc_vec.requires_grad = True atc_optimizer = torch.optim.Adam([atc_vec], lr=1000*lr) loss_num = 0 loss_l1 = torch.nn.L1Loss() decoder.eval() # two-step optimization for e in range(num_iterations*3): # re-initialize lat_vec if e==num_iterations: lat_vec = latent_rand.clone() lat_vec.requires_grad = True lat_optimizer = torch.optim.Adam([lat_vec], lr=lr) sdf_data = asdf.data.unpack_sdf_samples_from_ram( test_sdf, num_samples, articulation, ) if articulation==True: xyz = sdf_data[0][:, 0:3].float().cuda() sdf_gt = sdf_data[0][:, 3].unsqueeze(1).cuda() part_gt = sdf_data[0][:, 4].unsqueeze(1).long().cuda() if infer_with_gt_atc: atc_vecs = sdf_data[1].view(1,num_atc_parts).expand(xyz.shape[0],num_atc_parts).cuda() else: atc_vecs = atc_vec.expand(xyz.shape[0],num_atc_parts).cuda() else: xyz = sdf_data[:, 0:3].float().cuda() sdf_gt = sdf_data[:, 3].unsqueeze(1).cuda() sdf_gt = torch.clamp(sdf_gt, -clamp_dist, clamp_dist) adjust_learning_rate(lr, lat_optimizer, e, decreased_by, adjust_lr_every) adjust_learning_rate(0.01*lr, decoder_optimizer, e, decreased_by, adjust_lr_every) if infer_with_gt_atc==False: adjust_learning_rate(1000*lr, atc_optimizer, e, decreased_by, adjust_lr_every) lat_optimizer.zero_grad() decoder_optimizer.zero_grad() if infer_with_gt_atc==False: atc_optimizer.zero_grad() lat_vecs = lat_vec.expand(num_samples, -1) if articulation==True: inputs = torch.cat([lat_vecs, xyz, atc_vecs], 1).cuda() else: inputs = torch.cat([lat_vecs, xyz], 1).cuda() if do_sup_with_part: pred_sdf, pred_part = decoder(inputs) else: pred_sdf = decoder(inputs) pred_sdf = torch.clamp(pred_sdf, -clamp_dist, clamp_dist) loss = loss_l1(pred_sdf, sdf_gt) if l2reg: loss += 1e-4 * torch.mean(lat_vec.pow(2)) if do_sup_with_part: loss += 1e-3 * F.cross_entropy(pred_part, part_gt.view(-1).cuda()) loss.backward() #lat_optimizer.step() if infer_with_gt_atc==False and e<num_iterations: atc_optimizer.step() lat_optimizer.step() elif e<num_iterations*2: lat_optimizer.step() else: decoder_optimizer.step() loss_num = loss.cpu().data.numpy() #pos_mask = (torch.sign(pred_sdf)!=torch.sign(sdf_gt)).data & (sdf_gt>0).data #neg_mask = (torch.sign(pred_sdf)!=torch.sign(sdf_gt)).data & (sdf_gt<0).data #print(torch.sum(pos_mask), torch.sum(neg_mask)) if articulation==True: if infer_with_gt_atc: return loss_num, None, lat_vec, sdf_data[1].view(1,-1) else: # computer angle pred acc atc_err = torch.mean(torch.abs(atc_vec.detach() - sdf_data[1].cuda())).cpu().data.numpy() print(atc_vec) return loss_num, atc_err, lat_vec, atc_vec else: return loss_num, lat_vec def reconstruct_testset(args, ws, specs, decoder, npz_filenames, saved_model_epoch, dataset_name): # build saving directory reconstruction_dir = os.path.join( args.experiment_directory, ws.recon_testset_subdir, str(saved_model_epoch) ) if not os.path.isdir(reconstruction_dir): os.makedirs(reconstruction_dir) reconstruction_meshes_dir = os.path.join( reconstruction_dir, ws.reconstruction_meshes_subdir ) if not os.path.isdir(reconstruction_meshes_dir): os.makedirs(reconstruction_meshes_dir) reconstruction_codes_dir = os.path.join( reconstruction_dir, ws.reconstruction_codes_subdir ) if not os.path.isdir(reconstruction_codes_dir): os.makedirs(reconstruction_codes_dir) err_sum = 0.0 atc_err_sum = 0.0 save_latvec_only = False # generate meshes for ii, npz in enumerate(npz_filenames): if "npz" not in npz: continue full_filename = os.path.join(args.data_source, ws.sdf_samples_subdir, npz) if dataset_name=='rbo': data_sdf = asdf.data.read_sdf_samples_into_ram_rbo(full_filename, articulation=specs["Articulation"], num_atc_parts=specs["NumAtcParts"]) else: data_sdf = asdf.data.read_sdf_samples_into_ram(full_filename, articulation=specs["Articulation"], num_atc_parts=specs["NumAtcParts"]) #dataset_name = re.split('/', npz)[-3] npz_name = re.split('/', npz)[-1][:-4] mesh_filename = os.path.join(reconstruction_meshes_dir, dataset_name, npz_name) latent_filename = os.path.join(reconstruction_codes_dir, dataset_name, npz_name + ".pth") if ( args.skip and os.path.isfile(mesh_filename + ".ply") and os.path.isfile(latent_filename) ): continue logging.info("reconstructing {}".format(npz)) if specs["Articulation"]==True: data_sdf[0][0] = data_sdf[0][0][torch.randperm(data_sdf[0][0].shape[0])] data_sdf[0][1] = data_sdf[0][1][torch.randperm(data_sdf[0][1].shape[0])] else: data_sdf[0] = data_sdf[0][torch.randperm(data_sdf[0].shape[0])] data_sdf[1] = data_sdf[1][torch.randperm(data_sdf[1].shape[0])] start = time.time() if specs["Articulation"]==True: err, atc_err, lat_vec, atc_vec = reconstruct( decoder, int(args.iterations), specs["CodeLength"], data_sdf, specs["ClampingDistance"], num_samples=8000, lr=5e-3, l2reg=True, articulation=specs["Articulation"], specs=specs, infer_with_gt_atc=args.infer_with_gt_atc, num_atc_parts=specs["NumAtcParts"], do_sup_with_part=specs["TrainWithParts"], ) else: err, lat_vec = reconstruct( decoder, int(args.iterations), specs["CodeLength"], data_sdf, specs["ClampingDistance"], num_samples=8000, lr=5e-3, l2reg=True, articulation=specs["Articulation"], specs=specs, infer_with_gt_atc=True, num_atc_parts=specs["NumAtcParts"], do_sup_with_part=False, ) atc_vec = None if specs["Articulation"]==True and args.infer_with_gt_atc==False: print("err: ", err, "atc_err: ", atc_err) atc_err_sum += atc_err err_sum += err print("err avg: ", err_sum/(ii+1), "atc_err avg: ", atc_err_sum/(ii+1)) else: err_sum += err print("err avg: ", err_sum/(ii+1)) if not os.path.exists(os.path.dirname(mesh_filename)): os.makedirs(os.path.dirname(mesh_filename)) if not save_latvec_only: start = time.time() with torch.no_grad(): asdf.mesh.create_mesh( decoder, lat_vec, mesh_filename, N=256, max_batch=int(2 ** 18), atc_vec=atc_vec, do_sup_with_part=specs["TrainWithParts"], specs=specs, ) logging.info("total time: {}".format(time.time() - start)) if not os.path.exists(os.path.dirname(latent_filename)): os.makedirs(os.path.dirname(latent_filename)) torch.save(lat_vec.unsqueeze(0), latent_filename) if specs["Articulation"]==True: print("save atc npy: ", latent_filename[:-4]+'.npy', atc_vec.detach().cpu().numpy()) with open(latent_filename[:-4]+'.npy', 'wb') as f: np.save(f, atc_vec.detach().cpu().numpy()) def reconstruct_testset_ttt(args, ws, specs, decoder, npz_filenames, saved_model_state, dataset_name): # build saving directory reconstruction_dir = os.path.join( args.experiment_directory, ws.recon_testset_ttt_subdir, str(saved_model_state["epoch"]) ) if not os.path.isdir(reconstruction_dir): os.makedirs(reconstruction_dir) reconstruction_meshes_dir = os.path.join( reconstruction_dir, ws.reconstruction_meshes_subdir ) if not os.path.isdir(reconstruction_meshes_dir): os.makedirs(reconstruction_meshes_dir) reconstruction_codes_dir = os.path.join( reconstruction_dir, ws.reconstruction_codes_subdir ) if not os.path.isdir(reconstruction_codes_dir): os.makedirs(reconstruction_codes_dir) reconstruction_models_dir = os.path.join( reconstruction_dir, ws.reconstruction_models_subdir ) if not os.path.isdir(reconstruction_models_dir): os.makedirs(reconstruction_models_dir) err_sum = 0.0 atc_err_sum = 0.0 save_latvec_only = False # generate meshes for ii, npz in enumerate(npz_filenames): if "npz" not in npz: continue decoder.load_state_dict(saved_model_state["model_state_dict"]) full_filename = os.path.join(args.data_source, ws.sdf_samples_subdir, npz) if dataset_name=='rbo': data_sdf = asdf.data.read_sdf_samples_into_ram_rbo(full_filename, articulation=specs["Articulation"], num_atc_parts=specs["NumAtcParts"]) else: data_sdf = asdf.data.read_sdf_samples_into_ram(full_filename, articulation=specs["Articulation"], num_atc_parts=specs["NumAtcParts"]) #dataset_name = re.split('/', npz)[-3] npz_name = re.split('/', npz)[-1][:-4] mesh_filename = os.path.join(reconstruction_meshes_dir, dataset_name, npz_name) latent_filename = os.path.join(reconstruction_codes_dir, dataset_name, npz_name + ".pth") model_filename = os.path.join(reconstruction_models_dir, dataset_name, npz_name + ".pth") if ( args.skip and os.path.isfile(mesh_filename + ".ply") and os.path.isfile(latent_filename) ): continue logging.info("reconstructing {}".format(npz)) if specs["Articulation"]==True: data_sdf[0][0] = data_sdf[0][0][torch.randperm(data_sdf[0][0].shape[0])] data_sdf[0][1] = data_sdf[0][1][torch.randperm(data_sdf[0][1].shape[0])] else: data_sdf[0] = data_sdf[0][torch.randperm(data_sdf[0].shape[0])] data_sdf[1] = data_sdf[1][torch.randperm(data_sdf[1].shape[0])] start = time.time() if specs["Articulation"]==True: err, atc_err, lat_vec, atc_vec = reconstruct_ttt( decoder, int(args.iterations), specs["CodeLength"], data_sdf, specs["ClampingDistance"], num_samples=8000, lr=5e-3, l2reg=True, articulation=specs["Articulation"], specs=specs, infer_with_gt_atc=args.infer_with_gt_atc, num_atc_parts=specs["NumAtcParts"], do_sup_with_part=specs["TrainWithParts"], ) else: err, lat_vec = reconstruct_ttt( decoder, int(args.iterations), specs["CodeLength"], data_sdf, specs["ClampingDistance"], num_samples=8000, lr=5e-3, l2reg=True, articulation=specs["Articulation"], specs=specs, infer_with_gt_atc=True, num_atc_parts=specs["NumAtcParts"], do_sup_with_part=False, ) atc_vec = None if specs["Articulation"]==True and args.infer_with_gt_atc==False: print("err: ", err, "atc_err: ", atc_err) atc_err_sum += atc_err err_sum += err print("err avg: ", err_sum/(ii+1), "atc_err avg: ", atc_err_sum/(ii+1)) else: err_sum += err print("err avg: ", err_sum/(ii+1)) if not os.path.exists(os.path.dirname(mesh_filename)): os.makedirs(os.path.dirname(mesh_filename)) if not save_latvec_only: start = time.time() with torch.no_grad(): asdf.mesh.create_mesh( decoder, lat_vec, mesh_filename, N=256, max_batch=int(2 ** 18), atc_vec=atc_vec, do_sup_with_part=specs["TrainWithParts"], specs=specs, ) logging.info("total time: {}".format(time.time() - start)) if not os.path.exists(os.path.dirname(latent_filename)): os.makedirs(os.path.dirname(latent_filename)) if not os.path.exists(os.path.dirname(model_filename)): os.makedirs(os.path.dirname(model_filename)) torch.save(lat_vec.unsqueeze(0), latent_filename) torch.save(decoder.state_dict(), model_filename) if specs["Articulation"]==True: print("save atc npy: ", latent_filename[:-4]+'.npy', atc_vec.detach().cpu().numpy()) with open(latent_filename[:-4]+'.npy', 'wb') as f: np.save(f, atc_vec.detach().cpu().numpy()) def generation(args, ws, specs, decoder, reconstruction_codes_dir, saved_model_epoch, dataset_name='shape2motion'): # build saving directory generation_dir = os.path.join( args.experiment_directory, ws.generation_subdir, str(saved_model_epoch) ) if not os.path.isdir(generation_dir): os.makedirs(generation_dir) gen_meshes_dir = os.path.join( generation_dir, ws.reconstruction_meshes_subdir ) if not os.path.isdir(gen_meshes_dir): os.makedirs(gen_meshes_dir) save_latvec_only = False num_atc_parts = specs["NumAtcParts"] lat_vec_dic, atc_vec_dic = generation_atc_config(specs, reconstruction_codes_dir, dataset_name=dataset_name) for ii, k in enumerate(lat_vec_dic.keys()): lat_vec = lat_vec_dic[k].view(1, specs["CodeLength"]) atc_vec = torch.Tensor(atc_vec_dic[k]).float().view(1,num_atc_parts) if num_atc_parts==1: if dataset_name=='rbo': mesh_filename = os.path.join(gen_meshes_dir, dataset_name, '{}_{:04d}'.format(k[0],int(k[1]))) else: mesh_filename = os.path.join(gen_meshes_dir, dataset_name, '{:04d}art{:04d}_lat_from{:04d}to{:04d}'.format(k[0],k[1],k[1],k[2])) if num_atc_parts==2: mesh_filename = os.path.join(gen_meshes_dir, dataset_name, '{:04d}art{:04d}{:04d}_lat_from{:04d}{:04d}to{:04d}{:04d}'.format(k[0],k[1],k[2],k[1],k[2],k[3],k[4])) if ( args.skip and os.path.isfile(mesh_filename + ".ply") ): continue if not os.path.exists(os.path.dirname(mesh_filename)): os.makedirs(os.path.dirname(mesh_filename)) logging.info("reconstructing {}".format(mesh_filename)) if not save_latvec_only: start = time.time() with torch.no_grad(): asdf.mesh.create_mesh( decoder, lat_vec, mesh_filename, N=256, max_batch=int(2 ** 18), atc_vec=atc_vec, do_sup_with_part=specs["TrainWithParts"], specs=specs, ) logging.info("total time: {}".format(time.time() - start)) if specs["TrainWithParts"]==True: xyz = sample_uniform_points_in_unit_sphere(30000) * 0.75 xyz = torch.Tensor(xyz).cuda() if num_atc_parts==1: atc_vec = atc_vec.view(1,1).expand(xyz.shape[0],1).cuda() if num_atc_parts==2: atc_vec = atc_vec.view(1,2).expand(xyz.shape[0],2).cuda() lat_vec = lat_vec.detach().expand(xyz.shape[0], -1) inputs = torch.cat([lat_vec, xyz, atc_vec], 1).cuda() sdf, pred_part = decoder(inputs) _, part_pred = pred_part.topk(1, 1, True, True) part_pred = part_pred.detach() sdf = sdf.detach() pos = np.concatenate([xyz[sdf.view(-1)>0].cpu().numpy(), sdf[sdf.view(-1)>0].cpu().numpy().reshape(-1,1), part_pred[sdf.view(-1)>0].cpu().numpy().reshape(-1,1)], axis=1) neg = np.concatenate([xyz[sdf.view(-1)<0].cpu().numpy(), sdf[sdf.view(-1)<0].cpu().numpy().reshape(-1,1), part_pred[sdf.view(-1)<0].cpu().numpy().reshape(-1,1)], axis=1) np.savez(mesh_filename+'.npz', pos=pos, neg=neg) def generation_ttt(args, ws, specs, decoder, reconstruction_codes_dir, reconstruction_models_dir, saved_model_epoch, dataset_name='shape2motion'): # build saving directory generation_dir = os.path.join( args.experiment_directory, ws.generation_ttt_subdir, str(saved_model_epoch) ) if not os.path.isdir(generation_dir): os.makedirs(generation_dir) gen_meshes_dir = os.path.join( generation_dir, ws.reconstruction_meshes_subdir ) if not os.path.isdir(gen_meshes_dir): os.makedirs(gen_meshes_dir) save_latvec_only = False num_atc_parts = specs["NumAtcParts"] lat_vec_dic, atc_vec_dic, model_vec_dic = generation_atc_config(specs, reconstruction_codes_dir, reconstruction_models_dir, test_time_training=True, dataset_name=dataset_name) for ii, k in enumerate(lat_vec_dic.keys()): lat_vec = lat_vec_dic[k].view(1,specs["CodeLength"]) atc_vec = torch.Tensor(atc_vec_dic[k]).float().view(1,num_atc_parts) saved_model_state = torch.load(model_vec_dic[k]) decoder.load_state_dict(saved_model_state) if num_atc_parts==1: if dataset_name=='rbo': mesh_filename = os.path.join(gen_meshes_dir, dataset_name, '{}_{:04d}'.format(k[0],int(k[1]))) # real data else: mesh_filename = os.path.join(gen_meshes_dir, dataset_name, '{:04d}art{:04d}_lat_from{:04d}to{:04d}'.format(k[0],k[1],k[1],k[2])) if num_atc_parts==2: mesh_filename = os.path.join(gen_meshes_dir, dataset_name, '{:04d}art{:04d}{:04d}_lat_from{:04d}{:04d}to{:04d}{:04d}'.format(k[0],k[1],k[2],k[1],k[2],k[3],k[4])) if ( args.skip and os.path.isfile(mesh_filename + ".ply") ): continue if not os.path.exists(os.path.dirname(mesh_filename)): os.makedirs(os.path.dirname(mesh_filename)) logging.info("reconstructing {}".format(mesh_filename)) if not save_latvec_only: start = time.time() with torch.no_grad(): asdf.mesh.create_mesh( decoder, lat_vec, mesh_filename, N=256, max_batch=int(2 ** 18), atc_vec=atc_vec, do_sup_with_part=specs["TrainWithParts"], specs=specs, ) logging.info("total time: {}".format(time.time() - start)) if specs["TrainWithParts"]==True: xyz = sample_uniform_points_in_unit_sphere(30000) * 0.75 xyz = torch.Tensor(xyz).cuda() if num_atc_parts==1: atc_vec = atc_vec.view(1,1).expand(xyz.shape[0],1).cuda() if num_atc_parts==2: atc_vec = atc_vec.view(1,2).expand(xyz.shape[0],2).cuda() lat_vec = lat_vec.detach().expand(xyz.shape[0], -1) inputs = torch.cat([lat_vec, xyz, atc_vec], 1).cuda() sdf, pred_part = decoder(inputs) _, part_pred = pred_part.topk(1, 1, True, True) part_pred = part_pred.detach() sdf = sdf.detach() pos = np.concatenate([xyz[sdf.view(-1)>0].cpu().numpy(), sdf[sdf.view(-1)>0].cpu().numpy().reshape(-1,1), part_pred[sdf.view(-1)>0].cpu().numpy().reshape(-1,1)], axis=1) neg = np.concatenate([xyz[sdf.view(-1)<0].cpu().numpy(), sdf[sdf.view(-1)<0].cpu().numpy().reshape(-1,1), part_pred[sdf.view(-1)<0].cpu().numpy().reshape(-1,1)], axis=1) np.savez(mesh_filename+'.npz', pos=pos, neg=neg) def interpolate_testset(args, ws, specs, decoder, reconstruction_codes_dir, saved_model_epoch, dataset_name='shape2motion'): # build saving directory inter_dir = os.path.join( args.experiment_directory, ws.inter_testset_subdir, str(saved_model_epoch) ) if not os.path.isdir(inter_dir): os.makedirs(inter_dir) inter_meshes_dir = os.path.join( inter_dir, ws.reconstruction_meshes_subdir ) if not os.path.isdir(inter_meshes_dir): os.makedirs(inter_meshes_dir) save_latvec_only = False num_atc_parts = specs["NumAtcParts"] lat_vec_dic, atc_vec_dic = interpolation_atc_config(specs, reconstruction_codes_dir) for ii, k in enumerate(lat_vec_dic.keys()): lat_vec = lat_vec_dic[k].view(1,specs["CodeLength"]) if specs["Articulation"]==True: atc_vec = torch.Tensor(atc_vec_dic[k]).view(1,num_atc_parts) else: atc_vec = None if num_atc_parts==1: mesh_filename = os.path.join(inter_meshes_dir, dataset_name, '{:04d}art{:04d}_lat_from{:04d}to{:04d}'.format(k[0],k[1],k[1],k[2])) if num_atc_parts==2: mesh_filename = os.path.join(inter_meshes_dir, dataset_name, '{:04d}art{:04d}{:04d}_lat_from{:04d}{:04d}to{:04d}{:04d}'.format(k[0],k[1],k[2],k[1],k[2],k[3],k[4])) if ( args.skip and os.path.isfile(mesh_filename + ".ply") ): continue if not os.path.exists(os.path.dirname(mesh_filename)): os.makedirs(os.path.dirname(mesh_filename)) logging.info("reconstructing {}".format(mesh_filename)) if not save_latvec_only: start = time.time() with torch.no_grad(): asdf.mesh.create_mesh( decoder, lat_vec, mesh_filename, N=256, max_batch=int(2 ** 18), atc_vec=atc_vec, do_sup_with_part=specs["TrainWithParts"], specs=specs, ) logging.info("total time: {}".format(time.time() - start)) ```
{ "source": "jitensinha98/Face-Detection-and-Emotion-Recognition", "score": 3 }
#### File: jitensinha98/Face-Detection-and-Emotion-Recognition/Extract_fer2013_images.py ```python import pandas as pd import cv2 import numpy as np import os import shutil def generate_modified_dataset(): print("Generating Images ...") count = 0 # reading csv file as pandas dataframe data = pd.read_csv(dataset_path) # converting numpy array into list pixels = data['pixels'].tolist() # obtaining list contain classes classes = sorted((data['emotion'].unique()).tolist()) labels_column = data['emotion'].tolist() # creating classes subfolder for class_label in classes : os.mkdir(Extracted_Dataset_Location + '/' + str(class_label)) # numpy array dimensions width, height = 48, 48 # reading pixels and labels from csv to generate images for pixel_sequence,label in zip(pixels,labels_column): face = [int(pixel) for pixel in pixel_sequence.split(' ')] face = np.asarray(face).reshape(width, height) # resizing image face = cv2.resize(face.astype('uint8'),image_size) count = count + 1 # setting image name image_name = str(count) + '.png' # Testing Purposes ''' cv2.imshow('Image',face) cv2.waitKey(0) ''' # Saving the image cv2.imwrite(Extracted_Dataset_Location + '/' + str(label) + '/' + image_name,face) print("Image Generation done.") dataset_path = 'fer2013/fer2013.csv' # image dimensions image_size=(200,200) # save location of the modified dataset Extracted_Dataset_Location = 'fer2013_extracted_Dataset' # checking if extracted dataset already exists if os.path.exists('fer2013_extracted_Dataset') == False : # creating extracted dataset folder os.mkdir('fer2013_extracted_Dataset') else: msg = int(input("Extracted Dataset Directory already present. Press 1 to use the existing directory or 2 to renew directory :")) if msg == 2 : # deleting extracted images shutil.rmtree('fer2013_extracted_Dataset') os.mkdir('fer2013_extracted_Dataset') generate_modified_dataset() ```
{ "source": "jitensinha98/Python-Chat-Application", "score": 4 }
#### File: jitensinha98/Python-Chat-Application/client.py ```python import socket import sys import os import time import threading from tkinter import * #This function is used to receive messages from the server def receive_message(): while True: incoming_message=client.recv(4096) if not incoming_message: message_list.insert(END, ' ') message_list.insert(END, 'DISCONNECTED FROM SERVER') message_list.insert(END, ' ') sys.out() else: incoming_message=incoming_message.decode() incoming_message='<'+host+'('+host_ip+')'+'> : '+incoming_message message_list.insert(END, incoming_message) #This function is used to send messages to the server def send_message(): message=send_entry.get() encoded_message=message.encode() client.send(encoded_message) message='<You> : '+message message_list.insert(END, message) send_entry.delete(0,END) #used for multithreading thread_send = [] thread_rcv = [] num_threads = 2 #builds the GUI window root=Tk() #setting the resolution of the GUI window root.geometry("520x410") #Creating two frames to accomodate widgets topframe=Frame(root) bottomframe=Frame(root) #Creating widgets to be used in the application message_scrollbar=Scrollbar(topframe) labelheading=Label(topframe,text="----------------Message History----------------") message_list=Listbox(topframe,width=62,height=20) send_button=Button(bottomframe,text="SEND",width=10,height=1,bg="grey",fg="white",command=send_message) send_entry=Entry(bottomframe,width=50) #Assigning frame location in the GUI window topframe.pack(side=TOP) bottomframe.pack(side=BOTTOM) #inserting message in listbox send_entry.insert(END,'Type your message here...') #Assigning position to the label widget in the topframe labelheading.pack(side=TOP) #Assigning position to the lisbox and scrollbar widget in the topframe message_list.pack(side=LEFT,fill=Y) message_scrollbar.pack(side=LEFT,fill=Y) #Assigning position to the entrybox and button widget in the bottomframe send_entry.pack(side=LEFT) send_button.pack(side=LEFT) #linking scrollbar and lisbox widget message_scrollbar.config(command=message_list.yview) message_list.config(yscrollcommand=message_scrollbar.set) #initializing socket client= socket.socket(socket.AF_INET,socket.SOCK_STREAM) #server host-name and port number #change it to your desirable host and port of the server host = 'jiten-Vostro1310' port = 8080 #getting server host IP address host_ip=socket.gethostbyname(host) #connectiing the client to the server client.connect((host,port)) #obtaining client information client_info=client.getsockname(); #storing the messages to be displayed info_1='Connected to chat server : '+str(host_ip) info_2='USING PORT 8080' info_3='CLIENT IP AND PORT : '+str(client_info) info_4='MESSAGE FACILITY: ACTIVE' #displaying the messages in the listbox message_list.insert(END, info_1) message_list.insert(END, info_2) message_list.insert(END, info_3) message_list.insert(END, ' ') message_list.insert(END, info_4) message_list.insert(END, ' ') #enabling multi-threading for receive_message() for loop_1 in range(num_threads): thread_rcv.append(threading.Thread(target = receive_message)) thread_rcv[-1].start() #changing name of the application root.title('CLIENT CHATBOX') #infinite loop to be executed to display the GUI root.mainloop() ```
{ "source": "jitensinha98/SQLite-Database-Application", "score": 5 }
#### File: SQLite-Database-Application/Testcode_noGUI/DATABASEapp_noGUI_Testing.py ```python import sqlite3 #creating a Database named BASIC and connection with localhost server conn=sqlite3.connect('BASIC.db') #creating cursor to execute SQL commands c=conn.cursor() #creating table in the database def create_table(): c.execute('CREATE TABLE IF NOT EXISTS basics(Name TEXT,Salary TEXT)') #function used to add entries in the database table def data_entry(): name=str(input("Enter name : ")); salary=str(input("Enter salary : ")); c.execute("INSERT INTO basics(Name,Salary) VALUES(?,?)",(name,salary)) conn.commit() print (" ") #dynamic entry to the table def dynamic_data_entry(): x=int(input("How many rows do you want to enter ? ")) for i in range (0,x): data_entry() #reading entries from the database table def read_from_db(): print("Press 1 to view the entire database.") print("Press 2 to view database by name.") print(" ") choice=int(input(">>>")); if choice==2: name_db=input("Enter Name of the person to acquire details : ") c.execute("SELECT * FROM basics WHERE Name=?",(name_db,)) elif choice==1 : c.execute("SELECT * FROM basics") else: print("INVALID ENTRY") print(" ") print(" ") print("(NAME | SALARY)") print(" ") print("-----------------") for row in c.fetchall(): print (row) print(" ") #updating database table entries def update_db(): print("Please enter the name whose information you want to update : ") name_query=str(input(">>")) print(" ") print("Press 1 to update Name.") print("Press 2 to update Salary.") print("Press 3 to update Both.") ch=int(input(">>>")) if ch==1 : name_dba=str(input("Enter new Name : ")) c.execute('UPDATE basics SET Name=? WHERE Name=?',(name_dba,name_query)) elif ch==2 : salary_dba=str(input("Enter new Salary : ")) c.execute('UPDATE basics SET Salary=? WHERE Name=?',(salary_dba,name_query)) elif ch==3 : name_dba=str(input("Enter new Name : ")) salary_dba=str(input("Enter new Salary : ")) c.execute('UPDATE basics SET Name=? ,Salary=? WHERE Name=?',(name_dba,salary_dba,name_query)) else: print("INVALID ENTRY") print(" ") conn.commit() print(" ") print("DATABASE SUCCESSFULLY UPDATED") print(" ") #deleting table or table entries from the database def delete_db(): print(" ") print("Press 1 to empty the entire database.") print("Press 2 to delete an invidual from database.") choice_del=int(input(">>>")) if choice_del ==1: c.execute('DELETE FROM basics'); elif choice_del==2 : name_del=str(input("Enter Name : ")) c.execute('DELETE FROM basics WHERE Name=?',(name_del,)) else: print("INVALID ENTRY") print(" ") conn.commit() while True: print("""WELCOME TO DATABSE MANAGEMENT SYSTEM Press 1 to add entries. Press 2 to read entries. Press 3 to update entries. Press 4 to delete entries. Press 5 to create table. Press 5 to Exit Control. """) ch=int(input(">>>")) if ch==1 : dynamic_data_entry() elif ch==2: read_from_db() elif ch==3: update_db() elif ch==4: delete_db() elif ch==5: create_table() elif ch==6: break else : print("INVALID ENTRY") print(" ") #closing cursor c.close() #declining connection to the localhost conn.close() ```
{ "source": "Jitesh17/albumentations-demo", "score": 3 }
#### File: albumentations-demo/src/app.py ```python import os import streamlit as st import albumentations as A from utils import ( load_augmentations_config, get_arguments, get_placeholder_params, select_transformations, show_random_params, ) from visuals import ( select_image, show_credentials, show_docstring, get_transormations_params, ) def main(): # get CLI params: the path to images and image width path_to_images, width_original = get_arguments() if not os.path.isdir(path_to_images): st.title("There is no directory: " + path_to_images) else: # select interface type interface_type = st.sidebar.radio( "Select the interface mode", ["Simple", "Professional", "Ultimate"], 2 ) # select image status, image = select_image(path_to_images, interface_type) if status == 1: st.title("Can't load image") if status == 2: st.title("Please, upload the image") else: # image was loaded successfully placeholder_params = get_placeholder_params(image) # load the config augmentations = load_augmentations_config( placeholder_params, "configs/augmentations.json" ) # get the list of transformations names transform_names = select_transformations(augmentations, interface_type) # get parameters for each transform transforms = get_transormations_params(transform_names, augmentations) try: # apply the transformation to the image data = A.ReplayCompose(transforms)(image=image) error = 0 except ValueError: error = 1 st.title( "The error has occurred. Most probably you have passed wrong set of parameters. \ Check transforms that change the shape of image." ) # proceed only if everything is ok if error == 0: augmented_image = data["image"] # show title st.title("Demo of Albumentations") # show the images width_transformed = int( width_original / image.shape[1] * augmented_image.shape[1] ) st.image(image, caption="Original image", width=width_original) st.image( augmented_image, caption="Transformed image", width=width_transformed, ) # comment about refreshing st.write("*Press 'R' to refresh*") # random values used to get transformations show_random_params(data, interface_type) # print additional info for transform in transforms: show_docstring(transform) st.code(str(transform)) show_credentials() # adding google analytics pixel # only when deployed online. don't collect statistics of local usage if "GA" in os.environ: st.image(os.environ["GA"]) st.markdown( ( "[Privacy policy]" + ( "(https://htmlpreview.github.io/?" + "https://github.com/IliaLarchenko/" + "albumentations-demo/blob/deploy/docs/privacy.html)" ) ) ) if __name__ == "__main__": main() ```
{ "source": "Jitesh17/classification", "score": 3 }
#### File: test/bolt_src/aug_test copy.py ```python import os, sys import pyjeasy.file_utils as f import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import cv2 import matplotlib.pyplot as plt import albumentations as albu import torchvision from torch.utils.data import Dataset, DataLoader, ConcatDataset from torchvision import transforms # from RandAugment import RandAugment import albumentations as A from PIL import Image from pyjeasy.image_utils.output import show_image path = "/home/jitesh/3d/data/coco_data/bolt/b2_coco-data/img/000000.png" cv2_img = cv2.imread(path) pil_img = Image.open(path) # show_image(cv2_img, 800) ## In[]: IMG_SIZE = 128 # aug_cv2_img = albu.GaussNoise(always_apply=True, p=1)(image=cv2_img)['image'] def get_augmentation(img): train_transform = [ albu.Resize(height=IMG_SIZE, width= IMG_SIZE, p=1), # albu.GaussNoise(p=1), # albu.Blur(blur_limit=3, p=1), albu.GaussianBlur(blur_limit=3, p=1) ] transforms = albu.Compose(train_transform) # <- Compose return transforms(image=img)['image'], transforms aug_cv2_img, data_transform = get_augmentation(cv2_img) plt.figure(figsize=(8, 5)) plt.imshow(aug_cv2_img) # ## %% # import numpy as np # import imgaug as ia # import imgaug.augmenters as iaa # ia.seed(1) # # Example batch of images. # # The array has shape (32, 64, 64, 3) and dtype uint8. # images = np.array( # [ia.quokka(size=(64, 64)) for _ in range(32)], # dtype=np.uint8 # ) # seq = iaa.Sequential([ # iaa.Fliplr(0.5), # horizontal flips # iaa.Crop(percent=(0, 0.1)), # random crops # # Small gaussian blur with random sigma between 0 and 0.5. # # But we only blur about 50% of all images. # iaa.Sometimes( # 0.5, # iaa.GaussianBlur(sigma=(0, 0.5)) # ), # # Strengthen or weaken the contrast in each image. # iaa.LinearContrast((0.75, 1.5)), # # Add gaussian noise. # # For 50% of all images, we sample the noise once per pixel. # # For the other 50% of all images, we sample the noise per pixel AND # # channel. This can change the color (not only brightness) of the # # pixels. # iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # # Make some images brighter and some darker. # # In 20% of all cases, we sample the multiplier once per channel, # # which can end up changing the color of the images. # iaa.Multiply((0.8, 1.2), per_channel=0.2), # # Apply affine transformations to each image. # # Scale/zoom them, translate/move them, rotate them and shear them. # iaa.Affine( # scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # rotate=(-25, 25), # shear=(-8, 8) # ) # ], random_order=True) # apply augmenters in random order # images_aug = seq(images=images) # plt.figure(figsize=(8, 5)) # plt.imshow(images_aug) ``` #### File: test/bolt_src/data_preparation.py ```python import pyjeasy.file_utils as f import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os from sys import exit as x import torch import torch.nn as nn import cv2 import matplotlib.pyplot as plt import torchvision from torch.utils.data import Dataset, DataLoader, ConcatDataset from torchvision import transforms import copy from tqdm import tqdm from PIL import Image import glob # get_ipython().run_line_magic('matplotlib', 'inline') # In[]: IMG_SIZE = 512 batch_size = 8 DATA_TYPES = ["train", "val", "test"] # dataset_path = "/home/jitesh/3d/data/UE_training_results/bolt2/bolt_cropped" # b_type_list = [dir for dir in os.listdir(dataset_path) if dir not in DATA_TYPES] # print(b_type_list) # # Required once start # In[]: def convert_4ch_to_3ch(dataset_path, split_ratio =[0.8, 0.1, 0.1]): b_type_list = [dir for dir in os.listdir(dataset_path) if dir not in DATA_TYPES] img_path_list = dict() for data_type in DATA_TYPES: img_path_list[data_type] = [] import random for b_type in b_type_list: data = glob.glob(f'{dataset_path}/{b_type}/*.png') # train_data.append(data[:int(len(data)*0.8)]) random.shuffle(data) s1 = split_ratio[0] s2 = split_ratio[0] + split_ratio[1] assert 1 == split_ratio[0] + split_ratio[1] + split_ratio[2] img_path_list["train"] += data[:int(len(data)*s1)] img_path_list["val"] += data[int(len(data)*s1):int(len(data)*s2)] img_path_list["test"] += data[int(len(data)*s2):] print(f'len(train_data): {len(img_path_list["train"])}') print(f'len(val_data): {len(img_path_list["val"])}') print(f'len(test_data): {len(img_path_list["test"])}') # In[ ]: import pyjeasy.file_utils as f import cv2 filename_list = dict() for data_type in DATA_TYPES: dirname_new = os.path.join(dataset_path, data_type) f.make_dir_if_not_exists(dirname_new) for file_path in tqdm(img_path_list[data_type]): file_path_split = file_path.split("/") dirname_old = file_path_split[-2].split("_")[0] filename_old = file_path_split[-1] # filename_new = dirname_old.replace("b", "") + "_" + filename_old filename_new = dirname_old + "_" + filename_old output_img_path = os.path.join(dirname_new, filename_new) f.delete_file_if_exists(output_img_path) # Converting 4 channel to 3 channel and then writing in different folder img = cv2.imread(file_path) img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) cv2.imwrite(output_img_path, img) # f.copy_file(src_path=file_path, dst_path=output_img_path, verbose=False) filename_list[data_type] = os.listdir(dirname_new) # train_files = os.listdir(TRAIN_IMG_DIR_PATH) # test_files = os.listdir(TEST_IMG_DIR_PATH) # # Required once ends # In[6]: # filename_list = dict() # for data_type in DATA_TYPES: # dirname_new = os.path.join(dataset_path, data_type) # filename_list[data_type] = os.listdir(dirname_new) # In[6]: class BoltDataset(Dataset): def __init__(self, file_list, dir, mode='train', transform = None): self.file_list = file_list self.dir = dir self.mode= mode self.transform = transform # print(self.file_list[0]) if self.mode == 'train': # if 'b00' in self.file_list[0]: # print(self.file_list[0]) if 'b00' in self.file_list[0]: self.label = 0 else: self.label = 1 def __len__(self): return len(self.file_list) def __getitem__(self, idx): img = Image.open(os.path.join(self.dir, self.file_list[idx])) if self.transform: img = self.transform(img) if self.mode == 'train': img = img.numpy() return img.astype('float32'), self.label else: img = img.numpy() return img.astype('float32'), self.file_list[idx] # data_transform = transforms.Compose([ # transforms.Resize(256), # transforms.ColorJitter(), # transforms.RandomCrop(224), # transforms.RandomHorizontalFlip(), # transforms.Resize(128), # transforms.ToTensor() # ]) def get_dataset(dataset_path: str, b_type_list: list, img_size: int): dataset = dict() filename_list = dict() for data_type in DATA_TYPES: dirname_new = os.path.join(dataset_path, data_type) filename_list[data_type] = os.listdir(dirname_new) for data_type in DATA_TYPES: dir_path = os.path.join(dataset_path, data_type) if data_type =="train": data_transform = transforms.Compose([ transforms.Resize(img_size), transforms.ColorJitter(), transforms.RandomCrop(int(img_size*1)), transforms.RandomHorizontalFlip(), transforms.Resize(img_size), transforms.ToTensor() ]) # catagory_data = dict() # for b_type in ['b00', 'b01']: # b_type_list: # # print(filename_list) # cat_files = [tf for tf in filename_list[data_type] if b_type in tf] # catagory_data[b_type] = BoltDataset(cat_files, dir_path, mode=data_type, transform = data_transform) # dataset[data_type] = ConcatDataset([c for c in catagory_data.values()]) else: data_transform = transforms.Compose([ transforms.Resize((img_size)), transforms.RandomCrop(int(img_size*1)), # transforms.RandomHorizontalFlip(), transforms.Resize(img_size), transforms.ToTensor() ]) # dataset[data_type] = BoltDataset(filename_list[data_type], dir_path, mode=data_type, transform = data_transform) catagory_data = dict() # for b_type in ['b00', 'b01']: # b_type_list: # for b_type in ['b10', 'b11']: # b_type_list: for b_type in b_type_list: # print(filename_list) cat_files = [tf for tf in filename_list[data_type] if b_type in tf] catagory_data[b_type] = BoltDataset(cat_files, dir_path, mode=data_type, transform = data_transform) dataset[data_type] = ConcatDataset([c for c in catagory_data.values()]) print(f'len({data_type}_data): {len(dataset[data_type])}') return dataset # In[10]: def mmmm(): # batch_size = 2 dataloader = DataLoader(dataset["train"], batch_size = batch_size, shuffle=True, num_workers=1) # dataloader = DataLoader(catdogs, batch_size = 32, shuffle=True, num_workers=4) print("len dataloader", len(dataloader)) # In[30]: show_n_images = 40 samples, labels = iter(dataloader).next() plt.figure(figsize=(16*2,24)) grid_imgs = torchvision.utils.make_grid(samples[:show_n_images]) np_grid_imgs = grid_imgs.numpy() # in tensor, image is (batch, width, height), so you have to transpose it to (width, height, batch) in numpy to show it. plt.imshow(np.transpose(np_grid_imgs, (1,2,0))) # In[]: # In[]: # In[]: # dataiter = iter(trainloader) # images, labels = dataiter.next() # imshow(torchvision.utils.make_grid(images)) # In[]: convert_4ch_to_3ch("/home/jitesh/3d/data/UE_training_results/bolt3/bolt_cropped") # %% ``` #### File: test/src/TheLib.py ```python from __future__ import annotations # from _typeshed import NoneType import copy import glob import os from datetime import datetime from shutil import Error from sys import exit as x from typing import List, Union from zipfile import error import albumentations as A import cv2 import matplotlib.pyplot as plt import numpy as np import pandas as pd import printj import pyjeasy.file_utils as f import torch import torch.nn as nn import torchvision import tqdm # import albumentations as albu from imgaug import augmenters as iaa from PIL import Image # from RandAugment import RandAugment from torch.utils.data import ConcatDataset, DataLoader, Dataset from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from torchvision.transforms.transforms import RandomGrayscale from jaitool.training import save_ckp, load_ckp # writer = SummaryWriter() # get_ipython().run_line_magic('matplotlib', 'inline') import tensorflow as tf import tensorboard as tb tf.io.gfile = tb.compat.tensorflow_stub.io.gfile def check_cuda(): print('torch.cuda.is_available(): ', torch.cuda.is_available()) if torch.cuda.is_available(): device = torch.device("cuda:0") else: raise EnvironmentError print(torch.cuda.get_device_name(0)) print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3, 1), 'GB') print('Cached: ', round(torch.cuda.memory_cached(0)/1024**3, 1), 'GB') class BoltDataset(Dataset): def __init__(self, file_list, dir, mode='train', aug=None, transform=None, test_label: int = 1, b_type_list: List[str] = ['b10', 'b11'], img_size: int=256): # super().__init__() self.file_list = file_list self.dir = dir self.mode = mode # self.transform = transform self.test_label = test_label self.b_type_list = b_type_list self.img_size=img_size if self.mode == 'train' or self.mode == 'val': # print(self.file_list) # if 'b00' in self.file_list[0]: if b_type_list[0] in self.file_list[0]: self.label = 0 else: self.label = 1 if aug is None: self.aug = BoltClassifier(img_size=img_size).get_augmentation() self.val_aug_seq = A.Compose([ A.Resize(self.img_size, self.img_size), # A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) def __len__(self): return len(self.file_list) def __getitem__(self, idx): img_path = os.path.join(self.dir, self.file_list[idx]) image = Image.open(img_path) big_side = max(image.size) # small_side = min(image.size) # printj.red(list(image.size)[0]) # print(big_side) new_im = Image.new("RGB", (big_side, big_side)) new_im.paste(image) image = new_im # x() if self.mode == 'train': image = self.aug(image=np.array(image))['image'] # image = self.val_aug_seq(image=np.array(image))['image'] image = np.transpose(image, (2, 0, 1)).astype(np.float32) return torch.tensor(image, dtype=torch.float), self.label elif self.mode == 'val': image = self.val_aug_seq(image=np.array(image))['image'] image = np.transpose(image, (2, 0, 1)).astype(np.float32) return torch.tensor(image, dtype=torch.float), self.label else: image = self.val_aug_seq(image=np.array(image))['image'] image = np.transpose(image, (2, 0, 1)).astype(np.float32) return torch.tensor(image, dtype=torch.float), self.file_list[idx] class BoltClassifier: def __init__(self, device: str = 'cuda', img_size: int = 256, batch_size: int = 8, data_types: List[str] = ["train", "val", "test"], dataset_path: str = "/home/jitesh/3d/data/UE_training_results/bolt3/bolt_cropped", b_type_list: List[str] = ['b10', 'b11'], num_workers: int = 2): self.device = device self.img_size = img_size self.batch_size = batch_size self.data_types = data_types self.dataset_path = dataset_path self.b_type_list = b_type_list self.num_workers = num_workers self.scheduler = None self.model = None # self.set_model() # self.dataloader = self.get_dataloader() def get_val(self, model, model_path, test_dir_path, no_of_samples: int = 24, test_label: int = 1, save_csv_path: str = None): model.load_state_dict(torch.load(model_path)) # "/home/jitesh/prj/classification/test/bolt/ckpt_densenet121_mark_correct_128_s3_5.pth")) data_transform = transforms.Compose([ transforms.Resize((self.img_size, self.img_size)), transforms.ToTensor() ]) test_list = [file for file in os.listdir(test_dir_path) if os.path.isfile( os.path.join(test_dir_path, file)) and "b1" in file] test_list = sorted(test_list) # print(test_list) test_data = BoltDataset(test_list, test_dir_path, mode="test", transform=data_transform, test_label=test_label) testloader = DataLoader( test_data, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers) model.eval() fn_list = [] pred_list = [] for x, fn in testloader: with torch.no_grad(): x = x.to(self.device) output = model(x) pred = torch.argmax(output, dim=1) fn_list += [n[:-4] for n in fn] pred_list += [p.item() for p in pred] submission = pd.DataFrame({"id": fn_list, "label": pred_list}) if save_csv_path is None: save_csv_path = f'preds_densenet121_dir_{self.img_size}_test_.csv' submission.to_csv(save_csv_path, # index=False ) samples, _ = iter(testloader).next() samples = samples.to(self.device) val_sample = samples[:no_of_samples] return val_sample def predict(self, model=None, model_path=None, test_dir_path=None, no_of_samples: int = 24, test_label: int = 1, save_csv_path: str = None, write_images=None): if write_images: f.make_dir_if_not_exists(write_images) f.delete_all_files_in_dir(write_images) f.make_dir_if_not_exists(f'{write_images}/{self.b_type_list[0]}') f.make_dir_if_not_exists(f'{write_images}/{self.b_type_list[1]}') if model is None: model = self.model try: model.load_state_dict(torch.load(model_path)['state_dict']) except KeyError: model.load_state_dict(torch.load(model_path)) # "/home/jitesh/prj/classification/test/bolt/ckpt_densenet121_mark_correct_128_s3_5.pth")) data_transform = transforms.Compose([ transforms.Resize((self.img_size, self.img_size)), # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), transforms.ToTensor(), ]) test_list = [file for file in os.listdir(test_dir_path) if os.path.isfile( os.path.join(test_dir_path, file))] # and "b1" in file] test_list = sorted(test_list) # print(test_list) test_data = BoltDataset(test_list, test_dir_path, mode="test", transform=data_transform, test_label=test_label) testloader = DataLoader( test_data, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers) model.eval() fn_list = [] pred_list = [] for x, fn in testloader: with torch.no_grad(): x = x.to(self.device) output = model(x) pred = torch.argmax(output, dim=1) fn_list += [n[:-4] for n in fn] pred_list += [p.item() for p in pred] if write_images: for filename, prediction in zip(fn, pred): if prediction==0: f.copy_file(src_path=f'{test_dir_path}/{filename}', dst_path=f'{write_images}/{self.b_type_list[0]}/{filename}') elif prediction==1: f.copy_file(src_path=f'{test_dir_path}/{filename}', dst_path=f'{write_images}/{self.b_type_list[1]}/{filename}') submission = pd.DataFrame({"id": fn_list, "label": pred_list}) if save_csv_path is None: save_csv_path = f'preds_densenet121_dir_{self.img_size}_test_.csv' elif '.csv' not in save_csv_path: save_csv_path = save_csv_path + '/1.csv' submission.to_csv(save_csv_path, # index=False ) # samples, _ = iter(testloader).next() # samples = samples.to(self.device) # val_sample = samples[:no_of_samples] # return val_sample @staticmethod def convert_img_shape_aug_to_normal(img): # unnormalize npimg = (img / 2 + 0.5)*255 # npimg = np.clip(npimg, 0, 255) # print((npimg)) # print((npimg.shape)) # x() # npimg = npimg.astype(int) return Image.fromarray(npimg.astype('uint8'), 'RGB') @staticmethod def convert_img_shape_tensor_to_normal(img): # unnormalize img = img / 2 + 0.5 npimg = img.numpy() npimg = np.clip(npimg, 0., 1.) return np.transpose(npimg, (1, 2, 0)) @staticmethod def tensore_to_np(img): # unnormalize img = img / 2 + 0.5 npimg = img.numpy() npimg = np.clip(npimg, 0., 1.) return np.transpose(npimg, (1, 2, 0)) def show_img(self, img): plt.figure(figsize=(18, 15)) plt.imshow(self.tensore_to_np(img)) plt.show() def split_train_test_0(self, split_ratio=[0.8, 0.1, 0.1], verbose: bool = True): import random if self.b_type_list is None: self.b_type_list = [dir for dir in os.listdir( self.dataset_path) if dir not in self.data_types] img_path_list = dict() for data_type in self.data_types: img_path_list[data_type] = [] for b_type in self.b_type_list: data = glob.glob(f'{self.dataset_path}/{b_type}/*.png') random.shuffle(data) s1 = split_ratio[0] s2 = split_ratio[0] + split_ratio[1] assert 1 == split_ratio[0] + split_ratio[1] + split_ratio[2] img_path_list["train"] += data[:int(len(data)*s1)] img_path_list["val"] += data[int(len(data)*s1):int(len(data)*s2)] img_path_list["test"] += data[int(len(data)*s2):] if verbose: print(f'len(train_data): {len(img_path_list["train"])}') print(f'len(val_data): {len(img_path_list["val"])}') print(f'len(test_data): {len(img_path_list["test"])}') return img_path_list def split_train_test(self, split_ratio=[0.8, 0.1, 0.1], verbose: bool = True): import random # if self.b_type_list is None: # self.b_type_list = [dir for dir in os.listdir( # self.dataset_path) if dir not in self.data_types] img_path_list = dict() for data_type in ["train", "val", "test"]: img_path_list[data_type] = [] # for b_type in self.b_type_list: # data = glob.glob(f'{self.dataset_path}/train/*') data = os.listdir(f'{self.dataset_path}/train') # print(data) random.shuffle(data) s1 = split_ratio[0] s2 = split_ratio[0] + split_ratio[1] assert 1 == split_ratio[0] + split_ratio[1] + split_ratio[2] img_path_list["train"] += data[:int(len(data)*s1)] img_path_list["val"] += data[int(len(data)*s1):int(len(data)*s2)] img_path_list["test"] += data[int(len(data)*s2):] if verbose: print(f'len(train_data): {len(img_path_list["train"])}') print(f'len(val_data): {len(img_path_list["val"])}') print(f'len(test_data): {len(img_path_list["test"])}') print(f'len(test_data): {(img_path_list["val"])}') self.filename_list = img_path_list return img_path_list def get_image_list(self): filename_list = dict() for data_type in self.data_types: dirname_new = os.path.join(self.dataset_path, data_type) filename_list[data_type] = os.listdir(dirname_new) # printj.red(filename_list[data_type]) # printj.yellow(dirname_new) self.filename_list = filename_list return filename_list # aug_iaa = iaa.Sequential([ # iaa.flip.Fliplr(p=0.5), # iaa.flip.Flipud(p=0.5), # iaa.GaussianBlur(sigma=(0.0, 0.1)), # iaa.MultiplyBrightness(mul=(0.65, 1.35)), # ]) def get_augmentation(self, save_path=None, load_path=None): if load_path: return A.load(load_path) else: aug_seq1 = A.OneOf([ A.Rotate(limit=(-90, 90), p=1.0), A.Flip(p=1.0), ], p=1.0) aug_seq2 = A.OneOf([ # A.ChannelDropout(always_apply=False, p=1.0, channel_drop_range=(1, 1), fill_value=0), A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=1.0), A.RandomBrightnessContrast(always_apply=False, p=1.0, brightness_limit=( -0.2, 0.2), contrast_limit=(-0.2, 0.2), brightness_by_max=True) ], p=1.0) aug_seq3 = A.OneOf([ A.GaussNoise(always_apply=False, p=1.0, var_limit=(10, 100)), A.ISONoise(always_apply=False, p=1.0, intensity=( 0.1, 1.0), color_shift=(0.01, 0.3)), A.MultiplicativeNoise(always_apply=False, p=1.0, multiplier=( 0.8, 1.6), per_channel=True, elementwise=True), ], p=1.0) aug_seq4 = A.OneOf([ A.Equalize(always_apply=False, p=1.0, mode='pil', by_channels=True), A.InvertImg(always_apply=False, p=1.0), A.MotionBlur(always_apply=False, p=1.0, blur_limit=(3, 7)), A.OpticalDistortion(always_apply=False, p=1.0, distort_limit=(-0.3, 0.3), shift_limit=(-0.05, 0.05), interpolation=0, border_mode=0, value=(0, 0, 0), mask_value=None), A.RandomFog(always_apply=False, p=1.0, fog_coef_lower=0.1, fog_coef_upper=0.45, alpha_coef=0.5) ], p=1.0) aug_seq = A.Compose([ A.Resize(self.img_size, self.img_size), aug_seq1, aug_seq2, aug_seq3, aug_seq4, # A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # aug_path = '/home/jitesh/prj/classification/test/bolt/aug/aug_seq.json' if save_path: A.save(aug_seq, save_path) # loaded_transform = A.load(aug_path) return aug_seq def view_data(self): cat_files = [tf for tf in self.filename_list["train"] if "10" in tf] # if b_type in tf] dir_path = os.path.join(self.dataset_path, "train") alb_dataset = BoltDataset(cat_files, dir_path) alb_dataloader = DataLoader( dataset=alb_dataset, batch_size=16, shuffle=True) data = iter(alb_dataloader) images, _ = data.next() # show images self.show_img(torchvision.utils.make_grid(images)) def get_dataset(self): dataset = dict() for data_type in self.data_types: dir_path = os.path.join(self.dataset_path, "train") # dir_path = os.path.join(self.dataset_path, data_type) catagory_data = dict() # for b_type in ['b00', 'b01']: # b_type_list: # for b_type in ['b10', 'b11']: # b_type_list: for b_type in self.b_type_list: # print(filename_list[data_type]) cat_files = [ tf for tf in self.filename_list[data_type] if b_type in tf] # print(cat_files) # , transform = albu_transforms)#data_transform) catagory_data[b_type] = BoltDataset( cat_files, dir_path, mode=data_type, b_type_list=self.b_type_list, img_size=self.img_size) dataset[data_type] = ConcatDataset( [c for c in catagory_data.values()]) print(f'len({data_type}_data): {len(dataset[data_type])}') return dataset def get_dataloader(self, data=None): if data is None: dataset = self.get_dataset() data = dataset["train"] dataloader = DataLoader( data, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) print("len dataloader", len(dataloader)) self.dataloader = dataloader return dataloader def view_data2(self, dataloader=None, show_n_images: int = 24): if dataloader is None: dataloader = self.get_dataloader() # images, labels = dataloader.next() # self.show_img(torchvision.utils.make_grid(images)) # # show_n_images = 40 samples, labels = iter(dataloader).next() # plt.figure(figsize=(16*2, 24)) grid_imgs = torchvision.utils.make_grid(samples[:show_n_images]) # np_grid_imgs = grid_imgs.numpy() # in tensor, image is (batch, width, height), so you have to transpose it to (width, height, batch) in numpy to show it. # plt.imshow(np.transpose(np_grid_imgs, (1,2,0))) self.show_img(grid_imgs) # plt.savefig("augr.png") def get_lr(self): for param_group in self.optimizer.param_groups: return param_group['lr'] def set_model(self, learning_rate: float = 0.001, scheduler_on :bool=False, scheduler_steps: list=[500,1000,1500], dataloader=None): if dataloader is None: dataloader = self.get_dataloader() model = torchvision.models.densenet121(pretrained=False) # model = torchvision.models.googlenet(pretrained=False) self.num_ftrs = num_ftrs = model.classifier.in_features model.classifier = torch.nn.Sequential( torch.nn.Linear(num_ftrs, 500), torch.nn.Linear(500, 2) # torch.nn.Linear(500, 1) ) # model.features. self.model = model.to(self.device) self.loss_criteria = nn.CrossEntropyLoss() # loss_criteria = nn.BCELoss() self.optimizer = torch.optim.Adam( model.parameters(), lr=learning_rate, amsgrad=True) if scheduler_on: self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=scheduler_steps, gamma=0.5) # scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[ 100*self.batch_size], gamma=0.5) # self.scheduler = torch.optim.lr_scheduler.MultiStepLR( # self.optimizer, milestones=[200], gamma=0.5) # self.scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.1) # self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, len(dataloader), eta_min=learning_rate) # return model, # # In[33]: # val_sample = get_val(model=model, # model_path="/home/jitesh/prj/classification/test/bolt/ckpt_densenet121_mark_correct_128_s3_2.pth", # test_dir_path="/home/jitesh/sekisui/bolt/cropped_hexagon_bolts/b11", # ) # # In[33]: def train(self, epochs: int = 5, val_check_period = None, val_sample=None, dataloader_train=None, dataloader_val=None, show_tensorboard=True, tensorboard_log_dir_path=None, show_pyplot=False, weight_dir_path="weights", writer=None, iteration_limit=np.inf): data_available = False if show_tensorboard: if tensorboard_log_dir_path: writer = SummaryWriter(log_dir=tensorboard_log_dir_path) else: writer = SummaryWriter() else: writer = None dataset = self.get_dataset() if dataloader_train is None: dataloader_train = self.get_dataloader(dataset["train"]) if dataloader_val is None: dataloader_val = DataLoader(dataset["val"], batch_size=self.batch_size, # batch_size=len(dataset["val"]), shuffle=False, num_workers=self.num_workers) # print(len(dataloader_val)) for val_samples, val_labels in dataloader_val: val_samples = val_samples.to(self.device) val_labels = val_labels.to(self.device) # epochs = 3 # epochs = 10 itr = 1 p_itr = self.batch_size # 200 self.model.train() total_loss = 0 loss_list = [] acc_list = [] val_total_loss = 0 val_loss_list = [] val_acc_list = [] # if val_check_period is None: # val_check_period = len(dataloader_train) # print("len dataloader", len(dataloader)) # dataloader_train=self.get_dataloader() for epoch in range(epochs): if itr > iteration_limit: break for batch_idx, (samples, labels) in enumerate(dataloader_train): # all_val_labels = [] # all_val_output = [] # print(labels) # print(labels.shape) samples, labels = samples.to( self.device), labels.to(self.device) self.optimizer.zero_grad() output = self.model(samples) loss = self.loss_criteria(output, labels) loss.backward() total_loss += loss.item() ### if val_sample: val_output = self.model(val_sample) val_loss = self.loss_criteria(val_output, torch.ones( 8, dtype=torch.long).to(self.device)) val_total_loss += val_loss.item() elif val_check_period: if itr % val_check_period == 0: val_output = self.model(val_samples) val_loss = self.loss_criteria(val_output, val_labels) val_total_loss += val_loss.item() # all_val_labels += val_labels.to(self.device) # all_val_output += val_output else: val_output = output ### self.optimizer.step() if self.scheduler: self.scheduler.step() if itr % p_itr == 0: pred = torch.argmax(output, dim=1) correct = pred.eq(labels) acc = torch.mean(correct.float()) loss_list.append(total_loss/p_itr) acc_list.append(acc) ### val_acc = 0 if val_sample: val_pred = torch.argmax(val_output, dim=1) val_correct = val_pred.eq(torch.ones( 8, dtype=torch.long).to(self.device)) val_acc = torch.mean(val_correct.float()) val_loss_list.append(val_total_loss/p_itr) val_acc_list.append(val_acc) print('[Epoch {}/{}] Iteration {} -> Train Loss: {:.4f}, Accuracy: {:.3f}, Val Accuracy: {:.3f}'.format( epoch+1, epochs, itr, total_loss/p_itr, acc, val_acc)) elif val_check_period: if itr % val_check_period == 0: val_pred = torch.argmax(val_output, dim=1) val_correct = val_pred.eq(val_labels) val_acc = torch.mean(val_correct.float()) val_loss_list.append(val_total_loss/val_check_period) val_acc_list.append(val_acc) print('[Epoch {}/{}] Iteration {} -> Train Loss: {:.4f}, Accuracy: {:.3f}, Val Accuracy: {:.3f}'.format( epoch+1, epochs, itr, total_loss/p_itr, acc, val_acc)) else: print('[Epoch {}/{}] Iteration {} -> Train Loss: {:.4f}, Accuracy: {:.3f}'.format( epoch+1, epochs, itr, total_loss/p_itr, acc)) else: print('[Epoch {}/{}] Iteration {} -> Train Loss: {:.4f}, Accuracy: {:.3f}'.format( epoch+1, epochs, itr, total_loss/p_itr, acc)) # loss_list.append(total_loss/p_itr) # acc_list.append(acc) if show_tensorboard: # samples = samples / 2 + 0.5 # img_grid = torchvision.utils.make_grid(samples) # writer.add_image('training data', img_grid) # val_img_grid = torchvision.utils.make_grid(val_samples) # writer.add_image('val data', val_img_grid) # writer.add_graph(self.model, samples) # log embeddings # features = samples.view(-1, 3*self.img_size*self.img_size) data = samples data_labels = labels # data = val_samples # data_labels = val_labels # features = data.reshape(data.shape[0], -1) # class_labels = [self.b_type_list[label] for label in data_labels] # writer.add_embedding(features, # metadata=class_labels, # label_img=data, # global_step=batch_idx # # label_img=samples.unsqueeze(1), # ) # features = val_samples.reshape(val_samples.shape[0], -1) # class_labels = [self.b_type_list[label] for label in val_labels] # writer.add_embedding(features, # metadata=class_labels, # label_img=val_samples, # global_step=batch_idx # # metadata=self.b_type_list, # # label_img=samples.unsqueeze(1), # ) writer.add_scalar('* Loss/train', total_loss/p_itr, itr) writer.add_scalar('* Accuracy/train', acc, itr) writer.add_scalar('Learning Rate', self.get_lr(), itr) if show_tensorboard: if val_sample or val_check_period: if itr % val_check_period == 0: # print(f"{val_total_loss}/{val_check_period} = {val_total_loss/val_check_period}") writer.add_scalar('* Loss/val', val_total_loss/val_check_period, itr) writer.add_scalar('* Accuracy/val', val_acc, itr) if itr > (epochs)*len(dataloader_train) -p_itr - 2: writer.add_hparams({ 'Learning rate': self.get_lr(), 'Batch Size': self.batch_size, 'Image Size': self.img_size, 'Iterations': itr, }, { '* Accuracy/train': acc, '* Accuracy/val': val_acc, '* Loss/train': total_loss/p_itr, '* Loss/val': val_total_loss/val_check_period, }) # writer.add_scalar('Loss/compare', # {'train': total_loss/p_itr, # 'val': val_total_loss/val_check_period}, itr) # writer.add_scalar('Accuracy/compare', # {'train': acc, # 'val': val_acc}, itr) total_loss = 0 val_total_loss = 0 data_available = True itr += 1 if show_pyplot: plt.plot(loss_list, label='loss') if val_sample or val_check_period: plt.plot(val_loss_list, label='val_loss') plt.legend() plt.title('training and val loss') plt.show() ### plt.plot(acc_list, label='accuracy') if val_sample or val_check_period: plt.plot(val_acc_list, label='val_accuracy') plt.legend() plt.title('training and val accuracy') plt.show() ''' Saving multiple weights''' checkpoint = { 'epoch': epoch + 1, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict() } checkpoint_dir = f'{weight_dir_path}/checkpoint' best_model_dir = f'{weight_dir_path}/best_model_dir' filename_pth = f'ckpt_densenet121_mark_correct_{self.img_size}_s3_{itr}.pth' if itr == int(epochs*len(dataloader_train)/10): # if epoch % 10 == 0: save_ckp(state=checkpoint, checkpoint_dir=checkpoint_dir, best_model_dir=best_model_dir, filename_pth=filename_pth) # torch.save(self.model.state_dict(), os.path.join(weight_dir_path, filename_pth)) printj.yellow.on_purple(f"Weight file saved: {os.path.join(weight_dir_path, filename_pth)}") print("Total iterations: ", itr-1) if show_pyplot: plt.plot(loss_list, label='loss') plt.plot(acc_list, label='accuracy') plt.legend() plt.title('training loss and accuracy') plt.show() if val_sample or val_check_period: plt.plot(val_acc_list, label='Test_accuracy') plt.plot(acc_list, label='Train_accuracy') plt.legend() plt.title('training loss and accuracy') plt.show() # filename_pth = 'ckpt_densenet121_catdog.pth' # filename_pth = f'ckpt_densenet121_mark_exist_{self.img_size}.pth' filename_pth = f'ckpt_densenet121_mark_correct_{self.img_size}_s3.pth' torch.save(self.model.state_dict(), os.path.join(weight_dir_path, filename_pth)) def _get_something(self, data=None): test_transform = transforms.Compose([ transforms.Resize((self.img_size, self.img_size)), transforms.ToTensor() ]) # testset = CatDogDataset(test_files, TEST_IMG_DIR_PATH, mode='test', transform = test_transform) # testloader = DataLoader(testset, batch_size = 32, shuffle=False, num_workers=4) if data is None: dataset = self.get_dataset() data = dataset["train"] testloader = DataLoader( data, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) self.model.eval() fn_list = [] pred_list = [] for x, fn in testloader: with torch.no_grad(): x = x.to(self.device) output = self.model(x) pred = torch.argmax(output, dim=1) fn_list += [n[:-4] for n in fn] pred_list += [p.item() for p in pred] submission = pd.DataFrame({"id": fn_list, "label": pred_list}) submission.to_csv(f'preds_densenet121_dir_{self.img_size}.csv', # index=False ) def get_pred(self, model, model_path, test_dir_path, no_of_samples: int = 24, test_label: int = 1, save_csv_path: str = None): model.load_state_dict(torch.load(model_path)) # "/home/jitesh/prj/classification/test/bolt/ckpt_densenet121_mark_correct_128_s3_5.pth")) data_transform = transforms.Compose([ transforms.Resize((self.img_size, self.img_size)), transforms.ToTensor() ]) test_list = [file for file in os.listdir(test_dir_path) if os.path.isfile( os.path.join(test_dir_path, file)) and "b1" in file] test_list = sorted(test_list) # print(test_list) test_data = BoltDataset(test_list, test_dir_path, mode="test", transform=data_transform, test_label=test_label) testloader = DataLoader( test_data, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers) model.eval() fn_list = [] pred_list = [] for x, fn in testloader: with torch.no_grad(): x = x.to(self.device) output = model(x) pred = torch.argmax(output, dim=1) fn_list += [n[:-4] for n in fn] pred_list += [p.item() for p in pred] submission = pd.DataFrame({"id": fn_list, "label": pred_list}) if save_csv_path is None: save_csv_path = f'preds_densenet121_dir_{self.img_size}_test_.csv' submission.to_csv(save_csv_path, # index=False ) samples, _ = iter(testloader).next() samples = samples.to(self.device) val_sample = samples[:no_of_samples] return val_sample def _get_pred_(self, data=None): if data is None: dataset = self.get_dataset() data = dataset["train"] testloader = DataLoader( data, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) samples, _ = iter(testloader).next() samples = samples.to(self.device) fig = plt.figure(figsize=(24, 16)) ax = fig.add_subplot(1, 1, 1) ax.set_facecolor('xkcd:salmon') ax.set_facecolor((1.0, 0.47, 0.42)) fig.tight_layout() output = self.model(samples[:24]) pred = torch.argmax(output, dim=1) pred = [p.item() for p in pred] # ad = {0:'cat', 1:'dog'} # ad = {0:'no mark', 1:'mark'} ad = {0: 'Incorrect', 1: 'Correct'} # for num, sample in enumerate(samples[:24]): for num, sample in enumerate(samples[:24]): plt.subplot(4, 6, num+1) plt.title(ad[pred[num]]) # plt.axis('off') sample = sample.cpu().numpy() plt.imshow(np.transpose(sample, (1, 2, 0))) # ax = plt.gca() plt.savefig('inference_mark_direction.png') def preview_aug(self, image_path, grid=[4, 4], save_path=None): pillow_image = Image.open(image_path) image = np.array(pillow_image) images = [] new_im = Image.new('RGB', (grid[1]*self.img_size,grid[0]*self.img_size)) # bolt =BoltClassifier(img_size=img_size) transform = self.get_augmentation() #load_path='/home/jitesh/prj/classification/test/bolt_src/aug/aug_seq.json') # rsize = self.img_size # rsize = int(1000/max(grid[0], grid[1])) # xp = int(1000/grid[1]) # yp = int(1000/grid[0]) for i in range(grid[0]): for j in range(grid[1]): transformed_image = transform(image=image)['image'] # transformed_image.thumbnail((xp,xp)) t_image = self.convert_img_shape_aug_to_normal(transformed_image) # transformed_image.resize(xp,xp, Image.ANTIALIAS) # print(transformed_image) # new_im.paste(transformed_image, (i*xp,j*xp)) # t_image = t_image.resize((rsize,rsize), Image.ANTIALIAS) # print(t_image) new_im.paste(t_image, (i*self.img_size,j*self.img_size)) # new_im.paste(t_image) # import sys # sys.exit() new_im.show() if save_path: new_im.save(save_path) ```
{ "source": "Jitesh17/jaitool", "score": 2 }
#### File: jaitool/annotation/change_background.py ```python import os import random from datetime import datetime from operator import itemgetter from sys import exit as x # from jaitool.annotation.COCO import COCO_Datase # from jaitool.annotation.NDDS import NDDS_Dataset # from logger import logger import albumentations as A import cv2 import numpy as np import printj # from albumentations.augmentations.functional import rotate # from annotation_utils.coco.structs import COCO_Dataset # from annotation_utils.ndds.structs import NDDS_Dataset from pyjeasy.file_utils import (dir_contents_path_list_with_extension, make_dir_if_not_exists) from pyjeasy.image_utils.edit import get_all_colors, resize_img from pyjeasy.image_utils.preview import show_image from pyjeasy.image_utils import create_mask from tqdm import tqdm def replace_bg_wrt_transparency( bg_dirs: list, img_dir_name: str = "img", output_img_dir_name: str = "img_", aug_on: bool = False, aug_json: str = None, show_preview: bool = False,): pass def aug_flip_and_rotate(load_path=None): if load_path: return A.load(load_path) else: aug_seq = A.Compose([ A.Rotate(limit=(-90, 90), p=0.5), A.Flip(p=0.5), A.OpticalDistortion( distort_limit=0.05, shift_limit=0.05, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None, mask_value=None, always_apply=False, p=0.5) ]) return aug_seq def image_sequence(image_path_list): num = 0 while True: yield cv2.imread(image_path_list[num]) if num + 2 < len(image_path_list): num += 1 else: num = 0 random.shuffle(image_path_list) def replace_bg_wrt_seg_ann( coco_data_dir: str, json_filename: str, bg_dirs: list, img_dir_name: str = "img", output_img_dir_name: str = "img_", aug_on: bool = False, aug_json: str = None, show_preview: bool = False, ): coco_dataset = COCO_Dataset.load_from_path( json_path=f"{coco_data_dir}/json/{json_filename}.json", check_paths=False) # image_path_list = folder_list(folder1) image_path_list = [] for bg_dir in bg_dirs: image_path_list += dir_contents_path_list_with_extension( dirpath=bg_dir, extension=['.jpg', '.jpeg', '.png']) bg_gen = image_sequence(image_path_list) pbar = tqdm(coco_dataset.images, colour='#44aa44') for image in pbar: pbar.set_description("Changing background") pbar.set_postfix({'file_name': image.file_name}) image_path_split = image.coco_url.split("/") image_path_split[-2] = img_dir_name image_path = "/".join(image_path_split) for ann in coco_dataset.annotations: if ann.image_id == image.id: seg = ann.segmentation background = next(bg_gen) if aug_on: aug = aug_flip_and_rotate(aug_json) background = aug(image=np.array(background))['image'] orig_image = cv2.imread(image_path) assert orig_image.shape[1] == image.width assert orig_image.shape[0] == image.height mask = np.zeros((image.width, image.height), np.uint8) contours = seg.to_contour() cv2.drawContours(mask, contours, -1, (255, 255, 255), -1) final = replace_bg_wrt_mask(orig_image, background, mask) if show_preview: show_image(final) else: output = os.path.join(coco_data_dir, output_img_dir_name) make_dir_if_not_exists(coco_data_dir) make_dir_if_not_exists(output) output_path = os.path.join(output, image.file_name) cv2.imwrite(output_path, final) def replace_bg_wrt_mask(orig_image, background, mask): fg = cv2.bitwise_or(orig_image, orig_image, mask=mask) mask = cv2.bitwise_not(mask) background = resize_img(src=background, size=( orig_image.shape[0], orig_image.shape[1])) bg = cv2.bitwise_or(background, background, mask=mask) final = cv2.bitwise_or(fg, bg) return final def replace_bg_wrt_isimg( ndds_data_dir: str, coco_data_dir: str, bg_dirs: list, json_filename: str = None, bg_iscolor: list = None, output_img_dir_name: str = "img_", aug_on: bool = False, aug_json: str = None, show_preview: bool = False, verbose: bool = False, ): make_dir_if_not_exists(os.path.abspath( os.path.join(coco_data_dir, '../..'))) make_dir_if_not_exists(os.path.abspath(os.path.join(coco_data_dir, '..'))) make_dir_if_not_exists(coco_data_dir) # Load NDDS Dataset # ndds_dataset = NDDS_Dataset.load_from_dir( # json_dir=ndds_data_dir, # show_pbar=True # ) coco_dataset = COCO_Dataset.load_from_path( json_path=f"{coco_data_dir}/json/{json_filename}.json", check_paths=False) image_path_list = [] for bg_dir in bg_dirs: image_path_list += dir_contents_path_list_with_extension( dirpath=bg_dir, extension=['.jpg', '.jpeg', '.png']) bg_gen = image_sequence(image_path_list) # pbar = tqdm(ndds_dataset.frames, colour='#44aa44') pbar = tqdm(coco_dataset.images, colour='#44aa44', total=len(coco_dataset.images)) bg_gen = image_sequence(image_path_list) for image in pbar: pbar.set_description("Changing background") # pbar.set_postfix({'file_name': image.file_name}) is_path = ndds_data_dir + '/' + \ image.file_name.split('.')[0]+'.is.'+image.file_name.split('.')[-1] # img_path = ndds_data_dir + if verbose: printj.green(image.coco_url) printj.green(is_path) img = cv2.imread(image.coco_url) is_img = cv2.imread(is_path) is_img2 = is_img.copy() # from PIL import Image # img0 = Image.open(is_path) # colors = img0.convert('RGB').getcolors() # printj.red(colors) if bg_iscolor: mask = create_mask(img=is_img2, color=list( reversed(bg_iscolor)), difference=2, min_limit=0, max_limit=255) else: # img.convert('RGB').getcolors() colors = get_all_colors(img_path=is_path) colors = tuple(sorted(colors, key=itemgetter(0), reverse=True)) _bg_iscolor = list(colors[0][1]) if verbose: printj.cyan( f"\nAll {len(colors)} colors in the image: {colors}") printj.yellow(f'Background color is {_bg_iscolor}') mask = create_mask(img=is_img2, color=list( reversed(_bg_iscolor)), difference=2, min_limit=0, max_limit=255) background = next(bg_gen) if aug_on: aug = aug_flip_and_rotate(aug_json) background = aug(image=np.array(background))['image'] background = resize_img( src=background, size=(img.shape[1], img.shape[0])) # while (img.shape[1] > background.shape[1]) and (img.shape[0] > background.shape[0]): # background1 = cv2.hconcat([background, next(bg_gen)]) # background2 = cv2.hconcat([next(bg_gen), next(bg_gen)]) # background = cv2.vconcat([background1, background2]) # background = background[:img.shape[1], :img.shape[0]] bg = cv2.bitwise_or(background, background, mask=mask) mask = cv2.bitwise_not(mask) fg = cv2.bitwise_or(img, img, mask=mask) final = cv2.bitwise_or(fg, bg) output = os.path.join(coco_data_dir, output_img_dir_name) make_dir_if_not_exists(coco_data_dir) make_dir_if_not_exists(output) collaged_output = os.path.join(output, image.file_name) if show_preview: quit = show_image(final) if quit: break else: cv2.imwrite(collaged_output, final) if __name__ == "__main__": now = datetime.now() dt_string3 = now.strftime("%Y_%m_%d_%H_%M_%S") key = 'bolt' # folder_name = f'b8' # coco_data_dir = f'/home/jitesh/3d/data/coco_data/bolt/{folder_name}_coco-data'#_{dt_string3}_coco-data' folder_name = f'bolt_3-4' # folder_name = f'ram-bolt' # _{dt_string3}_coco-data' coco_data_dir = f'/home/jitesh/3d/data/coco_data/bolt/{folder_name}' bg_dirs = ["/home/jitesh/3d/data/images_for_ndds_bg/solar_panel"] # bg_dirs.append("/home/jitesh/3d/data/images_for_ndds_bg/collaged_images_random-size") # bg_dirs.append("/home/jitesh/3d/data/images_for_ndds_bg/collaged_images_random-size-v") replace_bg_wrt_seg_ann( coco_data_dir=coco_data_dir, json_filename=key, bg_dirs=bg_dirs, img_dir_name="img0", aug_on=True) ``` #### File: jaitool/annotation/ue_to_coco_tropicana.py ```python import os from sys import exit as x from datetime import datetime import cv2 import numpy as np import printj from annotation_utils.coco.structs import COCO_Category_Handler, COCO_Dataset from annotation_utils.ndds.structs import NDDS_Dataset from logger import logger # dataset.display_preview(show_details=True) # import disk2points_algo_fit_center as d2p import vis_data # from cook_data import run as cook def make_dir_if_not_exists(path): if not os.path.exists(path): os.makedirs(path) def id_to_color(RGBint): pixel_b = RGBint & 255 pixel_g = (RGBint >> 8) & 255 pixel_r = (RGBint >> 16) & 255 return [pixel_b, pixel_g, pixel_r] def create_mask(img, color): lower = np.array(color)-np.array([1]*3) #, dtype="uint8") upper = np.array(color)+np.array([1]*3) #, dtype="uint8") mask = cv2.inRange(img, lower, upper) return mask now = datetime.now() dt_string = now.strftime("%Y/%m/%d %H:%M:%S") dt_string2 = now.strftime("%Y-%m-%d") dt_string3 = now.strftime("%Y_%m_%d_%H_%M_%S") # folder_name = f'h5_1000' # folder_name = f'hc1_1000' # folder_name = f'hr1_300' # folder_name = f'hc11_400' folder_name = f'tropi1' # folder_name = f'hsk2_200' # folder_name = f'hlk2_200' ndds_path = f'/home/jitesh/3d/data/UE_training_results/{folder_name}' coco_data_dir = f'/home/jitesh/3d/data/coco_data/{folder_name}_coco-data'#_{dt_string3}_coco-data' make_dir_if_not_exists(os.path.abspath(os.path.join(coco_data_dir, '..'))) make_dir_if_not_exists(coco_data_dir) # Load NDDS Dataset ndds_dataset = NDDS_Dataset.load_from_dir( json_dir=ndds_path, show_pbar=True ) # Fix NDDS Dataset naming so that it follows convention. (This is not necessary if the NDDS dataset already follows the naming convention.) for frame in ndds_dataset.frames: # printj.red(frame.img_path) # is_path = frame.img_path.split('.')[0]+'.is.'+frame.img_path.split('.')[-1] # # printj.red(is_path) # img = cv2.imread(is_path) # # printj.cyan(img) # img2= img.copy() # from PIL import Image # img0 = Image.open(is_path) # colors = img0.convert('RGB').getcolors() # printj.red(colors) # x() # short # change1_from = [36, 51, 243] # red # change1_from = [240, 255, 255] # white # # change2_from = id_to_color(15938340) # pole1 # change_to = id_to_color(7626000) # pole0 # # long # # change1_from = [240, 255, 255] # white # # change2_from = [8, 93, 244] # pole1 # # change_to = [40, 186, 104] # pole0 # # change1_from = list(colors[0][1])[::-1] # white # # change2_from = list(colors[1][1])[::-1] # pole1 # # change_to = list(colors[-1][1])[::-1] # pole0 # # printj.red(change1_from) # # printj.red(change2_from) # # printj.red(change_to) # mask1 = create_mask(img, change1_from) # img2[mask1==255]=change_to # mask2 = create_mask(img, change2_from) # img2[mask2==255]=change_to # cv2.imshow('img', img) # cv2.waitKey(111111) # cv2.imshow('img2', img2) # cv2.waitKey(11111) # x() # cv2.imwrite(is_path, img2) # Fix Naming Convention for ann_obj in frame.ndds_ann.objects: # printj.yellow.on_black(ann_obj) # all_keys = set().union(*(d for d in ann_obj)) # printj.yellow.bold_on_black(all_keys) # raise Exception if ann_obj.class_name.startswith('tropicana'): obj_type, obj_name = 'seg', 'tropicana' instance_name = '0' #ann_obj.class_name #.replace('hook', '') ann_obj.class_name = f'{obj_type}_{obj_name}_{instance_name}' # printj.yellow( ann_obj.class_name) else: logger.error(f'ann_obj.class_name: {ann_obj.class_name}') # raise Exception # Delete Duplicate Objects frame.ndds_ann.objects.delete_duplicates(verbose=True, verbose_ref=frame.img_path) # ndds_dataset.save_to_path(save_path=f'{coco_data_dir}/hook_fixed_ndds.json', overwrite=True) # Convert To COCO Dataset dataset = COCO_Dataset.from_ndds( ndds_dataset=ndds_dataset, # categories=COCO_Category_Handler.load_from_path(f'/home/jitesh/3d/data/categories/hook_7ckpt.json'), categories=COCO_Category_Handler.load_from_path(f'/home/jitesh/3d/data/categories/tropicana.json'), naming_rule='type_object_instance_contained', ignore_unspecified_categories=True, show_pbar=True, bbox_area_threshold=1, default_visibility_threshold=-1, allow_unfound_seg=True, ) make_dir_if_not_exists(coco_data_dir) img_path = f'{coco_data_dir}/img' make_dir_if_not_exists(coco_data_dir) ann_dir = f'{coco_data_dir}/json' make_dir_if_not_exists(ann_dir) dataset.move_images( dst_img_dir=img_path, preserve_filenames=False, update_img_paths=True, overwrite=True, show_pbar=True ) # if not os.path.exists(coco_data_dir): # os.makedirs(coco_data_dir) key='tropicana' dataset.save_to_path(f'{ann_dir}/{key}.json', overwrite=True) # new_dataset = d2p.run(ann_dir) # new_dataset.display_preview(show_details=True) # new_dataset = cook(img_path, f'{ann_dir}/new-hook.json', key_num=11) # new_dataset = cook(img_path, f'{ann_dir}/{key}.json', key_num=7) vis_data.complete( # img_dir=f'{coco_data_dir}', img_dir=f'{img_path}', json_path=f'{ann_dir}/{key}.json', show_image=True, show_video=True, show_seg=True, ) ``` #### File: jaitool/aug/augment.py ```python import albumentations as A import printj, cv2 # from pyjeasy.image_utils import show_image # def flatten(t): return [item for sublist in t for item in sublist] # def get_ann(img, mask): # ret, thresh = cv2.threshold(mask, 127, 255, 0) # contours, hierarchy = cv2.findContours( # thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # seg = [flatten(flatten(c)) for c in contours] # x = [c[0][0] for c in flatten(contours)] # y = [c[0][1] for c in flatten(contours)] # xmin = min(x) # ymin = min(y) # xmax = max(x) # ymax = max(y) # bbox = [xmin, ymin, xmax, ymax] # cv2.rectangle(img, (xmin, ymin), (xmax, ymax), [222, 111, 222], 2) # for xi, yi in zip(x, y): # img = cv2.circle(img, (xi, yi), radius=1, # color=(0, 0, 255), thickness=-1) # cv2.fillPoly(img, pts=contours, color=(11, 255, 11)) # return img, seg, bbox def get_augmentation(save_path=None, load_path=None): if load_path is not None: aug_seq=A.load(load_path) # printj.red.bold_on_green("00000000000000000000000000000000") # img1 = cv2.imread( # "/home/jitesh/prj/belt-hook/data/training_data/8/coco_data_out/rgb_0010.png") # mask1 = cv2.imread( # "/home/jitesh/prj/belt-hook/data/training_data/8/coco_data_mask/rgb_0010.png", 0) # print(img1.shape) # print(mask1.shape) # oo=cv2.hconcat([img1, cv2.cvtColor(mask1.copy(),cv2.COLOR_GRAY2RGB)]) # get_ann(img1.copy(), mask1.copy()) # for i in range(50): # a = aug_seq(image=img1.copy(), mask=mask1.copy()) # img2 = a["image"] # mask2 = a["mask"] # img, seg, bbox = get_ann(img2, mask2) # ooo=cv2.hconcat([img2, cv2.cvtColor(mask2.copy(),cv2.COLOR_GRAY2RGB)]) # o=cv2.vconcat([oo, ooo]) # show_image(o, "", 1111) return aug_seq else: # print("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^") return aug_seq1 = A.OneOf([ A.Rotate(limit=(-90, 90), p=1.0), A.Flip(p=1.0), A.OpticalDistortion(always_apply=False, p=1.0, distort_limit=(-0.3, 0.3), shift_limit=(-0.05, 0.05), interpolation=3, border_mode=3, value=(0, 0, 0), mask_value=None), ], p=1.0) aug_seq2 = A.OneOf([ # A.ChannelDropout(always_apply=False, p=1.0, channel_drop_range=(1, 1), fill_value=0), A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=1.0), A.RandomBrightnessContrast(always_apply=False, p=1.0, brightness_limit=( -0.2, 0.2), contrast_limit=(-0.2, 0.2), brightness_by_max=True) ], p=1.0) aug_seq3 = A.OneOf([ A.GaussNoise(always_apply=False, p=1.0, var_limit=(10, 50)), A.ISONoise(always_apply=False, p=1.0, intensity=( 0.1, 1.0), color_shift=(0.01, 0.3)), A.MultiplicativeNoise(always_apply=False, p=1.0, multiplier=( 0.8, 1.6), per_channel=True, elementwise=True), ], p=1.0) aug_seq4 = A.OneOf([ A.Equalize(always_apply=False, p=1.0, mode='pil', by_channels=True), A.InvertImg(always_apply=False, p=1.0), A.MotionBlur(always_apply=False, p=1.0, blur_limit=(3, 7)), A.RandomFog(always_apply=False, p=1.0, fog_coef_lower=0.01, fog_coef_upper=0.2, alpha_coef=0.2) ], p=1.0) aug_seq = A.Compose([ # A.Resize(self.img_size, self.img_size), aug_seq1, aug_seq2, aug_seq3, aug_seq4, # A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # aug_path = '/home/jitesh/prj/classification/test/bolt/aug/aug_seq.json' if save_path: A.save(aug_seq, save_path) # loaded_transform = A.load(aug_path) return aug_seq if __name__ == "__main__": get_augmentation( save_path="/home/jitesh/prj/SekisuiProjects/test/gosar/bolt/training_scripts/aug_seq2.json", load_path=None) ```
{ "source": "Jitesh17/kaggle", "score": 3 }
#### File: kaggle/rock-paper-scissors/my_agent2 copy 2.py ```python import random import numpy as np import xgboost as xgb from sklearn.metrics import accuracy_score from xgboost.sklearn import XGBClassifier action_list = np.empty((0, 0), dtype=int) observation_list = np.empty((0, 0), dtype=int) result_list = np.empty((0, 0), dtype=int) params_xgb = { "objective": "multi:softmax", "num_class": 3, "eval_metric": "merror", "max_depth": 5, "eta": 0.08, "tree_method": "exact" } def i_win(me, you): return int((me - you + 4) % 3) - 1 # for i in range(3): # text = "" # for j in range(3): # text += f'{i_win(i, j)} ' # print(f'{text}') def Agent(observation, configuration): global action_list, observation_list, result_list if observation.step == 0: action = random.randint(0, 2) action_list = np.append(action_list, action) return action # if observation.step == 1: if observation.step == 1: observation_list = np.append(observation_list, observation.lastOpponentAction) result_list = np.append(result_list, i_win(action_list[-1], observation.lastOpponentAction)) action = random.randint(0, 2) action_list = np.append(action_list, action) return action # if observation.step <20: # observation_list = np.append(observation_list, observation.lastOpponentAction) # result_list = np.append(result_list, # result_list[-1]+i_win(action_list[-1], observation.lastOpponentAction)) # action = random.randint(0, 2) # action_list = np.append(action_list, action) # return action observation_list = np.append(observation_list, observation.lastOpponentAction) result_list = np.append(result_list, result_list[-1]+i_win(action_list[-1], observation.lastOpponentAction)) if observation.step < 50: start_from = 0 else: start_from = -1*random.randint(16, 20) X_train = np.vstack([action_list[start_from:-1], observation_list[start_from:-1], # result_list[start_from:-1] ]).T y_train = np.roll(observation_list, -1)[start_from:-1].T d_train = xgb.DMatrix(X_train, label=y_train) model = xgb.train(params=params_xgb, dtrain=d_train, num_boost_round=30, verbose_eval=0, evals=[(d_train, "train")]) pred_train = model.predict(d_train, ntree_limit=model.best_ntree_limit) score = accuracy_score(pred_train, y_train) if score > 0.33: last_data = np.array( [action_list[-1], observation_list[-1]]).reshape(1, -1) # [action_list[-1], observation_list[-1], result_list[-1]]) # X_test = np.array([[my_actions[-1], observation.lastOpponentAction]]) d_test = xgb.DMatrix(last_data) pred_obs = model.predict(d_test, ntree_limit=model.best_ntree_limit) action = int((pred_obs + 1) % 3) else: action = random.randint(0, 2) # model = XGBClassifier( # learning_rate=0.01, # n_estimators=30, # nthread=4, # use_label_encoder=False) # model.fit(X_train, y_train) # expected_observation = model.predict(last_data.reshape(1, -1)) # if sum(result_list) < -3: # if result_list[-1] < -3: # if random.randint(0, 1): # action = int((expected_observation - 1) % 3) # else: # action = expected_observation # else: # action = int((expected_observation + 1) % 3) # action = int((expected_observation + 1) % 3) # action = 2 action_list = np.append(action_list, action) return action ```
{ "source": "Jitesh17/learn_rnn", "score": 3 }
#### File: Jitesh17/learn_rnn/gym_tutorial.py ```python import gym import numpy as np class rl_memory(object): """Data storage and batch retrieval class for DQN""" def __init__(self, capacity, batch_size, seed): self.capacity = capacity self.states = np.zeros((self.capacity, 4)) self.actions = np.zeros(self.capacity, dtype=np.int) self.rewards = np.zeros(self.capacity) self.next_states = np.zeros((self.capacity, 4)) self.current = 0 def add(self, state, action, reward, next_state): self.states[self.current] = state self.actions[self.current] = action self.rewards[self.current] = reward self.next_states[self.current] = next_state self.current = (self.current + 1) % self.capacity def get_batch(self, batch_size): indexes = np.random.choice(min(self.capacity, self.current, batch_size, replace=False) return (self.states[indexes], self.actions[indexes], self.rewards[indexes], self.next_states[indexes]) env = gym.make('CartPole-v0') env_vis = [] for i_episode in range(20): observation = env.reset() for t in range(100): env_vis.append(env.render(mode = 'rgb_array')) print(observation) action = env.action_space.sample() observation, reward, done, info = env.step(action) if done: print("Episode finished after {} timesteps".format(t+1)) break env.close() ```
{ "source": "Jitesh17/ortools_projects", "score": 3 }
#### File: ortools_projects/src/scheduler.py ```python from __future__ import annotations import os import sys import numpy as np import openpyxl import pandas as pd import printj from ortools.sat.python import cp_model from printj import ColorText as ct # from typing import Union class TimeVar: def __init__(self, hours: int, minutes: int): while minutes > 60: minutes -= 60 hours += 1 self.hours = hours self.minutes = minutes self.time_str = f'{hours}:{minutes}' def __str__(self): return self.time_str def __add__(self, added_time: TimeVar): return TimeVar(self.hours + added_time.hours, self.minutes + added_time.minutes) @classmethod def by_string(cls, time: str): time_split_hour_min = time.split(":") hours = int(time_split_hour_min[0]) minutes = int(time_split_hour_min[1]) return cls(hours, minutes) # # function to get unique values # def unique(list1): # # insert the list to the set # list_set = set(list1) # # convert the set to the list # unique_list = (list(list_set)) # # for x in unique_list: # # print x, # return unique_list class Scheduler: def __init__(self) -> None: # pass self.input_data_package = None self.input_data_worker = None self.input_data_location = None self.time_shifts = None self.num_vehicles = None def __call__(self, input_data_package, input_data_worker, input_data_location, time_shifts, num_vehicles: int = 4, ): self.input_data_package = input_data_package self.input_data_worker = input_data_worker self.input_data_location = input_data_location self.time_shifts = time_shifts self.num_vehicles = num_vehicles self.input_data_package.dropna(subset = ["package"], inplace=True) self.input_data_package.dropna(axis=1, how='all') self.input_data_package_orig, self.input_data_worker_orig, self.input_data_location_orig = self.input_data_package.copy( ), self.input_data_worker.copy(), self.input_data_location.copy() def solution_printer(self): alphabets = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" """ data = [] for p in range(num_packages): # print('Package %i' % p) data_i = [] for s in range(num_shifts): s_val = ct.white('0 ') for w in range(num_workers): is_working = False for v in range(num_vehicles): if solver.Value(self.shifts[(w, p, v, s)]) == 1: is_working = True # print(' Worker %i works shift %i' % (w, s)) text_worker = ct.green( f'Worker {alphabets[w]}') # text_shift = ct.purple(f'shift {["9:00", "10:00", "11:00", "12:00", ][s]}') text_shift = ct.purple(f'shift {time_shifts[s]}') # text_shift = ct.purple(f'shift {s}') text_package = ct.cyan(f'package-{p}') text_vehicle = ct.yellow( f'vehicle {v+1}') # text_keiro = ct.yellow( # f'keiro {["Main2", "Main1", "SUB", ][v]}') # if p in [2, 4]: # print( # f' {text_worker} at {text_shift} moves {text_package} using {text_vehicle}') s_val = ct.green(f'{alphabets[w]}{v+1} ') data_i.append(s_val) data.append(data_i) # data = pd.DataFrame(data, columns=time_shifts) data = pd.DataFrame(data, columns=[ct.yellow(f' {s}') for s in time_shifts]) """ data = [] data_moved = [] for p in range(self.num_packages): # print('Package %i' % p) num_packages_moved = 0 data_i = [] for s in range(self.num_shifts): s_val = '0 ' for w in range(self.num_workers): is_working = False for v in range(self.num_vehicles): # print("self.solver.Value(self.shifts[(w, p, v, s)])", self.solver.Value(self.shifts[(w, p, v, s)])) if self.solver.Value(self.shifts[(w, p, v, s)]) == 1: # is_working = True # # print(' Worker %i works shift %i' % (w, s)) # text_worker = f'Worker {alphabets[w]}' # # text_shift = ct.purple(f'shift {["9:00", "10:00", "11:00", "12:00", ][s]}') # text_shift = f'shift {self.time_shifts[s]}' # # text_shift = ct.purple(f'shift {s}') # text_package = f'package-{p}' # text_vehicle = f'vehicle {v+1}' # # text_keiro = ct.yellow( # # f'keiro {["Main2", "Main1", "SUB", ][v]}') # # if p in [2, 4]: # # print( # # f' {text_worker} at {text_shift} moves {text_package} using {text_vehicle}') s_val = f'{alphabets[w]}{v+1} ' num_packages_moved += 1 data_i.append(s_val) data.append(data_i) data_moved.append([ num_packages_moved, self.input_data_package.quantity[p] - num_packages_moved, self.input_data_package.yesterday[p] + num_packages_moved - self.input_data_package.decay[p]*self.num_shifts]) # data = pd.DataFrame(data, columns=time_shifts) data = pd.DataFrame(data, columns=[f' {s}' for s in self.time_shifts]) data_moved = pd.DataFrame(data_moved, columns=['moved', 'not_moved', 'q_at_destination']) # print(data_moved) self.input_data_package_orig = pd.concat([ self.input_data_package_orig[['package', 'quantity', 'decay', 'location', 'vehicle', 'next', 'yesterday']], data, data_moved], axis=1).copy() # data.index = [f'Package-{p}' for p in range(self.num_packages)] # self.data = self.data.reset_index(drop=True) # self.data.dropna(axis=1, how='any') self.data = self.input_data_package_orig.copy() # print() print(self.data) return self.data def solution_writer(self): output_path = 'test/xl.xlsx' print() print(self.input_data_package_orig) # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter(output_path, engine='xlsxwriter') # Write each dataframe to a different worksheet. self.input_data_package_orig.to_excel( writer, sheet_name='Sheet_package', index=False) self.input_data_worker_orig.to_excel(writer, sheet_name='Sheet_worker', index=False) self.input_data_location_orig.to_excel( writer, sheet_name='Sheet_location', index=False) # output_data.to_excel(writer, sheet_name='Sheet_schedule') writer.save() def run(self): # Data. # package_to_table = [ # [1, 0, 0, 0, 0, 0], # [1, 1, 0, 0, 0, 0], # [0, 0, 1, 1, 0, 0], # [0, 0, 0, 0, 1, 0], # [0, 0, 0, 1, 0, 1], # [1, 1, 1, 1, 1, 1], # ] # workers_to_table = [ # [1, 1, 1, 1, 0, 1], # [1, 1, 1, 1, 1, 0], # [1, 1, 1, 1, 0, 1], # [1, 1, 1, 1, 1, 0], # ] printj.yellow('::::::::::::::::::: preprocess :::::::::::::::::::') print(self.input_data_package) print(self.input_data_package.dtypes) if isinstance(self.input_data_package.vehicle[0], str): self.input_data_package.vehicle = [ [int(i) for i in v.split(",")] for v in self.input_data_package.vehicle] self.input_data_package.next = [v if isinstance( v, int) else None for v in self.input_data_package.next] if isinstance(self.input_data_worker.location[0], str): self.input_data_worker.location = [ [int(i) for i in v.split(",")] for v in self.input_data_worker.location] self.input_data_worker.vehicle = [ [int(i) for i in v.split(",")] for v in self.input_data_worker.vehicle] self.num_locations = len(self.input_data_location.location) # package_to_location = pd.crosstab( # index=self.input_data_package['package'], columns=self.input_data_package['location']).to_numpy() package_to_location = pd.DataFrame({p: [1 if l in [location_list] else 0 for l in range(self.num_locations)] for p, location_list in enumerate(self.input_data_package.location)}).T.to_numpy() # num_location package_to_vehicle = pd.DataFrame({p: [1 if (v+1) in vehicles_list else 0 for v in range(self.num_vehicles)] for p, vehicles_list in enumerate(self.input_data_package.vehicle)}).T.to_numpy() # num_vehicle = 4 worker_to_vehicle = pd.DataFrame({p: [1 if (v+1) in vehicles_list else 0 for v in range(self.num_vehicles)] for p, vehicles_list in enumerate(self.input_data_worker.vehicle)}).T.to_numpy() # num_vehicle = 4 location_to_worker = pd.DataFrame({p: [1 if v in worker_list else 0 for v in range( self.num_locations)] for p, worker_list in enumerate(self.input_data_worker.location)}).to_numpy() # num_keiro = 6 package_orders = [[i, int(next_i)] for (i, next_i) in zip( self.input_data_package.package, self.input_data_package.next) if pd.notna(next_i)] print("package_to_vehicle\n", package_to_vehicle) print("worker_to_vehicle\n", worker_to_vehicle) print("package_to_location\n", package_to_location) print("location_to_worker\n", location_to_worker) print("package_orders\n", package_orders) print() print() # print(package_to_location.to_numpy()) # sys.exit() # package_orders = [[0, 1], [1, 2], ] # main2, main1, sub # package_to_vehicle = np.array([ # [1, 1, 1, 1], # [1, 0, 0, 0], # [1, 0, 0, 0], # [0, 1, 1, 0], # [0, 0, 1, 1], # [0, 0, 1, 1], # ]) # package_to_location = np.array([ # [1, 0, 0], # [1, 0, 0], # [1, 0, 0], # [0, 1, 0], # [1, 0, 0], # [0, 0, 1], # ]) # workers_to_keiro = np.array([ # [1, 0, 1], # [1, 1, 0], # [1, 0, 1], # [1, 1, 0], # ]) self.num_workers = len(self.input_data_worker.worker) # 4 self.num_packages = len(self.input_data_package.package) # 5 self.num_shifts = len(self.time_shifts) # num_tables = 6 all_workers = range(self.num_workers) all_packages = range(self.num_packages) all_shifts = range(self.num_shifts) all_vehicles = range(self.num_vehicles) all_locations = range(self.num_locations) # print(all_vehicles) print( f'\nNo. of package {self.num_packages}, No. of workers {self.num_workers}') alphabets = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" """ available_workers_per_package = [] for i, item in enumerate(package_to_vehicle): available_workers_list = [] for j, table in enumerate(item): if table == 1: available_workers_list += [k for k in range(len(workers_to_keiro)) if workers_to_keiro[k][j]==1] available_workers_list = unique(available_workers_list) print(f'Package-{i} can be moved by workers {"".join(alphabets[l] for l in available_workers_list)}') available_workers_per_package.append(available_workers_list) print(available_workers_per_package) print(np.array(available_workers_per_package)) """ # package_to_worker = np.matmul(package_to_location, workers_to_keiro.T) # print(package_to_location.shape, location_to_worker.shape) package_to_worker = np.matmul(package_to_location, location_to_worker) available_workers_per_package = [ [i for i, ll in enumerate(l) if ll == 1] for l in package_to_worker] available_vehicles_per_package = [ [i for i, ll in enumerate(l) if ll == 1] for l in package_to_vehicle] available_packages_per_location = [ [i for i, ll in enumerate(l) if ll == 1] for l in package_to_location.T] available_vehicles_per_worker = [ [i for i, ll in enumerate(l) if ll == 1] for l in worker_to_vehicle] # print() # for p, item in enumerate(available_workers_per_package): # text_worker = ct.green( # f'workers {"".join(alphabets[l] for l in item)}') # text_package = ct.cyan(f'Package-{p}') # print(f'{text_package} can be moved by {text_worker}') print() for w, item in enumerate(available_vehicles_per_worker): text_vehicle = ct.green( f'vehicle {", ".join(f"{l+1}" for l in item)}') text_worker = ct.cyan(f'worker {alphabets[w]}') print(f'{text_worker} can use {text_vehicle}') print() # for p, item in enumerate(available_vehicles_per_package): # text_vehicle = ct.yellow( # f'vehicle {" ".join(["Main2", "Main1", "SUB", ][l] for l in item)}') # text_package = ct.cyan(f'Package-{p}') # print(f'{text_package} can be moved to {text_vehicle}') # print() for p, (workers, vehicles) in enumerate(zip(available_workers_per_package, available_vehicles_per_package)): text_worker = ct.green( f'workers {", ".join(alphabets[l] for l in workers)}') text_vehicle = ct.yellow( f'vehicle {", ".join(str(v) for v in vehicles)}') text_package = ct.cyan(f'Package-{p}') print(f'{text_package} can be moved by \t{text_worker}\tusing {text_vehicle}') print() for l, item in enumerate(available_packages_per_location): text_package = ct.cyan(f'package {", ".join(f"{i}" for i in item)}') text_location = ct.green( f'location {l}') print(f'{text_location} carries {text_package}') print() # vehicle_to_worker = np.matmul(package_to_vehicle.T, package_to_worker) # sys.exit() # Creates the model. model = cp_model.CpModel() # Creates shift variables. # self.shifts[(w, p, v, s)]: nurse 'n' works shift 's' on package 'd'. self.shifts = {} for w in all_workers: for p in all_packages: for v in all_vehicles: for s in all_shifts: self.shifts[(w, p, v, s)] = model.NewBoolVar( 'shift_w%ip%iv%is%i' % (w, p, v, s)) package_quantity = 1 for pi, p in enumerate(all_packages): package_quantity = self.input_data_package.quantity[pi] # package_quantity = min(package_quantity, ) # 1 worker needed per package model.Add(sum(sum(sum(self.shifts[(w, p, v, s)] for v in all_vehicles) for s in all_shifts) for w in all_workers) <= package_quantity) # 1 available worker per package model.Add(sum(sum(sum(self.shifts[(w, p, v, s)] for v in all_vehicles) for s in all_shifts) for w in available_workers_per_package[p]) <= package_quantity) # 1 available vehicle per package model.Add(sum(sum(sum(self.shifts[(w, p, v, s)] for w in all_workers) for s in all_shifts) for v in available_vehicles_per_package[p]) <= package_quantity) for s in all_shifts: model.Add(sum(sum(self.shifts[(w, p, v, s)] for v in all_vehicles) for w in all_workers) <= 1) # Capacity constraints # location_filled = dict.fromkeys(self.input_data_location.location, 0) for l in all_locations: # total_quantity = sum(self.input_data_package.quantity[p] for p in available_packages_per_location[l]) # print(total_quantity) # location_filled[l] += sum(sum(sum(sum(self.shifts[(w, p, v, s)]for v in all_vehicles) for s in all_shifts) for w in all_workers) for p in available_packages_per_location[l]) capacity = self.input_data_location.capacity[l] # decay = self.input_data_location.decay[l] # current_empty_space = capacity # 10 = 3 nimotsu + 7 empty_space = 2 nimotsu + 8 empty_space = 10 empty_space # empty_space = max(current_empty_space + decay*1, capacity) # using max: empty space can't be more than the capacity of the shelf/location # empty_space = min(total_quantity, empty_space) # using min: # model.Add(location_filled[l]==empty_space) for si in all_shifts: for p in available_packages_per_location[l]: constant = 4 # Use/ change when decay is a fraction like 0.5 decay = self.input_data_package.decay[p]*constant # sum_package = sum(sum(sum(sum(self.shifts[(w, p, v, s)]for v in all_vehicles) for w in all_workers) for s in range(si+1))) sum_package = sum(sum(sum(self.shifts[( w, p, v, s)]for v in all_vehicles) for w in all_workers) for s in range(si+1)) sum_package += self.input_data_package.yesterday[p] model.Add(sum_package*constant-int(decay)*(si+1) <= capacity*constant) model.Add(sum_package-decay*(si+1)*constant >= 0) # print(capacity, sum_package, decay*(si+1)) # print() # 1 W, V, S for 1 package for s in all_shifts: for w in all_workers: for v in all_vehicles: model.Add(sum(self.shifts[(w, p, v, s)] for p in all_packages) <= 1) printj.red(f'all_vehicles: {list(all_vehicles)}') printj.red( f'available_vehicles_per_worker: {available_vehicles_per_worker}') for w in all_workers: for v in all_vehicles: # 1 available vehicle per worker if v in available_vehicles_per_worker[w]: model.Add(sum(sum(self.shifts[(w, p, v, s)] for p in all_packages) for s in all_shifts) >= 0) else: model.Add(sum(sum(self.shifts[(w, p, v, s)] for p in all_packages) for s in all_shifts) == 0) # package_order # s(p=2) < s(p=4) for package_order in package_orders: shift_before = 0 for s in all_shifts: for w in all_workers: for v in all_vehicles: # s = {0, 1, 2, 3} shift_before += self.shifts[(w, package_order[0], v, s)] shift_after = 0 # for s2 in range(s, num_shifts): for s2 in range(s+2): if s2 < self.num_shifts: for w2 in all_workers: for v2 in all_vehicles: # (4 - {0, 1, 2, 3}) shift_after += self.shifts[(w2, package_order[1], v2, s2)] # model.Add(shift_before <= shift_after) model.Add(shift_before == shift_after).OnlyEnforceIf( self.shifts[(w, package_order[0], v, s)]) model.Add(shift_before == shift_after).OnlyEnforceIf( self.shifts[(w, package_order[1], v, s)]) # # pylint: disable=g-complex-comprehension objective = sum(sum(sum(sum(sum(self.shifts[(w, p, v, s)] for v in all_vehicles) for w in all_workers) for s in range(si+1)) for p in all_packages) for s in all_shifts) model.Maximize(objective) printj.yellow('::::::::::::::::::::: Output :::::::::::::::::::::') # Creates the solver and solve. self.solver = cp_model.CpSolver() self.status = self.solver.Solve(model) # if self.status == cp_model.OPTIMAL: # self.output_data = self.solution_printer() # self.solution_writer() # else: # print("No solutions") # Statistics. print() print('Statistics') # print(' - Number of shift requests met = %i' % solver.ObjectiveValue(), # '(out of', num_nurses * min_shifts_per_nurse, ')') print(' - wall time : %f s' % self.solver.WallTime()) # assert solution_printer.solution_count() == 5 def bool2int(x): y = 0 for i, j in enumerate(x): y += j << i return y def main(path = "test/xl.xlsx"): printj.yellow('::::::::::::::::::::: Input :::::::::::::::::::::') path = "test/xl.xlsx" input_data_package = pd.read_excel(open(path, 'rb'), sheet_name='Sheet_package') input_data_worker = pd.read_excel(open(path, 'rb'), sheet_name='Sheet_worker') input_data_location = pd.read_excel(open(path, 'rb'), sheet_name='Sheet_location') num_vehicles = 4 num_shifts = 20 time_shifts = [TimeVar(6, 30) + TimeVar(0, 20*i) for i in range(num_shifts)] """ input_data_package = pd.DataFrame({ "package": [0, 1], "quantity": [2, 2], "location": [0, 0], "vehicle": [[1, 2, 3, 4], [1]], # "next": [None, 2, 3, 4, 5, None], "next": [None, None], # Only work if the quantity is same, "yesterday": [1, 2], }) input_data_worker = pd.DataFrame({ "worker": list("ABCD"), "location": [[0, 2], [0, 1], [0, 2], [0, 1]], "vehicle": [[1 ], [1, 2, 3, 4], [1], [1, 2, 3, 4]], }) input_data_location = pd.DataFrame({ "location": list(range(3)), # "decay": [1, 1, 1], # per shift "capacity": [4, 3, 3], }) # 4 - num_pack_loc0_shift + f(decay*(0, shift)) """ """ input_data_package = pd.DataFrame({ "package": [0, 1, 2, 3, 4, 5], "quantity": [20000, 20000, 20000, 20000, 20000, 200000], "decay": [1, 1, 1, 1, 1, 1], "location": [0, 0, 0, 1, 0, 2], "vehicle": [[1, 2, 3, 4], [1], [1], [2, 3], [3, 4], [1]], # "next": [None, 2, 3, 4, 5, None], "next": [None, None, None, None, None, None], # Only work if the quantity is same, "yesterday": [0, 0, 0, 0, 0, 0], }) input_data_worker = pd.DataFrame({ "worker": list("ABCD"), "location": [[0, 2], [0, 1], [0, 2], [0, 1]], "vehicle": [[1 ], [1, 2, 3, 4], [1], [1, 2, 3, 4]], }) input_data_location = pd.DataFrame({ "location": list(range(3)), # "decay": [1, 1, 1], # per shift "capacity": [10, 10, 10], }) # 4 - num_pack_loc0_shift + f(decay*(0, shift)) """ """ input_data_package = pd.DataFrame({ "package": [0], "quantity": [6], "location": [0], "vehicle": [[1, 2, 3, 4]], # "next": [None, 2, 3, 4, 5, None], "next": [None], # Only work if the quantity is same "yesterday": [1], }) input_data_worker = pd.DataFrame({ "worker": list("ABCD"), "location": [[0], [0], [0], [0]], "vehicle": [[1 ], [1, 2, 3, 4], [1], [1, 2, 3, 4]], }) input_data_location = pd.DataFrame({ "location": list(range(1)), # "decay_rate": [1, 1, 1], # per shift "capacity": [1], }) # 4 - num_pack_loc0_shift + f(decay*(0, shift)) """ # """ print(input_data_package) print(input_data_worker) print(input_data_location) print() scheduler = Scheduler(input_data_package, input_data_worker, input_data_location, time_shifts, num_vehicles) scheduler.run() if scheduler.status == cp_model.OPTIMAL: scheduler.output_data = scheduler.solution_printer() scheduler.solution_writer() else: print("No solutions") # """ """ wb = openpyxl.Workbook() sheet = wb.active sheet_title = sheet.title wb.save(path) print("active sheet title: " + sheet_title) """ if __name__ == '__main__': main(path = "test/xl.xlsx") ``` #### File: ortools_projects/test/t1.py ```python from __future__ import annotations # from typing import Union class TimeVar: def __init__(self, hours:int, minutes:int): while minutes > 60: minutes -= 60 hours += 1 self.hours = hours self.minutes = minutes self.time_str = f'{hours}:{minutes}' def __str__(self): return self.time_str def __add__(self, added_time:TimeVar): hours = self.hours + added_time.hours minutes = self.minutes + added_time.minutes return TimeVar(self.hours + added_time.hours, self.minutes + added_time.minutes) @classmethod def by_string(cls, time:str): time_split_hour_min = time.split(":") hours = int(time_split_hour_min[0]) minutes = int(time_split_hour_min[1]) return cls(hours, minutes) # t = TimeVar.by_string("8:30") # r = TimeVar(2, 40) # e = t + r # print(f'{t} + {r} = {e}') print(list("ABCD")) print([(i , j) for i in range(3) for j in range(2)]) ```
{ "source": "jitesh1922/HITR", "score": 2 }
#### File: jitesh1922/HITR/Stats.py ```python from CollectionLM import CollectionLM from DocumentLM import DocumentLM from ParsimoniousLM import ParsimoniousLM from DR import DR from TM import TM from TR import TR from TAR import TAR import logging import os import gensim from operator import truediv import pickle logger = logging.getLogger(__name__) # we want to log the process logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) class Stats(object): def __init__(self, corpus, dictionary, outPutPath): #logger.info("Running HiTR") #self.documentsPath = documentsPath self.corpus = corpus #self.ldaPath = ldaPath self.outPutPath = outPutPath #self.numTopics = numTopics #self.mu = mu #self.threshold = threshold #self.numIteration = numIteration self.dictionary = dictionary def calcStats(self): logger.info("Running DR") mu = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] #mu = [0.8] threshold = [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2] stats = {} vocabFile = open(os.path.join(self.outPutPath, "docVocabSizes-all.txt"), 'w') typeTokenFile = open(os.path.join(self.outPutPath, "docTypeTokenRatios-all.txt"), 'w') p_movedFile = open(os.path.join(self.outPutPath, "p_moved-all.txt"), 'w') for m in mu: stats[m] = {} for th in threshold: if os.path.isfile("mtsamples-tmp.mm"): os.remove("mtsamples-tmp.mm") if os.path.isfile("mtsamples-tmp.mm.index"): os.remove("mtsamples-tmp.mm.index") modelPath = "/Users/admin/Downloads/20_newsgroups/Preprocessed-lemmas-shortened-models" dictionary = gensim.corpora.Dictionary.load(os.path.join(modelPath,"mtsamples.dict")) corpus = gensim.corpora.MmCorpus(os.path.join(modelPath,"mtsamples.mm")) print "DR for: " + str(m) + " " + str(th) dr = DR(corpus, dictionary, m, th, 20) dr.runDR() vocabSize = self.calcVocabSize(dr.corpus) avgDocVocabSize, docVocabSizes = self.calcDocVocabSize(dr.corpus) avgTypeTokenRatio, docTypeTokenRatios = self.calcTypeTokenRatio(dr.corpus) avgp_moved, p_moved = self.calcp_moved(corpus, dr.corpus) print str(avgDocVocabSize) + " " + str(avgTypeTokenRatio) + " " + str(avgp_moved) del dr line = "" line += str(m) + " " + str(th) + " " for l in docVocabSizes: line += str(l) + " " vocabFile.write(line + "\n") line = "" line += str(m) + " " + str(th) + " " for l in docTypeTokenRatios: line += str(l) + " " typeTokenFile.write(line + "\n") line = "" line += str(m) + " " + str(th) + " " for l in p_moved: line += str(l) + " " p_movedFile.write(line + "\n") stats[m][th] = [] stats[m][th].append(vocabSize) stats[m][th].append(avgDocVocabSize) stats[m][th].append(avgTypeTokenRatio) stats[m][th].append(avgp_moved) del corpus del dictionary with open('res-all.txt', 'wb') as handle: pickle.dump(stats, handle) vocabFile.close() typeTokenFile.close() p_movedFile.close() def calcVocabSize(self, corpus): numTerms = 0 uniqueTerms = {} for doc in corpus: for token in doc: if token[0] not in uniqueTerms: uniqueTerms[token[0]] = 1 numTerms += 1 return numTerms def calcDocVocabSize(self, corpus): avgDocVocabSize = 0 docVocabSizes = [len(doc) for doc in corpus] avgDocVocabSize = float(sum([len(doc) for doc in corpus])) / len(corpus) return avgDocVocabSize, docVocabSizes def calcTypeTokenRatio(self, corpus): uniqueTerms = {} corpusSize = 0 numTerms = 0 for doc in corpus: for token in doc: if token[0] not in uniqueTerms: uniqueTerms[token[0]] = 1 numTerms += 1 corpusSize += sum([t[1] for t in doc]) avgTypeTokenRatio = 0 if corpusSize > 0: avgTypeTokenRatio = float(len(uniqueTerms)) / corpusSize #docTypeTokenRatios = map(truediv, [len(doc) for doc in corpus], [sum([t[1] for t in doc]) for doc in corpus]) a = [len(doc) for doc in corpus] b = [sum([t[1] for t in doc]) for doc in corpus] docTypeTokenRatios = [x/y if y else 0 for x,y in zip(a,b)] return avgTypeTokenRatio, docTypeTokenRatios def calcp_moved(self, corpus1, corpus2): docId = 0 p_moved = [] for doc in corpus1: words = {} for token in corpus2[docId]: words[token[0]] = token[1] sumFreq = 0 docLen = 0 for token in doc: docLen += token[1] if token[0] not in words: sumFreq += token[1] p = 0 if docLen > 0: p = float(sumFreq) / docLen #p_moved.append(float(sumFreq) / docLen) p_moved.append(p) docId += 1 avgp_moved = sum(p_moved) / len(p_moved) return avgp_moved, p_moved if __name__ == "__main__": modelPath = "/Users/admin/Downloads/20_newsgroups/Preprocessed-lemmas-shortened-models" dictionary = gensim.corpora.Dictionary.load(os.path.join(modelPath,"mtsamples.dict")) corpus = gensim.corpora.MmCorpus(os.path.join(modelPath,"mtsamples.mm")) outPutPath = "/Users/admin/Downloads/20_newsgroups/stats" stat = Stats(corpus, dictionary, outPutPath) stat.calcStats() ```
{ "source": "jiteshk23/JupterWorkflow", "score": 2 }
#### File: jupyterworkflow/tests/test_data.py ```python import jupyterworkflow.data as jwd import pandas as pd import numpy as np def test_fremont_data(): data = jwd.get_fremont_data() assert all(data.columns == [u'East', u'West', u'Total']) assert isinstance(data.index, pd.DatetimeIndex) assert len(np.unique(data.index.time)) == 24 ```
{ "source": "jiteshm17/mcan-vqa", "score": 2 }
#### File: core/model/net.py ```python from core.model.net_utils import FC, MLP, LayerNorm from core.model.mca import MCA_ED import torch.nn as nn import torch.nn.functional as F import torch import numpy as np import random from math import sqrt from block import fusions def sum_attention(nnet, query, value, mask=None, dropout=None, mode='1D'): if mode == '2D': batch, dim = query.size(0), query.size(1) query = query.permute(0, 2, 3, 1).view(batch, -1, dim) value = value.permute(0, 2, 3, 1).view(batch, -1, dim) mask = mask.view(batch, 1, -1) scores = nnet(query).transpose(-2, -1) if mask is not None: scores.data.masked_fill_(mask.eq(0), -65504.0) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) weighted = torch.matmul(p_attn, value) return weighted, p_attn class SummaryAttn(nn.Module): def __init__(self, dim, num_attn, dropout, is_multi_head=False, mode='1D'): super(SummaryAttn, self).__init__() self.linear = nn.Sequential( nn.Linear(dim, dim), nn.ReLU(inplace=True), nn.Linear(dim, num_attn), ) self.h = num_attn self.is_multi_head = is_multi_head self.attn = None self.dropout = nn.Dropout(p=dropout) if dropout else None self.mode = mode def forward(self, query, value, mask=None): if mask is not None: mask = mask.unsqueeze(1) batch = query.size(0) weighted, self.attn = sum_attention( self.linear, query, value, mask=mask, dropout=self.dropout, mode=self.mode) weighted = weighted.view( batch, -1) if self.is_multi_head else weighted.mean(dim=-2) return weighted class PredictLayer(nn.Module): def __init__(self, dim1, dim2, num_attn, num_ans, dropout, dropattn=0): super(PredictLayer, self).__init__() self.summaries = nn.ModuleList([ SummaryAttn(dim1, num_attn, dropattn, is_multi_head=False), SummaryAttn(dim2, num_attn, dropattn, is_multi_head=False), ]) self.predict = nn.Sequential( nn.Linear(dim1 + dim2, (dim1 + dim2) // 2), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear((dim1 + dim2) // 2, num_ans), ) def forward(self, data1, data2, mask1, mask2): weighted1 = self.summaries[0](data1, data1, mask1) weighted2 = self.summaries[1](data2, data2, mask2) # weighted = torch.cat([weighted1, weighted2], dim=1) mm = fusions.Tucker([2048, 1024], 3072).cuda() proj_feat = mm([weighted1, weighted2]) # return proj_feat # feat = self.predict(weighted) feat = self.predict(proj_feat) return feat def qkv_attention(query, key, value, mask=None, dropout=None): d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / sqrt(d_k) if mask is not None: scores.data.masked_fill_(mask.eq(0), -65504.0) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class DenseCoAttn(nn.Module): def __init__(self, dim1, dim2, num_attn, num_none, dropout, is_multi_head=False): super(DenseCoAttn, self).__init__() dim = min(dim1, dim2) self.linears = nn.ModuleList([nn.Linear(dim1, dim, bias=False), nn.Linear(dim2, dim, bias=False)]) self.nones = nn.ParameterList([nn.Parameter(nn.init.xavier_uniform_(torch.empty(num_none, dim1))), nn.Parameter(nn.init.xavier_uniform_(torch.empty(num_none, dim2)))]) self.d_k = dim // num_attn self.h = num_attn self.num_none = num_none self.is_multi_head = is_multi_head self.attn = None self.dropouts = nn.ModuleList( [nn.Dropout(p=dropout) for _ in range(2)]) def forward(self, value1, value2, mask1=None, mask2=None): batch = value1.size(0) dim1, dim2 = value1.size(-1), value2.size(-1) value1 = torch.cat([self.nones[0].unsqueeze(0).expand( batch, self.num_none, dim1), value1], dim=1) value2 = torch.cat([self.nones[1].unsqueeze(0).expand( batch, self.num_none, dim2), value2], dim=1) none_mask = value1.new_ones((batch, self.num_none)) if mask1 is not None: mask1 = torch.cat([none_mask, mask1], dim=1) mask1 = mask1.unsqueeze(1).unsqueeze(2) if mask2 is not None: mask2 = torch.cat([none_mask, mask2], dim=1) mask2 = mask2.unsqueeze(1).unsqueeze(2) query1, query2 = [l(x).view(batch, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (value1, value2))] if self.is_multi_head: weighted1, attn1 = qkv_attention( query2, query1, query1, mask=mask1, dropout=self.dropouts[0]) weighted1 = weighted1.transpose(1, 2).contiguous()[ :, self.num_none:, :] weighted2, attn2 = qkv_attention( query1, query2, query2, mask=mask2, dropout=self.dropouts[1]) weighted2 = weighted2.transpose(1, 2).contiguous()[ :, self.num_none:, :] else: weighted1, attn1 = qkv_attention(query2, query1, value1.unsqueeze(1), mask=mask1, dropout=self.dropouts[0]) weighted1 = weighted1.mean(dim=1)[:, self.num_none:, :] weighted2, attn2 = qkv_attention(query1, query2, value2.unsqueeze(1), mask=mask2, dropout=self.dropouts[1]) weighted2 = weighted2.mean(dim=1)[:, self.num_none:, :] self.attn = [attn1[:, :, self.num_none:, self.num_none:], attn2[:, :, self.num_none:, self.num_none:]] return weighted1, weighted2 class NormalSubLayer(nn.Module): def __init__(self, dim1, dim2, num_attn, num_none, dropout, dropattn=0): super(NormalSubLayer, self).__init__() self.dense_coattn = DenseCoAttn( dim1, dim2, num_attn, num_none, dropattn) self.linears = nn.ModuleList([ nn.Sequential( nn.Linear(dim1 + dim2, dim1), nn.ReLU(inplace=True), nn.Dropout(p=dropout), ), nn.Sequential( nn.Linear(dim1 + dim2, dim2), nn.ReLU(inplace=True), nn.Dropout(p=dropout), ) ]) def forward(self, data1, data2, mask1, mask2): weighted1, weighted2 = self.dense_coattn(data1, data2, mask1, mask2) data1 = data1 + self.linears[0](torch.cat([data1, weighted2], dim=2)) data2 = data2 + self.linears[1](torch.cat([data2, weighted1], dim=2)) return data1, data2 class DCNLayer(nn.Module): def __init__(self, dim1, dim2, num_attn, num_none, num_seq, dropout, dropattn=0): super(DCNLayer, self).__init__() self.dcn_layers = nn.ModuleList([NormalSubLayer(dim1, dim2, num_attn, num_none, dropout, dropattn) for _ in range(num_seq)]) def forward(self, data1, data2, mask1, mask2): for dense_coattn in self.dcn_layers: data1, data2 = dense_coattn(data1, data2, mask1, mask2) return data1, data2 class Initializer(object): @staticmethod def manual_seed(seed): """ Set all of random seed to seed. -------------------- Arguments: seed (int): seed number. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) @staticmethod def xavier_normal(module, lstm_forget_bias_init=2): """ Xavier Gaussian initialization. """ lstm_forget_bias_init = float(lstm_forget_bias_init) / 2 normal_classes = (nn.Conv2d, nn.Linear, nn.Embedding) recurrent_classes = (nn.RNN, nn.LSTM, nn.GRU) if any([isinstance(module, cl) for cl in normal_classes]): nn.init.xavier_normal_( module.weight.data) if module.weight.requires_grad else None try: module.bias.data.fill_( 0) if module.bias.requires_grad else None except AttributeError: pass elif any([isinstance(module, cl) for cl in recurrent_classes]): for name, param in module.named_parameters(): if name.startswith("weight"): nn.init.xavier_normal_( param.data) if param.requires_grad else None elif name.startswith("bias"): if param.requires_grad: hidden_size = param.size(0) param.data.fill_(0) param.data[hidden_size//4:hidden_size // 2] = lstm_forget_bias_init @staticmethod def xavier_uniform(module, lstm_forget_bias_init=2): """ Xavier Uniform initialization. """ lstm_forget_bias_init = float(lstm_forget_bias_init) / 2 normal_classes = (nn.Conv2d, nn.Linear, nn.Embedding) recurrent_classes = (nn.RNN, nn.LSTM, nn.GRU) if any([isinstance(module, cl) for cl in normal_classes]): nn.init.xavier_uniform_( module.weight.data) if module.weight.requires_grad else None try: module.bias.data.fill_( 0) if module.bias.requires_grad else None except AttributeError: pass elif any([isinstance(module, cl) for cl in recurrent_classes]): for name, param in module.named_parameters(): if name.startswith("weight"): nn.init.xavier_uniform_( param.data) if param.requires_grad else None elif name.startswith("bias"): if param.requires_grad: hidden_size = param.size(0) param.data.fill_(0) param.data[hidden_size//4:hidden_size // 2] = lstm_forget_bias_init # ------------------------------ # ---- Flatten the sequence ---- # ------------------------------ class AttFlat(nn.Module): # mlp_model = None def __init__(self, __C): super(AttFlat, self).__init__() self.__C = __C self.mlp = MLP( in_size=__C.HIDDEN_SIZE, mid_size=__C.FLAT_MLP_SIZE, out_size=__C.FLAT_GLIMPSES, dropout_r=__C.DROPOUT_R, use_relu=True ) # mlp_model = self.mlp self.linear_merge = nn.Linear( __C.HIDDEN_SIZE * __C.FLAT_GLIMPSES, __C.FLAT_OUT_SIZE ) def forward(self, x, x_mask): att = self.mlp(x) att = att.masked_fill( x_mask.squeeze(1).squeeze(1).unsqueeze(2), -1e9 ) att = F.softmax(att, dim=1) att_list = [] for i in range(self.__C.FLAT_GLIMPSES): att_list.append( torch.sum(att[:, :, i: i + 1] * x, dim=1) ) x_atted = torch.cat(att_list, dim=1) x_atted = self.linear_merge(x_atted) return x_atted # ------------------------- # ---- Main MCAN Model ---- # ------------------------- class Net(nn.Module): def __init__(self, __C, pretrained_emb, token_size, answer_size): super(Net, self).__init__() copy_data = __C self.embedding = nn.Embedding( num_embeddings=token_size, embedding_dim=__C.WORD_EMBED_SIZE ) self.mlp = MLP( in_size=__C.HIDDEN_SIZE, mid_size=__C.FLAT_MLP_SIZE, out_size=__C.FLAT_GLIMPSES, dropout_r=__C.DROPOUT_R, use_relu=True ) # Loading the GloVe embedding weights if __C.USE_GLOVE: self.embedding.weight.data.copy_(torch.from_numpy(pretrained_emb)) self.lstm = nn.LSTM( input_size=__C.WORD_EMBED_SIZE, hidden_size=__C.HIDDEN_SIZE, num_layers=1, batch_first=True ) self.img_feat_linear = nn.Linear( __C.IMG_FEAT_SIZE, 2048 ) self.backbone = MCA_ED(__C) self.attflat_img = AttFlat(__C) self.attflat_lang = AttFlat(__C) self.proj_norm = LayerNorm(1024) self.proj = nn.Linear(1024, answer_size) self.dense_coattn = DCNLayer(2048, 1024, 4, 3, 5, 0.3) self.predict = PredictLayer(2048, 1024, 4, 3129, 0.3) self.apply(Initializer.xavier_normal) def forward(self, img_feat, ques_ix): # Make mask lang_feat_mask = self.make_mask(ques_ix.unsqueeze(2)) img_feat_mask = self.make_mask(img_feat) # Pre-process Language Feature lang_feat = self.embedding(ques_ix) lang_feat, _ = self.lstm(lang_feat) # Pre-process Image Feature img_feat = self.img_feat_linear(img_feat) img_feat, lang_feat = self.dense_coattn( img_feat, lang_feat, None, None) proj_feat = self.predict(img_feat, lang_feat, None, None) # img_att = self.mlp(img_feat) # lang_att = self.mlp(lang_feat) # img_feat = img_feat.reshape((-1,img_feat.size(1)*img_feat.size(2))) # lang_feat = lang_feat.res hape((-1,lang_feat.size(1)*lang_feat.size(2))) # Backbone Framework # lang_feat, img_feat = self.backbone( # lang_feat, # img_feat, # lang_feat_mask, # img_feat_mask # ) # lang_feat = self.attflat_lang( # lang_feat, # lang_feat_mask # ) # img_feat = self.attflat_img( # img_feat, # img_feat_mask # ) # NUM_LAYERS = 3 # conv_layer_1 = nn.Linear(1024,1024).cuda() # conv_layer_2 = nn.ModuleList([ # nn.Linear(1024, 1024) # for i in range(NUM_LAYERS)]).cuda() # img_feat = conv_layer_1(img_feat) # lang_feat = conv_layer_1(lang_feat) # feat1 = nn.Dropout(0.25)(feat1) # feat2 = nn.Dropout(0.25)(feat2) # x_mm = [] # for i in range(NUM_LAYERS): # x1 = conv_layer_2[i](img_feat) # # x1 = nn.Tanh()(x1) # x2 = conv_layer_2[i](lang_feat) # # x2 = nn.Tanh()(x2) # x_mm.append(torch.mul(x1,x2)) # x_mm = torch.stack(x_mm,dim=1) # batch_size = x_mm.size(0) # nc,w,h = x_mm.shape[2],x_mm.shape[3],x_mm.shape[4] # proj_feat = torch.sum(x_mm,dim=1) # mm = fusions.LinearSum([1024,1024],3129).cuda() # proj_feat = mm([img_feat,lang_feat]) # mul_feat = lang_feat * img_feat # add_feat = lang_feat + img_feat # proj_feat = mul_feat + add_feat # proj_feat = lang_feat + img_feat # proj_feat = F.softmax(proj_feat, dim=1) # proj_feat = self.proj_norm(proj_feat) # proj_feat = torch.sigmoid(proj_feat) # proj_feat = torch.sigmoid(self.proj(proj_feat)) # proj_feat = self.proj(proj_feat) # return proj_feat return torch.sigmoid(proj_feat) # Masking def make_mask(self, feature): return (torch.sum( torch.abs(feature), dim=-1 ) == 0).unsqueeze(1).unsqueeze(2) ```
{ "source": "jiteshmohite/Python-Page-Object-Model-Framework", "score": 3 }
#### File: functional/android/chrome_tests.py ```python import unittest from appium import webdriver """ TODO: In-Progress, Refer page object model """ class ChromeTests(unittest.TestCase): def setUp(self): desired_caps = { 'platformName': 'Android', 'platformVersion': '7.0', 'deviceName': 'Galaxy Tab S3', 'browserName': 'Chrome' } self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) def tearDown(self): self.driver.quit() def test_find_single_element(self): self.driver.get('http://10.0.2.2:4723/test/guinea-pig') self.driver.find_element_by_link_text('i am a link').click() self.assertTrue('I am some other page content' in self.driver.page_source) if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(ChromeTests) unittest.TextTestRunner(verbosity=2).run(suite) ``` #### File: functional/android/find_by_image_tests.py ```python import unittest from appium import webdriver from selenium.common.exceptions import NoSuchElementException, TimeoutException from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import desired_capabilities """ TODO: In-Progress, Refer page object model """ class FindByImageTests(unittest.TestCase): def setUp(self): desired_caps = desired_capabilities.get_desired_capabilities('ApiDemos-debug.apk') self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) def tearDown(self): self.driver.quit() def test_find_based_on_image_template(self): image_path = desired_capabilities.PATH('find_by_image_success.png') el = WebDriverWait(self.driver, 3).until( EC.presence_of_element_located((By.IMAGE, image_path)) ) size = el.size self.assertIsNotNone(size['width']) self.assertIsNotNone(size['height']) loc = el.location self.assertIsNotNone(loc['x']) self.assertIsNotNone(loc['y']) rect = el.rect self.assertIsNotNone(rect['width']) self.assertIsNotNone(rect['height']) self.assertIsNotNone(rect['x']) self.assertIsNotNone(rect['y']) self.assertTrue(el.is_displayed()) el.click() self.driver.find_element_by_accessibility_id("Alarm") def test_find_multiple_elements_by_image_just_returns_one(self): WebDriverWait(self.driver, 3).until( EC.presence_of_element_located((By.ACCESSIBILITY_ID, "App")) ) image_path = desired_capabilities.PATH('find_by_image_success.png') els = self.driver.find_elements_by_image(image_path) els[0].click() self.driver.find_element_by_accessibility_id("Alarm") def test_find_throws_no_such_element(self): image_path = desired_capabilities.PATH('find_by_image_failure.png') with self.assertRaises(TimeoutException): WebDriverWait(self.driver, 3).until( EC.presence_of_element_located((By.IMAGE, image_path)) ) with self.assertRaises(NoSuchElementException): self.driver.find_element_by_image(image_path) if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(FindByImageTests) unittest.TextTestRunner(verbosity=2).run(suite) ``` #### File: functional/android/ime_tests.py ```python import unittest from time import sleep from selenium.common.exceptions import NoSuchElementException from appium import webdriver import desired_capabilities # the emulator is sometimes slow and needs time to think SLEEPY_TIME = 1 LATIN_IME = u'com.android.inputmethod.latin/.LatinIME' """ TODO: In-Progress, Refer page object model """ class IMETests(unittest.TestCase): def setUp(self): desired_caps = desired_capabilities.get_desired_capabilities('ApiDemos-debug.apk') self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) def tearDown(self): self.driver.quit() def test_available_ime_engines(self): engines = self.driver.available_ime_engines self.assertIsInstance(engines, list) self.assertTrue(LATIN_IME in engines) def test_is_ime_active(self): self.assertTrue(self.driver.is_ime_active()) def test_active_ime_engine(self): self.assertIsInstance(self.driver.active_ime_engine, unicode) def test_activate_ime_engine(self): engines = self.driver.available_ime_engines active_engine = self.driver.active_ime_engine self.driver.activate_ime_engine(engines[-1]) self.assertEqual(self.driver.active_ime_engine, engines[-1]) def test_deactivate_ime_engine(self): engines = self.driver.available_ime_engines self.driver.activate_ime_engine(engines[-1]) self.assertEqual(self.driver.active_ime_engine, engines[-1]) self.driver.deactivate_ime_engine() sleep(1) self.assertNotEqual(self.driver.active_ime_engine, engines[-1]) if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(IMETests) unittest.TextTestRunner(verbosity=2).run(suite) ``` #### File: functional/android/selendroid_tests.py ```python import unittest from time import sleep import desired_capabilities from selenium.webdriver.common.touch_actions import TouchActions from appium import webdriver """ TODO: In-Progress, Refer page object model """ class SelendroidTests(unittest.TestCase): def setUp(self): desired_caps = desired_capabilities.get_desired_capabilities('ApiDemos-debug.apk') desired_caps['automationName'] = 'Selendroid' self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) def test_contexts_list(self): el = self.driver.find_element_by_class_name('android.widget.ListView') els = el.find_elements_by_class_name('android.widget.TextView') ta = TouchActions(self.driver).flick_element(el, 0, -300, 0) ta.perform() sleep(5) def tearDown(self): self.driver.quit() def _enter_webview(self): btn = self.driver.find_element_by_name('buttonStartWebviewCD') btn.click() self.driver.switch_to.context('WEBVIEW') if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(SelendroidTests) unittest.TextTestRunner(verbosity=2).run(suite) ``` #### File: functional/android/touch_action_tests.py ```python import unittest from time import sleep import desired_capabilities from appium import webdriver from selenium.common.exceptions import NoSuchElementException from webdriver.util.touch_action import TouchAction # the emulator is sometimes slow SLEEPY_TIME = 2 """ TODO: In-Progress, Refer page object model """ class TouchActionTests(unittest.TestCase): def setUp(self): desired_caps = desired_capabilities.get_desired_capabilities('ApiDemos-debug.apk') self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) def tearDown(self): self.driver.quit() def test_tap(self): el = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.tap(el).perform() el = self.driver.find_element_by_accessibility_id('Bouncing Balls') self.assertIsNotNone(el) def test_tap_x_y(self): el = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.tap(el, 100, 10).perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_accessibility_id('Bouncing Balls') self.assertIsNotNone(el) def test_tap_twice(self): el = self.driver.find_element_by_name('Text') action = TouchAction(self.driver) action.tap(el).perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_name('LogTextBox') action.tap(el).perform() el = self.driver.find_element_by_name('Add') action.tap(el, count=2).perform() els = self.driver.find_elements_by_class_name('android.widget.TextView') self.assertEqual('This is a test\nThis is a test\n', els[1].get_attribute("text")) def test_press_and_immediately_release(self): el = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.press(el).release().perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_accessibility_id('Bouncing Balls') self.assertIsNotNone(el) def test_press_and_immediately_release_x_y(self): el = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.press(el, 100, 10).release().perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_accessibility_id('Bouncing Balls') self.assertIsNotNone(el) def test_press_and_wait(self): el1 = self.driver.find_element_by_name('Content') el2 = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.press(el1).move_to(el2).perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_accessibility_id('Views') # self.assertIsNotNone(el) action.tap(el).perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_accessibility_id('Expandable Lists') # self.assertIsNotNone(el) action.tap(el).perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_accessibility_id('1. Custom Adapter') # self.assertIsNotNone(el) action.tap(el).perform() sleep(SLEEPY_TIME) el = self.driver.find_element_by_name('People Names') # self.assertIsNotNone(el) action.press(el).wait(2000).perform() sleep(SLEEPY_TIME) # 'Sample menu' only comes up with a long press, not a press el = self.driver.find_element_by_name('Sample menu') self.assertIsNotNone(el) def test_press_and_moveto(self): el1 = self.driver.find_element_by_accessibility_id('Content') el2 = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.press(el1).move_to(el2).release().perform() el = self.driver.find_element_by_accessibility_id('Views') self.assertIsNotNone(el) def test_press_and_moveto_x_y(self): el1 = self.driver.find_element_by_accessibility_id('Content') el2 = self.driver.find_element_by_accessibility_id('App') action = TouchAction(self.driver) action.press(el1).move_to(el2, 100, 100).release().perform() el = self.driver.find_element_by_accessibility_id('Views') self.assertIsNotNone(el) def test_long_press(self): el1 = self.driver.find_element_by_name('Content') el2 = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.press(el1).move_to(el2).perform() el = self.driver.find_element_by_accessibility_id('Views') # self.assertIsNotNone(el) action.tap(el).perform() el = self.driver.find_element_by_accessibility_id('Expandable Lists') # self.assertIsNotNone(el) action.tap(el).perform() el = self.driver.find_element_by_accessibility_id('1. Custom Adapter') # self.assertIsNotNone(el) action.tap(el).perform() el = self.driver.find_element_by_name('People Names') # self.assertIsNotNone(el) action.long_press(el).perform() # 'Sample menu' only comes up with a long press, not a tap el = self.driver.find_element_by_name('Sample menu') self.assertIsNotNone(el) def test_long_press_x_y(self): el1 = self.driver.find_element_by_name('Content') el2 = self.driver.find_element_by_accessibility_id('Animation') action = TouchAction(self.driver) action.press(el1).move_to(el2).perform() el = self.driver.find_element_by_accessibility_id('Views') # self.assertIsNotNone(el) action.tap(el).perform() el = self.driver.find_element_by_accessibility_id('Expandable Lists') # self.assertIsNotNone(el) action.tap(el).perform() el = self.driver.find_element_by_accessibility_id('1. Custom Adapter') # self.assertIsNotNone(el) action.tap(el).perform() # the element "People Names" is located at 0:110 (top left corner) action.long_press(x=10, y=120).perform() # 'Sample menu' only comes up with a long press, not a tap el = self.driver.find_element_by_name('Sample menu') self.assertIsNotNone(el) def test_drag_and_drop(self): el1 = self.driver.find_element_by_name('Content') el2 = self.driver.find_element_by_name('Animation') self.driver.scroll(el1, el2) el = self.driver.find_element_by_name('Views') action = TouchAction(self.driver) action.tap(el).perform() el = self.driver.find_element_by_name('Drag and Drop') action.tap(el).perform() dd3 = self.driver.find_element_by_id('com.example.android.apis:id/drag_dot_3') dd2 = self.driver.find_element_by_id('com.example.android.apis:id/drag_dot_2') # dnd is stimulated by longpress-move_to-release action.long_press(dd3).move_to(dd2).release().perform() el = self.driver.find_element_by_id('com.example.android.apis:id/drag_result_text') self.assertEqual('Dropped!', el.get_attribute('text')) def test_driver_drag_and_drop(self): el1 = self.driver.find_element_by_name('Content') el2 = self.driver.find_element_by_name('Animation') self.driver.scroll(el1, el2) el = self.driver.find_element_by_name('Views') action = TouchAction(self.driver) action.tap(el).perform() el = self.driver.find_element_by_name('Drag and Drop') action.tap(el).perform() dd3 = self.driver.find_element_by_id('com.example.android.apis:id/drag_dot_3') dd2 = self.driver.find_element_by_id('com.example.android.apis:id/drag_dot_2') self.driver.drag_and_drop(dd3, dd2) el = self.driver.find_element_by_id('com.example.android.apis:id/drag_result_text') self.assertEqual('Dropped!', el.get_attribute('text')) def test_driver_swipe(self): self.assertRaises(NoSuchElementException, self.driver.find_element_by_name, 'Views') self.driver.swipe(100, 500, 100, 100, 800) el = self.driver.find_element_by_name('Views') self.assertIsNotNone(el) if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(TouchActionTests) unittest.TextTestRunner(verbosity=2).run(suite) ``` #### File: pageobjectmodel/pageobject/mainactivity.py ```python from test.functional.pageobjectmodel.locators.main_activity_locator import MainActivityLocators from test.functional.pageobjectmodel.pageobject import * """ This class contains all common method which we will require while executing main activity test """ class MainActivity(BasePage): def __init__(self, driver): super().__init__(driver) self.driver = driver def go_to_login(self): return self.click(MainActivityLocators.LOGIN_ID) def go_to_movies_list(self): return self.click(MainActivityLocators.MOVIES_LIST_ID) def go_to_photo_viewer(self): return self.click(MainActivityLocators.PHOTO_VIEWER_ID) def go_to_view_pager(self): return self.click(MainActivityLocators.VIEW_PAGER_ID) ``` #### File: pageobjectmodel/pageobject/photoviewpage.py ```python from test.functional.pageobjectmodel.locators.photo_viewer_locator import PhotoViewerLocator from test.functional.pageobjectmodel.pageobject import * """ This class contains all common method which we will require while executing photo viewer test """ class PhotoViewer(BasePage): def __init__(self, driver): super().__init__(driver) self.driver = driver def zoom_photo(self): self.zoom_view(PhotoViewerLocator.PHOTO_VIEW_ID) ```
{ "source": "jiteshnambiar/robinhood-portfolio", "score": 4 }
#### File: robinhood-portfolio/backend/excel_writer.py ```python import pandas as pd import xlsxwriter """ Creates New Excel Workbook Usage: >> xls = ExcelWriter(filename) >> xls.add_sheet('sheet1', data_frame1) >> xls.add_sheet('sheet2', data_frame2) >> xls.default_formatting('sheet2') >> xls.save() """ class ExcelWriter(object): def __init__(self, filename): """ https://xlsxwriter.readthedocs.io/working_with_pandas.html # Create a Pandas dataframe from the data. df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]}) # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter('pandas_simple.xlsx', engine='xlsxwriter') # Convert the dataframe to an XlsxWriter Excel object. df.to_excel(writer, sheet_name='Sheet1') # Close the Pandas Excel writer and output the Excel file. writer.save() """ self.filename = filename + '.xlsx' self.writer = pd.ExcelWriter(self.filename) self.workbook = self.writer.book self.sheets = {} def add_sheet(self, sheetname, data_frame): if sheetname in self.sheets: raise Exception("Sheet already exists: [%s]" % sheetname) data_frame.to_excel(self.writer, sheet_name=sheetname) self.sheets[sheetname] = self.writer.sheets[sheetname] def writesheet(self, sheetname, data_frame): data_frame.to_excel(self.workbook, sheet_name=sheetname) def add_cell_format(self, bg_color, font_color): # Add a format with bg_color background fill and font_color text. return self.workbook.add_format({'bg_color': bg_color, 'font_color': font_color}) def freeze_top_row(self, sheetname): self.sheets[sheetname].freeze_panes(1, 0) def freeze_first_column(self, sheetname): self.sheets[sheetname].freeze_panes(0, 1) def adjust_column_width(self, sheetname): for colname, width in self.columnwidth[sheetname].items(): self.sheets[sheetname].set_column(self.headerindex[sheetname][colname], self.headerindex[sheetname][colname], width) def default_formatting(self, sheetname): if sheetname not in self.sheets: raise Exception("Sheet doesn't exist: [%s]" % sheetname) # Add a format. Light red fill with dark red text. format_red = self.workbook.add_format({'bg_color': '#FFC7CE', 'font_color': '#9C0006'}) # Add a format. Green fill with dark green text. format_green = self.workbook.add_format({'bg_color': '#C6EFCE', 'font_color': '#006100'}) # self.adjust_column_width(sheetname) self.freeze_top_row(sheetname) self.freeze_first_column(sheetname) # Highlight Cells greater than 0.6 to show green row_count = self.sheets[sheetname].dim_rowmax column_count = self.sheets[sheetname].dim_colmax first_col = 'B' first_row = 2 last_col = xlsxwriter.utility.xl_col_to_name(column_count) last_row = row_count + 1 range = first_col + str(first_row) + ':' + last_col + str(last_row) self.sheets[sheetname].conditional_format(range, {'type': 'cell', 'criteria': '>=', 'value': 0.6, 'format': format_green}) # Highlight Cells less than -0.6 to show red self.sheets[sheetname].conditional_format(range, {'type': 'cell', 'criteria': '<', 'value': -0.6, 'format': format_red}) ######### # Close # ######### def save(self): # self.workbook.save() self.workbook.close() def close(self): self.save() ```
{ "source": "JiteshRawat/Text_Summarization", "score": 3 }
#### File: JiteshRawat/Text_Summarization/main.py ```python from os import write import streamlit as st import nltk nltk.download("stopwords") from nltk.corpus import stopwords from nltk.cluster.util import cosine_distance import numpy as np import networkx as nx #from transformers import pipeline header = st.beta_container() body = st.beta_container() summary_container = st.beta_container() ######################## Summarization code ######################################## def sentence_similarity(sent1, sent2, stopwords=None): if stopwords is None: stopwords = [] sent1 = [w.lower() for w in sent1] sent2 = [w.lower() for w in sent2] all_words = list(set(sent1 + sent2)) vector1 = [0] * len(all_words) vector2 = [0] * len(all_words) # build the vector for the first sentence for w in sent1: if w in stopwords: continue vector1[all_words.index(w)] += 1 # build the vector for the second sentence for w in sent2: if w in stopwords: continue vector2[all_words.index(w)] += 1 return 1 - cosine_distance(vector1, vector2) def build_similarity_matrix(sentences, stop_words): # Create an empty similarity matrix similarity_matrix = np.zeros((len(sentences), len(sentences))) for idx1 in range(len(sentences)): for idx2 in range(len(sentences)): if idx1 == idx2: # ignore if both are same sentences continue similarity_matrix[idx1][idx2] = sentence_similarity( sentences[idx1], sentences[idx2], stop_words) return similarity_matrix def generate_summary(rawtext, top_n=5): stop_words = stopwords.words('english') summarize_text = [] # Step 1 - Read text anc split it article = rawtext.split(". ") sentences = [] for sentence in article: sentences.append(sentence.replace("[^a-zA-Z]", " ").split(" ")) # Step 2 - Generate Similary Martix across sentences sentence_similarity_martix = build_similarity_matrix(sentences, stop_words) # Step 3 - Rank sentences in similarity martix sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix) scores = nx.pagerank(sentence_similarity_graph) # Step 4 - Sort the rank and pick top sentences ranked_sentence = sorted( ((scores[i], s) for i, s in enumerate(sentences)), reverse=True) for i in range(top_n): summarize_text.append(" ".join(ranked_sentence[i][1])) # Step 5 - Offcourse, output the summarize texr #print("Summarize Text: \n", ". ".join(summarize_text)) return summarize_text # This was a trial for abstractive summarization using transformers which works well but too slow # def abstractive(rawtext): # summarizer = pipeline("summarization") # summary = summarizer(rawtext, max_length=300, # min_length=200, do_sample=False) # summ = summary[0] # return summ['summary_text'] ######################## Frontend code ############################################## with header: st.title('Text Summarization using NLTK') with body: st.header('Extractive Summarization') rawtext = st.text_area('Enter Text Here') sample_col, upload_col = st.beta_columns(2) sample_col.header('Or select a sample file from below') sample = sample_col.selectbox('Or select a sample file', ('kalam_speech.txt', 'Stocks_ FRI_ JUN _8.txt', 'microsoft.txt', 'None'), index=3) if sample != 'None': file = open(sample, "r", encoding= 'cp1252') #st.write(file) rawtext = file.read() upload_col.header('Or upload text file here') uploaded_file = upload_col.file_uploader( 'Choose your .txt file', type="txt") if uploaded_file is not None: rawtext = str(uploaded_file.read(), 'cp1252') no_of_lines = st.slider("Select number of lines in summary", 1, 5, 3) if st.button('Get Summary'): with summary_container: if rawtext == "": st.header('Summary :)') st.write('Please enter text to see summary') else: result = generate_summary(rawtext, no_of_lines) st.header('Summary :)') for i in range(no_of_lines): st.write(result[i]) # Abstractive summary #st.header('Abstractive method') #abstract = abstractive(rawtext) # st.write(abstract) st.header('Actual article') st.write(rawtext) ```
{ "source": "jith47/Urlshortener", "score": 2 }
#### File: management/command/refreshcode.py ```python from django.core.management.base import BaseCommand, CommandError from shortener.model import Kirurl class Command(BaseCommand): help = 'Refresh Kirurl' def add_arguments(self, parser): parser.add_argument('--items', type=int) def handle(self, *args, **options): return Kirurl.objects.refresh_shortcodes(items=options['items']) ``` #### File: src/shortener/views.py ```python from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render, get_object_or_404 from django.views import View from analytics.models import ClickEvent from .forms import SubmitUrlForm from .models import Kirurl # Create your views here. def home_view_fbv(request, *args, **kwargs): if request.method == "POST": print(request.POST) return render(request, "shortener/home.html", {}) class HomeView(View): def get(self, request, *args, **kwargs): the_form = SubmitUrlForm() context = { "title": "Kirr.co", "form": the_form } return render(request, "shortener/home.html", context) # Try Django 1.8 & 1.9 http://joincfe.com/youtube def post(self, request, *args, **kwargs): form = SubmitUrlForm(request.POST) context = { "title": "Kirr.co", "form": form } template = "shortener/home.html" if form.is_valid(): new_url = form.cleaned_data.get("url") obj, created = Kirurl.objects.get_or_create(url=new_url) context = { "object": obj, "created": created, } if created: template = "shortener/success.html" else: template = "shortener/already-exists.html" return render(request, template ,context) class URLRedirectView(View): def get(self, request, shortcode=None, *args, **kwargs): qs = Kirurl.objects.filter(shortcode__iexact=shortcode) if qs.count() != 1 and not qs.exists(): raise Http404 obj = qs.first() actual_url = obj.url if not actual_url.startswith("http"): actual_url = "http://" + actual_url return HttpResponseRedirect(actual_url) ```
{ "source": "jith4j/covid-vaccine-alert-bot", "score": 3 }
#### File: jith4j/covid-vaccine-alert-bot/cowid_bot.py ```python import requests from datetime import datetime base_cowin_url = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByDistrict" api_url_telegram = "https://api.telegram.org/botenteryourbotidhere/sendMessage?chat_id=@__groupid__&text=" now = datetime.now() today_date = now.strftime("%d-%m-%Y") group_id = "" name_list = [] def fetch_data_from_cowin(district_id): querry_params = "?district_id={}&date={}".format(district_id, today_date) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36'} final_url = base_cowin_url + querry_params response = requests.get(final_url, headers=headers) extract_availability_data(response) def extract_availability_data(response): response_json = response.json() for center in response_json["centers"]: for session in center["sessions"]: if session["available_capacity"] > 0 and session["min_age_limit"] == 18: # for 18+ vaccine if int(center["center_id"]) not in name_list: message = "Vaccination centers for {}+ age group: \n{} ({})- Pin: {}. \nVaccine: {} \nFee Type: {} \nTotal {} slots are available on {} \n(Dose 1: {}, Dose 2: {})".format( session["min_age_limit"], center["name"], center["block_name"], center["pincode"], session["vaccine"], center["fee_type"], session["available_capacity"], session["date"], session["available_capacity_dose1"], session["available_capacity_dose2"] ) name_list.append(int(center["center_id"])) print(name_list) message = message + "\n\nCoWin: https://selfregistration.cowin.gov.in" send_message_telegram(message) def send_message_telegram(message): final_telegram_url = api_url_telegram.replace("__groupid__", group_id) final_telegram_url = final_telegram_url + message response = requests.get(final_telegram_url) print(response) while(True): fetch_data_from_cowin(296) # 296 is of Trivandrum district ```
{ "source": "jith4j/Tuberculosis-Classification", "score": 3 }
#### File: jith4j/Tuberculosis-Classification/web.py ```python import streamlit as st import numpy as np from PIL import Image from tensorflow.keras.models import load_model import tensorflow as tf from tempfile import NamedTemporaryFile from tensorflow.keras.preprocessing import image st.set_option('deprecation.showfileUploaderEncoding', False) @st.cache(allow_output_mutation=True) def loading_model(): fp = "./model/model.h5" model_loader = load_model(fp) return model_loader cnn = loading_model() st.write(""" # X-Ray Classification [Tuberculosis/Normal] by AJAS """) temp = st.file_uploader("Upload X-Ray Image") #temp = temp.decode() buffer = temp temp_file = NamedTemporaryFile(delete=False) if buffer: temp_file.write(buffer.getvalue()) st.write(image.load_img(temp_file.name)) if buffer is None: st.text("Oops! that doesn't look like an image. Try again.") else: img = image.load_img(temp_file.name, target_size=( 500, 500), color_mode='grayscale') # Preprocessing the image pp_img = image.img_to_array(img) pp_img = pp_img/255 pp_img = np.expand_dims(pp_img, axis=0) # predict preds = cnn.predict(pp_img) if preds >= 0.5: out = ('I am {:.2%} percent confirmed that this is a Tuberculosis case'.format( preds[0][0])) else: out = ('I am {:.2%} percent confirmed that this is a Normal case'.format( 1-preds[0][0])) st.success(out) image = Image.open(temp) st.image(image, use_column_width=True) ```
{ "source": "Jithendra-k/AshTech-AI_Personal_Voice_Assistant", "score": 3 }
#### File: Jithendra-k/AshTech-AI_Personal_Voice_Assistant/Voice Assistant.py ```python import speech_recognition as sr import pyttsx3 import datetime import wikipedia import webbrowser import os import time import subprocess from ecapture import ecapture as ec import wolframalpha import json import requests import pyaudio print("Loading your AI personal assistant - Ashtech ") engine=pyttsx3.init('sapi5') voices=engine.getProperty('voices') engine.setProperty('voice','voices[0].id') def speak(text): engine.say(text) engine.runAndWait() def wishMe(): hour=datetime.datetime.now().hour if hour>=0 and hour<12: speak("Hello,Good Morning") print("Hello,Good Morning") elif hour>=12 and hour<18: speak("Hello,Good Afternoon") print("Hello,Good Afternoon") else: speak("Hello,Good Evening") print("Hello,Good Evening") def takeCommand(): r=sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio=r.listen(source) try: statement=r.recognize_google(audio,language='en-in') print(f"user said:{statement}\n") except Exception as e: speak("Pardon me, please say that again") return "None" return statement speak("Loading your AI personal assistant AshTech") wishMe() if __name__=='__main__': while True: speak("Tell me how can I help you now?") statement = takeCommand().lower() if statement==0: continue if "good bye" in statement or "ok bye" in statement or "stop" in statement: speak('your personal assistant Ashtech is shutting down,Good bye') print('your personal assistant Ashtech is shutting down,Good bye') break if 'wikipedia' in statement: speak('Searching Wikipedia...') statement =statement.replace("wikipedia", "") results = wikipedia.summary(statement, sentences=3) speak("According to Wikipedia") print(results) speak(results) elif 'open youtube' in statement: webbrowser.open_new_tab("https://www.youtube.com") speak("youtube is open now") time.sleep(5) elif 'open google' in statement: webbrowser.open_new_tab("https://www.google.com") speak("Google chrome is open now") time.sleep(5) elif 'open gmail' in statement: webbrowser.open_new_tab("gmail.com") speak("Google Mail open now") time.sleep(5) elif "shoping" in statement: speak("nice mood sir") webbrowser.open("amazon.com") speak("here you are sir") elif "weather" in statement: api_key = "8ef61edcf1c576d65d836254e11ea420" base_url = "https://api.openweathermap.org/data/2.5/weather?" speak("whats the city name") city_name = takeCommand() complete_url = base_url + "appid=" + api_key + "&q=" + city_name response = requests.get(complete_url) x = response.json() if x["cod"] != "404": y = x["main"] current_temperature = y["temp"] current_humidiy = y["humidity"] z = x["weather"] weather_description = z[0]["description"] speak(" Temperature in kelvin unit is " + str(current_temperature) + "\n humidity in percentage is " + str(current_humidiy) + "\n description " + str(weather_description)) print(" Temperature in kelvin unit = " + str(current_temperature) + "\n humidity (in percentage) = " + str(current_humidiy) + "\n description = " + str(weather_description)) elif 'time' in statement: strTime=datetime.datetime.now().strftime("%H:%M:%S") speak(f"the time is {strTime}") elif 'who are you' in statement or 'what can you do' in statement: speak('I am Ashwin friend Ashtech version 1 point O your persoanl assistant. I am programmed to minor tasks like' 'opening youtube,google chrome,gmail and stackoverflow ,predict time,take a photo,search wikipedia,predict weather' 'in different cities , get top headline news from times of india and you can ask me computational or geographical questions too!') elif "who made you" in statement or "who created you" in statement or "who discovered you" in statement: speak("I was built by <NAME>") print("I was built by <NAME>") elif "open stackoverflow" in statement: webbrowser.open_new_tab("https://stackoverflow.com/login") speak("Here is stackoverflow") elif 'news' in statement: news = webbrowser.open_new_tab("https://timesofindia.indiatimes.com/home/headlines") speak('Here are some headlines from the Times of India,Happy reading') time.sleep(6) elif "camera" in statement or "take a photo" in statement: ec.capture(0,"robo camera","img.jpg") elif 'search' in statement: statement = statement.replace("search", "") webbrowser.open_new_tab(statement) time.sleep(5) elif 'ask' in statement: speak('I can answer to computational and geographical questions and what question do you want to ask now') question=takeCommand() app_id="R2K75H-7ELALHR35X" client = wolframalpha.Client('R2K75H-7ELALHR35X') res = client.query(question) answer = next(res.results).text speak(answer) print(answer) elif "log off" in statement or "sign out" in statement: speak("Ok , your pc will log off in 10 sec make sure you exit from all applications") subprocess.call(["shutdown", "/l"]) time.sleep(3) ```
{ "source": "jithesh82/noms", "score": 3 }
#### File: noms/client/dict_parse.py ```python import operator from ..objects.food import Food def search_parse(search_results): """ Return a simplified version of the json object returned from the USDA API. This deletes extraneous pieces of information that are not important for providing context on the search results. """ if 'errors' in search_results.keys(): return None # Store the search term that was used to produce these results search_term = search_results['foodSearchCriteria']['query'] if search_results['foods'] == []: return None else: return dict(search_term=search_term, items=search_results['foods']) def food_parse(food_results, nutrient_dict, values): """ Return a simplified version of the json object returned from the USDA API. This deletes extraneous pieces of information, including nutrients that are not tracked. It also exchanges nutrient names for their more common names, or "nicknames", as defined in noms.objects.nutrient_dict """ if len(food_results) == 0: return None food_arr = [] tracked_nutrients = [] nutrient_nicknames = [] # nutrient_dict is a global variable; some of the # assignments below alters it value across modules # thus making a shallow copy it nutrient_dict = nutrient_dict()() for nutrient in nutrient_dict: if "nickname" in nutrient.keys(): nutrient_nicknames.append(nutrient["nickname"]) else: nutrient_nicknames.append(None) #nutrient['nutrient_id'] = str(nutrient['nutrient_id']) tracked_nutrients.append(nutrient["nutrient_id"]) # Iterate through each food and simplify names f = 0 for food in food_results: # create a 'value' key and equate it to 'amount' # to take into account the changes in the new # api results for nutrient in food["foodNutrients"]: if 'amount' in nutrient.keys(): nutrient['value'] = nutrient['amount'] else: nutrient['value'] = 0 nutrient['nutrient']['number'] = float(nutrient['nutrient']['number']) nutrient['name'] = nutrient['nutrient']['name'] nutrient['unit'] = nutrient['nutrient']['unitName'] nutrient['nutrient_id'] = nutrient['nutrient']['number'] # sort nutrients by id if not already n_list = food["foodNutrients"] n_list.sort(key=lambda x: x['nutrient']['number']) # end sort n = 0 for nutrient in food["foodNutrients"]: if n == len(tracked_nutrients): break # check if this is a nutrient we should record if (nutrient["nutrient"]['number']) == (tracked_nutrients[n]): potential_name = nutrient_nicknames[n] if potential_name != None: nutrient["nutrient"]["name"] = potential_name n += 1 # check if the food doesn't contain a tracked nutrient while n < len(tracked_nutrients) and (nutrient["nutrient"]["number"]) > tracked_nutrients[n]: to_insert = nutrient_dict[n].copy() to_insert.update(value=0) to_insert["nutrient"] = {"number":to_insert["nutrient_id"]} food["foodNutrients"].insert(n,to_insert) n += 1 while n < len(tracked_nutrients) and food["foodNutrients"][-1]["nutrient"]["number"] < tracked_nutrients[-1]: to_insert = nutrient_dict[n].copy() to_insert.update(value=0) to_insert["nutrient"] = {"number":to_insert["nutrient_id"]} food["foodNutrients"].insert(n,to_insert) n += 1 n = 0 n_to_del = [] for nutrient in food["foodNutrients"]: # check if this is a nutrient we should delete if (nutrient["nutrient"]["number"]) not in tracked_nutrients: n_to_del.append(n) n += 1 offset = 0 for del_n in n_to_del: del food["foodNutrients"][del_n - offset] offset += 1 # sort nutrients by id if not already n_list = food["foodNutrients"] n_list.sort(key=lambda x: x['nutrient']['number']) # end sort n = 0 for nutrient in food["foodNutrients"]: if nutrient_nicknames[n] != None: nutrient["name"] = nutrient_nicknames[n] nutrient["value"] = nutrient["value"] * (values[f]/100) n += 1 # deleting keys except that in keys_to_keep keys_to_keep = ['nutrient_id', 'name', 'group', 'unit', 'value'] for nutrient in food['foodNutrients']: nutrient_copy = nutrient.copy() for key in nutrient_copy: if key not in keys_to_keep: del nutrient[key] f += 1 food_arr.append(Food(food)) return food_arr ```
{ "source": "jithil-kore/angular", "score": 2 }
#### File: browsers/chromium/chromium.bzl ```python load("//dev-infra/browsers:platform_http_file.bzl", "platform_http_file") """ Defines repositories for Chromium that can be used inside Karma unit tests and Protractor e2e tests with Bazel. """ def define_chromium_repositories(): # To update to a newer version of Chromium see instructions in # https://github.com/angular/angular/blob/master/dev-infra/browsers/README.md. platform_http_file( name = "org_chromium_chromium_amd64", licenses = ["notice"], # BSD 3-clause (maybe more?) sha256 = "36759ed6d151645d00a3a015200334edc70188b422eec51bcaa5790c8e906e27", # 87.0.4280 urls = ["https://commondatastorage.googleapis.com/chromium-browser-snapshots/Linux_x64/812847/chrome-linux.zip"], ) platform_http_file( name = "org_chromium_chromium_macos", licenses = ["notice"], # BSD 3-clause (maybe more?) sha256 = "e10533c84ef57232975d6bde9cd28fd0354371e9556dda85e01178e6dcd56b93", # 87.0.4280 urls = ["https://commondatastorage.googleapis.com/chromium-browser-snapshots/Mac/812851/chrome-mac.zip"], ) platform_http_file( name = "org_chromium_chromium_windows", licenses = ["notice"], # BSD 3-clause (maybe more?) sha256 = "40d0dec1892d729db2f7d8f27feff762b070a02f04d4e14f4e37b97d6b7c3c8f", # 87.0.4280 urls = ["https://commondatastorage.googleapis.com/chromium-browser-snapshots/Win/812822/chrome-win.zip"], ) platform_http_file( name = "org_chromium_chromedriver_amd64", licenses = ["reciprocal"], # BSD 3-clause, ICU, MPL 1.1, libpng (BSD/MIT-like), Academic Free License v. 2.0, BSD 2-clause, MIT sha256 = "d859f8ecb21e26d3ddaf3f229da695bc86512f4e6c9fe32533af7a8b36783ec5", # 87.0.4280 urls = ["https://commondatastorage.googleapis.com/chromium-browser-snapshots/Linux_x64/812847/chromedriver_linux64.zip"], ) platform_http_file( name = "org_chromium_chromedriver_macos", licenses = ["reciprocal"], # BSD 3-clause, ICU, MPL 1.1, libpng (BSD/MIT-like), Academic Free License v. 2.0, BSD 2-clause, MIT sha256 = "aa7a99fa23287725d7108cc07baa94e6f0ef4171ff7b134018387a939a67d93d", # 87.0.4280 urls = ["https://commondatastorage.googleapis.com/chromium-browser-snapshots/Mac/812851/chromedriver_mac64.zip"], ) platform_http_file( name = "org_chromium_chromedriver_windows", licenses = ["reciprocal"], # BSD 3-clause, ICU, MPL 1.1, libpng (BSD/MIT-like), Academic Free License v. 2.0, BSD 2-clause, MIT sha256 = "826f2bd0c50b823e7642860ed08cacf69d3756002a71ac30cdd77c68f31d2d24", # 87.0.4280 urls = ["https://commondatastorage.googleapis.com/chromium-browser-snapshots/Win/812822/chromedriver_win32.zip"], ) ```
{ "source": "Jithin0801/Code-Breaker-Console-Game", "score": 4 }
#### File: Jithin0801/Code-Breaker-Console-Game/breaker.py ```python import random MATCH = "One of the digits is a match!" CLOSE = "You are close! One of the digit is a correct but in wrong position!" NOT_CLOSE = "Not even close!" CORRECT = "Oh! you got me correctly!" guess_flag = 0 def get_guess(): global guess_flag if guess_flag == 0: return list(input("What is you guess? ")) else: return list(input("Guess again! ")) def generate_code(): l = [str(i) for i in range(10)] random.shuffle(l) return l[:3] def generate_result(clue): return MATCH if MATCH in clue else CLOSE if CLOSE in clue else NOT_CLOSE def find_guess(code, user_code): global guess_flag clue = [] if code == user_code: return CORRECT else: for index, num in enumerate(user_code): guess_flag = 1 if num == code[index]: clue.append(MATCH) elif num in code: clue.append(CLOSE) else: clue.append(NOT_CLOSE) result = generate_result(clue) return result def game(): guess = [] code = generate_code() f = open("code.txt", "w") st = "".join(code) f.write(st) f.close() while guess != CORRECT: user_code = get_guess() guess = find_guess(code, user_code) print(guess) #Driver code flag = 0 def main(): ans = "Y" global flag while ans == "Y" or ans == "y": if flag == 1: print("Continue the game? (Y-Yes/N-No)") else: print("Hello, Code Breaker!") print("Start the game? (Y-Yes/N-No)") ans = input() if ans == "Y" or ans == "y": flag = 1 game() else: break main() ```
{ "source": "jithin-c/screenshot-paste-and-upload-django", "score": 2 }
#### File: screenshot-paste-and-upload-django/file_upload/views.py ```python import os import uuid from django.conf import settings from django.http.response import JsonResponse from django.shortcuts import render_to_response from django.template.context import RequestContext from django.views.decorators.http import require_POST from file_upload.models import Screenshot def list_screenshots(request): screenshots = Screenshot.objects.all() return render_to_response('landing_page.html',{'screenshots':screenshots},context_instance=RequestContext(request)) @require_POST def upload_screenshot(request): unique_filename = 'screenshot_' + str(uuid.uuid4()) + '.png' file_upload_path = os.path.join('screenshots', unique_filename) try: content = request.POST.get('data').replace('data:image/png;base64,', '') fh = open(os.path.join(settings.MEDIA_ROOT,file_upload_path), "wb") fh.write(content.decode('base64')) fh.close() file = Screenshot.objects.create(attachment = file_upload_path) return JsonResponse({ 'status': 'success', # 'delete_url': reverse('delete_file', kwargs={'pk':file.id}), 'fileName': unique_filename, 'url': file.attachment.url }) except Exception,e: print e return JsonResponse({'status': 'error'}) ```
{ "source": "jithinjustin/ExploringSpark", "score": 3 }
#### File: spark/wordcount/WordCountTextFile.py ```python __author__ = 'jithinjustin' import sys sys.path.append("/Users/jithinjustin/spark-1.4.1-bin-hadoop2.6/python/") from operator import add from pyspark import SparkContext import re def wordCount(wordListRDD): wordCountRDD=wordListRDD.map(lambda x:(x,1)).reduceByKey(add) return wordCountRDD def removePunctuation(text): return re.sub(r'[^a-z0-9\s]','',text.lower()).strip() if __name__ == '__main__': sc=SparkContext() shakespeareRDD = (sc .textFile("shakesphere.txt", 8) .map(removePunctuation)) shakespeareRDD.cache() #zip index with line print '\n'.join(shakespeareRDD .zipWithIndex() # to (line, lineNum) .map(lambda (l, num): '{0}: {1}'.format(num, l)) # to 'lineNum: line' .take(15)) #convert the sentences to individual words shakespeareWordsRDD = shakespeareRDD.flatMap(lambda x: x.split()) shakespeareWordCount = shakespeareWordsRDD.count() print shakespeareWordsRDD.top(5) print shakespeareWordCount #prune out empty words shakeWordsRDD = shakespeareWordsRDD.filter(lambda x : (x!='')) shakeWordCount = shakeWordsRDD.count() print shakeWordCount #give top 20 words with count top20WordsAndCounts = wordCount(shakeWordsRDD).takeOrdered(20, lambda (k, v): -v) print '\n'.join(map(lambda (w, c): '{0}: {1}'.format(w, c), top20WordsAndCounts)) ```
{ "source": "JithinKS97/dune-analytics", "score": 3 }
#### File: src/dune_analytics/__init__.py ```python from gql import gql, Client from gql.transport.requests import RequestsHTTPTransport import time class Dune: def __init__(self, username=None, password=<PASSWORD>, transport=None): if transport is None: transport = RequestsHTTPTransport(url="https://core-hsr.duneanalytics.com/v1/graphql") self.client = Client(transport=transport, fetch_schema_from_transport=True) if username and password: self.authenticate(username, password) def authenticate(self, username, password): transport = self.client.transport csrf = transport.session.post("https://duneanalytics.com/api/auth/csrf").json()['csrf'] r_auth = transport.session.post("https://duneanalytics.com/api/auth", data={ "csrf": csrf, "action": "login", "username": username, "password": password }, headers={ "Origin": "https://duneanalytics.com", "Referer": "https://duneanalytics.com/auth/login" }, allow_redirects=False) self.refresh_session() def refresh_session(self): r_session = self.client.transport.session.post("https://duneanalytics.com/api/auth/session") dune_session = r_session.json() if 'token' in dune_session: self.sub = dune_session['sub'] self.client.transport.session.headers['Authorization'] = "Bearer " + dune_session['token'] self.user = self.find_session_user() def find_session_user(self): gql_query = gql(""" query FindSessionUser($sub: uuid!) { users(where: { private_info: { cognito_id: {_eq: $sub} } }) { ...SessionUser __typename } } fragment SessionUser on users { id name profile_image_url memberships { group { ...Group __typename } __typename } __typename } fragment Group on groups { id type permissions __typename } """ ) result = self.client.execute(gql_query, operation_name="FindSessionUser", variable_values={"sub": self.sub}) return result['users'][0] def query(self, query): self.refresh_session() new_query = self.upsert_query(query) job_id = self.execute_query(new_query['id']) self.wait_for_job(job_id) return self.find_result_data_by_job(job_id) def list_tables(self, name_filter=None, dataset_id=4, limit=50): gql_query = gql(''' query ListSchemas($dataset_id: Int!, $query: [blockchain_schemas_bool_exp], $offset: Int!, $limit: Int!) { blockchain_schemas( where: {dataset_id: {_eq: $dataset_id}, _and: $query} order_by: [{schema: asc}, {table: asc}] distinct_on: [schema, table] offset: $offset limit: $limit ) { schema table __typename } } ''') query = [] offset = 0 if limit > 10000: raise Exception("Please don't abuse Dune's free service") if name_filter is not None: query.append({ "full_name": { "_ilike": '%' + name_filter + '%' } }) while True: result = self.client.execute(gql_query, variable_values={ "dataset_id": dataset_id, "limit": limit, "query": query, "offset": offset }) if len(result['blockchain_schemas']) == 0: break for table in result['blockchain_schemas']: yield {"schema": table['schema'], "table": table['table']} offset += limit time.sleep(1) # Let's be gentle. Dune is growing def list_columns(self, schema, table, dataset_id=4, limit=50): gql_query = gql(''' query ListColumns($dataset_id: Int!, $schema: String!, $table: String!, $limit: Int!) { blockchain_schemas( where: {dataset_id: {_eq: $dataset_id}, schema: {_eq: $schema}, table: {_eq: $table}} order_by: {column_name: asc} limit: $limit ) { column_name data_type __typename } } ''') result = self.client.execute(gql_query, variable_values={ "schema": schema, "table": table, "dataset_id": dataset_id, "limit": limit }) for column in result['blockchain_schemas']: yield { "name": columns['column_name'], "data_type": column['data_type'] } def upsert_query(self, query, dataset_id=4): gql_query = gql(""" mutation UpsertQuery($session_id: Int!, $object: queries_insert_input!, $on_conflict: queries_on_conflict!, $favs_last_24h: Boolean! = false, $favs_last_7d: Boolean! = false, $favs_last_30d: Boolean! = false, $favs_all_time: Boolean! = true) { insert_queries_one(object: $object, on_conflict: $on_conflict) { ...Query favorite_queries(where: {user_id: {_eq: $session_id}}, limit: 1) { created_at __typename } __typename } } fragment Query on queries { id dataset_id name description query private_to_group_id is_temp is_archived created_at updated_at schedule tags parameters user { ...User __typename } visualizations { id type name options created_at __typename } favorite_queries_aggregate @include(if: $favs_all_time) { aggregate { count __typename } __typename } query_favorite_count_last_24h @include(if: $favs_last_24h) { favorite_count __typename } query_favorite_count_last_7d @include(if: $favs_last_7d) { favorite_count __typename } query_favorite_count_last_30d @include(if: $favs_last_30d) { favorite_count __typename } __typename } fragment User on users { id name profile_image_url __typename } """ ) result = self.client.execute(gql_query, operation_name="UpsertQuery", variable_values={ "favs_last_24h": False, "favs_last_7d": False, "favs_last_30d": False, "favs_all_time": False, "object": { "schedule": None, "dataset_id": dataset_id, "name": "Jupyter Temporary Query", "query": query, "user_id": self.user['id'], "description": "", "is_archived": False, "is_temp": True, "parameters": [], "visualizations": { "data": [ { "type": "table", "name": "Query results", "options": {} } ], "on_conflict": { "constraint": "visualizations_pkey", "update_columns": [ "name", "options" ] } } }, "on_conflict": { "constraint": "queries_pkey", "update_columns": [ "dataset_id", "name", "description", "query", "schedule", "is_archived", "is_temp", "tags", "parameters" ] }, "session_id": self.user['id'] }) return result['insert_queries_one'] def execute_query(self, query_id, **kwargs): gql_query = gql(""" mutation ExecuteQuery($query_id: Int!, $parameters: [Parameter!]!) { execute_query(query_id: $query_id, parameters: $parameters) { job_id __typename } } """) result = self.client.execute(gql_query, operation_name="ExecuteQuery", variable_values={ "query_id": query_id, "parameters": [ { "key": key, "type": "text", "value": value} for key, value in kwargs.items() ] }) return result['execute_query']['job_id'] def find_result_job(self, job_id): gql_query = gql(""" query FindResultJob($job_id: uuid) { jobs(where: {id: {_eq: $job_id}}) { id user_id locked_until created_at category __typename } view_queue_positions(where: {id: {_eq: $job_id}}) { pos __typename } } """) result = self.client.execute(gql_query, operation_name="FindResultJob", variable_values={ "job_id": job_id }) return result['jobs'] def wait_for_job(self, job_id): while True: jobs = self.find_result_job(job_id) if len(jobs) == 0: break else: time.sleep(1) def find_result_data_by_job(self, job_id): gql_query = gql(""" query FindResultDataByJob($job_id: uuid!) { query_results(where: {job_id: {_eq: $job_id}}) { id job_id error runtime generated_at columns __typename } get_result_by_job_id(args: {want_job_id: $job_id}) { data __typename } } """) result = self.client.execute(gql_query, operation_name="FindResultDataByJob", variable_values={ "job_id": job_id }) for item in result['get_result_by_job_id']: yield item['data'] ```
{ "source": "jithin-k-sreedharan/fourier_learning", "score": 2 }
#### File: fourier_learning/src/setup.py ```python from distutils.core import setup # from distutils.extension import Extension from Cython.Build import cythonize, build_ext import os import sysconfig import numpy as np def get_ext_filename_without_platform_suffix(filename): name, ext = os.path.splitext(filename) ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix == ext: return filename ext_suffix = ext_suffix.replace(ext, '') idx = name.find(ext_suffix) if idx == -1: return filename else: return name[:idx] + ext class BuildExtWithoutPlatformSuffix(build_ext): def get_ext_filename(self, ext_name): filename = super().get_ext_filename(ext_name) return get_ext_filename_without_platform_suffix(filename) setup(name='Fourier coefficient', cmdclass={'build_ext': BuildExtWithoutPlatformSuffix}, ext_modules=cythonize("*.pyx", annotate=True), include_dirs=[np.get_include()], ) ```
{ "source": "jithin-mathew/Python-Autocomplete", "score": 3 }
#### File: jithin-mathew/Python-Autocomplete/extract_code.py ```python import os from pathlib import Path from typing import List, NamedTuple from lab.logger import Logger from parser import tokenizer from parser.tokenizer import encode, parse_string COMMENT = '#' MULTI_COMMENT = '"""' _logger = Logger() class _PythonFile(NamedTuple): relative_path: str project: str path: Path class _GetPythonFiles: """ Get list of python files and their paths inside `data/source` folder """ def __init__(self): self.source_path = Path(os.getcwd()) / 'data' / 'source' self.files: List[_PythonFile] = [] self.get_python_files(self.source_path) def add_file(self, path: Path): """ Add a file to the list of tiles """ project = path.relative_to(self.source_path).parents project = project[len(project) - 2] relative_path = path.relative_to(self.source_path / project) self.files.append(_PythonFile(relative_path=str(relative_path), project=str(project), path=path)) def get_python_files(self, path: Path): """ Recursively collect files """ for p in path.iterdir(): if p.is_dir(): self.get_python_files(p) else: if p.suffix == '.py': self.add_file(p) def _fix_indentation(parsed: List[tokenizer.ParsedToken]) -> List[tokenizer.ParsedToken]: """ Change indentation tokens. Remove `DEDENT` tokens and add `INDENT` tokens to each line. This is easier for prediction. """ res: List[tokenizer.ParsedToken] = [] indentation = 0 indented = False for t in parsed: if t.type == tokenizer.TokenType.indent: indentation += 1 elif t.type == tokenizer.TokenType.dedent: indentation -= 1 elif t.type in [tokenizer.TokenType.new_line, tokenizer.TokenType.eof]: indented = False res.append(t) else: if not indented: for _ in range(indentation): res.append(tokenizer.ParsedToken(tokenizer.TokenType.indent, 0)) indented = True res.append(t) return res def _remove_comments(parsed: List[tokenizer.ParsedToken]) -> List[tokenizer.ParsedToken]: """ Remove comment tokens """ res = [] for p in parsed: if p.type == tokenizer.TokenType.comment: continue else: res.append(p) return res def _remove_empty_lines(parsed: List[tokenizer.ParsedToken]) -> List[tokenizer.ParsedToken]: """ Remove empty lines """ tokens = [tokenizer.TokenType.new_line, tokenizer.TokenType.new_line] res = [] for p in parsed: for i in range(1): tokens[i] = tokens[i + 1] tokens[-1] = p.type all_new_line = True for t in tokens: if t != tokenizer.TokenType.new_line: all_new_line = False if all_new_line: continue else: res.append(p) return res def _read_file(path: Path) -> List[int]: """ Read and encode a file """ with open(str(path)) as f: content = f.read() parsed = parse_string(content) parsed = _remove_comments(parsed) parsed = _remove_empty_lines(parsed) parsed = _fix_indentation(parsed) serialized = encode(parsed) # deserialized = tokenizer.deserialize(serialized) # for i in range(len(serialized)): # assert deserialized[i] == parsed[i] # # res = to_text(deserialized) # print(res) return serialized def main(): source_files = _GetPythonFiles().files _logger.info(files=len(source_files)) with open(str(Path(os.getcwd()) / 'data' / 'all.py'), 'w') as f: with _logger.section("Parse", total_steps=len(source_files)): for i, source in enumerate(source_files): try: serialized = _read_file(source.path) except Exception as e: print(source.path) print(e) continue serialized = [str(t) for t in serialized] f.write(f"{str(source.path)}\n") f.write(" ".join(serialized) + "\n") f.flush() _logger.progress(i + 1) if __name__ == '__main__': main() ``` #### File: Python-Autocomplete/parser/merge_tokens.py ```python from typing import List, Dict, Optional import numpy as np from lab.logger import Logger from parser import tokenizer from parser.load import EncodedFile class InputProcessor: """ TODO: We should do this at tokenizer level """ TYPE_MASK_BASE = 1 << 20 MAX_LENGTH = [1, 80, 25] def __init__(self, logger: Logger): self.logger = logger self.infos: List[List[IdentifierInfo]] = [[], []] self.dictionaries: List[Dict[str, int]] = [{} for _ in self.infos] self.arrays: List[np.ndarray] = [np.array([], dtype=np.uint8) for _ in self.infos] self.counts: List[int] = [0 for _ in self.infos] types = [tokenizer.TokenType.name, tokenizer.TokenType.number] # -1 because this is used right now for decoding, # and we've added 1 since 0 is used for padding self.offsets: List[int] = [0] + [tokenizer.get_vocab_offset(t) - 1 for t in types] def _add_to(self, type_idx: int, key: str, arr: np.ndarray): idx = self.dictionaries[type_idx] infos: List[IdentifierInfo] = self.infos[type_idx] data_array = self.arrays[type_idx] if key in idx: infos[idx[key]].count += 1 return idx[key] = len(infos) infos.append(IdentifierInfo(len(infos), len(data_array), len(arr), key)) self.arrays[type_idx] = np.concatenate((data_array, arr), axis=0) def gather(self, input_codes: np.ndarray): types = [tokenizer.TokenType.name, tokenizer.TokenType.number] offsets: List[int] = [tokenizer.get_vocab_offset(t) for t in types] strings: List[Optional[str]] = [None for _ in types] arrays: List[List[int]] = [[] for _ in types] for c in input_codes: t = tokenizer.DESERIALIZE[c] for type_idx, token_type in enumerate(types): if t.type != token_type: if strings[type_idx] is not None: self._add_to(type_idx, strings[type_idx], np.array(arrays[type_idx], dtype=np.uint8)) strings[type_idx] = None arrays[type_idx] = [] else: ch = tokenizer.DECODE[c][0] # add one because 0 is for padding arrays[type_idx].append(c + 1 - offsets[type_idx]) if strings[type_idx] is None: strings[type_idx] = ch else: strings[type_idx] += ch for type_idx, _ in enumerate(types): if strings[type_idx] is not None: self._add_to(type_idx, strings[type_idx], np.array(arrays[type_idx], dtype=np.uint8)) def gather_files(self, files: List[EncodedFile]): for f in self.logger.iterator("Counting", files): self.gather(f.codes) def transform(self, input_codes: np.ndarray): types = [tokenizer.TokenType.name, tokenizer.TokenType.number] strings: List[Optional[str]] = [None for _ in types] type_mask = [] codes = [] for c in input_codes: t = tokenizer.DESERIALIZE[c] skip = False for type_idx, token_type in enumerate(types): if t.type != token_type: if strings[type_idx] is not None: type_mask.append(type_idx + 1) idx = self.dictionaries[type_idx][strings[type_idx]] codes.append(self.infos[type_idx][idx].code) strings[type_idx] = None else: ch = tokenizer.DECODE[c][0] # add one because 0 is for padding if strings[type_idx] is None: strings[type_idx] = ch else: strings[type_idx] += ch skip = True if skip: continue type_mask.append(0) codes.append(c) for type_idx, token_type in enumerate(types): if strings[type_idx] is not None: type_mask.append(type_idx + 1) idx = self.dictionaries[type_idx][strings[type_idx]] codes.append(self.infos[type_idx][idx].code) strings[type_idx] = None codes = np.array(codes, dtype=np.int32) type_mask = np.array(type_mask, dtype=np.int32) codes = type_mask * self.TYPE_MASK_BASE + codes return codes def transform_files(self, files: List[EncodedFile]) -> List[EncodedFile]: transformed = [] for f in self.logger.iterator("Transforming", files): transformed.append(EncodedFile(f.path, self.transform(f.codes))) return transformed class IdentifierInfo: code: int count: int offset: int length: int string: str def __init__(self, code, offset, length, string): self.code = code self.count = 1 self.offset = offset self.length = length self.string = string ```
{ "source": "jithin-qis/face-tagging", "score": 3 }
#### File: face-tagging/core/code.py ```python import cv2 import sys import face_recognition import os # from tkinter.filedialog import * def blur_img(post, pro_pic): imagePath = post pro = pro_pic # print(pro) pro = cv2.imread(pro) image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") faces = faceCascade.detectMultiScale( gray, scaleFactor=1.3, minNeighbors=3, minSize=(30, 30) ) # print("[INFO] Found {0} Faces!".format(len(faces))) images = os.listdir(os.path.join(os.getcwd(),'core','data')) for i in images: os.remove(os.path.join(os.getcwd(),'core','data',i)) cv2.imwrite(os.path.join(os.getcwd(),'core','data','1.jpg'),pro) m=0 im=os.listdir(os.path.join(os.getcwd(),'core','face')) for i in im: os.remove(os.path.join(os.getcwd(),'core','face',i)) for (x, y, w, h) in faces: m=m+1 name=str(m)+'.jpg' path=os.path.join(os.path.join(os.getcwd(),'core','face'),name) # print(path) # cv2.imshow('faces',image[y:y+h,x:x+w]) # cv2.waitKey(1000) cv2.imwrite(path,image[y:y+h,x:x+w]) # cv2.imwrite(images[0],image[y:y+h,x:x+w]) # cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 6) image_to_be_matched = face_recognition.load_image_file(path) try: img_encoded = face_recognition.face_encodings(image_to_be_matched)[0] except IndexError: continue for face in images: ## print(face) # load the image current_image = face_recognition.load_image_file(os.path.join(os.getcwd(),'core','data',face)) # encode the loaded image into a feature vector current_image_encoded = face_recognition.face_encodings(current_image)[0] # match your image with the image and check if it matches result = face_recognition.compare_faces( [img_encoded], current_image_encoded) if result ==[True]: print('+++++++++++++++++Found this',face) aaa=image[y:y+h,x:x+w] blurImg = cv2.blur(aaa,(70,70)) blurImg = cv2.blur(blurImg,(70,70)) image[y:y+h,x:x+w]=blurImg # cv2.imshow('image',cv2.resize(image,(256,256))) # cv2.waitKey(4000) # cv2.imshow('image',cv2.resize(image,(256,256))) # cv2.waitKey(1000) cv2.imwrite(imagePath,image) def check_img(post, pro_pic): imagePath = post pro = pro_pic # print(pro) pro = cv2.imread(pro) image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") faces = faceCascade.detectMultiScale( gray, scaleFactor=1.3, minNeighbors=3, minSize=(30, 30) ) # print("[INFO] Found {0} Faces!".format(len(faces))) images = os.listdir(os.path.join(os.getcwd(),'core','data')) for i in images: os.remove(os.path.join(os.getcwd(),'core','data',i)) cv2.imwrite(os.path.join(os.getcwd(),'core','data','1.jpg'),pro) m=0 im=os.listdir(os.path.join(os.getcwd(),'core','face')) for i in im: os.remove(os.path.join(os.getcwd(),'core','face',i)) for (x, y, w, h) in faces: m=m+1 name=str(m)+'.jpg' path=os.path.join(os.path.join(os.getcwd(),'core','face'),name) # print(path) # cv2.imshow('faces',image[y:y+h,x:x+w]) # cv2.waitKey(1000) cv2.imwrite(path,image[y:y+h,x:x+w]) # cv2.imwrite(images[0],image[y:y+h,x:x+w]) # cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 6) image_to_be_matched = face_recognition.load_image_file(path) try: img_encoded = face_recognition.face_encodings(image_to_be_matched)[0] except IndexError: continue for face in images: ## print(face) # load the image current_image = face_recognition.load_image_file(os.path.join(os.getcwd(),'core','data',face)) # encode the loaded image into a feature vector current_image_encoded = face_recognition.face_encodings(current_image)[0] # match your image with the image and check if it matches result = face_recognition.compare_faces( [img_encoded], current_image_encoded) if result ==[True]: return pro_pic ```
{ "source": "jithinrkoshy/dhruma-django-website", "score": 2 }
#### File: dhruma/dh_app/views.py ```python from django.shortcuts import render from django.http import HttpResponse from dh_app.models import TreeModel from dh_app.forms import messageForm # Create your views here. def index(request): tree = TreeModel.objects.all() form = messageForm() if request.method == 'POST': form = messageForm(request.POST) if form.is_valid(): form.save(commit=True) form = messageForm() else: print('ERROR') return render(request,'dh_app/index.html',context={'tree':tree,'form':form}) def tree(request,uuid): forest = TreeModel.objects.all() flag = False for tree in forest: if(tree.tree_class == uuid): tree_obj = tree return render(request,'dh_app/treeinfo.html',context = {'tree':tree_obj}) ```
{ "source": "jithinsarath/python3notes", "score": 5 }
#### File: jithinsarath/python3notes/decorators.py ```python def div(a, b): return a / b print(div(4, 2)) print(div(2, 4)) # Let's say that I have a requirement to divide the largest by smallest, no matter what order it is # How can I implement without touching the original code # We define a smarter div function that takes another function as an input def smart_div(function): # Within this function we define another function that takes the same number of arguments as the original function to which # We are adding features def worker(a, b): # Now we implement the features if a < b: a, b = b, a # and then call the original function. Note that the values passed have already been manipulated. return function(a, b) # Finally, we return the inner function return worker # We are now re-defining the div() function in our code. div = smart_div(div) # And when you now call, it uses the new feature to calculate. print(div(4, 2)) print(div(2, 4)) ```
{ "source": "jithinsunnyofficial/TeleVital-MicrosoftHack", "score": 3 }
#### File: jithinsunnyofficial/TeleVital-MicrosoftHack/patientPrioritizer.py ```python import pyrebase from flask import Flask, request from flask_restful import Resource, Api import pickle app = Flask(__name__) api = Api(app) class testabusive(Resource): def get(self, user_index): credentials_json = open("credentials.json","rb") config = pickle.load(credentials_json) credentials_json.close() firebase = pyrebase.initialize_app(config) db = firebase.database() nm = db.child("Appointments/").child(user_index).get() res = nm.val() ##print(res) try: age = int(res['age']) except: age = 44.0 try: cough = int(res['cough']) except: cough = 0.0 try: gender = res['gender'] except: gender = 'male' try: height = int(res['height']) except: height = '170' try: pregnant = res['pregnant'] except: pregnant = 'no' try: spo2 = int(res['spo2']) except: spo2 = 96 try: weight = int(res['weight']) except: weight = 68 try: tired = int(res['tiredness']) except: tired = 0.0 try: temp = int(res['temp']) except: temp = 98 try: sorethroat = int(res['sorethroat']) except: sorethroat = 0.0 try: resp = int(res['rr']) except: resp = 13.0 try: precond = res['precon'] except: precond = 'no' try: heart = int(res['hr']) except: heart = 50.0 try: breathing = int(res['breathingdiff']) except: breathing = 0.0 body_mass_index = 0.0 death_rate_age = 0.0 bmi_weight = 0.0 death_rate_gender = 0.0 death_rate_heart = 0.0 death_rate_resp = 0.0 if pregnant.lower() == "yes": death_rate_preg = 6.0 else: death_rate_preg = 0.0 if precond.lower() == "yes": death_rate_preconding = 6.0 else: death_rate_preconding = 0.0 height = int(height) * 0.393701 weight = int(weight) * 2.20462 body_mass_index = (int(weight) * 703) / (int(height) ** 2) if body_mass_index < 18.5: bmi_weight=.05 elif body_mass_index < 24.9: bmi_weight=0 elif body_mass_index > 25.0 and body_mass_index < 28.9: bmi_weight=.07 elif body_mass_index > 28.9 and body_mass_index < 34.9: bmi_weight=.08 elif body_mass_index > 34.9 and body_mass_index < 39.9: bmi_weight=.09 else: bmi_weight=1.0 #print("The death_rate_preg is " + str(death_rate_preg)) #print("The death_rate_preexisting is " + str(death_rate_preexisting)) #print("A person with a BMI of " + str(body_mass_index )) if int(age) < 9: death_rate_age=0.0 elif int(age) < 39: death_rate_age=1.0 elif int(age) < 49: death_rate_age=3.0 elif int(age) < 59: death_rate_age=3.0 elif int(age) < 69: death_rate_age=6.0 elif int(age) < 79: death_rate_age=7.0 else: death_rate_age=10.0 #print("The death_rate_age is " + str(death_rate_age)) if gender.lower() == "male": death_rate_gender=6.0 else: death_rate_gender=4.0 #print("The death_rate_gender is " + str(death_rate_gender)) #athletes have heart rate of 40(implies good functioning of heart) #less than 40 is abnormal if int(heart) < 40: death_rate_heart=5.0 elif int(heart) <60 and heart > 40: death_rate_heart=0.0 elif int(heart) > 60 and heart < 100 : death_rate_heart=0.0 else: death_rate_heart=5.0 #print("The death_rate_heart is " + str(death_rate_heart)) #given more imporance to respiratory rate if int(resp) < 10: death_rate_resp=10.0 elif int(resp) < 12: death_rate_resp=9.0 elif int(resp) > 12 and int(resp) < 20 : death_rate_resp=0.0 elif int(resp) > 20 and int(resp) < 25 : death_rate_resp=5.0 elif int(resp) > 25 and int(resp) < 27 : death_rate_resp=9.0 elif int(resp) > 27 : death_rate_resp=10.0 #print("The death_rate_resp is " + str(death_rate_resp)) if int(spo2) < 90: death_rate_spo=7.0 elif int(spo2) >90 and int(spo2) <100: death_rate_spo=0.0 else: death_rate_spo=7.0 #print("The death_rate_spo is " + str(death_rate_spo)) if int(temp) < 97: death_rate_temp = 1.0 elif int(temp) > 97 and int(temp) < 97.7: death_rate_temp = 0.0 elif int(temp) > 97.7 and int(temp) < 100.5: death_rate_temp = 3.0 else: death_rate_temp = 6.0 #print("The death_rate_temp is " + str(death_rate_temp)) if int(cough) == 0: death_rate_cough = 0.0 elif int(cough) == 1: death_rate_cough = 2.0 elif int(cough) == 2: death_rate_cough = 5.0 else: death_rate_cough = 8.0 #print("The death_rate_cough is " + str(death_rate_cough)) if int(sorethroat) == 0: death_rate_throat = 0.0 elif int(sorethroat) == 1: death_rate_throat = 2.0 elif int(sorethroat) == 2: death_rate_throat = 5.0 else: death_rate_throat = 8.0 #print("The death_rate_throat is " + str(death_rate_throat)) if int(breathing) == 0: death_rate_breath = 0.0 elif int(breathing) == 1: death_rate_breath = 2.0 elif int(breathing) == 2: death_rate_breath = 5.0 else: death_rate_breath = 8.0 if int(tired) == 0: death_rate_tired = 0.0 elif int(tired) == 1: death_rate_tired = 2.0 elif int(tired) == 2: death_rate_tired = 5.0 else: death_rate_tired = 8.0 score = death_rate_tired+death_rate_breath+death_rate_throat+death_rate_cough+death_rate_temp+death_rate_spo+death_rate_resp+death_rate_heart+death_rate_gender+death_rate_age+bmi_weight+death_rate_preconding+death_rate_preg print(score) db.child("Appointments/").child(user_index).update({"score":score}) db.child("Consultation/").child(user_index).update({"gscore":score}) return (1) api.add_resource(testabusive, '/score/<user_index>') if __name__ == '__main__': app.run() ``` #### File: jithinsunnyofficial/TeleVital-MicrosoftHack/televitalKiosk.py ```python from application.face_recognition import Recog from imutils.video import VideoStream from flask import Response from flask import Flask from flask import render_template import threading import argparse import datetime import imutils import time import cv2 from tts import convert_and_play from stt import generate_text import concurrent.futures from flow import flow from playsound import playsound from dialogflow_api import analyze_text from keras.models import load_model from label_detect import classify_face recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('trainer/trainer.yml') cascadePath = "Cascades/haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascadePath) font = cv2.FONT_HERSHEY_SIMPLEX names = ['Joel', 'Farhan', 'Jithin'] id = 0 #facearray index # initialize the output frame and a lock used to ensure thread-safe # exchanges of the output frames (useful for multiple browsers/tabs # are viewing tthe stream) outputFrame = None lock = threading.Lock() # initialize a flask object app = Flask(__name__) # initialize the video stream and allow the camera sensor to # warmup #vs = VideoStream(usePiCamera=1).start() vs = cv2.VideoCapture(0) vs.set(3, 640) # set video widht vs.set(4, 480) # set video height # Define min window size to be recognized as a face minW = 0.1*vs.get(3) minH = 0.1*vs.get(4) time.sleep(2.0) def apicaller(text, session_id): final_text = analyze_text(text session_id) if final_text != 'end': convert_and_play(final_text) apicaller(analyze_text(generate_text), session_id) def detect_face(frameCount): # grab global references to the video stream, output frame, and # lock variables global vs, outputFrame, lock # initialize the motion detector and the total number of frames # read thus far md = Recog(accumWeight=0.1) total = 0 # loop over frames from the video stream frame_counter = 0 face_frame_counter = 0 previous_state = 0 previous_id = 'unknown' counter_id = 0 flag = False mainFlag = False flagTemp = 0 finalFlag = True while True: ret, frame = vs.read() height,width = frame.shape[:2] label = classify_face(frame) if(label == 'with_mask'): print("Mask detected") else: print("No mask detected") cv2.putText(frame,str(label),(100,height-20), font, 1,(255,255,255),1,cv2.LINE_AA) try: x = th.is_alive() if x == False and flagTemp == 0: flagTemp = 1 frame_counter = 0 face_frame_counter = 0 previous_state = 0 previous_id = 'unknown' counter_id = 0 flag = False mainFlag = False except: pass if finalFlag: # read the next frame from the video stream, resize it, # convert the frame to grayscale, and blur it frame_counter+=1 msg = "" #frame = imutils.resize(frame, width=400) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (7, 7), 0) # grab the current timestamp and draw it on the frame timestamp = datetime.datetime.now() cv2.putText(frame, timestamp.strftime( "%A %d %B %Y %I:%M:%S%p"), (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # if the total number of frames has reached a sufficient # number to construct a reasonable background model, then # continue to process the frame if total > frameCount: # detect motion in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=5, minSize=(int(minW), int(minH)), ) #print(faces) if len(faces)>0: # print("face detected") if previous_state == 1: face_frame_counter+=1 previous_state = 1 else: previous_state = 0 face_frame_counter = 0 if face_frame_counter>70: #start seq. print('face recognized') for(x,y,w,h) in faces: cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 2) id, confidence = recognizer.predict(gray[y:y+h,x:x+w]) if counter_id>10: print(previous_id) tempstr = 'Hello '+names[id] finalFlag = False mainFlag = True flagTemp = 0 a = 0 th = threading.Thread(target = flow, args= (names[id],)) th.start() #print(th.is_alive()) flag = True if(confidence<100): id = names[id] if (id==previous_id): counter_id+=1 previous_id = id else: id = 'unknown' previous_id = id counter_id = 0 #face_frame_counter = 0 total += 1 # acquire the lock, set the output frame, and release the # lock with lock: outputFrame = frame.copy() @app.route("/") def index(): t = threading.Thread(target=detect_face, args=( args["frame_count"],)) t.daemon = True t.start() # return the rendered template return render_template("index.html") def generate(): # grab global references to the output frame and lock variables global outputFrame, lock # loop over frames from the output stream while True: # wait until the lock is acquired with lock: # check if the output frame is available, otherwise skip # the iteration of the loop if outputFrame is None: continue # encode the frame in JPEG format (flag, encodedImage) = cv2.imencode(".jpg", outputFrame) # ensure the frame was successfully encoded if not flag: continue # yield the output frame in the byte format yield(b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n') @app.route("/video_feed") def video_feed(): # return the response generated along with the specific media # type (mime type) return Response(generate(), mimetype = "multipart/x-mixed-replace; boundary=frame") # check to see if this is the main thread of execution if __name__ == '__main__': # construct the argument parser and parse command line arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--ip", type=str, default='127.0.0.1', help="ip address of the device") ap.add_argument("-o", "--port", type=int, default=8000, help="ephemeral port number of the server (1024 to 65535)") ap.add_argument("-f", "--frame-count", type=int, default=32, help="# of frames used to construct the background model") args = vars(ap.parse_args()) # start a thread that will perform motion detection # start the flask app app.run(host=args["ip"], port=args["port"], debug=True, threaded=True, use_reloader=False) # release the video stream pointer vs.release ```
{ "source": "jithinvijayan007/django-sendgrid-v5", "score": 2 }
#### File: django-sendgrid-v5/test/test_backend_init.py ```python from django.core.exceptions import ImproperlyConfigured from django.test import override_settings from django.test.testcases import SimpleTestCase from sendgrid_backend.mail import SendgridBackend class TestBackendInit(SimpleTestCase): @override_settings(EMAIL_BACKEND="sendgrid_backend.SendgridBackend", SENDGRID_API_KEY=None) def test_init_no_setting(self): backend = SendgridBackend(api_key="DUMMY_API_KEY") with self.assertRaises(ImproperlyConfigured): backend = SendgridBackend() # noqa ```
{ "source": "JithLord/BlackOutPoetry", "score": 3 }
#### File: JithLord/BlackOutPoetry/main.py ```python import tkinter from tkinter import filedialog from PIL import ImageTk,Image from code1 import encode,decode from code2 import encodeImage,decodeImage window = tkinter.Tk() window.title("Blackout Poetry") w = window.winfo_screenwidth() h = window.winfo_screenheight() window.minsize(w,h) text = "" text_label = "" image = [[]] img = [[]] img2 = [[]] up_image = [[]] txt_box=[] txt_lavel="" file="" file2="" canvas = tkinter.Canvas(window,width=w,height=h,highlightthickness=0) canvas.place(x=0,y=0) back=ImageTk.PhotoImage(Image.open('back1.png').resize((w,h), Image.ANTIALIAS)) canvas.create_image(int(w/2),int(h/2), anchor="center", image=back) canvas.back=back canvas1 = tkinter.Canvas(window,width=480, height=480,bg="gray50") canvas1.place(x=300,y=150) canvas1_label_bg = '#%02x%02x%02x' % (44,37,31) canvas1_label = tkinter.Label(window, text='Original Image', fg='white', bg=canvas1_label_bg, font=(None,12)) canvas1_label.place(x=500,y=120) canvas2 = tkinter.Canvas(window,width=480, height=480,bg="gray50") canvas2.place(x=850,y=150) canvas2_label_bg = '#%02x%02x%02x' % (46,38,35) canvas2_label = tkinter.Label(window, text='Updated Image', fg='white', bg=canvas2_label_bg, font=(None,12)) canvas2_label.place(x=1050,y=120) #adding image buttons : upload_image_button=ImageTk.PhotoImage(Image.open('Icons/upload.png').resize((175,40), Image.ANTIALIAS)) #1.2 encode_image_button=ImageTk.PhotoImage(Image.open('Icons/encode.png').resize((118,33), Image.ANTIALIAS)) #1.3 decode_image_button=ImageTk.PhotoImage(Image.open('Icons/decode.png').resize((118,33), Image.ANTIALIAS)) #1.3 proceed_image_button=ImageTk.PhotoImage(Image.open('Icons/proceed.png').resize((128,38), Image.ANTIALIAS)) #1.2 clear_text_image_button=ImageTk.PhotoImage(Image.open('Icons/clear_text.png').resize((93,29), Image.ANTIALIAS)) clear_images_image_button=ImageTk.PhotoImage(Image.open('Icons/clear_images.png').resize((110,29), Image.ANTIALIAS)) save_image_button=ImageTk.PhotoImage(Image.open('Icons/save.png').resize((106,38), Image.ANTIALIAS)) exit_image_button=ImageTk.PhotoImage(Image.open('Icons/exit.png').resize((87,39), Image.ANTIALIAS)) #1.3 encode_set_image=ImageTk.PhotoImage(Image.open('Icons/encode_set.png').resize((118,33), Image.ANTIALIAS)) #1.3 decode_set_image=ImageTk.PhotoImage(Image.open('Icons/decode_set.png').resize((118,33), Image.ANTIALIAS)) #1.3 upload_image2_button=ImageTk.PhotoImage(Image.open('Icons/upload.png').resize((140,33), Image.ANTIALIAS)) #1.5 enter_text_button=ImageTk.PhotoImage(Image.open('Icons/text.png').resize((76,32), Image.ANTIALIAS)) #1.5 #adding upload image box def upload_image() : global file file = filedialog.askopenfilename(initialdir = "/", title="Select An Image", filetype=(("PNG","*.png"),("JPEG","*.jpg"),("Bitmap","*.bmp"))) label = tkinter.Label(window,text=file[:14]+str("...")+file[-12:],font="Helvetica 8 italic") label.place(x=30,y=200) disp_image(file) uploadbg = '#%02x%02x%02x' % (50, 39, 35) upload = tkinter.Button(window, image=upload_image_button, command=upload_image, borderwidth=0, bg=uploadbg, cursor='hand2', activebackground=uploadbg, highlightthickness=0) upload.place(x=30,y=150) #displaying uploaded image def disp_image(file) : global image global img img = Image.open(file) img = img.convert('RGB') r_img = img #resized image for canvas width,height = img.size ratio = width/height if (ratio>1) : # landscape image width = 480 # max possible width in canvas height = (int)(width/ratio) r_img = img.resize((width,height), Image.ANTIALIAS) elif (ratio<1) : #potrait image height = 480 #max possible height in canvas width = (int)(height*ratio) r_img = img.resize((width,height), Image.ANTIALIAS) else : #square image height = 480 width = 480 r_img = img.resize((width,height), Image.ANTIALIAS) image = ImageTk.PhotoImage(r_img) #converting to image type canvas1.create_image(240,240,image=image) canvas1.image = image # radio buttons and functions c = tkinter.IntVar() d = tkinter.IntVar() def clicked(): def clicked_2() : def extract_data() : #calling the functions global up_image if (c.get()==1 and d.get()==1) : # encoding with text global text text = txt_box.get() #txt_box.delete(0,'end') #clear content once entered #txt_button['state'] = tkinter.DISABLED #freeze entry button text_label = tkinter.Label(window,text=text,font="Times 12") modified_image = encode(img,text) #modified image is only attributes elif (c.get()==2 and d.get()==1) : # decoding with text text,modified_image = decode(img) decode_text_bg = '#%02x%02x%02x' % (97,80,70) decoded_text_label = tkinter.Label(window,text="Decoded Text : "+text,fg='white',bg=decode_text_bg,font=("Helvatica","12","bold")) decoded_text_label.place(x=850,y=650) elif (c.get()==1 and d.get()==2) : # encoding with images modified_image = encodeImage(img,img2) elif (c.get()==2 and d.get()==2) : # decoding with images modified_image = decodeImage(img) #modified_image = crop_black(modified_image) update_image(modified_image) # display updated image if (d.get()==1) : if (c.get() == 1) : # enter text box only for encode global txt_label global txt_box message = "Enter Text :" #enter text to encode txt_box = tkinter.Entry(window) txt_label_bg = '#%02x%02x%02x' % (56,47,40) txt_label = tkinter.Label(window,text="(alphanumeric values and spaces)",font=(None,7),fg='white',bg=txt_label_bg) txt_box.place (x=130,y=335) txt_label.place (x=130,y=360) elif (d.get()==2 and c.get()==1) : #upload image only for encode global file2 global img2 file2 = filedialog.askopenfilename(initialdir = "/", title="Select An Image", filetype=(("PNG","*.png"),("JPEG","*.jpg"),("Bitmap","*.bmp"))) img2 = Image.open(file2) img2 = img2.convert('RGB') proceedbg = '#%02x%02x%02x' % (70,58,51) proceed_button = tkinter.Button(window, image=proceed_image_button, command=extract_data, cursor='hand2', bg=proceedbg, activebackground=proceedbg, border=0, highlightthickness=0) proceed_button.place(x=20,y=480) rad3 = tkinter.Radiobutton(window, image=enter_text_button, variable=d, value=1, indicator=0, #to change style background=encodebg, border=0, command=clicked_2, cursor='hand2', activebackground=encodebg, highlightthickness=0) rad4 = tkinter.Radiobutton(window, image=upload_image2_button, variable=d, value=2, indicator=0, #to change style background=encodebg, border=0, command=clicked_2, cursor='hand2', activebackground=encodebg, highlightthickness=0) rad3.place (x=20,y=330) rad4.place (x=20,y=380) messagebg = '#%02x%02x%02x' % (54,45,37) message = tkinter.Label(window,text="Select one of the following :",font="Helvetica 10 italic",fg='white',bg=messagebg) message.place(x=20,y=290) decodebg = '#%02x%02x%02x' % (54,45,37) encodebg = '#%02x%02x%02x' % (52,41,35) rad1 = tkinter.Radiobutton(window, image=encode_image_button, variable=c, value=1, indicator=0, #to change style background=encodebg, border=0, command=clicked, cursor='hand2', activebackground=encodebg, highlightthickness=0, selectimage=encode_set_image) rad2 = tkinter.Radiobutton(window, image=decode_image_button, variable=c, value=2, indicator=0, #to change style background=decodebg, border=0, command=clicked, cursor='hand2', activebackground=decodebg, highlightthickness=0, selectimage=decode_set_image) rad1.place(x=20, y=240) rad2.place(x=155, y=240) def update_image(modified_image) : #display updated image width,height = modified_image.size ratio = width/height r_img = modified_image if (ratio>1) : # landscape image width = 480 # max possible width in canvas height = (int)(width/ratio) #print(width,height) r_img = modified_image.resize((width,height), Image.ANTIALIAS) elif (ratio<1): #portrait image height = 480 #max possible height in canvas width = (int)(height*ratio) #print(width,height) r_img = modified_image.resize((width,height), Image.ANTIALIAS) else : #square image height = 480 width = 480 r_img = modified_image.resize((width,height), Image.ANTIALIAS) up_image = ImageTk.PhotoImage(r_img) #converting to image type canvas2.create_image(240,240, image=up_image) canvas2.up_image=up_image # saving the result def save_result() : x=file.rfind('/') # last occurance of / in file name y=file.rfind('.') # last occurance of . in file name image_name=file[x+1:y:1] # to extract only name of the image and not entire path result_img = modified_image.save("Saved Images/"+image_name+" result.png") savebg = '#%02x%02x%02x' % (100,92,80) save = tkinter.Button(window, image=save_image_button, command=save_result, cursor='hand2', border=0, bg=savebg, activebackground=savebg, highlightthickness=0) save.place(x=1225,y=650) #reset and exit buttons def clear_img() : canvas1.delete("all") canvas2.delete("all") def clear_text() : text='' txt_box.delete(0,'end') clearimgbg = '#%02x%02x%02x' % (70,57,51) cleartextbg = '#%02x%02x%02x' % (65,52,45) quitbg = '#%02x%02x%02x' % (80,67,61) clear_images = tkinter.Button(window,image=clear_images_image_button,command=clear_img,border=0,activebackground=clearimgbg,bg=clearimgbg,highlightthickness=0) clear_images.place(x=20,y=580) clear_text = tkinter.Button(window,image=clear_text_image_button,command=clear_text,border=0,activebackground=cleartextbg,bg=cleartextbg,highlightthickness=0) clear_text.place(x=150,y=580) quit_button = tkinter.Button(window, image=exit_image_button, command=window.quit, border=0, highlightthickness=0, bg=quitbg, activebackground=quitbg) quit_button.place(x=20,y=630) window.mainloop() ```
{ "source": "JithLord/Jith", "score": 4 }
#### File: JithLord/Jith/Main.py ```python import pygame, sys, random, time from pygame.locals import * # BLOCK_SIZE is the size of each cell in the grid. Used for position calculations. BLOCK_SIZE = 600//10 # RGB Colors for players - Black, Red, Green, Blue COLORS = ((0, 0, 0), (255, 0, 0), (0, 100, 0), (0, 0, 255)) # Snakes' and ladders' positions where key is from and value is to. SNAKES = {93:28, 84:41, 59:38, 55:12, 23:3} LADDERS = {4:36, 10:49, 26:85, 40:79, 70:92} # Sample players players = [ {"name": "Player 1", "pos": 1, "color": COLORS[0], "bot": True}, {"name": "Player 2", "pos": 1, "color": COLORS[1], "bot": True}, {"name": "Player 3", "pos": 1, "color": COLORS[2], "bot": False}, {"name": "Player 4", "pos": 1, "color": COLORS[3], "bot": False} ] # game_message holds value of game status to display game_message = "" # If game is won or not game_won = False # Current player number (index of player in players) player_index = 0 # Used to get input (space) when required user_input = None wait_for_user_input = False def convert_num_to_xy(num, offset=(0,0)): '''This function converts a given cell number into its (x,y) coordinates. ''' if num%10 == 0: y = 10 - num//10 else: y = 10 - num//10 - 1 if y % 2 == 0: if num%10 == 0: x = 10 - num%10 - 10 else: x = 10 - num%10 else: if num%10 == 0: x = num%10 - 1 + 10 else: x = num%10 - 1 # print(num, (x,y)) return (x*BLOCK_SIZE+offset[0], y*BLOCK_SIZE+offset[1]) dice_num=0 def draw_players_on_map(): '''This function runs every frame and redraws the board and all players on it.''' screen.fill((65,186,235)) # Blue # Draw board background board_img = pygame.image.load("board3.jpg") board_img = pygame.transform.scale(board_img, (600, 600)) screen.blit(board_img, (0,0)) # Draw logo logo_img = pygame.image.load("logo2.png") logo_img = pygame.transform.scale(logo_img, (240, 120)) screen.blit(logo_img, (600,6)) # Draw players' circle dots for player in players: index = players.index(player) if index == 0: offset = (BLOCK_SIZE//4, BLOCK_SIZE//4) elif index == 1: offset = (BLOCK_SIZE*3//4, BLOCK_SIZE//4) elif index == 2: offset = (BLOCK_SIZE//4, BLOCK_SIZE*3//4) elif index == 3: offset = (BLOCK_SIZE*3//4, BLOCK_SIZE*3//4) pygame.draw.circle(screen, player["color"], convert_num_to_xy(player["pos"], offset), BLOCK_SIZE//4, 0) def draw_scoreboard(): '''This function redraws the right sidebar of the game, including scoreboard and text.''' global game_won pygame.draw.rect(screen, (65,186,235), (600,150,300,260)) # Draw a blue rectangle to "clear" the right side. headingtext = heading_head.render("Players", 1, (0,0,0)) # Draw the word "Players" screen.blit(headingtext, (675, 125)) for player in players: # For each player: if player["pos"] == 100: game_won = True index = players.index(player) score = player["name"] + ": " + str(player["pos"]) scoretext = score_font.render(score, 1, (0,0,0)) # Draw player name and score screen.blit(scoretext, (650, 200+50*index)) pygame.draw.circle(screen, player["color"], (638, 210+50*index), 6, 0) # Draw the small color circle dot a=players[player_index]["name"]+"'s turn" playerturntext = heading_font.render(a.center(30," "), 1, (0,0,0)) # Draw player name of who should play screen.blit(playerturntext, (620, 500)) b=game_message gamemsgtext = score_font.render(b.center(40," "), 1, (0,0,0)) # Draw game message screen.blit(gamemsgtext, (620, 540)) def draw_die(): '''Draw die.''' if dice_num: die_img = pygame.image.load("die/die_"+str(dice_num)+".jpg") die_img = pygame.transform.scale(die_img, (75, 75)) screen.blit(die_img, (712,410)) def play_turn(player_index): '''This function actually "plays" and rolls the die.''' global user_input, wait_for_user_input, game_message, dice_num if players[player_index]["bot"]: # If player is a computer: print("play_turn", player_index, "is bot. Playing.") dice_num = random.randint(1,6) # Generate random number game_message = players[player_index]["name"] + " (bot) got " + str(dice_num) else: # If player is human: print("play_turn", player_index, "is user.") if user_input: # Check if player has pressed space print("found user input. Setting", user_input, "for", player_index) dice_num = random.randint(1,6) # Roll a die user_input = None # Reset player input game_message = players[player_index]["name"] + " played " + str(dice_num) else: # If no input from player: print("no user input. Setting wait for", player_index) wait_for_user_input = True # Keep waiting, stop function midway here return draw_die() # Check if player crosses 100 if players[player_index]["pos"]+dice_num > 100: game_message = "Can only proceed with " + str(100-players[player_index]["pos"]) + ", not " + str(dice_num) return # Do not increment player's position # Check if player won the game elif players[player_index]["pos"]+dice_num == 100: game_message = players[player_index]["name"] + " WON!" players[player_index]["pos"] += dice_num # Add die number to player's position print("new pos for", player_index, "is", players[player_index]["pos"]) def check_and_teleport(player_index): '''Check if a player landed at a snake's head or ladder foot. Teleport when necessary.''' global game_message # Check for snakes if players[player_index]["pos"] in SNAKES: print(players[player_index]["name"], "was swallowed by a snake :(") game_message = players[player_index]["name"] + " was swallowed by a snake :(" players[player_index]["pos"] = SNAKES[players[player_index]["pos"]] # Check for ladders elif players[player_index]["pos"] in LADDERS: print(players[player_index]["name"], "climbed a ladder :)") game_message = players[player_index]["name"] + " climbed a ladder :)" players[player_index]["pos"] = LADDERS[players[player_index]["pos"]] #Ask for player details players = [] try: n = int(input("Number of players: ")) except ValueError: print("Invalid input. Exiting.") exit() if n not in range(2,5): print("Number of players must be 2-4.") exit() for i in range(n): name = input("Name: ") b = input("Computer Bot? (yes/no): ").lower() if b in ("yes", "y", "true","t"): bot=True elif b in ("no", "n", "false","f"): bot=False else: print("Invalid input, Try again.") players.append({"name": name, "bot": bot, "pos": 1, "color": COLORS[i] }) # Initialize pygame pygame.init() # Create fonts to use heading_head = pygame.font.SysFont("bauhaus93",34) heading_font = pygame.font.SysFont("comicsansms", 22) score_font = pygame.font.SysFont("comicsansms", 18) # Create a new screen of size: 900x600 screen = pygame.display.set_mode([900,600]) pygame.display.set_caption("Snake And Ladder") # Start a "clock" for the game fpsClock = pygame.time.Clock() # Main game loop while True: for i in pygame.event.get(): if i.type == pygame.QUIT: # If window close, exit properly pygame.quit() sys.exit() if i.type == pygame.KEYDOWN: # If user input: key = pygame.key.name(i.key) print(key) if key == 'space': # If key is space: user_input = True wait_for_user_input = False player_index -= 1 draw_players_on_map() # Draw players on map draw_scoreboard() # Draw scoreboard # Do not go ahead with game if game expects input, but none is given if wait_for_user_input and not user_input: continue play_turn(player_index) # Play turn draw_scoreboard() # Draw scoreboard draw_die() pygame.display.update() # Apply all changes made to screen # Stop if game won if game_won: time.sleep(6) pygame.quit() sys.exit() time.sleep(0.7) # Wait so people can see what's happening check_and_teleport(player_index) # Check for snakes and ladders # Go to next player. Cycle over all players. game_message = "" # Reset game message if player_index == len(players)-1: player_index = 0 else: player_index += 1 pygame.display.update() # Apply all changes made to screen fpsClock.tick(1) ```
{ "source": "Jithra/JithBot", "score": 2 }
#### File: JithBot/plugins/Echo.py ```python from util import Events import discord import re class Plugin(object): def __init__(self, pm): self.pm = pm @staticmethod def register_events(): return [Events.Command('echo', desc = 'Make JithBot say something.')] async def handle_command(self, message_object, command, args): if command == 'echo': await self.echo_test(message_object, command) async def echo_test(self, message_object,command): message = re.split(command, message_object.content) message = re.split('`', message[1]) channel = re.sub('\W','', message[0]) await self.pm.client.delete_message(message_object) await self.pm.client.send_message(discord.Object(id = str(channel)), str(message[1])) return() ``` #### File: JithBot/plugins/MusicBot.py ```python from util import Events from util.Ranks import Ranks from discord import Channel class Plugin(object): def __init__(self, pm): self.pm = pm self.player = None @staticmethod def register_events(): return [Events.Command("play", desc="Play a song in voice chat"), Events.Command("stop", Ranks.Mod, desc="Stop the Music bot")] async def handle_command(self, message_object, command, args): if command == "play": await self.play(message_object, args[1]) if command == "stop": await self.stop(message_object) async def play(self, message_object, url): await self.pm.client.delete_message(message_object) # Kill all playing connections before starting a new one if self.player is not None: self.player.stop() # Check if the user requesting is in a voice channel channel = message_object.author.voice.voice_channel if channel is not None and type(channel) is Channel: # Disconnect if we're connected without playing anything. if self.player is None: chan = self.pm.client.voice_client_in(message_object.server) if chan is not None: await chan.disconnect() # Get current joined channel, if not available join user channel if len(self.pm.client.voice_clients) is 0: voice = await self.pm.client.join_voice_channel(channel) else: voice = self.pm.client.voice_client_in(message_object.server) self.player = await voice.create_ytdl_player(url, ytdl_options={"default_search": "ytsearch"}) self.player.start() # Format stream duration m, s = divmod(self.player.duration, 60) h, m = divmod(m, 60) if h is 0: duration = str(m) + ":" + str(s) else: duration = str(h) + ":" + str(m) + ":" + str(s) await self.pm.client.send_message(message_object.channel, "Now playing **" + self.player.title + "** (" + duration + ") in " + channel.name) else: await self.pm.client.send_message(message_object.channel, message_object.author.mention + " please join a voice channel in order to start the bot!") async def stop(self, message_object): # Kill all playing connections if self.player is not None: self.player.stop() # Disconnect from voice chan = self.pm.client.voice_client_in(message_object.server) if chan is not None: await chan.disconnect() ``` #### File: JithBot/plugins/rate.py ```python from util import Events import random class Plugin(object): def __init__(self, pm): self.pm = pm @staticmethod def register_events(): return [Events.Command("rate",desc="Rate someone or something between 0 and 100")] async def handle_command(self, message_object, command, args): if command == "rate": await self.rate(message_object, args[1]) async def rate(self, message_object, user): ''' # totally not rigged or something def isDevMentioned(): for u in message_object.mentions: if u.name == "Theraga" or u.name == "Dynista": return True return False if user == "theraga" or user == "Theraga" or user == "dynista" or user == "Dynista" or isDevMentioned(): await self.pm.client.send_message(message_object.channel, "I would rate **" + user + "** 100.00/100") else: ''' number = round(random.uniform(1, 100), 2) print(message_object.mentions) await self.pm.client.send_message(message_object.channel, "I would rate " + "**" + user + "** " + str(number) + "/100") ``` #### File: JithBot/plugins/sqlservlog.py ```python from PluginManager import PluginManager from util import Jithsql from util import Events import discord import re import pyodbc class Plugin(object): def __init__(self, pm): self.pm = pm @staticmethod def register_events(): return [Events.Message("logging")] async def handle_message(self, message_object): if message_object.content.startswith(self.pm.botPreferences.commandPrefix) is False: #format server name, user name, and message contents to make them all SQL friendly. ServerName = Jithsql.sanitize_inputs(message_object, 'server') UserName = Jithsql.sanitize_inputs(message_object, 'author') UserMessage = Jithsql.sanitize_inputs(message_object, 'content') ServerID = str(message_object.server.id) UserID = str(message_object.author.id) UserChannel = '#' + str(message_object.channel) sql = "EXEC insert_into_table '" + ServerName + "','" + ServerID + "','" + UserName + "','" + UserMessage + "','" + UserChannel + "','" + UserID + "';" connection = Jithsql.parse_connection() cursor = connection.cursor() cursor.execute(sql) cursor.execute("COMMIT;") del cursor connection.close ```
{ "source": "jithuraju1290/gotmtool", "score": 2 }
#### File: jithuraju1290/gotmtool/gotm_build.py ```python import os from gotmtool.model import Model def main(): """Build GOTM """ # create a model instance for build m = Model( # an arbitrary name, not used in the build step name='build', # if necessary, change to the GOTM environment file set up # by gotm_env_init.py environ='.gotm_env.yaml', ) # build the model print('-'*64) print('Building GOTM source code') print('-'*64) m.build( # do a clean build clean=True, # build with CVMix use_cvmix=True, # build with FABM use_fabm=False, # build with STIM use_stim=False, # build with NetCDF use_netcdf=True, # output extra output for turbulence variables extra_output=False, # debug mode debug=False, ) if __name__ == "__main__": main() ``` #### File: gotmtool/gotmtool/stokesdrift.py ```python import numpy as np from scipy import special from .constants import gravity def stokes_drift_dhh85( z, wind_speed, wave_age, omega_min=0.1, omega_max=20., n_omega=1000, ): """Compute Stokes drift from Donelan et al., 1985 spectrum :z: (array-like) depth < 0 (m) :wind_speed: (float) 10-meter wind speed (m/s) :wave_age: (float) wave age (unitless) :omega_min: (float) minimum frequency (2*pi*f) for integration :omega_max: (float) maximum frequency (2*pi*f) for integration :n_omega: (int) number of frequency bins for integration :returns: (array-like) Stokes drift at z """ omega = np.linspace(omega_min, omega_max, n_omega) domega = omega[1]-omega[0] z = np.array(z) dz, _ = _get_grid(z) us = np.zeros_like(z) for i in np.arange(n_omega): us += domega * _stokes_drift_kernel_dhh85(omega[i],z,dz,wind_speed,wave_age) return us def _stokes_drift_kernel_dhh85( omega, z, dz, wind_speed, wave_age, ): """Kernel of the Stokese :omega: (float) frequency (2*pi*f) :z: (array-like) depth < 0 (m) :dz: (array-like) layer thickness (m) :wind_speed: (float) 10-meter wind speed (m/s) :wave_age: (float) wave age (unitless) :return: (array-like) Stokes drift kernel at omega and z """ iwa = 1./wave_age omega_p = gravity * iwa / wind_speed alpha = 0.006 * iwa**(0.55) sigma = 0.08 * (1. + 4. * wave_age**3) if iwa <= 1.: gamma1 = 1.7 else: gamma1 = 1.7 + 6. * np.log10(iwa) gamma2 = np.exp(-0.5 * (omega - omega_p)**2 / sigma**2 / omega_p**2) spec = alpha * gravity**2 / (omega_p * omega**4) * np.exp(-(omega_p/omega)**4) * gamma1**gamma2 kdz = omega**2 * dz / gravity zfilter = np.where(kdz < 10., np.sinh(kdz)/kdz, 1.) return 2. * (spec * omega**3) * zfilter * np.exp(2. * omega**2 * z / gravity) / gravity def stokes_drift_spec( z, spec, xcmp, ycmp, freq, dfreq, tail_fm5=False, ): """Compute Stokes drift profile from wave spectrum :z: (array-like) depth < 0 (m) :spec: (array-like) band wave energy density (m^2 s) :xcmp: (array-like) fraction of x-component (0-1) :ycmp: (array-like) fraction of y-component (0-1) :freq: (array-like) band center wave frequency (Hz) :dfreq: (array-like) band width of wave frequency (Hz) :tail_fm5: (bool, optional) add contribution from a f^-5 tail :returns: (array-like) Stokes drift at z (x- and y-components) """ z = np.array(z) spec = np.array(spec) xcmp = np.array(xcmp) ycmp = np.array(ycmp) freq = np.array(freq) dfreq = np.array(dfreq) us = np.zeros_like(z) vs = np.zeros_like(z) nfreq = freq.size nz = z.size const = 8. * np.pi**2 / gravity factor2 = const * freq**2 factor = 2. * np.pi * freq *factor2 * dfreq # cutoff frequency freqc = freq[-1] + 0.5 * dfreq[-1] dfreqc = dfreq[-1] # get vertical grid dz, zi = _get_grid(z) # Stokes drift averaged over the grid cell for i in np.arange(nz): for j in np.arange(nfreq): kdz = factor2[j] * dz[i] / 2. if kdz < 100.: tmp = np.sinh(kdz) / kdz * factor[j] * spec[j] * np.exp(factor2[j]*z[i]) else: tmp = factor[j] * spec[j] * np.exp(factor2[j]*z[i]) us[i] += tmp * xcmp[j] vs[i] += tmp * ycmp[j] # contribution from a f^-5 tail if tail_fm5: us_t, vs_t = stokes_drift_tail_fm5(z, spec[-1], xcmp[-1], ycmp[-1], freqc) us += us_t vs += vs_t return us, vs def stokes_drift_tail_fm5( z, spec, xcmp, ycmp, freq, ): """Contribution of a f^-5 spectral tail to Stokes drift see <NAME> Harcourt and D'Asaro 2008 :z: (array-like) depth < 0 (m) :spec: (float) :xcmp: (float) fraction of x-component (0-1) :ycmp: (float) fraction of y-component (0-1) :freq: (float) cutoff frequency :returns: (array-like) Stokes drift at z (x- and y-components) """ # initialize arrays nz = z.size us = np.zeros_like(z) vs = np.zeros_like(z) # constants const = 8. * np.pi**2 / gravity # get vertical grid dz, zi = _get_grid(z) for i in np.arange(nz): aplus = np.maximum(1.e-8, -const * freq**2 * zi[i]) aminus = -const * freq**2 * zi[i+1] iplus = 2. * aplus / 3. * (np.sqrt(np.pi * aplus) * special.erfc(np.sqrt(aplus)) - (1. - 0.5 / aplus) * np.exp(-aplus)) iminus = 2. * aminus / 3. * (np.sqrt(np.pi * aminus) * special.erfc(np.sqrt(aminus)) - (1. - 0.5 / aminus) * np.exp(-aminus)) tmp = 2. * np.pi * freq**2 / dz[i] * spec * (iplus - iminus) us[i] = tmp * xcmp vs[i] = tmp * ycmp return us, vs def _get_grid(z): # get vertical grid thickness z = np.array(z) nz = z.size if nz == 1: dz = 1.e6 # an arbitrarily large number zi = z else: dz = np.zeros_like(z) zi = np.zeros(nz+1) dz[1:-1] = 0.5 * (z[0:-2] - z[2:]) dz[0] = -z[0] + 0.5 * (z[0] - z[1]) dz[-1] = dz[-2] zi[1:] = -np.cumsum(dz) return dz, zi ```
{ "source": "jithurjacob/Recommendation-Engine-Algorithms", "score": 2 }
#### File: models/DeepLearning/DL_recommender.py ```python import json # import pickle """ hm_epochs = 150 batch_size = 500 num_steps = 10 state_size = 200 vocab_size = 11207 # Placeholders x = tf.placeholder(tf.int32, [None, num_steps]) # [batch_size, num_steps] seqlen = tf.placeholder(tf.int32, [None]) y = tf.placeholder(tf.int32, [None, num_steps]) model_path = "./models/DeepLearning/model_data/" model_path = "./model_data/" sess=tf.Session() #First let's load meta graph and restore weights saver = tf.train.import_meta_graph(model_path+'model.meta') saver.restore(sess,tf.train.latest_checkpoint(model_path)) sess.run(tf.global_variables_initializer()) graph = tf.get_default_graph() #context = graph.get_tensor_by_name("context:0") #utterance = graph.get_tensor_by_name("utterance:0") #target = graph.get_tensor_by_name("target:0") op_to_restore = graph.get_tensor_by_name("logits:0") #qe,an,lbl = test_batch(0) """ def get_recommendations(cart_items): cart_items = [json.loads(cart_items)] """ with open(model_path+'embeddings.txt','rb') as fp: embeddings = pickle.load(fp) with open (model_path+'words.txt', 'rb') as fp: wordlist = pickle.load(fp) wordlist.append('UNKNOWN_TOKEN') embeddings = np.vstack([embeddings, np.zeros(200)]) word_to_index = dict([(w,i) for i,w in enumerate(wordlist)]) test_prod_embeds = [[word_to_index[prod] for prod in bucket] for bucket in cart_items ] test_x_padded = [] max_length = 10 for row in test_prod_embeds: print(row) if len(row) <= max_length: test_x_padded.append(row + [word_to_index['UNKNOWN_TOKEN']] * (max_length - len(row))) else : test_x_padded.append(test_prod_embeds[:10]) feed_dict={x: test_x_padded} #feed_dict={x: tt} results = sess.run(op_to_restore,feed_dict) print("These are results:", results) results = np.reshape(results, [len(test_x_padded), num_steps, vocab_size]) r1= results.argmax(axis=2) for pre in (r1[:10]): print("Starts") print("\ny': These are the predictions made \n%s" % (wordlist[pre[-1]] )) #print("\ny': These are the predictions made \n%s" % (",".join([wordlist[x] for x in pre]))) #print("\ny These are the ground truths :\n%s" % (",".join([wordlist[x] for x in the]))) print("End\n") """ return ["placeholder1","placeholder2"] #print(get_recommendations('["Milk"]')) ```
{ "source": "JitindraFartiyal/odmetrics", "score": 3 }
#### File: odmetrics/metrics/iou.py ```python import numpy def iou(bboxA, bboxB): ''' Input : bboxA : [left, top, right, bottom] bboxB : [left, top, right, bottom] Output: Intersection over union(iou) between bboxA and bboxB Range of iou [0-1] ''' xA = max(bboxA[0], bboxB[0]) yA = max(bboxA[1], bboxB[1]) xB = min(bboxA[2], bboxB[2]) yB = min(bboxA[3], bboxB[3]) intersected_area = (xB - xA) * (yB - yA) bboxA_area = (bboxA[2] - bboxA[0]) * (bboxA[3] - bboxA[1]) bboxB_area = (bboxB[2] - bboxB[0]) * (bboxB[3] - bboxB[1]) if (bboxA_area + bboxB_area - intersected_area) > 0: intersection_over_union = intersected_area / (bboxA_area + bboxB_area - intersected_area) else: intersection_over_union = 0 return round(intersection_over_union, 3) if __name__ == '__main__': bboxA = [10, 20, 30, 40] bboxB = [100, 200, 300, 541] print('IOU : ', iou(bboxA, bboxB)) ```
{ "source": "jitinkrishnan/Diversity-Based-Generalization", "score": 3 }
#### File: jitinkrishnan/Diversity-Based-Generalization/dataset_utils.py ```python from preprocess import * from wordvec_utils import * import numpy as np import nltk, random def create_one_training_example(full_text_example, max_len, wv_dict): text = preprocess_1(full_text_example) words = nltk.word_tokenize(text) bag = [] mywords = [] count = 0 for word in words: if count == max_len: break if word in wv_dict.vocab.keys(): v = get_wordvector(word,wv_dict,300) if v is not None: count += 1 bag.append(list(v)) mywords.append(word) for i in range(max_len-count): bag.append(list(np.zeros(300))) return mywords, np.asarray(bag) def inplace_shuffle(a,b): c = list(zip(a, b)) random.shuffle(c) a, b = zip(*c) return a,b def create_data4lstm(train_category, test_category, wv_dict, Tx=75, Ty=1): # TRAIN f_bags_pos = open("raw_data/"+train_category+"/review_positive") f_bags_neg = open("raw_data/"+train_category+"/review_negative") pos = f_bags_pos.readlines()[:10] neg = f_bags_neg.readlines()[:10] bags = pos + neg f_bags_pos.close() f_bags_neg.close() min_num = min(len(pos), len(neg)) bag_pos = [] for text in pos[:min_num]: bag_pos.append(create_one_training_example(text, Tx, wv_dict)[1]) bag_neg = [] for text in neg[:min_num]: bag_neg.append(create_one_training_example(text, Tx, wv_dict)[1]) pos_labels = [] for i in range(len(bag_pos)): pos_labels.append([1,0]) neg_labels = [] for i in range(len(bag_neg)): neg_labels.append([0,1]) X_train = bag_pos + bag_neg Y_train = pos_labels + neg_labels (X_train,Y_train) = inplace_shuffle(X_train,Y_train) Xoh = np.asarray(X_train) Yoh = np.asarray(Y_train) Yoh = np.reshape(Yoh, (Yoh.shape[0],1,2)) # TEST f_bags_pos = open("raw_data/"+test_category+"/review_positive") f_bags_neg = open("raw_data/"+test_category+"/review_negative") pos = f_bags_pos.readlines()[:10] neg = f_bags_neg.readlines()[:10] bags = pos + neg f_bags_pos.close() f_bags_neg.close() min_num = min(len(pos), len(neg)) bag_pos = [] for text in pos[:min_num]: bag_pos.append(create_one_training_example(text, Tx, wv_dict)[1]) bag_neg = [] for text in neg[:min_num]: bag_neg.append(create_one_training_example(text, Tx, wv_dict)[1]) pos_labels = [] for i in range(len(bag_pos)): pos_labels.append([1,0]) neg_labels = [] for i in range(len(bag_neg)): neg_labels.append([0,1]) X_test = bag_pos + bag_neg Y_test = pos_labels + neg_labels (X_test,Y_test) = inplace_shuffle(X_test,Y_test) Xoh_test = np.asarray(X_test) Yoh_test = np.asarray(Y_test) return Xoh, Yoh, Xoh_test, Yoh_test def create_data4lstm_DA_oneclass(domain_A, wv_dict, Tx=75, Ty=1): # TRAIN f_bags_pos = open("raw_data/"+domain_A+"/review_unlabeled") pos = f_bags_pos.readlines()[:10] f_bags_pos.close() bag_pos = [] for text in pos: bag_pos.append(create_one_training_example(text, Tx, wv_dict)[1]) Xoh = np.asarray(bag_pos) return Xoh ``` #### File: jitinkrishnan/Diversity-Based-Generalization/wordvec_utils.py ```python import numpy as np from nltk.stem import SnowballStemmer from nltk.stem.porter import PorterStemmer from nltk.stem import WordNetLemmatizer from nltk.tokenize import TweetTokenizer from gensim.models.keyedvectors import KeyedVectors snowball_stemmer = SnowballStemmer('english') porter_stemmer = PorterStemmer() wordnet_lemmatizer = WordNetLemmatizer() tknzr = TweetTokenizer() def wordvec_dict(bin_file): model = KeyedVectors.load_word2vec_format(bin_file, binary=True) return model.wv def lenOfdict(wv_dict): return len(wv_dict.vocab.keys()) def get_wordvector(word, model_wv,dim): vocab_keys = model_wv.vocab.keys() if word in vocab_keys: return model_wv[word] elif word.lower() in vocab_keys: return model_wv[word.lower()] elif word.upper() in vocab_keys: return model_wv[word.upper()] elif snowball_stemmer.stem(word) in vocab_keys: return model_wv[snowball_stemmer.stem(word)] elif wordnet_lemmatizer.lemmatize(word) in vocab_keys: return model_wv[wordnet_lemmatizer.lemmatize(word)] return None ```